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PREFACE

Attempts to quantize gravity started from the 1960s and continue until now.

However, in the framework of Einstein’s theory, quantization of gravity did

not go well because it does not become renormalizable in the standard way

applied to other ordinary fields. Attempts were made to modify Einstein’s

theory to render it possible, but another difficulty known as ghost problem

appeared, and eventually the attempt to quantize gravity with the standard

field theory methods has gone away. After the 1980s, methods that do not

depend on quantum field theory like string theory and loop quantum grav-

ity have become mainstream. Many of books published in this research are

about these theories. However, even though these theories have been stud-

ied for many years, realistic predictions that can explain briefly the current

universe are not derived yet. Now is a good time to revisit the problem of

quantization of gravity by returning to the traditional method again.

In this book, I will describe a renormalizable quantum gravity formu-

lated with incorporating a new technique based on conformal field theory

which recently has made prominent progress. Conformal invariance here

appears as a gauge symmetry that gives a key property of quantum gravity

known as the background-metric independence. Due to the presence of this

symmetry, the theory becomes free from the problem of spacetime singular-

ity, and thus from the information loss problem, namely the ghost problem

as well. Furthermore, I will give a new scenario of the universe that evolves

from quantum gravity world to the current classical world through the space-

time phase transition, including inflation driven by quantum gravity effects

only.

This book also includes descriptions of recent developments in confor-

mal field theory, renormalization theory in curved space, and conformal

anomalies related thereto, almost of which do not found in other books.

In addition, it includes review on evolution equations of the universe that is

the foundation of modern cosmology necessary to understand results of the

CMB experiments such as WMAP. Furthermore, it will be briefly shown

that there is a noticeable relationship between the quantum gravity and a

random lattice model that is based on the dynamical triangulation method

known as another description of the background free property. I would like

to describe these topics by taking enough pages as a latest advanced text-

book for leading to this new area of quantum field theory that developed
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mainly since the beginning of this century.

Research results on the quantum gravity over the last twenty years are

summarized in this book. I was helped by several collaborators in continu-

ing this research. I am grateful to them for attending to my discussions for a

long time. I especially thank Shinichi Horata and Tetsuyuki Yukawa. I could
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glish version of the book published in 2016 from the Pleiades Publishing in

Japan, with adding a bit of new content and sentences. I appreciate the sup-

port of the Pleiades Publishing. In publishing this English version, I would

like to thank Makoto Kobayashi, Kei-Ichi Kondo, and again Yukawa. I also

wish to thank Cambridge Scholars Publishing for giving me the opportunity

for publication. And I thank my wife Nonn and my daughter Kyouka for

supporting me.
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CHAPTER ONE

INTRODUCTION

The elementary particle picture represented by an ideal point without spread-

ing is a concept incompatible with Einstein’s theory of gravity.1 Because

such an object is nothing other than a black hole in terms of the theory

of gravity. If its mass m is smaller than the Planck mass mpl, the Comp-

ton wavelength which gives a typical fluctuation size of particles becomes

larger than the horizon size of the mass m, hence it can be approximated

as a particle. However, in the world beyond the Planck scale, such an ap-

proximation does not hold because particle information is confined inside

the horizon (see Fig. 1-1).

m < mpl m > mpl

Figure 1-1: The Compton wavelength of mass m is given by λ ∼ 1/m, while

particle’s horizon size (dotted line) is rg ∼ m/m2
pl. Therefore, λ < rg for m >

mpl, as shown on the right, and information on such an elementary excitation is

confined inside the horizon and lost. Hence, in the world beyond the Planck scale,

normal particle picture is no longer established.

The goal of quantum gravity is to reveal a high energy physics beyond

the Planck scale. While particles live in spacetime, gravity rules the space-

time itself, and the difference between their roles stands out there. Quantum

fluctuations of gravity become large, so that the concept of time and distance

will be lost. Quantization of the spacetime itself is required to describe such

a world where the image of particles moving in a specific spacetime is bro-

ken.

One way to resolve the problem mentioned above is to realize such a

1 The original paper is A. Einstein, Die Grundlage der allgemeinen
Relativitätstheorie, Annalen der Phys. 49 (1916) 769.
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2 Chapter One

quantum spacetime where the scale itself does not exist. It can be repre-

sented as gauge equivalence between spacetimes with different scales. This

property is called the background-metric independence. In this book, as a

theory with such a property, we will present a renormalizable quantum field

theory, called the asymptotically background-free quantum gravity, whose

ultraviolet limit is described as a special conformal field theory that has con-

formal invariance as a gauge symmetry.

Academic Interests

From observations of the cosmic microwave background (CMB) radiation

by Wilkinson Microwave Anisotropies Probe (WMAP), which is an astro-

nomical satellite launched from the NASA Kennedy Space Center in 2001,

cosmological parameters were determined with high precision and the the-

ory of inflation which suggests that a rapid expansion occurred in the early

stage of the universe was strongly supported. On the other hand, there are

still many simple and fundamental questions left, for example, why the uni-

verse is expanding or what is the source of repulsive force that ignites infla-

tion.

Interpreting the inflation theory naturally, the universe has expanded

about 1060 times from the birth to the present. This means that the larger

size than a cluster of galaxies was within the Planck length lpl before infla-

tion begins. It suggests that traces of quantum fluctuations of gravity in the

creation period of the universe are recorded in the CMB anisotropy spectrum

observed by WMAP.

Cosmic expansion, the big bang, creation of the primordial fluctuations,

and so on, it seems to be natural to consider that their origin is in quantum

effects of gravity. Quantum gravity is expected as a necessary physics to

understand the history of the universe from the birth of spacetime to the

present. The ultimate goal of this book is to explain the spectrum of CMB

using the asymptotically background-free quantum gravity. Recent studies

have revealed that we can explain a number of observed facts well if con-

sidering that a spacetime phase transition suggested by this theory as the big

bang occurred at 1017GeV.

Historical Background

Einstein’s theory of gravity has many properties unfavorable in constructing

its quantum theory, for examples, the Einstein-Hilbert action given by the
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Introduction 3

Ricci scalar curvature is not positive-definite, and the Newton coupling con-

stant has dimensions so that the theory becomes unrenormalizable. How-

ever, renormalization itself is not an idea contradictory to diffeomorphism

invariance, or invariance under general coordinate transformations, which is

the basis of the gravity theory.

In the early studies of the 1970s, it was considered that renormalizable

quantum gravity could be obtained by simply adding fourth-order derivative

gravitational actions to the Einstein-Hilbert action. It is because due to the

fact that the gravitational field is dimensionless unlike other known fields,

not only the coupling constant becomes dimensionless, but also the action

can be made positive-definite. Furthermore, when including the Riemann

curvature tensor in the action, spacetime singularities can be removed quan-

tum mechanically because the action diverges for such field configurations.

However, with methods of treating all modes of the gravitational field

perturbatively, we could not prevent undesirable gauge-invariant ghosts from

appearing as asymptotic fields. It is the problem of the so-called massive

graviton with negative metric.2 Eventually, the attempt to quantize gravity

with standard methods of quantum field theory had gone away, and after the

1980s, methods that do not use quantum field theory have become main-

stream. Actually, there are many studies on quantum gravity, but there are

few ones that have directly performed quantization of the gravitational field.

The purpose of this book is to return to the traditional method of quan-

tum field theory again and propose a new approach to renormalizable quan-

tum theory of gravity. In order to solve the problems, we introduce a non-

perturbative technique based on conformal field theory which has recently

made remarkable progress. As the result, the particle picture propagating in

a specific background will be discarded.

A significant progress in methods to quantize gravity was made in the

latter half of the 1980s. That is the discovery of an exact solution of two-

dimensional quantum gravity. The major difference from the conventional

quantum gravity mainly studied from the 1970s to the early 1980s was that

it correctly took in contributions from the path integral measure and treated

the conformal factor in the metric tensor field strictly. This study indicated

2 There is a work on the unitarity issue by T. Lee and G. Wick, Nucl. Phys, B9
(1969) 209, in which they proposed an idea that considering a full propagator in-
cluding quantum corrections, a real pole representing the existence of ghosts disap-
pears and moves to a pair of complex poles so that ghosts do not appear in the real
world. For its application to quantum gravity, see E. Tomboulis, Phys. Lett. 70B
(1977) 361 and references in Bibliography. For more detailed explanations, see the
end of Chapter 7. However, this idea cannot be applied to the ultraviolet limit where
interactions turn off.
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4 Chapter One

that diffeomorphism invariance in quantum theory should be handled more

carefully than that in classical theory.

The essence of this approach is that diffeomorphism invariance involves

conformal invariance, thus the quantum gravity theory is formulated as a

certain conformal field theory defined on any background spacetime. The

difference from normal conformal field theory is that conformal invariance

is a gauge symmetry, namely BRST symmetry.3 In normal conformal field

theory, only the vacuum is conformally invariant, whereas in the quantum

gravity fields must be conformally invariant as well. All of the theories with

different backgrounds connected each other by conformal transformations

become gauge-equivalent, thus the background-metric independence is re-

alized. This is called the BRST conformal invariance. It represents that the

so-called Wheeler-DeWitt algebra is realized at the quantum level.4

Developing this method in four dimensions, we have formulated a new

renormalizable quantum theory of gravity. The gravitational field is then

decomposed into three parts: the conformal factor defined in an exponen-

tial, the traceless tensor field, and a background metric. By quantizing the

conformal factor in a non-perturbative way, the background-metric indepen-

dence is strictly realized as the BRST conformal invariance in the ultraviolet

limit. On the other hand, dynamics of the traceless tensor field which can-

not be ignored in four dimensions is handled perturbatively by adding the

fourth-order derivative Weyl action. Since the coupling constant becomes

dimensionless, the theory becomes renormalizable.

In conventional quantum field theories based on Einstein’s theory of

gravity, the Planck scale is usually regarded as an ultraviolet cutoff. Hence,

problems of spacetime singularities, ultraviolet divergences, and even the

cosmological constant are substantially avoided. On the other hand, this

new renormalizable quantum gravity does not require such an ultraviolet

cutoff, because the beta function of the gravitational coupling constant be-

comes negative, like in quantum chromodynamics (QCD). Therefore, we

3 BRST is an abbreviation for Becchi-Rouet-Stora-Tyutin which arranged the names
of four discovers. The original papers are C. Becchi, A. Rouet, and R. Stora, Renor-
malization of the Abelian Higgs-Kibble Model, Comm. Math. Phys. 42 (1975)
127; Renormalization of Gauge Theories, Ann. Phys. 98 (1976) 287, and I. Tyutin,
Lebedev preprint FIAN, 1975. See T. Kugo and I. Ojima, Local Covariant Operator
Formalism of Non-Abelian Gauge Theories and Quark Confinement Problem, Prog.
Theor. Phys. Suppl. 66 (1979) 1 and reference books on quantum field theory in
Bigliography.

4 At the classical Poisson bracket level, the Wheeler-DeWitt algebra holds for ar-
bitrary diffeomorphism invariant theory, but for the algebra to close at the quantum
level, the theory is constrained, so that the gravitational action is determined tightly.
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Introduction 5

can describe a world beyond the Planck scale.

Furthermore, the massive graviton mode becomes unphysical in this ap-

proach, because a quadratic term of the field giving mass to this mode is not

gauge invariant due to the existence of the exponential conformal factor in

the Einstein-Hilbert action. Not only that, the BRST conformal symmetry

shows that all modes in the fourth-order derivative gravitational field are not

gauge invariant after all even in the ultraviolet limit.

As a theoretical background in which this four-dimensional quantum

gravity was devised, there is a work of numerical calculations by the dy-

namical triangulation method.5 It is a random lattice model in which the

two-dimensional model (matrix model) is generalized to four dimensions,

and the simulation result strongly suggested that scalar fluctuations are more

dominant than tensor fluctuations. From this research result, we came up

with this quantization method which treats only the traceless tensor field

perturbatively.

After that, the first observation result of WMAP was released in 2003,

and it was indicated that a scale-invariant scalar fluctuation dominates in

the early universe. At the same time, the existence of a new scale close

to the Planck length was suggested. At first, we could not imagine that a

wavelength of observed fluctuations about 5000Mpc which corresponds to

the size of the universe is related with the smallest length scale among the

known ones, but it can be understood when we consider that the universe

expanded about 1060 times from its birth to the present, including an in-

flationary period and the subsequent 13.7 billion years, predicted from a

typical scenario of the inflation theory. From the consideration of this new

scale, the idea of quantum gravity inflation was born.

Excellent Points of The Theory

A theoretical superiority of the BRST conformal field theory is that what-

ever background metric we choose, as far as it is conformally flat, the theory

does not lose its generality. With this theory as the core, the renormaliz-

able quantum gravity can be constructed as a quantum field theory in the

flat background as usual. Dynamics that represents a deviation from the

conformal invariance is controlled by only one dimensionless gravitational

5 See S. Horata, H. Egawa, and T. Yukawa, Clear Evidence of A Continuum Theory
of 4D Euclidean Simplicial Quantum Gravity, Nucl. Phys. B (Proc. Suppl.) 106
(2002) 971; S. Horata, H. Egawa, and T. Yukawa, Grand Canonical Simulation of
4D Simplicial Quantum Gravity , Nucl. Phys. B (Proc. Suppl.) 119 (2003) 921. See
also the fifth section of Appendix D and the author’s review article in Bibliography.

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 Chapter One

coupling constant whose beta function becomes negative.

The renormalization theory is formulated using dimensional regulariza-

tion, which is a regularization method that can calculate higher loop quan-

tum corrections while preserving diffeomorphism invariance. The long-

standing problem that the form of fourth-order gravitational actions can-

not be fixed from classical diffeomorphism invariance alone is settled at

the quantum level, that is, it is determined by not only imposing the Wess-

Zumino integrability condition but also using a certain new renormalization

group equation.

The fact that the beta function is negative means that the theory can

be defined correctly in the ultraviolet limit. Unlike conventional quantum

field theory, however, it does not indicate that the flat spacetime in which

asymptotic fields can be defined is realized. This is because the conformal

factor still fluctuates non-perturbatively so that spacetime is fully quantum

mechanical. Therefore, the traditional S-matrix is not defined as a physical

quantity. In this book, we refer to this behavior as “asymptotic background

freedom”, in distinction from the conventional asymptotic freedom.

It also suggests the existence of a new dynamical infrared energy scale of

quantum gravity denoted by ΛQG here, like ΛQCD in QCD.6 At sufficiently

high energy beyond ΛQG, tensor fluctuations become smaller, while scalar

fluctuations by the conformal factor dominate. Below ΛQG, such conformal

dynamics disappears. Thus, this scale divides quantum spacetime filled with

conformal fluctuations of gravity from the current classical spacetime with-

out conformal invariance. The more detailed physical implications indicated

by this scale are as follows.

Inflation and spacetime phase transition If setting the magnitude

relation between the Planck mass mpl and the dynamical scale ΛQG as

mpl > ΛQG, there is an inflationary solution, then evolution of the early

universe can be divided into three eras separated by these two scales. At

high energy far beyond the Planck scale it is described as a conformally in-

variant spacetime where quantum scalar fluctuations of the conformal factor

dominate. The conformal invariance starts breaking in the vicinity of the

Planck scale, and gradually shifts to the era of inflation. The inflationary

era drastically ends at ΛQG where the conformal invariance loses its valid-

ity completely. At this point, the universe is expected to make a transition

6 The existence of such a scale is a characteristic of renormalizable quantum field
theory, which is a scale that does not exist in a manifestly finite continuum theory
like string theory. It is also characterized by the fact that the effective action has a
nonlocal form, and this point is also different from a manifestly finite theory which
generally gives a local effective theory.
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to the classical Friedmann spacetime in which long distance correlation has

been lost. If we choose this scale as 1017GeV, we can explain the CMB

observation results well.

One of the excellent points in this inflationary scenario is that it can ex-

plain the evolution of the universe using the dynamics of the gravitational

field alone without introducing a phenomenological scalar degree of free-

dom called the inflaton.7 Interactions between the conformal-factor field and

matter fields open through conformal anomaly, and become strong rapidly

near ΛQG. The big bang is caused by that a fourth-order derivative scalar

degree of freedom in the conformal factor changes to matter fields imme-

diately at the time of the spacetime phase transition. Hence, it is suggested

that quantum fluctuations of gravity are the source of everything. The origin

of primordial fluctuations necessary for explaining the structure formation

of the universe is given by a scale-invariant scalar spectrum predicted from

conformal invariance.

Existence of physical minimum length The dynamical scale ΛQG

separating quantum and classical spacetimes implies that there is no concept

of distance shorter than the correlation length ξΛ = 1/ΛQG because space-

time totally fluctuates there. In this sense, ξΛ denotes a minimum length we

can measure. Thus, spacetime is practically quantized by ξΛ, without dis-

cretizing it explicitly, that is, without breaking diffeomorphism invariance.

Excitations in quantum gravity would be given by the mass of order ΛQG.

Although we do not know how large our universe is, at least most of

the range that we are looking at today falls within the minimum length be-

fore inflation, because the present Hubble distance is given by the order of

1059× ξΛ, as mentioned before. That is to say, we can consider that the uni-

verse we are observing now was born from a “bubble” of quantum gravity

fluctuations. This is the reason why the primordial spectrum of the universe

is almost scale invariant.

On the other hand, since correlations larger than ξΛ disappear, the sharp

fall-off observed in large angular components of the CMB anisotropy spec-

trum can be explained by this length scale.

7 On the other hand, Einstein’s theory of gravity is a theory that matter density
determines the structure of spacetime. In other words, the current spacetime cannot
be produced from the absence of matters. Therefore, the inflation model based on
Einstein’s theory of gravity has to introduce a scalar field as a source of all matter
fields, but it is unconvincing that elementary particles with a theoretical background
such as gauge principles and renormalizability are created from a scalar field that
does not have these properties.
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New approach to unitarity problem As stated at the beginning, in

gravity theories based on the Einstein-Hilbert action, an elementary exci-

tation that has energy beyond the Planck mass becomes a black hole, and

thus unitarity is broken. On the other hand, the asymptotically background-

free theory indicates that spacetime configurations where the Weyl curvature

tensor disappears dominate at high energy beyond ΛQG. Therefore, space-

time configuration where the Riemann curvature tensor diverges like the

Schwarzschild solution is excluded at the quantum level.8 The existence of

such a singular point is also denied by the realization of the BRST conformal

invariance representing the background-metric independence.

Since singularities are eliminated, it is possible to discuss the problem of

unitarity non-perturbatively. Algebraically, conformal invariance becomes

important. The unitarity in conformal field theory is that the Hermitian na-

ture of fields is preserved even in correlation functions. It is expressed as

the conditions that not only two-point functions are positive-definite but also

operator product expansion coefficients are real.9

The BRST conformal invariance gives far stronger constraints on the the-

ory than conventional conformal invariance. Negative-metric ghost modes

included in the fourth-order derivative gravitational field are necessary for

the conformal algebra to close, but they are not gauge invariant themselves,

so that they do not appear in the real world. Physical operators are given by

real primary scalar composite fields with a specific conformal dimension,

whereas fields with tensor indices become unphysical. Since the whole ac-

tion is positive-definite, the stability of the path integral is guaranteed, and

thus the Hermitian nature of the physical operators will be retained.10

8 Since the Weyl action diverges, singular configurations are obviously unphysical,
whereas in Einstein’s gravity theory such a singularity cannot be eliminated because
the Einstein-Hilbert action given by the Ricci scalar vanishes, that is, it is physical.

9 Since the action is often unknown in conformal field theory, such conditions will
be imposed (see Chapters 2 and 3). If the action is known, it can be easily under-
stood in statistical mechanics by considering Wick-rotated Euclidean space. If the

Euclidean action I is positive-definite, the path integral with weight e−I is correctly
defined and thus reality of fields is preserved. If the action is not bounded from
below, the path integral diverges and thus the field reality is sacrificed in order to
regularize it.

10 Each mode in the fourth-order gravitational field is not a physical quantity, thus
as long as considering correlation functions of physical fields, the positivity of the
whole action expressed by the original gravitational field is essential (see Footnote
9).
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Outline of The Book

In Chapters 2 and 3, we explain the basis of conformal field theory and

recent developments. The basis of two-dimensional conformal field theory

is summarized in Chapter 4. In Chapter 5, we describe conformal anomaly

involved deeply in the construction of quantum gravity. Chapter 6 is devoted

to two-dimensional quantum gravity, which is the simplest theory with the

BRST conformal invariance.

In Chapters 7 and 8, we formulate the BRST conformally invariant quan-

tum gravity in four dimensions, which is one of the main subjects of this

book, and construct physical field operators and physical states. As a first

step to define renormalizable quantum theory of gravity by using dimen-

sional regularization, we examine quantum field theory in curved space-

time in Chapter 9. The form of gravitational counterterms and conformal

anomalies is then determined using an advanced technique of renormal-

ization group equations applied to composite fields. Based on this result,

we formulate the renormalizable asymptotically background-free quantum

gravity in Chapter 10.

In the last four chapters we will discuss evolution of the universe that

the quantum gravity suggests. In order to show why we can consider that

its traces remains today, we first explain the Friedmann universe in Chapter

11, then present a model of inflation induced by quantum gravity effects in

Chapter 12. Furthermore, in Chapter 13, we explain in detail cosmological

perturbation theory describing time evolution of fluctuations. In Chapter 14,

we apply it to the quantum gravity cosmology and examine time evolution of

quantum gravity fluctuations in the inflationary background, then show that

the amplitudes reduce during inflation. From quantum gravity spectra given

before the Planck time, we derive primordial power spectra right after the

spacetime phase transition, and with them as initial spectra of the Friedmann

universe, the CMB anisotropy spectra are calculated and compared with

experimental data.

Each chapter of the appendix supplements useful formulas for gravita-

tional fields and also useful knowledge that will help understanding although

it is slightly out of the main subject.

Finally, from the author’s review article listed in Bibliography, extract

the following passage:

The wall of Planck scale reminds us the wall of sound speed. When an

airplane speeds up and approaches to the sound speed, it faces violent vibra-

tions due to the sound made by the airplane itself and sometimes breaks the

airplane into pieces. People of old days thought that the sound speed is the
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unpassable wall. However, we know now once we pass the wall with durable

body, a peaceful space without sounds spreads about us. Similarly, we might

think that the Planck scale is the wall that we can never pass. However, once

we go beyond the Planck scale, there is no singularity, but a harmonious

space of conformal symmetry.

The thought of this research is summarized in this sentence.
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CHAPTER TWO

CONFORMAL FIELD THEORY IN

MINKOWSKI SPACE

As places where conformal field theory appears, non-trivial fixed points in

quantum field theories and critical points in statistical models are widely

known. In addition, we will show that an ultraviolet limit of quantum gravity

is described as a certain conformal field theory in this book.

These theories will be discussed in Minkowski space or Euclidean space,

and each has advantages. First of all, the basis of conformal field theory in

Minkowski space are summarized. In this case, the procedure of quanti-

zation, the Hamiltonian operator, the nature of field operators such as Her-

miticity, etc. are more clear than quantum field theory in Euclidean space.

Conformal field theory in Euclidean space is basically considered to be ob-

tained by analytic continuation from Minkowski space.

On the other hand, in the case where an action or a (non-perturbative)

quantization method is not clear, it is easier to discuss in Euclidean space,

because we can avoid divergences specific to Minkowski space. In addition,

there are advantages such as structures of correlation functions, correspon-

dences between states and operators, and so on become clearer, and also cor-

respondences with statistical mechanics becomes easy to understand. Con-

formal field theory in Euclidean space is discussed in the next chapter.

Hereinafter, when describing the basic properties of conformal field the-

ory, we describe them in any D dimensions. When presenting specific ex-

amples, calculations are done in four dimensions for simplicity.

Conformal Transformations

Conformal transformations are coordinate transformations in which when

transforming coordinates to xμ → x′μ, a line element changes as

ημνdx
μdxν → ημνdx

′μdx′ν = Ω2(x)ημνdx
μdxν , (2-1)

where Ω is an arbitrary real function and the Minkowski metric is ημν =
(−1, 1, · · · , 1). Rewriting the right-hand side, the conformal transformation
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12 Chapter Two

is expressed as

ημν
∂x′μ

∂xλ

∂x′ν

∂xσ
= Ω2(x)ηλσ.

The Ω = 1 case corresponds to the Poincaré transformation.

Conformal transformations are defined only on the background metric

ημν , and under the transformation this metric tensor itself does not change.

On the other hand, diffeomorphism is a coordinate transformation in which

the metric tensor is regarded as a field to transform together in order to

preserve the line element as a scalar quantity, thus it has to be distinguished

from the conformal transformation.1 Below, all contractions of indices of

tensor fields are done with the background metric ημν .

Considering an infinitesimal conformal transformation xμ → x′μ =
xμ + ζμ, we find from the above equation that ζμ must satisfy

∂μζν + ∂νζμ − 2

D
ημν∂λζ

λ = 0. (2-2)

This is called the conformal Killing equation, and ζλ is called the conformal

Killing vector. The arbitrary function is then given by

Ω2 = 1 +
2

D
∂λζ

λ. (2-3)

Deforming the conformal Killing equation (2-2), we get[
ημν∂

2 + (D − 2)∂μ∂ν
]
∂λζ

λ = 0.

Furthermore, since (D − 1)∂2∂λζ
λ = 0 is obtained from the trace of this

expression, we get ∂μ∂ν∂λζ
λ = 0 for D > 2.2 Solving the equation with

this in mind yields (D + 1)(D + 2)/2 solutions. They correspond to D
translations, D(D − 1)/2 Lorentz transformations, one dilatation, D spe-

cial conformal transformations, denoted by ζλT,L,D,S , respectively, which

are given as follows:

(ζλT )μ = δλμ, (ζλL)μν = xμδ
λ
ν − xνδ

λ
μ,

ζλD = xλ, (ζλS)μ = x2δλμ − 2xμx
λ. (2-4)

1 Considered the metric as a field and combined with diffeomorphism, the conformal transfor-

mation can be expressed as the Weyl rescaling of the metric field, but in this and the next two

chapters it is not considered.

2 In D = 2, the condition reduces to ∂2∂λζ
λ = 0, and the number of the conformal Killing

vectors becomes infinite.
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Conformal Field Theory in Minkowski Space 13

The indices μ, ν here represent the degrees of freedom of ζλT,L,S . The first

two correspond to isometry transformations that satisfies the Killing equa-

tion ∂μζν + ∂νζμ = 0, namely the Poincaré transformations.

Finite conformal transformations for dilatation and special conformal

transformation are given by

xμ → x′μ = λxμ, xμ → x′μ =
xμ + aμx2

1 + 2aμxμ + a2x2
,

respectively. In addition to these, we introduce conformal inversion

xμ → x′μ =
xμ

x2
, (2-5)

which is an important transformation that can be used in place of special

conformal transformation. By combining conformal inversion and transla-

tion, special conformal transformation can be derived as

xμ → xμ

x2
→ xμ

x2
+ aμ →

xμ

x2 + aμ(
xμ

x2 + aμ
)2 =

xμ + aμx2

1 + 2aμxμ + a2x2
.

Conformal Algebra and Field Transformation Law

Let Pμ, Mμν , D, and Kμ be generators of translation, Lorentz transforma-

tion, dilatation and special conformal transformation, respectively.3 These

(D+1)(D+2)/2 infinitesimal conformal transformation generators satisfy

the following SO(D, 2) algebra:4

[Pμ, Pν ] = 0, [Mμν , Pλ] = −i (ημλPν − ηνλPμ) ,

[Mμν ,Mλσ] = −i (ημλMνσ + ηνσMμλ − ημσMνλ − ηνλMμσ) ,

[D,Pμ] = −iPμ, [D,Mμν ] = 0, [D,Kμ] = iKμ,

[Mμν ,Kλ] = −i (ημλKν − ηνλKμ) , [Kμ,Kν ] = 0,

[Kμ, Pν ] = 2i (ημνD +Mμν) . (2-6)

3 In this book, the same symbol D as spacetime dimensions is used for the generator of

dilatation. They can be readily distinguished from the context.

4 In two dimensions, the SO(2, 2) conformal algebra is extended to the infinite dimensional

Virasoro algebra and what is called the central charge appears, but such a central extension

does not exist in the conformal algebra of D > 2.
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A subalgebra SO(D − 1, 1) composed of the generators of translation and

Lorentz transformation is the Poincaré algebra. Hermiticity of the genera-

tors is defined by

P †
μ = Pμ, M †

μν = Mμν , D† = D, K†
μ = Kμ.

The conformal algebra can be represented collectively using the genera-

tor of SO(D, 2) denoted by Jab as

[Jab, Jcd] = −i (ηacJbd + ηbdJac − ηbcJad − ηadJbc) , (2-7)

where the metric is set to be ηab = (−1, 1, . . . , 1,−1), numbering as a, b =
0, 1, 2, . . . , D,D + 1. The generator is antisymmetric Jab = −Jba and

satisfies Hermiticity J†
ab = Jab. Indeed, the conformal algebra (2-6) is

obtained by choosing the spacetime indices as μ, ν = 0, 1, . . . , D − 1 and

writing the generators as

Mμν = Jμν , D = JD+1D,

Pμ = JμD+1 − JμD, Kμ = JμD+1 + JμD.

Fields that transform regularly under conformal transformations are par-

ticularly called primary fields. We here consider a symmetric traceless ten-

sor field Oμ1···μl
representing a field of integer spin l.5 Let Δ be a conformal

dimension and the field satisfies Hermiticity

O†
μ1···μl

(x) = Oμ1···μl
(x).

A primary scalar field is defined so that it transforms under conformal trans-

formations as

O′(x′) = Ω−Δ(x)O(x).

Since Oμ1···μl
(x)dxμ1 · · · dxμl transforms as a scalar quantity of conformal

dimension Δ − l, the transformation law of a primary tensor field is then

given by

O′
μ1···μl

(x′) = Ωl−Δ(x)
∂xν1

∂x′μ1
· · · ∂x

νl

∂x′μl
Oν1···νl

(x). (2-8)

5 In D = 4, this is a tensor field corresponding to the j = j̃ = l/2 case in the

(j, j̃) representation of the Lorentz group SO(3, 1), which can be expressed as Oμ1···μl =

(σμ1 )
α1α̇1 · · · (σμl )

αlα̇lOα1···αlα̇1···α̇l
. In addition, as fields with j �= j̃, spinor fields of

(1/2, 0) and (0, 1/2), Rarita-Schwinger fields of (1, 1/2) and (1/2, 1), antisymmetric tensor

fields of (1, 0) and (0, 1), and so on are widely known.
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Denoting a vector representation of the orthogonal group SO(D − 1, 1)
as Dμν , Jacobian of the transformation is decomposed in the form ∂xν/∂x′μ

= Ω−1(x)D ν
μ (x). Here, a primary field of arbitrary spin is simply denoted

as Oj(x) and the representation matrix acting on it is written as R[D]jk.

The conformal transformation can then be expressed with a combination of

scale transformations and rotations as O′
j(x

′) = Ω−Δ(x)R[D(x)] kj Ok(x).
If the vacuum |0〉 is conformally invariant, correlation functions of these

operators satisfy

〈0|Oj1(x1) · · ·Ojn(xn)|0〉 = 〈0|O′
j1(x1) · · ·O′

jn(xn)|0〉, (2-9)

where note that the argument of the field on the right-hand side is xj , which

is the same as the left-hand side.

The conformal transformation law under an infinitesimal change xμ →
x′μ = xμ + ζμ is derived by expanding δζOj(x) ≡ Oj(x)− O′

j(x) by ζμ.

Noting that O′
j(x

′ = x+ ζ) = O′
j(x) + ζμ∂μOj(x), D

μ
ν = δ μ

ν − (∂νζ
μ −

∂μζν)/2, and (2-3), an infinitesimal conformal transformation of primary

tensor fields is given by

δζOμ1···μl
(x) =

(
ζλ∂λ +

Δ

D
∂λζ

λ

)
Oμ1···μl

(x)

+
1

2

l∑
j=1

(
∂μj

ζλ − ∂λζμj

)
Oμ1···μj−1λμj+1···μl

(x)

from the transformation law (2-8).

The infinitesimal transformation is expressed as a commutator between

the generator and the field operator as

δζOμ1···μl
(x) = i [Qζ , Oμ1···μl

(x)] ,

where Qζ is a generic name of (D+1)(D+2)/2 generators for the confor-

mal Killing vector ζλ. By substituting the concrete forms of the conformal

Killing vectors ζλT,L,D,S (2-4), we obtain the following transformation laws:

i [Pμ, Oλ1···λl
(x)] = ∂μOλ1···λl

(x),

i [Mμν , Oλ1···λl
(x)] = (xμ∂ν − xν∂μ − iΣμν)Oλ1···λl

(x),

i [D,Oλ1···λl
(x)] = (xμ∂μ +Δ)Oλ1···λl

(x),

i [Kμ, Oλ1···λl
(x)] =

(
x2∂μ − 2xμx

ν∂ν − 2Δxμ + 2ixνΣμν

)
Oλ1···λl

(x),

(2-10)
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where spin term is defined by

ΣμνOλ1···λl
= i

l∑
j=1

(
ημλj

δσν − ηνλj
δσμ
)
Oλ1···λj−1σλj+1···λl

.

If defining a spin matrix as ΣμνOλ1···λl
= (Σμν)

σ1···σl

λ1···λl
Oσ1···σl

, then

it satisfies the same algebra as the Lorentz generator Mμν . In the case of a

vector field, it is given by (Σμν)
σ

λ = i(ημλδ
σ
ν − ηνλδ

σ
μ ), and the general

formula of l is represented using it as

(Σμν)
σ1···σl

λ1···λl
=

l∑
j=1

δ σ1

λ1
· · · δ σj−1

λj−1
(Σμν)

σj

λj
δ

σj+1

λj+1
· · · δ σl

λl
.

If there is an energy-momentum tensor Θμν satisfying the traceless con-

dition, the generators of conformal transformations can be expressed using

the conformal Killing vectors as

Qζ =

∫
dD−1x ζλ Θλ0,

where dD−1x is the spatial volume element. Indeed, using the conformal

Killing equation (2-2) and the conservation equation ∂μΘμν = 0, we can

show that ∂ηQζ = −(1/D)× ∫ dD−1x ∂λζ
λΘμ

μ, thus when the energy-

momentum tensor is traceless, the time-dependence disappears and the gen-

erator is conserved. Assigning ζλT,L,D,S (2-4) to ζλ, we obtain the following

concrete expressions:

Pμ =

∫
dD−1xΘμ0, Mμν =

∫
dD−1x (xμΘν0 − xνΘμ0) ,

D =

∫
dD−1xxλΘλ0, Kμ =

∫
dD−1x

(
x2Θμ0 − 2xμx

λΘλ0

)
. (2-11)

As a simple example, calculations of the conformal algebra and the confor-

mal transformation law in the case of a quantum free scalar field are given

in the third section of Appendix B.

Finally, we give a differential equation that correlation functions satisfy.

Conformal field theory is a theory with a conformally invariant vacuum |0〉,
and such a vacuum is defined as a state that satisfies

Qζ |0〉 = 0, 〈0|Qζ = 0
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for all generators Qζ (= Q†
ζ). If any n conformal fields are simply ex-

pressed as Oji (i = 1, . . . , n), correlation functions of these fields satisfy

〈0| [Qζ , Oj1(x1) · · ·Ojn(xn)] |0〉 = 0. Thus,

δζ〈0|Oj1(x1) · · ·Ojn(xn)|0〉

= i
n∑

i=1

〈0|Oj1(x1) · · · [Qζ , Oji(xi)] · · ·Ojn(xn)|0〉 = 0

holds. This is an infinitesimal version of (2-9). For example, let Oji be a

primary scalar field Oi with conformal dimension Δi and consider the case

of D and Kμ as Qζ , we obtain

n∑
i=1

(
xμ
i

∂

∂xμ
i

+Δi

)
〈0|O1(x1) · · ·On(xn)|0〉 = 0,

n∑
i=1

(
x2
i

∂

∂xμ
i

− 2xiμx
ν
i

∂

∂xν
i

− 2Δixiμ

)
〈0|O1(x1) · · ·On(xn)|0〉 = 0,

respectively, from the transformation law (2-10).

Correlation Functions and Positivity

Consider two-point correlation functions of traceless symmetric primary

tensor fields of integer spin l defined by

Wμ1···μl,ν1···νl
(x− y) = 〈0|Oμ1···μl

(x)Oν1···νl
(y)|0〉. (2-12)

Letting Δ be conformal dimension of the field, it is generally expressed as

Wμ1···μl,ν1···νl
(x) = CPμ1···μl,ν1···νl

(x)
1

(x2)Δ

∣∣∣∣
x0→x0−iε

,

where C is a constant and ε is an infinitesimal ultraviolet cutoff. The func-

tion Pμ1···μl,ν1···νl
is determined from the primary field condition.

In order to determine the form of the two-point correlation function, we

use the conformal inversion (2-5), which is expressed as

x′
μ = (Rx)μ =

xμ

x2
.

This transformation gives Ω(x) = 1/x2. Since it returns to its original

form when it is operated twice, namely R2 = I , the inverse is given by

xμ = (Rx′)μ.
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Primary scalar fields are transformed under the conformal inversion as

O′(x′) = Ω−Δ(x)O(x) =
(
x2
)Δ

O(x).

It can be also written as O′(x) = (x2)−ΔO(Rx) by returning the argument

to x. Here, we proceed with the discussion with the argument of O′ as

x′. Using this transformation law, the conformal invariance condition (2-9)

expressed as 〈0|O′(x′)O′(y′)|0〉 = 〈0|O(x′)O(y′)|0〉 yields

(x2y2)Δ〈0|O(x)O(y)|0〉 = 〈0|O(Rx)O(Ry)|0〉.
Noting that

1

(Rx−Ry)2
=

x2y2

(x− y)2
, (2-13)

we find that the two-point function of the primary scalar field is given by

1/(x − y)2Δ up to an overall coefficient. Restoring the ultraviolet cutoff,

we get

〈0|O(x)O(0)|0〉 = C
1

(x2)Δ

∣∣∣∣
x0→x0−iε

= C
1

(x2 + 2iεx0)Δ
,

where x0 �= 0 and ε2 is ignored. In the same way, we can determine the

form of the three- and four-point functions of the primary scalar field (see

the fourth section in Chapter 3).

Primary vector fields are transformed under conformal inversion as

O′
μ(x

′) = Ω(x)1−Δ ∂xν

∂x′μOν(x) =
(
x2
)Δ

I ν
μ (x)Oν(x),

where we introduce a function Iμν of the coordinates xμ defined by

Iμν(x) = ημν − 2
xμxν

x2
,

which satisfies I λ
μ (x)Iλν(x) = ημν and Iμμ(x) = D − 2. Therefore, the

conformal invariance condition 〈0|O′
μ(x

′)O′
ν(y

′)|0〉 = 〈0|Oμ(x
′)Oν(y

′)|0〉
is expressed as

(x2y2)ΔI λ
μ (x)I σ

ν (y)〈0|Oλ(x)Oσ(y)|0〉 = 〈0|Oμ(Rx)Oν(Ry)|0〉.
Noting that

I λ
μ (x)I σ

ν (y)Iλσ(x− y) = Iμν(x− y) + 2
x2 − y2

(x− y)2

(
xμxν

x2
− yμyν

y2

)
= Iμν(Rx−Ry),
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we can see that the two-point function of the primary vector field is given by

Iμν(x− y)/(x− y)2Δ, except for an overall coefficient. Thus, the function

Pμ,ν is determined to be Iμν , and we obtain

〈0|Oμ(x)Oν(0)|0〉 = CIμν
1

(x2)Δ

∣∣∣∣
x0→x0−iε

.

The same is true for general primary tensor fields. The correlation func-

tion of a spin 2 primary tensor field is expressed as

〈0|Oμν(x)Oλσ(0)|0〉
= C

(
1

2
IμλIνσ +

1

2
IμσIνλ − 1

D
ημνηλσ

)
1

(x2)Δ

∣∣∣∣
x0→x0−iε

.

For general integer spin l, the function is given by

Pμ1···μl,ν1···νl
=

1

l!
(Iμ1ν1

· · · Iμlνl
+ perms)− traces.

where “perms” and “traces” reflect the symmetric and traceless properties

of the tensor field.

From physical (unitary) conditions examined below, we find that the

overall constant must be

C > 0.

In the following, we proceed with the discussion by normalizing to C = 1
in advance.

Using the correlation function (2-12), we define an inner product for

arbitrary functions f1,2(x) as

(f1, f2) =

∫
dDxdDy fμ1···μl∗

1 (x)Wμ1···μl,ν1···νl
(x− y)fν1···νl

2 (y).

By introducing Fourier transform of the correlation function

Wμ1···μl,ν1···νl
(k) =

∫
dDxWμ1···μl,ν1···νl

(x) e−ikμx
μ

,

the inner product is expressed in momentum space as

(f1, f2) =

∫
dDk

(2π)D
fμ1···μl∗
1 (k)fν1···νl

2 (k)Wμ1···μl,ν1···νl
(k),
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where f1,2(k) are Fourier transforms of the corresponding functions. In a

physical theory that satisfies unitarity conditions, the inner product between

the same functions is positive-definite as

(f, f) > 0.

This is called the Wightman positivity condition.

The positivity condition imposes restrictions on the conformal dimen-

sion Δ as follows:

Δ ≥ D

2
− 1 for s = 0,

Δ ≥ D − 2 + s for s �= 0, (2-14)

where s is spin of primary fields. This condition is called the unitarity

bound. Below, by taking specific examples, we will see that this condition

is indeed satisfied.

Specific Examples of Positivity Conditions

In the following three sections, we consider the unitarity condition at D = 4
for simplicity.

First, consider a primary scalar field with arbitrary conformal dimension

Δ. Fourier transform of the correlation function W (x) (see the first section

of Appendix B) is given by

W (k) = (2π)2
2π(Δ− 1)

4Δ−1Γ2(Δ)
θ(k0)θ(−k2)(−k2)Δ−2.

Thus, the condition that the inner product (f, f) =
∫
d4k|f(k)|2W (k)/(2π)4

becomes positive is given by

Δ ≥ 1.

The lower bound Δ = 1 is the case of a free field. From limΔ→1(Δ −
1)θ(−k2)(−k2)Δ−2 = δ(−k2), it is expressed as

1

(2π)2
lim
Δ→1

(f, f) =

∫
d4k

(2π)4
|f(k)|22πθ(k0)δ(−k2)

=

∫
d3k

(2π)3
1

2|k| |f(k)|
2,

which is consistent with the expression calculated directly from a canoni-

cally quantized free field.
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Next, consider the positivity condition in the case of a vector field. We

here consider a two-point function of more general real vector field Aμ given

by

〈0|Aμ(x)Aν(0)|0〉 =
(
ημν − 2α

xμxν

x2

) 1

(x2)Δ

∣∣∣∣
x0→x0−iε

=
1

2Δ

{
Δ− α

2(Δ− 1)(Δ− 2)
ημν∂

2

− α

Δ− 1
∂μ∂ν

}
1

(x2)Δ−1

∣∣∣∣
x0→x0−iε

.

Substituting the Fourier transform of the scalar field correlation function

into the last part yields Fourier transform of the vector field. Writing it as

W
(α)
μν , we get

W (α)
μν (k) = (2π)2

2π(Δ− 1)

4Δ−1Γ(Δ)Γ(Δ + 1)
θ(k0)θ(−k2)(−k2)Δ−2

×
{
(Δ− α)ημν − 2α(Δ− 2)

kμkν
k2

}
.

The correlation function of the primary vector field Oμ corresponds to

α = 1, denoted by W
(1)
μν = Wμν . On the other hand, if we choose α =

Δ, Aμ can be considered as a descendant field ∂μO
′ discussed in the next

section, where the conformal dimension of the primary scalar O′ is Δ′ =
Δ− 1.

The Wightman positivity condition requires fμ∗fνW
(α)
μν to be positive

for any function fμ. Even if we select the center-of-mass frame kμ =
(k0, kj) = (K, 0, 0, 0), the generality is not lost. Then,

fμ∗(k)fν(k)W (α)
μν (k)

= CΔθ(K)θ(K2)
{
[(2Δ− 3)α−Δ]|f0|2 + (Δ− α)|fj |2

}
K2(Δ−2)

is obtained, where the coefficient CΔ = 4(2π)3(Δ− 1)/4ΔΓ(Δ)Γ(Δ+ 1)
is a positive number assuming Δ > 1. The positivity condition is thus given

by (2Δ− 3)α−Δ ≥ 0 and Δ− α ≥ 0, and solving it for Δ yields

Δ ≥ 3α

2α− 1
, Δ ≥ α.

Assigning α = 1, the known unitarity condition

Δ ≥ 3
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for the primary vector field is derived.6 The primary vector field with the

lower bound Δ = 3 corresponds to a conserved current satisfying the condi-

tion ∂μOμ = 0. Actually, applying differentiation to the above expression,

∂μWμν(x) = 0 is yielded at x �= 0.

Descendant Fields and Positivity

Fields generated by applying the translation generator Pμ to a primary field

Oj such as

∂μ · · · ∂νOj

are called descendants of the primary field Oj . In a unitary conformal field

theory, not only primary fields but also their descendants must be physical.

That is, two-point functions of descendant fields must satisfy the positiv-

ity condition. Here, with specific examples, we show that this condition is

consistent with the unitarity bound described in the previous section.

We first consider the two-point functions of a first descendant ∂μO and

a second descendant ∂2O of a primary scalar field O at D = 4. In the latter

case, we get

〈0|∂2O(x)∂2O(0)|0〉 = 16Δ2(Δ + 1)(Δ− 1)
1

(x2)Δ+2

∣∣∣∣
x0→x0−iε

.

The descendant field ∂2O is a scalar quantity so that the unitarity condition

simply requires that the sign of the coefficient of the two-point correlation

function is positive. Therefore, Δ ≥ 1 comes out. Here, Δ = 1 is the case

of a free scalar field and then the right-hand side disappears, which means

that the equation of motion ∂2O = 0 holds.

In the case of the first descendant, we get

〈0|∂μO(x)∂νO(0)|0〉 = 2Δ
{
ημν − 2(Δ + 1)

xμxν

x2

} 1

(x2)Δ+1

∣∣∣∣
x0→x0−iε

.

Imposing the Wightman positivity condition discussed in the previous sec-

tion on this expression, we obtain the condition of Δ ≥ 1 again.

6 Since normal gauge field has dimension one, it does not satisfy the unitarity condition, but

the gauge field itself is not a gauge invariant physical quantity so that there is no problem. On

the other hand, the gauge-invariant photon field strength Fμν satisfies the unitary condition

Δ ≥ 2 for antisymmetric tensor fields (see the next chapter).
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Next, examine the case of a primary vector field Oμ. Considering a

scalar quantity ∂μOμ as a first descendant, we obtain

〈0|∂μOμ(x)∂
νOν(0)|0〉 = 4(Δ− 1)(Δ− 3)

1

(x2)Δ+1

∣∣∣∣
x0→x0−iε

.

As before, it turns out that the coefficient becomes positive when Δ ≥ 3.

Δ = 3 is the case that Oμ is a conserved current, in which the right-hand

side disappears and ∂μOμ = 0 holds.

Similarly, for a primary tensor field Oμν , the two-point functions of its

first descendant ∂μOμν and a second descendant ∂μ∂νOμν that becomes a

scalar quantity are given by

〈0|∂μOμν(x)∂
λOλσ(0)|0〉

= (Δ− 4)(4Δ− 7)

{
ηνσ − 2

5Δ− 11

4Δ− 7

xνxσ

x2

}
1

(x2)Δ+1

∣∣∣∣
x0→x0−iε

and

〈0|∂μ∂νOμν(x)∂
λ∂σOλσ(0)|0〉

= 24Δ(Δ− 1)(Δ− 3)(Δ− 4)
1

(x2)Δ+2

∣∣∣∣
x0→x0−iε

,

respectively. From the latter expression, we can obtain the unitarity bound

Δ ≥ 4 easily. Also, applying the Wightman positivity condition discussed

in the previous section to the former expression, we find that this condition

comes out. At Δ = 4, the right-hand side disappears. Thus, Oμν with

conformal dimension 4 is a conserved field satisfying ∂μOμν = 0, which is

nothing but an energy-momentum tensor.

Feynman Propagators and Unitarity

Lastly, the unitarity bound for conformal dimensions discussed in the previ-

ous section is described in a slightly different way.

Feynman propagators are defined in the coordinate space by

〈0|T [Oμ1···μl
(x)Oν1···νl

(0)]|0〉 = θ(x0)〈0|Oμ1···μl
(x)Oν1···νl

(0)|0〉
+θ(−x0)〈0|Oν1···νl

(0)Oμ1···μl
(x)|0〉.

Fourier transform is expressed as

〈0|T [Oμ1···μl
(x)Oν1···νl

(0)]|0〉 =
∫

d4k

(2π)4
eikμx

μ

Dμ1···μl,ν1···νl
(k).
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In the case of primary scalar fields, the propagator is given by

〈0|T [O(x)O(0)]|0〉 = θ(x0)
1

(x2 + 2iεx0)Δ
+ θ(−x0)

1

(x2 − 2iεx0)Δ

=
1

(x2 + iε)Δ
,

where 2ε|x0| is simply rewritten as ε in the last expression. Fourier trans-

form of this equation is given by

D(k) = −i(2π)2
Γ(2−Δ)

4Δ−1Γ(Δ)
(k2 − iε)Δ−2.

Similarly, for primary vector fields, it is given by

〈0|T [Oμ(x)Oν(0)]|0〉
=

1

2Δ

{
1

2(Δ− 2)
ημν∂

2 − 1

Δ− 1
∂μ∂ν

}
1

(x2 + iε)Δ−1
.

By substituting the expression of the scalar field propagator into the last part,

its Fourier transform can be easily obtained as

Dμ,ν(k) = −i
(2π)2Γ(2−Δ)

4Δ−1Γ(Δ + 1)

{
(Δ− 1)ημνk

2 − 2(Δ− 2)kμkν
}

×(k2 − iε)Δ−3.

Let us consider an interaction between a primary scalar field O and an

external field f as

Iint = g

∫
d4x (f O + h.c.) .

Considering the S-matrix due to this interaction and letting S = 1+ iT , the

transition amplitude from f† to f is given by

i〈f |T |f〉 = −g2
∫
d4xf†(x)

∫
d4y f(y) 〈0|T [O(x)O(y)]|0〉

= −g2
∫

d4k

(2π)4
f†(k)f(k)D(k).

The unitarity requires 2Im(T ) = |T |2 ≥ 0 from S†S = 1 and therefore the

following condition comes up:

Im〈f |T |f〉 = g2
∫

d4k

(2π)4
|f(k)|2 Im {iD(k)} ≥ 0.
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Using (x+ iε)λ − (x− iε)λ = 2i sin(πλ)θ(−x)(−x)λ for an infinitesimal

ε and sin(πλ) = π/Γ(λ)Γ(1− λ), we obtain

Im {iD(k)} = (2π)2
π(Δ− 1)

4Δ−1Γ2(Δ)
θ(−k2)(−k2)Δ−2.

The right-hand side has the same form as the Fourier transform of the cor-

relation function (there is no θ(k0), but the whole is divided by two). Since

this has to be positive, the unitary condition Δ ≥ 1 is obtained.
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CHAPTER THREE

CONFORMAL FIELD THEORY IN

EUCLIDEAN SPACE

This chapter is devoted to describing conformal field theory in Euclidean

space. Since it is free from singularities originated from Lorentzian sig-

natures, correlation functions are rather easy to handle. Moreover, states

and inner products can be defined simply using field operators in coordi-

nate space. Therefore, we can examine physical properties of them in more

detail.

In Euclidean space, all spacetime indices are written with subscripts, and

the same indices denote to be contracted with the Kronecker delta δμν .

Critical Phenomena and Conformal Field Theory

If we take the continuum limit of a classical statistical system like the Ising

model in D dimensions at a critical point, it shall be described as a con-

formal field theory on D dimensional Euclidean space.1 Before discussing

basic structures of Euclidean conformal field theory, we briefly describe re-

lationships with critical phenomena.

Let T be a variable that controls critical phenomena of a statistical sys-

tem such as temperature, and Tc be a critical point. In general, if it is far

from the critical point, physical correlation functions decay exponentially as

〈O(x)O(0)〉 ∼ 1

|x|2Δ e−|x|/ξ,

where |x| =
√
x2 and ξ is a correlation length. At the critical point T = Tc,

the correlation length becomes ξ → ∞, and the correlation function behaves

in a power law like

〈O(x)O(0)〉 = 1

|x|2Δ .

1 The Euclidean path integral weight represents the Boltzmann weight in classical statistical

systems. On the other hand, conformal field theory in D dimensional Minkowski spacetime

corresponds to a quantum statistical system in D − 1 dimensional space.
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This indicates that conformal invariance has appeared. For convenience, an

action of conformal field theory which appears exactly on the critical point

is denoted by SCFT here.

If the action is known, unitarity shall be described as a positivity of the

path integral weight e−SCFT , which is ensured by physical conditions that

the action is real and bounded from below, as was mentioned in Footnote

9 in Chapter 1. However, the action is unknown in most cases. Hence,

conformal field theory is also a study to understand critical phenomena from

the conditions of conformal invariance and unitarity without relying on the

action.

Critical phenomena are classified by exponents representing how to ap-

proach the critical point when a small perturbation is applied in a critical

system. Consider, for example, a perturbation by a relevant operator O
whose conformal dimension is Δ < D. Denoting a deviation from the

critical point by a dimensionless parameter t (� 1), the action is deformed

as

SCFT → SCFT − taΔ−D

∫
dDxO(x),

where a is a ultraviolet cutoff length, which corresponds to a lattice spac-

ing in statistical models. If we write taΔ−D as ξΔ−D from dimensional

analysis, ξ represents the correlation length and behaves as2

ξ ∼ at−1/(D−Δ).

For example, considering an energy operator ε as O, it represents a pertur-

bation by the temperature t = |T − Tc|/Tc. Letting Δε be its conformal di-

mension, since a corresponding critical exponent ν is defined by ξ ∼ at−ν ,

a relation ν = 1/(D − Δε) is obtained. In this way, if conformal dimen-

sions of field operators in conformal field theory are known, we can classify

critical exponents, that is, critical phenomena. See the second section of

Appendix B for derivations of various critical exponents.

Basic Structures

Conformal algebra in Euclidean space R
D is given by SO(D + 1, 1), and

it has the same form as (2-6) in Minkowski space MD when replacing the

metric from ημν to δμν . Conformal transformation laws also have the same

2 The correlation length ξ is a physical scale, which does not depend on any scale a. Thus,

due to dξ/da = 0, the lowest order of the beta function for the coupling constant t is obtained

as β = −adt/da = −(D −Δ)t.

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Conformal Field Theory in Euclidean Space 29

form as (2-10). A significant difference between them is that Hermiticity of

the generators Pμ, Kμ, and D change as follows:

P †
μ = Kμ, D† = −D. (3-1)

This is easy to understand by deriving the conformal algebra using the

generator Jab of the SO(D, 2) algebra given in Chapter 2 as follows. In

the D + 2 dimensional indices a, b = 0, 1, . . . , D,D + 1 with the metric

ηab = (−1, 1, . . . , 1,−1), we here select a D dimensional Euclidean space

part as μ, ν = 1, . . . , D. Furthermore, in order to make SO(D + 1, 1),
we specify an imaginary unit for Jab with the 0th index and identify the

generators of conformal transformations as

Mμν = Jμν , D = iJD+1 0,

Pμ = JμD+1 − iJμ0, Kμ = JμD+1 + iJμ0.

The conformal algebra and Hermiticity in Euclidean space mentioned above

can be read from the algebra (2-7) of Jab and its Hermiticity.

Two-point correlation function of a symmetric traceless primary tensor

field of integer spin l with conformal dimension Δ is written as

〈Oμ1···μl
(x)Oν1···νl

(0)〉 = CPμ1···μl,ν1···νl

1

(x2)Δ
,

where Pμ1···μl,ν1···νl
is a function determined from primary field conditions.

As in Minkowski space MD, using the Iμν function in Euclidean space

defined by

Iμν(x) = δμν − 2
xμxν

x2
,

it is determined as

Pμ1···μl,ν1···νl
=

1

l!
(Iμ1ν1

· · · Iμlνl
+ perms)− traces.

In physical correlation functions, the coefficient C must be positive. We

here set C = 1 as in the previous chapter.

Using the conformal inversion

xμ → Rxμ =
xμ

x2
, (3-2)

Hermiticity of a real primary tensor field in Euclidean space is defined as

O†
μ1···μl

(x) =
1

(x2)Δ
Iμ1ν1

(x) · · · Iμlνl
(x)Oν1···νl

(Rx). (3-3)
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Let us concretely see that the Hermiticity of the field is consistent with

the Hermiticity of the generator (3-1). For example, considering transla-

tion of a primary scalar field i[Pμ, O(x)] = ∂μO(x), its Hermitian con-

jugate is i[Kμ, O
†(x)] = ∂μO

†(x). Introducing new coordinates yμ =
Rxμ = xμ/x

2, Hermitian conjugate of the field can be written as O†(x) =
(y2)ΔO(y). Hermitian conjugate of the translation is then expressed as

i(y2)Δ [Kμ, O(y)] =
∂yν
∂xμ

∂

∂yν

{
(y2)ΔO(y)

}
= (y2)Δ

(
y2∂μ − 2yμyν∂ν − 2Δyμ

)
O(y).

Apart from (y2)Δ on both sides, this is special conformal transformation

of the primary scalar field. Similarly, considering Hermitian conjugate of

dilatation i[D,O(x)] = (xμ∂μ + Δ)O(x), we can see that it is consistent

with the Hermiticity D† = −D.

The case of primary vector fields can be shown in the same way. Con-

sidering Hermitian conjugate of translation i[Pμ, Oν(x)] = ∂μOν(x) with

attention to Iμν(x) = Iμν(y), we get

i(y2)ΔIνλ[Kμ, Oλ(y)] =
∂yσ
∂xμ

∂

∂yσ

{
(y2)ΔIνλOλ(y)

}
= (y2)Δ

{
Iνλ
(
y2∂μ − 2yμyσ∂σ − 2Δyμ

)
Oλ(y)

+

(
−2δμνyλ − 2δμλyν + 4

yμyνyλ
y2

)
Oλ(y)

}
.

Removing extra functions on both sides with attention to IμλIνλ = δμν
yields special conformal transformation i[Kμ, Oλ(y)] = (y2∂μ−2yμyσ∂σ−
2Δyμ + 2iyσΣμσ)Oλ(y) for the primary vector field, where spin term is

given by iΣμσOλ = −δμλOσ + δλσOμ.

Consider two-point correlation functions between Oμ1···μl
and its con-

jugate operator O†
μ1···μl using conformal inversion. For example, in the case

of primary scalar fields, it becomes

〈O†(x)O(0)〉 = 1

(x2)Δ
〈O(Rx)O(0)〉 = 1

from (Rx)2 = 1/x2, which is positive-definite regardless of the coordinate

x. Similarly, in the cases of primary vector and tensor fields, we get

〈O†
μ(x)Oν(0)〉 = δμν ,

〈O†
μν(x)Oλσ(0)〉 = 1

2

(
δμλδνσ + δμσδνλ − 2

D
δμνδλσ

)
,
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using IμλIλν = δμν . With these properties, we can define states using field

operators in Euclidean space as below.

A primary state is defined as a state satisfying the following conditions

for the generators of conformal transformations:

Mμν |{μ1 · · ·μl},Δ〉 = (Σμν)ν1···νl,μ1···μl
|{ν1 · · · νl},Δ〉,

iD|{μ1 · · ·μl},Δ〉 = Δ|{μ1 · · ·μl},Δ〉,
Kμ|{μ1 · · ·μl},Δ〉 = 0.

This state can be defined using the field operator as3

|{μ1 · · ·μl},Δ〉 = Oμ1···μl
(0)|0〉, (3-4)

where a conformally invariant vacuum |0〉 is defined as a state that disap-

pears for all generators of conformal transformations. This relation is called

the state-operator correspondence. States obtained by applying Pμ to the

primary state (3-4) is called its descendants.

Pay attention to Iμν(x) = Iμν(y) for yμ = Rxμ, the Hermitian conju-

gate of the field operator at the origin can be written as

O†
μ1···μl

(0) = lim
x2→0

(x2)−ΔIμ1ν1 · · · Iμlνl
Oν1···νl

(Rx)

= lim
y2→∞

(y2)ΔIμ1ν1
· · · Iμlνl

Oν1···νl
(y).

Therefore, Hermitian conjugate of the primary state (3-4) is defined by

〈{μ1 · · ·μl},Δ| = 〈0|O†
μ1···μl

(0)

= lim
x2→∞

(x2)ΔIμ1ν1
· · · Iμlνl

〈0|Oν1···νl
(x).

Positive definiteness of inner products is then expressed as

(f, f) = f†
μ1···μl

fν1···νl
〈{μ1 · · ·μl},Δ|{ν1 · · · νl},Δ〉

= |fμ1···μl
|2 > 0

using an arbitrary symmetric traceless tensor fμ1···μl
.

3 In Minkowski space, we cannot simply use this correspondence. In fact, considering an inner

product of |Δ〉 = O(0)|0〉, it diverges as 〈Δ|Δ〉 = 〈0|O†(0)O(0)|0〉 = 〈0|O(0)O(0)|0〉
because O†(x) = O(x) in MD . On the other hand, in a cylindrical space of R× SD−1, we

can define states in the η → i∞ limit of time as well (see the fourth section of Appendix B

and Chapters 6 and 8).

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



32 Chapter Three

Rederivation of Two-Point Functions

Let us rederive two-point correlation function of primary scalar fields on

R
D using conformal algebra and Hermiticity. The coordinate dependence

of scalar fields is expressed using the translation generator as

O(x) = eiPμxμO(0)e−iPμxμ .

Since P †
μ = Kμ, its Hermitian conjugate is given by

O†(x) = eiKμxμO†(0)e−iKμxμ .

Using these expressions and Hermiticity (3-3), the two-point correlation

function can be expressed as

〈O(x)O(x′)〉 = 1

(x2)Δ
〈O†(Rx)O(x′)〉

=
1

(x2)Δ
〈Δ|e−iKμ(Rx)μeiPνx

′
ν |Δ〉,

where |Δ〉 = O(0)|0〉 and 〈Δ| = 〈0|O†(0) are primary states. Expand-

ing the exponential function and evaluating it, we can show that it has a

value only when the numbers of Kμ and Pν are equal. Therefore, the above

expression can be expressed as

〈O(x)O(x′)〉 = 1

(x2)Δ

∞∑
n=0

CΔ
n (x, x′)

(
x′2

x2

)n/2

,

where the expansion coefficient CΔ
n is given by

CΔ
n =

1

(n!)2
xμ1

· · ·xμn
x′
ν1

· · ·x′
νn

(x2x′2)n/2
〈Δ|Kμ1

· · ·Kμn
Pν1

· · ·Pνn
|Δ〉.

Reducing the number of generators using conformal algebra yields the fol-

lowing recursion formula that Gegenbauer polynomials satisfy:

nCΔ
n = 2(Δ + n− 1)zCΔ

n−1 − (2Δ + n− 2)CΔ
n−2,

where z = x ·x′/
√
x2x′2. Thus, the coefficients are Gegenbauer polynomi-

als with the variable z (Legendre polynomials when Δ = 1/2). Using the

formula of the generating function

1

(1− 2zt+ t2)Δ
=

∞∑
n=0

CΔ
n (z)tn

and substituting z and t =
√

x′2/x2 into it, we obtain the known expression

〈O(x)O(x′)〉 = 1/(x− x′)2Δ.
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Three- and Four-Point Scalar Functions

Consider n-point correlation functions of primary scalar fields ϕj(xj) with

conformal dimension Δj , where j = 1, . . . , n, denoted as

Gn(x1, . . . , xn) = 〈ϕ1(x1) · · ·ϕn(xn)〉.

Since the fields transform as ϕ′
j(x

′
j) = (x2

j )
Δjϕj(xj) under conformal in-

version x′μ
j = (Rxj)

μ = xμ
j /x

2
j (3-2), invariance under this transformation

(see (2-9)) is expressed as

(x2
1)

Δ1 · · · (x2
n)

ΔnGn(x1, . . . , xn) = Gn(Rx1, . . . , Rxn). (3-5)

Moreover, from translation invariance, the correlation function is expressed

as a function of the difference |xij | = |xi − xj | =
√

(xi − xj)2.

Three-point functions A general form of the three-point correlation

function satisfying the translation invariance is given by

G3(x1, x2, x3) =
∑
a,b,c

Ca,b,c

|x12|a|x13|b|x23|c .

Using the relation 1/(Rxi−Rxj)
2 = x2

ix
2
j/(xi−xj)

2, it is easy to see that

the conformal inversion condition (3-5) results in

2Δ1 = a+ b, 2Δ2 = a+ c, 2Δ3 = b+ c.

Thus, three variables a, b, and c are fixed completely so that the three-point

correlation function is determined to be

G3(x1, x2, x3) =
C3

|x12|Δ1+Δ2−Δ3 |x13|Δ1+Δ3−Δ2 |x23|Δ2+Δ3−Δ1
,

except for a single constant C3.

From invariance under dilatation ϕ′
j(x

′
j) = λ−Δjϕj(xj) where x′μ

j =
λxμ

j , we obtain a condition

λ−(Δ1+···+Δn)Gn(x1, . . . , xn) = Gn(λx1, . . . , λxn).

When n = 3, this condition gives Δ1+Δ2+Δ3 = a+b+c. However, since

this can be derived from the conformal inversion condition, new information

is not given. In general, information on dilatation is included in conformal

inversion, and thus it is not considered below.
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Four-point functions From the translation invariance, a general form

of the four-point correlation function is given by

G4(x1, x2, x3, x4) =
∑

a,b,c,d,e,f

Ca,b,c,d,e,f

|x12|a|x13|b|x14|c|x23|d|x24|e|x34|f .

In the same way as in the case of the three-point function, we obtain four

conditions

2Δ1 = a+b+c, 2Δ2 = a+d+e, 2Δ3 = b+d+f, 2Δ4 = c+e+f

from the conformal inversion invariance (3-5). Since there are four con-

ditions for six variables, two unknown variables remain. If the unknown

variables are chosen as α = (b+ c+ d+ e)/2 and β = −d, we get

a = Δ1 +Δ2 − α, b = Δ34 + α+ β, c = Δ12 −Δ34 − β,

d = −β, e = −Δ12 + α+ β, f = Δ3 +Δ4 − α,

where Δij = Δi − Δj . Therefore, the four-point correlation function can

be expressed as

G4(x1, x2, x3, x4) =

( |x24|
|x14|

)Δ12
( |x14|
|x13|

)Δ34 G(u, v)

|x12|Δ1+Δ2 |x34|Δ3+Δ4
,

where the part which is not determined from conformal invariance is a func-

tion G(u, v) =
∑

α,β Cα,βu
α/2vβ/2 of two cross ratios defined by

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

.

Operator Product Expansions

Operator product expansions (OPE) between primary scalar fields are con-

sidered. Fields that appear on the right-hand side of the product of the same

field can be expressed as ϕ × ϕ ∼ I +
∑

l=0,2,4,... Oμ1···μl
, where I is a

unit operator and Oμ1···μl
is a primary tensor field with integer spin l. Only

fields with even spin appear in the scalar field OPE, including an energy-

momentum tensor that is a spin 2 primary tensor field with conformal di-

mension same as the spacetime dimension D. Besides these primary fields,

their descendant fields (derivatives of primary fields) also appear.
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Let d be a conformal dimension of the primary scalar field ϕ and Δ be

that of a spin l primary tensor field, and these two-point correlation functions

are normalized as

〈ϕ(x1)ϕ(x2)〉 = 1

|x12|2d

and

〈Oμ1···μl
(x1)Oν1···νl

(x2)〉
=

1

|x12|2Δ
{
1

l!

[
Iμ1ν1(x12) · · · Iμlνl

(x1,2) + perms
]− traces

}
,

where (x12)μ = x1μ − x2μ. Moreover, the form of three-point correla-

tion functions between them is determined from conformal invariance, apart

from an overall coefficient. With a coefficient fΔ,l, it is normalized to

〈ϕ(x1)ϕ(x2)Oμ1···μl
(x3)〉

=
fΔ,l

|x12|2d−Δ+l|x13|Δ−l|x23|Δ−l
(Zμ1

· · ·Zμl
− traces) , (3-6)

where

Zμ =
(x13)μ
x2
13

− (x23)μ
x2
23

.

The OPE between the same primary scalar fields is then expressed as

ϕ(x)ϕ(y) =
1

|x− y|2d

+
∑

Δ, l (=2n)

fΔ,l

[
(x− y)μ1

· · · (x− y)μl

|x− y|2d−Δ+l
Oμ1···μl

(y) + · · ·
]

=
1

|x− y|2d +
∑

Δ, l (=2n)

fΔ,l

|x− y|2d−Δ
CΔ,l(x− y, ∂y)OΔ,l(y),

where in the second equality, the spin l primary tensor field is denoted sim-

ply by OΔ,l. The differential operator ∂y in the coefficient CΔ,l represents

contributions from descendants, which is denoted by the last dots in the sec-

ond line.

The constant fΔ,l is called the OPE coefficient or the structure constant.

As will be discussed in the penultimate section, fΔ,l shall be a real number

if the theory is a physical one that satisfies unitarity.
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Let us derive the l = 0 coefficient CΔ,0 as an example. By applying

O = OΔ,0 to both sides of the OPE and taking an expectation value, we

obtain

〈ϕ(x)ϕ(y)O(z)〉 = fΔ,0

|x− y|2d−Δ
CΔ,0(x− y, ∂y)〈O(y)O(z)〉.

From this, the following equation is derived:

1

|x− z|Δ|y − z|Δ = CΔ,0(x− y, ∂y)
1

|y − z|2Δ .

Using the Feynman parameter integral formula given in the first section of

Appendix D, the left-hand side can be rewritten as

Γ(Δ)

Γ(Δ2 )Γ(
Δ
2 )

∫ 1

0

dt
[t(1− t)]

Δ
2 −1

[t(x− z)2 + (1− t)(y − z)2]Δ

=
1

B(Δ2 ,
Δ
2 )

∫ 1

0

dt [t(1− t)]
Δ
2 −1

∞∑
n=0

(Δ)n
n!

[−t(1− t)(x− y)2]n

([y − z + t(x− y)]2)Δ+n
,

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) and (a)n = Γ(a + n)/Γ(a) is the

Pochhammer symbol. Furthermore, we rewrite it to the form expanded in

derivatives of 1/|y − z|2Δ by y using the formulas

(∂2)n
1

(x2)Δ
= 4n(Δ)n(Δ + 1−D/2)n

1

(x2)Δ+n
,

1

[(y + tx)2]Δ
= etx·∂y

1

(y2)Δ
.

That is identified with the right-hand side, thus we obtain

CΔ,0(x− y, ∂y) =
1

B(Δ2 ,
Δ
2 )

∫ 1

0

dt [t(1− t)]
Δ
2 −1

×
∞∑

n=0

(−1)n

4nn!

[t(1− t)a2]n

(Δ + 1−D/2)n
(∂2

y)
neta·∂y

∣∣∣∣
a=x−y

.

The first few terms are given as

CΔ,0(x− y, ∂y) = 1 +
1

2
(x− y)μ∂

y
μ +

Δ+ 2

8(Δ + 1)
(x− y)μ(x− y)ν∂

y
μ∂

y
ν

− Δ

16(Δ + 1)(Δ + 1−D/2)
(x− y)2∂2

y + · · · .

Similarly, we can calculate the case of l �= 0 from the three-point corre-

lation function (3-6), though it is complicated.
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Conformal Blocks

As shown in the previous section, the four-point correlation function of the

primary scalar field ϕj with conformal dimension Δj can be simplified to

the following form from conformal symmetry:

〈ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)〉

=

( |x24|
|x14|

)Δ12
( |x14|
|x13|

)Δ34 G(u, v)

|x12|Δ1+Δ2 |x34|Δ3+Δ4
, (3-7)

where Δij = Δi −Δj and the variables u and v are the cross ratios defined

by

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

.

ϕ1

ϕ2

ϕ4

ϕ3

∑
O

=

ϕ1 ϕ4

ϕ2 ϕ3

∑
O

Figure 3-1: Crossing symmetry.

The right-hand side of (3-7) is in the form that OPE is taken between

ϕ1 and ϕ2. On the other hand, the result should not be changed even when

taking OPE between ϕ1 and ϕ4. Thus, even if (x2,Δ2) and (x4,Δ4) are

exchanged on the right-hand side, the result does not change. Similarly, the

exchange of (x2,Δ2) and (x3,Δ3) does not change the result. This property

is called crossing symmetry. Therefore, G(u, v) can also be written as a

function of G(v, u) or G(1/u, v/u).
For simplicity, consider the case of Δ1 = Δ2 = Δ3 = Δ4 in this

section, while general cases will be discussed in the next section. If ex-

tracting the part proportional to the unit operator in OPE as G(u, v) =
1 +
∑

Δ,l f
2
Δ,lgΔ,l(u, v), the four-point correlation function of the primary

scalar field ϕ with conformal dimension d can be written as

〈ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)〉 = 1

|x12|2d|x34|2d
[
1 +
∑
Δ,l

f2
Δ,lgΔ,l(u, v)

]
,
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where gΔ,l(u, v) is a function called conformal block. From the crossing

relation vdG(u, v) = udG(v, u) coming from the exchange of x2 and x4,

the conformal block satisfies the following relation:

ud − vd =
∑
Δ,l

f2
Δ,l

[
vdgΔ,l(u, v)− udgΔ,l(v, u)

]
. (3-8)

In the following, by computing the conformal block gΔ,l from OPE,

we will see that it can be written as the product of Gauss hypergeometric

function

2F1(a, b; c;x) =

∞∑
n=0

(a)n(b)n
(c)n

xn

n!
.

Here, the fact that the function is numerically analyzable is significant. As

will be mentioned in the penultimate section, this result is a basis of studies

imposing restrictions on the value of conformal dimension from the condi-

tion that the OPE coefficient fΔ,l shall be real in unitary theories.

We here examine the conformal block that the l = 0 scalar mode prop-

agates as an intermediate state. Using the OPE calculated in the previous

section, it can be calculated as

gΔ,0(u, v) = |x12|Δ|x43|ΔCΔ,0(x12, ∂2)CΔ,0(x43, ∂3)
1

|x23|2Δ

=
|x12|Δ|x43|Δ
B(Δ2 ,

Δ
2 )

2

∫ 1

0

dt

∫ 1

0

ds [t(1− t)s(1− s)]
Δ
2 −1

×
∞∑

n,m=0

(−1)n+m

n!m!

(Δ)n+m(Δ̃)n+m

(Δ̃)n(Δ̃)m

[t(1− t)x2
12]

n[s(1− s)x2
43]

m

[(x23 + tx12 − sx43)2]Δ+n+m
,

where Δ̃ = Δ+1−D/2. Letting A2 = t(1− t)x2
12 and B2 = s(1− s)x2

43

and using

(x23 + tx12 − sx43)
2 = Λ2 −A2 −B2,

Λ2 = t
[
sx2

14 + (1− s)x2
13

]
+ (1− t)

[
sx2

24 + (1− s)x2
23

]
,

the right-hand side can be rewritten as

|x12|Δ|x43|Δ
B(Δ2 ,

Δ
2 )

2

∫ 1

0

dt

∫ 1

0

ds
[t(1− t)s(1− s)]

Δ
2 −1

(Λ2 −A2 −B2)Δ
F4(Δ, Δ̃; Δ̃, Δ̃;X,Y ),

where X = −A2/(Λ2−A2−B2) and Y = −B2/(Λ2−A2−B2). The

function F4 is a hypergeometric series with two variables (double series)
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called Appell function, defined as

F4(a, b; c, d;x, y) =

∞∑
n,m=0

(a)n+m(b)n+m

(c)n(d)m

xn

n!

ym

m!
.

In a special case, this function is related to Gauss hypergeometric series as

F4(a, b; b, b;x, y) = (1− x− y)−a
2F1

(
a

2
,
a+ 1

2
; b;

4xy

(1− x− y)2

)
.

Using this fact, the right-hand side can be written as

|x12|Δ|x43|Δ
B(Δ2 ,

Δ
2 )

2

∫ 1

0

dt

∫ 1

0

ds
[t(1− t)s(1− s)]

Δ
2 −1

(Λ2)Δ

× 2F1

(
Δ

2
,
Δ+ 1

2
; Δ̃;

4A2B2

Λ4

)
.

The t and s parameter integrations are sequentially performed using integral

formulas∫ 1

0

dt
ta−1(1− t)b−1

[tα+ (1− t)β]a+b
=

1

αaβb
B(a, b),

∫ 1

0

ds
sa−1(1− s)b−1

(1− sα)c(1− sβ)d
= B(a, b)F1(a, c, d; a+ b;α, β),

where F1 is a new hypergeometric series with two variables defined by

F1(a, b, c; d;x, y) =

∞∑
n,m=0

(a)n+m(b)n(c)m
(d)n+m

xn

n!

ym

m!
.

In a certain case, it can be written in terms of Gauss hypergeometric series

as

F1(a, b, c, b+ c;x, y) = (1− y)−a
2F1

(
a, b; b+ c;

x− y

1− y

)
.

Using these formulas and 4n(Δ/2)n((Δ + 1)/2)n = (Δ)2n, we obtain

u
Δ
2

∞∑
n=0

un

n!

(
Δ
2

)4
n

(Δ)2n(Δ̃)n
2F1

(
Δ

2
+ n,

Δ

2
+ n; Δ + 2n; 1− v

)

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



40 Chapter Three

as an expression of the conformal block gΔ,0(u, v). Furthermore, we intro-

duce a new hypergeometric series with two variables defined by

G(a, b, c, d;x, y) =

∞∑
n,m=0

(d− a)n(d− b)n
(c)n

(a)n+m(b)n+m

(d)2n+m

xn

n!

ym

m!
.

Rewriting the conformal block using (n + Δ/2)m = (Δ/2)n+m/(Δ/2)n
and (2n+Δ)m = (Δ)2n+m/(Δ)2n finally yields the following expression:

gΔ,0(u, v) = u
Δ
2 G

(
Δ

2
,
Δ

2
,Δ+ 1− D

2
,Δ;u, 1− v

)
.

Let us introduce new coordinate variables z and z̄ defined through the

relations

u = zz̄, v = (1− z)(1− z̄).

The following relation then holds:

G(a, b, c− 1, c;u, 1− v)

=
1

z − z̄

[
z 2F1(a, b; c; z) 2F1(a− 1, b− 1; c− 2; z̄)

−z̄ 2F1(a, b; c; z̄) 2F1(a− 1, b− 1; c− 2; z)
]
.

Thus, the conformal block in four dimensions, for example, can be written

as

gΔ,0(u, v)|D=4 =
zz̄

z − z̄
[kΔ(z)kΔ−2(z̄)− (z ↔ z̄)] ,

where

kβ(x) = x
β
2 2F1

(
β

2
,
β

2
, β;x

)
. (3-9)

The conformal block with l ≥ 1 can also be obtained directly from OPE

in the same way if l is small, though it is complicated. For general l, there

is an approach to calculate it by deriving recursion formula about l. Writing

the results only, the conformal block in four dimensions is given by

gΔ,l(u, v)|D=4 =
(−1)l

2l
zz̄

z−z̄
[kΔ+l(z)kΔ−l−2(z̄)− (z ↔ z̄)] . (3-10)

In two dimensions, it is given by

gΔ,l(u, v)|D=2 =
(−1)l

2l
[kΔ+l(z)kΔ−l(z̄) + (z ↔ z̄)] . (3-11)

On the other hand, general expressions in three dimensions are still unknown

except for a special case of z = z̄.
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Casimir Operator and Conformal Blocks

Consider a second order Casimir operator C2 = JabJab/2 that commutes

with the generator Jab of the conformal algebra SO(D + 1, 1). It can be

written with the generators of conformal transformations as

C2 =
1

2
MμνMμν −D2 − 1

2
(KμPμ + PμKμ) .

Primary states are eigenstates of this operator. In the case of spin l and

conformal dimension Δ, the following holds:

C2|Δ, l〉 = CΔ,l|Δ, l〉, CΔ,l = Δ(Δ−D) + l(l +D − 2).

The four-point correlation function between different primary scalar fields

is considered here. Inserting a complete set of states in between, it can be

expressed as

〈ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)〉
=
∑
Δ,l,n

〈0|ϕ1(x1)ϕ2(x2)|n; Δ, l〉〈n; Δ, l|ϕ3(x3)ϕ4(x4)|0〉,

where |n; Δ, l〉 denotes n th descendant states of the primary state |Δ, l〉.
Hence, consider

1

2

〈
0
∣∣[Jab, [Jab, ϕ1(x1)ϕ2(x2)

]]∣∣n; Δ, l
〉

= 〈0 |ϕ1(x1)ϕ2(x2)C2|n; Δ, l〉 = CΔ,l 〈0 |ϕ1(x1)ϕ2(x2)|n; Δ, l〉 ,
where 〈0|Jab = 0 is used and note that the Casimir operator C2 commutes

with the translation generator Pμ which generates the descendant states. Us-

ing the conformal transformation law of the scalar field, the left-hand side

can be rewritten as{
x2
12∂

1
μ∂

2
μ − 2(x12)μ(x12)ν∂

1
μ∂

2
ν − 2Δ1(x12)μ∂

2
μ + 2Δ2(x12)μ∂

1
μ

+(Δ1 +Δ2) (Δ1 +Δ2 −D)
}
〈0|ϕ1(x1)ϕ2(x2)|n; Δ, l〉.

Parts of the four-point correlation function which have an intermediate

state OΔ,l can be expressed using the conformal block gΔ,l as∑
n

〈0|ϕ1(x1)ϕ2(x2)|n; Δ, l〉〈n; Δ, l|ϕ3(x3)ϕ4(x4)|0〉

=

(
x2
24

x2
14

)Δ12
2
(
x2
14

x2
13

)Δ34
2 f2

Δ,l gΔ,l(u, v)

(x2
12)

Δ1+Δ2
2 (x2

34)
Δ3+Δ4

2

.
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Using this fact, we find that the conformal block satisfies the following dif-

ferential equation:

DgΔ,l(u, v) =
1

2
CΔ,lgΔ,l(u, v),

where

D = (1− u+ v)u
∂

∂u

(
u
∂

∂u

)
+
[
(1− v)2 − u(1 + v)

] ∂

∂v

(
v
∂

∂v

)

−2(1 + u− v)uv
∂2

∂u∂v
−Du

∂

∂u

+
1

2
(Δ12 −Δ34)

[
(1 + u− v)

(
u
∂

∂u
+ v

∂

∂v

)
− (1− u− v)

∂

∂v

]

+
1

4
Δ12Δ34(1 + u− v).

Furthermore, if the coordinate variables are converted to z and z̄, the

differential operator can be written as

D = z2(1− z)
∂2

∂z2
+ z̄2(1− z̄)

∂2

∂z̄2

+
1

2
(Δ12 −Δ34 − 2)

(
z2

∂

∂z
+ z̄2

∂

∂z̄

)
+

1

4
Δ12Δ34(z + z̄)

+(D − 2)
zz̄

z − z̄

[
(1− z)

∂

∂z
− (1− z̄)

∂

∂z̄

]
.

Solutions of the differential equation in D = 4 and 2 are given by (3-10)

and (3-11), respectively, with the function kβ replaced by

kβ(x) = x
β
2 2F1

(
β

2
− Δ12

2
,
β

2
+

Δ34

2
, β;x

)
.

Unitarity Bound Again

The unitarity condition (2-14) is considered again using primary states de-

fined previously. Here, we consider the D = 4 case specifically.

Consider a primary vector state |μ,Δ〉, for example. From the uni-

tarity, its inner product must be positive-definite, which is normalized to

〈Δ′, μ|ν,Δ〉 = δΔ′Δδμν . The unitarity further requires that inner products

of its descendants are also positive-definite. Focusing first descendant states

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Conformal Field Theory in Euclidean Space 43

|μ; ν,Δ〉 = Pμ|ν,Δ〉, the inner product is calculated from the conformal

algebra as follows:

〈μ;λ,Δ′|ν;σ,Δ〉 = 〈λ,Δ′| [Kμ, Pν ] |σ,Δ〉
= 〈λ,Δ′| 2i (Dδμν +Mμν) |σ,Δ〉
= 2δΔ′Δ (Δδμνδλσ − δμλδνσ + δνλδμσ) ,

where the Hermiticity P †
μ = Kμ, the primary state condition Kμ|ν,Δ〉 =

〈ν,Δ|Pμ = 0, and 〈λ,Δ|Mμν |σ,Δ〉 = (Σμν)λσ are used. When pairs of

indices are expressed as a = (μ, λ) and b = (ν, σ), it is a 16 × 16 matrix

〈a|b〉. There are three kinds of eigenvalues, one for 2(Δ−3), six for 2(Δ−1)
and nine for 2(Δ + 1). Since these all must be positive, Δ ≥ 3 comes out.

More generally, we proceed with the discussion by denoting a repre-

sentation of the rotation group SO(4) as {r}. Writing a primary state that

belongs to it as |{r},Δ〉, the primary state condition can be expressed as

Mμν |{r},Δ〉 = (Σμν){r′},{r} |{r′},Δ〉,
iD |{r},Δ〉 = Δ |{r},Δ〉,
Kμ |{r},Δ〉 = 0.

Since SO(4) is expressed as SU(2)×SU(2), the representation {r} can be

denoted by a combination of (j1, j2) and its dimension is (2j1+1)(2j2+1),
where j1 and j2 are spins of the left and right SU(2). For example, the

integer spin l traceless symmetric tensor field Oμ1···μl
is given by j1 =

j2 = l/2.

A n-th descendant states generated by applying Pμ to the primary state

n times is expressed as

|μ1 · · ·μn; {r},Δ〉 = Pμ1
· · ·Pμn

|{r},Δ〉.
Assuming that the primary state has a positive-definite inner product nor-

malized to 〈{r′},Δ′|{r},Δ〉 = δ{r′}{r}δΔ′Δ, the unitarity requires that all

of the descendant states have positive-definite inner products.

Calculating an inner product of the first descendant state |μ; {r},Δ〉 =
Pμ|{r},Δ〉 as before, we obtain

〈μ; {r′},Δ′|ν; {r},Δ〉 = δΔ′Δ

{
2Δδ{r′}{r} + 2 〈{r′},Δ| iMμν |{r},Δ〉

}
.

(3-12)

Using the fact that Lorentz generator can be written as

iMμν = i
1

2
(δμαδνβ − δμβδνα)Mαβ =

1

2
(Σαβ)μν Mαβ
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and denoting the matrix Σαβ as 〈μ|M{v}
αβ |ν〉 = (Σαβ)μν by introducing a

vector state |μ〉, the last term in (3-12) can be expressed as

2〈{r′},Δ| iMμν |{r},Δ〉 = 〈μ| ⊗ 〈{r′},Δ|M{v}
αβ ·M{r}

αβ |{r},Δ〉 ⊗ |ν〉.
(3-13)

This can be solved in the same way as an angular momentum coupling prob-

lem. Letting M
{R}
αβ = M

{v}
αβ +M

{r}
αβ ,

M
{v}
αβ ·M{r}

αβ =
1

2
M

{R}
αβ ·M{R}

αβ − 1

2
M

{v}
αβ ·M{v}

αβ − 1

2
M

{r}
αβ ·M{r}

αβ

= c2({R})− c2({v})− c2({r})

holds, where c2 is a second order Casimir operator of the SO(4) rotation

group. The representation {r} is denoted as (j1, j2) using the expression

of SU(2) × SU(2), while the vector representation {v} is (1/2, 1/2). The

representation {R} is denoted by (J1, J2), where, J1,2 takes the values of

j1,2 ± 1/2. Substituting the values of the second order Casimir, it can be

seen that eigenvalues of the matrix (3-13) are summarized to 2J1(J1 +1)+
2J2(J2 + 1) − 3 − 2j1(j1 + 1) − 2j2(j2 + 1). Using this result, we can

obtain eigenvalues of the inner product (3-12) of the first descendant state.

What we want to know here is a minimum eigenvalue of the inner prod-

uct (3-12). The condition of unitarity is that it is positive. Below, we ex-

amine the condition separately. In the case of j1, j2 �= 0, the inner product

(3-12) has a minimum eigenvalue 2Δ− 2(j1+ j2+2) when J1 = j1− 1/2
and J2 = j2 − 1/2. Therefore, the unitarity bound becomes

Δ ≥ j1 + j2 + 2 for j1, j2 �= 0.

Substituting j1 = j2 = l/2, we obtain the unitarity bound Δ ≥ l + 2 for

spin l traceless symmetric primary tensor states, as is given in the previous

chapter. In the case of j1 = 0 and j2 �= 0, we obtain a minimum value

2Δ− 2(j2 + 1) when J1 = 1/2 and J2 = j2 − 1/2. Thus, we get

Δ ≥ j2 + 1 for j1 = 0, j2 �= 0.

The result is the same even when exchanging j1 and j2. Substituting j2 = 1,

we obtain the unitarity bound Δ ≥ 2 for second-rank antisymmetric tensor

fields.

In the case of primary scalar states with j1 = j2 = 0, we obtain a min-

imum eigenvalue 2Δ. This implies Δ ≥ 0 unlike the result in the previous
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chapter. Therefore, in this case, it is necessary to further consider a sec-

ond descendant state such as PμPμ|Δ〉. The inner product is calculated as

〈Δ′|KμKμP
νPν |Δ〉 = 32Δ(Δ− 1)δΔ′Δ. The condition that it is positive

gives the known

Δ ≥ 1 for j1 = j2 = 0.

Unitarity Bounds from Conformal Bootstrap

The unitarity bounds derived from positive definiteness of inner products

gives only lower bounds of conformal dimensions. Here we introduce an

approach to restrict conformal dimensions by adding a new unitarity condi-

tion to four-point correlation functions.

Consider the case of the four-point correlation function of the same

scalar field with conformal dimension d discussed in the previous section.

From the crossing symmetry (3-8), the conformal block gΔ,l satisfies the

following equation:∑
Δ,l

pΔ,lFd,Δ,l(z, z̄) = 1,

Fd,Δ,l(z, z̄) =
vdgΔ,l(u, v)− udgΔ,l(v, u)

ud − vd
, (3-14)

where pΔ,l = f2
Δ,l. For example, in the case of a free scalar field with d = 1,

pΔ,l = δΔ,l+2δl,2n2
l+1(l!)2/(2l)! and l is a nonnegative even integer.

Since we consider correlation functions of real fields, the OPE coeffi-

cient fΔ,l should be a real number unless physically dubious operations are

done. Since the square is positive, that is expressed as

pΔ,l ≥ 0. (3-15)

If this positive-definiteness condition is newly imposed, conformal dimen-

sions of fields appearing on the right-hand side of OPE are subject to re-

strictions. After some concrete results are presented below, its calculation

method will be described briefly.

For example, considering OPE between scalar fields ϕ×ϕ ∼ I+OΔ+
· · · at D = 4, an upper bound of the conformal dimension Δ for a lowest

scalar field that appears on the right-hand side is calculated as

Δ ≤ 2 + 0.7 (d− 1)1/2 + 2.1 (d− 1) + 0.43 (d− 1)3/2

+o((d− 1)2), (3-16)

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



46 Chapter Three

where d is conformal dimension of ϕ. This condition does not say that there

is no primary scalar field with conformal dimension higher than this upper

limit. Although a number of scalar fields may appear in the right-hand side

of the OPE regardless of whether they are present continuously or discretely,

the unitarity condition (3-15) indicates that the scalar field with the lowest

dimension must be within the range (3-16).

If performing the same calculation at D = 2, we get results that are

consistent with the exact solution of two-dimensional conformal field the-

ory. For example, in the Ising model, ϕ is a spin operator σ and OΔ is

an energy operator ε. Their strict conformal dimensions are known to be

d = Δσ = 1/8 and Δ = Δε = 1, respectively. Therefore, if d = 1/8 is

set and the upper limit of the conformal dimension of the first scalar field

appearing on the right-hand side of the OPE is examined, we can see that the

condition of Δ ≤ 1 indeed comes out. The exact solution Δ = 1 appears

exactly at the upper limit allowed. Furthermore, if we analyze the Ising

model at D = 3 on the basis of this fact that it appears at an upper limit of

allowed region, we obtain results consistent with Monte Carlo calculations

on lattice.

The concrete calculation method will be briefly described below. In-

troducing new coordinates z = 1/2 + X + iY and z̄ = z∗, consider the

following differential operator Λ up to the N th order for X and Y :

Λ[F ] =
∑

m,n=even
2≤m+n≤N

λm,n∂
m
X ∂n

Y F |X=Y=0.

The reason why we evaluate at X = Y = 0 (z = z̄ = 1/2) is simply that

convergences at this point are good when performing calculations numeri-

cally. Applying this operator to (3-14), we get∑
Δ,l

pΔ,lΛ [Fd,Δ,l] = 0. (3-17)

This equation indicates that if an inequality Λ[Fd,Δ,l] ≥ 0 is satisfied for

all Δ and l, it is against the positive-definiteness condition, except in trivial

cases.

First of all, we assume a OPE structure given as follows:

ϕ× ϕ ∼ I +
∑
Δ≥f

OΔ +
∑
l>0

l=even

∑
Δ≥D−2+l

OΔ,l.

Here we impose a stronger constraint Δ ≥ f than the unitarity bound on the

conformal dimension of the scalar field OΔ, whereas there is no restriction

more than the unitarity bound on tensor fields of l > 0.

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Conformal Field Theory in Euclidean Space 47

Let us consider a set of inequalities Λ[Fd,Δ,l] ≥ 0 for all Δ ≥ f (l = 0)
and all Δ ≥ D−2+ l (l > 0) with fixing d and f . If there is a finite number

of solutions λm,n that satisfy this infinite number of inequality systems, it is

contradicting the condition (3-17) because it means
∑

Δ,l pΔ,lΛ [Fd,Δ,l] �=
0 from (3-15). Therefore, such combination of d and f is forbidden because

it does not satisfy the positivity condition. If there is no solution, such com-

bination is allowed. In this way, examine a region where the values of d and

f are allowed. As d is fixed and f is gradually increased, it enters the for-

bidden region from the allowed region at a certain place. Letting the value

be fc(d), it gives an upper limit of Δ of l = 0, thus the region allowed from

the unitarity becomes D/2− 1 ≤ Δ ≤ fc(d).
In actual calculations, it is necessary to reduce infinite number of in-

equalities to finite number. Hence, we set an upper limit on l and also dis-

cretize Δ for each l. The method of determining whether or not solutions

of the inequality system exist is an application of the linear programming

method. The value of λm,n itself has no physical meaning here. The ex-

pression (3-16) at D = 4 is obtained in this way. Numerical results at

D = 3 are depicted in Fig. 3-2.

Allowed Region

Figure 3-2: Numerical analysis of the allowed region in three dimensions, where

Δ = Δε and d = Δσ . The Ising model appears at the upper limit of the allowed

region where the boundary line breaks. [S. El-Showk, M. Paulos, D. Poland, S.

Rychkov, D. Simmons-Duffin, and A. Vichi, Phys. Rev. D 86 (2012) 025022.]

In order to see the OPE structure in more detail, further decompose the

scalar field OΔ by dimension by assuming that there is a discrete structure.

Since the allowed region of the lowest dimensional scalar field is determined

first as described above, then select, for instance, one point within that re-
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gion and fix the dimension of the lowest scalar to be Δ, and for the remain-

ing higher dimensional scalar field OΔ′ , a new condition is imposed such as

Δ′ ≥ f ′ (≥ fc). That is to say that it is calculated assuming the existence

of a gap between Δ and Δ′. While gradually increasing the value of f ′,
perform the same calculation and examine an allowed region for each fixed

Δ and d. In this way, in addition to restrictions on Δ′, the allowed region in

the Δ−d plane can be restricted further. The region is then scraped off and

hollowed out so that a sharp region appears, and it is found that the upper

bound fc(d) that Δ can take at a certain d emerges as a special point on a

tip of the sharp region.

Figure 3-3: The detail analysis of the allowed region in three dimensions, where

Δ′ = Δ(ε′). From the top, the condition is gradually strengthened as Δ′ ≥ 3, 3.4,

and 3.8. The last is the enlarged view in the vicinity of the Ising model point. [S.

El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and A. Vichi,

Phys. Rev. D 86 (2012) 025022.]

When this calculation is performed in three dimensions, it is found that

as a special point, d = Δσ = 0.5182(3) and fc = Δε = 1.413(1) are

yielded, which are consistent with Monte Carlo calculations of the three-

dimensional Ising model (see Fig. 3-3). Further strengthening the restriction

to higher dimensional scalar fields and tensor fields, more detailed structure

can be examined and finally the allowed region becomes like an isolated

island and is narrowed down to this value. Hence, a discrete OPE structure

has been revealed by the (semi) analytical method also in the case of three-
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dimensional conformal field theory, as in two-dimensional one.

Wilson-Fisher Epsilon-Expansion

Lastly we briefly describe the Wilson-Fisher ε-expansion, which has been

long known as a field-theoretical approach to study critical phenomena.4

Consider a scalar field theory with a four-point interaction in D = 4 − 2ε
dimensions (see the third section of Appendix D):5

S =

∫
dDx

[
1

2
(∂ϕ)2 +

λ

4!
ϕ4

]
.

Calculating the beta function using dimension regularization yields

βλ(λ) = −2ελ+ 3
λ2

(4π)2
− 17

3

λ3

(4π)4
+ o(λ4).

This suggests that when ε �= 0, there is a non-trivial fixed point

λ

(4π)2
=

λ∗
(4π)2

=
2

3
ε+

68

81
ε2 + o(ε3)

satisfying βλ(λ∗) = 0. At the fixed point, it is considered that a conformally

invariant quantum field theory will be realized.

Anomalous dimensions of the field ϕ and its normal product [ϕ2] are

calculated as γ = λ2/12(4π)4 and δ = λ/(4π)2 − 5λ2/6(4π)4, respec-

tively. Evaluating their conformal dimensions at the fixed point by taking

into account a canonical dimension of the field, we obtain

Δϕ =
D − 2

2
+

1

12

λ2
∗

(4π)4
= 1− ε+

ε2

27
+ o(ε3),

Δ[ϕ2] = D − 2 +
λ∗

(4π)2
− 5

6

λ2
∗

(4π)4
= 2− 4

3
ε+

38

81
ε2 + o(ε3).

Since the beta function vanishes, these values become renormalization group

invariants, namely physical values. By comparison between OPE algebras,

4 The original paper is K. Wilson and M. Fisher, Critical Exponents in 3.99 Dimensions, Phys.

Rev. Lett. 28 (1972) 240. For review see K. Wilson and J. Kogut, Renormalization Group and
ε-Expansion, Phys. Rept. C12 (1974) 75; J. Zinn-Justin, Quantum Field Theory and Critical
Phenomena (Oxford University Press, 2002).

5 It is common to set the dimension to D = 4− ε in the ε-expansion.
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σ × σ ∼ ε in the Ising models and ϕ × ϕ ∼ [ϕ2] in the field, they are

identified as Δϕ = Δσ and Δ[ϕ2] = Δε. Actually, if we apply a negative

perturbation by [ϕ2] to the system, the potential becomes a double well type

and two minima at 〈ϕ〉 �= 0 appear. The minimum corresponds to an up or

down of the Ising spin and can be regarded as a state where the spins are

aligned in either. Therefore, the fixed point is considered to have the same

universality as critical phenomena of the Ising models.

When taking ε → 1/2, we obtain Δσ = 0.51 and Δε = 1.45 for the

critical exponents of the three-dimensional Ising model.6 These are in good

agreement with the results shown in the previous section. Moreover, from

(B-3), the critical exponent ν is given by

ν =
1

D −Δ[ϕ2]
=

1

2
+

1

6
ε+

14

81
ε2 + o(ε3).

In three dimensions, ν = 0.63 is obtained.

6 The calculation has been made up to o(ε5), and the result matches better and are given by

Δσ = 0.5180 and Δε = 1.4102. It is unknown how much the correctness of this method is

guaranteed, but there are some achievements to resolve this doubt based on conformal invari-

ance: S. Rychkov and Z. Tan, The ε-Expansion from Conformal Field Theory, J. Phys. A48
(2015) 29FT01 and R. Gopakumar, A. Kaviraj, K. Sen, and A. Sinha, Conformal Bootstrap in
Mellin Space, Phys. Rev. Lett. 118 (2017) 081601.
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CHAPTER FOUR

BASIS OF TWO-DIMENSIONAL CONFORMAL

FIELD THEORY

The Virasoro algebra and its representation theory are briefly summarized

here, which are basic algebraic structures of two-dimensional conformal

field theory. In addition, we will describe the Coulomb gas representation

of the theory using a free boson field. There are many good textbooks on

two-dimensional conformal field theory. For more information, please refer

to them.

Virasoro Algebra and Unitary Representations

In two dimensions, there are infinitely many conformal Killing vectors, and

the SO(2, 2) algebra extends to an infinite-dimensional conformal algebra

called the Virasoro algebra. Its generator has left- and right-handed compo-

nents, where one of them is denoted as Ln, then the algebra is given by

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0. (4-1)

The last term is a central extension part of two-dimensional conformal alge-

bra, where c is called the central charge. Hermitian conjugate of the gener-

ator is L†
n = L−n. Let the other generator that commutes with Ln be L̃n,

it also satisfies the Virasoro algebra, where we consider the case that it has

the same central charge c. For the six n = 0,±1 generators, the central

extension disappears and they form the subalgebra SO(2, 2) = SL(2,C).
In the following, we consider only the Ln component when discussing rep-

resentation theory, but similar for L̃n.

A conformally invariant vacuum |Ω〉 is defined by

Ln|Ω〉 = 0, n ≥ −1.

A primary state |Δ〉 with conformal dimension Δ is defined by

L0|Δ〉 = Δ|Δ〉, Ln|Δ〉 = 0, n ≥ 1.
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Descendant states are generated by applying L−n (n ≥ 1) to the primary

state |Δ〉 as

L−n1
· · ·L−nk

|Δ〉, (4-2)

which is an eigenstate of L0. An infinite-dimensional space spanned by the

descendant states is called the Verma module, and is written as VΔ. Using

[L0, L−n] = nL−n, we can see that conformal dimension of (4-2) is given

by Δ+
∑

j nj . The positive integer part
∑

j nj = N is called the level of

the state. The number of independent descendant states at level N is then

equal to the number P (N) of partitions of the integer N . The generating

function of the partition number is given by

1∏∞
n=1(1− qn)

=

∞∑
N=0

P (N)qN . (4-3)

The unitarity requires that inner products of not only the primary state

but also its descendant states are non-negative. Therefore, let us consider a

descendant L−n|Δ〉 of the primary state |Δ〉 and calculate its inner product

as

〈Δ|LnL−n|Δ〉 = 〈Δ| [Ln, L−n] |Δ〉
=
[
2nΔ+

c

12
(n3 − n)

]
〈Δ|Δ〉,

where the inner product of the primary state is assumed to be non-negative.

Since it must be non-negative, the following conditions are derived:

c ≥ 0, Δ ≥ 0.

Actually, substituting n = 1, the central charge term is eliminated and Δ ≥
0 is obtained. Considering the case of Δ = 0 and n = 2, only the central

charge term remains and c ≥ 0 is yielded. Here note that L−2|Ω〉 is a state

obtained by applying the energy-momentum tensor to the vacuum.

Degenerate representations Degeneracy of states which is an impor-

tant property widely known in two-dimensional conformal field theory is

described here.1

1 See V. Kac, Contravariant Form for Infinite-Dimensional Lie Algebras and Superalgebras,

Lecture Notes in Phys. 94 (1979) 441; B. Feigin and D. Fuks, Invariant Skew-Symmetric
Differential Operators on the Line and Verma Modules over the Virasoro Algebra, Funct. Anal.

Appl. 16 (1982) 114.
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First, consider the level 2 descendant state. In general, there are two in-

dependent states, which are given by L−2|Δ〉 and L2
−1|Δ〉. They degenerate

in a particular case. To see that, consider their linear combination such as

|χ〉 = (L−2 + xL2
−1

) |Δ〉.
Let us examine conditions that this state is to be a primary state satisfying

Ln|χ〉 = 0 (n ≥ 1). From the n = 1 condition, we get

L1|χ〉 = [3 + x(4Δ + 2)]L−1|Δ〉 = 0

by using [L1, L−2] = 3L−1 and [L1, L
2
−1] = L−1(4L0 + 2). From n = 2,

we obtain

L2|χ〉 =
(
4Δ +

c

2
+ 6xΔ

)
|Δ〉 = 0,

where [L2, L−2] = 4L0 + c/2 and [L2, L
2
−1] = 6L0 + 6L−1L1 are used.

The conditions for n ≥ 3 are trivially satisfied. Solving the conditions above

simultaneously, x and Δ are expressed as functions of c, then a new primary

state with conformal dimension Δ+ 2 can be constructed as follows:

|χ〉 =
(
L−2 − 3

2(2Δ + 1)
L2
−1

)
|Δ〉,

Δ =
1

16

[
5− c±

√
(1− c)(25− c)

]
.

However, due to the primary condition Ln|χ〉 = 0 (n ≥ 1), it is obvious

that the inner product of this state disappears as

〈χ|χ〉 = 〈Δ|
(
L2 − 3

2(2Δ + 1)
L2
1

)
|χ〉 = 0.

Such states whose inner product vanishes are called null states. Since this

state is orthogonal to all other states of VΔ, it can be set as

|χ〉 = 0.

An irreducible representation of the Virasoro algebra obtained by eliminat-

ing such null states is called the degenerate representation.

In general, when there is a null descendant at level N , the state is called

degenerate at level N . The Kac determinant is known as a formula express-

ing the existence of such a null descendant state. In the above N = 2 case,

it is given by the determinant of the following 2× 2 matrix:

M2 =

( 〈Δ|L2L−2|Δ〉 〈Δ|L2
1L−2|Δ〉

〈Δ|L2L
2
−1|Δ〉 〈Δ|L2

1L
2
−1|Δ〉

)
=

(
4Δ + c/2 6Δ

6Δ 4Δ(1 + 2Δ)

)
.
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The condition that degeneracy occurs is that its determinant disappears as

detM2 = 2(16Δ3 − 10Δ2 + 2Δ2c+Δc)

= 32(Δ−Δ1,1)(Δ−Δ1,2)(Δ−Δ2,1) = 0,

where Δ1,1 = 0 and Δ1,2,Δ2,1 =
[
5 − c ∓√(1− c)(25− c)

]
/16. The

condition Δ = Δ1,1 = 0 indicates that the vacuum |Ω〉 has a null de-

scendant at level 1 given by L−1|Ω〉, and Δ = Δ1,2,Δ2,1 indicates that

each primary state with these conformal dimensions has a null descendant

at level 2, as mentioned above.

The determinant obtained by Kac is that extended to general N , and

is given for the P (N) × P (N) matrix MN of the Verma module (4-2) as

follows:

detMN = CN

∏
nm≤N

(Δ−Δn,m)P (N−nm),

where CN is a constant independent of c and Δ, and n,m are positive in-

tegers whose product does not exceed N . Δn,m is a function of c given

by

Δn,m =
c− 1

24
+

1

8
(nβ+ +mβ−)

2
,

β± =
1√
12

(√
1− c±√

25− c
)
.

This is called the Kac formula.

In the following, we examine conformal field theory of c ≤ 1. The

central charge is then expressed as

c = 1− 12Q2, (4-4)

so that

β± = Q±
√

Q2 + 2, (4-5)

where β+ + β− = 2Q and β+β− = −2 hold. Introduce a pair of relatively

prime positive integers p′, p (p′ > p) and consider the case that the ratio of

β+ and β− becomes a rational number as

−β+

β−
=

p′

p
. (4-6)
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Then, Q2 = (p′ − p)2/2p′p, and thus the central charge is expressed by a

rational number as

c = 1− 6(p′ − p)2

p′p
,

and the Kac formula is given by

Δn,m =
(np′ −mp)2 − (p′ − p)2

4p′p
, (4-7)

where note that Δn,m = Δp−n,p′−m holds.

Belavin, Polyakov, and Zamolodchikov showed that operator product

expansions (OPE) close between these finite number of primary states when

limiting possible ranges of (n,m) to the following:

1 ≤ n ≤ p− 1, 1 ≤ m ≤ p′ − 1. (4-8)

The series of conformal field theory whose conformal dimensions are given

by (4-7) and (4-8) is called the minimal series.

Among the minimal series, especially important one is the unitary dis-

crete series of p′ = p+ 1, which is given by

c = 1− 6

p(p+ 1)
, Δn,m =

[n(p+ 1)−mp]2 − 1

4p(p+ 1)
,

where p = 2, 3, . . . and 1 ≤ m ≤ n ≤ p − 1 can be set because Δn,m =
Δp−n,p+1−m holds. Friedan, Qiu, and Shenker showed that only in this

case the minimal series satisfies the unitarity condition, that is, all conformal

dimensions are non-negative.

As a concrete example, the p = 3 unitary discrete series, which corre-

sponds to the Ising model, is given by

c =
1

2
, Δ1,1 = 0, Δ2,1 =

1

2
, Δ2,2 =

1

16
.

The conformal dimensions of the energy operator ε and the spin operator σ
are given by combining the left and right dimensions as Δε = Δ2,1+Δ̃2,1 =

1 and Δσ = Δ2,2 + Δ̃2,2 = 1/8.

The unitary discrete series corresponds one-to-one with the Andrews-

Baxter-Forrester (ABF) model which is a series of solvable lattice models

including the Ising model.2 The model is defined by assigning a positive

2 It is one of integrable models given as a solution of the Yang-Baxter equation. See

G. Andrews, R. Baxter, and P. Forrester, Eight-Vertex SOS Model and Generalized Roger-
Ramanujan-Type Identities, J. Stat. Phys. 35 (1984) 193. For correspondence with the unitary

discrete series, see D. Huse, Exact Exponents for Infinitely Many New Multicritical Points,

Phys. Rev. B30 (1984) 3908.
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integer height variable li = 1, . . . , p to each site i on a square lattice and

taking the difference of hight variables between the nearest neighbor sites

(i, j) to be |li − lj | = 1. The degenerate representation mentioned above

corresponds to that the height variable is restricted to a finite range. The

number of ground states of this lattice model becomes p − 1, and thus the

Ising model that has two ground states is given by p = 3.

As the number of ground states increases to 3 and 4, the value of p of

the corresponding unitary discrete series also increases to 4 and 5. When

p → ∞ there is no limit on the possible values at each site and it can be

regarded as a free boson field. Such a restricted lattice model is generally

called the RSOS (restricted solid on solid) model, while the case where

there is no restriction is called the SOS model. The name of SOS comes

from the image of stacking crystals on a solid. The six vertex model is a

representative of the SOS model, which corresponds to the c = 1 conformal

field theory.

Virasoro Character and Partition Function on Torus

Let us consider the partition function on a torus which is defined employing

a cylindrical space R × S1. A conformal transformation from the com-

plex plane (z, z̄) to a cylindrical Euclidean space (w, w̄) is given by w =
(L/2π) log z, where L is circumference of S1. Hamiltonian operator and

momentum operator on the cylinder are given by

H =
2π

L

(
L0 + L̃0

)
− πc

6L
, P =

2π

L

(
L0 − L̃0

)
. (4-9)

The shift term dependent on the central charge in the Hamiltonian operator

is a Casimir term generated when the system is transformed from the plane

to the cylindrical space. It is originated from the fact that energy-momentum

tensors are not primary fields, so that an extra term proportional to the cen-

tral charge (Schwartz derivative) appears when conformally transformed.

The partition function on the torus defined by the cylinder of the length

l is given by

Z(l, s) = Tr e−lH+isP .

The translation operator eisP for the S1 direction shows that it is rotated by

s when identifying the ends of the cylinder. Letting τ = (s + il)/L, the

partition function can be written as

Z(τ) = Tr e2πiτ(L0−c/24)e−2πiτ̄(L̃0−c/24).
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The variable τ is called the moduli of the torus. Thus, we can write the parti-

tion function on the torus using the Virasoro character χΔ = TrVΔq
L0−c/24,

where q = e2πiτ

It can be found from (4-3) that the Virasoro character χΔ with c = 1 and

conformal dimension Δ is given by

χΔ(τ) = TrVΔ
qL0−c/24 = qΔ− 1

24

∞∑
N=0

P (N)qN =
qΔ

η(τ)
,

where

η(τ) = q1/24
∞∏

n=1

(1− qn)

is the Dedekind η-function.

The Virasoro character for the irreducible representation of the unitary

discrete series with c = 1 − 6/p(p + 1) is derived by subtracting null de-

scendant states systematically. The result is given by3

χn,m(τ) = TrVΔn,m
qL0−c/24

=
q−c/24∏∞

l=1(1− ql)

∑
k∈Z

[
qΔn+2pk,m − qΔn+2pk,−m

]
.

The partition function on the torus can be obtained by combining left and

right of these finite number of the Virasoro characters so that it becomes a

real function. The combination is completely categorized, and the simplest

one is given by4

Zuds(τ) =
∑

1≤m≤n≤p−1

|χn,m(τ)|2 .

Here we mention about a maniac relationship between the unitary dis-

crete series and the ABF lattice model, which can be found when the parti-

tion function on the torus is deformed as follows. Consider the action of a

3 See A. Rocha-Caridi, Vacuum Vector Representations of Virasoro Algebra, in Vertex Opera-

tors in Mathematics and Physics, MSRI Publications 3 (Springer, 1984).

4 Strictly, the partition function is given as an invariant function under the modular transforma-

tions T : τ → τ + 1 and S : τ → −1/τ . The combination can be classified according to the

ADE type Dynkin diagram of Lie algebra, and the simplest one in the text corresponds to the A

type. See A. Cappelli, C. Itzykson, and J. Zuber, Modular Invariant Partition Functions in Two
Dimensions, Nucl. Phys. B280 445; A. Kato, Classification of Modular Invariant Partition
Functions in Two-Dimensions, Mod. Phys. Lett. A2 (1987) 585.
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free boson field on the torus defined by

S(g, τ) =
πg

4

∫
T

d2z ∂μϕ∂μϕ,

and calculate the partition function with jumps δ1ϕ(z, z̄) = ϕ(z + 1, z̄ +
1) − ϕ(z, z̄) and δ2ϕ(z, z̄) = ϕ(z + τ, z̄ + τ̄) − ϕ(z, z̄) for each cycle of

the torus as

ZM,M ′(g, τ) =

∫
δ1ϕ = 2M ′
δ2ϕ = 2M

[dϕ] e−S(g,τ)

=
1

|η(τ)|2
(

g

Im(τ)

) 1
2

exp

(
− πg

Im(τ)

∣∣M −M ′τ
∣∣2) .

It is known that when taking g = p/(p + 1), the partition function of the

unitary discrete series can be expressed as

Zuds(τ) =
1

2

∑
M,M ′∈Z

ZM,M ′

(
g=

p

p+ 1
, τ

) p∑
j=1

cos

(
2π

j

p+ 1
M ∧M ′

)
,

where M ∧M ′ is a greatest common divisor of M and M ′ and M ∧0 = M .

With g = 1− λ/π, this partition function corresponds to the ABF model of

λ = π/(p + 1).5 The last factor represents degeneracy or restriction in the

solvable model. The partition function of g = 1 in the absence of this factor

corresponds to the six vertex model.

5 The Boltzmann weight of the ABF model generally given by elliptic functions reduces to

trigonometric functions just at critical points. The square lattice assigned the trigonometric

Boltzmann weights is tilted obliquely at 45 degrees to construct the partition function on the

torus, and when lattice sites of the same height are connected by the vertical and horizon-

tal lines, it can be rewritten to the sum of clusters of zigzag lines with branching. Further-

more, consider loops surrounding the zigzag lines, in which there are contractible and non-

contractible loops. When crossing the loop, the height differs by one. Regardless of its length

and its inner and outer heights, a weight 2 cosλ is assigned for each contractible loop. Each

cluster can be thus expressed as (2 cosλ)n, where n is the number of contractible loops. On

the other hand, if there is a non-contractible loop that wraps around the cycle, the height in-

creases or decreases by one when crossing it. Since the number of the non-contractible loops

that appear is always even, the increase and decrease for each cycle is an even number, which

is set to 2M and 2M ′. Letting ZM,M′ be the sum of all configurations with such jumps, the

partition function of the ABF model is given by performing the sum of M,M ′ with adding the

factor
∑p

j=1 cos(2πjM ∧ M ′/(p + 1)), while the six-vertex model is the one performing

the sum without this factor. In this way, the same structure as the one of the partition function

derived from conformal field theory appears. See V. Pasquier, Lattice Derivation of Modular
Invariant Partition Functions on the Torus, J. Phys. A20 (1987) L217; O. Foda and B. Nien-

huis, The Coulomb Gas Representation of Critical RSOS Models on the Sphere and the Torus,

Nucl.Phys. B324 (1989) 643.
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Free Boson Representation

A free boson representation of two-dimensional conformal field theory, also

called the Coulomb gas representation, is briefly described here. The action

is given by6

SCG = − 1

4π

∫
d2x

√−g

(
1

2
∂μϕ∂μϕ+ iQRϕ

)
.

As a background metric gμν , we employ a cylindrical Minkowski space

R × S1 with coordinates xμ = (η, σ), where 0 < σ < 2π. In the two-

dimensional cylindrical space, the metric is given by the flat gμν = (−1, 1).
From the equation of motion ∂2ϕ = (−∂2

η + ∂2
σ)ϕ = 0, the field is

expanded in right- and left-handed oscillation modes and zero-modes as

ϕ(η, σ) = q̂ + 2ηp̂+
∑
n 	=0

i

n

(
αne

−in(η+σ) + α̃ne
−in(η−σ)

)
, (4-10)

and its conjugate momentum is given by Π = ∂ηϕ/4π. From the equal-time

commutation relation [ϕ(η, σ),Π(η, σ′)] = iδ(σ−σ′) and an expression of

the delta function δ(σ − σ′) =
∑

n∈Z e−in(σ−σ′)/2π, the commutation

relation of each mode is given by

[q̂, p̂] = i, [αn, αm] = nδn+m,0, [α̃n, α̃m] = nδn+m,0,

and [αn, α̃m] = 0. Since Hermiticity of the field is ϕ† = −ϕ from reality

of the action, it is q̂† = −q̂, p̂† = −p̂, α†
n = −α−n, α̃†

n = −α̃−n for each

mode. Therefore, creation modes are here expressed by negative frequency

modes instead of using the symbol †.

Using the conformal Killing vector ζμ that satisfies the two-dimensional

conformal Killing equation

∂μζν + ∂νζμ − ημν∂
λζλ = 0,

the generator of conformal transformation is given by

Lζ =

∫
S1

dσ ζμ Θμ0. (4-11)

6 This is an unphysical action. Actually, when written in a real function, it corresponds to

the Liouville action SL (5-8) introduced in the next chapter with the coefficient bL of a wrong

negative sign. By converting the Liouville field to φ → ϕ/
√
2bL and putting bL = −b, we

can obtain this action with a right kinetic term and Q =
√

b/2, but the imaginary unit appears.

Therefore, there is no physical meaning in the boson field ϕ itself, and this system generally

gives a non-unitary conformal field theory. It becomes unitary under the special conditions

mentioned earlier.
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The energy-momentum tensor is defined using a variation formula as

Θμν =
2√−g

δSCG

δgμν
,

then taking the flat metric, we obtain

Θμν =
1

4π

{
∂μϕ∂νϕ− 1

2
ημν∂

λϕ∂λϕ+ i2Q
(
ημν∂

λ∂λ − ∂μ∂ν
)
ϕ

}
.

The first two terms correspond to the normal energy-momentum tensor for

a two-dimensional free scalar field, while the last term is derived from a

variation of the Rϕ term. The trace disappears according to the equation of

motion of the field. Using the conformal Killing equation and the conserva-

tion equation of the energy-momentum tensor, we find that Lζ is conserved

because time derivative of the generator vanishes in proportion to the trace

of the energy-momentum tensor.

In two dimensions, there are an infinite number of the conformal Killing

vectors, which are expressed by arbitrary functions ζμ =
∑

n∈Z anζ
μ
n and

ζ̃μ =
∑

n∈Z ãnζ̃
μ
n with the basis

ζμn =

(
1

2
ein(η+σ),

1

2
ein(η+σ)

)
, ζ̃μn =

(
1

2
ein(η−σ),−1

2
ein(η−σ)

)
, (4-12)

where n is an integer. Substituting ζμn and ζ̃μn into the generator (4-11) and

writing them Ln and L̃n, respectively, the former is given by7

Ln = einη
∫ 2π

0

dσ einσ
1

2
:
(
Θ00 +Θ01

)
: −Q2

2
δn,0

=
1

2

∑
m∈Z

:α±
mα±

n−m : −Qnαn − Q2

2
δn,0, (4-13)

where α0 = p̂ (= ã0) and the symbol : : represents normal ordering of

free fields. Hermiticity is given by L†
n = L−n. Likewise, L̃n is given by

7 In two dimensions, conformal field theory is often formulated in Euclidean complex plane. If

the coordinates are taken to be z and its complex conjugate z̄, the conformal Killing vectors are

given by analytic functions ζ(z) and ζ̃(z̄). Considering the z component, the field is expanded

as ϕ(z) = q̂− ip̂ log z+ i
∑

n �=0 αnz−n/n. The energy-momentum tensor is then given by

T (z) = −(1/2) :∂zϕ∂zϕ : + iQ∂2
zϕ =

∑
n∈Z Lnz−n−2. Writing α0 = p̂, the Virasoro

generator is Ln = (1/2)
∑

m∈Z : αmαn−m : −Q(n + 1)αn, where the constant term

disappears. Hermiticity is given by α†n = −α−n (n ≥ 1) and α†0 = −α0+2Q. This means

that a background charge 2Q concentrates on a conformally invariant out-vacuum at |z| → ∞,

while it does not exist in an in-vacuum defined at the origin.
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replacing αn in the above expression with α̃n. The last term −(Q2/2)δn,0
of the Virasoro generator is added here so as to satisfy the Virasoro algebra

(4-1) with the central charge (4-4), which corresponds to the Casimir effect

by choosing the coordinates to R× S1.

Further describe this Casimir effect in more detail. As mentioned in

the previous section, the Hamiltonian operator on the cylindrical space is

given by H = L0 + L̃0 − c/12. On the other hand, when calculating

the Hamiltonian operator in the free boson representation using a famous

formula

ζ(−1) =
∞∑

n=1

n = − 1

12

as a regularization of the zeta function ζ(z) =
∑∞

n=1 n
−z , we get

H =

∫ 2π

0

dσΘ00 = L′
0 + L̃′

0 +

∞∑
n=1

n = L′
0 + L̃′

0 −
1

12
,

where Θ00 is the energy-momentum tensor without normal ordering, while

L′
0 is the normal ordered part of (4-13) with the last constant term removed,

and also L̃′
0. The shift term −1/12 that comes out when taking normal or-

dering reflects that the central charge of a free scalar boson is unity. Since

the two Hamiltonian operators are the same, it is understood that the Vi-

rasoro generator satisfying (4-1) is given by L0 = L′
0 + (c − 1)/24 =

L′
0 −Q2/2. The same is true for L̃0.

The conformally invariant vacuum is defined as a state that satisfies

Ln|Ω〉 = L̃n|Ω〉 = 0 (n ≥ −1). Since the zero-mode component of L0

is (1/2)(p̂2 −Q2), it is given by

|Ω〉 = e−iQϕ(0)|0〉 = e−iQq̂|0〉,

where |0〉 is not a conformally invariant vacuum, but represents the Fock

vacuum which disappears for p̂ and annihilation modes. Exponents of ex-

ponential factors are generally called charge, especially what the vacuum

has is called background charge, which is −Q here.8 Noting that ϕ† = −ϕ,

we obtain 〈Ω| = 〈0|e−iQϕ(0), thus the out-vacuum also has a background

8 The background charge originates from the Rϕ term in the action. It can be easily understood

when considering the Euclidean path integral as follows. Extracting the part related to the zero-

mode ϕ0 = q̂ yields the path integral weight e−iQχϕ0 , where χ is the Euler characteristic.

Since topology of states is represented by a disk of χ = 1 (gluing together two disks yields

inner products), we can find that an extra charge −Q by the factor e−iQϕ0 is added for each

state.
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charge −Q. Consequently, the conformally invariant vacua totally have a

background charge −2Q.

Considering a state |β〉 = eiβϕ(0)|Ω〉 with a charge β in addition to the

background charge, it satisfies the conditions Ln|β〉 = 0 (n ≥ 1) and

L0|β〉 = Δβ |β〉, Δβ =
1

2
β2 −Qβ.

Therefore, |β〉 is a primary state of conformal dimension Δβ . A similar

expression holds for L̃n, and Δ̃β = Δβ is provided. From a duality relation

Δβ = Δ2Q−β , we can see that |2Q− β〉 is also a primary state that has the

same conformal dimension. In the free boson representation, these states

with the same conformal dimension are identified because the field itself

does not have a physical meaning (see Footnote 6).

The primary field is given by an exponential operator as

Vβ(η, σ) = :eiβϕ(η,σ) : = eiβϕ>(η,σ)eiβϕ0(η)eiβϕ<(η,σ),

where ϕ> and ϕ< represent creation (n > 0) and annihilation (n < 0)

parts of the oscillation modes α−n and α̃−n in the field expansion (4-10),

respectively. The zero-mode part can be written as9

eiβϕ0(η) = eiβq̂/2e2iβηp̂eiβq̂/2

Applying the Virasoro generator to this operator, we obtain[
Ln, Vβ(η, σ)

]
= ein(η+σ)

(
−i∂+ +

n

2
dβ

)
Vβ(η, σ),[

L̃n, Vβ(η, σ)
]
= ein(η−σ)

(
−i∂− +

n

2
dβ

)
Vβ(η, σ),

where ∂± = (∂η ± ∂σ)/2 and dβ is the sum of left and right conformal

dimensions given by

dβ = 2Δβ = β2 − 2Qβ.

Using the generator Lζ (4-11) defined by the conformal Killing vector ζμ,

the transformation law can be expressed as

i [Lζ , Vβ ] = ζμ∂μVβ +
dβ
2
∂μζ

μVβ .

9 The Baker-Campbell-Hausdorff formula is

eAeB = exp

{
A+B +

1

2
[A,B] +

1

12

(
[A, [A,B]] + [B, [B,A]]

)
+ · · ·

}
.

The formula for the case that [A,B] is a constant is used here.
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In addition, a correspondence between the field operator Vβ and the state

|β〉 is given by

|β〉 = lim
η→i∞

e−idβηVβ(η, σ)|Ω〉.
In particular, the operators with dβ = 2 are called screening operators.

Using (4-5), they are expressed as

V± = :eiβ±ϕ : .

Volume integrals of these operators both commute with the Virasoro gener-

ator Ln as

[
Ln,

∫
d2xV±(x)

]
= −i

∫
d2x ∂+

(
ein(η+σ)V±(x)

)
= 0.

Likewise, they commute with L̃n.

Let us consider the minimal series defined by (4-6), then the charge β
whose conformal dimension Δβ is the Kac formula (4-7) is given by

βn,m = Q− 1

2
(nβ+ +mβ−) =

1

2
[(1− n)β+ + (1−m)β−] .

The conformally invariant vacua have the background charge −2Q in to-

tal. From this fact, a two-point correlation function 〈V2Q−βn,m(x)Vβn,m(y)〉
has a value because charges are canceled, or conserved. In general, such a

charge conservation does not hold in arbitrary correlation functions. There-

fore, we consider a system adding the screening operators as potential terms,

which is described by the action

SCFT = SCG −
∫
d2xV+ −

∫
d2xV−.

A correlation function defined by using this action has the following struc-

ture:

〈Vβ1
(x1) · · ·Vβk

(xk)〉

∼ 1

n!m!

〈
Vβ1

(x1) · · ·Vβk
(xk)

(∫
d2xV+

)n(∫
d2xV−

)m〉
0

,

where βj = βnj ,mj
and 〈· · ·〉0 denotes a correlation function in the free field

representation without the potential terms. The charge conservation is then

given by
k∑

j=1

βj + nβ+ +mβ− = 2Q.
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The correlation function has a value only when this equation holds. Paying

attention to Q = (β+ + β−)/2, this condition can be expressed as

1

2

k∑
j=1

(1− nj) + n = 1,
1

2

k∑
j=1

(1−mj) +m = 1.

If n and m are given by non-negative integers at this time, the calculation

becomes easy. However, in general, they are given in rational numbers. In

this case, in order to make them non-negative integers, the charge of one or

more operators should be replaced as βj → 2Q− βj .10

10 See V. Dotsenko and V. Fateev, Conformal Algebra and Multipoint Correlation Functions in
2D Statistical Models, Nucl. Phys. B240[FS12] (1984) 312.
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CHAPTER FIVE

CONFORMAL ANOMALY AND

WESS-ZUMINO ACTION

The Wess-Zumino action that plays a central role when we construct the

background-free quantum gravity is summarized here. That is an action in-

duced in accompany with conformal anomaly. In two-dimensional quantum

gravity, it is what is called the Liouville action, or the Polyakov action. Its

four-dimensional version is the Riegert action that plays an important role

in this book. These actions are necessary to ensure quantum diffeomor-

phism invariance, namely background-metric independence, which will be

mentioned in the following chapters in detail.

Wess-Zumino Integrability Condition

Conformal anomaly means that even if a classical action has conformal in-

variance, the invariance breaks down by quantum effects. Then, the trace of

the energy-momentum tensor that vanishes classically becomes non-zero at

the quantum level. In general, it arises in even dimensions in which there

are dimensionless gravitational actions.

Let us consider an effective action Γ and examine δωΓ obtained by ap-

plying a conformal variation defined by δωgμν = 2ωgμν . If the effective

action is derived from a theory with classical conformal invariance, its con-

formal variation is conformal anomaly as the name suggests. However, such

a classical conformal invariance is not essential in the following discussion.

Note that what we shall take care of most is diffeomorphism invariance.

Conformal anomaly inevitably appears as a consequence of this invariance.

In two dimensions, we generally obtain the following formula:

δωΓ = − bL
4π

∫
d2x

√−g ωR. (5-1)

The scalar curvature is the only possible gravitational term in two dimen-

sions when there is no mass scale. When the coefficient is written by bL =
−c/6, the constant c becomes the central charge of the Virasoro algebra. On
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the other hand, in four dimensions, there are generally four possible gravi-

tational terms such as

δωΓ =
1

(4π)2

∫
d4x

√−g ω
{
η1R

2
μνλσ + η2R

2
μν + η3R

2 + η4∇2R
}
. (5-2)

The form of conformal anomalies is constrained by the so-called Wess-

Zumino integrability condition in which the effective action satisfies

[δω1
, δω2

] Γ = 0.

In two dimensions, this condition trivially holds. On the other hand, in

four dimensions, with applying a conformal variation to (5-2) again, the

following non-trivial condition is obtained:

[δω1 , δω2 ] Γ =
4

(4π)2
(η1 + η2 + 3η3)

×
∫
d4x

√−g R
(
ω1∇2ω2 − ω2∇2ω1

)
= 0, (5-3)

thus the coefficients must satisfy η1 + η2 + 3η3 = 0.1 The combinations

satisfying this condition are given by the square of the Weyl tensor

F4 = C2
μνλσ = R2

μνλσ − 2R2
μν +

1

3
R2 (5-4)

and the Euler density (Gauss-Bonnet combination)

G4 = R2
μνλσ − 4R2

μν +R2, (5-5)

while ∇2R satisfies the condition trivially. Therefore, the conformal anomaly

is classified in the following form:

δωΓ =
1

(4π)2

∫
d4x

√−g ω
{
ζ1C

2
μνλσ + ζ2G4 + ζ3∇2R

}
. (5-6)

Note that the pure R2 term is excluded due to the integrability condition. In

the following, we will obtain the effective action Γ inversely by integrating

the right-hand side of (5-6) with respect to the conformal factor.

1 As a quantity in the right-hand side of (5-2), we can treat F 2
μν as well. Furthermore, grav-

itational quantities with a mass coefficient such as R and 1 (cosmological term) can be also

considered, but they all trivially satisfy the integrability condition.
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Liouville and Riegert Actions

Decompose the metric tensor field into the product of the conformal factor

and others as

gμν = e2φḡμν , (5-7)

and consider to carry out functional integrations with respect to the conformal-

factor field φ. In the below, gravitational quantities with the bar are defined

by using the metric tensor ḡμν .

First, consider the two-dimensional case. The scalar curvature can be

decomposed as √−gR =
√−ḡ(2Δ̄2φ+ R̄),

where Δ2 = −∇2. The differential operator
√−gΔ2 acts conformally for

a scalar A as
√−gΔ2A =

√−ḡΔ̄2A in two dimensions. Using the above

formula, we can easily carry out the integration of the scalar curvature as

SL(φ, ḡ) = − bL
4π

∫
d2x

∫ φ

0

dφ
√−g R

= − bL
4π

∫
d2x

√−ḡ
(
φΔ̄2φ+ R̄φ

)
. (5-8)

This action is called the Liouville action. When writing bL = −c/6, for

example, c = 1 is derived for a free scalar field in curved space (see the

fourth section of Appendix D).

The reason for using the symbol S instead of Γ for the integrated quan-

tity is because S is not diffeomorphism invariant, and to make it invariant,

we need to further add a non-local term that does not depend on φ, as dis-

cussed later.

In four dimensions, there are three integrable quantities. Since the first

term given by the square of the Weyl tensor does not depend on the conformal-

factor field, we can easily integrate it and obtain the following form of the

effective action:

ζ1

∫
d4x

∫ φ

0

dφ
√−g C2

μνλ = ζ1

∫
d4x

√−ḡ φ C̄2
μνλσ.

Next, consider the integration of the Euler density
√−gG4. Although

this quantity can be functionally integrable as it is, we here consider the

combination adding a total-divergence term to it as

E4 = G4 − 2

3
∇2R. (5-9)
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This modified Euler density satisfies a decomposition formula similar to that

of the two-dimensional scalar curvature as follows:

√−gE4 =
√−ḡ(4Δ̄4φ+ Ē4),

where
√−gΔ4 is a conformally invariant differential operator for a scalar

satisfying
√−gΔ4A =

√−ḡΔ̄4A, which is defined by

Δ4 = ∇4 + 2Rμν∇μ∇ν − 2

3
R∇2 +

1

3
∇μR∇μ. (5-10)

This differential operator satisfies a self-adjoint condition
∫
d4x

√−g AΔ4B
=
∫
d4x

√−g (Δ4A)B. Using the above formula, we can easily integrate√−gE4 as

SR(φ, ḡ) = − bc
(4π)2

∫
d4x

∫ φ

0

dφ
√−gE4

= − bc
(4π)2

∫
d4x

√−ḡ
(
2φΔ̄4φ+ Ē4φ

)
. (5-11)

For later convenience, we here change the sign of the coefficient as ζ2 =
−bc. The action (5-11) is called the Riegert action.

Although the Riegert action was given from the analogy with the Liou-

ville action without offering reasons here, we will reveal in the following

chapters that this action is an indispensable element to construct quantum

algebra of diffeomorphism invariance together with the Weyl action. The

linear term of the conformal-factor field φ plays an essential role to gener-

ate diffeomorphism. This is true for the Liouville action.

Lastly, we consider the last derivative term in (5-6) alone. The functional

integration of the pure ∇2R term yields R2. It corresponds to the inverse

transformation of the four-dimensional variational formula

δω
√−gR2 = −12

√−gR∇2ω.

This indicates that local R2 effective actions as well as local R2 ultraviolet

divergences can exist.

Here note that there is no non-local effective action that produces a pure

R2 term when the conformal variation is done because it is not integrable as

discussed in previous section. On the other hand, as mentioned a bit before,

there are non-local terms in the effective action associated with the F4 and

E4 terms.

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Conformal Anomaly and Wess-Zumino Action 69

In this chapter, we considered the three terms of F4, E4, and ∇2R as a

base of conformal anomalies, and obtained the effective action by integrat-

ing these terms with respect to the conformal-factor field. In these three, the

last ∇2R term is the quantity often taken up as a problem of arbitrariness

in conformal anomalies. However, if it is treated properly, it should be de-

termined at the quantum level. Indeed, when we consider QED in curved

space and determine the form of conformal anomalies using a certain renor-

malization group equation in Chapter 9, we can show that only the first two

combinations will appear.2

The overall coefficients ζ1 and bc (=−ζ2) are determined by calculating

one-loop corrections in curved space. For instance, when considering NS

scalar fields, NF Dirac fermions, NA gauge fields as free fields coupled

conformally with gravity, we obtain

ζ1 =
1

120
(NS + 6NF + 12NA) ,

bc =
1

360
(NS + 11NF + 62NA) . (5-12)

In quantum gravity, quantum corrections by the gravitational field itself are

added to them.

Diffeomorphism Invariant Effective Actions

Let us examine the integrability condition in more detail. Since the action

I for a conformally coupled field in curved space does not depend on the

conformal-factor field φ, the relation I(f, g) = I(f, ḡ) holds, though de-

pending on the type of the field and the spacetime dimension, it is necessary

to rescale the field appropriately to exclude the φ-dependence. The depen-

dence of φ comes from the path integral measure. That is, considering a

Jacobian arising when we rewrite the diffeomorphism invariant measure de-

fined on the full metric gμν to the measure defined on the metric ḡμν such

as [df ]g = [df ]ḡ e
iS(φ,ḡ), the effective action can be written in the form

eiΓ(g) =

∫
[df ]g e

iI(f,g)

= eiS(φ,ḡ)

∫
[df ]ḡ e

iI(f,ḡ) = eiS(φ,ḡ)eiΓ(ḡ). (5-13)

2 We do not adopt the combination F4 + 2∇2R/3 that appears in the original paper by Duff

in Bibliography because it does not match with dimensional regularization at higher loops (see

Footnote 13 in Chapter 10).
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If we apply a simultaneous shift transformation

φ → φ− ω, ḡμν → e2ω ḡμν (5-14)

that preserves the full metric gμν to equation (5-13), the left-hand side is

trivially invariant, while the right-hand side changes to

eiS(φ−ω,e2ω ḡ)eiΓ(e
2ω ḡ) = eiS(φ−ω,e2ω ḡ)eiS(ω,ḡ)eiΓ(ḡ).

In order for this to return to the original eiΓ(g), the induced action S must

satisfy

S(φ− ω, e2ω ḡ) + S(ω, ḡ) = S(φ, ḡ). (5-15)

This relation expresses the Wess-Zumino integrability condition in another

form. The fact that SL (5-8) and SR (5-11) satisfy (5-15) is obvious from the

definitions when the interval of integration [0, φ] is decomposed into [0, ω]
and [ω, φ]. The invariance under the simultaneous shift transformation (5-

14) represents diffeomorphism invariance, hence the Liouville and Riegert

actions appear exactly to ensure it.

The Liouville action SL and the Riegert action SR themselves are not

diffeomorphism invariant, respectively. For each action, by adding a non-

local term that does not depend on the φ field, we can obtain a diffeomor-

phism invariant effective action. By adding the part corresponding to Γ(ḡ)
in (5-13), it is expressed as

ΓL,R(g) = SL,R(φ, ḡ) + ΓL,R(ḡ),

and we find that each is given by

ΓL(g) = − bL
16π

∫
d2x

√−g R
1

Δ2
R,

ΓR(g) = − bc
8(4π)2

∫
d4x

√−g E4
1

Δ4
E4, (5-16)

where Δ−1
4 E4(x) ≡ ∫ d4y√−g G(x, y)E4(y) and Δ4G(x, y) = δ4(x −

y)/
√−g, and a similar equation is also given in the case of two dimensions.

The functions ΓL,R(ḡ) are given by these expressions defined on the metric

ḡμν .

The effective action obtained by integrating the Weyl tensor squared is

not diffeomorphism invariant as well. It will become a diffeomorphism in-

variant form by incorporating the φ field into a physical momentum that ap-

pears in running coupling constants. The details will be discussed in Chap-

ter 10. Anyway, conformal anomalies are physical quantities that appear to

ensure diffeomorphism invariance, unlike gauge anomalies.
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Finally, we briefly mention higher order effective actions obtained by

integrating the Wess-Zumino action further. They are given by

S
(n)
F =

1

n!

∫
d4x

√−ḡ φnC̄2
μνλσ,

S
(n)
G =

1

n!

∫
d4x

√−ḡ
{
2φnΔ̄4φ+ Ē4φ

n
}

for the Weyl term and the modified Euler term, respectively. The n = 1 case

is the effective action discussed above.3 These satisfy the relations∫
d4x

δ

δφ(x)
S
(n)
F,G = S

(n−1)
F,G ,

where we use the self-adjointness of the differential operator Δ̄4 and the

fact
∫
d4x

√−ḡ Δ̄4A = 0 derived from it. The effective action of n ≥ 2 will

appear in higher loop calculations of the renormalizable quantum gravity

discussed in Chapter 10.

Toward BRST Conformal Symmetry

In this chapter, we discussed conformal anomalies of quantum field theory

in curved space. In the following chapters, we will explain the BRST con-

formal symmetry as a main subject. The important thing to note in that case

is a peculiar role of conformal anomalies.

As we have seen here, even when considering a field with a conformally

invariant kinetic term, if we quantize it, conformal anomalies will emerge

and its invariance is necessarily broken. However, if we quantize the grav-

itational field in the diffeomorphism invariant manner by incorporating the

Wess-Zumino action for the Euler density conformal anomaly, we can show

that conformal invariance is fully recovered as a gauge symmetry in a cer-

tain limit. This is the BRST conformal invariance. And then, it turns out

that the kinetic terms of classical actions for mater fields and the gravita-

tional field have to be conformal invariant after all as a condition for explic-

itly constructing generators of the BRST conformal algebra that close at the

quantum level.

In the next chapter, as an exercise, we will explain two-dimensional

quantum gravity by employing R × S1 as a background spacetime. Of

3 The expressions other than n = 1 do not satisfy the Wess-Zumino integrability condition

(5-15), because the integrands used here are not diffeomorphism invariant.
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course, it does not depend on how to choose the background, but by choos-

ing such a cylindrical background, we will be able to describe physical states

explicitly.

In Chapters 7 and 8, we will formulate the four-dimensional background-

free quantum gravity by employing Minkowski background M4 and a cylin-

drical background R × S3, respectively. At a glance, since the number of

conformal Killing vectors that is infinite in two dimensions decreases to fi-

nite 15 in four dimensions, it appears that the condition of the conformal

symmetry becomes considerably weak compared with the two-dimensional

case. However, since the isometry group of space is extended from the

abelian group of SO(2) to the non-Abelian group of SO(4), this brings

powerful restrictions on physical states.
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CHAPTER SIX

TWO-DIMENSIONAL QUANTUM GRAVITY

Before discussing quantization of gravity in four dimensions, we briefly de-

scribe two-dimensional quantum gravity1 whose exact solution is known

and its properties are well studied. The basis of the BRST conformal sym-

metry is contained in this theory.

Quantization of Liouville Action

Let us decompose the gravitational field gμν into the conformal factor e2φ

and the metric ḡμν as in (5-7). Diffeomorphism δξgμν = gμλ∇νξ
λ +

gνλ∇μξ
λ is then decomposed as

δξφ = ξλ∂λφ+
1

2
∇̄λξ

λ,

δξ ḡμν = ḡμλ∇̄νξ
λ + ḡνλ∇̄μξ

λ − ḡμν∇̄λξ
λ. (6-1)

The metric field with the bar can be further decomposed as ḡμν = (ĝeh)μν
by introducing a non-dynamical background metric ĝμν and the traceless

tensor field satisfying hμ
μ = ĝμνhμν = 0. However, in two dimensions,

since the number of degrees of freedom of the traceless tensor field is the

same as the spacetime dimension, we can take a gauge-fixing condition

called the conformal gauge defined by

hμν = 0 (6-2)

using two gauge degrees of freedom ξμ.

The partition function of two-dimensional quantum gravity under the

conformal gauge is given by

Z =

∫
[dgdf ]g e

iIM(f,g)

=

∫
[dφdbdcdf ]ĝ e

iSL(φ,ĝ)+iIM(f,ĝ)+iIgh(b,c,ĝ),

1 It is also called the non-critical string (see Footnote 10 in this chapter).
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where f is a conformally invariant matter field and IM denotes its action.

Associated with the conformal gauge, what is called the bc ghost action Igh
appears, which is also conformally invariant. The SL is the Liouville action

(5-8) introduced in the previous chapter,

SL(φ, ĝ) = − bL
4π

∫
d2x

√−ĝ
(
ĝμν∂μφ∂νφ+ R̂φ

)
. (6-3)

The coefficient bL is determined from conformal anomaly of the whole sys-

tem, and letting the central charge of the matter field be cM, it is given by2

bL = −cM − 25

6
. (6-4)

How to determine this value will be described after defining the bc ghost

action below. If the matter central charge is cM < 25, the Liouville action

has a right sign such that bL > 0. We here consider the system coupled with

conformal field theory (CFT) of cM ≤ 1.

In two-dimensional quantum gravity, the conformal-factor field φ is of-

ten called the Liouville field. We call it so here as well.

From the second equation of (6-1), the transformation law of the two-

dimensional traceless tensor field in the conformal gauge (6-2) is given by

δξhμν = ∇̂μξν + ∇̂νξμ − ĝμν∇̂λξλ. (6-5)

By replacing ξμ with ghost fields cμ and introducing anti-ghost fields bμν
according to normal gauge-fixing procedure, we obtain the ghost action as

Igh = − i

2π

∫
d2x

√−ĝ bμνδch
μν = − i

π

∫
d2x

√−ĝ bμν∇̂μcν , (6-6)

where the anti-ghost field is a symmetric traceless tensor field with two de-

grees of freedom.

Here, we mention what to note about the coefficient bL (6-4) in front

of the Liouville action. Unlike the path integral measure of the matter field

[df ]g discussed in the previous chapter, the measure of the gravitational field

[dg]g gives a nested structure in which the integration over the metric field

gμν has to be performed using the measure defined on gμν itself. Hence,

at this time, it is an assumption that the theory can be expressed using the

2 The field is usually redefined as φ → φ/
√
2bL so that the action density is rewritten to the

form −(1/8π)[(∂φ)2 + 2QR̂φ], where Q =
√

bL/2. In this book, to emphasize similarity

with the four-dimensional quantum gravity, we proceed without redefining.
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Liouville action as described above, including the measure of the gravita-

tional field. However, once it is rewritten to a quantum field theory on the

background with the action

S2DQG = SL + IM + Igh,

we can quantize it as usual, and thus it is possible to ascertain whether there

is no inconsistency in the theory.

For the time being, we quantize the action S2DQG, assuming that we

do not know the value of the coefficient bL. The conformal anomaly (5-

1) of this theory can be determined independent of bL, and thus writing

the coefficient with a prime to distinguish it from bL, it is given by b′L =
−(cM−25)/6. Here, cM is the matter central charge. The contribution −25
in the numerator of b′L is the sum of −26 from the bc ghost field and 1 from

the Liouville field. The later comes from the fact that the kinetic term of the

Liouville field is that of a free scalar field.3

Based on this result, let us change the background metric ĝμν confor-

mally. The partition function then transforms as

Z(e2ω ĝ) =

∫
[dφdbdcdf ]e2ω ĝ e

iSL(φ,e
2ω ĝ)+iIM+iIgh

=

∫
[dφdbdcdf ]ĝ e

iS′L(ω,ĝ)eiSL(φ,e
2ω ĝ)+iIM+iIgh

=

∫
[dφdbdcdf ]ĝ e

iS′L(ω,ĝ)+iSL(φ−ω,e2ω ĝ)+iIM+iIgh .

In the first equality we use the fact that the actions of the matter field and the

ghost field are conformally invariant. Moreover, the fact that the kinetic term

of the Liouville field is conformally invariant is also necessary to evaluate

the conformal anomaly. By rewriting the ω-dependence in the measure as a

Jacobian with the Liouville action, the second equality is obtained, where S′
L

is the Liouville action with the coefficient b′L. The third equality is obtained

by converting the Liouville field to φ → φ − ω. Here, it should be noted

that the measure [dφ]ĝ defined on the background is invariant under such a

shift transformation. If we put bL = b′L, we can show

Z(e2ω ĝ) =

∫
[dφdbdcdf ]ĝ e

iSL(ω,ĝ)+iSL(φ−ω,e2ω ĝ)+iIM+iIgh

=

∫
[dφdbdcdf ]ĝ e

iSL(φ,ĝ)+iIM+iIgh = Z(ĝ)

3 Note that the central charge of the Virasoro algebra for the Liouville field is not 1, but 1+6bL
added with a contribution from the linear term of φ (see the next section).
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using the Wess-Zumino integrability relation (5-15). In this way, the coef-

ficient of the Liouville action is determined to be (6-4) from the condition

that the theory becomes conformally invariant exactly.

As shown above, the fact that the Liouville field is an integration variable

plays an essential role when showing the conformal invariance. Thus, it is

important that as the gravitational field is integrated, conformal invariance

is restored exactly, despite the appearance of a quantity called conformal

anomaly that breaks the conformal invariance of original classical action

IM. It means that this invariance is inherent to quantum gravity, and it is

nothing but a realization of the so-called background-metric independence.

Virasoro Algebra and Physical States

Let us canonically quantize the action S2DQG and examine the background-

metric independence in an algebraic manner. Here, as in the case of the free-

field representation of two-dimensional conformal field theory in the third

section of Chapter 4, we expand each field in the cylindrical background

R × S1 parametrized by the coordinates xμ = (η, σ), where 0 < σ < 2π.

Quantization of the Liouville field can be done in the same way as in Chapter

4, but pay attention to differences in field normalization (see Footnote 2 in

this chapter) and how to enter imaginary units.

From the equation of motion ∂2φ = (−∂2
η + ∂2

σ)φ = 0, the Liouville

field is expanded in zero modes, left-handed modes, and right-handed modes

as

φ(η, σ) =
1√
2bL

{
q̂ + 2ηp̂+

∑
n 	=0

i

n

(
α+
n e

−in(η+σ) + α−
n e

−in(η−σ)
)}

.

(6-7)

Since φ is a real field, Hermitian conjugate is defined by α±†
n = α±

−n. The

conjugate momentum is given by Π = (bL/2π)∂ηφ and the equal-time com-

mutation relation is set as [φ(σ),Π(σ′)] = iδ(σ− σ′). Since the delta func-

tion is given by δ(σ−σ′) =
∑

n∈Z ein(σ−σ′)/2π, the commutation relation

of each mode is obtained as

[q̂, p̂] = i, [α±
n , α

±
m] = nδn+m,0, [α±

n , α
∓
m] = 0.

Residual gauge degrees of freedom after gauge-fixing to the conformal

gauge (6-2) are given by the conformal Killing vectors ζμsatisfying the con-

formal Killing equation

∂μζν + ∂νζμ − ημν∂
λζλ = 0.

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Two-Dimensional Quantum Gravity 77

That can be seen from the fact that the gauge condition is preserved because

δζhμν = 0 when ξμ = ζμ from the transformation of the traceless tensor

field (6-5). Generators of the guage transformations by the residual degrees

of freedom ζμ that form conformal algebra are given by

Lζ =

∫
S1

dσ ζμ Θ̂μ0, (6-8)

where Θ̂μν is the energy-momentum tensor defined by a variation with re-

spect to the background metric as

Θ̂μν =
2√−ĝ

δS2DQG

δĝμν
,

which satisfies the traceless condition. The indices are raised and lowered

by using the background metric as Θ̂μ
ν = ĝνλΘ̂

μλ.

The energy-momentum tensor of the Liouville field is given by

Θ̂L
μν =

bL
2π

{
∂μφ∂νφ− 1

2
ημν∂

λφ∂λφ+
(
ημν∂

λ∂λ − ∂μ∂ν
)
φ

}
.

The first two terms correspond to that of a normal scalar field. The last term

is a term specific to the Liouville theory obtained from a variation of the

R̂φ term. The trace disappears according to the equation of motion of the

Liouville field.

The conformal Killing vectors ζμ exist infinitely and are given as an

arbitrary function expanded in the basis (4-12). They are here expressed as

ζ+μ
n = (ein(η+σ)/2, ein(η+σ)/2) and ζ−μ

n = (ein(η−σ)/2,−ein(η−σ)/2).
Substituting these into (6-8), we obtain the so-called Virasoro generators as

follows:

LL±
n = einη

∫ 2π

0

dσ e±inσ 1

2
:
(
Θ̂L

00 ± Θ̂L
01

)
: +

bL
4
δn,0

=
1

2

∑
m∈Z

:α±
mα±

n−m : + i

√
bL
2
nα±

n +
bL
4
δn,0,

where α±
0 = p̂. Since the energy-momentum tensor is Hermitian, the

generator satisfies the Hermiticity condition LL±†
n = LL±

−n. The last term

(bL/4)δn,0 is the Casimir effect by choosing the coordinates to be R × S1.
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It shifts the Hamiltonian operator by bL/2 as4

HL = LL+
0 + LL−

0 = p̂2 +
bL
2

+
∞∑

n=1

{
α+†
n α+

n + α−†
n α−

n

}
.

This energy shift is necessary for conformal algebra to close quantum me-

chanically.

Let us consider the total Virasoro generator with adding the generators

of the matter field and the bc ghost field (see (6-16) in the next section) as

L±
n = LL±

n + LM±
n + Lgh±

n .

It satisfies the Virasoro algebra

[
L±
n , L

±
m

]
= (n−m)L±

n+m +
c

12
(n3 − n)δn+m,0

and [L+
n , L

−
m] = 0 whose total central charge vanishes as

c = 1 + 6bL + cM − 26 = 0. (6-9)

Thus, it turns out that when the coefficient bL is given by (6-4), it becomes

conformally invariant at the quantum level, where cM and −26 are the cen-

tral charge of the matter field and the bc ghost field, respectively. The con-

tribution from the Liouville field is 1 + 6bL, of which 1 comes from the

Liouville field being a scalar boson field, while 6bL comes from the fact that

the Liouville action has the non-conformally invariant R̂φ term. Actually,

calculating the algebra of the energy-momentum tensor with Poisson brack-

ets, a non-zero central charge 6bL is yielded. When the quantization is done,

the correction 1 is added to this.5

The condition that the central charge vanishes indicates that diffeomor-

phism invariance holds in the whole system quantum mechanically. Since

the conformal invariance appears as part of diffeomorphism invariance that

is a gauge symmetry, all theories that connected one another by the con-

formal transformation are gauge equivalent. In this way, it can be shown

algebraically that the theory does not depend on how to choose the back-

ground spacetime.

4 On the cylindrical background, L±0 corresponds to a dilatation operator that counts left/right

conformal dimension, and the Hamiltonian operator H = L+
0 +L−0 is an operator that counts

the sum of left and right conformal dimensions.

5 The matter central charge cM has the same structure if using the free field representation.
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Next, we examine physical states of two-dimensional quantum gravity.

We first consider the case where the bc ghost field is integrated out and not

appear explicitly. A conformally invariant vacuum is then defined as a state

that satisfies L±
n |Ω〉 = 0 (n ≥ −1), which is given by

|Ω〉 = e−bLφ0 |0〉, (6-10)

where |0〉 is a normal Fock vacuum which disappears for p̂ and annihilation

modes. The exponential factor of the zero-mode φ0 = q̂/
√
2bL originates

from the R̂φ term. Exponents in such exponential factors are generally

called the Liouville charges, especially what the vacuum has is called the

background charge.6

We also introduce another Fock vacuum |γ〉 = eγφ0 |Ω〉 with the Liou-

ville charge γ added to the conformally invariant vacuum (6-10). This state

is an eigenstate of the Hamiltonian operator, which satisfies

HL|γ〉 = hγ |γ〉, hγ = γ − γ2

2bL
. (6-11)

Considering states in which the creation operators are applied to this vacuum

as

|Ψ〉 = O(α±†
n , . . .)|γ〉,

physical states are defined by those which satisfy the Virasoro condition(
HL +HM − 2

) |Ψ〉 = 0,
(
LL±
n + LM±

n

) |Ψ〉 = 0, (6-12)

where n ≥ 1. This is nothing but a quantum version of the Wheeler-DeWitt

constraint condition that ensure diffeomorphism invariance. Here, −2 ap-

pears in the Hamiltonian condition because the bc ghost field is integrated

out. This 2 comes from the spacetime dimension.

As physical states, for simplicity, we consider only the case where pri-

mary matter fields described by CFT receive corrections of quantum gravity.

A real primary matter field with the same left and right conformal dimen-

sions Δ is defined using the matter Virasoro generator as

LM±
0 |Δ〉 = Δ|Δ〉, LM±

n |Δ〉 = 0 (n ≥ 1).

6 Considering the Euclidean path integral and letting χ be the Euler characteristic, the weight

of the path integral of the zero-mode part is given by e−bLχφ0 . Since topology of states is

represented by a disk of χ = 1, e−bLφ0 is added to a nothing state. See Footnote 8 in Chapter

4.

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



80 Chapter Six

The state of the matter field is symbolically expressed as |Δ〉 = Φ†
Δ|0〉

by introducing the corresponding primary field operator ΦΔ.7 The physical

state that has undergone quantum gravity corrections, that is called a gravi-

tationally dressed state, is given by

Φ†
Δ|γΔ〉.

From the Hamiltonian condition, the Liouville charge γΔ satisfies a quadratic

equation

hγΔ
+ 2Δ = 2,

where hγ is given by (6-11). Of the two solutions, choosing the one that the

classical limit bL → ∞ approaches a canonical value 2− 2Δ, the Liouville

charge is determined to be8

γΔ = bL

(
1−
√
1− 4− 4Δ

bL

)

= 2− 2Δ +
2(1−Δ)2

bL
+

4(1−Δ)3

b2L
+ · · · . (6-13)

Due to duality relation hγ = h2bL−γ , a state Φ†
Δ|2bL−γΔ〉 also satisfies

the physical state conditions (6-12). Since there is no corresponding clas-

sical gravitational state to the dual state, it is not considered as a physical

object. Using the dual state, however, we can define an inner product as

〈2bL − γΔ|ΦΔΦ
†
Δ|γΔ〉 = 〈Ω|e2bLφ0 |Ω〉 = 1 because the Liouville charges

totally cancel out. Hence, we consider the dual state to be a virtual state that

appears only in intermediate states.9

Physical field operators corresponding to gravitationally dressed states

are expressed by introducing an exponential operator with Liouville charge

γ defined as

Vγ(η, σ) = :eγφ(η,σ) : = eγφ>(η,σ)eγφ0(η)eγφ<(η,σ), (6-14)

7 Strictly speaking, the correspondence between the state and the operator is given by |Δ〉 =
limη→i∞ e−i2ΔηΦΔ(η, σ)|0〉. See the third section in Chapter 4 for the description of the

primary field using the free boson field representation.

8 The quantum gravity correction factor eγΔφ0 means that eigenvalue p of the zero-mode

operator p̂ in the Liouville field is given by a pure imaginary number. If it is real as in string

theory, we can normalize the state in a delta function like
∫
dφ0 eipφ0eip

′φ0 = δ(p + p′).
However, the quantum gravity state cannot be simply normalized in this way.

9 Unlike the free field representation of CFT discussed in Chapter 4, the Liouville field has a

physical meaning as the conformal factor of the gravitational field. This fact is reflected in how

correlation functions are constructed in the last section.
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where φ0, φ>, and φ< correspond to the parts of the zero-modes, the cre-

ation modes, and the annihilation modes in the field (6-7), respectively.

The zero-mode part in the exponential operator (6-14) can be expressed as

eγφ0(η) = eγq̂/2
√
2bLe2γηp̂/

√
2bLeγq̂/2

√
2bL . Applying the Virasoro genera-

tor, we find that this operator transforms as[
LL±
n , Vγ(η, σ)

]
= ein(η±σ)

(
−i∂± +

n

2
hγ

)
Vγ(η, σ), (6-15)

where ∂± = (∂η ± ∂σ)/2. If we choose the Δ = 0 charge in (6-13) as γ,

i
[
LL±
n , Vγ0

(η, σ)
]
= ∂±

{
einx

±
Vγ0

(η, σ)
}

holds due to hγ0
= 2. Therefore, it satisfies the condition of diffeomorphism

invariance as follows: [
LL±
n ,

∫
d2xVγ0

(x)
]
= 0.

The operator Vγ0
= : eγ0φ : corresponds to the cosmological term

√−g.

Indeed, in the classical limit bL → ∞, it reduces to
√−g = e2φ itself.

The same can also apply to the case including the primary matter field

ΦΔ. The product of ΦΔ and VγΔ
with the Liouville charge (6-13) satisfies

i[L±
n ,ΦΔVγΔ

(η, σ)] = ∂±{ein(η±σ)ΦΔVγΔ
(η, σ)} for the total Virasoro

generator, and its volume integral becomes Virasoro invariant. This operator

corresponds to
√−gΦΔ. The correspondence between the physical state

mentioned above and the operator is given by the following limit:

Φ†
Δ|γΔ〉 = lim

η→i∞
e−2iηΦΔVγΔ(η, σ)|Ω〉.

BRST Operator and Physical States

In this section, we reformulate the theory using the BRST formalism.10 In-

troducing new field variables b±± = b00 ± b01 and c± = c0 ± c1, the bc

10 The original paper is M. Kato and K. Ogawa, Covariant Quantization of String based on
BRS Invariance, Nucl. Phys. B 212 (1983) 443. See also D. Friedan, E. Martinec, and S.

Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986)

93. The unitarity issue of string theory discussed in these papers is nothing but to show that

we can introduce a Lorentzian signature into 10- or 26-dimensional target spacetime. A boson

field on world sheet representing a time coordinate in the target spacetime has a wrong sign

when viewed as a two-dimensional quantum field theory even considering a Euclidean world

sheet, but by canceling its degrees of freedom with those of the bc ghost, the unitarity recovers.

As the result, it can be shown that the S-matrix in the Minkowski target spacetime becomes
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ghost action (6-6) can be written in the form

Igh =
i

π

∫
d2x
(
b++∂−c

+ + b−−∂+c
−) .

Since the equations of motion are given by ∂−c+ = ∂+c
− = 0 and ∂−b++ =

∂+b−− = 0, we can mode-expand the bc ghost fields as

c± =
∑
n∈Z

c±n e
−in(η±σ), b±± =

∑
n∈Z

b±n e
−in(η±σ).

Hermiticity of each mode is c±†
n = c±−n and b±†

n = b±−n. The equal-time

anti-commutation relations are given by {c±(σ), b±±(σ′)} = 2πδ(σ − σ′)
and {c±(σ), b∓∓(σ′)} = 0. The anti-commutation relation of each mode

then becomes

{c±n , b±m} = δn+m,0, {c±n , b∓m} = 0.

The ghost part of the Virasoro algebra can be written in terms of the

modes as

Lgh±
n =

∑
m∈Z

(n+m) :b±n−mc±m : . (6-16)

At this time, a ghost vacuum |0〉gh is defined by c±n |0〉gh = 0 (n ≥ 2) and

b±n |0〉gh = 0 (n ≥ −1) so as to satisfy the conformal invariance condition

Lgh±
n |0〉gh = 0 (n ≥ −1). The normal ordering is then defined as bringing

ghost modes that disappear for this vacuum to the right.11

unitary. Two-dimensional quantum gravity may also be regarded as a string theory called the

non-critical string theory that has a two-dimensional target spacetime of (t, φ) by introducing

a time field t. The Liouville field φ then represents a spatial coordinate of the target space-

time called the linear dilaton background. The theory discussed here corresponds to what the

time coordinate t is replaced with a free boson field of CFT introduced in the third section

of Chapter 4. In any case, it is necessary to distinguish between the unitarity property on the

target spacetime physics and a positive-definiteness of the field on the world sheet. From the

viewpoint of quantum gravity, there is no concept of the S-matrix because the world sheet itself

is fluctuating gravitationally. What is important here is that physical fields become real in the

context of two-dimensional CFT.

11 This is an ordering suitable for OPE calculations, sometimes called the conformal nor-

mal ordering. On the other hand, distinguished from this, an ordering associated with the

Fock vacuum which brings c±n and b±n with n > 0 to the right is called the creation-

annihilation normal ordering. If it is denoted by ‡ ‡, the Virasoro generator is written as

Lgh±
n =

∑
m∈Z(n+m)‡b±n−mc±m‡ − δn,0.
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The BRST operator is decomposed as QBRST = Q+ +Q− and each is

given by

Q± =
∑
n∈Z

c±−n

(
LL±
n + LM±

n

)− 1

2

∑
n,m∈Z

(n−m) :c±−nc
±
−mb±n+m : .

This can be further decomposed as

Q± = c±0 L
±
0 − b±0 M

± + d±, M± = 2

∞∑
n=1

nc±−nc
±
n ,

where L±
0 is the whole Hamiltonian operator including the ghost part, and

the last term of each Q± that does not include the ghost zero-modes is given

by

d± =
∑
n 	=0

c±−n

(
LL±
n + LM±

n

)− 1

2

∑
n,m�=0
n+m �=0

(n−m) :c±−nc
±
−mb±n+m : .

The BRST operator satisfies nilpotency Q2
BRST = 0, which can be ex-

pressed as

d±2 = L±
0 M

±, [d±, L±
0 ] = [d±,M±] = [L±

0 ,M
±] = 0.

In order to construct physical states, introduce a Fock ghost vacuum ex-

pressed by c+1 c
−
1 |0〉gh, which disappears when applying annihilation modes

c±n , b
±
n (n > 0) to it.12 Consider states obtained by applying creation modes

to a whole Fock vacuum where this ghost vacuum and |γ〉 are combined such

as

|Ψ〉 = O(α±†
n , c±†

n , b±†
n , · · ·)|γ〉 ⊗ c+1 c

−
1 |0〉gh,

then physical states are defined by such states satisfying the BRST confor-

mal invariance condition QBRST|Ψ〉 = 0.

Since the state |Ψ〉 disappears when the zero-mode b±0 is applied to it,

we find that it is sufficient to consider the state satisfying the conditions

b±0 |Ψ〉 = 0, L±
0 |Ψ〉 = 0 (6-17)

as a physical state. The second condition comes from that the whole Hamil-

tonian operator is BRST trivial such as L±
0 = {QBRST, b

±
0 }.13 Thus, the

12 Using the ghost fields, this vacuum is given by the limit limη→i∞ e2iηc+c−|0〉gh.

13 In general, the whole Virasoro generator is BRST trivial as L±n = {QBRST, b
±
n }. There-

fore, descendant states obtained by applying L±−n to physical states become BRST trivial.
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BRST conformal invariance condition for physical states composed on the

subspace (6-17) reduces to

d±|Ψ〉 = 0.

As in the previous section, if O does not include the ghost mode, it is the

same as the condition (6-12), where the energy shift −2 originates from

Lgh±
0 c±1 |0〉gh = −c±1 |0〉gh.

In two-dimensional quantum gravity, there are a special physical state

including derivatives (discrete state) and a state with non-trivial ghost num-

ber with a ring structure (grand ring state).14 Moreover, by combining these

states, we can construct a conserved current whose divergence becomes

BRST trivial. It generates W∞ symmetry, and as the Ward identity of this

symmetry we can derive a nonlinear structure established between correla-

tion functions, called the W and the Virasoro constraints.15

Because the Hamiltonian operator Lgh±
0 does not contain c±0 and b±0 , the

ghost vacuum is degenerate and its inner product vanishes as gh〈0|0〉gh =

gh〈0|c−−1c
+
−1c

+
1 c

−
1 |0〉gh = 0. This is obvious from the fact that it van-

ishes if {b±0 , c±0 } = 1 is inserted inside each inner product. One of the

pair that is degenerate with the Fock ghost vacuum is ϑc+1 c
−
1 |0〉gh, where

ϑ = ic+0 c
−
0 . Using this fact, the ghost inner product is normalized to

gh〈0|c−−1c
+
−1ϑc

+
1 c

−
1 |0〉gh = 1.

The BRST transformation law of the Liouville field is given by

i
[
Q±, φ(η, σ)

]
= c±∂±φ(η, σ) +

1

2
∂±c

±(η, σ).

Combining the left and right components, we obtain i[QBRST, φ] = cμ∂μφ+
∂μc

μ/2, which is the transformation obtained by replacing the gauge trans-

formation parameters in (6-1), that is ζμ after the gauge fixing, with the

ghost field cμ. The BRST transformation law of the field operator (6-14) is

given by

i
[
Q±, Vγ(η, σ)

]
= c±∂±Vγ(η, σ) +

hγ

2
∂±c

±Vγ(η, σ)

from (6-15). Combining the left and right components, we obtain the con-

formal transformation of a real scalar field with the conformal dimension

14 See P. Bouwknegt, J. McCarthy, and K. Pilch, BRST Analysis of Physical States for 2D
Gravity Coupled to c ≤ 1 Matter, Commun. Math. Phys. 145 (1992) 541 in Bibliography.

15 See K. Hamada, Ward Identities of W∞ Symmetry in Liouville Theory coupled to cM < 1
Matter, Phys. Lett. B324 (1994) 141. As for the W and the Virasoro constraints, see M.

Fukuma, H. Kawai, and R. Nakayama, Continuum Schwinger-Dyson Equations and Universal
Structures in Two-Dimensional Quantum Gravity, Int. J. Mod. Phys. A 6 (1991) 1385.
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hγ . As shown before, the cosmological term is given as the operator of the

Liouville charge γ0 satisfying hγ0 = 2, and its volume integral
∫
d2xVγ0

becomes BRST invariant, namely diffeomorphism invariant. Generally, the

volume integral of ΦΔVγΔ
becomes BRST invariant.

Furthermore, consider field operators multiplied by a ghost field function

c+c−. They become locally BRST invariant operators satisfying

i
[
QBRST, c

+c−ΦΔVγΔ
(η, σ)

]
=

1

2
(hγΔ

+ 2Δ− 2)c+c−
(
∂+c

+ + ∂−c
−)ΦΔVγΔ

(η, σ) = 0,

where

i{Q±, c±} = c±∂±c
±

and hγΔ
+ 2Δ = 2 are used. The corresponding BRST invariant physical

state can be obtained by taking the limit limη→i∞ c+c−ΦΔVγΔ
(η, σ)|Ω〉 ⊗

|0〉gh (see Footnote 12 for the Fock ghost vacuum).

On Correlation Functions

The BRST conformal invariance is the same as diffeomorphism invariance.

The fact that the zero-mode p is a pure imaginary number (see Footnote 8)

represents that physical fields are real composite fields. In order to calcu-

late correlation functions between them, we have to regularize divergences

resulting from an integration of the Liouville zero-mode φ0. To do so, it

is necessary to add a physical field with the Liouville charge as a potential

term to the action.

We here consider an interacting system adding the cosmological operator

Vα =
∫
d2x : eαφ : with the Liouville charge α = γ0. When considering

the path integral Wick-rotated to the Euclidean space (τ = iη), the action

is expressed as SL + μVα. A general physical operator is denoted as Oγ =∫
d2xOγ .

Since the Euler characteristic of the space is
∫
d2x

√
ĝR̂/4π = 2, the φ0-

dependence in SL can be derived as 2bLφ0, with attention to a sign in the

Wick-rotated action. Since the zero-mode dependence of the field operator

Oγ is given by eγφ0 , if we introduce a variable A = eαφ0 and perform the

zero-mode integration first, the correlation function is expressed as

〈Oγ1
· · ·Oγn

〉 = 1

α

∫ ∞

0

dA

A
A−s〈Oγ1

· · ·Oγn
e−μAVα〉0

= μsΓ(−s)

α
〈Oγ1

· · ·Oγn
(Vα)

s〉0,

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



86 Chapter Six

where 〈· · ·〉0 is a correlation function in the free theory without the potential

term. The power of the cosmological term is determined to be

s =
2bL
α

−
n∑

i=1

γi
α
.

The zero-mode then cancel out, that is, the Liouville charge is conserved

and the correlation function has a value. What is important here is that

the dependence of the scale μ (here, the cosmological constant) shows a

power-law behavior, and it may be a negative power. Calculations of this

correlation function are not easy, but a method using analytic continuation

is known in two-dimensional quantum gravity.16

16 See M. Goulian and M. Li, Correlation Functions in Liouville Theory, Phys. Rev. Lett. 66
(1991) 2051.
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CHAPTER SEVEN

BACKGROUND-FREE QUANTUM GRAVITY

In order to construct quantum field theory of gravity, we impose the follow-

ing three basic conditions:

• diffeomorphism invariance.

• finitness.

• four-dimensional spacetime.

The first condition is one of basic principles of Einstein’s theory of gravity,

and we think that this symmetry also holds for quantum theory. It shall be

expressed as a background-metric independence in the high energy limit.

Physically meaningful quantities must be finite. When quantizing grav-

ity, the second condition not only refers to renormalizability but also implies

that there is no spacetime singularity. In addition, although several higher

dimensional models have been proposed, four dimensions are dimensions

that guarantee renormalizability of known quantum fields. Since there are

no facts suggesting the existence of extra dimensions from observations,

spacetime is assumed to be four dimensions.

These three conditions are quite realistic so that we can believe them

to be true. One of the purposes of this book is to understand what we can

find when thoroughly investigating these conditions. In Chapters 7-10 we

will see that the action of quantum gravity is actually determined from these

three conditions.

Quantum Gravity Action

When considering quantum field theories in curved spacetime, ultraviolet

divergences proportional to the square of the curvature tensor necessarily

occur. Thus, considering fourth-order derivative gravitational actions to

renormalize such divergences is natural and becomes essential in renormal-

izable quantum gravity. Furthermore, since conformal invariance becomes

important at high energy, we will consider quantum fields with conformally
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invariant couplings as matter fields.1 Indeed, as in gauge field theories, al-

most of the actions of widely known quantum field theories are conformally

invariant.

On the other hand, conformal invariance of classical kinetic terms will

feed back as a condition necessary for constructing the BRST conformal

algebra, which is a representation of the background free property. This in-

dicates that quantum diffeomorphism invariance gives considerably stronger

conditions than classical diffeomorphism invariance. Such a constraint also

appears when discussing renormalization theory in Chapters 9 and 10.

Conformally invariant gravitational actions required for a gravitational

system coupled with conformally invariant matter fields are the Weyl action

(5-4) and the Euler term (5-5) in the fourth-order derivative actions intro-

duced in Chapter 5. Writing the matter action density as LM, the action of

quantum gravity is given by

1

�
I =

∫
d4x

√−g

{
− 1

t2
C2

μνλσ − bG4 +
1

�

(
1

16πG
R− Λ + LM

)}
, (7-1)

where t is a dimensionless coupling constant that controls dynamics of

quantum gravity. The coefficient b is introduced for removing divergences

proportional to the Euler term. However, since the Euler term does not con-

tain a kinetic term, this constant is expanded using other coupling constants,

rather than independent coupling constants (see Chapter 10). The constants

G and Λ represent the Newton constant and the cosmological constant, re-

spectively. The reduced Planck constant � is restored here, while the speed

of light is taken to be unity.

Quantum gravity is defined by the path integral over the gravitational

field with a weight eiI/�. Since the gravitational field is a dimensionless

field by definition unlike gauge fields etc., its fourth-order derivative action

is completely dimensionless in four dimensions. Therefore, � appears only

before the lower derivative action such as the Einstein-Hilbert term and so

on. This fact is essential and indicates that the dimensionless fourth-order

gravitational action describes purely quantum mechanical dynamics.2 This

is why the Weyl action and the Riegert action induced quantum mechan-

1 We can add interactions with mass parameters like mass terms, but they do not contribute

at high energy. Since such interactions do not affect the fourth-order gravitational action, we

do not consider them, except for the Einstein term and the cosmological term written by the

gravitational field only.

2 It may be regarded as part of the path integral measure, including the weight of the Weyl

action.
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ically can be used together as a kinetic term in later discussions. In the

below, let � = 1.

As can be seen from the action I , the conformally invariant gravitational

action dominates in a high energy region beyond the Planck mass scale. Let

us consider an expansion by the coupling constant t of the Weyl action in

that region. It means that we consider a perturbation theory about a con-

formally flat configuration satisfying Cμνλσ = 0. Therefore, the conformal

factor is pulled out and the gravitational field is expanded as

gμν = e2φḡμν ,

ḡμν = (ĝeth)μν = ĝμλ

(
δλν + thλ

ν +
t2

2
hλ

σh
σ
ν + · · ·

)
, (7-2)

where hμ
ν is the traceless tensor field and hμ

μ = ĝμνhμν = 0 is satisfied.

The background metric ĝμν is an artificial non-dynamical metric introduced

practically to carry out calculations. The conformal factor is given in the

form of an exponential to ensure that it is positive. The important point here

is that since the conformal-factor field φ is not subject to any restrictions

from the conformally flat condition, it is necessary to handle exactly without

introducing an extra coupling constant for it.

A kinetic term and interaction terms of the conformal-factor field are

induced as the Wess-Zumino actions from the path integral measure, as de-

scribed in Chapter 5. When rewriting the diffeomorphism invariant measure

of the full metric gμν to a practical measure defined on the background met-

ric ĝμν , such actions appear as Jacobians to recover diffeomorphism invari-

ance. Thus, the path integral can be rewritten as

eiΓ =

∫
[dgdf ]g e

iI(f,g) =

∫
[dφdhdf ]ĝ e

iS(φ,ḡ)+iI(f,g), (7-3)

where S is the Wess-Zumino action. The symbol f denotes matter fields

with a conformally invariant kinetic term. The action S appears from zeroth

order in expansions by the coupling constant t. The lowest is the Riegert

action (5-11) defined before by

SR(φ, ḡ) = − bc
(4π)2

∫
d4x

√−ḡ
(
2φΔ̄4φ+ Ē4φ

)
, (7-4)

which gives the kinetic term of the conformal-factor field φ.

We consider quantization of the gravitational field according to the path

integral expression (7-3). The coefficient bc in (7-4) is determined from the
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conformal anomaly proportional to the Euler density in the whole system as

bc =
1

360
(NS + 11NF + 62NA) +

769

180
, (7-5)

where the contribution from matter fields is given by (5-12). The last term

is a contribution from gravitational loops, which is the sum of −7/90 from

the conformal-factor field φ and 87/20 from the traceless tensor field hμν .

Since bc is positive, the kinetic term of the Riegert action becomes positive-

definite in our signature convention.3

Considering the beta function of t defined by μdt/dμ = −β0t
3, one-

loop contributions from matter fields to β0 are summarized to ζ1 (5-12)

divided by 2(4π)2. Furthermore, adding one-loop quantum corrections by

the gravitational field itself, we obtain

β0 =
1

(4π)2

{
1

240
(NS + 6NF + 12NA) +

197

60

}
.

The last term is the sum of the contributions from the conformal-factor field

−1/15 and from the traceless tensor field 199/30. Since β0 is positive, it

turns out that the beta function becomes negative and the traceless tensor

field hμν shows an asymptotically free behavior. Thus, it is justified per-

forming the perturbation theory about a conformally flat spacetime such as

(7-2) at high energy.

Here we briefly describe the meaning of the asymptotic freedom in the

quantum gravity. First of all, it should be noted that this asymptotic free-

dom does not mean the existence of free gravitational asymptotic fields like

a graviton. Fluctuations of the traceless tensor field become small, but fluc-

tuations of the conformal-factor field that substantially defines physical dis-

tance remain large non-perturbatively. It indicates that a conformally in-

variant spacetime is realized at the high energy limit. As described below,

this conformal invariance represents the background-metric independence

which shows that the theory does not depend on how to select the back-

ground metric ĝμν .4 Thus, we shall call this property as “asymptotic back-

ground freedom”, in distinction from the conventional asymptotic freedom.

3 It is easy to understand when discussing in a Wick-rotated Euclidean background space.

The weight of the path integral then becomes e−I , and the positive-definiteness is expressed

as I > 0. The Weyl action also satisfies this positivity condition in the Euclidean space as

I =
∫
d4x

√
gC2

μνλσ/t
2.

4 Since the traceless tensor field is handled perturbatively, the background-metric indepen-

dence for this field is not complete, but its asymptotically free behavior means that it is not

significant in the ultraviolet limit.
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This also leads to the discussion of � earlier. Since the fourth-order grav-

itational action is a completely dimensionless quantum-mechanical quan-

tity, the concept of classical asymptotic fields is not adapted here. In ad-

dition, the asymptotic background freedom indicates that spacetime sin-

gularities are eliminated, because it means that the Weyl curvature tensor

including the Riemann curvature tensor disappears at a short distance, so

that spacetime configurations that the Riemann curvature diverges such as

the Schwarzschild solution are excluded quantum mechanically. In the first

place, such a field configuration that the action diverges is unphysical. This

is one of the reasons why we should consider the positive-definite action

including the Riemann curvature tensor.

In this and next chapters, we consider the quantum gravity defined in the

limit where the coupling constant t disappears. The action is then given by

S4DQG = SR(φ, ĝ) + I(g, ϕ,A, . . .)|t→0. (7-6)

Since the Weyl action is divided by t2, only the kinetic term of hμν remains.

Furthermore, at this limit, the metric ḡμν becomes the background metric

ĝμν , thus the interaction terms between the traceless tensor field and other

quantum fields disappear. Moreover, we ignore interaction terms with mass

parameters such as the Einstein-Hilbert term, the cosmological term, mass

terms of matter fields, and so on.

Similar to the discussion in the case of two-dimensional quantum grav-

ity given in the first section of the previous chapter, we can show that using

Wess-Zumino integrability condition (5-15), the background-metric inde-

pendence of the theory S4DQG holds when the coefficient of the Riegert

action is given by the coefficient of conformal anomaly of the whole theory

(7-5). Its essence is that, since the conformal-factor field φ is an integra-

tion variable, the theory remains unchanged even if this field is shifted as

φ → φ − ω. Since the theory is also invariant under a simultaneous shift

φ → φ − ω and ĝμν → e2ω ĝμν that preserves the full metric, it becomes

invariant even if we change only the background metric as ĝμν → e2ω ĝμν .

In this way, despite the involvement of the Euler-density conformal

anomaly that originally breaks conformal invariance, strict conformal in-

variance is realized rather owing to that. In the following, we will formulate

this background-metric independence as the BRST conformal invariance.
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Diffeomorphism Invariance and Conformal Invariance

Diffeomorphism is defined using a vector ξμ by

δξgμν = gμλ∇νξ
λ + gνλ∇μξ

λ.

The transformation laws of scalar fields and gauge fields are defined respec-

tively by5

δξϕ = ξλ∂λϕ,

δξAμ = ξλ∇λAμ +Aλ∇μξ
λ.

Decomposing the metric field gμν with the conformal factor e2φ and the

metric with the bar ḡμν as in (7-2), diffeomorphism can be expressed as

δξφ = ξλ∂λφ+
1

4
∇̂λξ

λ,

δξ ḡμν = ḡμλ∇̄νξ
λ + ḡνλ∇̄μξ

λ − 1

2
ḡμν∇̂λξ

λ,

where we use the fact that ∇̄λξ
λ = ∂λ(

√−ḡξλ)/
√−ḡ = ∇̂λξ

λ holds due

to
√−ḡ =

√−ĝ. Expanding both sides of the second expression further,

we obtain the transformation law of the traceless tensor field as6

δξhμν =
1

t

(
∇̂μξν + ∇̂νξμ − 1

2
ĝμν∇̂λξ

λ

)
+ ξλ∇̂λhμν

+
1

2
hμλ

(
∇̂νξ

λ − ∇̂λξν

)
+

1

2
hνλ

(
∇̂μξ

λ − ∇̂λξμ

)
+o(th2), (7-7)

where gauge transformation parameters with subscript are defined by ξμ =
ĝμνξ

ν using the background metric.

At the limit where the coupling constant t vanishes, diffeomorphism re-

duces to a widely known gauge transformation for the kinetic term of the

Weyl action. It can be expressed by replacing ξμ with κμ = ξμ/t and then

taking the limit of t → 0 as

δκhμν = ∇̂μκν + ∇̂νκμ − 1

2
ĝμν∇̂λκ

λ, (7-8)

5 Like scalar fields, the transformation law of gauge fields can also be written with normal

differentiations as δξAμ = ξλ∂λAμ +Aλ∂μξ
λ.

6 With δξ ḡμν = δξ(ĝe
th)μν = tδξhμν+t2hλ(μδξh

λ
ν)
+o(t3) in mind, expand both sides

and determine the terms for each order.
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while δκφ = 0 and matter fields are not transformed either.

Even if the gauge transformation (7-8) is fixed as usual, 15 gauge degrees

of freedom ζμ satisfying the conformal Killing equation

∇̂μζν + ∇̂νζμ − 1

2
ĝμν∇̂λζ

λ = 0 (7-9)

still remain. For ζμ, the lowest term in the transformation law (7-7) disap-

pears so that the next term becomes effective. Thus, we obtain the following

transformation:

δζφ = ζλ∂λφ+
1

4
∇̂λζ

λ,

δζhμν = ζλ∇̂λhμν +
1

2
hμλ

(
∇̂νζ

λ − ∇̂λζν

)
+

1

2
hνλ

(
∇̂μζ

λ − ∇̂λζμ

)
.

(7-10)

The first expression represents a conformal transformation of scalar fields

of conformal dimension zero with a shift term added (note that there is no

field dependence in the shift term). The second is nothing but the confor-

mal transformation of traceless and symmetric tensor fields with conformal

dimension zero.

Here note that usual gauge transformations become independent of the

fields as in (7-8) at the vanishing coupling limit, whereas this residual gauge

transformation has field-dependences even at the limit. This means that

modes in the field are mixed with each other through the gauge transforma-

tion even though there is no interaction. This fact becomes important when

we show that ghost modes are unphysical.

Next, we give the transformation laws of the matter fields under this

gauge fixing that leaves only the conformal Killing vectors as the residual

gauge degrees of freedom. First, consider a conformally invariant scalar

field ϕ. In this case, we can remove the conformal-factor dependence in the

action explicitly by redefining the field as ϕ = e−φϕ′. Using this redefined

field ϕ′ and writing it again as ϕ below, diffeomorphism can be rewritten as

δζϕ = ζμ∂μϕ+
1

4
ϕ∇̂μζ

μ. (7-11)

The second term on the right-hand side appears to compensate for the change

of the conformal-factor field. This transformation is the same as the confor-

mal transformation of a scalar field with conformal dimension 1.7

7 Specifically, looking at the invariance on the flat background, since the variable ζμ satisfies
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Since the action of the gauge field does not depend on the conformal-

factor field, it is not necessary to redefine the field as in the case of the scalar

field. By restricting the gauge transformation parameter to ζμ and rewriting

using the conformal Killing equation, diffeomorphism given before reduces

to

δζAμ = ζν∇̂νAμ +
1

4
Aμ∇̂νζ

ν +
1

2
Aν

(
∇̂μζ

ν − ∇̂νζμ

)
.

This means that the gauge field is transformed as a vector field of conformal

dimension 1.

These conformal transformations defined on the background ĝμν are

gauge transformations, unlike those in normal conformal field theory. The

conformal-factor field and the traceless tensor field are one of the gauge

fields, which are not physical fields. Therefore, these fields themselves do

not necessary to satisfy the unitarity bound (2-14) for conformal dimensions,

as ordinary gauge fields do not so (see Footnote 6 in Chapter 2).

The background-metric independence is expressed as a symmetry in

which all of theories that can be transformed one another by the conformal

transformation become gauge equivalent. Although the remaining gauge de-

grees of freedom are only 15, this gauge symmetry gives strong constraints

to physical states because the right-hand side of the transformation law (7-

10) depends on the field.

On the other hand, when t �= 0, diffeomorphism gradually deviates from

the conformal transformation, as can be seen from the original transforma-

tion law (7-7). Dynamical processes in which conformal invariance breaks

will be discussed in later chapters.

Quantization of Gravitational Field

In order to carry out quantization, we need to choose the background metric

ĝμν . In the ultraviolet limit where the coupling constant t disappears, since

the conformal Killing equation, it can be shown that the action of the scalar field is invariant as

follows:

δζIϕ = −
∫

d4x ∂μϕ∂μ

(
ζλ∂λϕ+

1

4
ϕ∂λζ

λ

)

=

∫
d4x

{
−1

4

(
3∂ηζ0 + ∂iζ

i
)
∂ηϕ∂ηϕ+ (∂ηζi + ∂iζ0) ∂ηϕ∂

iϕ

+

[
−∂iζj +

1

4
δij

(
−∂ηζ0 + ∂kζ

k
)]

∂iϕ∂jϕ+
1

8

(
∂σ∂

σ∂λζ
λ
)
ϕ2

}
= 0.
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spacetime configurations where the Weyl tensor vanishes are realized, the

background metric should be conformally flat, but as long as it is so, the

background metric can be selected arbitrarily from its independence. In

this chapter, we employ the Minkowski metric ημν = (−1, 1, 1, 1) as the

background metric ĝμν and the coordinates are written as xμ = (η,x).
In this section, we quantize the conformal-factor field and the traceless

tensor field. At that time, the gauge degrees of freedom κμ of the transfor-

mation (7-8) are completely fixed so that only the gauge degrees of freedom

ζμ of the conformal transformation (7-10) remain.

Conformal-factor field

First we quantize the conformal-factor field. In the Minkowski background,

the Riegert action (7-4) is simply given by −(bc/8π
2)
∫
d4xφ∂4φ, and then

the linear term of φ disappears. The contribution from the linear term ap-

pears in the energy-momentum tensor introduced in the next section.

The gravitational field, which is a higher-order derivative field, is canon-

ically quantized according to the Dirac quantization procedure.8 Introducing

a new variable

χ = ∂ηφ, (7-12)

the action of the conformal-factor field can be written in a second-order form

in time derivative as

SR =

∫
d4x

{
− bc
8π2

[
(∂ηχ)

2
+ 2χ |∂2χ+

( |∂2φ
)2]

+ v (∂ηφ− χ)

}
,

where |∂2 = ∂i∂i is the Laplacian operator is space. The last is the Lagrange

multiplier term. Canonically conjugate momenta Pχ, Pφ, and Pv with re-

spect to χ, φ, and v, respectively, are derived from this action, and Poisson

brackets are set as

{χ(η,x),Pχ(η,x
′)}P = {φ(η,x),Pφ(η,x

′)}P
= {v(η,x),Pv(η,x

′)}P = δ3(x− x′).

Since the action of the new field χ is a second-order derivative in time, it

has a normal momentum variable Pχ = −(bc/4π
2)∂ηχ, while since φ and

8 See P. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva

University, New York, 1964) and the textbooks in Bibliography.
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v are first order and zeroth order respectively, their momenta give constraint

equations as9

ϕ1 = Pφ − v � 0, ϕ2 = Pv � 0.

The constraint conditions constitute a subspace in the phase space spanned

by six variables, φ, χ, v and their conjugate momenta Pφ, Pχ, Pv . The weak

equation represents that it holds as an exact equation on the subspace.

Poisson brackets between the constraints are given by

Cab = {ϕa, ϕb}P =

(
0 −1
1 0

)
,

where the three-dimensional delta function is expressed as 1 for simplicity.

Since detCab �= 0 is satisfied, these constraints are called second class.

According to the Dirac procedure, we introduce the Dirac brackets to handle

the second class constraints as follows:

{F,G}D = {F,G}P − {F, ϕa}PC−1
ab {ϕb, G}P.

The Dirac brackets satisfy the basic properties that Poisson brackets hold.

Since the constraint satisfies {F, ϕa}D = 0 for an arbitrary function F , the

Dirac brackets can be regarded as Poisson brackets in the phase subspace.

Substituting Hamiltonian as F , it means that the constraint does not evolve

in time, and thus if ϕa = 0 is set first, it is preserved. Therefore, we can set

the constraints to zero as an exact equation using the Dirac brackets.

The Dirac brackets between the four variables in the phase subspace are

given by

{χ(η,x),Pχ(η,x
′)}D = {φ(η,x),Pφ(η,x

′)}D = δ3(x− x′),

and the Hamiltonian is written as

H =

∫
d3x

{
−2π2

bc
P2
χ + Pφχ+

bc
8π2

[
2χ |∂2χ+

( |∂2φ
)2]}

. (7-13)

Equations of motion are then given by

∂ηφ = {φ,H}D = χ,

∂ηχ = {χ,H}D = −4π2

bc
Pχ,

∂ηPχ = {Pχ, H}D = −Pφ − bc
2π2

|∂2χ,

∂ηPφ = {Pφ, H}D = − bc
4π2

|∂4φ. (7-14)

9 If considering the symmetrized Lagrange multiplier term like (v∂ηφ − φ∂ηv)/2, the con-

straints become ϕ1 = Pφ − v/2 and ϕ2 = Pv + φ/2, but the result is the same.
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Canonical quantization is performed by replacing the Dirac brackets

with commutators as

[φ(η,x),Pφ(η,x
′)] = [χ(η,x),Pχ(η,x

′)] = iδ3(x− x′), (7-15)

and other commutators disappear. From (7-14), the momentum variables

are given by

Pχ = − bc
4π2

∂ηχ, Pφ = −∂ηPχ − bc
2π2

|∂2χ. (7-16)

The conformal-factor field satisfies an equation of motion ∂4φ = 0,

which becomes ∂ηPφ = −(bc/4π
2) |∂4φ when expressed using the mo-

mentum variable. The solution is given by a linear combination of eikμx
μ

and ηeikμx
μ

and their complex conjugate, where kμx
μ = −ωη + k ·x and

ω = |k|.
Decomposing the field into two parts of annihilation and creation opera-

tors as φ = φ< + φ>, the annihilation operator is expanded as

φ<(x) =
π√
bc

∫
d3k

(2π)3/2
1

ω3/2
[a(k) + iωηb(k)] eikμx

μ

and the creation operator is given by φ> = φ†
<. Substituting this into the

defining equations of the variables, (7-12) and (7-16), the annihilation oper-

ator part for each variable is given as follows:

χ<(x) = −i
π√
bc

∫
d3k

(2π)3/2
1

ω1/2
[a(k) + (−1 + iωη)b(k)] eikμx

μ

,

Pχ<(x) =

√
bc

4π

∫
d3k

(2π)3/2
ω1/2 [a(k) + (−2 + iωη)b(k)] eikμx

μ

,

Pφ<(x) = −i

√
bc

4π

∫
d3k

(2π)3/2
ω3/2 [a(k) + (1 + iωη)b(k)] eikμx

μ

.

From the canonical commutation relations (7-15), we obtain the following

commutation relation of each mode:[
a(k), a†(k′)

]
= δ3(k− k′),[

a(k), b†(k′)
]
=
[
b(k), a†(k′)

]
= δ3(k− k′),[

b(k), b†(k′)
]
= 0.

The Hamiltonian operator is given by doing normal ordering to (7-13), which

is expressed in terms of the modes as

H =

∫
d3kω

{
a†(k)b(k) + b†(k)a(k)− 2b†(k)b(k)

}
.
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The two-point correlation function of the conformal-factor field is given

as follows:

〈0|φ(x)φ(x′)|0〉
=

π2

bc

∫
ω>z

d3k

(2π)3
1

ω3
{1 + iω (η − η′)} e−iω(η−η′−iε)+ik·(x−x′),

where ε is an ultraviolet cutoff to regularize ultraviolet divergences, which

is introduced only in the exponential part. This is a necessary treatment to

obtain the canonical commutation relation correctly. In addition, we intro-

duced an infinitesimal mass scale z to handle infrared divergences coming

from the conformal-factor field being dimensionless. This corresponds to

adding a fictitious mass term to the action. Since it breaks diffeomorphism

invariance, the z-dependence shall not appear when considering diffeomor-

phism invariant quantities.10 The momentum integral is evaluated under

z � 1, while leaving the ultraviolet cutoff ε finite.

Momentum integral formulas required for calculations are given as fol-

lows:

In(η,x) =

∫
ω>z

d3k

(2π)3
1

ωn
e−iω(η−iε)+ik·x

=
1

(2π)3

∫ ∞

z

ω2dω

∫ 1

−1

d cos θ

∫ 2π

0

dϕ
1

ωn
eiω|x| cos θe−iω(η−iε)

=
1

2π2

1

|x|
∫ ∞

z

dω
1

ωn−1
sin(ω|x|)e−iω(η−iε), (7-17)

where n is an integer. The infrared cutoff z is necessary when n ≥ 3. This

integral satisfies In(η,x) = i∂ηIn+1(η,x). The expressions of n = 2, 3 are

obtained as

I3(η,x) =
1

4π2

{
− log

[−(η − iε)2 + x2
]− log z2e2γ−2

+
η − iε

|x| log
η − iε− |x|
η − iε+ |x|

}
,

I2(η,x) = i
1

4π2

1

|x| log
η − iε− |x|
η − iε+ |x| .

10 Note that the Einstein-Hilbert action and the cosmological term do not give normal mass

terms as described here because these actions involve exponentials of the conformal-factor

field.
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Using these integral formulas, we obtain

〈0|φ(x)φ(x′)|0〉 = − 1

4bc
log
{[−(η − η′ − iε)2 + (x− x′)2

]
z2e2γ−2

}
− 1

4bc

iε

|x− x′| log
η − η′ − iε− |x− x′|
η − η′ − iε+ |x− x′| . (7-18)

The last term which disappears at ε → 0 contributes to calculations of quan-

tum corrections in later sections. The cutoff ε is taken to zero after calculat-

ing quantum corrections.

Traceless tensor field

From the Weyl action, the kinetic term of the traceless tensor field is given

by

I =

∫
d4x

{
−1

2
∂2hμν∂2hμν + ∂μχν∂μχν − 1

3
∂μχ

μ∂νχ
ν

}
,

where χμ = ∂λhλμ. In order to quantize the traceless tensor field, we need

to fix the gauge symmetry δκhμν (7-8). For that, we decompose the field as

h00, h0i, hij = htr
ij +

1

3
δijh00,

where “tr” denotes the traceless part of the spatial component. The gauge

transformation (7-8) is then decomposed as

δκh00 =
3

2
∂ηκ0 +

1

2
∂kκ

k, δκh0i = ∂ηκi + ∂iκ0,

δκh
tr
ij = ∂iκj + ∂jκi − 2

3
δij∂kκ

k.

First, using the four gauge degrees of freedom, we impose the transverse

gauge conditions defined by

∂ih0i = 0, ∂ihtr
ij = 0.

At this time, the h00 component becomes a non-dynamical degree of free-

dom which does not contain time derivative in the kinetic term. Since this

component can be removed further using gauge degrees of freedom that

still remain after this gauge-fixing, the following additional condition is im-

posed:

h00 = 0.
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The transverse gauge including this extra condition is called the radiation

gauge.

When the radiation gauge is adopted, almost all degrees of freedom of

κμ are fixed, and only the finite gauge degrees of freedom ζμ of the con-

formal transformation (7-10) remain. In fact, when solving conditions that

this gauge is preserved as δκ(h00) = (3∂ηκ0 + ∂kκ
k)/2 = 0, δκ(∂

ih0i) =
∂η∂kκ

k + |∂2κ0 = 0, and δκ(∂
ihtr

ij) = |∂2κj + ∂j∂kκ
k/3 = 0, we can see

that the residual gauge degrees of freedom are κμ = ζμ only.

In this and next chapters, we will simply express the transverse (T) com-

ponent of h0i and the transverse-traceless (TT) component of hij in the

Gothic style as

hT
0i = hi, hTT

ij = hij .

Dynamical fields in the radiation gauge are given by these fields.11

As in the case of the conformal-factor field, in order to quantize the

transverse-traceless tensor mode according to the Dirac procedure, we in-

troduce a new variable defined by

uij = ∂ηhij .

On the other hand, since the transverse vector mode has at most second-

order derivatives in time, it is not necessary to introduce a new variable.

With using the variable uij , the Weyl action can be written as

I =

∫
d4x

{
−1

2
hij
(
∂4
η − 2 |∂2∂2

η + |∂4
)
hij + hj |∂2

(−∂2
η + |∂2

)
hj

}

=

∫
d4x

{
−1

2
∂ηu

ij∂ηuij − uij |∂2uij − 1

2
|∂2hij |∂2hij

+∂ηh
j |∂2∂ηhj + |∂2hj |∂2hj + λij (∂ηhij − uij)

}
,

where λij is the Lagrange multiplier.

By solving constraint equations and removing the Lagrange multiplier

λij as before, we obtain a phase subspace spanned by the canonical variables

11 As another gauge-fixing condition, we can choose h0μ = 0. In this case, the spatial com-

ponent can be decomposed as hij = hij + ∂−1
η (∂ihj + ∂jhi) + (δij − 3∂i∂j/ |∂2)h, then

the h component of the Weyl action becomes −h(3∂2
η − |∂2)2h/3. On the other hand, we

can see from δκh0μ = 0 that there still remains a scalar gauge degree of freedom ψ = ∂kκ
k

satisfying (3∂2
η− |∂2)ψ = 0. Therefore, we can further impose an extra condition h = 0 using

it. In this way, the same result as the radiation gauge can be obtained.
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uij , hij , hj and their conjugate momenta

Pij
u = −∂ηu

ij , Pij
h = −∂ηP

ij
u − 2 |∂2uij ,

Pj = 2 |∂2∂ηh
j ,

respectively. By replacing the Dirac brackets with commutators, canonical

commutation relations between them are provided as[
hij(η,x),Pkl

h (η,y)
]
=
[
uij(η,x),Pkl

u (η,y)
]
= iδij,kl3 (x− y),[

hi(η,x),Pj(η,y)
]
= iδij3 (x− y), (7-19)

where the three-dimensional delta functions with indices are defined by

δij3 (x) = Δijδ3(x) and δij,kl3 (x) = Δij,klδ3(x) with differential operators

Δij = δij − ∂i∂j
|∂2

,

Δij,kl =
1

2
(ΔikΔjl +ΔilΔjk −ΔijΔkl) .

These operators satisfy the transverse and traceless conditions ∂iΔij = 0,

Δj
j = 2, ∂iΔij,kl = 0, and Δi

i,kl = 0. They also satisfy ΔikΔ
k
j = Δij

and Δij,klΔ
kl,

mn = Δij,mn.

The Hamiltonian operator is given by

H =

∫
d3x :

{
−1

2
Pij
u P

u
ij + Pij

h uij + uij |∂2uij +
1

2
|∂2hij |∂2hij

+
1

4
Pj |∂−2Pj − |∂2hj |∂2hj

}
: ,

where |∂−2 = 1/ |∂2.

The transverse-traceless tensor mode satisfies an equation of motion

∂4hij = 0, which can be written as ∂ηP
ij
h = − |∂4hij in terms of the momen-

tum variable. As in the case of the conformal-factor field, we decompose the

field into parts of annihilation and creation operators as hij = hij<+hij> . The

annihilation operator is expanded as

hij<(x) =

∫
d3k

(2π)3/2
1

2ω3/2

[
cij(k) + iωηdij(k)

]
eikμx

μ

and the creation operator is given by hij> = hij†< . On the other hand, the

equation of motion of the transverse vector mode is |∂2∂2hj = 0, or ∂ηP
j =
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2 |∂4hj in the momentum variable. Since it is a second-order derivative in

time, the annihilation operator is expanded as

hj<(x) =

∫
d3k

(2π)3/2
1

2ω3/2
ej(k)e

ikμx
μ

,

where hj = hj< + hj> and hj> = hj†< as before. Similarly, the annihilation

operators of other variables are given by

uij<(x) = −i

∫
d3k

(2π)3/2
1

2ω1/2

[
cij(k) + (−1 + iωη)dij(k)

]
eikμx

μ

,

Pij
u<(x) =

∫
d3k

(2π)3/2
ω1/2

2

[
cij(k) + (−2 + iωη)dij(k)

]
eikμx

μ

,

Pij
h<(x) = −i

∫
d3k

(2π)3/2
ω3/2

2

[
cij(k) + (1 + iωη)dij(k)

]
eikμx

μ

,

Pj
<(x) = i

∫
d3k

(2π)3/2
ω3/2 ej(k)eikμx

μ

.

Substituting these expressions into the canonical commutation relations

(7-19), we obtain the following commutation relation of each mode:

[
cij(k), ckl†(k′)

]
= δij,kl3 (k− k′),[

cij(k), dkl†(k′)
]
=
[
dij(k), ckl†(k′)

]
= δij,kl3 (k− k′),[

dij(k), dkl†(k′)
]
= 0,[

ei(k), ej†(k′)
]
= −δij3 (k− k′),

where δij3 (k) and δij,kl3 (k) are the delta function δ3(k) multiplied by the

following functions:

Δ̃ij(k) = δij− kikj
k2

,

Δ̃ij,kl(k) =
1

2

{
Δ̃ik(k)Δ̃jl(k)+Δ̃il(k)Δ̃jk(k)−Δ̃ij(k)Δ̃kl(k)

}
, (7-20)

respectively.

To further simplify the commutation relations, we introduce polarization

vectors εi(a) (a = 1, 2) and polarization tensors εij(a) (a = 1, 2). They satisfy

a transverse condition kiε
i
(a) = 0 and transverse and traceless conditions
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kiε
ij
(a)(k) = ε i

(a)i(k) = 0, and are normalized as

2∑
a=1

εi(a)(k)ε
j
(a)(k) = Δ̃ij(k), εj(a)(k)ε(b)j(k) = δab,

2∑
a=1

εij(a)(k)ε
kl
(a)(k) = Δ̃ij,kl(k), εij(a)(k)ε(b)ij(k) = δab.

Each mode can be expanded using these as

cij(k) =
2∑

a=1

εij(a)(k)c(a)(k), dij(k) =
2∑

a=1

εij(a)(k)d(a)(k),

ej(k) =
2∑

a=1

εj(a)(k)e(a)(k),

then the commutation relations are given by[
c(a)(k), c

†
(b)(k

′)
]
= δabδ3(k− k′),[

c(a)(k), d
†
(b)(k

′)
]
=
[
d(a)(k), c

†
(b)(k

′)
]
= δabδ3(k− k′),[

d(a)(k), d
†
(b)(k

′)
]
= 0,[

e(a)(k), e
†
(b)(k

′)
]
= −δabδ3(k− k′).

The Hamiltonian operator is rewritten as

H =

2∑
a=1

∫
d3kω

{
c†(a)(k)d(a)(k) + d†(a)(k)c(a)(k)

−2d†(a)(k)d(a)(k)− e†(a)(k)e(a)(k)
}
.

The two-point correlation functions of the transverse-traceless tensor

mode and the transverse vector mode are calculated as follows. Let us in-

troduce new real fields H(a) and Y (a) whose annihilation operator parts are

defined as

H
(a)
< (x) =

∫
d3k

(2π)3/2
1

2ω3/2

[
c(a)(k) + iωηd(a)(k)

]
eikμx

μ

,

Y
(a)
< (x) =

∫
d3k

(2π)3/2
1

2ω3/2
e(a)(k)e

ikμx
μ

.
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The correlation function of H(a) is then expressed as 〈H(a)(x)H(b)(x′)〉 =
δab〈H(x)H(x′)〉 where

〈H(x)H(x′)〉 = − 1

16π2
log
{[−(η − η′ − iε)2 + (x− x′)2

]
z2e2γ−2

}
− 1

16π2

iε

|x− x′| log
η − η′ − iε− |x− x′|
η − η′ − iε+ |x− x′| ,

and the correlation function of Y (a) is also given by 〈Y (a)(x)Y (b)(x′)〉 =
δab〈Y (x)Y (x′)〉 where

〈Y (x)Y (x′)〉 = 1

16π2
log
{[−(η − η′ − iε)2 + (x− x′)2

]
z2e2γ−2

}
− 1

16π2

η − η′ − iε

|x− x′| log
η − η′ − iε− |x− x′|
η − η′ − iε+ |x− x′| .

Using these functions, the two-point correlation functions of the transverse-

traceless tensor mode and the transverse vector mode can be expressed as

〈hij(x)hkl(x′)〉 = Δij,kl(x)〈H(x)H(x′)〉,
〈hi(x)hj(x′)〉 = Δij(x)〈Y (x)Y (x′)〉. (7-21)

Generators of Diffeomorphism

The quantum gravity is now described as a certain quantum field theory de-

fined on the background spacetime. Its energy-momentum tensor is thus

defined by a variation of the action S4DQG (7-6) with respect to the back-

ground metric as

Θ̂μν =
2√−ĝ

δS4DQG

δĝμν
.

The spacetime indices are raised and lowered with using the background

metric as Θ̂μν = ĝμλĝνσΘ̂
λσ . After carrying out the variation, we set the

background metric to the Minkowski metric. Generators of diffeomorphism

δζ (7-10) given in the form of the conformal transformations are then pro-

vided by

Qζ =

∫
d3x ζλ Θ̂λ0.

Conformal-factor field The energy-momentum tensor of the conformal-

factor field is given by

Θ̂μν = − bc
8π2

{
−4∂2φ∂μ∂νφ+ 2∂μ∂

2φ∂νφ+ 2∂ν∂
2φ∂μφ
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+
8

3
∂μ∂λφ∂ν∂

λφ− 4

3
∂μ∂ν∂λφ∂

λφ

+ημν

(
∂2φ∂2φ− 2

3
∂2∂λφ∂λφ− 2

3
∂λ∂σφ∂

λ∂σφ

)

−2

3
∂μ∂ν∂

2φ+
2

3
ημν∂

4φ

}
.

The last two linear terms are derived by varying the second term of the

Riegert action (7-4). It satisfies traceless and conservation conditions as

Θ̂λ
λ = −(bc/4π

2)∂4φ = 0 and ∂μΘ̂μν = −(bc/4π
2)∂4φ∂νφ = 0 using

the equation of motion.

With the four canonical variables, the (00) component is expressed as

Θ̂00 = −2π2

bc
P2
χ + Pφχ− Pχ |∂2φ− ∂kPχ∂

kφ

+
bc
8π2

(
2

3
χ |∂2χ− 4

3
∂kχ∂

kχ+ |∂2φ |∂2φ− 2

3
∂k |∂2φ∂kφ

−2

3
∂k∂lφ∂

k∂lφ

)
+

1

3
|∂2Pχ +

bc
12π2

|∂4φ,

and the (0j) component is

Θ̂0j =
2

3
Pχ∂jχ− 1

3
∂jPχχ+ Pφ∂jφ

+
bc
8π2

(
4∂jχ |∂2φ− 8

3
∂kχ∂j∂

kφ− 2χ∂j |∂2φ+ 2 |∂2χ∂jφ

+
4

3
∂j∂kχ∂

kφ

)
− 1

3
∂jPφ − bc

12π2
∂j |∂2χ.

The generator Qζ can be obtained by substituting these expressions into

the definition above and performing normal ordering. Specifically, the gen-

erator for each conformal Killing vector (2-4) can be obtained from (2-11).

Then the translation generator is given by

P0 = H =

∫
d3xA, Pj =

∫
d3xBj , (7-22)

where the local operators A and Bj are

A = −2π2

bc
:P2

χ : + :Pφχ : +
bc
8π2

(
2 :χ |∂2χ : + : |∂2φ |∂2φ :

)
,

Bj = :Pχ∂jχ : + :Pφ∂jφ : . (7-23)
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The generator of Lorentz transformation is

M0j =

∫
d3x {−ηBj − xjA− :Pχ∂jφ :} ,

Mij =

∫
d3x {xiBj − xjBi} . (7-24)

The generators of dilatation and special conformal transformation are re-

spectively given by

D =

∫
d3x
{
ηA+ xkBk+ :Pχχ : +Pφ

}
(7-25)

and

K0 =

∫
d3x

{(
η2 + x2

)A+ 2ηxkBk + 2η :Pχχ : +2xk :Pχ∂kφ :

− bc
4π2

(
2 :χ2 : + :∂kφ∂

kφ :
)
+ 2ηPφ + 2Pχ

}
,

Kj =

∫
d3x

{(−η2 + x2
)Bj − 2xjx

kBk − 2ηxjA− 2xj :Pχχ :

−2η :Pχ∂jφ : − bc
2π2

:χ∂jφ : −2xjPφ

}
. (7-26)

Although M0j , D, and Kμ include the time variable η explicitly, they

are independent of the time as ∂ηM0j = ∂ηD = ∂ηKμ = 0. The linear

terms in D and Kμ generate the shift term in the transformation δζφ (7-10).

Traceless tensor field Similarly, we can obtain generators of the con-

formal transformations of the traceless tensor field in the radiation gauge by

using the energy-momentum tensor derived from the Weyl action. Only the

results are shown below.

The translation generator is expressed as

P0 = H =

∫
d3xA, Pj =

∫
d3xBj ,

where the local operators A and Bj are given by

A = −1

2
:Pkl

u Pu
kl : + :Pkl

h ukl : + :ukl |∂2ukl : +
1

2
: |∂2hkl |∂2hkl :

+
1

4
:Pk |∂−2Pk : − : |∂2hk |∂2hk :,

Bj = :Pkl
u ∂jukl : + :Pkl

h ∂jhkl : + :Pk∂jhk : .

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Background-Free Quantum Gravity 107

The generator of Lorentz transformation is

M0j =

∫
d3x {−ηBj − xjA− Cj} ,

Mij =

∫
d3x {xiBj − xjBi + Cij} ,

where the local operators Cj and Cij are defined by

Cj = :Pkl
u ∂jhkl : + :Pk

u j |∂−2Pk : +2 :Pk
h jhk :

+ :hkjPk : +2 :ukj |∂2hk : ,

Cij = 2
(
:Pk

u iukj : − :Pk
u juki :

)
+ 2
(
:Pk

h ihkj : − :Pk
h jhki :

)
+ :Pihj : − :Pjhi : .

The generator of dilatation is given by

D =

∫
d3x
{
ηA+ xkBk+ :Pkl

u ukl :
}
.

The generator of special conformal transformation is

K0 = −η2P0 + 2ηD +N0, Kj = η2Pj + 2ηM0j +Nj ,

where N0 =
∫
d3xx2Θ̂00 and Nj =

∫
d3x (x2Θ̂0j − 2xjx

kΘ̂0k) are given

by

N0 =

∫
d3x

{
x2A+ 2xkCk − 2 :uklukl : − :∂mhkl∂mhkl :

−5

4
: |∂−2Pk |∂−2Pk : −4 :∂khl∂khl :

}
,

Nj =

∫
d3x
{
x2Bj − 2xjx

kBk + 2xkCkj − 2xj :P
kl
u ukl :

−2 :ukl∂jhkl : +2 : |∂−2Pk∂jhk : −4 :Pk
u jhk :

−4 :ukj |∂−2Pk : +4 :hkj |∂2hk :
}
.

Conformal Algebra and Primary Fields

Let us examine conformal algebra and transformation laws of various field

operators using the generators obtained in the previous section. To do that,
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we first explain the calculation method. As a simple exercise, calculations in

the case of a free scalar field are presented in the third section of Appendix

B.

We here use the fact that an operator product of two Hermitian operators

A and B is expressed as

A(x)B(y) = 〈0|A(x)B(y)|0〉+ :A(x)B(y) : .

The two-point function part that diverges at a short distance can be calcu-

lated as

〈0|A(x)B(y)|0〉 = [A<(x), B>(y)] ,

where A< is an annihilation operator part of A and B> is a creation operator

part of B, as defined earlier. With care to : A(x)B(y) :=: B(y)A(x) :,
commutation relation between the two operators can be expressed as

[A(x), B(y)] = 〈0|A(x)B(y)|0〉 − 〈0|B(y)A(x)|0〉.
Since the second term on the right-hand side can be written using its Hermi-

tian conjugate as 〈0|B(y)A(x)|0〉 = 〈0|A(x)B(y)|0〉†, it turns out that the

commutation relation disappears if the right-hand side is a real function.

The two-point correlation function of the conformal-factor field φ is al-

ready calculated in (7-18). Two-point correlation functions including other

field variables χ, Pχ, and Pφ can be calculated directly using their mode

expansion expressions. Alternatively, they can be obtained by differentiat-

ing the correlation function (7-18), according to the definitions of the field

variables. Using these correlation functions, the equal-time commutation

relation can be expressed as follows:

[φ(η,x),Pφ(η,x
′)] = 〈0|φ(η,x)Pφ(η,x

′)|0〉 − h.c.

= i
1

π2

ε

[(x− x′)2 + ε2]2
,

where h.c. represents the Hermitian conjugate and the right-hand side is a

regularized delta function12

δ3(x) =

∫
d3k

(2π)3
eik·x−εω =

1

π2

ε

(x2 + ε2)2
. (7-27)

The equal-time commutation relation between χ and Pχ is the same as

above. For other commutation relations, it can be shown that they all vanish

12 It can be written as δ3(x) = I0(η = 0,x) using the integral formula (7-17).
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because corresponding two-point functions become real while keeping ε fi-

nite. In this way, the canonical commutation relations are derived correctly.

Next, consider equal-time commutation relations between composite op-

erators. From Wick’s operator product expansion, we obtain the following

formula:

[
:AB(x) :, :

∏
k

Ck(y) :
]
=
∑
i

[A(x), Ci(y)] :B(x)
∏
k( 	=i)

Ck(y) :

+
∑
i

[B(x), Ci(y)] :A(x)
∏
k( 	=i)

Ck(y) :

+
∑

i,j(i 	=j)

{〈0|A(x)Ci(y)|0〉〈0|B(x)Cj(y)|0〉 − h.c.
}
:
∏

k( 	=i,j)

Ck(y) : .

The last term represents a quantum correction, and it disappears if it is real.

The conformal algebra of SO(4, 2) (2-6) can be calculated using this

formula. Compared with the case of a free scalar field in the third section

of Appendix B, more complicated correction functions appear in the case

of the conformal-factor field, but they all disappear and it can be shown

that the conformal algebra closes at the quantum level. In the case of the

traceless tensor field, unfortunately, it is not easy to show that conformal

algebra closes by this method. However, on R × S3 discussed in the next

chapter, it can be shown that the conformal algebra for the traceless tensor

field also closes successfully.

We here consider transformation laws in which a finite quantum correc-

tion term remains. First, consider conformal transformations of a composite

operator :φn :. An equal-time commutation relation with the local operator

A (7-23) is calculated as

[A(x), :φn(y) :] = −inδ3(x− y) :χφn−1(y) :

= −iδ3(x− y) ∂η :φ
n(y) : . (7-28)

For simplicity, field operators are expressed with time dependence omitted,

when considering equal-time commutation relations.

A quantum correction term appears in commutation relation with the

local operator Bj (7-23) as

[Bj(x), :φ
n(y) :] = −iδ3(x− y) ∂j :φ

n(y) :

+i
1

2bc
n(n− 1)ej(x− y) :φn−2(x) :, (7-29)
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where ej(x) representing quantum correction is given by

ej(x) =
1

π2

εxj [1− h(x)]

x2(x2 + ε2)2
, h(x) =

iε

2|x| log
iε+ |x|
iε− |x| .

The function h satisfies h†(x) = h(x) and limx→0 h(x) = 1.

Since the generator of conformal transformation is conserved, or time-

independent, its algebra can be calculated using equal-time commutation

relations. From the commutation relations (7-28), (7-29), and [ :Pχ∂jφ(x) :
, :φn(y) : ] = 0, the translation (7-22) and the Lorentz transformation (7-24)

are calculated as

i [Pμ, :φ
n(x) : ] = ∂μ :φ

n(x) :,

i [Mμν , :φ
n(x) : ] = (xμ∂ν − xν∂μ) :φ

n(x) : .

There is no quantum correction in these equations, especially in the second

equation it disappears because of the antisymmetric property of the Lorentz

generator and the fact that volume integrals of functions including ej satisfy∫
d3x ej(x) = 0 and∫

d3xxiej(x) =
1

3
δij

∫ ∞

0

4πx2dx
1

π2

ε[1− h(x)]

(x2 + ε2)2
=

1

6
δij . (7-30)

Similarly, the dilatation (7-25) and the special conformal transformation

(7-26) are calculated as

i [D, :φn(x) :] = xμ∂μ :φ
n(x) : +n :φn−1(x) :

− 1

4bc
n(n− 1) :φn−2(x) :,

i [Kμ, :φ
n(x) :] =

(
x2∂μ − 2xμx

ν∂ν
)
:φn(x) :

−2xμ

(
n :φn−1(x) : − 1

4bc
n(n− 1) :φn−2(x) :

)
.

Each : φn−1 : term is derived from commutation relations with the linear

term of Pφ in the generator. The last term including 1/bc of each transfor-

mation law is quantum correction. Those of D and K0 are calculated using

the integral formula (7-30), and that of Kj is calculated using a formula

developed it as∫
d3x
{
x2ej(x− y)− 2xjx

kek(x− y)
}
= −yj .
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The n = 1 expression of the conformal transformation is nothing but the

transformation law of the conformal-factor field given in (7-10). Using ζμ

to write it all together, it is given by13

i[Qζ , φ] = ζμ∂μφ+
1

4
∂μζ

μ = δζφ.

In this case, the quantum correction term disappears.

The simplest primary scalar field is given by

Vα(x) = :eαφ(x) : =

∞∑
n=0

αn

n!
:φn(x) : . (7-31)

The new exponent α is called the Riegert charge. In general, exponents in

such exponential operators are called so. From the transformation laws of

:φn : obtained above, conformal transformations of Vα are calculated as

i [Pμ,Vα(x)] = ∂μVα(x),

i[Mμν ,Vα(x)] = (xμ∂ν − xν∂μ)Vα(x),

i [D,Vα(x)] = (xμ∂μ + hα)Vα(x),

i [Kμ,Vα(x)] =
(
x2∂μ − 2xμx

ν∂ν − 2xμhα

)Vα(x),

and its conformal dimension is obtained as

hα = α− α2

4bc
. (7-32)

The second term proportional to 1/bc is quantum correction.

Next, consider composite scalar fields involving differential operators.

There are two field operators containing second derivatives, which are

R1
β =

∞∑
n=0

βn

n!
:φn∂2φ : = :eβφ

(
4π2

bc
Pχ + |∂2φ

)
:,

R2
β =

∞∑
n=0

βn

n!
:φn∂λφ∂

λφ : = :eβφ
(−χ2 + ∂kφ∂

kφ
)
: .

13 The transformation law of the traceless tensor field is also obtained from the commutation

relation i[Qζ , hμν ], but in this case, an extra term called the Fradkin-Palchik term has to be

added to δζhμν (7-10) so that the gauge-fixing conditions are preserved. See the sixth section

of Appendix B or K. Hamada, Phys. Rev. D 85 (2012) 024028 in Bibliography.
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These operators transform as a scalar field for the translation and the Lorentz

transformation. The transformation laws for the dilatation are given by

i
[
D,R1,2

β (x)
]
= (xμ∂μ + hβ + 2)R1,2

β (x),

and those for the special conformal transformation are given as

i
[
Kμ,R1

β(x)
]
=
{
x2∂μ − 2xμx

λ∂λ − 2xμ (hβ + 2)
}R1

β(x)

+4 :∂μφe
βφ(x) :,

i
[
Kμ,R2

β(x)
]
=
{
x2∂μ − 2xμx

λ∂λ − 2xμ (hβ + 2)
}R2

β(x)

−4
hβ

β
:∂μφe

βφ(x) :,

respectively, where hβ is defined by (7-32).

From these transformation laws, considering a field operator that com-

bine the two as

Rβ = R1
β +

β

hβ
R2

β = :eβφ
(
∂2φ+

β

hβ
∂λφ∂

λφ

)
:, (7-33)

we find that Rβ is a primary scalar field with conformal dimension hβ + 2,

which transforms under the conformal transformations as follows:

i [Pμ,Rβ(x)] = ∂μRβ(x),

i [Mμν ,Rβ(x)] = (xμ∂ν − xν∂μ)Rβ(x),

i [D,Rβ(x)] =
(
xλ∂λ + hβ + 2

)Rβ(x),

i [Kμ,Rβ(x)] =
{
x2∂μ − 2xμx

λ∂λ − 2xμ (hβ + 2)
}Rβ(x).

Generalizing this operator to a scalar field operator containing 2m-th

derivatives as

R[m]
γ = :eγφ

(
∂2φ+

γ

hγ
∂λφ∂

λφ

)m
:,

we find that it becomes a primary scalar with conformal dimension hγ+2m.

The m = 0, 1 correspond to Vα and Rβ , respectively.

Physical Field Operators

Since the conformal invariance is a gauge symmetry that occurs as part of

diffeomorphism invariance, unlike normal conformal field theory, not only
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vacua but also field operators must be invariant under the conformal trans-

formations. Hence, diffeomorphism invariance requires that physical fields

satisfy the following conformal invariance condition:[
Qζ ,

∫
d4xO(x)

]
= 0. (7-34)

The operator O satisfying this physical condition is given by a primary

scalar field with conformal dimension 4 which is the same as the spacetime

dimensions. Because it satisfies

i [Qζ ,O(x)] = ∂μ {ζμO(x)}
for all conformal Killing vectors ζμ, we can see that the physical condition

is satisfied. On the other hand, primary tensor fields do not satisfy this

condition because of the presence of spin terms in their transformation laws.

The simplest example of such a physical operator is the operator Vα (7-

31) with hα = 4. Solving the condition hα = 4, the Riegert charge is

determined as

α = 2bc

(
1−
√
1− 4

bc

)
. (7-35)

At this time, out of two solutions, we select this solution that α approaches

the canonical value 4 in the classical limit bc → ∞ which takes the num-

ber of matter fields to infinity (large N limit). That is the solution that Vα

approaches the classical volume element
√−g, and thus the operator with

(7-35) is called the quantum cosmological term operator. Since α is always

a real number due to bc > 4 from (7-5), it becomes a real operator, as ex-

pected in gravity theories.

Likewise, the primary scalar field Rβ (7-33) with hβ = 2 satisfies the

physical condition. Solving the condition hβ = 2 and selecting one solution

that β becomes the canonical value 2 in the classical limit bc → ∞, the

Riegert charge is determined as

β = 2bc

(
1−
√
1− 2

bc

)
. (7-36)

The operator Rβ with this solution is called the quantum Ricci scalar oper-

ator. Indeed, it reduces to the Ricci scalar
√−gR in the classical limit of

β → 2.

In general, the primary scalar field R[m]
γ with the Riegert charge γ =

2bc(1 −√1− (4− 2m)/bc) that satisfies the condition hγ + 2m = 4 is

a physical operator corresponding to the m-th power of the Ricci scalar,√−gRm.
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BRST Formulation and Physical Conditions

Lastly, we construct the BRST operator of the transformation (7-10). The

BRST conformal transformation is a transformation obtained by replacing

the 15 gauge transformation parameters ζλ with corresponding ghost fields

cλ. The ghost field can be expanded using 15 Grassmann modes, cμ−, cμν ,

c, and cμ+, as

cλ = cμ−
(
ζλT
)
μ
+ cμν

(
ζλL
)
μν

+ cζλD + cμ+
(
ζλS
)
μ

= cλ− + 2xμc
μλ + xλc + x2cλ+ − 2xλxμc

μ
+,

where cμν is antisymmetric. The ghost modes are Hermitian operators, and

c and cμν are dimensionless, while cμ− and cμ+ have dimensions −1 and 1,

respectively.

At the same time, we introduce 15 anti-ghost modes bμ−, bμν , b, and bμ+
with the same properties as the ghost modes have. Take anti-commutation

relations between the ghost and anti-ghost modes to

{c, b} = 1, {cμν , bλσ} = ημληνσ − ημσηνλ,

{cμ−, bν+} = {cμ+, bν−} = ημν ,

then we obtain generators of the ghost part that satisfies the conformal alge-

bra (2-6) as follows:

Pμ
gh = i

(−2bcμ+ + bμ+c + bμλc
λ
+ + 2bλ+c

μ
λ

)
,

Mμν
gh = i

(
bμ+c

ν
− − bν+c

μ
− + bμ−c

ν
+ − bν−c

μ
+ + bμλcνλ − bνλcμλ

)
,

Dgh = i
(
bλ−c+λ − bλ+c−λ

)
,

Kμ
gh = i

(
2bcμ− − bμ−c + bμλc

λ
− + 2bλ−c

μ
λ

)
,

where the suffix “gh” is applied to the ghost part.

With these generators, the BRST operator that generates the BRST con-

formal transformation is constructed as

QBRST = cμ−

(
Pμ +

1

2
P gh
μ

)
+ cμν

(
Mμν +

1

2
Mgh

μν

)

+c

(
D +

1

2
Dgh

)
+ cμ+

(
Kμ +

1

2
Kgh

μ

)
= c
(
D +Dgh

)
+ cμν

(
Mμν +Mgh

μν

)− bN − bμνNμν + Q̃,
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where Pμ, Mμν , D, and Kμ are respectively the sums of the generators of

conformal transformations other than the ghost part, and other operators are

defined by

N = 2icμ+c−μ, Nμν =
i

2

(
cμ+c

ν
− + cμ−c

ν
+

)
+ icμλcνλ,

Q̃ = cμ−Pμ + cμ+Kμ.

Using the conformal algebra that Pμ, Mμν , D, and Kμ satisfy, nilpotency

of the BRST operator can be expressed as

Q2
BRST = Q̃2 −ND − 2icμ+c

ν
−Mμν = 0.

Anti-commutation relations between the BRST operator and the anti-ghost

modes are given by

{QBRST, b} = D +Dgh, {QBRST, b
μν} = 2

(
Mμν +Mμν

gh

)
,

{QBRST, b
μ
−} = Kμ +Kμ

gh, {QBRST, b
μ
+} = Pμ + Pμ

gh.

Thus, the whole generator of conformal transformation including the ghost

part becomes BRST trivial. Therefore, it is not necessary to consider the

descendant field obtained by applying the whole translation generator to the

physical operator given as a primary scalar field, because it becomes BRST

trivial.

The BRST conformal transformation of the conformal-factor field can

be directly derived from its conformal transformation law as

i [QBRST, φ(x)] = cμ∂μφ(x) +
1

4
∂μc

μ(x).

Similarly, the BRST conformal transformation of a primary scalar field O,

such as Vα and Rβ obtained in the previous section, is given by

i [QBRST,O(x)] = cμ∂μO(x) +
Δ

4
∂μc

μO(x),

where Δ is its conformal dimension. As shown before, when Δ = 4, the

volume integral of O becomes a BRST conformal invariant as

i
[
QBRST,

∫
d4xO(x)

]
=

∫
d4x ∂μ{cμ O(x)} = 0.

This is a rewrite of the physical condition (7-34).
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Local BRST conformal invariants can be constructed by introducing a

ghost field function obtained by contracting indices with a fully antisym-

metric tensor as

ω =
1

4!
εμνλσc

μcνcλcσ.

Since the BRST conformal transformation of the ghost field is given by

i{QBRST, c
μ(x)} = cν∂νc

μ(x),

the function ω transforms as

i [QBRST, ω(x)] = cμ∂μω(x) = −ω∂μc
μ(x),

where cμω = 0 is used in the second equality. Using this commutation rela-

tion, the product of ω and a primary scalar field with conformal dimension

Δ = 4 becomes a local BRST conformal invariant as

i [QBRST, ωO(x)] =
1

4
(Δ− 4)ω∂μc

μO(x) = 0.

Correlation functions of physical field operators Oγ =
∫
d4xOγ can be

defined in the same way as in two-dimensional quantum gravity. However,

its calculation method has not been established yet. Here, as in the last

section of Chapter 6, we consider a quantum gravity system in the Wick-

rotated Euclidean background, in which the cosmological term Λ
∫
d4xVα

is added as an interaction term and we see only the Λ-dependence of correla-

tion functions in this system. Since the Euler characteristic of the Euclidean

space is given by
∫
d4x

√
ĝĜ4/32π

2 = 2, we find that a correlation function

〈〈Oγ1 · · ·Oγn〉〉 has a behavior proportional to Λs when the integration of

the zero-mode of the conformal-factor field is performed, where the power

is determined to be s = (4bc −
∑n

i=1 γi)/α.14

As we have seen so far, each mode itself introduced to quantize the grav-

itational field does not become BRST invariant. Physical quantities in the

background-free quantum gravity are given as real composite scalar func-

tions of the gravitational field. Therefore, as described in Chapter 1, the

condition for ensuring that their correlation functions are real-valued is not

the positive-definiteness of each mode, but the positive-definiteness of the

whole action given by the Riegert action and the Weyl action written in

terms of the field variables, which guarantees validity of the path integral.

14 This equation indicates that conformally invariant vacua have a background charge −4bc in

total. Such a vacuum will be discussed in detail in (8-23) in Chapter 8.
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Difference from conventional thinking

Finally, we describe the difference from the unitarity argument studied in

the earlier higher-order derivative quantum gravity in the 1970s.15 In those

days, the R2 action was introduced as a kinetic term of the conformal-factor

field, and all gravitational fields were treated in perturbations. Therefore,

when discussing gauge invariance of the kinetic term, only the transforma-

tion of the field-independent part like (7-8) works. In this case, positive-

metric and negative-metric modes are not mixed with each other by the

gauge transformation. Hence, their residual modes which cannot be elim-

inated by gauge-fixing become gauge invariant. For that reason, it was

impossible to prevent negative-metric modes from appearing as physical

asymptotic states.

The idea at those days by Tomboulis who applying the work of Lee and

Wick to the gravitational field is based on the fact that as the positive-metric

and negative-metric modes are mixed through interactions, the negative-

metric mode does not actually appear alone.16 It can be seen from the fact

that propagators acquire quantum corrections through interactions like

1

p2M(p2)
, M(p2) = M2

P + 4β0p
2 log

(
p2

Λ2
QG

)
,

where MP = 1/
√
8πG is the reduced Planck mass. When treating all the

gravitational fields in perturbations, the Einstein-Hilbert term plays a role

of mass term. The real pole 1/p2 represents a positive-metric mode what

is called graviton. On the other hand, 1/M(p2), which corresponds to a

negative-metric mode called massive graviton, has no real poles as a conse-

quence of the asymptotic freedom (β0 > 0), and thus we can see that it does

not appear in the real world.

This idea is still effective when considering contacts with the real world

at low energy. However, it is clear that it cannot be avoided that the negative-

metric modes appear as gauge invariant asymptotic states when coupling

constants disappear at the ultraviolet limit.

15 In general, a free propagator of fourth-order derivative fields has the form 1/(p4+m2p2). It

can be decomposed as (1/m2)[1/p2−1/(p2+m2)], where the first term denotes a massless

physical particle, while the second term is a massive ghost particle because of the wrong sign.

Thus, we cannot avoid the appearance of ghosts as far as we consider such a free field.

16 See T. Lee and G. Wick, Negative Metric and the Unitarity of the S-Matrix, Nucl. Phys. B9
(1969) 209; N. Nakanishi, Indefinite Metric Quantum Field Theory, Prog. Theor. Phys. Suppl.

51 (1972) 1, and T. Tomboulis in Bibliography.
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On the other hand, in the background-free quantum gravity, due to the

non-perturbative treatment of the conformal-factor field, the BRST confor-

mal symmetry that mixes the positive-metric and negative-metric modes still

remains as part of diffeomorphism invariance even in the ultraviolet limit. It

prohibits the negative-metric mode from appearing alone as a physical state.

To begin with, there is no concept of asymptotic states, so that the S-matrix

is not defined. Since spacetime is totally fluctuating quantum mechanically,

there is no longer a picture of particles moving in the flat spacetime.
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CHAPTER EIGHT

PHYSICAL STATES OF QUANTUM GRAVITY

Let us concretely construct and classify physical states in the background-

free quantum gravity. For this purpose, it is convenient to employ a cylin-

drical spacetime R × S3 as the background. By using a compact S3 space,

there is no need to worry about infrared divergences. Moreover, we can see

similarities with two-dimensional quantum gravity on R × S1 described in

Chapter 6.

Minkowski spacetime M4 and the cylindrical spacetime R × S3 can

be converted to one another by conformal transformations. Since the the-

ory is gauge equivalent under conformal transformations (7-10), namely the

background-metric independence, the result is the same regardless the back-

ground we choose.

Canonical Quantization on R× S3

The metric of the background spacetime R× S3 can be expressed using the

Euler angles x̂ = (α, β, γ), with the radius of S3 as unity, as follows:

dŝ2
R×S3 = ĝμνdx

μdxν = −dη2 + γ̂ijdx̂
idx̂j

= −dη2 +
1

4
(dα2 + dβ2 + dγ2 + 2 cosβdαdγ),

where possible ranges of α, β, and γ are respectively [0, 2π], [0, π], and

[0, 4π] (doubling the range of γ in consideration of half-integer representa-

tion). The curvatures are then given by

R̂ijkl = (γ̂ikγ̂jl − γ̂ilγ̂jk), R̂ij = 2γ̂ij , R̂ = 6,

and Ĉ2
μνλσ = Ĝ4 = 0. The volume element of S3 is defined by

dΩ3 = d3x̂
√
γ̂ =

1

8
sinβdαdβdγ,

and its volume is

V3 =

∫
dΩ3 =

∫ 2π

0

dα

∫ π

0

dβ

∫ 4π

0

dγ
1

8
sinβ = 2π2.
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Spherical tensor harmonics on three-sphere Quantum fields are ex-

panded in modes using spherical harmonics on S3. A symmetric-transverse-

traceless (ST2) n-th rank tensor harmonics is classified using a representa-

tion (J + εn, J − εn) of the rotation group SO(4) = SU(2)× SU(2), and

it is denoted as Y i1···in
J(Mεn)

, where εn = ±n/2 is an index representing polar-

ization. The spherical tensor harmonics is an eigenfunction of the Laplacian

operator �3 = γ̂ij∇̂i∇̂j on S3 satisfying

�3Y
i1···in
J(Mεn)

= {−2J(2J + 2) + n}Y i1···in
J(Mεn)

,

where J(≥ n/2) is an integer or a half-integer and M = (m,m′) is an

index representing degeneracy of the representation for each polarization

and takes the following values:

m = −J − εn, − J − εn + 1, . . . , J + εn − 1, J + εn,

m′ = −J + εn, − J + εn + 1, . . . , J − εn − 1, J − εn.

From this, the degeneracy of the tensor harmonics becomes 2(2J + n +
1)(2J −n+1) in consideration of polarization, while the degeneracy of the

n = 0 scalar harmonics is (2J + 1)2. Specific expressions and formulas of

the spherical tensor harmonics are summarized in Appendix C.

Complex conjugate and normalization of the ST2 spherical tensor har-

monics are defined by

Y i1···in∗
J(Mεn)

= (−1)nεMY i1···in
J(−Mεn)

,∫
S3

dΩ3 Y
i1···in∗
J1(M1ε1n)

Yi1···inJ2(M2ε2n)
= δJ1J2δM1M2δε1nε2n ,

where δM1M2 = δm1m2δm′1m′2 and εM is a sign factor defined by

εM = (−1)m−m′ ,

which satisfies ε2M = 1. In the following, the polarization indices for spher-

ical tensor harmonics where the rank n is two or less are particularly written

as

y = ε1 = ±1

2
, x = ε2 = ±1.

Quantization of scalar fields The action of a conformally invariant

free scalar field on R× S3 is given by

I =

∫
dη

∫
S3

dΩ3
1

2
ϕ
(−∂2

η +�3 − 1
)
ϕ,
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where missing dimensions in the action come from the fact that we set the

radius of S3 to be unity. By expanding the field as ϕ ∝ e−iωηYJM using

scalar harmonics, we obtain a dispersion relation ω2 − (2J + 1)2 = 0.

Therefore, the scalar field is mode-expanded as

ϕ =
∑
J≥0

∑
M

1√
2(2J + 1)

{
ϕJMe−i(2J+1)ηYJM + ϕ†

JMei(2J+1)ηY ∗
JM

}
.

Quantization can be done according to normal procedures. The conju-

gate momentum is given by Pϕ = ∂ηϕ and the equal-time commutation

relation is taken to be [ϕ(η, x̂),Pϕ(η, x̂
′)] = iδ3(x̂ − x̂′), where the delta

function on S3 can be represented from completeness of the spherical har-

monics as

δ3(x̂− x̂′) =
∑
J≥0

∑
M

Y ∗
JM (x̂)YJM (x̂′)

= 8δ(α− α′)δ(cosβ − cosβ′)δ(γ − γ′).

The commutation relations between the modes are then given by

[ϕJ1M1
, ϕ†

J2M2
] = δJ1J2

δM1M2

and [ϕJ1M1
, ϕJ2M2

] = [ϕ†
J1M1

, ϕ†
J2M2

] = 0. The Hamiltonian operator can

be found from the action as

H =

∫
S3

dΩ3 :

{
1

2
P2
ϕ − 1

2
ϕ (�3 − 1)ϕ

}
:

=
∑
J≥0

∑
M

(2J + 1)ϕ†
JMϕJM . (8-1)

Quantization of gauge fields Adopting the Coulomb gauge ∇̂iAi = 0
to quantize the gauge field, the action on R× S3 is given by

I =

∫
dη

∫
S3

dΩ3

{
1

2
Ai
(−∂2

η +�3 − 2
)
Ai − 1

2
A0�3A0

}
,

where Ai = γ̂ijAj . Since A0 becomes a non-dynamical variable whose

kinetic term does not contain time derivative, we further take A0 = 0 using

remaining gauge degrees of freedom in the Coulomb gauge. This gauge

condition is called the radiation gauge.
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Expanding the transverse gauge field as Ai ∝ e−iωηY i
J(My) using the

vector harmonics, the same dispersion relation ω2 − (2J + 1)2 = 0 as the

scalar field has is obtained. Thus, the gauge field is mode-expanded as

Ai =
∑
J≥ 1

2

∑
M,y

1√
2(2J + 1)

{
qJ(My)e

−i(2J+1)ηY i
J(My)

+q†J(My)e
i(2J+1)ηY i∗

J(My)

}
.

The conjugate momentum is Pi
A = ∂ηA

i and the equal-time commutation

relation is set to be [Ai(η, x̂),Pj
A(η, ŷ)] = iδij3 (x̂−ŷ), where the delta func-

tion on S3 is given by δij3 (x̂ − ŷ) =
∑

J≥ 1
2

∑
M,y Y

i∗
J(My)(x̂)Y

j
J(My)(ŷ)

from completeness of the vector harmonics. The commutation relation be-

tween creation and annihilation operators becomes[
qJ1(M1y1), q

†
J2(M2y2)

]
= δJ1J2δM1M2δy1y2 ,

and the Hamiltonian operator is given by

H =

∫
S3

dΩ3 :

{
1

2
Pi
AP

A
i − 1

2
Ai (�3 − 2)Ai

}
:

=
∑
J≥ 1

2

∑
M,y

(2J + 1)q†J(My)qJ(My). (8-2)

Quantization of gravitational fields In order to gauge-fix the Weyl

action, decompose the traceless tensor field as in the third section of Chapter

7, that is,

h00, h0i, hij = htr
ij +

1

3
γ̂ijh00,

where htr
ij is a component satisfying the spatial traceless condition htr i

i =

γ̂ijhtr
ij = 0. The gauge transformation (7-8) of the traceless tensor field is

then decomposed as

δκh00 =
3

2
∂ηκ0 +

1

2
∇̂kκ

k, δκh0i = ∂ηκi + ∇̂iκ0,

δκh
tr
ij = ∇̂iκj + ∇̂jκi − 2

3
γ̂ij∇̂kκ

k.

As in the previous chapter, using four gauge degrees of freedom of dif-

feomorphism, we apply the following transverse gauge conditions:

∇̂ih0i = 0, ∇̂ihtr
ij = 0.
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In the following, we write the transverse vector component satisfying this

condition as hi and the transverse-traceless tensor component as hij , in the

Gothic style.

The four-dimensional quantum gravity action on R × S3 composed of

the Riegert action and the Weyl action fixed in the transverse gauge becomes

S4DQG =

∫
dη

∫
S3

dΩ3

{
− 2bc
(4π)2

φ
(
∂4
η − 2�3∂

2
η +�2

3 + 4∂2
η

)
φ

−1

2
hij
(
∂4
η − 2�3∂

2
η +�2

3 + 8∂2
η − 4�3 + 4

)
hij

+hi (�3 + 2)
(−∂2

η +�3 − 2
)
hi

− 1

27
h00 (16�3 + 27)�3h00

}
. (8-3)

The field h00 is not a dynamical field because it does not contain time deriva-

tive in the kinetic term. Therefore, using remaining gauge degrees of free-

dom that preserve the transverse gauge conditions, we further impose the

gauge condition

h00 = 0.

The combination of this and the transverse conditions is called the radiation

gauge.

In addition, we remove a non-dynamical transverse vector mode that

satisfies (�3+2)hi = 0. This mode can be written with the J = 1/2 vector

harmonics, and thus the condition can be expressed as

hi|J= 1
2
= 0. (8-4)

The radiation gauge with this condition is called the radiation+ gauge. Then,

residual gauge degrees of freedom of diffeomorphism become the same as

degrees of freedom of the conformal Killing vectors. The details are de-

scribed when constructing generators of diffeomorphism in this gauge in

the next section.

As in the previous chapter, let us perform canonical quantization ac-

cording to the Dirac quantization procedure. By rewriting the action of the

conformal-factor field using the variable χ = ∂ηφ (7-12), we obtain

SR =

∫
dη

∫
S3

dΩ3

{
− bc
8π2

[
(∂ηχ)

2 + 2χ�3χ

−4χ2 + (�3φ)
2
]
+ v(∂ηφ− χ)

}
.
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The Dirac brackets are set as before between the four variables in the phase

subspace obtained by solving constraints. Replacing them with commuta-

tion relations yields

[χ(η, x̂),Pχ(η, ŷ)] = [φ(η, x̂),Pφ(η, ŷ)] = iδ3(x̂− ŷ),

where the momentum variables on R× S3 are given by

Pχ = − bc
4π2

∂ηχ, Pφ = −∂ηPχ − bc
2π2

�3χ+
bc
π2

χ.

Then we obtain the Hamiltonian operator

H =

∫
S3

dΩ3 :

{
−2π2

bc
P2
χ + Pφχ+

bc
8π2

[
2χ�3χ− 4χ2 + (�3φ)

2
]}

: .

By deriving the equation of motion of the conformal-factor field from the

action (8-3) and substituting φ ∝ e−iωηYJM into it, we obtain a dispersion

relation {ω2−(2J)2}{ω2−(2J+2)2} = 0. Therefore, the conformal-factor

field is mode-expanded as follows:

φ =
π

2
√
bc

{
2(q̂ + p̂η)Y00

+
∑
J≥ 1

2

∑
M

1√
J(2J + 1)

(
aJMe−i2JηYJM + a†JMei2JηY ∗

JM

)

+
∑
J≥0

∑
M

1√
(J + 1)(2J + 1)

(
bJMe−i(2J+2)ηYJM

+b†JMei(2J+2)ηY ∗
JM

)}
,

where Y00 = 1/
√
V3 = 1/

√
2π. From the canonical commutation rela-

tions, the commutation relation of each mode is given by[
q̂, p̂
]
= i,

[
aJ1M1

, a†J2M2

]
= −[bJ1M1

, b†J2M2

]
= δJ1J2

δM1M2
.

Thus, aJM has a positive metric and bJM has a negative metric.

The Hamiltionian operator is given in the modes as

H =
1

2
p̂2 + bc +

∑
J≥0

∑
M

{2Ja†JMaJM − (2J + 2)b†JMbJM}. (8-5)
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The energy shift bc is a Casimir effect dependent on the coordinate system,

which cannot be derived from the above normal ordered definition. For the

sake of simplicity, it is here determined by requiring that conformal algebra

on R × S3 discussed in the next section shall close. See the last section in

the next chapter as for one specific method to derive this Casimir term.

Since the transverse-traceless field hij is a fourth-order derivative field,

it is quantized according to the Dirac procedure as in the conformal-factor

field, whereas since the transverse vector field hi is second order, it is quan-

tized in a normal way. Using the tensor and the vector harmonics and ex-

panding the fields in modes like hij ∝ e−iωηY ij
J(Mx) and hi ∝ e−iωηY i

J(My),

we obtain dispersion relations {ω2 − (2J)2}{ω2 − (2J + 2)2} = 0 and

(2J − 1)(2J +3){ω2 − (2J +1)2} = 0, respectively, from the gauge-fixed

action (8-3). From these, the fields are mode-expanded as1

hij =
1

4

∑
J≥1

∑
M,x

1√
J(2J + 1)

{
cJ(Mx)e

−i2JηY ij
J(Mx)

+c†J(Mx)e
i2JηY ij∗

J(Mx)

}
+
1

4

∑
J≥1

∑
M,x

1√
(J + 1)(2J + 1)

{
dJ(Mx)e

−i(2J+2)ηY ij
J(Mx)

+d†J(Mx)e
i(2J+2)ηY ij∗

J(Mx)

}
,

hi =
1

2

∑
J≥1

∑
M,y

i√
(2J − 1)(2J + 1)(2J + 3)

×
{
eJ(My)e

−i(2J+1)ηY i
J(My) − e†J(My)e

i(2J+1)ηY i∗
J(My)

}
. (8-6)

As mentioned above, the J = 1/2 mode of the vector field which is the

mode satisfying (�3 + 2)hi|J=1/2 = 0 is removed by the gauge condition.

The commutation relation of each mode is given by[
cJ1(M1x1), c

†
J2(M2x2)

]
= −[dJ1(M1x1), d

†
J2(M2x2)

]
= δJ1J2

δM1M2
δx1x2

,[
eJ1(M1y1), e

†
J2(M2y2)

]
= −δJ1J2δM1M2δy1y2 .

Therefore, cJ(Mx) is a positive-metric mode, dJ(Mx) and eJ(My) are negative-

metric modes. The Hamiltonian operator can be written as

H =
∑
J≥1

∑
M,x

{2Jc†J(Mx)cJ(Mx) − (2J + 2)d†J(Mx)dJ(Mx)}

1 Why the expansion of hi is unusual is merely a convention for conforming to normalization

of the generator QM of special conformal transformation, derived in the next section.
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−
∑
J≥1

∑
M,y

(2J + 1)e†J(My)eJ(My). (8-7)

Generators of Conformal Transformations

Using the conformal Killing vector ζμ and the energy-momentum tensor as

defined in the previous chapter, generators of conformal transformations can

be expressed as

Qζ =

∫
S3

dΩ3 ζ
μΘ̂μ0.

In fact, using the conformal Killing equation (7-9) and the conservation

equation ∇̂νΘ̂μν = −∂ηΘ̂μ0 + ∇̂iΘ̂μi = 0, we can show that the gen-

erator is preserved due to tracelessness of the energy-momentum tensor as

∂ηQζ = −(1/4)
∫
dΩ3∇̂λζ

λ Θ̂μ
μ = 0.

Let us first solve the conformal Killing equation on R× S3 and find 15

conformal Killing vectors. The conformal Killing equation is written for

each component as

3∂ηζ0 + ψ = 0, ∂ηζi + ∇̂iζ0 = 0,

∇̂iζj + ∇̂jζi − 2

3
γ̂ijψ = 0, (8-8)

where ψ = ∇̂iζ
i. Solving these equations for ψ yields (�3 + 3)ψ = 0 and

(∂2
η + 1)ψ = 0. The former is obtained by applying ∇̂j∇̂i to the last equa-

tion in (8-8). Substituting the result into the remaining conformal Killing

equations yields the latter. From this, a solution which simultaneously sat-

isfies these two equations is expressed as ψ = 0 or ψ ∝ e±iηY 1
2M

.

The solution of ψ = 0 is that satisfying ∂ηζ0 = �3ζ0 = 0 and the

Killing equation ∇̂iζj + ∇̂jζi = 0 on S3. One of the solution is a vector for

time evolution represented by ζi = 0 as

ζμT = (1, 0, 0, 0).

Others are the six Killing vectors representing the rotation (isometry) of S3,

which satisfies ζ0 = 0 and ∂ηζj = 0 simultaneously. The Killing vector of
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S3 denoted by ζμR = (0, ζjR) can be expressed using a scalar harmonics as2

(ζjR)MN = i
V3

4

{
Y ∗

1
2M

∇̂jY 1
2N

− Y 1
2N

∇̂jY ∗
1
2M

}
,

where the indices M and N denote a 4-vector representation of SU(2) ×
SU(2). Even after this, for simplicity, when describing the 4-vector indices

of the conformal Killing vectors and corresponding generators of conformal

transformations, we display only the degeneracy index M with omitting

J = 1/2.

Substituting these into the definition of the generators, we obtain the

Hamiltonian operator

H =

∫
S3

dΩ3 : Θ̂00 :

and six rotation generators of S3 as

RMN =

∫
S3

dΩ3 (ζ
j
R)MN : Θ̂j0 : ,

where RMN satisfies

RMN = −εM εNR−N−M , R†
MN = RNM .

Solutions of the conformal Killing equation satisfying ψ �= 0 are denoted

by ζμS = (ζ0S, ζ
j
S). There are eight solutions, four of which are given by

(ζ0S)M =

√
V3

2
eiηY ∗

1
2M

, (ζjS)M = −i

√
V3

2
eiη∇̂jY ∗

1
2M

(8-9)

and the other four are complex conjugates of them. Substituting (8-9) into

the definition of the generator and rewriting it using the conservation equa-

tion of the energy-momentum tensor, four generators of special conformal

transformations are obtained as

QM =
√
V3 P

(+)

∫
S3

dΩ3 Y
∗
1
2M

: Θ̂00 : , (8-10)

where P (+) = eiη(1 + i∂η)/2. By performing the spatial integration over

S3, we can show that only functions of e±iη remain. Thus, P (+) is an opera-

tor that selects only the e−iη part and makes the generator time-independent.

2 The Killing vector on S3 can be expressed using the J = 1/2 component of the vector

harmonics Y j
J(My)

and a SU(2)×SU(2) Clebsch-Gordan coefficient of the G type (C-4) as

(ζjR)MN = i(
√
V3/2)

∑
V,y G

1/2M
1/2(V y);1/2N

Y j∗
1/2(V y)

.
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Their Hermitian conjugates Q†
M correspond to four generators of transla-

tions.

In this place, we explain the residual gauge degrees of freedom in the

radiation+ gauge mentioned before in detail. The residual gauge degrees

of freedom preserving normal conditions of the radiation gauge defined

by h00 = 0 and ∇̂ih0i = ∇̂ihtr
ij = 0 are expressed by three equations

δκh00 = (3∂ηκ0 + ψ̃)/2 = 0, δκ(∇̂ih0i) = ∂ηψ̃ + �3κ0 = 0, and

δκ(∇̂ihtr
ij) = (�3 + 2)κj + ∇̂jψ̃/3 = 0, where ψ̃ = ∇̂iκ

i. These equa-

tions indicate that the residual gauge degrees of freedom are wider than 15

gauge degrees of freedom spanned by the conformal Killing vectors. That

is, the second equation is weaker than the second condition of the conformal

Killing equation (8-8), and thus there is a solution satisfying ∂ηκ
i �= 0 as

a solution of the Killing equation on S3. Letting f(η) be an arbitrary func-

tion of time, it means that κμ = (0, f(η)Y i
1/2(My)) is allowed as a residual

degree of freedom. With this gauge degree of freedom we can remove the

J = 1/2 mode in hi and impose the gauge-fixing condition (8-4). Thus,

the residual degrees of freedom of the transformations after fixing in the

radiation+ gauge is the same as the conformal Killing vectors.

The 15 generators of the conformal transformations form a conformal

algebra of SO(4, 2) as follows:[
QM , Q†

N

]
= 2δMNH + 2RMN ,[

H,QM

]
= −QM ,

[
H,Q†

M

]
= Q†

M ,[
H,RMN

]
=
[
QM , QN

]
= 0,[

QM , RM1M2

]
= δMM2QM1 − εM1εM2δM−M1Q−M2 ,[

RM1M2
, RM3M4

]
= δM1M4

RM3M2
− εM1

εM2
δ−M2M4

RM3−M1

−δM2M3
RM1M4

+ εM1
εM2

δ−M1M3
R−M2M4

.

(8-11)

On the cylindrical background R × S3, the Hamiltonian operator is a

dilatation operator that counts conformal dimensions of states. In order to

see this, consider a conformal mapping y → r = ey from the Euclidean

R× S3 metric dy2 + dΩ2
3 to the R

4 metric dr2 + r2dΩ2
3. A scale transfor-

mation r → ear corresponds to time evolution y → y + a in the cylindrical

spacetime. From this, the way to quantize fields on R
4 is called the radial

quantization.3 Quantum field theory on the Lorentzian R × S3 is obtained

3 See S. Fubini, A. Hanson and R. Jackiw, New Approach to Field Theory, Phys. Rev. D 7
(1973) 1732.
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by doing analytic continuation as y = iη. We can then see that each mode

of fields with a time-dependence eiEη has a conformal dimension E.

Since the rotation generator RMN commutes with the Hamiltonian oper-

ator, it is an operator whose conformal dimension is zero. The generator of

the special conformal transformation QM has conformal dimension −1 and

its Hermitian conjugate has 1. Therefore, the generator QM is represented

by a proper combination of creation and annihilation operators whose con-

formal dimensions differ by 1.

Parameterizing a 4-vector index {(1/2, 1/2), (1/2,−1/2), (−1/2, 1/2),

(−1/2,−1/2)} by {1, 2, 3, 4}, and setting A+ = R31, A− = R†
31, A3 =

(R11 + R22)/2, B+ = R21, B− = R†
21, and B3 = (R11 − R22)/2, the

last rotation algebra in (8-11) can be written in a familiar form of SU(2)×
SU(2) algebra as

[
A+, A−

]
= 2A3,

[
A3, A±

]
= ±A±,[

B+, B−
]
= 2B3,

[
B3, B±

]
= ±B±,

where A±,3 and B±,3 commute.

We here discuss the four-dimensional quantum gravity by dividing it into

four sectors: the scalar field, the gauge field, the conformal-factor field, and

the traceless tensor field. Full generator of the conformal transformation is

given by the sum of all sectors. The following will provide the generator

concretely for each field.

Scalar field The energy-momentum tensor of the conformally invari-

ant scalar field is given by

Θ̂μν =
2

3
∇̂μϕ∇̂νϕ− 1

3
ϕ∇̂μ∇̂νϕ+

1

6
R̂μνϕ

2

−1

6
ĝμν

{
∇̂λϕ∇̂λϕ+

1

6
R̂ϕ2

}
.

Since the trace vanishes proportional to the equation of motion as Θ̂λ
λ =

(1/3) ϕ(−∇̂2 + R̂/6)ϕ = 0, the generator of the conformal transformation

is preserved as shown before.

The generator can be obtained by substituting the energy-momentum

tensor into the definition and performing the integration over S3. The Hamil-

tonian operator is already given by (8-1). The rotation generator can be

expressed, using the index {1, 2, 3, 4} parameterized as the 4-vector index
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above, as4

R11 =
∑
J>0

∑
M

(m+m′)ϕ†
JMϕJM ,

R22 =
∑
J>0

∑
M

(m−m′)ϕ†
JMϕJM ,

R21 =
∑
J>0

∑
M

√
(J + 1−m′)(J +m′)ϕ†

JMϕJM ,

R31 =
∑
J>0

∑
M

√
(J + 1−m)(J +m)ϕ†

JMϕJM ,

where the indices with upper and lower lines are defined by M = (m,m′ −
1) and M = (m− 1,m′).

The generator of the special conformal transformation is obtained by

substituting the normal ordered energy-momentum tensor into the expres-

sion (8-10) as follows:

QM = P (+)
∑

J1,M1

∑
J2,M2

1

4

√
V3

(2J1 + 1)(2J2 + 1)

∫
S3

dΩ3 Y
∗
1
2M

YJ1M1
YJ2M2

×
{[

−(2J1 + 1)(2J2 + 1) + (2J2 + 1)2 − 1

2

]

×
(
ϕJ1M1

ϕJ2M2
e−i(2J1+2J2+2)η

+εM1
ϕ†
J1−M1

εM2
ϕ†
J2−M2

ei(2J1+2J2+2)η
)

+

[
(2J1 + 1)(2J2 + 1) + (2J2 + 1)2 − 1

2

]

×
(
ϕJ1M1

εM2
ϕ†
J2−M2

e−i(2J1−2J2)η

4 Using the SU(2) × SU(2) Clebsch-Gordan coefficient of the type G (C-4), the rotation

generator can be expressed as

RMN =
1

2

∑
J≥0

∑
S1,S2

∑
V,y

εV G
1
2
M

1
2
(−V y); 1

2
N
GJS1

1
2
(V y);JS2

ϕ†JS1
ϕJS2

.

Substituting G
1/2M
J(V y);JN

= −√
2J(2J + 2)C

1/2m
J+yv,JnC

1/2m′
J−yv′,Jn′ and GJM

1/2(V y);JN
=

−√
2J(2J + 2)CJm

1/2+yv,Jn
CJm′

1/2−yv′,Jn′ reduces this expression to the one in the text,

where the coefficient GJM
J1(M1y1);J2M2

has values only at J1 = J2 when J = 1/2 and only

at J = J2 when J1 = 1/2.
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+εM1ϕ
†
J1−M1

ϕJ2M2e
i(2J1−2J2)η

)}

=
∑
J≥0

∑
M1,M2

C
1
2M

JM1,J+
1
2M2

√
(2J + 1)(2J + 2)εM1

ϕ†
J−M1

ϕJ+ 1
2M2

,

(8-12)

where C is a SU(2)×SU(2) Clebsch-Gordan coefficient obtained by inte-

grating the product of three scalar harmonics over S3 defined as

CJM
J1M1,J2M2

=
√

V3

∫
S3

dΩ3 Y
∗
JMYJ1M1

YJ2M2

=

√
(2J1 + 1)(2J2 + 1)

2J + 1
CJm

J1m1,J2m2
CJm′

J1m′1,J2m′2
, (8-13)

where CJm
J1m1,J2m2

is the normal Clebsch-Gordan coefficient, from which

J + J1 + J2 is an integer, and a triangular inequality |J1 − J2| ≤ J ≤
J1 + J2 and M = M1 + M2 hold. In addition, C is a real function, and

CJM
J1M1,J2M2

= CJM
J2M2,J1M1

= CJ−M
J1−M1,J2−M2

= εM2
CJ1M1

JM,J2−M2
and

CJM
00,JN = δMN are satisfied. The C-coefficient with J = 1/2 appears in

the generator QM .

The free scalar field is transformed as a primary field of conformal di-

mension 1. Actually calculating commutation relations between the gener-

ators and the field operator, the transformation law (7-11) is obtained as

i[Qζ , ϕ] = ζμ∇̂μϕ+
1

4
∇̂μζ

μϕ.

For example, when the conformal Killing vector is ημ, the generator is the

Hamiltonian operator, and we can show i[H,ϕ] = ∂ηϕ immediately. In

the case of the special conformal transformation, substituting (ζμS )M on the

right-hand side and rewriting it using a product expansion of scalar harmon-

ics (C-6) in the third section of Appendix C, we can show that it agrees with

i[QM , ϕ].
Gauge field The energy-momentum tensor of the gauge field is given

by

Θ̂μν = FμλF
λ

ν − 1

4
ĝμνFλσF

λσ,

where Fμ
ν = ĝμλFλν . This energy-momentum tensor is obviously traceless.

The generators of the conformal transformations are given in the radia-

tion gauge A0 = ∇̂iAi = 0. The Hamiltonian operator is already given in
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(8-2). The generator of the special conformal transformation is

QM =
∑
J≥ 1

2

∑
M1,y1

∑
M2,y2

D
1
2M

J(M1y1),J+
1
2 (M2y2)

×
√

(2J + 1)(2J + 2)(−εM1
)q†J(−M1y1)

qJ+ 1
2 (M2y2), (8-14)

where we introduce a new SU(2) × SU(2) Clebsch-Gordan coefficient of

the type D defined by

D
1
2M

J(M1y1),J+
1
2 (M2y2)

=
√

V3

∫
S3

dΩ3 Y
∗
1
2M

Y i
J(M1y1)

YiJ+ 1
2 (M2y2)

=
√

J(2J + 3)C
1
2m

J+y1m1,J+
1
2+y2m2

C
1
2m

′

J−y1m′1,J+
1
2−y2m′2

.

The general expression of the D-coefficient is given by (C-2) in the second

section of Appendix C.

Here and also below, the rotation generator on S3 is omitted because its

concrete expression is not essential in the following discussion.

Conformal-factor field The energy-momentum tensor of the conformal-

factor field is obtained from a variation of the Riegert action with respect to

the background metric as

Θ̂μν = − bc
8π2

{
−4∇̂2φ∇̂μ∇̂νφ+ 2∇̂μ∇̂2φ∇̂νφ+ 2∇̂ν∇̂2φ∇̂μφ

+
8

3
∇̂μ∇̂λφ∇̂ν∇̂λφ− 4

3
∇̂μ∇̂ν∇̂λφ∇̂λφ+ 4R̂μλνσ∇̂λφ∇̂σφ

+4R̂μλ∇̂λφ∇̂νφ+ 4R̂νλ∇̂λφ∇̂μφ− 4

3
R̂μν∇̂λφ∇̂λφ

−4

3
R̂∇̂μφ∇̂νφ− 2

3
∇̂μ∇̂ν∇̂2φ− 4R̂μλνσ∇̂λ∇̂σφ

+
14

3
R̂μν∇̂2φ+ 2R̂∇̂μ∇̂νφ− 4R̂μλ∇̂λ∇̂νφ− 4R̂νλ∇̂λ∇̂μφ

−1

3
∇̂μR̂∇̂νφ− 1

3
∇̂νR̂∇̂μφ+ ĝμν

[
∇̂2φ∇̂2φ− 2

3
∇̂λ∇̂2φ∇̂λφ

−2

3
∇̂λ∇̂σφ∇̂λ∇̂σφ− 8

3
R̂λσ∇̂λφ∇̂σφ+

2

3
R̂∇̂λφ∇̂λφ

+
2

3
∇̂4φ+ 4R̂λσ∇̂λ∇̂σφ− 2R̂∇̂2φ+

1

3
∇̂λR̂∇̂λφ

]}
.

Its trace disappears in proportion to the equation of motion of the conformal-

factor field on R× S3 as Θ̂λ
λ = −(bc/4π

2)Δ̂4φ = 0.
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The Hamiltonian operator is already given in (8-5). From (8-10), the

generator of the special conformal transformation is derived as

QM =
(√

2bc − ip̂
)
a 1

2M

+
∑
J≥0

∑
M1,M2

C
1
2M

JM1,J+
1
2M2

{
α(J)εM1

a†J−M1
aJ+ 1

2M2

+β(J)εM1
b†J−M1

bJ+ 1
2M2

+ γ(J)εM2
a†
J+ 1

2−M2
bJM1

}
, (8-15)

where the C-coefficient is the same as (8-13) introduced in the case of the

scalar field. Other coefficients are given by

α(J) =
√

2J(2J + 2), β(J) = −
√
(2J + 1)(2J + 3),

γ(J) = 1. (8-16)

As mentioned earlier, the Casimir term in the Hamiltonian operator (8-5) is

necessary for the conformal algebra (8-11) to close.

In calculations of the conformal algebra, the following crossing relation

that the C-coefficient satisfies is useful:∑
J≥0

∑
M

εMCJ1M1

J2M2,J−MCJ3M3

JM,J4M4
=
∑
J≥0

∑
M

εMCJ1M1

J4M4,J−MCJ3M3

JM,J2M2
.

(8-17)

This relation can be derived by integrating the product of four scalar har-

monics ∫
S3

dΩ3 Y
∗
J1M1

YJ2M2Y
∗
J3M3

YJ4M4

in two ways using the fact that the product of two scalar harmonics can be

expanded in another scalar harmonics as

YJ1M1YJ2M2 =
1√
V3

∑
J≥0

∑
M

CJM
J1M1,J2M2

YJM .

The crossing relation (8-17) is quite useful, for example, when calculating

the commutation relation between QM and Q†
N . It is also useful when con-

structing physical states in the next section.

The conformal transformation law can be expressed using a commuta-

tion relation between the generator and the field operator as

i [Qζ , φ] = ζμ∇̂μφ+
1

4
∇̂μζ

μ. (8-18)
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In the case of the special conformal transformation, it can be shown easily

by using the product expansion of scalar harmonics (C-6) as in the case of

the scalar field.

Traceless tensor field The generators of the conformal transforma-

tions for the traceless tensor field are given in the radiation+ gauge. The

Hamiltonian operator H is given in (8-7). The generator of the special con-

formal transformation, writing only the result, becomes

QM =
∑
J≥1

∑
M1,x1

∑
M2,x2

E
1
2M

J(M1x1),J+
1
2 (M2x2)

×
{
α(J)εM1

c†J(−M1x1)
cJ+ 1

2 (M2x2) + β(J)εM1
d†J(−M1x1)

dJ+ 1
2 (M2x2)

+γ(J)εM2
c†
J+ 1

2 (−M2x2)
dJ(M1x1)

}
+
∑
J≥1

∑
M1,x1

∑
M2,y2

H
1
2M

J(M1x1);J(M2y2)

×
{
A(J)εM1

c†J(−M1x1)
eJ(M2y2) +B(J)εM2

e†J(−M2y2)
dJ(M1x1)

}
+
∑
J≥1

∑
M1,y1

∑
M2,y2

D
1
2M

J(M1y1),J+
1
2 (M2y2)

C(J)εM1e
†
J(−M1y1)

eJ+ 1
2 (M2y2).

(8-19)

The coefficients α(J), β(J), and γ(J) are given by the same as (8-16) in

the conformal-factor field. Other coefficients are given by

A(J) =

√
4J

(2J − 1)(2J + 3)
, B(J) =

√
2(2J + 2)

(2J − 1)(2J + 3)
,

C(J) =

√
(2J − 1)(2J + 1)(2J + 2)(2J + 4)

2J(2J + 3)
.

New SU(2)× SU(2) Clebsch-Gordan coefficients are defined by

E
1
2M

J(M1x1),J+
1
2 (M2x2)

=
√

V3

∫
S3

dΩ3 Y
∗
1
2M

Y ij
J(M1x1)

YijJ+ 1
2 (M2x2)

=
√

(2J − 1)(J + 2)C
1
2m

J+x1m1,J+
1
2+x2m2

C
1
2m

′

J−x1m′1,J+
1
2−x2m′2

,

H
1
2M

J(M1x1);J(M2y2)
=
√

V3

∫
S3

dΩ3 Y
∗
1
2M

Y ij
J(M1x1)

∇̂iYjJ(M2y2)

= −
√

(2J − 1)(2J + 3)C
1
2m

J+x1m1,J+y2m2
C

1
2m

′

J−x1m′1,J−y2m′2
.
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The general expressions for these coefficients are given in (C-3) and (C-5)

in the second section of Appendix C.

Here, we have found this generator by determining the six coefficients

α, β, γ, A, B, and C so that the conformal algebra closes without speci-

fying their values in advance, instead of directly deriving from the energy-

momentum tensor of the Weyl action according to the definition of Qζ . At

that time, calculations of the algebra can be simplified by using crossing

relations derived from product expansions of the vector and the tensor har-

monics. Each convention such as a sign of the coefficients and the mode-

expansion (8-6) already shown is decided to be consistent with the confor-

mal transformation law of the field.

The existence of cross terms between the positive-metric mode cJ(Mx)

and the negative-metric modes dJ(Mx), eJ(My) indicates that the conformal

algebra does not close with the positive-metric tensor mode only. Hence,

these negative-metric modes are indispensable modes for the conformal al-

gebra. In this way, in order to realize the conformal invariance that rep-

resents quantum diffeomorphism invariance, the fourth-order gravitational

field including the negative-metric modes is essential.

BRST Operator and Physical State Conditions

Ghost fields cμ satisfying the conformal Killing equation ∇̂μcν + ∇̂νcμ −
ĝμν∇̂λc

λ/2 = 0 are represented in terms of 15 Grassmann modes. Denot-

ing these modes as c, cMN , cM , and c†M in the Roman style, the ghost fields

are mode-expanded as

cμ = cημ +
∑
M

(
c†MζμM + cMζμ∗M

)
+
∑
M,N

cMNζμMN ,

where c is a Hermitian operator and cMN are six modes that satisfy c†MN =
cNM and cMN = −εM εNc−N−M .5 In addition, we introduce anti-ghost

modes b, bMN , bM , and b†M with the same properties as the ghost modes

have and set anti-commutation relations between them as

{b, c} = 1, {bMN , cLK} = δMLδNK − εM εNδ−MKδ−NL,

{b†M , cN} = {bM , c†N} = δMN .

5 The cMN mode satisfies
∑

M cMM = 0, and also
∑

M εM c−M cM = 0 holds from the

Grassmannian property.
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Using these Grassmann modes, we can construct 15 generators satisfy-

ing the conformal algebra (8-11) as follows:

Hgh =
∑
M

(
c†MbM − cMb†M

)
,

Rgh
MN = −cMb†N + c†NbM + εM εN

(
c−Nb†−M − c†−Mb−N

)
−
∑
L

(cLMbLN − cNLbML) ,

Qgh
M = −2cMb− cbM −

∑
L

(2cLMbL + cLbML) ,

Qgh†
M = 2c†Mb + cb†M +

∑
L

(
2cMLb

†
L + c†LbLM

)
. (8-20)

In the following, the whole generators of conformal transformations includ-

ing these ghost parts are expressed as

H = H +Hgh, RMN = RMN +Rgh
MN ,

QM = QM +Qgh
M , Q†

M = Q†
M +Qgh†

M ,

where H , RMN , QM , and Q†
M are respectively the sums of the generators

other than the ghost sector.

The BRST operator of the transformation (7-10) defined on the back-

ground spacetime R× S3 is given by

QBRST = cH +
∑
M

(
c†MQM + cMQ†

M

)
+
∑
M,N

cMNRMN

+
1

2
cHgh +

1

2

∑
M

(
c†MQgh

M + cMQgh†
M

)
+

1

2

∑
M,N

cMNRgh
MN .

Further deforming it, we obtain

QBRST = cH+
∑
M,N

cMNRMN − bM −
∑
M,N

bMNYMN + Q̃, (8-21)

where H and RMN are the whole generators defined above. Other terms

are defined by

M = 2
∑
M

c†McM , YMN = c†McN +
∑
L

cMLcLN ,

Q̃ =
∑
M

(
c†MQM + cMQ†

M

)
.
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Using the expression (8-21) and the conformal algebra (8-11), we can show

nilpotency as

Q2
BRST = Q̃2−MH− 2

∑
M,N

c†McN

[
RMN +

∑
L

(cLMbLN − cNLbML)

]

= Q̃2−MH − 2
∑
M,N

c†McNRMN = 0.

Anti-commutation relations between the BRST operator and the anti-

ghost modes are given by

{QBRST, b} = H, {QBRST, bMN} = 2RMN ,

{QBRST, bM} = QM ,
{
QBRST, b

†
M

}
= Q†

M .

Thus, the whole generator of the conformal transformation becomes BRST

trivial. Therefore, descendant states which are generated by applying Q†
M to

a BRST invariant physical state given as a primary scalar state in the below

become BRST trivial.

The BRST transformation is a diffeomorphism replacing the gauge trans-

formation parameter ζμ with the ghost field cμ. It is expressed using a com-

mutation relation with the BRST operator as

i [QBRST, φ] = cμ∇̂μφ+
1

4
∇̂μc

μ.

The same applies to other fields. In the case of the ghost field, it is given

with an anti-commutation relation as

i {QBRST, c
μ} = cν∇̂νc

μ.

Physical states are represented as BRST conformally invariant states.

Writing them symbolically as |Ψ〉, physical state conditions are simply ex-

pressed as

QBRST|Ψ〉 = 0. (8-22)

In the following, we will construct physical states by solving this condition.

First of all, we define several vacuum states. Separating the ghost sec-

tor and other field sectors, we write the latter Fock vacuum as |0〉, which

disappears when the zero mode p̂ of the conformal-factor field and the anni-

hilation operators such as aJM and bJM are applied. Furthermore, a confor-

mally invariant vacuum which disappears for all of the generators H , RMN ,
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QM , Q†
M without the ghost part is expressed as

|Ω〉 = e−2bcφ0(0)|0〉, (8-23)

where φ0(0) = q̂/
√
2bc. Both the vacuum |Ω〉 and its Hermitian conjugate

〈Ω| have a Riegert charge −2bc as a background charge. Thus, the total

background charge of the conformally invariant vacua is −4bc. This charge

originates from the linear term in the Riegert action.

Let us write a conformally invariant ghost vacuum as |0〉gh, which dis-

appears for all of the generators (8-20) of the ghost sector. This vacuum

vanishes for all of the anti-ghost modes, but it does not disappear against

the ghost modes. On the other hand, a Fock ghost vacuum which disap-

pears when the annihilation operators cM and bM are applied is expressed

as
∏

M cM |0〉gh using the conformally invariant ghost vacuum.

Since the Hamiltonian operator Hgh does not include the c and cMN

ghost modes and the b and bMN anti-ghost modes, the ghost vacuum is

degenerate. Its degenerate pair is given by the vacuum multiplied by c and∏
cMN . Inner products between them will be discussed later.

For later convenience, we introduce the whole Fock vacuum with a

Riegert charge γ, including the ghost part, as

|γ〉 = eγφ0(0)|Ω〉 ⊗
∏
M

cM |0〉gh.

Since ip̂|γ〉 = (γ/
√
2bc −

√
2bc)|γ〉, this state satisfies

H|γ〉 = (hγ − 4)|γ〉, hγ = γ − γ2

4bc
, (8-24)

where hγ is the same as given in (7-32), and −4 comes from the ghost part.

The physical state |Ψ〉 is constructed by applying the creation opera-

tors such as a†JM and b†JM in the field sectors, the creation operators c†M
and b†M in the ghost sector, and the zero-mode p̂ to the whole Fock vac-

uum. The zero-mode p̂ may be replaced with its eigenvalue. Here, note

that the state disappears if b or bMN are applied. Since these modes satisfy

{QBRST, b} = H and {QBRST, bMN} = 2RMN , we find that as physi-

cal states it is only enough to consider states in a subspace that satisfies the

following conditions:

H|Ψ〉 = RMN |Ψ〉 = 0, b|Ψ〉 = bMN |Ψ〉 = 0. (8-25)

On this subspace, from the expression of (8-21), the BRST conformally

invariant state (8-22) is the same as a Q̃-invariant state.
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For a while, as the physical state constructed on the subspace (8-25), we

consider the following form:

|Ψ〉 = A
(
p̂, a†JM , b†JM , . . .

)
|γ〉, (8-26)

where the dots represent other field creation operators except for the ghost

and anti-ghost modes. The operator A and the Riegert charge γ are deter-

mined from the BRST conformal invariance conditions. The case where the

ghost and anti-ghost modes are included in A will be discussed at the end

of the next section.

As long as concerning the state of the type above, the Q̃-invariance con-

dition reduces to

Q̃|Ψ〉 =
∑
M

c†MQM |Ψ〉 = 0

because of cM |Ψ〉 = 0. Furthermore, adding the condition of the Hamilto-

nian operator and the rotation invariance condition in (8-25), we obtain

(H − 4)|Ψ〉 = RMN |Ψ〉 = QM |Ψ〉 = 0 (8-27)

as the BRST conformal invariance conditions of the state, where the Q†
M

condition is not necessary. The condition (8-27) indicates that the BRST

conformally invariant state is given by a primary scalar with conformal di-

mension 4.

The BRST conformal invariance condition (8-27) requires that the oper-

ator A satisfies the following algebra:

[H,A] = lA, [RMN ,A] = 0, [QM ,A] = 0,

where l (≥ 0) is conformal dimension of A. The Hamiltonian operator

condition then indicates that the Riegert charge γ in the whole Fock vacuum

|γ〉 must satisfy

hγ + l − 4 = 0.

This is a quadratic equation for the Riegert charge γ. If we choose a solution

that approaches the canonical value 4− l at the classical limit bc → ∞, γ is

given for each l as

γl = 2bc

(
1−
√

1− 4− l

bc

)
. (8-28)

This is a real number due to bc > 4 (7-5). Here, γ0 and γ2 correspond to the

previous α (7-35) and β (7-36), respectively.
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Construction of Physical States

In order to construct physical states, we have to find primary states which

disappear by applying the generator QM of special conformal transforma-

tions. First, we look for combinations of creation operators that commute

with QM . After finding such operators for each field sector, we combine

them to be rotation-invariant, and then construct physical states so as to sat-

isfy the Hamiltonian operator condition.

Primary states of scalar fields As a simple example, we first examine

primary states of the scalar field. A commutation relation between QM (8-

12) and the creation mode ϕ†
JM1

is given by

[QM , ϕ†
JM1

] =
√

2J(2J + 1)
∑
M2

εM2
C

1
2M

JM1,J− 1
2−M2

ϕ†
J− 1

2M2
.

Thus, the creation mode that commutes with QM is only ϕ†
00 with conformal

dimension 1. Here we will impose a Z2 symmetry under ϕ ↔ −ϕ on the

scalar field and allow only even product of ϕ†
00.

Next, consider operators given by the product of the creation modes.

Such a quadratic operator that belongs to a J representation with conformal

dimension 2L+ 2 is generally expressed as

Φ
[L]†
JN =

L∑
K=0

∑
M1

∑
M2

f(L,K)CJN
L−KM1,KM2

ϕ†
L−KM1

ϕ†
KM2

.

Calculating commutation relation with QM yields

[
QM ,Φ

[L]†
JN

]
=

L∑
K=0

∑
M1

∑
M2

ϕ†
L−K− 1

2M1
ϕ†
KM2

×
{√

(2L− 2K)(2L− 2K + 1)f(L,K)

×
∑
S

εSC
1
2M

L−K− 1
2M1,L−K−S

CJN
L−KS,KM2

+
√
(2K + 1)(2K + 2)f

(
L,K +

1

2

)

×
∑
S

εSC
1
2M

KM2,K+ 1
2−S

CJN
K+ 1

2S,L−K− 1
2M1

}
.

Using the crossing relation (8-17), it is understood that conditions for this

commutator to vanish are only if J = L, L is a nonnegative integer, and the
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coefficient f satisfies the following recursion relation:

f

(
L,K +

1

2

)
= −
√

(2L− 2K)(2L− 2K + 1)

(2K + 1)(2K + 2)
f(L,K).

Solving this recursion relation, the coefficient is determined as

f(L,K) =
(−1)2K√

(2L− 2K + 1)(2K + 1)

(
2L
2K

)
(8-29)

up to a normalization constant that depends only on L. In this way, we can

find a quadratic creation operator that commutes with QM . Writing it as

Φ†
LN = Φ

[L]†
LN , we obtain

Φ†
LN =

L∑
K=0

∑
M1

∑
M2

f(L,K)CLN
L−KM1,KM2

ϕ†
L−KM1

ϕ†
KM2

,

where L is a nonnegative integer, and the operator of L = 0 is the already

obtained Φ†
00 = (ϕ†

00)
2.

rank of tensor 0

creation operators Φ†
LN

conformal dimension 2L+ 2

Table 8-1: Building blocks of primary states for the scalar field, where L is a

nonnegative integer.

Combining the operator Φ†
LN with the SU(2)×SU(2) Clebsch-Gordan

coefficient, we can construct a basis for creation operators that commute

with QM . It is thought that any creation operator that commutes with QM

can be represented in such a form basically due to the crossing relation of

the Clebsch-Gordan coefficient and so on. Hence, we may consider the

operators Φ†
LN (L ∈ Z≥0) as building blocks of primary states for the scalar

field sector, which are summarized in Table 8-1.

Let us concretely see relationships between primary states obtained in

this way and field operators. First, the simplest primary state ϕ2n†
00 |0〉 with

conformal dimension 2n corresponds to a field operator : ϕ2n : by a state-

operator correspondence.6 A primary state Φ†
1M |0〉 of conformal dimension

6 In the cylindrical spacetime of R × S3, the state-operator correspondence is given by

|{μ1 · · ·μl}; Δ〉 = limη→i∞ e−iΔηOμ1···μl (η, x̂)|0〉. See also the fourth section of Ap-

pendix B.
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4 with nine independent components corresponds to the traceless energy-

momentum tensor Θμν . Likewise, a primary state Φ†
LM |0〉 corresponds to a

symmetric traceless tensor field of even spin l = 2L with conformal dimen-

sion 2L+ 2.

In the same way, building blocks of primary states for the gauge field can

be obtained. The results are summarized in the seventh section of Appendix

B.

Primary states of gravitational fields Next, we consider primary states

in the conformal-factor field sector. Commutation relations between the

generator QM (8-15) and the zero-modes of the conformal-factor field are

given by

[QM , q̂] = −a 1
2M

, [QM , p̂] = 0.

Commutation relations with a†1/2M and a†JM (J ≥ 1) are

[
QM , a†1

2M1

]
=
(√

2bc − ip̂
)
δM,M1 ,[

QM , a†JM1

]
= α

(
J − 1

2

)∑
M2

C
1
2M

JM1,J− 1
2M2

εM2
a†
J− 1

2−M2
,

and that with b†JM (J ≥ 0) is[
QM , b†JM1

]
= −γ(J)

∑
M2

C
1
2M

JM1,J+
1
2M2

εM2
a†
J+ 1

2−M2

−β

(
J − 1

2

)∑
M2

C
1
2M

JM1,J− 1
2M2

εM2
b†
J− 1

2−M2
.

As in the same way as doing for the scalar field, we can construct quadratic

creation operators with conformal dimension 2L that commute with QM .

Let L be a positive integer, we obtain the following two types:

S†
LN =

√
2(
√
2bc − ip̂)√

(2L− 1)(2L+ 1)
a†LN

+

L− 1
2∑

K= 1
2

∑
M1

∑
M2

x(L,K)CLN
L−KM1,KM2

a†L−KM1
a†KM2

,

S†
L−1N = −

√
2(
√
2bc − ip̂) b†L−1N

+

L− 1
2∑

K= 1
2

∑
M1

∑
M2

x(L,K)CL−1N
L−KM1,KM2

a†L−KM1
a†KM2
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+

L−1∑
K= 1

2

∑
M1

∑
M2

y(L,K)CL−1N
L−K−1M1,KM2

b†L−K−1M1
a†KM2

,

where the coefficients are given by

x(L,K) =
(−1)2K√

(2L− 2K + 1)(2K + 1)

√(
2L
2K

)(
2L− 2
2K − 1

)
,

y(L,K) = −2
√
(2L− 2K − 1)(2L− 2K + 1)x(L,K). (8-30)

If L is a half integer, there is no such operators. These two quadratic creation

operators will be building blocks of primary states for the conformal-factor

field. They are summarized in Table 8-2.

rank of tensor 0

creation operators S†
LN

S†
L−1N

conformal dimension 2L

Table 8-2: Building blocks of primary states for the conformal-factor field. Each

building block exists for an integer L (≥ 1).

If we do the same analysis for the traceless tensor field, we find that

the only creation mode that is commutative with QM (8-19) is the lowest

positive-metric mode c†1(Mx) in the transverse-traceless field hij . Moreover,

as in the cases of the conformal-factor field, we can classify QM -invariant

quadratic creation operators using triangle inequalities and crossing rela-

tions of several SU(2) × SU(2) Clebsch-Gordan coefficients even if their

explicit values are unknown. In this case, quadratic operators with tensor

index up to rank 4 appear. They shall be building blocks of primary states

for the traceless tensor field, which are summarized in Table 8-3. For their

concrete expressions, see the seventh section of Appendix B.

From the building blocks in Tables 8-2 and 8-3, we can construct gravita-

tional primary states. For example, let us consider the lowest scalar operator

of the conformal-factor field,

S†
00 = −

√
2(
√
2bc − ip̂)b†00 −

1√
2

∑
M

εMa†1
2−M

a†1
2M

. (8-31)

A gravitational primary scalar state of conformal dimension 2 can be con-

structed by applying this operator to the vacuum (8-23) as S†
00|Ω〉. This state

corresponds to the Ricci scalar R, apart from an exponential factor of φ.
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0 1 2 3 4

A†
LN B†

L− 1
2 (Ny)

c†1(Nx) D†
L− 1

2 (Nz)
E†

L(Nw)

A†
L−1N E†

L−1(Nw)

2L 2L 2 2L 2L

Table 8-3: Building blocks for the traceless tensor field. Items are the same as Table

8-2. Each building block of n = 0, 1, 3, 4 exists for an integer L(≥ 3). Here, z and

w are the polarization indices ε3 and ε4, respectively.

The next building blocks, each of which has nine independent compo-

nents, are given by

S†
1N =

√
2

3
(
√
2bc−ip̂)a†1N − 1√

2

∑
M1,M2

C1N
1
2M1,

1
2M2

a†1
2M1

a†1
2M2

,

S†
1N = −

√
2(
√
2bc−ip̂)b†1N − 4b†00a

†
1N −

√
2
∑

M1,M2

C1N
3
2M1,

1
2M2

a†3
2M1

a†1
2M2

+
2√
3

∑
M1,M2

C1N
1M1,1M2

a†1M1
a†1M2

+ 4
∑

M1,M2

C1N
1
2M1,

1
2M2

b†1
2M1

a†1
2M2

.

From these, we obtain traceless symmetric primary tensor states, of which

the state S†
1N |Ω〉 of conformal dimension 2 corresponds to Rμν − gμνR/4

and the state S†
1N |Ω〉 of conformal dimension 4 corresponds to the energy-

momentum tensor of the conformal-factor field.

In addition, we obtain a primary tensor state c†1(Nx)|Ω〉 of conformal

dimension 2 using the lowest building block of the traceless tensor field.

It has ten independent components, and corresponds to the Weyl tensor

Cμνλσ , where x = ±1 represents selfdual and anti-selfdual components.

Primary states of conformal dimension 4 are
∑

N,x εNc†1(−Nx)c
†
1(Nx)|Ω〉

and
∑

N1,x1

∑
N2,x2

E1N
1(N1x1),1(N2x2)

c†1(N1x1)
c†1(N2x2)

|Ω〉. These states cor-

respond to C2
μνλσ and the energy-momentum tensor of traceless tensor field,

respectively.

Some of the primary states raised as examples here do not satisfy the

unitarity bound (2-14). It is a characteristic feature in higher-order derivative

theories, but it is not necessary to satisfy this condition because these states

are still gauge dependent.7 In fact, they do not satisfy the conditions of H

7 As another example, the normal U(1) gauge field Aμ is a primary vector field, but the
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and RMN yet, and thus are not gauge-invariant physical states of quantum

gravity.

Physical states Physical states in the form of (8-26) are now expressed

using the building blocks obtained above as

|Ψ〉 = A(Φ†, S†,S†, . . .)|γ〉.
All of tensor indices of the building blocks are then contracted by using

various SU(2) × SU(2) Clebsch-Gordan coefficients so that A becomes

invariant under the S3 rotation. The conformal dimension l of the operator

A is given by an even number because all the building blocks have even

dimensions. It represents the number of derivatives of corresponding field

operators. Finally, by choosing the Riegert charge (8-28) so as to satisfy the

Hamiltonian operator condition for l, physical states can be constructed.

As an example, let us see physical states where the conformal dimension

l is four or less. A physical state that the identity operator A = I is dressed

by quantum gravity is given by the l = 0 state

|γ0〉.
This is a state corresponding to the quantum cosmological term, which re-

duces to
√−g in the classical limit. Physical states of l = 2 are given by

Φ†
00|γ2〉, S†

00|γ2〉.
These are quantum states corresponding to

√−gϕ2 and the scalar curvature√−gR, respectively. Physical states of l = 4 are given by

(Φ†
00)

2|γ4〉, Φ†
00S†

00|γ4〉, S†
00S†

00|γ4〉,∑
N

εNS†
1−NS†

1N |γ4〉,
∑
N,x

εNc†1(−Nx)c
†
1(Nx)|γ4〉.

These are quantum states corresponding to
√−gϕ4,

√−gRϕ2,
√−gR2,√−g(Rμν − gμνR/4)2, and

√−gC2
μνλσ , respectively. Since γ4 = 0, there

is no exponential factor of φ in these physical states even at the quantum

level.

Lastly, we discuss physical states including the ghost and anti-ghost cre-

ation modes c†M and b†M . For example, in the case of l = 2, there exists

another BRST conformally invariant state such as{
− (√2bc − ip̂

)2∑
M

εMb†−Mc†M + ĥ
∑
M

εMa†1
2−M

a†1
2M

}
|γ2〉, (8-32)

conformal dimension is 1, which does not satisfy the unitary bound. This is because the gauge

field depends on the gauge. See Footnote 6 in Chapter 2.
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where ĥ = p̂2/2 + bc. However, it turns out that (8-32) is BRST equiva-

lent with the physical state already given above. In order to show that, we

introduce a new state

|Υ〉 = (√2bc − ip̂
)∑

M

εMb†−Ma†1
2M

|γ2〉

satisfying H|Υ〉 = RMN |Υ〉 = b|Υ〉 = bMN |Υ〉 = 0. Applying the BRST

operator to this state yields

QBRST|Υ〉 =
{
− (√2bc − ip̂

)2∑
M

εMb†−Mc†M

+4
(√

2bc − ip̂
)
b†00 + 2ĥ

∑
M

εMa†1
2−M

a†1
2M

}
|γ2〉.

From this, paying attention to ĥ|β〉 = 2|β〉, the BRST invariant state (8-32)

can be written as
1

2
√
2
S†
00|γ2〉+QBRST|Υ〉.

Thus, we can show that it is BRST equivalent to the physical state S†
00|γ2〉.

In general, physical states including the ghost modes in A seem to be

BRST equivalent with physical states given by the standard form (8-26).

Therefore, we will consider only the standard form in this book.

Physical Field Operators

The BRST invariant physical field operators discussed in the previous chap-

ter are considered again on R × S3. As mentioned earlier, such physical

fields consist of primary scalar fields. In order to obtain such operators,

we first examine transformation laws of the n-th power operator of the

conformal-factor field defined by

:φn : = :(φ> + φ0 + φ<)
n
: =

n∑
k=0

n!

(n− k)!k!
φn−k
> (φ0 + φ<)

k
,

where φ< and φ>(= φ†
<) are the annihilation and creation operator parts of

the field, respectively, and φ0 = (q̂ + ηp̂)/
√
2bc is the zero-mode part.

Transformation laws of this operator for time evolution and S3 rotations

are given by

i [H, :φn :] = ∂η :φn :, i [RMN , :φn :] = ∇̂j

(
ζjMN :φn :

)
.
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In these transformations, quantum corrections do not appear. On the other

hand, using the fact that each part of the conformal-factor field is trans-

formed under special conformal transformations as

i [QM , φ>] = ζμM ∇̂μφ> + ζ0M∂ηφ0 +
1

4
∇̂μζ

μ
M ,

i [QM , φ0 + φ<] = ζμM ∇̂μφ<,

we obtain

i [QM , :φn :] = ζμM ∇̂μ :φn : +
n

4
∇̂μζ

μ
M :φn−1 :

− 1

16bc
n(n− 1)∇̂μζ

μ
M :φn−2 : .

The last term on the right-hand side is a quantum correction, which can be

derived by using iζ0M = ∇̂μζ
μ
M/4 and an expansion formula

∂η (φ0 + φ<)
k
= k∂ηφ< (φ0 + φ<)

k−1
+ k∂ηφ0 (φ0 + φ<)

k−1

+i
1

4bc
k(k − 1) (φ0 + φ<)

k−2

yielded by paying attention to the zero-mode commutation relation [φ0, ∂ηφ0]
= i/2bc. The transformation of n = 1 is simply the transformation (8-18).

The simplest primary scalar field with a Riegert charge α is given by

Vα = :eαφ : =

∞∑
n=0

αn

n!
:φn : = eαφ>eαφ0eαφ< ,

where the exponential operator of the zero-mode can be expressed in the

form eαφ0 = eq̂α/
√
2bceηp̂α/

√
2bce−iηα2/4bc . The transformation laws are

i[H,Vα] = ∂ηVα, i[RMN ,Vα] = ∇̂j(ζ
j
MNVα),

i [QM ,Vα] = ζμM ∇̂μVα +
hα

4
∇̂μζ

μ
MVα,

where the conformal dimension hα is given by (8-24). Letting the Riegert

charge α be a real number so that Vα is a Hermitian operator, the transforma-

tion law of the translation Q†
M is given by the one that ζμM is replaced with

its complex conjugate ζμ∗M . These transformation laws can be expressed by

one equation using the BRST operator as

i [QBRST,Vα] = cμ∇̂μVα +
hα

4
∇̂μc

μVα.
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From this, we find that a volume integral of the primary scalar operator

Vα with hα = 4 becomes BRST invariant as

i
[
QBRST,

∫
dΩ4 Vα

]
=

∫
dΩ4 ∇̂μ (c

μVα) = 0,

where dΩ4 = dη dΩ3 is the volume element of the background spacetime.

This condition is equal to that the field operator commutes with all of the

15 generators. Furthermore, as in the previous chapter, if we introduce the

ghost field function contracted with a fully antisymmetric tensor as ω =
(1/4!) εμνλσc

μcνcλcσ , the product of ω and Vα becomes a locally BRST

invariant field operator as

i [QBRST, ωVα] =
1

4
(hα − 4)ω∇̂μc

μVα = 0,

because ω transforms as i[QBRST, ω] = −ω∇̂μc
μ under the BRST transfor-

mation. The Riegert charge is then given by the l = 0 expression of (8-28),

which is a real number α = γ0 = 2bc(1−
√
1− 4/bc). This is the same as

(7-35). The operator Va with this value is the quantum cosmological term

operator on R× S3.

Next, we consider a physical field operator corresponding to the Ricci

scalar curvature. Writing only the result here, a primary scalar field with

second derivatives is given by

Rβ = :eβφ
(
∇̂2φ+

β

hβ
∇̂μφ∇̂μφ− hβ

β

)
:

= R1
β +

β

hβ
R2

β − hβ

β
Vβ ,

where R1,2
β are defined by

R1
β = ∇̂2φ>Vβ + Vβ∇̂2φ<,

R2
β = −1

4
∂ηφ0∂ηφ0Vβ − 1

2
∂ηφ0Vβ∂ηφ0 − 1

4
Vβ∂ηφ0∂ηφ0

−∂ηφ0 (∂ηφ>Vβ + Vβ∂ηφ<)− (∂ηφ>Vβ + Vβ∂ηφ<) ∂ηφ0

+∇̂μφ>∇̂μφ>Vβ + 2∇̂μφ>Vβ∇̂μφ< + Vβ∇̂μφ<∇̂μφ<.

Since the operator Rβ is transformed as a primary scalar field of conformal

dimension hβ + 2, we can see that it transforms under the BRST transfor-

mation as

i [QBRST,Rβ ] = cμ∇̂μRβ +
hβ + 2

4
∇̂μc

μRβ .
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Therefore, when hβ = 2, the volume integral of Rβ or the field product

ωRβ becomes BRST invariant. The Riegert charge is then given by the

l = 2 expression of (8-28), which is β = γ2 = 2bc(1 − √1− 2/bc),
the same as (7-36). The operator Rβ with this value is the quantum scalar

curvature, which reduces to the normal scalar curvature on R×S3 given by

d4x
√−gR = dΩ4e

2φ(−6∇̂2φ− 6∇̂μφ∇̂μφ+ 6) divided by −6 when the

classical limit bc → ∞ is taken.

State-Operator Correspondences and Dual States

Finally, we clarify correspondences between physical field operators and

physical states and examine the structure of inner products. In general,

when considering a physical field operator Oγ with Riegert charge γ that

satisfies the BRST conformal invariance condition [QBRST, ωOγ ] = 0, a

state corresponding to this operator is given by

lim
η→i∞

e−4iηOγ |Ω〉 = |Oγ〉,

apart from the ghost part.

For example, for the quantum cosmological term operator Vα, paying

attention to hα = 4, it becomes

|Vα〉 = lim
η→i∞

e−4iηVα|Ω〉

= lim
η→i∞

ei(−4+hα)ηeαφ>e
α√
2bc

q̂|Ω〉 = eαφ0(0)|Ω〉.

For the quantum Ricci scalar operator Rβ with hβ = 2, it becomes

|Rβ〉 = lim
η→i∞

e−4iηRβ |Ω〉 = lim
η→i∞

ei(−4+hβ)η

{
∇̂2φ> − 2i∂ηφ>

+
β

hβ
∇̂μφ>∇̂μφ>

}
eβφ>e

β√
2bc

q̂|Ω〉 = − β

2
√
2bc

S†
00e

βφ0(0)|Ω〉,

where S†
00 is given by (8-31).

Since the most divergent part of the ghost function ω at the limit of

η → i∞ behaves like ω ∝ e−4iη
∏

M cM , it can be seen that the state-

operator correspondence including the ghost part is given by

lim
η→i∞

ωOγ |Ω〉 ⊗ |0〉gh ∝ |Oγ〉 ⊗
∏
M

cM |0〉gh.
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The right-hand side is the physical state discussed in the third and fourth

sections in this chapter.

In order to define inner products, we examine a conjugate state of |Oγ〉⊗∏
cM |0〉gh. A conjugate of the state |Oγ〉 denoted by 〈Õγ | is now not

given by an ordinary Hermitian conjugate state 〈Oγ |. It is because such

an inner product 〈Oγ |Oγ〉 cannot be normalized as usual from the fact that

the Riegert charge γ is a real number and the vacuum has the background

charge −4bc and thus the total Riegert charge has a non-vanishing value

2γ − 4bc �= 0 (the zero-mode is not canceled out).8

The state 〈Õγ | is given by a dual state of |Oγ〉 which is obtained through

a duality relation hγ = h4bc−γ . Again, considering the physical operators

Vα and Rβ , their dual field operators satisfying the physical field condition

are given by

Ṽα = V4bc−α,

R̃β = −bc
4
R4bc−β

= −bc
4

(
R1

4bc−β +
4bc − β

hβ
R2

4bc−β − hβ

4bc − β
V4bc−β

)
.

The corresponding dual states are defined by

〈Ṽα| = lim
η→−i∞

e4iη〈Ω|Ṽα = 〈Ω|e(4bc−α)φ0(0),

〈R̃β | = lim
η→−i∞

e4iη〈Ω|R̃β =
4bc − β

8
√
2

〈Ω|e(4bc−β)φ0(0)S00.

Using these, the inner products can be defined and normalized as

〈Ṽα|Vα〉 = 1, 〈R̃β |Rβ〉 = 1,

where 〈Ω|e4bcφ0(0)|Ω〉 = 1 is used, which is derived from the fact that the

sum of Riegert charges of the field operators reduces to 4bc, and it cancels

with the background charges of the vacua, and thus the zero-mode disap-

pears.

As in two-dimensional quantum gravity, there is no corresponding clas-

sical gravitational state in the dual state. Hence, this state only appears in an

intermediate as a purely quantum virtual state.

8 If the Riegert charge is a pure imaginary number like γ = ip and the vacuum does not

have a background charge, the state can be then normalized to its Hermitian conjugate like

〈O−ip|Oip〉 = 1 as usual.
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Taking an inner product of the ghost vacuum and its Hermitian conju-

gate, we find that it vanishes as gh〈0|0〉gh = 0 or gh〈0|
∏

M c†M
∏

N cN |0〉gh
= 0. It can be easily shown by inserting the anti-commutation relation

{b, c} = 1 or {bMN , cLK}=δMLδNK − εM εNδ−MKδ−NL into the inner

product, such as gh〈0|0〉gh = gh〈0|{b, c}|0〉gh =0, because the vacuum dis-

appears if b or bMN is applied. Therefore, the inner product in ghost states

is defined and normalized by inserting a Hermitian operator ϑ = ic
∏

cMN

as

gh〈0|
∏

c†Mϑ
∏

cM |0〉gh = 1.

Thus, a conjugate of the physical state |Oγ〉⊗
∏

cM |0〉gh is given by 〈Õγ |⊗
gh〈0|

∏
c†Mϑ.
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CHAPTER NINE

GRAVITATIONAL COUNTERTERMS AND

CONFORMAL ANOMALIES

As a first step to quantize gravity, we discuss renormalization of quantum

field theory in curved spacetime using dimensional regularization. Since

ultraviolet divergences are local, it is possible to generalize the theory reno-

malizable in the flat spacetime to that on curved spacetime. Here we pro-

ceed with the argument assuming that there exists renormalizable quantum

field theories in curved spacetime. That is, we require that all ultraviolet

divergences to be removed are local. Then, we will find that the form of

gravitational counterterms is strongly restricted from this renormalizability

condition. It indicates that diffeomorphism invariance at the quantum level

gives stronger conditions than that at the classical level, as was mentioned

from an algebraic point of view in several previous chapters. From this con-

sideration, we will show that the form of E4 (5-9) introduced by Riegert

appears as a conformal anomaly.

In this and next chapters, from the beginning, we will consider the D-

dimensional Euclidean spacetime convenient for dimensional regulariza-

tion.

Summary of Gravitational Counterterms

At the beginning, we briefly summarize the results on gravitational coun-

terterms and conformal anomalies obtained in this chapter.

Dimensional regularization we employ here is the method to regularize

the theory by making spacetime dimension a little smaller than four. Since

ultraviolet divergences are extracted as poles of D− 4, renormalization cal-

culations can be easily carried out. After removing ultraviolet divergences,

the dimension is returned to four and physical quantities are obtained. This

method is the only one that we can do higher loop calculations while pre-

serving diffeomorphism invariance among several regularization methods of

ultraviolet divergences. And, this fact is significant because as mentioned

earlier, conformal anomalies are physical quantities that appear in order to

preserve diffeomorphism invariance.
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A further advantage of dimensional regularization is that it does not de-

pend on how to choose the path integral measure. In the DeWitt-Schwinger

method and so on defined in four dimensions, conformal anomalies as con-

tributions from the measure are derived by regularizing a divergent quantity

δ(4)(0) = 〈x|x′〉|x′→x.1 On the other hand, in dimensional regularization,

this quantity becomes identically zero due to δ(D)(0) =
∫
dDk = 0, and

thus there is no contribution from the measure.

In dimensional regularization, conformal anomalies are included be-

tween D and four dimensions. That is, conformal anomalies are finite quan-

tities obtained by canceling poles of ultraviolet divergences with zeros rep-

resenting deviations from four dimensions of D-dimensional counterterms

as
1

D − 4
× o(D − 4) → finite.

Conformal anomalies are generated from higher poles as well. Therefore, it

is necessary to determine the D-dependence of counterterms exactly.

Four-dimensional gravitational counterterms with dimensionless cou-

pling constants are not uniquely determined only by diffeomorphism invari-

ance classically. They are expressed by any combinations of three fourth-

order derivative actions of the square of the Riemann curvature tensor, the

square of the Ricci tensor, and the square of the scalar curvature. Which

combinations are chosen is directly linked to the problem of how to define

coupling constants. Here, we will impose conformal invariance on actions,

considering that a scale-invariant world is realized in the ultraviolet limit.

At this time, gravitational counterterms are settled in two, the square of the

Weyl tensor and the Euler density.

However, one problem arises here. Even if conformal invariance is im-

posed on actions, it is broken in quantum theory. It is obvious from the fact

that new scales appear when renormalization calculations are carried out.

In addition, since dimensional regularization literally shifts the dimension,

conformal invariance is obviously broken. For this reason, there is no guar-

antee that renormalization calculations can be accomplished with only two

gravitational counterterms. Nevertheless, it can be shown that the calcula-

tions using dimensional regularization goes well for various gauge theories.

In this chapter, we will see that the form of gravitational counterterms

receives strong restrictions from the renormalizability condition at all loop

orders. In particular, if we consider quantum field theories where classical

1 It can be expressed as δ(4)(0) = 〈x|e−sK |x〉|s→0 using a positive-definite regularization

operator K specific to the theory. This quantity can be obtained by solving the heat equation

(∂s +K)〈x|e−sK |x〉 = 0. See the fourth section of Appendix D.
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actions, apart from mass terms, are restricted to be conformally invariant

at four dimensions by gauge symmetry, such as quantum electrodynamics

(QED) and non-abelian gauge theories in curved space, we will find that

gravitational counterterms are limited to two combinations even in D di-

mensions.

We here examine QED in curved space and will determine gravitational

counterterms by analyzing renormalization group equations.2 As the result,

it will be shown that gravitational counterterms are given by the following

two: the square of the D dimensional Weyl tensor (A-1) defined by

FD = C2
μνλσ = R2

μνλσ − 4

D − 2
R2

μν +
2

(D − 1)(D − 2)
R2 (9-1)

and the Euler density modified by adding a correction term of o(D − 4) as

GD = G4 + (D − 4)χ(D)H2, (9-2)

where G4 and H are the ordinary Euler density and a rescaled scalar curva-

ture defined by

G4 = R2
μνλσ − 4R2

μν +R2, H =
R

D − 1
,

and χ(D) is a finite function of only D without poles. Expanding χ(D) in a

non-negative power of D − 4 and solving renormalization group equations

for each order, we can determine all of its expansion coefficients. The first

three terms are calculated explicitly, which are given by

χ(D) =
1

2
+

3

4
(D − 4) +

1

3
(D − 4)2 + · · · . (9-3)

The trace of the energy-momentum tensor, that is, the conformal anomaly

is determined in the following form:

Θ =
β

4
[FμνF

μν ] +
1

2
(D−1+2γ̄ψ) [Eψ]− μD−4 (βaFD+βbED) ,

where β, βa, and βb are the beta functions defined in the following (9-8)

and (9-9), and γ̄ψ is an anomalous dimension of fermion. The quantity with

[ ] denotes its normal product (to distinguish it from : : in free fields). The

2 Similar arguments hold for quantum chromodynamics (QCD) (see Footnote 8 in fifth section

in this chapter).
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gravitational part of the conformal anomaly consists of two combinations of

the Weyl tensor squared (9-1) and

ED = GD − 4χ(D)∇2H (9-4)

defined by extending the modified Euler density (9-2).3 When D → 4, the

conformal anomaly ED reduces to E4. In this way, it will be shown that

the combination E4, which is predicted by Riegert from the analogy with

two-dimensional quantum gravity, appears at the quantum level.4

In this chapter, we will show that the above fact strictly holds for all

orders by examining special renormalization group equations by Hathrell

that correlation functions of the energy-momentum tensor satisfy.

QED in Curved Space

The reason for considering massless QED in curved spacetime with classical

conformal invariance is that it is one of the most fundamental renormaliz-

able quantum field theories whose interactions between quantum fields and

gravitational fields are completely fixed at the classical level by both gauge

invariance and diffeomorphism invariance. Hence, an ambiguity in this the-

ory that cannot be determined classically from these symmetries appears

only in gravitational counterterms. In spite of that, it will be shown that the

ambiguity can be settled at the quantum level.

The action is divided into three parts, the QED action, the gauge-fixing

term, and gravitational counterterms, and is written as S = SQED + Sg.f. +
Sg . In the following, the quantities with the suffix 0 represent bare quantities

before renormalized.

The QED action in D-dimensional curved space with Euclidean signa-

ture is given by

SQED =

∫
dDx

√
g

{
1

4
F0μνF

μν
0 + iψ̄0D/ψ0

}
.

The Dirac operator is defined by D/ = γμDμ and γμ = eμaγ
a, where e a

μ is

the D-dimensional vielbein field, which satisfies e a
μ eνa = gμν and eμaeμb =

3 These functions satisfy the Wess-Zumino integrability condition in D dimensions given by

(A-2) in the first section of Appendix A.

4 The coefficient of the ∇2R term of the conformal anomaly can be arbitrarily changed by

adding a finite R2 term to the action. However, that is possible only when quantization of

gravitational fields is not supposed. The aim here is to determine the minimum form of the

gravitational counterterm excluding such a term not necessary for renormalization.
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δab. The Dirac’s gamma matrix is normalized as {γa, γb} = −2δab. The

covariant derivative acting on fermions is defined by

Dμψ0 = ∂μψ0 +
1

2
ωμabΣ

abψ0 + ie0A0μψ0,

Dμψ̄0 = ∂μψ̄0 − 1

2
ωμabψ̄0Σ

ab − ie0A0μψ̄0,

where the spin connection and the generator of local Lorentz group are de-

fined by ωμab = eνa(∂μeνb − Γλ
μνeλb) and Σab = −[γa, γb]/4. For details,

see the third section of Appendix A.

The BRST transformation is defined by replacing a gauge transformation

parameter with a Grassmann ghost field η0. We also introduce an anti-ghost

field η̃0 conjugate to the ghost field and an auxiliary field B0, which are

defined as

δBA0μ = ∇μη0, δBψ0 = −ie0η0ψ0, δBψ̄0 = ie0η0ψ̄0,

δBη0 = 0, δB η̃0 = iB0, δBB0 = 0.

This transformation indicates nilpotency δ2B = 0. Using the BRST trans-

formation, the gauge-fixing term can be expressed in a BRST trivial form

as

Sg.f. =

∫
dDx

√
g δB

[
−i η̃0

(
∇μA0μ − ξ0

2
B0

)]

=

∫
dDx

√
g

{
B0∇μA0μ − ξ0

2
B2

0 + i η̃0∇2η0

}
.

The auxiliary field satisfies an equation of motion B0 = ∇μA0μ/ξ0. Solv-

ing it, the gauge-fixing term reduces to

Sg.f. =

∫
dDx

√
g

{
1

2ξ0
(∇μA0μ)

2 − i∇μη̃0∇μη0

}
.

As for the counterterms to eliminate ultraviolet divergences of the grav-

itational field, in order to keep generality, we first consider three possible

terms such as

Sg =

∫
dDx

√
g
{
a0FD + b0G4 + c0H

2
}
. (9-5)

In the following argument, we will show that the latter two terms are related

each other through renormalization group equations and thus the indepen-

dent gravitational counterterms are only two at all orders in perturbations.

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



158 Chapter Nine

Renormalized quantities of the fields and coupling constants are defined

according to the ordinary procedure of introducing renormalization factors

into each as

A0μ = Z
1/2
3 Aμ, ψ0 = Z

1/2
2 ψ, e0 = μ2−D/2Z

−1/2
3 e, ξ0 = Z3ξ,

where μ is an arbitrary mass scale to compensate for missing dimensions,

and thus the renormalized coupling constant e becomes dimensionless. The

Ward-Takahashi identity is used when defining the renormalization factor of

the coupling constant. In the following, all the renormalization factors are

expanded in powers of the fine structure constant

α =
e2

4π
.

The bare constants of the gravitational counterterms are expanded as

a0 = μD−4 (a+ La) , La =

∞∑
n=1

an(α)

(D − 4)n
,

b0 = μD−4 (b+ Lb) , Lb =

∞∑
n=1

bn(α)

(D − 4)n
,

c0 = μD−4 (c+ Lc) , Lc =

∞∑
n=1

cn(α)

(D − 4)n
, (9-6)

where La,b,c are pure pole terms and the residues an, bn, and cn are func-

tions of only α, not depending on D.

As apparent from the above procedure, the essence of renormalizability

is that ultraviolet divergences appear in the form of poles with the local

actions, but poles with nonlocal actions do not appear.

Conventional renormalization group equations Commonly known

renormalization group equations are summarized here. They are equations

that correctly regularized renormalizable theories shall satisfy. In dimen-

sional regularization, bare quantities do not depend on the mass scale μ
introduced arbitrarily, and thus the following equation holds:

μ
d

dμ
(bare) = 0, μ

d

dμ
= μ

∂

∂μ
+ μ

dα

dμ

∂

∂α
+ μ

dξ

dμ

∂

∂ξ
.

Below, we will refer all equations derived through this condition as renor-

malization group equations.
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We first consider the following renormalization group equation:

μ
d

dμ

(
e20
4π

)
= 0 =

μ4−D

Z3
α

(
4−D − μ

d

dμ
logZ3 +

μ

α

dα

dμ

)
. (9-7)

Defining the beta function of the fine structure constant as

β(α,D) ≡ 1

α
μ
dα

dμ
= D − 4 + β̄(α), (9-8)

the part that depends only on α can be written as β̄ = μd(logZ3)/dμ.

Furthermore, expanding the renormalization factor as

logZ3 =

∞∑
n=1

fn(α)

(D − 4)n
,

and expanding the right-hand side of (9-7) to extract conditions for it to

disappear, we find that the residues must satisfy

α
∂fn+1

∂α
+ β̄α

∂fn
∂α

= 0.

Moreover, we can see that the beta function is written as β̄ = α∂f1/∂α
using the simple pole residue.

As a point to note in later calculations, it is worth mentioning that since

β has the D − 4 dependence, its inverse 1/β has poles when expanded by

the coupling constant (see (9-17) below).

Similarly, the beta function of the coupling constant a in the gravitational

part (9-6) is defined as

βa(α,D) ≡ μ
da

dμ
= −(D − 4)a+ β̄a(α). (9-9)

Those for the coupling constants b and c are also defined in the same way.

Since the bare constant a0 does not depend on μ, we find that by solving a

renormalization group equation μda0/dμ = 0, the residues satisfy

∂

∂α
(αan+1) + β̄α

∂an
∂α

= 0. (9-10)

The beta function can be expressed as β̄a = −∂(αa1)/∂α using the simple

pole residue. The same is true for the bare constants b0 and c0.
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Normal Products

In this section, we introduce some normal products (see also the third sec-

tion of Appendix D). They are renormalized composite fields that behave as

finite operators in correlation functions of the fundamental fields.

Equation-of-motion fields As the simplest example, we first intro-

duce what is called the equation-of-motion field. That for the gauge field is

defined by

E0A =
1√
g
A0μ

δS

δA0μ

= A0μ∇νF
μν
0 − e0ψ̄0γ

μA0μψ0 − 1

ξ0
A0μ∇μ∇νA0ν . (9-11)

Considering correlation functions of the renormalized gauge field with NA

different points defined by〈
NA∏
j=1

Aμj (xj)

〉
= Z

−NA
2

3

∫
dA0μdψ0dψ̄0

NA∏
j=1

A0μj (xj)e
−S ,

and inserting the equation-of-motion field into it and performing partial in-

tegration of the functional integral of A0μ, we obtain〈
E0A(x)

NA∏
j=1

Aμj
(xj)

〉

= −Z
−NA

2
3

∫
dA0μdψ0dψ̄0

NA∏
j=1

A0μj (xj)
1√
g
A0μ(x)

δ

δA0μ(x)
e−S

=

NA∑
j=1

1√
g
δD(x− xj)

〈
NA∏
j=1

Aμj (xj)

〉
. (9-12)

Here note that in dimensional regularization, functional derivatives at the

same point vanish as δA0μ(x)/δA0ν(x) = δ ν
μ δD(0) = 0.5

Similarly, the equation-of-motion field of the fermion field is defined by

E0ψ =
δS

δχ
≡ 1√

g

(
ψ̄0

δS

δψ̄0
+ ψ0

δS

δψ0

)
= iψ̄0

↔
D/ ψ0, (9-13)

5 As mentioned at the beginning of this chapter, this represents that the path integral does

not depend on how to choose the measure. Therefore, we denote the measure by a concise

expression without dependencies on the metric field as dA0μdψ0dψ̄0.
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where the Dirac operator with left and right arrows is

ψ̄0

↔
D/ψ0 = ψ̄0γ

μDμψ0 −Dμψ̄0γ
μψ0.

From this, we obtain〈
E0ψ(x)

Nψ∏
j=1

(
ψ or ψ̄

)
(xj)

〉
=

Nψ∑
j=1

1√
g
δD(x− xj)

〈Nψ∏
j=1

(
ψ or ψ̄

)
(xj)

〉
.

(9-14)

Since each of the right-hand sides of the expressions (9-12) and (9-14)

is a finite correlation function composed of the renormalized fundamental

fields, it shows that the equation-of-motion field behaves as a finite operator

in such a correlation function. It is nothing but a normal product. Writing it

by the notation [ ], each equation-of-motion field can be expressed as

E0A = [EA], E0ψ = [Eψ]. (9-15)

The volume integrals of these equation-of-motion fields can be written

respectively as∫
dDx

√
gE0A =

∫
dDx

√
g

{
1

2
F0μνF

μν
0 −e0ψ̄0γ

μA0μψ0+
1

ξ0
(∇μA0μ)

2

}
,∫

dDx
√
gE0ψ =

∫
dDx

√
g2iψ̄0γ

μDμψ0.

By performing the volume integration for (9-12) and (9-14), we find that

these normal products become the number of each field, NA and Nψ , in the

correlation function.

Normal product of gauge field squared A normal product of the

gauge field squared generally has the following structure:

[FμνF
μν ] =

(
1+
∑

poles
)
F0μνF

μν
0 +

∑
poles×(other fields) , (9-16)

because it returns to the product of the bare field at the limit where interac-

tions disappear. Here, we will determine the undecided part from considera-

tions of finite quantities obtained by differentiating correlation functions of

the renormalized fundamental fields with respect to renormalized variables.

Consider a finite quantity obtained by differentiating the correlation func-

tion by ξ, then find that the following holds:

ξ
∂

∂ξ

〈
NA∏
j=1

Aμj
(xj)

Nψ∏
k=1

(
ψ or ψ̄

)
(xk)

〉
= finite
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=

〈{
−Nψ

2
ξ
∂

∂ξ
logZ2 − ξ

∂S

∂ξ

} NA∏
j=1

Aμj
(xj)

Nψ∏
k=1

(
ψ or ψ̄

)
(xk)

〉

=
1

2

〈∫
dDx

√
g

{
1

ξ
(∇μAμ)

2 − [Eψ]ξ
∂

∂ξ
logZ2

}

×
NA∏
j=1

Aμj
(xj)

Nψ∏
k=1

(
ψ or ψ̄

)
(xk)

〉
,

where we use the facts that ∂/∂ξ passes through the bare fields A0μ, ψ0, and

ψ̄0 which are integration variables, Nψ can be written in terms of the volume

integral of [Eψ], and ξ∂S/∂ξ = −(1/2ξ)
∫
dDx

√
g(∇μAμ)

2. Thus, we

can see that the volume integral in the braces on the right-hand side is a

finite quantity. It is denoted as
∫
dDx

√
g[(∇μAμ)

2]/ξ using the notation of

normal products.

In the same way, we consider a finite quantity obtained by differentiating

the correlation function with α. The α-dependence of the bare coupling

constants is calculated as

α
∂e0
∂α

=
D − 4

2β
e0, α

∂ξ0
∂α

=
β̄

β
ξ0,

α
∂a0
∂α

= −D − 4

β
μD−4

(
La +

β̄a

D − 4

)
.

For b0 and c0, the same equation as a0 holds. As for the renormalization

factors, the following equations hold:

α
∂

∂α
logZ3 =

β̄

β
, α

∂

∂α
logZ

1/2
2 =

1

β

(
γψ + β̄ξ

∂

∂ξ
logZ

1/2
2

)
,

where γψ = μd(logZ
1/2
2 )/dμ is the anomalous dimension of the fermion.

By differentiating the action S with α using these equations, we obtain

α
∂SQED

∂α
= −D − 4

2β

∫
dDx

√
ge0ψ̄0γ

μA0μψ0,

α
∂Sg.f.

∂α
= − β̄

β

∫
dDx

√
g

1

2ξ0
(∇μA0μ)

2
,

α
∂Sg

∂α
= −D − 4

β
μD−4

∫
dDx

√
g

[(
La +

β̄a

D − 4

)
FD

+

(
Lb +

β̄b

D − 4

)
G4 +

(
Lc +

β̄c

D − 4

)
H2

]
.
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Calculating the α-derivative of the correlation function using these formulas

and disregarding obviously finite terms proportional to [(∇μAμ)
2]/ξ and

[EA], we obtain〈∫
dDx

√
g

{
D − 4

4β
F0μνF

μν
0 − γ̄ψ

β
[Eψ]

+
D − 4

β
μD−4

[(
La +

β̄a

D − 4

)
FD +

(
Lb +

β̄b

D − 4

)
G4

+

(
Lc +

β̄c

D − 4

)
H2

]} NA∏
j=1

Aμj
(xj)

Nψ∏
k=1

(
ψ or ψ̄

)
(xk)

〉

= finite,

where

γ̄ψ = γψ − (D − 4)ξ
∂

∂ξ
logZ

1/2
2 .

This shows that the inside the braces is expressed as a normal product except

for derivative terms that vanish in the volume integral.

Noting that (D − 4)/β is expanded by the coupling constant as

D − 4

β
=

1

1 + β̄
D−4

= 1 +

∞∑
n=1

(−β̄)n

(D − 4)n
, (9-17)

it can be seen that the inside the braces has the structure of the normal prod-

uct (9-16). This means that it is equal to the normal product [FμνF
μν ]/4,

except for total divergence terms. Since ∇2H is the only candidate for such

a term from the symmetry of the theory, with this as an unknown term we

obtain the following expression:

1

4
[FμνF

μν ] =
D − 4

4β
F0μνF

μν
0 − γ̄ψ

β
[Eψ]

+
D − 4

β
μD−4

[(
La +

β̄a

D − 4

)
FD +

(
Lb +

β̄b

D − 4

)
G4

+

(
Lc +

β̄c

D − 4

)
H2 − σ + Lσ

D − 4
∇2H

]
, (9-18)

where σ in the last term is a finite function of α, and Lσ is a pure pole term.

In order to determine these unknown quantities, it is necessary to consider

another finite condition. It will be discussed later.
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Energy-momentum tensor The energy-momentum tensor is defined

by a variation of the action S with respect to the metric field as

Θμν =
2√
g

δS

δgμν
=

1

2

1√
g

(
eμa

δS

δeνa
+ eνa

δS

δeμa

)
,

and its trace is expressed as

Θ =
δS

δΩ
=

2√
g
gμν

δS

δgμν
.

Since the variation of a finite correlation function with respect to the metric

field is finite, we obtain

2√
g

δ

δgμν

〈∏
Aμ

∏
ψ
∏

ψ̄
〉
= −

〈
Θμν
∏

Aμ

∏
ψ
∏

ψ̄
〉

= finite.

Therefore, the energy-momentum tensor Θμν is one of normal products.

Like the equation-of-motion field, it is a finite operator defined as a bare

quantity. Even after this, as for the energy-momentum tensor, it will be

simply written as Θμν without using the suffix 0 indicating bare quantities

nor the normal product symbol.

Decomposing the energy-momentum tensor as Θμν = Θμν
QED +Θμν

g.f. +
Θμν

g , the QED part is given by

Θμν
QED = −Fμλ

0 F ν
0λ +

1

4
gμνF0λσF

λσ
0

− i

4

{
ψ̄0γ

μDνψ0 −Dμψ̄0γ
νψ0 + (μ ↔ ν)− 2gμνψ̄0

↔
D/ ψ0

}
,

and its trace is

ΘQED = (D − 4)
1

4
F0μνF

μν
0 +

1

2
(D − 1)iψ̄0

↔
D/ ψ0.

The part derived from the gauge-fixing term can be written in a BRST

trivial form as

Θμν
g.f. =

1

ξ0

[
Aμ

0∇ν∇λA0λ +Aν
0∇μ∇λA0λ − gμνA0λ∇λ∇σA0σ

−1

2
gμν
(∇λA0λ

)2]
+i∇μη̃0∇νη0 + i∇ν η̃0∇μη0 − igμν∇λη̃0∇λη0

= −i δB

[
∇μη̃0A

ν
0 +∇ν η̃0A

μ
0 − gμν∇λη̃0A

λ
0 − 1

2
gμν η̃0∇λA

λ
0

]
,
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where δB is the on-shell BRST transformation δB η̃0 = i∇λA
λ
0/ξ0 obtained

after solving the equation of motion of B0, and then an equation of motion

∇2η0 = 0 is used to ensure nilpotency. This means that Θμν
g.f. disappears

when inserting it into physical correlation functions which do not include

the ghost fields. Hence, Θμν
g.f. will be ignored in the following discussion.

The gravitational part of the energy-momentum tensor is given by

Θμν
g = a0

{
−4RμλσρRν

λσρ −
8(D − 4)

D − 2
RμλνσRλσ + 8RμλRν

λ

− 8

(D − 1)(D − 2)
RμνR− 8(D − 3)

D − 2
∇2Rμν +

4(D − 3)

D − 1
∇μ∇νR

+gμν
[
R2

λσρκ − 4

D − 2
R2

λσ +
2

(D − 1)(D − 2)
R2

+
4(D − 3)

(D − 1)(D − 2)
∇2R

]}
+ b0

{
−4RμλσρRν

λσρ + 8RμλνσRλσ

+8RμλRν
λ − 4RμνR+ gμνG4

}
+

c0
(D − 1)2

{
−4RμνR

+4∇μ∇νR+ gμν
[
R2 − 4∇2R

]}
, (9-19)

and its trace is

Θg = (D − 4)
[
a0FD + b0G4 + c0H

2
]− 4c0∇2H.

Let us see that the trace of the energy-momentum tensor can actually be

described in terms of the normal products given before. If the metric field

is taken to be the flat one, for simplicity, and the BRST trivial term Θg.f. is

ignored, we get

Θ =
D − 4

4
F0μνF

μν
0 +

1

2
(D − 1)E0ψ

=
β

4
[FμνF

μν ] +
1

2
(D − 1 + 2γ̄ψ) [Eψ].

The first equality is from the definition and the second equality is from the

expressions of the normal products (9-18) and (9-15). The right-hand side

is the so-called conformal anomaly, and this expression shows that it is pro-

portional to the beta function, apart from the equation-of-motion field. The

expression of the conformal anomaly in curved spacetime will be derived in

the later section.
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Restrictions from Correlation Functions

In the following sections, we will show that the form of the gravitational

counterterms is restricted through new renormalization group equations by

Hathrell, which will be derived from considerations of correlation functions

between the normal products obtained in the previous section.

Two-point correlation functions Since a quantity obtained by per-

forming the variation of the partition function twice with respect to the met-

ric field is also finite, we obtain the following finiteness condition concern-

ing the energy-momentum tensor:

〈Θμν(x)Θλσ(y)〉 − 2√
g(y)

〈
δΘμν(x)

δgλσ(y)

〉
= finite.

Taking the flat spacetime and Fourier transforming this expression, we ob-

tain

〈Θμν(p)Θλσ(−p)〉flat − a0A
μν,λσ(p)− c0C

μν,λσ(p) = finite,

where Aμν,λσ and Cμν,λσ are derived from the Weyl term FD and the H2

term in the gravitational counterterm (9-5), respectively, which are given by

Aμν,λσ(p) =
4(D − 3)

D − 2

[
p4
(
δμλδνσ + δμσδνλ

)− p2
(
δμλpνpσ

+δμσpνpλ + δνλpμpσ + δνσpμpλ
)
+ 2pμpνpλpσ

]
− 8(D − 3)

(D − 1)(D − 2)

[
p4δμνδλσ − p2

(
δμνpλpσ + δλσpμpν

)
+pμpνpλpσ

]
,

Cμν,λσ(p) =
8

(D − 1)2

[
p4δμνδλσ − p2

(
δμνpλpσ + δλσpμpν

)
+pμpνpλpσ

]
. (9-20)

Contracting the spacetime indices of the energy-momentum tensor yields

〈Θμν(p)Θμν(−p)〉flat − 4(D − 3)(D + 1)a0p
4 − 8

D − 1
c0p

4 = finite

(9-21)

and

〈Θ(p)Θ(−p)〉flat − 8c0p
4 = finite. (9-22)
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Therefore, c0 can be determined from (9-22), and then a0 from (9-21). On

the other hand, to determine b0, we need to consider three-point functions,

which will be discussed later. In the following, we will examine the condi-

tion (9-22) only.

Let us introduce a quantity in which the trace of the energy-momentum

tensor is slightly modified as

Θ̄ = Θ− 1

2
(D − 1)[Eψ]. (9-23)

As an important property of the equation-of-motion field (9-13), note that

two-point functions involving it disappear as

〈[Eψ(x)]P (y)〉flat = −
∫
P (y)

δ

δχ(x)
e−S

∣∣∣∣
flat

=

〈
δP (y)

δχ(x)

〉
flat

= 0, (9-24)

where P denotes any fermion composite field, and in the last equality we

use the fact that one-point functions disappear in the flat spacetime, which

is because tadpole diagrams vanish when dimensional regularization is ap-

plied for ordinary massless fields with actions equal to or less than second

derivative. By rewriting (9-22) using this property, we obtain

〈Θ̄(p)Θ̄(−p)〉flat − 8p4μD−4Lc = finite.

Furthermore, we introduce the following composite field defined on the

flat spacetime:

{A2} =
D − 4

4β
F0μνF

μν
0

=
1

4
[FμνF

μν ] +
γ̄ψ
β
[Eψ]. (9-25)

Ignoring the part originating from the gauge-fixing term as not contributing,

this field has a relation with Θ̄ (9-23) as

Θ̄|flat = β{A2}. (9-26)

Note that Θ̄ is a finite operator, but as can be seen from the fact that 1/β has

poles, {A2} is not a finite quantity.

Consider a two-point correlation function of the composite field {A2} in

the flat spacetime. Its Fourier transform is written as

ΓAA(p
2) =

〈{A2}(p){A2}(−p)
〉
flat

.

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



168 Chapter Nine

In this case, although {A2} itself is not a finite quantity, the term contain-

ing 1/β which breaks the finiteness is eliminated from the property of the

equation-of-motion field (9-24). Thus, ΓAA is expressed by a two-point

function of the normal product [FμνF
μν ]. In general, in correlation func-

tions between normal products, ultraviolet divergences may occur, but are

local, that is, nonlocal poles such as p4 logm(p2/μ2)/(D − 4)n do not ap-

pear. Therefore, it can be expressed in the form

ΓAA(p
2)− p4μD−4

(
D − 4

β

)2

Lx = finite, (9-27)

where

Lx =

∞∑
n=1

xn(α)

(D − 4)n
.

The expression (9-27) is a definition of the pole term Lx, and the factor

(D − 4)2/β2 in front of Lx is introduced for the following convenience.

Since β2ΓAA = 〈Θ̄Θ̄〉flat is established from (9-26), it is found that the

pole terms satisfy the following relation:

(D − 4)2Lx − 8Lc = finite. (9-28)

From this, a relation between the residues is derived as

cn =
1

8
xn+2. (9-29)

That is, if x3 is obtained, c1 can be determined. Since the renormalization

group equation for cn has already been given as in (9-10), this means that if

x3 is obtained, all cn will be determined. At the same time, xn (n ≥ 4) are

also determined.

Next, we examine a relation that holds between the residues xn. For this

purpose, we use the fact that when F is a finite quantity,

1

βn
μ

d

dμ
(βnF ) = μ

dF

dμ
+ nα

∂β̄

∂α
F = finite (9-30)

holds for a positive integer n even if 1/β is a divergent quantity. Assigning

(9-27) as a finite quantity F and letting n = 2, we obtain

1

β2
μ

d

dμ

{
β2ΓAA(p

2)− p4μD−4(D − 4)2Lx

}
= finite.
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Since β{A2} is a bare quantity from the definition (9-25), μd(β{A2})/dμ =
0 holds. Thus, we can see that the first term on the left-hand side vanishes.

Therefore, the following holds:

1

β2
μ

d

dμ

{
μD−4(D − 4)2Lx

}
= finite.

By Laurent expanding this expression, we derive conditions that poles

disappear and the left-hand side becomes finite. For the n(≥ 1)-th pole, we

obtain the following renormalization group equation:

∂

∂α
(αxn+1) + β̄α

∂xn

∂α

+
n−1∑
m=1

(−1)n−m(n−m+ 1)β̄n−m

[
∂

∂α
(αxm+1) + β̄α

∂xm

∂α

]

+(−1)n(n+ 1)β̄n ∂

∂α
(αx1) = 0.

In particular, the equations for n = 1, 2 are given by

∂

∂α
(αx2)− β̄

α

∂

∂α

(
α2x1

)
= 0,

∂

∂α
(αx3)− β̄

α

∂

∂α

(
α2x2

)
+

β̄2

α2

∂

∂α

(
α3x1

)
= 0.

Solving these equations, the residues x2 and x3 can be determined using x1

as

x2 =
1

α

∫ α

0

dα′ β̄(α
′)

α′
∂

∂α′
(
α′2x1(α

′)
)
,

x3 = − β̄(α)

α

∫ α

0

dα′
{
α′2x1(α

′)
∂

∂α′

(
β̄(α′)

α′

)}
. (9-31)

On the other hand, as can be seen from the relation (9-29), the renormal-

ization group equation of xn above is simplified for n ≥ 3 and reduces to

the same equation as (9-10) that cn satisfies.

Three-point correlation functions As before, performing the varia-

tions of the partition function three times with Ω, we obtain the following

finiteness condition:

〈Θ(x)Θ(y)Θ(z)〉 −
〈
δΘ(x)

δΩ(y)
Θ(z)

〉
−
〈
δΘ(y)

δΩ(z)
Θ(x)

〉

−
〈
δΘ(z)

δΩ(x)
Θ(y)

〉
+

〈
δΘ(x)

δΩ(y)δΩ(z)

〉
= finite.
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The flat spacetime limit is then taken.

Although two-point functions including [Eψ] disappear in the flat space-

time as (9-24), three-point functions including it have values and are ex-

pressed such as

〈[Eψ(x)]P (y)Q(z)〉flat =
〈
δP (y)

δχ(x)
Q(z)

〉
flat

+

〈
P (y)

δQ(z)

δχ(x)

〉
flat

.

Moreover, using the fact that a variantion of [Eψ] is given as

δ[Eψ(x)]

δΩ(y)
=

δΘ(y)

δχ(x)
−D

1√
g
δD(x− y)[Eψ],

the finiteness condition of the three-point function can be expressed in terms

of Θ̄ (9-23) as

〈Θ̄(x)Θ̄(y)Θ̄(z)〉flat − 〈Θ̄(x)Θ̄2(y, z)〉flat − 〈Θ̄(y)Θ̄2(z, x)〉flat
−〈Θ̄(z)Θ̄2(x, y)〉flat +

〈
δ3S

δΩ(x)δΩ(y)δΩ(z)

〉
flat

= finite,

where

Θ̄2(x, y) =
δΘ̄(x)

δΩ(y)
− 1

2
(D − 1)

δΘ̄(x)

δχ(y)

and this function satisfies Θ̄2(x, y) = Θ̄2(y, x).
Introduce a three-point function ΓAAA of the composite field {A2}. Its

Fourier transform is denoted as

ΓAAA(p
2
x, p

2
y, p

2
z) =

〈{A2}(px){A2}(py){A2}(pz)
〉
flat

.

From the relation (9-26) and

Θ̄2(x, y)|flat = −4β{A2}(x)δD(x− y) + 8c0∂
4δD(x− y),

we find that the following holds:

β3ΓAAA(p
2
x, p

2
y, p

2
z) + 4β2

{
ΓAA(p

2
x) + ΓAA(p

2
y) + ΓAA(p

2
z)
}

+b0B(p2x, p
2
y, p

2
z) + c0C(p2x, p

2
y, p

2
z) = finite, (9-32)

where the second term in Θ̄2|flat does not contribute here. The functions B
and C are parts derived from the variations of b0G4 and c0H

2, respectively,
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which are given by

B(p2x, p
2
y, p

2
z) = −2(D − 2)(D − 3)(D − 4)

×
[
p4x + p4y + p4z − 2

(
p2xp

2
y + p2yp

2
z + p2zp

2
x

)]
,

C(p2x, p
2
y, p

2
z) = −4

[
(D + 2)

(
p4x + p4y + p4z

)
+4
(
p2xp

2
y + p2yp

2
z + p2zp

2
x

)]
.

In the following, in order to simplify the calculation, we consider two

cases in which some momenta satisfy on-shell conditions such as p2z = 0
and p2x = p2y or p2y = p2z = 0.6 The functions B and C are then given by

B(p2, p2, 0) = 0,

C(p2, p2, 0) = −8(D + 4)p4,

B(p2, 0, 0) = −2(D − 2)(D − 3)(D − 4)p4,

C(p2, 0, 0) = −4(D + 2)p4.

Furthermore, since β2ΓAA(p
2)−8p4μD−4Lc=finite is established from (9-

27) and (9-28), if rewriting (9-32) using these, we obtain β3ΓAAA(p
2, p2, 0)−

8(D−4)p4μD−4Lc=finite and

β3ΓAAA(p
2, 0, 0)− p4μD−4

[
2(D − 2)(D − 3)(D − 4)Lb

+4(D − 6)Lc

]
= finite. (9-33)

Next, we extract information of ΓAAA in a slightly different way. Con-

sider a finite quantity obtained by applying a differentiation α∂/∂α to (9-27)

and rewrite it using

α
∂S

∂α

∣∣∣∣
flat

=

∫
dDx

{
−{A2}+ D − 4

2β
[EA]− 1

2ξ0
(∂μA0μ)

2

}
,

α
∂

∂α
{A2} = −α

β

∂β̄

∂α
{A2},

so that we obtain〈
{A2} {A2}

∫
dDx {A2}

〉
flat

− D − 4

2β

〈
{A2} {A2}

∫
dDx [EA]

〉
flat

6 Although we are considering in Euclidean spacetime here, we assume that considering an-

alytic continuation the momentum itself does not vanish even if it is on-shell and the conser-

vation law pμx + pμy + pμz = 0 holds. See the original paper by Hathrell for discussion in

Minkowski spacetime as it is.
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−2
α

β

∂β̄

∂α

〈{A2} {A2}〉
flat

− p4μD−4α
∂

∂α

[(
D − 4

β

)2

Lx

]
= finite,

in which the gauge-fixing term disappears from gauge invariance. Note

that with attention to
∫
dDx{A2}(x) = {A2}(p = 0), the first term on the

left-hand side gives ΓAAA(p
2, p2, 0). In the second term, performing par-

tial integration of the gauge field according to the definition (9-11) of the

equation-of-motion field [EA] = E0A and using∫
dDxA0μ(x)

δ

δA0μ(x)
{A2}(y) = 2{A2}(y),

we obtain the relation〈
{A2}(y) {A2}(z)

∫
dDx[EA(x)]

〉
flat

= 4
〈{A2}(y) {A2}(z)〉

flat
.

By using Fourier transform of this expression, we finally obtain the follow-

ing finiteness condition:

ΓAAA(p
2, p2, 0)− 2

α2

β

∂

∂α

(
β̄

α

)
ΓAA(p

2)

−p4μD−4 1

α

∂

∂α

[
α2

(
D − 4

β

)2

Lx

]
= finite.

Since β3 is not multiplied to the whole, this expression gives a stronger

condition than that found before.

In general, ΓAAA has the following structure:

ΓAAA(p
2
x, p

2
y, p

2
z)−

∑
poles×{ΓAA(p

2
x) + ΓAA(p

2
y)

+ΓAA(p
2
z)
}− μD−4

∑
poles×{terms in p2i p

2
j

}
= finite.

Unlike ΓAA, ΓAAA has nonlocal poles because the three-point function in-

cluding [Eψ] does not disappear and thus the contribution from the term

[Eψ]/β that breaks finiteness of {A2} (9-25) remains. The second term

involving ΓAA in the above equation plays a role of canceling out such non-

local poles.

From this consideration, it can be easily inferred that a finiteness condi-

tion for ΓAAA(p
2, 0, 0) is given by

ΓAAA(p
2, 0, 0)− α2

β

∂

∂α

(
β̄

α

)
ΓAA(p

2)

−p4μD−4

(
D − 4

β

)3

Ly = finite. (9-34)
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Here, it is important that the coefficient of the factor including poles in front

of ΓAA is half of the case of ΓAAA(p
2, p2, 0). On the other hand, the last

term is a new pole term defined through this expression and is expanded as

Ly =

∞∑
n=1

yn(α)

(D − 4)n
,

while the factor (D − 4)3/β3 in front of Ly is introduced for convenience.

By multiplying (9-34) by β3 and rewriting the part that becomes β2ΓAA

using (9-27) and (9-28), we get

β3ΓAAA(p
2, 0, 0)− p4μD−4

[
8α2 ∂

∂α

(
β̄

α

)
Lc + (D − 4)3Ly

]
= finite.

Eliminating ΓAAA by using (9-33), we obtain the following relation be-

tween pole terms:

2(D − 2)(D − 3)(D − 4)Lb + 4

[
D − 6− 2α2 ∂

∂α

(
β̄

α

)]
Lc

−(D − 4)3Ly = finite. (9-35)

Lastly, we consider conditions that the pole term Ly satisfies. As in the

case of Lx, substituting (9-34) into (9-30) as a finite function F and letting

n = 3, we obtain

−α2 ∂
2β̄

∂α2
ΓAA(p

2)− p4μD−4

(
D−4

β

)3 [
(D−4)Ly + βα

∂

∂α
Ly

]
= finite,

where we use

μ
d

dμ

[
α2 ∂

∂α

(
β̄

α

)]
= β̄α2 ∂

2β̄

∂α2

and the fact that μd(β2ΓAA)/dμ = μd(β3ΓAAA)/dμ = 0 holds because

β{A2} is a bare quantity. Furthermore, using (9-27), we get a renormaliza-

tion group equation which relates Lx and Ly as(
D−4

β

)3[
(D−4)Ly + βα

∂

∂α
Ly

]
+ α2 ∂

2β̄

∂α2

(
D−4

β

)2
Lx = finite. (9-36)

From conditions that the n-th poles disappear when Laurent expanding this

expression, we find the following relation between the residues:

∂

∂α
(αyn+1) +

1

2

n∑
m=1

(−1)m(m+ 1)β̄m

[
(m+ 2)

∂

∂α
(αyn−m+1)
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−mα
∂

∂α
yn−m+1

]
− α2 ∂

2β̄

∂α2

n∑
m=1

(−1)mmβ̄m−1xn−m+1 = 0. (9-37)

Since we already give the equation to calculate general xn from x1, this

equation shows that general yn is also determined if y1 is given.

Residues of the pole terms Since the pole term Ly is related to Lx

through the renormalization group equation (9-36) and Lx is related to Lc

through (9-28), we find that the renormalization group equation (9-35) gives

a relation between Lb and Lc. We here solve the renormalization group

equations and derive the residues of Lx and Ly specifically. The data nec-

essary for that is the QED beta function and the simple pole residues x1 and

y1, which are expanded as

β̄ = β1α+ β2α
2 + β3α

3 + o(α4),

x1 = X1 +X2α+X3α
2 + o(α3),

y1 = Y1 + Y2α+ Y3α
2 + o(α3).

Specific values of these coefficients will be given later.

We first calculate the residues xn. The formulas for calculating x2 and

x3 from x1 are already shown in the integral representations (9-31). As

is seen from the relation (9-29), xn (n ≥ 3) satisfies the same equation

as (9-10) that cn satisfies. From these equations, we calculate xn up to

o(αn+1) using the above expressions of β̄ and x1. Writing down the case of

n = 2, 3, 4 specifically, each is given by

x2 = β1X1α+

(
2β2X1

3
+ β1X2

)
α2 +

(
β3X1

2
+

3β2X2

4
+ β1X3

)
α3,

x3 = −β1β2X1

12
α3 +

(
−β2

2X1

15
− β1β3X1

10
− β1β2X2

20

)
α4,

x4 =
β2
1β2X1

20
α4 +

(
31β1β

2
2X1

360
+

β2
1β2X2

30
+

β2
1β3X1

15

)
α5. (9-38)

Note that the lowest order of each xn is given by o(αn−1) for n ≤ 2,

whereas for n ≥ 3 it becomes o(αn). Moreover, there is a three-loop con-

tribution X3 in the o(α3) term of x2, whereas X3 does not appear in the

o(αn+1) term of xn for n ≥ 3.

Since cn is given by xn+2/8 from the relation (9-29), the lowest order

of cn becomes o(αn+2) from the expression of xn (n ≥ 3).
Next, substituting the value of xn into the renormalization group equa-

tion (9-37) and solving it, we can derive the residue yn. Calculating up to
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o(αn+1) for each yn, we obtain

y2 =
3β1Y1

2
α+

(
−2β2X1

3
+ β2Y1 +

5β1Y2

3

)
α2

+

(
−3β3X1

2
− β2X2

2
+

3β3Y1

4
+

5β2Y2

4
+

7β1Y3

4

)
α3,

y3 =
β2
1Y1

2
α2+

(
−2β1β2X1

3
+

5β1β2Y1

8
+

2β2
1Y2

3

)
α3

+

(
−3β1β3X1

2
− β1β2X2

2
− 2β2

2X1

5
+

3β2
1Y3

4
+

59β1β2Y2

60

+
β2
2Y1

5
+

9β1β3Y1

20

)
α4,

y4 =
β2
1β2Y1

40
α4+

(
β2
1β3Y1

30
+

13β1β
2
2Y1

240
+

β2
1β2Y2

90
+

13β1β
2
2X1

180

)
α5,

y5 = −β3
1β2Y1

60
α5

+

(
−53β2

1β
2
2X1

1260
− β3

1β3Y1

42
− 89β2

1β
2
2Y1

1680
− β3

1β2Y2

126

)
α6. (9-39)

Note again that the lowest order of each yn is given by o(αn−1) for n ≤ 3,

whereas for n ≥ 4 it starts with o(αn). Also, the o(αn+1) term of yn
includes a three-loop value Y3 for n ≤ 3, but it does not appear for n ≥ 4.

This structure is related to the fact that the renormalization group equation

(9-37) reduces to the simple form

∂

∂α
(αyn+1) + β̄α

∂yn
∂α

= −α2 ∂
2β̄

∂α2

(
xn + β̄xn−1

)
for n ≥ 4, as is similar to the fact that the renormalization group equation

of xn reduces to the simple form for n ≥ 3.

The respective residues can be calculated by substituting concrete val-

ues. Each coefficient of the beta function is given by7

β1 =
8

3

1

4π
, β2 = 8

1

(4π)2
, β3 = −124

9

1

(4π)3
. (9-40)

The values of X1,2 and Y1,2 are yielded by calculating ΓAA and ΓAAA up

to o(α), respectively.

7 See S. Gorishny, A. Kataev, S. Larin and L. Surguladze, The Analytical Four Loop Correc-
tions to The QED β-Function in The MS Scheme and to The QED ψ-Function: Total Reevalu-
ation, Phys. Lett. B256 (1991) 81.
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{A2} {A2}

(1)

{A2} {A2}

(2)

Figure 9-1: Quantum corrections to ΓAA.

The contributions up to o(α) are given at the two-loop level. Feynman

diagrams for ΓAA are depicted in Fig. 9-1. Substituting Fourier transform

of the composite field {A2}, ΓAA can be written as

ΓAA(p
2)(2π)DδD(p+ q)

=

(
D − 4

β
Z3

)2
1

4

∫
dDk

(2π)D
dDl

(2π)D
Kμν(k, k − p)Kλσ(l, l − q)

×〈Aμ(k)Aν(p− k)Aλ(l)Aσ(q − l)〉,
where

Kμν(k, k − p) = k · (k − p)δμν − (k − p)μkν

and the Z3 factor appears when A0μ is replaced with Z
1/2
3 Aμ in the defini-

tion of {A2}. Calculating the four-point function of the gauge field Aμ and

performing the momentum integration, we find that ultraviolet divergences

are given by

ΓAA(p
2) =

μD−4

(4π)2
p4
{
−1

2

1

D − 4
+

α

4π

[
4

3

1

(D − 4)2
+

5

3

1

D − 4

]}
.

From this, the coefficients X1,2 of the residue x1 are determined to be

X1 = −1

2

1

(4π)2
, X2 =

5

3

1

(4π)3
. (9-41)

Also, the lowest order term of the residue x2 can be directly calculated as

−4α/3(4π)3 from (9-27) with taking into account the (D − 4)2/β2 factor.

This value is consistent with the result (9-38) of the renormalization group

equation.

Similarly, ΓAAA can be calculated from the diagrams in Fig. 9-2 and we

obtain

ΓAAA(p
2, 0, 0) =

μD−4

(4π)2
p4
{
−1

2

1

D − 4
+

α

4π

[
2

1

(D − 4)2
+

11

6

1

D − 4

]}
.
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{A2}

{A2} {A2}

(1)

{A2}

{A2} {A2}

(2)

Figure 9-2: Quantum corrections to ΓAAA.

From this, the coefficients Y1,2 of the residue y1 are determined to be

Y1 = −1

2

1

(4π)2
, Y2 =

11

6

1

(4π)3
. (9-42)

In addition, the lowest order term of the residue y2 is determined to be

−2α/(4π)3 from (9-34). The value is consistent with the result (9-39).

Determination of Gravitational Counterterms

As Ly has already been given in the previous section, we find that the renor-

malization group equation (9-35) gives a relation between Lb and Lc. It

indicates that the independent gravitational counterterms are given by two

of the D-dimensional Weyl term FD (9-1) and a certain combination of G4

and H2. Therefore, we here introduce a new function, which is just (9-2)

presented at the beginning of this chapter, as

GD = G4 + (D − 4)χ(D)H2,

and define the gravitational counterterm in the following form:

Sg =

∫
dDx

√
g {a0FD + b0GD} ,

where χ(D) is a finite function of only D. The modified Euler density GD

reduces to the ordinary Euler density G4 in four dimensions. This gravita-

tional counterterm indicates that there is a relation between Lb and Lc as

follows:

Lc − (D − 4)χ(D)Lb = finite. (9-43)
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And also, the coupling constant c in c0 (9-6) is removed and only b in b0
is considered. In the following, we will see that the function χ(D) can

be determined by solving the relation (9-43) and the renormalization group

equation (9-35) simultaneously.

From the renormalization group equation (9-35), it turns out that the

following relation holds between the residues:

4bn+1 + 6bn+2 + 2bn+3 − 8

[
1 + α2 ∂

∂α

(
β̄

α

)]
cn

+4cn+1 − yn+3 = 0. (9-44)

Since the equation of n ≥ 2 can be derived from the n = 1 equation using

the renormalization group equation of each residue, we will consider only

the n = 1 equation below.

In order to solve it in perturbations, we expand χ(D) as

χ(D) =

∞∑
n=1

χn(D − 4)n−1 = χ1 + χ2(D − 4) + χ3(D − 4)2 + · · ·

and determine each coefficient in order. Then, from (9-43), the following

relation holds:

c1 = χ1b2 + χ2b3 + χ3b4 + · · · . (9-45)

Since the residue bn of n ≥ 3 can be derived from b2 through the renormal-

ization group equation (9-10), c1 can be written in terms of b2. Expanding

b2 as

b2 = B1α
3 +B2α

4 +B3α
5 + o(α6),

we obtain the residue bn as

b3 = −3

5
β1B1α

4 −
(
1

2
β2B1 +

2

3
β1B2

)
α5 + o(α6),

b4 =
2

5
β2
1B1α

5 + o(α6), b5 = o(α6).

In addition, parts that depend on the coupling constant α of the lowest

residue b1 are determined to be

b1 = −2B1

β1
α2 +

(
−5B2

3β1
+

4β2B1

3β2
1

)
α3 + o(α4). (9-46)
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Substituting the expressions of b2,3,4 into (9-45), the residue c1 can be ex-

pressed as

c1 = χ1B1α
3 +

(
χ1B2 − 3

5
χ2β1B1

)
α4 +

{
χ1B3

−χ2

(
1

2
β2B1 +

2

3
β1B2

)
+

2

5
χ3β

2
1B1

}
α5 + o(α6).

On the other hand, the residue c1 is given by x3/8, therefore compared with

the solution (9-38), we can read the coefficient Bn as

B1 = −β1β2X1

96χ1
,

B2 = −χ2β
2
1β2X1

160χ2
1

− β2
2X1

120χ1
− β1β3X1

80χ1
− β1β2X2

160χ1
.

The residue cn (n ≥ 2) can also be obtained from c1 through (9-10).

Substituting the above expressions of bn and cn into the renormalization

group equation (9-44) of n = 1 and ignoring o(α6), we obtain

4 (1− 2χ1)B1α
3 +

{
4 (1− 2χ1)B2 − 3

5
(6 + 4χ1 − 8χ2)β1B1

}
α4

+

{
4 (1− 2χ1)B3 − 8χ1β2B1 − (6 + 4χ1 − 8χ2)

(
1

2
β2B1 +

2

3
β1B2

)

+
2

5
(2 + 4χ2 − 8χ3)β

2
1B1

}
α5 − y4(α) = o(α6).

Noting that y4 (9-39) starts with o(α4), the coefficient χ1 is determined to

be

χ1 =
1

2

in order for o(α3) to disappear. Furthermore, by substituting the concrete

expression of y4 (9-39) and solving the condition that o(α4) disappears, we

obtain

χ2 = 1− Y1

4X1
.

Since the B3-dependence disappears when assigning χ1 = 1/2, the condi-

tion of o(α5) can be solved, so that

χ3 =
1

8

(
2− Y1

X1

)(
3− Y1

X1

)
− 1

6

β2

β2
1

(
1− Y1

X1

)

+
1

6

X2

β1X1

(
Y2

X2
− 3

2

Y1

X1

)
.
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In this way, we can determine χn sequentially. Substituting the concrete

values (9-40), (9-41), and (9-42) into them yields

χ1 =
1

2
, χ2 =

3

4
, χ3 =

1

3
. (9-47)

Thus the expression (9-3) is derived.

Lastly, we summarize the results of the residues b1,2, which are calcu-

lated as

b1 =
73

360

1

(4π)2
− 1

6

α2

(4π)4
+

25

108

α3

(4π)5
+ o(α4),

b2 =
2

9

α3

(4π)5
+

22

135

α4

(4π)6
+ o(α5).

The residue b1 is derived from (9-46) with the exception of the constant

term. The constant term cannot be determined from the renormalization

group equation. It is given by assigning NS = 0, NF = 1, and NA = 1 to

the value bc (5-12) divided by (4π)2 which is derived from direct one-loop

calculations.

For completeness, we also present the result of the residue a1 obtained

from direct calculations of the two-point correlation function of Θμν as

a1 = − 3

20

1

(4π)2
− 7

72

α

(4π)3
+ o(α2),

where the constant term is given by −ζ1/(4π)
2 (5-12).

If the same discussion is done in the case of QCD in curved space, we

obtain renormalization group equations which have the same form as those

of QED. Solving them, we find that the values of χ1,2 are the same as above,

regardless of gauge groups and fermion representations.8 The value of the

first coefficient χ1 is particularly important, and as is discussed soon below,

the form of conformal anomaly introduced by Riegert is determined from

this value.

8 See M. Freeman, The Renormalization of Nonabelian Gauge Theories in Curved Space-time,

Ann. Phys. 153 (1984) 339 and the appendix of K. Hamada and M. Matsuda, Phys. Rev. D 93
(2016) 064051.
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Determination of Conformal Anomalies

Rewriting (9-18) based on the result in the previous section, the composite

field [F 2
μν ] can be expressed as

1

4
[FμνF

μν ] =
D − 4

4β
F0μνF

μν
0 − γ̄ψ

β
[Eψ]

+
D − 4

β
μD−4

[(
La +

β̄a

D − 4

)
FD +

(
Lb +

β̄b

D − 4

)
GD

−4χ(D)(σ + Lσ)

D − 4
∇2H

]
,

where the last term is multiplied by 4χ(D) for convenience. Using this

expression, we can rewrite the trace of the energy-momentum tensor as

Θ = (D − 4)
1

4
F0μνF

μν
0 +

1

2
(D − 1)iψ̄0

↔
D/ ψ0

+(D − 4)
{
a0FD + b0

[
GD − 4χ(D)∇2H

]}
=

β

4
[FμνF

μν ] +
1

2
(D − 1 + 2γ̄ψ) [Eψ]− μD−4 (βaFD + βbGD)

−4μD−4χ(D) [(D − 4)(b+ Lb)− (σ + Lσ)]∇2H,

except for the gauge-fixing term. To make the last term finite, we impose a

condition (D− 4)(b+Lb)− (σ+Lσ) = finite = (D− 4)b− σ+ b1. The

residue σn (n ≥ 1) of Lσ is then expressed in terms of the residue of Lb as

σn = bn+1.

Furthermore, based on this result and μdΘ/dμ = 0, we can solve an extra

condition that β−1μd(β[F 2
μν ])/dμ is finite, as in (9-30). Thus, we get

σ = β̄b + b1.

Substituting this result, the form of the conformal anomaly is determined

to be

Θ =
β

4
[FμνF

μν ] +
1

2
(D − 1 + 2γ̄ψ) [Eψ]− μD−4 (βaFD + βbED) ,

where the last term is given by

ED = GD − 4χ(D)∇2H,
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which is just (9-4) presented at the beginning of this chapter. When D = 4,

this function reduces to

E4 = G4 − 2

3
∇2R

because of χ(4) = 1/2. This is the combination (5-9) predicted by Riegert

from the analogy with the gravitational effective action in two dimensions,

as discussed in Chapter 5. Now we showed that the E4 exactly appears from

the renormalizability of quantum field theory in curved space.

Note that conformal variations of the volume integral of FD and that of

ED (same as that of GD) satisfy

δ

δΩ

∫
dDx

√
gFD = (D − 4)FD,

δ

δΩ

∫
dDx

√
gED = (D − 4)ED,

where
δ

δΩ

∫
dDx

√
gH2 = (D − 4)H2 − 4∇2H

is used.

Casimir Energy

Last of all, we briefly mention the Casimir effect in curved spacetime. It

is obtained from the time-time component of the energy-momentum tensor

restored to the Lorentzian metric.

Consider the contribution from free fields in curved spacetime. If space-

time is restricted to be conformally flat, the Casimir effect results from

the b0GD action only. By placing the residue of the simple pole of b0
as b1 = bc/(4π)

D/2 and computing the quantity that remains in the four-

dimensional limit, we obtain

〈Θμν〉|conf. = − lim
D→4

bc
(4π)D/2

1

D − 4

2√−g

δ

δgμν

(∫
dDx

√−g GD

)∣∣∣∣
conf.

= − bc
(4π)2

{
2RμλRν

λ − 4

3
RμνR− gμν

(
R2

λσ − 1

2
R2

)

−2

9
(RμνR−∇μ∇νR) +

1

18
gμν
(
R2 − 4∇2R

)}
.
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This is the same as the four-dimensional limit of the expression (9-19) in

which c0 is replaced with (D−4)χ(D)b0 and the Riemann curvature tensor

is eliminated using the fact that the Weyl tensor (A-1) vanishes in a con-

formally flat spacetime. The overall negative sign is due to returning to the

Lorentzian signature.

Consider the R×S3 spacetime with the unit three-sphere used in Chapter

8 as space. The curvatures are then R = 6, R0μ = 0, and R2
μν = 12, and

the volume of the unit three-sphere is given by V3 =
∫
dΩ3 = 2π2. Thus,

the Casimir energy is calculated as

Ec =

∫
dΩ3 〈Θ00〉 = 8

bc
(4π)2

V3 = bc,

in which the contribution from G4 in GD is 3bc/4 and the remaining bc/4
comes from (D − 4)χ(D)H2. This effect appears in the Hamiltonian oper-

ator (8-5).
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CHAPTER TEN

RENORMALIZATION IN QUANTUM GRAVITY

In the first half of this book, we have shown that the background-free quan-

tum gravity can be expressed as a special conformal field theory where

conformal invariance is a gauge symmetry. It is realized by quantizing the

conformal-factor field strictly, while the traceless tensor field is handled in

perturbations. Renormalizable quantum gravity in which such a conformal

field theory appears at very high energy beyond the Planck mass is called

the asymptotically background-free quantum gravity. In this chapter, we

describe renormalization of this theory using dimensional regularization.

Since it does not lose generality even if we employ the flat metric as a

background metric due to the background-free property, the renormalizable

quantum gravity can be formulated as usual as a quantum field theory in the

flat spacetime.

D-Dimensional Action and Renormalization Procedure

Since quantum gravity includes quantum field theory in curved space as a

part, we use the gravitational counterterms for dimensional regularization

obtained in the previous chapter as a quantum gravity action.

As in the previous chapter, we will examine the system in which QED

and gravity are coupled, as an example. The bare quantum gravity action in

D-dimensional space with Euclidean signature1 is given by2

S =

∫
dDx

√
g

{
1

t20
FD + b0GD +

1

4
F0μνF

μν
0 +

nF∑
j=1

iψ̄0jD/ψ0j

−M2
0

2
R+ Λ0

}
.

1 Since the flat background can be adopted due to the background-metric independence, we

can Wick-rotate to Euclidean time τ = iη in the flat background.

2 This action reduces to I (7-1) at D → 4, where note that the whole sign is reversed in the

Euclidean space, apart from fermion. The reason why using S as a symbol instead of I is from

the fact that quantum correction terms such as the Riegert action SR (7-4) are included in the

D-dimensional action as discussed in Chapter 9.
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The first two terms are those defined in the previous chapter. Writing those

again, FD is the D-dimensional Weyl action (9-1) defined by

FD = C2
μνλσ = RμνλσR

μνλσ − 4

D − 2
RμνR

μν +
2

(D − 1)(D − 2)
R2.

The bare constant t0 is the coupling constant for the traceless tensor field,

where a0 in curved space is replaced with 1/t20. The combination GD (9-

2) is a D-dimensional generalization of the commonly used Euler density

G4 = R2
μνλσ − 4R2

μν +R2, which is defined as

GD = G4 + (D − 4)χ(D)H2, H =
R

D − 1
. (10-1)

It is also the bulk part of the conformal anomaly ED = GD − 4χ(D)∇2H
(9-4). The coefficient χ(D) is a finite function of only D and is expanded

as

χ(D) =

∞∑
n=1

χn(D − 4)n−1.

The coefficient χn is a number independent of the coupling constant which

can be determined for each order.

The lowest χ1 and the second χ2 are particularly important, and these

values are considered to be universal constants. Indeed, from the calcula-

tion of QED and QCD in curved spacetime, regardless of not only gauge

group but also the number or representation of fermions, they have been

determined to be the values (9-47),

χ1 =
1

2
, χ2 =

3

4
. (10-2)

The first value is also derived from the calculation of a scalar field in curved

spacetime.3 On the other hand, there is still a possibility that χ3 may de-

pend on the matter theory coupled with gravity, but from the QED calcu-

lation χ3 = 1/3 has been found. In the following, we will proceed with

calculations with χ3 as an arbitrary number. The gravitational interaction

concerned with this value contributes only to quantum corrections of three

or more loops.

3 In the case of the scalar field, however, it is pointed out that we need to introduce an extra

interaction term η0Rϕ2 additively which represents a deviation from the conformal coupling.

In this case, three counterterms are necessary: (1/t20)FD , b0GD , and κ0R2. The former

two used here are responsible for the conformal coupling, while the last controls the deviation

therefrom, which will disappear in the ultraviolet limit.
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The gravitational field is decomposed into the conformal-factor field φ,

the traceless tensor field h0μν , and the background metric ĝμν as before.

Using the coupling constant t0, it is expanded as

gμν = e2φḡμν ,

ḡμν = (ĝet0h0)μν = ĝμν + t0h0μν +
t20
2
hλ
0μh0λν + · · · .

The inverse of each metric is defined by gμλgλν = ḡμλḡλν = ĝμλĝλν = δμν .

The contraction of the indices of the tensor field h0μν is done by using the

background metric such as h0μν = ĝμλh
λ
0ν and hμ

0μ = 0.

It should be noted here that we do not introduce own coupling constant

in the conformal-factor field φ, but treat it strictly. Since φ is an integration

variable, even if we shift the field like φ → φ−σ, it is nothing but a change

of the integration variable, thus the theory remains unchanged. Since this

shift is equivalent to converting the background metric as ĝμν → e2σ ĝμν , the

background-metric independence is realized. Therefore, even if we employ

the flat metric as the background metric, the result does not change. In the

following, ĝμν is the Euclidean flat metric δμν , unless otherwise mentioned.

Renormalization factors of the traceless tensor field, gauge field, and

fermion field are defined according to normal procedure as

A0μ = Z
1/2
3 Aμ, ψ0j = Z

1/2
2 ψj , h0μν = Z

1/2
h hμν . (10-3)

For the coupling constant of QED and that of the traceless tensor field, they

are defined by

e0 = μ2−D/2Zee, t0 = μ2−D/2Ztt. (10-4)

Moreover, when the renormalization factor for the QED interaction is de-

noted by Z1 as usual, the Ward-Takahashi identity Z1 = Z2 holds also in

the system coupled with quantum gravity as will be shown in the later sec-

tion, thus the famous relation Ze = Z
−1/2
3 holds as well. Here, we will

describe the renormalization procedure as this relation is being satisfied.

The most characteristic property of renormalization in the asymptoti-

cally background-free quantum gravity is that the conformal-factor field φ
does not receive renormalization, which is expressed as

Zφ = 1. (10-5)

This property originates from not introducing a coupling constant in the

conformal-factor field. In the later section, by doing concrete calculations,

we will demonstrate that this non-renormalization theorem actually holds.
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In dimensional regularization, ultraviolet divergences appear as negative

powers of D− 4. Therefore, the renormalization factors for removing them

are defined by Laurent expansions in D − 4 as

logZ3 =

∞∑
n=1

fn
(D − 4)n

, logZ−2
t =

∞∑
n=1

gn
(D − 4)n

. (10-6)

Other renormalization factors are similarly Laurent expanded. The residues

fn and gn are functions of the renormalized coupling constants e and t. In

the following, as the coupling constants, we use

α =
e2

4π
, αt =

t2

4π
.

On the other hand, we need to be careful for the bare constant b0. Since

the action GD becomes topological in four dimensions, the kinetic term of

the gravitational field appears from o(D − 4) when it is expanded around

four dimensions. It means that this action does not contribute classically

to dynamics of gravity. Therefore, since b0 cannot be regarded as an inde-

pendent coupling constant, it is expanded only in negative powers of D − 4
as

b0 =
μD−4

(4π)D/2
Lb, Lb =

∞∑
n=1

bn
(D − 4)n

, (10-7)

unlike what we did in (9-6) in curved space.

As we can see from the calculation in curved space, the residues bn (n ≥
2) are functions of only the coupling constants, whereas there is a constant

term in the simple pole residue b1 so that it can be decomposed as

b1 = b+ b′1, (10-8)

where b′1 is the part that depends on the coupling constant, while b is just the

number.4

The conformal anomaly or the corresponding Wess-Zumino action, as

described in the previous chapter, is a finite quantity that poles of the renor-

malization factor cancel out with zeros of D − 4 that appear when the ac-

tion is expanded near four dimensions. It is a quantum mechanical quantity

that appears in order to preserve diffeomorphism invariance, and hence it

4 Note that it is different from the coupling constant b in b0 introduced in the previous chapter,

although we use the same symbol here.
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is physically not an anomalous quantity. Especially important one is the

Riegert action (7-4) which is derived from the cancellation of the o(D − 4)
term in the expansion of GD and the simple pole of b0. It gives the kinetic

term of the conformal-factor field at the zeroth order of the coupling con-

stant. For details, see (10-20) in the next section. The fact that quantum

diffeomorphism in the vanishing coupling limit is completed only when the

Riegert action and the Weyl action are combined has already been shown in

Chapters 7 and 8.

It should be noted here that there is a contribution to the constant b that

gives the coefficient of the induced Riegert action from this action itself

through loops of the conformal-factor field. Therefore, in order to resolve

the nested structure and take in such loop contributions systematically in

renormalization calculations, we need a manipulation described below.

First of all, we will calculate by considering the constant b as a new

coupling constant for the time being. At this time, the effective action has

the following structure:

Γ =
μD−4

(4π)D/2

b− bc
D − 4

∫
dDx
√

ĝ Ĝ4 + Γren(α, αt, b),

where Γren is a renormalized finite function. The divergence term remains

only when a curved background is employed, and bc is a constant indepen-

dent of the coupling constant determined from one loop corrections of QED

and the gravitational field, which is given by5

bc =
11nF

360
+

40

9
.

After carrying out all renormalization calculations, we put b = bc and get

the effective action Γren(α, αt, bc). In this way, the renormalizable quantum

gravity is constructed, in which its high energy dynamics is described by the

dimensionless gravitational coupling constant αt only.

Since b appears in front of the Riegert action, quantum loop corrections

by the conformal-factor field will appear in a negative power of b (see (10-

22) in the next section). That is to say that as b increases, the conformal

factor becomes classical. The 1/b expansion corresponds to the so-called

large N expansion which increases the number of matter fields.

5 In general, it is given by bc = (NS + 11NF + 62NA)/360 + 769/180 (7-5), where

NS , NF , and NA are the number of scalars, fermions, and gauge fields with conformal cou-

plings. The last number is the sum of −7/90 and 87/20, which are the corrections from the

gravitational fields φ and hμν , respectively.
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The beta functions for the coupling constants α and αt are defined as

β ≡ μ

α

dα

dμ
= D − 4 + β̄,

βt ≡ μ

αt

dαt

dμ
= D − 4 + β̄t, (10-9)

where the definition of β is the same as (9-8) in the previous chapter. We

have also defined βt according to that definition.6 On the other hand, the

beta function for b is defined as

μ
db

dμ
= (D − 4)β̄b (10-10)

unlike the previous chapter.

Let us first consider a renormalization group equation μdb0/dμ = 0.

Rewrite the μ-differential

μ
d

dμ
= μ

∂

∂μ
+ μ

dα

dμ

∂

∂α
+ μ

dαt

dμ

∂

∂αt
+ μ

db

dμ

∂

∂b
+ · · ·

with (10-9) and (10-10), and Laurent-expand μdb0/dμ with the definition

(10-7) of b0. In order for it to disappear, all expansion coefficients must

vanish, so that a renormalization group equation for the residue bn is ob-

tained as(
α

∂

∂α
+ αt

∂

∂αt
+ β̄b

∂

∂b
+ 1

)
bn+1 +

(
β̄α

∂

∂α
+ β̄tαt

∂

∂αt

)
bn = 0.

Apart from the parts depending on αt and b, this equation returns to the ex-

pression obtained by QED in curved space discussed in the previous chapter.

From a finite part that must disappear, we obtain

β̄b = −
(
∂b1
∂b

)−1(
b1 + α

∂b1
∂α

+ αt
∂b1
∂αt

)
.

If the pole term Lb is decomposed as Lb = b/(D − 4) + L′
b according

to the structure (10-8) of the simple pole b1, it can be also expressed as

β̄b = −b− (D − 4)L′
b − μdL′

b/dμ.

Since the function β̄b is finite, (10-10) indicates that μdb/dμ → 0 at the

limit of D → 4. Hence, it is justified that the coupling constant b is replaced

with the constant bc after finishing all renormalization calculations.

6 It is slightly different from the definition when touched on the beta function of t in the first

section of Chapter 7.
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Parts that depend on the coupling constant α in the simple pole b1 and

the double pole b2 have already been calculated in the previous chapter up

to o(α3) and o(α4), respectively. Here we will use the following results:

b1 = b− n2
F

6

( α

4π

)2
, b2 =

2n3
F

9

( α

4π

)3
. (10-11)

Then we obtain

β̄b = −b+
n2
F

2

( α

4π

)2
. (10-12)

From a renormalization group equation μd(e20/4π)/dμ = 0, we find that

the residue fn of logZ3 satisfies(
α

∂

∂α
+ αt

∂

∂αt
+ β̄b

∂

∂b

)
fn+1 +

(
β̄α

∂

∂α
+ β̄tαt

∂

∂αt

)
fn = 0. (10-13)

The beta function is given by

β̄ = α
∂f1
∂α

+ αt
∂f1
∂αt

+ β̄b
∂f1
∂b

.

The residue gn of logZ−2
t also satisfies similar equations. Each of the

beta functions can be expressed using the renormalization factors as β̄ =
μd(logZ3)/dμ and β̄t = μd(logZ−2

t )/dμ.

In advance, we summarize various results derived from calculations that

will be performed in the later section. The residues f1 and f2 are given by

f1 =
8nF

3

α

4π
+

(
4nF − 16n2

F

27b

)( α

4π

)2
,

f2 = −32n2
F

9

( α

4π

)2
−
(
128n2

F

9
− 160n3

F

81b

)( α

4π

)3
, (10-14)

which are derived from the renormalization factor (10-31) of the gauge field

including ordinary QED loop corrections as well as loop corrections of the

conformal-factor field given by o(1/b), while there is no one-loop o(αt)
correction from the traceless tensor field to f1. Paying attention to β̄b =
−b + o(α2), we can see that the residues f1,2 satisfy the renormalization

group equation (10-13). From the simple pole residue f1, the beta function

of QED is obtained as

β̄ =
8nF

3

α

4π
+

(
8nF − 16n2

F

9

1

b

)( α

4π

)2
. (10-15)
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Replacing b with the constant bc yields the final result. Due to bc > 0, the

gravitational correction term of o(1/bc) gives a negative contribution.

Similarly, from the result (10-30) calculated in the later section, we ob-

tain the beta function of the gravitational coupling constant as

β̄t = −
(
nF

20
+

20

3

)
αt

4π
− 7nF

36

ααt

(4π)2
. (10-16)

Since this becomes negative, we find that the traceless tensor field has an

asymptotically free behavior. This shows that the perturbative expansion

about a conformally flat spacetime is justified.

The thing to note here is that as we use the term asymptotic freedom

according to historical nomenclature, this does not mean that an asymp-

totically free tensor field appears in the ultraviolet limit. Since no cou-

pling constant is introduced in the conformal factor, the conformal fac-

tor remains fluctuating non-perturbatively even in the ultraviolet limit, so

that the background-free world is realized. Thus this technical term simply

means that fluctuations of the traceless tensor field become less significant

than those of the conformal factor. For this reason, ordinary particle picture

where gravitons and other particles propagate as small fluctuations in the flat

spacetime is no longer established. Hence, to distinguish from the asymp-

totic freedom, we call this behavior as the asymptotic background freedom.

On the other hand, the negativity of the beta function indicates the exis-

tence of a new dynamical infrared energy scale ΛQG, as in the case of QCD.

It will be defined later when introducing the running coupling constant. Be-

low this energy scale, the conformally invariant gravitational dynamics dis-

appears and it becomes incorrect to treat the gravitational field separately

into the conformal-factor field and the traceless tensor field. These fields

are tightly coupled together at low energies to act as one gravitational field,

and its dynamics will be dominated by the Einstein-Hilbert action.

Kinetic Terms and Interactions

Renormalization calculations are performed by Laurent-expanding the bare

action S with renomalized quantities. Then, terms with negative power of

D − 4 are set as counterterms for eliminating ultraviolet divergences, and

terms having zero or positive power are treated as kinetic terms and interac-

tion terms.

Let us first describe the gauge field action. When writing the Laurent

expansion of the renormalization factor Z3 − 1 as
∑

n=1 xn/(D − 4)n, the
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bare action of the gauge field is expanded as

1

4

∫
dDx

√
g F0μνF

μν
0 =

1

4
Z3

∫
dDx e(D−4)φFμνFλσ ḡ

μλḡνσ

=
1

4

∫
dDx

{(
1 +

x1

D − 4
+

x2

(D − 4)2
+ · · ·

)
FμνFλσ ḡ

μλḡνσ

+

(
D − 4 + x1 +

x2

D − 4
+ · · ·

)
φFμνFλσ ḡ

μλḡνσ

+
1

2

[
(D − 4)2 + (D − 4)x1 + x2 + · · ·

]
φ2FμνFλσ ḡ

μλḡνσ

+ · · ·
}
, (10-17)

where using the residues f1,2 of logZ3 (10-6), the coefficients x1,2 are ex-

pressed as

x1 = f1, x2 = f2 +
1

2
f2
1 . (10-18)

The renormalized gauge field is given by

Fμν = ∇μAν −∇νAμ = ∂μAν − ∂νAμ.

The first line on the right-hand side of (10-17) gives normal kinetic term

and counterterms of the gauge field. When expanded with the coupling con-

stant t0 and replaced it with the renormalized one through (10-4), interaction

terms with the traceless tensor field and their counterterms appear. The re-

sults of the coefficients f1,2 are given in (10-14) in advance.

The second line gives terms which do not appear in normal quantum

field theory in the flat spacetime, in which φF 2
μν is a Wess-Zumino ac-

tion obtained by integrating the conformal anomaly F 2
μν with respect to the

conformal-factor field. Inversely, if we perform a variation of this action by

the conformal-factor field, the conformal anomaly is produced. This indi-

cates that the conformal anomaly is related to the beta function. The third

line gives terms that yield higher-order conformal anomalies.

In the same way, we can consider the Weyl action. In D dimensions,

terms that depend on the conformal-factor field φ appear as

1

t20

∫
dDx

√
g FD =

1

t20

∫
dDx e(D−4)φ C̄2

μνλσ

=

∫
dDx

[
1

t20
C̄2

μνλσ +
D − 4

t20
φ C̄2

μνλσ + · · ·
]
. (10-19)
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When Laurent expansion is performed by replacing the bare quantities with

the renormalized ones, a kinetic term, interaction terms, and counterterms

are generated, in which interactions like φnC̄2
μνλσ associated with the con-

formal anomalies appear.

Next, we examine the bare action for the Euler density GD (10-1) with

the coefficient (10-2). From the Laurent expansion of the bare constant b0
(10-7) and the expansion (A-10) of the volume integral of GD given in the

fourth section of Appendix A, the bare action is expanded as follows:

b0

∫
dDx

√
g GD =

μD−4

(4π)D/2

∫
dDx

{(
b1

D − 4
+

b2
(D − 4)2

+ · · ·
)
Ḡ4

+

(
b1 +

b2
D − 4

+ · · ·
)(

2φΔ̄4φ+ Ḡ4φ− 2

3
∇̄2R̄φ+

1

18
R̄2

)

+
[
(D − 4)b1 + · · ·](φ2Δ̄4φ+

1

2
Ḡ4φ

2 + 3φ∇̄4φ

+4φR̄μν∇̄μ∇̄νφ− 14

9
φR̄∇̄2φ+

10

9
φ∇̄μR̄∇̄μφ+ · · ·

)

+
[
(D − 4)2b1 + · · ·][1

3
φ3Δ̄4φ+

(
4χ3 − 1

2

)(∇̄μφ∇̄μφ
)2
+ · · ·

]

+ · · ·
}
, (10-20)

where Δ̄4 is defined by

Δ̄4 = ∇̄4 + 2R̄μν∇̄μ∇̄ν − 2

3
R̄∇2 +

1

3
∇̄μR̄∇̄μ,

which is (5-10) introduced in Chapter 5 that becomes conformally invariant

for a scalar in four dimensions when multiplied by
√
ḡ. The first line of

the expansion gives counterterms to eliminate ultraviolet divergences pro-

portional to Ḡ4, which determine the residue bn. The second line gives the

Riegert action SR (7-4) induced by the divergences, we write its finite part

again as

SR =
μD−4

(4π)D/2
b1

∫
dDx

(
2φΔ̄4φ+ Ē4φ+

1

18
R̄2

)
, (10-21)

where Ē4 = Ḡ4 − 2∇̄2R̄/3 (5-9) and an extra term R̄2 is added. This

action gives the kinetic term of the conformal-factor field. The third line
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of the expansion (10-20) gives new self-interactions that become effective

in higher loop calculations. As the coefficients b1,2, we use the values in

(10-11) here.

From the part independent of αt and α of (10-21) when expanded with

the coupling constant t0, the kinetic term of the conformal-factor field is

given as
μD−4

(4π)D/2
2b

∫
dDxφ∂4φ,

where ∂2 = ∂λ∂λ is d’Alembertian in the flat Euclidean background. As

a convention, indices in Euclidean background will be represented by sub-

scripts and the same index will be contracted with the Kronecker delta δμν .

The propagator of the conformal-factor field is then given by

〈φ(k)φ(−k)〉 = μ4−D (4π)D/2

4b

1

k4
. (10-22)

From this expression, it can be seen that loop quantum corrections by the

conformal-factor field will appear in the order of 1/b.
Here, we write out the gravitational interaction terms required for later

calculations in advance. From the third line on the right-hand side of the

expansion (10-20), we obtain a three-point self-interaction of the conformal-

factor field as

S
(D−4)b
G[φφφ] = (D − 4)b

μD−4

(4π)D/2

∫
dDxφ2∂4φ. (10-23)

Note that since D− 4 is multiplied to the whole, this interaction contributes

to ultraviolet divergences in more than two loops. In addition, four-point

self-interactions with (D − 4)2 appear in the fifth line of (10-20).

Expanding the bare action (10-20) further with the coupling constant t,
interaction terms between the conformal-factor field and the traceless tensor

field appear. From the terms ∇̄2R̄φ and R̄2 in the Riegert action SR (10-21),

we obtain two-point interaction terms

Sbt
G[φh] = −bt

μD/2−2

(4π)D/2

∫
dDx

2

3
∂2φ∂μχμ,

Sbt2

G[hh] =
bt2

(4π)D/2

∫
dDx

1

18
∂μχμ∂νχν , (10-24)

where χμ = ∂νhμν . Employing the Landau gauge defined in the next sec-

tion, these two interactions will disappear and the number of Feynman dia-

grams can be reduced considerably.
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From the φΔ̄4φ term, we obtain three- and four-point interactions as

follows:

Sbt
G[φφh] = b

μD−4

(4π)D/2

∫
dDx 2φΔ̄4φ

∣∣∣
o(t)

= bt
μD/2−2

(4π)D/2

∫
dDx

{
4∂μφ∂ν∂

2φ+
8

3
∂μ∂λφ∂ν∂λφ

−4

3
∂λφ∂μ∂ν∂λφ− 4∂μ∂νφ∂

2φ

}
hμν (10-25)

and

Sbt2

G[φφhh] = b
μD−4

(4π)D/2

∫
dDx 2φΔ̄4φ

∣∣∣
o(t2)

=
bt2

(4π)D/2

∫
dDx
{
2∂2φ∂μ∂νφhμλhνλ

+2∂μ∂νφ∂λ∂σφhμνhλσ + terms with ∂h
}
, (10-26)

where the first two terms in Sbt2

G[φφhh] are from ∇̄2φ∇̄2φ. The four-point in-

teractions including derivatives of the traceless tensor field are not depicted

because they give a vanishing contribution to one-loop calculations in the

later section, as in a tadpole diagram (2) in Fig. 10-1.

When calculating two-loop corrections of the cosmological constant, we

further need interaction terms obtained by expanding the third and fourth

lines of (10-20) with t. Besides that, we cannot ignore the terms omitted in

(10-26). For derivations of these interaction terms, see the expansions (A-5)

and (A-6) in the first section of Appendix A.

The action of fermions is conformally invariant in any D dimensions

(see the second section of Appendix A). That is to say that we can always

absorb the conformal-factor field dependence into the fermion field by re-

defining it appropriately.7 When calculating the effective action, it is useful

to rewrite the field so that the conformal-factor field dependence disappears,

because dimensional regularization does not depend on how to choose the

measure. Expanding the bare fermion action up to o(t20) in the flat back-

ground, we obtain∫
dDx iψ̄0D̄/ψ0

7 Rewriting the action in terms of ψ′0 = e(D−1)φ/2ψ0, the conformal-factor field dependence

can be eliminated as
∫
dDx

√
gψ̄0D/ψ0 =

∫
dDx

√
ĝψ̄′0D̄/ψ

′
0. In the text, ψ′0 is written again

as ψ0.
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=

∫
dDx

{
iψ̄0γμ∂μψ0 − i

t0
4

(
ψ̄0γμ∂νψ0 − ∂νψ̄0γμψ0

)
h0μν

+i
t20
16

(
ψ̄0γμ∂νψ0 − ∂νψ̄0γμψ0

)
h0μλh0νλ

+i
t20
16

ψ̄0γμνλψ0h0μσ∂λh0νσ − e0ψ̄0γμψ0A0μ

+
e0t0
2

ψ̄0γμψ0A0νh0μν − e0t
2
0

8
ψ̄0γμψ0A0νh0μλh0νλ

}
, (10-27)

where γμνλ = (1/3!)(γμγνγλ + antisymmetric). Expanding the bare cou-

pling constants e0 and t0 and the bare field ψ0 by their renormalized quan-

tities, we get interaction terms and counterterms.

Gauge-Fixing

From the lowest order of the expansion of the Weyl action (10-19), the ki-

netic term of the traceless tensor field is given by∫
dDx

{
D − 3

D − 2

(
h0μν∂

4h0μν + 2χ0μ∂
2χ0μ

)− D − 3

D − 1
χ0μ∂μ∂νχ0ν

}
,

where χ0μ = ∂λh0λμ.

Let us perform gauge-fixing of the kinetic terms of the traceless tensor

field and the U(1) gauge field. According to procedures of the BRST gauge

fixing, we introduce the following gauge-fixing terms and ghost actions:

Sg.f. =

∫
dDx δB

[
−i c̃0μNμν

(
χ0ν − ζ0

2
B0ν

)
− i c̃0

(
∂μA0μ − ξ0

2
B0

)]
,

where c̃0μ and c̃0 are anti-ghost fields, B0μ and B0 are auxiliary fields. The

differential operator Nμν is symmetric and second order, which is taken as

Nμν =
2(D − 3)

D − 2

(
−2∂2δμν +

D − 2

D − 1
∂μ∂ν

)
,

so that only the first term in the kinetic term above remains when the Feyn-

man gauge defined later is adopted. By assigning a ghost field c0μ to the

diffeomorphism parameter ξμ/t0 as well as assigning a ghost c0 to the U(1)
gauge transformation parameter, the BRST transformations of the traceless

tensor field and the gauge field are given respectively as

δBh0μν = ∂μc0ν + ∂νc0μ − 2

D
δμν∂λc0λ + t0c0λ∂λh0μν
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+
t0
2
h0μλ (∂νc0λ − ∂λc0ν) +

t0
2
h0νλ (∂μc0λ − ∂λc0μ) + · · · ,

δBA0μ = ∂μc0 + t0 (c0λ∂λA0μ +A0λ∂μc0λ) .

The BRST transformation of the conformal-factor field is

δBφ = t0c0λ∂λφ+
t0
D
∂λc0λ.

From nilpotency of the BRST transformation and Grassmannian properties

of the ghost and anti-ghost fields, the BRST transformations of other fields

are given by8

δBc0 = t0c0λ∂λc0,

δBc̃0 = iB0, δBB0 = 0,

δBc0μ = t0c0λ∂λc0μ,

δBc̃0μ = iB0μ, δBB0μ = 0.

Applying the BRST transformation, the gauge-fixing term and the ghost

action are written as

Sg.f. =

∫
dDx

{
B0μNμνχ0ν − ζ0

2
B0μNμνB0ν + ic̃0μNμν∂λ(δBh0νλ)

+B0∂μA0μ − ξ0
2
B2

0 + ic̃0∂μ(δBA0μ)

}
.

Moreover, if the auxiliary fields B0μ and B0 are integrated out, the gauge-

fixing terms become9

∫
dDx

{
1

2ξ0
(∂μA0μ)

2 +
1

2ζ0
χ0μNμνχ0ν

}
. (10-28)

Note here that there is no interaction with the conformal-factor field φ in the

gauge-fixing terms and the ghost actions.

The renormalization factors of the gauge-fixing parameters are defined

as ξ0 = Z3ξ and ζ0 = Zhζ, so that the counterterm for each kinetic term

8 In any background ĝμν , the ghost field is defined by the superscript cμ0 and its subscript is

given by c0μ = ĝμνcν0 (see the second section of Chapter 7). The BRST transformation of the

ghost field is expressed as δBc
μ
0 = t0cν0∇̂νc

μ
0 = t0cν0∂νc

μ
0 from the Grassmannian property,

thus it does not depend on how to choose the background metric.

9 When B0μ is integrated out, a determinant det−1/2(Nμν) appears. If considered in a

curved background as in the background field method, it is necessary to evaluate this determi-

nant.
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is given in the gauge-invariant form because (10-28) is written in the renor-

malized quantities only. We also need to introduce renormalization factors

to the ghost fields.

The equation of motion of the traceless tensor field including the gauge-

fixing term (10-28) is denoted as K
(ζ)
μν,λσ(k)hλσ(k) = 0 in momentum

space, where

K
(ζ)
μν,λσ(k) =

2(D − 3)

D − 2

{
IHμν,λσk

4 +
1− ζ

ζ

[
1

2
k2
(
δμλkνkσ + δνλkμkσ

+δμσkνkλ + δνσkμkλ
)− 1

D − 1
k2
(
δμνkλkσ + δλσkμkν

)
+

1

D(D − 1)
δμνδλσk

4 − D − 2

D − 1
kμkνkλkσ

]}

and IH is a projection tensor

IHμν,λσ =
1

2
(δμλδνσ + δμσδνλ)− 1

D
δμνδλσ

which satisfies (IH)2 = IH. The propagator is given by its inverse defined

as K
(ζ)
μν,λσ(k)〈hλσ(k)hρκ(−k)〉 = IHμν,ρκ, which is expressed as

〈hμν(k)hλσ(−k)〉 = D − 2

2(D − 3)

1

k4
I
(ζ)
μν,λσ(k). (10-29)

Reflecting symmetric and traceless properties of the field, the tensor in the

numerator is given by

I
(ζ)
μν,λσ(k) = IHμν,λσ + (ζ − 1)

[
1

2

(
δμλ

kνkσ
k2

+ δνσ
kμkλ
k2

+ δμσ
kνkλ
k2

+δνλ
kμkσ
k2

)
− 1

D − 1

(
δμν

kλkσ
k2

+ δλσ
kμkν
k2

)

+
1

D(D − 1)
δμνδλσ − D − 2

D − 1

kμkνkλkσ
k4

]
.

This reduces to a simple form of only the projection tensor when ζ = 1. We

call this choice the Feynman gauge. Also, the transverse condition is given

by

kμI
(ζ)
μν,λσ(k) = ζ

(
1

2
kλδνσ +

1

2
kσδνλ − 1

D
kνδλσ

)
,

and thus it becomes kμI
(0)
μν,λσ(k) = 0 when ζ = 0. This choice is called the

Landau gauge.
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Calculations of Renormalization Factors

In this section, we will describe renormalization of ultraviolet divergences

by showing various concrete calculations. As can be seen below, in the

renormalizable quantum gravity, loop expansion does not become the �-

expansion. This can be seen from the fact that the Riegert action, which is

the kinetic term of the conformal-factor field, appears as a quantum effect.

As mentioned earlier, it also originates from the fact that the fourth-order

gravitational actions in four dimensions including the Weyl action are com-

pletely dimensionless functions given by the zeroth order of �.

In order to handle infrared divergences, we regularize them by adding

an infinitesimal mass z (	 1) to the gravitational field. In other words, the

momentum dependence of the denominators of the propagators of φ (10-22)

and hμν (10-29) is replaced as

1

k4
→ 1

k4z
=

1

(k2 + z2)2
.

Infrared divergences then appear in the form of log z2. This is the same

way as introducing a photon mass when dealing with infrared divergences

in QED. Since this mass term is not gauge-invariant, the infrared divergence

finally shall cancel out and disappear.10

Here it is noted that the Einstein term and the cosmological term cannot

be regarded as mass terms of the fourth-order gravitational field. In the

fourth-order derivative actions, the φ-dependences appear as polynomials in

the expansion of the coupling constant t, while these lower derivative actions

have a exponential factor of φ even at the vanishing limit of t. Since these

lower derivative actions become diffeomorphism invariant with including

this conformal factor, mass terms defined by a quadratic term of the field

are not gauge-invariant. In addition, it is suggested that the presence of

the conformal factor renders dependency of mass parameters such as the

Planck mass a power-law. Renormalization of such composite fields will be

discussed in the penultimate section.

In the following, calculations will be carried out by taking the spacetime

dimension as

D = 4− 2ε.

The propagators of the conformal-factor field φ and the traceless tensor field

hμν are described by solid and spiral lines, respectively. The U(1) gauge

10 By checking that the infrared divergences actually cancel out, we can confirm that calcula-

tions are going successfully in the diffeomorphism invariant way.
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field, namely photon is represented by a wavy line. The fermion is a dotted

line with an arrow. Because loop calculations including the gravitational

field are very complicated, in most cases we will write only the results.

Non-renormalization theorem (I) We first calculate corrections of

the order of αt = t2/4π for two-point functions of the conformal-factor

field given by Feynman diagrams in Fig. 10-1, and show that this field does

not actually receive renormalization.

bt bt

(1)

bt
2

(2)

Figure 10-1: Loop corrections to the conformal-factor field at o(αt).

Corrections from the diagram (1) in Fig. 10-1 are calculated using the

interaction term Sbt
G[φφh] (10-25) in the Feynman gauge (ζ = 1) as∫

dDk

(2π)D
φ(k)φ(−k)

{
− D − 2

2(D − 3)

b

6

t2

(4π)D/2

∫
dDl

(2π)D
1

l4z(l + k)4z

×
[
6(l2k6 + l6k2) + 24l4k4 − 16(l · k)(l2k4 + l4k2)

−20(l · k)2l2k2 − 2(l · k)2(l4 + k4) + 8(l · k)3(l2 + k2) + 8(l · k)4

+
4−D

3D

(
−36l4k4 + 24(l · k)(l2k4 + l4k2) + 40(l · k)2l2k2

−4(l · k)2(l4 + k4)− 16(l · k)3(l2 + k2)− 16(l · k)4
)]}

.

Evaluating the momentum integral of l with the condition of z 	 1 using

integral formulas in the first section of Appendix D, the inside the braces is

calculated as11

μD−4

(4π)D/2
2bk4

[
−3

αt

4π

(
1

ε̄
− log

z2

μ2
+

7

6

)]
,

11 The infrared divergence is rewritten in the form of log(z2/μ2) with attention to 1 =
μD−4μ4−D ∼= μD−4(1 + ε log μ2).
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where 1/ε̄ = 1/ε− γ+ log 4π. In this case, nonlocal terms like log(k2/μ2)
are canceled out and do not appear.

Corrections from the tadpole diagram (2) in Fig. 10-1 can be calcu-

lated easily using the interaction Sbt2

G[φφhh] (10-26). Here, note that unlike

second-order derivative theories, fourth-order derivative theories have ul-

traviolet divergences even in such tadpole diagrams. Since contributions

from interaction terms involving derivatives of hμν disappear at z → 0 af-

ter carrying out the momentum integration, only the two terms described in

(10-26) contribute. Thus, we obtain

μD−4

(4π)D/2
2bk4

[
3
αt

4π

(
1

ε̄
− log

z2

μ2
+

7

12

)]
.

Combining the corrections from these two Feynman diagrams, we can

see that not only the ultraviolet divergences but also the infrared divergences

cancel each other. Thus, Zφ = 1 (10-5) is shown at o(αt).
The calculation has been done in arbitrary gauge, and we finally obtain

the following finite correction:

αt

4π

[
−7

4
+

1

3
(ζ − 1)

]
μD−4

(4π)D/2
2b

∫
dDk

(2π)D
φ(k)k4φ(−k).

Renormalization for traceless tensor field In order to determine the

renormalization factor of the traceless tensor field, it is necessary to calcu-

late two-point and three-point functions as in Fig. 10-2. In the counterterm

for the Weyl action, there are two- and three-point functions of the traceless

tensor field, but in the countertrem proportional to Ḡ4 that is necessary for

determining the residue bn, there are only three-point functions or more.12

As an example of calculations for two-point functions of the traceless

tensor field, consider a one-loop correction in Fig. 10-3 in which the fermion

propagates inside. From the interaction (10-27), it is calculated as13

μ4−D

32
t2
∫

dDk

(2π)D
hμν(k)hλσ(−k)

∫
dDp

(2π)D
1

p2(p+ k)2

12 In the flat background, the o(h2) term of Ḡ4 becomes a total divergence in any dimension

(see (A-4) in the first section of Appendix A).

13 The form of conformal anomaly F4 + 2∇2R/3 initially introduced by Duff is determined

by performing a conformal variation to the effective action obtained when written in terms

of the four-dimensional nonlocal Weyl action and the local R2 action after eliminating the

divergence from this expression. Actually, however, it is correct to include the last term in the

D-dimensional Weyl action, not in R2.
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(1) (2)

Figure 10-2: Loop corrections to two- and three-point functions by the traceless

tensor field.

×tr(γαγμγβγλ) pα(p+ k)β(2p+ k)ν(2p+ k)σ

=
αt

4π

∫
dDk

(2π)D
hμν(k)hλσ(−k)

{
− 1

40

(
1

2
δμλδνσk

4 − δμλkνkσk
2

+
1

3
kμkνkλkσ

)(
1

ε̄
− log

k2

μ2
+

12

5

)
+

1

360
kμkνkλkσ

}
.

Writing this with the D-dimensional expression of the Weyl action, we get14

αt

4π

∫
dDk

(2π)D
hμν(k)hλσ(−k)

{
− 1

40

(
1

ε̄
− log

k2

μ2
+

17

5

)

×
[
D − 3

D − 2

(
δμλδνσk

4 − 2δμλkνkσk
2
)
+

D − 3

D − 1
kμkνkλkσ

]}
.

In order to cancel out the ultraviolet divergence, the renormalization factor

of the traceless tensor field defined by (10-3) is determined as

Zh = 1 +
1

40

αt

4π

1

ε
.

In the case of the diagram in which fermions propagate inside, since the

result is independent of the gauge choice, the relation ZtZ
1/2
h = 1 repre-

senting the gauge invariance holds. Using this relation, the fermion one-loop

contribution to Zt is determined to be −(1/80)(αt/4π)(1/ε).
Similarly, we can calculate two-point functions in which the conformal-

factor field propagates inside. Feynman diagrams which may cause ultravi-

olet divergences are given in Fig. 10-4, in which the three- and four-point

14 The quantity obtained by applying hμν(k)hλσ(−k) to the momentum function inside the

square brackets is hμν(k)hλσ(−k)Aμν,λσ(k)/8 when using (9-20).
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Figure 10-3: Loop corrections by the fermion.

interactions Sbt
G[φφh] (10-25) and Sbt2

G[φφhh] (10-26) contribute. However,

since there is always a derivative on the conformal-factor field in the four-

point interaction, the tadpole diagram (2) disappears. Contributions from

the diagram (1), when writing only the results, are expressed in the form of

the D-dimensional Weyl action with

αt

4π

1

30

(
1

ε̄
− log

k2

μ2
+

289

60

)
,

as in the case of the fermion. Infrared divergences are canceled out within

the calculation of the diagram (1). From this, the contribution to Zh be-

comes (−1/30)(αt/4π)(1/ε). Since the gauge-invariance relation Zt =

Z
−1/2
h is established in this case as well, the contribution to Zt can be cal-

culated as (1/60)(αt/4π)(1/ε).

(1) (2)

Figure 10-4: Loop corrections by the conformal-factor field.

In general, it is difficult to calculate the renormalization factor of the

traceless tensor field. One-loop corrections from diagrams in which the

traceless tensor field propagates inside have been calculated by using the

background field method15 which is often used in renormalization of non-

Abelian gauge fields or the gravitational field. Here write only the results,

15 For the background field method, see L. Abbott, The Background Field Method Beyond One
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the coupling constant renormalization factor defined by (10-4) is given by

Zt = 1−
(
nF

80
+

5

3

)
αt

4π

1

ε
− 7nF

288

ααt

(4π)2
1

ε
+ o(α2

t ). (10-30)

The contribution of o(αt) is yielded by the sum of −nF /80, −1/40, 1/60,

and −199/120 from the fermion, the U(1) gauge field and its ghost field,

the conformal-factor field, and the traceless tensor field and its ghost field,

respectively. The contribution of o(ααt) is from two-loop Feynman dia-

grams in which only the fermion and the gauge field propagate inside. From

this result, the beta function of the coupling constant αt is determined as

(10-16).

Here, we give a little explanation on the background field method. In this

method, if defining the renormalization factor Zĥ as ĥ0μν = Z
1/2

ĥ
ĥμν for

the background field ĝμν = (et0ĥ0)μν , the relation ZtZ
1/2

ĥ
= 1 holds at all

orders as a gauge invariance condition so that the product t0ĥ0μν becomes a

renormalized quantity. Thus, an advantage of the background field method

is that although the normal renormalization factor Zh is gauge-dependent,

the background field renormalization factor Zĥ becomes gauge-invariant ob-

viously. Therefore, we can obtain Zt by calculating Zĥ. In this way, the

one-loop correction in (10-30) has been calculated.

Non-renormalization theorem (II) From the calculation of the two-

point function of the conformal-factor field φ, it has already been shown that

this field does not receive renormalization at o(αt). Here, using the result of

the previous chapter, we demonstrate that Zφ = 1 (10-5) holds up to o(α3).
First of all, we can easily find that two-point functions of φ at o(α) are

obviously finite from the order of the induced interaction φF 2
μν in (10-17)

that contributes to the calculations.

Next, consider quantum corrections of o(α2), whose Feynman diagrams

are given in Fig. 10-5. The three-point interaction with nF e
2 is derived from

the residue x1 = (8nF /3)(α/4π). The part written as “2lp” in the circle de-

notes the ordinary two-loop photon self-energy diagram in QED. Diagrams

that include counterterms as a part in order to eliminate divergences in sub-

diagrams are not depicted for the sake of simplicity. At o(α2), there is no

counterterm other than that prepared for subdiagrams. It is because since the

double pole reside b2 appears at o(α3) as shown before, a simple pole coun-

Loop, Nucl. Phys. B185 (1981) 189. For applications to the gravitational field, see E. Fradkin

and A. Tseytlin, Nucl. Phys. B201 (1982) 469; I. Antoniadis, P. Mazur and E. Mottola, Nucl.

Phys. B388 (1992) 627; K. Hamada and F. Sugino, Nucl. Phys. B553 (1999) 283 and so on

listed in Bibliography.
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nFe
2

nF e
2

(1)

ε
nF e

2

(2)

ε ε

(3)

ε ε

(4)

2lp

ε ε

(5)

ε ε

(6)

ε ε

(7)

Figure 10-5: Loop corrections to the conformal-factor field at o(α2).

terterm eliminating an entire ultraviolet divergence of the two-point function

appears at o(α3) as seen from the Laurent expansion (10-20) of GD.

Regarding each Feynman diagram in Fig. 10-5, the diagram (5) is obvi-

ously finite because the two-loop photon self-energy diagram produces only

a simple pole divergence which cancels out the ε present at the vertex of

φ. Moreover, since the four-point function of photons including a fermion

loop is finite, (6) and (7) also become finite. Therefore, diagrams in which

a simple pole divergence occurs are from (1) to (4). Summing over these

divergences yields a finite result.

In o(α3) as well, we can demonstrate Zφ = 1 using the results in the

previous chapter. The part to be noted in the calculation of o(α3) is that, as

already mentioned, since the double pole residue b2 has a value at this order,

a simple pole counterterm appears in the kinetic term of the conformal-

factor field.

Ward-Takahashi identity The renormalization factor of the fermion

field at o(αt) is calculated from self-energy diagrams in Fig. 10-6. In the

Feynman gauge, it is given by

Z2 = 1− 21

64

αt

4π

1

ε
.

Contributions of o(αt) to the vertex-function renormalization factor Z1 are

given by Fig. 10-7. By studying the relationship between them, we will
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show that the Ward-Takahashi identity Z1 = Z2 holds even if gravitational

internal lines are included.

t t

(1)

t
2

(2)

Figure 10-6: Loop corrections to Z2 at o(αt).

Let us examine the self-energy function derived from (1) in Fig. 10-6.

Ignoring an overall coefficient for simplicity, it is given by

Σ(1) = γμ
1

k/+ p/
γλ

1

k4
IHμν,λσ(k + 2p)ν(k + 2p)σ,

where p is a momentum of the external fermion field and k is a momentum

of the internal traceless tensor field. Since the momentum dependence of k+
2p arises from the gravitational interaction (10-27), a derivative of the self-

energy function by the external momentum p is affected by this dependence,

unlike the Ward-Takahashi identity in ordinary QED. Thus we obtain

∂

∂pρ
Σ(1) = −γμ

1

k/+ p/
γρ

1

k/+ p/
γλ

1

k4
IHμν,λσ(k + 2p)ν(k + 2p)σ

+γμ
1

k/+ p/
γλ

1

k4
IHμν,λσ

{
2δνρ(k + 2p)σ + 2δσρ(k + 2p)ν

}
.

The first term on the right-hand side corresponds to the diagram (1) in Fig.

10-7 in which momenta of external photons are taken to be zero. The second

term corresponds to the sum of (2) and (3) in Fig. 10-7.

When the same operation is performed for the tadpole diagram (2) in

Fig. 10-6, we can see that a term corresponding to the diagram (4) in Fig.

10-7 is produced. This reflects the fact that the interaction ψ̄γμψAν(h
n)μν

in (10-27) can be generated by applying a replacement pν → pν−eAν to the

interaction ψ̄γμpνψ(h
n)μν . On the other hand, for other interaction terms

including derivatives of the traceless tensor field in (10-27), the differential

operator of p passes through them.
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Figure 10-7: Loop correction to the vertex function renormalization factor Z1 at

o(αt).

The diagrams from (5) to (7) in Fig. 10-7 which have no correspondence

to those in Fig. 10-6 do not involve ultraviolet divergences. Furthermore,

when momenta of external photons are taken to be zero, it can be seen that

these contributions disappear due to gauge symmetry. In this way, we can

show that the Ward-Takahashi identity Z1 = Z2 holds at o(αt).

In general, if vertex function corrections have external photons coming

from gravitational interactions of the type φnFF or hnFF such as (5) to

(7) in Fig. 10-7, they disappear when external photon momenta vanish be-

cause photon fields appear in the form Fμν . Furthermore, as vertex function

corrections which cannot be generated by the operation mentioned above,

we need to consider diagrams such as (1) and (2) in Fig. 10-8 in which

an external photon is directly connected to an internal closed fermion loop.

In order that the Ward-Takahashi identity holds at all orders, they have to

disappear when the external photon momentum vanishes.

The disappearance of vertex functions of the type (1) in Fig. 10-8 can be

easily seen by using a generalized Furry’s theorem: a fermion loop diagram

with odd number of attached photons disappears regardless of the number

of attached gravitational fields. It can be shown from the fact that when the

charge conjugation is taken, photons change sign, but gravitational fields do

not change. On the other hand, vertex functions of the type (2) in Fig. 10-8

do not vanish obviously, but the external photon field appears in the form
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of Fμν after all because of gauge invariance. Therefore, it also disappears

when the momentum is set to zero. In this way, Z1 = Z2 can be shown.

(1) (2)

Figure 10-8: Examples of vertex function corrections in which an external photon

is attached to an internal closed fermion loop.

Renormalization of gauge field Let us calculate corrections to the

renormalization factor Z3 by the gravitational interactions. Contributions

of o(αt) where the traceless tensor field propagates inside are given by two

Feynman diagrams in Fig. 10-9. Because ultraviolet divergences from the

self-energy diagram (1) and the tadpole diagram (2) cancel each other, it is

found that the correction at this order becomes finite.

t t

(1)

t
2

(2)

Figure 10-9: Loop corrections to Z3 at o(αt).

Feynman diagrams in which the conformal-factor field propagates in-

side appear from o(α2/b). Among them, diagrams where simple poles oc-

cur are only three, given in Fig. 10-10. As mentioned earlier, Feynman

diagrams including the two-loop QED photon self-energy diagram that only

gives a simple pole are not depicted here because they become finite obvi-

ously. In addition, Feynman diagrams that generate a double pole at o(α3/b)
are given in Fig. 10-11.
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nF e
2

nFe
2

(1)

ε
nF e

2

(2)

ε ε

(3)

Figure 10-10: Feynman diagrams that yield a simple pole to Z3 at o(α2/b).

nF e
2

nFe
2

(1)

ε
nF e

2

(2)

ε ε

(3)

Figure 10-11: Feynman diagrams that yield a double pole to Z3 at o(α3/b).

Adding contributions from these Feynman diagrams to normal QED cor-

rections, we obtain the following renormalization factor:

Z3 = 1− 4nF

3

α

4π

1

ε
+

(
−2nF +

8

27

n2
F

b

)
α2

(4π)2
1

ε

+

(
−8n2

F

9
+

8

81

n3
F

b

)
α3

(4π)3
1

ε2
+ o(ααt, α

2
t ). (10-31)

From this result, we can read the residues f1,2 (10-14), and the beta function

is calculated as (10-15).

Non-renormalization theorem (III) [vertex function] Furthermore,

we calculate vertex functions of the type φF 2
μν , and demonstrate that they

can be renormalized by Zφ = 1, namely only information of Z3.

Since the double pole in the renormalization factor Z3 occurs at o(α3),
we find that a simple pole counterterm of the type φF 2

μν is derived at o(α3)
from the Laurent expansion (10-17). Therefore, Feynman diagrams that

produce ultraviolet divergences appear from this order.

Let us first consider the case where only the QED fields propagate in-

side. For simplicity, we perform the calculation by taking a momentum of

the conformal-factor field to be zero. Feynman diagrams where ultravio-

let divergences occur are depicted in Fig. 10-12. The diagrams (1) and

(2) are derived by attaching the vertex nF e
2φF 2

μν to the two-loop photon
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nF e
2

(1)

nF e
2

(2)

ε

(3)

ε

(4) (5)

Figure 10-12: Loop corrections to the vertex function φF 2
μν at o(α3).

self-energy diagrams in QED. Since the two-loop photon self-energy gives

a simple pole, the sum of these diagrams also gives a simple pole.

The diagrams (3) and (4) in Fig. 10-12 are derived by attaching the

vertex εφF 2
μν to the three-loop photon self-energy diagrams in QED. Since

it is known that the three-loop self-energy diagrams that have two fermion

loops are known to give at most a double pole, we find that the sum of these

diagrams also gives a simple pole due to the ε at the vertex. The last diagram

(5) is a simple pole counterterm that appears in the Laurent expansion (10-

17) associated with the double pole of Z3.

In addition, there are Feynman diagrams derived by attaching the vertex

εφF 2
μν to the three-loop photon self-energy diagrams with one fermion loop.

However, the sum of such diagrams becomes finite obviously because the

sum of the three-loop photon self-energy diagrams with one fermion loop

produces at most a simple pole so that the ε at the vertex cancels out the

pole. Therefore, such diagrams are omitted here.

Summing over ultraviolet divergences from these diagrams, we can show

that the renormalized vertex function becomes finite as follows:

ΓφAA
μν (0; k,−k)|divo(α3)=

1

ε

{
−8

3
+

16

9
+

8

9

}
n2
F

( α

4π

)3(
δμνk

2− kμkν
)
= 0,
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where the effective action is normalized as

Γ =

∫
dDk

(2π)D
dDl

(2π)D
φ(−k − l)Aμ(k)Aν(l) Γ

φAA
μν (−k − l; k, l).

The first −8/3 is from the sum of (1) and (2) in Fig. 10-12, the second term

16/9 is from (3) and (4), and the last 8/9 is from the counterterm (5).

Finally, consider renormalization of the vertex function at o(α3/b) where

the conformal-factor field propagates inside. Feynman diagrams where ul-

traviolet divergences occur are drawn in Fig. 10-13. There are other Feyn-

man diagrams including the two- and three-loop photon self-energy dia-

grams, but they become obviously finite, and thus they are not depicted.

In the diagrams with internal lines of the conformal-factor field, there are

contributions from the three-point self-interaction S
(D−4)b
G[φφφ] (10-23) and the

interaction of the type φ2F 2
μν . Therefore, it becomes non-trivial verification

of the action GD (10-20) and the Laurent expansion of the gauge field ac-

tion (10-17). Combining all of the contributions from Fig. 10-13, ultraviolet

divergences cancel out and the effective action becomes finite as follows:

ΓφAA
μν (0; k,−k)|divo(α3/b)=

1

ε

{
− 8

81
+

16

81
− 8

81

}
n3
F

b

( α

4π

)3(
δμνk

2− kμkν
)

= 0,

where the first term is from the sum of (1) to (3) in Fig. 10-13, and the

second term is from the sum of (10) to (13). The third term is the contribu-

tion from (14), which is a simple pole counterterm induced from the double

pole of Z3 at o(α3/b). The sum of ultraviolet divergences from (4) to (9)

becomes finite.
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2
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ε
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nFe
2
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nF e
2
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ε

ε

nF e
2

(6)

ε

ε
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2
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ε
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ε

(8)

ε

ε

ε
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ε
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Figure 10-13: Loop corrections to the vertex function φF 2
μν at o(α3/b).

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



214 Chapter Ten

Background-Metric Independence Revisited

The background-metric independence is realized by treating the conformal-

factor field φ non-perturbatively. In fact, a conformal change of the back-

ground metric ĝμν → e2σ ĝμν is equivalent to a shift transformation of the

conformal-factor field φ → φ + σ. The shift is merely a change of integra-

tion variables, thus the independence is expressed as an invariance under the

shift of the path integral measure. This means that the background-metric

independence is a purely quantum mechanical symmetry that does not exist

in the classical theory.

With this shift invariance, the background-metric independence can be

expressed as ∫
dφ

δ

δφ(y)

(
O(x)e−S

)
= 0.

Given
√
gΘ = δS/δφ as an operator O, we get

〈√gΘ(x)
√
gΘ(y)〉 −

〈
δ
√
gΘ(x)

δφ(y)

〉
= 0, (10-32)

where Θ = ΘA+Θψ+Θg is the trace of the energy-momentum tensor. Each

term is given by ΘA = (D − 4)F0μνF
μν
0 /4, Θψ = (D − 1)

∑nF

j=1 iψ̄0j

↔
D/

ψ0j , and Θg = (D − 4)(C2
μνλσ/t

2
0 + b0ED). Here, it is significant that

the right-hand side of (10-32) vanishes, unlike the case in curved space dis-

cussed in the previous chapter.

Let us see that the equation (10-32) actually holds with attention to the

role of the conformal-factor field φ. First, we will confirm it directly by

performing calculations on the flat background. Expanding
√
gΘ with D −

4, the gauge field part is given by

√
gΘA = (D − 4)Z3

1

4
e(D−4)φFμνFμν

=
D − 4

4

[
1 +

f1
D − 4

+ (D − 4 + f1)φ+ · · ·
]
FμνFμν , (10-33)

and the gravitational part that depends on b is given by

√
gΘg =

μD−4

(4π)D/2

{
4b∂4φ+ (D − 4)b

[
2φ∂4φ+ ∂4(φ2)

]
+(D − 4)2b

[
φ2∂4φ+

1

3
∂4(φ3)

−2 (8χ3 − 1) ∂λ (∂λφ∂σφ∂σφ)

]
+ · · ·

}
. (10-34)
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In these expansions, interactions with the traceless tensor field are omitted.

The gravitational part derived from the Weyl action is also given by (D −
4)e(D−4)φC̄2

μνλσ/t
2
0. This part is difficult to handle because it involves self-

interactions of the traceless tensor field, but since it has a structure similar

to (10-33), we will be able to infer the behavior of this part from the gauge

field part discussed below.

(1) (2)

Figure 10-14: Tree diagrams indicating the background-metric independence.

For each order, we specifically demonstrate that the equation (10-32)

holds. A contribution of o(b) of the two-point correlation function of
√
gΘ

is given by the tree diagram (1) in Fig. 10-14, where
√
gΘ is denoted by a

double line. From the first term of the expansion (10-34), it is easily calcu-

lated as 4bμD−4k4/(4π)D/2 using the propagator (10-22). The second term

of (10-32) represented by the diagram (2) in Fig. 10-14 can be calculated

from the first term in (10-34) as well, which cancels out the contribution

from the diagram (1), and thus the equation holds at o(b).

Figure 10-15: Feynman diagrams representing the background-metric indepen-

dence at o(1) and o(α) with internal lines of the QED fields.

Moreover, we can show that (10-32) holds at o(1) and o(α) using the

expansion (10-34) and the interaction (10-20), as in Figs. 10-15 and 10-16.

The last tadpole diagram in Fig. 10-16 represents a contribution from the

second term of (10-32), in which there is no contribution of o(α). This is

consistent with the result (10-11) that there is no o(α) term in the residue b1.

For each order considered here, the equation holds regardless of the value
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Figure 10-16: Feynman diagrams representing the background-metric indepen-

dence at o(1) with internal lines of the conformal-factor field.

of χ3.

Finally, we show in a more obvious way that the equation (10-32) rep-

resents the background-metric independence. Consider the trace of an-

other energy-momentum tensor
√
ĝΘ̂ = δS/δσ which is yielded by do-

ing a variation of the action with respect to the background metric, where

δ/δσ = 2ĝμνδ/δĝμν . Since the change in φ can be expressed as a change in

σ in quantities written in terms of the original metric gμν , the relationship√
ĝΘ̂ =

√
gΘ is established, except for parts derived from the gauge-fixing

term. Therefore, taking gauge invariance into account, (10-32) can be ex-

pressed in terms of the σ-variation as δ2〈1〉/δσ(x)δσ(y) = 0, because the

variation by the background metric can be put outside the correlation func-

tion. In this way, we can show that the partition function does not depend

on how to choose the background σ.

Diffeomorphism Invariant Effective Actions

In this section, from considerations of the effective action, we will see that

the Wess-Zumino action associated with conformal anomaly comes out to

ensure diffeomorphism invariance.

We first describe the relationship between conformal anomaly and the

beta function in QED again. Carrying out renormalization, a scale ap-

pears in the effective action through a non-local term that takes the form

of log(k2/μ2) in momentum space.

The effective action of QED including a dependence of the conformal-
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factor field is given as

ΓQED =

{
1− β̄

2
log

(
k2

μ2

)
+ x1φ+ 4nF

α2

(4π)2
φ

}
1

4
F̄ 2
μν(k).

The third term on the right-hand side is the Wess-Zumino action induced

by the residue x1. The fourth term is a finite contribution coming from

diagrams in Fig. 10-17. Since the two-loop photon self-energy has only a

simple pole, it becomes finite by the cancellation of the pole and the ε at the

vertex. For simplicity, we are considering only the zero-mode part of φ here.

Performing the φ-variation of the effective action, the conformal anomaly is

found and its coefficient is proportional to the beta function as

δφΓQED =

(
x1 + 4nF

α2

(4π)2

)
1

4

√
gF 2

μν = β̄
1

4

√
gF 2

μν .

This is the equation of the conformal anomaly obtained in the previous chap-

ter. Note that the coefficient of the o(α2) term in β̄ is twice that of the

residue x1.

Figure 10-17: Finite loop corrections to the vertex function φF 2
μν at o(α2).

Recall that the momentum squared is defined by k2 (= kμkνδ
μν) in the

flat background. Here we introduce a physical momentum squared defined

on the full metric gμν (= e2φδμν) as

k2phy =
k2

e2φ
. (10-35)

By using this, the effective action can be written as a diffeomorphism in-

variant form

ΓQED =

{
1− β̄

2
log

(
k2phy
μ2

)}
1

4

√
gF 2

μν .

Thus, conformal anomalies are quantities in accompany with the scale

that appears in the process of renormalization, and the Wess-Zumino actions
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occur to make non-local terms diffeomorphism invariant. Consequently,

conformal anomalies are physically indispensable ingredients to preserve

diffeomorphism invariance, unlike usual gauge anomalies. The interaction

of the type φnF 2
μν will correspond to a nonlocal term logn(k2/μ2) associ-

ated with higher order corrections.

The same holds true for the Weyl action. The non-local term log(k2/μ2)
and the Wess-Zumino action φC2

μνλσ are generated with carrying out renor-

malization. Letting the beta function be β̄t = −8πβ0αt (β0 > 0),16 the

effective action is given by

ΓW =

{
1

t2
− 2β0φ+ β0 log

(
k2

μ2

)}
C̄2

μνλσ

=
1

t̃2(k2phy)

√
gC2

μνλσ.

The function t̃(k2phy), which puts together the inside the braces, is the run-

ning coupling constant expressed as

t̃2(k2phy) =
1

β0 log(k2phy/Λ
2
QG)

, (10-36)

where k2phs is the physical momentum squared (10-35). The dynamical in-

frared energy scale is defined as ΛQG = μ exp{−1/(2β0t
2)}. This is a

physical scale which is renormalization group invariant as μdΛQG/dμ = 0.

The Wess-Zumino action of the type φnC2
μνλσ will correspond to the non-

local term logn(k2/μ2) as well.

Next, we derive a diffeomorphism invariant effective action which pro-

duces the conformal anomaly E4. Consider the effective action that occurs

together with the simple pole divergence of the residue b1 proportional to

the Euler density Ḡ4. Since Ḡ4 does not have quadratic terms, Feynman

diagrams to determine it are given by three-point functions of the traceless

tensor field, and the form of their finite parts will be

WG(ḡ) =
bc

(4π)2

∫
d4x

{
1

8
Ē4

1

Δ̄4
Ē4 − 1

18
R̄2

}

at the lowest order of b1. The term proportional to R̄2 guarantees that WG

does not have quadratic terms of the traceless tensor field when it expands

in the flat background.

16 The coefficient β0 is that when the beta function is defined as μdt/dμ = −β0t3 + o(t5).
This convention is used in Chapters 7, 12, and 14.
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The effective action is given by the sum of the Riegert action SR (10-21)

and this finite part WG, and is expressed as

ΓR = SR(φ, ḡ) +WG(ḡ) =
bc

8(4π)2

∫
d4x

√
g E4

1

Δ4
E4.

The R̄2 terms cancel out, thus it becomes a diffeomorphism invariant form.

In this way, the scale-invariant non-local Riegert action (5-16) given in

Chapter 5 is obtained.

Furthermore, consider the case where in the coefficient b1 of the Riegert

action there are higher order corrections that depend on the coupling con-

stant t. If we replace t with the running coupling constant and expand it

like t̃2(k2phy) = t2 + 2β0t
4φ − β0t

4 log(k2/μ2) + · · ·, we find from its

φ-dependence that the φ2Δ̄4φ term is generated. This suggests that the

φnΔ̄4φ (n ≥ 2) term appears so as to ensure that the coupling constant can

be replaced with the running coupling constant in the effective action.

Renormalization of Mass Parameters

Renormalization calculations for the Einstein term and the cosmological

term are performed, and anomalous dimensions of the Planck mass and the

cosmological constant are derived here.

Since the conformal-factor field φ is strictly handled without introduc-

ing its own coupling constant, the cosmological term is expressed by its

exponential as

SΛ = Λ0

∫
dDx

√
g = Λ0

∫
dDx eDφ.

The Einstein-Hilbert action is expanded up to o(h2) as follows:

SEH = −M2
0

2

∫
dDx

√
g R

= −M2
0

2

∫
dDx e(D−2)φ

{
R̄− (D − 1)∇̄2φ

}

=
3

2
M2

0

∫
dDx e(D−2)φ

{
D − 1

3
∂2φ

+
D − 2

3
t0h0μν

(
−∂μ∂νφ+ ∂μφ∂νφ

)
+
D − 1

6
t20h0μλh0νλ∂μ∂νφ+

D − 1

6
t20h0μν∂μh0νλ∂λφ
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−D − 3

6
t20h0μνχ0μ∂νφ+

t20
12

∂λh0μν∂λh0μν − t20
6
χ0μχ0μ

}
.

(10-37)

Recall that the conformal-factor field is not renormalized, namely Zφ =
1. Therefore, renormalization can be done by replacing the bare Planck

mass and the bare cosmological constant with

M2
0 = μD−4ZEHM

2,

Λ0 = μD−4ZΛ

(
Λ + LMM4

)
,

where M is a renormalized Planck mass with dimension 1 and Λ is a renor-

malized cosmological constant with dimension 4. Their renormalization

factors are denoted by ZEH and ZΛ, while LM is a term with only poles.

An anomalous dimension of the Planck mass squared is defined by

γEH ≡ − μ

M2

dM2

dμ
= D − 4 + γ̄EH,

where γ̄EH = μd(logZEH)dμ. An anomalous dimension of the cosmologi-

cal constant is defined by

γΛ ≡ −μ

Λ

dΛ

dμ
= D − 4 + γ̄Λ +

M4

Λ
δ̄Λ, (10-38)

where γ̄Λ = μd(logZΛ)dμ and

δ̄Λ = μ
dLM

dμ
− (D − 4)LM + (γ̄Λ − 2γ̄EH)LM .

Consider contributions from the gravitational coupling constant only

here. The renormalization factor ZΛ is Laurent-expanded as

logZΛ =

∞∑
n=1

un

(D − 4)n
.

Expanding γ̄Λ using this and extracting finite parts, we obtain

γ̄Λ =

(
β̄b

∂

∂b
+ αt

∂

∂αt

)
u1,

and also a renormalization group equation(
β̄b

∂

∂b
+ αt

∂

∂αt

)
un+1 + β̄tαt

∂

∂αt
un = 0
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from pole parts which have to vanish. The same is true for the renormaliza-

tion factor ZEH.

To solve the renormalization group equation, we need to decide a depen-

dence of αt in β̄b. It has not yet been calculated, but we have known that

the dependence of the gauge coupling constant α is given by (10-12). Based

on this result and from the similarity between the gauge field action and the

Weyl action of the traceless tensor field, we guess that the dependence of αt

in β̄b is given by

β̄b = −b+ o(α2
t )

as similar to the case of α.

We first calculate the anomalous dimensions at αt → 0. In this case, we

can check correctness of the results by comparing with the exact solutions

obtained from the BRST conformal invariance. Feynman diagrams up to the

third order in the 1/b -expansion that contribute to the simple pole residue u1

are depicted in Fig. 10-18, in which the bottom represents φn that appears

when the exponential is expanded as eDφ =
∑

n D
nφn/n!.

· · ·

(1)

εb

· · ·

(2)

ε
2
b

· · ·

(3)

εb εb

· · ·

(4)

Figure 10-18: Loop corrections to the cosmological term up to o(1/b3).

Contributions to the simple pole u1 are 4/b from (1), 4/b2 from (2),

−8/3b3 and 28/3b3 from (3) and (4), respectively, in Fig. 10-18. Although

infrared divergences remain at this time, it will be shown that they all cancel

out each other when constructing the effective potential in the next section.

Therefore, ignoring them, we consider only ultraviolet divergences here.

Recalling β̄b = −b at αt → 0, we obtain

γ̄Λ = −b
∂u1

∂b
=

4

b
+

8

b2
+

20

b3
+ · · · .

Lastly, by replacing b with bc, we find the anomalous dimension of the cos-

mological constant. Disappearance of the anomalous dimension at b → ∞
is consistent with the fact that it is the classical limit where the conformal-

factor field does not propagate.
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Compare this result with the exact solution. The conformal-factor field

dependence of the renormalized cosmological term is expressed as δφSΛ =
(4+γΛ)SΛ.17 On the other hand, the quantum cosmological operator deter-

mined from the BRST conformal invariance is
∫
d4x : eαφ : and the Riegert

charge α is given by (7-35). From this, the exact solution of γΛ is given by

γΛ = α− 4 = 2bc

(
1−
√
1− 4

bc

)
− 4.

Expanding this expression with 1/bc, we can see that the first three terms

agree with the calculation result.

Likewise, we can perform renormalization calculations of the Einstein

term and obtain

ZEH = 1−
[
1

2b
+

1

4b2

]
1

ε
, LM =

9

16

(4π)2

b2
1

ε
.

The anomalous dimension of the Planck mass squared is then given by

γEH =
1

bc
+

1

b2c
+ · · · .

This result also agree with the 1/bc -expansion of the exact anomalous di-

mension γEH = β − 2 derived from the Riegert charge β (7-36) of the

quantum Ricci scalar. Moreover, from the pole term LM , we obtain

δ̄Λ = −9

8

(4π)2

b2c
.

Loop corrections by traceless tensor field Loop corrections by the

traceless tensor field are calculated in the Landau gauge. Since the two-point

interaction (10-24) disappears when this gauge is employed, the number of

Feynman diagrams can be reduced considerably.18

Feynman diagrams that may give corrections of o(αt) to the anomalous

dimension of the Planck mass in the Landau gauge are depicted in Fig. 10-

20. However, ultraviolet divergences from (2), (3), and (4) disappear in this

gauge. Moreover, (5) that contributes to LM becomes finite. Consequently,

only the contribution from (1) remains and ZEH − 1 = −(5/8)(αt/4πε) is

17 Since the variation with respect to the conformal-factor field corresponds to a scale change

in real space, δφ can be identified with −μd/dμ.

18 See K. Hamada and M. Matsuda, Phys. Rev. D 93 (2016) 064051 on the calculations in the

Landau gauge and some issues about gauge-dependence.
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∂
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φ

· · ·

(1)

εb

∂
2
φ

· · ·

(2)

· · ·

· · ·

(3)

Figure 10-19: First two diagrams give corrections to ZEH at o(1/b) and o(1/b2),

respectively. The last gives a correction to LM of o(1/b2).

t
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· · ·
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∂
2
φ
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t

· · ·

(2)

∂μφ ∂μφbt bt

· · ·

(3)
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∂μφ

t
∂μφ

· · ·

(4)

t

· · ·

t

· · ·

(5)

Figure 10-20: First four diagrams give corrections to ZEH of o(αt) and the last

gives a correction to LM of o(αt/b) in the Landau gauge.

obtained. Thus, together with the previous result, the anomalous dimension

is calculated as

γEH =
1

bc
+

1

b2c
+

5

4

αt

4π
. (10-39)

Loop corrections to the cosmological constant by the traceless tensor

field are yielded from two-loop diagrams of o(αt/b) in the Landau gauge,

which are given by Feynman diagrams in Fig. 10-21 with Fig. 10-22 as

subdiagrams, where (1) and (2) are the same as those in Fig. 10-1. In the

subdiagram (3), there are contributions from two three-point interactions in

which one is derived from the t-independent part of the Wess-Zumino action

(10-19) associated with the Weyl action with a factor D − 4 given by

SD−4
F [φhh] =

D − 4

t20

∫
dDxφ C̄2

μνλσ

∣∣∣∣
o(t0)
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bt
2

· · ·

Figure 10-21: Loop corrections of o(αt/b) to ZΛ in the Landau gauge. The gray

part including bt2 is given in Fig. 10-22.

bt
2 =

bt bt

(1)

+

bt
2

(2)

+

ε
bt

2

(3)

+

εbt bt

(4)

+

εbt
2

(5)

Figure 10-22: Subdiagrams necessary for two-loop corrections of o(αt/b) to ZΛ.

and the other is the o(bt2) part derived from the expansion (10-20) of the

Euler term as

Sbt2

G[φhh] = b
μD−4

(4π)D/2

∫
dDxφ

(
Ḡ4 − 2

3
∇̄2R̄

)∣∣∣∣
o(t2)

.

In the subdiagram (4), there are contributions from the three-point interac-

tion used in (1) and the three-point interaction of (D − 4)×o(bt) given by

S
(D−4)bt
G[φφh] = (D − 4)b

μD−4

(4π)D/2

∫
dDx

[
1

2
Ḡ4φ

2 + 3φ∇̄4φ

+4φR̄μν∇̄μ∇̄νφ− 14

9
φR̄∇̄2φ+

10

9
φ∇̄λR̄∇̄λφ

]∣∣∣∣
o(t)

.

The subdiagram (5) is from the four-point interaction S
(D−4)bt2

G[φφhh] which is

derived by expanding the right-hand side of above up to o(t2). The two-loop
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computation is cumbersome. Here we write only the result of summing all

the contributions from these diagrams, which is given as follows:

(ZΛ − 1)|ζ=0 =
155

18

t2

b(4π)2
1

ε
.

Thus, the anomalous dimension of the cosmological constant is given by

γΛ =
4

bc
+

8

b2c
+

20

b3
− 9(4π)2

8b2c

M4

Λ
− 310

9bc

αt

4π
, (10-40)

together with the previous results.

Physical Cosmological Constant

In general, a physical mass scale Mphy must be renormalization group in-

variant as

μ
d

dμ
Mphy = 0.

One of such gravitational scales is ΛQG, which is already introduced when

we define the running coupling constant. In addition, there are the physical

Planck mass and the physical cosmological constant denoted by MP and

Λcos, respectively.

These physical mass scales are determined through the effective action.

Introducing a background σ and decomposing the conformal-factor field as

φ = σ + ϕ, the effective action is expanded in powers of σ as

Γ(σ) =
∑
n

1

n!

∫
dDx1 · · · dDxn Γ

(n)(x1, . . . , xn)σ(x1) · · ·σ(xn)

=
∑
n

1

n!

∫
dDk1
(2π)D

· · · d
Dkn

(2π)D
(2π)Dδ(D)(k1 + · · ·+ kn)

×Γ(n)(k1, . . . , kn)σ(k1) · · ·σ(kn),

where Γ(n) is a renormalized n-point Green function given by the sum of

all 1PI Feynman diagrams with n external legs of σ. Renormalization group

analysis for the 1PI Green function Γ(n) can be carried out as in the case

of the ϕ4-theory. One of the crucial differences is that the conformal-factor

field is not renormalized, namely Zφ = 1, and also for the background
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σ. Therefore, the renormalized Γ(n) is the same as the bare one, and thus

μdΓ(n)/dμ = 0 holds.19

A physical cosmological constant is defined by an effective potential V
given by the zero-momentum part of Γ(n)(k1, . . . , kn) as

Γ(σ)|V =

∫
dDxV (σ) =

∑
n

1

n!
Γ(n)(0, . . . , 0)

∫
dDxσn(x).

Diffeomorphism invariance requires that Γ(n)(0, . . . , 0) = ΛcosD
n so that

the effective potential has the form

V (σ) = Λcos e
Dσ(x). (10-41)

The renormalization group equation indicates that Λcos satisfies

μ
d

dμ
Λcos = 0.

Thus, we find that the effective potential gives the physical cosmological

constant, which can be observed cosmologically. Likewise, the second

derivative term defines the physical Planck mass.

Let us examine the physical cosmological constant here. We calculate

the one-loop effective potential within the large b approximation, where the

background σ is taken to be a constant. Moreover, as lower-derivative inter-

actions, we consider only the cosmological term for simplicity. By expand-

ing the conformal-factor field ϕ up to the second order, the action becomes

S|ϕ2 =

∫
dDxμD−4

{
1

(4π)
D
2

[
2b ϕ∂4ϕ+ (D − 4)b (2σ + 3)ϕ∂4ϕ

]

+ΛeDσ

(
1 +

D2

2
ϕ2

)
+ (ZΛ − 1)ΛeDσ

}
,

where the term with D − 4 comes from the three-point interaction (10-23).

Furthermore, by rescaling the field as

ϕ =
a√
μD−4

ϕ′, a =

√
(4π)

D
2

4b[1 + (D − 4)(σ + 3
2 )]

,

19 In the ϕ4 theory, the field receives renormalization so that Γ(n) is not renormalization group

invariant, though Γ(ϕ) itself is invariant.
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we obtain

S|ϕ2 =

∫
dDx

{
1

2
ϕ′∂4ϕ′ +

D2a2

2
ΛeDσϕ′2 − 1

ε̄

2

b
μD−4ΛeDσ

}
.

The last term is the one-loop counterterm for the cosmological constant,

where the modified minimal subtraction (MS) scheme is adopted, that is,

divergences are removed by the combination of 1/ε̄.

Letting A = D2a2 ΛeDσ and writing the kinetic term to D = D0 + A,

where D0 = k4 in momentum space, the one-loop effective potential (see

Fig. 10-23) can be calculated as

V loop = − log
[
det
(D−1

0 D)]− 1
2 =

1

2

∫
dDk

(2π)D
log

(
1 +

A

k4z

)

=
1

2

∞∑
n=1

(−1)n−1

n
AnIn,

where In is a tadpole-type integral defined by

In(z) =

∫
dDk

(2π)D
1

(k4z)
n
.

V
loop =

A

+

A

A

+

A

A A

+ · · ·

Figure 10-23: One-loop effective potential to the physical cosmological term.

The integral I1 has divergences of both ultraviolet and infrared, while

for n ≥ 2 only infrared divergences appear, which are given by

I1 =
1

(4π)2

(
1

ε̄
− log z2

)
, In (≥2) =

1

(4π)2
z2(2−2n)

(2n− 1)(2n− 2)
.

Substituting these integrated values, we obtain the following loop correc-
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tion:20

V loop =
1

(4π)2

{
A

2

(
1

ε̄
− log z2

)
+ z4

∞∑
n=2

(−1)n−1Anz−4n

2n(2n− 1)(2n− 2)

}

=
1

(4π)2

{
A

2

(
1

ε̄
− log z2

)
+

1

4

(
z4 −A

)
log

(
1 +

A

z4

)

−z2
√
A arctan

(√
A

z2

)
+

3

4
A

}
.

With attention to the D-dependence of A, we find that a finite σ-dependent

term arises from the first term as

1

(4π)2
A

2

1

ε̄
=

2

b
μD−4ΛeDσ

(
1

ε̄
+ 2σ + 2− log 4π + log μ2

)
,

in which in order to match the form of the counterterm, the μ-dependence is

recovered through the relation μD−4[1− (D− 4) log μ] = 1+ o[(D− 4)2].
Removing the ultraviolet divergence by the counterterm and taking D = 4,

the loop correction V loop results in

1

(4π)2

{
Ā

2
(2σ + 2− log 4π)− Ā

2
log

z2

μ2

+
1

4

(
z4 − Ā

)
log

(
1 +

Ā

z4

)
− z2
√
Ā arctan

(√
Ā

z2

)
+

3

4
Ā

}
,

where Ā = A|D=4 = 4(4π)2Λe4σ/b.
This expression can take the limit of z → 0 and we obtain a finite re-

sult V loop = Ā [7 − 2 log 4π − log(Ā/μ4)]/4(4π)2. In this way, we can

demonstrate that infrared divergences cancel out by summing up all contri-

butions. Adding the classical (tree) part Λe4σ and putting b = bc, we get the

following effective potential:

V = Λ

{
1 +

1

bc

[
7− 2 log 4π − log

(
64π2

μ4

Λ

bc

)]}
e4σ.

Note that the σ-dependence disappears except for the e4σ at last. This σ-

independent part gives the physical cosmological constant Λcos.

20 To calculate the sum of series f(x) =
∑∞

n=2(−1)n−1x2n/2n(2n − 1)(2n − 2), it

is good to consider h(x) = ∂2/∂x2{f(x)/x}. Since this is easily obtained as h(x) =
[log(1 + x2) − x2]/2x3, the original series can be derived as f(x) = x

∫ x
0 du

∫ u
0 dv h(v).

The series part here is then given by z4f(
√
A/z2).
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More generally, adding the Einstein-Hilbert action and taking in loop

corrections by the traceless tensor field in the Landau gauge, we obtain the

following physical cosmological constant at the one-loop level:21

Λcos = Λ+ (7− 2 log 4π)
Λ

bc
−
(
Λ

bc
− 9π2M4

2b2c

)
log

(
64π2

μ4

Λ

bc

)

−9π2

2

(
25

3
− 4 log 4π

)
M4

b2c

−6π
M2

bc

√
Λ

bc
− 9π2M4

4b2c
arccos

(
3πM2

2
√
bcΛ

)

+
5

128
α2
tM

4

(
log

π2α2
tM

4

μ4
− 21

5

)
,

where we assume that the ratios Λ/bc and M4/b2c are comparable, and

αt/4π and 1/bc are also so, in the large bc approximation.

21 See K. Hamada and M. Matsuda, Phys. Rev. D 96 (2017) 026010.
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CHAPTER ELEVEN

THE UNIVERSE IN EINSTEIN GRAVITY

Why is quantum gravity necessary? Why is it possible to think that its traces

are left in the cosmic microwave background radiation today? Before an-

swering these questions, we first need to know about the Friedmann universe

given as a solution of the Einstein equation. The purpose of this chapter is

to concisely summarize what is known about the Friedmann universe and

connect it to later chapters.

Instability and Evolution of Fluctuations

What we have to mention first is that the Friedmann solution of the Einstein

equation is an unstable solution. Usually, such a solution is never chosen

as physics. This is because if we consider a small fluctuation (perturbation)

around this solution it will grow with time and deviate significantly from

the solution. Nevertheless, the universe can be approximated well by the

Friedmann solution. This means that initial amplitudes of the fluctuations

were unnaturally small.1 It was one of the big problems of cosmology to

clarify what initial dynamics of the universe that produces such very small

fluctuations is.

Inflation theory was proposed around 1980 as an idea to create very

small initial fluctuations necessary for the universe to last more than 10 bil-

lion years. It is an idea that there was an era when the universe expands

exponentially before the big bang where matters are created, and fluctua-

tions become small at that time. At the same time, this idea can also explain

why correlations larger than the horizon size existed in the early universe

(the horizon problem).

After the big bang, fluctuations grow and structures such as stars, galax-

ies, and clusters of galaxies are built. Since these structure formation in-

cludes nonlinear effects, it cannot be described by a simple perturbation the-

ory, but until the universe is neutralized, fluctuations are still small and can

1 Although it depends on perturbation variables we employ, when considering the matter den-

sity fluctuation δρ/ρ, it is required to be as small as 10−60.
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be handled within a linear perturbation. Furthermore, after neutralization,

radiation fluctuations do not grow because photons become free (decoupled)

from interactions with matters. The so-called Sachs-Wolfe effect expresses

that.2 Therefore, if we know spectra of fluctuations at the time of decou-

pling, we can roughly know the current spectra of the cosmic microwave

background radiation (CMB).

The CMB discovered in 1964 by Penzias and Wilson has a Planck distri-

bution whose temperature T is 3 degrees Kelvin.3 The temperature fluctua-

tion amplitude δT/T that denotes a deviation from it is the order of 10−5 in

which a linear perturbation method works well enough. This value was ob-

served for the first time in the 1990’s by the Cosmic Background Explorer

(COBE). The method describing evolution of the universe perturbatively

based on this fact is called cosmological perturbation theory.

The temperature fluctuation spectrum of CMB obtained from the obser-

vation by Wilkinson Microwave Anisotropies Probe (WMAP) depicted in

Fig. 11-1, which is a successor of COBE, records the history of the uni-

verse from the radiation-dominated era to the present. It is believed that the

spectrum in the early universe was almost scale-invariant. When writing its

spectrum what is called the Harrison-Zel’dovich type4 in Fig. 11-1, it be-

comes a horizontal straight line whose amplitude almost coincides with that

of the dent in large angle components. That is to say that the deformation

from the straight line represents dynamics that the fluctuation was subjected

to during evolution of the universe.

Most of these deformations occur during the period between the time

that the universe is moving from the radiation-dominated era to the matter-

dominated era and the time it is neutralized. Since the scale-invariant spec-

trum is retained before that, we can go back to the past anywhere as far as

the radiation-dominated era continues.5 Therefore, as long as the Einstein’s

2 The Sachs-Wolfe effect is expressed as a relation that connects the current temperature fluc-

tuation (δT/T )(η0) with a gravitational potential value Ψ(ηdec) at the decoupling (last scat-

tering surface). For long wavelength fluctuations (large angle components) which leaves in-

formation of the primordial spectra intact, the relation (δT/T )(η0,x0)  Ψ(ηdec,xdec)/3
holds. See the first section of Appendix E for details. The original paper is R. Sachs and

A. Wolfe, Perturbations of a Cosmological Model and Angular Variations of the Microwave
Background, Astrophys. J. 147 (1967) 73.

3 The original paper is A. Penzias and R. Wilson, A Measurement of Excess Antenna Temper-
ature at 4080-Mc/s, Astrophys. J. 142 (1965) 419.

4 The original papers are E. Harrison, Fluctuations at the Threshold of Classical Cosmology,

Phys. Rev. D 1 (1970) 2726 and Ya. Zel’dovich, A Hypothesis, Unifying the Structure and the
Entropy of the Universe, Mon. Not. R. Astron. Soc. 160 (1972) P1.

5 In the period when the fluctuation size is larger than the horizon size, the spectrum hardly
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theory of gravity is correct, from the current CMB spectrum, we can derive

information on the big bang where the primordial spectrum was generated.

Figure 11-1: WMAP temperature fluctuation spectrum [C. Bennett, et.al., Astro-

phys. J. Suppl. 208 (2013) 20]. Low multipoles correspond to large angle compo-

nents.

The spectrum can be roughly divided into three regions: the low mul-

tipole component region l < 30 in which the scale-invariant spectrum of

the early universe is considered to be preserved almost as it is, the region

30 < l < 700 where a plasma fluid oscillation of photons and baryons

appears, and the Silk damping region l > 700 where the amplitude of

photon fluctuations decreases exponentially in the process of neutralization.

In this damping region, the approximation of perfect fluids breaks and an

anisotropic stress appears.

The Silk damping occurs because thermal equilibrium cannot be main-

tained gradually as the mean free path of light becomes longer during the pe-

riod from the start of the recombination process until the light is completely

free from matters. If the wavelength is longer than the mean free path, the

perfect fluid approximation holds, but if it is short, photon diffusions occur

and the amplitude of the fluctuation decreases.6 This effect begins to appear

beyond the first acoustic peak, and becomes significant where l exceeds 700.

changes. In particular, the CMB multipole components of l < 30 are maintaining the primor-

dial spectrum just after the big bang, which represent fluctuations that entered the horizon after

the neutralization of the universe, or do not enter the horizon currently.

6 The perfect fluid is a fluid with zero viscosity ( �= perfect gas). Viscosity is proportional to

the mean free path, and having zero viscosity means a strongly coupled system with zero mean

free path. In such a frequently interacting system, heat exchange is closed in the system and

thermal equilibrium can be realized.
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Therefore, the cosmological perturbation theory assuming the perfect fluid

is effective in the long wavelength region up to at most l < 700, which will

be described in detail in Chapter 13. In order to analyze the Silk damp-

ing, it is necessary to solve Boltzmann equations considering the Thomson

scattering, but it is not dealt with in this book.

Calculations of the CMB temperature fluctuation spectra have already

been programmed, and existing calculation codes such as CMBFAST are

published. One of the important things in early cosmology is to give the

primordial spectrum as its initial condition. The goal of the quantum gravity

theory is to give the scale-invariant primordial spectrum and the dynamics

of inflation that generates it.

Friedmann Universe

The Friedmann solution of the Einstein equation is summarized, and various

scales that appears there are explained. Since the spatial curvature is almost

zero from the observation result, we ignore it for the sake of simplicity be-

low. It is also assumed that matters are perfect fluids. The metric tensor and

the energy-momentum tensor for each matter state α are given by

ds2 = e2φ̂
(−dη2 + dx2

)
,

T μ
(α)ν = diag(−ρα, Pα, Pα, Pα),

respectively, where φ̂(η) is a conformal-factor background field. The time

variable η is called the conformal time, and x = (x1, x2, x3) are the comov-

ing coordinates which are coordinates like angles that will not change even

if the universe expands. The physical (proper) time τ is defined by

dτ = eφ̂dη (11-1)

and a physical distance is given by eφ̂dx. The variables ρα and Pα represent

energy density and pressure of each state α, respectively. Usually, we con-

sider multiple matter states. These variables depend only on the conformal

time η.

The matter state α is represented by the equation-of-state parameter de-

fined as a proportionality factor between pressure and energy density as

wα =
Pα

ρα
.
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In radiation states, the equation-of-state parameter is given by 1/3 and the

energy-momentum tensor becomes traceless. Also, if temperature is suffi-

ciently high like just after the big bang, even massive particles can be re-

garded as massless ones and described as a radiation state. When the uni-

verse cools and temperature becomes lower than the particle mass, pressure

disappears and the equation-of-state parameter becomes 0.

The conservation law ∇μT
μ

(α)ν = 0 in the absence of particle sources is

expressed for each state as

∂ηρα + 3∂ηφ̂ (ρα + Pα) = 0. (11-2)

The trace part and the (00) component of the Einstein equation are respec-

tively given by

M2
P e−2φ̂

(
6∂2

η φ̂+ 6∂ηφ̂∂ηφ̂
)
− ρ+ 3P − 4Λcos = 0,

−3M2
P e−2φ̂∂ηφ̂∂ηφ̂+ ρ+ Λcos = 0, (11-3)

where MP = 1/
√
8πG is the reduced Planck mass and Λcos is the cosmo-

logical constant. The energy density ρ and the pressure P are the sums over

all states, respectively, given by

ρ =
∑
α

ρα, P =
∑
α

Pα. (11-4)

Note that the conservation law (11-2) holds for each state α, whereas

variables in the Einstein equation come in the form of the sum of states. Of

course, the conservation law also holds for the variables ρ and P , and the

equation-of-state parameter is then given by w = P/ρ.

Introduce a commonly used scale factor a and the Hubble variable H ,

which are defined with the conformal-factor field as

a = eφ̂, ∂ηφ̂ =
∂ηa

a
= aH. (11-5)

Rewriting the equations with the Hubble variable, the Einstein equation (11-

3) can be expressed as

6M2
P

(
a−1∂ηH + 2H2

)
= ρ− 3P + 4Λcos = (1− 3w)ρ+ 4Λcos,

3M2
PH

2 = ρ+ Λcos, (11-6)

and the energy conservation equation (11-2) is

∂ηρα = −3aH (ρα + Pα) = −3 (1 + wα) aHρα. (11-7)
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The Hubble constant representing the current value of the Hubble vari-

able is one of the cosmological parameters specifying the Friedmann uni-

verse, often denoted as H0 = 100h [kms−1Mpc−1] using the small letter h.

In natural units (c = � = 1), it is given by

H0 =
h

2997.9
= 0.00024Mpc−1,

where the value of h = 0.72 is adopted. Then, the Hubble distance 1/H0

which is often used to represent the size of the universe currently visible is

4164 Mpc.

Current density parameters are defined by using the Hubble constant as

Ωα =
ρα0

3M2
PH

2
0

,

where ρα0 denotes current energy density for each state α. As a mater

state α, cold dark matters (CDM) are denoted by c,7 baryons are b and

radiations are r. The whole massive matters combined c and b are called

dusts, which are denoted by d. Also, the cosmological constant can be re-

garded as a matter of w = −1 and thus it is useful to define the quantity

ΩΛ = Λcos/3M
2
PH

2
0 . In this book, we use the following values:

Ωr = Ωγ +Ων = 4.2× 10−5/h2 = 8.1× 10−5,

Ωb = 0.042,

Ωd = Ωc +Ωb = 0.27,

ΩΛ = 0.73,

where Ωr is the sum of Ωγ from photons and Ων from neutrinos. From

ργ0 = 2(π2/30)T 4
γ and ρν0 = Nν2(π

2/30)(7/8)T 4
ν , the ratio is given

Ων

Ωγ
=

ρν0
ργ0

= Nν
7

8

(
Tν

Tγ

)4

= 0.68,

where Nν is the number of generations. In the last equality, Tν/Tγ =
(4/11)1/3 and Nν = 3 are used. From this, the photon density is given

by Ωγ = 4.8× 10−5.

From the Einstein equation (11-6), we find that these quantities satisfy

Ωd +ΩΛ = 1,

7 Dark matter is an unknown object giving only gravitational effects which hardly interact with

ordinary matters. Its existence is predicted indirectly to explain observed results such as CMB

spectra, galactic rotation curves, gravitational lens effects, etc.
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where Ωr is small and thus ignored here. This is an equation showing that

the space is flat. If there is a curvature in the space, the right-hand side is

deviated from one, but the observation suggests that it is one.

Since the equation-of-state parameters of the states r, c, and b are

wr =
1

3
, wc = 0, wb = 0,

respectively, we obtain

ρr = ρr0

(a0
a

)4
= 3M2

PH
2
0Ωr

(a0
a

)4
,

ρc = ρc0

(a0
a

)3
= 3M2

PH
2
0Ωc

(a0
a

)3
,

ρb = ρb0

(a0
a

)3
= 3M2

PH
2
0Ωb

(a0
a

)3
,

by solving the conservation equation (11-7), where a0 is a current scale

factor and is often normalized as a0 = 1. Unless otherwise specified, a0 = 1
will be taken when calculating numerical values below. Substituting this

into the Einstein equation (11-6), the Hubble variable can be written as

H2 = H2
0

{
Ωr

(a0
a

)4
+Ωd

(a0
a

)3
+ΩΛ

}
. (11-8)

As can be seen from this equation, the cosmological constant does not con-

tribute to dynamics unless the scale factor is about a0/a < 2 which is close

to the current value.

The red shift z representing a wavelength elongation due to cosmic ex-

pansion is defined by

z + 1 =
a0
a
,

which is used to indicate how far back in the past since the present time.

As we integrate the equation (11-8) by rewritten in the form dη = · · · using

H = ∂ηa/a
2, the relation between the red shift and the comoving angular

size distance is calculated as

d = η0 − η =
1

a0H0

∫ z

0

dz√
Ωr(z + 1)4 +Ωd(z + 1)3 +ΩΛ

.

Specific numerical values are as follows:

z = 0.1 ⇔ d = 408Mpc,

z = 1 ⇔ d = 3271Mpc,

z = 5 ⇔ d = 7822Mpc,

zdec = 1100 ⇔ ddec = 13808Mpc (� the size of the universe),
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where zdec denotes the redshift of the last scattering surface where the uni-

verse neutralized.

η0

η(z)

θ λ

Figure 11-2: Redshift and distance.

The relationship between the distance and an angle is given by θ � λ/d
as in Fig. 11-2. We here give a relationship of multipole l and comoving

wavenumber k = π/λ denoting the size of fluctuations. Since the distance

ddec comes in when defining the angular power spectrum Cl through the

Sachs-Wolfe effect, l is evaluated at d = ddec so that

l � π

θ
= kddec (11-9)

holds. Therefore,

k = 0.0002Mpc−1 ⇔ l � 3,

k = 0.002Mpc−1 ⇔ l � 30,

k = 0.005Mpc−1 ⇔ l � 70,

k = 0.015Mpc−1 ⇔ l � 210,

k = 0.05Mpc−1 ⇔ l � 700.

The physical wavenumber of fluctuations is given by dividing the comov-

ing wavenumber by the scale factor as p = k/a. Since a0 = 1 is taken

here, the value of k represents the size of current physical fluctuations. The

wavelength of the l = 3 fluctuation is 1/k � 5000Mpc which is about the

same as the Hubble distance (1/H0). The l � 30 corresponds to the size

of 1/k � 500Mpc. Even l � 700 is 1/k � 20Mpc, which is the size of a

super cluster of galaxies given by 10 to 30 Mpc.

Since energy density of radiations decreases with a−4 as the universe

expands, whereas that of massive matters decreases with a−3, there is a time

that the universe shifts from the radiation-dominated era of ρr > ρd to the

matter-dominated era of ρr < ρd. Solving the defining equation ρr = ρd,
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the redshift value that indicates the time is given by

zeq + 1 =
Ωd

Ωr
= 3333.

Lastly, we briefly describe the behavior of the scale factor. In the radiation-

dominated era approximated as ρd = 0, the Einstein equation can be easily

solved and a ∝ η is obtained. In the mater-dominated era approximated as

ρr = 0, we get a ∝ η2. In the physical time, it is expressed as a ∝ τ1/2 and

a ∝ τ2/3, respectively.

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



CHAPTER TWELVE

QUANTUM GRAVITY COSMOLOGY

First of all, we assume that the universe is only one and we are inside it. Al-

though we do not know how large the universe is, we think that the whole is

homogeneous and the area we are looking at is part of it. The spacetime that

we recognize now shall be born through a phase transition from quantum

space to classical space. It is not a discussion based on a perspective as we

are watching the universe from the outside, such as suddenly the time and

space itself is created out of nothing.

In this chapter, we describe evolution of the initial universe based on the

asymptotically background-free quantum gravity. Based on the existence

of two energy scales, the Planck mass mpl = 1/
√
G � 1019GeV and the

dynamical scale ΛQG, we construct a model of inflation in which our cur-

rent universe comes out from a conformally invariant spacetime. Taking the

value of the dynamical energy scale to be ΛQG � 1017GeV, lower than the

Planck mass, the evolution can be regarded as a violating process of confor-

mal invariance by these two scales, and eventually the spacetime changes

from inflation to the Friedmann universe through the big bang described as

a phase transition.

Inflation and Spacetime Phase Transition

At high energy beyond the Planck mass, higher-order derivative actions

dominate, and spacetime fluctuations will be described by the background-

free quantum gravity. Here, we discuss a region where energy falls to the

Planck scale and the Einstein-Hilbert action becomes effective. On the other

hand, the cosmological constant Λcos is here ignored as it is extremely small.

As mentioned earlier, we assume the following magnitude relationship

between the two gravitational energy scales that govern dynamics:

mpl � ΛQG.

In this case,1 an inflationary solution exists.

1 This magnitude condition is also involved with a problem of unitarity. As mentioned in
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In the chapters on cosmology, the metric tensor field is decomposed as

gμν = e2φḡμν as before, but the metric with the bar is expanded as ḡμν =
ημν + hμν + · · · without introducing the coupling constant t in order to

consider the case where t becomes large. That is, we write thμν as hμν

in the following. The coordinates of the flat background with the metric

ημν = (−1, 1, 1, 1) are xμ = (η, xi), where η is the conformal time and xi

is the comoving spatial coordinate.

Stable inflationary solution When energy is sufficiently higher than

the dynamical scale ΛQG, the coupling constant t can be ignored due to the

asymptotic background freedom. In this region, dynamics of the quantum

gravity is described by the action S4DQG (7-6) which is a combination of

the original action I (7-1) and the Riegert action SR (5-11) induced quantum

mechanically.

Consider the equation of motion of the conformal-factor field φ. The

equation for its spatially homogeneous component φ̂(η) is given by

− bc
4π2

∂4
η φ̂+ 6M2

P e2φ̂
(
∂2
η φ̂+ ∂ηφ̂∂ηφ̂

)
= 0,

where we use the fact that matter actions do not depend on the conformal-

factor field. Rewriting this equation using the Hubble variable H (11-5)

introduced in the previous chapter, we obtain

bc
8π2

( ...

H +7HḦ + 4Ḣ2 + 18H2Ḣ + 6H4
)
− 3M2

P

(
Ḣ + 2H2

)
= 0,

where the dot denotes a derivative by the physical time τ (11-1). This equa-

tion has the following inflationary solution (de Sitter solution):

H = HD, HD = MP

√
8π2

bc
= mpl

√
π

bc
. (12-1)

The scale factor a (11-5) increases exponentially as a function of the physi-

cal time as

a(τ) ∝ eHDτ .

Time in the universe is a monotonically increasing variable, and the in-

flationary solution shows that it is nothing but a scale factor. This means

Chapter 1, assuming that gravity is classical until the Planck energy, an elementary excitation

with the Planck mass becomes a black hole and its information is lost. Under this condition,

however, the problem can be avoided because the effect of quantum gravity begins to work

before reaching the Planck energy.
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that time is dynamically generated by the Planck scale which causes the ex-

ponential expansion. Before that, it can be thought of as a world without

time, where time changes are quite moderate and fluctuations dominate.

The value of the coefficient bc (7-5) is about 10 for the Standard Model

and various GUT models, and therefore the constant HD is located between

the reduced Planck mass MP = 2.4×1018 GeV and the normal Planck mass

mpl = 1.2× 1019 GeV. In the following, HD is treated as one of the Planck

mass scale, and

τP =
1

HD
(12-2)

is defined as the Planck time, which is the time when the universe starts to

exponentially expand.

Let us show that the inflationary solution is stable. With a deviation from

the solution as δ, and assigning H = HD(1 + δ) to the equation of motion,

we get
...

δ +7HDδ̈ + 15H2
Dδ̇ + 12H3

Dδ = 0,

where o(δ2) is ignored. Solving this equation by substituting δ = eυτ yields

−4HD and (−3/2 ± i
√
3/2)HD as solutions for υ. Since all three modes

have negative real parts, it is found that the deviation decreases exponen-

tially with time, and thus the inflationary solution is stable. As shown in the

later chapter, it is also stable against spatial fluctuations (perturbations), that

is, fluctuations will be found to be gradually decreasing.

Spacetime phase transition Near the Planck scale, the breaking of

conformal invariance is still small and quantum correlations shall behave in

powers of the scale. On the other hand, the breaking at the dynamical energy

scale ΛQG occurs logarithmically through the running coupling constant,

thus the conformal invariance rapidly and completely breaks at this scale.

The physical correlation length of the quantum gravity is given by ξΛ =
1/ΛQG. Fluctuations shorter than it are quantum mechanical, while those

longer than it can be considered as classical fluctuations. If energy falls

below ΛQG, all fluctuations of spacetime will become classical. We call it

the spacetime phase transition.

In considering dynamics of the phase transition, we refer to quantum

chromodynamics (QCD) which is a representative of quantum field theory

showing the asymptotic freedom. There is a dynamical energy scale ΛQCD

in QCD, and the kinetic term of the gauge field disappears at low energy

below this scale. Likewise, it can be considered that the conformally invari-

ant kinetic terms of the gravitational field disappear at the spacetime phase
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transition. In fact, if the coupling constant becomes infinite at the dynam-

ical scale ΛQG, we know that the Weyl action −(1/t2)C2
μνλσ disappears

because the curvature should be finite.2

The dynamics of the conformal-factor field is considered as follows. The

coefficient bc before the Riegert action will be replaced by a function includ-

ing quantum corrections as

bc → bc
(
1− a1t

2 + · · ·) = bcB0(t).

As its non-perturbative expression, we here use the form bravely summed

up as

B0(t) =
1

(1 + a1

κ t2)κ
, (12-3)

where κ is a phenomenological parameter that controls higher order effects

and is assumed to be in the range 0 < κ ≤ 1.

Incorporating this effect, the equation of motion of the conformal-factor

field becomes

− bc
4π2

B0∂
4
η φ̂+M2

P e2φ̂
{
6∂2

η φ̂+ 6∂ηφ̂∂ηφ̂
}
= 0. (12-4)

In addition, the energy conservation equation is obtained from the (0, 0)
component of the energy-momentum tensor as

bc
8π2

B0

{
2∂3

η φ̂∂ηφ̂− ∂2
η φ̂∂

2
η φ̂
}
− 3M2

P e2φ̂∂ηφ̂∂ηφ̂+ e4φ̂ρ = 0, (12-5)

where ρ is a matter energy density.

By taking in the running effect of the coupling constant further, we de-

scribe time evolution in the inflationary era until the spacetime phase tran-

sition. The running coupling constant is here defined as a response to the

physical time by the renormalization group equation −τdt̃/dτ = β(t̃) =
−β0t̃

3. The solution that becomes infinite at a dynamical time scale

τΛ =
1

ΛQG

is given by

t̃2(τ) =
1

β0 log(1/τ2Λ2
QG)

. (12-6)

2 Actually, it seems natural to think that the change occurs before the coupling constant be-

comes infinite, but here we represent the disappearance of the kinetic term assuming that it

becoms ideally infinite.
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This corresponds to the running coupling constant (10-36) with the physical

momentum kphy replaced by the inverse of the physical time τ (> 0).
Replacing the coupling constant t with the time-dependent running cou-

pling constant t̃(τ), the dynamical factor B0 is expressed as a function de-

creasing with time. Rewriting it using the Hubble variable, we obtain the

following equation of motion:

B0(τ)
( ...

H +7HḦ + 4Ḣ2 + 18H2Ḣ + 6H4
)
− 3H2

D

(
Ḣ + 2H2

)
= 0.

(12-7)

The equation of energy conservation is also given by

B0(τ)
(
2HḦ − Ḣ2 + 6H2Ḣ + 3H4

)
− 3H2

DH2 + ρ = 0. (12-8)

In the early epoch of inflation where the coupling constant is small, the

solution of the equation of motion is given by H � HD. Substituting this

solution into the conservation equation yields ρ � 0. Therefore, the matter

energy density is generated when starting to deviate from the inflationary so-

lution H = HD. The coupling constant increases gradually during inflation

and rapidly in the neighborhood of the spacetime phase transition. Along

with this, the dynamical factor B0 decreases gradually and disappears at the

phase transition point.3

The generation of the matter energy density can be explained from the

fact that a new Wess-Zumino interaction associated with conformal anomaly

such as

φF 2
μν

opens at t 
= 0. At the time of the phase transition, the strength of this

interaction becomes very large, and it is considered that the big bang occurs

when the conformal-factor fields changes to matter fields at once.

At the phase transition point, the fourth-order derivative terms disappear.

From the conservation equation (12-8), we can see that gravitational ener-

gies that these terms have are transferred to matter energies and the density

ρ(τΛ) = 3M2
PH

2(τΛ) is generated. This is easy to understand by consider-

ing the following equation obtained by differentiating conservation equation

with time:

ρ̇+ 4Hρ =
bc
8π2

Ḃ0(τ)
(
2HḦ − Ḣ2 + 6H2Ḣ + 3H4

)
.

3 At the phase transition point, the third derivative of the Hubble variable diverges when 0 <
κ < 1. When κ = 1, the second derivative also diverges, but in any case B0Ḧ becomes finite,

thus the matter energy density which is a physical quantity remains finite.
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The right-hand side corresponds to a source term, which means that when

the dynamical factor B0 is greatly changed with time, the matter is gener-

ated. In this way, we can explain inflation and the big bang without intro-

ducing an artificial scalar degree of freedom like inflaton.

If the inflationary era is defined by the period from the Planck time

τP (= 1/HD) at which the universe starts expanding rapidly to the dynami-

cal time τΛ (= 1/ΛQG) at which the spacetime phase transition occurs, the

expansion rate of the universe called the number of e-foldings in this period

is given by

Ne = log
a(τΛ)

a(τP)
.

If expanding almost exponentially as a � eHDτ until the phase transition,

the number of e-foldings is given by a ratio of the two energy scales as

Ne � HD

ΛQG
. (12-9)

The actual number of e-foldings changes depending on the dynamical pa-

rameters β0, a1, and κ. Since these are phenomenological parameters that

depend on strong-coupling dynamics of t, we do not consider them to be ex-

act here and we will choose appropriately for convenience of the calculation.

In Figs. 12-1 and 12-2, the calculation results in the case of HD/ΛQG = 60,

β0/bc = 0.06, a1/bc = 0.01, and κ = 0.5 are shown. In these figures, the

scale is normalized as HD = 1, thus the phase transition time is τΛ = 60.

The number of e-foldings then becomes Ne = 65.0. The low energy region

after the transition (τ > τΛ) will be described in the next section.

Actually, the total number of e-foldings in the inflationary era will be

about Ne = 70, which is given by the sum of the rapid expansion until the

phase transition and the following expansion until settling to the Friedmann

solution after that. This means that the scale factor expands by 1030 times.

This value is used in the evolution scenario of the universe shown at the end

of this chapter.

With bc = 10 as mentioned before, HD = 6.7 × 1018 GeV is obtained

since the reduced Planck mass is MP = 2.4 × 1018 GeV. From this, the

dynamical energy scale deriving the above number of e-foldings is given by

ΛQG = 1.1× 1017 GeV. (12-10)

Moreover, using this value to estimate an amplitude of scalar fluctuations

from dimensional analysis, it is expected to decrease in the inflationary era

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Quantum Gravity Cosmology 247

-70

-60

-50

-40

-30

-20

-10

 0

 10

-2 -1  0  1  2  3

lo
g
[a
(τ
)/
a
(τ

Λ
)]

log10(τ/τP)

τΛ

Figure 12-1: Time evolution of the scale factor a(τ). It begins to expand rapidly

from the Planck time τP. The inflationary expansion terminates at the dynamical

time τΛ (= 60τP), and there the universe turns to the classical Friedmann spacetime.

and become

δR

R

∣∣∣∣
τΛ

∼ Λ2
QG

12H2
D

∼ 10−5

at the time of the spacetime phase transition. The denominator is the curva-

ture of the inflationary (de Sitter) spacetime. This value agrees with the

magnitude of the scalar amplitude required from CMB observation. In

Chapter 14, we will see that the amplitude actually decreases considering

time evolution of the fluctuation. Quantum gravity cosmology based on this

inflationary scenario is summarized in Fig. 12-3.

Low Energy Effective Gravity Theory

The Einstein-Hilbert action dominates in the low energy region below the

dynamical energy scale ΛQG, and the classical spacetime where particles

come and go as we normally consider appears. In this section, we discuss

the low energy effective theory of quantum gravity.

In the case of QCD, dynamics at high energy beyond the dynamical scale

ΛQCD is described by the kinetic term of the gauge field, but below this

scale the kinetic term disappears, and mesons and baryons become dynam-

ical field variables. The situation is slightly different in the renormaliz-

able quantum gravity. In energy regions sufficiently higher than ΛQG, the

conformal-factor field and the traceless tensor field, which are two modes of

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



248 Chapter Twelve

 0

 0.5

 1

 1.5

 2

 2.5

 0  20  40  60  80  100  120

H
,ρ

proper time,τ

ρ
H

Friedman

Figure 12-2: Time evolution of the Hubble variable H and the matter energy den-

sity ρ. The scale is normalized by HD = 1. After the phase transition at τ = 60,

the solution gradually approaches the Friedmann solution as time passes.

the gravitational field, each have the unique kinetic terms and describe con-

formally invariant dynamics. Below ΛQG, the conformal gravity dynamics

is lost with the disappearance of these kinetic terms, but the Einstein-Hilbert

action remains as a kinetic term of the gravitational field. Therefore, as a

composite field in which the two modes are tightly coupled, the gravitational

field still remains as a dynamical variable.

The low energy effective theory of quantum gravity is given by an ex-

pansion in derivatives of the gravitational field as

Ilow =

∫
d4x

√−g {L2 + L4 + · · ·} ,

where the number of subscripts represents the order of derivatives. The

cosmological term is not considered because it does not contain derivatives

and can be ignored in the early universe. The second-order derivative term

that consists of the Einstein-Hilbert action and matter actions is given by

L2 =
M2

P

2
R+ LM

where LM is a matter action density.
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The reduced Planck mass MP is analogous to the pion decay constant

4πFπ in chiral perturbation theory. The expansion is performed by the in-

verse of the reduced Planck mass, which is guaranteed by the magnitude

relationship of MP � ΛQG. In practice, we employ the terms up to L4

given by

R2, R2
μν , R2

μνλσ,
1

M2
P

RμνT
μν ,

1

M4
P

TμνTμν ,

where Tμν is a matter energy-momentum tensor satisfying the traceless con-

dition.

Since the low energy effective theory is defined as an expansion around

the Einstein theory which is the lowest order, we consider that higher order

terms related each other through the Einstein equation M2
PRμν = Tμν are

not independent ones. The Einstein equation is also R = 0 due to the

traceless condition of Tμν . Taking into account these equations and the

Euler relation to remove the square of the Riemann curvature tensor, we can

reduce the number of the terms in L4 to one as

L4 =
κ

(4π)2
RμνRμν ,

where κ is a positive parameter which is phenomenologically determined.

The coupling constant κ undergoes loop corrections from L2. With in-

troducing a cutoff E (< ΛQG), calculations can be done by using the back-

ground field method about a background satisfying the Einstein equation.

Including quantum corrections in κ, the following function that depends on

the cutoff is obtained:

κ(E) = κ(ΛQG) + ζ log(E2/Λ2
QG). (12-11)

For contributions from Feynman diagrams in which only matter fields prop-

agate inside, we obtain ζ = (NS+6NF +12NA)/120, where NS , NF , and

NA are the numbers of scalars, Dirac fermions, and gauge fields, respec-

tively. If κ(ΛQG) is taken to be a positive number, the phenomenological

coupling constant κ(E) indicates that since ζ is positive it decreases at low

energy and the fourth order terms become irrelevant immediately.

In addition, although ghost poles arising from the higher-order derivative

terms appear at the Planck scale, the low energy effective theory is defined

in energy regions less than ΛQG. Hence, ghosts do not appear and there is

no conflict with the unitarity problem.

The equation of motion for the homogeneous component is given by

M2
P

(
Ḣ + 2H2

)
+

κ

4π2

( ...

H +7HḦ + 4Ḣ2 + 12H2Ḣ
)
= 0, (12-12)
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and the energy conservation equation is

−3M2
PH

2 + ρ+
κ

4π2

(
−6HḦ + 3Ḣ2 − 18H2Ḣ

)
= 0. (12-13)

As in the previous section, we take in quantum effects by replacing the cou-

pling constant κ with a time-dependent running coupling constant κ(τ). It

is defined by replacing the cutoff with E = 1/τ as

κ(τ) = κΛ + ζ log

(
1

τ2Λ2
QG

)
� κΛ

1 + ζ
κΛ

log(τ2Λ2
QG)

,

where κΛ = κ(ΛQG). The last rewriting assumes that the running coupling

constant eventually vanishes.

In order to describe behaviors before and after the phase transition, a

non-perturbative method such as lattice QCD is necessary, but here let us

simply connect the inflationary solution and the solution obtained by solving

the equations of motion of the low energy effective theory at the time τ =
τΛ. The initial values of H , Ḣ , and ρ for solving the coupled equations (12-

12) and (12-13) are chosen so that the scale factor a is smoothly connected

with the inflationary solution. The initial value of Ḧ to solve (12-12) is

then determined from the conservation equation (12-13). The numerical

results are shown in Figs. 12-1 and 12-2, where the parameters are chosen

as κΛ = 1 and ζ = 1.

The equations of motion (12-12) and (12-13) include the Friedmann so-

lution that satisfies Ḣ +2H2 = 0 and 3M2
PH

2 = ρ. At first, the value of H
decreases sharply, and it gradually approaches the Friedmann solution while

oscillating. The asymptotic Friedmann solution is also written in Fig. 12-2.

Order parameters The scalar curvature is a variable which greatly

changes before and after the phase transition, because inflation is expressed

as R 
= 0, whereas the Friedmann solution is R = 0. To see behaviors of

the change, we introduce the scalar curvature R = 6Ḣ+12H2 as a variable

and rewrite (12-12) and (12-13) as

R̈+ 3HṘ+
4π2

κ
M2

PR = 0,

ρ = 3M2
PH

2 +
κ

4π2

(
HṘ+H2R− 1

12
R2

)
.

Defining the mass scale mrsp = MP

√
8π2/2κ of the order of the Planck

scale, this equation shows that the spacetime changes from R 
= 0 to R = 0
within about the Planck time of 1/mrsp.
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Figure 12-3: Quantum gravity cosmology. A fluctuation which was the size of the

correlation length ξΛ = 1/ΛQG (� lpl) before the Planck time expands about 1059

times until today to the Hubble distance 1/H0 (� 5000Mpc) comparable to the

size of the universe, namely 1/H0 � 1059ξΛ.
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CHAPTER THIRTEEN

COSMOLOGICAL PERTURBATION THEORY

Cosmological perturbation theory is a method to describe time evolution

of the universe in linear approximation assuming that fluctuations (pertur-

bations) around a certain homogeneous background are sufficiently small.

In this chapter, we solve the Einstein equation around the Friedmann solu-

tion and examine time evolution of fluctuations. Once we know how small

fluctuations obtained by inflation evolve after the big bang, we can get in-

formation on quantum fluctuations at the beginning of the universe from the

current observations by tracing back in time.

Perturbation Variables

First, we introduce gauge invariant perturbation variables that are used in

cosmological perturbation theory. The gravitational field is decomposed

into the conformal-factor field φ and the traceless tensor field hμν , which

is expanded as

gμν = e2φḡμν , ḡμν = (eh)μν = ημν + hμν + · · · ,
where the indices of the traceless tensor field are raised or lowered by the

flat metric ημν and hλ
λ = 0. The conformal-factor field is also decomposed

into a background field φ̂ and perturbation ϕ as

φ(η,x) = φ̂(η) + ϕ(η,x).

The gravitational field is then expanded within linear approximation as fol-

lows:1

ds2 = gμνdx
μdxν = e2φ̂(1 + 2ϕ) (ημν + hμν) dx

μdxν

= a2
{
−(1 + 2ϕ− h00)dη

2 + 2h0idηdx
i

+(δij + 2ϕδij + hij) dx
idxj
}
,

1 The symbols commonly used in cosmological perturbation theory are A, Bi, and Hij , which

are defined by ds2 = a2
{−(1 + 2A)dη2 − 2Bidηdx

i + (δij + 2Hij) dx
idxj

}
.
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where a = eφ̂ (11-5) is the scale factor and i, j = 1, 2, 3 represents the

components of the spatial coordinates. Perturbations for energy density and

pressure of matters are defined for each state α as

ρα(η,x) = ρα(η) + δρα(η,x),

Pα(η,x) = Pα(η) + δPα(η,x).

In the following, unless otherwise noted, ρ and P represent the homoge-

neous parts that depend only on time.

Matters are described as almost perfect fluids. For each state α, the

energy-momentum tensor is given as

T μ
(α)ν = {ρα(η,x) + Pα(η,x)}uμ

αu
α
ν + Pα(η,x) (δ

μ
ν +Παμ

ν) ,

where Πα
μν is an anisotropic stress tensor that represents deviations from

perfect fluids, which has only spatial traceless components such that Πα
0ν .

The variable uμ
α is a four-velocity of particles in state α satisfying

gμνu
μ
αu

ν
α = −1. (13-1)

The four-velocity without perturbations is uμ
α = (1/a, 0, 0, 0). By solving

(13-1) to the first order of perturbations, the variables uμ
α and uα

μ = gμνu
ν
α

are given by

u0
α =

1

a

(
1− ϕ+

1

2
h00

)
, ui

α =
viα
a
,

uα
0 = −a

(
1 + ϕ− 1

2
h00

)
, uα

i = a (vαi + h0i) ,

where viα and vαi = δijv
j
α are spatial components of the four-velocity which

are perturbation variables not determined from (13-1).

Substituting the expression of the four-velocity into the matter energy-

momentum tensor and expanding it up to the first order, we obtain

T 0
(α)0 = −(ρα + δρα),

T i
(α)0 = −(ρα + Pα)v

i
α,

T 0
(α)j = (ρα + Pα)(v

α
j + h0j),

T i
(α)j = (Pα + δPα)δ

i
j + PαΠ

αi
j . (13-2)

When written in terms of T μ
(α)ν as in the left-hand side, the indices are raised

or lowered by the physical metric gμν , but the spatial indices of perturbation
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variables in the right-hand side are done with δij such as vi = δijv
j . That

is why the second and third equations are not symmetric, namely T 0
i =

g0λTλi 
= giλTλ0 = T i
0.

The velocity perturbation variable is decomposed as

vαi = ∂iv
α + vTα

i ,

where vTα
i satisfies the transverse condition. The anisotropy stress tensor

satisfies the traceless condition Παi
i = 0.

Gauge transformations In linear approximation, the perturbations of

the gravitational field are transformed as

δξϕ = ξλ∂λφ̂+
1

4
∂λξ

λ,

δξhμν = ∂μξν + ∂νξμ − 1

2
ημν∂λξ

λ

under diffeomorphism δξgμν = gμλ∇νξ
λ + gνλ∇μξ

λ, where the subscript

of the gauge transformation parameter is defined by ξμ = ημνξ
ν using the

flat metric. The traceless tensor field is further decomposed as

h00 = h, h0i = hT
i + ∂ih

′,

hij = hTT
ij + ∂(ih

T′
j) +

1

3
δijh+

(
∂i∂j
|∂2

− 1

3
δij

)
h′′,

where the vectors hT
i and hT′

i satisfy the transverse condition and the tensor

hTT
ij satisfies the transverse and traceless conditions. The spatial Laplacian

|∂2 = ∂i∂i is defined in the comoving coordinates. Decomposing the param-

eter ξμ into ξ0 and ξi = ξTi + ∂iξ
S, the transformation can be expressed

as

δξϕ = ξ0∂ηφ̂+
1

4
∂ηξ

0 +
1

4
|∂2ξS,

δξh = −3

2
∂ηξ

0 +
1

2
|∂2ξS, δξh

′ = −ξ0 + ∂ηξ
S, δξh

′′ = 2 |∂2ξS,

δξh
T
i = ∂ηξ

T
i , δξh

T′
i = 2ξTi , δξh

TT
ij = 0.

The matter energy-momentum tensor is transformed under diffeomor-

phism as

δξT
μ

(α)ν = ∂νξ
λT μ

(α)λ − ∂λξ
μT λ

(α)ν + ξλ∂λT
μ

(α)ν .

Therefore, the matter perturbations are transformed for each state α as

δξv
α = −∂ηξ

S, δξv
Tα
i = −∂ηξ

T
i ,

δξ(δρα) = ξ0∂ηρα, δξ(δPα) = ξ0∂ηPα, δξΠ
αi
j = 0.
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Gauge invariant variables Introduce gauge invariant variables within

the linear approximation. As scalar variables, there are two gravitational

potentials called the Bardeen potentials defined by

Φ = ϕ+
1

6
h− 1

6
h′′ + σ∂ηφ̂,

Ψ = ϕ− 1

2
h+ σ∂ηφ̂+ ∂ησ, (13-3)

where

σ = h′ − 1

2

∂ηh
′′

|∂2
. (13-4)

Since the σ variable transforms as δξσ = −ξ0, we can easily show that the

Bardeen potentials are gauge invariant variables satisfying δξΦ = δξΨ = 0.

Adopting the h′ = h′′ = 0 gauge called the conformal Newtonian gauge

or the longitudinal gauge, the Bardeen potentials are written as Φ = ϕ+h/6
and Ψ = ϕ − h/2. Then, the scalar components of the metric are simply

expressed as

ds2 = a2
[− (1 + 2Ψ) dη2 + (1 + 2Φ) dx2

]
.

From this expression, Ψ which appears in the time component is also called

the Newton potential.

Gauge invariant vector and tensor perturbations of the gravitational field

are defined by

Υi = hT
i − 1

2
∂ηh

T′
i , hTT

ij .

The transverse-traceless tensor field becomes gauge invariant in itself.

Gauge-invariant perturbation variables commonly used for each matter

state α are given by

V α = vα +
1

2

∂ηh
′′

|∂2
, V α

i = vTα
i +

1

2
∂ηh

T′
i ,

Dα =
δρα
ρα

+
∂ηρα
ρα

σ − 3(1 + wα)∂ηφ̂V
α

=
δρα
ρα

− 3(1 + wα)∂ηφ̂(σ + V α),

Dα =
δρα
ρα

+
∂ηρα
ρα

σ + 3(1 + wα)Φ

=
δρα
ρα

+ 3(1 + wα)(Φ− ∂ηφ̂σ),

Ωα
i = vTα

i + hT
i , Πα

ij . (13-5)
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In the variables Dα and Dα, the ∂ηρα terms are rewritten using the conser-

vation equation ∂ηρα = −3(1 + wα)∂ηφ̂ρα without a source. Therefore,

when there is a source, they must be defined by the first expressions. The

scalar and vector variables introduced here are not independent, which sat-

isfy Dα = Dα−3(1+wα)(Φ+∂ηφ̂V
α) and Υi+V α

i −Ωα
i = 0, respectively.

As discussed in the next section, Dα is an energy density variable appearing

on the right-hand side of the Poisson equation. On the other hand, Dα is a

useful density variable when considering angular power spectra of CMB.2

The variables ρ and P defined as the sum of states are already introduced

in (11-4). For the perturbation variables, D, D, V , and Πij are defined as

ρD =
∑
α

ραD
α, ρD =

∑
α

ραDα,

(1 + w)ρV = (ρ+ P )V =
∑
α

(ρα + Pα)V
α =
∑
α

(1 + wα)ραV
α,

PΠij =
∑
α

PαΠ
α
ij . (13-6)

The equation-of-state parameter is defined by

w =
P

ρ
=

∑
α Pα∑
α ρα

.

Here, it should be noted that D 
= ∑α Dα, D 
= ∑α Dα, V 
= ∑α V α,

and w 
= ∑α wα. This is because Dα and Dα are defined by dividing by

ρα, while quantities that can be summed must be in the form ραDα ∼ δρα
which appears in the energy-momentum tensor. Similarly, since the velocity

variable appears in the form of (ρα + Pα)V
α, the sum V must be defined

by the above equation.

Finally we introduce variables related to entropy. Between pressure and

energy density perturbations, the thermodynamic relationship

δP =

(
∂P

∂ρ

)
S

δρ+

(
∂P

∂S

)
ρ

δS = c2sδρ+ TδS

holds. If considering an adiabatic fluid (δS = 0), δP becomes proportional

to δρ and its coefficient is given by the sound speed squared, c2s = ∂P/∂ρ.

2 The relationship between the photon density variable and the variable Θ often used is

Dγ/4 = Θ+ Φ in the conformal Newtonian gauge.
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As a gauge invariant variable associated with the thermodynamic relation-

ship, we introduce

Γα =
1

Pα

(
δPα − c2αδρα

)
=

δPα

Pα
− c2α

wα

δρα
ρα

proportional to entropy of each state α.

In addition, the invariant Γ representing entropy of the whole system is

defined by

PΓ = δP − c2sδρ, (13-7)

where δP and δρ are the simple sum of states and the sound speed squared

is defined as

c2s =
∂ηP

∂ηρ
=

∑
α ∂ηPα∑
α ∂ηρα

.

Note here that c2s 
=∑α c2α.

Evolution Equations of Fluctuations

Let us derive evolution equations of fluctuations from the Einstein equation

and conservation equations for each matter state α.

Einstein Equations

In order to treat the conformal-factor field specially, a variation of the action

I is defined as follows:

δI =
1

2

∫
d4x

√−g Tμνδgμν

=
1

2

∫
d4x

√−ḡ
{
2T̄λ

λδφ+ T̄μνδḡμν
}

=

∫
d4x

{
Tλ

λδφ+
1

2
Tμ

νδh
ν
μ

}
.

Here we introduce three kinds of energy-momentum tensors, Tμν , T̄μν , and

Tμν . These are useful when considering perturbations around a conformally

flat spacetime. The second equality is shown by using an expression that the

variation of the metric gμν = e2φḡμν is decomposed in modes as

δgμν = 2e2φḡμνδφ+ e2φδḡμν .
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For each tensor, we should be aware of the metric used to contract the index.

The normal energy-momentum tensor Tμν(g) defined in the first equation is

contracted with the physical metric gμν . The tensor T̄μν(φ, ḡ) on the second

line is done with the metric ḡμν excluding the conformal-factor field, and

the last Tμν(ϕ, h) is with the flat metric ημν .

The difference between the normal energy-momentum tensor and the

tensor with the bar appears as a conformal-factor dependence, which is ex-

pressed as Tμν = e−6φT̄μν = e−6φ̂(1 − 6ϕ)T̄μν or Tμ
ν = e−4φT̄μ

ν =

e−4φ̂(1 − 4ϕ)T̄μ
ν . The relationship between the tensors with the bar and

written in the bold is given by Tμν = ηλ(μT̄
λ
ν), symmetrized within the

linear approximation, which satisfies Tλ
λ(= ημνTμν) = T̄λ

λ by definition.

The Einstein equation can be written by the sum of the Einstein term,

the cosmological term, and the matter term as

Tμν = TEH
μν +TΛ

μν +TM
μν = 0,

where the matter energy-momentum tensor is given by the sum of all states

as

TM
μν =

∑
α

T(α)
μν .

Rewriting (13-2) to the tensor in the bold and summing all states, it is ex-

pressed as

TMλ
λ = e4φ̂ {−ρ+ 3P − δρ+ 3δP + 4(−ρ+ 3P )ϕ} ,

TM
00 = e4φ̂(ρ+ δρ+ 4ρϕ),

TM
0i = −e4φ̂(ρ+ P )

(
vi +

1

2
h0i

)
,

TM
ij = e4φ̂ {(P + δP + 4Pϕ)δij + PΠij} , (13-8)

where δρ and δP are given by the sums of states as in (11-4), and Πij is

defined in (13-6). The velocity variable vi is also given by the sum of states

as in the definition of V in (13-6).

Since the anisotropic stress tensor is traceless, it is decomposed as

Πij =

(
−∂i∂j

|∂2
+

1

3
δij

)
ΠS + ∂(iΠ

V
j) +ΠT

ij ,

where ΠV
i satisfies the transverse condition and ΠT

ij satisfies the transverse

and traceless conditions. Decomposition of the variable Πα
ij for each state

is the same.
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The energy-momentum tensor derived from the Einstein-Hilbert action

is given, when expanded up to the first order of the traceless tensor field, by

TEH
μν = M2

Pe
2φ

{
2∂μ∂νφ− 2∂μφ∂νφ+ ημν

(−2∂2φ− ∂λφ∂λφ
)

−∂(μχν) +
1

2
∂2hμν − 2hλ

(μ∂ν)∂λφ+ 2hλ
(μ∂ν)φ∂λφ

−2∂(μh
λ
ν)∂λφ+ ∂λhμν∂λφ

+ημν

(
1

2
∂λχ

λ + 2hλσ∂λ∂σφ+ hλσ∂λφ∂σφ+ 2χλ∂λφ

)}
,

where χμ = ∂λh
λ
μ and ∂2 = ∂λ∂λ = −∂2

η + |∂2. The conformal-factor

field φ has not expanded yet. Taking the trace, we obtain

TEHλ
λ = M2

Pe
2φ
{
−6∂2φ− 6∂λφ∂λφ+ ∂λχ

λ + 6hλσ∂λ∂σφ

+6χλ∂λφ+ 6hλσ∂λφ∂σφ
}
.

Decompose the conformal-factor field φ into the background φ̂ and the

perturbation ϕ, and further expand the energy-momentum tensor up to the

first order of ϕ. For the sake of simplicity, we take the conformal Newtonian

gauge of h′ = h′′ = 0 and hT′
i = 0 by using four gauge degrees of freedom.

Each component of the energy-momentum tensor for the Einstein term is

expanded as follows:

TEHλ
λ = M2

Pe
2φ̂

{
6∂2

η φ̂+ 6∂ηφ̂∂ηφ̂+ 12(∂2
η φ̂+ ∂ηφ̂∂ηφ̂)ϕ+ 6∂2

ηϕ

−6 |∂2ϕ+ 12∂ηφ̂∂ηϕ+ ∂2
ηh+

1

3
|∂2h+ 6∂ηφ̂∂ηh

+6(∂2
η φ̂+ ∂ηφ̂∂ηφ̂)h

}
,

TEH
00 = M2

Pe
2φ̂

{
−3∂ηφ̂∂ηφ̂− 6∂ηφ̂∂ηφ̂ϕ− 6∂ηφ̂∂ηϕ+ 2 |∂2ϕ

−3∂ηφ̂∂ηφ̂h− ∂ηφ̂∂ηh+
1

3
|∂2h

}
,

TEH
0i = M2

Pe
2φ̂

{
2∂η∂iϕ− 2∂ηφ̂∂iϕ+

1

3
∂η∂ih+ ∂ηφ̂∂ih+

1

2
|∂2hT

i

+(∂2
η φ̂− ∂ηφ̂∂ηφ̂)h

T
i

}
,
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TEH
ij = M2

Pe
2φ̂

{
2∂i∂jϕ+ δij

[
2∂2

η φ̂+ ∂ηφ̂∂ηφ̂+ 2∂2
ηϕ− 2 |∂2ϕ

+2∂ηφ̂∂ηϕ+
(
4∂2

η φ̂+ 2∂ηφ̂∂ηφ̂
)
ϕ
]
− 1

3
∂i∂jh

+δij

[
1

3
∂2
ηh+

1

3
|∂2h+

5

3
∂ηφ̂∂ηh+

(
2∂2

η φ̂+ ∂ηφ̂∂ηφ̂
)
h

]

+∂η∂(ih
T
j)+ 2∂ηφ̂∂(ih

T
j) −

1

2
∂2
ηh

TT
ij +

1

2
|∂2hTT

ij − ∂ηφ̂∂ηh
TT
ij

}
.

The energy-momentum tensor for the cosmological term is given by

TΛ
μν = −Λcos e

4φ̂(1 + 4ϕ)ημν .

Lastly, we rewrite the above expressions in terms of the gauge-invariant

variables using ϕ = (3Φ + Ψ)/4 and h = 3(Φ − Ψ)/2 in the conformal

Newtonian gauge.

Linear scalar equations Consider the following four types of equa-

tions satisfied by the scalar variables:

e−4φ̂Tλ
λ = 0, e−4φ̂

(
Ti

i − 3
∂i∂j

|∂2
Tij

)
= 0,

e−4φ̂

(
T00 + 3∂ηφ̂

∂i

|∂2
Ti0

)
= 0, e−4φ̂ ∂i

|∂2
Ti0 = 0. (13-9)

The combinations on the left-hand side are normalized so that they become

the left-hand side of equations which will be obtained below directly as it is.

The first trace equation is expressed as

M2
P e−2φ̂

{
6∂2

ηΦ+ 18∂ηφ̂∂ηΦ− 4 |∂2Φ− 6∂ηφ̂∂ηΨ

+
(
12∂2

η φ̂+ 12∂ηφ̂∂ηφ̂− 2 |∂2
)
Ψ
}

+(3c2s − 1)ρ
{
D + 3(1 + w)∂ηφ̂V

}
+ 3wρΓ

+(3w − 1)ρ(3Φ + Ψ)− 4Λcos(3Φ + Ψ) = 0, (13-10)

where the matter term is also rewritten in terms of the gauge-invariant vari-

ables after replacing δP with PΓ + c2sδρ using (13-7). From the second

equation, we obtain a relation between Φ and Ψ as

M2
P e−2φ̂(−2 |∂2) (Φ + Ψ) + 2PΠS = 0. (13-11)
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From the third equation, we obtain the Poisson equation

M2
P e−2φ̂ 2 |∂2Φ+ ρD = 0. (13-12)

The fourth equation, which includes the velocity variable, becomes

M2
P e−2φ̂

{
2∂ηΦ− 2∂ηφ̂Ψ

}
− (1 + w)ρV = 0. (13-13)

In order to derive the equations above, we used the Einstein equation (11-3)

that the background φ̂ satisfies.

Let us set ΠS = 0. Actually, since the perfect fluid approximation holds

for relatively large size fluctuations, it is not contradictory to the observa-

tions as for such fluctuations. In this case, these equation systems can be

solved because there are four equations for four variables. It should be noted

here that the variables that we can solve are D, V , Φ, and Ψ only which are

defined by the sum of all states. If the universe can be approximated as

one radiation state just after the big bang, there is no problem, but if various

matter states coexist, it is necessary to solve conservation equations for each

state, as will be shown below.

Linear vector equations As equations that the vector variables satisfy,

we consider the following two types:

e−4φ̂ ∂
j

|∂2
Tij = 0, e−4φ̂T0i = 0.

Extracting vector components from each equation, we obtain

M2
P e−2φ̂

{
1

2
∂ηΥi + ∂ηφ̂Υi

}
+

1

2
PΠV

i = 0 (13-14)

and

1

2
M2

P e−2φ̂ |∂2Υi − (1 + w)ρΩi = 0. (13-15)

Also when deriving these equations, the Einstein equation (11-3) for the

background φ̂ is used. Like the scalar equation, (13-14) can be solved easily

if ΠV
i = 0, and Ωi can be obtained by substituting its solution into (13-15).

Linear tensor equations From e−4φ̂Tij = 0, we obtain the following

equation for the tensor variable:

M2
P e−2φ̂

{
−1

2
∂2
ηh

TT
ij − ∂ηφ̂∂ηh

TT
ij +

1

2
|∂2hTT

ij

}
+ PΠT

ij = 0. (13-16)

This equation can be easily solved if ΠT
ij = 0.
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Conservation Equations for Matter Fields

Since the variables in the Einstein equation are those of the sum of all states

as shown above, we cannot follow changes in each state with the Einstein

equation only. On the other hand, as far as there is no source term, the matter

energy-momentum tensor (13-2) satisfies a conservation equation

∇μT
μ

(α)ν =
1√−g

∂μ

(√−gT μ
(α)ν

)
+

1

2
(∂νgμλ) g

λσT μ
(α)σ = 0

for each state. If the state is not one, we have to solve the Einstein equation

and the conservation equation in combination.

Let us consider the following normalized equations for each component

of the conservation equation:

− 1

ρα
∇μT

μ
(α)0 = 0,

1

(1 + wα)ρα
∇μT

μ
(α)i = 0.

From the first equation, we obtain

∂ηDα + 3
(
c2α−wα

)
∂ηφ̂Dα + (1+wα) |∂2V α + 3wα∂ηφ̂Γ

α = 0. (13-17)

By applying ∂i/ |∂2 to the second equation to remove the transverse compo-

nent and extracting the scalar component, we obtain

∂ηV
α +
(
1− 3c2α

)
∂ηφ̂V

α +Ψ− 3c2αΦ

+
c2α

1 + wα
Dα +

wα

1 + wα

[
Γα − 2

3
ΠSα

]
= 0. (13-18)

An equation for the vector variables is also yielded by extracting the trans-

verse component from the second equation as

∂ηΩ
α
i +
(
1− 3c2α

)
∂ηφ̂Ω

α
i +

wα

2(1 + wα)
|∂2ΠV α

i = 0. (13-19)

In order to derive these equations, we used the conservation equation (11-2)

for the background field and a differential equation for the equation-of-state

parameter

∂ηwα =
(
c2α − wα

) ∂ηρα
ρα

= −3(1 + wα)
(
c2α − wα

)
∂ηφ̂.

What we note here is that when deforming the equations, we use the conser-

vation equations of each state, but do not use the Einstein equation, so that

the equations hold for each state.
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These equations also hold true when the variables with α are all replaced

with the variables defined by the sum of states. They can be easily derived by

considering the equations −ρ−1∇μT
Mμ
0 = 0 and (1 +w)−1ρ−1∇μT

Mμ
i =

0.

Finally, we examine scalar equations that Dα, not Dα, satisfies. Using

the relation between two variables

Dα = Dα + 3 (1 + wα)
(
Φ+ ∂ηφ̂V

α
)
,

the equation (13-18) including a derivative of V α can be rewritten as

∂ηV
α + ∂ηφ̂V

α +Ψ+
c2α

1 + wα
Dα +

wα

1 + wα

[
Γα − 2

3
ΠSα

]
= 0

for each state. On the other hand, when rewriting (13-17) to get a differential

equation for Dα, we have to use the Einstein equation (13-13) to remove

∂ηΦ and also use (11-3) to remove ∂2
η φ̂. Thus, the following equation is

obtained:

∂ηD
α − 3wα∂ηφ̂D

α + (1 + wα) |∂2V α + 2wα∂ηφ̂Γ
α

+
3

2M2
P

(1 + wα) (1 + w)ρa2 (V − V α) = 0,

in which the state sum variables ρ, w, and V appear in the last term. For

this reason, we will use the perturbation variable Dα in the following calcu-

lations.

Fourier Transform of Evolution Equations

We will solve the evolution equations in the comoving momentum space.

Since the curvature of the three-dimensional space is now assumed to be

zero, we can consider normal Fourier transform.3 For the dimensionless

scalar variables Ψ, Φ, D, and D, Fourier transform is defined such as

Ψ(η,x) =

∫
d3k

(2π)3
Ψ(η,k) eik·x.

Fourier transform for the dimensionless transverse vector variables Vi, Ωi,

Υi and the transverse traceless tensor variable hTT
ij is the same. For the

3 If the space is curved, it expands with harmonic functions on the space.
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scalar variable V with dimension, it is defined as

V (η,x) =

∫
d3k

(2π)3

(
−1

k

)
V (η,k) eik·x,

where k = |k|.
In the following, the cosmological constant Λcos and the anisotropic

stress tensor Πα
ij are assumed to be zero for simplicity. In fact, the cos-

mological constant can be ignored in the era before the universe is neutral-

ized. Its effect becomes significant near today, which is of increasing the

amplitude of the large angle component of CMB spectrum known as the

integrated Sachs-Wolfe effect, but we will not discuss it here. Also, we

assume that matters are adiabatic fluids of Γα = 0.

From (13-11), (13-12), (13-17), and (13-18), the scalar equations can be

expressed in momentum space as

Φ = −Ψ,

k2Φ =
a2

2M2
P

∑
α

ραD
α

=
a2

2M2
P

∑
α

ρα

{
Dα + 3 (1 + wα)

(
Ψ+ aH

V α

k

)}
,

∂ηDα + 3
(
c2α − wα

)
aHDα = − (1 + wα) kV

α,

∂ηV
α +
(
1− 3c2α

)
aHV α = k

(
Ψ− 3c2αΦ

)
+

c2α
1 + wα

kDα, (13-20)

respectively. From (13-14) and (13-19), the vector equations are

∂ηΥi + 2aHΥi = 0,

∂ηΩ
α
i +
(
1− 3c2α

)
aHΩα

i = 0. (13-21)

From (13-16), the tensor equation is

∂2
ηh

TT
ij + 2aH∂ηh

TT
ij + k2hTT

ij = 0. (13-22)

Adiabatic Conditions

The initial universe is in a thermal equilibrium state and it is considered to

be in an adiabatic state with no exchanges of heat from the outside because

it is a closed system. It is also seen from the fact that the spectrum of cosmic
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microwave background radiation shows a Planck distribution of black body

radiation. Hence, the adiabatic condition shall be imposed as the initial

condition necessary to solve the evolution equation below.

We here give the adiabatic condition of a mixed fluid composed of ra-

diations and dusts. Since the dust is Pd = δPd = 0, energy density and

pressure in this system are given by

ρ = ρr + ρd, δρ = δρr + δρd,

P = Pr =
1

3
ρr, δP = δPr =

1

3
δρr.

The sound speed squared is then given by

c2s =
∂ηP

∂ηρ
=

1

3

1

1 + 3
4
ρd

ρr

,

where the time derivatives are rewritten using the conservation equations.

From these expressions, entropy of the system is calculated as

TδS = δP − c2sδρ =
1

3

ρd

1 + 3
4
ρd

ρr

(
3

4

δρr
ρr

− δρd
ρd

)
.

Therefore, the adiabatic condition δS = 0 of the mixed fluid is given by

δρr
ρr

=
4

3

δρd
ρd

. (13-23)

In terms of the gauge-invariant variables, it becomes Dr = (4/3)Dd. Con-

sidering that the adiabatic condition for the velocity variable is given by

V r = V d, it is also Dr = (4/3)Dd.

The adiabatic condition as an initial condition of the evolution equation

is set in the radiation-dominated era. Assuming fluctuations come from one

scalar component, we here take the following initial condition as the adia-

batic condition (13-23) separately holds for any pair of radiation and dust

components:

δργ
ργ

=
δρν
ρν

=
4

3

δρc
ρc

=
4

3

δρb
ρb

(
=

δρ

ρ

)
, (13-24)

where the last equality in the parenthesis represents that energy density of

radiations is overwhelmingly larger than that of CDM and baryons in the

radiation-dominated era. Also, as described later, since photons and baryons

are strongly coupled until the universe is neutralized, they behave as one

fluid with the adiabatic condition maintained in good approximation until

then.
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Solutions of Vector and Tensor Equations

We first solve the vector and tensor equations which are simpler than the

scalar equation. After grasping its physical behavior from the equation writ-

ten in terms of the physical (proper) time, we solve the equation with the

conformal time as it is which is easy to handle.

Solutions in Physical Time

The linear equation can solve for each comoving momentum k. Therefore,

the physical momentum p = k/a, which represents an actual fluctuation size

for each k, decreases with the expansion of the universe. If we normalize

the current scale factor to a0 = 1, k represents a current fluctuation size.

For example, a fluctuation k = 0.0002Mpc−1 corresponding to the current

horizon size was 0.2Mpc−1 when the universe was neutralized because of

1/a = 1 + z = 1100.

Let us first examine the vector equations. Rewritten in the physical time

τ using dτ = adη (11-1), the first vector equation in (13-21) becomes

Υ̇i + 2HΥi = 0,

where the dot denotes a derivative with respect to τ . If the Hubble variable

H is a positive constant, this equation indicates that the vector fluctuation

reduces with time by e−2Hτ . Actually, the reduction eventually stops be-

cause H is a positive function decreasing with time. However, even if the

vector fluctuation is large in the initial universe, it will decrease soon and

not be observed today.

The variable Ωα
i also will be vanishing eventually. From the second

equation of (13-21), we can see that although its amplitude in the radiation-

dominated era does not change almost due to c2α � 1/3, it starts to reduce

when turning to c2α < 1/3. Therefore, the vector fluctuations are not usually

considered in analysis of the CMB anisotropy spectrum.

The tensor equation (13-22) written in the physical time is given by

ḧTT
ij + 3HḣTT

ij +
k2

a2
hTT
ij = 0.

In this case, the physical momentum k/a appears in the last term. This

term decreases as the scale factor increases with time. In regions where the

last term is negligible compared to the second term, a solution satisfying

ḣTT
ij = 0 becomes stable and the tensor fluctuation maintains a constant
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value, but in regions where the last term dominates, the tensor fluctuation

reduces.

Whether it decreases or not depends on whether the physical momentum

k/a is larger or smaller than the Hubble variable H . Considering the size

of fluctuation a/k in real space, the tensor fluctuation, which was larger

than the horizon size 1/H in the early universe, decreases as it enters the

horizon along with the expansion of the universe. That is, although both

a/k and 1/H increase with the expansion of the universe, there is a time

when the horizon size overtakes the fluctuation size on the way, after which

the reduction of the tensor fluctuation starts. Here, a scale larger than the

horizon size is called super-horizon scale, and a smaller one is called sub-

horizon scale.

The wavelength 1/k observed as the CMB temperature fluctuation spec-

trum today has a size of 10 to 5000 Mpc, and it is from sizes comparable to

the Hubble distance 1/H0 = 4164 Mpc to smaller ones. These fluctuations

are all a/k > 1/H in the past, and it indicates that the largest size fluctu-

ation has been propagated to the present without entering the horizon from

the beginning of the universe. That is, it means that if there is the tensor

fluctuation in the early universe, it is left in large angular components of

the CMB spectrum without reducing. Conversely, with small angular com-

ponents, the tensor fluctuation begins to reduce at the stage of entering the

horizon, and becomes so small that it can be hardly observed now.

Solutions in Conformal Time

Let us solve the same equations using the conformal time. In this case, it is

convenient to introduce

x = kη (0 < x < ∞)

as a time variable. Using this variable, a region where the size of fluc-

tuation becomes a super-horizon scale in the radiation-dominated (matter-

dominated) era is expressed as

a

k
>

1

H
=⇒ x < 1 (x < 2)

due to aH = ∂ηa/a = 1/η (2/η) from a ∝ η (η2). In other words, if x
is less than 1 (2), it is a super-horizon scale, and if time goes by more than

1 (2), it enters the horizon and becomes a sub-horizon scale. The distinction

between 1 or 2 is whether it enters in the radiation-dominated era or in the

matter-dominated era.
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>

>

>

>

1
k

ηeq ηdec
η

x =
1

x = 2

radiation-dominated matter-dominated

super-horizon

sub-horizon

Figure 13-1: A fluctuation size 1/k and the time to enter the horizon. The oblique

solid line represents the position of the horizon (k = aH).

The thing to note here is that the time variable x can still take the value

of x � 1 even today for very large size fluctuations. Such fluctuations will

have remained super-horizon ones from the beginning to the present. The

low multipole components of l = 2, 3 in the CMB spectrum correspond to

such fluctuations.

A typical fluctuation size 1/k and the time when it entered the horizon

are shown in Fig. 13-1. It corresponds to k = 0.002Mpc−1 (l � 30), k =
0.005Mpc−1 (l � 70), k = 0.015Mpc−1 (l � 210), and k = 0.05Mpc−1

(l � 700) from the top, respectively, where the relationship with the mul-

tipole l is given by l � π/θ = kddec (11-9). It shows that the large angle

fluctuation (l � 30) observed today as the CMB temperature fluctuation be-

came a sub-horizon size after the universe was neutralized. In contrast to

this, we can see that the fluctuation of l � 210 near the first acoustic peak

became a sub-horizon size in the radiation-dominated era.

The vector equation in the conformal time can be written using aH =
∂ηa/a as

∂ηΥi + 2aHΥi = ∂η(a
2Υi) = 0,

∂ηΩ
α
i + (1− 3c2α)aHΩα

i � ∂η(a
1−3c2αΩα

i ) = 0,

where the sound speed cα is assumed to be a constant for simplicity. Thus,

Υi quickly reduces with the expansion of the universe and Ωα
i also reduces

at c2α < 1/3 as follows:

Υi ∝ a−2, Ωα
i ∝ a3c

2
α−1.
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Rewriting the tensor equation in terms of the variable x and using aH =
q/x in the radiation-dominated (q = 1) and matter-dominated (q = 2) eras,

we obtain

∂2
xh

TT
ij + 2

q

x
∂xh

TT
ij + hTT

ij = 0.

Using Bessel functions, its solution is given by hTT
ij = eijx

1/2−qJq−1/2(x),
where eij is the transverse-traceless polarization tensor. It behaves as

hTT
ij =

{
const. for x � 1 (super-horizon)
1
a for x > 1 (sub-horizon) .

Thus, the tensor fluctuation decreases when it enters the horizon.

Solutions of Scalar Equations Without Baryons

In order to understand properties of the scalar equations, we here consider a

simple system that can be easily solved, in which there are cold dark matters

(CDM) and radiations only, and the anisotropic stress tensor and the cosmo-

logical constant are zero. As a time variable, we use x = kη introduced in

the previous section.

Radiation-Dominated Era

Consider a system in the radiation-dominated era where CDM and radia-

tions exist. Since it is radiation-dominated,

ρr � ρc

holds. Therefore, the Friedmann equation can be approximated as 3M2
PH

2 =
ρ � ρr. Similarly, ignoring ρc from the right-hand side of the Poisson equa-

tion (the second equation of (13-20)), we get

−Ψ � 3

2

1

x2

{
Dr + 4

(
Ψ+

1

x
V r

)}
, (13-25)

where we use the first equation of (13-20), and also aH = ∂ηa/a = 1/η
and a2ρr/2M

2
P = (3/2)(aH)2 = 3/2η2 derived from the fact that a ∝ η in

the radiation-dominated era.

The conservation equations for radiations are given by

∂xDr +
4

3
V r = 0, ∂xV

r = 2Ψ +
1

4
Dr (13-26)
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from wr = c2r = 1/3. The conservation equations for CDM are

∂xDc + V c = 0, ∂xV
c +

1

x
V c = Ψ (13-27)

from wc = c2c = 0.

Combining the differential equations (13-25) and (13-26), we obtain

(x2 + 6)∂2
xDr +

12

x
∂xDr +

1

3
(x2 − 6)Dr = 0.

A general solution of this differential equation is given by

Dr = A

{
cos

(
x√
3

)
− 2

√
3

x
sin

(
x√
3

)}

+B

{
sin

(
x√
3

)
+

2
√
3

x
cos

(
x√
3

)}
.

Imposing regularity at x → 0 as an initial condition, we get B = 0 and thus

Dr = A

{
cos

(
x√
3

)
− 2

√
3

x
sin

(
x√
3

)}
,

V r = −3

4
∂xDr = A

3

4

{
x2 − 6√

3x2
sin

(
x√
3

)
+

2

x
cos

(
x√
3

)}
,

Ψ = − 1

12 + 2x2

(
3Dr +

12

x
V r

)
.

Each solution behaves at the super-horizon limit (x � 1) as

Ψ = ΨI − 1

30
ΨIx

2 + · · · ,

Dr = −6ΨI − 1

3
ΨIx

2 + · · · ,

V r =
1

2
ΨIx+ · · · , (13-28)

where the initial value ΨI = A/6 of the Bardeen potential is a function of

the wave number k only. In the super-horizon region, since the x2 terms can

be ignored, Ψ and Dr do not change almost. However, the energy density

fluctuation Dr that appears on the right-hand side of the Poisson equation

becomes

Dr = −2

3
ΨIx

2,
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and its initial value almost vanishes. The requirement that initial fluctuations

must be very small in order to solve the flatness problem means that among

energy density fluctuations, this D variable is small.

The velocity fluctuation V c of CDM can be obtained by substituting the

solution of Ψ into the second equation in (13-27). Furthermore, the energy

density fluctuation Dc can be obtained by substituting the solution of V c

into the first equation in (13-27). As initial conditions of them, the adiabatic

conditions (13-24) are imposed as

Dc(x = 0) =
3

4
Dr(x = 0), V c(x = 0) = V r(x = 0).

By substituting the solution (13-28) of Ψ into (13-27) and solving under the

adiabatic condition, we obtain

Dc = −9

2
ΨI − 1

4
ΨIx

2 + · · · ,

V c =
1

2
ΨIx+ · · · .

Thus, Dc also does not change almost in the super-horizon region.

In the sub-horizon region (x � 1) where fluctuations enter the horizon,

Dr and V r begin to oscillate. On the other hand, the Bardeen potential

decreases by 1/x2 as

Ψ = − 3

2x2
Dr.

Therefore, solving the CDM fluctuation as Ψ � 0, we get

Dc ∝ log x, V c ∝ − 1

x
,

and thus the growth of Dc is slow even in the sub-horizon region (Meszaros

effect).

Matter-Dominated Era

Since ρr � ρc in the matter-dominated era, the Friedmann equation can be

approximated by 3M2
PH

2 = ρc. The Poisson equation in (13-20) can be

expressed as −k2Ψ = (a2/2M2
P)ρcD

c = (6/η2)Dc because of aH = 2/η
from the behavior a ∝ η2, and thus the Bardeen potential is determined from

the CDM fluctuations. Substituting the parameter wc = c2c = 0 representing

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Cosmological Perturbation Theory 273

the CDM state, the differential equations that the CDM fluctuations satisfy

are given by

−(x2 + 18)Ψ = 6Dc +
36

x
V c, ∂xDc + V c = 0, ∂xV

c +
2

x
V c = Ψ.

Combining these equations, we obtain

(x2 + 18)∂2
xV

c +

(
4x+

72

x

)
∂xV

c −
(
4 +

72

x2

)
V c = 0.

A general solution of this differential equation is given by

V c = V0x+
V1

x
,

and if imposing finiteness at x → 0, we obtain V1 = 0 as an initial condi-

tion. Substituting this solution into the above differential equations, we can

calculate other fluctuations and obtain

Ψ = ΨI,

Dc = −5ΨI − 1

6
ΨIx

2,

V c =
1

3
ΨIx, (13-29)

where ΨI = 3V0.

The differential equations for radiations are given by

∂xDr +
4

3
V r = 0, ∂xV

r = 2Ψ +
1

4
Dr

due to wr = c2r = 1/3. Combining these equations yields

∂2
xV

r +
1

3
V r = 2∂xΨ.

Since the Bardeen potential is a constant, the right-hand side vanishes, and

thus this equation can be easily solved. Also, substituting the solution into

the original equation, Dr can be calculated. We thus obtain the following

general solutions:

V r = A sin

(
x√
3

)
+B cos

(
x√
3

)
,

Dr =
4√
3
A cos

(
x√
3

)
− 4√

3
B sin

(
x√
3

)
− 8ΨI .
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The coefficients A and B are determined by the adiabatic condition. Im-

posing that V r = V c and Dr = (4/3)Dc hold at the limit x → 0, we get

B = 0 and A = ΨI/
√
3. Therefore, the solution is

Dr = −8ΨI +
4

3
ΨI cos

(
x√
3

)
,

V r =
ΨI√
3
sin

(
x√
3

)
. (13-30)

In the super-horizon region (x � 0), it becomes Dr � (−20/3)ΨI.

It turns out that the Bardeen potential does not change at all in the matter-

dominated era. Also, it is already mentioned that the Bardeen potential

does not change for super-horizon size fluctuations even in the radiation-

dominated era. Furthermore, it is known that the amplitude of the large size

CMB temperature fluctuation can be determined by the magnitude of the

Bardeen potential at the decoupling time through the Sachs-Wolfe effect (E-

5). Thus, it can be thought that the current observed value ΔT/T � 10−5

directly conveys the magnitude of the Bardeen potential at the time of the

big bang.

The energy density fluctuations Dc and Dr change greatly after enter-

ing the horizon (x � 2). The CDM fluctuation Dc rapidly increases with

x2, while the radiation fluctuation Dr starts to oscillate, although they are

almost constants in the super-horizon region (x � 2).

The CDM velocity fluctuation V c monotonically grows with x. On the

other hand, the radiation velocity fluctuation V r grows with x in the super-

horizon region, but begins to oscillate like Dr after entering the horizon.

The thing to note here is that since the solution is obtained under the

matter-dominated condition, it will not lead to that in the radiation-dominated

era even at x → 0. Since the initial condition is set in the super-horizon re-

gion (x � 0), it is assumed that the fluctuation is not yet inside the horizon

even going into the matter-dominated era. In other words, we have consid-

ered relatively large size fluctuations about l < 200 in the CMB multipole.

In addition, it can be seen that even for sufficiently large fluctuations as

always staying in a super-horizon size even in the matter-dominated era,

Ψ does not change, while Dr will slightly increase from Dr = −6ΨI to

Dr = (−20/3)ΨI before reaching the turning point (η = ηeq) of the era.

Finally, we briefly describe the position of the first acoustic peak. The

CMB temperature fluctuation spectrum in this region is almost determined

from the amplitude of the fluctuation when the universe is neutralized. Us-

ing the scalar component of the Sachs-Wolfe effect (E-4) derived in the first
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section of Appendix E, the CMB temperature fluctuation today is given by

ΔT

T
(η0) � 1

4
Dr(ηdec) + 2Ψ(ηdec) =

1

3
ΨI cos (csxdec) , (13-31)

where (13-29) and (13-30) are used and cs = cr = 1/
√
3 is applied as a

sound speed. The extreme values are therefore given by csxdec = cskηdec =
0, π, 2π, . . .. The first extreme is given by k1peak = π/rs except for zero,

where rs = csηdec is called the sound horizon at the decoupling time. The

position in the multipoles can be calculated using (11-9) as

l1peak � k1peakddec =
π(η0 − ηdec)

csηdec
=

π

cs

(√
zdec + 1− 1

)
. (13-32)

Substituting zdec = 1100 and the value of the sound speed yields l1peak �
174. This value is smaller than the observed value because no baryon effects

are included in the sound speed. As shown in the following section, a sound

speed in a fluid composed of baryons and radiations becomes cs < 1/
√
3,

and thus the position of the peak moves to the larger of l.

Solutions of Scalar Equations With Baryons

Let us consider states including baryons before the universe is neutralized.

Before the neutralization, electrons and baryons are strongly interacting and

can be regarded as one. Therefore, what we call baryons usually represents

a state where electrons and baryons united.

Interactions between baryons and photons are due to the Thomson scat-

tering, and its scattering cross section is given by σT = 8πα2/3m2
e (α =

e2 /4π�1/137). In order to find evolution equations for fluctuations incor-

porating effects of the Thomson scattering, it is strictly necessary to handle

Boltzmann equations. Here, we will give the evolution equation without

showing its derivation, and only examine the behavior of the solution.

The equation-of-state parameter and the sound speed squared of baryons

are wb, c
2
b � 1, respectively.4 For simplicity, we make them zero here.

4 For details, they are determined by ρb = nmp and Pb = nTb, where n (∝ 1/a3) and

Tb (∝ 1/a) are the number density and temperature, respectively, and mp � 1 GeV is a

typical mass of baryons. We then get wb = Pb/ρb = Tb/mp and c2b = ∂ηPb/∂ηρb =
4Tb/3mp. In the period considering now which is from around zeq to zdec where the universe

is neutralized, baryons can be described as a sufficiently non-relativistic state of Tb � mp,

and therefore we can approximate them to wb = c2b = 0.
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Also, as components of radiations, we consider photons and neutrinos sep-

arately as

wγ = wν = c2γ = c2ν =
1

3
,

wc = wb = c2c = c2b = 0,

namely Pγ = ργ/3, Pν = ρν/3, and Pc = Pb = 0. The Poisson equation

then becomes

−2M2
P

k2

a2
Ψ = ρc

{
Dc + 3

(
Ψ+ aH

V c

k

)}

+ρν

{
Dν + 4

(
Ψ+ aH

V ν

k

)}

+ργ

{
Dγ + 4

(
Ψ+ aH

V γ

k

)}

+ρb

{
Db + 3

(
Ψ+ aH

V b

k

)}
. (13-33)

Taking into account that baryons interact with photons but not neutrinos, we

obtain the following matter conservation equations:

∂ηDc = −kV c, ∂ηV
c + aHV c = kΨ,

∂ηDν = −4

3
kV ν , ∂ηV

ν = 2kΨ+
1

4
kDν ,

∂ηDγ = −4

3
kV γ , ∂ηV

γ = 2kΨ+
1

4
kDγ − 1

ηT

(
V γ − V b

)
,

∂ηDb = −kV b, ∂ηV
b + aHV b = kΨ+

1

ηT

4

3

ργ
ρb

(
V γ − V b

)
. (13-34)

The variable on the Thomson scattering is defined by

ηT =
1

aσTne
.

It means that photons and baryons are strongly coupled when ηT is small.

From the equations, we see that the ηT → 0 limit signifies the adiabatic

condition V γ = V b.

The initial adiabatic conditions (13-24) for solving these equations are

set in the radiation-dominated era as

Dc(0) = Db(0) =
3

4
Dγ(0) =

3

4
Dν(0),

V c(0) = V b(0) = V γ(0) = V ν(0).
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When photons and baryons are tightly coupled, they can be described as

one plasma fluid. Therefore, the adiabatic condition between these compo-

nents holds like

Db(x) � 3

4
Dγ(x)

as a good approximation until the universe is neutralized. After that, the

interaction becomes ineffective, and this condition does not hold. In fact,

by combining the conservation equations in (13-34), ∂η(Db − 3Dγ/4) =
−k(V b −V γ) can be derived. This equation means that the initial adiabatic

condition is maintained long enough as long as photons and baryons are

tightly coupled so that V b = V γ .

In order to emphasize that it is one plasma fluid, we introduce

ρ = ργ + ρb, P = Pγ + Pb =
1

3
ργ

as new variables representing the sum of the two states. The equation-of-

state parameters and the sound speed squared of this fluid are

w =
P

ρ
=

1

3

1

1 + ρb

ργ

, c2s =
∂ηP

∂ηρ
=

1

3

1

1 + 3
4
ρb

ργ

. (13-35)

The perturbation variables are given by

D =
1

ρ

(
ργDγ + ρbDb

)
,

V =
1

ρ+ P

{
(ργ + Pγ)V

γ + ρbV
b
}
.

This state is denoted as bγ in the following sentences, although it is omitted

in the variables.

Substituting the three states α = c, ν, bγ into the second equation of

(13-20), the Poisson equation written with these variables is given by

−2M2
P

k2

a2
Ψ = ρc

{
Dc + 3

(
Ψ+ aH

V c

k

)}

+ρν

{
Dν + 4

(
Ψ+ aH

V ν

k

)}

+ρ

{
D + 3(1 + w)

(
Ψ+ aH

V

k

)}
. (13-36)

This equation is exactly the same as (13-33). From the first, third, and fourth

equations in (13-20), the conservation equations for α = bγ are given as
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Figure 13-2: Time evolution of the perturbation variables. From the top, the CDM

density perturbation Dc (black), the photon density perturbation Dγ (dark gray), and

the Bardeen potential Φ (light gray). Time is represented using a common logarithm

of the redshift z. Calculations are performed from the radiation-dominated era to the

decoupling time (z � 103) by taking the initial value of Φ as 1 independent of k.

The density perturbation Dc increases monotonically from the shorter wavelength

which enters the horizon first after zeq, while Dγ oscillates greatly. Changes in Φ

are easier to understand in Fig. 13-3.

follows:

∂ηD + 3
(
c2s − w

)
aHD = −(1 + w)kV,

∂ηV +
(
1− 3c2s

)
aHV = k

(
1 + 3c2s

)
Ψ+

c2s
1 + w

kD. (13-37)

These conservation equations are related to the original equations (13-

34) with the Thomson scattering terms as follows. Calculating ∂ηD by com-

bining the photon and the baryon equations in (13-34), we get

ρ∂ηD = −(1 + w)ρkV + 3waHρD − aHρrDγ .

As mentioned before, since the derivatives of the two density perturbations

satisfy ∂η(Db − 3Dγ/4) ∼ 0 when V b ∼ V γ , the adiabatic condition is

maintained with a good approximation so that Db � 3Dγ/4 can be always
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Figure 13-3: From the top, the Bardeen potential Φ (light gray), the baryon velocity

perturbation V b (dark gray) that oscillates greatly, and the CDM velocity perturba-

tion V c (black). Calculated under the same conditions as in Fig. 13-2. The ampli-

tude of Φ reduces slightly in the high wavenumber region before zeq, but it does not

change after zeq.

fulfilled. Therefore, applying the relation D = 3(1+w)Dγ/4 obtained from

the adiabatic condition to the last term and rewriting ργDγ to 3c2sρD, we can

derive the first conservation equation in (13-37). Similarly, calculating the

combination (1 + w)ρ∂ηV from the equations including derivatives of the

photon and baryon velocity perturbations in (13-34), the Thomson scattering

terms cancel out and we get

(1+w)ρ∂ηV = (1+w)ρ
{− (1− 3c2s

)
aHV +

(
1 + 3c2s

)
kΨ
}
+
1

3
kρrDγ .

Rewriting the last term as above, we get the second equation of (13-37).

Let us numerically examine the differential equations in the case that

baryons and photons are tightly coupled. We simultaneously solve the con-

servation equations of the CDM variables Dc and V c as well as the neu-

trino variables Dν and V ν in (13-34), the equations (13-37) of the plasma

fluid variables D and V , and the Poisson equation (13-36) which deter-

mines the Bardeen potential Φ(= −Ψ), together with the Friedmann equa-

tions. The cosmological parameters are taken as Ωb = 0.042, Ωd = 0.27,

Ωr = 8.1× 10−5, Ωγ = 4.8× 10−5, ΩΛ = 0.73, and h = 0.72. The initial
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Figure 13-4: Time evolution of the combination Dγ/4 + 2Ψ that appears in the

Sachs-Wolfe effect. Calculated under the same condition as in Fig. 13-2. The last

solid line is the spectrum at the decoupling time (z � 103), in which a cosine func-

tion appears [see (13-31)]. The first extreme value near 0.02Mpc−1 corresponds to

the first acoustic peak of CMB.

value was given at the radiation-dominated era as ΨI = −1 that represents

the Harrison-Zel’dovich spectrum (see the analytic solution in the radiation-

dominated era).5 The results are shown in Figs. 13-2 to 13-5, where the

photon density perturbation and the baryon velocity perturbation are ob-

tained using the adiabatic approximation relations Dγ = 4(1 + w)D/4 and

V b = V . Time evolution of the combination Dγ/4+ 2Ψ that appears in the

Sachs-Wolfe effect is also shown in Fig. 13-4.6

Here, reconsider the position of the first acoustic peak. The conservation

5 Actually, the Harrison-Zel’dovich spectrum is the case where k3|Ψ|2 becomes a constant

that does not depend on k, and therefore the initial condition should be given by k3/2ΨI = −1.

However, within the linear approximation, even if we introduce a new dimensionless variable

Ψ̄ = k3/2Ψ (similarly for other variables), this variable satisfies the same linear equation that

the original variable satisfies. Thus, each figure can be regarded as the result calculated using

the dimensionless variable with the initial condition Ψ̄I = −1.

6 This combination corresponds to k3/2(Θ0 +Ψ) in W. Hu and N. Sugiyama, Phys. Rev. D

51 (1995) 2599.
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Figure 13-5: Spectra at the decoupling time (z � 103) for the Bardeen potential Φ

(light gray), the baryon velocity perturbation V b (dark gray), and the combination

Dγ/4 + 2Ψ (black) that appears in the Sachs-Wolfe effect.

equation (13-37) indicates that photons and baryons oscillate as one plasma

fluid with the sound speed (13-35). The sound speed at the decoupling time

is provided as

cs(ηdec) =
1√

3
(
1 + 3Ωb

4Ωγ

adec

a0

) =
1√

3
(
1 + 3Ωb

4Ωγ

1
zdec+1

) .

Substituting the numerical values of the cosmological parameters, we obtain

cs(ηdec) = 0.456. Therefore, assigning this value into the expression (13-

32) that determines the position of the first acoustic peak yields

l1peak � π

cs(ηdec)

(√
zdec + 1− 1

)
= 220,

which fits well with the observed value.

Evolution of Matter Fluctuations After Neutralization

After the universe is neutralized, photons are less affected by the evolu-

tion of the universe and its spectrum is maintained until today (Sachs-Wolfe
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effect). On the other hand, fluctuations of dusts like CDM and baryons con-

tinue to grow, and build structures such as galaxies and clusters of galaxies.

Here we briefly describe evolution of such fluctuations after the decoupling.

Evolution equations for fluctuations of CDM and neutralized baryons

are given by the same equation as

∂ηDc,b = −kV c,b, ∂ηV
c,b + aHV c,b = kΨ.

By eliminating V c,b, we get

∂2
ηDc,b + aH∂ηDc,b = k2Ψ.

Since both satisfy the same equation, the difference between the two

variables satisfies

∂2
η

(Dc −Db
)
+ aH∂η

(Dc −Db
)
= 0.

A stable solution of this equation satisfies ∂ηDc = ∂ηDb. The CDM den-

sity perturbation starts growing when going into the matter-dominated era,

whereas the growth of the baryon perturbation is suppressed until the decou-

pling due to interactions with photons. The solution that their derivatives

become the same means that the growth of the baryon perturbation which

has been suppressed for a long time like ∂ηDb(ηdec) � 0 on the average

is accelerated after the decoupling so as to follow the already grown CDM

perturbation of ∂ηDc(ηdec) > 0.

Conversely, this means that if there is no CDM, the growth of the baryon

perturbation is suppressed, and the distribution of galaxies constituted by

baryons will be different from that of the present. This behavior is regarded

as an indirect evidence of the existence of CDM, as well as the behavior of

the galactic rotation curve.
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CHAPTER FOURTEEN

FROM QUANTUM GRAVITY TO CMB

If the big bang as the spacetime phase transition occurs at the energy scale

ΛQG � 1017 GeV, the universe after that expands about 1029 times. Since

the universe expands 1030 times during the inflationary era, a fluctuation that

was the Planck length at the Planck time expands as much as 1059 times so

that its size is now hundreds of megaparsec (Mpc) that is bigger than the size

of a cluster of galaxies, as shown in Fig. 12-3. As described in the previ-

ous chapter, the fluctuation of this size is long staying in the super-horizon

region, and reaching to the present without much changing its amplitude.

As the result, it can be observed through CMB. Therefore, by studying its

power spectrum, we can understand phenomena at the Planck scale.

In this chapter, we consider fluctuations around the inflationary solu-

tion, and applying cosmological perturbation theory, we derive evolution

equations of quantum gravity fluctuations. By solving them actually, we

show that the inflationary solution is stable, that is, the fluctuations gradu-

ally decrease. We also derive spectra at the time of the phase transition by

examining how conformally invariant initial spectra set before the Planck

time evolve with time. By identifying them with the primordial power spec-

tra which become initial conditions of the Friedmann universe, we calculate

the CMB angular power spectra.

Brief Summary After Big Bang

We begin this chapter from summarizing the linear evolution equations in

the Einstein theory when the entire universe is in thermal equilibrium just

after the big bang. Since the Bardeen (gravitational) potentials have the

relation

Φ+Ψ = 0

from (13-11), the equations can be described by one Bardeen potential. By

applying this relation and considering that the trace of the matter energy-

momentum tensor disappears, we find that from the Einstein equation (13-
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10) it satisfies a scalar equation

3∂2
ηΦ+ 12∂ηφ̂∂ηΦ− |∂2Φ = 0,

where the background φ̂ satisfies the Friedmann equation. The tensor evo-

lution equation (13-16) is given by

∂2
ηh

TT
ij + 2∂ηφ̂∂ηh

TT
ij − |∂2hTT

ij = 0.

Since the vector fluctuation disappears with time, it is not usually consid-

ered.

As time goes on and temperature of the universe goes down, various

matter states come away from the thermal equilibrium state. At that time,

depending on the state, its energy-momentum tensor is no longer traceless,

and the Einstein equation is also affected. Therefore, it is necessary to solve

the Einstein equation together with the conservation equations of each state.

As mentioned in Chapter 11, the amplitude of the current CMB temper-

ature fluctuation in the long wavelength region is given by the value of the

Bardeen potential at the time when the universe was neutralized through the

Sachs-Wolfe effect. Moreover, from the evolution equation, we find that its

value does not change almost from after the big bang until the universe is

neutralized. Hence, it can be seen that the primordial value of the Bardeen

potential just after the big bang was on the order of the same 10−5 that the

current temperature fluctuation has. One of the aims of quantum gravity

cosmology is to give this value as an initial condition of the current Fried-

mann universe. Its rough estimation by dimensional analysis has already

been given at the end of the first section in Chapter 12.

Evolution Equations in Quantum Gravity

Since scalar fluctuations are expected to be small with time, as a first step we

consider linear equations of motion obtained by expanding in perturbations

about the homogeneous inflationary solution. Discussion on whether or not

the linear approximation can apply, in particular whether it is effective even

in the initial region, will be done after solving the equations actually.

Also, in order for the linear approximation to be effective even in the

vicinity of the phase transition, it is necessary that spectra do not depend

on non-perturbative dynamics of the phase transition. If fluctuations under

consideration have a size comparable with the dynamical correlation length

ξΛ = 1/ΛQG at the phase transition, detailed information on the dynam-

ics is needed. However, fluctuations considered here have a size of about
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the Planck length at the Planck time, and by the time that inflation is over,

its size will become much longer than the dynamical correlation length. It

suggests that such fluctuations are not affected by the phase transition dy-

namics.

We also solve a linear equation of motion for the tensor field which is

expected to be small initially due to the asymptotically free behavior, and it

will be shown that its amplitude for the size considered here are maintained

small until the phase transition.

Evolution equations in the renormalizable quantum gravity are expressed

as equations that the sum of energy-momentum tensors from each action

disappears as follows:

Tμν = TR
μν +TW

μν +TEH
μν +TM

μν = 0,

where R, W, EH, and M denote that they are derived from the Riegert, Weyl,

Einstein-Hilbert, and matter actions, respectively. The cosmological term

is ignored as small. Derivation of the evolution equations is very trouble-

some.1 Practically, if we take the conformal Newtonian gauge that satisfies

the σ = 0 condition mentioned earlier, calculations can be reduced. The

Bardeen potentials (14-1) are then simply expressed as Φ = ϕ + h/6 and

Ψ = ϕ− h/2. In the following, we examine the equations in this gauge.

Without describing the details here, we will give only the results ob-

tained and examine their properties. Parts with the coefficients bc, 1/t̃2,

and M2
P are derived from the Riegert, Weyl, and Einstein-Hilbert actions,

respectively, where t̃2 is the time-dependent running coupling constant (12-

6).

Linear scalar equations Since the matter energy-momentum tensor

is traceless such that TMλ
λ = 0, we obtain the following scalar evolution

equation from the trace component:

bc
8π2

B0(τ)

{
−2∂4

ηΦ− 2∂ηφ̂ ∂3
ηΦ+

(
−8∂2

η φ̂+
10

3
|∂2

)
∂2
ηΦ

+

(
−12∂3

η φ̂+
10

3
∂ηφ̂ |∂2

)
∂ηΦ+

(
16

3
∂2
η φ̂− 4

3
|∂2

)
|∂2Φ

+2∂ηφ̂ ∂3
ηΨ+

(
8∂2

η φ̂+
2

3
|∂2

)
∂2
ηΨ+

(
12∂3

η φ̂− 10

3
∂ηφ̂ |∂2

)
∂ηΨ

1 In order to make the evolution equation gauge invariant, it is necessary to modify the

time-dependent dynamical factor B0 (12-3) to a function that transforms as a scalar like

δξB = ξλ∂λB = ξ0∂ηB. Using the variable σ (13-4), the modified dynamical factor can be

expressed as B = B0 − σ∂ηB0. However, if we take the conformal Newtonian gauge, we do

not have to consider this modification.
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+

(
−16

3
∂2
η φ̂− 2

3
|∂2

)
|∂2Ψ

}

+M2
P e2φ̂

{
6∂2

ηΦ+ 18∂ηφ̂ ∂ηΦ− 4 |∂2Φ− 6∂ηφ̂ ∂ηΨ

+
(
12∂2

η φ̂+ 12∂ηφ̂∂ηφ̂− 2 |∂2
)
Ψ
}
= 0, (14-1)

where the term including ∂4
η φ̂ is eliminated using the equation of motion

(12-4) of the background field.

From the second combination of the energy-momentum tensor in (13-9)

further divided by |∂2, we obtain a second-order differential equation

2

t̃2(τ)

{
4∂2

ηΦ− 4

3
|∂2Φ− 4∂2

ηΨ+
4

3
|∂2Ψ

}
+

bc
8π2

B0(τ)

{
4

3
∂2
ηΦ

+4∂ηφ̂ ∂ηΦ+

(
28

3
∂2
η φ̂− 8

3
∂ηφ̂∂ηφ̂− 8

9
|∂2

)
Φ

−4

3
∂ηφ̂ ∂ηΨ+

(
−4

3
∂2
η φ̂+

8

3
∂ηφ̂∂ηφ̂− 4

9
|∂2

)
Ψ

}

−2M2
P e2φ̂{Φ+Ψ} = 0. (14-2)

This equation plays a role of a constraint condition connecting from the in-

flation era to the Friedmann universe. In the small running coupling limit

t̃ → 0 as in the early stage of inflation, the scalar mode h originated from the

traceless tensor field disappears and the Φ = Ψ (= ϕ) fluctuation becomes

significant. On the other hand, at the phase transition where the running cou-

pling constant diverges, the last Einstein term dominates, indicating that the

fluctuation of Φ = −Ψ, which holds in the Friedmann universe, is realized.

In the vanishing coupling limit where Φ = Ψ = ϕ, the left-hand side of

the trace equation (14-1) can be written using only the fluctuation variable

ϕ of the conformal-factor field as

Tμ
μ|t→0 = − bc

4π2

(
∂4
ηϕ− 2∂2

η |∂2ϕ+ |∂4ϕ
)
+M2

P e2φ̂
{
6∂2

ηϕ− 6 |∂2ϕ

+12∂ηφ̂ ∂ηϕ+ 12
(
∂2
η φ̂+ ∂ηφ̂∂ηφ̂

)
ϕ
}
.

Linear tensor and vector equations From the equation of motion

Tij = 0, we obtain a linear evolution equation for the tensor fluctuation

2

t̃2(τ)

{−∂4
ηh

TT
ij + 2 |∂2∂2

ηh
TT
ij − |∂4hTT

ij

}
+

bc
8π2

B0(τ)

{
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(
1

3
∂2
η φ̂+

4

3
∂ηφ̂∂ηφ̂

)
∂2
ηh

TT
ij +

(
1

3
∂3
η φ̂+

8

3
∂2
η φ̂∂ηφ̂

)
∂ηh

TT
ij

+

(
−7

3
∂2
η φ̂+

2

3
∂ηφ̂∂ηφ̂

)
|∂2hTT

ij

}

+M2
P e2φ̂

{
−1

2
∂2
ηh

TT
ij − ∂ηφ̂∂ηh

TT
ij +

1

2
|∂2hTT

ij

}
= 0. (14-3)

A linear evolution equation that the vector fluctuation satisfies is derived

from |∂−2∂jTij = 0, which is

2

t̃2(τ)

{
∂3
ηΥi − ∂η |∂2Υi

}− bc
8π2

B0(τ)

{(
1

3
∂2
η φ̂+

4

3
∂ηφ̂∂ηφ̂

)
∂ηΥi

+

(
1

3
∂3
η φ̂+

8

3
∂2
η φ̂∂ηφ̂

)
Υi

}
+M2

P e2φ̂
{
1

2
∂ηΥi + ∂ηφ̂Υi

}
= 0. (14-4)

Conversion formulas to physical time When solving the equations

of motion, we will use the physical time τ defined by dτ = a(τ)dη (11-1).

Below we summarize useful conversion formulas from the conformal time

to the physical time. Using the scale factor a(τ) = eφ̂(τ) and the Hubble

variable H(τ) = ȧ(τ)/a(τ), the differential operators can be rewritten as

|∂2 = a2
(
−k2

a2

)
, ∂η = a∂τ , ∂2

η = a2
(
∂2
τ +H∂τ

)
,

∂3
η = a3

{
∂3
τ + 3H∂2

τ +
(
Ḣ + 2H2

)
∂τ

}
,

∂4
η = a4

{
∂4
τ + 6H∂3

τ +
(
4Ḣ + 11H2

)
∂2
τ +
(
Ḧ + 7HḢ + 6H3

)
∂τ

}
.

The derivatives of the background field are rewritten as

∂ηφ̂ = aH, ∂2
η φ̂ = a2

(
Ḣ +H2

)
, ∂3

η φ̂ = a3
(
Ḧ + 4HḢ + 2H3

)
,

∂4
η φ̂ = a4

( ...

H +7HḦ + 4Ḣ2 + 18H2Ḣ + 6H4
)
.

On contributions from nonlinear terms In the spectral region we are

considering here, amplitudes of the scalar fluctuations decrease with time as

will be shown in the later section, and the linear approximation actually

becomes well. Even in the initial stage, since the coupling constant t̃ is

small, the scalar mode h in the traceless tensor field may be handled with

the linear approximation. Even if t̃ grows with time, the amplitude also
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decreases at the same time, and therefore it is considered that nonlinear

terms derived from three-point interactions including h in the fourth-order

gravitational action may be ignored. Likewise, nonlinear terms derived from

self-interactions of the conformal-factor field ϕ with the coupling t̃ can be

neglected.

Moreover, since the tensor fluctuation remains small from the beginning

to the end as will be sown later, nonlinear terms including it are also negligi-

ble. Although not discussed in this book, the vector fluctuation that initially

has a small amplitude grows around the phase transition, but it will have

little effect.

However, since interaction terms derived from the exponential confor-

mal factor in the Einstein-Hilbert action exist even at t̃ → 0, they may affect

the initial stage before the amplitude becomes small yet. Actually, as we

will see later, this nonlinear terms cannot be ignored in the region where

the wavenumber k is larger than the Planck mass scale m (14-8) in the co-

moving coordinates. It means that we have to add the nonlinear terms to the

evolution equation (14-1). The second and third order nonlinear terms are

given as follows:

TEHλ
λ |NL2 = M2

Pe
2φ̂
{
12ϕ∂2

ηϕ−12ϕ |∂2ϕ+24∂ηφ̂ ϕ∂ηϕ

+6∂ηϕ∂ηϕ−6∂iϕ∂
iϕ+12

(
∂2
η φ̂+∂ηφ̂∂ηφ̂

)
ϕ2
}
,

TEHλ
λ |NL3 = M2

Pe
2φ̂
{
12ϕ2∂2

ηϕ−12ϕ2 |∂2ϕ+24∂ηφ̂ ϕ2∂ηϕ

+12ϕ∂ηϕ∂ηϕ−12ϕ∂iϕ∂
iϕ+8

(
∂2
η φ̂+∂ηφ̂∂ηφ̂

)
ϕ3
}
. (14-5)

Similarly, the higher order nonlinear terms can be obtained.

On the other hand, in the constraint equation (14-2), when t̃ is small as

in the initial stage, the first term dominates and the Einstein term does not

contribute. Moreover, at the final stage when the Einstein term becomes

dominant, the scalar fluctuations are already small. Thus, it will not be

necessary to add nonlinear terms to the constraint equation.

Evolution Equations for Matter Fields

Consider equations of motion including the perturbation variables of matter

fields. Although these equations are not necessary for calculations of the

primordial spectrum to be done in the next section, we here present them to

complete the equation system.
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The matter energy-momentum tensor (13-8) is traceless and can be ex-

pressed as

TM
00 = e4φ̂ (ρ+ δρ+ 4ρϕ) , TM

0i = −4

3
e4φ̂ρ

(
vi +

1

2
h0i

)
,

TM
ij =

1

3
e4φ̂ (ρ+ δρ+ 4ρϕ) δij . (14-6)

Similar to the previous chapter, a differential equation including the en-

ergy density perturbation D is obtained from the third combination of the

energy-momentum tensors in (13-9) as

bc
8π2

B0(τ)

{(
−2∂2

η φ̂+ 2∂ηφ̂∂ηφ̂− 2

3
|∂2

)
∂2
ηΦ+

(
2∂3

η φ̂− 4∂2
η φ̂∂ηφ̂

)
∂ηΦ

+∂ηφ̂
(
−2∂2

η φ̂+ 2∂ηφ̂∂ηφ̂− 2 |∂2
)
∂ηΦ+

(
−20

3
∂ηφ̂∂ηφ̂+

4

9
|∂2

)
|∂2Φ

+∂ηφ̂

(
2∂2

η φ̂− 2∂ηφ̂∂ηφ̂+
2

3
|∂2

)
∂ηΨ+

(
−2∂3

η φ̂∂ηφ̂+ 4∂2
η φ̂∂

2
η φ̂
)
Ψ

+

(
2∂2

η φ̂+
2

3
∂ηφ̂∂ηφ̂+

2

9
|∂2

)
|∂2Ψ

}

+
2

t̃2(τ)

{
−4

3
|∂4Φ− 4∂ηφ̂ |∂2∂ηΦ+

4

3
|∂4Ψ+ 4∂ηφ̂ |∂2∂ηΨ

}

+M2
P e2φ̂ 2 |∂2Φ+ e4φ̂ρD = 0.

Since this equation only contains at most the second-order time derivative

of the Bardeen potential Φ, we can determine the value of D by substituting

the values of Φ and Ψ obtained by solving the simultaneous differential

equations of (14-1) and (14-2).

From the fourth expression in (13-9), a differential equation including

the scalar velocity perturbation V is obtained as

bc
8π2

B0(τ)

{
−2

3
∂3
ηΦ+

(
−10

3
∂2
η φ̂+

2

3
∂ηφ̂∂ηφ̂+

4

9
|∂2

)
∂ηΦ− 4

3
∂ηφ̂ |∂2Φ

+
2

3
∂ηφ̂ ∂2

ηΨ+

(
2∂2

η φ̂− 2

3
∂ηφ̂∂ηφ̂+

2

9
|∂2

)
∂ηΨ+

(
2∂3

η φ̂− 2

3
∂ηφ̂ |∂2

)
Ψ

}

+
2

t̃2(τ)

{
−4

3
|∂2∂ηΦ+

4

3
|∂2∂ηΨ

}

+M2
P e2φ̂

{
2∂ηΦ− 2∂ηφ̂Ψ

}
− 4

3
e4φ̂ρV = 0.
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This equation is also third order in time derivatives of the Bardeen potential

Φ, and thus we can obtain V by substituting the solution of the simultaneous

differential equations of (14-1) and (14-2).

Extracting a vector component from the equation of motion T0i = 0
yields a differential equation including the vector variable Ωi as

2

t̃2(τ)

{
∂2
η |∂2Υi − |∂4Υi

}− bc
8π2

B0(τ)

(
1

3
∂2
η φ̂+

4

3
∂ηφ̂∂ηφ̂

)
|∂2Υi

+
1

2
M2

P e2φ̂ |∂2Υi − 4

3
e4φ̂ρΩi = 0.

Since this equation only contains at most the second-order time derivative

of the vector variable Υi, we can obtain Ωi by substituting the solution of

the differential equation (14-4).

Initial Spectra of Quantum Gravity

As an initial condition for solving the linear evolution equations, we here

consider spectra obtained from two-point functions of the gravitational field.

The initial spectra are set at an appropriate physical time τi = 1/Ei before

inflation starts, where Ei ≥ HD.

In the early epoch, the conformal-factor fluctuation ϕ represented by

Φ = Ψ dominates, and its dynamics is described by the fourth-order deriva-

tive Riegert action. The correlation function is given by a logarithmic func-

tion reflecting that the field is dimensionless, which is

〈ϕ(τi,x)ϕ(τi,x′)〉 = − 1

4bc
log
(
m2|x− x′|2) (14-7)

at the equal time, where bc is the coefficient in front of the Riegert action

which is positive. The mass scale m is the Planck mass in the comoving

coordinates at the time τi defined by

m = a(τi)HD. (14-8)

A physical distance on the hypersurface of the time τi is |r−r′| = a(τi)|x−
x′|, and thus H2

D|r− r′|2 = m2|x−x′|2. The logarithmic correlation func-

tion (14-7) indicates that there are fluctuations with correlations longer than

the Planck length LP = 1/HD which is the horizon distance in inflation.

Spectra are expressed using Fourier transform in the three-dimensional

comoving space. For the variable ϕ(x), it is defined as

ϕ(x) =

∫
d3k

(2π)3
ϕ(k)eik·x,
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and its mean square 〈|ϕ(k)|2〉 is defined by

〈ϕ(k)ϕ(k′)〉 = 〈|ϕ(k)|2〉(2π)3δ3(k+ k′). (14-9)

Fourier transform of the logarithm function is given by

− log
(
m2|x|2) = ∫

k>ε

d3k

(2π)3
4π2

k3
eik·x − log

(
m2

ε2e2γ−2

)
,

where k = |k| and γ is the Euler constant. The ε(� 1) is a small infrared

cutoff, and its effect will be introduced as the correlation length ξΛ later.

Since the constant term on the right-hand side is proportional to δ3(k) in

Fourier space, it is ignored. Using this formula, we get

〈|ϕ(τi,k)|2〉 = π2

bc

1

k3
.

Thus, a scale-invariant scalar power spectrum is obtained as

Pϕ(τi, k) =
k3

2π2
〈|ϕ(τi,k)|2〉 = 1

2bc
. (14-10)

Since the Riegert action is positive-definite with bc > 0, the amplitude be-

comes a physical positive value. This scalar spectrum corresponds to a spec-

tral index ns being 1, called the Harrison-Zel’dovich spectrum, when it is

expressed in the form of Ask
ns−1 as usual. Here note that how to define

the exponent as ns − 1 is a traditional convention used only for the scalar

spectrum.

The initial tensor spectrum is obtained from the two-point correlation

function of the transverse traceless tensor field hTT
ij . The dynamics of the

tensor field is described by the fourth-order derivative Weyl action. From

(7-21), it is expressed as

〈hTT
ij (x)hTT

kl (x′)〉 = 2Δij,kl(x)〈hTT(x)hTT(x′)〉,
where the relationship between the field notation in Chapter 7 and that here

is given by hTT
ij = thij and hTT = tH/

√
2. The normalization is in ac-

cordance with (E-13) in Appendix E. The two-point correlation function of

hTT is given by a logarithmic function, and at the equal time it is

〈hTT(τi,x)h
TT(τi,x

′)〉 = − t2i
32π2

log(m2|x− x′|2),

where ti is an initial value of the coupling constant t.
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In the same way for ϕ, the tensor power spectrum is defined using the

correlation function of hTT so that a scale-invariant spectrum is yielded in

Fourier space as

Ph(τi, k) =
k3

2π2
〈|hTT(τi,k)|2〉 = t2i

16π2
.

This corresponds to nt = 0 when the tensor spectrum is expressed using

the spectral index in the form of Atk
nt . The initial tensor amplitude is

expected to be sufficiently smaller than that of the scalar amplitude due to

the asymptotically free behavior.

Finally, it should be recognized that there is room for discussion as to

whether the spectra given here are physical. Although we adopt the linear

approximation from practicality, since there is the BRST conformal invari-

ance in the foundation of the theory, it seems necessary to think about phys-

ical quantities more properly. Indeed, the existence of any tensor fluctuation

is denied from the discussion of physical states. Here, the tensor equation is

introduced to complete the entire equation system. And also, since a small

tensor fluctuation may be dynamically created, it is added to the discussion.

On the other hand, it is considered that the scalar spectrum contains the

essence of fluctuations.

Solutions of Evolution Equations and Stability

Let us numerically solve the linear evolution equations and see how the

amplitude changes during inflation. We then obtain spectra at the spacetime

phase transition point τ = τΛ and identify them with the primordial power

spectra for the structure formation of the universe after the big bang.

Since the Bardeen potentials satisfy Ψ = Φ = ϕ in the initial time τi
where the running coupling constant is sufficiently small, we take the initial

condition as

Φ(τi, k) = Ψ(τi, k),

whereas it can be seen from the constraint equation (14-2) that Ψ = −Φ will

be realized at the phase transition point where the running coupling diverges.

Therefore, we numerically solve the simultaneous differential equations of

(14-1) and (14-2) in the physical time τ as a boundary value problem by

imposing the boundary condition

Φ(τΛ, k) + Ψ(τΛ, k) = 0. (14-11)

When carrying out the calculation specifically, the two variables Φ and h are

considered by putting Ψ = Φ−2h/3. The fourth order equation (14-1) from
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which ∂3
ηh is removed using the equation obtained by differentiating the

second order equation (14-2) is solved simultaneously with (14-2) itself.2

The initial condition is Φ(τi, k) =
√

Pϕ(k) and h(τi, k) = 0, and further

the derivatives of Φ with respect to the physical time up to third order are

set to zero. The boundary condition is given by Φ(τΛ, k)− h(τΛ, k)/3 = 0
from (14-11).

In the linear approximation, it can be solved by fixing the comoving

wavenumber k. Factoring out the scale factor a(τ) and making the whole

equation dimensionless by using HD,3 the terms containing − |∂2 that de-

pend on k are replaced with a physical wavenumber function k2/H2
Da2(τ),

where the scale factor of the denominator is given by the solution of the

background field equation. When doing the calculation, the initial value of

the scale factor is normalized to a(τi) = 1 and the Planck constant HD is

then rewritten to m.

Both at the initial time and at the phase transition point, the two-point

function of Φ and that of Ψ become the same, thus we use Φ to represent

the scalar spectra below. Defining the transfer function representing the

temporal change of the Bardeen potential as

Φ(τΛ, k) = TΦ(τΛ, τi)Φ(τi, k),
the primordial power spectrum that is the initial condition of the Friedmann

universe is given by PΦ(τΛ, k) = T 2
Φ (τΛ, τi)Pϕ(τi, k).

Since the physical wavenumber rapidly decreases as the scale factor

a(τ) increases during inflation, the equations of motion no longer have the

wavenumber dependence near the phase transition. Therefore, although the

phenomenological parameters β0, a1, and κ which relate to the dynamics of

the phase transition affect an amplitude of the primordial power spectrum,

it is considered that they do not affect its pattern.

We here use the values adopted in the inflationary solution in Chapter 12,

which are bc = 10, HD/ΛQG = 60, and the phenomenological parameters

2 It is treated as a boundary value problem in order to solve it while retaining the constraint

equation (14-2). If we try to solve it as an initial value problem, it does not go well because

it is difficult to maintain the constraint (14-2), which will be not satisfied gradually with time.

In actual calculations, it has been solved by using Fortran software published on the web,

“BVP SOLVER”, which can be applied to cases where some derivative quantities other than

physical quantities diverge at the boundary. See W. Enright and P. Muir, SIAM J. Sci. Comput.

17 (1996) 479. It seems that commercially available Maple software also has this performance,

and if we want to calculate a single line as shown in Fig. 14-1, we can solve it somehow. At

that time, we set the boundary condition just before the phase transition time τΛ at which the

coupling constant diverges and calculate it up to that point.

3 It is useful to replace the physical time τ with a dimensionless time t = HDτ .
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Figure 14-1: Solutions of the linear evolution equations for the Bardeen potentials

Φ (solid) and Ψ (dotted) in the inflationary background. The initial value is Φ =

Ψ(= ϕ) = 1/
√
20, the comoving wavenumber is set to k = 0.01Mpc−1, and the

comoving Planck mass is m = 0.0156 (= 60λ)Mpc−1 (λ is defined later). The two

Bardeen potentials change while decreasing the amplitude, respectively, and become

Φ = −Ψ at the phase transition point τΛ. [K. Hamada, S. Horata, and T. Yukawa,

Phys. Rev. D 81 (2010) 083533.]

β0/bc = 0.06, a1/bc = 0.01, and κ = 0.5. The number of e-foldings is

then Ne = 65.0. The comoving Planck mass is m = 0.0156Mpc−1, and

the initial amplitude of the Bardeen potential is given by
√
Pϕ = 1/

√
2bc.

The calculation results are shown in Figs. 14-1 and 14-2. The decreasing of

the amplitude with time indicates that the inflationary solution is stable.

The linear tensor evolution equation (14-3) is solved with the initial

value
√
Ph = ti/4π = 10−5, and we get Fig. 14-3.4 It can be seen that

the amplitude of the tensor fluctuation is maintained small until the end.

Limit of linear approximation The wavenumber region for which the

calculation is valid within the linear approximation is k < m. In k > m,

the nonlinear terms derived from the conformal factor in the Einstein-Hilbert

4 If β0 which is one of the phenomenological parameters is decided, the running coupling

constant is determined, and thus the initial value ti will be determined in principle, but its

value is not used here. This is because the phenomenological parameters have no absolute

meaning since they are appropriately selected considering the convenience of the calculation.

In fact, in this setting, we can reduce the initial value as much as possible by making the start

time earlier.
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Figure 14-2: Time evolution of the Bardeen potential Φ. The line at the phase

transition point τ = 60 gives the primordial power spectrum.
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Figure 14-3: Solution of the tensor evolution equation.

action cannot be ignored anymore. Since this exponential factor is due to

conformal invariance, this invariance will not be retained for k > m unless

the nonlinear terms are taken into account.

In fact, in the linear approximation, the Einstein term acts like a mass

term, so that an exponential damping occurs in k > m. The nonlinear terms

have effects of relaxing it to a power-law behavior. When the nonlinear

effects are taken in, it can be expected that the scalar amplitude has a gentle

slope to ns < 1 called the red tilt for k > m.

Numerical calculations with the nonlinear terms are very difficult and

not done yet. Therefore, we will proceed with calculations of the CMB

spectra simply assuming that the scale invariant spectrum of ns = 1 is re-
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tained for k > m.

Effects of correlation length We here consider spectra in which the

dynamical correlation length given by ξΛ = 1/ΛQG (� LP) is taken into

account. This length scale indicates that there is no correlation between two

points separated by a physical distance over ξΛ before the Planck time where

spacetime has not begun to expand yet.

This effect can be expressed by adding a correction of o(t2) to the spec-

tral index ns that is now setting to 1. Replacing the coupling constant t2

with the k-dependent running coupling constant t̃2(k) = 1/β0 log(k
2/λ2),

we obtain

Ps(k) = As

(
k

m

)v/ log(k2/λ2)

, (14-12)

where v is a positive constant and λ is the dynamical energy scale in the

comoving coordinates defined by

λ = a(τi)ΛQG. (14-13)

Between this scale and the comoving Planck mass defined before, λ/m =
ΛQG/HD � 1 holds. The spectrum (14-12) sharply drops near k = λ,

indicating that the correlation vanishes.

As mentioned in the caption of Fig. 12-3, when looking at the comoving

wavenumber k, quantum correlations for k < λ, which did not exist before

the universe began to expand, never exist during the evolution. Therefore,

we adopt the spectrum (14-12) as the primordial scalar spectrum at the phase

transition point.

Similarly for the tensor fluctuation, we give a spectrum at the phase tran-

sition point as

Pt(k) = At

(
k

m

)v/ log(k2/λ2)

. (14-14)

As shown in Fig. 14-3, the amplitude At remains small during the inflation-

ary era.

The amplitude of the scalar spectrum decreases during the inflationary

era, whereas the amplitude of the tensor spectrum does not change. There-

fore, the tensor amplitude may become comparable to the scalar amplitude

at the phase transition, if there is a small tensor fluctuation at the beginning.

In this case, the tensor-to-scalar ratio

r =
At

As

is to be an element for determining the CMB spectrum.
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CMB Angular Power Spectra

We calculate the CMB angular power spectra by setting almost scale-invariant

spectra Ps (14-12) and Pt (14-14) derived from the consideration of the evo-

lution equations as the primordial power spectra of the Friedmann universe.

The calculations are performed using the widely known calculation code,

“CMBFAST”, and the results are displayed in Figs. 14-4 and 14-5, together

with the observed data of such as WMAP.
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Figure 14-4: The temperature-temperature (TT) angular power spectrum of CMB.

The calculation result (solid) is displayed together with the data of WMAP5 and

ACBAR 2008. The tensor-to-scalar ratio is r = 0.06. The parameters of the dy-

namical damping factor are λ = 0.00026 (= m/60)Mpc−1 and v = 0.00002. The

cosmological parameters are τe = 0.08, Ωb = 0.043, Ωc = 0.20, Ωvac = 0.757,

H0 = 73.1, Tcmb = 2.726, and YHe = 0.24. [K. Hamada, S. Horata, and T.

Yukawa, Phys. Rev. D 81 (2010) 083533.]

The parameters As and v are adjusted to be consistent with the experi-

mental data. We also add the tensor amplitude in order to compensate for

the lack of the scalar amplitude at large angle components (l < 100). The

tensor-to-scalar ratio is here set to r = 0.06. The values of the Planck mass

and the dynamical mass scale in the comoving coordinates are m = 0.0156
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Figure 14-5: The temperature-polarization (TE) angular power spectrum of CMB

together with the WMAP5 data. The parameters are the same as those in Fig. 14-4.

[K. Hamada, S. Horata, and T. Yukawa, Phys. Rev. D 81 (2010) 083533.]

and

λ =
m

60
= 0.00026Mpc−1, (14-15)

adopted in the calculation in the previous section. The ratio of these two

scales is almost determined by the number of e-foldings, as shown in (12-

9). Among the cosmological parameters, the optical depth is determined to

be τe = 0.08 from the polarization-polarization (EE) power spectrum (not

depicted here). Other cosmological parameters are also determined to match

the experimental data.

First, we pay attention to the sharp falloff at low multipole components

in the WMAP data. If the falloff suggests the existence of a new physical

scale, its value just becomes about 0.0002Mpc−1 above, which is given by

substituting l = 2 to the relation (11-9) between multipole l and comoving

wavenumber k. Therefore, the primordial power spectra Ps (14-12) and Pt

(14-14) with the value (14-15) can explain the observed data.5

5 The deviation seen at the low multipole in Fig. 11-1 is often regarded as an error that can be

explained by cosmic variance, but we here consider that it represents the existence of the scale.
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Substituting λ (14-15) and ΛQG � 1.1×1017 GeV (12-10) into (14-13),

it turns out that the initial scale factor before inflation becomes the following

order:

a(τi) =
0.00026Mpc−1

1.1× 1017 GeV
� 1.5× 10−59

with the present as 1. In other words, it indicates that the wavelength of

1/λ � 4000Mpc today was a wavelength of the correlation length ξΛ =
1/ΛQG � 2 × 10−31cm before inflation. This value well matches the in-

flationary scenario given in Chapter 12. In the inflationary era, the universe

expands about 1030 times from the Planck time to the end of the phase tran-

sition process (see Figs. 12-1 and 12-2). After moving to the Friedmann

spacetime, from the ratio of the dynamical energy scale ΛQG and 3oK, it

can be estimated that the universe expands about 1029 times until today. In

total, 1059 is derived.

From the latest CMB observations, it is suggested that the primordial

power spectrum is slightly inclined to ns < 1 (red tilt). We consider that

this is not a feature of initial quantum spectra, but rather is a secondary one

caused by dynamics during inflation. Such an effect will be expected from

the nonlinear term as mentioned before.

Finally, non-Gaussianity of the primordial power spectrum is derived

from diffeomorphism invariant interactions. When expressed by fNG which

is used everywhere as an indicator of its strength,6 it becomes o(1).

Other issues In the renormalizable quantum gravity it is not necessary

to introduce any ultraviolet cutoff at the Planck scale. Therefore there is no

fine-tuning of the 10120 digit known as the cosmological constant problem

in the first place. The cosmological constant is given as a renormalization

group invariant physical scale that can be taken small as mentioned in Chap-

ter 10.

In this theory we can explain the initial inflation and the current de Sitter

expansion separately on different scales. The former is explained by the

Planck mass and the latter is by the cosmological constant. In this way,

since we do not use the cosmological constant for the initial stage, there is

no need to introduce a new quantity called dark energy to distinguish the

current inflation mechanism from the initial one.

There is a gravitational θ-term composed of the Weyl tensor as a CP vi-

olating term at the Plank scale. If this term actually exists, how will it affect

baryogenesis? Is there any possibility that a Cohen-Kaplan-type coupling

6 See E. Komatsu and D. Spergel, Acoustic Signatures in the Primary Microwave Background
Bispectrum, Phys. Rev. D 63 (2001) 063002.
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between the Ricci scalar curvature and a divergence of the baryon number

current causing baryogenesis appears in the low energy effective theory of

gravity?

The true character of dark matters is not known yet. Dark matters hardly

interact with ordinary matters, but are affected by gravity. It is considered

to exist because if there is no dark matter, we cannot explain the current

galactic distribution of the universe as well as the behavior of the rotation

curve of galaxies. If there is a stable gravitational soliton based on quantum

gravity, it will be a candidate for dark matters.

Moreover, when the effect of quantum gravity turns on at the center of

macroscopic black holes, is there a possibility that black holes will eventu-

ally explode due to the repulsive force that ignites inflation? It is a future

task.
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APPENDIX A

USEFUL GRAVITATIONAL FORMULAS

Formulas on Curvatures

The Lorentz signature employed in this book is (−1, 1, · · · , 1).1 In Ap-

pendix A, unless otherwise noted, dimensions of spacetime are arbitrary

D. Definitions of the Christoffel symbol and the Riemann curvature tensor

are

Γλ
μν =

1

2
gλσ (∂μgνσ + ∂νgμσ − ∂σgμν) ,

Rλ
μσν = ∂σΓ

λ
μν − ∂νΓ

λ
μσ + Γλ

ρσΓ
ρ
μν − Γλ

ρνΓ
ρ
μσ,

respectively. The Ricci tensor is defined by Rμν = Rλ
μλν and the Ricci

scalar curvature is R = Rμ
μ. A covariant derivative is expressed using the

Christoffel symbol as

∇μA
σ1···σm

λ1···λn
= ∂μA

σ1···σm

λ1···λn
−

n∑
j=1

Γ
νj

μλj
Aσ1···σm

λ1···νj ···λn
+

m∑
j=1

Γσj
μνj

A
σ1···νj ···σm

λ1···λn
,

which satisfies

[∇μ,∇ν ]Aλ1···λn
=

n∑
j=1

R
σj

μνλj
Aλ1···σj ···λn

.

The Riemann curvature tensor satisfies an antisymmetric property Rμνλσ =
−Rνμλσ = −Rμνσλ and

Rμ
νλσ +Rμ

λσν +Rμ
σνλ = 0,

∇ρR
μ
νλσ +∇λR

μ
νσρ +∇σR

μ
νρλ = 0.

The last is the Bianchi identity. From this, ∇μR
μ
λνσ = ∇νRλσ −∇σRλν

and ∇μR
μ
ν = ∇νR/2 are yielded.

1 In Euclidean space, rewrite
√−g to

√
g, and also ημν to δμν for the flat metric.
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The Weyl curvature tensor is defined by

Cμνλσ = Rμνλσ − 1

D − 2
(gμλRνσ − gμσRνλ − gνλRμσ + gνσRμλ)

+
1

(D − 1)(D − 2)
(gμλgνσ − gμσgνλ)R. (A-1)

This tensor vanishes no matter which index is contracted such as Cμ
μλσ =

Cμ
νμσ = 0. The number of independent components is (D − 3)D(D +

1)(D + 2)/12, which is identically zero in three dimensions and ten in four

dimensions.

Variational formulas Variational formulas of the curvatures are given

as follows:

δgμν = −gμλgνσδgλσ, δ
√−g =

1

2

√−ggμνδgμν ,

δΓλ
μν =

1

2
gλσ (∇μδgνσ +∇νδgμσ −∇σδgμν) ,

δRλ
μσν = ∇σδΓ

λ
μν −∇νδΓ

λ
μσ

=
1

2
gλρ
[
∇σ∇μδgνρ +∇σ∇νδgμρ −∇σ∇ρδgμν −∇ν∇μδgσρ

−∇ν∇σδgμρ +∇ν∇ρδgμσ

]
,

δRμν = δRλ
μλν

=
1

2

[
∇μ∇λδgλν +∇ν∇λδgλμ −∇μ∇ν

(
gλσδgλσ

)−∇2δgμν

]
−Rλ σ

μ νδgλσ +
1

2

(
R λ

μ δgλν +R λ
ν δgλμ

)
,

δR = δgμνRμν + gμνδRμν

= −Rμνδgμν +∇μ∇νδgμν −∇2 (gμνδgμν) .

In addition, the following variation formulas including derivatives are use-

ful:

δ(∇μA) = ∇μδA,

δ(∇μ∇νA) = ∇μ∇νδA− 1

2
∇λA (∇μδgνλ +∇νδgμλ −∇λδgμν) ,

δ(∇2A) = ∇2δA− δgμν∇μ∇νA−∇μA∇νδgμν

+
1

2
∇λA∇λ(g

μνδgμν),

where A is an arbitrary scalar.
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Conformal variations of curvatures A conformal (Weyl) variation

δωgμν = 2ωgμν of the scalar curvature is given from the above variational

formulas as

δω
√−gR = (D − 2)ω

√−gR− 2(D − 1)
√−g∇2ω.

Conformal variations of various curvatures squared are given by

δω
√−gR2

μνλσ = (D − 4)ω
√
gR2

μνλσ − 8
√−gRμν∇μ∇νω,

δω
√
gR2

μν = (D − 4)ω
√
gR2

μν − 2
√−gR∇2ω

−2(D − 2)
√−gRμν∇μ∇νω,

δω
√−gR2 = (D − 4)ω

√
gR2 − 4(D − 1)

√
gR∇2ω,

δω
√−g∇2R = (D − 4)ω

√−g∇2R+ (D − 6)
√−g∇λR∇λω

−2
√−gR∇2ω − 2(D − 1)

√
g∇4ω,

δω
√−gFμνF

μν = (D − 4)ω
√−gFμνF

μν ,

where RμνλσRμνλσ is simply expressed as R2
μνλσ , and so on.

A generalized expression of the Wess-Zumino integrability condition (5-

3) obtained by performing the conformal variations twice to an effective

action Γ in D dimensions is given by

[δω1
, δω2

]Γ =
{
4η1 +Dη2 + 4(D − 1)η3 + (D − 4)η4

}
× 1

(4π)2

∫
dDx

√−g R
(
ω1∇2ω2 − ω2∇2ω1

)
= 0. (A-2)

Three combinations that satisfy this integrability condition are the square of

the Weyl curvature tensor, the Euler density (Gauss-Bonnet combination),

and a function that becomes a total divergence form in four dimensions,

which are given as follows:

FD = C2
μνλσ = R2

μνλσ − 4

D − 2
R2

μν +
2

(D − 1)(D − 2)
R2,

G4 = R2
μνλσ − 4R2

μν +R2,

MD = (D − 4)H2 − 4∇2H,

where H = R/(D − 1). The conformal anomalies introduced in Chapter

9 can be written with FD and ED = G4 + χ(D)MD. The modified Euler

density GD = G4 + (D − 4)χ(D)H2 is the bulk part of ED excluding the

total divergence term.
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Euler characteristics The Euler characteristic is a topological invari-

ant existing in even-dimensional Euclidean spaces. For a compact space in

D = 2, it is defined by

χ =
1

4π

∫
d2x

√
gR.

In D = 4, using ∗Rμνλσ = ε ρκ
μν Rρκλσ/2, it is defined by2

χ =
1

32π2

∫
d4x

√
g ∗Rμνλσ

∗Rμνλσ =
1

32π2

∫
d4x

√
g G4.

Euler’s relations As relations associated with the Euler characteris-

tics, when D = 2,

Rμν =
1

2
gμνR

holds, and when D = 4,

RμλσρR
λσρ
ν − 2RμλνσR

λσ − 2RμλR
λ
ν +RμνR =

1

4
gμνG4

holds.

Mode expansions When the metric field is decomposed into a confor-

mal factor and others as gμν = e2φḡμν , the curvatures are expressed as

Γλ
μν = Γ̄λ

μν + ḡλμ∇̄νφ+ ḡλν∇̄μφ− ḡμν∇̄λφ,

Rλ
μσν = R̄λ

μσν + ḡλνΔ̄μσ − ḡλσΔ̄μν + ḡμσΔ̄
λ
ν − ḡμνΔ̄

λ
σ

+
(
ḡλν ḡμσ − ḡλσ ḡμν

)∇̄ρφ∇̄ρφ,

Rμν = R̄μν − (D − 2)Δ̄μν − ḡμν
[∇̄2φ+ (D − 2)∇̄λφ∇̄λφ

]
,

R = e−2φ
[
R̄− 2(D − 1)∇̄2φ− (D − 1)(D − 2)∇̄λφ∇̄λφ

]
,

Cλ
μσν = C̄λ

μσν ,

where Δ̄μν = ∇̄μ∇̄νφ − ∇̄μφ∇̄νφ. The quantity with the bar is defined

using the metric field ḡμν . The square of the Weyl tensor is then expressed

as √−g C2
μνλσ =

√−ḡ e(D−4)φ C̄2
μνλσ

2 The expression ∗Rμνλσ
∗Rμνλσ of the Euler density is a function defined only in four

dimensions, whereas G4 is defined in any dimension so that it can be used in renormalization

theory by dimension regularization.
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and the Euler density is

√−g G4 =
√−ḡ e(D−4)φ

[
Ḡ4 + (D − 3)∇̄μJ

μ + (D − 3)(D − 4)K
]
,

(A-3)

where

Jμ = 8R̄μν∇̄νφ− 4R̄∇̄μφ+ 4(D − 2)
(∇̄μφ∇̄2φ− ∇̄μ∇̄νφ∇̄νφ

+∇̄μφ∇̄λφ∇̄λφ
)
,

K = 4R̄μν∇̄μφ∇̄νφ− 2R̄∇̄λφ∇̄λφ+ 4(D − 2)∇̄2φ∇̄λφ∇̄λφ

+(D − 1)(D − 2)(∇̄λφ∇̄λφ)2.

Thus, the conformal-factor dependent part of the Euler density multiplied

by
√−g becomes a total divergence form in four dimensions.

Furthermore, when the metric field with the bar is expanded in terms of

the traceless tensor field hμν as ḡμν = (ĝeh)μν up to o(h2), we obtain

Γ̄λ
μν = Γ̂λ

μν + ∇̂(μh
λ
ν) −

1

2
∇̂λhμν +

1

2
∇̂(μ(h

2)λν) −
1

4
∇̂λ(h2)μν

−hλ
σ∇̂(μh

σ
ν) +

1

2
hλ

σ∇̂σhμν ,

R̄ = R̂− R̂μνh
μν + ∇̂μ∇̂νh

μν +
1

2
R̂σ

μλνh
λ
σh

μν − 1

4
∇̂λhμ

ν∇̂λh
ν
μ

+
1

2
∇̂νh

ν
μ∇̂λh

λμ − ∇̂μ(h
μ
ν∇̂λhν

λ),

R̄μν = R̂μν − R̂σ
μλνh

λ
σ + R̂λ

(μhν)λ + ∇̂(μ∇̂λhν)λ − 1

2
∇̂2hμν

−1

2
hλ
(μ∇̂2hν)λ − 1

2
∇̂λhσ

μ∇̂σhνλ − 1

4
∇̂μh

λ
σ∇̂νh

σ
λ

−1

2
∇̂λ(h

λ
σ∇̂(μh

σ
ν)) +

1

2
∇̂λ(h

σ
(μ∇̂ν)h

λ
σ) +

1

2
∇̂λ(h

λ
σ∇̂σhμν),

where the raising and lowering of the index is performed using the back-

ground metric ĝμν , and the traceless condition is hμ
μ = ĝμνhμν = 0. The

symmetric product is defined by a(μbν) = (aμbν + aνbμ)/2. With attention

to R̄ = ḡμνR̄μν and ḡμν = (ĝe−h)μν = ĝμν − hμν + · · ·, we can derive R̄

from R̄μν , where [∇̂λ, ∇̂ν ]h
λ
μ = hλ

σR̂
σ
μνλ + hμσR̂

σ
ν is used.

When the flat background metric ĝμν = ημν is employed, the square of

each curvature with the bar, and so on, is expanded up to o(h2) as

R̄2
μνλσ = ∂λ∂σhμν∂

λ∂σhμν − 2∂ν∂λhμσ∂
μ∂λhνσ + ∂λ∂σhμν∂

μ∂νhλσ,
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R̄2
μν =

1

2
∂μχν∂

μχν − ∂2hμν∂
μχν +

1

2
∂μχν∂

νχμ +
1

4
∂2hμν∂

2hμν ,

R̄2 = ∂μχ
μ∂νχ

ν ,

∇̄2R̄ = ∂2∂μχ
μ − 1

4
∂2
(
∂λhμν∂

λhμν
)
+

1

2
∂2 (χμχ

μ)− ∂2∂μ (hμνχ
ν)

−hμν∂
μ∂ν∂λχ

λ − χμ∂
μ∂νχ

ν ,

where χμ = ∂νh
ν
μ. From these, we can see that the o(h2) term of the

Euler density with the bar can be written in a total divergence form in any

dimension as

Ḡ4 = ∂σL
σ, (A-4)

where

Lσ = ∂λhμν∂
λ∂σhμν − ∂σhμν∂

2hμν − 2∂λhμν∂
λ∂μhνσ − 2∂λh

σ
ν ∂λχν

+4∂σhμν∂
μχν + ∂λhμν∂

μ∂νhλσ − ∂λh
σ
ν ∂νχλ − χλ∂

λχσ

+χσ∂λχ
λ.

Moreover, quantities involving φ are expanded up to o(h2) as follows:

∇̄2φ = ∂2φ− χμ∂μφ− hμν∂μ∂νφ+
1

2
hμλ∂μh

ν
λ∂νφ+

1

2
hμνχμ∂νφ

+
1

2
hμλhν

λ∂μ∂νφ,

∇̄μ∇̄νφ = ∂μ∂νφ− 1

2

(
∂μh

λ
ν + ∂νh

λ
μ − ∂λhμν

)
∂λφ

−1

4

(
hσ

μ∂νh
λ
σ + hσ

ν∂μh
λ
σ − hλ

σ∂μh
σ
ν − hλ

σ∂νh
σ
μ

−hσ
μ∂

λhνσ − hσ
ν∂

λhμσ + 2hλσ∂σhμν

)
∂λφ,

∇̄4φ = ∂4φ− ∂2(hμν∂μ∂νφ+ χμ∂μφ)− hμν∂μ∂ν∂
2φ− χμ∂μ∂

2φ

+∂2

(
1

2
hμλhν

λ∂μ∂νφ+
1

2
hμν∂μh

λ
ν∂λφ+

1

2
hμνχμ∂νφ

)

+hμν

(
∂μ∂νh

λσ∂λ∂σφ+ 2∂μh
λσ∂ν∂λ∂σφ+ hλσ∂μ∂ν∂λ∂σφ

+
1

2
∂μh

λ
ν∂λ∂

2φ+
1

2
χμ∂ν∂

2φ+ ∂μ∂νχ
λ∂λφ+ 2∂μχ

λ∂ν∂λφ

+2χλ∂μ∂ν∂λφ

)
+ χμ∂μχ

ν∂νφ+ χμχν∂μ∂νφ

+χμ∂μh
νλ∂ν∂λφ+

1

2
hμλhν

λ∂μ∂ν∂
2φ, (A-5)
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and

R̄μν∇̄μ∇̄νφ = ∂μχν∂μ∂νφ− 1

2
∂2hμν∂μ∂νφ− 1

2
∂λhμν∂λχμ∂νφ

−1

2
∂λh

μν∂μχ
λ∂νφ+

1

2
∂λhμν∂μχν∂λφ

+
1

2
∂2hμν∂μh

λ
ν∂λφ− 1

4
∂2hμν∂λhμν∂λφ

−hμν∂λχμ∂ν∂λφ− hμν∂μχ
λ∂ν∂λφ

+
1

2
hμν∂2hλ

μ∂ν∂λφ− 1

2
∂λh

μν∂μh
λσ∂ν∂σφ

−1

4
∂λhμν∂σhμν∂λ∂σφ− 1

2
∂λ(h

λσ∂μhν
σ)∂μ∂νφ

+
1

2
∂λ(h

μσ∂νhλ
σ)∂μ∂νφ+

1

2
∂λ(h

λσ∂σh
μν)∂μ∂νφ,

R̄∇̄2φ = ∂μχ
μ∂2φ− χμ

(
∂νχ

ν∂μφ+
1

2
χμ∂

2φ

)

−1

4
∂λhμν∂λhμν∂

2φ− hμν

(
∂μχν∂

2φ+ ∂λχ
λ∂μ∂νφ

)
,

∇̄μR̄∇̄μφ = ∂μ∂νχ
ν∂μφ− 1

2
∂λ∂σhμν∂λhμν∂σφ− 1

2
∂μ(χνχν)∂μφ

−∂λ(hμν∂μχν)∂λφ− hμν∂μ∂λχ
λ∂νφ. (A-6)

Scalar Fields in Curved Space

The kinetic term of a free scalar field in curved space is given by

S = −1

2

∫
dDx

√−g ϕ
(−∇2 + ξR

)
ϕ.

Under conformal transformations, since a scalar field transforms as δωϕ =
Aωϕ, where A = −(D − 2)/2, the action transforms as

δωS = −1

2

∫
dDx

√−g ω
{
(D − 2 + 2A)ϕ

(−∇2 + ξR
)
ϕ

+ [D − 2− 4ξ(D − 1)]
(∇μϕ∇μϕ+ ϕ∇2ϕ

)}
.

The first term on the right-hand side disappears when introducing the value

of A. The second term disappears and the action becomes conformally in-

variant when the parameter representing the strength of the coupling is set
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as

ξ =
D − 2

4(D − 1)
. (A-7)

Thus, the action has conformal invariance when ξ = 0 in two dimensions

and ξ = 1/6 in four dimensions.

The energy-momentum tensor is defined by Θμν = (2/
√−g)δS/δgμν ,

which is given by

Θμν = ∇μϕ∇νϕ− 1

2
gμν∇λϕ∇λϕ+ ξ

[
Rμνϕ2 − 1

2
gμνRϕ2

− (∇μ∇ν − gμν∇2
)
ϕ2

]
(A-8)

for any ξ. Its trace Θ = Θμ
μ is

Θ = −1

2
[D − 2− 4ξ(D − 1)]∇μϕ∇μϕ

−2ξ(D − 1)ϕ

[
−∇2 +

D − 2

4(D − 1)
R

]
ϕ.

In the conformal coupling (A-7), the first term disappears. In addition, only

then, the second term is proportional to the equation of motion (−∇2 +
ξR)ϕ = 0. Therefore, Θ disappears in proportion to the equation of motion

in the case of the conformal coupling.

Fermions in Curved Space

In terms of the vielbein eaμ in D dimensions,3 the metric field can be rep-

resented as gμν = eaμeνa. In the following, unless otherwise noted, a, b,
c, and d denote the local Lorentz indices, while μ, ν, λ, and σ are the Ein-

stein indices. The gamma matrix that basically has the local Lorentz index

is defined by an anti-commutation relation {γa, γb} = −2ηab. The gamma

matrix with the Einstein index is then expressed as γμ = eμaγ
a using the

vielbein. The Dirac adjoint of a fermion field ψ is defined by ψ̄ = ψ†γ0

using the gamma matrix γ0 with the local Lorentz index.4

3 In four dimensions, it is called the vierbein or tetrad.

4 Hermitian conjugate of the product of two Grassmann numbers θ and ψ follows a rule of

(θψ)† = ψ†θ†.
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Covariant derivatives Introducing the vielbein, we can define a co-

variant derivative acting on the local Lorentz index. For a vector, by taking

Va = eμaVμ, it is represented as

∇μVa = ∂μ + ω b
μa Vb,

where ωμab is the spin connection. To coincide with a normal covariant

derivative ∇μVν = ∂μVν−Γλ
μνVλ, we require the condition that a covariant

differentiation of the vielbein vanishes as ∇μe
a
ν = ∂μe

a
ν+ω a

μ be
b
ν−Γλ

μνe
a
λ =

0. The spin connection is thus represented as

ωμab = eνa
(
∂μeνb − Γλ

μνeλb
)
,

where an antisymmetric property ωμab = −ωμba holds for the local Lorentz

indices.

In order to apply the covariant derivative to fermions, it is generalized as

∇μ = ∂μ +
1

2
ωμabΣ

ab,

where Σab is a generator of the local Lorentz group satisfying5

[
Σab,Σcd

]
= −ηacΣbd + ηadΣbc + ηbcΣad − ηbdΣac.

Using this algebra, the commutation relation between the covariant deriva-

tives is expressed as

[∇μ,∇ν ] =
1

2
(∂μωνab − ∂νωμab + [ωμ, ων ]ab) Σ

ab

=
1

2
RμνabΣ

ab,

where Rμνab = eλae
σ
bRμνλσ . The Riemann curvature tensor can be repre-

sented as above by using the spin connection.

The generator of the Lorentz group for scalar fields is Σab = 0. When

acting on vector fields, it is given by (Σab)cd = δacδ
b
d−δadδ

b
c. For fermions,

it is given by using the gamma matrix as

Σab = −1

4

[
γa, γb

]
.

5 A slightly different convention than that in Chapters 2 and 3 is used here.
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Fermion action The action for a massless free fermion is given by

S = i

∫
dDx

√−gψ̄γμ∇μψ

=
i

2

∫
dDx

√−g
(
ψ̄γμ∇μψ −∇μψ̄γ

μψ
)
, (A-9)

where the covariant derivatives for fermions are defined by

∇μψ =

(
∂μ +

1

2
ωμabΣ

ab

)
ψ,

∇μψ̄ = ψ̄
←−∇μ = ψ̄

(←−
∂ μ − 1

2
ωμabΣ

ab

)
.

The second equality in (A-9) can be shown by performing a partial inte-

gration with attention to ∂μ(
√−geμa) = −√−gω b

μae
μ
b and rewriting the

expression using [Σab, γc] = ηbcγa − ηacγb. This can also be shown from

the fact that the covariant derivative satisfies the Leibniz rule ∇μ(ψ̄γ
νψ) =

∇μψ̄γ
νψ + ψ̄γν∇μψ, where ∇μγ

ν = γa∇μe
ν
a = 0 is used. This quantity

can also be expressed as

∇μ(ψ̄γ
νψ) = ∂μ(ψ̄γ

νψ) + Γν
μλψ̄γ

λψ

= ∂μψ̄γ
νψ + ψ̄γν∂μψ − ω b

μa e
ν
b ψ̄γ

aψ.

The action can be rewritten as

S = i

∫
dDx

√−g

[
1

2

(
ψ̄γμ∂μψ − ∂μψ̄γ

μψ
)− 1

4
ωμabe

μ
c ψ̄γ

abcψ

]
,

where γabc = (γaγbγc + antisymmetric)/3! is a completely antisymmetric

product of the gamma matrix and γcΣab +Σabγc = −γabc is used.

Energy-momentum tensor The variation of the metric field is ex-

pressed with the vielbein as δgμν = δeaμeνa + eaμδeνa, and thus δ
√−g =√−geμaδe

a
μ is obtained. Since a variation of δab expressed in terms of the

vielbein disappears, we get δeμa = −eμb e
ν
aδe

b
ν . Using these, a variation of

the spin connection is expressed as δωμab = eνa∇μδeνb − eνaeλbδΓ
λ
μν and a

variation of the action is given by

δS =
i

2

∫
dDx

√−g δeμa

[
eμa
(
ψ̄γλ∇λψ −∇λψ̄γ

λψ
)

−eaλ
(
ψ̄γμ∇λψ −∇λψ̄γμψ

)− 1

2
eμb e

λ
c∇λ

(
ψ̄γabcψ

)]
.
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Therefore, the energy-momentum tensor is yielded as

Θμν =
1

2

1√−g

(
eμa

δS

δeνa
+ eνa

δS

δeμa

)

= − i

4

[
ψ̄γμ∇νψ + ψ̄γν∇μψ −∇μψ̄γνψ −∇νψ̄γμψ

−2gμν
(
ψ̄γλ∇λψ −∇λψ̄γ

λψ
)]
.

The trace is

Θ = Θμ
μ = i

1

2
(D − 1)

(
ψ̄γλ∇λψ −∇λψ̄γ

λψ
)
.

As in scalar fields with the conformal coupling, the trace vanishes according

to the equation of motion γμ∇μψ = ∇μψ̄γ
μ = 0.

Conformal invariance The massless fermion action is conformally

invariant at any dimension. Under the conformal transformation δωgμν =
2ωgμν , the vielbein and fermions transform as

δωe
μ
a = −ωeμa , δωeμa = ωeμa,

δωψ =
1−D

2
ωψ, δωψ̄ =

1−D

2
ωψ̄.

The spin connection and so on transform as

δωωμab =
(
eμae

λ
b − eμbe

λ
a

)
∂λω, δω (γμ∇μψ) = −D + 1

2
ωγμ∇μψ.

where γaΣ
ab = (D − 1)γb/2 is used in the second. Thus, it can be shown

that the kinetic term of fermions is conformally invariant in arbitrary D
dimensions as

δω
(√−gψ̄γμ∇μψ

)
=

(
Dω +

1−D

2
ω − D + 1

2
ω

)√−gψ̄γμ∇μψ = 0.

Expansions of spin connection Here give an expansion formula of the

spin connection in the flat background. Since the kinetic term of fermions

is conformally invariant, it is presented excluding the conformal-factor field

dependence. The vielbein with the bar is expanded with the traceless tensor

field as

ēμa = (e
1
2h)μa = ημa +

1

2
hμa +

1

8
(h2)μa + · · · ,

ēμa = (e−
1
2h)μa = δμa − 1

2
hμ
a +

1

8
(h2)μa + · · · ,
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where ēaμēνa = ḡμν and ēμa ēμb = ηab. Since it is expanded employing

the flat background, ημa is a vielbein of the flat background metric, so that

all indices that appear on the right-hand sides can be regarded as the local

Lorentz indices (or the Einstein indices). By using these expansions, we

obtain

ω̄μab = ēνa
(
∂μēνb − Γ̄λ

μν ēλb
)

= −1

2
(∂ahμb − ∂bhμa)− 1

8

(
hλ
a∂μhλb − hλ

b ∂μhλa

)
−1

4

(
hμλ∂ah

λ
b − hμλ∂βh

λ
a

)
+

1

4

(
hλ
a∂λhμb − hλ

b ∂λhμa

)
.

Expansions of Gravitational Actions Around D = 4

Expanding the D-dimensional Weyl action around D = 4 yields∫
dDx

√−g C2
μνλσ =

∫
dDx
√
−ĝ e(D−4)φ C̄2

μνλσ

=

∞∑
n=0

(D − 4)n

n!

∫
dDx
√
−ĝ φn C̄2

μνλσ.

The action for the generalized Euler density GD in D dimensions is

expanded as follows. First, the volume integral of G4 is expanded using

(A-3) as∫
dDx

√−g G4

=

∫
dDx

√−ḡ e(D−4)φ
[
Ḡ4 + (D − 3)∇̄μJ

μ + (D − 3)(D − 4)K
]

=

∞∑
n=0

(D − 4)n

n!

∫
dDx

√−ḡ
[
φnḠ4 + (D − 3)

(
φn∇̄μJ

μ + nφn−1K
)]

=
∞∑

n=0

(D − 4)n

n!

∫
dDx
√

−ĝ

[
φnḠ4 + 4(D − 3)φnR̄μν∇̄μ∇̄νφ

−2(D − 3)φnR̄∇̄2φ− 2(D − 2)(D − 3)(D − 4)φn∇̄2φ∇̄λφ∇̄λφ

−(D − 2)(D − 3)2(D − 4)φn(∇̄λφ∇̄λφ)
2

]
.

From the H squared term multiplied by D− 4, where H = R/(D− 1), we
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obtain

(D − 4)

∫
dDx

√−g H2

=
∞∑

n=0

(D − 4)n

n!

∫
dDx
√

−ĝ

[
(D − 4)

(D − 1)2
φnR̄2 − 2(D − 6)

D − 1
φnR̄∇̄2φ

+
2(D − 2)

D − 1
φn∇̄λR̄∇̄λφ+ 4φn∇̄4φ+ 8(D − 4)φn∇̄2φ∇̄λφ∇̄λφ

+(D − 2)2(D − 4)φn(∇̄λφ∇̄λφ)
2

]
.

Substituting these expansions and χ(D) = 1/2 + 3(D − 4)/4 + χ3(D −
4)2 + χ4(D − 4)3 + · · ·, the GD action is expanded as follows:6∫

dDx
√−g GD

=

∫
dDx

√−g
[
G4 + (D − 4)χ(D)H2

]
=

∞∑
n=0

(D − 4)n

n!

∫
dDx
√

−ĝ

{
φnḠ4 +

D − 4

(D − 1)2
χ(D)φnR̄2

+4(D − 3)φnR̄μν∇̄μ∇̄νφ− 2

[
D − 3 +

D − 6

D − 1
χ(D)

]
φnR̄∇̄2φ

+
2(D − 2)

D − 1
χ(D)φn∇̄λR̄∇̄λφ+ 4χ(D)φn∇̄4φ

+2(D − 4) [−(D − 2)(D − 3) + 4χ(D)]φn∇̄2φ∇̄λφ∇̄λφ

+(D − 2)(D − 4)
[−(D − 3)2 + (D − 2)χ(D)

]
φn(∇̄λφ∇̄λφ)2

}

=

∫
dDx
√

−ĝ

{
Ḡ4 + (D − 4)

(
2φΔ̄4φ+ Ḡ4φ− 2

3
R̄∇̄2φ+

1

18
R̄2
)

+(D − 4)2
(
φ2Δ̄4φ+

1

2
Ḡ4φ

2 + 3φ∇̄4φ+ 4φR̄μν∇̄μ∇̄νφ

6 In two-dimensional quantum gravity, the action in dimensional regularization is given by the

volume integral of the D-dimensional Ricci scalar curvature, which is expanded around D = 2
as ∫

dDx
√−gR =

∞∑
n=0

(D − 2)n

n!

∫
dDx

√
−ĝ

[
−(D − 1)φn∇̄2φ+ R̄φn

]
.

The n = 1 part gives the Liouville action.

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



314 Appendix A

−14

9
φR̄∇̄2φ+

10

9
φ∇̄λR̄∇̄λφ− 7

9
R̄∇̄2φ+

1

18
R̄2φ+

5

108
R̄2
)

+(D − 4)3
[
1

3
φ3Δ̄4φ+

1

6
Ḡ4φ

3 +

(
4χ3 − 1

2

)
(∇̄λφ∇̄λφ)2

+(8χ3 − 2) ∇̄2φ∇̄λφ∇̄λφ+
3

2
φ2∇̄4φ+ 2φ2R̄μν∇̄μ∇̄νφ

−7

9
φ2R̄∇̄2φ+

5

9
φ2∇̄λR̄∇̄λφ+

1

36
R̄2φ2 + 4χ3φ∇̄4φ

+

(
4

3
χ3 − 35

54

)
φR̄∇̄2φ+

(
4

3
χ3 +

7

54

)
φ∇̄λR̄∇̄λφ

+
5

108
R̄2φ+

(
−4

3
χ3 +

7

27

)
R̄∇̄2φ+

(
1

9
χ3 − 1

27

)
R̄2

]

+o((D − 4)4)

}
, (A-10)

where
√−gΔ4 is the differential operator defined by (5-10) in D dimen-

sions which becomes conformally invariant at four dimensions. Note that

the coefficients up to o((D − 4)3) do not depend on the value of χ4.
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ADDENDA TO CONFORMAL FIELD THEORY

Fourier Transform of Two-Point Function

In D-dimensional Euclidean space, the two-point correlation function of a

scalar field with conformal dimension Δ is given by 〈O(x)O(0)〉 = 1/(x2)Δ

and its Fourier transform is expressed as

1

(x2)Δ
=

(2π)
D
2 Γ(D2 −Δ)

4Δ−D
4 Γ(Δ)

∫
dDk

(2π)D
eik·x

(
k2
)Δ−D

2 . (B-1)

where Δ < D/2 is assumed.

Fourier transform of two-point functions in Minkowski space can be

found using the expression above. The product k · x in Euclidean space

is rewritten as k · x + kDxD, and hereafter k · x represents the product in

Minkowski space. When the D-th coordinate is rewritten as xD = ix0 + ε,
the left-hand side of (B-1) becomes a correlation function 〈0|O(x)O(0)|0〉
in Minkowski spacetime. Rewriting the right-hand side as well, we obtain

1

[−(x0 − iε)2 + x2]Δ
=

(2π)
D
2 Γ(D2 −Δ)

4Δ−D
4 Γ(Δ)

∫
dD−1k

(2π)D−1
eik·x

×
∫

dkD

2π
e−kD(x0−iε)

{
k2 + (kD)2

}Δ−D
2 .

(B-2)

Due to the presence of a phase factor eiεk
D

, the path of the kD-integration

can be extended to the upper half of the complex plane. There are cuts

on the imaginary axis from kD = i|k| to i∞ in the upper half and from

kD = −i|k| to −i∞ in the lower half because there are poles at kD = ±i|k|
and Δ is not an integer. Therefore, the path −∞ < kD < ∞ can be

deformed to a path that traces the left and right sides of the imaginary axis

in the upper half avoiding the cut and the pole (in the case of a free scalar

with Δ = D/2− 1, pick up only a residue of the pole). Letting kD = ik0,

the kD-integration can be rewritten as∫ ∞

−∞

dkD

2π
e−kD(x0−iε)

{
k2 + (kD)2

}Δ−D
2
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= i

∫ ∞

0

dk0

2π
e−ik0x0−εk0

{[
k2 − (k0 − io)2

]Δ−D
2

− [k2 − (k0 + io)2
]Δ−D

2

}
,

where a new positive infinitesimal o is introduced to avoid the cuts. Further-

more, using

(x+ io)λ − (x− io)λ =

{
0 for x > 0
2i|x|λ sinπλ for x < 0

= 2i(−x)λθ(−x) sinπλ,

the integrand can be written as [k2 − (k0 − io)2]Δ−D/2 − [k2 − (k0 +
io)2]Δ−D/2 = 2i(−k2)Δ−D/2θ(−k2) sin[π(Δ−D/2)], where k2 = k2 −
(k0)2. Therefore, the right-hand side of (B-2) is expressed as

−2 sin

[
π

(
Δ− D

2

)]
(2π)

D
2 Γ(D2 −Δ)

4Δ−D
4 Γ(Δ)

∫
dD−1k

(2π)D−1
eik·x

×
∫ ∞

0

dk0

2π
e−ik0x0

(−k2)Δ−D
2 θ(−k2)

=
(2π)

D
2 +14

D
4 −Δ

Γ(Δ)Γ(Δ− D
2 + 1)

∫
dDk

(2π)D
eik·xθ(k0)θ(−k2)(−k2)Δ−D

2 ,

where Γ(λ)Γ(1− λ) = π/ sin(πλ) and Γ(λ+ 1) = λΓ(λ) are used. From

this, we can read the Fourier transform W (k) for scalar fields introduced in

Chapter 2.

Derivation of Critical Exponents

Various critical exponents are derived by adding small perturbations to con-

formal field theory SCFT. First, consider a perturbation by energy operator

ε, which is a representative of relevant operators whose conformal dimen-

sion satisfies Δ < D in D dimensions. It corresponds to a perturbation by

temperature. Letting a dimensionless temperature parameter representing a

deviation from the critical point be t = |T − Tc|/Tc, the action of such a

system is given by

St = SCFT − taΔε−D

∫
dDx ε(x),

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Addenda to Conformal Field Theory 317

where Δε is conformal dimension of the energy operator. The length scale

a introduced to compensate for the dimension is a ultraviolet cutoff corre-

sponding to lattice spacings in statistical models.1

The correlation length ξ is then given by

ξ ∼ at−ν , ν =
1

D −Δε
, (B-3)

because taΔε−D ∼ ξΔε−D holds from dimensional analysis. The limit

ξ → ∞ is equivalent to t → 0 because the exponent ν is positive from the

condition Δε < D.

When the temperature perturbation t is added, one-point function of an

operator O is defined by 〈〈O〉〉t =
∫
O e−St , and is expanded as

〈〈O〉〉t =
∞∑

n=0

1

n!

〈
O

(
taΔε−D

∫
dDx ε(x)

)n〉
,

where 〈O〉 = ∫O e−SCFT represents a normal correlation function of CFT.

In order to obtain critical exponents, we investigate behaviors near the

critical point where the correlation length ξ is sufficiently large. In this limit,

the ultraviolet cutoff a corresponding to lattice spacings does not affect the

results, and thus a = 1 is taken below unless otherwise required.

Consider a spin operator σ in addition to ε as a relevant operator. To

specify the statistical system, we assume that they satisfy the following OPE

structure which the Ising model possesses:

σ × σ ∼ I + ε, σ × ε ∼ ε, ε× ε ∼ I.

First, examine a critical exponent of specific heat. Writing free energy

per unit volume as f , its specific heat is given by C = −∂2f/∂t2 =
∂〈〈ε(0)〉〉t/∂t. Since one-point function 〈ε〉 in CFT disappears, the term

that contributes most in the large ξ (small t) limit is given by a two-point

function

C =

〈
ε(0)

∫
|x|≤ξ

dDx ε(x)

〉
=

∫
|x|≤ξ

dDx
1

|x|2Δε
,

1 In lattice models, a parameter giving the dimension is only the lattice spacing, whereas cou-

pling constants corresponding to a temperature variable, and so on, are dimensionless quan-

tities. From this fact, the temperature parameter t is introduced as a dimensionless quantity,

and the dimensions is made up for with a. Although this scale is necessary to make the sys-

tem finite, the value of a itself is not important when finding critical exponents in the large

correlation length limit, and it appears only in dimensional analysis.
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where 〈〈ε〉〉t is evaluated at the origin for convenience. Evaluating the inte-

gral inside the correlation length such as |x| ≤ ξ, it can be shown that the

specific heat is given as a function of ξ as follows:

C ∼ ξD−2Δε + const.

The constant term is a contribution from the ultraviolet cutoff, which is ig-

nored as being smaller than the first term in the vicinity of the critical point

where ξ is large.2 The critical exponent is defined by C ∼ t−α, thus rewrit-

ing the right-hand side to the behavior of t using ξ ∼ t−ν yields

α = ν(D − 2Δε).

Next, consider a critical exponent of magnetization given by a one-point

function of the spin operator. In CFT, one-point functions 〈σ〉 and 〈ε〉 as

well as a two-point function 〈σε〉 disappear from the OPE structure. There-

fore, when a perturbation by temperature is applied, the behavior of magne-

tization in the vicinity of the critical point is given by

M = 〈〈σ(0)〉〉t = t2

2!

∫
|x|≤ξ

dDx

∫
|y|≤ξ

dDy 〈σ(0)ε(x)ε(y)〉 .

The integrals can be easily evaluated from dimensional analysis, and the

most contributing part at ξ → ∞ (t → 0) is given by

M ∼ t2 × ξ2D−Δσ−2Δε ∼ tνΔσ ,

where Δσ is conformal dimension of the spin operator. Thus, the critical

exponent defined by M ∼ tβ is given by

β = νΔσ.

In order to derive a critical exponent of magnetic susceptibility, it is nec-

essary to add perturbations by not only temperature but also an external

magnetic field h, whose action is given as follows:

St,h = SCFT − taΔε−D

∫
dDx ε(x)− haΔσ−D

∫
dDxσ(x).

The magnetic susceptibility near the critical point is calculated as

χ =
∂

∂h
〈〈σ(0)〉〉t,h

∣∣∣
h=0

=

∫
|x|≤ξ

dDx 〈σ(0)σ(x)〉 ∼ ξD−2Δσ ∼ t−ν(D−2Δσ).

2 In the case of the D = 2 Ising model, the exponent becomes zero, but a logarithmic diver-

gence appears.
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Therefore, the critical exponent defined by χ ∼ t−γ is determined to be

γ = ν(D − 2Δσ).

Moreover, the h-dependence of magnetization defined by M ∼ h1/δ at

the critical temperature t = 0 is obtained from the following action that has

only the perturbation by the external magnetic field h:

Sh = SCFT − haΔσ−D

∫
dDxσ(x).

From this action, the magnetization is given by

M = 〈〈σ(0)〉〉h = h

∫
|x|≤ξ

dDx 〈σ(0)σ(x)〉 .

Note that the correlation length in this system is represented by ξΔσ−D ∼
haΔσ−D. Evaluating the term that contributes most in ξ → ∞ (h → 0)
from dimensional analysis yields

M ∼ h× ξD−2Δσ ∼ hΔσ/(D−Δσ).

Thus, the critical exponent is expressed as

δ =
D −Δσ

Δσ
.

Finally, summarize widely known scaling relations. By defining a new

exponent η by a relation 2Δσ = D − 2 + η and eliminating Δσ and Δε

using this relation and (B-3), each critical exponent can be expressed as

α = 2− νD [Josephson’s law],

β =
1

2
ν(D − 2 + η),

γ = ν(2− η) [Fisher’s law],

δ =
D + 2− η

D − 2 + η
.

In addition, the following relations hold:

α+ 2β + γ = 2 [Rushbrooke’ law],

γ = β(δ − 1) [Widom’s law].

For the Ising model in D = 2, as a concrete example, ν = 1 and η = 1/4
are obtained from Δε = 1 and Δσ = 1/8, and thus

α = 0, β =
1

8
, γ =

7

4
, δ = 15.
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Conformal Algebra for Free Scalar on M4

As a simple exercise, we derive conformal algebra and transformation laws

for the conformally coupled massless free scalar field. The canonical mo-

mentum is given by Pϕ = ∂ηϕ and the canonical commutation relation is

set to [ϕ(η,x),Pϕ(η,x
′)] = iδ3(x−x′). Decomposing the scalar field into

annihilation and creation operator parts as ϕ = ϕ< + ϕ>, the annihilation

part is expanded as

ϕ<(x) =

∫
d3k

(2π)3/2
1√
2ω

ϕ(k) eikμx
μ

,

where ω = |k|, while the creation part is given by ϕ> = ϕ†
<. The mode op-

erator then satisfies [ϕ(k), ϕ†(k′)] = δ3(k− k′). The two-point correlation

function is expressed as 〈0|ϕ(x)ϕ(0)|0〉 = [ϕ<(x), ϕ>(0)], which is given

by

〈0|ϕ(x)ϕ(0)|0〉 =
∫

d3k

(2π)3
1

2ω
e−i|k|(η−iε)+ik·x

=
1

4π2

1

−(η − iε)2 + x2
,

where ε is a ultraviolet cutoff, and see (7-17) given in Chapter 7 for the

momentum integration.

The energy-momentum tensor is given by substituting ξ = 1/6 into (A-

8) as

Θμν =
2

3
∂μϕ∂νϕ− 1

3
ϕ∂μ∂νϕ− 1

6
ημν∂

λϕ∂λϕ.

The trace disappears when using the equation of motion. Each generator of

conformal transformation can be expressed as follows:

P0 = H =

∫
d3xA, Pj =

∫
d3xBj ,

M0j =

∫
d3x (−ηBj − xjA) , Mij =

∫
d3x (xiBj − xjBi) ,

D =

∫
d3x
(
ηA+ xkBk+ :Pϕϕ :

)
,

K0 =

∫
d3x

[(
η2 + x2

)A+ 2ηxkBk + 2η :Pϕϕ : +
1

2
:ϕ2 :

]
,

Kj =

∫
d3x
[(−η2 + x2

)Bj − 2xjx
kBk − 2ηxjA− 2xj :Pϕϕ :

]
,
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where A and Bj are energy and momentum densities, respectively, defined

by

A =
1

2
:P2

ϕ : −
1

2
:ϕ |∂2ϕ :, Bj = :Pϕ∂jϕ :,

and |∂2 = ∂i∂i is the Laplacian in space.

Since the generators are time-independent operators, conformal algebra

can be calculated using equal-time commutation relations. Using two-point

functions at the same time

〈0|ϕ(x)ϕ(x′)|0〉 = 1

4π2

1

(x− x′)2 + ε2
,

〈0|ϕ(x)Pϕ(x
′)|0〉 = i

1

2π2

ε

[(x− x′)2 + ε2]2
,

〈0|Pϕ(x)Pϕ(x
′)|0〉 = − 1

2π2

(x− x′)2 − 3ε2

[(x− x′)2 + ε2]3
,

we can express the equal-time commutation relation between ϕ and Pϕ as

[ϕ(η,x),Pϕ(η,x
′)] = 〈0|ϕ(η,x)Pϕ(η,x

′)|0〉 − h.c.

= i
1

π2

ε

[(x− x′)2 + ε2]2
,

where the right-hand side is a regularized three-dimensional δ-function

δ3(x) =

∫
d3k

(2π)3
eik·x−εω =

1

π2

ε

(x2 + ε2)2
.

It is found that the equal-time commutation relation between ϕ’s disappears

because it becomes real. It is as well between Pϕ’s.

Similarly, the equal-time commutation relations for A and Bj are calcu-

lated as

[A(x),A(y)] =
1

2
i |∂2

xδ3(x− y) (:Pϕ(x)ϕ(y) : − :ϕ(x)Pϕ(y) :) ,

[Bj(x),Bk(y)] = i∂x
k δ3(x− y) :∂jϕ(x)Pϕ(y) :

+i∂x
j δ3(x− y) :Pϕ(x)∂kϕ(y) :,

[A(x),Bj(y)] = i∂x
j δ3(x− y) :Pϕ(x)Pϕ(y) :

−1

2
iδ3(x− y) : |∂2ϕ∂jϕ(y) :

−1

2
i |∂2

xδ3(x− y) :ϕ(x)∂jϕ(y) : −i
2

π2
fj(x− y).
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Other necessary equal-time commutation relations are given by

[A(x), :Pϕϕ(y) :] = −iδ3(x− x)

(
:P2

ϕ(y) : +
1

2
:ϕ |∂2ϕ(y) :

)

−1

2
i |∂2

xδ3(x− y) :ϕ(x)ϕ(y) : +i
10

π2
f(x− y),

[Bj(x), :Pϕϕ(y) :] = −iδ3(x− x)Bj(y) + i∂x
j δ(x− y) :Pϕ(x)ϕ(y) :,

where fj and f that represent quantum corrections are defined by

fj(x) =
1

π2

εxj(x
2 − ε2)

(x2 + ε2)6
, f(x) = − 1

40π2

ε(5x2 − 3ε2)

(x2 + ε2)5
,

which satisfy fj(x) = ∂jf(x). Spatial integrals for these functions satisfy∫
d3x fj(x) = 0,

∫
d3x f(x) = 0,

∫
d3xxjf(x) = 0,

while keeping ε finite, whereas the integral
∫
d3xx2f(x) = −1/160ε2 di-

verges at ε → 0.3

Calculating the conformal algebra (2-6) using the equal-time commu-

tation relations above, we can show that all the quantum corrections that

diverge at ε → 0 cancel out and the algebra closes quantum mechanically.

Next, examine transformation laws of a composite field : ϕn :. Equal-

time commutation relations between this operator and the variables that ap-

pear in the generators are calculated as

[A(x), :ϕn(y) :] = −iδ3(x− y) ∂η :ϕn(y) :,

[Bj(x), :ϕ
n(y) :] = −iδ3(x− y) ∂j :ϕ

n(y) :

+i
1

2π2
n(n− 1)gj(x− y) :ϕn−2(y) :,

[:Pϕϕ(x) :, :ϕ
n(y) :] = −in δ3(x− y) :ϕn(y) :

+i
3

2π2
n(n− 1)g(x− y) :ϕn−2(y) :,

where quantum correction functions are defined by

gj(x) =
1

π2

εxj

(x2 + ε2)4
, g(x) = − 1

6π2

ε

(x2 + ε2)3
,

3 The function f can be expressed as f(x) = (−1/320) × |∂2
(
δ3(x)/x2

)
, where another

expression π2δ3(x) = 4ε3/(x2 + ε2)3 of the δ-function is used.
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which satisfy gj(x) = ∂jg(x).

From these commutation relations, it can be shown that all the quantum

corrections disappear and the composite operator transforms as

i [Pμ, :ϕ
n(x) :] = ∂μ :ϕn(x) :,

i [Mμν , :ϕ
n(x) :] = (xμ∂ν − xν∂μ) :ϕ

n(x) :,

i [D, :ϕn(x) :] = (xμ∂μ + n) :ϕn(x) :,

i [Kμ, :ϕ
n(x) :] =

(
x2∂μ − 2xμx

ν∂ν − 2xμn
)
:ϕn(x) : .

In this way, we can see that : ϕn : is a primary scalar field with conformal

dimension n.

Mapping to R× S3 Space

First, consider a mapping from R
4 to Euclidean R × S3. Define the radial

component r of the coordinates xμ in R
4 with xμxμ = r2, while the coordi-

nates of a unit S3 are expressed as Xμ = xμ/r satisfying XμXμ = 1. The

R
4 metric ds2

R4 = dxμdxμ can then be written as

ds2
R4 = dr2 + r2dXμdXμ

= e2τ
(
dτ2 + dXμdXμ

)
= e2τds2

R×S3 ,

where r = eτ . Thus, R4 and Euclidean R× S3 with the metric ds2
R×S3 are

linked by the coordinate transformation.

Let us consider a mapping of a primary scalar field from R
4 to R× S3.

Scalar fields do not change in the transformation from the coordinates xμ to

the coordinates (r,Xμ), while the mapping r = eτ from (r,Xμ) to (τ,Xμ)
is a conformal transformation. Thus, denoting a scalar field in R

4 as O(x),
it is expressed as

O(x) = e−ΔτO(τ,X),

where Δ is conformal dimension of the scalar field. The transformation law

of translation in Euclidean R× S3 then becomes

i [Pμ, O(τ,X)] = eΔτ i [Pμ,O(x)] = eΔτ∂μO(x)

= eΔτ

(
∂τ

∂xμ

∂

∂τ
+

∂Xν

∂xμ

∂

∂Xν

)
e−ΔτO(τ,X)

= e−τ

{
Xμ∂τ + (δμν −XμXν)

∂

∂Xν
−ΔXμ

}
O(τ,X). (B-4)
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Similarly, special conformal transformation yields

i [Kμ, O(τ,X)] = eΔτ
(
x2∂μ − 2xμxν∂ν − 2Δxμ

)O(x)

= eτ
{
−Xμ∂τ + (δμν −XμXν)

∂

∂Xν
−ΔXμ

}
O(τ,X). (B-5)

Dilatation and Lorentz transformation are given by

i [D,O(τ,X)] = ∂τO(τ,X),

i [Mμν , O(τ,X)] =

(
Xμ

∂

∂Xν
−Xν

∂

∂Xμ

)
O(τ,X). (B-6)

In Euclidean R× S3, the dilatation represents evolution of the radial di-

rection r = eτ . Therefore, the field operator at any τ can be expressed as

O(τ,X) = eiτDO(0, X) e−iτD. If the field at τ = 0 is identified with a

Minkowski field that satisfies Hermiticity O†(0, X) = O(0, X), Hermitic-

ity in Euclidean R×S3 is expressed as O†(τ,X) = e−iτDO(0, X) eiτD =
O(−τ,X) from D† = −D.

Further rewrite these conformal transformations using harmonic func-

tions on S3. Introduce the Euler angles x̂ = (α, β, γ) and let their ranges

be [0, 2π], [0, π], and [0, 4π], respectively. The line element of the unit S3 is

expressed as

dXμdXμ = γ̂ijdx̂
idx̂j =

1

4

(
dα2 + dβ2 + dγ2 + 2 cosβdαdγ

)
.

The coordinate Xμ is then expressed using the Euler angles as

X0 = cos
β

2
cos

1

2
(α+ γ), X1 = sin

β

2
sin

1

2
(α− γ),

X2 = − sin
β

2
cos

1

2
(α− γ), X3 = − cos

β

2
sin

1

2
(α+ γ),

and the (induced) metric γ̂ij on S3 can be written using Xμ as

γ̂ij =
∂Xμ

∂x̂i

∂Xν

∂x̂j
δμν . (B-7)

In particular, we need a scalar spherical harmonics of J = 1/2 to de-

scribe the generators. The J = 1/2 component of the Wigner D-function

can be expressed using the coordinates Xμ as

D
1
2

mm′ =

(
X0 + iX3 X2 + iX1

−X2 + iX1 X0 − iX3

)
=

√
2 (Tμ)MXμ,
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where M=(m,m′) and Tμ is defined by this expression. Since J = 1/2, M

denotes a 4-vector index here. Introducing a sign factor εM = (−1)m−m′ ,

complex conjugate of Tμ is expressed as (T ∗
μ)M = εM (Tμ)−M ,4 then it is

found that

(T ∗
μ)M (Tμ)N = δMN ,

∑
M

(T ∗
μ)M (Tν)M = δμν ,

hold, where δMN = δmnδm′n′ . Using this expression, the J = 1/2 scalar

spherical harmonics Y1/2M can be expressed as
√
V3

2
Y 1

2M
= (Tμ)MXμ.

This scalar harmonics satisfies the following product formulas:

V3

4

∑
M

Y ∗
1
2M

Y 1
2M

= 1,
V3

4

∑
M

∇̂iY
∗
1
2M

∇̂jY 1
2M

= γ̂ij ,

V3

4
∇̂iY

∗
1
2M

∇̂jY 1
2N

= δMN − V3

4
Y ∗

1
2M

Y 1
2N

. (B-8)

From the first equation, it also satisfies
∑

M Y ∗
1/2M ∇̂jY1/2M = 0. These

four equations correspond to XμXμ = 1, the induced metric (B-7),

γ̂ij ∂Xμ

∂x̂i

∂Xν

∂x̂j
= δμν −XμXν , (B-9)

and XμdXμ = 0, respectively. Actually, letting T ∗
μ and Tν act on both sides

of (B-9), we can derive the third equation in (B-8). Furthermore, using

γ̂ij ∂Xμ

∂x̂j
= (δμν −XμXν)

∂x̂i

∂Xν
, (B-10)

which is a modified version of (B-9), we get
√
V3

2
γ̂ij ∂

∂x̂j
Y 1

2M
= (Tμ)M (δμν −XμXν)

∂x̂i

∂Xν
.

Let us rewrite conformal algebra using these tools. By applying (Tμ)M ,

we write the generators of the conformal transformations as follows:

H = iD, RMN = i(T ∗
μ)M (Tν)NMμν ,

QM = −i(T ∗
μ)MKμ, Q†

M = i(Tμ)MPμ,

4 The functions Tμ can be represented as (T0)M = (I)M/
√
2 and (Tj)M = i(σj)M/

√
2

using the identity matrix I and the Pauli matrix σi. Note here that T ∗μ is not Hermitian conju-

gate.
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where H becomes a Hermitian operator. The generators QM and Q†
M are

Hermitian conjugate with each other, and the rotation generator of S3 satis-

fies the relations R†
MN = RNM and RMN = −εM εNR−N−M . Conformal

algebra can be then written as[
QM , Q†

N

]
= 2δMNH + 2RMN ,[

H,QM

]
= −QM ,

[
H,Q†

M

]
= Q†

M ,
[
H,RMN

]
= 0,[

QM , QN

]
= 0,

[
QM , RNL

]
= δMLQN − εN εLδM−NQ−L,[

RMN , RLK

]
= δMKRLN − εM εNδ−NKRL−M

−δNLRMK + εM εNδ−MLR−NK . (B-11)

Since the rotation generator RMN commutes with H , it is an operator whose

conformal dimension is zero. The generator of special conformal transfor-

mation QM has conformal dimension −1, while its Hermitian conjugate

Q†
M which is the translation generator has conformal dimension 1.

Using H and RMN , the transformation laws (B-6) are rewritten as

i
[
H,O(τ, x̂)

]
= i∂τO(τ, x̂),

i
[
RMN , O(τ, x̂)

]
= (ρμR)MN ∇̂μO(τ, x̂),

where ∇̂μ = (∂τ , ∇̂j) is a covariant derivative for the metric ĝμν = (1, γ̂ij).
The first equation describes a time-translation corresponding to a Killing

vector υμ = (i, 0, 0, 0) on R× S3. The vector (ρμR)MN = (0, ρjMN ) in the

second equation is a Killing vector on S3, where

ρjMN = i
V3

4

(
Y ∗

1
2M

∇̂jY 1
2N

− Y 1
2N

∇̂jY ∗
1
2M

)
. (B-12)

Since ρj∗MN = ρjNM and ρjMN = −εM εNρj−N−M are satisfied for the 4-

vector indices M and N , the vector has six components.

The transformation laws for the special conformal transformation and

the translation are rewritten as

i
[
QM , O(τ, x̂)

]
= (ρμ)M ∇̂μO(τ, x̂) +

Δ

4
∇̂μ(ρ

μ)MO(τ, x̂),

i
[
Q†

M , O(τ, x̂)
]
= (ρ̃μ∗)M ∇̂μO(τ, x̂) +

Δ

4
∇̂μ(ρ̃

μ∗)MO(τ, x̂)

from (B-5) and (B-4) of Kμ and Pμ, respectively, where ρμ is a conformal

Killing vector on Euclidean R× S3 defined by

(ρμ)M =
(
ρ0M , ρjM

)
=

(
i

√
V3

2
eτY ∗

1
2M

,−i

√
V3

2
eτ ∇̂jY ∗

1
2M

)
,
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and ρ̃μ is also a conformal Killing vector that is defined by ρ̃0M (τ, x̂) =

−ρ0∗M (−τ, x̂) and ρ̃jM (τ, x̂) = ρj∗M (−τ, x̂).
Thus, the conformal Killing vectors on Euclidean R× S3 for the dilata-

tion H , the S3 rotation RMN , the special conformal transformation QM ,

and the translation Q†
M are given by υμ, ρμR, ρμ, and ρ̃μ, respectively.

Conformal Killing vectors on R × S3 with Lorentzian signature can be

obtained by Wick rotating the above vectors with τ = iη. The dilatation is

then expressed as i[H,O] = ∂ηO, that is, H is the Hamiltonian operator on

Lorentzian R×S3. Moreover, the relationship between states and operators

is given by

|Δ〉 = lim
η→i∞

e−iΔηO(η, x̂)|0〉.
A primary scalar state, for instance, is defined by the following conditions:

H|Δ〉 = Δ|Δ〉, RMN |Δ〉 = 0, QM |Δ〉 = 0.

Descendant states are generated by applying Q†
M to the primary state.

Two-Point Correlation Functions on R× S3

The scalar harmonics, defined in Chapter 8 and Appendix C, satisfies the

following formula:

∑
M

YJM (x̂)YJM (x̂′) =
2J + 1

V3
χJ(ω),

where

χJ(ω) =
sin[(2J + 1)ω2 ]

sin ω
2

is the character of the rank J irreducible representation of SU(2). The

angular variable ω is defined using the Euler angles as

cos
ω

2
= cos

β − β′

2
cos

α− α′

2
cos

γ − γ′

2

− cos
β + β′

2
sin

α− α′

2
sin

γ − γ′

2
.

Scalar fields Using this formula, the two-point correlation function of

the scalar field ϕ defined in Chapter 8 can be written as

〈0|ϕ(x)ϕ(x′)|0〉 = 1

2V3

∑
J≥0

e−i(2J+1)(η−η′)χJ(ω).
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To make the series converge, we regularize it by introducing an infinitesimal

cutoff as η − η′ → η − η′ − iε. Using a formula for the character

∑
J≥0

t2JχJ(ω) =
1

1− 2t cos ω
2 + t2

,

we obtain

〈0|ϕ(x)ϕ(x′)|0〉 = 1

2V3

1

L2(η − η′, ω)
,

where ε is omitted and L2 is a function on R× S3 defined by

L2(η − η′, ω) = 2
[
cos(η − η′)− cos

ω

2

]
.

At short distance, it becomes L2 ≈ −(η−η′)2+(α−α′)2/4+(β−β′)2/4+
(γ − γ′)2/4 + (α− α′)(γ − γ′)/2.

Conformal-factor field In the same way, consider the two-point func-

tion of the conformal-factor field. Since the conformal-factor field has the

zero-mode, we calculate the following operator product with attention to it:

φ(x)φ(x′) =
1

2
[φ0(η), φ0(η

′)] + [φ<(x), φ>(x
′)] + :φ(x)φ(x′) : .

The part that diverges at short distances is given by

[φ<(x), φ>(x
′)] =

1

4bc

π2

V3

∑
J≥0

4

2J + 1
e−i(2J+1)(η−η′) cos

{
(2J + 1)

ω

2

}

= − 1

4bc
log
{
1− 2e−i(η−η′) cos

ω

2
+ e−2i(η−η′)

}
.

Adding the contribution from the zero-mode, we get

φ(x)φ(x′) = − 1

4bc
logL2(η − η′, ω)+ :φ(x)φ(x′) : .

Using this, we can obtain an operator product of the primary scalar field

Vα =:eαφ : as

Vα(x)Vα′(x
′) =

(
1

L2(η − η′, ω)

)αα′
4bc

:Vα(x)Vα′(x
′) :,

where the normal ordering is defined by

:Vα(x)Vα′(x
′) : = eαφ0(η)+α′φ0(η

′)eαφ>(x)eα
′φ>(x′)eαφ<(x)eα

′φ<(x′).

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Addenda to Conformal Field Theory 329

Here, for the zero-mode part, we use the Baker-Campbell-Hausdorff for-

mula when [A,B] is a constant such that eAeB = e
1
2 [A,B]eA+B .

If one is a dual operator of the other, such as α′ = 4bc−α, its expectation

value by the conformally invariant vacuum is given by

〈Ω|Vα(x)V4bc−α(x
′)|Ω〉 =

(
1

L2(η − η′, ω)

)hα

,

where we use the facts that Vα has the conformal dimension hα = α −
α2/4bc (8-24), and since the conformally invariant vacuum has the back-

ground charge −4bc, 〈Ω|e4bcφ(0)|Ω〉 = 1. When Vα is the physical cosmo-

logical operator in quantum gravity, it has hα = 4.

Correction Terms in Gauge-Fixed Conformal
Transformations

A relationship between conformal transformations and gauge-fixing condi-

tions is discussed here. We first describe the case of the U(1) gauge field.

When the radiation gauge A0 = ∇̂iAi = 0 is adopted, the conformal trans-

formation of the transverse component becomes

δζAi = ζ0∂ηAi + ζj∇̂jAi +
1

3
∇̂jζ

jAi +
1

2

(
∇̂iζ

j − ∇̂jζi

)
Aj . (B-13)

However, this transformation does not preserve the transverse condition.

Moreover, it turns out that the transformation of the time component of the

gauge field becomes

δζA0 = ∇̂i(ζ0Ai), (B-14)

hence it does not preserve the radiation gauge condition. In fact, in terms of

the generator Qζ , the transformation law is written in the form with an extra

term to preserve the gauge-fixing condition as follows:

δζAμ = i [Qζ , Aμ] + ∇̂μλ̃,

where λ̃ is given as a function depending on the field variable. The last extra

term which has the form of a gauge transformation is called the Fradkin-

Palchik term.

Let us specifically see the gauge field on R × S3 discussed in Chap-

ter 8 as an example. In the conformal transformations (B-13) and (B-14),
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the transformations that do not preserve the radiation gauge are the spe-

cial conformal transformation with the conformal Killing vector ζμS and the

translation with its complex conjugate, whereas it is preserved for the case

of the Killing vectors ζμT and ζμR.

Assigning (ζμS )M (8-9), we examine the transformation law of the trans-

verse component. Expanding the right-hand side of (B-13) using the har-

monics product expansion (C-7), an extra term appears in addition to the

commutation relation between the special conformal transformation gener-

ator QM and the field operator as follows:

(δζSAi)M = i[QM , Ai] + ∇̂i(λ̃)M , (B-15)

where a scalar function λ̃ is given by

(λ̃)M =
i

2

∑
J≥ 1

2

1√
2(2J + 1)

∑
N,y

∑
S

{
− 1

2J
qJ(Ny)e

−i2JηG
1
2M

J(Ny);JS

+
1

2J + 2
q†J(Ny)e

i(2J+2)η(−εN )G
1
2M

J(−Ny);JS

}
Y ∗
JS .

Since the extra term is in the form of a gauge transformation, (B-15) can be

written as (δζSAi − δλ̃Ai)M = i[QM , Ai] when (δλ̃Aμ)M = ∇̂μ(λ̃)M is

considered as a gauge transformation following the special conformal trans-

formation. Furthermore, it can be seen that the transformation of the time

component is calculated as

(δζSA0 − δλ̃A0)M = (∇̂i(ζ0SAi)− ∂ηλ̃)M = 0.

Thus, the transformation generated by Qζ , which forms the closed con-

formal algebra, can be expressed by δTζ = δζ − δλ̃ as a combination of

the normal conformal transformation δζ and the associated mode-dependent

gauge transformation δλ̃, where (λ̃)M and its Hermitian conjugate are as-

signed for the special conformal transformation QM and the translation

Q†
M , respectively, while for others it should be zero. This conformal trans-

formation which preserves the radiation gauge conditions can be summa-

rized as follows:

δTζ Ai = i[Qζ , Ai], δTζ A0 = 0.

The same holds true for the conformal transformation of the traceless

tensor field. The conformal transformation in the radiation+ gauge adopted
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in Chapter 8 can be written as

δζhij = ζ0∂ηhij + ζk∇̂khij +
1

2

(
∇̂iζ

k − ∇̂kζi

)
hkj

+
1

2

(
∇̂jζ

k − ∇̂kζj

)
hki + hi∇̂jζ

0 + hj∇̂iζ
0 − 2

3
γ̂ij∇̂k

(
ζ0hk
)
,

δζhi = ζ0∂ηhi + ζk∇̂khi +
1

2

(
∇̂iζ

k − ∇̂kζi

)
hk + ∇̂k

(
ζ0hik

)
,

δζh00 = 2∇̂k
(
ζ0hk
)
.

The transformations do not preserve the radiation+ gauge obviously. There-

fore, as in the case of the gauge field, consider a transformation δTζ =
δζ − δκ̃ by introducing a gauge transformation of the form (7-8) with a

mode-dependent parameter κ̃μ, then the conformal transformation that pre-

serves the radiation+ gauge can be expressed by the commutation relation

with the generator as

δTζ hij = i[Qζ , hij ], δTζ hi = i[Qζ , hi], δTζ h00 = 0.

In the cases of the special conformal transformation and the translation, κ̃μ

has a value. Its expression is a little complicated, and therefore not shown

here, though we can get it as in the case of the gauge field.

Building Blocks for Vector and Tensor Fields

Building blocks of primary states for the gauge field sector and the trace-

less tensor field sector, which will give a basis of QM -invariant creation

operators, are summarized here.5

The commutation relation between a creation mode q†J(My) in the gauge

field and the special conformal transformation generator QM is given by

[
QM , q†J(M1y1)

]
= −
√
2J(2J + 1)

∑
M2,y2

εM2
D

1
2M

J(M1y1),J− 1
2 (−M2y2)

q†
J− 1

2 (M2y2)
.

From this, we find that only the lowest J = 1/2 creation mode q†1/2(My)
commutes with QM . Since other creation modes do not commute alone,

5 See K. Hamada, Int. J. Mod. Phys. A 20 (2005) 5353 in Bibliography.
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consider a quadratic form of them, then we obtain the following QM -invariant

creation operators:

Ψ†
LN =

L− 1
2∑

K= 1
2

∑
M1,y1;
M2,y2

f(L,K)DLN
L−K(M1y1),K(M2y2)

q†L−K(M1y1)
q†K(M2y2)

,

Υ†
L(Nx) =

L− 1
2∑

K= 1
2

∑
M1,y1;
M2,y2

f(L,K)F
L(Nx)
L−K(M1y1),K(M2y2)

q†L−K(M1y1)
q†K(M2y2)

,

where f(L,K) is given by the same as (8-29) for the scalar field, and L is

a positive integer, whereas these operators do not exist in the case of half-

integers. A new SU(2)× SU(2) Clebsch-Gordan coefficient is defined by

F
J(Mx)
J1(M1y1),J2(M2y2)

=
√

V3

∫
S3

dΩ3 Y
ij∗
J(Mx)YiJ1(M1y1)YjJ2(M2y2).

Since L = 1 is expressed using q†1/2(My) only, L ≥ 2 gives new invariant

operators. Thus, the building blocks are summarized in Table B-4.

rank of tensor 0 1 2

creation operators Ψ†
LN q†1

2 (Ny)
Υ†

L(Nx)

conformal dim. (L ∈ Z≥2) 2L+ 2 2 2L+ 2

Table B-4: Building blocks of primary states for the gauge field.

The lowest primary state is given by q†1/2(Ny)|0〉 of conformal dimension

2 with 6 independent components. It corresponds to the field strength Fμν ,

and the polarization y = ±1/2 represents the selfdual and anti-selfdual

components.

The results for the traceless tensor field shown in Table 8-3 are sum-

marized below. The commutation relation between QM and each creation

mode of c†J(Mx), d
†
J(Mx), and e†J(My) is given as follows:

[
QM , c†J(M1x1)

]
= α

(
J− 1

2

)∑
M2,x2

εM2E
1
2M

J(M1x1),J− 1
2 (−M2x2)

c†
J− 1

2 (M2x2)
,

[
QM , d†J(M1x1)

]
= −γ(J)

∑
M2,x2

εM2
E

1
2M

J(M1x1),J+
1
2 (−M2x2)

c†
J+ 1

2 (M2x2)
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−β

(
J− 1

2

)∑
M2,x2

εM2E
1
2M

J(M1x1),J− 1
2 (−M2x2)

d†
J− 1

2 (M2x2)

−B(J)
∑

M2,y2

εM2
H

1
2M

J(M1x1);J(−M2y2)
e†J(M2y2)

,

[
QM , e†J(M1y1)

]
= −A(J)

∑
M2,x2

εM2
H

1
2M

J(−M2x2);J(M1y1)
c†J(M2x2)

−C

(
J− 1

2

)∑
M2,y2

εM2
D

1
2M

J(M1y1),J− 1
2 (−M2y2)

e†
J− 1

2 (M2y2)
.

Therefore, only the lowest positive-metric creation mode c†1(Mx) commutes

with QM . Moreover, as shown in Table 8-3, this is the only one with an

index of second-rank tensor harmonics.

Building blocks given in a quadratic form with a scalar harmonics index

are given by the following two with L as a positive integer:

A†
LN =

L−1∑
K=1

∑
M1,x1;
M2,x2

x(L,K)ELN
L−K(M1x1),K(M2,x2)

c†L−K(M1x1)
c†K(M2x2)

,

A†
L−1N =

L−1∑
K=1

∑
M1,x1;
M2,x2

x(L,K)EL−1N
L−K(M1x1),K(M2,x2)

c†L−K(M1x1)
c†K(M2x2)

+

L−2∑
K=1

∑
M1,x1;
M2,x2

y(L,K)EL−1N
L−K−1(M1x1),K(M2,x2)

d†L−K−1(M1x1)
c†K(M2x2)

+

L− 3
2∑

K=1

∑
M1,x1;
M2,y2

w(L,K)HL−1N
L−K− 1

2 (M1x1);K(M2,y2)
c†
L−K− 1

2 (M1x1)
e†K(M2y2)

+

L−2∑
K=1

∑
M1,y1;
M2,y2

v(L,K)DL−1N
L−K−1(M1y1),K(M2y2)

e†L−K−1(M1y1)
e†K(M2y2)

,

where x(L,K) and y(L,K) are the same as (8-30) for the conformal-factor

field, and other new coefficients are given by

w(L,K) = 2
√
2

√
(2L−2K−1)(2L−2K+1)

2K(2K−1)(2K+3)
x(L,K),
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v(L,K) = −
√

(2K−1)(2K+2)(2L−2K−3)(2L−2K)

(2K+3)(2L−2K+1)
x

(
L,K+

1

2

)
.

These operators do not exist if L is a half integer. Also, it is obvious that

L = 1 does not exist. Although L = 2 exists, it becomes QM -invariant

obviously because it is represented by c†1(Mx) only. Therefore, L ≥ 3 gives

new QM -invariant creation operators.

Furthermore, there are building blocks with indices of first, third, and

fourth rank tensor harmonics. To describe them, introduce new SU(2) ×
SU(2) Clebsch-Gordan coefficients of the types nE and nH, which include

at least one tensor harmonics of the rank n. The coefficients of n = 2 are

defined by

2E
J(Mx)
J1(M1x1),J2(M2x2)

=
√
V3

∫
S3

dΩ3 Y
ij∗
J(Mx)Y

k
i J1(M1x1)

YjkJ2(M2x2),

2H
J(Mx)
J1(M1x1);J2(M2y2)

=
√
V3

∫
S3

dΩ3 Y
ij∗
J(Mx)Y

k
i J1(M1x1)

∇̂(jYk)J2(M2y2),

while the n = 1 coefficients 1E
J(My)
J1(M1x1),J2(M2x2)

and 1H
J(My)
J1(M1x1);J2(M2y2)

are defined by replacing the first Y ij
J(Mx) with ∇̂(iY

j)
J(My) in the above ex-

pressions. The n = 4 coefficients are

4E
J(Mw)
J1(M1x1),J2(M2x2)

=
√
V3

∫
S3

dΩ3 Y
ijkl∗
J(Mw)YijJ1(M1x1)YklJ2(M2x2),

4H
J(Mw)
J1(M1x1);J2(M2y2)

=
√

V3

∫
S3

dΩ3 Y
ijkl∗
J(Mw)YijJ1(M1x1)∇̂(kYl)J2(M2y2),

while the n = 3 coefficients 3E
J(Mz)
J1(M1x1),J2(M2x2)

and 3H
J(Mz)
J1(M1x1);J2(M2y2)

are defined by replacing the first Y ijkl
J(Mw) with ∇̂(iY

jkl)
J(Mz).

Building blocks with a vector harmonics index are given by the follow-

ing with an integer L (≥ 3):

B†
L− 1

2 (Ny)
=

L−1∑
K=1

∑
M1,x1;
M2,x2

x(L,K) 1E
L− 1

2 (Ny)

L−K(M1x1),K(M2x2)
c†L−K(M1x1)

c†K(M2x2)

+

L− 3
2∑

K=1

∑
M1,x1;
M2,y2

w(L,K) 1H
L− 1

2 (Ny)

L−K− 1
2 (M1x1);K(M2y2)

c†
L−K− 1

2 (M1x1)
e†K(M2y2)

.
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Building blocks with an index of third-rank tensor harmonics are given

by the following with an integer L (≥ 3):

D†
L− 1

2 (Nz)
=

L−1∑
K=1

∑
M1,x1;
M2,x2

x(L,K) 3E
L− 1

2 (Nz)

L−K(M1x1),K(M2x2)
c†L−K(M1x1)

c†K(M2x2)

+

L− 3
2∑

K=1

∑
M1,x1;
M2,y2

w(L,K) 3H
L− 1

2 (Nz)

L−K− 1
2 (M1x1);K(M2y2)

c†
L−K− 1

2 (M1x1)
e†K(M2y2)

.

Building blocks with an index of fourth-rank tensor harmonics are given

by the following two with an integer L (≥ 3):

E†
L(Nw)=

L−1∑
K=1

∑
M1,x1;
M2,x2

x(L,K) 4E
L(Nw)
L−K(M1x1),K(M2x2)

c†L−K(M1x1)
c†K(M2x2)

,

E†
L−1(Nw)=

L−1∑
K=1

∑
M1,x1;
M2,x2

x(L,K) 4E
L−1(Nw)
L−K(M1x1),K(M2x2)

c†L−K(M1x1)
c†K(M2x2)

+

L−2∑
K=1

∑
M1,x1;
M2,x2

y(L,K) 4E
L−1(Nw)
L−K−1(M1x1),K(M2x2)

d†L−K−1(M1x1)
c†K(M2x2)

+

L− 3
2∑

K=1

∑
M1,x1;
M2,y2

w(L,K) 4H
L−1(Nw)

L−K− 1
2 (M1x1);K(M2y2)

c†
L−K− 1

2 (M1x1)
e†K(M2y2)

.
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APPENDIX C

USEFUL FUNCTIONS ON THREE-SPHERE

Spherical Tensor Harmonics on S3

Let us define symmetric-transverse-traceless tensor harmonics (ST2 tensor

harmonics) on S3.1 First of all, we introduce two coordinate systems repre-

senting R
4. One is the Cartesian coordinate system expressed by xμ̄ (μ̄ =

0̄, 1̄, 2̄, 3̄), and the other is a spherical coordinate system expressed by x̂μ =
(x̂0, x̂i), where i = 1, 2, 3 and x̂0 = r = (xμ̄xμ̄)

1/2. In order to distinguish

the indices, the bars are attached to the indices of the Cartesian coordinates.

The R
4 space is expressed using the metric of each coordinate system as

follows:

ds2
R4 = δμ̄ν̄dx

μ̄dxν̄ = dr2 + r2γ̂ijdx̂
idx̂j ,

where γ̂ij is the metric of the unit S3. If we use the Euler angles to represent

the coordinates of S3 as x̂i = (α, β, γ), the relation connecting the two

coordinate systems is given by

x0̄ = r cos
β

2
cos

1

2
(α+ γ), x1̄ = r sin

β

2
sin

1

2
(α− γ),

x2̄ = −r sin
β

2
cos

1

2
(α− γ), x3̄ = −r cos

β

2
sin

1

2
(α+ γ).

Spherical ST2 tensor harmonics Spherical tensor harmonics can be

defined using the Clebsch-Gordan coefficient and the Wigner D-function.

In general, the D-function can be expressed using a symmetric traceless

tensor τμ̄1···μ̄n
as

DJ
mm′ =

1

r2J
xμ̄1 · · ·xμ̄2J (τμ̄1···μ̄2J

)mm′ .

Complex conjugate of the symmetric traceless tensor part is defined by

(τμ̄1···μ̄n
)∗mm′ = (−1)m−m′(τμ̄1···μ̄n

)−m−m′ .

1 See M. Rubin and C. Ordóñez, Eigenvalues and Degeneracies for n Dimensional Tensor
Spherical Harmonics, J. Math. Phys. 25 (1984) 2888.
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Scalar harmonics which belongs to the (J, J) representation of the rota-

tion (isometry) group SU(2) × SU(2) (= SO(4)) of S3 can be expressed

using the Wigner D-function as

YJM =

√
2J + 1

V3
DJ

mm′ ,

where M = (m,m′). It is normalized to∫
S3

dΩ3 Y
∗
J1M1

YJ2M2 = δJ1J2δM1M2 , Y ∗
JM = εMYJ−M ,

where the second Kronecker delta is defined by δM1M2
= δm1m2

δm′1m′2 and

εM = (−1)m−m′ is a sign factor.

Next, consider spherical harmonics with spacetime indices. We first ex-

press it in the Cartesian coordinate system of R4. Vector harmonics which

belongs to the (J + y, J − y) representation of SU(2) × SU(2) with a

polarization parameter y = ±1/2 is expressed by

Y μ̄
J(My) =

1√
2

1

r

∑
S,T

CJ+ym

Js, 12 t
CJ−ym′

Js′, 12 t
′YJS(τ

μ̄)tt′ ,

and tensor harmonics which belongs to the (J + x, J − x) representation

with a polarization x = ±1 is

Y μ̄ν̄
J(Mx) =

1

2

1

r2

∑
S,T

CJ+xm
Js,1t CJ−xm′

Js′,1t′ YJS(τ
μ̄ν̄)tt′ ,

where τμ̄ and τμ̄ν̄ are those in the expression of the D-function above, which

are normalized to (τ μ̄)∗mm′(τμ̄)nn′ = 2δMN and (τ μ̄ν̄)∗mm′(τμ̄ν̄)nn′ =
4δMN , respectively. Each complex conjugate is given by

Y μ̄∗
J(My) = −εMY μ̄

J(−My), Y μ̄ν̄∗
J(Mx) = εMY μ̄ν̄

J(−Mx),

and each overall coefficient is normalized to∫
S3

dΩ3 Y
μ̄∗
J1(M1y1)

Yμ̄J2(M2y2) =
1

r2
δJ1J2

δM1M2
δy1y2

,∫
S3

dΩ3 Y
μ̄ν̄∗
J1(M1x1)

Yμ̄ν̄J2(M2x2) =
1

r4
δJ1J2δM1M2δx1x2 .

These spherical harmonics satisfy

xμ̄Y
μ̄
J(My) = xμ̄Y

μ̄ν̄
J(Mx) = 0. (C-1)
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The vector and tensor harmonics in the spherical coordinate system are

obtained by performing coordinate transformations as

YμJ(My) =
∂xμ̄

∂x̂μ
Yμ̄J(My), YμνJ(Mx) =

∂xμ̄

∂x̂μ

∂xν̄

∂x̂ν
Yμ̄ν̄J(Mx).

The equation (C-1) represents that all components with the r(= x̂0) coordi-

nate disappear like 0 = xμ̄Yμ̄ = xμ̄(∂x̂μ/∂xμ̄)Yμ = r(∂x̂μ/∂r)Yμ = Yr

when transforming to the spherical coordinates. That is, in the spherical

coordinates, they become

Y r
J(My) = 0, Y rr

J(Mx) = Y ri
J(Mx) = 0,

and only the S3 coordinate components survive. Therefore, we can calculate

scalar quantities composed of tensor harmonics using the expressions in the

R
4 coordinates such as

Y μ̄Yμ̄ =

(
1

r2

)
Y iYi, Y μ̄ν̄Yμ̄Yν̄ =

(
1

r4

)
Y ijYiYj ,

even if we do not know each specific expression in the spherical coordinates.

This fact is used for calculating their normalizations and the SU(2)×SU(2)
Clebsch-Gordan coefficients.

In general, spherical tensor harmonics of rank n belonging to the (J +
εn, J − εn) representation with a polarization parameter εn = ±n/2 can be

expressed as

Y μ̄1···μ̄n

J(Mεn)
∝
∑
S,T

CJ+εnm
Js,n2 t CJ−εnm

′
Js′,n2 t′ YJS(τ

μ̄1···μ̄n)tt′ ,

and its complex conjugate is given by Y μ̄1···μ̄n∗
J(Mεn)

= (−1)nεMY μ̄1···μ̄n

J(−Mεn)
.

Finally, the Euler angle expression of the vector harmonics obtained by

the above method is displayed as an example. For y = 1/2, it is given by

YαJ(M 1
2 )

=
i

2
√
2

√
(2J+2m+1)(2J−2m+1)

(2J+1)V3
D

J− 1
2

mm′ ,

YβJ(M 1
2 )

=
1√

2(2J+1)

1

sinβ

{
m

√
(2J+2m′+1)(2J−2m′+1)

(2J+1)V3
D

J+ 1
2

mm′

−m′

√
(2J+2m+1)(2J−2m+1)

(2J+1)V3
D

J− 1
2

mm′

}
,

YγJ(M 1
2 )

=
i

2
√
2

√
(2J+2m′+1)(2J−2m′+1)

(2J+1)V3
D

J+ 1
2

mm′ ,

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



340 Appendix C

and for y = −1/2, it is

YαJ(M−1
2 )

=
i

2
√
2

√
(2J+2m+1)(2J−2m+1)

(2J+1)V3
D

J+ 1
2

mm′ ,

YβJ(M−1
2 )

=
1√

2(2J+1)

1

sinβ

{
m′

√
(2J+2m+1)(2J−2m+1)

(2J+1)V3
D

J+ 1
2

mm′

−m

√
(2J+2m′+1)(2J−2m′+1)

(2J+1)V3
D

J− 1
2

mm′

}
,

YγJ(M−1
2 )

=
i

2
√
2

√
(2J+2m′+1)(2J−2m′+1)

(2J + 1)V3
D

J− 1
2

mm′ .

SU(2)× SU(2) Clebsch-Gordan Coefficients

The SU(2) × SU(2) Clebsch-Gordan coefficients are defined by integrals

over S3 of the three products of the ST2 tensor harmonics. The general ex-

pressions of the coefficients other than the type C (8-13) defined in Chapter

8 are summarized below.2

Type D

DJM
J1(M1y1),J2(M2y2)

=
√

V3

∫
S3

dΩ3 Y
∗
JMY i

J1(M1y1)
YiJ2(M2y2)

= −
√

2J1(2J1 + 1)(2J1 + 2)2J2(2J2 + 1)(2J2 + 2)

2J + 1

×
{

J J1 J2
1
2 J2 + y2 J1 + y1

}{
J J1 J2
1
2 J2 − y2 J1 − y1

}
×CJm

J1+y1m1,J2+y2m2
CJm′

J1−y1m′1,J2−y2m′2
, (C-2)

which satisfies M = M1 + M2 and triangle inequality |J1 − J2| ≤ J ≤
J1 + J2, where J + J1 + J2 is an integer, and the equality on the lower side

(higher side) of the inequality holds in the case of y1 = y2 (y1 
= y2).
Type E

EJM
J1(M1x1),J2(M2x2)

=
√

V3

∫
S3

dΩ3 Y
∗
JMY ij

J1(M1x1)
YijJ2(M2x2)

2 See K. Hamada and S. Horata, Prog. Theor. Phys. 110 (2003) 1169 in Bibliography.
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=

√
(2J1 − 1)(2J1 + 1)(2J1 + 3)(2J2 − 1)(2J2 + 1)(2J2 + 3)

2J + 1

×
{

J J1 J2
1 J2 + x2 J1 + x1

}{
J J1 J2
1 J2 − x2 J1 − x1

}
×CJm

J1+x1m1,J2+x2m2
CJm′

J1−x1m′1,J2−x2m′2
, (C-3)

which satisfies M = M1 +M2 and triangular inequality |J1 − J2| ≤ J ≤
J1 + J2, where J + J1 + J2 is an integer, and the equality on the lower side

(higher side) of the inequality holds in the case of x1 = x2 (x1 
= x2).
Type G

GJM
J1(M1y1);J2M2

=
√
V3

∫
S3

dΩ3 Y
∗
JMY i

J1(M1y1)
∇̂iYJ2M2

= − 1

2
√
2

√
2J1(2J1 + 1)(2J1 + 2)(2J2 + 1)

2J + 1

∑
K=J2± 1

2

2K(2K + 1)

×(2K + 2)

{
J J1 K
1
2 J2 J1 +

1
2

}{
J J1 K
1
2 J2 J1 − 1

2

}
×CJm

J1+y1m1,J2m2
CJm′

J1−y1m′1,J2m′2
, (C-4)

which satisfies M = M1 +M2 and triangular inequality |J1 − J2| + 1
2 ≤

J ≤ J1 + J2 − 1
2 , where J + J1 + J2 is a half integer.

Type H

HJM
J1(M1x1);J2(M2y2)

=
√

V3

∫
S3

dΩ3 Y
∗
JMY ij

J1(M1x1)
∇̂iYjJ2(M2y2)

= − 3

2
√
2

√
(2J1 − 1)(2J1 + 1)(2J1 + 3)2J2(2J2 + 1)(2J2 + 2)

2J + 1

×
∑

K=J2± 1
2

2K(2K + 1)(2K + 2)

×
{

K 1 J2 + y2
1
2 J2

1
2

}{
K 1 J2 − y2
1
2 J2

1
2

}

×
{

J J1 + x1 J2 + y2
1 K J1

}{
J J1 − x1 J2 − y2
1 K J1

}
×CJm

J1+x1m1,J2+y2m2
CJm′

J1−x1m′1,J2−y2m′2
, (C-5)

which satisfies M = M1+M2 and triangular inequality |J1−J2|+ 1
2 ≤ J ≤

J1+J2− 1
2 , where J+J1+J2 is a half integer, and the equality on the lower

side (higher side) of the inequality holds in the case of x1 = 2y2 (x1 
= 2y2).
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Product Formulas for Spherical Harmonics on S3

As product formulas involving the J = 1/2 scalar harmonics, the following

are useful:

Y ∗
1
2M

YJN =
1√
V3

{∑
S

C
1
2M

JN,J+ 1
2S

Y ∗
J+ 1

2S
+
∑
S

C
1
2M

JN,J− 1
2S

Y ∗
J− 1

2S

}
,

∇̂iY ∗
1
2M

∇̂iYJN =
1√
V3

{
−2J

∑
S

C
1
2M

JN,J+ 1
2S

Y ∗
J+ 1

2S

+(2J + 2)
∑
S

C
1
2M

JN,J− 1
2S

Y ∗
J− 1

2S

}
, (C-6)

and

Y ∗
1
2M

Y j
J(Ny) =

1√
V3

{∑
V,y′

D
1
2M

J(Ny),J+ 1
2 (V y′)Y

j∗
J+ 1

2 (V y′)

+
∑
V,y′

D
1
2M

J(Ny),J− 1
2 (V y′)Y

j∗
J− 1

2 (V y′)

+
1

2J(2J + 2)

∑
S

G
1
2M

J(Ny);JS∇̂jY ∗
JS

}
,

∇̂iY ∗
1
2M

∇̂iY
j
J(Ny) =

1√
V3

{
−2J

∑
V,y′

D
1
2M

J(Ny),J+ 1
2 (V y′)Y

j∗
J+ 1

2 (V y′)

+(2J + 2)
∑
V,y′

D
1
2M

J(Ny),J− 1
2 (V y′)Y

j∗
J− 1

2 (V y′)

+
2

2J(2J + 2)

∑
S

G
1
2M

J(Ny);JS∇̂jY ∗
JS

}
. (C-7)

The product with the tensor harmonics can be expanded similarly using the

E and H coefficients.

Formulas containing Clebsch-Gordan Coefficients and
Wigner D-Functions

The normal Clebsch-Gordan coefficient Ccγ
aα,bβ has a value when satisfying

the triangular inequality |a − b| ≤ c ≤ a + b and α + β = γ, where a,

b, and c are non-negative integers or half integers, while a + b + c, a + α,
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b+ β, and c+ γ are nonnegative integers. This coefficient is normalized to

Caα
aα,00 = Ca+ba+b

aa,bb = 1 and satisfies the following relations:3

Ccγ
aα,bβ = (−1)a+b−c Cc−γ

a−α,b−β = (−1)a+b−c Ccγ
bβ,aα

= (−1)b+β

√
2c+ 1

2a+ 1
Ca−α

c−γ,bβ .

Various formulas containing the Clebsch-Gordan coefficients and the 6j
symbols are∑
α,β

Ccγ
aα,bβ C

c′γ′
aα,bβ = δcc′δγγ′ ,

∑
α,β,δ

(−1)a−α Ccγ
bβ,aα Ceε

bβ,dδ C
fϕ
dδ,a−α = (−1)a+b+e+f

√
(2c+ 1)(2f + 1)

×Ceε
cγ,fϕ

{
a b c
e f d

}
,∑

ψ,κ,ρ,σ,τ

(−1)ψ+κ+ρ+σ+τ Caα
pψ,qκ C

bβ
qκ,rρ C

cγ
rρ,sσ C

dδ
sσ,tτ C

eε
tτ,p−ψ

= (−1)−a−b−2c−2p−2r−t+α+δ
√

(2a+ 1)(2d+ 1)

×
∑
x,y

∑
ξ,η

(−1)ξ+η(2x+ 1)(2y + 1)

×Cbβ
aα,xξ C

eε
xξ,yη C

c−γ
yη,d−δ

{
a b x
r p q

}{
x e y
t r p

}{
y c d
s t r

}
,

∑
x

(−1)p+q+x(2x+ 1)

{
a b x
c d p

}{
a b x
d c q

}
=

{
a c q
b d p

}
,

and so on.

As formulas containing the Wigner D-function, there are the following:

DJ∗
mm′ = (−1)m−m′DJ

−m−m′ ,

J∑
m′=−J

DJ∗
m1m′D

J
m2m′ = δm1m2 ,

∫
S3

dΩ3 D
J1∗
m1m′1

DJ2

m2m′2
=

V3

2J1 + 1
δJ1J2

δm1m2
δm′1m′2 ,

3 For the following formulas, see D. Varshalovich, A. Moskalev and V. Khersonskii, Quantum
Theory of Angular Momentum (World Scientific, Singapore, 1988).
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DJ1

m1m′1
DJ2

m2m′2
=

J1+J2∑
J=|J1−J2|

∑
m,m′

CJm
J1m1,J2m2

CJm′
J1m′1,J2m′2

DJ
mm′ ,

�3D
J
mm′ = 4

{
∂2
β + cotβ∂β +

1

sin2 β

(
∂2
α − 2 cosβ∂α∂γ + ∂2

γ

)}
DJ

mm′

= −4J(J + 1)DJ
mm′ ,∑

m1,m′1

∑
m2,m′2

CJm
J1m1,J2m2

CJ ′m′
J1m′1,J2m′2

DJ1

m1m′1
DJ2

m2m′2
= δJJ ′{J1J2J}DJ

mm′ ,

∑
m1,m′1

∑
m2,m′2

∑
m3,m′3

CJm
Kn,J3m3

CKn
J1m1,J2m2

CJ ′m′
K′n′,J3m′3

CK′n′
J1m′1,J2m′2

×DJ1

m1m′1
DJ2

m2m′2
DJ3

m3m′3
= δJJ ′δKK′{J1J2K}{KJ3J}DJ

mm′ ,

where all the D-functions have the same arguments α, β, and γ. The 3j-

symbol {J1J2J3} is 1 if J1 + J2 + J3 is an integer and |J1 − J2| ≤ J3 ≤
J1 + J2, otherwise disappears. In addition, it is invariant with respect to

permutations of J1, J2, and J3.

The specific expressions of the Wigner D-function of J = 1/2 and J =
1 in terms of the Euler angles are given as follows:

D
1
2

mm′ =

(
cos β

2 e
− i

2 (α+γ) − sin β
2 e

− i
2 (α−γ)

sin β
2 e

i
2 (α−γ) cos β

2 e
i
2 (α+γ)

)
,

D1
mm′ =

⎛
⎜⎝

1+cos β
2 e−i(α+γ) − sin β√

2
e−iα 1−cos β

2 e−i(α−γ)

sin β√
2
e−iγ cosβ − sin β√

2
eiγ

1−cos β
2 ei(α−γ) sin β√

2
eiα 1+cos β

2 ei(α+γ)

⎞
⎟⎠ .
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APPENDIX D

ADDENDA TO RENORMALIZATION THEORY

Useful Formulas in Dimensional Regularization

Renormalization calculations are done after Wick-rotating to Euclidean space

in advance. In that case, all spacetime indices are written with subscripts,

and the same index is contracted by the Euclidean metric δμν .

The integral in D-dimensional Euclidean momentum space is given by∫
dDp =

∫
pD−1dp

∫
dΩD, (p2 = pμpμ)

∫
dΩD =

∫ D−1∏
l=1

sinD−1−l θldθl =
2πD/2

Γ
(
D
2

) .
Basic integral formulas The basic form of the momentum integral

appearing in dimensional regularization is∫
dDp

(2π)D
p2n

(p2 + L)α
=

Γ
(
n+ D

2

)
Γ
(
α− n− D

2

)
(4π)D/2Γ

(
D
2

)
Γ(α)

L
D
2 +n−α,

whose integrand is a function of p2 only. If pμ is included in the integrand,

rewrite the integral to the basic form such as∫
dDp

(2π)D
pμpνf(p

2) =
1

D
δμν

∫
dDp

(2π)D
p2f(p2),∫

dDp

(2π)D
pμpνpλpσf(p

2) =
1

D(D + 2)
(δμνδλσ + δμλδνσ + δμσδνλ)

×
∫

dDp

(2π)D
p4f(p2).

If the integrand has an odd number of pμ’s, it vanishes. In general, we obtain∫
dDp

(2π)D
(p2)n(p · l)2m
(p2 + L)α

= (l2)m
Γ
(
m+ 1

2

)
Γ
(
n+m+ D

2

)
Γ
(
α− n−m− D

2

)
(4π)D/2Γ

(
1
2

)
Γ
(
m+ D

2

)
Γ(α)

L
D
2 +n+m−α.
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Feynman parameter integrals More complex integrals that appear in

renormalization calculations of self-energy diagrams and vertex functions

are evaluated by rewriting them using the Feynman parametrization

1

AαBβ
=

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

dx
(1− x)α−1xβ−1

[(1− x)A+ xB]α+β

into a form in which the basic integral formula can apply.

For example, consider a combination of A = p2+z2 and B = (p+q)2+
z2, which appear in various self-energy calculations, where z2 corresponds

to a mass term. In this case, we obtain the following:∫
dDp

(2π)D
f(pμ, qν)

(p2 + z2)α((p+ q)2 + z2)β

=
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

dx (1− x)α−1xβ−1

∫
dDp′

(2π)D
f(p′μ − xqμ, qν)

[p′2 + z2 + x(1− x)q2]α+β
.

In vertex-function calculations, we repeat this procedure.

Evaluation of divergences In dimensional regularization, we take D =
4− 2ε, then ultraviolet divergences are extracted as poles of ε. At that time,

Γ(ε) =
1

ε
− γ +

ε

2

(
γ2 +

π2

6

)
+ o(ε2),

aε = eε ln a = 1 + ε ln a+ o(ε2),

are used, where as examples of a, there will appear a square of momentum

p2, an infinitesimal z2 for handling infrared divergences, and so on.

Gamma matrices formulas Define the Dirac’s gamma matrix in the

D-dimensional flat Euclidean space as

{γμ, γν} = −2δμν , tr(1) = 4.

Various formulas of the gamma matrix used in dimensional regularization

are as follows:

γλγλ = −D, γλγμγλ = (D − 2)γμ,

γλγμγνγλ = −(D − 4)γμγν + 4δμν ,

γμγνλ = γμνλ − δμνγλ + δμλγν ,

γνλγμ = γνλμ + δμνγλ − δμλγν ,

γμγνλσ = γμνλσ − δμνγλσ + δμλγνσ − δμσγνλ,

γνλσγμ = γνλσμ − δμνγλσ + δμλγνσ − δμσγνλ,
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where completely antisymmetric products of the gamma matrices are de-

fined as γμν = [γμ, γν ]/2, γμνλ = (γμγνγλ + antisymmetric)/3!, and

γμνλσ = (γμγνγλγσ + antisymmetric)/4!.

Examples of Renormalization Calculations in QED

Renormalization calculations are shortly described by taking the self-energy

function of the U(1) gauge field as an example. Strict discussions on the

effective action using the Legendre transformation refer to field theory text-

books. Here we perform loop calculations in Euclidean space. One of the

advantages of doing so is that troublesome imaginary units do not appear,

and thus it is only necessary to pay attention to signs and coefficients, and

integrations can be performed immediately. The partition function is given

by the path integral Z =
∫
e−SQED , and its effective action Γ = − logZ is

simply expressed as follows:

Γ = −e−Sint
∣∣
1PI

= −
∞∑

n=0

1

n!
(−Sint)

n ∣∣
1PI

,

where Sint denotes interaction terms, including counterterms. The 1PI re-

striction which corresponds to taking the logarithm of the partition function

is that for all possible one-particle irreducible diagrams, Wick contractions

are taken, that is, connected by propagators. The 1PI connections are rep-

resented by Feynman diagrams, but Feynman rule is not introduced here

because it differs from person to person. Moreover, since the symmetric

factor is included as long as all possible Wick contractions are taken into

account, we do not have to worry about it.

Figure D-1: One-loop and two-loop self-energy diagrams of the U(1) gauge field.

First of all, we write the QED action SQED in momentum space. Define

Fourier transform of the field as f(x) =
∫
[dk]f(k)eik·x, where [dk] =

dDk/(2π)D, then the kinetic terms are given by

SA
kin =

∫
[dk]

1

2
Aμ(k)

(
k2δμν − kμkν

)
Aν(−k),
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Sψ
kin =

∫
[dk] ψ̄(k)k/ψ(−k),

where k/ = γμkμ. The interaction term is

Sv = −μ2−D
2 e

∫
[dkdldp] δ̄(k + l + p) ψ̄(k)γμψ(l)Aμ(p),

where δ̄(k) = (2π)DδD(k). The counterterms Sc
kin = (Z3−1)SA

kin+(Z2−
1)Sψ

kin and Sc
v = (Z1 − 1)Sv are also added to Sint.

From the kinetic terms, the propagators are given by

〈Aμ(k
′)Aν(k)〉 = 1

k2

(
δμν − (1− ξ)

kμkν
k2

)
δ̄(k′ + k),

〈ψ(k′)ψ̄(k)〉 = 1

k/
δ̄(k′ + k) = − k/

k2
δ̄(k′ + k),

where ξ is a parameter associate with the usual gauge-fixing. In order to

avoid mistakes in coeffcients, the delta functions are left.

The effective action for the one-loop self-energy correction in Fig. D-

1 is obtained by Wick-contracting all of the others with leaving only two

gauge fields as follows:

Γ(1) = − 1

2!
(−Sv)

2∣∣
1PI

= − 1

2!
μ4−De2

∫
[dk′dl′dp′][dkdldp] δ̄(k′ + l′ + p′) δ̄(k + l + p)

×(−1) tr
[〈ψ(l)ψ̄(k′)〉γμ〈ψ(l′)ψ̄(k)〉γν]Aμ(p

′)Aν(p).

In this example, there is only one type of Wick contraction, thus the over-

all factor remains 1/2!. The operation of (−1) tr is a loop factor caused

by moving ψ(l) from the right end to the left end. Assigning the fermion

propagator yields

Γ(1) =
μ4−De2

2!

∫
[dp]Aμ(−p)Aν(p)

∫
[dl]

lλ(l + p)σ
l2(l + p)2

tr[γλγμγσγν ].
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Expressing the effective action as1

Γ(A) =

∫
[dp]

1

2
Aμ(−p)Aν(p)Γμν(p),

and expanded with ε after setting D = 4 − 2ε, the one-loop contribution is

obtained as follows:

Γ(1)
μν (p) =

8e2

(4π)
D
2

Γ

(
2− D

2

)
B

(
D

2
,
D

2

)(
p2δμν − pμpν

)( p2

μ2

)D
2 −2

ε→0
=

α

4π

{
4

3

1

ε̄
− 4

3
log

(
p2

μ2

)
+

20

9

}(
p2δμν − pμpν

)
,

where α = e2/4π and 1/ε̄ = 1/ε − γ + log 4π. Thus, in order to remove

the ultraviolet divergence, we find that the renormalization factor should be

Z3 − 1 = −(α/4π)(4/3ε), where the minimal subtraction (MS) scheme

(subtracting only poles) is adopted.

The contribution from the two-loop diagram in Fig. D-1 is given by

−S4
v/4!. In addition to that, there are contributions from (Sv + Sc

kin)
3/3!

and −(Sv + Sc
v)

2/2! including one-loop counterterms. Diagrams including

the counterterms are not depicted here. Writing only the result obtained by

adding these contributions, it is given by2

Γ(2)
μν (p) =

α2

(4π)2

{
2

ε̄
− 4 log

(
p2

μ2

)
+ const.

}(
p2δμν − pμpν

)
.

Note that double poles disappear in this case. Therefore, the renormalization

factor up to o(α2) is determined as follows:

Z3 = 1− 4

3

α

4π

1

ε
− 2

α2

(4π)2
1

ε
.

1 A two-point correlation function of the gauge field is given by

〈Aμ(p)Aν(q)〉 = Aμ(p)Aν(q)e
−Sint |Wick contraction

= Aμ(p)Aν(q) [−Γ(A)] |Wick contraction = δ̄(p+ q)
δμλ

p2
δνσ

q2
[−Γλσ(p)] .

Therefore, −Γμν(p) corresponds to a correlation function (truncated Green’s function) with

propagators from external lines removed. The same is true for multipoint functions.

2 For details, see C. Itzykson and J. Zuber, Quantum Field Theory (McGraw-Hill Inc, 1980),

Chap.8-4-4.
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The renormalized effective action is then given by

Γren
μν (p) =

(
p2δμν − pμpν

){
1−
[
4

3

α

4π
+ 4

α2

(4π)2

]
log

(
p2

μ2

)}
,

where the first term is a contribution from SA
kin, and local terms that depend

on α are disregarded.

Renormalization of Composite Scalar Fields

Renormalization of composite fields using dimensional regularization is de-

scribed by taking the λϕ4-theory as an example.3 Its Euclidean action is

given by

S =

∫
dDx

(
1

2
∂μϕ0∂μϕ0 +

1

2
m2

0ϕ
2
0 +

λ0

4!
ϕ4
0

)
.

Ordinary renormalization factors are defined by

ϕ0 = Z1/2
ϕ ϕ, m2

0 = Zmm2, λ0 = μ4−DZλλ, (D-1)

where μ is an arbitrary mass scale to compensate for missing dimensions.

The beta function and the mass anomalous dimension are respectively de-

fined by

βλ ≡ μ
dλ

dμ
= (D − 4)λ+ β̄λ, γm ≡ − μ

m2

dm2

dμ
,

where β̄λ and γm are functions of λ only.

Letting μd/dμ act on the definitions (D-1) while be aware that bare

quantities do not depend on the arbitrary scale μ, the renormalization group

functions above can be expressed using the renormalization factors as β̄λ =
−λμd(logZλ)/dμ and γm = μd(logZm)/dμ.4 The anomalous dimension

of the field is also defined as γ = μd(logZ
1/2
ϕ )/dμ, where ϕ satisfies

3 See L. Brown, Dimensional Regularization of Composite Operators in Scalar Field Theory,

Ann. Phys. 126 (1980) 135.

4 Expanding as logZλ =
∑∞

n=1 fn(λ)/(D − 4)n yields β̄λ = −λ2∂f1/∂λ and

λ∂fn+1/∂λ+ β̄λ∂fn/∂λ = 0.
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μdϕ/dμ = −γϕ due to μdϕ0/dμ = 0.5 Each value is calculated as

β̄λ = 3
λ2

(4π)2
− 17

3

λ3

(4π)4
+ o(λ4),

γ =
1

12

λ2

(4π)4
+ o(λ3), γm = − λ

(4π)2
+

5

6

λ2

(4π)4
+ o(λ3).

Note here that β̄λ, γm, and γ are finite functions of λ only, whereas βλ has

a D − 4 dependence, and thus its inverse 1/βλ has poles when expanded in

the coupling constant (see the expansion (D-5)).

A N -point correlation function of the renormalized field ϕ is defined

using the path integral as〈
N∏
j=1

ϕ(xj)

〉
= Z

−N
2

ϕ

∫
dϕ0

N∏
j=1

ϕ0(xj) e
−S . (D-2)

Normal product [ϕ2] First, consider a normal product of the field

squared. This finite operator is related to the square of the bare field as

follows:

ϕ2
0 = Z2[ϕ

2], (D-3)

where Z2 is a new renormalization factor. Once the factor is known, it is

possible to calculate the anomalous dimension of [ϕ2] as

δ = μ
d

dμ
logZ2,

and thus the composite field satisfies μd[ϕ2]/dμ = −δ[ϕ2].
The renormalization factor Z2 can be determined from the condition that

[ϕ2] is a finite operator. For example, consider the condition that correlation

functions of the renormalized field including one normal product is finite

such as6

〈[ϕ2]ϕϕ〉 = finite.

Concretely, expressing [ϕ2] by the product of ϕ using (D-3) and (D-1) yields

[ϕ2(k)] = Z−1
2 Zϕ

∫
dDl

(2π)D
ϕ(l)ϕ(k − l)

5 The dimension of the field ϕ, including its canonical dimension, is given by Δϕ = (D −
2)/2 + γ. The behavior in correlation functions due to the anomalous dimension becomes

(p2/μ2)γ/2 in each field.

6 Note that correlation functions between normal products are not finite in general.
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+

Figure D-2: Three-point functions including [ϕ2], where the right is a quantum

correction.

in momentum space, then the correlation function 〈[ϕ2(k)]ϕ(p)ϕ(q)〉 is cal-

culated as

Z−1
2 Zϕ

∫
dDl

(2π)D
〈ϕ(l)ϕ(k − l)ϕ(p)ϕ(q)〉

= (2π)DδD(k + p+ q)
2

(p2+m2)(q2+m2)
Z−1
2 Zϕ

{
1 +

λ

(4π)2
1

D − 4

}
.

The four-point correlation function is calculated as in Fig. D-2, where a

double line represents the composite field. In order for poles to cancel out

so that the right-hand side becomes finite, with attention to Zϕ = 1+o(λ2),
the renormalization factor Z2 has to be

Z2 = 1 +
λ

(4π)2
1

D − 4
+ o(λ2).

In this way, Z2 can be obtained for each order.

On the other hand, we can determine Z2 without doing such calculations

in the case of the λϕ4-theory as follows. First, note that

m2 ∂F

∂m2
= m2 ∂λ0

∂m2

∂F

∂λ0
+m2 ∂m

2
0

∂m2

∂F

∂m2
0

= m2
0

∂F

∂m2
0

holds for any function F , where ∂λ0/∂m
2 = 0 and ∂m2

0/∂m
2 = m2

0/m
2

are used. Therefore, considering the finite correlation function 〈∏ϕ〉 as F ,

we get

m2 ∂

∂m2

〈∏
ϕ
〉
= m2

0

∂

∂m2
0

〈∏
ϕ
〉
=

∫
dDx

〈
−1

2
m2

0 ϕ
2
0(x)
∏

ϕ

〉
.

Since the left-hand side is obviously a finite quantity, the right-hand side is

also finite. This indicates that m2
0ϕ

2
0 is a finite operator. In other words,
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noting that m2
0ϕ

2
0 can be generally expressed as m2[ϕ2](1 +

∑
poles), the

finiteness shows that the poles strictly disappear. Thus,

m2
0 ϕ

2
0 = m2[ϕ2]

holds. From this relation, Z2 can be determined as

Z2 =
m2

m2
0

= Z−1
m .

Therefore, we find that the anomalous dimension of the composite field [ϕ2]
is given by

δ = −γm =
λ

(4π)2
− 5

6

λ2

(4π)4
+ o(λ3).

Normal product [ϕ4] Next consider a more complicated normal prod-

uct [ϕ4]. In this case, unlike [ϕ2], we have to consider mixing with other

operators with the same dimensions.

One of the field operators to be mixed is the equation-of-motion field,

which is defined by

E0ϕ ≡ ϕ0
δS

δϕ0
= ϕ0

{(−∂2 +m2
0

)
ϕ0 +

λ0

3!
ϕ3
0

}
.

Inserting E0ϕ into the correlation function yields〈
E0ϕ(x)

N∏
j=1

ϕ(xj)

〉
= −Z

−N
2

ϕ

∫
dϕ0

N∏
j=1

ϕ0(xj)ϕ0(x)
δ

δϕ0(x)
e−S

=

N∑
j=1

δD(x− xj)

〈
N∏
j=1

ϕ(xj)

〉
.

The first equality can be found immediately by assigning the definition of

E0ϕ to the correlation function (D-2). The second equality is derived by

moving δ/δϕ0 by performing partial integration and using δϕ0(xj)/δϕ0(x)
= δD(x−xj). In doing so, note that as a significant feature of dimensional

regularization, contributions from the derivative at the same point disappear

such as δD(0) =
∫
dDk = 0. As mentioned in Chapter 9, this property indi-

cates that dimensional regularization does not depend on how to choose the

measure of the path integral. Since the right-hand side of the above equation

is a finite quantity obviously, the left-hand side is also finite. Therefore, E0ϕ

is one of normal products and can be denoted as

E0ϕ = [Eϕ] .

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



354 Appendix D

Moreover, we can see that its volume integral
∫
dDx [Eϕ] becomes the num-

ber of the fields, N , in the correlation function.

The normal product [ϕ4] generally has the following structure in consid-

eration of mixing with other possible operators:

μ4−D

4!
[ϕ4] =

(
1 +
∑

poles
) 1

4!
ϕ4
0 +
∑

poles
1

2
m2

0ϕ
2
0

+
∑

poles E0ϕ +
∑

poles ∂2ϕ2
0. (D-4)

In order to determine the unknown pole parts, consider a quantity ob-

tained by differentiating the correlation function by λ below. From renor-

malization group equations μdλ0/dμ = (4 −D)λ0 + βλ∂λ0/∂λ = 0 and

μdm2
0/dμ = βλ∂m

2
0/∂λ − γmm2∂m2

0/∂m
2 = 0, we find that quantities

obtained by differentiating the bare constants by λ are

∂λ0

∂λ
=

D − 4

βλ
λ0,

∂m2
0

∂λ
=

γm
βλ

m2
0.

From these, the derivative of the action S by λ is given by

∂S

∂λ
=

∫
dDx

{
γm
βλ

1

2
m2

0ϕ
2
0 +

D − 4

βλ

1

4!
λ0ϕ

4
0

}
.

Here, since the bare field ϕ0 is an integral variable, the differentiation by λ

passes through it. With this and ∂(logZ
1/2
ϕ )/∂λ = γ/βλ, we can calculate

∂(〈∏N
j=1 ϕ(xj)〉)/∂λ as〈
−
∫
dDx

{
D − 4

βλ

1

4!
λ0ϕ

4
0 +

γm
βλ

1

2
m2

0ϕ
2
0 +

γ

βλ
E0ϕ

} N∏
j=1

ϕ(xj)

〉
.

The volume integral of the last E0ϕ is a replacement of N . Since the above

quantity is finite, the inside the braces is also a finite quantity up to derivative

terms that vanish in the volume integral. Noting that

D − 4

βλ
=

1

λ

[
1 +

∞∑
n=1

(−1)n

(D − 4)n

(
β̄λ

λ

)n]
, (D-5)

we can see that the inside the braces has the structure (D-4) of the normal

product [ϕ4]. Therefore, identifying it with μ4−D[ϕ4]/4! except a total di-

vergence term, we obtain

μ4−D

4!
[ϕ4] =

D − 4

βλ

1

4!
λ0ϕ

4
0 +

γm
βλ

1

2
m2

0ϕ
2
0 +

γ

βλ
E0ϕ − Z−1

2 d

βλ
∂2ϕ2

0,
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where d in the last term is a function including poles, and Z−1
2 is introduced

for later convenience. This d is a function not determined by the above

method.

Differentiating the normal product [ϕ4] by μ, we get

μ
d

dμ
[ϕ4] = −∂β̄λ

∂λ
[ϕ4] + 4!μD−4

{
∂γm
∂λ

1

2
m2[ϕ2]

+
∂γ

∂λ
[Eϕ]− ∂(Z−1

2 d)

∂λ
Z2 ∂

2[ϕ2]

}
, (D-6)

where μd(1/βλ)/dμ = −(1/βλ)(∂βλ/∂λ), μdγm/dμ = βλ(∂γm/∂λ),
and μdγ/dμ = βλ(∂γ/∂λ) are used. For the right-hand side to be finite,

the coefficient before the last ∂2[ϕ2] must be finite. If it is expressed as

Z2∂(Z
−1
2 d)/∂λ = ζ/λ, d can be written as

d = Z2

∫ λ

0

dλ

λ

ζ

Z2
.

Noting also that ∂(logZ2)/∂λ = δ/βλ = −γm/βλ, we find that d satisfies

a differential equation (∂/∂λ+ γm/βλ)d = ζ/λ. The last remaining ζ can

only be determined by directly computing correlation functions including

[ϕ4].

DeWitt-Schwinger Method

The DeWitt-Schwinger method is a widely known technique used when

calculating one-loop effective actions in curved spacetime.7 It is briefly

described here using the kinetic term of a scalar field in curved space-

time as an example. Consider Euclidean space, and let the action be I =
(1/2)

∫
ddx

√
gϕKϕ, where the dimension d is an even number and the dif-

ferential operator is defined by

K = −∇2 + ξR.

The conformal coupling is given by ξ = 0 in two dimensions and ξ = 1/6
in four dimensions.

7 In addition to books of quantum field theory in curved spacetime listed in Bibliography, see

also, in two dimensions, O. Alvarez, Theory of Strings with Boundries: Fluctuations, Topology
and Quantum Geometry, Nucl. Phys. B216 (1983) 125. For studies containing higher-order

derivative terms, see A. Barvinsky and G. Vilkovisky, The Generalized Schwinger-DeWitt Tech-
nique in Gauge Theories and Quantum Gravity, Phys. Rep. 119 (1985) 1.
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The effective action is given by

Γ = − log

∫
[dϕ]ge

−I = − log (detK)
−1/2

.

This can be rewritten in an integral representation as

− log (detK) =

∫ ∞

ε

ds

s
Tr
(
e−sK

)
,

where ε is a ultraviolet cutoff, and Tr(A) =
∫
ddx

√
g〈x|A|x〉, 〈x|y〉 =

δd(x − y)/
√
g. Therefore, a conformal variation of the effective action is

given by

δωΓ =
1

2

∫ ∞

ε

dsTr
(
δωKe−sK

)
.

The conformal variation of the differential operator K can be written as

δωK = −2ωK + δL,

where

δL = −(d− 2)∇μω∇μ − 2ξ(d− 1)∇2ω.

Using this expression, we obtain

δωΓ =

∫ ∞

ε

ds
∂

∂s

[
Tr
(
ω e−sK

)]
+

1

2

∫ ∞

ε

dsTr
(
δL e−sK

)
= −Tr

(
ω e−εK

)
+

1

2
Tr

(
δL

1

K

)
. (D-7)

The first term of (D-7) can be written as − ∫ ddx√gω〈x|e−εK |x〉. The

integrand is obtained from G(s)(x, y) = 〈x|e−sK |y〉 called the heat kernel,

which is a solution of the following heat conduction equation:(
∂

∂s
+K

)
G(s)(x, y) = 0,

which satisfies an initial condition lims→0 G
(s)(x, y) = δd(x − y)/

√
g.

From this, the DeWitt-Schwinger method is also called the heat kernel method.

Assuming that the parameter s is small, the heat kernel at the same point is

expanded as

G(s)(x, x) =
1

(4π)d/2
1

sd/2
(
1 + sa1 + s2a2 + · · ·) .
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The contribution from the second term of (D-7) disappears when δL =
0 in the case of the conformal coupling in two dimensions. On the other

hand, when the conformal coupling in four-dimensions (ξ = 1/6), terms

including differentiations of the two-point function 〈x|K−1|y〉 at the same

point appear, such as (1/2)
∫
d4x

√
gω∇2〈x|K−1|x〉. It seems that this term

is in the form ∇2R, but its regularization is difficult, and it will remain

arbitrary in this method.

First, we find the coefficient a1 of the the heat kernel when d = 2
and ξ = 0. In two dimensions, since the traceless tensor field can be

eliminated by using gauge degrees of freedom, we can consider only the

conformal-factor field φ, and thus the differential operator can be written

as K = −∇2 = −e−2φ∂2. Let us take coordinates that are locally flat at

the origin and put φ(0) = ∂aφ(0) = 0 (a = 1, 2). Expand the differen-

tial operator around the origin and decompose it into the flat space Lapla-

cian operator and a potential term V = −xaxb∂a∂bφ(0)∂
2 + o(x3) so that

K = −∂2 − V . The heat kernel in the flat space is given by

G
(s)
0 (x, y) =

1

4πs
e−(x−y)2/4s,

and the heat conduction equation is solved by the integral equation G =
G0 + G0V G. Solving it sequentially, the first two terms of G(s)(0, 0) are

given as follows:

G
(s)
0 (0, 0) +

∫
d2x

∫ s

0

ds′ G(s−s′)
0 (0, x)V (x)G

(s′)
0 (x, 0)

=
1

4πs
− ∂a∂bφ(0)

∫ s

0

ds′
∫
d2x

e−x2/4(s−s′)

4π(s− s′)
xaxb∂2 e

−x2/4s′

4πs′

=
1

4πs
− 1

12π
∂2φ(0).

Here, the volume integral of the coordinates xa is concentrated on the origin

at s → 0 due to the structure of the heat kernel. Evaluating the volume

integral and the s′-integral produces a finite value independent of s. Since

the curvature at the origin can be written as R(0) = −2∂2φ(0), the heat

kernel coefficient a1 in the case of the two-dimensional conformal coupling

is given by

a1 =
1

6
R.

Because of δωΓ = − ∫ d2x√g ωa1/4π, we find that the coefficient of the

conformal anomaly defined in (5-1), namely, the central charge of a scalar
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field is given by c = 1 (bL = −1/6). Note here that the sign of the whole

action is reversed in Euclidean space.

Similar calculations in four dimensions are difficult because it is impos-

sible to classify necessary terms merely by the dependence of the conformal-

factor field. Here we only present the results of a1 and a2 calculated with

any ξ, which are given by

a1 =

(
1

6
− ξ

)
R,

a2 =
1

180
R2

μνλσ − 1

180
R2

μν +
1

2

(
1

6
− ξ

)
R2 +

1

6

(
1

5
− ξ

)
∇2R.

The finite part of the first term in (D-7) at d = 4 is given by δωΓ =
− ∫ d4x√g ωa2/(4π)

2, and thus the conformal anomaly coefficients (5-6)

derived from a scalar field with the conformal coupling ξ = 1/6 are found

to be ζ1 = 1/120 and ζ2 (= −bc) = −1/360. On the other hand, the deriva-

tive term ζ3 cannot be determined by this method because of the unknown

part already mentioned.

Dynamical Triangulation Method and Quantum Gravity

The relationship between a simplicial gravity based on dynamical triangu-

lation and quantum gravity is briefly mentioned here. The former method

is defined by summing over all possible lattice manifolds made by bonding

simplices.

In two dimensions, we consider random surfaces made by gluing poly-

gons (mainly triangles and quadrangles). Let the number of polygons be

N2 and denote possible ways of the gluing as T2. Then we examine the

following partition function:

ZSG2(λ) =

∞∑
N2=0

∑
T2

e−λN2 =

∞∑
N2=0

Ω(N2)e
−λN2 ,

where Ω(N2) is the partition number of possible surfaces with N2 polygons.

This is known as a statistical model in which a second-order phase transition

occurs. Denoting the critical point by λ = λc, the partition number behaves

in the large N2 as

Ω(N2) ∼ N
γ
(2)
st −3

2 eλ
cN2 ,

where γ
(2)
st is a constant called the string susceptibility. Assuming that an
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area of each polygon is one, N2 is an area of the surface made by gluing,

and therefore λ acts as a cosmological constant to control it.

Introducing a scale a corresponding to lattice spacings, two-dimensional

quantum gravity is then derived by taking a continuum limit that N2 → ∞
at the same time as a → 0 while retaining (λ − λc)/a2 → μ at the phase

transition point, where μ is a physical cosmological constant.

Figure D-3: A random surface constructed by gluing quadrangles. Its dual is given

by a vacuum Feynman diagram of the matrix model with a four-point interaction,

where a double line denotes a propagator of the matrix.

In two dimensions, the above partition function can be analytically cal-

culated using matrix models. Consider, for example, a zero-dimensional

path integral over a N × N Hermitian matrix M with a potential term

gtr(M4) as well as a kinetic term tr(M2)/2,

FN (g) =
1

N2
log

∫
dN

2

M e−tr( 1
2M

2+gM4).

Each four-point interaction in Feynman diagrams corresponds to a quadran-

gle, and a vacuum diagram with N2 interactions is identified with a compact

random surface with area N2 (see Fig. D-3). Various vacuum diagrams rep-

resent how quadrangles are connected, that is T2.8 Topologies are classified

8 An odd-point interaction gtr(M3) which corresponds to a triangle can be considered as

well. Although it is generally ill-defined because it is not bounded below, the path integral can

be actually defined at N → ∞ for the reason mentioned soon below. At the critical point, it

belongs to the same universality class as the four-point interaction.
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with 1/N2 expansion, and the lowest is planar Feynman diagrams that give

random surfaces of S2 we consider here.

Since the path integral is zero-dimensional, it can be evaluated exactly

and vacuum Feynman diagrams can be summed over at all orders. The

second-order phase transition point gc is defined as a point where analyticity

of g is broken. In general, for finite N , it is analytic for g ≥ 0 where the

potential term is bounded from below. However, taking the limit N →
∞, contributions from the N ×N matrix integration measure dominate, so

that the analyticity extends to the negative region and the breaking point

appears at a value gc = −eλ
c

.9 This negativity is essential when identifying

limN→∞ FN (g = −eλ) with the simplicial gravity partition function above,

and its continuum limit can be taken at gc.10

On the other hand, in two-dimensional quantum gravity, we can calculate

the behavior of the partition function in a large surface area by focusing the

zero-mode φ0 of the Liouville field. The φ0-dependence of the Liouville

action except for the cosmological term is given by SL = bLχφ0, and when

fixed the value of v2 = eαφ0 , the partition function has the following v2-

dependence: ∫
dφ0 e

−bLχφ0δ(eαφ0 − v2) ∼ v
−1−bLχ/α
2 ,

where α = γ0 is the Liouville charge (6-13) with Δ = 0 and χ is the Euler

characteristic. Noting that v2 ∼ N2, we can see that the string susceptibility

is expressed as γ
(2)
st = 2− bLχ/α. Considering χ = 2 of spherical topology

and letting the central charge of CFT coupled with gravity be cM yields

γ
(2)
st = 2 +

1

12

{
cM − 25−

√
(25− cM)(1− cM)

}
.

This is consistent with the analytic solution of the matrix model. Here,

matrix models with the central charge like the Ising model are constructed

9 The path integral can be rewritten in terms of N real eigenvalues λi of M . The measure is

then expressed as
∏

i dλiΔ
2(λ), where Δ(λ) =

∏
1≤i<j≤N (λi − λj) is the Vandermonde

determinant. Exponentiating the determinant factor, logarithmic interactions are generated. See

E. Brezin, C. Itzykson, G. Parisi, and J. Zuber, Planar Diagrams, Commun. Math. Phys. 59
(1978) 35; D. Bessis, C. Itzykson, and J. Zuber, Quantum Field Theory Techniques in Graphical
Enumeration, Adv. Appl. Math. 1 (1980) 109.

10 See Footnote 9. For the continuum limit, see E. Brezin and V. Kazakov, Exactly Solvable
Field Theories of Closed Strings, Phys. Lett. B236 (1990) 144; M. Dougls and S. Shenker,

Strings in Less Than One Dimension, Nucl. Phys. B335 (1990) 635; D. Gross and A. Migdal,

Nonperturbative Two-Dimensional Quantum Gravity, Phys. Rev. Lett. 64 (1990) 127.
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by increasing the number of matrices to introduce spin degrees of freedom

on random lattices and considering couplings between them.11

This method can be generalized to any integer dimension. In four di-

mensions, we will make a four-dimensional manifold made by bonding 4-

simplices. Unlike the two-dimensional case, it is difficult to draw it in dia-

grams, but it is possible algebraically. Let N4 be the number of 4-simplices

representing the total volume and N2 be the number of 2-simplices con-

tained therein, and denote possible ways of the bonding of N4 4-simplices

as T4. The partition function is then defined by

ZSG4(κ2, κ4) =
∑
N4

∑
T4

eκ2N2−κ4N4 =
∑
N4

Ω(κ2, N4)e
−κ4N4 ,

where κ2 corresponds to the square of the Planck mass and κ4 is the cosmo-

logical constant. Assuming that the second-order phase transition occurs at

κ4 = κc
4(κ2), the partition number will behave as

Ω(κ2, N4) ∼ N
γ
(4)
st −3

4 eκ
c
4(κ2)N4 ,

where γ
(4)
st is a four-dimensional version of the string susceptibility. Al-

though the existence of the second-order phase transition point is non-trivial

in four dimensions, its existence is numerically suggested in a system in

which matter fields are added (see Fig. D-4).12

A prediction from the asymptotically background-free quantum gravity

in four dimensions can be derived from the behavior of the zero-mode φ0 of

the conformal-factor field as in the case of two dimensions. The zero-mode

dependence of the Euclidean action at the ultraviolet limit where the cou-

pling constant t disappears is given by S4DQG = 2bcχφ0−κ2e
βφ0R, where

R is the Ricci scalar part other than the zero-mode and β is the Riegert

charge (7-36) of its operator. Therefore, the v4 = eαφ0 dependency of the

partition function is found as follows:∫
dφ0 exp

(−2bcχφ0 + κ2e
βφ0R) δ(eαφ0 − v4)

∼ v
−1−2bcχ/α
4 f(κ2v

β/α
4 ),

11 For the Ising model, see V. Kazakov, Ising Model on a Dynamical Planar Random Lattice:
Exact Solution, Phys. Lett. A119 (1986) 140; D. Boulatov and V. Kazakov, The Ising Model
on Random Planar Lattice, Phys. Lett. B186 (1987) 379.

12 See S. Horata, H. Egawa, and T. Yukawa, Grand Canonical Simulation of 4D Simplicial
Quantum Gravity , Nucl. Phys. B (Proc. Suppl.) 119 (2003) 921.
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1.20 1.30 1.40 1.50
κ2

0

50

N
X
+6

2N
A

N4=16K

NA=1

Critical Line

γst
(4)<0

γst
(4)>0

Figure D-4: The phase transition point κc
4 and its κ2-dependence in numerical

calculations when the number of matter fields is NX+62NA. Below the X mark, the

susceptibility becomes negative and a second-order phase transition point appears.

[K. Hamada, S. Horata, and T. Yukawa, Focus on Quantum Gravity Research (Nova

Science Publisher, NY, 2006), Chap. 1.]

where α is the Riegert charge (7-35) of the cosmological term operator.

From this, the susceptibility is expressed as γ
(4)
st = 2−2bcχ/α. Considering

topology of four-sphere S4 with χ = 2 yields

γ
(4)
st = 2− 1

2

(
bc +

√
b2c − 4bc

)
. (D-8)

In Fig. D-5, the numerical result for γ
(4)
st that has been calculated with

sixteen thousand 4-simplices is compared with the prediction from the con-

tinuum theory. The values of b1’s shown in the figure are calculated using

the measured γ
(4)
st ’s through the expression (D-8) in which bc is replaced

with b1. It indicates that the results are in good agreement. Since the value

of bc in the continuum theory (7-5) is given by bc = 0.00278(NX+62NA)+
4.27, the b1 can be thought of as bc with a small negative correction of o(t2)
added, where NX and NA are the numbers of scalar and gauge fields, re-

spectively. The point to note here is that the matter field dependence appears

correctly with the non-trivial combination of NX + 62NA predicted from

the conformal anomaly.
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0 50 100 150 200
NX+62NA

3.5

4.5

b 1

Grand−Canonical Method
b1 = 0.0030(3) ( NX + 62 NA ) + 3.98(3)

NA=2

NA=1

NA=3

NX=10

Figure D-5: Numerical results of the susceptibility γ
(4)
st . The values of b1’s are

calculated using the measured γ
(4)
st ’s through the expression (D-8) predicted from

the continuum theory in which bc is replaced with b1. The solid line is the best fit of

b1 as a function of NX + 62NA. [K. Hamada, S. Horata, and T. Yukawa, Focus on
Quantum Gravity Research (Nova Science Publisher, NY, 2006), Chap. 1.]
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APPENDIX E

ADDENDA TO COSMOLOGY

Sachs-Wolfe Effect

Calculate an energy shift by gravity of light which is emitted from sender

i and observed by receiver f . Electromagnetic waves are expressed as

Fμν = Re(Aμνe
iψ), in which the amplitude Aμν changes slowly com-

pared to the phase part eiψ . If waves under consideration have a wavelength

shorter than length of gravitational changes, we can do such a separation ap-

proximately. In this case, moving of planes with a constant phase describes

the propagation of light.

Since the geodesic of light is conformally invariant, the square of the

scale factor a = eφ̂ is factored out and the line element is expressed by

ds2 = a2dσ2 as in Chapter 13. Linear perturbations are here expressed as1

dσ2 = Gμνdx
μdxν = (ημν +Hμν) dx

μdxν .

Letting λ be an affine parameter for the line element dσ2, a null vector in

sender receiver

uμ
i uμ

f

Δsi
Δsf{

}ψ +Δψ

ψ
nμ

Figure E-1: Light path from sender i to receiver f .

1 Unlike the metric ḡμν for the traceless tensor field, Gμν includes the perturbation ϕ of the

conformal-factor field as well (gμν = a2Gμν ).
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the propagation direction and its geodesic equation are given by

nμ =
dxμ

dλ
, Gμνn

μnν = 0,

dnμ

dλ
+ Γμ

αβ(G)nαnβ = 0.

Then, planes with a constant phase can be described as

ψ (xμ + nμΔλ) = ψ (xμ) ⇒ nμ ∂ψ

∂xμ
= 0.

Moreover, from the null condition, we can describe it as

∂ψ

∂xμ
= KGμνn

ν

where K is a proportionality constant.

Consider another plane with a constant phase that is transmitted with a

slightly delay as shown in Fig. E-1. Writing the proper time as s, a phase

difference is expressed as

Δψ =
∂ψ

∂xμ

dxμ

ds
Δs =

∂ψ

∂xμ
uμΔs,

where uμ = dxμ/ds is a four-velocity of the sender or receiver satisfying

gμνu
μuν = −1 (13-1). Therefore, denoting a frequency of light as ν, an

energy shift between the sender and the receiver is given by

Ef

Ei
=

νf
νi

=

Δψ
Δsf
Δψ
Δsi

=
(Gμνn

μuν)f
(Gμνnμuν)i

. (E-1)

In the absence of the perturbation, since the null vector is n0 = 1, nini = 1
and the four-velocity is uμ = (1/a, 0, 0, 0), this results in Ef/Ei = ai/af
that represents the red shift.

Let us calculate the energy shift in the presence of the linear perturba-

tions. From the geodesic, writing the null vector containing the perturbation

as nμ = (1,n) + δnμ yields

dδnμ

dλ
=

(
−∂(αHμ

β) +
1

2
∂μHαβ

)
nαnβ .

The first term of the right-hand side can be easily integrated using

d(Hμ
βn

β)

dλ
=

dHμ
β

dλ
nβ =

dxα

dλ
∂αHμ

βn
β = (∂αHμ

β)n
αnβ ,
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which holds within the linear approximation. Then, we get the following

expression:

δnμ|fi = −Hμ
β n

β
∣∣f
i
+

1

2

∫ f

i

dλ (∂μHαβ)n
αnβ . (E-2)

Letting the current background temperature be T0 and writing an observ-

able temperature as T = T0/a+ δT , the following relation holds:

Tf

Ti
=

ai
af

(
1 +

δTf

Tf
− δTi

Ti

)
=

ai
af

(
1 +

1

4

δργ
ργ

∣∣∣f
i

)
, (E-3)

where ργ ∝ T 4 is used in the last equality. Assigning the 0-component of

(E-2) and the relation (E-3) into the energy shift equation (E-1), we obtain

Ef

Ei
=

ai
af

{
1 +

[
ϕ− 1

2
h00 − (vi + h0i)n

i + δn0

]f
i

}

=
Tf

Ti

{
1−
[
1

4

δργ
ργ

− ϕ+
1

2
h00 + (vi + h0i)n

i − δn0

]f
i

}

=
Tf

Ti

{
1−
[
1

4
Dγ + ∂iV

bni +Ψ− Φ+ Ωb
in

i

]f
i

+

∫ f

i

dλ
(
∂ηΨ− ∂ηΦ+ ∂ηΥin

i − ∂ηh
TT
ij ninj

)}
,

where V b is a velocity of baryons as the sender or receiver. Because of

Ef/Ei = Tf/Ti, the inside the braces becomes unity. Especially in a scalar

component, if the Bardeen potential does not change with time, the quantity

in the square brackets is preserved and its initial and the final values become

the same.

Let the initial value set at the decoupling time i = ηdec, and the final

value is taken at the present f = η0. The temperature fluctuation of CMB is

given by (ΔT/T )(η0) = (1/4)Dγ(η0), except for Ψ(η0) and ni∂iV
b(η0)

contributing to monopole and dipole components which are excluded in ob-

servations.2 Decomposing it into contributions from scalar, vector, and ten-

2 A relative velocity of the observer to CMB gives a dipole. Since power spectra are considered

in a rest frame of the CMB in which the dipole component is removed, intrinsic anisotropies

are represented by multipoles with l ≥ 2.
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sor fluctuations, it can be described as follows:

ΔT

T
(η0,x0) =

(
ΔT

T

)S
+

(
ΔT

T

)V
+

(
ΔT

T

)T
,

(
ΔT

T

)S
=

{
1

4
Dγ + ∂iV

bni +Ψ− Φ

}
(ηdec,xdec)

+

∫ η0

ηdec

dη (∂ηΨ− ∂ηΦ) (η,x(η)) ,

(
ΔT

T

)V
= Ωb

i (ηdec,xdec)n
i +

∫ η0

ηdec

dη ∂ηΥi (η,x(η))n
i,

(
ΔT

T

)T
= −
∫ η0

ηdec

dη ∂ηh
TT
ij (η,x(η))ninj , (E-4)

where the path of light is given by x(η) = x0 + (η − η0)n. This relation is

called the Sachs-Wolfe effect.

Finally, we write a famous formula for scalar fluctuations that holds only

for large angle components. The multipole component of l < 10 represents

a large size fluctuation that does not enter the horizon until today. The solu-

tion to such a fluctuation is given by the super-horizon limit x (= kη) � 1
of (13-30). That is, Dγ = (−20/3)ΨI and V γ = (1/3)xΨI � 0, where ΨI

is an initial value given after the big bang. Since at the decoupling time still

V b � V γ and the Bardeen potential Ψ(= −Φ) is almost constant such as

Ψ(ηdec) = ΨI, we obtain

(
ΔT

T

)S
(η0,x0) � 1

3
Ψ(ηdec,xdec). (E-5)

This relation which has been derived first is called the ordinary Sachs-Wolfe

(OSW) effect, while the integral part of the scalar fluctuations in (E-4) is

called the integrated Sachs-Wolfe (ISW) effect.

CMB Angular Power Spectra

Expand the CMB temperature fluctuation using spherical harmonics as

ΔT

T
(η0,x0,n) =

∞∑
l=0

l∑
m=−l

alm(x0)Ylm(n).
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Considering an ensemble average of the multipole alm satisfying 〈alm〉 = 0,

the mean square Cl = 〈|alm|2〉 is given by

〈alma∗l′m′〉 = Clδll′δmm′ .

Then, using the formula of Legendre polynomials

l∑
m=−l

Ylm(n)Y ∗
lm(n′) =

1

4π
(2l + 1)Pl(n · n′) (E-6)

and n · n′ = cos θ, we can write a two-point correlation function of the

temperature fluctuation as

C(θ) =

〈
ΔT

T
(η0,x0,n)

ΔT

T
(η0,x0,n

′)

〉

=
∑

l,l′,m,m′
〈alma∗l′m′〉Ylm(n)Y ∗

l′m′(n
′)

=
1

4π

∑
l

(2l + 1)ClPl(cos θ). (E-7)

In the following, we calculate the multipole components of the angular

power spectrum Cl of unpolarized CMB temperature fluctuations, usually

called the temperature-temperature (TT) spectrum. There are contributions

from both scalar and tensor fluctuations, and their sum is caught by observa-

tions. The scalar fluctuation contributes to the entire TT spectrum, whereas

the tensor fluctuation mainly contributes only to low multipoles (large angle

components) of l < 50.

Scalar fluctuations For simplicity, we here consider the terms other

than the integral part in the scalar component of (E-4), which give main

contributions to the CMB temperature anisotropy spectrum. That is, con-

sider

ΔT

T
(η0,x0,n) =

{
1

4
Dγ + ∂iV

bni + 2Ψ

}
(ηdec,xdec) ,

where Φ = −Ψ is used. From xdec = x0− (η0− ηdec)n, Fourier transform

of this equation is given by

ΔT

T
(η0,k,n) =

{
1

4
Dγ − ik̂ · nV b + 2Ψ

}
(ηdec,k) e

−ik·n(η0−ηdec)

=

{
1

4
Dγ + 2Ψ +

V b

k
∂η

}
(ηdec,k) e

−ik·nη)|η=η0−ηdec
,

(E-8)
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where k = |k| and k̂ = k/k = (θk, ϕk).
First, consider relatively large size fluctuations (l < 30) where the ordi-

nary Sachs-Wolfe effect holds. In this case, the CMB temperature fluctua-

tion is given by the Bardeen potential at the decoupling as shown in (E-5),

and the Fourier transform (E-8) is simplified as

ΔT

T
(η0,k,n) � 1

3
Ψ(ηdec,k) e

−ik·n(η0−ηdec).

Describing C(θ) using this relation yields

C(θ) =

∫
d3k

(2π)3

∫
d3k′

(2π)3

〈
ΔT

T
(η0,k,n)

ΔT

T
(η0,k

′,n′)

〉
ei(k+k′)·x0

�
∫

d3k

(2π)3

∫
d3k′

(2π)3
ei(k+k′)·x0

1

9
〈Ψ(ηdec,k)Ψ(ηdec,k

′)〉

×e−ik·n(η0−ηdec)e−ik′·n′(η0−ηdec)

=

∫
d3k

(2π)3
1

9
〈|Ψ(ηdec,k)|2〉 e−ik·n(η0−ηdec)eik·n

′(η0−ηdec),

where the two-point function is expressed as

〈Ψ(η,k)Ψ(η,k′)〉 = 〈|Ψ(η,k)|2〉(2π)3δ3(k+ k′). (E-9)

Expand the phase terms on the right-hand side using the following ex-

pansion formula by spherical Bessel functions:

eik·y = 4π

∞∑
l=0

l∑
m=−l

iljl(ky)Y
∗
lm(k̂)Ylm(ŷ), (E-10)

where y = |y| and ŷ is defined like k̂. Denoting the distance to the last

scattering surface as ddec = η0 − ηdec, C(θ) is then expressed as

(4π)2
∫

d3k

(2π)3

〈∣∣∣∣13Ψ(ηdec,k)

∣∣∣∣
2
〉
jl(kddec)jl′(kddec)

×
∞∑

l,l′=0

il
′−l

l∑
m=−l

Ylm(k̂)Y ∗
lm(n)

l′∑
m′=−l′

Y ∗
l′m′(k̂)Yl′m′(n

′).

Divide the integral over the comoving momentum k into radial and angu-

lar components as d3k = k2dkdΩk, where dΩk = d cos θkdϕk. Using

orthogonality of spherical harmonics∫
dΩk Y

∗
lm(k̂)Yl′m′(k̂) = δll′δmm′ (E-11)
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and the formula (E-6) for Legendre polynomials, we get

C(θ) =
1

4π

∞∑
l=0

(2l + 1)Pl(cos θ)
2

π

∫
k2dk

1

9
〈|Ψ(ηdec,k)|2〉 j2l (kddec).

By comparing this expression with (E-7), Cl can be found. From the shape

of spherical Bessel functions, the relation l � kddec (11-9) comes out as the

area most contributing to the integration.

For super-horizon fluctuations where the ordinary Sachs-Wolfe effect

holds, the initial value ΨI of the Bardeen potential is almost maintained, that

is, the transfer function is TΨ(ηdec, ηI, k) � 1. Thus, k3〈|Ψ(ηdec)|2〉/2π2

can be identified with the primordial scalar power spectrum defined by Ps =
k3〈|ΨI|2〉/2π2. Assuming that the primordial scalar spectrum is expressed

in a power of the spectral index ns as

Ps(k) = As

(
k

m

)ns−1

,

the angular power spectrum is calculated as

Cosw
l = 4π

∫ ∞

0

dk

k

1

9
Ps(k) j

2
l (kddec)

=
2π2As

(mddec)ns−1

1

9

Γ (3− ns) Γ
(
l − 1

2 + ns

2

)
23−nsΓ2

(
2− ns

2

)
Γ
(
l + 5

2 − ns

2

) .
In the case of a scale-invariant spectrum (ns = 1) called the Harrison-

Zel’dovich spectrum, it becomes

l(l + 1)Cosw
l

2π
=

As

9
.

Thus, in the low multipole region, it is believed that the primordial power

spectrum Ps(k) in the early universe has been retained until today without

being deformed.

In the case to examine fluctuations of a little smaller size where acoustic

oscillations can be seen, we need to take into account contributions from all

the terms in (E-8). Calculating in the same way as above, we obtain

C(θ) =

∫
d3k

(2π)3
d3k′

(2π)3
ei(k+k′)·x0

×
〈{(Dγ

4
+ 2Ψ

)
(ηdec,k) +

V b(ηdec,k)

k
∂η

}
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{(Dγ

4
+ 2Ψ

)
(ηdec,k

′) +
V b(ηdec,k

′)

k′
∂η′

}〉

×e−ik·nη e−ik′·n′η′
∣∣∣∣
η=η′=ddec

.

Performing the integration over k′ using expressions of two-point functions

such as (E-9) and expanding the remaining phase terms using (E-10), it is

expressed as

(4π)2
∫

d3k

(2π)3

∞∑
l,l′=0

il
′−l

l∑
m=−l

Ylm(k̂)Y ∗
lm(n)

l′∑
m′=−l′

Y ∗
l′m′(k̂)Yl′m′(n

′)

×
〈{(Dγ

4
+ 2Ψ

)
(ηdec,k) jl(kη) +

V b(ηdec,k)

k
∂ηjl(kη)

}
{(Dγ

4
+ 2Ψ

)
(ηdec,k) jl′(kη) +

V b(ηdec,k)

k
∂ηjl′(kη)

}∗〉∣∣∣∣
η=ddec

.

Integrating the angular variables of k using (E-11) and (E-6) yields

Cl =
2

π

∫
k2dk

〈∣∣∣∣
{(Dγ

4
+ 2Ψ

)
(ηdec,k) jl(kddec)

+V b(ηdec,k) j
′
l(kddec)

}∣∣∣∣
2〉

,

where j′l(x) = ∂xjl(x).
The fluctuations under consideration are still super-horizon size at the

initial time ηI set in the radiation-dominated era. Letting Tγ,b,Ψ(ηdec, ηI, k)
be the transfer functions until decoupling at ηdec, the value at the decoupling

time can be written as(Dγ

4
+ 2Ψ

)
(ηdec,k) =

1

4
Tγ Dγ(ηI,k) + 2TΨΨ(ηI,k)

=

(
−3

2
Tγ + 2TΨ

)
ΨI(k),

V b(ηdec,k) = Tb V b(ηI,k) = Tb 1
2
kηIΨI(k)

using the initial value ΨI, where we use the fact that Dγ → −6ΨI, Ψ → ΨI,

and V b(= V γ) → kηIΨI/2 in the super-horizon limit x = kη → 0 from

the solution in the radiation-dominated era given in Chapter 13. Therefore,
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given the primordial power spectrum Ps determined by the initial value ΨI,

the CMB angular power spectrum can be calculated as

Cl = 4π

∫
dk

k

{(
−3

2
Tγ + 2TΨ

)
jl(kddec) + Tb 1

2
kηIj

′
l(kddec)

}2
Ps(k).

Lastly, we present the TT power spectrum calculated using the CMB-

FAST code in Fig. E-2, in which the cosmological parameter dependence is

shown.

Figure E-2: Parameter dependence of the TT power spectrum. It shows changes

of the spectrum when varying the density parameters Ωb, Ωc, ΩΛ, the Hubble con-

stant h, the spectral index ns, and the optical depth τe from the top. [E. Martinez-

Gonzalez, Lect. Note Phys. 665 (2009) 79.]

Tensor fluctuations The angular power spectrum of tensor fluctua-

tions are calculated using the tensor part in (E-4). In the same way as for the

scalar fluctuation, we obtain

C(θ) =

∫
d3k

(2π)3

∫ η0

ηdec

dη

∫ η0

ηdec

dη′ eik·n(η0−η)e−ik·n′(η0−η′)

× 〈∂ηhTT
ij (η,−k)∂η′h

TT
kl (η′,k)

〉
ninjn′kn′l, (E-12)

where two-point correlation function with different time appears. From the

transverse and traceless conditions, the correlation function is normalized
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as3〈
hTT
ij (η,−k)hTT

kl (η′,k)
〉
= 2Δ̃ij,kl(k)

〈
hTT(η,−k)hTT(η′,k)

〉
, (E-13)

where Δ̃ij,lm(k) is defined in (7-20) as

Δ̃ij,kl(k) =
1

2

{
δikδjl + δilδjk − δijδkl +

1

k2
(
δijkkkl + δklkikj

−δikkjkl − δilkkkj − δjkkikl − δjlkikk
)
+

1

k4
kikjkkkl

}
.

Introducing new variables μ = n · k̂ and μ′ = n′ · k̂, and noting n2 = n′2 =
1, we get

2Δ̃ij,kl(k)n
injn′kn′l = 2(n · n′)2 − 1 + μ2 + μ′2 − 4μμ′n · n′ + μ2μ′2.

Moreover, using

eik·n(η0−η) = eikμ(η0−η) =

∞∑
r=0

(2r + 1)irjr(k(η0 − η))Pr(μ),

we can express (E-12) as follows:

∞∑
r=0

∞∑
r′=0

(2r + 1)(2r′ + 1) ir−r′
∫

d3k

(2π)3
Pr(μ)Pr′(μ

′)

∫ η0

ηdec

dη

∫ η0

ηdec

dη′

×
{
[2(n · n′)2 − 1]jr(k(η0 − η))jr′(k(η0 − η′))

−j′′r (k(η0 − η))jr′(k(η0 − η′))− jr(k(η0 − η))j′′r′(k(η0 − η′))

+j′′r (k(η0 − η))j′′r′(k(η0 − η′))− 4n · n′j′r(k(η0 − η))j′r′(k(η0 − η′))

}
× 〈∂ηhTT(η,−k)∂η′h

TT(η′,k)
〉
,

where j′r(x) = ∂xjr(x). This expression can be rewritten to a form pro-

portional to Legendre polynomials by performing the angle integration dΩk

using ∫
dΩk Pr(μ)Pr′(μ

′) =
4π

2r + 1
δrr′Pr(n · n′).

3 In this normalization, 〈hij
TT(η,k)h

TT
ij (η′,−k)〉 = 4〈hTT(η,k)hTT(η′,−k)〉. If two

polarization components of hTT
ij commonly used are chosen as hTT

11 = −hTT
22 = h+

and hTT
12 = hTT

21 = h× on the x1-x2 plane, their correlation functions are given by

〈h+(x)h+(x′)〉 = 〈h×(x)h×(x′)〉 = 〈hTT(x)hTT(x′)〉.
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Moreover, n · n′’s in the brackets are absorbed in the argument of the poly-

nomial by using a recursion formula

xPr(x) =
r + 1

2r + 1
Pr+1(x) +

r

2r + 1
Pr−1(x).

Furthermore, rewrite it to be the form of the definition (E-7) using recursion

formulas for spherical Bessel functions

j′r(x) = − r + 1

2r + 1
jr+1(x) +

r

2r + 1
jr−1(x),

jr+1(x) + jr−1(x) =
2r + 1

x
jr(x).

Eventually it is put together into the following simple form:

∞∑
l=0

1

2π2
(2l + 1)Pl(n · n′)

∫
k2dk

∫ η0

ηdec

dη

∫ η0

ηdec

dη′
(l + 2)!

(l − 2)!

×jl(k(η0 − η)

[k(η0 − η)]2
jl(k(η0 − η′)

[k(η0 − η′)]2
〈
∂ηh

TT(η,−k)∂η′h
TT(η′,k)

〉
.

Compared with (E-7) with attention to n · n′ = cos θ, we finally obtain

Cl =
2

π

∫
k2dk

〈∣∣∣∣
∫ η0

ηdec

dη ∂ηh
TT(η,k)

jl(k(η0 − η))

k2(η0 − η)2

∣∣∣∣
2
〉

(l + 2)!

(l − 2)!
.

Let us roughly evaluate this equation. As far as the fluctuation has a

super-horizon size, the solution of the tensor equation (13-22) is almost

constant so that ∂ηh
TT = 0, and thus Cl will not be generated. The ten-

sor fluctuation begins to change after entering the horizon. Therefore, the

integral has a value only for large size fluctuations that enter the horizon

during from the decoupling time ηdec to the present η0, which correspond to

low multipole components (l < 50).

Since we know that the solution attenuates with H ∝ 1/a after entering

the region of x = kη ≥ 1, it can be written as ∂ηh
TT � −aHhTT =

(−2/η)hTT in this region. The last equality shows that the epoch we are

considering is the matter-dominated era with a ∝ η2. From this, the integral

can be evaluated as∫ η0

ηdec

dη ∂ηh
TT jl(k(η0 − η))

k2(η0 − η)2
� jl(kη0))

k2η20

∫ η0

η=2/k

−2dη

η
hTT.
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Furthermore, considering hTT∝1/η2, it is calculated as
∫
(−2dη/η)hTT =

hTT(η0) − hTT(η = 1/k), where hTT(η0) is negligibly small. Since η0
can be considered to be the same as ddec = η0 − ηdec, the angular power

spectrum can be written for l < 50 as

Cl |l<50 � 2

π

∫
k2dk

〈∣∣∣∣hTT

(
η =

1

k
,k

)∣∣∣∣
2
〉

j2l (kddec)

k4d4dec

(l + 2)!

(l − 2)!
.

Since the tensor fluctuation hardly changes until entering the horizon, that is,

the transfer function is unity until then, we can consider that the spectrum

just before entering the horizon (η = 1/k) is the same as the primordial

spectrum so that k3〈|hTT(η = 1/k,k)|2〉 = 2π2Pt(k). If the primordial

tensor spectrum is denoted as4

Pt(k) = At

(
k

m

)nt

,

we get

Cl |l<50 � 4π
(l + 2)!

(l − 2)!

∫ ∞

0

dk

k

j2l (kddec)

k4d4dec
Pt(k)

=
2π2At

(mddec)nt

(l + 2)!

(l − 2)!

Γ(6− nt)Γ
(
l − 2 + nt

2

)
26−ntΓ2

(
7
2 − nt

)
Γ
(
l + 4− nt

2

) .
For a scale-invariant spectrum of nt = 0, we obtain l(l + 1)Cl/2π � At ×
8l(l + 1)/15(l − 2)(l + 3). There is a divergence at l = 2, but it is because

the approximation is rough.

Thus, the contribution from the tensor fluctuation may be included in the

large angle components of the TT spectrum of CMB. However, the tensor-

to-scalar ratio r = At/As, which shows how much the tensor fluctuation is

included, cannot be determined exactly by the observed TT spectrum alone.

On polarization spectra Finally, we briefly describe other angular

power spectra without touching the details. The CMB is polarized, the main

cause of which is due to the Thomson scattering in the process of the uni-

verse becoming neutral. The spectra for polarizations called the E and B

modes are shown in Fig. E-3. The top is the TT spectrum. The second is

the TE, the third is the EE, and the bottom is the BB spectrum. The BB

spectrum is generated only from the tensor fluctuation.

4 The convention of the tensor spectral index is different from the scalar one defined before. It

comes from the historical background.
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Figure E-3: Power spectrum of each mode of scalar and tensor fluctuations (r =

0.01). From the top, the TT, TE, EE, and BB (right only) spectra. In each mode

except for the B, the CMB spectrum we can observe is only the sum of contributions

from the two fluctuations. [E. Martinez-Gonzalez, Lect. Note Phys. 665 (2009) 79.]

The optical depth τe is determined from the behavior of the low multi-

poles (l < 10) in the EE spectrum and τe � 0.1 is obtained. It represents the

degree to which the universe became a little opaque due to the reionization

of particles by lights emitted at the time first stars were born. Therefore, the

optical depth is a cosmological parameter that determines when the first star

was born.

The tensor-to-scalar ratio r can be determined by the spectrum of the B

mode originating from the tensor fluctuation, which appears at the bottom

in Fig. E-3 (right).

Analytical Examinations of Evolution Equations

The solution of the simultaneous linear scalar evolution equations (14-1)

and (14-2) is analytically examined here. In order to do that, we make the

following simplification. First of all, let the coupling constant t be a suffi-

ciently small constant. In this case, the Hubble variable can be regarded as

a constant and it is normalized to H = HD/
√
B0 = 1. We also introduce a

constant T = bcB0t
2/8π2(� 1) proportional to the square of the coupling

constant. Furthermore, ignore the momentum dependence of the equation.

Since it becomes k2/a2 when expressed using the physical time τ , such a

situation will be realized at the time when the scale factor a is sufficiently

increased after passed a little since inflation began. The evolution equations
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of the scalar fluctuations are then expressed as

−2
....

Φ −14
...

Φ −36Φ̈− 48Φ̇ + 2
...

Ψ +14Ψ̈ + 36Ψ̇ + 48Ψ

+6
(
Φ̈ + 4Φ̇− Ψ̇− 4Ψ

)
= 0 (E-14)

and

4

3
Φ̈ +

16

3
Φ̇ +

20

3
Φ− 4

3
Ψ̇ +

4

3
Ψ +

8

T

(
Φ̈ + Φ̇− Ψ̈− Ψ̇

)
−2(Φ + Ψ) = 0, (E-15)

where the dot denotes the derivative by τ .

Introducing a new variable f = Ψ− Φ̇, these equations can be rewritten

as

...

f +7f̈ + 15ḟ + 12f = 0,

...

Φ −
(
1 +

7

12
T

)
Φ̇− 7

12
TΦ = −f̈ −

(
1 +

1

6
T

)
ḟ − 1

12
Tf.

The first equation can be easily solved, and the following general solution is

obtained:

f = c1e
−4τ + c2 e

− 3
2 τ sin

(√
3

2
τ

)
+ c3 e

− 3
2 τ cos

(√
3

2
τ

)
.

Substituting this solution into the second equation, we get

Φ = (a1 + c1) e
−τ + (a2 + c2)

(
1− 7

12
Tτ

)
+ (a3 + c3)

(
1 +

7

12
Tτ

)
eτ

+c1
360− 7T

1800
e−4τ +

√
3c2 + 5c3

14
e−

3
2 τ cos

(√
3

2
τ

)

+
5c2 −

√
3c3

14
e−

3
2 τ sin

(√
3

2
τ

)
, (E-16)

where the solution is considered up to the first order of T .

Since we calculate it ignoring the momentum dependence here, this so-

lution includes a vacuum solution which gives the background besides a

solution of the fluctuation we are looking for. It can be seen from (E-14)

that when T = 0 the vacuum mode Φ = Ψ = ω satisfies

....
ω +6

...
ω +8ω̈ − 3ω̇ − 12ω = 0,

 EBSCOhost - printed on 2/13/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Addenda to Cosmology 379

while (E-15) becomes trivial in this case. This equation is nothing but the

equation of motion of the background φ̂ discussed in the first section of

Chapter 12, which has an inflationary solution eτ and three decaying so-

lutions e−4τ , e−3τ/2 sin(
√
3τ/2), and e−3τ/2 cos(

√
3τ/2). What we are

looking for is a solution for evolution of the fluctuation, and therefore we

need to exclude solutions which become these vacuum ones at T = 0 from

the general solution (E-16). Indeed, these solutions will cease to satisfy the

constraint equation (14-2) as time goes on. In this way, ignoring exponen-

tially decaying solutions, it is found that the behavior of the fluctuation Φ
with T � 1 is given by

Φ ∼ 1− 7

12
Tτ.

This behavior appears in the attenuating part of the numerical solution given

in Figs. 14-1 and 14-2.

Scattering Cross Sections in Einstein Gravity

In the energy region less than ΛQG, Einstein’s theory of gravity is effec-

tive and the description of the so-called graviton propagating in a classical

spacetime becomes adequate. Here, we introduce the results of differential

cross sections for the Rutherford scattering and the Compton scattering of

scalar particles involving gravitons. For the sake of simplicity, we consider

a massive scalar field which is minimally coupled with gravity (ξ = 0 in

Appendix A).

p1

p′1

p2

p′2

Figure E-4: Scattering of scalar particles exchanging a graviton.

Rutherford scattering Let us consider a process in which a particle of

mass m with momentum p1 and another particle of mass M with momentum

p2 are scattered to p′1 and p′2 by exchanging a graviton, as shown in Fig. E-4.

Here we employ a laboratory system in which the particle p2 is stationary
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as in Fig. E-5, and let the incident particle be pμ1 = (ω1, 0, 0, q) whose

dispersion relation is ω2
1 = q2 + m2. Furthermore, considering M � m,

the particle p2 remains stationary, and only the angle in the scattered particle

p′1 changes, and p′1 has the same dispersion relation as the incident particle.

Letting the velocity of the incident particle be v, the differential cross section

is then given by

dσL

dΩ
=

G2

4

M2(m2 + 2q2)2

vq3
√
m2 + q2

1

sin4 θ
2

.

In a non-relativistic limit m � q, putting q = mv and E = mv2/2, this

reduces to
dσL

dΩ
=

1

4

(
GMm

2E

)2
1

sin4 θ
2

.

This agrees with the Rutherford scattering formula when the central force is

given by GMm/r2.

p1

m

p′1

m

M

M

p′2 θ

Figure E-5: Parameters in the laboratory system.

Gravitational Compton scattering Feynman diagrams of the Comp-

ton scattering between graviton and scalar particle of mass m is depicted

in Fig. E-6. Differential cross section in the laboratory system where the

particle p is stationary is given by5

dσL

dΩ
=

G2m4

(m+ 2E sin2 θ
2 )

2

cos8 θ
2 + sin8 θ

2

sin4 θ
2

,

where E = |k| is a graviton energy.

It is thought that these scattering processes were active right after the big

bang. In particular, we think that they contributed to the scattering of scalar-

like dark matter which interact only with the gravitational field. However,

unfortunately, it is difficult to find traces of them at present.

5 For details, see F. Berends and R. Gastmans, On the High-Energy Behaviour of Born Cross
Sections in Quantum Gravity, Nucl. Phys. B88 (1975) 99.
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p

p′

k

k′

Figure E-6: The Compton scattering between graviton and scalar particle.

Fundamental Constants

Reduced Planck constant � = 1.055× 10−27 cm2 g s−1

Speed of light c = 2.998× 1010 cm s−1

Newton’s constant G = 6.672× 10−8 cm3 g−1 s−2

Planck mass mpl = 2.177× 10−5 g

= 1.221× 1019 GeV/c2

Reduced Planck mass MP = 2.436× 1018 GeV/c2

Planck length lpl = 1.616× 10−33 cm

Planck time tpl = 5.390× 10−44 s

Boltzmann constant kB = 1.381× 10−16 erg K−1

Megaparsec 1Mpc = 3.086× 1024 cm

Hubble constant H0 = 100h km s−1 Mpc−1

Hubble distance c/H0 = 2998h−1 Mpc

(current observation: h � 0.7)

Useful constants for converting to natural units (c = � = kB = 1)

1 cm = 5.068× 1013 �/GeV

1 s = 1.519× 1024 �/GeV/c

1 g = 5.608× 1023 GeV/c2

1 erg = 6.242× 102 GeV

1 K = 8.618× 10−14 GeV/kB
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