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Preface
Given the growing popularity of the R-zero-cost statistical programming environment,
there has never been a better time to start applying machine learning (ML) to your data.
This book will teach you advanced techniques in ML, using the latest code in R 3.5. You
will delve into various complex features of supervised learning, unsupervised learning, and
reinforcement learning algorithms to design efficient and powerful ML models.

This newly updated edition is packed with fresh examples covering a range of tasks from
different domains. Mastering Machine Learning with R starts by showing you how to quickly
manipulate data and prepare it for analysis. You will explore simple and complex models
and understand how to compare them. You’ll also learn to use the latest library support,
such as TensorFlow and Keras-R, for performing advanced computations. Additionally,
you'll explore complex topics such as natural language processing (NLP), time series
analysis, and clustering, which will further refine your skills in developing applications.
Each chapter will help you implement advanced ML algorithms using real-world examples.
You'll even be introduced to reinforcement learning, along with its various use cases and
models. In the concluding chapters, you'll get a glimpse into how some of these black box
models can be diagnosed and understood.

By the end of this book, you'll be equipped with the skills to deploy ML techniques in your
own projects or at work.

Who this book is for
This book is designed for data science professionals, statisticians, data analysts, or anyone
with a working knowledge of R who now wants to take their analytical skills to the next
level and become an expert in the field. Not only do they want to learn the methods, but
they also want to know how they can put them into practice, making a difference in the real
world. The book has interesting datasets and covers the latest techniques for gleaning
insights from that data.

What this book covers
Here is a list of changes compared with the second edition by chapter.

Chapter 1, Preparing and Understanding Data, covers the loading of data and demonstrates
how to obtain an understanding of its structure and dimensions, as well as how to install
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the necessary packages.

Chapter 2, Linear Regression, contains improved code, and superior charts have been
provided; other than that, it remains relatively close to the original.

Chapter 3, Logistic Regression, contains improved and streamlined code. One of my favorite
techniques, multivariate adaptive regression splines, has been added. This technique
performs well, handles non-linearity, and is easy to explain. It is my base model.

Chapter 4, Advanced Feature Selection in Linear Models, includes techniques not only
for regression, but also for a classification problem.

Chapter 5, K-Nearest Neighbors and Support Vector Machines, includes streamlined and
simplified code.

Chapter 6, Tree-Based Classification, is augmented by the addition of the very popular
techniques provided by the XGBOOST package. Additionally, the technique of using a
random forest as a feature selection tool is incorporated.

Chapter 7, Neural Networks and Deep Learning, has been updated with additional
information on deep learning methods and includes improved code for the H2O package,
including hyperparameter search.

Chapter 8, Creating Ensembles and Multiclass Methods, has completely new content,
involving the utilization of several great packages. 

Chapter 9, Cluster Analysis, includes the methodology for executing unsupervised learning
with random forests added.

Chapter 10, Principal Component Analysis, uses a different dataset, while an out-of-sample
prediction has been added.

Chapter 11, Association Analysis, explains association analysis, and applies not only to
making recommendations, product placement, and promotional pricing, but can also be
used in manufacturing, web usage, and healthcare.

Chapter 12, Time Series and Causality, includes a couple of additional years of climate data,
along with a demonstration of different causality test methods.

Chapter 13, Text Mining, includes additional data and improved code.

Appendix, Creating a Package, includes additional data packages.
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To get the most out of this book
Assuming the reader has a working knowledge of R and of basic statistics, this book will
provide the skills and tools required to get the reader up and running with R and ML as
quickly and painlessly as possible. There will probably always be detractors who complain
that it does not offer enough math or does not do this, or that, or the other thing, but my
answer to that is that these books already exist! Why duplicate what has already been done,
and very well, for that matter? Again, I have sought to provide something different,
something to hold the reader's attention, and allow them to succeed in this competitive and
rapidly changing field.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Mastering-Machine-Learning-with-R-Third-E
dition. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!
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Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/9781789618006_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

html, body, #map {
 height: 100%;
 margin: 0;
 padding: 0
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.
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Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/


1
Preparing and Understanding

Data
"We've got to use every piece of data and piece of information, and hopefully that will help
us be accurate with our player evaluation. For us, that's our lifeblood."

– Billy Beane, General Manager Oakland Athletics, subject of the book Moneyball

Research consistently shows that machine learning and data science practitioners spend
most of their time manipulating data and preparing it for analysis. Indeed, many find it the
most tedious and least enjoyable part of their work. Numerous companies are offering
solutions to the problem but, in my opinion, results at this point are varied. Therefore, in
this first chapter, I shall endeavor to provide a way of tackling the problem that will ease
the burden of getting your data ready for machine learning. The methodology introduced
in this chapter will serve as the foundation for data preparation and for understanding
many of the subsequent chapters. I propose that once you become comfortable with this
tried and true process, it may very well become your favorite part of machine learning—as
it is for me.

The following are the topics that we'll cover in this chapter:

Overview 
Reading the data
Handling duplicate observations
Descriptive statistics
Exploring categorical variables
Handling missing values
Zero and near-zero variance features
Treating the data
Correlation and linearity
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Overview
If you haven't been exposed to large, messy datasets, then be patient, for it's only a matter
of time. If you've encountered such data, has it been in a domain where you have little
subject matter expertise? If not, then once again I proffer that it's only a matter of time.
Some of the common problems that make up this term messy data include the following:

Missing or invalid values
Novel levels in a categorical feature that show up in algorithm production
High cardinality in categorical features such as zip codes
High dimensionality
Duplicate observations

So this begs the question what are we to do? Well, first we need to look at what are the critical
tasks that need to be performed during this phase of the process. The following tasks serve
as the foundation for building a learning algorithm. They're from the paper by SPSS,
CRISP-DM 1.0, a step-by-step data-mining guide available
at https://the-modeling-agency.com/crisp-dm.pdf:

Data understanding:
Collect1.
Describe2.
Explore3.
Verify4.

Data preparation:
Select1.
Clean2.
Construct3.
Integrate4.
Format5.

Certainly this is an excellent enumeration of the process, but what do we really need to do?
I propose that, in practical terms we can all relate to, the following must be done once the
data is joined and loaded into your machine, cloud, or whatever you use:

Understand the data structure
Dedupe observations
Eliminate zero variance features and low variance features as desired
Handle missing values
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Create dummy features (one-hot encoding)
Examine and deal with highly correlated features and those with perfect linear
relationships
Scale as necessary
Create other features as desired

Many feel that this is a daunting task. I don't and, in fact, I quite enjoy it. If done correctly
and with a judicious application of judgment, it should reduce the amount of time spent at
this first stage of a project and facilitate training your learning algorithm. None of the
previous steps are challenging, but it can take quite a bit of time to write the code to
perform each task.

Well, that's the benefit of this chapter. The example to follow will walk you through the
tasks and the R code that accomplishes it. The code is flexible enough that you should be
able to apply it to your projects. Additionally, it will help you gain an understanding of the
data at a point you can intelligently discuss it with Subject Matter Experts (SMEs) if, in
fact, they're available.

In the practical exercise that follows, we'll work with a small dataset. However, it suffers
from all of the problems described earlier. Don't let the small size fool you, as we'll take
what we learn here and use it for the more massive datasets to come in subsequent
chapters.

As background, the data we'll use I put together painstakingly by hand. It's the Order of
Battle for the opposing armies at the Battle of Gettysburg, fought during the American Civil
War, July 1st-3rd, 1863, and the casualties reported by the end of the day on July 3rd. I
purposely chose this data because I'm reasonably sure you know very little about it. Don't
worry, I'm the SME on the battle here and will walk you through it every step of the way.
The one thing that we won't cover in this chapter is dealing with large volumes of textual
features, which we'll discuss later in this book. Enough said already; let's get started!

The source used in the creation of the dataset is The Gettysburg Campaign
in Numbers and Losses: Synopses, Orders of Battle, Strengths, Casualties, and
Maps, June 9-July 14, 1863, by J. David Petruzzi and Steven A. Stanley.

Reading the data
This first task will load the data and show how to get a how level understanding of its
structure and dimensions as well as install the necessary packages.
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You have two ways to access the data, which resides on GitHub. You can download
gettysburg.csv directly from the site at this link: https:/ /github. com/ datameister66/
MMLR3rd, or you can use the RCurl package. An example of how to use the package is
available here: https:/ / github. com/ opetchey/ RREEBES/ wiki/ Reading- data- and-code-
from-an-online-github- repository.

Let's assume you have the file in your working directory, so let's begin by installing the
necessary packages:

install.packages("caret")
install.packages("janitor")
install.packages("readr")
install.packages("sjmisc")
install.packages("skimr")
install.packages("tidyverse")
install.packages("vtreat")

Let me make a quick note about how I've learned (the hard way) about how to correctly
write code. With the packages installed, we could now specifically call the libraries into the
R environment. However, it's a best practice and necessary when putting code into
production that a function that isn't in base R be specified. First, this helps you and
unfortunate others to read your code with an understanding of which library is mapped to
a specific function. It also eliminates potential errors because different packages call
different functions the same thing. The example that comes to my mind is the
tsoutliers() function. The function is available in the forecast package and was in the
tsoutliers package during earlier versions. Now I know this extra typing might seem
unwieldy and unnecessary, but once you discipline yourself to do it, you'll find that it's
well worth the effort.

There's one library we'll call and that's magrittr, which allows the use of a pipe-operator,
%>%, to chain code together:

library(magrittr)

We're now ready to load the .csv file. In doing so, let's utilize the read_csv() function
from readr as it's faster than base R and creates a tibble dataframe. In most cases, using
tibbles in a tidyverse style is easier to write and understand. If you want to learn all the
benefits of tidyverse, check out their website: tidyverse.org.

The only thing we need to specify in the function is our filename:

gettysburg <- read_csv("~/gettysburg.csv")
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Here's a look at the column (feature) names:

colnames(gettysburg)
[1]  "type"           "state"          "regiment_or_battery" "brigade"
[5]  "division"       "corps"          "army"
"july1_Commander"
[9]  "Cdr_casualty"   "men"            "killed"              "wounded"
[13] "captured"       "missing"        "total_casualties"    "3inch_rifles"
[17] "4.5inch_rifles" "10lb_parrots"   "12lb_howitzers"
"12lb_napoleons"
[21] "6lb_howitzers"  "24lb_howitzers" "20lb_parrots"
"12lb_whitworths"
[25] "14lb_rifles"    "total_guns"

We have 26 features in this data, and some of you're asking yourself things like, what the
heck is a 20 pound parrot? If you put it in a search engine, you'll probably end up with the
bird and not the 20 pound Parrot rifled artillery gun. You can see the dimensions of the 
data in RStudio in your Global Environment view, or you can dig on your own to see
there're 590 observations:

dim(gettysburg)
[1] 590 26

In RStudio, you can click on the tibble name in the Global Environment or
run the View(tibblename) code and it'll open a spreadsheet of all of the
data.

So we have 590 observations of 26 features, but this data suffers from the issues that
permeate large and complex data. Next, we'll explore if there're any duplicate observations
and how to deal with them efficiently.

Handling duplicate observations
The easiest way to get started is to use the base R duplicated() function to create a vector
of logical values that match the data observations. These values will consist of either TRUE
or FALSE where TRUE indicates a duplicate. Then, we'll create a table of those values and
their counts and identify which of the rows are dupes:

dupes <- duplicated(gettysburg)

table(dupes)
dupes
FALSE TRUE
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  587    3

which(dupes == "TRUE")
[1] 588 589

If you want to see the actual rows and even put them into a tibble
dataframe, the janitor package has the get_dupes() function. The code
for that would be simply: df_dupes <-
janitor::get_dupes(gettysburg).

To rid ourselves of these duplicate rows, we put the distinct() function for the dplyr
package to good use, specifying .keep_all = TRUE to make sure we return all of the
features into the new tibble. Note that .keep_all defaults to FALSE:

gettysburg <- dplyr::distinct(gettysburg, .keep_all = TRUE)

Notice that, in the Global Environment, the tibble is now a dimension of 587 observations
of 26 variables/features. 

With the duplicate observations out of the way, it's time to start drilling down into the data
and understand its structure a little better by exploring the descriptive statistics of the
quantitative features.

Descriptive statistics
Traditionally, we could use the base R summary() function to identify some basic statistics.
Now, and recently I might add, I like to use the package sjmisc and its descr() function.
It produces a more readable output, and you can assign that output to a dataframe. What
works well is to create that dataframe, save it as a .csv, and explore it at your leisure. It
automatically selects numeric features only. It also fits well with tidyverse so that you
can incorporate dplyr functions such as group_by() and filter(). Here's an example in
our case where we examine the descriptive stats for the infantry of the Confederate Army.
The output will consist of the following:

var: feature name
type: integer
n: number of observations
NA.prc: percent of missing values
mean

sd: standard deviation
se: standard error
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md: median
trimmed: trimmed mean
range

skew

gettysburg %>%
  dplyr::filter(army == "Confederate" & type == "Infantry") %>%
  sjmisc::descr() -> descr_stats

readr::write_csv(descr_stats, 'descr_stats.csv')

The following is abbreviated output from the preceding code saved to a spreadsheet:

In this one table, we can discern some rather interesting tidbits. In particular is the percent
of missing values per feature. If you modify the precious code to examine the Union Army,
you'll find that there're no missing values. The reason the usurpers from the South had
missing values is based on a couple of factors; either shoddy staff work in compiling the
numbers on July 3rd or the records were lost over the years. Note that, for the number of
men captured, if you remove the missing value, all other values are zero, so we could just
replace the missing value with it. The Rebels did not report troops as captured, but rather
as missing, in contrast with the Union.

Once you feel comfortable with the descriptive statistics, move on to exploring the
categorical features in the next section.

Exploring categorical variables
When it comes to an understanding of your categorical variables, there're many different
ways to go about it. We can easily use the base R table() function on a feature. If you just
want to see how many distinct levels are in a feature, then dplyr works well. In this
example, we examine type, which has three unique levels:

dplyr::count(gettysburg, dplyr::n_distinct(type))
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The output of the preceding code is as follows:

# A tibble: 1 x 2
     `dplyr::n_distinct(type)`        n
                                            <int> <int>
                                                     3    587

Let's now look at a way to explore all of the categorical features utilizing tidyverse
principles. Doing it this way always allows you to save the tibble and examine the results in
depth as needed. Here is a way of putting all categorical features into a separate tibble:

gettysburg_cat <-
  gettysburg[, sapply(gettysburg, class) == 'character']

Using dplyr, you can now summarize all of the features and the number of distinct levels
in each:

gettysburg_cat %>%
  dplyr::summarise_all(dplyr::funs(dplyr::n_distinct(.)))

The output of the preceding code is as follows:

# A tibble: 1 x 9
   type  state regiment_or_battery brigade division corps  army
july1_Commander  Cdr_casualty
 <int> <int>                                  <int>      <int>      <int>
<int> <int>                            <int>                  <int>
          3       30                                      275           124
38        14          2                                586
6

Notice that there're 586 distinct values to july1_Commander. This means that two of the
unit Commanders have the same rank and last name. We can also surmise that this feature
will be of no value to any further analysis, but we'll deal with that issue in a couple of
sections ahead.

Suppose we're interested in the number of observations for each of the levels for
the Cdr_casualty feature. Yes, we could use table(), but how about producing the
output as a tibble as discussed before? Give this code a try:

gettysburg_cat %>%
  dplyr::group_by(Cdr_casualty) %>%
  dplyr::summarize(num_rows = n())
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The output of the preceding code is as follows:

# A tibble: 6 x 2
 Cdr_casualty                    num_rows
    <chr>                           <int>
 1 captured                            6
 2 killed                             29
 3 mortally wounded                   24
 4 no                                405
 5 wounded                           104
 6 wounded-captured                   19

Speaking of tables, let's look at a tibble-friendly way of producing one using two features.
This code takes the idea of comparing commander casualties by army:

gettysburg_cat %>%
  janitor::tabyl(army, Cdr_casualty)

The output of the preceding code is as follows:

army   captured killed mortally wounded   no  wounded  wounded-captured
Confederate  2    15               13     165    44             17
Union        4    14               11     240    60              2

Explore the data on your own and, once you're comfortable with the categorical variables,
let's tackle the issue of missing values.

Handling missing values
Dealing with missing values can be a little tricky as there's a number of ways to approach
the task. We've already seen in the section on descriptive statistics that there're missing
values. First of all, let's get a full accounting of the missing quantity by feature, then we
shall discuss how to deal with them. What I'm going to demonstrate in the following is how
to put the count by feature into a dataframe that we can explore within RStudio:

na_count <-
  sapply(gettysburg, function(y)
    sum(length(which(is.na(
      y
    )))))

na_df <- data.frame(na_count)

View(na_df)
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The following is a screenshot produced by the preceding code, after sorting the dataframe
by descending count:

You can clearly see the count of missing by feature with the most missing is ironically
named missing with a total of 17 observations.

So what should we do here or, more appropriately, what can we do here? There're several
choices:

Do nothing: However, some R functions will omit NAs and some functions will
fail and produce an error.
Omit all observations with NAs: In massive datasets, they may make sense, but
we run the risk of losing information.
Impute values: They could be something as simple as substituting the median
value for the missing one or creating an algorithm to impute the values.
Dummy coding: Turn the missing into a value such as 0 or -999, and code a
dummy feature where if the feature for a specific observation is missing, the
dummy is coded 1, otherwise, it's coded 0.

I could devote an entire chapter, indeed a whole book on the subject, delving into missing at
random and others, but I was trained—and, in fact, shall insist—on the latter method. It's
never failed me and the others can be a bit problematic. The benefit of dummy coding—or
indicator coding, if you prefer—is that you don't lose information. In fact, missing-ness
might be an essential feature in and of itself.

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Preparing and Understanding Data Chapter 1

[ 16 ]

For a full discussion on the handling of missing values, you can reference
the following articles: http:/ /www. stat. columbia. edu/~gelman/ arm/
missing. pdf and https:/ /pdfs. semanticscholar. org/ 4172/
f558219b94f850c6567f93fa60dee7e65139. pdf.

So, here's an example of how I manually code a dummy feature and turn the NAs into
zeroes:

gettysburg$missing_isNA <-
  ifelse(is.na(gettysburg$missing), 1, 0)

gettysburg$missing[is.na(gettysburg$missing)] <- 0

The first iteration of code creates a dummy feature for the missing feature and the second
changes any NAs in missing to zero. In the upcoming section, where the dataset is fully
processed (treated), the other missing values will be imputed. 

Zero and near-zero variance features
Before moving on to dataset treatment, it's an easy task to eliminate features that have
either one unique value (zero variance) or a high ratio of the most common value to the
next most common value such that there're few unique values (near-zero variance). To do
this, we'll lean on the caret package and the nearZeroVar() function. We get started by
creating a dataframe and using the function's defaults except for saveMetrics = TRUE.
We need to make that specification to return the dataframe:

feature_variance <- caret::nearZeroVar(gettysburg, saveMetrics = TRUE)

To understand the default settings of the nearZeroVar() function and
determine how to customize it to your needs, just use the R help function
by typing ?nearZeroVar in the Console.

The output is quite interesting, so let's peek at the first six rows of what we produced:

head(feature_variance)
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The output of the preceding code is as follows:

                       freqRatio     percentUnique    zeroVar     nzv
          type         3.186047      0.5110733        FALSE     FALSE
         state         1.094118      5.1107325        FALSE     FALSE
regiment_or_battery    1.105263     46.8483816        FALSE     FALSE
         brigade       1.111111     21.1243612        FALSE     FALSE
         division      1.423077      6.4735945        FALSE     FALSE
          corps        1.080000      2.3850085        FALSE     FALSE

The two key columns are zeroVar and nzv. They act as an indicator of whether or not that
feature is zero variance or near-zero variance; TRUE indicates yes and FALSE not so
surprisingly indicates no. The other columns must be defined:

freqRatio: This is the ratio of the percentage frequency for the most common
value over the second most common value.
percentUnique: This is the number of unique values divided by the total
number of samples multiplied by 100.

Let me explain that with the data we're using. For the type feature, the most common
value is Infantry, which is roughly three times more common than Artillery. For
percentUnique, the lower the percentage, the lower the number of unique values. You can
explore this dataframe and adjust the function to determine your relevant cut points. For
this example, we'll see whether we have any zero variance features by running this code:

which(feature_variance$zeroVar == 'TRUE')

The output of the preceding code is as follows: 

[1] 17

Alas, we see that row 17 (feature 17) has zero variance. Let's see what that could be:

row.names(feature_variance[17, ])

The output of the preceding code is as follows:

[1] "4.5inch_rifles"

This is quite strange to me. What it means is that I failed to record the number of the
artillery piece in the one Confederate unit that brought them to the battle. An egregious
error on my part discovered using an elegant function from the caret package. Oh well,
let's create a new tibble with this filtered out for demonstration purposes:

gettysburg_fltrd <- gettysburg[, feature_variance$zeroVar == 'FALSE']
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This code eliminates the zero variance feature. If we wanted also to eliminate near-zero
variance as well, just run the code and substitute feature_variance$zerVar with
feature_variance$nzv.

We're now ready to perform the real magic of this process and treat our data.

Treating the data
What do I mean when I say let's treat the data? I learned the term from the authors of the
vtreat package, Nina Zumel, and John Mount. You can read their excellent paper on the
subject at this link: https:/ /arxiv. org/ pdf/1611. 09477. pdf.

The definition they provide is: processor or conditioner that prepares real-world data for
predictive modeling in a statistically sound manner. In treating your data, you'll rid yourself of
many of the data preparation headaches discussed earlier. The example with our current
dataset will provide an excellent introduction into the benefits of this method and how you
can tailor it to your needs. I kind of like to think that treating your data is a smarter version
of one-hot encoding.

The package offers three different functions to treat data, but I only use one and that
is designTreatmentsZ(), which treats the features without regard to an outcome or
response. The functions designTreatmentsC() and designTreatmentsN() functions
build dataframes based on categorical and numeric outcomes respectively. Those functions
provide a method to prune features in a univariate fashion. I'll provide other ways of
conducting feature selection, so that's why I use that specific function. I encourage you to
experiment on your own.

The function we use in the following will produce an object that you can apply to training,
validation, testing, and even production data. In later chapters, we'll focus on training and
testing, but here let's treat the entire data without considerations of any splits for simplicity.
There're a number of arguments in the function you can change, but the defaults are
usually sufficient. We'll specify the input data, the feature names to include, and
minFraction, which is defined by the package as the optional minimum frequency a
categorical level must have to be converted into an indicator column. I've chosen 5% and
the minimum frequency. In real-world data, I've seen this number altered many times to
find the right level of occurrence:

my_treatment <- vtreat::designTreatmentsZ(
  dframe = gettysburg_fltrd,
  varlist = colnames(gettysburg_fltrd),
  minFraction = 0.05
)
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We now have an object with a stored treatment plan. Now we just use the prepare()
function to apply that treatment to a dataframe or tibble, and it'll give us a treated
dataframe:

gettysburg_treated <- vtreat::prepare(my_treatment, gettysburg_fltrd)

dim(gettysburg_treated)

The output of the preceding code is as follows:

[1]   587      54

We now have 54 features. Let's take a look at their names:

colnames(gettysburg_treated)

The abbreviated output of the preceding code is as follows:

[1]     "type_catP"       "state_catP"      "regiment_or_battery_catP"
[4]  "brigade_catP"    "division_catP"                    "corps_catP"

As you explore the names, you'll notice that we have features ending in catP, clean,
and isBAD and others with _lev_x_ in them. Let's cover each in detail. As for catP
features, the function creates a feature that's the frequency for the categorical level in that
observation. What does that mean? Let's see a table for type_catP:

table(gettysburg_treated$type_catP)

The output of the preceding code is as follows:

0.080068143100   0.21976149914    0.70017035775
            47             129              411

This tells us that 47 rows are of category level x (in this case, Cavalry), and this is 8% of the
total observations. As such, 22% are Artillery and 70% Infantry. This can be helpful in
further exploring your data and to help adjust the minimum frequency in your category
levels. I've heard it discussed that these values could help in the creation of a distance or
similarity matrix.

The next is clean. These are our numeric features that have had missing values imputed,
which is the feature mean, and outliers winsorized or collared if you specified the
argument in the prepare() function. We didn't, so only missing values were imputed.
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Here's an interesting blog post of the merits of winsorizing from
SAS: https:/ /blogs. sas. com/ content/ iml/ 2017/ 02/ 08/winsorization-
good- bad- and- ugly. html.

Speaking of missing values, this brings us to isBAD. This feature is the 1 for missing and 0
if not missing we talked about where I manually coded it.

Finally, lev_x is the dummy feature coding for a specific categorical level. If you go
through the levels that were hot-encoded for states, you'll find features for Georgia, New
York, North Carolina, Pennsylvania, US (this is US Regular Army units), and Virginia.

My preference is to remove the catP features and remove the clean from the feature
name, and change isBAD to isNA. This a simple task with these lines of code:

gettysburg_treated <-
  gettysburg_treated %>%
  dplyr::select(-dplyr::contains('_catP'))

colnames(gettysburg_treated) <-
  sub('_clean', "", colnames(gettysburg_treated))

colnames(gettysburg_treated) <-
  sub('_isBAD', "_isNA", colnames(gettysburg_treated))

Are we ready to start building learning algorithms? Well, not quite yet. In the next section,
we'll deal with highly correlated and linearly related features.

Correlation and linearity
For this task, we return to our old friend the caret package. We'll start by creating a
correlation matrix, using the Spearman Rank method, then apply the findCorrelation()
function for all correlations above 0.9:

df_corr <- cor(gettysburg_treated, method = "spearman")

high_corr <- caret::findCorrelation(df_corr, cutoff = 0.9)

Why Spearman versus Pearson correlation? Spearman is free from any
distribution assumptions and is robust enough for any task at
hand: http:/ /www. statisticssolutions. com/ correlation- pearson-
kendall- spearman/ .
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The high_corr object is a list of integers that correspond to feature column numbers. Let's
dig deeper into this:

high_corr

The output of the preceding code is as follows:

[1]   9   4    22    43   3   5

The column indices refer to the following feature names:

colnames(gettysburg_treated)[c(9, 4, 22, 43, 3, 5)]

The output of the preceding code is as follows:

[1]                       "total_casualties"       "wounded"
"type_lev_x_Artillery"
 [4] "army_lev_x_Confederate" "killed_isNA"              "wounded_isNA"

We saw the features that're highly correlated to some other feature. For instance,
army_lev_x_Confederate is perfectly and negatively correlation with
army_lev_x_Union. After all, you can only two armies here, and Colonel Fremantle of the
British Coldstream Guards was merely an observer. To delete these features, just filter your
dataframe by the list we created:

gettysburg_noHighCorr <- gettysburg_treated[, -high_corr]

There you go, they're now gone. But wait! That seems a little too clinical, and maybe we
should apply our judgment or the judgment of an SME to the problem? As before, let's
create a tibble for further exploration:

df_corr <- data.frame(df_corr)

df_corr$feature1 <- row.names(df_corr)

gettysburg_corr <-
  tidyr::gather(data = df_corr,
                key = "feature2",
                value = "correlation",
                -feature1)

gettysburg_corr <-
  gettysburg_corr %>%
  dplyr::filter(feature1 != feature2)

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Preparing and Understanding Data Chapter 1

[ 22 ]

What just happened? First of all, the correlation matrix was turned into a dataframe. Then,
the row names became the values for the first feature. Using tidyr, the code created the
second feature and placed the appropriate value with an observation, and we cleaned it up
to get unique pairs. This screenshot shows the results. You can see that the Confederate and
Union armies have a perfect negative correlation:

You can see that it would be safe to dedupe on correlation as we did earlier. I like to save
this to a spreadsheet and work with SMEs to understand what features we can drop or
combine and so on. 

After handling the correlations, I recommend exploring and removing as needed linear
combinations. Dealing with these combinations is a similar methodology to high
correlations:

linear_combos <- caret::findLinearCombos(gettysburg_noHighCorr)

linear_combos

The output of the preceding code is as follows:

$`linearCombos`
 $`linearCombos`[[1]]
 [1] 16 7 8 9 10 11 12 13 14 15

 $remove
 [1] 16

The output tells us that feature column 16 is linearly related to those others, and we can
solve the problem by removing it. What are these feature names? Let's have a look:

colnames(gettysburg_noHighCorr)[c(16, 7, 8, 9, 10, 11, 12, 13, 14, 15)]

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Preparing and Understanding Data Chapter 1

[ 23 ]

The output of the preceding code is as follows:

[1]            "total_guns"         "X3inch_rifles" "X10lb_parrots"
"X12lb_howitzers" "X12lb_napoleons"
 [6] "X6lb_howitzers" "X24lb_howitzers" "X20lb_parrots" "X12lb_whitworths"
"X14lb_rifles"

Removing the feature on the number of "total_guns" will solve the problem. This makes
total sense since it's the number of guns in an artillery battery. Most batteries, especially in
the Union, had only one type of gun. Even with multiple linear combinations, it's an easy
task with this bit of code to get rid of the necessary features:

linear_remove <- colnames(gettysburg_noHighCorr[16])

df <- gettysburg_noHighCorr[, !(colnames(gettysburg_noHighCorr) %in%
linear_remove)]

dim(df)

The output of the preceding code is as follows:

[1] 587   39

There you have it, a nice clean dataframe of 587 observations and 39 features. Now
depending on the modeling, you may have to scale this data or perform other
transformations, but this data, in this format, makes all of that easier. Regardless of your
prior knowledge or interest of one of the most important battles in history, and the
bloodiest on American soil, you've developed a workable understanding of the Order of
Battle, and the casualties at the regimental or battery level. Start treating your data, not next
week or next month, but right now!

If you desire, you can learn more about the battle here: https:/ /www.
battlefields. org/ learn/ civil- war/ battles/ gettysburg.
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Summary
This chapter looked at the common problems in large, messy datasets common in machine
learning projects. These include, but are not limited to the following:

Missing or invalid values
Novel levels in a categorical feature that show up in algorithm production
High cardinality in categorical features such as zip code
High dimensionality
Duplicate observations

This chapter provided a disciplined approach to dealing with these problems by showing
how to explore the data, treat it, and create a dataframe that you can use for developing
your learning algorithm. It's also flexible enough that you can modify the code to suit your
circumstances. This methodology should make what many feels is the most arduous, time-
consuming, and least enjoyable part of the job an easy task.

With this task behind us, we can now get started on our first modeling task using linear
regression in the following chapter.
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Linear Regression

"An approximate answer to the right problem is worth a good deal more than an exact
answer to an approximate problem."

– John Tukey

It's essential that we get started with a simple yet extremely effective technique that's been
used for a long time: linear regression. Albert Einstein is believed to have remarked at one
time or another that things should be made as simple as possible, but no simpler. This is
sage advice and a good rule of thumb in the development of algorithms for machine
learning. Considering the other techniques that we'll discuss later, there's no simpler model
than tried and tested linear regression, which uses the least squares approach to predict a
quantitative outcome. We can consider it to be the foundation of all the methods that we'll
discuss later, many of which are mere extensions. If you can master the linear regression
method, well then quite frankly I believe you can master the rest of this book. Therefore,
let's consider this as a good starting point for our journey towards becoming a machine
learning guru.

This chapter covers introductory material and an expert in this subject can skip ahead to the
next topic. Otherwise, ensure that you thoroughly understand this topic before venturing to
other, more complex learning methods. I believe you'll discover that many of your projects
can be addressed by just applying what's discussed in the following sections. Linear
regression is probably the most straightforward model to explain to your customers, most
of whom will have at least a cursory understanding of R-squared. Many of them will have
been exposed to it at great depth and hence will be comfortable with variable contribution,
collinearity, and the like.

The following are the topics that we'll be covering in this chapter:

Univariate linear regression
Multivariate linear regression
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Univariate linear regression
We begin by looking at a simple way to predict a quantitative response, Y, with one
predictor variable, x, assuming that Y has a linear relationship with x. The model for this
can be written as follows:

We can state it as the expected value of Y is a function of the parameters  (the intercept)
plus  (the slope) times x, plus an error term e. The least squares approach chooses the
model parameters that minimize the Residual Sum of Squares (RSS) of the predicted y
values versus the actual Y values. For a simple example, let's say we have the actual values
of Y1 and Y2 equal to 10 and 20 respectively, along with the predictions of y1 and y2 as 12
and 18. To calculate RSS, we add the squared differences:

This, with simple substitution, yields the following:

 

Before we begin with an application, I want to point out that if you read the headlines of
various research breakthroughs, you should do so with a jaded eye and a skeptical mind as
the conclusion put forth by the media may not be valid. As we shall see, R—and any other
software, for that matter—will give us a solution regardless of the input. However, just
because the math makes sense and a high correlation or R-squared statistic is reported
doesn't mean that the conclusion is valid.

To drive this point home, let's have a look at the famous Anscombe dataset, which is
available in R. The statistician Francis Anscombe produced this set to highlight the
importance of data visualization and outliers when analyzing data. It consists of four pairs
of X and Y variables that have the same statistical properties but when plotted show
something very different. I've used the data to train colleagues and to educate business
partners on the hazards of fixating on statistics without exploring the data and checking
assumptions. I think this is an excellent place to start should you have a similar need. It's a
brief digression before moving on to serious modeling:

> #call up and explore the data

> data(anscombe)

> attach(anscombe)
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> anscombe
   x1 x2 x3 x4    y1   y2    y3    y4
1  10 10 10  8  8.04 9.14  7.46  6.58
2   8  8  8  8  6.95 8.14  6.77  5.76
3  13 13 13  8  7.58 8.74 12.74  7.71
4   9  9  9  8  8.81 8.77  7.11  8.84
5  11 11 11  8  8.33 9.26  7.81  8.47
6  14 14 14  8  9.96 8.10  8.84  7.04
7   6  6  6  8  7.24 6.13  6.08  5.25
8   4  4  4 19  4.26 3.10  5.39 12.50
9  12 12 12  8 10.84 9.13  8.15  5.56
10  7  7  7  8  4.82 7.26  6.42  7.91
11  5  5  5  8  5.68 4.74  5.73  6.89

As we shall see, each of the pairs has the same correlation coefficient: 0.816. The first two
are as follows:

> cor(x1, y1) #correlation of x1 and y1
[1] 0.8164205

> cor(x2, y1) #correlation of x2 and y2

[1] 0.8164205

The real insight here, as Anscombe intended, is when we plot all four pairs together, as
follows:

> par(mfrow = c(2,2)) #create a 2x2 grid for plotting

> plot(x1, y1, main = "Plot 1")

> plot(x2, y2, main = "Plot 2")

> plot(x3, y3, main = "Plot 3")

> plot(x4, y4, main = "Plot 4")

Downloading the example code
You can download the example code files for all Packt books you've
purchased from your account at http://www.packtpub.com. If you bought
this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files emailed directly to you.
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The output of the preceding code is as follows:

We can see the following:

Plot 1 appears to have a true linear relationship
Plot 2 is curvilinear, Plot 3 has a dangerous outlier
Plot 4 is driven by one outlier

There you have it: a cautionary tale about the dangers of solely relying on correlation.
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Building a univariate model
Our first case focuses on the goal of predicting the water yield (in inches) of the Snake River
Watershed in Wyoming, USA, as a function of the water content of the year's snowfall. This
forecast will be useful in managing the water flow and reservoir levels, as the Snake River
provides much-needed irrigation water for the farms and ranches of several western states.
The snake dataset is available in the alr3 package (note that alr stands for applied linear
regression):

> install.packages("alr3")
> library(alr3)
> data(snake)
> dim(snake)
[1] 17  2
> head(snake)
     X    Y
1 23.1 10.5
2 32.8 16.7
3 31.8 18.2
4 32.0 17.0
5 30.4 16.3
6 24.0 10.5

Now that we have 17 observations, data exploration can begin. But first, let's change X and
Y to meaningful variable names, as follows:

> names(snake) <- c("content", "yield")
> attach(snake) # attach data with new names
> head(snake)

  content yield
1    23.1  10.5
2    32.8  16.7
3    31.8  18.2
4    32.0  17.0
5    30.4  16.3
6    24.0  10.5

> plot(content,
       yield, main = "Scatterplot of Snow vs. Yield",
       xlab = "water content of snow",
       ylab = "water yield")
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The output of the preceding code is as follows:

This is an intriguing plot as the data is linear and has a slight curvilinear shape driven by
two potential outliers at both ends of the extreme. 

To perform a linear regression in R, we use the lm() function to create a model in the
standard form of fit = lm(Y ~ X). You can then test your assumptions using various
functions on your fitted model by using the following code:

> yield_fit <- lm(yield ~ content)

> summary(yield_fit)

Call:
lm(formula = yield ~ content)

Residuals:
        Min      1Q  Median      3Q     Max
-2.1793 -1.5149 -0.3624  1.6276  3.1973

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.72538    1.54882   0.468    0.646
content      0.49808    0.04952  10.058 4.63e-08
    ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05
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      '.' 0.1 ' ' 1

Residual standard error: 1.743 on 15 degrees of
      freedom
Multiple R-squared:  0.8709,    Adjusted R-squared:
       0.8623
F-statistic: 101.2 on 1 and 15 DF,  p-value:
       4.632e-08

With the summary() function, we can examine some items, including the model
specification, descriptive statistics about the residuals, the coefficients, codes to model
significance, and a summary of the model error and fit. Right now, let's focus on the
parameter coefficient estimates, and see whether our predictor variable has a significant p-
value and whether the overall model F-test has a significant p-value. Looking at the
parameter estimates, the model tells us that yield is equal to 0.72538 plus 0.49808 times
content. We can state that for every one unit change in the content, the yield will increase
by 0.49808 units. F-statistic is used to test the null hypothesis that the model
coefficients are all zero.

Since p-value is highly significant, we can reject the null and move on to the t-test for
content, which tests the null hypothesis that it's zero. Again, we can reject the null.
Additionally, we can see the Multiple R-squared and Adjusted R-squared
values. Adjusted R-squared will be covered under the multivariate regression topic, so
let's zero in on Multiple R-squared; here, we see that it's 0.8709. In theory, it can range
from zero to one and is a measure of the strength of the association between X and Y. The
interpretation, in this case, is that the water content of snow can explain 87 percent of the
variation in the water yield. On a side note, R-squared is nothing more than the correlation
coefficient of [X, Y] squared.

We can recall our scatter plot and now add the best fit line produced by our model using
the following code:

> plot(content, yield)

> abline(yield_fit, lwd = 3, col = "red")
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The output of the preceding code is as follows:

Reviewing model assumptions
A linear regression model is only as good as the validity of its assumptions, which can be
summarized as follows:

Linearity: This is a linear relationship between the predictor and the response
variables. If this relationship is not explicitly present, transformations (log,
polynomial, exponent, and so on) of X or Y may solve the problem.
Non-correlation of errors: This is a common problem in time series and panel
data where ; if the errors are correlated, you run the risk of
creating a poorly specified model.
Homoscedasticity: This refers to normally distributed and constant variance of
errors, which means that the variance of errors is constant across different input
values. Violations of this assumption don't create biased coefficient estimates, but
because of improper standard errors for the coefficients can lead to statistical
tests for significance that can be either too high or too low, leading to wrong
conclusions. This violation is also called heteroscedasticity.
No collinearity: No linear relationship should exist between two predictor
variables, which is to say that there should be no correlation between the
features. This issue can lead to incorrect statistical tests for the coefficients.
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Presence of outliers: Outliers can severely skew the estimation, and they must be
examined and handled via removal or transformation while fitting a model using
linear regression; as we saw in the Anscombe example, outliers can lead to a
biased estimate.

A simple way to initially check the assumptions is by producing plots. The plot()
function, when combined with a linear model fit, will automatically generate four plots,
allowing you to examine the assumptions. R produces the plots one at a time, and you
advance through them by hitting the Enter key. It's best to explore all four simultaneously,
and we can do so in the following manner:

> par(mfrow = c(2,2))

> plot(yield_fit)

The output of the preceding code is as follows:
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The two plots on the left allow us to examine the homoscedasticity of errors and non-
linearity. What we're looking for is some pattern or, more importantly, that no pattern
exists. Given the sample size of only 17 observations, nothing visible exists. Common
heteroscedastic errors will appear to be u-shaped, inverted u-shaped, or clustered close
together on the left of the plot. They'll become wider as the fitted values increase (a funnel
shape). It's safe to conclude that no violation of homoscedasticity is apparent in our model.

The Normal Q-Q plot in the upper-right corner helps us to determine whether the residuals
are normally distributed. The Quantile-Quantile (Q-Q) represents the quantile values of
one variable plotted against the quantile values of another. It appears that the outliers
(observations 7, 9, and 10) may be causing a violation of the assumption. The Residuals vs
Leverage plot can tell us what observations, if any, are unduly influencing the model; in
other words, if there are any outliers we should be concerned about. The statistic is Cook's
distance or Cook's D, and it's generally accepted that a value greater than one should be
worthy of further inspection.

What exactly is further inspection? This is where art meets science. The easy way out would
be to delete the observation, in this case number 9, and redo the model. However, a better
option may be to transform the predictor and/or the response variables. If we just delete
observation 9, then maybe observations 10 and 13 would fall outside the band for greater
than one. In this simple example, I believe that this is where domain expertise can be
critical. More times than I can count, I've found that exploring and understanding outliers
can yield valuable insights. When we first examined the previous scatter plot, I pointed out
the potential outliers and these happen to be observations number 9 and number 13. It
seems important to discuss with the appropriate subject matter experts to understand why
this is the case. Is it a measurement error? Is there a logical explanation for these
observations? I certainly don't know, but this is an opportunity to increase the value that
you bring to an organization.

Let's leave this simple case behind us and move on to a supervised learning case involving
multivariate linear regression.

Multivariate linear regression
In the case study that follows, we're going to look at the application of some exciting
methods on an interesting dataset. Like in the previous chapter, once the data is loaded
we'll treat it, but unlike the previous example, we'll split it into training and testing sets.
Given the dimensionality of the data, feature reduction and selection are critical.
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We'll explore the oft-maligned stepwise selection, then move on to one of my favorite
methodologies, which is Multivariate Adaptive Regression Splines (MARS). If you're not 
using MARS, I highly recommend it. I've been told, but cannot verify it, that Max Kuhn
stated in a conference that it's his starting procedure. I'm not surprised if it's true. I learned
the technique from a former Senior Director of Analytics at one of the largest banks in the
world and haven't looked back since.

Loading and preparing the data
To get the data into your working directory, you can find it on my GitHub at this
link: https://github. com/ datameister66/ MMLR3rd.

The file we're using is ames.csv. This data is from the sales of homes sold in Ames, Iowa,
which is the location of Iowa State University, and I believe has a population of around
70,000. I downloaded the data from Kaggle.com, and the response we're trying to predict is
the final sales price. It's a nice size to practice machine learning methods with 1,460
observations of 84 features, and many of the features are categorical.

Before we load the data, if not already done, load the necessary packages, call the
magrittr library, and, if you so choose, update the options. I prefer not to have scientific
number notation and want to round the values to four decimals:

library(magrittr)
options(scipen = 999)
options(digits = 4)
# install.packages("caret")
# install.packages("ggthemes")
# install.packages("janitor")
# install.packages("leaps")
# install.packages("plm")
# install.packages("readr")
# install.packages("sjmisc")
# install.packages("tidyverse")
# install.packages("vtreat")

Now, load the data and confirm the dimensions:

> ames <- readr::read_csv(~/ames.csv")

> dim(ames)

[1] 1460   84
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I don't believe there are any duplicate observations, but let's confirm:

> dupes <- duplicated(ames)

> table(dupes)
dupes
FALSE
 1460

Excellent! There are no duplicates. Here, we create a tibble of the descriptive statistics.
Open the data in RStudio and explore it by feature to get a feel for it:

> ames %>%
    sjmisc::descr() -> ames_descr

> View(ames_descr)

There are some thought-provoking features but focus first on Id. Notice that this has a
unique value for all of the observations. Hence, we can remove it as it has no value in
predictions:

> range(ames$Id)
[1] 1 1460

> ames <- ames[, -1]

Three other features are interesting as they are the year that an event happened. Instead of
the year as the value of the feature, how about we create a feature of years since the event?
This is easy to do by taking YrSold and subtracting in sequence YearBuilt,
YearRemodAdd, and GarageYrBuilt just like this:

 > ames %>%
     dplyr::mutate(yearsOld = YrSold - YearBuilt) -> ames

> ames %>%
    dplyr::mutate(yearsRemodel = YrSold - YearRemodAdd) -> ames

> ames %>%
    dplyr::mutate(yearsGarage = YrSold - GarageYrBlt) -> ames

Another thing of interest when you look at the descriptive stats is the fact that
GarageYrBlt has roughly 5.5% missing values. So, yearsGarage will have a
corresponding amount of missing values. As is my standard procedure, I want us to code a
dummy feature that indicates missing values and changes those missing values to zero. 
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I'm not sure that any imputation here would add value:

> ames$yearsGarage_isNA <-
    ifelse(is.na(ames$yearsGarage), 1, 0)

> ames$yearsGarage[is.na(ames$yearsGarage)] <- 0

Let's remove those unnecessary features given that we created a new feature of years since
the event:

 > ames <- ames[, c(-19, -20, -59)]

Another feature of interest is MoSold. This is a numeric that corresponds to the month it
was sold, so 1 = January, 2 = February, and so on. This is probably better conditioned as a
character feature and will end up as dummy features during one-hot encoding:

> ames$MoSold <- as.character(ames$MoSold)

The one plot we should look at is of the response, which is SalesPrice. I like to try out
different plot themes, so I'll use different themes for different plots for illustration purposes,
which should help you discover your favorite ones:

> ggplot2::ggplot(ames, ggplot2::aes(x = SalePrice)) +
   ggplot2::geom_histogram() +
    ggthemes::theme_few()

The output of the preceding code is as follows:
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The histogram shows the data is skewed to the right. In non-linear methods, this may not
be a problem, but in linear models, you can usually count on biased estimates and/or severe
problems with outliers in your residuals. It seems like a good idea to transform this using
the natural log:

> ames %>%
    dplyr::mutate(logSales = log(SalePrice)) -> ames

> ggplot2::ggplot(ames, ggplot2::aes(x = logSales)) +
    ggplot2::geom_histogram() +
    ggthemes::theme_economist_white()

The output of the preceding code is as follows:

We now have a much more normal distribution but can see some potentially problematic
outliers of homes selling at meager and very high prices.

My usual next step is to finalize any missing values in features of interest. Again, we code a
dummy feature and turn the missing values into zero:

> ames$LotFrontage_isNA <-
    ifelse(is.na(ames$LotFrontage), 1, 0)

> ames$LotFrontage[is.na(ames$LotFrontage)] <- 0

> ames$MasVnrArea_isNA <-
    ifelse(is.na(ames$MasVnrArea), 1, 0)

> ames$MasVnrArea[is.na(ames$MasVnrArea)] <- 0
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I don't believe we have any zero variance features (we removed Id) but let's double-check:

> feature_variance <- caret::nearZeroVar(ames, saveMetrics = TRUE)

> table(feature_variance$zeroVar)

FALSE
   84

All good! We now come to the point where we can safely split the data into training and
testing sets. I guess you could call the training set a validation set, as the real test data is a
separate file that you would submit to Kaggle for evaluation. That is out of scope here;
hence, I call our holdout sample test. 

In this example, let's use an 80/20 split:

> set.seed(1944)

> ames %>%
    dplyr::sample_frac(.8) -> train

> ames %>%
    dplyr::anti_join(train) -> test

If you look in the Global Environment tab of RStudio, you'll see that train has 1,168
observations and test 292 observations.

We now come to the point where we're almost ready to treat the training data. However,
let's create an object called varlist, which we'll feed into the treat function, which is the
predictor features, and generate response variables:

> varlist = colnames(ames[, !colnames(ames) %in% c('SalePrice',
'logSales')])

> train_y <- train$SalePrice
> train_logy <- train$logSales
> test_y <- test$SalePrice
> test_logy <- test$logSales

Now you can design a treatment scheme. Do this by only treating the training data, so you
don't bias your model building. As you'll see, you can apply that treatment scheme to the
test data or any currently unseen data for that matter. We'll just specify our training data,
varlist, and set minFraction for coding character feature levels to 10%:

> df_treatment <- vtreat::designTreatmentsZ(
    dframe = train,
    varlist = varlist,
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    minFraction = 0.10
  )

For a further discussion on designing data treatment strategies, refer
to Chapter 1, Preparing and Understanding Data.

Now, apply the treatment to both train and test datasets:

> trained <- vtreat::prepare(df_treatment, train)

> tested <- vtreat::prepare(df_treatment, test)

Notice that we now have 155 features in each of these treated datasets. Feel free to explore
them, keeping in mind how the features are renamed as discussed in Chapter 1, Preparing
and Understanding Data.

As I stated in the previous chapter, we can drop the _catP features and rename the others
as in the following code:

> trained <-
    trained %>%
    dplyr::select(-dplyr::contains('_catP'))

> tested <-
    tested %>%
    dplyr::select(-dplyr::contains('_catP'))

> colnames(trained) <-
    sub('_clean', "", colnames(trained))

> colnames(tested) <-
    sub('_clean', "", colnames(tested))

> colnames(trained) <-
    sub('_isBAD', "_isNA", colnames(trained))

> colnames(tested) <-
    sub('_isBAD', "_isNA", colnames(tested))
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Just removing the category percentage features reduced the number of them to 114. The
final step before moving on to model creation is to remove highly correlated pairs of
features and verify there are no linear dependencies. In linear models, this is critical to sort
out. During one-hot encoding, if you create as many indicator/dummy features as levels in
the parent categorical feature, you would fall into the dummy variable trap, which results
in perfect multicollinearity. The classic example is a feature with levels of only male or
female. One-hot would give us two features, whereas it should be encoded to one feature
with, say, female = 1 and male = 0. Then, in the linear regression, the expectation for male
would just be the intercept B0, while for female it would be B0 + B1x.

As for correlation, we could explore the various relationships in depth, as discussed in
Chapter 1, Preparing and Understanding Data. Given the size of this data, let's identify and
remove those pairs with correlation greater than 0.79. I encourage you to experiment with
this specification:

> df_corr <- cor(trained)

> high_corr <- caret::findCorrelation(df_corr, cutoff = 0.79)

> length(high_corr)
[1] 19

There are 19 features we can eliminate. As I stated, you can examine this problem in more
depth, but let's proceed by merely removing them:

trained <- trained[, -high_corr]

For linear dependencies, the caret package comes in handy again. To be sure, I like to
double check with the detect_lin_dep() function:

> caret::findLinearCombos(trained)
$`linearCombos`
list()

$`remove`
NULL

> # linear dependency
> plm::detect_lin_dep(trained)
[1] "No linear dependent column(s) detected."

The results from the caret package tell us there are no features to remove since no
dependency exists, and the plm package confirms this.

We'll now move on to training our model. This should be interesting!
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Modeling and evaluation – stepwise regression
The model we're looking to create will consist of the following form:

In this formula, the predictor variables (features) can be from 1 to n.

One of the critical elements that we'll cover here is the vital task of feature selection. Later
chapters will include more advanced techniques.

Forward selection starts with a model that has zero features; it then iteratively adds
features one at a time until achieving the best fit based on say the reduction in residual sum
of squares or overall model AIC. This iteration continues until a stopping rule is satisfied
for example, setting maximum p-values for features in the model at 0.05.

Backward selection begins with all of the features in the model and removes the least
useful, one at a time.

Stepwise selection is a hybrid approach where the features are added through forward
stepwise regression, but the algorithm then examines whether any features that no longer
improve the model fit can be removed. 

It's important to add here that stepwise techniques can suffer from serious issues. You can
perform a forward stepwise on a dataset then a backward stepwise and end up with two
completely conflicting models. The bottom line is that stepwise can produce biased
regression coefficients; in other words, they're too large and the confidence intervals are too
narrow (Tibshirani, 1996).

Best subsets regression can be a satisfactory alternative to the stepwise methods for feature
selection. In best subsets regression, the algorithm fits a model for all of the possible feature
combinations; so, if you have three features, seven models are created. As you might've
guessed, if your dataset has many features like the one we're analyzing here, this can be a
heavy computational burden. A possible solution you can try is to use forward, backward,
or stepwise selection to reduce your features to a point where best subset regression
becomes practical. A key point to remember is that we still need to focus on our holdout
sample performance as best subsets are no guarantee of producing the best results.
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For both of the stepwise models, we'll use cross-validation k = 3 folds. We can specify this
in an object using the caret package function, trainControl(), then pass that to our
model for training:

> step_control <-
    caret::trainControl(method = "cv",
    number = 3,
    returnResamp = "final")

The method for training the model is based on forward feature selection from the leaps
package. 

This code gets us our results and, using trace = FALSE, we suppress messages on
training progress. I'm also constraining the minimum and the maximum number of
features to consider as 10 and 25. You can experiment with that parameter as you desire,
but I am compelled to advise that you can end up with dozens of features and easily overfit
the model:

> set.seed(1984)

> step_fit <-
    caret::train(trained, train_logy, method = "leapForward",
    tuneGrid = data.frame(nvmax = 10:25),
    trControl = step_control,
    trace = FALSE)

You can see all of the resulting metrics for each number of features
using step_fit$results. However, let's just identify the best model:

> step_fit$bestTune
   nvmax
11    20

The output shows up that the model with the lowest Root Mean Square Error (RMSE) is
with 20 features included, which corresponds to model number 11. To understand more
about the specific model and its corresponding coefficients, it's quite helpful to put the
features into a dataframe or, in this case, a tibble:

> broom::tidy(coef(step_fit$finalModel, 20)) -> step_coef

> View(step_coef)
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The abbreviated output of the preceding code is as follows:

As you can see, it includes the intercept term. You can explore this data further and see if it
makes sense.

We should build a separate model with these features, test out of sample performance, and
explore the assumptions. An easy way to do this is to drop the intercept from the tibble
then paste together a formula of the names:

> step_coef <- step_coef[-1, ]

> lm_formula <- as.formula(paste("y ~ ",paste(step_coef$names,
collapse="+"), sep = ""))

Now, build a linear model, incorporating the response in the dataframe:

> trained$y <- train_logy

> step_lm <- lm(lm_formula, data = trained)

You can examine the results the old fashioned way using summary(). However, let's stay in
the tidyverse format, putting the coefficients into a tibble with tidy() and using
glance() to see how the entire model performs:

> # summary(step_lm)

> # broom::tidy(step_lm)

> broom::glance(step_lm)
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# A tibble: 1 x 11
  r.squared adj.r.squared sigma statistic p.value     df logLik   AIC
*     <dbl>         <dbl> <dbl>     <dbl>   <dbl>  <int>  <dbl> <dbl>
1     0.862         0.860 0.151       359.      0     21   563. -1082.
# ... with 3 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>

A quick glance shows us we have an adjusted R-squared value of 0.86 and a highly statistic
p-value for the overall model. What about our assumptions? Let's take a look:

> par(mfrow = c(2,2))

> plot(step_lm)

The output of the preceding code snippet is as follows:

Even a brief examination shows we're having some issues with three observations: 87, 248,
and 918. If you look at the Q-Q plot, you can see a pattern known as heavy-tailed. What's 
happening is the model isn't doing very well at predicting extreme values.

Recall the histogram plot of the log response and how it showed outlier values at the high
and low ends of the distribution. We could truncate the response, but that may not help in
out of sample predictions. In this case, let's drop those three observations noted and re-run
the model:

> train_reduced <- trained[c(-87, -248, -918), ]

> step_lm2 <- lm(lm_formula, data = train_reduced)
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Here, we just look at the Q-Q plot:

> car::qqPlot(step_lm2$residuals)

The output of the preceding code is as follows:

Clearly, we have some issues here where the residuals are negative (actual price-predicted
price). What are the implications of our analysis? If we're producing prediction
intervals, there could be problems since they're calculated on the assumption of normally
distributed residuals. Also, with a dataset of this size, our other statistical tests are very
robust to the problem of heteroscedasticity.

To investigate the issue of collinearity, one can call up the Variance Inflation Factor (VIF)
statistic. VIF is the ratio of the variance of a feature's coefficient when fitting the full model,
divided by the feature's coefficient variance when fitted by itself. The formula is as follows:

In the preceding equation,  is the R-squared for our feature of interest, i, being regressed
by all the other features. The minimum value that the VIF can take is 1, which means no
collinearity at all. There are no hard and fast rules, but in general, a VIF value that exceeds 5
(or some say 10) indicates a problematic amount of collinearity (James, p.101, 2013).

A precise value is difficult to select because there's no hard statistical cut-off point for when
multi-collinearity makes your model unacceptable.
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The vif() function in the car package is all that's needed to produce the values, as we can
put them in a tibble and examine them:

> step_vif <- broom::tidy(car::vif(step_lm2))

> View(step_vif)

The abbreviated output of the preceding code is as follows:

I've sorted the view in descending order by VIF value. I believe we can conclude that there
are no apparent problems with multicollinearity.

Finally, we have to see how we're doing out of sample, that is, on our test data. We make
the model predictions and examine the results as follows:

> step_pred <- predict(step_lm2, tested)

> caret::postResample(pred = step_pred, obs = test_logy)
    RMSE Rsquared     MAE
 0.12978  0.89375 0.09492

> caret::postResample(step_lm2$fitted.values, train_reduced$y)
    RMSE Rsquared     MAE
 0.12688  0.90072 0.09241

We see the error increases only slightly: 0.12688 versus 0.12978 in the test data. I think
we can do better with our MARS model. Let's not delay in finding out.
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Modeling and evaluation – MARS
How would you like a modeling technique that provides all of the following:

Offers the flexibility to build linear and nonlinear models for both regression and
classification
Can support variable interaction terms
Is simple to understand and explain
Requires little data processing
Handles all types of data: numeric and categorical
Performs well on unseen data, that is, it does well in a bias-variance trade-off 

If that all sounds appealing, then I cannot recommend the use of MARS models enough.
I've found them to perform exceptionally well. In fact, in a past classification problem of
mine, they outperformed both a random forest and boosted trees on test/validation data.

To understand MARS is quite simple:

First, just start with a linear or generalized linear model like we discussed1.
previously.
Then, to capture any nonlinear relationship, a hinge function is added. These2.
hinges are simply points in the input feature that equate to a coefficient change.
For example, say we have this:

Where variables 1 and 2 are on a scale of 1 to 10. 
Now, let's see how a hinge function for variable 2 could come into play:3.

We read the hinge function as we take the maximum of either 0 or variable 2-5.50. So,
whenever variable 2 has a value greater than 5.5, that value will be multiplied times the
coefficient; otherwise, it will be zero. The method will accommodate multiple hinges for
each variable and also interaction terms.

The other interesting thing about MARS is the automatic variable selection. This can be
done with cross-validation, but the default is to build through a forward pass, much like
forward selection, then a backward pass to prune the model, which after the forward pass
is likely to overfit the data. This backward pass prunes input features and removes hinges
based on Generalized Cross Validation (GCV):
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In the earth package in R, Penalty = 2 for an additive model and 3 for a multiplicative
model. A multiplicative model is one with interaction terms. In earth, there are quite a few
parameters you can tune. I'll demonstrate, in the example, a practical and straightforward
way to implement the methodology. If you so desire, you can learn more about its
flexibility in the excellent vignette on the earth package by Stephen Milborrow, available
at this link: http:/ /www. milbo. org/ doc/ earth- notes. pdf.

I'll specify a model selection of a five-fold cross-validation (pmethod = cv and nfold =
5) as an additive model only with no interactions (degree = 1) and only one hinge per
input feature (minspan = -1). I also want to have a maximum of 25 features (nprune =
25). The code is as follows:

> set.seed(1988)
> earth_fit <-
    earth::earth(
      x = train_reduced[, -96],
      y = train_reduced[, 96],
      pmethod = 'cv',
      nfold = 5,
      degree = 1,
      minspan = -1,
      nprune = 25
    )

summary() of earth_fit is quite lengthy, so here's the abbreviated version:

 > summary(earth_fit)

Selected 20 of 26 terms, and 13 of 95 predictors using pmethod="cv"
Termination condition: RSq changed by less than 0.001 at 26 terms
Importance: OverallQual, X1stFlrSF, X2ndFlrSF, yearsOld, ...
Number of terms at each degree of interaction: 1 19 (additive model)
GRSq 0.9052 RSq 0.9113 mean.oof.RSq 0.8979 (sd 0.0115)

What we can discern is that only 13 features were selected with a total of 20 terms,
including hinged features. mean.oof.RSq is the average of the out of fold R-squared
values (0.8979), and the full-model R-squared is 0.9113. You can call feature importance
as well:

> earth::evimp(earth_fit)
                      nsubsets   gcv   rss
OverallQual                 19 100.0 100.0
X1stFlrSF                   17  49.7  50.0
X2ndFlrSF                   16  42.7  43.0
yearsOld                    14  33.8  34.1
OverallCond                 13  28.0  28.4
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BsmtFinSF1                  11  22.6  23.1
LotArea                     10  19.1  19.7
Fireplaces                   7  12.7  13.4
yearsGarage_isNA             6  10.9  11.6
CentralAir_lev_x_Y           4   7.9   8.5
Functional_lev_x_Typ         3   6.3   6.9
Condition1_lev_x_Norm        2   5.1   5.6
ScreenPorch                  1   3.4   3.8

We see the feature name, n subsets, which is the number of model subsets that include the
feature if we did the pruning pass instead of cross-validation, and the gcv and rss
columns show the decrease in the respective value that the feature contributes (gcv and
rss are scaled 0 to 100). Notice that the feature we created, yearsGarage_isNA, was
selected by the model. You can ponder the hinge functions, but there's an excellent visual to
see the various piecewise linear functions:

> plotmo::plotmo(earth_fit, nrug = TRUE, rug.col = "red")

The output of the preceding code is as follows:

Notice in the plot that LotArea contains a hinge. Initially, as the size of the property
increases, the increase is rather dramatic, then at a certain point, a new slope is applied
from there to the maximum observed value. Contrast that with OverallCond, which has
only one slope coefficient over all possible values. An excellent example of how MARS can
capture linear and non-linear relationships in a piecewise fashion.
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Now, we must see how it performs out of sample:

> earth_pred <- predict(earth_fit, tested)

> caret::postResample(earth_pred, test_logy)
    RMSE Rsquared     MAE
 0.12363  0.90120 0.08986

This is a superior RMSE than what we saw with simple linear regression! I'm curious how
the residuals look on the test set:

> earth_residTest <- test_logy - earth_pred

> car::qqPlot(earth_residTest)

The output of the preceding code is as follows:

We still see a heavy-tailed distribution of the residuals. What this tells me is that we may
have to resort to quantile regression (out-of-scope here) or create separate models for
specific cuts of the response. Another option is to build an ensemble of models, but that's
the subject of a later chapter.

Now, the issue I have here is that we predicted the natural log of sales price. How do we
reverse transform to get actual sales price? I hear you saying, just take the exponent, correct?
Well, maybe—or maybe not! I learned this painful lesson through experience, suffering the
wrath of a PhD econometrician that just applying the exponent can lead to severe bias.
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This is because the expected value of the response (sales price) is a function of the exponent
of the predicted value plus an error term. If the error term isn't perfectly normal, then you
have bias. The solution is Duan's Smearing Estimator. I shall address that with a custom 
function in the next section. 

Should you desire to amuse yourself with the math behind all this, you
can get started with Duan's paper:
Smearing Estimate: A Nonparametric Retransformation Method

Naihua Duan
Journal of the American Statistical Association
Vol. 78, No. 383 (Sep., 1983), pp. 605-610
Published by: Taylor & Francis, Ltd. on behalf of the American Statistical
Association
DOI: 10.2307/2288126
https:/ /www. jstor. org/ stable/ 2288126? seq= 1/subjects

Reverse transformation of natural log predictions
Now that you have read Duan's paper several times, here's how to apply to our work. I'm
going to provide you with a user-defined function. It will do the following:

Exponentiate the residuals from the transformed model1.
Exponentiate the predicted values from the transformed model2.
Calculate the mean of the exponentiated residuals3.
Calculate the smeared predictions by multiplying the values in step 2 by the4.
value in step 3
Return the results5.

Here's the function, which requires only two arguments:

> duan_smear <- function(pred, resid){
    expo_resid <- exp(resid)
    expo_pred <- exp(pred)
    avg_expo_resid <- mean(expo_resid)
    smear_predictions <- avg_expo_resid * expo_pred
    return(smear_predictions)
 }
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Next, we calculate the new predictions from the results of the MARS model:

 > duan_pred <- duan_smear(pred = earth_pred, resid = earth_residTest)

We can now see how the model error plays out at the original sales price:

> caret::postResample(duan_pred, test_y)
      RMSE Rsquared        MAE
23483.5659   0.9356 16405.7395

We can say that the model is wrong, on average, by $16,406. How does that compare with
not smearing? Let's see:

> exp_pred <- exp(earth_pred)
> caret::postResample(exp_pred, test_y)
      RMSE Rsquared        MAE
23106.1245   0.9356 16117.4235

The error is slightly less so, in this case, it just doesn't seem to be the wise choice to smear
the estimate. I've seen examples where Duan's method, and others, are combined in an
ensemble model. Again, more on ensembles later in this book.

Let's conclude the analysis by plotting the non-smeared predictions alongside the actual
values. I'll show how to do this in ggplot fashion:

> results <- data.frame(exp_pred, test_y)

> colnames(results) <- c('predicted', 'actual')

> ggplot2::ggplot(results, ggplot2::aes(predicted, actual)) +
    ggplot2::geom_point(size=1) +
    ggplot2::geom_smooth() +
    ggthemes::theme_fivethirtyeight()
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The output of the preceding code is as follows:

This is interesting as you can see that there's almost a subset of actual values that have
higher sales prices than we predicted with their counterparts. There's some feature or
interaction term that we could try and find to address that difference. We also see that,
around the $400,000 sale price, there's considerable variation in the residuals—primarily, I
would argue, because of the paucity of observations.

For starters, we have a pretty good model and serves as an excellent foundation for other
modeling efforts as discussed. Additionally, we produced a model that's rather simple to
interpret and explain, which in some cases may be more critical than some rather
insignificant reduction in error. Hey, that's why you make big money. If it were easy,
everyone would be doing it.
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Summary
In the context of machine learning, we train a model and test it to predict an outcome. In
this chapter, we had an in-depth look at the simple yet extremely effective methods of
linear regression and MARS to predict a quantitative response. We also applied the data
preparation paradigm put forth in Chapter 1, Preparing and Understanding Data, to quickly
and efficiently get the data ready for modeling. We produced several simple plots to
understand the response we were trying to predict, explore model assumptions, and model
results.

Later chapters will cover more advanced techniques like Logistic regression, Support
Vector Machines, Classification, Neural Networks, and Deep Learning but many of them
are mere extensions of what we've learned in this chapter. 
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3
Logistic Regression

"The true logic of this world is the calculus of probabilities."

- James Clerk Maxwell, Scottish physicist

In the previous chapter, we took a look at using Ordinary Least Squares (OLS) to predict a
quantitative outcome or, in other words, linear regression. It's now time to shift gears 
somewhat and examine how we can develop algorithms to predict qualitative outcomes.
Such outcome variables could be binary (male versus female, purchase versus doesn't
purchase, or a tumor is benign versus malignant) or multinomial categories (education
level or eye color). Regardless of whether the outcome of interest is binary or multinomial,
our task is to predict the probability of an observation belonging to a particular category of
the outcome variable. In other words, we develop an algorithm to classify the observations.

To begin exploring classification problems, we'll discuss why applying the OLS linear
regression isn't the correct technique and how the algorithms introduced in this chapter can
solve these issues. We'll then look at the problem of predicting whether or not a banking
customer is satisfied. To tackle this problem, we'll begin by building and interpreting a
logistic regression model. We'll also start examining a univariate method to select features.
Next, we'll turn to multivariate regression splines and discover ways to choose the best
overall algorithm. This chapter will set the stage for more advanced machine learning
methods in subsequent chapters.

We'll be covering the following topics in this chapter:

Classification methods and linear regression
Logistic regression
Model training and evaluation
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Classification methods and linear
regression
So, why can't we use the least square regression method that we learned in the previous
chapter for a qualitative outcome? Well, as it turns out, you can, but at your own risk. Let's
assume for a second that you have an outcome that you're trying to predict and it has three
different classes: mild, moderate, and severe. You and your colleagues also assume that the
difference between mild and moderate and moderate and severe is an equivalent measure
and a linear relationship. You can create a dummy variable where 0 is equal to mild, 1 is
equal to moderate, and 2 is equal to severe. If you have reason to believe this, then linear
regression might be an acceptable solution. However, qualitative labels such as the
previous ones might lend themselves to a high level of measurement error that can bias the
OLS. In most business problems, there's no scientifically acceptable way to convert a
qualitative response into one that's quantitative. What if you have a response with two
outcomes, say fail and pass? Again, using the dummy variable approach, we could code the
fail outcome as 0 and the pass outcome as 1. Using linear regression, we could build a
model where the predicted value is the probability of an observation of pass or fail.
However, the estimates of Y in the model will most likely exceed the probability constraints
of [0,1] and hence be a bit difficult to interpret.

Logistic regression
As previously discussed, our classification problem is best modeled with the probabilities
that are bound by 0 and 1. We can do this for all of our observations with some different
functions, but here we'll focus on the logistic function. The logistic function used in logistic
regression is as follows:

If you've ever placed a friendly wager on horse races or the World Cup, you may
understand the concept better as odds. The logistic function can be turned to odds with the
formulation of Probability (Y) / 1 - Probability (Y). For instance, if the probability of Brazil
winning the World Cup is 20 percent, then the odds are 0.2 / 1 - 0.2, which is equal to 0.25,
translating to odds of one in four.
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To translate the odds back to probability, take the odds and divide by one plus the odds.
The World Cup example is hence 0.25 / 1 + 0.25, which is equal to 20 percent. Additionally,
let's consider the odds ratio. Assume that the odds of Germany winning the Cup are 0.18.
We can compare the odds of Brazil and Germany with the odds ratio. In this example, the
odds ratio would be the odds of Brazil divided by the odds of Germany. We'll end up with
an odds ratio equal to 0.25/0.18, which is equal to 1.39. Here, we'll say that Brazil is 1.39
times more likely than Germany to win the World Cup.

One way to look at the relationship of logistic regression with linear regression is to show
logistic regression as the log odds or log (P(Y)/1 - P(Y)) is equal to Bo + B1x. The coefficients
are estimated using a maximum likelihood instead of the OLS. The intuition behind the
maximum likelihood is that we're calculating the estimates for Bo and B1, which will create
a predicted probability for an observation that's as close as possible to the actual observed
outcome of Y, a so-called likelihood. The R language does what other software packages do
for the maximum likelihood, which is to find the optimal combination of beta values that
maximize the likelihood.

With these facts in mind, logistic regression is a potent technique to predict the problems
involving classification and is often the starting point for model creation in such problems.
Therefore, in this chapter, we'll attack the future problem with logistic regression first.

Model training and evaluation
As mentioned previously, we'll be predicting customer satisfaction. The data is based on a
former online competition. I've taken the training portion of the data and cleaned it up for
our use. 

A full description of the contest and the data is available at the following
link: https:/ /www. kaggle. com/c/ santander- customer- satisfaction/
data.

This is an excellent dataset for a classification problem for many reasons. Like so much
customer data, it's very messy— especially before I removed a bunch of useless features
(there was something like four dozen zero variance features). As discussed in the prior two
chapters, I addressed missing values, linear dependencies, and highly correlated pairs. I
also found the feature names lengthy and useless, so I coded them V1 through V142. The
resulting data deals with what's usually a difficult thing to measure: satisfaction. Because of
proprietary methods, no description or definition of satisfaction is given.
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Having worked previously in the world of banking, I can assure you that it's a somewhat
challenging proposition and fraught with measurement error. As such, there's quite a bit of
noise relative to the signal and you can expect model performance to be rather poor. Also,
the outcome of interest, customer dissatisfaction, is relatively rare when compared to
customers not dissatisfied. The classic problem is that you end up with quite a few false
positives when trying to classify the minority labels.

As always, you can find the data on GitHub: https:/ / github. com/ datameister66/
MMLR3rd/blob/master/ santander_ prepd. RData.

So, let's start by first loading the data and training a logistic regression algorithm.

Training a logistic regression algorithm
Follow these simple steps to train a logistic regression algorithm:

The first step is to make sure we load our packages and call the magrittr library1.
into our environment:

> library(magrittr)
> install.packages("caret")
> install.packages("classifierplots")
> install.packages("earth")
> install.packages("Information")
> install.packages("InformationValue")
> install.packages("Metrics")
> install.packages("tidyverse")

Here, we load the file then check the dimensions and examine a table of the2.
customer labels:

> santander <- read.csv("~/santander_prepd.csv")

> dim(santander)
[1] 76020 143

> table(santander$y)

    0    1
73012 3008

We have 76,020 observations, but only 3,008 customers are labeled 1, which
means dissatisfied. I'm going to use caret next to create training and test sets with
an 80/20 split.
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Within caret's createDataPartition() function, it automatically stratifies the3.
sample based on the response, so we can rest assured about having a balanced
percentage between the train and test sets:

> set.seed(1966)

> trainIndex <- caret::createDataPartition(santander$y, p = 0.8,
list = FALSE)

> train <- santander[trainIndex, ]

> test <- santander[-trainIndex, ]

Let's see how the response is balanced between the two datasets:4.

> table(train$y)

    0    1
58411 2405

> table(test$y)

    0     1
14601   603

There are roughly 4 percent in each set, so we can proceed. One interesting thing
that can happen when you split the data is that you now end up with what was a
near zero variance feature becoming a zero variance feature in your training set.
When I treated this data, I only took out the zero variance features. 

There were some low variance features, so let's see if we can eliminate some new5.
zero variance ones:

> train_zero <- caret::nearZeroVar(train, saveMetrics = TRUE)

> table(train_zero$zeroVar)

FALSE TRUE
  142    1
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OK, one feature is now zero variance because of the split, and we can remove it:6.

> train <- train[, train_zero$zeroVar == 'FALSE']

Our data frame now has 139 input features and the column of labeled customers. As we did
with linear regression, for logistic regression to have meaningful results, which is to say not
to overfit, you need to reduce the number of input features. We could press forward with
stepwise selection or the like, as we did in the previous chapter. We could implement
feature regularization methods as we'll discuss in the next chapter. However, I want to
introduce a univariate feature reduction method using Weight Of Evidence (WOE) and
Information Value (IV) and discuss how we can get an understanding of how to use it in a
classification problem in conjunction with logistic regression.

Weight of evidence and information value
I stumbled into this method several years ago during consulting work. The team I was on
was really into big datasets and constrained to using SAS statistical software. It was also a
critical requirement that the customer teams could easily interpret the models. 

Given the possibility of hundreds, even thousands, of possible features, I was privileged
enough to learn the use of WOE and IV by a former rocket scientist. That's right: a person
who actually worked on manned space flight. I became an eager pupil. Now, this method
isn't a panacea. First of all, it's univariate, so features that are thrown out can become
significant in a multivariate model and vice versa. I can say that it provides a nice
complement to other methods, and you should keep it in your modeling toolbox. I believe it
had its origins in the world of credit scoring, so if you work in the financial industry, you
may already be familiar with it.

First, let's look at the formula for WOE:

The WOE serves as a component in the IV. For numeric features, you would bin your data
then calculate WOE separately for each bin. For categorical ones, or when one-hot encoded,
bin for each level and calculate the WOE separately. Let's take an example and demonstrate
in R.
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Our data consists of one input feature coded as 0 or 1, so we'll have just two bins. For each
bin, we calculate our WOE. In bin 1, or where values are equal to 0, there are four
observations as events and 96 as non-events. Conversely, in bin 2, or where values are equal
to 1, we have 12 observations as events and 88 as non-events. Let's see how to calculate the
WOE for each bin:

> bin1events <- 4

> bin1nonEvents <- 96

> bin2events <- 12

> bin2nonEvents <- 88

> totalEvents <- bin1events + bin2events

> totalNonEvents <- bin1nonEvents + bin2nonEvents
# Now calculate the percentage per bin
> bin1percentE <- bin1events / totalEvents

> bin1percentNE <- bin1nonEvents / totalNonEvents

> bin2percentE <- bin2events / totalEvents

> bin2percentNE <- bin2nonEvents / totalNonEvents
# It's now possible to produce WOE
> bin1WOE <- log(bin1percentE / bin1percentNE)

> bin2WOE <- log(bin2percentE / bin2percentNE)

With completing this, you end up with the WOE for bin1 and bin2 of roughly -0.74 and
0.45 respectively. We now use that to calculate the IV per bin, then sum that up to arrive at
an overall IV for the feature. The formula is as follows:

Taking our current example; this is our feature IV:

> bin1IV <- (bin1percentE - bin1percentNE) * bin1WOE

> bin2IV <- (bin2percentE - bin2percentNE) * bin2WOE

> bin1IV + bin2IV
[1] 0.3221803
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The IV for the feature is 0.322. Now, what does that mean? The short answer is that it
depends. There's a heuristic provided to help decide what IV threshold makes sense for
inclusion in model development:

< 0.02 not predictive
0.02 to 0.1 weak
0.1 to 0.3 medium
0.3 to 0.5 strong
> 0.5 suspicious

Our following example will provide us with interesting decisions to make regarding where
to draw the line.

Feature selection
What we're going to do now is use the Information package to calculate the IVs for our
features. Then, I'll show you how to evaluate those values and run some plots as well. Since
there are no hard and fast rules about thresholds for feature inclusion, I'll provide my
judgment about where to draw the line. Of course, you can reject that and apply your own.

In this example, the code will create a series of tables you can use to explore the results. To
get started, you only need to specify the data and the response or "y" variable:

IV <- Information::create_infotables(data = train, y = "y", parallel =
FALSE)

This will give us an IV summary of the top 25 features:

> knitr::kable(head(IV$Summary, 25))

|    |Variable |     IV|
|:---|:--------|------:|
|2   |V2       | 0.7006|
|102 |V103     | 0.5296|
|124 |V125     | 0.5281|
|45  |V45      | 0.5273|
|31  |V31      | 0.5213|
|125 |V126     | 0.4507|
|55  |V55      | 0.3135|
|140 |V141     | 0.0982|
|108 |V109     | 0.0711|
|130 |V131     | 0.0681|
|33  |V33      | 0.0672|
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|104 |V105     | 0.0640|
|66  |V66      | 0.0519|
|92  |V93      | 0.0519|
|128 |V129     | 0.0499|
|121 |V122     | 0.0461|
|24  |V24      | 0.0417|
|131 |V132     | 0.0365|
|34  |V34      | 0.0323|
|47  |V47      | 0.0323|
|123 |V124     | 0.0289|
|129 |V130     | 0.0194|
|83  |V84      | 0.0189|
|19  |V19      | 0.0181|
|35  |V35      | 0.0181|

The results show us the feature column number, the feature name, and the IV. Notice that
we have five features that are possibly suspicious. I'm all for taking any feature with an IV
above 0.02, which is the bottom of the weak predictors. That will give us 21 input features.
The V2 feature is interesting. If you look at the values and think about the data, it seems
clear that it's the customer's age. Let's see how the data is binned, the WOE values, and the
IVs:

> knitr::kable(IV$Tables$V2)

|V2       |     N| Percent|     WOE|     IV|
|:--------|-----:|-------:|-------:|------:|
|[5,22]   | 951  | 0.0156 | 0.0000 | 0.0000|
|[23,23]  | 16222| 0.2667 | -1.6601| 0.3705|
|[24,24]  | 4953 | 0.0814 | -1.2811| 0.4481|
|[25,26]  | 6048 | 0.0994 | -0.7895| 0.4919|
|[27,31]  | 8088 | 0.1330 | 0.2261 | 0.4994|
|[32,36]  | 6037 | 0.0993 | 0.4923 | 0.5297|
|[37,42]  | 6302 | 0.1036 | 0.6876 | 0.5975|
|[43,51]  | 6095 | 0.1002 | 0.7328 | 0.6737|
|[52,105] | 6120 | 0.1006 | 0.4636 | 0.7006|

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Logistic Regression Chapter 3

[ 65 ]

OK, you've got to be kidding me. Look at bin number 2, which I believe is customer age of
23 years. It constitutes almost 27 percent of the total observations and contributes over half
of the IV. Suspicious indeed! How is any algorithm we produce on this data going to help if
this feature is genuine AGE as I suspect? However, that's outside the scope of this endeavor
and not worth wasting any more time or effort. Here we can quickly bring up a bar plot of
the WOEs by bin:

> Information::plot_infotables(IV, "V2", show_values = TRUE)

The output of the preceding code is as follows:

Interesting that there's a somewhat linear relationship between this feature and the
response. What can be done is we can create features that turn the binned values into the
WOE values. These new features would be linear and could be used in place of the original
features. We shall forgo that because what method will do that for us? That's right, MARS
in the next section can do that for us! Here is a grid plot of the top four features:

> Information::plot_infotables(IV, IV$Summary$Variable[1:4],
same_scales=TRUE)
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The output of the preceding code is as follows:

Now, given the cutoff point I picked previously, we can select those 21 features:

> features <- IV$Summary$Variable[1:21]

> train_reduced <- train[, colnames(train) %in% features]

> train_reduced$y <- train$y

There you go. We're now ready to begin training our algorithm.

Cross-validation and logistic regression
Our goal here is to build a model using 5-fold cross-validation. We'll utilize the caret
package to establish our sampling scheme and to produce the final model. Start by building
a separate trainControl() function:

> glm_control <-
    caret::trainControl(method = "cv",
    number = 5,
    returnResamp = "final")
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This object is passed as an argument to train the algorithm. We now produce our input
features, response variable (must be a factor for caret to train as logistic regression), set our
random seed, and train the model. For the train() function, specify glm for Generalized
Linear Model (GLM):

> x <- train_reduced[, -22]

> y <- as.factor(train_reduced$y)

> set.seed(1988)

> glm_fit <-
   caret::train(x, y, method = "glm",
                trControl = glm_control,
                trace = FALSE)

When that's done grinding away, you can quickly check the results:

> glm_fit$results
  parameter Accuracy     Kappa AccuracySD  KappaSD
1      none   0.9602 0.0002369  0.0001591 0.001743

Look at that, 96 percent accuracy! I know that's entirely meaningless because if we just
guessed that all labels in the response were zero, we would achieve 96 percent. That may
seem obvious, but I've interviewed people with Data Science degrees that missed that fact.
Kappa refers to what's known as Cohen's Kappa statistic. The Kappa statistic provides an
insight into this problem by adjusting the accuracy scores, which is done by accounting for
the model being entirely correct by mere chance. The formula for the statistic is as follows:

The percent of agreement is the rate that the model agreed on for the class (accuracy) and
percent of chance agreement is the rate that the model randomly agreed. The higher the
statistic, the better the performance is with the maximum agreement being one. So, with
this Kappa score, the model is pathetic.

Well, Kappa would be useful with more balanced labels. We're now left to find other ways
to examine model results. It's always a good idea to compare the probability distributions
of the different classes with a density or box plot.
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Here we produce an elegant and colorful density plot on the training data:

> glm_train_pred <- predict(glm_fit, train, type = "prob")

> colnames(glm_train_pred) <- c("zero", "one")

> classifierplots::density_plot(train_reduced$y, glm_train_pred$one)

The output of the preceding code is as follows:

This gives us an interesting look at what the model's doing. We don't see any predictive
power until we get around 7 percent. We can identify an optimal probability threshold to
maximize our classification objective. There's an excellent function in the
InformationValue package we'll apply later. It allows for the determination of four
different thresholds:

misclasserror: The default setting in the function, this identifies the threshold
that minimizes a classification error
Ones: This is the threshold that maximizes detection of 1s
Zeros: This is the threshold that maximizes detection of 0s
Both: This is the threshold that maximizes Youden's Index, which is (sensitivity +
specificity) - 1
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Sensitivity = True Positives / (True Positives + False Negatives): This is also
called the True Positive Rate or Recall and is a measure of correctly
identifying positive labels. Specificity = True Negatives / (True Negatives +
False Positives): Also called the True Negative Rate, this is a measure of
correctly identifying negative labels.

In this case, we shall take a look at the threshold for Both. We'll also ask for all of the
diagnostics:

> glm_cutoff <-
    InformationValue::optimalCutoff(
    train_reduced$y,
    glm_train_pred$one,
    optimiseFor = 'Both',
    returnDiagnostics = TRUE
    )

If you click on glm_cutoff in your global environment or run View(glm_cutoff), you'll
see a list of six different results:

optimalCutoff = 0.0606
A sensitivity table you can examine further on your own
Misclassification error = 0.2006
TPR = 0.6079
FPR = 0.1927
Specificity = 0.8073

If we select a cutoff of 0.0606, we'll achieve a True Positive Rate (TPR) of almost 61 percent.
However, over 19 percent will be false positives.

Given the imbalance in the classes, that's a huge amount of customers. A confusion matrix
can demonstrate that fact:

> InformationValue::confusionMatrix(train_reduced$y, glm_train_pred$one,
threshold = 0.0607)
      0    1
0 47164  944
1 11247 1461

Of the training data, customers that were dissatisfied, a total of 2,405; if we correctly classify
1,461 of them, we'll incorrectly classify 11,247. So where we decide to put an optimal
threshold depends on the needs of the business. We'll see how to portray that differently
during model comparison.
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Let's now see how the algorithm ranked variable importance:

> caret::varImp(glm_fit)
glm variable importance

only 20 most important variables shown (out of 21)

      Overall
V2   100.0000
V103  70.2840
V141  33.2809
V105  18.0160
V24   13.1048
V129  12.4327
V55   10.7379
V34    8.7920
V45    8.5681
V124   7.1968
V122   5.9959
V109   5.8668
V33    4.8295
V125   3.6369
V131   1.5439
V126   0.8383
V47    0.7430
V132   0.4286
V66    0.3133
V31    0.0912

Our suspicious variable is number one in overall importance. I would recommend you to
try other models dropping V2 from any consideration. But this is up to you as I'm of the
mindset right now to see how performance is on the test data:

> glm_test_pred <- predict(glm_fit, test, type = "prob")

> colnames(glm_test_pred) <- c("zero", "one")

> classifierplots::density_plot(test$y, glm_test_pred$one)
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The output of the preceding code is as follows:

Very similar results on the test data. What about a confusion matrix given our threshold
determined during training? Let's see:

> InformationValue::confusionMatrix(test$y, glm_test_pred$one, threshold =
0.0607)
      0   1
0 11710 227
1  2891 376

Consistent results! Now, let's examine this model's performance on the test data so that we
can compare it to what the upcoming MARS model will produce. Two metrics should
address the issue, Area Under the Curve (AUC), and log-loss. The AUC provides you with
a useful indicator of performance, and it can be shown that the AUC is equal to the
probability that the observer will correctly identify the positive case when presented with a
randomly chosen pair of cases in which one case is positive and one case is negative
(Hanley JA & McNeil BJ, 1982). In our case, we'll switch the observer with our algorithm
and evaluate accordingly. Log-loss is an effective metric as it takes into account the
predicted probability and how much it deviates from the correct label. The following
formula produces it:
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Like golf, a lower value is better with values between 0 and 1. A perfect model would have
a value of 0. We can produce these values easily with the Metrics package:

> Metrics::auc(test$y, glm_test_pred$one)
[1] 0.7794

> Metrics::logLoss(test$y, glm_test_pred$one)
[1] 0.1499

Our AUC isn't that great, I would say. If the model were no better than a random guess,
then AUC would be equal to 0.5, and if perfect, it would be 1. Our log-loss is only essential
when comparing it to the next model. 

Multivariate adaptive regression splines
In the prior chapter, we went through a discussion on MARS, how it works, why use it, and
so on, so I won't duplicate that here; other than that, it can be applied in a classification
problem as a generalized linear model. One of the key benefits is its power to conduct
feature selection, so there's no need to run stepwise or IV—or even regularization, for that
matter.

We'll train it with 5-fold cross-validation and set nprune = 15 to limit the maximum
number of features at 15. Recall from the previous chapter that more than 15 terms are
possible as it fits piecewise splines.

This code will give us our model object. Be advised that this may take some time to
complete:

> set.seed(1972)

> earth_fit <-
    earth::earth(
    x = train[, -142],
    y = train[, 142],
    pmethod = 'cv',
    nfold = 5,
    degree = 1,
    minspan = -1,
    nprune = 15,
    glm = list(family = binomial)
    )
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Here's the model summary:

> summary(earth_fit)
Call: earth(x=train[,-142], y=train[,142], pmethod="cv",
            glm=list(family=binomial), degree=1, nprune=15, nfold=5,
            minspan=-1)

GLM coefficients
                     y
(Intercept)    -3.4407
V23            -6.6750
V24            -1.3539
V105           -0.8200
h(28-V2)       -0.4769
h(V2-28)        0.0071
h(1-V31)        1.4876
h(V31-1)        0.0947
h(106449-V141)  0.0000
h(V141-106449)  0.0000

Earth selected 10 of 10 terms, and 6 of 141 predictors using pmethod="cv"

As you can see in the summary, the model ended up with six total predictive features and a
total of ten terms, including a hinge function on V2. By standard protocol, the paired hinge
terms can be read first predictor less than the hinge value, and then predictor greater than
or equal to hinge. For instance, for V31, a value less than 1 has a coefficient of 1.4876,
otherwise 0.0947.

We can plot the linear interactions with respect to predicted probability. Setting ylim to NA
helps to show changes in y (predicted probability) versus changes in feature values:

> plotmo::plotmo(earth_fit, ylim = NA)
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The output of the preceding code is as follows:

Notice how, for V31, values equal to zero have one coefficient else another one as described
previously. Feature importance is trivial to produce:

> earth::evimp(earth_fit)
     nsubsets   gcv   rss
V31         9 100.0 100.0
V2          8  74.8  75.0
V141        7  40.2  41.1
V105        6  31.5  32.5
V23         5  26.8  27.8
V24         4  20.7  21.8

The nsubsets criterion counts the number of model subsets that include the feature.
Features that included in more subsets are considered more important. These subsets are of
the terms generated by earth's pruning pass.

Now, we specified cross-validation, but earth concurrently does forward and backward
feature selection and elimination, using Generalized Cross-Validation (GCV) as discussed
in the previous chapter. So, GCV and rss results for a feature are normalized from 0 to 100
for comparison purposes.
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Like we did previously, a plot of the probability densities is useful, and earth comes with
its own plotd() function:

I like how the predicted values are reversed compared to the prior plots. Other than that,
it's hard to discern anything meaningful with the exception that the densities are quite
similar. Let's get the cutoff value:

> mars_cutoff <-
    InformationValue::optimalCutoff(
    train$y,
    pred,
    optimiseFor = 'Both',
    returnDiagnostics = TRUE
    )

Examination of the object provides the following:

Optimal cutoff = 0.04976
TPR = 0.6449
FPR = 0.208

In comparison with logistic regression, we have a higher rate of finding true positives at the
expense of a slightly higher rate of false positives.
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Let's move on to evaluating performance on the test set:

> test_pred <- predict(earth_fit, test, type = 'response')

> Metrics::auc(test$y, test_pred)
[1] 0.8079

> Metrics::logLoss(test$y, test_pred)
[1] 0.1406

What do we see here? A slight improvement in AUC, and a lower (better) log-loss. While 
not dramatic, it may be of value. We can now turn to visually comparing the two models to
confirm that MARS is indeed the preferred algorithm.

Model comparison
A useful tool for a classification model comparison is the Receiver Operating
Characteristic (ROC) chart. ROC is a technique for visualizing, organizing, and selecting
classifiers based on their performance (Fawcett, 2006). On the ROC chart, the y axis is the
True Positive Rate (TPR), and the x axis is the False Positive Rate (FPR).

To create a ROC chart in R, you can use the ROCR package. I think this is a great package
and allows you to build a chart in just three lines of code. The package also has an excellent
companion website (with examples and a presentation) that can be found at the following
link: http://rocr. bioinf. mpi- sb. mpg. de/.

For each model, you create a prediction object of the actual labels and the predicted
probabilities, then create a performance object that embeds TPR and FPR, and finally plot it:

> pred.glm <- ROCR::prediction(glm_test_pred$one, test$y)

> perf.glm <- ROCR::performance(pred.glm, "tpr", "fpr")

> ROCR::plot(perf.glm, main = "ROC", col = 1)

That gives us the plot for the GLM (logistic regression). Now, we'll superimpose the MARS
model on the same plot and create a legend:

> pred.earth <- ROCR::prediction(test_pred, test$y)

> perf.earth <- ROCR::performance(pred.earth, "tpr", "fpr")

> ROCR::plot(perf.earth, col = 2, add = TRUE)

> legend(0.6, 0.6, c("GLM", "MARS"), 1:2)
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The output of the preceding code is as follows:

The area under the ROC curves corresponds to the prior calculated AUCs. The MARs
model had a higher AUC; hence, its curve is slightly higher than the GLM model. It's
noteworthy that around a TPR of 0.5, they have almost the same FPR. The bottom line
though is the MARS model with fewer input features outperformed logistic regression
albeit just slightly.

In a problem such as that which this data provides, there are quite a few things we could do
to increase performance. You could further explore the data to try and add custom features.
You could also use more advanced methods, creating more models for comparison, or even
build several models and create an ensemble. As for advanced techniques and building
ensembles, we'll cover those in subsequent chapters. Let your imaginations run wild!
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Summary
In this chapter, we looked at using probabilistic linear models to predict a qualitative
response with two generalized linear model methods: logistic regression, and multivariate
adaptive regression splines. We explored using the weight of information and information
value as a technique to do univariate feature selection. We covered the concept of finding
the proper probability threshold to minimize classification error. Additionally, we began
the process of using various performance metrics such as AUC, log-loss, and ROC charts to
explore model selection visually and statistically. These metrics proved to be more
informative than just pure accuracy, especially in a situation where class labels are highly
imbalanced. In the next chapter, we'll cover regularization methods for feature selection,
and how it can be used in training your algorithms. We'll see how we can create a dataset.
We'll know about ridge regression and dive deeper in feature selection.
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4
Advanced Feature Selection in

Linear Models
"There is nothing permanent except change."

– Heraclitus

So far, we've examined the usage of linear models for both quantitative and qualitative
outcomes with an eye on the techniques of feature selection, that is, the methods and
techniques that exclude useless or unwanted predictor variables. We saw that linear models
can be quite useful in machine learning problems, how piece-wise linear models can
capture non-linear relationships as multivariate adaptive regression splines. Additional
techniques have been developed and refined in the last couple of decades that can improve
predictive ability and interpretability above and beyond the linear models that we
discussed in the preceding chapters. In this day and age, many datasets, such as those in
the two prior chapters, have numerous features. It isn't unreasonable to have datasets with
thousands of potential features. 

The methods in this chapter might prove to be a better way to approach feature reduction
and selection. In this chapter, we'll look at the concept of regularization where the
coefficients are constrained or shrunk towards zero. There're many methods and
permutations to these methods of regularization, but we'll focus on ridge regression, Least
Absolute Shrinkage and Selection Operator (LASSO), and, finally, elastic net, which
combines the benefits of both techniques into one.
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The following are the topics we'll cover in this chapter:

Overview of regularization
Dataset creation
Ridge regression
LASSO
Elastic net

Regularization overview
You may recall that our linear model follows the form: Y = B0 + B1x1 +...Bnxn + e, and that the
best fit tries to minimize the RSS, which is the sum of the squared errors of the actual minus
the estimate, or e1

2 + e2
2 + ... en

2.

With regularization, we'll apply what is known as a shrinkage penalty in conjunction 
with RSS minimization. This penalty consists of a lambda (symbol λ), along with the
normalization of the beta coefficients and weights. How these weights are normalized
differs in terms of techniques, and we'll discuss them accordingly. Quite simply, in our
model, we're minimizing (RSS + λ (normalized coefficients)). We'll select λ, which is known as
the tuning parameter, in our model building process. Please note that if lambda is equal to
0, then our model is equivalent to OLS, as it cancels out the normalization term. As we
work through this chapter, the methods can be applied to a classification problem.

So what does regularization do for us and why does it work? First of all, regularization
methods are very computationally efficient. In a best subsets of features, we're searching 2p

models and, in large datasets, it isn't feasible to attempt this. In the techniques that follow,
we only fit one model to each value of lambda and, as you can imagine this, is far less
computationally demanding. Another reason goes back to our bias-variance trade-off,
discussed in the preface. In the linear model, where the relationship between the response
and the predictors is close to linear, the least squares estimates will have low bias but may
have high variance. This means that a small change in the training data can cause a
significant change in the least squares coefficient estimates (James, 2013). Regularization
through the proper selection of lambda and normalization may help you improve the
model fit by optimizing the bias-variance trade-off. Finally, the regularization of
coefficients may work to solve multicollinearity problems as we shall see.
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Ridge regression
Let's begin by exploring what ridge regression is and what it can and can't do for you. With
ridge regression, the normalization term is the sum of the squared weights, referred to as
an L2-norm. Our model is trying to minimize RSS + λ(sum Bj2). As lambda increases, the
coefficients shrinks toward zero but never become zero. The benefit may be an improved
predictive accuracy but, as it doesn't zero out the weights for any of your features, it could
lead to issues in the model's interpretation and communication. To help with this problem,
we can turn to LASSO.

LASSO
LASSO applies the L1-norm instead of the L2-norm as in ridge regression, which is the sum
of the absolute value of the feature weights and so minimizes RSS + λ(sum |Bj|). This
shrinkage penalty will indeed force a feature weight to zero. This is a clear advantage over
ridge regression, as it may improve the model interpretability.

The mathematics behind the reason that the L1-norm allows the weights/coefficients to
become zero is beyond the scope of this book (refer to Tibsharini, 1996 for further details).

If LASSO is so great, then ridge regression must be obsolete in machine learning. Not so
fast! In a situation of high collinearity or high pairwise correlations, LASSO may force a
predictive feature to zero, hence you can lose the predictive ability; that is, if both feature A
and B should be in your model, LASSO may shrink one of their coefficients to zero. The
following quote sums up this issue nicely:

"One might expect the lasso to perform better in a setting where a relatively small number
of predictors have substantial coefficients, and the remaining predictors have coefficients
that are very small or that equal zero. Ridge regression will perform better when the
response is a function of many predictors, all with coefficients of roughly equal size."

– James, 2013
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There is the possibility of achieving the best of both worlds and that leads us to the next
topic, elastic net.

Elastic net
The power of elastic net is that it performs feature extraction, unlike ridge regression, and
it'll group the features that LASSO fails to do. Again, LASSO will tend to select one feature
from a group of correlated ones and ignore the rest. Elastic net does this by including a
mixing parameter, alpha, in conjunction with lambda. Alpha will be between 0 and 1, and
as before, lambda will regulate the size of the penalty. Please note that an alpha of zero is
equal to ridge regression and an alpha of 1 is equivalent to LASSO. Essentially, we're
blending the L1 and L2 penalties by including a second tuning parameter with a quadratic
(squared) term of the beta coefficients. We'll end up with the goal of minimizing (RSS +
λ[(1-alpha) (sum|Bj|2)/2 + alpha (sum |Bj|)])/N).

Let's put these techniques to the test. We'll utilize a dataset I created to demonstrate the
methods. In the next section, I'll discuss how I created the dataset with a few predictive
features and some noise features, including those with high correlation. I recommend that,
once you feel comfortable with this chapter's content, you go back and apply them to the
data examined in the prior two chapters, comparing performance.

Data creation
In this section, I'll discuss how I created the dataset used for this chapter and provide
insight into the features and the class labels we'll endeavor to predict. The data is available
on GitHub at https:/ / github. com/ datameister66/ MMLR3rd/ blob/ master/ sim_ df. csv:

Let's get our libraries and data loaded:1.

> library(magrittr)

> install.packages("glmnet")

> install.packages("caret")

> install.packages("classifierplots")

> install.packages("DataExplorer")

> install.packages("InformationValue")
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> install.packages("Metrics")

> install.packages("ROCR")

> install.packages("tidyverse")

> options(scipen=999)

> sim_df <- readr::read_csv('sim_df.csv')

The dataframe is 10,000 observations of 17 variables, consisting of 16 input
features and 1 response. I created this dataset using the twoClassSim() function
from the caret package. The full code with seeds is available in the online code,
allowing you to make changes and create whatever data you would like to
explore. A full explanation of your options in creating your own set is available in
the function's help.

Now, let me go over the column names and tell you what this is all about:2.

> colnames(sim_df)
 [1] "TwoFactor1" "TwoFactor2" "Linear1" "Linear2" "Linear3"
"Linear4"
 [7] "Linear5" "Linear6" "Nonlinear1" "Nonlinear2" "Nonlinear3"
"Noise1"
[13] "Noise2" "Noise3" "Noise4" "Class" "random1"

First of all, the TwoFactor features are correlated with each other and slightly
predictive of the response, y. Five of the six linear features, the three non-linear
features, and the feature named random1 might have some predictive power. The
four noise features should have absolutely no predictive power unless by pure
chance. Also, the Linear5 and Linear6 features are highly correlated. I created
that relationship to help point out how the different methods will handle it.

The y labels are somewhat imbalanced, roughly 70/30:3.

> table(sim_df$y)

   0    1
7072 2928
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The data isn't too wide to include all of it in a correlation plot:4.

> DataExplorer::plot_correlation(sim_df)

The output of the preceding code is as follows:

The plot confirms visually what I described previously. The highest correlation is between
Linear5 and Linear6. What we can do is eliminate one of the pairs of highly correlated
features, which I did in Chapter 2, Linear Regression. In this instance, we'll keep both in and
let the algorithms handle it.

This data is fully prepared for modeling in this chapter, so let's begin.
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Modeling and evaluation
We'll begin the modeling process of developing a classification algorithm to predict y. We'll
conduct, in sequence, ridge regression, LASSO, and elastic net models, evaluating their
performance as we go using the area under the curve and log-loss.

Ridge regression
The package we're using will be glmnet. I like it because it has a built-in cross-validation
function, standardizes the input features, and returns coefficients on their original scale, so
it's quite easy to implement. If you standardize your features yourself, you can specify
standardize = FALSE in the function. Either way, don't run features that aren't
standardized as the results will be undesirable as the regularization won't be applied
evenly. If you do standardize on your own, I recommend utilizing the vtreat package
functions as we did in Chapter 2, Linear Regression, specifying scale = TRUE in the
prepare() function. This will help us apply the centering and scaling values from your
training data to the test/validation sets.

I'll let glmnet handle the standardizing, and we can begin with a 70/30 train/test split:

 > set.seed(1066)

> index <- caret::createDataPartition(sim_df$y, p = 0.7, list = F)

> train <- sim_df[index, ]

> test <- sim_df[-index, ]

Now, glmnet requires that your features are input as a matrix, and if you're doing a
classification problem, the response is a factor. This code handles the requirement:

> x <- as.matrix(train[, -17])

> y <- as.factor(train$y)

For the function to train the algorithm, there're a couple of things you can specify. Here, I'll
execute five-fold cross-validation—the loss function for training, which in the case of
classification can be class for misclassification errors or auc for the area under the curve.
I'll go with auc, and leave it up to you to assess. Since this is ridge regression, our alpha
will be equal to 0.
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Accordingly, we'll set the family argument to binomial. This makes the function run a
logistic regression instead of its standard linear regression. The following is the code to
train the ridge regression algorithm:

> set.seed(1999)

> ridge <- glmnet::cv.glmnet(
    x,
    y,
    nfolds = 5,
    type.measure = "auc",
    alpha = 0,
    family = "binomial"
  )

To begin, glmnet offers a number of different plots. The default plot shows the relationship
of the log of the lambda values searched and its relation to the loss function, in our case
auc:

> plot(ridge)

The output of the preceding code is as follows:
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We see log(Lambda) on the x axis and AUC on the y axis. At the top of the plot is a series of
the value 16. This tracks the number of non-zero coefficients corresponding to log(Lamda).
We'll see how that changes with LASSO. The two dotted vertical lines show the
log(Lambda) value with the maximum AUC and the log(Lamda) value with the maximum
AUC within one standard error of the maximum, for the left and right lines respectively.

Let's review what those actual lambda values are:

> ridge$lambda.min
[1] 0.01216653

> ridge$lambda.1se
[1] 0.04475312

Recall that, if lambda were equal to zero, there would be no regularization penalty at all.

To see the coefficients, run this code:

> coef(ridge, s = "lambda.1se")
17 x 1 sparse Matrix of class "dgCMatrix"
                       1
(Intercept) 0.535798579
TwoFactor1 -0.541881256
TwoFactor2  0.530637287
Linear1    -0.005472570
Linear2    -0.506143897
Linear3     0.454702486
Linear4    -0.316847306
Linear5     0.182733133
Linear6     0.070036471
Nonlinear1  0.354214422
Nonlinear2  0.238778841
Nonlinear3  0.322499067
Noise1     -0.028226796
Noise2      0.002973271
Noise3      0.014767631
Noise4      0.038038078
random1    -0.237527142

To convert the logistic regression coefficients, called logits, into a
probability, do the following:

Calculate the odds by exponentiation, for example, exp(coef)1.
Calculate the probability with the formula, probability = odds / 1+2.
odds
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Notice that the noise features and Linear1, which are irrelevant to making a prediction,
are close, but not equal to, zero. The algorithm puts a larger coefficient on Linear5 versus
Linear6. By the way, those features are on the same scale, so a direct comparison is
possible. To predict the probabilities with a glmnet model, be sure to specify type =
"response" and which lambda value to use. I recommend starting with using the
lambda.1se value to prevent overfitting. But you can experiment accordingly:

> ridge_pred <-
    data.frame(predict(ridge, newx = x, type = "response", s =
"lambda.1se"))

Like in the previous chapter on logistic regression, a plot of the probability distributions by
class is in order:

> classifierplots::density_plot(y, ridge_pred$X1)

The output of the preceding code is as follows:

There seems to be an excellent separation in the probabilities above 50%.

Let's see the AUC:

> Metrics::auc(y, ridge_pred$X1)
[1] 0.8632982
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The AUC is above 0.86. This brings us to the question of whether or not this will remain
consistent on the test data:

> ridge_test <-
    data.frame(predict(ridge, newx = as.matrix(test[, -17]),
    type = 'response'), s = "lambda.1se")

> Metrics::auc(test$y, ridge_test$X1)
[1] 0.8706708

> Metrics::logLoss(test$y, ridge_test$X1)
[1] 0.4307592

> classifierplots::density_plot(test$y, ridge_test$X1)

The output of the preceding code is as follows:

There's very consistent performance between the train and test data. The AUC is now
above 0.87, and we have a benchmark log-loss of 0.4307592. You can try different k-folds, a
different loss function, and even different random seeds to see how the model changes. For
now, we need to move on to the next algorithm, LASSO.
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LASSO
It's a simple matter to update the code we used for ridge regression to accommodate
LASSO. I'm going to change just two things: the random seed and I'll set alpha to 1:

> set.seed(1876)

> lasso <- glmnet::cv.glmnet(
    x,
    y,
    nfolds = 5,
    type.measure = "auc",
    alpha = 1,
    family = "binomial"
 )

The plot of the model is quite interesting:

> plot(lasso)

The output of the preceding code is as follows:

You can now see the number of non-zero features as the Lambda changes. The number of
features included at one standard error is just eight!
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Let's have a gander at those coefficients:

> coef(lasso, s = "lambda.1se")
17 x 1 sparse Matrix of class "dgCMatrix"
                      1
(Intercept) -0.30046007
TwoFactor1  -0.53307368
TwoFactor2   0.52110703
Linear1       .
Linear2     -0.42669146
Linear3      0.35514853
Linear4     -0.20726177
Linear5      0.10381320
Linear6       .
Nonlinear1   0.10478862
Nonlinear2    .
Nonlinear3    .
Noise1        .
Noise2        .
Noise3        .
Noise4        .
random1     -0.06581589

Now, this looks much better. LASSO threw out those nonsense noise features and Linear1.
However, before we start congratulating ourselves, look at how Linear6 was constrained
to zero. Does it need to be in the model or not? We could undoubtedly adjust the lambda
value and see where it enters and what effect it makes. 

It's time to check how it does on the training data:

> lasso_pred <-
    data.frame(predict(
    lasso,
    newx = x,
    type = "response",
    s = "lambda.1se"
  ))

> Metrics::auc(y, lasso_pred$X1)
[1] 0.8621664

> classifierplots::density_plot(y, lasso_pred$X1)
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The output of the preceding code is as follows:

These are quite similar results to those with ridge regression. Correct evaluation, however,
is done on the test data:

> lasso_test <-
    data.frame(predict(lasso, newx = as.matrix(test[, -17]), type =
'response'),
    s = "lambda.1se")

> Metrics::auc(test$y, lasso_test$X1)
[1] 0.8684276

> Metrics::logLoss(test$y, lasso_test$X1)
[1] 0.4512764

> classifierplots::density_plot(test$y, lasso_test$X1)
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The output of the preceding code is as follows:

The LASSO model does have a slightly lower AUC and marginally higher log-loss (0.45
versus 0.43). In the real world, I'm not sure that would be meaningful given that we have a
more parsimonious model with LASSO. I guess that's another dimension alongside bias-
variance, predictive power versus complexity.

Speaking of complexity, let's move on to elastic net.

Elastic net
For our purposes here, we want to focus on finding the optimal mix of lambda and our
elastic net mixing parameter, alpha. This is done using the following simple three-step
process:

Use the expand.grid() function in base R to create a vector of all of the possible1.
combinations of alpha and lambda that we want to investigate.
Use the trainControl() function from the caret package to determine the2.
resampling method; we'll use 5-fold cross-validation again.
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Train a model to select our alpha and lambda parameters using glmnet() in3.
caret's train() function.

Once we've selected our parameters, we'll apply them to the test data in the same way as
we did with ridge regression and LASSO.

Our grid of combinations should be large enough to capture the best
model but not so large that it becomes computationally unfeasible. That
won't be a problem with this big a dataset, but keep this in mind for future
reference.

The following are the hyperparameters values we'll try:

Alpha from 0 to 1 by 0.2 increments; remember that this is bound by 0 and 1
Lambda from 0.01 to 0.03 in steps of 0.002

You can create this matrix by using the expand.grid() function and building a sequence
of numbers that the caret package will automatically use. The caret package will take the
values for alpha and lambda with the following code:

> grid <-
    expand.grid(.alpha = seq(0, 1, by = .2),
    .lambda = seq(0.01, 0.03, by = 0.002))

> head(grid)
  .alpha .lambda
1    0.0    0.01
2    0.2    0.01
3    0.4    0.01
4    0.6    0.01
5    0.8    0.01
6    1.0    0.01

There are 66 different models to be built, compared, and selected. The preceding list shows
the various combinations with all of the possible alpha parameters for a lambda of 0.01.
Now, we set up an object to specify we want to do 5-fold cross-validation:

> control <- caret::trainControl(method = 'cv', number = 5)
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Training the model with caret in this instance requires y to be a factor, which we've
already done. It also requires the specification of train control or passing an object as we
just did. There're a couple of different selection metrics you can choose from for a
classification problem: accuracy or Kappa. Well, we covered this in the previous chapter, in
a class imbalance situation; I think Kappa is preferred. Refer to the previous chapter if you
need to refresh your understanding of Kappa. The following is the relevant code:

> set.seed(2222)
> enet <- caret::train(x,
                     y,
                     method = "glmnet",
                     trControl = control,
                     tuneGrid = grid,
                     metric = "Kappa")

To find the best overall model according to Kappa, we call the best-tuned version:

> enet$bestTune
   alpha lambda
23   0.4   0.01

The best model is alpha 0.4 and lambda 0.01. To see how it affects the coefficients (logits),
we will run them through glmnet without cross-validation:

> best_enet <- glmnet::glmnet(x,
    y,
    alpha = 0.4,
    lambda = 0.01,
    family = "binomial")

> coef(best_enet)
17 x 1 sparse Matrix of class "dgCMatrix"
                      s0
(Intercept)  1.310419410
TwoFactor1  -0.933300729
TwoFactor2   0.917877320
Linear1       .
Linear2     -0.689547039
Linear3      0.619432149
Linear4     -0.416603510
Linear5      0.315207408
Linear6      0.002005802
Nonlinear1   0.454620511
Nonlinear2   0.224564104
Nonlinear3   0.343687158
Noise1      -0.009290811
Noise2        .

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Advanced Feature Selection in Linear Models Chapter 4

[ 96 ]

Noise3        .
Noise4       0.014674805
random1     -0.261039240

With alpha at 0.4, three features are forced to zero. Examining the metrics on training data
comes next:

> enet_pred <- predict(enet, train, type = "prob")

> Metrics::auc(y, enet_pred$`1`)
[1] 0.8684076

> classifierplots::density_plot(y, enet_pred$`1`)

The output of the preceding code is as follows:

The probability skew for labels of 1 seems higher than the previous models as well as for
labels of 0. The AUC is in line with the other models as well. The proof will lie in predicting
the test data:

> enet_test <-
    predict(enet, test, type = "prob")

> Metrics::auc(test$y, enet_test$`1`)
[1] 0.8748963

> Metrics::logLoss(test$y, enet_test$`1`)
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[1] 0.3977438

> classifierplots::density_plot(test$y, enet_test$`1`)

The output of the preceding code is as follows:

There's a consistent skew in the distributions and a superior AUC and log-loss versus the
other two models, so it seems our elastic net version is the best. We can confirm this by
looking at the ROC plots of all three models, using a similar technique to evaluate the
classifiers visually, as in the previous chapter:

pred.ridge <- ROCR::prediction(ridge_test$X1, test$y)

perf.ridge <- ROCR::performance(pred.ridge, "tpr", "fpr")

ROCR::plot(perf.ridge, main = "ROC", col = 1)

pred.lasso <- ROCR::prediction(lasso_test$X1, test$y)

perf.lasso <- ROCR::performance(pred.lasso, "tpr", "fpr")

ROCR::plot(perf.lasso, col = 2, add = TRUE)

pred.enet <- ROCR::prediction(enet_test$'1', test$y)

perf.enet <- ROCR::performance(pred.enet, "tpr", "fpr")
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ROCR::plot(perf.enet, col = 3, add = TRUE)

legend(0.6, 0.6, c("Ridge", "LASSO", "ENET"), 1:3)

The output of the preceding code is as follows:

I think, as we would expect, the elastic net is just ever so slightly better than the other two.
Which model goes into production is a matter for you and your business partners to decide
as you balance complexity and performance.
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Summary
In this chapter, the goal was to use a simulated dataset to provide an introduction to
learning how to apply advanced feature selection for linear and generalized linear models.
We used the glmnet package to predict class probabilities for a binary classification
problem using logistic regression. These methods can be adapted to linear regression and
multinomial classifications. An introduction to regularization and the three techniques that
incorporate it was provided and utilized to build and compare models. Regularization is a
powerful technique to improve computational efficiency and to possibly extract more
meaningful features when compared to the other modeling techniques. We saw how to use
various performance metrics to compare and select the most appropriate model. 

Up to this point, we've been purely talking about linear and generalized linear models. In
the next couple of chapters, we'll begin to use more complex nonlinear models for both
classification and regression problems we'll encounter in further chapters.
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5
K-Nearest Neighbors and
Support Vector Machines

"Statistical thinking will one day be as necessary for efficient citizenship as the ability to read
and write."

–H.G. Wells

In Chapter 3, Logistic Regression, we discussed using generalized linear models to
determine the probability that a predicted observation belongs to a categorical response
what we refer to as a classification problem. That was just the beginning of classification
methods, with many techniques that we can use to try and improve our predictions.

In this chapter, we'll delve into two nonlinear techniques: K-Nearest Neighbors (KNN) and
Support Vector Machines (SVMs). These techniques are more sophisticated than those we
discussed earlier because the assumptions on linearity can be relaxed, which means a linear
combination of the features to define the decision boundary isn't needed. Be forewarned,
though, that this doesn't always equal superior predictive ability. Additionally, these
models can be a bit problematic to interpret for business partners, and they can be
computationally inefficient. When used wisely, they provide a powerful complement to the
other tools and techniques discussed in this book. They can be used for continuous
outcomes in addition to classification problems; however, for this chapter, we'll focus only
on the latter.
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After a high-level background on the techniques, we'll put both of them to the test, starting
with KNN.

Following are the topics that we'll be covering in this chapter:

K-nearest neighbors
Support vector machines
Manipulating data
Modeling and evaluation

K-nearest neighbors
In our previous efforts, we built models that had coefficients or, to put it in another way,
parameter estimates for each of our included features. With KNN, we have no parameters
as the learning method is so-called instance-based learning. In short, labeled examples (inputs
and corresponding output labels) are stored, and no action is taken until a new input pattern
demands an output value (Battiti and Brunato, 2014, p. 11). This method is commonly called
lazy learning, as no specific model parameters are produced. The train instances
themselves represent the knowledge. For the prediction of any new instance (a new data
point), the training data is searched for an instance that most resembles the new instance
in question. KNN does this for a classification problem by looking at the closest points—the
nearest neighbors—to determine the proper class. The k comes into play by deciding how
many neighbors should be examined by the algorithm, so if k=5, it will consider the five
nearest points. A weakness of this method is that all five points are given equal weight in
the algorithm even if they're less relevant in learning. We'll look at methods using R and try
to alleviate this issue.

The best way to understand how this works is with a simple visual example of a binary
classification learning problem. In the following screenshot, we have a plot showing
whether a tumor is benign or malignant based on two predictive features. The X in the plot
indicates a new observation that we would like to predict. If our algorithm considers K=3,
the circle encompasses the three observations that are nearest to the one that we want to
score. As the most commonly occurring classifications are malignant, the X data point is
classified as malignant, as shown in the following screenshot:
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Even from this simple example, it's clear that the selection of k for the nearest neighbors is
critical. If k is too small, you may have a high variance on the test set observations even
though you have a low bias. On the other hand, as k grows, you may decrease your
variance, but the bias may be unacceptable. Cross-validation is necessary to determine the
proper k. 

It's also important to point out the calculation of the distance or the nearness of the data
points in our feature space. The default distance is Euclidean distance. This is merely the
straight-line distance from point A to point B—as the crow flies—or you can utilize the
formula that states it's equivalent to the square root of the sum of the squared differences
between the corresponding points. The formula for Euclidean distance, given point A and B
with coordinates p1, p2, ... pn and q1, q2, ... qn respectively, would be as follows:

This distance is highly dependent on the scale that the features were measured on, so it's
critical to standardize them. Other distance calculations as well as weights can be used,
depending on the distance. We'll explore this in the upcoming example.

Support vector machines
The first time I heard of support vector machines, I have to admit that I was scratching my
head, thinking that this was some form of academic obfuscation or inside joke. However,
my fair review of SVM has replaced this natural skepticism with a healthy respect for the
technique.
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SVMs have been shown to perform well in a variety of settings and are often considered one of the
best out-of-the-box classifiers (James, G., 2013). To get a practical grasp of the subject, let's look
at another simple visual example. In the following screenshot, you'll see that the
classification task is linearly separable. However, the dotted line and solid line are just two
among an infinite number of possible linear solutions.

You would have separating hyperplanes in a problem that has more than two dimensions:

So many solutions can be problematic for generalization because, whatever solution you
choose, any new observation to the right of the line will be classified as benign, and to the
left of the line, it'll be classified as malignant. Therefore, either line has no bias on the
train data but may have a widely divergent error on any data to test. This is where the
support vectors come into play. The probability that a point falls on the wrong side of the
linear separator is higher for the dotted line than the solid line, which means that the solid
line has a higher margin of safety for classification. Therefore, as Battiti and Brunato say,
SVMs are linear separators with the largest possible margin and the support vectors the ones
touching the safety margin region on both sides.

The following screenshot illustrates this idea. The thin solid line is the optimal linear
separator to create the aforementioned largest possible margin, hence increasing the
probability that a new observation will fall on the correct side of the separator. The thicker
black lines correspond to the safety margin, and the shaded data points constitute the
support vectors. If the support vectors were to move, then the margin and, subsequently,
the decision boundary would change. The distance between the separators is known as the
margin:
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This is all fine and dandy, but real-world problems aren't so clear-cut.

In data that isn't linearly separable, many observations will fall on the
wrong side of the margin (these are so-called slack variables), which is a
misclassification. The key to building an SVM algorithm is to solve for the
optimal number of support vectors via cross-validation. Any observation
that lies directly on the wrong side of the margin for its class is known as a
support vector.

If the tuning parameter for the number of errors is too large, which means that you have
many support vectors, you'll suffer from a high bias and low variance. On the other hand, if
the tuning parameter is too small, the opposite might occur. According to James et al., who
refer to the tuning parameter as C, as C decreases, the tolerance for observations being on
the wrong side of the margin decreases and the margin narrows. This C, or rather, the cost
function, allows for observations to be on the wrong side of the margin. If C were set to
zero, then we would prohibit a solution where any observation violates the margin. This is
a hyperparameter you can tune to optimize bias/variance.

Another essential aspect of SVM is the ability to model nonlinearity with quadratic or
higher order polynomials of the input features. In SVMs, this is known as the kernel trick.
These can be estimated and selected with cross-validation. In the example, we'll look at the
alternatives.

As with any model, you can expand the number of features using polynomials to various
degrees, interaction terms, or other derivations. In large datasets, the possibilities can
quickly get out of control. The kernel trick with SVMs allows us to efficiently expand the
feature space, with the goal that you achieve an approximate linear separation.
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To check out how this is done, let's first look at the SVM optimization problem and its
constraints. We're trying to achieve the following:

Creating weights that maximize the margin
Subject to the constraints, no (or as few as possible) data points should lie within
that margin

Now, unlike linear regression, where each observation is multiplied by a weight, in SVM,
the weights are applied to the inner products of just the support vector observations.

What does this mean? Well, an inner product for two vectors is just the sum of the paired
observations' product. For example, if vector one is 3, 4, and 2 and vector two is 1, 2, and 3,
then you end up with (3x1) + (4x2) + (2x3) or 17. With SVMs, if we take a possibility that an
inner product of each observation has an inner product of every other observation, this
amounts to the formula that there would be n(n-1)/2 combinations, where n is the number
of observations. With just 10 observations, we end up with 45 inner products. However,
SVM only concerns itself with the support vectors' observations and their corresponding
weights. For a linear SVM classifier, the formula is as follows:

Here, (x, xi) are the inner products of the support vectors, as α is non-zero only when an
observation is a support vector.

This leads to far fewer terms in the classification algorithm and allows the use of the
kernel function, commonly referred to as the kernel trick.

The trick in this is that the kernel function mathematically summarizes the transformation
of the features in higher dimensions instead of creating them explicitly. In a simplistic
sense, a kernel function computes a dot product between two vectors. This has the benefit
of creating the higher dimensional, nonlinear space, and decision boundary while keeping
the optimization problem computationally efficient. The kernel functions compute the
inner product in a higher dimensional space without transforming them into the higher
dimensional space.

The notation for popular kernels is expressed as the inner (dot) product of the features,
with xi and xj representing vectors, gamma, and c parameters, as follows:
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As for the selection of the nonlinear techniques, they require some trial and error, but we'll
walk through the various selection techniques.

Manipulating data
In the upcoming case study, we'll apply KNN and SVM to the same dataset. This will allow
us to compare R code and learning methods on the same problem, starting with KNN. We'll
also spend time drilling down into new ways of comparing different classifiers on the same
data.

Dataset creation
The data we use in this chapter can be downloaded from any source on the internet or from
GitHub at this link: https:/ / github. com/ datameister66/ MMLR3rd/ blob/ master/ chapter5.

I found this data on a website dedicated to providing datasets for support vector machine
analysis. You can follow the following link to find numerous sets to test your learning
methods: https:// www. csie. ntu. edu. tw/ ~cjlin/ libsvmtools/ datasets/ .

The authors have asked to cite their work, which I will abide by:

Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011

The data we're using is named a5a, consisting of the training data with 6414 observations.
This is a sufficient size dataset for the interest of facilitating learning, and not causing
computational speed issues. Also, when doing KNN or SVM, you need to center/scale or
normalize your data to 0/1 if the input features are of different scales. Well, this data's input
features are of just two levels, 0 or 1, so we can forgo any normalization efforts.
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I'll show you how to load this data into R, and you can replicate that process on any data
you desire to use.

While we're at it, we may as well load all of the packages needed for this chapter:

> library(magrittr)

> install.packages("ggthemes")

> install.packages("caret")

> install.packages("classifierplots")

> install.packages("DataExplorer")

> install.packages("e1071")

> install.packages("InformationValue")

> install.packages("kknn")

> install.packages("Matrix")

> install.packages("Metrics")

> install.packages("plm")

> install.packages("ROCR")

> install.packages("tidyverse")

> options(scipen=999)

It's a simple matter to access this data using R's download.file() function. You need to
provide the link and give the file a name:

>
download.file('https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/bina
ry/
   a5a', 'chap5')
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What's rather interesting now is that you can put this downloaded file into a usable format
with a function created explicitly for this data from the e1071 library:

> df <- e1071::read.matrix.csr("chap5")

The df object is now an extensive list of input features, and the response labels structured
as a factor with two levels (-1 and +1). This list is what is saved on GitHub in an R data file
like this:

> saveRDS(df, file = "chapter5")

Let's look at how to turn this list into something usable, assuming we need to start by
loading it into your environment:

> df <- readRDS("chapter5")

We'll create the classification labels in an object called y, and turn -1 into 0, and +1 into 1:

> y <- df$y

> y <- ifelse(y == "+1", 1, 0)

> table(y)
y
   0    1
4845 1569

The table shows us that just under 25% of the labels are considered an event. What event?
It doesn't matter for our purposes, so we can move on and produce a dataframe of the
predictors called x. I tried a number of ways to put the sparse matrix into a dataframe, and
it seems that the following code is the easiest, using a function from the Matrix package:

> x <- Matrix::as.matrix(df$x)

> x <- as.data.frame(x)

> dim(x)
[1] 6414 122

We now have our dataframe of 6,414 observations and 122 input features. Next, we'll create
train/test sets and explore the features.
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Data preparation
What we should do now is create our training and test data using a 70/30 split. Then, we
should subject it to the standard feature exploration we started discussing in Chapter 1,
Preparing and Understanding Data, with these tasks in mind:

Eliminate low variance features
Identify and remove linear dependencies
Explore highly correlated features

The first thing then is for us to turn the numeric outcome into a factor to be used for
creating a stratified data index, like so:

> y_factor <- as.factor(y)

> set.seed(1492)

> index <- caret::createDataPartition(y_factor, p = 0.7, list = F)

Using the index, we create train/test input features and labels:

> train <- x[index, ]

> train_y <- y_factor[index]

> test <- x[-index, ]

> test_y <- y_factor[-index]

With our training data in hand, let's find and eliminate the low variance features, which I
can state in advance are quite a few:

> train_NZV <- caret::nearZeroVar(train, saveMetrics = TRUE)

> table(train_NZV$nzv)

FALSE TRUE
   48   74

> table(train_NZV$zeroVar)

FALSE TRUE
  121    1
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We see that 74 features are low variance, and one of those is zero variance. Let's rid
ourselves of these pesky features:

> train_r <- train[train_NZV$nzv == FALSE]

Given our new dataframe of reduced features, we now identify and eliminate linear
dependency combinations:

> linear_combos <- caret::findLinearCombos(x = train_r)

> linear_combos
$`linearCombos`
$`linearCombos`[[1]]
 [1] 13 1 2 3 4 5 9 10 11 12

$`linearCombos`[[2]]
[1] 19 16

$`linearCombos`[[3]]
[1] 20 15

$`linearCombos`[[4]]
 [1] 22 1 2 3 4 5 15 16 18 21

$`linearCombos`[[5]]
[1] 40 1 2 3 4 5 39

$`linearCombos`[[6]]
[1] 42 1 2 3 4 5 41

$`linearCombos`[[7]]
 [1] 47 1 2 3 4 5 43 44 45 46

$remove
[1] 13 19 20 22 40 42 47

The output provides a list of 7 linear dependencies and recommends the removal of 7
features. The number in $remove corresponds to the column index number in the
dataframe. For example, in combination number 2, the indices would be indicative of the
column names, V36 and V22. Here's a table of these two features for demonstration
purposes:

> table(train_r$V36, train_r$V22)
       0    1
  0 3032    0
  1    0 1459
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It's clear these two features are measuring the same thing. We'll remove those
recommended, but there's one more thing to discuss. When doing cross-validation during
the modeling process, you may run into warnings that linear dependencies exist even
though you ran this methodology. I found that to be the case with this dataset in the
modeling exercises that follow. After some exploration of features V1 through V5, I found
that, by dropping V5, this was no longer a problem. Let's proceed with that in mind:

> train_r <- train_r[, -linear_combos$remove]

> train_r <- train_r[, -5]

> plm::detect_lin_dep(train_r)
[1] "No linear dependent column(s) detected."

Here we can check if there're any correlations over 0.7, and remove a feature if it's highly
correlated with another:

> high_corr <- caret::findCorrelation(my_data_cor, cutoff = 0.7)

> high_corr
[1] 29

> train_df <- train_r[, -high_corr]

The code found and removed the feature with a column index of 30 and 34. We now have a
dataframe ready for modeling. If you want to look at a correlation heatmap, then run this
handy function from the DataExplorer package:

> DataExplorer::plot_correlation(train_df)

The output of the preceding code is as follows:

Notice that features V67 and V71 are highly correlated. In a real-world setting, this would
probably warrant further investigation, but we'll feed both into our learning algorithms, as
no subject matter expert can tell us otherwise.

We can now proceed with our model training, starting with KNN, then SVM, and
comparing their performance.
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Modeling and evaluation
Now we'll discuss various aspects of modeling and assessment. In both the KNN and SVM
cases, we'll do feature selection using a technique known as Recursive Feature Elimination
(RFE) in conjunction with cross-validation. As with all feature reduction and selection, this
will help to prevent overfitting the model.

KNN modeling
As stated previously, we'll begin with feature selection. The caret package helps out in
this matter. In RFE, a model is built using all features, and a feature importance value is
assigned. Then the features are recursively pruned and an optimal number of features
selected based on a performance metric such as accuracy. In short, it's a type of backward
feature elimination.

To do this, we'll need to set the random seed, specify the cross-validation method in caret's
rfeControl() function, perform a recursive feature selection with the rfe() function,
and then test how the model performs on the test set. In rfeControl(), you'll need to
specify the function based on the model being used. There are several different functions
that you can use. Here we'll need lrFuncs. To see a list of the available functions, your best
bet is to explore the documentation with ?rfeControl and ?caretFuncs. The metric we'll
use is Cohen's Kappa statistic, which we used and explained in a prior chapter.

To recap, the Kappa statistic is commonly used to provide a measure of how well two
evaluators can classify an observation correctly. It gives an insight into this problem by
adjusting the accuracy scores, which is done by accounting for the evaluators being entirely
correct by mere chance. The formula for the statistic is: Kappa = (percent of agreement - percent
of chance agreement) / (1 - percent of chance agreement).

The percent of agreement is the rate that the evaluators agreed on for the class (accuracy),
and percent of chance agreement is the rate that the evaluators randomly agreed on. The
higher the statistic, the better they performed, with the maximum agreement being one. 
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Altman (1991) provides a heuristic to assist us in the interpretation of the statistic, which is
shown in the following table:

Value of K Strength of Agreement
<0.20 Poor
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Good
0.81-1.00 Very good
The following code gets our control function established:

> ctrl <- caret::rfeControl(
    functions = caret::lrFuncs,
    method = "cv",
    number = 10,
    verbose = TRUE
 )

I now specify the number of feature subsets for consideration between 25 and 35. After
setting the random seed, we can run the RFE using a KNN algorithm. With verbose =
TRUE, the status of training is displayed in the console. Of course, setting that to FALSE will
hide it:

> subsets <- c(25:35)

> set.seed(1863)

> knnProfile <- caret::rfe(
    train_df,
    train_y,
    sizes = subsets,
    rfeControl = ctrl,
    method = "knn",
    metric = "Kappa"
 )

Calling the knnProfile object tells us what we need to know:

> knnProfile #33

Recursive feature selection
Outer resampling method: Cross-Validated (10 fold)
Resampling performance over subset size:

 Variables Accuracy  Kappa AccuracySD KappaSD Selected
        25   0.8377 0.5265    0.01524 0.05107
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        26   0.8383 0.5276    0.01594 0.05359 *
        27   0.8377 0.5271    0.01616 0.05462
        28   0.8375 0.5257    0.01612 0.05416
        29   0.8370 0.5247    0.01668 0.05503
        30   0.8370 0.5241    0.01654 0.05464
        31   0.8381 0.5272    0.01649 0.05465
        32   0.8368 0.5233    0.01727 0.05623
        33   0.8361 0.5212    0.01623 0.05393
        34   0.8366 0.5231    0.01676 0.05525
        35   0.8361 0.5218    0.01644 0.05487
        39   0.8361 0.5217    0.01705 0.05660

The top 5 variables (out of 26):
   V74, V35, V22, V78, V20

The results state that 26 features provide the highest Kappa statistic of 0.5276 (moderate
strength), and it offers the highest accuracy rate of 83.83%. The output also gives us the top
5 features based on importance score. If you want, you can plot the results by putting it into
a dataframe and passing it to ggplot:

> knn_results <- knnProfile$results

> ggplot2::ggplot(knn_results, aes(Variables, Kappa)) +
    ggplot2::geom_line(color = 'darkred', size = 2) +
    ggthemes::theme_economist()

The output of the preceding code is as follows:
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Let's select those 26 features in a new dataframe, then add to the dataframe the
response, train_y. This will get our data ready for training the KNN model:

> vars <- knnProfile$optVariables

> x_selected <-
    train_df[, (colnames(train_df) %in% vars)]

> knn_df <- cbind(x_selected, train_y)

What I like to do is use the train.kknn() function from the kknn package. We use cross-
validation again within the train.kknn() function to select the best parameters for the
optimal k neighbors and a kernel function.

The kernel function allows you to specify an unweighted k neighbors algorithm using the
Euclidian distance and weighted functions for distance. 

For the weighting of the distances, many different methods are available. For our purpose,
the package that we'll use has ten different weighting schemas, which includes unweighted.
They're rectangular (unweighted), triangular, Epanechnikov, biweight, triweight, cosine,
inversion, Gaussian, rank, and optimal. A full discussion of these weighting techniques is
available in Hechenbichler K. and Schliep K.P. (2004).

For simplicity, let's focus on just two: triangular and epanechnikov. Before having the
weights assigned, the algorithm standardizes all of the distances so that they're between
zero and one. The triangular weighting method multiplies the observation distance by one
minus the distance. With Epanechnikov, the distance is multiplied by ¾ times (one minus
the distance). For our problem, we'll incorporate these weighting methods along with the
standard unweighted version for comparison purposes.

After specifying a random seed, we'll create the train set object with kknn(). This
function asks for the maximum number of k-nearest neighbor values (kmax), distance
(one is equal to Euclidean and two is equal to absolute), kcv for the number of k-fold cross-
validation, and kernel. For this model, kmax will be set to 25 and distance will be 1:

> knn_fit <-
    kknn::train.kknn(
    train_y ~ .,
    data = knn_df,
    distance = 1,
    kmax = 25,
    kcv = 10,
    kernel = c("rectangular", "triangular", "epanechnikov")
 )
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A nice feature of the package is the ability to plot and compare the results, as follows:

> plot(knn_fit)

The following is the output of the preceding command:

This plot shows k on the x axis and the percentage of misclassified observations by the
kernel on the y axis. The weighted (triangular) version at k: 17 performs the best. You
can also call the object to see what the classification error and the best parameter are in the
following way:

> knn_fit

Call:
kknn::train.kknn(formula = train_y ~ ., data = knn_df, kmax = 25, distance
= 1, kernel = c("rectangular", "triangular", "epanechnikov"), kcv = 10)

Type of response variable: nominal
Minimal misclassification: 0.154754
Best kernel: triangular
Best k: 17

With the model object created, it's time to see how it performs, starting with the predicted
probabilities on the training data:

> knn_pred_train <-
    data.frame(predict(knn_fit, newdata = knn_df, type = "prob"))

> classifierplots::density_plot(train_y, knn_pred_train$X1)
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The output of the preceding code is as follows:

The plot shows quality separation between the probability densities for events versus non-
events. This should have a high area under the curve value:

> Metrics::auc(train_y, knn_pred_train$X1)
[1] 0.9460519

Almost 0.95! Well, let me say that it's quite good, but I sense that we've overfitted and will
see this low bias on train turn into a miss on the test set. Let's have a look, but also
determine the probability cut point to minimize misclassification error:

> InformationValue::optimalCutoff(train_y, knn_pred_train$X1)
[1] 0.48

So, 0.48 minimizes error on the training data. This will help us produce a confusion
matrix, but first, here's the density plot and AUC for test data:

> knn_pred_test <-
    data.frame(predict(knn_fit, newdata = test, type = "prob"))

> classifierplots::density_plot(test_y, knn_pred_test$X1)
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The output of the preceding code is as follows:

Given the different skews in the density plots from before, it sure does look like we lost
some predictive power on the test data:

> Metrics::auc(test_y, knn_pred_test$X1)
[1] 0.8592589

Indeed, our area under the curve has fallen from 0.95 to 0.86. We can drill down further
into this model's performance with a confusion matrix and associated results. We'll use
the caret package and the confusionMatrix() function. This version provides a
considerable amount of detail, and it will produce all of the statistics that we need to
evaluate and select the best model. You need to specify your predictions as a factor, not
probability, and the actual values need to be structured as a factor. I recommend you
specify the positive class—in other words, our events:

> pred_class <- as.factor(ifelse(knn_pred_test$X1 >= 0.48, "1", "0"))
> caret::confusionMatrix(data = pred_class, reference = test_y, positive =
"1")
Confusion Matrix and Statistics
          Reference
Prediction    0   1
         0 1262 178
         1  191 292
               Accuracy : 0.8081
                 95% CI : (0.7898, 0.8255)
    No Information Rate : 0.7556
    P-Value [Acc > NIR] : 0.00000002214
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                  Kappa : 0.4853
 Mcnemar's Test P-Value : 0.5322
            Sensitivity : 0.6213
            Specificity : 0.8685
         Pos Pred Value : 0.6046
         Neg Pred Value : 0.8764
             Prevalence : 0.2444
         Detection Rate : 0.1518
   Detection Prevalence : 0.2512
      Balanced Accuracy : 0.7449
       'Positive' Class : 1

The function produces some items that we already covered such as Accuracy and Kappa.
Here are the other statistics that it provides:

No Information Rate is the proportion of the largest class: 76 % of no events.
P-Value is used to test the hypothesis that the accuracy is actually better than No
Information Rate.
We'll not concern ourselves with Mcnemar's Test, which is used for the
analysis of matched pairs, primarily in epidemiology studies.
Sensitivity is the true positive rate.
Specificity is the true negative rate. 
The positive predictive value (Pos Pred Value) is the probability of an
observation being classified as being an event and it truly is an event. The
following formula is used:

The negative predictive value (Neg Pred Value) is the probability of an
observation being classified as a non-event and it truly isn't an event. The
formula for this is as follows:

Prevalence is the estimated population prevalence of events, calculated here as
the total of the second column (the 1 column) divided by the total observations.
Detection Rate is the rate of the true positives that have been identified.
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Detection Prevalence is the predicted prevalence rate or, in our case, the
bottom row divided by the total observations.
Balanced Accuracy is the average accuracy obtained from either class. This
measure accounts for a potential bias in the classifier algorithm, thus potentially
over predicting the most frequent class. This is simply: 
Sensitivity + Specificity divided by 2.

You can discern some model weakness in Sensitivity and positive predictive value. Feel
free to try on your own changing different distance weighting options and see if you can
improve performance. Otherwise, let's proceed to SVM and compare the performance
alongside what we just completed.

Support vector machine
If you recall from a previous section, the first thing we did was perform RFE to reduce our
input features. We'll repeat that step in the following. We'll redo our control function:

> ctrl <- caret::rfeControl(
    functions = caret::lrFuncs,
    method = "cv",
    number = 10,
    verbose = TRUE
 )

I say we shoot for around 20 to 30 total features and set our random seed:

> subsets <- c(20:30)

> set.seed(54321)

Now, in selecting the features you can use the SVM linear or the kernel functions. Let's
proceed with linear, which means our specification for the following method will be
svmLinear. If, for instance, you wanted to change to a polynomial kernel, then you would
specify svmPoly instead or svmRadial for the radial basis function:

> svmProfile <- caret::rfe(
    train_df,
    train_y,
    sizes = subsets,
    rfeControl = ctrl,
    method = "svmLinear",
    metric = "Kappa"
 )
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> svmProfile
Recursive feature selection
Outer resampling method: Cross-Validated (10 fold)
Resampling performance over subset size:
 Variables Accuracy Kappa  AccuracySD KappaSD Selected
        20   0.8357 0.5206   0.008253 0.02915
        21   0.8350 0.5178   0.008624 0.03091
        22   0.8359 0.5204   0.008277 0.02948
        23   0.8361 0.5220   0.009435 0.02979
        24   0.8383 0.5292   0.008560 0.02572 *
        25   0.8375 0.5261   0.008067 0.02323
        26   0.8379 0.5290   0.010193 0.02905
        27   0.8375 0.5276   0.009205 0.02667
        28   0.8372 0.5259   0.008770 0.02437
        29   0.8361 0.5231   0.008074 0.02319
        30   0.8368 0.5252   0.008069 0.02401
        39   0.8377 0.5290   0.009290 0.02711

The top 5 variables (out of 24):
   V74, V35, V22, V78, V20

The optimal Kappa and accuracy are with 24 features. Notice that the top five features are
the same as when we ran this with KNN. Here's how to plot the Kappa score per number of
features:

> svm_results <- svmProfile$results

> ggplot2::ggplot(svm_results, aes(Variables, Kappa)) +
    ggplot2::geom_line(color = 'steelblue', size = 2) +
    ggthemes::theme_fivethirtyeight()

The output of the preceding code is as follows:
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Let's select a dataframe with only the optimal features:

> svm_vars <- svmProfile$optVariables

> x_selected <-
    train_df[, (colnames(train_df) %in% svm_vars)]

With our features selected, we can train a model with cross-validation, and in the process
tune the hyperparameter, C. If you recall from previously, this is the regularization
parameter. We'll go forward with caret's train() function:

> grid <- expand.grid(.C = c(1, 2, 3))

> svm_control <- caret::trainControl(method = 'cv', number = 10)

> set.seed(1918)

> svm <- caret::train(x_selected,
    train_y,
    method = "svmLinear",
    trControl = svm_control,
    tuneGrid = grid,
    metric = "Kappa")

> svm
Support Vector Machines with Linear Kernel

4491 samples
  24 predictor
   2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 4041, 4042, 4042, 4041, 4042, 4043, ...
Resampling results across tuning parameters:

  C Accuracy Kappa
  1 0.8372287 0.5223355
  2 0.8367833 0.5210972
  3 0.8374514 0.5229846

Kappa was used to select the optimal model using the
 largest value.
The final value used for the model was C = 3.
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Excellent! We have optimal C = 3, so let's build that model. By the way, be sure to specify
we want a probability model with prob.model = TRUE. The linear kernel is specified with
vanilladot:

> svm_fit <-
    kernlab::ksvm(
    as.matrix(x_selected),
    train_y,
    kernel = "vanilladot",
    prob.model = TRUE,
    kpar = "automatic",
    C = 3
 )

Do we want a dataframe of predicted probabilities on the train data? I'm glad you asked:

> svm_pred_train <-
    kernlab::predict(svm_fit, x_selected, type = "probabilities")

> svm_pred_train <- data.frame(svm_pred_train)

Our density plot in the following looks about as good as what we saw with KNN:

> classifierplots::density_plot(train_y, svm_pred_train$X1)

The output of the preceding code is as follows:
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Two things before moving on to the test data, and that is AUC and the optimal score cutoff:

> Metrics::auc(train_y, svm_pred_train$X1)
[1] 0.8940114

> InformationValue::optimalCutoff(train_y, svm_pred_train$X1)
[1] 0.3879227

OK, the AUC is inferior to KNN on the training data, but the proof must be in our test data:

> test_svm <- test[, (colnames(test) %in% svm_vars)]

> svm_pred_test <-
    kernlab::predict(svm_fit, test_svm, type = "probabilities")

> svm_pred_test <- as.data.frame(svm_pred_test)

I insist we take a look at the density plot:

> classifierplots::density_plot(test_y, svm_pred_test$`1`)

The output of the preceding code is as follows:

I would put forward that we have a good overall fit here:

> Metrics::auc(test_y, svm_pred_test$`1`)
[1] 0.8951011
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That's more like it: excellent bias/variance tradeoff. We can start the overall comparison
with KNN by moving forward with the confusion matrix and relevant stats:

> svm_pred_class <- as.factor(ifelse(svm_pred_test$`1` >= 0.275, "1", "0"))

> caret::confusionMatrix(data = svm_pred_class, reference = test_y,
positive = "1")
Confusion Matrix and Statistics
          Reference
Prediction    0   1
         0 1206 104
         1  247 366
               Accuracy : 0.8175
                 95% CI : (0.7995, 0.8345)
    No Information Rate : 0.7556
    P-Value [Acc > NIR] : 0.00000000004314737
                  Kappa : 0.5519
 Mcnemar's Test P-Value : 0.00000000000003472
            Sensitivity : 0.7787
            Specificity : 0.8300
         Pos Pred Value : 0.5971
         Neg Pred Value : 0.9206
             Prevalence : 0.2444
         Detection Rate : 0.1903
   Detection Prevalence : 0.3188
      Balanced Accuracy : 0.8044
       'Positive' Class : 1

When you compare the results across methods, we see better values for the SVM almost
across the board, especially a better Kappa as well as better balanced accuracy. In the past
couple of chapters, we've produced ROC plots where the various models were overlaid on
the same plot. We can recreate that same plot here as well, as follows:

> pred.knn <- ROCR::prediction(knn_pred_test$X1, test_y)

> perf.knn <- ROCR::performance(pred.knn, "tpr", "fpr")

> ROCR::plot(perf.knn, main = "ROC", col = 1)

> pred.svm <- ROCR::prediction(svm_pred_test$`1`, test_y)

> perf.svm <- ROCR::performance(pred.svm, "tpr", "fpr")

> ROCR::plot(perf.svm, col = 2, add = TRUE)

> legend(0.6, 0.6, c("KNN", "SVM"), 1:2)
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The output of the preceding code is as follows:

The plot shows a clear separation in the curves between the two models. Therefore, given
what we've done here, the SVM algorithm performed better than KNN. Indeed, we could
try a number of different methods to improve either algorithm, which could include a
different feature selection and a different weighting for KNN (or kernels for SVM). 

Summary
In this chapter, we reviewed two classification techniques: KNN and SVM. The goal was to
discover how these techniques work and ascertain the differences between them, by
building and comparing models on a common dataset. KNN involved both unweighted
and weighted nearest neighbor algorithms, and for SVM, only a linear model was
developed, which outperformed all other models.

We examined how to use Recursive Feature Elimination to find an optimal set of features
for both methods. We used the extremely versatile caret package to train the models. We
expanded our exploration of model performance using a confusion matrix, and the relevant
statistics that one can derive from the matrix. We'll now use tree-based classifiers, which
are very powerful and very popular.
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6
Tree-Based Classification

"The classifiers most likely to be the best are the random forest (RF) versions, the best of
which (implemented in R and accessed via caret), achieves 94.1 percent of the maximum
accuracy, overcoming 90 percent in 84.3 percent of the data sets."

- Fernández-Delgado et al. (2014)

This quote from Fernández-Delgado et al. in the Journal of Machine Learning Research is
meant to demonstrate that the techniques in this chapter are quite powerful, particularly
when used for classification problems. 

In previous chapters, we examined techniques used to predict label classification on three
different datasets. Here, we'll apply tree-based methods with an eye to see whether we can
improve our predictive power on the Santander data used in Chapter 3, Logistic Regression,
and the data used in Chapter 4, Advanced Feature Selection in Linear Models.

The first item of discussion is the basic decision tree, which is simple to both build and to
understand. However, the single decision tree method isn't likely to perform as well as the
other methods that you've already learned, for example, Support Vector Machines
(SVMs), or the ones that we've yet to learn, such as neural networks. Therefore, we'll
discuss the creation of multiple, sometimes hundreds, of different trees with their
individual results combined, leading to a single overall prediction.

These methods, as the paper referenced at the beginning of this chapter states, perform as
well as, or better than, any technique in this book. These methods are known as random
forests and gradient boosted trees. Additionally, we'll work on how to use the random
forest method to assist in feature elimination/selection. 

Following are the topics that we'll be covering in this chapter:

An overview of the techniques
Datasets and modeling
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An overview of the techniques
We'll now get to an overview of the techniques, covering classification trees, random
forests, and gradient boosting. This will set the stage for their practical use.

Understanding a regression tree
To establish an understanding of tree-based methods, it's probably easier to start with a
quantitative outcome and then move on to how it works in a classification problem. The
essence of a tree is that the features are partitioned, starting with the first split that
improves the RSS the most. These binary splits continue until the termination of the tree.
Each subsequent split/partition isn't done on the entire dataset, but only on the portion of
the prior split that it falls under. This top-down process is referred to as recursive
partitioning. It's also a process that's greedy, a term you may stumble upon in reading
about machine learning (ML) methods. Greedy means that during each split in the process,
the algorithm looks for the greatest reduction in the RSS without any regard to how well it
will perform on the later partitions. The result is that you may end up with a full tree of
unnecessary branches leading to a low bias but a high variance. To control this effect, you
need to appropriately prune the tree to an optimal size after building a full tree.

This diagram provides a visualization of this technique in action:

Regression tree with three splits and four terminal nodes, and the corresponding node average and number of observations
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The data is hypothetical with 30 observations, a response ranging from 1 to 10, and two
predictor features, both ranging in value from 0 to 10 named X1 and X2. The tree has three
splits leading to four terminal nodes. Each split is basically an if...then statement or uses
the R syntax ifelse(). The first split is: if X1 is less than 3.5, then the response is split into
four observations with an average value of 2.4 and the remaining 26 observations. The left
branch of four observations is a terminal node as any further splits would not substantially
improve the RSS. The predicted value for these four observations is that the partition of the
tree becomes the average. The next split is at X2 < 4, and finally X1 < 7.5.

An advantage of this method is that it can handle highly nonlinear relationships; however,
can you see a couple of potential problems? The first issue is that an observation is given
the average of the terminal node under which it falls. This can hurt the overall predictive
performance (high bias). Conversely, if you keep partitioning the data further and further
to achieve a low bias, a high variance can become an issue. As with the other methods, you
can use cross-validation to select the appropriate tree depth size.

Classification trees
Classification trees operate under the same principle as regression trees, except that the
splits aren't determined by the RSS but by an error rate. The error rate used isn't what you
would expect where the calculation is simply the misclassified observations divided by the
total observations. As it turns out, when it comes to tree-splitting, a misclassification rate,
by itself, may lead to a situation where you can gain information with a further split but not
improve the misclassification rate. Let's look at an example.

Suppose we have a node, let's call it N0, where you have seven observations labeled No and
three observations labeled Yes. We can say that the misclassified rate is 30%. With this in
mind, let's calculate a common alternative error measure called the Gini index. The 
formula for a single node Gini index is as follows:

Then, for N0, the Gini is 1 - (.7)2 - (.3)2, which is equal to 0.42, versus the misclassification
rate of 30%.
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Taking this example further, we'll now create node N1 with three observations from Class
1 and none from Class 2, along with N2, which has four observations from Class 1 and
three from Class 2. Now, the overall misclassification rate for this branch of the tree is still
30%, but look at how the overall Gini index has improved:

Gini(N1) = 1 - (3/3)2 - (0/3)2 = 0
Gini(N2) = 1 - (4/7)2 - (3/7)2 = 0.49
New Gini index = (proportion of N1 x Gini(N1)) + (proportion of N2 x Gini(N2)),
which is equal to (0.3 x 0) + (0.7 x 0.49) or 0.343

By doing a split on a surrogate error rate, we actually improved our model impurity,
reducing it from 0.42 to 0.343, whereas the misclassification rate didn't change. This is the
methodology that's used by the rpart() package, which we'll be using in this chapter.

Random forest
To greatly improve our model's predictive ability, we can produce numerous trees and
combine the results. The random forest technique does this by applying two different tricks
in model development. The first is the use of bootstrap aggregation, or bagging, as it's
called.

In bagging, an individual tree is built on a random sample of the dataset, roughly two-
thirds of the total observations (note that the remaining one-third is referred to as out-of-
bag (oob)). This is repeated dozens or hundreds of times and the results are averaged. Each
of these trees is grown and not pruned based on any error measure, and this means that the
variance of each of these individual trees is high. However, by averaging the results, you
can reduce the variance without increasing the bias.

The next thing that random forest brings to the table is that concurrently with the random
sample of the data—that is, bagging—it also takes a random sampling of the input features
at each split. In the randomForest package, we'll use the default random number of the
predictors that're sampled, which, for classification problems, is the square root of the total
predictors, and for regression, is the total number of the predictors divided by three. The
number of predictors the algorithm randomly chooses at each split can be changed via the
model tuning process.
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By doing this random sample of the features at each split and incorporating it into the
methodology, you can mitigate the effect of a highly correlated predictor becoming the
main driver in all of your bootstrapped trees, preventing you from reducing the variance
that you hoped to achieve with bagging. The subsequent averaging of the trees that're less
correlated to each other is more generalizable and robust to outliers than if you only
performed bagging.

Gradient boosting
Boosting methods can become extremely complicated to learn and understand, but you
should keep in mind what's fundamentally happening behind the curtain. The main idea is
to build an initial model of some kind (linear, spline, tree, and so on) called the base learner,
examine the residuals, and fit a model based on these residuals around the so-called loss
function. A loss function is merely the function that measures the discrepancy between the
model and desired prediction, for example, a squared error for regression or the logistic
function for classification. The process continues until it reaches some specified stopping
criterion. This is sort of like the student who takes a practice exam and gets 30 out of 100
questions wrong and, as a result, studies only these 30 questions that were missed. In the
next practice exam, they get 10 out of those 30 wrong and so only focus on those 10
questions, and so on. If you would like to explore the theory behind this further, a great
resource for you is available in Frontiers in Neurorobotics, Gradient boosting machines, a
tutorial, Natekin A., Knoll A. (2013), at
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885826/.

As just mentioned, boosting can be applied to many different base learners, but here, we'll
only focus on the specifics of tree-based learning. Each tree iteration is small and we'll
determine how small with one of the tuning parameters referred to as interaction depth. In
fact, it may be as small as one split, which is referred to as a stump.

Trees are sequentially fitted to the residuals, according to the loss function, up to the
number of trees that we specified (our stopping criterion).

There're a number of parameters that require tuning in the model-building process using
the Xgboost package, which stands for eXtreme Gradient Boosting. This package has
become quite popular for online data contests because of its winning performance. There's
excellent background material on boosting trees and on Xgboost at the following website:

http://xgboost.readthedocs. io/ en/ latest/ model. html.
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In the practical examples, we'll learn how to begin to optimize the hyperparameters and
produce meaningful output and predictions. These parameters can interact with each other
and, if you just tinker with one without considering the other, your model may worsen the
performance. The caret package will help us in the tuning endeavor.

Datasets and modeling
We're going to be using two of the prior datasets, the simulated data from Chapter
4, Advanced Feature Selection in Linear Models, and the customer satisfaction data from
Chapter 3, Logistic Regression. We'll start by building a classification tree on the simulated
data. This will help us to understand the basic principles of tree-based methods. Then, we'll
move on to random forest and boosted trees applied to the customer satisfaction data. This
exercise will provide an excellent comparison to the generalized linear models from before.
Finally, I want to show you an interesting feature selection method using random forest,
using the simulated data. By interesting, I mean it's a valuable technique to add to your
feature selection arsenal, but I'll point out a couple of caveats for you to consider in
practical application.

Classification tree
This exercise will be an excellent introduction to tree-based methods. I recommend
applying this method to any supervised learning method because, at a minimum, you'll get
a better understanding of the data and establish a good baseline of predictive performance.
It may also be the only thing you need to do to solve a problem for your business partners.
An example I can share was where the marketing team tasked me to try and reverse-
engineer a customer segmentation done by an external vendor nearly two years in the past.
We had the original survey data and the customer segment labels, but no understanding of
how the data drove the segmentation.

Well, I just used the methods described in this section, and we could predict a segment with
almost 100% accuracy. Plus, as you'll see, it was easy to explain why:

Let's get the packages installed if needed:1.

library(magrittr)
install.packages("Boruta")
install.packages("caret")
install.packages("classifierplots")
install.packages("InformationValue")
install.packages("MLmetrics")
install.packages("randomForest")
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install.packages("ROCR")
install.packages("rpart")
install.packages("rpart.plot")
install.packages("tidyverse")
install.packages("xgboost")
options(scipen=999)

As for the simulated data, I discuss how I created it in Chapter 4, Advanced2.
Feature Selection in Linear Models. You can find it on GitHub at this link: https:/ /
github.com/ datameister66/ MMLR3rd/ blob/ master/ sim_ df. csv.
We now load it into R:3.

> sim_df <- read.csv("~/sim_df.csv", stringsAsFactors = FALSE)

The response we'll try and predict is called y. It's a numeric value of either 0 or 14.
with 1 being the outcome of interest. It's slightly unbalanced, with about 30% of
the responses labeled a 1. Let's confirm that and turn it into a factor, which will
tell our tree function we're interested in classification:

 > table(sim_df$y)

   0    1
7072 2928

> sim_df$y <- as.factor(sim_df$y)

Create the train/test split using the same random seed as in Chapter 4, Advanced5.
Feature Selection in Linear Models:

> set.seed(1066)

> index <- caret::createDataPartition(sim_df$y, p = 0.7, list = F)

> train <- sim_df[index, ]

> test <- sim_df[-index, ]

To create our classification tree, we'll be using the rpart() function, using the6.
common formula syntax:

> tree_fit <- rpart::rpart(y ~ ., data = train)

The next thing I like to do is look at the cptable from our model object:7.

> tree_fit$cptable
          CP nsplit rel error    xerror       xstd
1 0.20878049      0 1.0000000 1.0000000 0.01857332
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2 0.19609756      1 0.7912195 0.7595122 0.01697342
3 0.01585366      2 0.5951220 0.6029268 0.01556234
4 0.01219512      6 0.5297561 0.5775610 0.01530000
5 0.01000000      8 0.5053659 0.5395122 0.01488626

This is an interesting table to analyze. The first column labeled CP is the cost
complexity parameter. The second column, nsplit, is the number of splits in the
tree. The rel error column stands for relative error. Both xerror and xstd are
based on ten-fold cross-validation, with xerror being the average error and xstd
the standard deviation of the cross-validation process. We can see that eight splits
produced the lowest error on the full dataset and on cross-validation.

You can examine this using plotcp():8.

> rpart::plotcp(tree_fit)

The output of the preceding actions is as follows:

The plot shows us the cross-validated relative error by tree size with the corresponding
error bars. The horizontal line on the plot is the upper limit of the lowest standard error.
Selecting a different tree size, say seven, you would create an object of your desired cp and
prune the tree simply by specifying that object in the prune() function, or you can just give
the function the cp number. It would look as follows:

> cp = tree_fit$cptable[4, 1]
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> cp
[1] 0.01219512

> cp <- min(tree_fit$cptable[, 3])
# not run
# rpart::prune(tree_fit, cp = cp)
# Or
# rpart::prune(tree_fit, cp = 0.01219512)

You can plot and explore the tree in a number of different ways. I prefer the version from
the rpart.plot package. There's an excellent vignette on how to use it at the
following website:

http://www.milbo. org/ rpart- plot/ prp. pdf.

Here's the first one, type = 3 with extra = 2 (see the vignette for more options):

> rpart.plot::rpart.plot(
    tree_fit,
    type = 3,
    extra = 2,
    branch = .75,
    under = TRUE
 )

The output of the preceding command is as follows:
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The preceding plot shows the feature at each split and the value related to that split. The
first split in the tree is the feature TwoFactor1. If the value is less than -1.8 then those
observations end up in a terminal node. In this version of the tree, 772 observations are in
that node (because the feature value is less than -1.8, and 600 of those observations are
labeled 1. So, you can say that the node probability is 78% (600/772) that an observation is a
1. Now, if the value is equal to or greater than -1.8, then it goes to the next feature to split,
which is TwoFactor2, and so forth until all observations are in a terminal node. 

If you want to see all of those terminal node probabilities, a simple change to the syntax
will suffice:

> rpart.plot::rpart.plot(
 tree_fit,
 type = 1,
 extra = 6,
 branch = .75,
 under = TRUE
 )

The output of the preceding command is as follows:

This different look shows the percentage of 1 in each terminal node and complements the
preceding plot. If you want to see all of the rules leading for the nodes, you can run this:

> rpart.plot::rpart.rules(tree_fit)
    y
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 0.10 when TwoFactor1 >= -1.75 & TwoFactor2 < 1.69 & Linear2 >= -0.70
 0.17 when TwoFactor1 >= -0.85 & TwoFactor2 < 0.92 & Linear2 < -0.70
 0.33 when TwoFactor1 >= -1.75 & TwoFactor2 is 1.69 to 2.20 & Linear2 >=
0.31
 0.34 when TwoFactor1 is -1.75 to -0.85 & TwoFactor2 < 0.92 & Linear2 <
-0.70 &
           Linear3 < -0.14
 0.63 when TwoFactor1 >= -1.75 & TwoFactor2 is 0.92 to 1.69 & Linear2 <
-0.70
 0.72 when TwoFactor1 is -1.75 to -0.85 & TwoFactor2 < 0.92 & Linear2 <
-0.70 &
           Linear3 >= -0.14
 0.78 when TwoFactor1 < -1.75
 0.80 when TwoFactor1 >= -1.75 & TwoFactor2 >= 2.20 & Linear2 >= 0.31
 0.88 when TwoFactor1 >= -1.75 & TwoFactor2 >= 1.69 & Linear2 < 0.31

We shall now see how this simple model performs on the test set. You may recall that with 
elastic net, we had an area under the curve (AUC) of over 0.87 and a log-loss of 0.37:

> rparty.test <- predict(tree_fit, newdata = test)

> rparty.test <- rparty.test[, 2]

> classifierplots::density_plot(test$y, rparty.test)

The output of the preceding code is as follows:
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Notice the spikes in the density. The plot is capturing the probabilities from those terminal
nodes. The real test will be our two favorite metrics, AUC and log-loss:

> ynum <- as.numeric(ifelse(test$y == "1", 1, 0))

> MLmetrics::AUC(rparty.test, ynum)
[1] 0.8201691

> MLmetrics::LogLoss(rparty.test, ynum)
[1] 0.4140015

OK, the performance isn't as good as using elastic net and so on, but overall I don't believe
that's too bad for such a simple model that even someone in marketing can understand.
We'll see if complicating things with a random forest can surpass elastic net when we look
at using it for feature selection. Our next task is to use random forest and boosted trees in a
classification problem.

Random forest
The customer satisfaction data was covered in Chapter 3, Logistic Regression. The GitHub
links to the CSV and an RData file are as follows:

https:// github. com/ datameister66/ MMLR3rd/ blob/ master/ santander_ prepd.
RData

https:// github. com/ datameister66/ MMLR3rd/ blob/ master/ santander_ prepd.
csv

I'll show you how to load the RData file:

> santander <- readRDS("santander_prepd.RData")

The data has an unbalanced response:

> table(santander$y)

    0    1
73012 3008

We'll split the train and test sets using the same random seed as in Chapter 3, Logistic
Regression:

> set.seed(1966)

> trainIndex <- caret::createDataPartition(santander$y, p = 0.8, list =
FALSE)
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> train <- santander[trainIndex, ]

> test <- santander[-trainIndex, ]

With this split, we end up with one zero variance features, which we'll find and remove:

> train_zero <- caret::nearZeroVar(train, saveMetrics = TRUE)

> table(train_zero$zeroVar)

FALSE TRUE
  142    1

> train <- train[, train_zero$zeroVar == 'FALSE']

I like to put the predictors in a matrix, and we'll need the response as a factor:

> x <- as.matrix(train[, -142])

> y <- as.factor(train$y)

We're now ready to start training a model. Recall that we have a highly unbalanced
response. One of the things I highly recommend in such an instance is to structure your
sample size. In fact, this can actually become a key parameter to tune. In the training data,
there are only 2,405 ones alongside 58,411 zeros. I'll show an example of forcing the sample
at each bagged sample in the algorithm. Again, this will take some trial and error on your
part to identify the right ratio of downsampling the majority class to minority class. In the
following example, I'm sampling 1,200 of the minority class and 3,600 of the majority class.
This was some simple trial and error on my part, so see if you can do better. What this does
to your predicted probabilities is skew them towards the minority class—in other words,
you have a relative probability. This might not be what the business desires, so you can
apply a correction to produce the corrected probability:

The population proportion is the actual, or the estimated proportion of the minority class,
and the sample proportion is from your oversample. Predicted probability equates to the
model's probability for a given observation.

The other thing I specify here is the number of trees, and 200 for starters is sufficient. In
some instances, you may need a thousand or more:

> set.seed(1999)

> forest_fit <- randomForest::randomForest(x = x, y = y,
    ntree = 200,
    sampsize = c(3600, 1200))
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Calling the fitted object gives us the following results:

> forest_fit

Call:
 randomForest(x = x, y = y, ntree = 200, sampsize = c(3600, 1200))
               Type of random forest: classification
                     Number of trees: 200
No. of variables tried at each split: 11

        OOB estimate of error rate: 9.51%
Confusion matrix:
      0    1 class.error
0 53946 4465  0.07644108
1  1321 1084  0.54927235

You can notice that the out-of-bag error rate is under 10%, and it gives us a confusion
matrix. My advice is to not pay that much attention to this and just make a note of it. We'll
use our relative probabilities to find the best split. Besides, as we've talked about in other
chapters, error/accuracy isn't the best metric to judge a model. One thing that's good to look
at is the number of trees that minimized the error. That way, you can limit the number of
trees in an attempt to avoid overfitting:

> which.min(forest_fit$err.rate[, 1])
[1] 105

> forest_fit$err.rate[105]
[1] 0.0934458

There you have it: only 105 trees are needed to minimize the error versus all 200. In this
model, we used all 142 features. That's just computationally inefficient and prone to cause
overfitting.

I'll show you what has worked quite well for me on a number of projects to reduce features.
Before we go there, here's the standard feature importance plot:

> randomForest::varImpPlot(forest_fit)
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The output of the preceding code is as follows:

The feature importance is based on the average decrease in Gini. We can see that there're
roughly a dozen or so features driving predictions, and the V2 feature is quite suspicious. I
talk about the notorious V2 feature in Chapter 3, Logistic Regression so I won't belabor the
point here. 

What I'm about to present you may find controversial or unscientific. Well, I have to agree.
However, it works. What I do is find the descriptive statistics for feature importance and
decide, based on some experimental value or business expertise, where to filter the features.
It's best to demonstrate how in our example:

> ff <- data.frame(unlist(forest_fit$importance))

> ff$var <- row.names(ff)

> summary(ff)
 MeanDecreaseGini             var
 Min.    :  0.00000         Length:141
 1st Qu. :  0.02172         Class :character
 Median  :  0.36412          Mode :character
 Mean    :  6.12824
 3rd Qu. :  4.02137
 Max.    :155.86878
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In the lack of subject matter expertise or otherwise, we can cut the features based on mean
Gini decrease above the third quantile:

> my_forest_vars <- dplyr::filter(ff, MeanDecreaseGini > 4.02)

> my_forest_vars <- my_forest_vars$var

> x_reduced <- x[, my_forest_vars]

> dim(x_reduced)
[1] 60816 36

That gave us just 36 input features. We could reduce it even further, but I'll let you
experiment with different results. Now, build the new model with reduced features:

> set.seed(567)

> forest_fit2 <- randomForest::randomForest(x = x_reduced, y = y,
    ntree = 110,
    sampsize = c(3600, 1200))

> which.min(forest_fit2$err.rate[, 1])
[1] 98

Examine how it does on the training data first:

> rf_prob <- predict(forest_fit, type = "prob")

> y_prob <- rf_prob[, 2]

> classifierplots::density_plot(y, y_prob)
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The output of the preceding code is as follows:

Now, pursue identifying the metrics:

> ynum <- as.numeric(ifelse(y == "1", 1, 0))

> MLmetrics::AUC(y_prob, ynum)
[1] 0.8154905

> MLmetrics::LogLoss(y_prob, ynum)
[1] 0.2652151

The AUC seems about what came about what we would expect, but the log-loss is quite a
bit worse. Why? Ah, yes, our problem is the relative probabilities. We need to adjust the
predicted probabilities, then recalculate log-loss. I'll make it straightforward to do this by
taking the formula I discussed previously and putting it into a function:

> corrected_prob <- function(result, population_fraction, sample_fraction){
    value <- 1/(1+(1/population_fraction-1) /
(1/sample_fraction-1)*(1/result-1))
    return(value)
}
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Then, we apply the function to the predicted results:

> yprob_corrected <- corrected_prob(result = y_prob,
    population_fraction = 0.04,
    sample_fraction = .33

We can see that the AUC hasn't changed, but the log-loss has improved:

> MLmetrics::AUC(yprob_corrected, ynum)
[1] 0.8154905

> MLmetrics::LogLoss(yprob_corrected, ynum)
[1] 0.188308

In fact, it's more in line now with what we saw in Chapter 3, Logistic Regression. It's worth
exploring whether it can be close to the 0.14 log-loss and 0.81 AUC values we achieved with
the MARS model on the test set:

> rf_test <- predict(forest_fit, type = "prob", newdata = test)

> rf_test <- rf_test[, 2]

> ytest <- as.numeric(ifelse(test$y == "1", 1, 0))

> MLmetrics::AUC(rf_test, ytest)
[1] 0.8149009

Nicely done on the AUC! Correct those probabilities and get the log-loss:

> rftest_corrected <- corrected_probability(result = rf_test,
    population_fraction = 0.04,
    sample_fraction = 0.33)

> MLmetrics::LogLoss(rftest_corrected, ytest)
[1] 0.1787402

We actually improved the log-loss versus the training data, but didn't win the battle versus
MARS. What to do? Well, we're going to give XGboost a try next. We could go back and
and tune the number of trees, oversampling fraction, or the number of features sampled per
tree or even just say that, on this dataset, MARS did its job. It's been my experience that, on
unbalanced labels, random forest will outperform MARS.
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However, this case does demonstrate the power of MARS as your go-to baseline model.
Let's do one further drill-down and plot the AUC curves of random forest versus MARS.
Please note that this last step requires you to have executed the code in Chapter 3, Logistic
Regression. If you haven't saved the results, go back and run the MARS example before
proceeding with the following:

pred.rf <- ROCR::prediction(rftest_corrected, test$y)

perf.rf <- ROCR::performance(pred.rf, "tpr", "fpr")

ROCR::plot(perf.rf, main = "ROC", col = 1)

pred.earth <- ROCR::prediction(test_pred, test$y)

perf.earth <- ROCR::performance(pred.earth, "tpr", "fpr")

ROCR::plot(perf.earth, col = 2, add = TRUE)
legend(0.6, 0.6, c("RF", "MARS"), 1:2)

The output of the preceding code is as follows:

This is quite revealing. Here, we to very distinct curves where the AUC values are almost
identical. Indeed, from a true positive rate of 0.4 to 0.8, random forest outperforms MARS.
The key learning here is that a model performance value in and of itself isn't enough to
guide model selection. 

While random forest once again proved itself a capable tool for classification, let's see
how gradient boosting trees can perform.
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Extreme gradient boosting – classification
As mentioned previously, we'll be using the xgboost package in this section. Given the
method's well-earned reputation, let's try it on the santander data.

As stated in the boosting overview, you can tune a number of parameters:

nrounds: This is the maximum number of iterations (number of trees in the final
model).
colsample_bytree: This is the number of features, expressed as a ratio, to
sample when building a tree. The default is 1 (100% of the features).
min_child_weight: This is the minimum weight in the trees being boosted. The
default is 1.
eta: This is the learning rate, which is the contribution of each tree to the
solution. The default is 0.3.
gamma: This is the minimum loss reduction required to make another leaf
partition in a tree.
subsample: This is the ratio of data observations. The default is 1 (100%).
max_depth: This is the maximum depth of the individual trees.

Using the expand.grid() function, we'll build our experimental grid to
run through the training process of the caret package. If you don't
specify values for all of the preceding parameters, even if it's just a
default, you'll receive an error message when you execute the function.
The following values are based on a number of training iterations I've
done previously. I encourage you to try your own tuning values.

Tuning this can be a daunting task computationally speaking. For our example, we'll just
focus on tuning eta and gamma. Let's build the grid as follows:

> grid = expand.grid(
    nrounds = 100,
    colsample_bytree = 1,
    min_child_weight = 1,
    eta = c(0.1, 0.3, 0.5), #0.3 is default,
    gamma = c(0.25, 0.5),
    subsample = 1,
    max_depth = c(3)
 )
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This creates a grid of six different models that the caret package will run to determine the
best tuning parameters. A note of caution is in order. On a dataset of the size that we'll be
working with, this process takes only a few minutes. However, in large datasets or tuning
more parameters with more values per parameter, this can take hours. As such, you must
apply your judgment and possibly experiment with smaller samples of the data in order to
identify the tuning parameters, in case time is of the essence or you're constrained by the
size of your hard drive.

Before using the train() function from the caret package, I would like to specify the
trainControl argument by creating an object called control. This object will store the
method that we want so as to train the tuning parameters. We'll use 5 fold cross-validation,
as follows:

> cntrl = caret::trainControl(
+ method = "cv",
+ number = 5,
+ verboseIter = TRUE,
+ returnData = FALSE,
+ returnResamp = "final"
+ )

To utilize the train.xgb() function, just specify the formula as we did with the other
models: the train dataset input values, labels, method, train control, metric, and
experimental grid. Remember to set the random seed:

> set.seed(123)

> train.xgb = caret::train(
    x = x_reduced,
    y = y,
    trControl = cntrl,
    tuneGrid = grid,
    method = "xgbTree",
    metric = "Kappa"
 )

Since in trControl I set verboseIter to TRUE, you should have seen each training
iteration within each k-fold.

Calling the object gives us the optimal parameters and the results of each of the parameter
settings, as follows (this is abbreviated for simplicity):

> train.xgb
eXtreme Gradient Boosting
No pre-processing
Resampling: Cross-Validated (5 fold)
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Summary of sample sizes: 48653, 48653, 48653, 48652, 48653
Resampling results across tuning parameters:

  eta gamma  Accuracy       Kappa
  0.1  0.25 0.9604545 0.001525813
  0.1  0.50 0.9604709 0.002323003
  0.3  0.25 0.9604216 0.014214973
  0.3  0.50 0.9604052 0.014215605
  0.5  0.25 0.9600434 0.015513354
  0.5  0.50 0.9599776 0.013964451

Tuning parameter 'nrounds' was held constant at a value of 100
 1
Tuning parameter 'min_child_weight' was held constant at a value of
 1
Tuning parameter 'subsample' was held constant at a value of 1
Kappa was used to select the optimal model using the largest value.
The final values used for the model were nrounds = 100, max_depth = 3, eta
 = 0.5, gamma = 0.25, colsample_bytree = 1, min_child_weight = 1
 and subsample = 1.

The best results are with eta = 0.5, and gamma = 0.25. Now it gets a little tricky, but this is
what I've seen as best practice. First, create a list of parameters that will be used by the
xgboost training function, xgb.train(). Then, turn the dataframe into a matrix of input
features and a list of labeled numeric outcomes (0s and 1s). Then, turn the features and
labels into the input required, as xgb.Dmatrix. Try this:

> param <- list( objective = "binary:logistic",
    booster = "gbtree",
    eval_metric = "error",
    eta = 0.5,
    max_depth = 3,
    subsample = 1,
    colsample_bytree = 1,
    gamma = 0.25
 )
> train.mat <- xgboost::xgb.DMatrix(data = x_reduced, label = ynum)

With all of that prepared, just create the model:

> set.seed(1232)

> xgb.fit <- xgboost::xgb.train(params = param, data = train.mat, nrounds =
    100)
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Before seeing how it does on the test set, let's check the variable importance and plot it. You
can examine three items: gain, cover, and frequency. Gain is the improvement in accuracy
that feature brings to the branches it's on. Cover is the relative number of total observations
related to this feature. Frequency is the percentage of times that feature occurs in all of the
trees. The following code produces the desired output:

> impMatrix <- xgboost::xgb.importance(feature_names = dimnames(x)[[2]],
    model = xgb.fit)

> xgboost::xgb.plot.importance(impMatrix, main = "Gain by Feature")

The output of the preceding command is as follows:

How does the feature importance compare to random forest? Feature V2 remains the most
important, and roughly the top ten are the same. Note that it does very well on the training
data:

> pred <- predict(xgb.fit, x_reduced)

> MLmetrics::AUC(pred, y) #.88
[1] 0.8839242

> MLmetrics::LogLoss(pred, ynum) #.12
[1] 0.1209341

Impressed? Well, here is how we see it performed on the test set, which, like the training
data, must be in a matrix:

> test_xgb <- as.matrix(test)

> test_xgb <- test_xgb[, my_forest_vars]
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> xgb_test_matrix <- xgboost::xgb.DMatrix(data = test_xgb, label = ytest)

> xgb_pred <- predict(xgb.fit, xgb_test_matrix)

> Metrics::auc(ytest, xgb_pred) #.83
[1] 0.8282241

> MLmetrics::LogLoss(xgb_pred, ytest) #.138
[1] 0.1380904

What happened here is that the model had the lowest bias on the training data, but the
performance falls off on the test data. Even so, it still has the highest AUC and lowest log-
loss. Like we did with random forest, let's compare the ROC plot with xgboost added:

> ROCR::plot(perf.rf, main = "ROC", col = "black")

> ROCR::plot(perf.earth, col = "red", add = TRUE)

> pred.xgb <- ROCR::prediction(xgb_pred, test$y)

> perf.xgb <- ROCR::performance(pred.xgb, "tpr", "fpr")

> ROCR::plot(perf.xgb, col = "green", add = TRUE)

> legend(x = .75, y = .5,
    legend = c("RF", "MARS", "XGB"),
    fil = c("black", "red", "green"),
    col = c(1,2,3))

The output of the proceeding code is as follows:
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The xgboost model sort of combines the best of random forest and MARS in performance.
All that will minimal tuning of hyperparameters. This clearly shows the power of the
method and why it has become so popular.

Before we bring this chapter to a close, I want to introduce the powerful method of feature
elimination using random forest techniques.

Feature selection with random forests
So far, we've looked at several feature selection techniques, such as regularization,
stepwise, and recursive feature elimination. I now want to introduce an effective feature
selection method for classification problems with random forests using the
Boruta package. A paper is available that provides details on how it works in providing
all the relevant features: Kursa M., Rudnicki W. (2010), Feature Selection with the Boruta
Package, Journal of Statistical Software, 36(11), 1 - 13.

What I'll do here is provide an overview of the algorithm and then apply it to the simulated
dataset. I've found it to be highly effective at eliminating unimportant features, but be
advised it can be computationally intensive. However, it's usually time well spent.

At a high level, the algorithm creates shadow attributes by copying all of the input values
and shuffling the order of their observations to decorrelate them. Then, a random forest
model is built on all of the input values and a Z-score of the mean accuracy loss for each
feature, including the shadow ones. Features with significantly higher Z-scores or
significantly lower Z-scores than the shadow attributes are deemed important and
unimportant respectively. The shadow attributes and those features with known
importance are removed and the process repeats itself until all features are assigned an
importance value. You can also specify the maximum number of random forest iterations.
After completion of the algorithm, each of the original features will be labeled as
confirmed, tentative, or rejected. You must decide on whether or not to include the
tentative features for further modeling. Depending on your situation, you have some
options:

Change the random seed and rerun the methodology multiple (k) times and
select only those features that are confirmed in all of the k runs
Divide your data (training data) into k folds, run separate iterations on each fold,
and select those features which are confirmed for all of the k folds
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Note that all of this can be done with just a few lines of code. To get started, load the
simulated data, sim_df, again. We'll create train and test sets as before:

> sim_df$y <- as.factor(sim_df$y)

> set.seed(1066)

> index <- caret::createDataPartition(sim_df$y, p = 0.7, list = F)

> train <- sim_df[index, ]

> test <- sim_df[-index, ]

To run the algorithm, you just need to call the Boruta package and create a formula in the
boruta() function. Keep in mind that the labels must be a factor or the algorithm won't
work. If you want to track the progress of the algorithm, specify doTrace = 1. But, I shall
forgot that option in the following. Also, don't forget to set the random seed:

> set.seed(5150)

> rf_fs <- Boruta::Boruta(y ~ ., data = train)

As mentioned, this can be computationally intensive. Here's how long it took on my old-
fashioned laptop:

> rf_fs$timeTaken #2.84 minutes workstation, 28.22
Time difference of 22.15982 mins

I ran this same thing on a high-powered workstation and it ran in two minutes.

A simple table will provide the count of the final importance decision. We see that the
algorithm rejects five features and selects 11:

> table(rf_fs$finalDecision)

Tentative Confirmed Rejected
        0        11        5

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Tree-Based Classification Chapter 6

[ 153 ]

Using these results, it's simple to create a new dataframe with our selected features. We
start out using the getSelectedAttributes() function to capture the feature names. In
this example, let's only select those that are confirmed. If we wanted to include confirmed
and tentative, we just specify withTentative = TRUE in the function:

> fnames <- Boruta::getSelectedAttributes(rf_fs) #withTentative = TRUE

> fnames
 [1] "TwoFactor1" "TwoFactor2" "Linear2"    "Linear3"    "Linear4"
"Linear5"
 [7] "Linear6"    "Nonlinear1" "Nonlinear2" "Nonlinear3" "random1"

Using the feature names, we create our subset of the data:

> boruta_train <- train[, colnames(train) %in% fnames]

> boruta_train$y <- train$y

We'll go ahead now and build a random forest algorithm with the selected features and see
how it performs:

> boruta_fit <- randomForest::randomForest(y ~ ., data = train)

> boruta_pred <- predict(boruta_fit, type = "prob", newdata = test)

> boruta_pred <- boruta_pred[, 2]

> ytest <- as.numeric(ifelse(test$y == "1", 1, 0))

> MLmetrics::AUC(boruta_pred, ytest)
[1] 0.9604841

> MLmetrics::LogLoss(boruta_pred, ytest)
[1] 0.2704204

This is quite an impressive performance when you compare to the results from Chapter 4,
Advanced Feature Selection in Linear Models. I think this example serves as a good validation
of the technique. Go get some computing horsepower and start using it!
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Summary
In this chapter, you learned both the power of tree-based learning methods for classification
problems. Single trees, while easy to build and interpret, may not have the necessary
predictive power for many of the problems that we're trying to solve. To improve on the
predictive ability, we have the tools of random forest and gradient-boosted trees at our
disposal. With random forest, hundreds or even thousands of trees are built and the results
aggregated for an overall prediction. Each tree of the random forest is built using a sample
of the data called bootstrapping as well as a sample of the predictive variables. As for
gradient boosting, an initial, and a relatively small, tree is produced. After this initial tree is
built, subsequent trees are produced based on the residuals/misclassifications. The intended
result of such a technique is to build a series of trees that can improve on the weakness of
the prior tree in the process, resulting in decreased bias and variance. We also saw that, in
R, we can utilize random forests as an effective feature selection/reduction method.

While these methods are extremely powerful, they aren't some sort of nostrum in the world
of machine learning. Different datasets require judgment on the part of the analyst as to
which techniques are applicable. The techniques to be applied to the analysis, and the
selection of the tuning parameters is equally important. This fine tuning can make all of the
difference between a good predictive model and a great predictive model.

In the next chapter, we'll turn our attention to using R to build neural networks and deep
learning models.
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7
Neural Networks and Deep

Learning
"Forget artificial intelligence – in the brave new world of big data, it's artificial idiocy we
should be looking out for."

– Tom Chatfield

I recall that at some meeting circa mid-2012, I was part of a group discussing the results of
some analysis or other, when one of the people around the table sounded off with a hint of
exasperation mixed with a tinge of fright: this isn't one of those neural networks, is it? I knew
of his past run-ins with, and deep-seated anxiety regarding, neural networks, so I assuaged
his fears, making some sarcastic comment that neural networks have basically gone the
way of the dinosaur. No one disagreed! Several months later, I was gobsmacked when I
attended a local meeting where the discussion focused on, of all things, neural networks
and this mysterious deep learning. Machine learning pioneers, such as Ng, Hinton,
Salakhutdinov, and Bengio have revived neural networks and improved their performance.

Much media hype revolves around these methods, with high-tech companies such as
Facebook, Google, and Netflix investing tens, if not hundreds, of millions of dollars. These
methods have yielded promising results in voice recognition, image recognition,
automation, and any practical data science project. If self-driving cars ever stop running off
the road and into each other, it will certainly be due to the methods we've discussed here.

In this chapter, we will discuss how the methods work, their benefits, and their inherent
drawbacks so that you can become conversationally competent about them. We will start
slowly by working through a simple application of a neural network, which will give you a
feel for what is happening. Then, we will pursue the deep learning methodology that has
burst on the scene the past couple of years, TensorFlow, using Keras as the frontend.
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The following topics will be covered in this chapter:

Introduction to neural networks
Deep learning, a not-so-deep overview
Creating a simple neural network
An example of deep learning

Introduction to neural networks
Neural network is a fairly broad term that covers a number of related methods but, in our
case, we will focus on a feedforward network that trains with backpropagation. I'm not
going to waste our time discussing how the machine learning methodology is similar or
dissimilar to how a biological brain works. We only need to start with a working definition
of what a neural network is.

To know more about artificial neural networks, I think the Wikipedia
entry is a good start: https:/ /en.wikipedia. org/ wiki/ Artificial_
neural_ network.

To summarize, in machine learning and cognitive science, artificial neural networks
(ANNs) are a family of statistical learning models inspired by biological neural networks
(the central nervous systems of animals, the brain) and are used to estimate or approximate
functions that can depend on a large number of inputs and are generally unknown.

The motivation or benefit of ANNs is that they allow the modeling of highly complex
relationships between inputs/features and response variable(s), especially if the
relationships are highly nonlinear. No underlying assumptions are required to create and
evaluate the model, and it can be used with qualitative and quantitative responses. If this is
the yin, then the yang is the common criticism that the results are a black box, which means
that there is no equation with the coefficients to examine and share with the business
partners. In fact, the results are almost uninterpretable. The other criticisms revolve around
how results can differ by just changing the initial random inputs and that training ANNs is
computationally expensive and time-consuming.

The mathematics behind ANNs is not trivial by any measure. However, it is crucial to at
least get a working understanding of what is happening. A good way to intuitively develop
this understanding is to start with a diagram of a simplistic neural network.
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In this simple network, the inputs or covariates consist of two nodes or neurons. The
neuron labeled as 1 represents a constant or, more appropriately, the intercept. X1
represents a quantitative variable. W represents the weights that are multiplied by the
input node values. These values become input nodes to the hidden node. You can have
multiple hidden nodes, but the principle of what happens in just this one is the same. In the
hidden node, H1, the weight * value computations are summed. As the intercept is notated
as 1, then that input value is simply the weight, W1. Now the magic happens. The summed
value is then transformed with the activation function, turning the input signal to an
output signal. In this example, as it is the only the hidden node, it is multiplied by W3 and
becomes the estimate of Y, our response. This is the feedforward portion of the algorithm:

But wait, there's more! To complete the cycle or epoch, as it is known, backpropagation
happens and trains the model based on what was learned. To initiate backpropagation, an
error is determined based on a loss function such as sum of squared error or cross-entropy,
among others. As the weights, W1 and W2, were set to some initial random values between
[-1, 1], the initial error may be high. Working backward, the weights are changed to
minimize the error in the loss function. The following diagram portrays the
backpropagation portion:
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This completes one epoch. This process continues, using gradient descent (discussed in
Chapter 5, K-Nearest Neighbors and Support Vector Machines) until the algorithm converges
to the minimum error or a pre-specified number of epochs. If we assume that our activation
function is simply linear, in this example, we would end up with the following:

The networks can get complicated if you add numerous input neurons, multiple neurons in
a hidden node, and even multiple hidden nodes. It is important to note that the output
from a neuron is connected to all the subsequent neurons and has weights assigned to all
these connections. This greatly increases the model's complexity. Adding hidden nodes and
increasing the number of neurons in the hidden nodes has not improved the performance
of ANNs as we had hoped. Thus, the development of deep learning occurs, which in part
relaxes the requirement of all these neuron connections.

There are a number of activation functions that you can use/try, including a simple linear
function, or for a classification problem, the sigmoid function, which is a special case of the
logistic function (Chapter 3, Logistic Regression). Other common activation functions are
Rectifier, Maxout, and tanh (hyperbolic tangent).

We can plot a sigmoid function in R, first creating an R function to calculate the sigmoid
function values:

    > sigmoid = function(x) {
     1 / ( 1 + exp(-x) )
     }

Then, it is a simple matter of plotting the function over a range of values, say -5 to 5:

    > x <- seq(-5, 5, .1)
    > plot(sigmoid(x))
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The output of the preceding command is as follows:

The tanh function (hyperbolic tangent) is a rescaling of the logistic sigmoid with the
output between -1 and 1. The tanh function relates to sigmoid as follows, where x is the
sigmoid function:

Let's plot the tanh and sigmoid functions for comparison purposes. Let's also use ggplot:

> install.packages("ggplot2")

> s <- sigmoid(x)

> t <- tanh(x)

> z <- data.frame(cbind(x, s, t))

> ggplot2::ggplot(z, ggplot2::aes(x)) +
    ggplot2::geom_line(ggplot2::aes(y = s, color = "sigmoid")) +
    ggplot2::geom_line(ggplot2::aes(y = t, color = "tanh"))
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The output of the preceding command is as follows:

So, why use the tanh function versus sigmoid? It seems there are many opinions on the
subject. In short, assuming you have scaled data with mean 0 and variance 1, the tanh
function permits weights that are on average, close to zero (zero-centered). This helps in
avoiding bias and improves convergence. Think about the implications of always having
positive weights from an output neuron to an input neuron like in a sigmoid function
activation. During backpropagation, the weights will become either all positive or all
negative between layers. This may cause performance issues. Also, since the gradient at the
tails of a sigmoid (0 and 1) are almost zero, during backpropagation, it can happen that
almost no signal will flow between neurons of different layers. A full discussion of the issue
is available from LeCun (1998). Keep in mind it is not a foregone conclusion that tanh is
always better.

This all sounds fascinating, but the ANN almost went the way of disco as it just did not
perform as well as advertised, especially when trying to use deep networks with many
hidden layers and neurons. It seems that a slow, yet gradual revival came about with the
seminal paper by Hinton and Salakhutdinov (2006) in the reformulated and, dare I say,
rebranded neural network, deep learning.
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Deep learning – a not-so-deep overview
So, what is this deep learning that is grabbing our attention and headlines? Let's turn to
Wikipedia again to form a working definition: Deep learning is a branch of machine learning
based on a set of algorithms that attempt to model high-level abstractions in data by using model
architectures, with complex structures or otherwise, composed of multiple nonlinear
transformations. That sounds as if a lawyer wrote it. The characteristics of deep learning are
that it is based on ANNs where the machine learning techniques, primarily unsupervised
learning, are used to create new features from the input variables. We will dig into some
unsupervised learning techniques in the next couple of chapters, but you can think of it as
finding structure in data where no response variable is available.

A simple way to think of it is the periodic table of elements, which is a classic case of
finding a structure where no response is specified. Pull up this table online and you will see
that it is organized based on atomic structure, with metals on one side and non-metals on
the other. It was created based on latent classification/structure. This identification of latent
structure/hierarchy is what separates deep learning from your run-of-the-mill ANN. Deep
learning sort of addresses the question of whether there is an algorithm that better
represents the outcome than just the raw inputs. In other words, can our model learn to
classify pictures other than with just the raw pixels as the only input? This can be of great
help in a situation where you have a small set of labeled responses but a vast amount of
unlabeled input data. You could train your deep learning model using unsupervised
learning and then apply this in a supervised fashion to the labeled data, iterating back and
forth.

Identification of these latent structures is not trivial mathematically, but one example is the
concept of regularization that we looked at in Chapter 4, Advanced Feature Selection in Linear
Models. In deep learning, you can penalize weights with regularization methods such as L1
(penalize non-zero weights), L2 (penalize large weights), and dropout (randomly ignore
certain inputs and zero their weight out). In standard ANNs, none of these regularization
methods take place.
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Another way is to reduce the dimensionality of the data. One such method is the
autoencoder. This is a neural network where the inputs are transformed into a set of
reduced dimension weights. In the following diagram, notice that Feature A is not
connected to one of the hidden nodes:

This can be applied recursively and learning can take place over many hidden layers. What
you have seen happening, in this case, is that the network is developing features of features
as they are stacked on each other. Deep learning will learn the weights between two layers
in sequence first and then use backpropagation to fine-tune these weights. Other feature
selection methods include restricted Boltzmann machine and sparse coding model.

The details of restricted Boltzmann machine and sparse coding model are
beyond our scope, and many resources are available to learn about the
specifics. Here are a couple of starting points:
http://www.cs.toronto.edu/~hinton/

and http:/ / deeplearning. net/.

Deep learning has performed well on many classification problems, including winning a
Kaggle contest or two. It still suffers from the problems of ANNs, especially the black box
problem. Try explaining to the uninformed what is happening inside a neural network,
regardless of the use of various in vogue methods. However, it is appropriate for problems
where an explanation of how is not a problem and the important question is what. After all,
do we really care why an autonomous car avoided running into a pedestrian, or do we care
about the fact that it did not? Additionally, the Python community has a bit of a head start
on the R community in deep learning usage and packages. As we will see in the practical
exercise, the gap is closing.
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While deep learning is an exciting undertaking, be aware that to achieve the full benefit of
its capabilities, you will need a high degree of computational power along with taking the
time to train the best model by fine-tuning the hyperparameters. Here is a list of some
things that you will need to consider:

An activation function
Size and number of the hidden layers
Dimensionality reduction, that is, restricted Boltzmann versus autoencoder
The number of epochs
The gradient descent learning rate
The loss function
Regularization

Deep learning resources and advanced methods
One of the more interesting visual tools you can use for both learning and explaining is the
interactive widget provided by TensorFlow: http:/ /playground. tensorflow. org/. This
tool allows you to explore, or tinker, as the site calls it, the various parameters and how they
impact on the response, be it a classification problem or a regression problem. I could spend
– well, I have spent – hours tinkering with it.

Here is an interesting task: create your own experimental design and see
how the various parameters affect your prediction.

At this point, the fastest-growing deep learning open source tool is TensorFlow. You can
access TensorFlow with R, but it requires you to install Python first. What we will go
through in the practical exercise is Keras, which is an API that can run on top of
TensorFlow, or other backend neural networks such as Theano. The creators of Keras
designed it to simplify the development and testing of deep neural networks. We will
discuss TensorFlow and Keras a little more in-depth, prior to our implementation of a
problem.

I also really like using MXNet, which does not require the installation of Python and is
relatively easy to install and make operational. It also offers a number of trained models
that allow you to start making predictions quickly. Several R tutorials are available at
http://mxnet.io/ .
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I now want to take the time to enumerate some of the variations of deep neural networks
along with the learning tasks where they have performed well.

Convolutional neural networks (CNNs) make the assumption that the inputs are images
and create features from slices or small portions of the data, which are combined to create a
feature map. Think of these small slices as filters or, probably more appropriately, kernels
that the network learns during training. The activation function for a CNN is a rectified
linear unit (ReLU). It is simply f(x) = max(0, x), where x is the input to the neuron. CNNs
perform well on image classification, and object detection.

Recurrent neural networks (RNNs) are created to make use of sequential information. In
traditional neural networks, the inputs and outputs are independent of each other. With
RNNs, the output is dependent on the computations of previous layers, permitting
information to persist across layers. So, take an output from a neuron (y); it is calculated not
only on its input (t) but on all previous layers (t-1, t-n...). It is effective at handwriting and
speech detection.

Long short-term memory (LSTM) is a special case of an RNN. The problem with an RNN
is that it does not perform well on data with long signals. Thus, LSTMs were created to
capture complex patterns in data. RNNs combine information during training from
previous steps in the same way, regardless of the fact that information in one step is more
or less valuable than other steps. LSTMs seek to overcome this limitation by deciding what
to remember at each step during training. This multiplication of a weight matrix by the data
vector is referred to as a gate, which acts as an information filter. A neuron in an LSTM will
have two inputs and two outputs. The input from prior outputs and the memory vector
passed from the previous gate. Then, it produces the output values and output memory as
inputs to the next layer. LSTMs have the limitation of requiring a healthy dose of training
data and are computationally intensive. LSTMs have performed well on speech recognition
problems and in complicated time series analysis.

With that, let's move on to some practical applications.
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Creating a simple neural network
For this task, we will develop a neural network to answer the question of when the now-
defunct Space Shuttle should use its autolanding system. The default decision is to let the
crew land the craft. However, the autoland capability may be required for situations of
crew incapacitation or adverse effects of gravity upon re-entry after extended orbital
operations. This data is based on computer simulations, not actual flights. In reality, the
autoland system went through some trials and tribulations and, for the most part, the
shuttle astronauts were in charge during the landing process. Here are a couple of links for
further background information:

http://www. spaceref. com/ news/ viewsr. html? pid= 10518

https:// waynehale. wordpress. com/ 2011/ 03/11/ breaking- through/ 

Data understanding and preparation
To start, we will load the necessary packages and put the required ones in the environment.
The data is in the MASS package:

> library(magrittr)

> install.packages(caret)

> install.packages(MASS)

> library(MASS)

> install.packages("neuralnet")

> install.packages("vtreat")

The neuralnet package will be used for building the model and caret for data
preparation. Let's load the data and examine its structure:

> data(shuttle)

> str(shuttle)
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The data consists of 256 observations and 7 features. Notice that all of the features are
categorical and the response is use with two levels, auto and noauto, as follows:

stability: This is stable positioning or not (stab/xstab)
error: This is the size of the error (MM / SS / LX)
sign: This is the sign of the error, positive or negative (pp/nn)
wind: This is the wind sign (head / tail)
magn: This is the wind strength (Light / Medium / Strong / Out of Range)
vis: This is the visibility (yes / no)

Here, we will look at a table of the response/outcome:

> table(shuttle$use)
 auto noauto
 145     111

Almost 57% of the time, the decision is to use the autolander. We'll now get our training
and testing data set up for modeling:

> set.seed(1942)

> trainIndex <-
    caret::createDataPartition(shuttle$use, p = .6, list = FALSE)

> shuttleTrain <- shuttle[trainIndex, -7]

> shuttleTest <- shuttle[-trainIndex, -7]

We are going to treat the data to create numeric features, and also drop the cat_P features
that the function creates. We covered the idea of treating a dataframe in Chapter 1,
Preparing and Understanding Data:

> treatShuttle <- vtreat::designTreatmentsZ(shuttleTrain,
colnames(shuttleTrain))

> train_treated <- vtreat::prepare(treatShuttle, shuttleTrain)

> train_treated <- train_treated[, c(-1,-2)]

> test_treated <- vtreat::prepare(treatShuttle, shuttleTest)

> test_treated <- test_treated[, c(-1, -2)]
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The next couple portions of code I find awkward. Because neuralnet() requires a formula
and the data in a dataframe, we have to turn the response into a numeric list and then add
it to our treated train and test data:

> shuttle_trainY <- shuttle[trainIndex, 7]

> train_treated$y <- ifelse(shuttle_trainY == "auto", 1, 0)

> shuttle_testY <- shuttle[-trainIndex, 7]

> test_treated$y <- ifelse(shuttle_testY == "auto", 1, 0)

The function in neuralnet will call for the use of a formula as we used elsewhere, such as
y~x1+x2+x3+x4, data = df. In the past, we used y~ to specify all the other variables in the data
as inputs. However, neuralnet does not accommodate this at the time of writing. The way
around this limitation is to use the as.formula() function. After first creating an object of
the variable names, we will use this as an input to paste the variables properly on the right-
hand side of the equation:

> n <- names(train_treated)

> form <- as.formula(paste("y ~", paste(n[!n %in% "y"], collapse = " + ")))

The object form give us what we need to build our model.

Modeling and evaluation
In the neuralnet package, the function that we will use is appropriately named
neuralnet(). Other than the formula, there are four other critical arguments that we will
need to examine:

hidden: This is the number of hidden neurons in each layer, which can be up to
three layers; the default is 1
act.fct: This is the activation function with the default logistic and tanh
available
err.fct: This is the function used to calculate the error with the default sse; as
we are dealing with binary outcomes, we will use ce for cross-entropy
linear.output: This is a logical argument on whether or not to ignore act.fct
with the default TRUE, so for our data, this will need to be FALSE
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You can also specify the algorithm. The default is resilient with backpropagation and we
will use it along with the default of one hidden neuron for simplicity:

> nnfit <- neuralnet::neuralnet(form, data = train_treated, err.fct = "ce",
linear.output = FALSE)

Here is an abbreviated output of weights for the overall result:

> head(nnfit$result.matrix)
1
error                                0.024293436369
reached.threshold                    0.009929147409
steps                              181.000000000000
Intercept.to.1layhid1                0.573783967352
stability_lev_x_stab.to.1layhid1    -2.072585716776
stability_lev_x_xstab.to.1layhid1    6.859369770672

We can see that the error is extremely low at 0.024. The number of steps required for the
algorithm to reach the threshold, which is when the absolute partial derivatives of the error
function, become smaller than this error (default = 0.1).

You can also look at what is known as generalized weights. According to the authors of the
neuralnet package, the generalized weight is defined as the contribution of the ith
covariate to the log-odds:

The generalized weight expresses the effect of each covariate xi and thus has an analogous
interpretation as the ith regression parameter in regression models. However, the generalized weight
depends on all other covariates (Gunther and Fritsch, 2010).

The weights can be called and examined. I've abbreviated the output to
the first four variables and six observations only. Note that if you sum
each row, you will get the same number, which means that the weights
are equal for each covariate combination. Please note that your results
might be slightly different because of random weight initialization.

The results are as follows:

> head(fit$generalized.weights[[1]])
            [,1]             [,2]             [,3]              [,4]
1 0.0004057906237 -0.001342992917 -0.0010654093452 -0.00010947079069
2 0.0003792401307 -0.001255122173 -0.0009957006291 -0.00010230822138
3 0.0003929874040 -0.001300619751 -0.0010317943007 -0.00010601684547
4 0.0003672745975 -0.001215521390 -0.0009642849428 -0.00009908026019
5 0.0273129186450 -0.090394045943 -0.0717104759663 -0.00736825009054
6 0.0255281981170 -0.084487386479 -0.0670246655557 -0.00688678315678
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To visualize the neural network, simply use the plot() function:

> plot(fit)

The following is the output of the preceding command:

This plot shows the weights of the features and intercepts.

We now want to see how well the model performs. This is done with the compute()
function and specifying the fit model and covariates:

> test_pred <- neuralnet::compute(nnfit, test_treated[, 1:16])

> test_prob <- test_pred$net.result

These results are in probabilities, so let's turn them into 0 or 1 and follow this up with a
confusion matrix and log-loss:

> pred <- ifelse(test_prob >= 0.5, 1, 0)

> table(pred, test_treated$y)
pred  0  1
   0 41  0
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   1  3 58
> MLmetrics::LogLoss(test_prob, test_treated$y)
[1] 0.2002453861

The model achieved near-perfect accuracy on the test set but had three false negatives. I'll
leave it to you to see if you can build a neural network that achieves 100% accuracy!

An example of deep learning
Shifting gears away from the Space Shuttle, let's work through how to set up, train, and
evaluate a deep learning model. You see these used quite a bit for image classification,
NLP, and so on. However, let's look at using it for regression. You don't find too many
examples of that in my opinion. As such, let's go with our Ames housing price data we
used back in Chapter 2, Linear Regression. Before that, let's briefly discuss what Tensor,
TensorFlow, and Keras are.

Keras and TensorFlow background
I mentioned earlier that Keras is an API, a frontend if you will, for several deep learning
backends. It was originally available only for Python but has been available in R since,
mid-2017. It is important to spend some time reviewing its capabilities at its documentation
source: https://keras. io/ why- use- keras/ .

I must confess my colleagues brought me into Keras and using TensorFlow kicking and
screaming. If I can get this to work, I would say that you certainly can. I must thank them,
as it is very powerful, even though I have a slight bias toward MXNet. As the old saying
goes, it is tough to teach old dogs new tricks!

The backend of choice, of course, is TensorFlow. We must now take a few sentences to put
in plain English what a tensor is, and what TensorFlow is. A tensor is an n-dimensional
array. Thus, a vector is a one-dimensional tensor, a matrix is a two-dimensional tensor and
so forth. Let's say you have a multivariate time series, which would consist of a three-
dimensional tensor: one dimension is the observations or length of your data, another
dimension is the features, and another the timesteps or, more concretely, the lagged values.
TensorFlow as a backend is an open source platform, created by Google, that uses tensors,
of course, for high-performance and scalable computation. The base frontend for
TensorFlow is Python. Therefore, to use Keras and R as the frontend, you must install
Python, in particular the Python platform Anaconda: https:/ /www. anaconda. com/ .
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So, if installing Anaconda becomes an issue, then the following exercise will require you to
use a different backend, which is outside the scope of this discussion. Let's look at how to
get this up and running. Keep in mind that I'm using a Windows-based computer:

As a caveat, it is important to inform you that I in no way guarantee that
the following code will work for you as I exactly lay it out. I've installed
this on several computers, and each time I encountered different problems
that required me to search the internet for a specific solution. The one
common factor is that you have installed Anaconda on your computer
and that it is fully functional.

# Install reticulate package as it allows R to call python
> install.packages("reticulate")

> install.packages("keras")

> keras::install_keras() # loads the necessary python packages and may take
some time to complete

> library(keras)

> library(reticulate)

That was the code that worked for me on this laptop. Again, your results may vary. Also,
note that I've run into a number of issues that required me to run install_keras() again
to get it working properly.

Assuming all is well, let's get our data loaded.

Loading the data
As for this data, it is the same that we used in Chapter 2, Linear Regression. What is
different is that I've prepared the data exactly as before, but saved the features and
response as an RData file. You can download that from GitHub: https:/ /github. com/
datameister66/MMLR3rd/ blob/ master/ amesDL. RData.

Once you have that in your working directory, load it into the environment:

> load("amesDL.RData")
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Notice that you now have four new objects:

trained: The training data features
tested: The testing data features
train_logy: The log of home sales
test_logy: The log of home sales

It is essential that the data is centered and scaled for a neural network (in the prior exercise,
all features were either zero or one, which is acceptable). To perform this task, a function is
available in the caret package. Let's use the training data to create the mean and standard
deviation values that we will apply to both train and test data:

> prep <- caret::preProcess(trained, method = c("center", "scale"))

> trainT <- predict(prep, trained)

This gives us our transformed training data. However, Keras will not accept a dataframe as
an input. It needs an array for both the features and the response. This is an easy fix with
the data.matrix() function:

> train_logy <- data.matrix(train_logy)

> trainT <- data.matrix(trainT)

Now, you can just repeat these steps with the test data features:

> testT <- predict(prep, tested)

> testT <- data.matrix(testT)

It's about to get interesting.

Creating the model function
OK, we are going to create a model function, but not the model. The key function is
keras_model_sequential(). There is a ton of stuff you can specify. What I'm going to
show are two hidden layers with 64 neurons each. In both layers, the activation function is
relu, which I covered earlier, and they work well for a regression problem. After the first
layer, I demonstrate how to incorporate a dropout layer of 30%. Then, after the second
hidden layer, I incorporate L1 regularization or LASSO, which we discussed in Chapter 4,
Advanced Feature Selection in Linear Models. I thought it was important to show how to use
both regularization methods, so you can use and adjust them as you deem fit.
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The next function within the function is compile(), where I specify the loss as mean-
squared-error (MSE) and the validation data metric as mean-absolute-error:

> model <- keras_model_sequential() %>%
    layer_dense(units = 64, activation = "relu",
                input_shape = dim(trainT)[2]
    ) %>%
    layer_dropout(0.3) %>%
    layer_dense(units = 64, activation = "relu",
                kernel_regularizer = regularizer_l1(l = 0.001)) %>%
    #layer_dropout(0.5) %>%
    layer_dense(units = 1)
  model %>% compile(
    loss = "mse",
    optimizer = optimizer_rmsprop(),
    metrics = list("mean_absolute_error")
  )
  model
}

Now, you can build the model and examine it. One thing of note, and something I don't see
in very many vignettes out there, is to specify the seed, otherwise your results will vary
wildly:

> use_session_with_seed(1800)

> model <- build_model()

> model %>% summary()

The output of the preceding code is as follows:

_________________________________________________________________
Layer (type)                             Output Shape
Param #
===========================================================================
======
dense_1 (Dense)                      (None, 64)                      7360
_________________________________________________________________
dropout_1 (Dropout)             (None, 64)                            0
_________________________________________________________________
dense_2 (Dense)                     (None, 64)                      4160
_________________________________________________________________
dense_3 (Dense)                     (None, 1)
65
===========================================================================
======
Total params: 11,585
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Trainable params: 11,585
Non-trainable params: 0

The output should be self-explanatory, which means we can finally train the model.

Model training
Training the model is quite interesting, I believe. We will pass the model to the fit()
function, having specified the features, response, number of epochs, and validation
percentage at each epoch. Here, I have gone with 100 epochs, and 20% of the training data
for validation:

> epochs <- 100

> # Fit the model and store training stats

> history <- model %>% fit(
    trainT,
    train_logy,
    epochs = epochs,
    validation_split = 0.2,
    verbose = 0
)

You can examine the history object on your own, but what is very powerful is to plot the
training and validation error for each epoch:

> plot(history, metrics = "mean_absolute_error", smooth = FALSE)
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The output of the preceding code is as follows:

Notice how much the error differs between training and validation until we get above 80
epochs. This leads me to believe we should do well on the test data. Let's get our training
baseline!

> min(history$metrics$mean_absolute_error)
[1] 0.248

To get the predicted values on the test data, just pipe the model to the predict() function:

> test_predictions <- model %>% predict(testT)

We now call up our metrics as we've done in other chapters. We should look at MAE
obviously, but also the % error, and the R-squared:

> MLmetrics::MAE(test_predictions, test_logy)
[1] 0.162

> MLmetrics::MAPE(test_predictions, test_logy)
[1] 0.0133

> MLmetrics::R2_Score(test_predictions, test_logy)
[1] 0.6765795

Well done, I must say. To conclude evaluation, let's examine a base R plot of the predicted
values versus the actuals (the log values):

> plot(test_predictions, test_logy)
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The output of the preceding code is as follows:

This compares similarly to what we did in Chapter 2, Linear Regression, with a number of
outliers and some erratic performance on the lower- and higher-priced houses – all that
with hardly any effort to adjust parameters such as the number of hidden neurons, layers,
regularization, and maybe adding a linear activation unit somewhere.

In summary, using Keras with TensorFlow can challenge your sanity to code it properly to
produce the results you desire, but what we've done here is establish a pipeline to make it
possible for regression, and with a couple of changes, it will work for classification. All that,
with very little effort around optimizing parameters, which I think is indicative of the
power of the technique. Go and do likewise.

Summary
In this chapter, the goal was to get you up and running in the exciting world of neural
networks and deep learning. We examined how the methods work, their benefits, and their
inherent drawbacks, with applications to two different datasets. These techniques work
well where complex, nonlinear relationships exist in the data. The first example was of a
simple neural network on a simple dataset. The second example showed the power of using
Keras with TensorFlow backend on a challenging dataset, and the performance was
exemplary. I hope you will apply these methods by themselves or supplement other
methods in an ensemble modeling fashion. Good luck and good hunting! 

In the next chapter, we will learn about, ensembles, understand the data, and dive in
deeper in modeling and evaluation.
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8
Creating Ensembles and

Multiclass Methods

"This is how you win ML competitions: you take other people's work and ensemble them
together."

- Vitaly Kuznetsov, NIPS2014

You may have already realized that we've discussed ensemble learning. It's defined
on www.scholarpedia.org as the process by which multiple models, such as classifiers or experts,
are strategically generated and combined to solve a particular computational intelligence problem. In
random forest and gradient boosting, we combined the votes of hundreds or thousands of
trees to make a prediction. Hence, by definition, those models are ensembles. This
methodology can be extended to any learner to create ensembles, which some refer to as
meta-ensembles or meta-learners. We'll look at one of these methods referred to as
stacking. In this methodology, we'll produce a number of classifiers and use their predicted
class probabilities as input features to another classifier. This method can result in
improved predictive accuracy. In the previous chapters, we focused on classification
problems focused on binary outcomes. We'll now look at methods to predict those
situations where the data consists of more than two outcomes (multiclass), a very common
situation in real-world datasets.

The following are the topics that will be covered in this chapter:

Ensembles
Data understanding
Modeling and evaluation
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Ensembles
The quote at the beginning of this chapter mentions using ensembles to win machine
learning competitions. However, they do have practical applications. I've provided a
definition of what ensemble modeling is, but why does it work? To demonstrate this, I've
co-opted an example from the following blog, which goes into depth at a number of
ensemble methods: http:/ /mlwave. com/ kaggle- ensembling- guide/ .

As I write this chapter, we're only a day away from the 2018 College Football
Championship—the Clemson Tigers versus the Alabama Crimson Tide. Let's say we want
to review our probability of winning a friendly wager where we want to take the Tide
minus the points (5.5 points at the time of writing).

Assume that we've been following three expert prognosticators who said, All have the same
probability of predicting that the Patriots will cover the spread (60%). Now, if we favor any one
of the so-called experts, it's clear that we have a 60% chance of winning. However, let's see
what creating an ensemble of their predictions can do to increase our chances of profiting
and humiliating friends and family.

Start by calculating the probability of each possible outcome for the experts picking
Alabama, and let's assume that the probability is the same at 60%. If all three pick Alabama,
we have 0.6 x 0.6 x 0.6 or a 21.6% chance that all three are correct.

If any two of the three pick Alabama, then we have (0.6 x 0.6 x 0.3) x 3 for a total of 43.2%.

By using majority voting, if at least two of the three pick Alabama, then our probability of
winning becomes almost 65% (21.6 + 43.2), which is an absolute improvement of 5%. 

This is a rather simplistic example but representative nonetheless. In machine learning, it
can manifest itself by incorporating the predictions from several OK or even weak learners
to improve overall accuracy. The diagram that follows shows how this can be
accomplished:
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In this graphic, we build three different classifiers and use their predicted probabilities as
input values to a fourth and different classifier in order to make predictions on the test
data. Let's see how to apply this with R.

Data understanding
The dataset for analysis here is DNA pulled from mlbench. You don't have to install the
package as I've put it in a CSV file and placed it on GitHub: https:/ / github. com/
datameister66/MMLR3rd/ blob/ master/ dna. csv.

Install the packages as needed and load the data:

> library(magrittr)

> install.packages("earth")

> install.packages("glmnet")

> install.packages("mlr")

> install.packages("randomForest")

> install.packages("tidyverse")

dna <- read.csv("dna.csv")

The data consists of 3,181 observations, 180 input features coded as binary indicators, and
the Class response. The response is a factor with three labels indicating a DNA type either
ei, ie, or neither—coded as n. The following is a table of the target labels:

> table(dna$Class)

  ei  ie    n
 767 765 1654

This data should be ready for analysis, but let's run some quick checks to verify, starting
with missing values:

> na_count <-
    sapply(dna, function(y)
    sum(length(which(is.na(
    y
 )))))

> table(na_count)
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na_count
  0
181

With no missing values, we check for zero variance features:

> feature_variance <- caret::nearZeroVar(dna[, -181], saveMetrics = TRUE)

> table(feature_variance$zeroVar)

FALSE
  180

One of the things the authors of mlbench did with this data is transform the nucleotide
factor features (A, C, G, T) into indicator features. They also de-identified the features
naming them V1 through V180.

As such, let's check feature correlation:

> high_corr <- caret::findCorrelation(dna[, -181], cutoff = 0.9)

> length(high_corr)
[1] 173

It's a highly correlated dataset. We could run our feature selection methods as we've done
in previous chapters, but let's press on with all features and see what happens.

Before doing so, let's get the train and test sets created:

> set.seed(555)

> index <- caret::createDataPartition(y = dna$Class, p = 0.8, list = FALSE)

> train <- dna[index, ]

> test <- dna[-index, ]

This created an 80/20 split for us and we can move on to building an algorithm.
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Modeling and evaluation
We're going to explore the use of the mlr package, which stand for machine learning in R.
The package supports multiple classes and ensemble methods. If you're familiar with sci-
kit learn for Python, we could say that mlr endeavors to provide the same functionality
for R. I intend to demonstrate how to use the package on a multiclass problem, then
conclude by showing how to do an ensemble on the same data, so we can compare
performances.

For the multiclass problem, we'll look at how to tune a random forest and then examine
how to build an ensemble using random forest in conjunction with MARS, stacking those
models by calling the generalized linear model function from the glmnet package. 

Random forest model
There are a number of approaches to learning in multiclass problems. Techniques such as
random forest and discriminant analysis will deal with multiclass while some techniques
and/or packages won't—for example, generalized linear models, glm(), in base R. The
functionality built into mlr allows you to run a number of techniques for supervised and
unsupervised learning. However, leveraging its power the first couple of times you use it
can be a little confusing. If you follow the process outlined in the following, you'll be well
on your way to developing powerful learning pipelines. We'll be using random forest in
this demonstration. You can see the full list of models available here, plus you can utilize
your own: https:/ / mlr- org. github. io/ mlr-tutorial/ release/ html/ integrated_
learners/index.html.

We've created the training and testing sets, which you can do in mlr, but I still prefer the
technique we've been doing using the caret package. One of the unique things about the
mlr package is that you have to put your training data into a task structure, specifically, in
this problem, a classification task. Optionally, you can place your test set in a task as well.
You specify the dataset and the target containing the labels:

> dna_task <- mlr::makeClassifTask(data = train, target = "Class")
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There are many ways to use mlr in your analysis, but I recommend creating a resample
object.

In the following code block, we create a resampling object to help us in tuning the number
of trees for our random forest, consisting of five subsamples. Keep in mind that you have
similar flexibility in the resampling method just like the caret package with techniques
such as cross-validation and repeated cross-validation:

> rdesc <- mlr::makeResampleDesc("Subsample", iters = 5)

The next object establishes the grid of trees for tuning with the minimum number of trees,
set to 50, and the maximum set to 200. You can also establish multiple parameters as we
did with the caret package. Your options can be explored by calling help for the function
with makeParamSet:

> param <-
+ ParamHelpers::makeParamSet(ParamHelpers::makeDiscreteParam("ntree",
values = c(50, 75, 100, 150, 175, 200)))

Next, create a control object, establishing a numeric grid:

> ctrl <- makeTuneControlGrid()

With the preliminary objects created, we can now go ahead and tune the hyperparameter
for the optimal number of trees in the random forest, as per our grid. Notice that we're
specifying classif.randomForest. The previous link on the available models of mlr
gives us all of the proper syntax you use for your desired method. One thing we should do
is bring the mlr library into the environment, so we can use that syntax. We also use the
objects we just created:

> library(mlr)

> tuning <-
   mlr::tuneParams(
     "classif.randomForest",
     task = dna_task,
     resampling = rdesc,
     par.set = param,
     control = ctrl)
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Once the algorithm completes its iterations, you can call up both the optimal number of
trees and the associated out-of-sample error:

> tuning$x
$`ntree`
[1] 175

> tuning$y
mmce.test.mean
    0.04635294

The optimal number of trees as per our experiment grid is 175 with a mean
misclassification error of 0.046 percent. It's now a simple matter of setting this parameter
for training as a wrapper around the makeLearner() function. Notice that I set the
predicted type to "prob" as the default is the predicted class and not the probability:

> rf <-
    mlr::setHyperPars(mlr::makeLearner("classif.randomForest", predict.type
= "prob"),
    par.vals = tuning$x)

Now we train the model again with just 175 trees:

> fit_rf <- mlr::train(rf, dna_task)

You can see the confusion matrix on the train data:

> fit_rf$learner.model

        OOB estimate of error rate: 5.14%
Confusion matrix:
    ei  ie    n class.error
ei 563  26   25 0.08306189
ie  16 575   21 0.06045752
n   10  33 1281 0.03247734

That's better than I expected with an out-of-bag error of just over 5%. Also, there is no error
for a class that's way out of balance. Additionally, it performs pretty well on the test data:

> mlr::calculateConfusionMatrix(pred)
        predicted
true     ei  ie   n -err.-
  ei    139   4  10     14
  ie      3 147   3      6
  n       2   3 325      5
  -err.-  5   7  13     25

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Creating Ensembles and Multiclass Methods Chapter 8

[ 184 ]

The package has a full set of metrics available. Here, I pull up the test accuracy and log-loss:

> mlr::performance(pred, measures = list(acc, logloss))
      acc   logloss
0.9606918 0.2863458

It has an impressive 96% accuracy on the test set and a baseline log-loss of 0.286. This
leads us to the next step, where we see whether creating an ensemble by just combining the
predictions of random forest and MARS can improve performance.

Creating an ensemble
Using the functionality of mlr again, we first need to create an object with our base
learners. This is once again classif.randomForest and, for a MARS model, we call the
earth package with classif.earth:

> base <- c("classif.randomForest", "classif.earth")

You now make a learner with those base learners, and then specify that you want the
output of those learners as the predicted probability:

> learns <- lapply(base, makeLearner)

> learns <- lapply(learns, setPredictType, "prob")

The process of building the base learning object is complete. I stated earlier that the
ensembling learning algorithm will be GLM from glmnet. For just two base learners, a
CART might be more appropriate, but let's demonstrate what's possible. There are a
number of methods for stacking. In the following code block, I stack with cross-validation:

> sl <-
    mlr::makeStackedLearner(
    base.learners = learns,
    super.learner = "classif.glmnet",
    predict.type = "prob",
    method = "stack.cv"
 )

Now, it gets exciting as we train our stacked model:

stacked_fit <- mlr::train(sl, dna_task)
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And we establish the predicted probabilities for the test data:

> pred_stacked <- predict(stacked_fit, newdata = test)

Just for a sanity check, let's look at the confusion matrix:

> mlr::calculateConfusionMatrix(pred_stacked)
        predicted
true      ei  ie   n -err.-
  ei     144   4   5      9
  ie       5 146   2      7
   n       2   1 327      3
  -err.-   7   5   7     19

The stacked model produced six fewer classification errors. The proof is in the metrics:

> mlr::performance(pred_stacked, measures = list(acc, logloss))
      acc   logloss
0.9701258 0.1101400

Of course, accuracy is better, but even better the log-loss improved substantially.

What have we learned? Using primarily one package, mlr, we built a good model with
random forest, but by stacking random forest and MARS, we improved performance.
Although all of that was with just a few lines of code, it's important to understand how to
create and implement the pipeline. 

Summary
In this chapter, we looked at very important machine learning methods for creating an
ensemble model by stacking in the framework. In stacking, we used base models (learners)
to create predicted probabilities that were used on input features to another model (a super
learner) to make our final predictions. Indeed, the stacked method showed an improvement
over the individual base model. We performed all of this using mlr (machine learn), which
is a powerful tool for any R machine learning practitioner.

Up next, we're going to delve into the world of unsupervised learning, where we're not
trying to predict a label or quantitative outcome, but rather to understand patterns in the
observations or features.
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9
Cluster Analysis

"Quickly bring me a beaker of wine, so that I may wet my mind and say something
clever."

- Aristophanes, Athenian Playwright

In the earlier chapters, we focused on trying to learn the best algorithm in order to solve an
outcome or response, for example, customer satisfaction or home prices. In all these cases,
we had y, and that y is a function of x, or y = f(x). In our data, we had the actual y values
and we could train x accordingly. This is referred to as supervised learning. However,
there are many situations where we try to learn something from our data, and either we do
not have the y, or we actually choose to ignore it. If so, we enter the world of unsupervised
learning. In this world, we build and select our algorithm based on how well it addresses
our business needs versus how accurate it is.

Why would we try and learn without supervision? First of all, unsupervised learning can
help you understand and identify patterns in your data, which may be valuable. Second,
you can use it to transform your data in order to improve your supervised learning
techniques.

This chapter will focus on the former and the next chapter on the latter.
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So, let's begin by tackling a popular and powerful technique known as cluster analysis.
With cluster analysis, the goal is to group the observations into a number of groups (k-
groups), where the members in a group are as similar as possible while the members
between groups are as different as possible. There are many examples of how this can help
an organization; here are just a few:

The creation of customer types or segments
The detection of high-crime areas in a geography
Image and facial recognition
Genetic sequencing and transcription
Petroleum and geological exploration

There are many uses of cluster analysis, but there are also many techniques. We will focus
on the two most common: hierarchical and k-means. They are both effective clustering
methods, but may not always be appropriate for the large and varied datasets that you may
be called upon to analyze. Therefore, we will also examine partitioning around medoids
(PAM) using a Gower-based metric dissimilarity matrix as the input. Finally, we will
examine a new methodology I recently learned and applied using random forest to
transform your data. The transformed data can then be used as an input to unsupervised
learning.

A final comment before moving on: you may be asked whether these techniques are more
art than science, as the learning is unsupervised. I think the clear answer is, it depends. In
early 2016, I presented the methods here at a meeting of the Indianapolis, Indiana R-User
Group. To a person, we all agreed that it is the judgment of the analysts and the business
users that makes unsupervised learning meaningful and determines whether you have, say,
three versus four clusters in your final algorithm. This quote sums it up nicely:

"The major obstacle is the difficulty in evaluating a clustering algorithm without taking
into account the context: why does the user cluster his data in the first place, and what
does he want to do with the clustering afterwards? We argue that clustering should not be
treated as an application-independent mathematical problem, but should always be studied
in the context of its end-use."

- Luxburg et al. (2012)
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The following are the topics that we will be covering in this chapter:

Hierarchical clustering
K-means clustering
Gower and PAM
Random forests
Dataset background
Data understanding and preparation
Modeling

Hierarchical clustering
The hierarchical clustering algorithm is based on a dissimilarity measure between
observations. A common measure, and what we will use, is Euclidean distance. Other
distance measures are also available.

Hierarchical clustering is an agglomerative or bottom-up technique. By
this, we mean that all observations are their own cluster. From there, the
algorithm proceeds iteratively by searching all the pairwise points and
finding the two clusters that are the most similar. So, after the first
iteration, there are n-1 clusters, and after the second iteration, there are n-2
clusters, and so forth.

As the iterations continue, it is important to understand that in addition to the distance
measure, we need to specify the linkage between the groups of observations. Different
types of data will demand that you use different cluster linkages. As you experiment with
the linkages, you may find that some create highly unbalanced numbers of observations in
one or more clusters. For example, if you have 30 observations, one technique may create a
cluster of just one observation, regardless of how many total clusters that you specify. In
this situation, your judgment will likely be needed to select the most appropriate linkage as
it relates to the data and business case.

The following table lists the types of common linkages, but note that there are others:

Linkage Description

Ward This minimizes the total within-cluster variance as measured by the sum of
squared errors from the cluster points to its centroid.

Complete The distance between two clusters is the maximum distance between an
observation in one cluster and an observation in the other cluster.
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Single The distance between two clusters is the minimum distance between an
observation in one cluster and an observation in the other cluster.

Average The distance between two clusters is the mean distance between an observation
in one cluster and an observation in the other cluster.

Centroid The distance between two clusters is the distance between the cluster centroids.

The output of hierarchical clustering will be a dendrogram, which is a tree-like diagram
that shows the arrangement of the various clusters.

As we will see, it can often be difficult to identify a clear-cut breakpoint in the selection of
the number of clusters. Once again, your decision should be iterative in nature and focused
on the context of the business decision.

Distance calculations
As mentioned previously, Euclidean distance is commonly used to build the input for
hierarchical clustering. Let's look at a simple example of how to calculate it with two
observations and two variables/features.

Let's say that observation A costs $5.00 and weighs 3 pounds. Further, observation B costs
$3.00 and weighs 5 pounds. We can place these values in the distance formula: distance
between A and B is equal to the square root of the sum of the squared differences, which in our
example would be as follows:

d(A, B) = square root((5 - 3)2 + (3 - 5)2), which is equal to 2.83

The value of 2.83 is not a meaningful value in and of itself, but is important in the context of
the other pairwise distances. This calculation is the default in R for the dist() function.
You can specify other distance calculations (maximum, manhattan, canberra, binary, and
minkowski) in the function. We will avoid going in to detail on why or where you would
choose these over Euclidean distance. This can get rather domain-specific; for example, a
situation where Euclidean distance may be inadequate is where your data suffers from
high-dimensionality, such as in a genomic study. It will take domain knowledge and/or
trial and error on your part to determine the proper distance measure.

One final note is to scale your data with a mean of zero and standard
deviation of one, so that the distance calculations are comparable. If not,
any variable with a larger scale will have a larger effect on distances.
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K-means clustering
With k-means, we will need to specify the exact number of clusters that we want. The
algorithm will then iterate until each observation belongs to just one of the k-clusters. The
algorithm's goal is to minimize the within-cluster variation as defined by the squared
Euclidean distances. So, the kth-cluster variation is the sum of the squared Euclidean
distances for all the pairwise observations divided by the number of observations in the
cluster.

Due to the iteration process that is involved, one k-means result can differ greatly from
another result even if you specify the same number of clusters. Let's see how this algorithm
plays out:

Specify the exact number of clusters you desire (k)1.
Initialize: k observations are randomly selected as the initial means2.
Iterate:3.

K clusters are created by assigning each observation to its closest
cluster center (minimizing within-cluster sum of squares)
The centroid of each cluster becomes the new mean
This is repeated until convergence, that is, the cluster centroids do not
change

As you can see, the final result will vary because of the initial assignment in step 1.
Therefore, it is important to run multiple initial starts and let the software identify the best
solution. In R, this can be a simple process, as we will see.

Gower and PAM
As you conduct clustering analysis in real life, one of the things that can quickly become
apparent is the fact that neither hierarchical nor k-means is specifically designed to handle
mixed datasets. By mixed data, I mean both quantitative and qualitative or, more
specifically, nominal, ordinal, and interval/ratio data.

The reality of most datasets that you will use is that they will probably contain mixed data.
There are a number of ways to handle this, such as doing principal components analysis
(PCA) first in order to create latent variables, then using them as input in clustering or
using different dissimilarity calculations. We will discuss PCA in the next chapter.
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With the power and simplicity of R, you can use the Gower dissimilarity coefficient to
turn mixed data to the proper feature space. In this method, you can even include factors as
input variables. Additionally, instead of k-means, I recommend using the PAM clustering
algorithm.

PAM is very similar to k-means but offers a couple of advantages. They are listed as
follows:

First, PAM accepts a dissimilarity matrix, which allows the inclusion of mixed1.
data
Second, it is more robust to outliers and skewed data because it minimizes a sum2.
of dissimilarities, instead of a sum of squared Euclidean distances (Reynolds,
1992)

This is not to say that you must use Gower and PAM together. If you choose, you can use
the Gower coefficients with hierarchical, and I've seen arguments for and against using it in
the context of k-means. Additionally, PAM can accept other linkages. However, when
paired, they make an effective method to handle mixed data. Let's take a quick look at both
of these concepts before moving on.

Gower
The Gower coefficient compares cases pairwise and calculates a dissimilarity between
them, which is essentially the weighted mean of the contributions of each variable. It is
defined for two cases called i and j as follows:

Here, Sijk is the contribution provided by the kth variable, and Wijk is 1 if the kth variable is
valid, or else 0.

For ordinal and continuous variables, Sijk = 1 - (absolute value of xij - xik) / rk, where rk is the
range of values for the kth variable.

For nominal variables, Sijk = 1 if xij = xjk, or else 0.
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For binary variables, Sijk is calculated based on whether an attribute is present (+) or not
present (-), as shown in the following table:

Variables Value of attribute k
Case i + + - -
Case j + - + -
Sijk 1 0 0 0
Wijk 1 1 1 0

PAM
For PAM, let's first define a medoid.

A medoid is an observation of a cluster that minimizes the dissimilarity
(in our case, calculated using the Gower metric) between the other
observations in that cluster. So, similar to k-means, if you specify five
clusters, you will have five partitions of the data.

With the objective of minimizing the dissimilarity of all the observations to the nearest
medoid, the PAM algorithm iterates over the following steps:

Randomly select k observations as the initial medoid1.
Assign each observation to the closest medoid2.
Swap each medoid and non-medoid observation, computing the dissimilarity3.
cost
Select the configuration that minimizes the total dissimilarity4.
Repeat steps 2 through 4 until there is no change in the medoids5.

Both Gower and PAM can be called using the cluster package in R. For Gower, we will
use the daisy() function in order to calculate the dissimilarity matrix and the pam()
function for the actual partitioning. With this, let's get started with putting these methods to
the test.

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Cluster Analysis Chapter 9

[ 193 ]

Random forest
Like our motivation with the use of the Gower metric in handling mixed, in fact, messy data,
we can apply random forest in an unsupervised fashion. Selecting this method has a
number of advantages:

Robust against outliers and highly skewed variables
No need to transform or scale the data
Handles mixed data (numeric and factors)
Can accommodate missing data
Can be used on data with a large number of variables; in fact, it can be used to
eliminate useless features by examining variable importance
The dissimilarity matrix produced serves as an input to the other techniques
discussed earlier (hierarchical, k-means, and PAM)

A couple of words of caution. It may take some trial and error to properly tune the random
forest with respect to the number of variables sampled at each tree split (mtry = ? in the
function) and the number of trees grown. Studies done show that the more trees grown, up
to a point, provide better results, and a good starting point is to grow 2,000 trees (Shi, T. &
Horvath, S., 2006).

This is how the algorithm works, given a dataset with no labels:

The current observed data is labeled as class 1
A second (synthetic) set of observations is created of the same size as the
observed data; this is created by randomly sampling from each of the features
from the observed data, so if you have 20 observed features, you will have 20
synthetic features
The synthetic portion of the data is labeled as class 2, which facilitates using
random forest as an artificial classification problem
Create a random forest model to distinguish between the two classes
Turn the model's proximity measures of just the observed data (the synthetic
data is now discarded) into a dissimilarity matrix
Utilize the dissimilarity matrix as the clustering input features

So what exactly are these proximity measures?

A proximity measure is a pairwise measure between all the observations.
If two observations end up in the same terminal node of a tree, their
proximity score is equal to one, otherwise zero.
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At the termination of the random forest run, the proximity scores for the observed data are
normalized by dividing by the total number of trees. The resulting NxN matrix contains
scores between zero and one, naturally with the diagonal values all being one. That's all
there is to it. An effective technique that I believe is underutilized and one that I wish I had
learned years ago.

Dataset background
Until a year ago, I was unaware that there were less than 300 certified Master Sommeliers in
the entire world. The exam, administered by the Court of Master Sommeliers, is notorious
for its demands and high failure rate.

The trials, tribulations, and rewards of several individuals pursuing the certification are
detailed in the critically acclaimed documentary, Somm. So, for this exercise, we will try and
help a hypothetical individual struggling to become a Master Sommelier find a latent
structure in Italian wines.

Data understanding and preparation
Let's start with installing the R packages needed for this chapter, if you have not done so
already:

> library(magrittr)

> install.packages("cluster")

> install.packages("dendextend")

> install.packages("ggthemes")

> install.packages("HDclassif")

> install.packages("NbClust")

> install.packages("tidyverse")

> options(scipen=999)
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The dataset is in the HDclassif package. Load the data and examine the structure with the
str() function:

> library(HDclassif)

> data(wine)

> str(wine)
'data.frame': 178 obs. of 14 variables:
 $ class: int 1 1 1 1 1 1 1 1 1 1 ...
 $ V1 : num 14.2 13.2 13.2 14.4 13.2 ...
 $ V2 : num 1.71 1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 ...
 $ V3 : num 2.43 2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 ...
 $ V4 : num 15.6 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 ...
 $ V5 : int 127 100 101 113 118 112 96 121 97 98 ...
 $ V6 : num 2.8 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 ...
 $ V7 : num 3.06 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 ...
 $ V8 : num 0.28 0.26 0.3 0.24 0.39 0.34 0.3 0.31 0.29 0.22 ...
 $ V9 : num 2.29 1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 ...
 $ V10 : num 5.64 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 ...
 $ V11 : num 1.04 1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 ...
 $ V12 : num 3.92 3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 ...
 $ V13 : int 1065 1050 1185 1480 735 1450 1290 1295 1045 1045 ...

The data consists of 178 wines with 13 variables of the chemical composition and one
variable, Class, the label for the cultivar or plant variety. We won't use this in the
clustering, but as a test of model performance. The variables, V1 through V13, are the
measures of the chemical composition, as follows:

V1: alcohol
V2: malic acid
V3: ash
V4: alkalinity of ash
V5: magnesium
V6: total phenols
V7: flavonoids
V8: non-flavonoid phenols
V9: proanthocyanidins
V10: color intensity
V11: hue
V12: OD280/OD315
V13: proline
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The variables are all quantitative. We should rename them to something meaningful for our
analysis. This is easily done with the colnames() function:

> colnames(wine) <- c(
    "Class",
    "Alcohol",
    "MalicAcid",
    "Ash",
    "Alk_ash",
    "magnesium",
    "T_phenols",
    "Flavanoids",
    "Non_flav",
    "Proantho",
    "C_Intensity",
    "Hue",
    "OD280_315",
    "Proline"
 )

As the variables are not scaled, we will need to do this using the scale() function. This
will first center the data where the column mean is subtracted from each individual in the
column. Then the centered values will be divided by the corresponding column's standard
deviation. We can also use this transformation to make sure that we only include columns 2
through 14, dropping class and putting it in a data frame. This can all be done with one line
of code:

  > wine_df <- as.data.frame(scale(wine[, -1]))

Before moving on, and out of curiosity, let's do a quick table to see the distribution of the
cultivars or Class:

> table(wine$Class)

 1  2  3
59 71 48

We can now move on to the unsupervised learning models.
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Modeling 
Having created our data frame, df, we can begin to develop the clustering algorithms. We
will start with hierarchical and then try our hand at k-means. After this, we will need to
manipulate our data a little bit to demonstrate how to incorporate mixed data with Gower
and random forest.

Hierarchical clustering
To build a hierarchical cluster model in R, you can utilize the hclust() function in the
base stats package. The two primary inputs needed for the function are a distance matrix
and the clustering method. The distance matrix is easily done with the dist() function.
For the distance, we will use Euclidean distance. A number of clustering methods are
available, and the default for hclust() is complete linkage.

We will try this, but I also recommend Ward's linkage method. Ward's method tends to
produce clusters with a similar number of observations.

The complete linkage method results in the distance between any two clusters, that is, the
maximum distance between any one observation in a cluster and any one observation in
the other cluster. Ward's linkage method seeks to cluster the observations in order to
minimize the within-cluster sum of squares.

It is noteworthy that the R method ward.D2 uses the squared Euclidean distance, which is
indeed Ward's linkage method. In R, ward.D is available but requires your distance matrix
to be squared values. As we will be building a distance matrix of non-squared values, we
will require ward.D2.

Now, the big question is how many clusters should we create? As stated in the
introduction, the short, and probably not very satisfying, answer is that it depends. Even
though there are cluster validity measures to help with this dilemma – which we will look
at – it really requires an intimate knowledge of the business context, underlying data, and,
quite frankly, trial and error. As our sommelier partner is fictional, we will have to rely on
the validity measures. However, that is no panacea to selecting the numbers of clusters as
there are several dozen validity measures.
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As exploring the positives and negatives of the vast array of cluster validity measures is
way outside the scope of this chapter, we can turn to a couple of papers and even R itself to
simplify this problem for us. A paper by Miligan and Cooper, 1985, explored the
performance of 30 different measures/indices on simulated data. The top five performers
were CH index, Duda Index, Cindex, Gamma, and Beale Index. Another well-known
method to determine the number of clusters is the gap statistic (Tibshirani, Walther, and
Hastie, 2001). These are two good papers for you to explore if your cluster validity curiosity
gets the better of you.

With R, we can use the NbClust() function in the NbClust package to pull results on 23
indices, including the top five from Miligan and Cooper and the gap statistic. You can see a
list of all the available indices in the help file for the package. There are two ways to
approach this process: one is to pick your favorite index or indices and call them with R; the
other is to include all of them in the analysis and go with the majority rules method, which
the function summarizes for you nicely. The function will also produce a couple of plots as
well.

With the stage set, let's walk through the example of using the complete linkage method.
When using the function, you will need to specify the minimum and maximum number of
clusters, distance measures, and indices in addition to the linkage. As you can see in the
following code, we will create an object called numComplete. The function specifications
are for Euclidean distance, minimum number of clusters two, maximum number of clusters
six, complete linkage, and all indices. When you run the command, the function will
automatically produce an output similar to what you can see here—a discussion on both
the graphical methods and majority rules conclusion:

> numComplete <- NbClust::NbClust(
    wine_df,
    distance = "euclidean",
    min.nc = 2,
    max.nc = 6,
    method = "complete",
    index = "all"
 )
*** : The Hubert index is a graphical method of determining the number of
clusters.
 In the plot of Hubert index, we seek a significant knee that corresponds
to a
 significant increase of the value of the measure that is, the significant
peak in Hubert
 index second differences plot.

*** : The D index is a graphical method of determining the number of
clusters.
 In the plot of D index, we seek a significant knee (the significant peak

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Cluster Analysis Chapter 9

[ 199 ]

in Dindex
 second differences plot) that corresponds to a significant increase of the
value of
 the measure.
*******************************************************************
* Among all indices:
* 1 proposed 2 as the best number of clusters
* 11 proposed 3 as the best number of clusters
* 6 proposed 5 as the best number of clusters
* 5 proposed 6 as the best number of clusters

 ***** Conclusion *****
* According to the majority rule, the best number of clusters is 3
*******************************************************************

Going with the majority rules method, we would select three clusters as the optimal
solution, at least for hierarchical clustering. The two plots that are produced contain two
graphs each. As the preceding output states, you are looking for a significant knee in the
plot (the graph on the left-hand side) and the peak of the graph on the right-hand side. This
is the Hubert Index plot:
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You can see that the bend or knee is at three clusters in the graph on the left-hand side.
Additionally, the graph on the right-hand side has its peak at three clusters. The following
Dindex plot provides the same information:

There are a number of values that you can call with the function and there is one that I
would like to show. This output is the best number of clusters for each index and the index
value for that corresponding number of clusters. This is done with $Best.nc. I've
abbreviated the output to the first few indices:

> numComplete$Best.nc
                     KL      CH Hartigan   CCC    Scott
Number_clusters  5.0000  3.0000   3.0000 5.000   3.0000
Value_Index     14.2227 48.9898  27.8971 1.148 340.9634

You can see that the first index, KL, has the optimal number of clusters as five and the next
index, CH, has it as three.
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With three clusters as the recommended selection, we will now compute the distance
matrix and build our hierarchical cluster object. This builds the distance matrix:

> euc_dist <- dist(wine_df, method = "euclidean")

Then, we will use this matrix as the input for the actual clustering with hclust():

> hc_complete <- hclust(euc_dist, method = "complete")

The common way to visualize hierarchical clustering is to plot a dendrogram. We will do
this with the functionality provided by the dendextend package:

> dend1 <- dendextend::color_branches(dend_complete, k = 3)

> plot(dend1, main = "Complete-Linkage")

The output of the preceding code is as follows:
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The dendrogram is a tree diagram that shows you how the individual observations are
clustered together. The arrangement of the connections (branches, if you will) tells us which
observations are similar. The height of the branches indicates how much the observations
are similar or dissimilar to each other from the distance matrix. 

Here is the table of cluster counts:

> complete_clusters <- cutree(hc_complete, 3)

> table(complete_clusters)
complete_clusters
 1  2  3
69 58 51

Out of curiosity, let's compare how this clustering algorithm compares to the cultivar
labels:

> table(complete_clusters, wine$Class)
complete_clusters  1  2  3
                1 51 18  0
                2  8 50  0
                3  0  3 48

In this table, the rows are the clusters and columns are the cultivars. This method matched
the cultivar labels at an 84 percent rate. Note that we are not trying to use the clusters to
predict a cultivar, and in this example, we have no a priori reason to match clusters to the
cultivars, but it is revealing nonetheless. 

We will now try Ward's linkage. This is the same code as before; it first starts with trying to
identify the number of clusters, which means that we will need to change the method to
Ward.D2:

> numWard <- NbClust::NbClust(
    wine_df,
    distance = "euclidean",
    min.nc = 2,
    max.nc = 6,
    method = "ward.D2",
    index = "all"
)
# Output abbreviated to just show the algorithm's conclusion.
                     ***** Conclusion *****
    * According to the majority rule, the best number of clusters is 3
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Once again, the majority rules were for a three-cluster solution. I'll let you peruse the plots
on your own.

Let's move on to the actual clustering and production of the dendrogram for Ward's
linkage:

> hc_ward <- hclust(euc_dist, method = "ward.D2")

> dend_ward <- as.dendrogram(hc_ward)

> dend2 <- dendextend::color_branches(dend_ward, k = 3)

> plot(dend2, main = "Ward Method")

This is the output:

The plot shows three pretty distinct clusters that are roughly equal in size. Let's get a count
of the cluster size and show it in relation to the cultivar labels:

> ward_clusters <- cutree(hc_ward, 3)

> table(ward_clusters, wine$Class)
ward_clusters  1  2  3
            1 59  5  0
            2  0 58  0
            3  0  8 48
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So, cluster one has 64 observations, cluster two has 58, and cluster three has 56. This
method matches the cultivar categories closer than using complete linkage.

With another table, we can compare how the two methods match observations:

> table(complete_clusters, ward_clusters)
                  ward_clusters
complete_clusters  1  2  3
                1 53 11  5
                2 11 47  0
                3  0  0 51

While cluster three for each method is exact, the other two are not. The question now is
how do we identify what the differences are for the interpretation? In many examples, the
datasets are very small and you can look at the labels for each cluster. In the real world, this
is often impossible. I like to aggregate results by cluster and compare accordingly.

Putting aggregated results by cluster into an interactive spreadsheet or
business intelligence tool facilitates understanding by you and your
business partners, helping to select the appropriate clustering method and
number of clusters.

I'm going to demonstrate this by looking at the mean of the features grouped by the clusters
from Ward's method. First, create a separate data frame with the scaled data (or original
data, if you prefer) and the results:

> ward_df <- wine_df %>%
    dplyr::mutate(cluster = ward_clusters)

Now, do the aggregation:

> ward_df %>%
    dplyr::group_by(cluster) %>%
    dplyr::summarise_all(dplyr::funs(mean)) -> ward_results

You now can view that data frame in RStudio, or export it to your favorite BI tool. Maybe
you are interested in a plot? If so, give this a try:

> ggplot2::ggplot(ward_results, ggplot2::aes(cluster, Alcohol)) +
    ggplot2::geom_bar(stat = "identity") +
    ggthemes::theme_stata()

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Cluster Analysis Chapter 9

[ 205 ]

This is the output:

A clear separation exists between the clusters in alcohol content. With that said, let's move
on to k-means.

K-means clustering
As we did with hierarchical clustering, we can also use NbClust() to determine the 
optimum number of clusters for k-means. All you need to do is specify kmeans as the
method in the function. Let's also loosen up the maximum number of clusters to 15. I've
abbreviated the following output to just the conclusion:

> numKMeans <- NbClust::NbClust(wine_df,
    min.nc = 2,
    max.nc = 15,
    method = "kmeans")
***** Conclusion *****

* According to the majority rule, the best number of clusters is 3
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Once again, three clusters appears to be the optimum solution.

In R, we can use the kmeans() function to do this analysis. In addition to the input data,
we have to specify the number of clusters we are solving for and a value for random
assignments, the nstart argument. We will also need to specify a random seed:

    > set.seed(1234)
    > km <- kmeans(df, 3, nstart = 25)

Creating a table of the clusters gives us a sense of the distribution of the observations
between them:

    > table(km$cluster)
     1  2  3
    62 65 51

The number of observations per cluster is well balanced. I have seen on a number of
occasions with larger datasets and many more features that no number of k-means yields a
promising and compelling result. Another way to analyze the clustering is to look at a
matrix of the cluster centers for each variable in each cluster:

    > km$centers
         Alcohol  MalicAcid        Ash    Alk_ash   magnesium   T_phenols
    1  0.8328826 -0.3029551  0.3636801 -0.6084749  0.57596208  0.88274724
    2 -0.9234669 -0.3929331 -0.4931257  0.1701220 -0.49032869 -0.07576891
    3  0.1644436  0.8690954  0.1863726  0.5228924 -0.07526047 -0.97657548
       Flavanoids    Non_flav    Proantho C_Intensity        Hue  OD280_315
    1  0.97506900 -0.56050853  0.57865427   0.1705823  0.4726504  0.7770551
    2  0.02075402 -0.03343924  0.05810161  -0.8993770  0.4605046  0.2700025
    3 -1.21182921  0.72402116 -0.77751312   0.9388902 -1.1615122 -1.2887761
         Proline
    1  1.1220202
    2 -0.7517257
    3 -0.4059428
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Note that cluster one has, on average, a higher alcohol content. Let's produce a box plot to
look at the distribution of alcohol content and compare it to Ward's:

> par(mfrow = c(1, 2))

> boxplot(wine$Alcohol ~ km$cluster, data = wine,
    main = "Alcohol Content, K-Means")

> boxplot(wine$Alcohol ~ ward_clusters, data = wine,
    main = "Alcohol Content, Ward's")

This is the output:

The alcohol content for each cluster is almost exactly the same. On the surface, this tells me
that three clusters is the proper latent structure for the wines and there is little difference
between using k-means or hierarchical clustering. Finally, let's do a comparison of the k-
means clusters versus the cultivars:

    > table(km$cluster, wine$Class)
         1  2  3
      1 59  3  0
      2  0 65  0
      3  0  3 48

This is very similar to the distribution produced by Ward's method, and either one would
probably be acceptable to our hypothetical sommelier.
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However, to demonstrate how you can cluster on data with both numeric and non-numeric
values, let's work through some more examples.

Gower and PAM
To begin this step, we will need to wrangle our data a little bit. As this method can take
variables that are factors, we will convert alcohol to either high or low content. It also takes
only one line of code utilizing the ifelse() function to change the variable to a factor.
What this will accomplish is if alcohol is greater than zero, it will be High, otherwise, it will
be Low:

> wine_df$Alcohol <- as.factor(ifelse(df$Alcohol > 0, "High", "Low"))

We are now ready to create the dissimilarity matrix using the daisy() function from the
cluster package and specifying the method as gower:

> gower_dist <- cluster::daisy(wine[, -1], metric = "gower")

The creation of the cluster object is done with the pam() function, which is a part of the
cluster package. We will create three clusters in this example and create a table of the
cluster size:

> set.seed(123)

> pam_cluster <- cluster::pam(gower_dist, k = 3)

> table(pam_cluster$clustering)

 1  2  3
62 71 45

Now, let's see how it does compared to the cultivar labels:

> table(pam_cluster$clustering, wine$Class)
     1  2  3
  1 57  5  0
  2  2 64  5
  3  0  2 43
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You can run a similar aggregation and exploration exercise with this method as described
previously. Let's see how the distribution of alcohol is across the three clusters:

> table(pam_cluster$clustering, wine$Alcohol)
    High Low
  1   62  0
  2    1 70
  3   29 16

This table shows the proportion of the factor levels by the cluster. The Gower metric is very
powerful for data with labels, factors, characters, missing values, and so on. I highly
recommend it. One of the drawbacks with any distance matrix is that it can become a
computational problem with large datasets. An effective solution is to run k-samples and
compare results. Done well, you can then build a classifier to predict the cluster for your
population.

Finally, we'll create a dissimilarity matrix with random forest and create three clusters with
PAM.

Random forest and PAM
To perform this method in R, you can use the randomForest() function. After setting the
random seed, simply create the model object. In the following code, I specify the number of
trees as 2000 and set proximity measure to TRUE. You don't have to run this on scaled data:

> set.seed(1918)

> rf <- randomForest::randomForest(x = wine[, -1], ntree = 2000, proximity
= T)

> rf

Call:
 randomForest(x = wine[, -1], ntree = 2000, proximity = T)
               Type of random forest: unsupervised
                     Number of trees: 2000
No. of variables tried at each split: 3
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As you can see, placing a call to rf did not provide any meaningful output other than the
variables sampled at each split (mtry). Let's examine the first five rows and first five
columns of the N x N matrix:

> dim(rf$proximity)
[1] 178 178

> rf$proximity[1:5, 1:5]
          1          2         3          4          5
1 1.0000000 0.27868852 0.4049296 0.36200717 0.12969283
2 0.2786885 1.00000000 0.2142857 0.12648221 0.04453441
3 0.4049296 0.21428571 1.0000000 0.26865672 0.14942529
4 0.3620072 0.12648221 0.2686567 1.00000000 0.07692308
5 0.1296928 0.04453441 0.1494253 0.07692308 1.00000000

One way to think of the values is that they are the percentage of times those two
observations show up in the same terminal nodes! Looking at variable importance, we see
that the transformed Alcohol input could possibly be dropped. We will keep it for
simplicity:

> randomForest::importance(rf)
            MeanDecreaseGini
Alcohol             3.692748
MalicAcid          12.650096
Ash                10.842885
Alk_ash            11.636227
magnesium          10.672465
T_phenols          17.733783
Flavanoids         21.410838
Non_flav           11.527873
Proantho           14.494229
C_Intensity        14.795900
Hue                14.296274
OD280_315          17.815508
Proline            15.922621

It is now just a matter of creating the dissimilarity matrix, which transforms the proximity
values (square root(1 - proximity)) as follows:

> rf_dist <- sqrt(1 - rf$proximity)

> rf_dist[1:2, 1:2]
          1         2
1 0.0000000 0.8493006
2 0.8493006 0.0000000

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Cluster Analysis Chapter 9

[ 211 ]

We now have our input features, so let's run a PAM clustering as we did earlier:

> set.seed(1776)

> pam_rf <- cluster::pam(rf_dist, k = 3)

> table(pam_rf$clustering)

 1  2  3
52 82 44

> table(pam_rf$clustering, wine$Class)
     1  2  3
  1 52  0  0
  2  7 70  5
  3  0  1 43

These results are comparable to the other techniques applied. Lesson learned here? If you
have messy data for a clustering problem, consider using random forest to create a distance
matrix, and even eliminate features from your clustering algorithm.

Summary
In this chapter, we started exploring unsupervised learning techniques. We focused on
cluster analysis to both provide data reduction and data understanding of the observations.

Four methods were introduced: the traditional hierarchical and k-means clustering
algorithms, along with PAM, incorporating two different inputs (Gower and random
forest). We applied these four methods to find a structure in Italian wines coming from
three different cultivars and examined the results.

In the next chapter, we will continue exploring unsupervised learning, but instead of
finding structure among the observations, we will focus on finding structure among the
variables in order to create new features that can be used in a supervised learning problem.
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Principal Component Analysis

"The only easy day was yesterday."

- A Special Forces motivational saying

This chapter is the second one where we will focus on unsupervised learning techniques. In
the previous chapter, we covered cluster analysis, which provides us with the groupings of
similar observations. In this chapter, we will see how to reduce the dimensionality and
improve the understanding of our data by grouping the correlated variables with principal
components analysis (PCA). Then, we will use the principal components in supervised
learning.

In many datasets, particularly in the social sciences, you will see many variables highly
correlated with each other. They may additionally suffer from high-dimensionality or, as it
is better known, the curse of dimensionality. This is a problem because the number of
samples needed to estimate a function grows exponentially with the number of input
features. In such datasets, it may be the case that some variables are redundant as they end
up measuring the same constructs, for example, income and poverty or depression and
anxiety. The goal then is to use PCA in order to create a smaller set of variables that capture
most of the information from the original set of variables, thus simplifying the dataset and
often leading to hidden insights. These new variables (principal components) are highly
uncorrelated with each other. In addition to supervised learning, it is also very common to
use these components to perform data visualization.
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From over a decade of either doing or supporting analytics using PCA, it has been my
experience that it is widely used but poorly understood, especially among people who
don't do the analysis but consume the results. It is intuitive to understand that you are
creating a new variable from the other correlated variables. However, the technique itself is
shrouded in potentially misunderstood terminology and mathematical concepts that often
bewilder the layperson. The intention here is to provide a good foundation on what it is
and how to use it by covering the following:

Preparing a dataset for PCA
Conducting PCA
Selecting our principal components
Building a predictive model using principal components
Making out-of-sample predictions using the predictive model

An overview of the principal components
PCA is the process of finding the principal components. What exactly are these?

We can consider that a component is a normalized linear combination of the features
(James, 2012). The first principal component in a dataset is the linear combination that
captures the maximum variance in the data. A second component is created by selecting
another linear combination that maximizes the variance with the constraint that its
direction is perpendicular to the first component. The subsequent components (equal to the
number of variables) would follow this same rule.

A couple of things here. This definition describes the linear combination, which is one of
the key assumptions in PCA. If you ever try and apply PCA to a dataset of variables having
a low correlation, you will likely end up with a meaningless analysis. Another key
assumption is that the mean and variance for a variable are sufficient statistics. What this
tells us is that the data should fit a normal distribution so that the covariance matrix fully
describes our dataset, that is, multivariate normality. PCA is fairly robust to non-normally
distributed data and is even used in conjunction with binary variables, so the results are
still interpretable.
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Now, what is this direction described here and how is the linear combination determined?
The best way to grasp this subject is with visualization. Let's take a small dataset with two
variables and plot it. PCA is sensitive to scale, so the data has been scaled with a mean of
zero and standard deviation of one. You can see in the following diagram that this data
happens to form the shape of an oval with the diamonds representing each observation:

Looking at the plot, the data has the most variance along the x axis, so we can draw a
dashed horizontal line to represent our first principal component, as shown in the
following diagram. This component is the linear combination of our two variables or PC1 =
α11X1 + α12X2, where the coefficient weights are the variable loading on the principal
component. They form the basis of the direction along which the data varies the most. This
equation is constrained by 1 in order to prevent the selection of arbitrarily high values.
Another way to look at this is that the dashed line minimizes the distance between itself
and the data points. This distance is shown for a couple of points as arrows, as follows:
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The second principal component is then calculated in the same way, but it is uncorrelated
with the first, that is, its direction is at a right angle or orthogonal to the first principal
component. The following plot shows the second principal component added as a dotted
line:

With the principal component loading calculated for each variable, the algorithm will then
provide us with the principal component scores. The scores are calculated for each
principal component for each observation. For PC1 and the first observation, this would
equate to the formula Z11 = α11 * (X11 - average of X1) + α12 * (X12 - average of X2). For PC2 and
the first observation, the equation would be Z12 = α21 * (X11 - average of X2) + α22 * (X12 - average
of X2). These principal component scores are now the new feature space to be used in
whatever analysis you will undertake.

Recall that the algorithm will create as many principal components as there are variables,
accounting for 100 percent of the possible variance. So, how do we narrow down the
components to achieve the original objective in the first place? There are some heuristics
that one can use, and in the upcoming modeling process, we will look at the specifics; but a
common method to select a principal component is if its eigenvalue is greater than one.
While the algebra behind the estimation of eigenvalues and eigenvectors is outside the
scope of this book, it is important to discuss what they are and how they are used in PCA.

The optimized linear weights are determined using linear algebra in order
to create what is referred to as an eigenvector. They are optimal because
no other possible combination of weights could explain variation better
than they do. The eigenvalue for a principal component then is the total
amount of variation that it explains in the entire dataset.

Recall that the equation for the first principal component is PC1 = α11X1 + α12X2.
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As the first principal component accounts for the largest amount of variation, it will have
the largest eigenvalue. The second component will have the second highest eigenvalue and
so forth. So, an eigenvalue greater than one indicates that the principal component accounts
for more variance than any of the original variables do by themselves. If you standardize
the sum of all the eigenvalues to one, you will have the percentage of the total variance that
each component explains. This will also aid you in determining a proper cut-off point.

The eigenvalue criterion is certainly not a hard-and-fast rule and must be balanced with
your knowledge of the data and business problem at hand. Once you have selected the
number of principal components, you can rotate them in order to simplify their
interpretation.

Rotation
Should you rotate or not? As stated previously, rotation helps in the interpretation of the 
principal components by modifying the loading of each variable, but makes the results
technically no longer a principal component. The overall variation explained by the rotated
number of components will not change, but the contributions to the total variance
explained by each component will change. What you will find by rotation is that the
loading values will either move farther or closer to zero, theoretically aiding in identifying
those variables that are important to each principal component. This is an attempt to
associate a variable to only one principal component. Remember that this is unsupervised
learning, so you are trying to understand your data, not test some hypothesis. In short,
rotation aids you in this endeavor. I have seen both the non-rotated and rotated
components used to calculate the loading. I like to use the rotated components.

The most common form of principal component rotation is known as varimax. There are
other forms, such as quartimax and equimax, but we will focus on varimax rotation. In my
experience, I've never seen the other methods provide better solutions. Trial and error on
your part may be the best way to decide the issue.

With varimax, we are maximizing the sum of the variances of the squared
loading. The varimax procedure rotates the axis of the feature space and
their coordinates without changing the locations of the data points.
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Perhaps the best way to demonstrate this is via another simple illustration. Let's assume
that we have a dataset of variables A through G and we have two principal components.
Plotting this data, we will end up with the following diagram:

For the sake of argument, let's say that variable A's loading are -0.4 on PC1 and 0.1 on PC2.
Now, let's say that variable D's loading are 0.4 on PC1 and -0.3 on PC2. For point E, the
loading are -0.05 and -0.7, respectively. Note that the loading will follow the direction of the
principal component. After running a varimax procedure, the rotated components will look
as follows:
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The following are the new loading on PC1 and PC2 after rotation:

Variable A: -0.5 and 0.02
Variable D: 0.5 and -0.3
Variable E: 0.15 and -0.75

The loading have changed but the data points have not. With this simple illustration, we
can't say that we have simplified the interpretation, but this should help you understand
what is happening during the rotation of the principal components.

Data
We will be using what is referred to as the ANSUR dataset, which stands for US Army
Anthropometric Survey. It consists of two separate files: one for female soldiers and one for
male soldiers. I've combined the results into one dataset. You can download the data
here: https://github. com/ datameister66/ MMLR3rd/ blob/ master/ army_ ansur. RData.

I found this data on a data repository site called data.world, which allows members to
share any dataset they have of interest. For example, I have a version of the Gettysburg data
we used in Chapter 1, Preparing and Understanding Data, on the site. This ANSUR data
consists of research done by the Natick Soldier Research, Development and Engineering
Center (NSRDEC) on over 6000 Active Duty, Reserve, and National Guard soldiers for the
US Army. The features are of 93 different body measurements along with assorted
demographic data. The US Army and contractors use this information to order the proper
quantity and size of equipment, design new equipment, and so on. As you can imagine,
many of these features are highly correlated, making this data perfect for PCA.

We'll put those body measurements through the PCA process, then use that to predict body
weight in pounds, using a MARS model as we learned in prior chapters. Why soldier
weight? Why not? We'll lump males and females together. We could use that data as an
input feature, but I won't. Use age, race, gender, or the like in a model in the banking
industry subject to review, and prepare to, at a minimum, answer some tough questions.
OK, enough of the introduction, let's get cracking.
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Data loading and review
To begin with, load the necessary packages:

> library(magrittr)

> install.packages("caret")

> install.packages("DataExplorer")

> install.packages("earth")

> install.packages("ggthemes")

> install.packages("psych")

> install.packages("tidyverse")

> options(scipen = 999)

Now, read the data into your environment:

> army_ansur <- readRDS("army_ansur.RData")

The feature names are fairly straightforward. Here, I just put in the last few features as
output:

> colnames(army_ansur)
 [93] "wristcircumference"     "wristheight"
 [95] "Gender"                 "Date"
 [97] "Installation"           "Component"
 [99] "Branch"                 "PrimaryMOS"
[101] "SubjectsBirthLocation"  "SubjectNumericRace"
[103] "Ethnicity"              "DODRace"
[105] "Age"                    "Heightin"
[107] "Weightlbs"              "WritingPreference"
[109] "SubjectId"

I'm interested in looking at the breakdown of the "Component" and "Gender" columns:

> table(army_ansur$Component)

Army National Guard   Army Reserve   Regular Army
               2708            220           3140
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> table(army_ansur$Gender)

Female   Male
  1986   4082

If we look at missing values, we can see something of interest. Here is the abbreviated
output:

> sapply(army_ansur, function(x) sum(is.na(x)))
        PrimaryMOS   SubjectsBirthLocation   SubjectNumericRace
                 0                       0                    0
         Ethnicity                 DODRace                  Age
              4647                       0                    0
          Heightin               Weightlbs    WritingPreference
                 0                       0                    0
         SubjectId
              4082

We have a bunch of missing subject IDs. Fine, let's take care of that right now:

> army_ansur$subjectid <- seq(1:6068)

Since weight is what we will predict after we build our unsupervised model, let's have a
look at it:

> sjmisc::descr(army_ansur$Weightlbs)

## Basic descriptive statistics
 var    type label    n NA.prc  mean   sd    se  md trimmed       range
skew
  dd integer    dd 6068      0 174.8 33.69 0.43 173   173.4 321 (0-321)
0.39

Look at the range! We have someone who weighs zero. A plot of this data is in order, I
believe:

> ggplot2::ggplot(army_ansur, ggplot2::aes(x = Weightlbs)) +
    ggplot2::geom_density() +
    ggthemes::theme_wsj()
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The output of the preceding code is as follows:

So, I would estimate we only have one or two observations of implausible weight values.
Indeed, this code will confirm that assumption:

> dplyr::select(army_ansur, Weightlbs) %>%
    dplyr::arrange(Weightlbs)
# A tibble: 6,068 x 1
   Weightlbs
       <int>
 1         0
 2        86
 3        88
 4        90
 5        95
 6        95
 7        95
 8        96
 9        98
10       100
# ... with 6,058 more rows
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Removing that observation is important:

> armyClean <- dplyr::filter(army_ansur, Weightlbs > 0)

We can now transition to bundling our features for PCA and creating training and testing
dataframes.

Training and testing datasets
Here, we are going to put the numeric features into a dataframe along with the quantitative
response. Then, we'll carve this up into train and test sets with an 80/20 split. As a closing
effort, we'll scale the data, which is required for PCA.

Here, I grab those input features, including height in inches, while dropping weight in
kilograms. I also include the subjectid:

> army_subset <- armyClean[, c(1:91, 93, 94, 106, 107)]

We've used the dplyr and caret packages to create train and test sets, and here I
demonstrate the dplyr method:

> set.seed(1812)

> army_subset %>%
    dplyr::sample_frac(.8) -> train

> army_subset %>%
    dplyr::anti_join(train, by = "subjectid") -> test

I mentioned previously that this data had a number of high correlations. Even if you take
just the first five features, that becomes clear: 

> DataExplorer::plot_correlation(train[, 2:6])
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The output of the preceding code is as follows:

Axilla height and acromial height are 99 percent correlated. These refer to the armpit and
point of the shoulder respectively. 

We need to preserve the y-values for the training data. Additionally, we have to scale the
data, that is, just the input features, so drop the subjectid and y-values:

> trainY <- train$Weightlbs

> train_scale <- data.frame(scale(train[, c(-1, -95)]))

With that complete, we can move on to creating principal components and using them in a
supervised learning example.
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PCA modeling
For the modeling process, we will use the following steps:

Extract the components and determine the number to retain1.
Rotate the retained components2.
Interpret the rotated solution3.
Create scores from the non-rotated components4.
Use the scores as input variables for regression analysis with MARS and evaluate5.
the performance on the test data

There are many different ways and packages used to conduct PCA in R, including what
seems to be the most commonly used prcomp() and princomp() functions in base R.
However, for my money, it seems that the psych package is the most flexible with the best
options.

Component extraction
To extract the components with the psych package, you will use the principal()
function. The syntax will include the data and whether or not we want to rotate the 
components at this time:

> pca <- principal(train_scale, rotate = "none")

You can examine the components by calling the pca object that we created. However, my
primary intent is to determine what should be the number of components to retain. For
that, a scree plot will suffice. A scree plot can aid you in assessing the components that
explain the most variance in the data. It shows the Component number on the x axis and
their associated Eigenvalues on the y axis. For simplicity of interpretation, I include only
the first 10 components:

> plot(pca$values[1:10], type = "b", ylab = "Eigenvalues", xlab =
"Component")
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The following is the output of the preceding command:

What you are looking for is a point in the scree plot where the rate of change decreases.
This will be what is commonly called an elbow or bend in the plot. That elbow point in the
plot captures the fact that additional variance explained by a component does not differ
greatly from one component to the next. In other words, it is the breakpoint where the plot
flattens out. In the plot, maybe four, five, or six components looks compelling. I think more
information is needed. Here, we can see the eigenvalues of those 10 components. A rule of
thumb recommends selecting all components with an eigenvalue greater than 1:

> head(pca$values, 10)
 [1] 52.2361 11.3294 4.7375 3.0193 1.9830 1.5153 1.2896 1.0655 1.0275
[10]  0.9185

Another rule I've learned over the years is that you should capture about 70 percent of the
total variance, which means that the cumulative variance explained by each of the selected
components accounts for 70 percent of the variance explained by all the components. That
is pretty simple to do. I'm inclined to go with five components:

> sum(pca$values)
[1] 93

> sum(pca$values[1:5])
[1] 73.31
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We are capturing 79 percent of the total variance with just 5 components. Let's put that
together:

> pca_5 <- psych::principal(train_scale, nfactors = 5, rotate = "none")

Calling the object gives a number of results. Here are the abbreviated results for the top
portion of the output:

> pca_5
Principal Components Analysis
Call: psych::principal(r = train_scale, nfactors = 5, rotate = "none")
Standardized loading (pattern matrix) based upon correlation matrix
                                PC1   PC2  PC3   PC4   PC5   h2    u2 com
abdominalextensiondepthsitting 0.58  0.66 0.09 -0.08 -0.26 0.85 0.146 2.4
acromialheight                 0.92 -0.27 0.13  0.19 -0.03 0.98 0.025 1.3
acromionradialelength          0.84 -0.29 0.16 -0.04 -0.11 0.83 0.167 1.4
anklecircumference             0.67  0.34 0.00  0.02  0.34 0.69 0.314 2.0

Here, we see the feature loading on each of the five components. For example,
acromialheight has the highest positive loading of the features on component 1. Here, I
paste the part of the output that shows the sum of squares:

                            PC1   PC2  PC3  PC4  PC5
SS loading               52.24 11.33 4.74 3.02 1.98
Proportion Var             0.56  0.12 0.05 0.03 0.02
Cumulative Var             0.56  0.68 0.73 0.77 0.79
Proportion Explained       0.71  0.15 0.06 0.04 0.03
Cumulative Proportion      0.71  0.87 0.93 0.97 1.00

Here, the numbers are the eigenvalues for each component. When they are normalized, you
will end up with the Proportion Explained row, which, as you may have guessed,
stands for the proportion of the variance explained by each component. You can see
that principal component 1 explains 56 percent of all the variance explained by the five
components. Remember we previously examined the heuristic rule that your selected
components should account for a minimum of 70 percent of the total variation.
The Cumulative Var row shows the cumulative variance is 79 percent, as demonstrated
previously.
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Orthogonal rotation and interpretation
As we discussed previously, the point behind rotation is to maximize the loading of the
variables on a specific component, which helps in simplifying the interpretation by
reducing/eliminating the correlation among these components. The method to conduct
orthogonal rotation is known as varimax. There are other non-orthogonal rotation methods
that allow correlation across factors/components. The choice of the rotation methodology
that you will use in your profession should be based on the pertinent literature, which
exceeds the scope of this chapter. Feel free to experiment with this dataset. I think that
when in doubt, the starting point for any PCA should be an orthogonal rotation.

For this process, we will simply turn back to the principal() function, slightly changing
the syntax to account for five components and orthogonal rotation, as follows:

> pca_rotate <- psych::principal(train_scale, nfactors = 5, rotate =
"varimax")

Given the number of features, I just normally save this into a CSV file and examine it in a
spreadsheet, in particular with a subject matter expert. Here, we save it and I'll come back
with what are high-level summaries. When I worked in oncology market research, we
always ended up with a component around the drug's efficacy, one around the drug's side
effect profile, and then maybe one or two components regarding dosing, cost, or something
of that ilk. The code here just removes the crazy loading class from the object so we can
save it as a dataframe:

> pca_loading <- unclass(pca_rotate$loading)

> pca_loading <- data.frame(pca_loading)

> pca_loading$features <- row.names(pca_loading)

> readr::write_csv(pca_loading, "pca_loading.csv")

Welcome back! There is no correct answer, but my guess as to how to summarize these 
components would be something like this:

PC1: A catchall component; 44 features have loading higher than 0.5
PC2: Hips, thighs, and buttocks...with a dash of waist and chest
PC3: Neck, shoulders, arms
PC4: Some height measures
PC5: Oddly enough, head and foot measures

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Principal Component Analysis Chapter 10

[ 228 ]

This can be a fun exercise naming the components. I fondly recall the days of naming such
components compassionate conservatives, pragmatic practitioners, and so on. Be that as it
may, we need to create scores from these components so we can give supervised learning a
go.

Creating scores from the components
We will now need to capture the component loading as the scores for each observation.
These scores indicate how each observation (soldier) relates to a component. Let's do this
and capture the scores in a dataframe as we will need to use it for our analysis:

> pca_scores <- data.frame(round(pca_5$scores, digits = 2))

> head(pca_scores)
    PC1   PC2   PC3   PC4   PC5
1 -1.37  0.29  1.06  0.09  0.29
2 -1.19 -0.45 -0.22 -1.61  0.22
3 -0.04 -1.19 -0.45 -0.69  0.05
4  1.44 -0.96  0.43 -1.87 -0.16
5  1.37  2.07  0.26  0.15  2.05
6 -0.09  0.29 -0.96 -0.07  0.17

We now have the scores for each component for each soldier. These are simply the features
for each observation multiplied by the loading on each component and then summed. We
now can bring in the response as a column in the data:

> pca_scores$weight <- trainY

With this done, I think we are compelled to examine the correlation of this data:

> DataExplorer::plot_correlation(pca_scores)
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The output of the preceding code is as follows:

We see that components 1 and 2 are positively correlated to weight while the others seem
meaningless. We must keep in mind this is univariate and our model may prove something
different.

Regression with MARS
To do this part of the process, we will build a model with the earth package, review it on
the training data, then see how it performs on the test data. We'll run a 10-fold cross-
validation with the algorithm: 

> set.seed(1492)

> earth_fit <-
    earth::earth(
    x = pca_scores[, 1:5],
    y = pca_scores[, 6],
    pmethod = 'cv',
    nfold = 10,
    degree = 1,
    minspan = -1
 )
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Calling the summary of the model object gives us seven total terms with three of the
features:

> summary(earth_fit)
Call: earth(x=pca_scores[,1:5], y=pca_scores[,6], pmethod="cv", degree=1,
nfold=10,
            minspan=-1)

            coefficients
(Intercept)      174.182
h(0.1-PC1)       -26.380
h(PC1-0.1)        33.806
h(0.01-PC2)      -13.181
h(PC2-0.01)       13.842
h(0.02-PC5)        1.333
h(PC5-0.02)        -0.869

Selected 7 of 7 terms, and 3 of 5 predictors using pmethod="cv"
Termination condition: RSq changed by less than 0.001 at 7 terms
Importance: PC1, PC2, PC5, PC3-unused, PC4-unused
Number of terms at each degree of interaction: 1 6 (additive model)
GRSq 0.9518 RSq 0.952 mean.oof.RSq 0.9512 (sd 0.0151)

pmethod="backward" would have selected the same model:
    7 terms 3 preds, GRSq 0.9518 RSq 0.952 mean.oof.RSq 0.9512

The model achieved a tremendous r-squared of 0.952 with components 1, 2, and 5. It can
be a little easier to see the hinge functions at play with plotmo:

> plotmo::plotmo(earth_fit)
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The output of the preceding code is as follows:

It's kind of a challenge to discern those subtle hinge functions from plotmo, with the
exception of PC1. To see how this model really performs, save the predicted values and run
some plots:

> ggplot2::ggplot(pca_scores, ggplot2::aes(x = earthpred, y = weight)) +
    ggplot2::geom_point() +
    ggplot2::stat_smooth(method = "lm", se = FALSE) +
    ggthemes::theme_pander()

The output of the preceding code is as follows:
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We see a nice linear relationship, but we have several outliers that make us scratch our
heads. You mean our model predicts a weight of almost 225 pounds, but the soldier is less
than 125 pounds? Something isn't right with those outlier predictions, perhaps
measurement or data entry error; they are interesting observations nonetheless, worthy of
further investigation, time permitting.

How about the residuals?

> ggplot2::ggplot(pca_scores, ggplot2::aes(x = earthpred, y = earthresid))
+
    ggplot2::geom_point() +
    ggplot2::stat_smooth(method = "loess", se = FALSE) +
    ggthemes::theme_few()
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The output of the preceding code is as follows:

Just the slightest curvilinear relationship. We are seeing that the algorithm is
underestimating, minimally, soldiers' weight at the extreme values. We already have r-
squared, but RMSE and MAE are quickly callable:

> caret::postResample(pred = pca_scores$earthpred,
    obs = pca_scores$weight)
     RMSE Rsquared   MAE
    7.336    0.952 5.219

The mean absolute error is just 5 percent. Let's see if this holds on the test data.

Test data evaluation
One of the things you need to do on out-of-sample data is scale it according to the original
(training) data. The predict function that comes with the psych package allows you to do
this effortlessly. We put those scaled and scored values into a dataframe we can then use to
make the out-of-sample predictions:

> test_reduced <- as.matrix(test[, c(-1, -95)])

> test_scores <- data.frame(predict(pca_5, test_reduced, old.data = train[,
c(-1, -95]))
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Here, we just add the predicted and actual values:

> test_scores$testpred <- predict(earth_fit, test_scores)

> test_scores$weight <- test$Weightlbs

The results look good:

> caret::postResample(pred = test_scores$testpred,
    obs = test_scores$weight)
    RMSE Rsquared    MAE
  7.8735   0.9468 5.1937

The performance declined just a little bit. I think we can move forward with this model.
Further exploration of the outliers is in order to see whether there is measurement error,
drop them from the analysis, or truncate them. In closing, let's see the plot of actual versus
predicted:

> ggplot2::ggplot(test_scores, ggplot2::aes(x = testpred, y = weight)) +
    ggplot2::geom_point() +
    ggplot2::stat_smooth(method = "lm", se = FALSE) +
    ggthemes::theme_excel_new()

The output of the preceding code is as follows:
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It looks similar to the training data plot. Once again, there is at least one anomaly. How can
our model predict a soldier to be about 140 pounds but they are actually almost 300? We
could amuse ourselves pursuing this further, but let's move on.

Summary
In this chapter, we took a second stab at unsupervised learning techniques by exploring
PCA, examining what it is, and applying it in a practical fashion. We explored how it can be
used to reduce the dimensionality and improve the understanding of the dataset when
confronted with numerous highly correlated variables. Then, we applied it to real data of
anthropometric measurements of US Army soldiers, using the resulting principal
components in a regression analysis with MARS to predict a soldier's weight. Additionally,
we explored ways to visualize the data and model results.

As an unsupervised learning technique, it requires some judgment along with trial and
error to arrive at an optimal solution that is acceptable to business partners. Nevertheless, it
is a powerful tool to extract latent insights and to support supervised learning.

In the next chapter, we will examine using unsupervised learning to look at association
analysis.
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Association Analysis

If we have data, let’s look at data. If all we have are opinions, let’s go with mine.

- Jim Barksdale, former Netscape CEO

You would have to live on the dark side of the Moon to not see the results of the techniques
that we're about to discuss in this chapter every day. If you visit www.amazon.com, watch
movies on www.netflix.com, or visit any retail website, you'll be exposed to terms such as
related products, because you watched..., customers who bought x also bought y, and recommended
for you, at every twist and turn. With large volumes of historical real-time or near real-time
information, retailers utilize various algorithms in an attempt to increase both the quantity
of buyers' purchases and the value of those purchases. 

The techniques to do this can be broken down into two categories: association rules and
recommendation engines. Association rule analysis is commonly referred to as market
basket analysis, as it's concerned with understanding what items are purchased together.
With recommendation engines, the goal is to provide a customer with other items that
they'll enjoy based on how they've rated items they've viewed or purchased previously.

In this chapter, we'll focus on association analysis. It's applicable not only to making
recommendations, product placement, and promotional pricing, but can be used in
manufacturing, web usage, healthcare, and so on. If you're interested in how items occur
together, apply what you're about to learn.

An overview of association analysis
Association analysis is a data mining technique that has the purpose of finding the optimal
combination of products or services and allows marketers to exploit this knowledge to
provide recommendations, optimize product placement, or develop marketing programs
that take advantage of cross-selling. In short, the idea is to identify which items go well
together, and profit from this.
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You can think of the results of the analysis as an if...then statement. If a customer buys
an airplane ticket, then there is a 46 % probability that they'll buy a hotel room, and if they
go on to buy a hotel room, then there is a 33 % probability that they'll rent a car. 

However, it isn't just for sales and marketing. It's also used in fraud detection and
healthcare; for example, if a patient undergoes treatment A, then there's a 26 % probability
that they'll exhibit symptom X. Before going into the details, we should have a look at some
terminology, as follows:

Itemset: This is a collection of one or more items in the dataset.
Support: This is the proportion of the transactions in the data that contain an
itemset of interest.
Confidence: This is the conditional probability that, if a person purchases or does
x, they'll purchase or do y; the act of doing x is referred to as the antecedent or
left-hand side (LHS), and y is the consequence or right-hand side (RHS).
Lift: This is the ratio of the support of x occurring together with y divided by the
probability that x and y occur if they are independent. It's the confidence divided
by the probability of x times the probability of y; for example, say that we have
the probability of x and y occurring together as 10 %, and the probability of x is
20 %, and y is 30 %, then the lift would be 10 % (20 % times 30 %) or 16.67 %.

The package in R that you can use to perform a market basket analysis is arules: Mining
Association Rules and Frequent with Itemsets. The package offers two different methods
for finding rules apriori and ECLAT. There are other algorithms we can use to conduct a
market basket analysis, but apriori is used most frequently, and so will be our focus.

With apriori, the principle is that, if an itemset is frequent, then all of its subsets must also
be frequent. A minimum frequency (support) is determined by the analyst before executing
the algorithm, and once established, the algorithm will run as follows:

Let k=1 (the number of items)
Generate itemsets of a length that is equal to or greater than the specified support
Iterate k + (1...n), pruning those that are infrequent (less than the support)
Stop the iteration when no new frequent itemsets are identified

Once you have an ordered summary of the most frequent itemsets, you can continue the
analysis process by examining the confidence and lift to offers the associations of interest.

Before we delve into the analysis, it's necessary to understand how to put your raw data
into the appropriate structure, referred to as R class transactions. This can be a confusing
task, so I'm going to spend some time on this before moving on to a full demonstration of
association analysis.
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Creating transactional data
In the world of the Internet of Things, you receive a ton of data. As you monitor devices for
anomalies or failures, let's say you get some fault codes. How would you put the raw data
into something meaningful for analysis in R? Well, here's a case study. We'll put together a
random dataset and turn it into the proper form for use with R's arules package. Here's
the dataframe:

> set.seed(270)

> faults <- data.frame(
    serialNumber = sample(1:20, 100, replace = T),
    faultCode = paste("fc", sample(1:12, 100, replace = T), sep = "")
 )

This gives us 20 different serial numbers, which tells us which devices being monitored
have had faults. Each device has a possibility of 12 different fault codes. The limitation of
association analysis as we're doing it is the fact that the transaction order isn't included.
Let's assume that isn't an issue in this example and proceed. First, given the random
generation of this data, we will remove the duplicates:

> faults <- unique(faults)

The structure of the dataframe before turning it into transactions is critical. The identifier
column needs to be as an integer. So, if you have a customer or equipment identifier such as
123abc, you must turn it into an integer. Then, the item of interest must be a factor. Here,
we confirm that we have the proper dataframe structure:

> str(faults)
'data.frame': 80 obs. of 2 variables:
 $ serialNumber: int 9 8 1 18 11 20 2 16 10 20 ...
 $ faultCode : Factor w/ 12 levels "fc1","fc10","fc11",..: 2 5 1 12 1 3 6
10 11 1 ...

Notice that this data is in the long format, which is usually how it's produced. As such,
create a column where all values are TRUE and use tidyverse to reshape the data into
the wide format:

> faults$indicator <- TRUE

> faults_wide <- tidyr::spread(faults, key = faultCode, value = indicator)

We now have a dataframe with the associated faults labeled as TRUE for each item of
interest. Next, turn the data into a matrix while dropping the ID:

> faults_matrix <- as.matrix(faults_wide[,-1])
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You must turn the missing na into something understood, so let's make them FALSE:

> faults_matrix[is.na(faults_matrix)] <- FALSE

Finally, we can turn this data into the transactions class:

> faults_transactions <- as(faults_matrix, "transactions")

To confirm it all worked, create a plot of the top 10 item frequency:

> arules::itemFrequencyPlot(faults_transactions, topN = 10)

The output of the preceding code is as follows:

Success! Following the preceding process will get you from raw data to the appropriate
structure. We'll transition to an example using data from the arules package itself, which
you can apply to any analysis you want.

Data understanding
For our business case, we'll focus on identifying the association rules for a grocery store.
The dataset will be from the arules package and is called Groceries. This dataset
consists of actual transactions over 30 days from a real-world grocery store and consists of
9,835 different purchases. All of the items purchased are put into one of 169 categories, for
example, bread, wine, meat, and so on.
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Let's say that we want to develop an understanding of what potential customers will
purchase along with beer to identify the right product placement within the store or
support a cross-selling campaign.

Data preparation
For this analysis, we'll only need to load two packages, as well as the Groceries dataset:

> install.packages("arules")

> install.packages("arulesViz")

> library(arules)

> data(Groceries)

> str(Groceries)
    Formal class 'transactions' [package "arules"] with 3 slots
      ..@ data :Formal class 'ngCMatrix' [package "Matrix"] with 5
        slots
      .. .. ..@ i : int [1:43367] 13 60 69 78 14 29 98 24 15 29 ...
      .. .. ..@ p : int [1:9836] 0 4 7 8 12 16 21 22 27 28 ...
      .. .. ..@ Dim : int [1:2] 169 9835
      .. .. ..@ Dimnames:List of 2
      .. .. .. ..$ : NULL
      .. .. .. ..$ : NULL
      .. .. ..@ factors : list()
      ..@ itemInfo :'data.frame': 169 obs. of 3 variables:
      .. ..$ labels: chr [1:169] "frankfurter" "sausage" "liver loaf"
        "ham" ...
      .. ..$ level2: Factor w/ 55 levels "baby food","bags",..: 44 44
      44 44 44 44
      44 42 42 41 ...
      .. ..$ level1: Factor w/ 10 levels "canned food",..: 6 6 6 6 6 6
      6 6 6 6
      ...
      ..@ itemsetInfo:'data.frame': 0 obs. of 0 variables
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This dataset is structured as a sparse matrix object, known as the transaction class,
which we created previously.

So, once the structure is that of the class transaction, our standard exploration techniques
won't work, but the arules package offers us other methods to explore the data. The best
way to explore this data is with an item frequency plot using the itemFrequencyPlot()
function in the arules package. You'll need to specify the transaction dataset, the number
of items with the highest frequency to plot, and whether or not you want the relative or
absolute frequency of the items. Let's first look at the absolute frequency and the top 10
items only:

> arules::itemFrequencyPlot(Groceries, topN = 10, type = "absolute")

The output of the preceding command is as follows:

The top item purchased was whole milk with roughly 2,500 of the 9,836 transactions in the
basket. For a relative distribution of the top 15 items, let's run the following code:

> arules::itemFrequencyPlot(Groceries, topN = 15)
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The following is the output of the preceding command:

Alas, here we see that beer shows up as the 13th and 15th most purchased item at this store.
Just under 10 % of the transactions related to bottled beer and/or canned beer.

For this exercise, this is all we need to do; therefore, we can move right on to the modeling
and evaluation.

Modeling and evaluation
We'll start by mining the data for the overall association rules before moving on to our rules
for beer specifically. Throughout the modeling process, we'll use the apriori algorithm,
which is the appropriately named apriori() function in the arules package. The two
main things that we'll need to specify in the function are the dataset and parameters. As for
the parameters, you'll need to apply judgment when determining the minimum support,
confidence, and the minimum and/or maximum length of basket items in an itemset. Using
item frequency plots, along with trial and error, let's set the minimum support at 1 in 1,000
transactions and the minimum confidence at 90 %.
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Additionally, let's establish the maximum number of items to be associated as 4. The
following code creates the object that we'll call rules:

 rules <-
  arules::apriori(Groceries, parameter = list(
    supp = 0.001,
    conf = 0.9,
    maxlen = 4
  ))

Calling the object shows how many rules the algorithm produced:

> rules
set of 67 rules

There are many ways to examine rules. The first thing that I recommend is setting the
number of displayed digits to only two, with the options() function in base R. Then, sort
and inspect the top five rules based on the lift that they provide, as follows:

> options(digits = 2)
> rules <- arules::sort(rules, by = "lift", decreasing = TRUE)
> arules::inspect(rules[1:5])
  lhs                 rhs                support confidence lift
1 {liquor, red/blush wine}     => {bottled beer}      0.0019
   0.90 11.2
2 {root vegetables, butter, cream cheese }      => {yogurt}
   0.0010       0.91  6.5
3 {citrus fruit, root vegetables, soft cheese}=> {other vegetables}
   0.0010       1.00  5.2
4 {pip fruit, whipped/sour cream, brown bread}=> {other vegetables}
   0.0011       1.00  5.2
5 {butter,whipped/sour cream, soda}    => {other vegetables}
    0.0013       0.93  4.8

Lo and behold! The rule that offers the best overall lift is the purchase of liquor and red
wine on the probability of purchasing bottled beer. I have to admit that this is pure
chance and not intended on my part. As I always say, it's better to be lucky than good.
Although, it's still not a very common transaction with support for only 1.9 per 1,000.

You can also sort by the support and confidence, so let's have a look at the first five rules
by="confidence" in descending order, as follows:

 > rules <- arules::sort(rules, by = "confidence", decreasing = TRUE)

 > arules::inspect(rules[1:5])
      lhs             rhs                support confidence lift
    1 {citrus fruit, root vegetables, soft cheese}=> {other vegetables}
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      0.0010          1  5.2
    2 {pip fruit, whipped/sour cream, brown bread}=> {other vegetables}
      0.0011          1  5.2
    3 {rice, sugar}  => {whole milk}        0.0012          1  3.9
    4 {canned fish, hygiene articles} => {whole milk} 0.0011   1  3.9
    5 {root vegetables, butter, rice} => {whole milk} 0.0010   1  3.9

You can see in the table that confidence for these transactions is 100 %. Moving on to our
specific study of beer, we can utilize a function in arules to develop cross -
tabulations—the crossTable() function—and then examine whatever suits our needs.
The first step is to create a table with our dataset:

 > tab <- arules::crossTable(Groceries)

With tab created, we can now investigate joint occurrences between the items. Here, we'll
look at just the first three rows and columns:

 > tab[1:3, 1:3]
                frankfurter sausage liver loaf
    frankfurter         580      99          7
    sausage              99     924         10
    liver loaf            7      10         50

As you might imagine, shoppers only selected liver loaf 50 times out of the 9,835
transactions. Additionally, of the 924 times, people gravitated toward sausage, ten times
they felt compelled to grab liver loaf. (Desperate times call for desperate measures!) If
you want to look at a specific example, you can either specify the row and column number
or spell that item out:

> tab["bottled beer","bottled beer"]
[1] 792

This tells us that there were 792 transactions of bottled beer. Let's see what the joint
occurrence between bottled beer and canned beer is:

> tab["bottled beer","canned beer"]
[1] 26

I would expect this to be low as it supports my idea that people lean toward drinking beer
from either a bottle or a can. I strongly prefer a bottle. It also makes a handy weapon to
protect yourself from all these ruffian protesters such as Occupy Wallstreet and the like.
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We can now move on and derive specific rules for bottled beer. We'll again use the
apriori() function, but this time, we'll add a syntax around appearance. This means that
we'll specify in the syntax that we want the left-hand side to be items that increase the
probability of purchasing bottled beer, which will be on the right-hand side. In the
following code, notice that I've adjusted the support and confidence numbers. Feel free
to experiment with your settings:

> beer.rules <- arules::apriori(
    data = Groceries,
    parameter = list(support
    = 0.0015, confidence = 0.3),
    appearance = list(default = "lhs",
    rhs = "bottled beer"))

> beer.rules
set of 4 rules

We find ourselves with only 4 association rules. We've seen one of them already; now let's
bring in the other three rules in descending order by lift:

 > beer.rules <- arules::sort(beer.rules, decreasing = TRUE, by = "lift")
  > arules::inspect(beer.rules)
 lhs rhs support confidence lift
 1 {liquor, red/blush wine} => {bottled beer} 0.0019 0.90 11.2
 2 {liquor} => {bottled beer} 0.0047 0.42 5.2
 3 {soda, red/blush wine} => {bottled beer} 0.0016 0.36 4.4
 4 {other vegetables, red/blush wine} => {bottled beer}0.0015 0.31
 3.8

In all of the instances, the purchase of bottled beer is associated with booze, either
liquor and/or red wine, which is no surprise to anyone. What's interesting is that white
wine isn't in the mix here. Let's take a closer look at this and compare the joint occurrences
of bottled beer and types of wine:

    > tab["bottled beer", "red/blush wine"]
    [1] 48
    > tab["red/blush wine", "red/blush wine"]
    [1] 189
    > 48/189
    [1] 0.25
    > tab["white wine", "white wine"]
    [1] 187
    > tab["bottled beer", "white wine"]
    [1] 22
    > 22/187
    [1] 0.12
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It's interesting that 25 % of the time when someone purchased red wine, they also
purchased bottled beer; but with white wine, a joint purchase only happened in 12 %
of the instances. We certainly don't know why in this analysis, but this could potentially
help us to determine how we should position our product in this grocery store. Another
thing before we move on is to look at a plot of the rules. This is done with the plot()
function in the arulesViz package.

There are many graphics options available. For this example, let's specify that we want
graph showing lift and the rules provided and shaded by confidence. The following
syntax will provide this accordingly:

> library(arulesViz)
Loading required package: grid

> plot(beer.rules,
+ method = "graph",
+ measure = "lift",
+ shading = "confidence")

The following is the output of the preceding command:
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This graph shows that liquor/red wine provides the best lift and the highest level of
confidence with both the size of the circle and its shading.

What we've just done in this simple exercise is show how easy it is with R to conduct a
market basket analysis. It doesn't take much imagination to figure out the analytical
possibilities that we can include with this technique, for example, in corporate customer
segmentation, longitudinal purchase history, and so on, as well as how to use it in advert
displays, co-promotions, and so on. 

Summary
In this chapter, the goal was to provide an introduction to how to use R in order to build
and test association rule mining (market basket analysis). Market basket analysis tries to
understand what items are purchased together or what items occur together, so you can
apply the analysis to healthcare, fraud-detection, and even exploring mechanical issues. As
such, we learned how to transform raw data into a transactional structure for use in the
arules package.

We're now going to shift gears back to supervised learning. In the next chapter, we're going
to cover some poorly understood but essential methods in practical machine learning, that
is, analyzing time series data and determining causality.
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Time Series and Causality

 "An economist is an expert who will know tomorrow why the things he predicted
yesterday didn't happen today."

- Laurence J. Peter

A univariate time series is where the measurements are collected over a standard measure
of time, which could be by the minute, hour, day, week, month, and so on. What makes the
time series problematic over other data is that the order of the observations matters. This
dependency of order can cause standard analysis methods to produce an unnecessarily
high bias or variance.

It seems that there's a paucity of literature on machine learning and time series data or it's
substandard. For example, I was at a data science conference in the spring of 2018, and a
highly regarded machine learning expert mentioned that vector autoregression requires the
data to be stationary. We'll discuss this later. When I heard this, I almost fell over. Fake data
news! I informed my colleagues trained in econometrics to their horror and dismay. This is
unfortunate as so much of real-world data involves a time component. Furthermore, time
series analysis can be quite complicated and tricky. I would say that if you haven't seen a
time series analysis done incorrectly, you haven't been looking close enough.

Another aspect involving time series that's often neglected is causality. Yes, we don't want
to confuse correlation with causation but, in time series analysis, we can apply the
technique of Granger causality in order to determine whether causality, statistically
speaking, exists.
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In this chapter, we'll apply time series/econometric techniques to identify univariate
forecast models (including ensembles), vector autoregression models, and finally, Granger
causality. After completing this chapter, you may not be a complete master of the time
series analysis, but you'll know enough to perform an effective analysis and understand the
fundamental issues to consider when building time series models and creating predictive
models (forecasts).

Following are the topics that will be covered in this chapter:

Univariate time series analysis
Time series data
Modeling and evaluation

Univariate time series analysis
We'll focus on two methods to analyze and forecast a single time series: exponential
smoothing and Autoregressive Integrated Moving Average (ARIMA) models. We'll start
by looking at exponential smoothing models.

Like moving average models, exponential smoothing models use weights for past
observations. But unlike moving average models, the more recent the observation, the more
weight it's given relative to the later ones. There are three possible smoothing parameters to
estimate: the overall smoothing parameter, a trend parameter, and the seasonal smoothing
parameter. If no trend or seasonality is present, then these parameters become null.

The smoothing parameter produces a forecast with the following equation:

In this equation, Yt is the value at the time, T, and alpha (α) is the smoothing parameter.
Algorithms optimize the alpha (and other parameters) by minimizing the errors, Sum of
Squared Error (SSE) or maximum likelihood.

The forecast equation along with trend and seasonality equations, if applicable, will be as
follows:

The forecast, where A is the preceding smoothing equation and h is the number
of forecast periods: 
The trend equation: 
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The seasonality, where m is the number of seasonal periods: 

This equation is referred to as the Holt-Winters method. The forecast equation is additive
in nature with the trend as linear. The method also allows the inclusion of a dampened
trend and multiplicative seasonality, where the seasonality proportionally increases or
decreases over time. With these models, you don't have to worry about the assumption of
stationarity as in an ARIMA model. Stationarity is where the time series has a constant
mean, variance, and correlation between all of the time periods. Having said this, it's still
important to understand the ARIMA models as there will be situations where they have the
best performance.

Starting with the autoregressive model, the value of Y at time T is a linear function of the
prior values of Y. The formula for an autoregressive lag-1 model AR(1) is

. The critical assumptions for the model are as follows:

Et denotes the errors that are identically and independently distributed with a
mean zero and constant variance
The errors are independent of Yt
Yt, Yt-1, Yt-n... is stationary, which means that the absolute value of Φ is less than
one

With a stationary time series, you can examine the autocorrelation function (ACF). The
ACF of a stationary series gives correlations between Yt and Yt-h for h = 1, 2...n. Let's use R
to create an AR(1) series and plot it:

> install.packages("forecast")

> set.seed(1966)

> ar1 <- arima.sim(list(order = c(1, 0, 0), ar = 0.5), n = 200)

> forecast::autoplot(ar1, main = "AR1")
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The following is the output of the preceding command:

Now, let's examine ACF:

> forecast::autoplot(acf(ar1, plot = F), main = "ACF of simulated AR1")
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The output of the preceding command is as follows:

The ACF plot shows the correlations exponentially decreasing as the Lag increases. The
dotted blue lines indicate the confidence bands of a significant correlation. Any line that
extends above the high or below the low band is considered significant. In addition to ACF,
we should also examine the partial autocorrelation function (PACF). The PACF is a
conditional correlation, which means that the correlation between Yt and Yt-h is conditional
on the observations that come between the two. One way to intuitively understand this is to
think of a linear regression model and its coefficients. Let's assume that you have Y = B0 +
B1X1 versus Y = B0 + B1X1 + B2X2. The relationship of X to Y in the first model is linear
with a coefficient, but in the second model, the coefficient will be different because of the
relationship between Y and X2 now being accounted for as well. Note that, in the following
PACF plot, the partial autocorrelation value at lag-1 is identical to the autocorrelation value
at lag-1, as this isn't a conditional correlation:

 > forecast::autoplot(pacf(ar1, plot = F), main = "PACF of simulated AR1")
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The following is the output of the preceding command:

We can safely make the assumption that the series is stationary from the appearance of the
preceding time series plot. We'll look at a couple of statistical tests in the practical exercise
to ensure that the data is stationary but, on occasion, the eyeball test is sufficient. If the data
isn't stationary, then it's possible to detrend the data by taking its differences. This is the
Integrated (I) in ARIMA. After differencing, the new series becomes ΔYt = Yt - Yt-1. One
should expect a first-order difference to achieve stationarity but, on some occasions, a
second-order difference may be necessary. An ARIMA model with AR(1) and I(1) would be
annotated as (1,1,0).
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The MA stands for Moving Average. This isn't the simple moving average as the 50-day
moving average of a stock price, it's rather a coefficient that is applied to the errors. The
errors are, of course, identically and independently distributed with a mean zero and
constant variance. The formula for an MA(1) model is Yt = constant + Et + ΘEt-1. As we did
with the AR(1) model, we can build an MA(1) in R, as follows:

    > set.seed(123)
    > ma1 <- arima.sim(list(order = c(0, 0, 1), ma = -0.5), n = 200)
    > forecast::autoplot(ma1, main = "MA1")

The following is the output of the preceding command:
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The ACF and PACF plots are a bit different from the AR(1) model. Note that there are some
rules of thumb while looking at the plots in order to determine whether the model has AR
and/or MA terms. They can be a bit subjective, so I'll leave it to you to learn these heuristics,
but trust R to identify the proper model. In the following plots, we'll see a significant
correlation at lag-1 and two significant partial correlations at lag-1 and lag-2:

> forecast::autoplot(acf(ma1, plot = F), main = "ACF of simulated MA1")

The output of the preceding command is as follows:

The preceding figure is the ACF plot, and now, we'll see the PACF plot:

> forecast::autoplot(pacf(ma1, plot = F), main = "PACF of simulated MA1")
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The output of the preceding command is as follows:

With the ARIMA models, it's possible to incorporate seasonality, including the
autoregressive, integrated, and moving average terms. The non-seasonal ARIMA model
notation is commonly (p,d,q). With seasonal ARIMA, assume that the data is monthly, then
the notation would be (p,d,q) x (P,D,Q)12, with the 12 in the notation taking the monthly
seasonality into account. In the packages that we'll use, R can automatically identify
whether the seasonality should be included; if so, the optimal terms will be included as
well.
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Understanding Granger causality
Imagine you're asked a question such as, What's the relationship between the number of new
prescriptions and total prescriptions for medicine X? You know that these are measured
monthly, so what could you do to understand that relationship, given that people believe
that new scripts will drive up total scripts? Or how about testing the hypothesis that
commodity prices—in particular, copper—is a leading indicator of stock market prices in
the US? Well, with two sets of time series data, x and y, Granger causality is a method that
attempts to determine whether one series is likely to influence a change in the other. This is
done by taking different lags of one series and using this to model the change in the second
series. To accomplish this, we'll create two models that will predict y, one with only the
past values of y (Ω) and the other with the past values of y and x (π). The models are as
follows, where k is the number of lags in the time series:

The RSS is then compared and F-test is used to determine whether the nested model (Ω)
is adequate enough to explain the future values of y or whether the full model (π) is better.
F-test is used to test the following null and alternative hypotheses:

H0: αi = 0 for each i ∊[1,k], no Granger causality
H1: αi ≠ 0 for at least one i ∊[1,k], Granger causality

Essentially, we're trying to determine whether we can say that, statistically, x provides
more information about the future values of y than the past values of y alone. In this
definition, it's clear that we aren't trying to prove actual causation, only that the two values
are related by some phenomenon. Along these lines, we must also run this model in reverse
in order to verify that y doesn't provide information about the future values of x. If we find
that this is the case, it's likely that there's some exogenous variable, say Z, that needs to be
controlled or would possibly be a better candidate for the Granger causation. Originally,
you had to apply the method to stationary time series to avoid spurious results. This is no
longer the case as I will demonstrate.

Note that research papers are available that discuss the techniques nonlinear models use,
but this is outside the scope of this book. I recommend reading an excellent introductory
paper on Granger causality that revolves around the age-old conundrum of the chicken and
the egg (Thurman, 1988).
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There are a couple of different ways to identify the proper lag structure. Naturally, we can 
use brute force and ignorance to test all of the reasonable lags, one at a time. We may have a
rational intuition based on domain expertise or perhaps prior research that exists to guide
the lag selection. If not, then you can apply vector autoregression (VAR) to identify the lag
structure with the lowest information criterion, such as Aikake's information criterion
(AIC) or final prediction error (FPE). For simplicity, here is the notation for the VAR
models with two variables, and this incorporates only one lag for each variable. This
notation can be extended for as many variables and lags as appropriate:

Y = constant1 + B11Yt-1 + B12Yt-1 + e1

X = constant1 + B21Yt-1 + B22Yt-1 + e2

In R, this process is quite simple to implement as we'll see in the following practical
problem.

Time series data
The planet isn't going anywhere. We are! We're goin' away.

- Philosopher and comedian, George Carlin

Climate change is happening. It always has and will, but the big question, at least from a
political and economic standpoint, is the climate change man-made? I'll use this chapter to
put econometric time series modeling to the test to try and learn whether carbon emissions
cause, statistically speaking, climate change and, in particular, rising temperatures.
Personally, I'd like to take a neutral stance on the issue, always keeping in mind the wise
tenets that Mr. Carlin left for us in his teachings on the subject.

The first order of business is to find and gather the data. For temperature, I chose the
HadCRUT4 annual median temperature time series, which is probably the gold standard.
This data is compiled by a cooperative effort of the Climate Research Unit of the University
of East Anglia and the Hadley Centre at the UK Meteorological Office. A full discussion of
how the data is compiled and modeled is available at
http://www.metoffice.gov.uk/hadobs/index.html.
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The data that we'll use is provided as an annual anomaly, which is calculated as the
difference of the median annual surface temperature for a given time period versus the
average of the reference years (1961-1990). The annual surface temperature is an ensemble
of the temperatures collected globally and blended from the CRUTEM4 surface air
temperature and HadSST3 sea-surface datasets. Skeptics have attacked biased and
unreliable:
http://www.telegraph.co.uk/comment/11561629/Top-scientists-start-to-examine-fid

dled-global-warming-figures.html. This is way outside of our scope of effort here, so we
must accept and utilize this data as is, but I find it amusing nonetheless. I've pulled the data
from 1919 through 2013 to match our CO2 data.

Global CO2 emission estimates can be found at the Carbon Dioxide Information Analysis
Center (CDIAC) of the US Department of Energy at the following website: http:/ /cdiac.
ornl.gov/.

I've placed the data in a .csv file (climate.csv) for you to download and store in your
working directory: https:/ / github. com/ datameister66/ data/ .

Let's install libraries as needed, load the data, and examine the structure:

> library(magrittr)

> install.packages("tidyverse")

> install.packages("ggplot2")

> install.packages("ggthemes")

> install.packages("tseries")

> climate <- readr::read_csv("climate.csv")

> str(climate)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 95 obs. of 3 variables:
 $ Year: int 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 ...
 $ CO2 : int 806 932 803 845 970 963 975 983 1062 1065 ...
 $ Temp: num -0.272 -0.241 -0.187 -0.301 -0.272 -0.292 -0.214 -0.105 -0.208
-0.206 ...

We'll put this in a time series structure, specifying the start and end years:

> climate_ts <- ts(climate[, 2:3],
    start = 1919,
    end = 2013)
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With our data loaded and put in time series structures, we can now begin to understand
and further prepare it for analysis.

Data exploration
Let's start out with a plot of the time series using base R:

> plot(climate_ts, main = "CO2 and Temperature Deviation")

The output of the preceding command is as follows:

It appears that CO2 levels really started to increase after World War II and there's a rapid
rise in temperature anomalies in the mid-1970s. There doesn't appear to be any obvious
outliers, and variation over time appears constant. Using the standard procedure, we can
see that the two series are highly correlated, as follows:

    > cor(climate_temp)
               CO2      Temp
    CO2  1.0000000 0.8404215
    Temp 0.8404215 1.0000000
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As discussed earlier, this is nothing to jump for joy about as it proves absolutely nothing.
We'll look for the structure by plotting ACF and PACF for both series:

> forecast::autoplot(acf(climate_ts[, 2], plot = F), main="Temperature
ACF")

The output of the preceding code snippet is as follows:

This code gives us the PACF plot for temperature:

> forecast::autoplot(pacf(climate_ts[, 2], plot = F), main = "Temperature
PACF")
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The output of the preceding code snippet is as follows:

This code gives us the ACF plot for CO2:

> forecast::autoplot(acf(climate_ts[, 1], plot = F), main = "CO2 ACF")

The output of the preceding code snippet is as follows:
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This code gives us the PACF plot for CO2:

> forecast::autoplot(acf(climate_ts[, 1], plot = F), main = "CO2 PACF")

The output of the preceding code snippet is as follows:

With the slowly decaying ACF patterns and rapidly decaying PACF patterns, we can
assume that these series are both autoregressive, although Temp appears to have some
significant MA terms. Next, let's have a look at the Cross-Correlation Function (CCF). Note
we put our x before our y in the function:

> forecast::autoplot(ccf(climate_ts[, 1], climate_ts[, 2], plot = F), main
= "CCF")
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The output of the preceding code is as follows:

The CCF shows us the correlation between the temperature and lags of CO2. If the negative
lags of the x variable have a high correlation, we can say that x leads y. If the positive lags
of x have a high correlation, we say that x lags y. Here, we can see that CO2 is both a
leading and lagging variable. For our analysis, it's encouraging that we see the former, but
odd that we see the latter. We'll see during the VAR and Granger causality analysis
whether this will matter or not.

Additionally, we need to test whether the data is stationary. We can prove this with the
Augmented Dickey-Fuller (ADF) test available in the tseries package, using the
adf.test() function, as follows:

    > tseries::adf.test(climate_ts[, 1])

           Augmented Dickey-Fuller Test

    data: climate_ts[, 1]
    Dickey-Fuller = -1.1519, Lag order = 4, p-value =
    0.9101
    alternative hypothesis: stationary

    > tseries::adf.test(climate_ts[, 2])

           Augmented Dickey-Fuller Test
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    data: climate_ts[, 2]
    Dickey-Fuller = -1.8106, Lag order = 4, p-value =
    0.6546
    alternative hypothesis: stationary

For both series, we have insignificant p-values, so we cannot reject the null and conclude
that they aren't stationary.

Having explored the data, let's begin the modeling process, starting with the application of
univariate techniques to the temperature anomalies.

Modeling and evaluation
For the modeling and evaluation step, we'll focus on three tasks. The first is to produce a
univariate forecast model applied to just the surface temperature. The second is to develop
a vector autoregression model of the surface temperature and CO2 levels, using that output
to inform our work on whether CO2 levels Granger-cause the surface temperature
anomalies.

Univariate time series forecasting
With this task, the objective is to produce a univariate forecast for the surface temperature,
focusing on choosing either an exponential smoothing model, an ARIMA model, or an
ensemble of methods, including a neural net. We'll train the models and determine their
predictive accuracy on an out-of-time test set, just like we've done in other learning
endeavors. The following code creates the train and test sets:

> temp_ts <- ts(climate$Temp, start = 1919, frequency = 1)

> train <- window(temp_ts, end = 2007)

> test <- window(temp_ts, start = 2008)
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To build our exponential smoothing model, we'll use the ets() function found in the
forecast package. The function will find the best model with the lowest AIC:

> fit.ets <- forecast::ets(train)

> fit.ets
ETS(A,A,N)

Call:
 forecast::ets(y = train)

  Smoothing parameters:
    alpha = 0.3429
    beta = 1e-04

  Initial states:
    l = -0.2817
    b = 0.0095

  sigma: 0.1025

       AIC AICc BIC
-0.1516906 0.5712010 12.2914912

The model object returns a number of parameters of interest. The first thing to check is
what does (A,A,N) mean. It represents that the model selected is a simple exponential
smoothing with additive errors. The first letter denotes the error type, the second letter the
trend, and the third letter seasonality. The possible letters are as follows:

A = additive
M = multiplicative
N = none
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We also see the parameter estimates with alpha, the smoothing parameter, for error
correction (the level), and beta for slope. Initial state values were used to initiate model
selection; sigma is the variation of the residuals and model criteria values are provided.
You can plot how the estimates change over time:

> forecast::autoplot(fit.ets)

The output of the preceding code is as follows:

We'll now plot forecast and see how well it performed visually on the test data:

> plot(forecast::forecast(fit.ets, h = 6))

> lines(test, type = "o")
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The output of the preceding code is as follows:

Looking at the plot, it seems that this forecast is showing a slight linear uptrend and is
overestimating versus the actual values. We'll now look at the accuracy measures for the
model:

> fit.ets %>% forecast::forecast(h = 6) %>%
    forecast::accuracy(temp_ts)
                      ME       RMSE        MAE       MPE     MAPE      MASE
Training set -0.00160570 0.10012357 0.08052241      -Inf      Inf 0.8752436
Test set     -0.06410776 0.08303044 0.07086704 -14.90784 16.12354 0.7702939
                  ACF1  Theil's U
Training set 0.1058923         NA
Test set    -0.1743445  0.7940449
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There are eight measures for error. The one I believe we should focus on is Theil's U
(actually U2 as the original Theil's U had some flaws), which is available only on the test
data. Theil's U is an interesting statistic as it isn't dependent on scale, so you can compare
multiple models. For instance, if in one model you transform the time series using a
logarithmic scale, you can compare the statistic with a model that doesn't transform the
data. You can think of it as the ratio that the forecast improves predictability over a naive
forecast, or we can describe it at the root mean square error (RMSE) of the model divided
by the RMSE of a naive model. Therefore, Theil's U statistics greater than 1 perform worse
than a naive forecast, a value of 1 equals naive, and less than 1 indicates the model
outperforms naive. Further discussion and how the statistic is derived is available at this
link: http://www. forecastingprinciples. com/ data/ definitions/ theil's%20u. html.

The smoothing model provided a statistic of 0.7940449. That isn't very impressive even
though it's below one. We should strive for values at or below 0.5, in my opinion.

We'll now develop an ARIMA model, using auto.arima(), which is also from the
forecast package. There are many options that you can specify in the function, or you can
just include your time series data and it will find the best ARIMA fit. I recommend using the 
function with caution, as it can often return a model that violates assumptions for the
residuals, as we shall see:

> fit.arima <- forecast::auto.arima(train)

> summary(fit.arima)
Series: train
ARIMA(1,1,1) with drift

Coefficients:
         ar1     ma1  drift
      0.2089 -0.7627 0.0087
s.e.  0.1372  0.0798 0.0033

sigma^2 estimated as 0.01021: log likelihood=78.09
AIC=-148.18 AICc=-147.7 BIC=-138.28

Training set error measures:
                        ME       RMSE        MAE MPE MAPE      MASE
Training set -8.396214e-05 0.09874311 0.07917484 Inf  Inf 0.8605961
                   ACF1
Training set 0.02010508
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The abbreviated output shows that the model selected is an AR = 1, I = 1, and MA = 1, I = 1,
or ARIMA(1,1,1) with drift (equivalent to an intercept term on differenced data and a
slope term in undifferenced data). We can examine the plot of its performance on the test
data in the same fashion as before:

> plot(forecast::forecast(fit.arima, h = 6))

> lines(test, type = "o")

The output of the preceding code is as follows: 

This is very similar to the prior method. Let's check those accuracy statistics, of course with
a focus on Theil's U:

> fit.arima %>% forecast::forecast(h = 6) %>%
    forecast::accuracy(temperature)
                        ME       RMSE        MAE       MPE     MAPE
MASE
Training set -8.396214e-05 0.09874311 0.07917484       Inf      Inf
0.8605961
Test set     -4.971043e-02 0.07242892 0.06110011 -11.84965 13.89815
0.6641316
                    ACF1 Theil's U
Training set  0.02010508        NA
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Test set     -0.18336583 0.6729521

The forecast error is slightly better with the ARIMA model. You should always review the
residuals with your models and especially ARIMA, which relies on the assumption of no
serial correlation in said residuals:

> forecast::checkresiduals(fit.arima)

  Ljung-Box test

data: Residuals from ARIMA(1,1,1) with drift
Q* = 18.071, df = 7, p-value = 0.01165

Model df: 3. Total lags used: 10

The output of the following code is as follows:
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First of all, take a look at the Ljung-Box Q test. The null hypothesis is that the correlations in
the residuals are zero, and the alternative is that the residuals exhibit serial correlation. We
see a significant p-value so we can reject the null. This is confirmed visually in the ACF plot
of the residuals where significant correlation exists at lag 4 and lag 10. With serial
correlation present, the model coefficients are unbiased, but the standard errors and any
statistics that rely on them are wrong. This fact may require you to manually select an
appropriate ARIMA model manually through trial and error. To explain how to do that
would require a separate chapter, so it's not in scope for this book. 

With a couple of relatively weak models, we can try other methods, but let's look at
creating an ensemble similar to what we produced in Chapter 8, Creating Ensembles and
Multiclass Methods. We'll put together the two models just created and add a forward-feed
neural network from the nnetar() function available in the forecast package. We won't
stack the models, but simply take the average of the three models for comparison on the
test data. 

The first step in this process is to develop the forecasts for each of the models. This is
straightforward:

> ETS <- forecast::forecast(forecast::ets(train), h = 6)

> ARIMA <- forecast::forecast(forecast::auto.arima(train), h = 6)

> NN <- forecast::forecast(forecast::nnetar(train), h = 6)

The next step is to create the ensemble values, which again is just a simple average:

> ensemble.fit <-
    (ETS[["mean"]] + ARIMA[["mean"]] + NN[["mean"]]) / 3

The comparison step is kind of an open canvas for you to produce the statistics you desire.
Notice that I'm pulling the accuracy for only the test data and Theil's U. You can pull the
necessary stats, such as RMSE or MAPE, should you so desire:

> c(ets = forecast::accuracy(ETS, temperature)["Test set", c("Theil's U")],
    arima = forecast::accuracy(ARIMA, temperature)["Test set", c("Theil's
U")],
    nn = forecast::accuracy(NN, temperature)["Test set", c("Theil's U")],
    ef = forecast::accuracy(ensemble.fit, temperature)["Test set",
c("Theil's U")])
      ets     arima        nn        ef
0.7940449 0.6729521 0.6794704 0.7104893
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This is interesting, I think, as the exponential smoothing is dragging the ensemble
performance down, and ARIMA and neural net are almost equal. Just for visual
comparison, let's plot the neural network:

> plot(NN)

> lines(test, type = "o")

The output of the preceding code is as follows:

What are we to do with all of this? Here are a couple of thoughts. If you look at the time
series pattern, you notice that it goes through what we could call different structural
changes. There are a number of R packages to examine this structure and determine a point
where it makes more sense to start the time series for forecasting. For example, there seems
to be a discernible change in the slope of the time series in the mid-1960s. When you do this
with your data, you're throwing away what may be valuable data points, so judgment
comes into play. The implication is that if you want to totally automate your time series
models, you'll need to take this into consideration.
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You might try and transform the entire time series with log values (this doesn't work too
well with negative values) or Box-Cox. In the forecast package, you can set lambda =
"auto", in your model function. I did this and the performance didn't improve. For the
sake of example, let's try and detect structural changes and build an ARIMA model on a
selected starting point. I'll demonstrate structural change with the strucchange package,
which computationally determines changes in linear regression relationships. You can find
a full discussion and vignette on the package at this link: https:/ /cran. r-project. org/
web/packages/strucchange/ vignettes/ strucchange- intro. pdf.

I find this method useful in discussions with stakeholders as it helps them to understand
when and even why the underlying data generating process changed. Here goes:

> temp_struc <- strucchange::breakpoints(temp_ts ~ 1)

> summary(temp_struc)

   Optimal (m+1)-segment partition:

Call:
breakpoints.formula(formula = temp_ts ~ 1)

Breakpoints at observation number:
m = 1 68
m = 2 60 78
m = 3 18 60 78
m = 4 18 45 60 78
m = 5 17 31 45 60 78

Corresponding to breakdates:
m = 1 1986
m = 2 1978 1996
m = 3 1936 1978 1996
m = 4 1936 1963 1978 1996
m = 5 1935 1949 1963 1978 1996

The algorithm gave us five potential breakpoints in the time series, returning the
information as an observation number and a year. Sure enough, 1963 indicates a structural
change, but it tells us that 1978 and 1996 qualify also. Let's pursue the 1963 break as the
start of our time series for an ARIMA model:

> train_bp <- window(temp_ts, start = 1963, end = 2007)

> fit.arima2 <- forecast::auto.arima(train_bp)

> fit.arima2 %>% forecast::forecast(h = 6) %>%
    forecast::accuracy(temperature)
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                       ME      RMSE        MAE       MPE     MAPE
Training set -0.007696066 0.1034046 0.08505900  53.68130 99.93869
Test set     -0.086625082 0.1017767 0.08676477 -19.61829 19.64341
                  MASE        ACF1 Theil's U
Training set 0.7951128  0.09310454        NA
Test set     0.8110579 -0.08291170  1.057287

There you have it: much to my surprise performance, it's even worse than a naive forecast,
but at least we've covered how to implement that methodology.

With this, we've completed the building of a univariate forecast model for the surface
temperature anomalies, and now we'll move on to the next task of seeing whether CO2
levels cause these anomalies.

Examining the causality
For this chapter, this is where I think the rubber meets the road and we'll separate causality
from mere correlation—well, statistically speaking, anyway. This isn't the first time that this
technique has been applied to the problem. Triacca (2005) found no evidence to suggest
that atmospheric CO2 Granger caused the surface temperature anomalies. On the other
hand, Kodra (2010) concluded that there's a causal relationship, but put forth the caveat
that their data wasn't stationary even after a second-order differencing. While this effort
won't settle the debate, it'll hopefully inspire you to apply the methodology in your
personal endeavors. The topic at hand certainly provides an effective training ground to
demonstrate the Granger causality. 

Our plan here is to first demonstrate spurious linear regression where the residuals suffer
from autocorrelation, also known as serial correlation. Then, we'll examine two different
approaches to Granger causality. The first will be the traditional methods, where both
series are stationary. Then, we'll look at the method demonstrated by Toda and Yamamoto
(1995), which applies the methodology to the raw data or, as it's sometimes called, the
levels.

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Time Series and Causality Chapter 12

[ 276 ]

Linear regression
Let's get started with the spurious regression then, which I have seen implemented in the
real world far too often. Here we simply build a linear model and examine the results:

    > fit.lm <- lm(Temp ~ CO2, data = climate)

    > summary(fit.lm)

    Call:
    lm(formula = Temp ~ CO2, data = climate)

    Residuals:
         Min       1Q  Median      3Q     Max
    -0.36411 -0.08986 0.00011 0.09475 0.28763

    Coefficients:
                  Estimate  Std. Error  t value     Pr(>|t|)
    (Intercept) -2.430e-01   2.357e-02   -10.31   <2e-16 ***
    CO2          7.548e-05   5.047e-06    14.96   <2e-16 ***
    ---
    Signif. codes:
    0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

    Residual standard error: 0.1299 on 93 degrees of freedom
    Multiple R-squared: 0.7063, Adjusted R-squared: 0.7032
    F-statistic: 223.7 on 1 and 93 DF, p-value: < 2.2e-16

Notice how everything is significant, and we have an adjusted R-squared of 0.7. OK, they're
highly correlated but this is all meaningless as discussed by Granger and Newbold (1974).
Again, I've seen results like these presented in meetings with many people with advanced
degrees, and I had to be the bad guy and challenge the results.

We can plot the serial correlation, starting with a time series plot of the residuals, which
produce a clear pattern:

> forecast::checkresiduals(fit.lm)

  Breusch-Godfrey test for serial correlation of order up to 10

data: Residuals
LM test = 46.193, df = 10, p-value = 1.323e-06
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The output of the preceding code is as follows:

From examining the plots and the Breusch-Godfrey test, it comes as no surprise that we can
safely reject the null hypothesis of no autocorrelation. The simple way to deal with
autocorrelation is to incorporate lagged variables of the dependent time series and/or to
make all of the data stationary. We'll do that next using vector autoregression to identify
the appropriate lag structure to incorporate in our causality efforts. One of the structural
change points was 1949, so we'll start there.

Vector autoregression
We've seen in the preceding section that temperature and CO2 require a first order
difference. Another simple way to show this is with the forecast package's
ndiffs() function. It provides an output that spells out the minimum number of
differences needed to make the data stationary. In the function, you can specify which test
out of the three available ones you would like to use: Kwiatkowski, Philips, Schmidt &
Shin (KPSS), Augmented Dickey-Fuller (ADF), or Philips-Peron (PP). I'll use ADF in the
following code, which has a null hypothesis that the data isn't stationary:

> climate49 <- window(climate_ts, start = 1949)

> forecast::ndiffs(climate49[, 1], test = "adf")
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    [1] 1

> forecast::ndiffs(climate49[, 2], test = "adf")
    [1] 1

We see that both require a first-order difference to become stationary. To get started,
we'll create a difference. Then, we'll complete the traditional approach, where both series
are stationary:

> climate_diff <- diff(climate49)

It's now a matter of determining the optimal lag structure based on the information criteria
using vector autoregression. This is done with the VARselect function in the vars
package. You only need to specify the data and number of lags in the model using lag.max
= x in the function. Let's use a maximum of 12 lags:

> lag.select <- vars::VARselect(climate_diff, lag.max = 12)

> lag.select$selection
    AIC(n) HQ(n) SC(n) FPE(n)
         5     1     1      5

We called the information criteria using lag$selection. Four different criteria are
provided, including AIC, Hannan-Quinn Criterion (HQ), Schwarz-Bayes Criterion (SC),
and FPE. Note that AIC and SC are covered in Chapter 2, Linear Regression, so I won't go
over the criterion formulas or differences here. If you want to see the actual results for each
lag, you can use lag$criteria. We can see that AIC and FPE have selected lag 5 and HQ
and SC lag 1 as the optimal structure to a VAR model. It seems to make sense that the five-
year lag is the one to use. We'll create that model using the var() function. I'll let you try it
with lag 1:

> fit1 <- vars::VAR(climate_diff, p = 5)

The summary results are quite lengthy as it builds two separate models and would take up
probably two whole pages. What I provide is the abbreviated output showing the results
with temperature as the prediction:

> summary(fit1)
Residual standard error: 0.09877 on 48 degrees of freedom
Multiple R-Squared: 0.4692, Adjusted R-squared: 0.3586
F-statistic: 4.243 on 10 and 48 DF, p-value: 0.0002996

The model is significant with a resulting adjusted R-square of 0.36.
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As we did in the previous section, we should check for serial correlation. Here, the VAR
package provides the serial.test() function for multivariate autocorrelation. It offers
several different tests, but let's focus on the Portmanteau Test, and please note that the
popular Durbin-Watson test is for univariate series only. The null hypothesis is that
autocorrelations are zero and the alternative is that they aren't zero:

> vars::serial.test(fit1, type = "PT.asymptotic")

  Portmanteau Test (asymptotic)

data: Residuals of VAR object fit1
Chi-squared = 33.332, df = 44, p-value = 0.8794

With p-value at 0.8794, we don't have evidence to reject the null and can say that the
residuals aren't autocorrelated. What does the test say with 1 lag?

To do the Granger causality tests in R, you can use either the lmtest package and the
Grangertest() function or the causality() function in the vars package. I'll
demonstrate the technique using causality(). It's very easy as you just need to create two
objects, one for x causing y and one for y causing x, utilizing the fit1 object previously
created:

> x2y <- vars::causality(fit1, cause = "CO2")

> y2x <- vars::causality(fit1, cause = "Temp")

It's now just a simple matter to call the Granger test results:

> x2y$Granger

  Granger causality H0: CO2 don't Granger-cause Temp

data: VAR object fit1
F-Test = 2.7907, df1 = 5, df2 = 96, p-value = 0.02133

> y2x$Granger

  Granger causality H0: Temp don't Granger-cause CO2

data: VAR object fit1
F-Test = 0.71623, df1 = 5, df2 = 96, p-value = 0.6128
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The p-value value for CO2 differences of Granger causing temperature is 0.02133 and isn't
significant in the other direction. So what does all of this mean? The first thing we can say is
that Y doesn't cause X. As for X causing Y, we can reject the null at the 0.05 significance
level and therefore conclude that X does Granger cause Y. However, is that the relevant
conclusion here? Remember, the p-value evaluates how likely the effect is if the null
hypothesis is true. Also, remember that the test was never designed to be some binary yea
or nay. Since this study is based on observational data, I believe we can say that it's highly
probable that CO2 emissions Granger cause surface temperature anomalies. But there's a lot of
room for criticism on that conclusion. I mentioned upfront the controversy around the
quality of the data. 

However, we still need to model the original CO2 levels using the alternative Granger
causality technique. The process to find the correct number of lags is the same as before,
except we don't need to make the data stationary:

> level.select <- vars::VARselect(climate49, lag.max = 12)

> level.select$selection
AIC(n) HQ(n) SC(n) FPE(n)
    10     1     1      6

Let's try the lag 6 structure and see whether we can achieve significance, remembering to
add one extra lag to account for the integrated series. A discussion on the technique and
why it needs to be done is available at http:/ /davegiles. blogspot. de/ 2011/ 04/testing-
for-granger-causality. html:

> fit2 <- vars::VAR(climate49, p = 7)

> vars::serial.test(fit2, type = "PT.asymptotic")

  Portmanteau Test (asymptotic)

data: Residuals of VAR object fit2
Chi-squared = 32.693, df = 36, p-value = 0.6267

Now, to determine Granger causality for X causing Y, you conduct a Wald test, where the
coefficients of X and only X are 0 in the equation to predict Y, remembering not to
include the extra coefficients that account for integration in the test.

The Wald test in R is available in the aod package we've already loaded. We need to specify
the coefficients of the full model, its variance-covariance matrix, and the coefficients of the
causative variable.

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
http://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html


Time Series and Causality Chapter 12

[ 281 ]

The coefficients for Temp that we need to test in the VAR object consist of
a range of even numbers from 2 to 12, while the coefficients for CO2 are
odd from 1 to 11. Instead of using c(2, 4, 6, and so on) in our function, let's
create an object with base R's seq() function.

First, let's see how CO2 does Granger causing temperature:

> CO2terms <- seq(1, 11, 2)

> Tempterms <- seq(2, 12, 2)

We're now ready to run the wald test, described in the following code and abbreviated
output:

> aod::wald.test(
    b = coef(fit2$varresult$Temp),
    Sigma = vcov(fit2$varresult$Temp),
    Terms = c(CO2terms)
 )

$result$`chi2`
       chi2         df          P
13.48661591 6.00000000 0.03592734

How about that? We have a significant p-value so let's test the other direction causality
with the following code:

> aod::wald.test(
    b = coef(fit2$varresult$CO2),
    Sigma = vcov(fit2$varresult$CO2),
    Terms = c(Tempterms)
 )

$result$`chi2`
     chi2        df         P
4.7709016 6.0000000 0.5735146

Conversely, we can say that temperature doesn't Granger cause CO2. The last thing to
show here is how to use a vector autoregression to produce a forecast. A predict function
is available and we'll plot the forecast for 24 years:

> plot(predict(fit2, n.ahead = 24, ci = 0.95))
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The output of the preceding code is as follows:

Looking out a couple of decades hence, we see temperature anomalies getting close to 1
degree. If nothing else, I hope this has stimulated your thinking on how to apply the
technique to your own real-world problems or maybe even to examine the climate change
data in more detail. There should be a high bar when it comes to demonstrating causality,
and Granger causality is a great tool for assisting in that endeavor.
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Summary
In this chapter, the goal was to discuss how important the element of time is in the field of
machine learning and analytics, to identify the common traps when analyzing the time
series, and to demonstrate the techniques and methods to work around these traps. We
explored both the univariate and bivariate time series analysis for global temperature
anomalies and human carbon dioxide emissions. Additionally, we looked at Granger
causality to determine whether we can say, statistically speaking, that atmospheric CO2
levels cause surface temperature anomalies. We discovered that the p-values are higher
than 0.05 but less than 0.10 for Granger causality from CO2 to temperature. It does show
that Granger causality is an effective tool in investigating causality in machine learning
problems. In the next chapter, we'll shift gears and take a look at how to apply learning
methods to textual data.

Additionally, keep in mind that in time series analysis, we just skimmed the surface. I
encourage you to explore other techniques around change point detection, decomposition
of time series, nonlinear forecasting, and many others. Although not usually considered
part of the machine learning toolbox, I believe you'll find it an invaluable addition to yours.
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Text Mining

"What then is, generally speaking, the truth of history? A fable agreed upon. As it has
been very ingeniously remarked"

- Napoleon Bonaparte

The world is awash with textual data. If you Google, Bing, or Yahoo! how much of that data
is unstructured, that is, in a textual format, estimates would range from 80 to 90 percent.
The real number doesn't matter. It matters that a large proportion of the data is in text
format. The implication is that anyone seeking to find insights in that data must develop
the capability to process and analyze text.

When I first started out as a market researcher, I used to manually pore through page after
page of moderator-led focus group and interview transcripts with the hope of capturing
some qualitative insight, an aha moment if you will, and then haggle with fellow team
members over whether they had the same insight or not. Then, you would always have that
one individual in a project who would swoop in and listen to two interviews—out of the 30
or 40 on the schedule—and, alas, they had their mind made up on what was really
happening in the world. Contrast that with the techniques being used now, where an
analyst can quickly distill data into meaningful quantitative results, support qualitative
understanding, and maybe even sway the swooper.

Over the last few years, I've applied the techniques discussed here to mine physician-
patient interactions, understand FDA fears on prescription drug advertising, capture
patient concerns about rare cancer, and capture customer maintenance problems, to name
just a few. Using R and the methods in this chapter, you too can extract the powerful
information in textual data.
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The following topics will be covered in this chapter:

Text mining framework and methods
Data overview
Word frequency
Sentiment analysis
N-grams
Topic models
Classifying text
Additional quantitative analysis

Text mining framework and methods
There are many different methods to use in text mining. The goal here is to provide a basic
framework to apply to such an endeavor. This framework is not inclusive of all the possible
methods, but will cover those that are probably the most important for the vast majority of
projects that you will work on. Additionally, I will discuss the modeling methods in as
succinct and clear a manner as possible, because they can get quite complicated. Gathering
and compiling text data is a topic that could take up several chapters. One of the things I
prefer and will put forward here is the use of the tidy framework. It will allow us to use
tibbles and data frames for most of the steps, and the tidytext functions allow an easy
transition to other types of text mining structures, such as a corpus.

The first task is to put the text files into a data frame. With that created, the data
preparation can begin with the text transformation.

The following list is composed of probably some of the most common and useful
transformations for text files:

Change capital letters to lowercase
Remove numbers
Remove punctuation
Remove stop words
Remove excess whitespace characters
Word stemming
Word replacement
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With these transformations, you are creating a more compact dataset and simplify the
structure in order to facilitate relationships between the words, thereby leading to increased
understanding. However, keep in mind that not all of these transformations are necessary
all the time and judgment must be applied, or you can iterate to find the transformations
that make the most sense. 

By changing words to lowercase, you can prevent the improper counting of words. Say that
you have a count for hockey three times and Hockey once, where it is the first word in a
sentence. R will not give you a count of hockey=4, but hockey=3 and Hockey=1.

Removing punctuation also achieves the same purpose, but in some cases, punctuation is
important, especially if you want to tokenize your documents by sentences.

In removing stop words, you are getting rid of the common words that have no value; in
fact, they are detrimental to the analysis, as their frequency masks important words.
Examples of stop words are and, is, the, not, and to.

Removing whitespace makes data more compact by getting rid of things such as tabs,
paragraph breaks, double-spacing, and so on.

The stemming of words can get tricky and might add to your confusion because it deletes
word suffixes, creating the base word, or what is known as the radical. I personally am not
a big fan of stemming and the analysts I've worked with agree with that sentiment. Recall
that R would count this as two separate words. By running a stemming algorithm, the
stemmed word for the two instances would become famili. This would prevent the incorrect
count, but in some cases it can be odd to interpret and is not very visually appealing in a
word cloud for presentation purposes. In some cases, it may make sense to run your
analysis with both stemmed and unstemmed words in order to see which one facilitates
understanding.

Probably the most optional of the transformations is to replace the words. The goal of
replacement is to combine words with a similar meaning, for example, management and
leadership. You can also use it in lieu of stemming. I once examined the outcome of stemmed
and unstemmed words and concluded that I could achieve a more meaningful result by
replacing about a dozen words instead of stemming. It can be important when you have
manual data entry and different operators input data differently. For example, tech support
person one types in the system turbocharger, while tech support person two types in turbo
charger half the time, and turbo-charger the other half. All three versions are the same, so
applying a replacement function such as gsub() or grepl() will solve the problem.
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With transformations completed, one structure to create for topic modeling or classification
is either a document-term matrix (DTM) or term-document matrix (TDM). What either of
these matrices does is create a matrix of word counts for each individual document in the
matrix. A DTM would have the documents as rows and the words as columns, while in a
TDM, the reverse is true. We will be using a DTM for our example.

Topic models
Topic models are a powerful method to group documents by their main topics. Topic
models allow probabilistic modeling of term frequency occurrence in documents. The fitted
model can be used to estimate the similarity between documents, as well as between a set
of specified keywords using an additional layer of latent variables, which are referred to as
topics (Grun and Hornik, 2011). In essence, a document is assigned to a topic based on the
distribution of the words in that document, and the other documents in that topic will have
roughly the same frequency of words.

The algorithm that we will focus on is Latent Dirichlet Allocation (LDA) with Gibbs
sampling, which is probably the most commonly used sampling algorithm. In building
topic models, the number of topics must be determined before running the algorithm (k-
dimensions). If no a priori reason for the number of topics exists, then you can build several
and apply judgment and knowledge to the final selection. LDA with Gibbs sampling is
quite complicated mathematically, but my intent is to provide an introduction so that you
are at least able to describe how the algorithm learns to assign a document to a topic in
layperson terms. If you are interested in mastering the math associated with the method,
block out a couple of hours on your calendar and have a go at it. Excellent background
material is available at http:/ / www. cs. columbia. edu/ ~blei/ papers/ Blei2012. pdf.

LDA is a generative process, and so the following will iterate to a steady state:

For each document (j), there are 1 to j documents. We will randomly assign a1.
multinomial distribution (Dirichlet distribution) to the topics (k) with 1 to k
topics, for example, document A is 25 percent topic one, 25 percent topic two,
and 50 percent topic three.
Probabilistically, for each word (i), there are 1 to i words to a topic (k); for2.
example, the word mean has a probability of 0.25 for the topic statistics.
For each word (i) in document (j) and topic (k), calculate the proportion of words3.
in that document assigned to that topic; note it as the probability of topic (k) with
document (j), p(k|j), and the proportion of word (i) in topic (k) from all the
documents containing the word. Note it as the probability of word (i) with topic
(k), p(i|k).
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Resample, that is, assign w a new t based on the probability that t contains w,4.
which is based on p(k|j) times p(i|k).
Rinse and repeat; over numerous iterations, the algorithm finally converges and5.
a document is assigned a topic based on the proportion of words assigned to a
topic in that document.

The LDA that we will be doing assumes that the order of words and documents does not
matter. There has been work done to relax these assumptions in order to build models of
language generation and sequence models over time (known as dynamic topic modeling).

Other quantitative analysis
We will now shift gears to analyze text semantically based on sentences and the tagging of
words based on the parts of speech, such as noun, verb, pronoun, adjective, adverb,
preposition, singular, plural, and so on. Often, just examining the frequency and latent
topics in the text will suffice for your analysis. However, you may find occasions when a
deeper understanding of the style is required in order to compare the speakers or writers.

There are many methods to accomplish this task, but we will focus on the following five:

Polarity (sentiment analysis)
Automated readability index (complexity)
Formality
Diversity
Dispersion

Polarity is often referred to as sentiment analysis, which tells you how positive or negative
the text is. By analyzing polarity in R , it will assign a score to each word and you can
analyze the average and standard deviation of polarity by groups such as different authors,
text, or topics. Different polarity dictionaries are available and we will explore them in
more detail later. You can alter or change a dictionary according to your requirements.

The algorithm works by first tagging the words with a positive, negative, or neutral
sentiment based on the dictionary. The tagged words are then clustered based on the four
words prior and two words after a tagged word, and these clusters are tagged with what
are known as valence shifters (neutral, negator, amplifier, and de-amplifier). A series of
weights based on their number and position are applied to both the words and clusters.
This is then summed and divided by the square root of the number of words in that
sentence.
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The automated readability index is a measure of the text complexity and a reader's ability
to understand. A specific formula is used to calculate this index: 4.71(# of characters / #of
words) + 0.5(# of words / # of sentences) - 21.43.

The index produces a number, which is a rough estimate of a student's grade level to fully
comprehend. If the number is 9, then a high school freshman, aged 13 to 15, should be able
to grasp the meaning of the text.

The formality measure provides an understanding of how a text relates to the reader or
speech relates to a listener. I like to think of it as a way to understand how comfortable the
person producing the text is with the audience, or an understanding of the setting where
this communication takes place. If you want to experience formal text, attend a medical
conference or read a legal document. The informal text is said to be contextual in nature.

The formality measure is called F-Measure. This measure is calculated as follows:

Formal words (f) are nouns, adjectives, prepositions, and articles
Contextual words (c) are pronouns, verbs, adverbs, and interjections
N = sum of (f + c + conjunctions)
Formality Index = 50((sum of f - sum of c / N) + 1)

Diversity, as it relates to text mining, refers to the number of different words used in
relation to the total number of words used. This can also mean the expanse of the text
producer's vocabulary or lexicon richness. The qdap package provides five—that's right,
five—different measures of diversity: simpson, shannon, collision, bergen_parker,
and brillouin. I won't cover these five in detail but will only say that the algorithms are
used not only for communication and information science retrieval but also for biodiversity
in nature.

Finally, dispersion, or lexical dispersion, is a useful tool in order to understand how words
are spread throughout a document and serve as an excellent way to explore text and
identify patterns. The analysis is conducted by calling the specific word or words of
interest, which are then produced in a plot showing when the word or words occurred in
the text over time. As we will see, the qdap package has a built-in plotting function to
analyze the text dispersion.

We have covered a framework on text mining about how to prepare the text, count words,
and create topic models and, finally, dived deep into other lexical measures. Now, let's
apply all this and do some real-world text mining.
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Data overview
For this case study, we will take a look at the full text of State of the Union addresses. The
State of the Union is an annual message that the President provides to Congress. The
purpose is to provide an economic and diplomatic overview, as well as outline the
legislative agenda. I would characterize it as your typical political feel-good propaganda,
sprinkled with false hope and enthusiasm. I'm too old and too wise to consider it anything
else.

The data is in an R package sotu. It consists of the text and metadata for 236 addresses,
both oral and written. 

The data is technically not correct about State of the Union addresses. The
proper definition for a first-term President's address in their first year in
office is address to a joint session.

The learning goals for us are to explore work frequency, Abraham Lincoln's addresses, the
sentiment of the addresses around the time of the US Civil War, topic models for the
speeches from the time of the escalation of the Vietnam War to the present, political party
classification modeling, and finally some of the advanced speech methods applied to two
different Presidents.

Data frame creation
As per an old joke and bit of wisdom: 

"How can you tell when a politician is lying? Their lips are moving!"

If not already done, please install the following packages, and call the magrittr
and sotu libraries:

> install.packages("ggplot2")

> install.packages("ggraph")

> install.packages("igraph")

> install.packages("quanteda")

> install.packages("qdap")

> install.packages("tidytext")
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> install.packages("tidyverse")

> install.packages("sotu")

> install.packages("topicmodels")

> library(magrittr)

> library(sotu)

Since the data is located within the sotu package, we needed to call it to create the objects
of the data like this:

> data(sotu_text)

> data(sotu_meta)

It is easy to turn this into a data frame with everything we need by adding the raw text to
the metadata:

> sotu_meta$text <- sotu_text

Here are the column names. I recommend you spend a few minutes exploring this data on
your own as well:

> colnames(sotu_meta)
[1] "president" "year" "years_active" "party" "sotu_type"
[6] "text"

The text column has the data of interest in a character string. Before we start analyzing the
data, we need to tokenize the text and link it to each President. What does that mean? It
means we put one token per row per document. A token can be a character, a word, an n-
gram combination of words, or a sentence. This will set us up for applying tidy format
procedures:

> sotu_meta %>%
    tidytext::unnest_tokens(word, text) -> sotu_unnest

All we did was just tell the unnest_tokens() function to take the column text and turn it
into a column called word. The function we shall see accommodates n-grams but defaults to
words. It also automatically removes all capitalization. When we tackle n-grams, we'll set 
that to false. Here is what the new tibble created looks like:

> sotu_unnest
# A tibble: 1,965,212 x 6
   president         year  years_active party       sotu_type word
   <chr>             <int> <chr>        <chr>       <chr>     <chr>
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 1 George Washington 1790  1789-1793    Nonpartisan speech    fellow
 2 George Washington 1790  1789-1793    Nonpartisan speech    citizens
 3 George Washington 1790  1789-1793    Nonpartisan speech    of
 4 George Washington 1790  1789-1793    Nonpartisan speech    the
 5 George Washington 1790  1789-1793    Nonpartisan speech    senate
 6 George Washington 1790  1789-1793    Nonpartisan speech    and
 7 George Washington 1790  1789-1793    Nonpartisan speech    house
 8 George Washington 1790  1789-1793    Nonpartisan speech    of
 9 George Washington 1790  1789-1793    Nonpartisan speech
representatives
10 George Washington 1790  1789-1793    Nonpartisan speech    i
# ... with 1,965,202 more rows

With our data ready, let's get started. 

Word frequency
With word frequency analysis, we want to clean this data by removing the stop words,
which would just clutter our interpretation. We'll explore the top overall word frequencies,
then take a look at President Lincoln's work.

Word frequency in all addresses
To get rid of stop words in a tidy format, you can use the stop_words data frame provided
in the tidytext package. You call that tibble into the environment, then do an anti-join
by word:

> library(tidytext)

> data(stop_words)

> sotu_tidy <- sotu_unnest %>%
    dplyr::anti_join(stop_words, by = "word")

Notice that the length of the data went from 1.97 million observations down to 778,161.
Now, you can go ahead and see the top words. I don't do it in the following, but you can
put this into a data frame if you so choose: 

> sotu_tidy %>%
    dplyr::count(word, sort = TRUE)
# A tibble: 29,558 x 2
   word           n
   <chr>      <int>

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Text Mining Chapter 13

[ 293 ]

 1 government  7573
 2 congress    5759
 3 united      5102
 4 people      4219
 5 country     3564
 6 public      3413
 7 time        3138
 8 war         2961
 9 american    2853
10 world       2581
# ... with 29,548 more rows

We can pass this data to ggplot2, in this case, words that occur more than 2,500 times:

> sotu_tidy %>%
    dplyr::count(word, sort = TRUE) %>%
    dplyr::filter(n > 2500) %>%
    dplyr::mutate(word = reorder(word, n)) %>%
    ggplot2::ggplot(ggplot2::aes(word, n)) +
    ggplot2::geom_col() +
    ggplot2::xlab(NULL) +
    ggplot2::coord_flip() +
    ggthemes::theme_igray()

The output of the preceding code is as follows:
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We can look at the addresses that contain the most total words: 

> sotu_tidy %>%
    dplyr::group_by(year) %>%
    dplyr::summarise(totalWords = length(word)) %>%
    dplyr::arrange(desc(totalWords))
# A tibble: 225 x 2
    year totalWords
   <int>      <int>
 1 1981       18402
 2 1980       17553
 3 1946       12614
 4 1974       11813
 5 1979       11730
 6 1910       11178
 7 1907       10230
 8 1912       10215
 9 1911        9598
10 1899        9504
# ... with 215 more rows

How about that? The two longest speeches were given by Ronald Reagan, often called The
Great Communicator. Moving on, we'll take a look at Lincoln's top word frequency, then
create a word cloud for each of the separate addresses.

Lincoln's word frequency
In the same fashion as previously, we'll see the top 10 words Lincoln used. The filter to
apply for Abe's addresses is 1861 through 1864: 

> sotu_tidy %>%
    dplyr::filter(year > 1860 & year < 1865) %>%
    dplyr::count(word, sort = TRUE)
# A tibble: 3,562 x 2
   word           n
   <chr>      <int>
 1 congress      81
 2 united        81
 3 government    75
 4 people        70
 5 war           65
 6 country       62
 7 time          51
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 8 union         50
 9 national      49
10 public        48
# ... with 3,552 more rows

No surprise that war is high on the list with the Civil War during that time period. One way
to visualize how the addresses changed and stayed the same is to produce a word cloud for
each address. A convenient way to do that is with the qdap package. We first need to filter
out Lincoln's speeches from the tokenized data frame. Then, we produce a separate word
cloud for each year. Notice that I specify a minimum frequency of seven words per year
and specify no stemming. This produces the following four different plots:

> sotu_cloud <- sotu_tidy %>%
    dplyr::filter(year > 1860 & year < 1865)

> qdap::trans_cloud(
    text.var = sotu_cloud$word,
    grouping.var = sotu_cloud$year,
    stem = FALSE,
    min.freq = 7
 )

The output of the preceding code is as follows:
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Output Frame 2:

Output Frame 3:
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Output Frame 4:

Very similar themes throughout, but notice you have a clear focus on emancipation and
slavery in 1862 and 1863. An interesting analytical method is to drill down on a term and
put it in context, or what we can call keywords in context. However, to do that we need to
transform our data. The quanteda package has a keyword in context function kwic(), but
it requires the data be in a corpus, which demands that the text be back in one cell per
document, and not one token per row per document. The implication to us is that we need
to unnest the tidy data frame. This accomplishes that and just selects the year 1862:

> nested_1862 <- sotu_tidy %>%
    dplyr::filter(year == 1862) %>%
    dplyr::select(year, word) %>%
    tidyr::nest(word) %>%
    dplyr::mutate(
    text = purrr::map(data, unlist),
    text = purrr::map_chr(text, paste, collapse = " ")
 )

This gives us the text with stop words removed and back in one cell. To put this in a corpus
structure, the tm package is useful:

> myCorpus <- tm::Corpus(tm::VectorSource(nested_1862$text))
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For this example of keywords in context, we should look at where Lincoln discusses
emancipation. An important specification in the function is how many words to the left and
right of our keyword we want to see as the context of interest.  Here is the abbreviated
content:

> quanteda::kwic(x = myCorpus$content, pattern = "emancipation", window =
6)
 [text1, 1462] paper respectfully recall attention called compensated |
 [text1, 2076] plan mutual concessions plan adopted assumed |
 [text1, 2873] recommendation congress provide law compensating adopt |
 [text1, 2939] slave concurrence obtained assurance severally adopting |
 emancipation | nation consist territory people laws territory
 emancipation | follow article main emancipation length time
 emancipation | plan acted earnestly renewed advance plan
 emancipation | distant day constitutional terms assurance struggle

The output can be awkward to interpret at first. However, what it produces is the
document number of the corpus the text is from, so with just one text cell, all output is
text1. Then, it shows what character number our keyword starts with (1462). What we
have left is the six words prior to our keyword and the six words after it. The first line of
text would read like this: paper respectfully recall attention called compensated emancipation
nation consist territory people laws territory. That might seem confusing, but the item of
interest is the concept of compensating regions for emancipation. The full output, and
including more context words, can help get a sense of Lincoln's problems and solutions for
emancipation. As historical background, Lincoln delivered the address on December 1,
1862, and the political opposition in the Union was in an uproar over the Emancipation
Proclamation he issued two and a half months before. Lincoln had to dance a political jig, in
essence, moderating his stance by claiming that emancipation would be gradual and done
with compensation. In short, looking at keywords in context can help in deriving an
understanding for yourself and with your customers about how to interpret textual data. 

We'll now take a look at implementing sentiment analysis in a tidyverse fashion.

Sentiment analysis
"We shall nobly save, or meanly lose, the last, best hope of earth.” 

– Abraham Lincoln
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In this section, we'll take a look at the various sentiment options available in tidytext.
Then, we'll apply that to a subset of the data before, during, and after the Civil War. To get
started, let's explore the sentiments dataset that comes with tidytext:

> table(sentiments$lexicon)

   AFINN bing loughran   nrc
    2476 6788     4149 13901

The four sentiment options and researchers associated with them are as follows:

AFINN: Finn, Arup, and Nielsen
bing: Bing, Liu et al.
loughran: Loughran and McDonald
nrc: Mohammad and Turney

The AFINN sentiment categorizes words on a negative to positive scale from -5 to +5. The
bing version has a simple binary negative or positive ranking; loughran provides six
different categories including negative, positive, and such things as superfluous.
With nrc, you get five categories such as anger or trust. Here is a glance at a few words
and associated sentiment classification with nrc:

> get_sentiments("nrc")
# A tibble: 13,901 x 2
   word sentiment
   <chr> <chr>
 1 abacus      trust
 2 abandon     fear
 3 abandon     negative
 4 abandon     sadness
 5 abandoned   anger
 6 abandoned   fear
 7 abandoned   negative
 8 abandoned   sadness
 9 abandonment anger
10 abandonment fear

You see that a word can have multiple sentiment categories. Let's see whether Lincoln
expressed anger in his 1862 attempt to mollify his political opponents:

> nrc_anger <- tidytext::get_sentiments("nrc") %>%
    dplyr::filter(sentiment == "anger")

> sotu_tidy %>%
    dplyr::filter(year == 1862) %>%
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    dplyr::inner_join(nrc_anger) %>%
    dplyr::count(word, sort = TRUE)
Joining, by = "word"
# A tibble: 62 x 2
   word n
   <chr>       <int>
 1 slavery     13
 2 slave       12
 3 demand       5
 4 force        5
 5 money        5
 6 abolish      4
 7 rebellion    4
 8 cash         3
 9 deportation  3
10 fugitive     3
# ... with 52 more rows

OK, that is interesting and might be an indication of the challenge of taking qualitative
sentiment rankings developed recently and applying them to historical documents. We'll
expand the analysis now by looking at addresses from 1853 to 1872 using the bing
sentiment technique. We will build a data frame of the total positive and negative
sentiment, using that to calculate an overall sentiment score for each year:

> sentiment <- sotu_tidy %>%
    dplyr::inner_join(tidytext::get_sentiments("bing")) %>%
    dplyr::filter(year > 1852 & year <1873) %>%
    dplyr::count(president, year, sentiment) %>%
    tidyr::spread(sentiment, n, fill = 0) %>%
    dplyr::mutate(sentiment = positive - negative) %>%
    dplyr::arrange(year)
Joining, by = "word"

You can explore that on your own, but in the meantime, here is a plot of sentiment by
president and year:

> ggplot2::ggplot(sentiment, ggplot2::aes(year, sentiment, fill =
president)) +
    ggplot2::geom_col(show.legend = FALSE) +
    ggplot2::facet_wrap(~ president, ncol = 2, scales = "free_x") +
    ggthemes::theme_pander()
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The output of the preceding code is as follows:

The pre-war Presidents had negative sentiment, I guess as things fell apart. Arguably,
Buchanan was the worst President ever. Not even Jimmy Carter was as bad. It is interesting
how positive Grant is, given, the difficulties of reconstruction, having to fight a near-
guerrilla war in the south. He is as underrated a President as there is. Enough of my
historical ruminations. It is an easy task to find and portray sentiment in text data using
tidytext. Indeed, here is an example of most what words are driving positive or
negative sentiment:

> sotu_tidy %>%
    dplyr::inner_join(tidytext::get_sentiments("bing")) %>%
    dplyr::count(word, sentiment, sort = TRUE) %>%
    dplyr::ungroup()
Joining, by = "word"
# A tibble: 3,592 x 3
   word sentiment n
        <chr> <chr>    <int>
 1      peace positive 2021
 2       free positive 1306
 3   progress positive 1157
 4    support positive  961
 5 protection positive  864
 6     proper positive  840
 7  recommend positive  836
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 8       debt negative  795
 9    freedom positive  744
10     secure positive  724
# ... with 3,582 more rows

Peace is the number one positive word, despite its elusiveness, and the number one negative
word is debt. Oh well, good luck with that!

One of the things to consider in processing text is what resolutions of it help facilitate
learning. We've done just words up to this point, let's shift gears to word combinations or
n-grams.

N-grams
Looking at combinations of words in, say, bigrams or trigrams can help you understand
relationships between words. Using tidy methods again, we'll create bigrams and learn
about those relationships to extract insights from the text. I will continue with the subject of
President Lincoln as that will allow you to compare what you gain with n-grams versus just
words. Getting started is easy, as you just specify the number of words to join. Notice in the
following code that I maintain word capitalization:

> sotu_bigrams <- sotu_meta %>%
    dplyr::filter(year > 1860 & year < 1865) %>%
    tidytext::unnest_tokens(bigram, text, token = "ngrams", n = 2,
    to_lower =   FALSE)

Let's take a look at this:

> sotu_bigrams %>%
    dplyr::count(bigram, sort = TRUE)
# A tibble: 17,687 x 2
   bigram n
   <chr>         <int>
 1 of the        509
 2 to the        180
 3 in the        146
 4 by the         97
 5 for the        94
 6 have been      82
 7 United States  79
 8 and the        76
 9 has been       76
10 the United     73
# ... with 17,677 more rows
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Those pesky stop words! Fear not, as we can deal with them in short order:

> bigrams_separated <- sotu_bigrams %>%
    tidyr::separate(bigram, c("word1", "word2"), sep = " ")

> bigrams_filtered <- bigrams_separated %>%
    dplyr::filter(!word1 %in% stop_words$word) %>%
    dplyr::filter(!word2 %in% stop_words$word)

Now, it makes sense to look at Lincoln's bigrams:

> bigram_counts <- bigrams_filtered %>%
    dplyr::count(word1, word2, sort = TRUE)

> bigram_counts
# A tibble: 3,488 x 3
   word1   word2      n
   <chr>   <chr>  <int>
 1 United  States    79
 2 public  debt      11
 3 public  lands     10
 4 Great   Britain    9
 5 civil   war        8
 6 I       recommend  8
 7 naval   service    8
 8 annual  message    7
 9 foreign nations    7
10 free    colored    7
# ... with 3,478 more rows

This is interesting, I believe. I found it surprising that Great Britain was there nine times, but
on reflection realized they were a political thorn in the Union's side. I'll spare you the
details. You can create a visual representation of these word relationships via a network
graph:

> bigram_graph <- bigram_counts %>%
 dplyr::filter(n > 4) %>%
 igraph::graph_from_data_frame()

> set.seed(1861) #

> ggraph::ggraph(bigram_graph, layout = "fr") +
 ggraph::geom_edge_link() +
 ggraph::geom_node_point() +
 ggraph::geom_node_text(ggplot2::aes(label = name), vjust = 1, hjust = 1)

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Text Mining Chapter 13

[ 304 ]

The output of the preceding code is as follows:

I think it is safe to say that the use of n-grams can help you learn from text. In combination
with analysis by tokenizing words, we can start to see some patterns and themes. However,
we can take our understanding to the next level by building topic models.

Topic models
We will leave behind the 19th century and look at these recent times of trial and tribulation
(1965 through 2016). In looking at this data, I found something interesting and troubling.
Let's take a look at the 1970s:

> sotu_meta[185:191, 1:4]
# A tibble: 7 x 4
  president        year  years_active party
  <chr>            <int> <chr>        <chr>
1 Richard M. Nixon 1970  1969-1973    Republican
2 Richard M. Nixon 1971  1969-1973    Republican
3 Richard M. Nixon 1972  1969-1973    Republican
4 Richard M. Nixon 1972  1969-1973    Republican
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5 Richard M. Nixon 1974  1973-1974    Republican
6 Richard M. Nixon 1974  1973-1974    Republican
7 Gerald R.   Ford 1975  1974-1977    Republican

We see there are two 1972 and two 1974 addresses, but none for 1973. What? I went to the
Nixon Foundation website, spent about 10 minutes trying to deconflict this, and finally
threw my hands in the air and decided on implementing a quick fix. Be advised that there
are a number of these conflicts to put in order:

> sotu_meta[188, 2] <- "1972_2"

> sotu_meta[190, 2] <- "1974_2"

> sotu_meta[157, 2] <- "1945_2"

> sotu_meta[166, 2] <- "1953_2"

> sotu_meta[170, 2] <- "1956_2"

> sotu_meta[176, 2] <- "1961_2"

> sotu_meta[195, 2] <- "1978_2"

> sotu_meta[197, 2] <- "1979_2"

> sotu_meta[199, 2] <- "1980_2"

> sotu_meta[201, 2] <- "1981_2"

An email to the author of this package is in order. I won't bother with that, but feel free to
solve the issue yourself. 

With this tragedy behind us, we'll go through tokenizing and removing stop words again
for our relevant time frame:

> sotu_meta_recent <- sotu_meta %>%
    dplyr::filter(year > 1964)

> sotu_meta_recent %>%
    tidytext::unnest_tokens(word, text) -> sotu_unnest_recent

> sotu_recent <- sotu_unnest_recent %>%
    dplyr::anti_join(stop_words, by = "word")
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As discussed previously, we need to put the data into a DTM before building a model. This
is done by creating a word count grouped by year, then passing that to the cast_dtm()
function:

> sotu_recent %>%
    dplyr::group_by(year) %>%
    dplyr::count(word) -> lda_words

> sotu_dtm <- tidytext::cast_dtm(lda_words, year, word, n)

Let's get our model built. I'm going to create six different topics using the Gibbs method,
and I specified verbose. It should run 2,000 iterations:

> sotu_lda <-
 topicmodels::LDA(
 sotu_dtm,
 k = 6,
 method = "Gibbs",
 control = list(seed = 1965, verbose = 1)
 )

> sotu_lda
A LDA_Gibbs topic model with 6 topics.

The algorithm gives each topic a number. We can see what year is mapped to what topic. I
abbreviate the output since 2002:

> topicmodels::topics(sotu_lda)
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
   2    2    2    2    2    2    2    4    4    4    4    4    4    4    4

We see a clear transition between Bush and Obama from topic 2 to topic 4. Here is a table of
the count of topics:

> table(topicmodels::topics(sotu_lda))

 1 2 3  4  5 6
 8 7 5 18 14 5
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Topic 4 is the most prevalent, which is associated with Clinton's term also. This output
gives us the top five words associated with each topic:

> topicmodels::terms(sotu_lda, 5)
     Topic 1      Topic 2    Topic 3
[1,] "future"     "america"  "administration"
[2,] "tax"        "security" "congress"
[3,] "spending"   "country"  "economic"
[4,] "government" "world"    "legislation"
[5,] "economic"   "iraq"     "energy"

      Topic 4     Topic 5    Topic 6
[1,] "people"     "world"    "federal"
[2,] "american"   "people"   "programs"
[3,] "jobs"       "american" "government"
[4,] "america"    "congress" "program"
[5,] "children"   "peace"    "act"

This all makes good sense, and topic 2 is spot on for the time. If you drill down further to,
say, 10, 15, or 20 words, it is even more revealing, but I won't bore you further. What about
an application in the tidy ecosystem and a visualization? Certainly! We'll turn the model
object into a data frame first and in the process capture the per-topic-per-word probabilities
called beta:

> lda_topics <- tidytext::tidy(sotu_lda, matrix = "beta")

> ap_top_terms <- lda_topics %>%
    dplyr::group_by(topic) %>%
    dplyr::top_n(10, beta) %>%
    dplyr::ungroup() %>%
    dplyr::arrange(topic, -beta)

We can explore that data further or just plot it as follows:

> ap_top_terms %>%
    dplyr::mutate(term = reorder(term, beta)) %>%
    ggplot2::ggplot(ggplot2::aes(term, beta, fill = factor(topic))) +
    ggplot2::geom_col(show.legend = FALSE) +
    ggplot2::facet_wrap(~ topic, scales = "free") +
    ggplot2::coord_flip() +
    ggthemes::theme_economist_white()
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The output of the preceding code is as follows:

This is the top 10 words per topic based on the beta probability. Another thing we can do
is look at the probability an address is related to a topic. This is referred to as gamma in the
model and we can pull those in just like the beta:

> ap_documents <- tidytext::tidy(sotu_lda, matrix = "gamma")

We now have the probabilities of an address per topic. Let's look at the 1981 Ronald Reagan
values:

> dplyr::filter(ap_documents, document == "1981")
# A tibble: 6 x 3
  document topic gamma
  <chr>    <int> <dbl>
1 1981      1    0.286
2 1981      2    0.0163
3 1981      3    0.0923
4 1981      4    0.118
5 1981      5    0.0777
6 1981      6    0.411

Topic 1 is a close second in the topic race. If you think about it, this means that more than
six topics would help to create better separation in the probabilities. However, I like just six
topics for this chapter for the purpose of demonstration.
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Our next endeavor will consist of turning the DTM into input features for a simple
classification model on predicting the political party, because partying is what politicians
do best.

Classifying text
Our goal here is to build a classifier to predict Presidential party affiliation, either Democrat
or Republican, since 1900. We will turn the word counts per year into features, create a
DTM, create features using the term frequency-inverse document frequency (tf-idf), and
use them in our model. As you can imagine, we will have thousands of features, so we will
change how the data is prepared versus what we covered in prior sections, and also use the
text2vec package for feature creation and modeling.

Data preparation
We'll start by getting the pertinent data period. Then, we'll take a look at a table of the
labels:

> sotu_party <- sotu_meta %>%
    dplyr::filter(year > 1899)

> table(sotu_party$party)

Democratic Republican
        61         64

The class is well balanced.

A few things can help in the modeling process. It is a good idea here to remove numbers,
remove capitalization, remove stop words, stem the words, and remove punctuation. The
built-in functions from the tm package are handy for this, and we can apply it to a column
in the data frame:

> sotu_tidy_party$word <- tm::removeNumbers(sotu_tidy_party$word)

> sotu_tidy_party$word <- tm::removePunctuation(sotu_tidy_party$word)

> sotu_party$text <- tolower(sotu_party$text)

> sotu_tidy_party$word <- tm::stemDocument(sotu_tidy_party$word)

> sotu_party$text <- tm::removeWords(sotu_party$text, tm::stopwords("en"))
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Now we can go ahead and create train and test datasets using caret as before:

> set.seed(222)

> index <- caret::createDataPartition(sotu_party$party, p = 0.8, list = F)

> train <- sotu_party[index, ]

> test <- sotu_party[-index, ]

The objective now is to create a word-based tokenizer function for the training data. It is
also important to specify a document ID, which will be the column values for a year. We
will apply this function to our test data as well:

> tok_fun = word_tokenizer

> it_train = text2vec::itoken(
    train$text,
    tokenizer = tok_fun,
    ids = train$year,
    progressbar = FALSE
 )

Now the create_vocabulary() function will create a data frame of the word, its total
count, and the number of documents in which it appears:

> vocab = text2vec::create_vocabulary(it_train)

This produces data with 13,541 words. A consideration is to what extent you want to
remove sparse words, even before doing anything else. In this example, if we remove any
word that occurs less than four times, the number of words is reduced to 5,321: 

> pruned <- text2vec::prune_vocabulary(vocab, term_count_min = 4)

Before creating the DTM, you must create an object of how to map the text to the indices.
This is done with the vocab_vectorizer() function:

> vectorizer = text2vec::vocab_vectorizer(pruned)

We now create the DTM with the structure of a sparse matrix:

> dtm_train = text2vec::create_dtm(it_train, vectorizer)

> dim(dtm_train)
[1] 101 5321
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You can see that the matrix has 101 observations corresponding to each year in training
data and a column for each word. The final transformation prior to modeling is to turn the
raw counts in the matrix to tf-idf values. This acts as a type of data normalization by
identifying how important a word is in a specific document relative to its overall frequency
in all documents. The calculation is to divide the frequency of a word in a document by the
total number of words in that document (tf). Then this is multiplied by the log(number of
documents/number of documents containing word), which is the idf. Said another way, it
adjusts the frequency of a term in a document based on how rarely it is used overall.

We do this by defining the tf-idf model to use and apply that to the training data:

> tfidf = text2vec::TfIdf$new()

> dtm_train_tfidf = text2vec::fit_transform(dtm_train, tfidf)

You can apply this process to the test data in a similar fashion:

> it_test = text2vec::itoken(
 test$text,
 tokenizer = tok_fun,
 ids = test$year,
 progressbar = FALSE
 )

> dtm_test_tfidf = text2vec::create_dtm(it_test, vectorizer)

> dtm_test_tfidf = transform(dtm_test_tfidf, tfidf)

We now have our feature space created to begin classification modeling.

LASSO model
I'm going to provide limited commentary during this portion as we've done this before in
Chapter 4, Advanced Feature Selection in Linear Models. We will create our model using
LASSO and check the performance on the test data. Let's specify our x and y for the
cv.glmnet() function:

> x <- dtm_train_tfidf

> y <- as.factor(train$party)

The minimum number of folds in cross-validation with glmnet is three, which we will use
given the small number of observations:

> set.seed(123)
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> lasso <- glmnet::cv.glmnet(
 x,
 y,
 nfolds = 3,
 type.measure = "class",
 alpha = 1,
 family = "binomial"
 )

> plot(lasso)

The output of the preceding code is as follows:

Wow! All those input features and just a handful are relevant, and the area under the curve
(AUC) is around 0.75. Can that hold during validation?

> lasso_test <-
 data.frame(predict(lasso, newx = dtm_test_tfidf,
 type = 'response'), s = "lambda.1se")
> testY <- as.numeric(ifelse(test$party == "Republican", 1, 0))

> Metrics::auc(testY, lasso_test$X1)
[1] 0.8958333

It is a small dataset, observation-wise, but performance is OK. How could we improve this?
Well, you may say we could add observations from the 19th century, but the party
affiliation and political debate in that era were very different than today. You
could possibly add principal components, or try ensembles. Those are just a few ideas.
We'll transition now to looking at some other quantitative methods of interest. 
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Additional quantitative analysis
This portion of the analysis will focus on the power of the qdap package. It allows you to
compare multiple documents over a wide array of measures. Our effort will be on
comparing Teddy Roosevelt's 1908 written address and Ronald Reagan's 1982 speech. For
starters, we will need to turn the text into data frames, perform sentence splitting, and then
combine them to one data frame with a variable created that specifies the President. We
will use this as our grouping variable in the analysis. Dealing with text data, even in R, can
be tricky. The code that follows seemed to work the best, in this case, to get the data loaded
and ready for analysis. I've created two text files of the addresses that I scraped off the
internet. Help yourself to the files on GitHub at https:/ / github. com/ datameister66/
MMLR3rd.

The files are called tr.txt and reagan.txt.

We will use the readLines() function from base R, collapsing the results to eliminate
unnecessary whitespace. I also recommend putting your text encoding to ASCII, otherwise
you may run into some bizarre text that will mess up your analysis. That is done with the
iconv() function:

> tr <- paste(readLines("~/corpus/tr.txt"), collapse=" ")

> tr <- iconv(tr, "latin1", "ASCII", "")

The warning message is not an issue, as it is just telling us that the final line of text is not
the same length as the other lines in the .txt file. We now apply the qprep() function
from qdap.

This function is a wrapper for a number of other replacement functions and using it will
speed up preprocessing, but it should be used with caution if more detailed analysis is
required. The functions it passes through are as follows:

bracketX(): Applies bracket removal
replace_abbreviation(): Replaces abbreviations
replace_number(): Converts numbers to words, for example, 100 becomes one
hundred
replace_symbol(): Symbols become words, for example, @ becomes at

> prep_tr <- qdap::qprep(tr)
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The other preprocessing we should do is to replace contractions (can't to cannot); remove
stop words, in our case the top 100, and remove unwanted characters, with the exception of
periods and question marks. They will come in handy shortly:

> prep_tr <- qdap::replace_contraction(prep_tr)

> prep_tr <- qdap::rm_stopwords(prep_tr, Top100Words, separate = F)

> prep_tr <- qdap::strip(prep_tr, char.keep = c("?", ".", "!"))

Critical to this analysis is to now split it into sentences and add what will be the grouping
variable, the year of the speech. This also creates the tot variable, which stands for turn of
talk, serving as an indicator of sentence order. This is especially helpful in a situation where
you are analyzing dialogue, say in a debate or question and answer session:

> address_tr <- data.frame(speech = prep_tr)

> address_tr <- qdap::sentSplit(address_tr, "speech")

> address_tr$pres <- "TR"

Repeat the steps for the Ronald Reagan speech:

> reagan <-
paste(readLines("C:/Users/cory/Desktop/data/corpus/reagan.txt"), collapse="
")

> reagan <- iconv(reagan, "latin1", "ASCII", "")

> prep_reagan <- qdap::qprep(reagan)

> prep_reagan <- qdap::replace_contraction(prep_reagan)

> prep_reagan <- qdap::rm_stopwords(prep_reagan, Top100Words, separate = F)

> prep_reagan <- qdap::strip(prep_reagan, char.keep = c("?", ".", "!"))

> address_reagan <- data.frame(speech = prep_reagan)

> address_reagan <- qdap::sentSplit(address_reagan, "speech")

> address_reagan$pres <- "reagan"
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Concatenate the separate years into one data frame:

> sentences <- dplyr::bind_rows(address_tr, address_reagan)

One of the great things about the qdap package is that it facilitates basic text exploration, as
we did before. Let's see a plot of frequent terms:

> plot(qdap::freq_terms(sentences$speech))

The output of the preceding command is as follows:

You can create a word frequency matrix that provides the counts for each word by speech:

> wordMat <- qdap::wfm(sentences$speech, sentences$pres)

> head(wordMat[order(wordMat[, 1], wordMat[, 2],decreasing = TRUE),])
           reagan  TR
our            69 107
us             44  17
let            33  12
government     18  77
years          17  20
america        17   7
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This can also be converted into a DTM with the as.dtm() function, should you so desire.

Comprehensive word statistics are available. Here are tables of the statistics available in the
package. A complete explanation of the statistics is available under word_stats:

> ws <- qdap::word_stats(sentences$speech, sentences$pres, rm.incomplete =
T)

> ws$word.elem
    pres    n.sent  n.words n.char n.syl n.poly     wps     cps
1     TR       667    12071  80780 25862   3786  18.097 121.109
2 reagan       222     2732  16935  5421    704  12.306  76.284
               sps     psps    cpw   spw   pspw n.hapax   n.dis
1     TR    38.774    5.676   6.692 2.142 0.314    1829     639
2 reagan    24.419    3.171   6.199 1.984 0.258     815     191
         grow.rate prop.dis
1     TR     0.152    0.053
2 reagan     0.298    0.070

> ws$sent.elem
  n.state n.quest p.state p.quest
1     667       0   1.000   0.000
2     217       5   0.977   0.023

Notice that Reagan's speech was much shorter than Roosevelt's written address, with a
third of the total sentences. Also, he made use of asking questions five times as a rhetorical
device while TR did not (n.quest 5 versus n.quest 0).

To compare the polarity (sentiment scores), use the polarity() function, specifying the
text and grouping variables:

> pol = qdap::polarity(sentences$speech, sentences$pres)

> pol
    pres total.sentences total.words ave.polarity sd.polarity
stan.mean.polarity
1 reagan             222        2732        0.185       0.407
0.456
2 TR                 667       12071        0.028       0.501
0.056
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The stan.mean.polarity value represents the standardized mean polarity, which is the
average polarity divided by the standard deviation. We see that Reagan has slightly higher
sentiment than TR. This seems expected as the address has evolved from a written
document to Congress, to a televised speech. You can also plot the data. The plot produces
two charts. The first shows the polarity by sentences over time and the second shows the
distribution of the polarity:

> plot(pol)

The output of the preceding command is as follows:

We can identify the most negative sentiment sentence by creating a data frame of the pol
object, finding the sentence number, and producing it:

> pol.df <- pol$all

> which.min(pol.df$polarity)
[1] 86

> pol.df$text.var[86]
[1] "mobs frequently avenge commission crime themselves torturing death man
committing thus avenging bestial fashion bestial deed reducing themselves
level criminal."
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Now that is negative sentiment! TR was actually quoting the Governor of Alabama about
the horror of lynching. We will look at the readability index next:

> ari$Readability
    pres word.count sentence.count character.count
1 reagan       2732            222           16935
2     TR      12071            667           80780
  Automated_Readability_Index
1                    13.91929
2                    19.13838

Roosevelt's Automated Readability Index (ARI) is much higher than Reagan's ARI, a
vestige of the language of his era. TR's sentences average 18 words. Formality analysis is
next. This takes a couple of minutes to run in R, and you can overwhelm your memory if 
running it on a laptop or desktop computer. Therefore, we'll take a portion of TR's address,
run it separately, then run it for Reagan:

> tr_sentences <- dplyr::filter(sentences, pres == "TR")

> tr_sentences <- tr_sentences[1:300, ]

> qdap::formality(tr_sentences$speech)
  all word.count formality
1 all       5726     72.08

> reagan_sentences <- dplyr::filter(sentences, pres == "reagan")

> formality(reagan_sentences$speech)
  all word.count formality
1 all       2732     67.15

TR is slightly more formal than Reagan.

Now, we will look at diversity measures. For most of the measures, TR is using a more
diverse and richer lexicon than Reagan:

> diversity(sentences$speech, sentences$pres)
    pres    wc simpson shannon collision berger_parker brillouin
1 reagan  2732   0.998   6.653     5.896         0.025     6.104
2     TR 12071   0.999   7.491     6.659         0.011     7.101
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One of my favorite plots is the dispersion plot. This shows the dispersion of a word
throughout the text. Let's examine the dispersion of "peace", "government", and
"marksmanship":

> dispersion_plot(
    sentences$speech,
    rm.vars = sentences$pres,
    c("peace", "government", "marksmanship"),
    color = "black",
    bg.color = "white"
 )

The output of the preceding command is as follows:

This is quite interesting as you can visualize how much longer TR's address is, as well as
how he structured it to discuss foreign affairs later in the text. We can gain some insight
into TR's mind with his discussion on marksmanship as he was looking at Switzerland as a
shining example of how a populace could be armed and trained. You can see and
understand how text analysis can provide insight into what someone is thinking, what their
priorities are, and how they go about communicating them.

This completes our analysis of the two speeches. It provided some insight on to how the
topics and speech formats have changed over time to accommodate political necessity.
Keep in mind that this code can be adapted to text for dozens, if not hundreds, of
documents and with multiple speakers, for example, screenplays, legal proceedings,
interviews, social media, and so on. Indeed, text mining can bring quantitative order to
what has been qualitative chaos.
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Summary
In this chapter, we looked at how to address the massive volume of textual data that exists
through text mining methods. We looked at a useful framework for text mining, including
preparation, word frequency counts and visualization, and topic models using multiple
packages in the tidyverse. Included in this framework were other quantitative
techniques, such as polarity and formality, in order to provide a deeper lexical
understanding, or what one could call style, with the qdap package. We applied the
framework to the State of the Union addresses. Despite it not being practical to cover every
possible text mining technique, those discussed in this chapter should be adequate for most
problems that one might face.

In the next chapter, we are going to shift gears to reinforcement learning, where we train an
algorithm to interactive with the environment to maximize rewards and minimize losses.
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Creating a Package
"If you want something you never had, you have to do something you've never done."

– Thomas Jefferson

We are going to conclude this book by going through the process to create your own R
package. If you are doing so, I recommend you start. I've put most of the functionality of
data preparation from Chapter 1, Preparing and Understanding Data, into my own package.
I'm not planning on putting it on CRAN, nor any package for that matter, with probably
the exception of a package of American Civil War data like the Gettysburg file. So why
bother with creating a package? If you are going to create code and put it into production,
why would you not create a package with version control, examples, and other features?
Plus, with RStudio, it is easy to do. So, we will use a simple example with one small
function to show how easy it is.

Creating a new package
Before getting started, you will need to load two packages:

> install.packages("roxygen2")

> install.packages("devtools")
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You now want to open File in RStudio and select New Project, which will put you at this
point:

Select a new directory as desired, and specify R Package, as shown in the following
screenshot:
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You will now name your package – I've innovatively called this one package – and select
Create Project:

Go to your Files tab in RStudio and you should see several files populated like this:
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Notice the folder called R. That is where we will put the R functions for our package. But
first, click on Description and fill it out accordingly, and save it. Here is my version, which
will be a function to code all missing values in a dataframe to zero:

I've left imports and suggests blank. This is where you would load other packages, such as
tidyverse or caret. Now, open up the hello.R function in the R folder, and delete all of it.
The following format will work nicely:

Title: Your package title of course
Description: A brief description
Param: The parameters for that function; the arguments
Return: The values returned
Examples: Provide any examples of how to use the function
Export: Here, write the function you desire

Here is the function for our purposes, which just turns all NAs to zero:

#' @title package
#'
#' @description Turns NAs in a dataframe into zeroes
#'
#' @param dataframe
#'
#' @return dataframe
#'
#' @examples
#' dataset <- matrix(sample(c(NA, 1:5), 25, replace = TRUE), 5)
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#' df <- as.data.frame(dataset)
#' package::na2zero(df)
#'
#' @export

na2zero <- function(dataframe)
{
 dataframe[is.na(dataframe)] <- 0
 return(dataframe)
}

You will now go to Build - Configure Build Tools and you should end up here:

Click the checkmark for Generate documentation with Roxygen. Doing so will create this
popup, which you can close and hit OK. You probably want to rename your function now
from hello.R to something relevant. Now comes the moment of truth to build your
package. Do this by clicking Build - Clean and Rebuild.
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Now you can search for your package, and it should appear:

Click on it and go through the documentation:

There you have it, a useless package, but think of what you can do by packaging your own
or your favorite functions, and anyone who inherits your code will thank you.

Summary
In this final chapter, we went through the process of creating an R package, which can help
you and your team put your code into production. We created one user-defined function
for our package, but your only limit is your imagination. That concludes the primary
chapters of the book. I hope you've enjoyed it and can implement the methods in here, as
well as other methods you learn over time. Thank You!
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If you enjoyed this book, you may be interested in these other books by Packt:

R Machine Learning Projects
Dr. Sunil Kumar Chinnamgari

ISBN: 9781789807943

Explore deep neural networks and various frameworks that can be used in R
Develop a joke recommendation engine to recommend jokes that match users’
tastes
Create powerful ML models with ensembles to predict employee attrition
Build autoencoders for credit card fraud detection
Work with image recognition and convolutional neural networks 
Make predictions for casino slot machine using reinforcement learning
Implement NLP techniques for sentiment analysis and customer segmentation

 EBSCOhost - printed on 2/9/2023 7:50 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/big-data-and-business-intelligence/r-machine-learning-projects


Other Books You May Enjoy

[ 328 ]

R Deep Learning Essentials - Second Edition
Mark Hodnett, Joshua F. Wiley

ISBN: 9781788992893

Build shallow neural network prediction models
Prevent models from overfitting the data to improve generalizability
Explore techniques for finding the best hyperparameters for deep learning
models
Create NLP models using Keras and TensorFlow in R
Use deep learning for computer vision tasks
Implement deep learning tasks, such as NLP, recommendation systems, and
autoencoders
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Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!
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