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PREFACE

There is a theoretical reason to consider a Higgs boson to be a composite 
particle. Thus, scalar particles such as a pion and kaon  consist of quarks. 
In this monograph we explore the idea that a Higgs boson can be a 
composite particle and consists of quarks. In part I, the theoretical basis of 
four-fermion models is introduced. Then with the help of the path 
integration method, the dynamical mass generation is investigated in 
different four-fermion models including models with the internal 
symmetry groups SU(2), SU(3), SU(5), and with CP-violation. Ward-
Takahashi identities and Schwinger-Dyson equations are obtained. The 
local SU(2)X U(1) four-fermion model with the composite Higgs boson is 
considered. The lepton masses and masses of W, Z bosons are formed due 
to the quark condensates. The Higgs boson is considered as the collective 
state of quarks and leptons in the model suggested. New experiments can 
verify the composite nature of a Higgs boson. 

In part II the non-perturbative effects in strong interactions are considered. 
It is shown that the four-quark interaction appears naturally with the help 
of the gluon propagator in the infrared region. The mass formula for the 
sigma-meson, the Goldberger-Treiman relation and values of quark 
condensates are obtained. The four-quark model induced by instantons is 
investigated and it was proven that the current algebra is satisfied. It is 
shown that the four-quark models describe the region between the 
asymptotic freedom and quark confinement. The charge radii and 
electromagnetic polarizabilities of pions and nucleons are obtained within 
the instanton vacuum theory in good agreement with experimental data. 
Some quantum processes are considered in the framework of effective 
chiral Lagrangians. The decay of a pion into antineutrino and muon in the 
field of the electromagnetic wave is studied taking into account pion 
polarizabilities. Further developments of ideas considered may figure out 
the nature of quark confinement. 

Toronto
March 2018                        

Sergey I. Kruglov 
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2 CHAPTER 1.

1.1 Introduction

In recent years, the field theories of elementary particles
with four-fermion interactions have been of great interest.
This is due to the fact that in the four-fermion models the
internal symmetry is violated through the self-interaction
of fields. This mechanism is called dynamic symmetry
breaking (DSB). The first proof of the chiral γ5-symmetry
breaking in the four-fermion models was made indepen-
dently by Nambu, Jona-Lasinio [1], Vaks, Larkin [2], and
Arbuzov, Tavkhelidze, Faustov [3]. They started from the
Lagrangian of the form

L = −ψ̄γμ∂μψ + g0
[(
ψ̄ψ
)2 − (ψ̄γ5ψ)2] , (1.1)

where γμ are Dirac matrices, γ5 = γ1γ2γ3γ4, g0 possesses
the dimension of (mass)−2. Authors have shown that due
to the restructuring of the physical vacuum in this field
model, one-parameter group of γ5-symmetry is broken.
This is due to a condensate, which is connected with the
appearance of a non-zero vacuum average 〈ψ̄ψ〉 �= 0, and
as a result, initially massless fermions acquire a mass m =
−g0〈ψ̄ψ〉. A similar phenomenon is known to occur in the
theory of superconductivity, when due to the pairing of
electrons, as a result of the phase transition, an energy gap
appears. Such a theory in statistical physics, with degen-
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1.1. INTRODUCTION 3

eracy of the vacuum state, was developed by Bogolyubov
in 1960 (see, e.g., [4], [5]).

Models with DSB are well-known in connection with
the nature and existence of a massive scalar Higgs bo-
son. The theory of Glashow−Weinberg−Salam (GWS) [6]
- [8]), successfully predicted the gauge vector bosons W±,
Z, discovered by experiments [9] - [12], and does not give
the exact numerical values of the mass of the Higgs par-
ticle. The known Higgs procedure [13], [14] implies the
existence of the field Φ (the weak iso-doublet) of point
particles with the Lagrangian of the form

L = − (DμΦ)
+ (DμΦ) + μ2Φ+Φ− λ (Φ+Φ

)2
, (1.2)

where Dμ = ∂μ − i
(
gbaμ(x)t

a − (1/2)g′Y aμ(x)
)
, g0, g

′
0 are

constants of self-interaction of vector fields, Y is the weak
hypercharge, and the fields of real vector bosons W±

μ , Zμ,
Aμ are defined through potentials of gauge fields baμ (a =
1, 2, 3) and aμ in the following way

W±
μ =

1√
2

(
b1μ ± ib2μ

)
, Aμ =

gaμ − g′b3μ√
g2 + g′2

,

Zμ =
g′aμ + gb3μ√
g2 + g′2

. (1.3)

Scalar fields Φ also participate in the Yukawa interactions
of leptons and quarks. If the parameters μ2 and λ in La-
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4 CHAPTER 1.

grangian (1.2) are positive, there is spontaneous symmetry
breaking with the non-zero vacuum expectation value of
the scalar iso-doublet:

〈Φ〉0 =
[

0
v√
2

]
, v =

√
μ2

λ
. (1.4)

In the unitary gauge, we have

Φ(x) =

[
0

v+η(x)√
2

]
, (1.5)

and the mass of the field η(x) of the physical Higgs par-
ticle is m =

√
2μ. Since the parameter μ in Lagrangian

(1.2) is not fixed, then the mass of the Higgs field is un-
certain, and as we know, there is the main drawback of
the theory of GWS. According to current estimates the
mass of the Higgs particle should be > 60 GeV [15], [16].
Recent LHC results [17], [18] (see also [19], [20]) on the
observation of a Higgs-like particle give the mass of 125
CeV. But the existence of an unstructured scalar particle
of such a large mass can be called into a question, at least
in view of the fact that all known particles of spin 0 (π±,
π0, K, etc. mesons) have a composite quark structure.
Therefore, the development of alternative theories with
composite Higgs fields is of particular interest. Studying
various possibilities of particle mass generation, based on
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1.1. INTRODUCTION 5

DSB without the involvement of fundamental scalar fields,
remains one of the most important tasks of the field theory
of electro-weak interactions. There are several approaches
that lead to the spontaneous symmetry breaking of the
vacuum state, other than the Higgs procedure.

In one of the first of these approaches, the Schwinger
mechanism [21] is used. Schwinger showed the possibil-
ity of mass generation for the vector gauge field in two-
dimension electrodynamics by shifting the poles of the
transverse part of the photon propagator. This scheme
has been further developed in [22] - [26] by the extension
to the case of 4-dimensional space-time. In subsequent
studies [27] - [31], it was attempted to use the Schwinger
mechanism in electro-weak theory without the Higgs La-
grangian. It should be noted, however, that the proof of
the mass generation in such schemes was based on approx-
imate nonperturbative solutions of the Dyson−Schwinger
(DS) equation. A rigorous proof of the shift of the pole of
the propagators of the vector particles in such models is
still lacking.

The second approach, which leads to DSB of the vac-
uum, is based on the assumption of the composite nature
of the scalar fields, built of fermion fields. In this ap-
proach, the initial Lagrangian for the scalar Higgs particle
is absent. Instead, we introduce an additional interac-
tion of fermions, for example, by (1.1), through which the
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6 CHAPTER 1.

vacuum becomes unstable and the condensate appeases,
〈ψ̄ψ〉 �= 0, leading to a violation of the original symmetry.
Scalar (composite) fields arise in this case as collective ex-
citations of fermion fields.

Fermions, forming the scalar fields, are treated as new
particles - techniquarks. This approach is called techni-
color (TC). Interaction between techniquarks can occur
not only by self-interaction, but also through the inter-
action with technigluons, as new particles. Techniquarks
and technigluons are unobserved particles with the con-
finement radius 10−47 cm [32]. The authors of this ap-
proach are Weinberg [33] and Susskind [34]. Their model
leads to the fact that the W±- and Z-bosons become mas-
sive, however, there is no natural mechanism of a fermion
mass formation [35], [36]. Developing this direction, the
authors of [37], [38], in order to overcome this difficulty,
have introduced extended technicolor (ETC), which led to
the unification of fermions and technifermions in one mul-
tiplet and yet - to the emergence of new difficulties (see
[39] - [45]). Suffice to say that there is no evidence of the
existence of hadrons consisting of techniquarks.

Therefore, the original line of research based on the
introduction of additional four-fermion interaction of the
type (1.1) for ordinary quarks or leptons (not techniquarks),
has been further developed. Thus, in [46] - [49], a sin-
gle theory was constructed of the strong and electro-weak
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1.1. INTRODUCTION 7

interactions using the four-fermion Lagrangian which is in-
variant under a global, rather than local SU(3)c⊗SU(2)L⊗
U(1)-group. In this scheme, not only the Higgs fields were
built of fermions and anti-fermions but also gauge vector
bosonsW±

μ , Zμ, Aμ and gluons. But as we know, there are
no indications of the composite nature of the well-studied
photonic Aμ, weak intermediate W±

μ , Zμ and gluon fields.
Moreover, there are additional difficulties in the way of the
principal consideration of massless photons and gluons, as
composite vector particles [50]. The possibility of build-
ing massive composite vector fields was investigated in a
number of subsequent papers [51] - [58].

The development of schemes with composite electro-
weak and Higgs bosons, despite these difficulties, continues
in recent years.

Thus, in Novozhilov’s work [59] composite W±, Z and
Higgs fields are constructed from “pre-gluons” and “pre-
fermions” that are subject to the dynamics such as quan-
tum chromo-dynamics (QCD). The “pre-fermions” are mass-
less, and they satisfy the property of confinement. This
approach can be seen as a kind of variation of the TC
approach.

The electro-weak gauge-invariant model was consid-
ered without the Higgs field in [60], but with an additional
“Abelian” vector boson Cμ with a mass M . This uses the
ability to generate fermion masses based on solutions of
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8 CHAPTER 1.

DS equations. Neutrinos are massless in this approach,
and the intermediate bosons W±

μ , Zμ acquire the finite
masses. With some attractive features, the model still
does not seem “aesthetically better” than the standard
theory of GWS, because it does not reduce the number
of independent degrees of freedom (instead of the scalar
Higgs field, we introduce an additional vector field Cμ),
and there are the difficulties of the interpretation and the
possible existence of the field Cμ. A similar approach was
also proposed in [61].

In the paper [62] Higgs particles are constructed from
t̄, t - quarks. To implement the DSB mechanism, the four-
fermion interaction is introduced, including t-quarks, and
masses of composite Higgs scalars are obtained, mH =
2mt. It is known that the analysis of experimental data
on a large B̄0

d − B0
d - mixing and CP violation (see [63])

gives the lower bound for the t quark as follows: 78 GeV. In
the work [62] t quark mass is obtained from the solution
of an equation, mt = 84 GeV. According to the current
estimates, the mass of the t quark ismt = 174 GeV, so that
the mass of the composite Higgs particle is predicted to be
2mt = 348 GeV. In this approach, however, W -bosons are
also composite. Their mass is generated by the Schwinger
mechanism [21], mW = 80 GeV. The realism of the model
will show the further checking of the composite nature of
the W -boson and the discovery of the Higgs boson of such
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1.1. INTRODUCTION 9

mass.
A similar approach is also developed in the works [64],

[65], where the masses of W and Z bosons are generated
by condensation of t-quarks. This uses the four-fermion
interaction in the quark sector and it is shown (see [64]),
that the theory is asymptotically free, and the composite
operator ψ̄ψ has a large anomalous dimension γm = 2.
The importance was specified [64] of checking the phase
diagrams for the four-fermion schemes in the lattice ap-
proximation using computers.

There are other papers [66] - [71], which also develop
an approach that is associated with the composite nature
of the Higgs particle.

Note that in the earlier work [72] it is indicated that
the mass of the weak bosons W , Z can be obtained by the
dynamic Higgs mechanism (without fundamental scalars)
if there are heavy quarks or leptons with masses of the
order of 30 − 100 GeV. A similar result was obtained in
[23].

Four-fermion field models, along with their use in the
theory of electro-weak interactions, in recent years, are
also used in the study of QCD at its low energy limit. We
can say that a new level revives Heisenberg’s ideas, but
instead of “fore-matter,” the quark fields are introduced.

Heisenberg (see [73]) made the first attempt to use a
four-fermion model for a unified theory of elementary par-
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10 CHAPTER 1.

ticles. The underlying approach to the concept of “fore-
matter” is described by the nonlinear spinor equation. The
excited states of a nonlinear spinor field were treated with
strongly interacting particles - hadrons. This approach,
as we know, has been studied initially in the development
of the nonlinear meson theory and the theory of nuclear
forces [74].

Recently, the attention of physicists was attracted by
various nonlinear equations admitting particle-type solu-
tions - solitons. This has still not diminished interest in ob-
taining exact solutions of nonlinear spinor equations [75],
[76]. Baryons were considered as non-topological chiral
solitons in the framework of the NJL model in [77].

The approach of Volkov with colleagues [78] - [91] (see
also [92]) is based on a four-quark interaction Lagrangian
of the type (1.1), but with given properties of the inter-
nal symmetry. On the basis of that postulated and used
to describe the low-energy hadron physics Lagrangians,
many characteristics were calculated: meson masses, de-
cay widths, the scattering cross-sections and so on, which
turned out to be in good agreement with the experimen-
tal values. In addition, this approach produces the vector
dominance model, well-proven in practice.

A similar approach is used in [93] - [96], which also pos-
tulates a four-fermion Lagrangian, from which the effective
chiral Lagrangian is derived. The latter, in particular,
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1.1. INTRODUCTION 11

contains a topological Wess−Zumino [97] and Skyrme’s
terms [98], [99]. The corresponding coefficients of the La-
grangian calculated lead to the observed values, which are
in good agreement with the phenomenology of [100] - [105].
The resulting effective Lagrangian reproduces the soft-pion
theorem, the Goldberger−Treiman relation, PCAC and
other well-tested relations [106] - [108]. The properties
of dense and hot baryonic matter within the NJL model
were investigated in [109] - [118]. We note the works
[119], [120], which dealt with four-fermion Lagrangians
to describe non-leptonic kaon decays K → 2π, K → 3π
strangeness-changing |ΔS| = 1 and the change in isospin
|ΔT | = 1/2, 3/2. Along the way, however, we note that
in the theory there are still some difficulties in explaining
the increase of transitions with |ΔT | = 1/2 [121] - [125].
An approach based on the Wilson lattice action for gauge
fields and fermions in QCD is considered in [126] - [128].
When some assumptions in the low-energy physics were
made, the authors come to the contact interaction of the
four-fermion interaction with the effective Lagrangian con-
taining Wess−Zumino’s and generalized Skyrme’s terms.

The effective Lagrangian directly derived from the fun-
damental QCD Lagrangian is very important, as it is now
generally recognized that the QCD is a theory of the strong
interactions of quarks and gluons. However, as you know, a
reformulation of QCD in terms of hadrons as bound states
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of quarks possesses serious mathematical difficulties. One
reason is the impossibility of functional integration over
the gluon fields in the generating function for the Green
functions as the corresponding path integral is not Gaus-
sian because of the self-interaction of gluons.

Currently, intensive development of this field is run-
ning. In the papers [129], [130] (see also [131], [132]),
based on simplifying assumptions of QCD at low energies,
we obtain the effective Lagrangian for pseudoscalar me-
son nonet, comprising Wess−Zumino’s interaction. The
central point of this work is the consideration of the ax-
ial anomaly [133] - [148]. The integration of the chiral
anomaly using methods of differential geometry was con-
sidered in [140] - [143].

Accounting anomalies lead to violation of U1-symmetry
[144], [145], which can help to solve the “old” U1-problem
formulated by Weinberg in 1974, the great mass difference
of η(549) and η′(958) mesons (see reviews [146] - [149]).

In some other way, the chiral Lagrangian was obtained
by Andrianov and Novozhilov [150] - [154]. This Lagrangian
describes correctly the ππ-scattering [130], [150]. Impor-
tant components of the chiral Lagrangian are the term
Wess−Zumino [97] (see also [155]), which describes the de-
cay of π0 → 2γ and is associated with the Adler anomaly.

In the Karchev and Slavnov work [156] the nonlinear
chiral Lagrangian is obtained as a low-energy approxima-
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1.1. INTRODUCTION 13

tion of QCD at large Nc (Nc is the number of quark colors)
under the assumption of chiral symmetry breaking. One
of the first studies where a computational scheme has been
developed for large Nc is the work of ‘t Hooft [157].

Note also the works of [158] - [163], where using a va-
riety of mathematical techniques, the authors derive the
effective chiral Lagrangians directly from the fundamental
QCD Lagrangian.

Thus, the effective chiral Lagrangians describe well the
low-energy hadron physics and the ability to dynamically
implement the current algebra [164] - [168]. Under this
approach, the nonlinear chiral Lagrangian containing the
pion field, leads to the existence of stable soliton solu-
tions, which describe the nucleon. By the way, the chiral
Lagrangian, which leads to a stable soliton, interpreted as
a nucleon, was proposed long ago by Skyrme [98], [99].
This ideology was then developed in [169], [170] (see also
reviews [171] - [173]). Today, we know that the quan-
tum numbers of the chiral soliton determine the above
Wess−Zumino term. In this case, the baryon charge of
the nucleon is treated as a topological charge of the soli-
ton, and Δ-resonances arise here as rotational states of the
quantum soliton.

It should be noted that the Skyrme model was postu-
lated independently of the QCD, and is therefore an ap-
proximation to the true theory. Chiral Lagrangians, ob-
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14 CHAPTER 1.

tained from QCD besides Skyrme members also contain
higher derivatives of the chiral pion field. Therefore, the
observed values, calculated from a consistent theory, will,
in general, differ from the values obtained from the Skyrme
model.

In the papers [100] - [102], [174] - [185] the chiral La-
grangians of the general form are constructed having a
large number of parameters, which are then determined
from a comparison with the experimental values of the
decay widths and the scattering cross-sections of mesons.
This approach should also recognize the model, which does
not follow directly from QCD.

Instantons play a very important role in the nonper-
turbative QCD, i.e., at low energies, when not to use per-
turbation theory [186]. Instantons are associated with an
infinite number of sub-barrier transition oscillators from
one state to another and can be obtained in pure gluo-
dynamics as solutions of equations of motion in Euclidean
space-time. It was shown in papers of Shuryak [187] - [189],
Diakonov and Petrov [190] - [192] that the true vacuum of
QCD can be considered as instantons and anti-instantons
gas. This gas is in equilibrium with the average size of
instantons ρ̄ � 0.3 fm and the average distance between
the centers of instantons is R̄ � 1 fm.

The introduction of instantons leads to the challenging
problem of the origin of the gluon condensate, the forma-
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tion of which is associated with the finiteness of the ac-
tion that is functional for the instanton (anti-instanton)
and short-wavelength fluctuations of the gluon field. In-
stantons at large distances attract and repel each other
at short distances, so that the gas-phase environment is
stable [190]. When the quarks are present in the instan-
ton medium, the chiral pairs ψ̄RψL and ψ̄LψR (ψL =
1
2(1 + γ5)ψ, ψR = 1

2(1− γ5)ψ) are created. As a result, at
the finite density of the instanton gas, the chiral conden-
sate 〈ψ̄ψ〉 �= 0 will occur, which leads to the DSB.

Thus, instantons lead to the axial anomaly needed to
solve the U1-problem, and break chiral symmetry.

Note that the concept of instantons still does not pro-
vide an explanation of quark confinement, as the latter
is not associated with short- and long-wavelength fluctu-
ations. These types of fluctuations are usually taken into
account, attracting the bag model [193]. However, it is
well known that the confinement problem of the quarks is
still not solved in the framework of nonperturbative QCD.

The complicated structure of the QCD vacuum and
the vacuum fluctuations are pointed out in the Novikov,
Shifman, Vainshtein and Zakharov works [194] - [196].

In the papers [197], [198] it is shown that the inclusion
of the small size instantons leads to the quark interaction
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which is described by the Lagrangian of the form

Ldet = λdet
(
ψ̄i
Rψ

j
L

)
+ c.c., (1.6)

where ψi is the quark field of flavor i (i = 1, 2, ...N), c.c.
means the complex conjugate of the expression, λ is a con-
stant, which is related to the density of instantons.

The role of interactions (1.6) for the low-energy hadron
physics is noted in [199] - [207].

Considering only the u, d-quarks (ψ1 = u, ψ2 = d),
the Lagrangian (1.6) can be written as [208], [209]

Ldet =
λ

2

[(
ψ̄ψ
)2

+
(
ψ̄γ5ψ

)2 − (ψ̄τaψ)2 − (ψ̄γ5τaψ)2] ,
(1.7)

where τa are Pauli matrices. In (1.6), (1.7), a summation
over the color degrees of freedom of quarks (Nc = 3) is
implied.

Thus, we arrive again at the four-fermion interaction.
It is important to note that the Lagrangian Ldet in the gen-
eral case is invariant under the group SU(Nf )⊗ SU(Nf ),
but breaks the UA(1) symmetry, in contrast to the NJL-
type of Lagrangians (1.1). This is a consequence of the
axial anomaly.

It is supposed in [210] - [217] that quark flavor dynam-
ics are described at medium energies by the interaction
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Lagrangian
Lint = LNJL + Ldet, (1.8)

where

LNJL = G1

Nf−1∑
α=0

[(
ψ̄
1

2
λαψ

)2

+

(
ψ̄
1

2
λαiγ5ψ

)2
]
(1.9)

+G2

Nf−1∑
α=0

[(
ψ̄
1

2
λαγμψ

)2

+

(
ψ̄
1

2
λαiγ5γμψ

)2
]
.

Here λa are the Gell-Mann matrices acting in the color
space.

Authors of papers [210], [211] suggest that the intro-
duction of the interaction with the Lagrangian of NJL type
(1.9) is necessary to account for the exchange of heavy glu-
ons, and this interaction is expected to be dominant. In
these works, bosonization of the Lagrangian (1.8) is carried
in the general case of an arbitrary number of flavors.

Calculated on the basis of (1.8) the mass spectrum of
light mesons and some structural properties of mesons re-
ceived [210] - [218] are in good agreement with the ex-
periment. This suggests, that both, the instanton effect
(taking into account the axial anomaly of QCD) and the
four-fermion interaction (due to gluon exchange, which has
a larger symmetry group U(Nf )⊗U(Nf )) contribute to the
low-energy physics of mesons.
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The properties of hadrons were discussed in the litera-
ture, based only on the NJL Lagrangian (see [78] - [237]),
which gave good description of the low-energy physics of
mesons. Solitons arising in the NJL model (1.9) were
studied by Alkofer and Reinhardt [238] - [243]. It has
been shown that this approach approximately mimics the
Skyrme model.

There are also investigations [244] - [255], to study
models of type (1.6), (1.9) at the finite density of mat-
ter and temperatures. The chiral symmetry restoration at
a critical temperature, the density of the matter and the
external electromagnetic field were found. The results ob-
tained can be used in the study of the theory of nuclear
matter.

An important role in physics of electro-weak interac-
tions is played by weak instantons (relevant fields are W±

bosons). As shown by ‘t Hooft (see [256] and references
therein), in GWS theory, there are processes with non-
conservation of baryon and lepton charges. At energies of
15 TeV, cross-sections (due to many-fermion interactions
(lepton-quark)), due to weak instantons, can reach the ob-
served values. Now there is intensive work on the calcu-
lation of the function F (ε), which determines the depen-
dence of the total cross-sections in violation of the baryon
number (VBN) on the energy. The knowledge of this func-
tion would appreciate the value of the energy at which pro-
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cesses can be observed with the VBN on the accelerator
SSC (

√
s = 40 TeV).

Various aspects of the models with four-fermion in-
teractions are considered also in [257] - [297]. In [298]
Fukushima included the Polyakov loop in the NJL model.
In this model (PNJL) the confinement of quarks holds in
the NJL model via the Polyakov loop. The phase diagrams
of strongly interacting matter were obtained [299]-[301].
Recent studies within the PNJL model are [302]-[303].

Thus, the four-fermion interactions play an important
role in the theory of electro-weak and strong interactions
of elementary particles. Hence, in particular, the further
development of models of the NJL type is important. In
the way of learning and using the NJL model, despite the
progress and above-mentioned success, there are still many
unsolved problems.

In the area of electro-weak interactions, first of all, the
construction of such a model, while maintaining the funda-
mental property of local gauge invariance, would disclose
a mechanism of mass generation of leptons and quarks,
and intermediate vector bosons. This scheme, in contrast
to the theory of GWS should not contain as source fields,
fundamental scalar fields. This is due to natural reasons of
simplicity and a minimal number of inputs to the theory
of the fundamental fields. But here the scalar Higgs field
can also occur, but as a collective excitation of the initial
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fields of quarks and leptons.
The above brief analysis of the situation in the field

of non-perturbative QCD shows that there is an actual
derivation of the effective low-energy Lagrangian, which
would be based on the use of known solutions of the DS
equations for the propagator of the gluon fields. The proof
of the chiral symmetry breaking is very important. Of
great interest is the study of the pseudoscalar bosons in
the framework of this approach.

In addition to solving these global problems, it is obvi-
ously necessary, along with the study and calculation of the
nonperturbative properties of hadrons in the well-known
model of the instanton vacuum, to perform calculations for
specific processes on the basis of phenomenological chiral
Lagrangians by the known limitations of the application of
the concept of the instanton vacuum in the range of energy
above 600 MeV. Only within the framework of nonpertur-
bative QCD, can we calculate the following characteristics
of hadrons: form factors and polarizabilities.

The main objectives of this work are as follows:
1) to study the general properties of quantum field the-

ory, taking into account the four-fermion interaction of
different groups of internal symmetry;

2) the construction and study of the local SU(2)L ⊗
U(1)-invariant model of the electro-weak interaction with
the four-fermion link without fundamental Higgs bosons;
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3) to study the low-energy limit of QCD as a model
with four-fermion interactions, and to solve specific prob-
lems in the physics of hadrons in the framework of non-
perturbative QCD (for the calculation of the mass spec-
trum of light mesons and polarizabilities of hadrons and
the study of some of the pion decays, taking into account
their polarizabilities, in external strong electromagnetic
fields, and the consideration of the possible processes of
strong interactions involving the Wess−Zumino action).

In Chapter 2, using the method of functional inte-
gration in collective variables, the dynamic mass forma-
tion was studied in the four-fermion models with scalar-
scalar, pseudoscalar-pseudoscalar and vector-vector inter-
actions. Ward−Takahashi identities and the DS equation
for fermions and bosons Green’s functions are obtained.
The dynamic symmetry breaking and the mass spectrum
of bound states in the SU(n)⊗ U(1)-four-fermion models
with two coupling constants for n = 2, 3, 5 are investi-
gated. Using the method of the effective potential, dis-
cussed in detail, CP-odd, chiral-violating the four-fermion
model with three coupling constants is considered. It is
shown that in the one-loop approximation (mean-field) ef-
fective action has a full view of the linear σ-model. Using
the method of Gell-Mann−Levy, the axial current is found
and the performance of PCAC is demonstrated. Thus, it is
shown that the model reproduces the characteristic prop-
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erties of the non-perturbative QCD - chiral symmetry and
CP-parity violation.

Chapters 3 and 4 offered locally SU(2)L⊗U(1)-invariant
GWS-type model, where instead of the Higgs Lagrangian,
the Lagrangian of four-fermion interactions is introduced
and used. The different ways of including the four-fermion
interaction of different generations are considered. It is
shown that as a result of dynamic symmetry breaking
“top” fermions (neutrinos) of different generations remain
massless, and the “lower” fermions (leptons e, μ, τ) acquire
different masses. With the use of an expansion in loops,
the effective interaction Lagrangian of the gauge vector,
fermion (lepton and quark) and collective scalar fields in
the one-loop approximation is calculated, which is the
same form as the corresponding expression in the theory
of GWS. Mass formulas for the scalar Higgs field, to gauge
vectorW±, Z-fields are found. In this case, the scalar field
is considered as a superposition of quark-antiquark and
lepton-antilepton states. An approximate value for the
mass of the composite scalar Higgs is mH � 2mt (where
mt is a mass of t-quark).

In Chapter 5, we study the low-energy limit of QCD.
It is shown that in the model of Abelian QCD, where the
gluon propagator as a solution of the DS equation in the
infrared region is used, we have chiral symmetry breaking,
and the effective interaction is a four-quark interaction.
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This approach is compared with the notion of the QCD
vacuum as a gas of instantons and anti-instantons, which
also have the multi-quark ‘t Hooft interaction (1.6). In
this model the spectrum of masses of light mesons shows
that the pion is a pseudo-Goldstone boson. The infrared
asymptotic behavior of Green’s functions in the four-fermion
model is investigated. It is concluded that the four-quark
model can be used to describe the intermediate region be-
tween the region of asymptotic freedom and quark confine-
ment.

In Chapter 6, based on the formulation of low-energy
QCD, non-perturbative characteristics of hadrons and some
questions of strong and electro-weak interactions are stud-
ied. We calculate the electromagnetic polarizabilities of
nucleons and pions in the concept of the instanton vac-
uum. We study the effective chiral Lagrangian (ECL),
which includes as a normal part the kinetic term, and the
terms of the third-order derivatives, and as the anoma-
lous part - the Lagrangian of Wess−Zumino. The coeffi-
cients in the non-minimal terms of ECL are determined
by comparing the values of the mass and width of the A1-
meson with the known values of the experiment, resulting
in the Lagrangian which has no free parameters. Based on
ECL, interaction Lagrangians of vector and pseudoscalar
and axial-vector mesons, which allow the counting of the
cross-sections in e+e−collisions, are discussed. Also the
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pion decay is studied (π+ → μ+ + νμ), taking into consid-
eration its polarizabilities in a strong electromagnetic field
of a plane electromagnetic wave.

In the appendix, the exact solutions are obtained of
the wave equation for the pion in constant electromagnetic
fields and in the field of a plane electromagnetic wave.
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2.1 Dynamical symmetry breaking

The model with the most general four-fermion interac-
tion is introduced using the method of functional inte-
gration in collective variables. Ward−Takahashi identities
and Dyson−Schwinger equations are obtained. The finite
renormalization procedure is performed and it is shown
that the matrix elements of the interaction of fermions
with their bound states are independent of the renormal-
ization constants. The spectrum of masses in models with
different internal symmetry groups SU(n)⊗U(1) (for n =
2, 3, 5), and in models with CP-parity violation, which re-
produces the main features of the non-perturbative QCD,
is investigated. The dependencies of the fermion masses
and their bound states (collective fields) on the momen-
tum cutoff Λ are obtained, and the Λ acquires a physical
meaning. The material in this chapter is auxiliary and not
associated with realistic models. Mathematical techniques
used here and the results are the basis for the following
chapters where realistic models of the theory of electro-
weak and strong interactions are investigated.
The content of the chapter is based on the results of [304]
- [311].
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2.1.1 Collective variables and perturbation the-
ory in a nonlinear spinor model

Let us consider a model based on the Lagrangian with the
four-fermion interaction of a general type:

L = −ψ̄γμ∂μψ +
α

2

(
ψ̄ψ
)2 − β

2

(
ψ̄γμψ

)2
(2.1)

− δ

16

(
ψ̄γ[μγν]ψ

)2 − σ

2

(
ψ̄γμγ5ψ

)2 − ξ

2

(
ψ̄γ5ψ

)2
,

where α, β, δ, σ and ξ are coupling constants of the di-
mension m−2, γ[μγν] = γμγν − γνγμ. Many are considered
in the literature [257] - [269] cases and, in particular (1.1),
follow from (2.1) for certain restrictions on the constants.
Using Fierz transformations (2.1) can be transformed to
the form

L = −ψ̄γμ∂μψ+κ

2

(
ψ̄ψ
)2− ρ

2

(
ψ̄γμψ

)2−λ
2

(
ψ̄γ5ψ

)2
. (2.2)

Here κ = α+ δ + 2σ, ρ = β + σ, λ = ξ + 2σ − δ.
We will investigate the dynamic mass formation in the

model, using the method of functional integration in col-
lective variables [312].

Generating functional for the Green function

Z[η̄, η] = N0

∫
Dψ̄Dψ exp

{
i

∫
d4x

(L+ ψ̄η + η̄ψ
)}
,

(2.3)
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where η̄, η - external sources, by redefining the constant
N0, with the multiplication by the constant

∫
DϕDϕ̃DAμ exp

{
−i
∫
d4x

[
μ20
2

(
ϕ− g0ψ̄ψ

μ20

)2

+
μ

′2
0

2

(
ϕ̃− ig′0ψ̄γ5ψ

μ
′2
0

)2

+
M2

0

2

(
Aμ − ie0ψ̄γμψ

M2
0

)2]}∏
x

δ (∂μAμ) ,

is written in the form

Z[η̄, η] = N

∫
DϕDϕ̃DAμDψ̄Dψ exp

{
i

∫
d4x

[
−ψ̄γμ∂μψ

+ψ̄
(
g0ϕ+ ig′0ϕ̃γ5 + ie0Aμγμ

)
ψ − μ20

2
ϕ2 − μ

′2
0

2
ϕ̃2 (2.4)

−M
2
0

2
A2

μ + ψ̄η + η̄ψ + jϕ+ j̃ϕ̃+ jμAμ

]}∏
x

δ (∂μAμ) .

Here we introduce the collective scalar ϕ, pseudoscalar
ϕ̃ and vector Aμ neutral fields, κ = g20/μ

2
0, λ = g

′2
0 /μ

′2
0 ,

ρ = e20/M
2
0 ; g0, g

′
0, e0 are dimensionless constants, and the

constants μ0, μ
′
0 and M0 have the dimensions of the mass;
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j, j̃, jμ - external sources of collective fields, Dϕ =
∏

x dϕ.
The factor

∏
x δ (∂μAμ) in the functional integral (2.4)

takes into account the transversality of the vector field
Aμ [313].

Substituting the representation of the continuum δ-
function in the form

∏
x

δ (∂μAμ) = lim
α→0

exp

{
− i

2α

∫
d4x (∂μAμ)

2
}

(2.5)

in (2.4) and integrating over the Fermi fields ψ̄, ψ, we
obtain

Z[η̄, η, j] = lim
α→0

N

∫
DΦexp (iW0) ,

W0 =

∫
d4xd4y

{
η̄(x)S(x, y)η(y)− δ(x− y)

[
μ20
2
ϕ2+

μ
′2
0

2
ϕ̃2

(2.6)

+
M2

0

2
A2

μ+
1

2α
(∂μAμ)

2−jAΦA

]}
−iTr ln

(
1 + Ĝ0gAΦAγA

)
.

Here the notations ΦA = (Aμ, ϕ, ϕ̃), gA = (e0, g0, g
′
0),

γA = (iγμ, I, iγ5) (I is a unit 4× 4-matrix), jA = (jμ, j, j̃),
gAΦAγA = ie0Aμγμ+g0ϕ+ ig

′
0ϕ̃γ5, DΦ = DϕDϕ̃DAμ are

used. The operator Tr includes the trace in matrices and
space-time variables, and it is taken into account that the
fermion Green’s functions S(x, y) and G0(x, y) satisfy the
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respective equation(
γμ∂μ − gAΦAγA

)
S(x, y) = δ(x− y) (2.7)

in the presence of external collective fields, and the equa-
tion

γμ∂μĜ0(x, y) = −δ(x− y) (2.8)

matches the free massless fermions. The limit of α →
0 corresponds to the Lorentz gauge where the field Aμ

describes quanta with a “pure” spin 1.
As seen from (2.6), the dimensional constants μ0, μ

′
0,

M0 logged in mass terms of the Lagrangian, and the di-
mensionless constants gA: g0, g

′
0, e0 play the role of the

coupling constants of collective fields ϕ, ϕ̃, Aμ with spinors.
Thus, the functions of these constants (dimensional and
dimensionless), originally included in a single constant of
four-fermion interactions, are divided. In the one-loop ap-
proximation (mean-field), where the collective fields ϕ, ϕ̃,
Aμ are constants (ΦA = const.), the solution of (2.7) in
the momentum space is

S(p) =
−ip̂− g0ϕ+ ig′0ϕ̃γ5

p2 +m2
, (2.9)

where p̂ = pμγμ, m
2 = g20ϕ

2 + g
′2
0 ϕ̃

2. The equations of
motion for the collective fields δW0/δΦA = 0, with η =
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η̄ = j = j̃ = jμ = 0, have the form

ϕ = − ig20
4π4μ20

∫
d4p ϕ

p2 +m2
, ϕ̃ = − ig

′2
0

4π4μ
′2
0

∫
d4p ϕ̃

p2 +m2
.

(2.10)
The equation for the collective vector field Aμ has only
the trivial solution A0μ = 0. Nontrivial nonanalytic solu-
tions ϕ0 �= 0, ϕ̃0 �= 0 of equations (2.10) exist only under
conditions g0 = g′0, μ0 = μ′0, Λ2μ20 > 4π2, where Λ is a
cutoff momentum [1], [2]. If these conditions are satisfied,
fermions acquire masses m2

0 = g20(ϕ
2
0+ ϕ̃

2
0) (see (2.9)), and

a phase transition to an asymmetric phase takes place.
A similar situation is known to be the case in the theory

of superconductivity, because (2.10) with conditions g0 =
g′0, μ0 = μ′0 is similar to the equation for the energy gap
[4], [5]. Here, due to the phase transition initially massless
fermions also become massive. This massive fermion state
is energetically more favorable, since it corresponds to the
minimum of the effective potential (see [314]), [315]).

V (Φ) =
μ20
2

(
ϕ2
0 + ϕ̃2

0

)
(2.11)

+
i

(2π)4

∫
d4p ln det

[
1 + Ĝ0(p)g0 (ϕ0 + iϕ̃0γ5)

]
.

Indeed, the potential extremum conditions of (2.11)
∂V/∂ϕ0 = ∂V/∂ϕ̃0 = 0 yield gap equations (2.10) (with
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g0 = g′0, μ0 = μ′0), and the one-loop correction to the effec-
tive potential corresponding to the second term in (2.11),
after the evaluation of the determinant is negative

Vone loop =
i

8π4

∫
d4p ln

(
1 +

m2

p2

)
< 0 (2.12)

and, therefore, reduces the energy of the vacuum, which
points to the implementation of the minimum of the effec-
tive potential (2.11).

It should be noted that the condition for the constants
κ = λ (g0 = g′0, μ0 = μ′0) results in the case of the chiral
symmetric Lagrangian (see (1.1)). At the same time, the
non-zero vacuum fields ϕ0 �= 0, ϕ̃0 �= 0 violate the chiral
symmetry. Finally, we come to the typical situation of
spontaneous symmetry breaking, when the Lagrangian is
invariant under the transformations of a group symmetry,
but the ground state of the vacuum is not invariant under
these transformations.

It is also possible that choices for solving equations
(2.10) are ϕ0 �= 0, ϕ̃0 = 0, which correspond to a specific
gauge. One cannot require equality of constants κ = λ.

Expanding the field ΦA in equation (2.6) around the
static solutionsAμ(x)→ Aμ(x), ϕ(x)→ ϕ0+ϕ(x), ϕ̃(x)→
ϕ̃0 + ϕ̃(x), where ϕ0, ϕ̃0 are governed by the equations
(2.10), the expression (2.6) can be represented as a series
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of perturbation theories in powers of gA:

W0 =

∫
d4xd4y

{
η̄(x)S(x, y)η(y) + δ(x− y)jA(x)ΦA(x)

(2.13)

−1

2
ΦA(x)Δ

−1
AB(x, y)ΦB(y)

}
+

∞∑
n=3

i

n
Tr (S0gAΦAγA)

n .

Here S0 = S(Φ0) defined by expression (2.9) with ϕ = ϕ0,
ϕ̃ = ϕ̃0, g0 = g′0, μ0 = μ′0, and the propagator for the
collective fields in momentum space is given by

Δ−1AB(p) = −igAgBtr
∫

d4k

(2π)4
S0(p+ k)γAS0(k)γB

(2.14)

+δABMA +
1

α
pμpνδμAδνB,

where MA = (M0, μ0, μ0), and the tr means the trace only
in matrices. In (2.14) the summation over repeated indices
is implied. Substituting the expression (2.9) in (2.14), and
calculating the traces of the matrices, we obtain

Δ−1μν (p) = δμνM
2
0 +

1

α
pμpν

+
ie20
4π4

∫
d4q

{
δμν
[
q(q − p) +m2

0

]
+ pμqν + pνqμ − 2qμqν

}[
(q − p)2 +m2

0

]
(q2 +m2

0)
,
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Δ−155 (p) = μ20 −
ig20
4π4

∫
d4q

[
g20
(
ϕ2
0 − ϕ̃2

0

)
+ q(p− q)][

(q − p)2 +m2
0

]
(q2 +m2

0)
,

(2.15)

Δ−166 (p) = μ20 −
ig20
4π4

∫
d4q

[
g20
(
ϕ̃2
0 − ϕ2

0

)
+ q(p− q)][

(q − p)2 +m2
0

]
(q2 +m2

0)
,

Δ−15μ (p) = Δ−1μ5 (p) = Δ−16μ (p) = Δ−1μ6 (p) = 0,

Δ−156 (p) = Δ−165 (p) = −
ig20
4π4

∫
d4q2g20ϕ0ϕ̃0[

(q − p)2 +m2
0

]
(q2 +m2

0)
.

Evaluating the integrals in (2.15) using (2.10), we find

Δ−155 (p) =
(
p2 + 4g20ϕ

2
0

)(
Z−13 − g20

8π2
J1(p)

)
,

Δ−166 (p) =
(
p2 + 4g20ϕ̃

2
0

)(
Z−13 − g20

8π2
J1(p)

)
,

Δ−156 (p) = 4g20ϕ0ϕ̃0

(
Z−13 − g20

8π2
J1(p)

)
,

Δ−1μν (p) =

(
M2

0 −
Λ2 −m2

0

2

e20
4π2

)
δμν +

1

α
pμpν

(2.16)

+
2

3

e20
g20
Z−13

(
δμνp

2 − pμpν
)
− e20

4π2
Jμν(p),

Jμν(p) =
2

9
p2δμν +

1

18
pμpν +

(
δμνp

2 − pμpν
)
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×
∫ 1

0
dx 2x(1− x)ln

[
1 +

p2

m2
0

(1− x)x
]
,

J1(p) =

∫ 1

0
dx ln

[
1 +

p2

m2
0

(1− x)x
]
,

Z−13 =
g20
8π2

(
ln

Λ2

m2
0

− 1

)
.

We now introduce the renormalized quantities

Δ′55(p) = Z−13 Δ55(p), Δ′66(p) = Z−13 Δ66(p),

Δ′56(p) = Z−13 Δ56(p), g
′2
0 = g20Z3, e

′2
0 = e20Z3, (2.17)

ϕ
′2
0 = ϕ2

0Z
−1
3 , ϕ̃

′2
0 = ϕ̃2

0Z
−1
3 , A′μ = AμZ

−1/2
v ,

Δ′μν(p) = Z−1v Δμν(p), ϕ
′2 = ϕ2Z−13 , ϕ̃

′2 = ϕ̃2Z−13 ,

where Z3, Zv = (3g20/2e
2
0)Z3 are renormalization constants

of fields ϕ, ϕ̃ and Aμ. It follows from (2.16) that

Δ−155 (p
2 = −4g20ϕ2

0) = 0, Δ−166 (p
2 = −4g20ϕ̃2

0) = 0, (2.18)

and masses of collective fields ϕ, ϕ̃ are

m2
ϕ = 4g20ϕ

2
0, m2

ϕ̃
= 4g20ϕ̃

2
0. (2.19)

From (2.19) we obtain 4m2
0 = m2

ϕ + m2
ϕ̃
, where m0 is a

fermion mass. Along with the renormalization of the fields
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and coupling constants (2.19), we define the renormalized
mass of the neutral vector collective field Aμ

M2 =

[
M2

0 −
e20
4π2

Λ2 −m2
0

2

]
Zv. (2.20)

Finally, using (2.17), (2.19), from (2.16) up to terms of
orders g20/(4π

2), e20/(4π
2), determining the radiative cor-

rections, we find the Lagrangian, which is bilinear on com-
posite (collective) fields

L(2) = −1

2

[
(∂μϕ)

2 + (∂μϕ̃)
2
]
+ 4g20 (ϕ0ϕ+ ϕ̃0ϕ̃)

2

(2.21)

−1

4
F 2
μν −

1

2
M2A2

μ −
1

2a
(∂μAμ)

2 ,

where a = αZ−1v , Fμν = ∂μAν−∂νAμ. Note that the most
convenient is the gauge in which, for example, ϕ̃0 = 0,
ϕ0 �= 0. In this case, as follows from (2.21), the field ϕ̃ cor-
responds to a massless (Goldstone) particle and the field
ϕ describes a scalar particle with the mass 2m0 (an ana-
logue of the Higgs particle.) In writing (2.21) we allowed
ambiguity in the choice of the Lagrangian up to terms of
the divergence-type.

Note that in the papers [265] - [267] a model was in-
vestigated, which was a particular case of (2.2) with κ = λ
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and ρ → ∞. In this model the equivalence with quan-
tum electrodynamics was established. This occurs when a
massless vector field is identified with the photon field. In
our notation, this limiting case corresponds to the choice
of κ = λ, M2 → 0. We shall return to this subject below
in the discussion of the Ward identities.

From the Lagrangian (2.21) (or directly from the equa-
tion (2.16)), we find the expression for the renormalized
propagator of Aμ in the lowest order of the perturbation
theory

Δ′μν(p) =
1

p2 +M2

(
δμν + pμpν

a− 1

aM2 + p2

)
. (2.22)

Hence, in the limit α → 0 (a → 0), to be considered in
accordance with (2.6), we obtain the propagator for the
vector field, which behaves like O(1/p2).

So, we have renormalized single-particle Green’s func-
tions in the lowest order of the perturbation theory.

We now consider the divergence (with Λ → ∞) of the
highest (multi-particle) Green’s functions. First of all, tak-
ing into account that ΔAB(p) ∼ O(1/p2), S0(p

2) ∼ O(1/p)
at p2 → ∞ in the usual way it is possible to derive (see
[316]) a formula for the degree of divergence of the dia-
gram (the number of degrees of internal 4-momenta in the
numerator minus the number of degrees in the denomina-
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tor)

D = 4− 3

2
F −Bϕ −Bϕ̃ −BA, (2.23)

where Bϕ, Bϕ̃, BA are the numbers of external lines of
boson fields ϕ, ϕ̃, Aμ, respectively, and F is the number
of the external fermion lines of the diagrams when D < 0
integrals converge and diagrams have finite values. It is im-
portant to emphasize that the value of D does not depend
on the nature and number of internal lines of diagrams,
but only depends on the external particles. Diagrams will
converge if the integrals corresponding to any of the in-
ternal blocks are finite. Since D does not depend on the
order of perturbation theory, this model contains a finite
number of types of divergent diagrams [317]. In (2.17) we
had a renormalization of the propagators of the collective
fields, which are determined by the diagram of Figure 2.1.
According to (2.23) the three- and four-point diagrams will
diverge, represented by Fig. 2.2 and Fig. 2.3. Here the
line − − −− is the set of fields ΦA. We find from (2.13)
the vertex function in the lowest order of the perturbation
theory, corresponding to Fig. 2.2

Γ0
ABC(x, y, z) =

δ3W0

δΦA(x)δΦB(y)δΦC(z)
,
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Figure 2.1: Two-point diagram.

Γ0
ABC(x, y, z) = igAgBgCtr

[
S0(z, x)γAS0(x, y)γBS0(y, z)γC

(2.24)

+S0(z, y)γBS0(y, x)γAS0(x, z)γC

]
.

Going into the momentum space

Γ0
ABC(x, y, z) =

∫
d4pd4q

(2π)8
Γ0
ABC(p, q)e

ip(y−x)eiq(x−z),

(2.25)
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Figure 2.2: Three-point diagram.

from (2.24), we obtain the following expression

Γ0
ABC(p, q) = igAgBgCtr

{∫
d4k

(2π)4

[
S0(k + p− q)γA

(2.26)

×S0(k)γBS0(k+p)+S0(k−p)γBS0(k)γAS0(k+q−p)
]
γC

}
.

Taking into account the linear divergence of the integrals
(2.26), we can regularize the vertex function (2.26) as fol-
lows:

Γ0
ABC(p, q) = λABCZ

−1/2
A Z

−1/2
B Z

−1/2
C

+igAgBgCregΓ
0
ABC(p, q), (2.27)
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Figure 2.3: Four-point diagram.

where

Γ0
ABC(0, 0) = λABCZ

−1/2
A Z

−1/2
B Z

−1/2
C ,

ZB =

{
Zv, B = μ
Z3, B = 5, 6

,

so that the renormalized vertex function Γ
′
ABC will be de-

termined by the relation

Γ0′
ABC = Γ0

ABCZ
1/2
A Z

1/2
B Z

1/2
C . (2.28)

Using (2.26), we can calculate the values of λABC in (2.27).
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Similarly (see [259]), the four-point Green’s function,
which is described by the diagrams in Fig. 2.3, is regular-
ized.

By definition we have

Γ0
ABCD(x, y, z, t) =

δ4W0

δΦA(x)δΦB(y)δΦC(z)δΦD(t)
, (2.29)

and in the momentum space it is

Γ0
ABCD(k1, k2, k3) = igAgBgCgDtr

{∫
d4p

(2π)4

×
{
S0(p)γDS0(p+ k2)

[
γCS0(p+ k2 − k3)

×γBS0(p−k1)γA+γCS0(p+k2−k3)γAS0(p+k1+k2−k3)γB
+γBS0(p− k1 + k3)γCS0(p− k1)γA + γAS0(p+ k1 + k2)γC

(2.30)
×S0(p+k1+k2−k3)γB+γAS0(p+k1+k2)γBS0(p+k3)γC

+γBS0(p− k1 + k3)γAS0(p+ k3)γC

]}}
,

where

Γ0
ABCD(x, y, z, t) =

∫
d4kd4qd4p

(2π)12
Γ0
ABCD(k, q, p)

× exp [ik(x− y) + iq(t− y) + ip(y − z)] .
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Note that for the field Aμ, the Furry theorem holds: the
total matrix element corresponding to the diagrams with
closed fermion loops with an odd number of external vector
lines is zero.

In contrast to renormalizable theories, in this model
the regularization parameter Λ cannot be removed from
the equations (2.10), which define the mass spectrum. There-
fore, one should speak of the finite renormalization, be-
cause, generally speaking, all diagrams are finite by the
finiteness of Λ.
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2.1.2 The Ward−Takahashi identities
and Dyson−Schwinger equations

We now derive the Ward−Takahashi identities and the DS
equation for the total propagators and vertex functions.
We introduce in the usual way [314] - [318] the generating
functional of connected Green’s functions

W [η̄, η, j] = −ilnZ[η̄, η, j]. (2.31)

To uniquely determine Green’s functions we need to go into
the Euclidean space-time and to return to the Minkowski
space after the functional integration [319]. We will for-
mally work in the Minkowski space, suggesting the need
for this procedure.

We use the following definitions of [315]

〈ΦA〉 = δW [J ]

δjA(x)
, 〈ψ(x)〉 = δW [J ]

δη̄(x)
, 〈ψ̄(x)〉 = δW [J ]

δη(x)
,

(2.32)

δΓ[Φ]

δ〈ΦA(x)〉 = −jA(x),
δΓ[Φ]

δ〈ψ(x)〉 = −η̄(x),
δΓ[Φ]

δ〈ψ̄(x)〉 = −η(x),

where

Γ[Φ] =W [J ]−
∫
d4x

(
jA〈ΦA〉+ η̄〈ψ〉+ ψ̄〈η〉)
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is the effective action. The generating functional (2.31)
(with g0 = g′0, μ0 = μ′0, see (2.4)), is invariant under γ5-
transformations of the sources

η′ = e−iαγ5η, η̄′ = η̄e−iαγ5 ,

(2.33)

j′ = j cos 2α+ j̃ sin 2α, j̃′ = −j sin 2α+ j̃ cos 2α,

which is easily verified by a change of variables

ψ′ = eiαγ5ψ, ψ̄′ = ψ̄eiαγ5 ,

(2.34)

ϕ′ = ϕ cos 2α+ ϕ̃ sin 2α, ϕ̃′ = −ϕ sin 2α+ ϕ̃ cos 2α.

Given this, the condition of independence of the generating
functional of the parameters of the transformations α is
dW/dα = 0, we find∫

d4x

{
δW [J ]

δη′(x)
δη′(x)
δα

+
δW [J ]

δη̄′(x)
δη̄′(x)
δα

(2.35)

+
δW [J ]

δj′(x)
δj′(x)
δα

+
δW [J ]

δj̃′(x)
δj̃′(x)
δα

}
= 0,

where J = (jA, η̄, η).
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From (2.35) with (2.34) and definitions (2.32), by tak-
ing into account η = η̄ = 0, we obtain theWard−Takahashi
identity∫

d4x

{
〈ϕ(x)〉 δΓ[Φ]

δ〈ϕ̃(x)〉 − 〈ϕ̃(x)〉
δΓ[Φ]

δ〈ϕ(x)〉
}
= 0. (2.36)

A similar derivation was used in the σ-model [319]. Taking
the functional derivative of the average fields 〈ϕ〉, 〈ϕ̃〉 and
going to the momentum space, from (2.36) we obtain the
relation between the propagators and vertex functions

Δ−166 (x, y)−Δ−155 (x, y) =

∫
d4z

{
〈ϕ(z)〉Γ566(x, z, y)−〈ϕ̃(z)〉

×Γ556(x, z, y)

}
=

∫
d4z

{
〈ϕ(z)〉Γ665(x, z, y)

−〈ϕ̃(z)〉Γ655(x, z, y)

}
,

(2.37)

Δ−156 (x, y)+Δ−165 (x, y) =

∫
d4z

{
〈ϕ̃(z)〉Γ656(x, z, y)−〈ϕ(z)〉

×Γ666(x, z, y)

}
=

∫
d4z

{
〈ϕ(z)〉Γ565(x, z, y)

−〈ϕ̃(z)〉Γ555(x, z, y)

}
,
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where

Δ−1AB(x, y) = −
δ2Γ[Φ]

δ〈ΦA(x)〉δ〈ΦB(y)〉 ,

ΓABC(x, y, z) =
δ3Γ[Φ]

δ〈ΦA(x)〉δ〈ΦB(y)〉δ〈ΦC(z)〉 .
Equations (2.37) are the exact relations for the full Green
functions. Hence it is easy to conclude that the validity
of relations analogous to (2.37) holds, and for any n-loop
approximation if we use an expansion in loops and note
that this expansion preserves the symmetry properties of
the generating functional. In particular, in the one-loop
approximation, where 〈ΦA(x)〉 = ΦA is the constant and
vertex functions are given by (2.24), (2.26), and (2.37), we
obtain in the momentum space

Δ−166 (p)−Δ−155 (p) = ϕ0Γ
0
566(0, p)− ϕ̃0Γ

0
556(0, p)

= ϕ0Γ
0
665(0, p)− ϕ̃0Γ

0
655(0, p),

(2.38)

Δ−156 (p) + Δ−165 (p) = ϕ̃0Γ
0
656(0, p)− ϕ0Γ

0
666(0, p)

= ϕ0Γ
0
565(0, p)− ϕ̃0Γ

0
555(0, p).

From equation (2.24) by taking into consideration (2.9),
after the calculations, we find the following vertex func-
tions (for A,B,C = 5, 6)

Γ0
555(p, q) =

ig40ϕ0

4π4

∫
d4k

F

{
1

R

[
g20

(
3ϕ̃2

0 − ϕ2
0

)
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+2pk − pq + 3k2 − 4kq + q2
]

+
1

H

[
g20

(
3ϕ̃2

0 − ϕ2
0

)
− 2pk − 2kq + pq + 3k2

]}
,

Γ0
655(p, q) =

ig40ϕ̃0

4π4

∫
d4k

F

{
1

R

[
g20

(
ϕ̃2
0 − 3ϕ2

0

)
−2qk − pq + k2 + q2

]
+

1

H

[
g20

(
ϕ̃2
0 − 3ϕ2

0

)
− pq + k2

]}
,

Γ0
666(p, q) =

ig40ϕ̃0

4π4

∫
d4k

F

{
1

R

[
g20

(
3ϕ2

0 − ϕ̃2
0

)
+2pk − pq + 3k2 − 4kq + q2

]
+

1

H

[
g20

(
3ϕ2

0 − ϕ̃2
0

)
− 2pk − 2kq + pq + 3k2

]}
,

Γ0
566(p, q) =

ig40ϕ0

4π4

∫
d4k

F

{
1

R

[
g20

(
ϕ2
0 − 3ϕ̃2

0

)
−2qk − pq + k2 + q2

]
+

1

H

[
g20

(
ϕ2
0 − 3ϕ̃2

0

)
− pq + k2

]}
,

(2.39)
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Γ0
656(p, q) =

ig40ϕ0

4π4

∫
d4k

F

{
1

R

[
g20

(
ϕ2
0 − 3ϕ̃2

0

)
+ pq + k2 − q2

]
+

1

H

[
g20

(
ϕ2
0 − 3ϕ̃2

0

)
− 2qk + pq + k2

]}
,

Γ0
556(p, q) =

ig40ϕ0

4π4

∫
d4k

F

{
1

R

[
g20

(
ϕ̃2
0 − 3ϕ2

0

)
−pq + k2 + q2 + 2pk − 2kq

]

+
1

H

[
g20

(
ϕ̃2
0 − 3ϕ2

0

)
+ pq + k2 − 2kp

]}
,

Γ0
665(p, q) =

ig40ϕ0

4π4

∫
d4k

F

{
1

R

[
g20

(
ϕ2
0 − 3ϕ̃2

0

)
+2pk + (k − q)2 − qp

]

+
1

H

[
g20

(
ϕ2
0 − 3ϕ̃2

0

)
− 2pk + pq + k2

]}
,

Γ0
565(p, q) =

ig40ϕ̃0

4π4

∫
d4k

F

{
1

R

[
g20

(
ϕ̃2
0 − 3ϕ2

0

)
+pq + k2 − q2

]

+
1

H

[
g20

(
ϕ̃2
0 − 3ϕ2

0

)
+ pq + k2 − 2kq

]}
,
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where the notations F = [(k − q)2 +m2
0](k

2 +m2
0),

R = (p+ k− q)2 +m2
0, H = (k− p)2 +m2

0 are introduced.

Using (2.16) and (2.39), it is easy to verify that the
naive Ward−Takahashi identities (2.38) for the unrenor-
malized quantities are satisfied. We illustrate the renor-
malization of the vertex functions in the example of the
quantities in (2.38). Putting in the expression (2.39) p = 0,
and integrating, using the notation (2.16), we obtain

Γ0
566(0, q) = Γ0

665(0, q) = −4g20ϕ0Z
−1
3 +

g40ϕ0

2π2
J1(q)

−g60ϕ0ϕ̃
2
0J2(q),

(2.40)

Γ0
556(0, q) = Γ0

655(0, q) = −4g20ϕ̃0Z
−1
3 +

g40ϕ̃0

2π2
J1(q)

−g60ϕ2
0ϕ̃0J2(q),

where

J2(q) = i

∫
d4k

π4

[
1

[(k − q)2 +m2
0]
2(k2 +m2

0)

+
1

[(k − q)2 +m2
0](k

2 +m2
0)

2

]
is a finite integral.
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By taking into account (2.17) and (2.28), we see that
the Ward−Takahashi identities (2.38) for the renormalized
quantities are satisfied.

We now derive the Ward−Takahashi identities con-
necting the vertex function

Γμ(z, x, y) =
δ〈S(x, y)〉−1
e0δ〈Aμ(z)〉

(
〈Aμ(z)〉 = δW [J ]

δjμ(z)

)
,

(2.41)
with the complete reverse fermion propagator 〈S(x, y)〉−1,
where

〈S(x, y)〉 = δ2W [J ]

δη̄(x)δη(y)
.

To do this, we represent (2.41) in the form

Γμ(z, x, ξ) = −
∫
d4yd4t〈S(x, y)〉−1 δ〈S(y, t)〉

e0δ〈Aμ(z)〉〈S(t, ξ)〉
−1.

(2.42)
Taking into account the equation of motion for the field
Aμ(x)

δW0

δAμ(x)
= 0 (2.43)

and δ〈Aμ(x)〉/δAν(y) = δμνδ(x−y), we get the equality

δ〈S(x, t)〉
e0δ〈Aμ(z)〉 =

∫
DΦS(x, z)iγμS(z, t) exp(iW0)∫

DΦexp(iW0)
. (2.44)
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Differentiating (2.44) by zμ, we have

∂

∂zμ

δ〈S(y, t)〉
e0δ〈Aμ(z)〉 = i (〈S(y, z)〉δ(z − t)− 〈S(z, t)〉δ(y − z)) .

(2.45)
Differentiating (2.42) by zμ and using (2.45), we obtain
the Ward−Takahashi identity

∂Γμ(z, x, y)

∂zμ
= i
[
〈S(x, z)〉−1δ(z − y)− 〈S(z, y)〉−1δ(x− z)

]
.

(2.46)
Passing in (2.46) into momentum space according to for-
mula (2.25), we find(

p′μ − pμ
)
Γμ(p, p

′) = 〈S(p)〉−1 − 〈S(p′)〉−1. (2.47)

We now obtain the DS equations in the model. First of
all, the generating functional (2.31) in the Minkowski space
reads in the form

W [η, η, j] = −iεln
∫
DΦexp

(
iW0

ε

)
, (2.48)

conveniently for the subsequent expansion of the loops.
The expansion in the input parameter ε, which is assumed
to be 1 at the end of the calculations [319], corresponds
precisely to the expansion in loops.
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Now, using the definitions (2.35), (2.48), (2.6), and
(2.7), we can derive the following DS equation(

γμ∂μ − gA〈ΦA(x)〉γA + iεgAγA
δ

δjA

)
〈ψ(x)〉 = η(x).

(2.49)
Then taking the functional derivative δ/δη of both sides of
(2.49) and assuming η = η̄ = 0, we obtain the DS equation
for the one-particle Green function(
γμ∂μ − gA〈ΦA(x)〉γA + iεgAγA

δ

δjA

)
〈S(x, y)〉 = δ(x−y).

(2.50)
Similarly, from (2.49) we can obtain equations for the
many-particle Green function.

Starting from (2.50) and using the definitions

ΔAB(x, y) =
δ〈ΦA(x)〉
δjB(y)

, ΓA(z, x, y) =
δ〈S(x, y)〉−1
gAδ〈ΦA(z)〉 ,

(2.51)
we arrive at the integral form of DS equations

〈S(x, y)〉−1 − (γμ∂μ − gA〈ΦA(x)〉γA) δ(x− y) = Σ(x, y),
(2.52)

where

Σ(x, y) = −εg2AγA
∫
d4td4z〈S(x, t)〉ΔAB(x, z)ΓB(z, t, y)
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is the mass operator.
The equations of motion for the collective fields 〈Φ(x)〉

follow from the condition δW0/δΦA = 0 (see (2.48) and
(2.6)):

M2
A〈ΦA(x)〉 = jA + igATrγA〈S(x, x)〉. (2.53)

If we now consider that δjA(x)/δ〈ΦB(y)〉 = Δ−1AB(x, y),
and making use of the definition (2.51) and the equality

δ〈S(x, x)〉
δ〈ΦA(y)〉 = −gA

∫
d4zd4t〈S(x, t)〉ΓA(y, t, z)〈S(z, x)〉,

from (2.53), we find that

M2
AδABδ(x− y) = Δ−1AB(x, y)

(2.54)

−ig2AtrγA
∫
d4zd4t〈S(x, t)〉ΓB(y, t, z)〈S(z, x)〉.

From the definitions (2.51), we obtain an expression for
the vertex function

ΓA(z, x, y) = −γAδ(x− y)δ(x− z)− δΣ(x, y)

gAδ〈ΦA(z)〉 . (2.55)

Similarly, defining the following vertex functions

ΓABC(z, x, y) = −δΔ
−1
BC(x, y)

δ〈ΦA(z)〉 ,

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.1. DYNAMICAL SYMMETRY BREAKING 55

(2.56)

ΓABCD(t, z, x, y) = − δ2Δ−1CD(x, y)

δ〈ΦA(t)〉δ〈ΦB(z)〉 .

From (2.54), in particular, it follows, in view of the Ward
−Takahashi identities (2.46), that

∂Δ−1μν (x, y)

∂yν
=M2

0

∂δ(x− y)
∂yμ

, (2.57)

i.e. the inverse propagator for the collective fields Δ−1μν

does not satisfy the transversality, which is associated with
a massive field Aμ. At the same time, M0 = 0, Δ−1μν as it
should be, satisfies the transversality condition, which is
consistent with other authors’ results [265] - [267].

Consider now the renormalization. Going to the mo-
mentum space, from (2.52), (2.54) with (2.25), we obtain

〈S(p)〉−1 = ip̂− gA〈ΦA〉γA − Σ(p),

Σ(p) = iεγA

∫
d4k

(2π)4
〈S(p− k)〉ΔAB(k)ΓB(p− k, p),

(2.58)

Δ−1AB(p) =M2
AδAB + itrγA

×
∫

d4k

(2π)4
〈S(p+ k)〉ΓB(p+ k, k)〈S(k)〉.
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The renormalization procedure, based on DS equations
(2.54) and (2.58) and relations (2.56), which is not asso-
ciated with the perturbation theory, is carried out in the
original model similar to the case of the scalar-scalar inter-
action considered in [259]. In this case, the basic relations
in the momentum space will take the form

Δ′AB(p) = ΔAB(p)Z
−1
A , Γ′A(p, q) = ΓA(p, q)Z1,

ψ′ = ψZ
−1/2
2 , 〈S(p)〉′ = 〈S(p)〉Z−12 ,

〈ΦA〉′ = 〈ΦA〉Z−1/2A , g
′2
A = g2AZA

(
Z2

Z1

)2

, (2.59)

Δ−1AB(0) =M2
AδABZ

−1
A , 〈S(0)〉−1 = mZ−12 .

Similar relations can be written for the three- and four-
vertex functions.

We now recognize that the renormalized matrix el-
ement corresponding to n-vertex diagrams involving m
vector-fermion vertices can be schematically written as

M∼ em0 g
n−m
0

∫
(ΓA)

n〈S〉FiΔBA
i ΔBϕ

i ψFi〈A〉BA
e 〈ϕ〉Bϕ

e ψFe ,

(2.60)
where Fi is the number of internal fermion lines, Fe - exter-
nal fermion lines, BA

i - internal vector lines, Bϕ
e - external

scalar and pseudoscalar lines, BA
e - external vector lines,

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.1. DYNAMICAL SYMMETRY BREAKING 57

Bϕ
i - internal scalar and pseudoscalar lines. Then sub-

stituting in (2.60) the renormalized quantities (2.59) and
taking into account that n = Fi+(1/2)Fe, m = BA

e +2BA
i ,

n−m = Bϕ
e + 2Bϕ

i , we find a regularized matrix element

MR ∼ (e′0)
m(g′0)

n−m
∫
(Γ′A)

n(〈S〉′)Fi(Δ′)B
A
i (Δ′)B

ϕ
i

×(ψ′)Fi(〈A〉′)BA
e (〈ϕ〉′)Bϕ

e (ψ′)Fe , (2.61)

Hence one can see that the matrix element of the process
does not contain any of the renormalization constants and
depends only on the renormalized quantities. It should
be noted here that the renormalization procedure is per-
formed just as well as in quantum electrodynamics. This
has been possible due to the dependence of the propaga-
tors of the collective scalar and vector fields on the momen-
tum: ΔAB(p) ∼ 1/p2 (see (2.22)). Therefore, we can con-
clude that in this model the renormalization of the charge,
fermion masses and collective fields leads to the elimina-
tion of their dependence on the cutoff momentum in all
orders of perturbation theory. As noted above, the mo-
mentum cutoff Λ is present in the theory, and possesses
the physical meaning, as it is included in the solution of
the gap equation.
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2.1.3 Four-fermion interaction with
the violation of CP-parity

It is easy to see that Lagrangian (2.1), which was inves-
tigated in the preceding sections, is invariant under CP -
transformations. It is known, however, that a realistic the-
ory of electro-weak interactions is permitting the violation
of CP -parity, and in the theory of strong interactions CP -
parity is violated by the topological structure of the QCD
vacuum (with a very small parameter of the violation).

Therefore, it is interesting to generalize the Lagrangian
(2.1), supplemented by a four-fermion term, violating the
conservation of CP -parity. Consider a nonlinear fermion
model in four-dimensional space-time with the Lagrangian
of the form

L = −ψ̄γμ∂μψ+
κ

2

(
ψ̄ψ
)2 − λ

2

(
ψ̄γ5ψ

)2
+ i

γ

2

(
ψ̄ψ
) (
ψ̄γ5ψ

)
.

(2.62)
It contains an addition, compared to (2.2), the last term,
which is the P - and T -odd, and, therefore, results in a
strong violation of CP -parity, as the θ-term in QCD. At
the same time here the four-fermion vector-vector interac-
tion, contained in (2.2), is not taken into account.

We note that the model in two-dimensional space-time
with a structure similar to the nonlinearity in the La-
grangian was considered in [321].
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We will investigate the model using the effective po-
tential discussed in the previous sections. First, let us di-
agonalize the quadratic form in the interaction Lagrangian
(2.62):

κ

2
J2
0 +

λ

2
J2
1 +

γ

2
J0J1 =

κ′

2
Ĵ2
0 +

λ′

2
Ĵ2
1 ,

Ĵ0 = J0 cosϑ− J1 sinϑ, Ĵ1 = J0 sinϑ+ J1 cosϑ, (2.63)

κ′ =
1

2
(κ+ λ) +

1

2

√
(κ− λ)2 + γ2,

λ′ =
1

2
(κ+ λ)− 1

2

√
(κ− λ)2 + γ2,

where J0 = ψ̄ψ, J1 = iψ̄γ5ψ, tan 2ϑ = γ/(λ−κ). Then, by
introducing collective fields ϕ, ϕ̃ and using the notations

Φ = g0ϕ cosϑ+ g̃0ϕ̃ sinϑ, Φ̃ = −g0ϕ sinϑ+ g̃0ϕ̃ cosϑ,
(2.64)

for the generating functional (see (2.3)) after the path in-
tegrating over the fields ψ̄, ψ, we get

Z[η̄, η] = N

∫
DϕDϕ̃ det

(
−γμ∂μ +Φ+ iΦ̃γ5

)
(2.65)

× exp

{
i

∫
d4xd4y

[
−1

2

(
μ20ϕ

2 + μ̃20ϕ̃
2
)
δ(x− y)

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



60 CHAPTER 2.

+η̄(x)Sθ(x, y)η(y)

]}
.

Here κ′ = g20/μ
2
0, λ

′ = g̃20/μ̃
2
0. The fermion Green function

Sθ(x, y) satisfies the equation (see (2.7))(
γμ∂μ − Φ− iΦ̃γ5

)
Sθ(x, y) = δ(x− y). (2.66)

After introducing the condensate, according to “shifts”
ϕ(x) = ϕ0 + ϕ′(x), ϕ̃(x) = ϕ̃0 + ϕ̃′(x), we use the gauge
ϕ̃0 = 0, ϕ0 �= 0. Then the equation of the gap (see (2.10))
takes the form here

1 = − ig20
4π4μ20

∫
d4p

p2 +m2
, (2.67)

where m = −g0ϕ0.

The solution of (2.66) in the one-loop approximation
for the fermion Green function in the momentum space
will be expressed as follows:

Sθ =
−ip̂+m exp (iθγ5)

p2 +m2
. (2.68)

Note that the fermion Green’s function (2.68), correspond-
ing to the one-loop approximation, breaks CP -parity. There
is a similar solution in the infrared region of QCD obtained
in [322].
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We now use the expression for the effective action of
[318]

Seff = −1

2

∫
d4xd4y ϕ′A(x)Δ

−1
AB(x, y)ϕ

′
B(y)

+
1

3!

∫
d4xd4yd4z ϕ′A(x)ϕ

′
B(y)ϕ

′
C(z)ΓABC(x, y, z) (2.69)

+
1

4!

∫
d4xd4yd4zd4t ϕ′A(x)ϕ

′
B(y)ϕ

′
C(z)ϕ

′
D(t)

×ΓABCD(x, y, z, t),

where the inverse propagators Δ−1AB, and 3- and 4-point
Green’s functions ΓABC , ΓABCD are given by formulas
(2.14), (2.26) and (2.30).

Calculating Green’s functions from (2.14), (2.26), and
(2.30) with the replacement

γA → ΓA = (g0 cosϑ− iγ5g0 sinϑ, g̃0 sinϑ+ iγ5g̃0 cosϑ) ,

MA → μA = (μ0, μ̃0)

and substituting in (2.69), after renormalization of fields
and the introduction of the renormalized constant g2 = Z3,
up to O(g20), one finds

Seff =

∫
d4x

{
−1

2

[
(∂μϕ)

2 + (∂μϕ̃)
2 + 4m2ϕ2 +M2ϕ̃2

]
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(2.70)

+2mgϕ
(
ϕ2 + ϕ̃2

)
− 1

2
g2
(
ϕ2 + ϕ̃2

)2}
,

where

M =
√
μ̃2 − μ2, μ2 =

Z3

κ′
, μ̃2 =

Z3

λ′
,

Z−13 = − i

8π4

∫
d4q

(q2 +m2)2
,

ϕ = g0Z
−1/2
3 ϕ′, ϕ̃ = g̃0Z

−1/2
3 ϕ̃′.

The requirement of the absence of tachyons in the spec-
trum, that is μ̃2−μ2 > 0, leads to the condition γ < 2

√
κλ.

Also in this case λ′ > 0 (see (2.63)).

We leave in (2.69) only terms having the maximum
fourth degree in the fields. Here n-point Green’s functions
for n ≥ 5 are ignored because they are convergent and
define higher (radiation) corrections in constants g0, g̃0
[259].

Thus, the effective action for the collective fields ϕ, ϕ̃
takes the form of the well-known renormalizable σ-model
with a single dimensionless coupling constant g [108].

Chiral invariance violation (2.33) of this model is due
to the inequalities κ−λ �= 0, γ �= 0, and by (even if κ = λ,
γ = 0) the restructuring of the physical vacuum.
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It follows from (2.70) that the field ϕ has the mass of
2m - twice the mass of the fermion, and the field ϕ̃ has the
mass M =

√
μ̃2 − μ2. However, we note that the fields ϕ,

ϕ̃ do not constitute a definite parity in view of (2.64), since
there is a mix of a scalar field Φ and a pseudoscalar field
Φ̃. Lagrangian (2.62) takes the form of chirally-invariant
Lagrangian (1.1) [1] - [3] in the case when the angle of
the mixing θ = 0, corresponding to γ = 0, κ = λ. Then
μ̃2 − μ2 = 0, and the field ϕ̃ is the massless Goldstone
field (see [318]), arising due to the dynamic violation of
chiral invariance of the Lagrangian under the transforma-
tions (2.33). But since, in general, the Lagrangian (2.62) is
not invariant under the transformations (2.33), the corre-
sponding axial-vector current is only partially conserved.

This can be verified directly using, for obtaining the
axial-vector current and its divergence, the variational method
of Gell-Mann−Levi [108]. At the same time, we note that
the chiral transformations of fermion fields (2.33) generate
the corresponding transformations of boson fields

ϕ− m

g
→
(
ϕ− m

g

)
cosα+ ϕ̃ sinα,

(2.71)

ϕ̃→ −
(
ϕ− m

g

)
sinα+ ϕ̃ cosα,

so that δϕ = ϕ̃α, δϕ̃ = − (ϕ−m/g)α (with α � 1).
Equation (2.71) shows that due to the “shift” of the field
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here, a dynamic violation of the SO(2)-transformations of
fields ϕ, ϕ̃ occurs. Applying the method of Gell-Mann−Levi
[108], from (2.70) by taking into account (2.71), we find
the following expression for the axial current:

Aμ =
∂δLeff

∂ (∂μα(x))
= ϕ∂μϕ̃− ϕ̃∂μϕ− m

g
∂μϕ̃, (2.72)

in which the last extra term is precisely due to the Gold-
stone mechanism of symmetry breaking. According to the
equation of Gell-Mann−Levy ∂μAμ = ∂δLeff/∂α, we find
the divergence of axial current (2.72)

∂μAμ =M2
(
ϕ− m

g

)
ϕ̃, (2.73)

which is in agreement with PCAC. Expression (2.73) can
also be obtained directly by taking the divergence from
(2.72) and using the equations of motion of the fields ϕ,
ϕ̃. Zero inequality of ∂μAμ represents a clear violation
of the invariance of the Lagrangian (2.62) with respect to
chiral transformations. In the chiral limit (α = β, γ = 0),
we have μ̃2 − μ2 = (1/κ′ − 1/λ′)Z3 = 0 and obtain the
condition ∂μAμ = 0.
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2.1.4 Dynamical mass formation and
symmetry breaking in SU(n)⊗ U(1)
four-fermion models

In the previous sections we have considered the four-fermion
models that allow only one-parameter chiral (γ5) symme-
try. Since the realistic theories of electro-weak and strong
interactions have multi-parameter internal symmetry then
it is of interest to study four-fermion models with other,
broader groups of the symmetry.

Consider a model based on the Lagrangian with the
internal symmetry group SU(n)⊗ U(1) and two coupling
constants

L = −ψ̄ (γμ∂μ +m)ψ +
F

2

(
ψ̄ψ
)2

+
G

2

(
ψ̄T aψ

)2
, (2.74)

where T a (a = 1, 2, ...n2 − 1) are generators of the SU(n)
group, m is a bare mass of the fermions. Moreover, since
the four-fermion scalar-scalar interactions result in the dy-
namic symmetry breaking we take into account only such
interaction in the Lagrangian (2.74). In this case, the gen-
erating functional for the Green function can be repre-
sented by introducing collective Bose fields in the form
(see Sec. 1)

Z[η̄, η] = N1

∫
DΦA exp{iS[Φ]
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+i

∫
d4xd4yη̄(x)Sf (x, y)η(y)}, (2.75)

where

S[Φ] = −1

2

∫
d4x

(
M2Φ2

0 + μ2Φ2
a

)
−iTr ln

[
1 + Ĝ (fΦ0 + gΦaT

a)
]

is the effective action of collective fields, F = f2/M2, G =
g2/μ2, Ĝ is Green’s function for the free Dirac equation

(γμ∂μ +m) Ĝ(x, y) = −δ(x− y), (2.76)

and Sf (x, y) being Green’s function of fermions in external
fields ΦA:

(γμ∂μ +m− fΦ0 − gΦaT
a)Sf (x, y) = δ(x− y). (2.77)

We seek a solution of equation (2.77) in the case of the
fields ΦA being constants, independent of the coordinates
(one-loop approximation). We write (2.77) in the momen-
tum space

(ip̂−A)Sf (p) = 1, (2.78)

where p̂ = pμγμ, A = −m+ fΦ0 + gΦaT
a.

To find Sf (p) the method proposed in [324] is used
here. The matrix A, according to the Hamilton−Cayley
theorem (see e.g. [325]), satisfies its characteristic equation

A2 −Ab1 + |A| = 0 (for SU(2)),
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A3 −A2b1 +Ab2 − |A| = 0 (for SU(3)), (2.79)

A5 −A4b1 +A3b2 −A2b3 +Ab4 − |A| = 0 (for SU(5)),

where

b1 = trA ≡ At, |A| ≡ detA, b2 =
1

2

[
(At)

2 −
(
A2
)
t

]
,

b3 =
1

3

[(
A3
)
t
− 3

2
At

(
A2
)
t
+

1

2
(At)

3
]
,

b4 = −1

4

[(
A4
)
t
− 4

3
At

(
A3
)
t
+ (At)

2
(
A2
)
t

−1

2

((
A2
)
t

)2 − 1

6
(At)

4
]
.

We look for a solution to equation (2.78) in the form

Sf (p) = a+ bp̂+ cnA
n + dnp̂A

n. (2.80)

Here, the An means the n-degree power of the matrix A
and a summation on n is implied. Substituting (2.80) into
(2.78), using (2.79) and the linear independence of the ma-
trices 1, p̂, An, p̂An (p̂An makes sense to the direct product
of matrices p̂ and An), we obtain a system of equations for
the unknown coefficients, which are found by solving

a = −b1|A|
Δ1

, b = − i

Δ1

(
p2 − |A|+ b21

)
, d1 =

i

Δ1
b1,
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c1 = − 1

Δ1

(
p2 − |A|

)
, Δ1 =

(
p2 +m2

1

) (
p2 +m2

2

)
,

m1 = fΦ0 + g
√
Φ2
a −m, m2 = fΦ0 − g

√
Φ2
a −m,

(for SU(2))

a =
i|A|
Δ2

(
p2 − b2

)
,

b = − i

Δ2

[(
p2 − b2

)2
+ b1

(
p2b1 − |A|

)]
,

c1 = − 1

Δ2

(
[p4 −

(
b2 + b21

)
p2 − b1|A|

]
,

c2 =
1

Δ2

(
b1p

2 − |A|
)
,

d1 = − i

Δ2
(|A| − b1b2) , d2 = i

Δ2

(
p2 − b2

)
,

Δ2 = p2
(
p2 − b2

)2
+
(
|A| − p2b1

)2
, (for SU(3))

(2.81)

a = −|A|
Δ

(
p4 − p2b2 + b4

)
,

b =
i

Δ

[
−p8 + p6

(
2b2 − b21

)
+ p4

(
2b1b3 − 2b4 − b22

)
+p2

(
2b2b4 − b1|A| − b23

)
+ b3|A| − b24

]
,
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c1 =
1

Δ

[
−p8 + p6

(
2b2 − b21

)
+ p4

(
2b1b3 − b4 − b22

)
+p2

(
b2b4 − b1|A| − b23

)
+ b3|A|

]
,

c2 =
1

Δ

[
−p4b3 + p2 (−b1b4 + b2b3 + |A|)− b2|A|

]
,

c3 =
1

Δ

[
p6 + p4

(
b21 − b2

)
+ p2 (b4 − b1b3) + b1|A|

]
,

c4 =
1

Δ

[
−p4b1 + p2b3 − |A|

]
,

d1 =
i

Δ

[
p2 (−b1b4 + |A|)− b2|A|+ b3b4

]
,

d2 =
i

Δ

[
p6 + p4

(
b21 − 2b2

)
+p2

(
b4 + b22 − b1b3

)
+ b1|A| − b2b4

]
,

d3 =
i

Δ

[
p2 (−b1b2 + b3)− |A|+ b1b4

]
,

d4 =
i

Δ

[
−p4 + p2b2 − b4

]
,

Δ = p10 + p8
(
b21 − 2b2

)
+ p6

(
2b4 + b22 − 2b1b3

)
+p4

(
b23 + 2b1|A| − 2b2b4

)
+ p2

(
b24 − 2b3|A|

)
+ |A|2
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(for SU(5)).

The poles of the Green function Sf (p) define the fermion
masses of the field ψ. You can make sure that we have the
expansions (see [324])

Δ2 =
(
p2 +m2

1

) (
p2 +m2

2

) (
p2 +m2

3

)
= det|p2 +A2|

(for SU(3)),

Δ =
(
p2 +m2

1

) (
p2 +m2

2

) (
p2 +m2

3

)
(2.82)

×
(
p2 +m2

4

) (
p2 +m2

5

)
= det|p2 +A2| (for SU(5)),

where mi are eigenvalues of the matrix (−A).
Thus, the eigenvalues of (−A) identify the dynamic

mass of the fermions. Expressions (2.80) - (2.82) define
the Green function of fermions in the general covariant
form, since all the coefficients are expressed in terms of
invariants of the U(n) group. The convenient gauge is that
in which the matrix A is diagonal. In this case we choose
Φ0 �= 0, Φ3 �= 0, Φ15 �= 0, Φ24 �= 0, and the remaining
ΦA = 0. Then (2.80) takes the quasi-diagonal form

Sf (p) =

⎛⎜⎜⎝
. 0 0

0
−ip̂+mj

p2+m2
j

0

0 0 .

⎞⎟⎟⎠ , (2.83)
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where

m1 = m0 − gΦ3, m2 = m0 + gΦ3 (for SU(2)),

m1 = m0 − gΦ3 − g√
3
Φ8, m2 = m0 + gΦ3 − g√

3
Φ8,

m3 = m0 +
2g√
3
Φ8 (for SU(3)),

(2.84)

m1 = m0 − g
(
Φ3 +

1√
3
Φ8 +

2√
15

Φ24

)
,

m2 = m0 − g
(
−Φ3 +

1√
3
Φ8 +

2√
15

Φ24

)
,

m3 = m0 + g

(
2√
3
Φ8 +

2√
15

Φ24

)
,

m4 = m0 − g
(
Φ15 − 3√

15
Φ24

)
,

m5 = m0 + g

(
Φ15 +

3√
15

Φ24

)
(for SU(5)).

Since there is m0 = m − fΦ0, then it follows from (2.84)
that, even if the bare mass of fermions is m = 0, then the
fermions still acquire non-zero dynamic masses.
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Receiving, from (2.75), the equations for the fields ΦA(x)
are

δS[Φ]

δΦ0(x)
= −M2Φ0(x) + ifTrSf (x, x) = 0,

(2.85)
δS[Φ]

δΦa(x)
= −μ2Φa(x) + igTr [Sf (x, x)T

a] = 0,

and then inserting them into (2.83), we obtain a system
of equations for the vacuum expectation values of ΦA (for
the group SU(5)):

M2Φ0 = f(I1m1 + I2m2 + I3m3 + I4m4 + I5m5),

μ2Φ3 = g(I1m1 − I2m2),√
3μ2Φ8 = g(I1m1 + I2m2 − 2I3m3), (2.86)

μ2Φ15 = g(I4m4 − I5m5),√
15μ2Φ24 = g(2I1m1+2I2m2+2I3m3− 3I4m4− 3I5m5),

where

Ij =
i

4π4

∫
d4p

p2 +m2
j

(j = 1, 2, ...5), (2.87)

where d4p = id3pdp0. These equations can be seen as a
self-consistency condition, and hence they can be used to
obtain mass formulas for fermions. When considering the
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group SU(3), one has to put m4 = m5 = 0 in equation
(2.86), and for a group SU(2), additionally, it requires
m3 = 0. Indeed, given that the integrals Ij (2.87), appear-
ing in (2.86) are quadratically divergent and make use of
eliminating infinities by dimensional regularization [326]
(see also [327]), which is most appropriate way to preserve
the symmetry properties of the model, we have [327]

I =
i

4π4

∫
d4p

p2 +m2
= − m2

(2π)2
Γ(−1),

where the Gamma function is given by

Γ(−1) = −
(
1

ε
+ ψ(2)

)
,

and ψ(2) = 1.5 − γ, γ = 0.5772... is Euler’s constant,
ε → 0. From these relations we arrive at the connection
between integrals:

Ii =

(
mi

mj

)2

Ij (i, j = 1, 2, ...5). (2.88)

In the end, allowing the self-consistency conditions (2.86)
with (2.88), we arrive at the following formulas for the
fermions:

m1 (m1 +m2) = m3 (m2 +m3) ,
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m2 (m3 +m2) = m4 (m4 +m3) ,

(2.89)

m3 (m3 +m4) = m5 (m4 +m5) .

It follows that in the case of the SU(5) group that from
five fermion masses (or vacuum expectation Φ0, Φ3, Φ8,
Φ15, Φ24) the only two are independent (e.g. m1, m2).
The rest of the masses can be expressed in terms of these
two quantities. The equation for these mass values can be
obtained from (2.86) taking into account (2.88) and (2.89).

We now calculate the “free” effective action which is
quadratic in the collective fields (with n = 2, 3, 5). Let
us expand the fields in equation (2.75) in the vicinity of
the vacuum expectation values which are the solutions of
(2.86):

Φ0(x) = Φ0 +Φ′0(x), Φ3(x) = Φ3 +Φ′3(x),

Φ8(x) = Φ8 +Φ′8(x), Φ15(x) = Φ15 +Φ′15(x), (2.90)

Φ24(x) = Φ24 +Φ′24(x), Φb(x) = Φ′b(x),

(b �= 0, 3, 8, 15, 24). Inverse propagators calculated by a
formula similar to (2.14) read

Δ−1AB(p) = −igAgBtr
∫

d4k

(2π)4
Sf (k)T

ASf (k−p)TB+δABM
2
A,

(2.91)
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where gA = (f, g), MA = (M,μ), TA = (1, T a). Gener-
ators of the group SU(2) are the Pauli matrices τa, gen-
erators of the SU(3) group are Gell-Mann matrices λa,
and we use for the SU(5) group the following expressions,
normalized by the condition trT aT b = 2δab: the diagonal
matrices

T 3 = diag(1,−1, 0, 0, 0), T 8 =
1√
3
diag(1, 1,−2, 0, 0),

T 15 = diag(0, 0, 0, 1,−1), T 24 =
2√
15

diag(1, 1, 1,−3

2
,−3

2
),

and non-diagonal generators of the form

T (mn) = εm,n + εn,m, T [mn] = i (εm,n − εn,m) ,

m, n = 1, 2, 3, 4, 5 (m �= n), where εm,n are the elements of
the entire matrix algebra with the properties [328], [329]

εm,nεk,p = δnkε
m,p, (εm,n)ab = δmaδnb.

We introduce renormalized fields Φa = Z
−1/2
3 Φ′a, Φ0 =√

n
2
f
gZ

−1/2
3 Φ′0 and constants g

′2 = Z3g
2, f

′2 = Z3f
2. Con-

sider that in the scheme of the dimensional regularization
there is a connection between quadratic and logarithmi-
cally divergent integrals [327], [330], [331]. Indeed, we have
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[327]

Z−13 = − ig2

4π4

∫
d4p(

p2 +m2
1

)2 =
Γ(0)

(2π)2)Γ(2)
,

Γ(0) =
1

ε
+ 1− γ,

so that

Z−13 =
g2

m2
1

I1 − g2

8π2
. (2.92)

Then, after the computations of (2.91) and taking into con-
sideration (2.92), up to radiative corrections O(g2), O(f2),
O(fg), we find that the renormalized effective action is

Sfree = −1

2

∫
d4x

[
(∂μΦA)

2 +m2
ABΦAΦB

]
, (2.93)

where the elements of the mass matrices have the form

m2
00 = 3

(
m2

1 +m2
2

)
+

2
(
m3

1 +m3
2

)
2m−m1 −m2

,

m2
03 = 3

(
m2

1 −m2
2

)
, m2

33 = (m1 −m2)
2 (for SU(2)),

m2
00 = 2

(
m2

1 +m2
2 +m2

3

)
+

2
(
m3

1 +m3
2 +m3

3

)
3m−m1 −m2 −m3

,

m2
03 =

√
6
(
m2

1 −m2
2

)
, m2

33 = (m1 −m2)
2 ,
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m2
88 = 4m2

3 − (m1 +m2)
2 , m2

38 =
√
3
(
m2

1 −m2
2

)
,

m2
08 =

√
2
(
m2

1 +m2
2 − 2m2

3

)
(for SU(3)),

(2.94)

m2
00 =

6

5

(
m2

1 +m2
2 +m2

3 +m2
4 +m2

5

)
+

2
(
m3

1 +m3
2 +m3

3 +m3
4 +m3

5

)
5m−m1 −m2 −m3 −m4 −m5

,

m2
03 =

6
√
2√
5

(
m2

1 −m2
2

)
, m2

33 = (m1 −m2)
2 ,

m2
88 = 4m2

3 − (m1 +m2)
2 , m2

38 = 2
√
3
(
m2

1 −m2
2

)
,

m2
08 = 2

√
6

5

(
m2

1 +m2
2 − 2m2

3

)
,

m2
15,15 = (m4 −m5)

2 , m2
0,15 =

6
√
2

5

(
m2

4 −m2
5

)
,

m2
24,24 =

12

15

(
m2

1 +m2
2 +m2

3

)
+

27

15

(
m2

4 +m2
5

)
−2
(
m2

1 +m1m2 +m2
2

)
,

m2
0,24 =

12

5

√
2

3

(
m2

1 +m2
2 +m2

3 −
3

2
m2

4 −
3

2
m2

5

)
,

m2
3,24 =

12√
15

(
m2

1 −m2
2

)
,
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m2
15,24 =

18√
15

(
m2

5 −m2
4

)
(for SU(5)).

To obtain the mass spectrum of collective fields ΦA the
mass matrix must be brought to the diagonal form.

It follows from (2.93) and (2.94) that the masses of
the fields ΦA (A �= 0, 3, 8, 15, 24) are equal to zero, which
is consistent with the Goldstone theorem [318] of spon-
taneous (or dynamic) symmetry breaking; the rest of the
fields ΦA acquire non-zero masses.

Let us diagonalize the mass matrix (2.94) for the con-
sideration of the SU(2) group. We make the transforma-
tion from the SO(2) group

Φ′0 = Φ0 cosα−Φ3 sinα, Φ′3 = Φ0 sinα+Φ3 cosα, (2.95)

where

tan 2α =
3
(
m2

2 −m2
1

)
(2m−m1 −m2)

2
[
m
(
m2

1 +m1m2 +m2
2

)−m1m2 (m1 +m2)
] .

From the above way to diagonalize the mass matrix, we
find the following expressions for the masses of collective
fields Φ′0, Φ′3 (fields Φ1, Φ2 remain massless):

m
′2
00 =

1

2

[
m2

00 + (m1 −m2)
2
]

+
1

2

√[
m2

00 − (m1 −m2)
2
]2

+ 36
(
m2

1 −m2
2

)2
,
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m
′2
33 =

1

2

[
m2

00 + (m1 −m2)
2
]

−1

2

√[
m2

00 − (m1 −m2)
2
]2

+ 36
(
m2

1 −m2
2

)2
.

The computation using formulas similar to (2.26), (2.30),
and (2.69), gives the following effective Lagrangian of self-
interaction of collective fields for the SU(2) group:

Lint[Φ] = −3 (m1 +m2) Φ0Φ
2
a − (m1 +m2) Φ

3
0

(2.96)

−3 (m1 −m2) Φ3Φ
2
0 − (m1 −m2) Φ3Φ

2
a −

1

4
trΦ4,

where Φ = Φ0 + τaΦa.

Note that the field Φ0 is a singlet, and the fields Φa

transform according to the adjoint representation of the
SU(2) group. If the vacuum field Φ3 = 0, then it follows
from (2.84) that m1 = m2. Then (2.94) and (2.96) imply
that the initial symmetry is restored, and all the fields Φa

become massless (Φ0 is a massive field).

Thus, considering this section the four-fermion model
allows you to set, when using dimensional regularization,
on the one hand, the relation (2.89) between the dynamical
masses of the fermion multiplet, and to enter on the other
hand, the relation (2.94) for fermion masses and the masses
of collective fields ΦA. In this case there are only two

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



80 CHAPTER 2.

independent parameters used to express the masses of all
particles.

The self-consistent consideration of four-fermion mod-
els, using it as the basis for the dimensional regularization
of divergent integrals (2.92), leads to the establishment
of a rigid connection between the fermion masses and the
masses of their bound states, which are described by the
collective fields.

So, discussed in this chapter the four-fermion mod-
els including scalar-scalar, pseudoscalar-pseudoscalar and
vector-vector interaction, are reformulated using the method
of functional integration in terms of the interaction of
fermions with the collective scalar, pseudoscalar and vec-
tor fields. In this case, the kinetic terms, and terms of
self-interaction of collective fields appear from the vac-
uum polarization diagrams. The theory of perturbations,
corresponding to the expansion in loops, leads to a finite
number of divergent diagrams. However, the cut-off mo-
mentum (or parameter ε in the scheme with dimensional
regularization) enters a gap equation that determines the
mass formulas, and therefore must be finite and have phys-
ical meaning. Therefore, one should comment here on the
finite renormalization. Some variants of the renormaliza-
tion procedure in four-fermion models were considered in
[332], [333].
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3.1 Global SU(2)⊗U(1)-invariant mod-
els

We investigate the SU(2)L ⊗ U(1)-invariant models with
various schemes including four-fermion interactions of dif-
ferent generations of leptons and quarks. It is shown that
as a result of dynamic symmetry breaking “top” fermions
(neutrinos) of different generations remain massless, and
the “lower” fermions (leptons e, μ, τ) acquire different
masses. For each generation, the spectrum of collective ex-
citations is obtained, which includes the Goldstone fields
and massive scalar particles, the Higgs particle analogues,
which are fermion-antifermion bound states. The form
of effective action calculated is similar to the Higgs ac-
tion, with distinction in the composite nature of the Higgs
fields. The possibility of the generation of the current
quark masses is shown. For this in the SU(2)L ⊗ U(1)-
invariant model the four-fermion interaction is included,
containing in right-handed singlets both the lower and up-
per fermions. As the part of the one-loop approximation,
propagators are obtained and the spectrum of fermion
masses is established as a result of dynamic symmetry
breaking collective scalar fields. The content of this chap-
ter is based on the results of [334] - [345].
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3.1.1 The initial model

Usually, to get the masses of leptons, quarks and bosons in
the GWS theory, the Higgs−Kibble mechanism (see [13],
[14]) of spontaneous symmetry breaking is used. At the
same time, we know that the introduction of masses can
be explained by dynamics, due to the nonlinear interaction
of the fields (see the Introduction). This possibility is ex-
amined in this chapter. The role of the Higgs Lagrangian
here will be performed by a nonlinear Lagrangian which is
built from the original functions of the fermion fields.

Following the work of [13], [14], we enter the doublet
Li and singlet Ri of basic (massless) lepton fields νi, ψi

Li =
1

2
(1 + γ5)

(
νi

ψi

)
=

(
νi

ψi
L

)
,

Ri =
1

2
(1− γ5)ψi ≡ ψi

R, (3.1)

where ψi is a charged 4-component fermion field, and the
field νi is a neutral field and has only left-handed compo-
nents νi = 1

2 (1 + γ5) ν
i, i is the index of generations of

fermions, νi = (νe, νμ, ντ ), ψi = (e, μ, τ).

Multiplets of L and R, (3.1), possess the usual trans-
formation properties under global transformations of the
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SU(2)⊗ U(1) group

L′(x) = exp

(
−iτ

a

2
ξa − iη

2

)
L(x),

(3.2)

R′(x) = exp (−iη)R(x),
where ξa and η are parameters of the SU(2) and U(1)
groups, respectively. One can build values ψ̄iνi and ψ̄iψi

L,
from the original functions of the fundamental fields, which
are scalars under the transformations of the proper Lorentz
group and it is easy to verify directly, automatically form-
ing a doublet

ϕi =

(
ϕi
1

ϕi
2

)
=

(
ψ̄iνi

ψ̄iψi
L

)
, ψ̄ = ψ+γ4, (3.3)

i.e. it is transformed by the fundamental representation of
the SU(2) group:

ϕ′(x) = exp

(
−iτ

a

2
ξa
)
ϕ(x).

Let us consider the Lagrangian for the fundamental
fields νi, ψi (which is invariant under the global transfor-
mations (3.2)) introducing the self-interaction of fields ϕi

(3.3), which are considered as an analogue of the Higgs
doublet of scalar fields

L = −L̄iγμ∂μL
i − R̄iγμ∂μR

i + λijϕ
iϕj+, (3.4)
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where the summation on the indices i, j = 1, 2, 3 is implied.

From the requirement of reality of the Lagrangian (3.4)
(L∗ = L) it follows that λij is the Hermitian matrix, i.e.
‖λ‖+ = ‖λ‖. Elements of the matrix λij have the dimen-
sion of (m)−2.

If we substitute the expression for the doublet ϕi (3.3)
to (3.4), we obtain a four-fermion interaction. The matrix
λij defines a lepton mixing matrix of fields of different
generations (see also [346]). It can be considered a different
mix of generations of fermions, setting various types of
matrices λij . We will analyze two distinctly different types
of the matrix λij .

The transition to full local invariant Lagrangian, de-
scribing the interaction of leptons with W±, Z, A bosons,
can be done by replacing

∂μ → Dμ = ∂μ − i
[
gbaμ(x)t

a − 1

2
g′Y aμ(x)

]
and adding the free Lagrangian

L0 = −1

4
F 2
μν −

1

4
Ga

μνG
a
μν ,

where

Fμν = ∂μaν − ∂νaμ, Ga
μν = ∂μb

a
ν − ∂νbaμ + gεabcbbμb

c
ν ,
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and the fields of the observed bosons are constructed in
the usual way by the rule (1.3) (see e.g. [347]).

In this section we investigate the dynamical breakdown
of the SU(2)L⊗U(1) symmetry of the model with the La-
grangian (3.4), and the formation of the masses of the lep-
tons, and we obtain the spectrum of collective excitations
(composite fields).

We start from the fact that according to the definition
(see Chapter 1), the generating functional for the Green
functions of the fields can be written as

Z[η̄, η] = N0

∫
Dψ̄DψDν̄Dν exp

[
i

∫
d4x

(
L

(3.5)

+L̄iηiL + η̄iLL
i + R̄iηiR + η̄iRR

i
)]
,

where ηiL, η
i
R are the external sources, and the Lagrangian

L is defined by (3.4). To linearize the four-fermion inter-
action, which is part of (3.5), we use the formula∫

DΦexp
{
i
[
Φi
aϕ

i∗
a +Φi∗

a ϕ
i
a − gijΦi

aΦ
j∗
a

]}
(3.6)

= (det‖g‖)−1 exp
(
iλijϕ

i
aϕ

j∗
a

)
,

where the summation on the indices i, j = 1, 2, 3 is im-
plied, a = 1, 2, and the matrix gij is the inverse of λij ,
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i.e. ‖g‖ = ‖λ‖−1. Here Φi
a are collective scalar fields. For

convenience we introduce the 6-dimensional functions and
matrices

ξi =

(
νiL
ψi

)
, ∂̂ =

(
−iτ̄μ∂μ 0

0 γμ∂μ

)
, τ̄μ = (−τa, iI2) ,

M1 =

⎛⎜⎝ 0 I2 0
0 0 0
0 0 0

⎞⎟⎠ , M ′
1 =

⎛⎜⎝ 0 0 0
0 0 0
I2 0 0

⎞⎟⎠ , (3.7)

M2 =

⎛⎜⎝ 0 0 0
0 I2 0
0 0 0

⎞⎟⎠ , M ′
2 =

⎛⎜⎝ 0 0 0
0 0 0
0 0 I2

⎞⎟⎠ ,
γa =

(
0 iτa

−iτa 0

)
, γ4 =

(
0 I2
I2 0

)
,

where I2 is the unit 2×2 matrix. From the notations (3.7)
and (3.6), the expression (3.5) is rewritten as follows:

Z[η̄, η] = N

∫
Dξ̄DξDΦexp

{
i

∫
d4x

[
−ξ̄i∂̂ξi

(3.8)

+ξ̄i
(
Φi
aMa +Φi∗

a M
′
a

)
ξi − gijΦi

aΦ
j∗
a + ξ̄iηi + η̄iξi

]}
.

For the existing functional integral (3.8) in Euclidean
space-time, you need to decrease the integrand at large
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Φi
a. Therefore, it is necessary to impose the requirement

of positive definite of the matrices gij . Due to the fact that
the matrix ‖g‖ as well as the matrix ‖λ‖ is Hermitian, its
eigenvalues are real and need to be positive.

The collective Bose fields Φi
a introduced are collective

variables. Since the path integral (3.8) is a Gaussian with
respect to fields ξ̄i, ξi, then we can perform the integration,
here the result is

Z[η, η] = N

∫
DΦdet

[(
−∂̂ +Φi

aMa +Φi∗
a M

′
a

)
(δij)

]
× exp

{
i

∫
d4xd4y

[
−gijΦi∗

a (x)Φ
j
a(y)δ(x− y) (3.9)

+η̄i(x)Kij(x, y)ηj(y)

]}
,

where (δij) is the identity 3× 3-matrix acting in the space
of generations and Kij(x, y) is the Green’s function of
fermions in external collective fields Φi

a, satisfying(
−∂̂ +Φi

aMa +Φi∗
a M

′
a

)
Ki(x, y) = −δ(x− y). (3.10)

Here we have that Kij(x, y) is the diagonal matrix, i.e.
Kij(x, y) = δijK

i(x, y) and in (3.10) there is no summa-
tion over the index i.

Suppose that in the model with the generating func-
tional (3.5) there is a dynamic breaking SU(2) ⊗ U(1)
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symmetry. In this case, the collective fields Φi
a acquire

non-zero vacuum expectation values 〈Φi
a〉 = Φi

0a. It will
be shown that this corresponds to the minimum of the ef-
fective potential. Separating the condensate and making
the shift Φi

a(x) → Φi
0a + Φi

a(x) (Φi
0a = const) using the

formula det = exp Tr ln, we represent (3.9) in the form

Z[η̄, η] = N

∫
DΦexp

[
iSeff

+i

∫
d4xd4y η̄i(x)Ki(x, y)ηi(y)

]
, (3.11)

where the effective action is

Seff =

∫
d4x

[
−gij

(
Φi∗
0a +Φi∗

a (x)
) (

Φj
0a +Φj

a(x)
)]

−iTr ln
[(
−∂̂ +

(
Φi
0a +Φi

a(x)
)
Ma (3.12)

+
(
Φi∗
0a +Φi∗

a (x)
)
M ′

a

)
(δij)

]
.

Note that this shift of collective fields must also be made
in the equation (3.10).

In the action (3.12) Φi
a(x) are the physical fields, which

are the quantum excitations of the physical vacuum. We
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find equations of motion of the fields Φi
a(x) by varying

effective action (3.12) (and putting Φi
a(x) = 0):

δSeff
δΦi∗

a (x)
= −gijΦi

0a + iTrKi
0M

′
a = 0, (3.13)

and adding the complex conjugated equation. Here Ki
0

is the free fermion Green’s function, which satisfies the
equation (see (3.10))(

−∂̂ +Φi
0aMa +Φi∗

a M
′
a

)
Ki

0(x, y) = −δ(x− y). (3.14)

Going to the momentum space, we can verify that the
solution of (3.14) is the matrix

Ki
0(p) =

1

p2
(
p2 +m2

i

)

×
⎛⎜⎝ − (p2 + |Φi

02|2
)
p Φi

01Φ
i∗
02p −p2Φi

01

−p2Φi∗
01 −p2Φi∗

02 −p2p̄
Φi
02Φ

i∗
01p − (p2 + |Φi

01|2
)
p −p2Φi

02

⎞⎟⎠ ,
(3.15)

where

p̄ = pμτ̄μ, m2
i = |Φi

01|2 + |Φi
02|2, p = pμτμ,

τμ = (τa, iI2) , τ̄μ = (−τa, iI2) , p2 = p2 − p20.
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Substituting (3.15) into (3.13) and calculating the traces,
we obtain the equations

gijΦ
i
0a = − i

8π4

∫
d4pΦi

0a

p2 +m2
i

(i = 1, 2, 3, a = 1, 2). (3.16)

Equations (3.16) are called the gap equations, because
they have the same form as the equation for the energy
gap in the theory of superconductivity; non-trivial solu-
tions correspond to the super-conducting state, and the
trivial solutions correspond to the normal state.
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3.1.2 Independent generations of leptons

In this section we consider the special case where the ma-
trix λij , appearing in (3.4), is chosen in the diagonal form

λij = λiδij , gij = giδij , gi =
1

λi
(3.17)

(the summation in the index i is not assumed). This choice
of the matrix λij leads to the fact that there is no interac-
tion between the lepton fields of different generations. The
values gi are constants of self-interaction of leptons of i-
generation. Then the gap equation (3.16) can be rewritten
as follows:

giΦ
i
0a = − i

8π4

∫
d4pΦi

0a

p2 +m2
i

. (3.18)

Equation (3.18) has the trivial solution Φi
0a = 0 (mi =

0), corresponding to an unbroken SU(2)L⊗U(1)-symmetry,
and also nontrivial nonanalytic solutions (Φi

0a �= 0) for
0 < 8π2gi/Λ2 < 1, where Λ is the cutoff momentum [1].
This means that at Λ2 > 8π2gi a phase transition holds to
a state with the mass m2

i =| Φi
01 |2 + | Φi

02 |2 �= 0.
To determine the mass spectrum of fermions, it is nec-

essary to bring the Green function (3.15) for such a quasi-
diagonal form in which non-zero matrix elements are re-
lated to the neutrino and “lower” leptons would be ab-
sent simultaneously. This can be done in two ways. One
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of them involves a move to new physical fields which are
a superposition of the “upper” and “lower” leptons. Af-
ter this substitution, we can ensure that the appropriate
Green’s function takes the quasi-diagonal form. The sec-
ond method is more simple and involves the use of the
unitary gauge, in which Φi

01 = 0, Φi
02 = Φi∗

02 = −mi �= 0.
In this case, the fermion Green’s function (3.15) takes the
form

Ki
0(p) =

( − p
p2

0

0 mi−ip̂
p2+m2

i

)
. (3.19)

Here p = pμτμ and p̂ = pμγμ refer to the states of fermions
ν and ψ. It follows from the form (3.19) (see (3.7)) that as
a result of dynamic symmetry breaking neutrinos (νe, νμ, ντ )
remain massless, and fermions (e, μ, τ) gain non-zero masses
mi (i = 1, 2, 3).

To prove the stability of the vacuum at Φi
0a �= 0, we

calculate the effective potential. In the one-loop approxi-
mation, we limit ourselves to the constant fields Φ0a, and
the effective action associated with the effective potential
by

S0
eff = −

∫
d4x V 0,

has the form

Seff =
∑
i

{
−
∫
d4xgiΦ

i
0aΦ

i∗
0a

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



94 CHAPTER 3.

(3.20)

−iTr ln
[(
−∂̂ +Φi

0aMa +Φi∗
0aM

′
a

)
(δij)

]}
.

Subtracting from (3.20) the action corresponding to the

unbroken symmetry S0 = −itr ln
(
−∂̂
)
, and using the

property Tr ln = ln det, we find

Seff − S0 = −
∑
i

∫
d4x

{
giΦ

i
0aΦ

i∗
0a

(3.21)

+i

∫
d4p

(2π)4
ln det

[(
1 + Ĝ0(p)

(
Φi
0aMa +Φi∗

0aM
′
a

))
(δij)

]}
,

where

Ĝ0(p) =
1

p2

(
p 0
0 ip̂

)
. (3.22)

Calculating the determinant appearing in (3.21), we obtain

V 0
eff =

∑
i

{
giΦ

i
0aΦ

i∗
0a+

i

8π4

∫
d4p ln

(
1 +

m2
i

p2

)}
. (3.23)

The second term in (3.23) defines a one-loop correction to
the effective potential. The extremum of the effective po-
tential (3.23) is determined from ∂V 0

eff/∂Φ
i∗
0a = 0 and its

complex conjugate. It is easy to check that this condition
gives exactly the self-consistency equation (3.18). You can
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also verify directly that the condition ∂2V 0
eff/(∂Φ

i
02)

2 > 0

(in the gauge of Φi
01 = 0, Φi

02 = Φi∗
02 �= 0), for the mini-

mum of the potential, holds. Thus, non-trivial solutions of
(3.16) actually correspond to the minimum of the effective
potential.

We now transform the effective action (3.21), expand-
ing it to small fields (excitations) Φi

0(x). The constant
S0
eff , appearing in (3.9), determines the vacuum energy

and is removed by the redefinition of N in equation (3.11).
For further discussion, this constant is negligible and can
be omitted. One takes into account the equality

Tr ln

[(
−∂̂ +

(
Φi
0a +Φi

0a(x)
)
Ma

+
(
Φi∗
0a +Φi∗

0a(x)
)
M ′

a

)
(δij)

]
= Tr ln

[(
−∂̂ +Φi

0aMa +Φi∗
0aM

′
a

)
(δij)

]
+Tr ln

[(
1−Ki

0

(
Φi
a(x)Ma +Φi∗

a (x)M
′
a

))
(δij)

]
.

We use the fact that in (3.21) the linear terms in the fields
Φi
a(x) are absent in view of (3.18). With that said, we

expand the action (3.21) around the static solutions Φi
0a:

Seff = S
(2)
eff +

∞∑
n=3

Ln,
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S
(2)
eff = −

∑
i

∫
d4x

{
giΦ

i
aΦ

i∗
a

+
i

2
Tr
[
Ki

0

(
Φi
aMa +Φi∗

a M
′
a

)]2}
, (3.24)

Ln =
i

n

∑
i

Tr
[
Ki

0

(
Φi
aMa +Φi∗

a M
′
a

)]n
.

The quadratic term in the fields (3.24), which determines
the propagation of the fields Φi

a(x), can be written as

S
(2)
eff = −1

2

∫
d4xd4y Φi(x)

(
T ij(x, y)

)−1
Φj(y). (3.25)

Here we introduced the four-component wave function Φi =
(Φi

1,Φ
i∗
1 ,Φ

i
2,Φ

i∗
2 ), and the propagator T ij(x, y) in the mo-

mentum space is determined by the relations

(
T ij
AB(p)

)−1
= giδij

⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠
AB (3.26)

−itr
∫

d4k

(2π)4
Ki(k)ΓAK

i(k − p)ΓBδij ,

where (see (3.7)) ΓA = (M1,M
′
1,M2,M

′
2). Calculating the

inverse propagator (3.26) using (3.18), we find its non-zero
elements (

T i
12(p)

)−1
=
(
T i
21(p)

)−1
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= gi +
i

8π4

∫
d4q q(q − p)

(q − p)2(q2 +m2
i )

= p2Z−13 +OR,(
T i
33(p)

)−1
=
(
T i
44(p)

)−1
= − i

8π4

∫
d4q m2

i

[(q − p)2 +m2
i ](q

2 +m2
i )

= 2m2
iZ
−1
3 +OR,

(3.27)(
T i
34(p)

)−1
=
(
T i
43(p)

)−1
= gi +

i

8π4

∫
d4q q(q − p)

[(q − p)2 +m2
i ](q

2 +m2
i )

=
(
p2 + 2m2

i

)
Z−13 +OR.

Here we take into account that(
T ij(p)

)−1
=
(
T i(p)

)−1
δij , Z

−1
3 =

1

16π2

(
ln

Λ2

m2
− 1

)
,

where Λ is the cut-off momentum, m is the normalization
point (e.g. m = m1), OR represents the finite part, which
is independent of the cut-off momentum, and determines
the radiative corrections. Substituting (3.27) into (3.25) in
the momentum space and performing the renormalization

of the fields Φi → ΦiZ
1/2
3 , we find the quadratic action in

these fields up to the higher radiative corrections

S
(2)
eff =

1

2

∫
d4x

[
Φi
1∂

2
μΦ

i∗
1 +Φi∗

1 ∂
2
μΦ

i
1
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(3.28)

+Φi
2∂

2
μΦ

i∗
2 +Φi∗

2 ∂
2
μΦ

i
2 − 2m2

i

(
Φi
2 +Φi∗

2

)2]
.

In (3.28) the summation in index i is implied. Denoting
Φi
2 = κi + iχi, we rewrite (3.28) in the form

S
(2)
eff =

∫
d4x

[
1

2

(
Φi
1∂

2
μΦ

i∗
1 +Φi∗

1 ∂
2
μΦ

i
1

)
(3.29)

+χi∂2μχ
i + κi

(
∂2μ − 4m2

i

)
κi
]
.

It follows from (3.29) that we have in each generation,
three massless fields ReΦi

1, ImΦi
1, χ

i and one massive field
κi with the mass 2mi. In this case, Φi

1 are charged mass-
less fields, and χi and κi are neutral massless and massive
fields, respectively.

Thus, as a result of the dynamical breaking of SU(2)L⊗
U(1)-symmetry in every generation we have three Gold-
stone fields and one massive field - an analogue of the
Higgs field. This is in agreement with the general Gold-
stone theorem [318]. It is recalled that the fields Φi

a are
composite and are bound fermion-antifermion states. The
fact that the mass of the composite boson field is twice the
mass of the fermion, was originally discovered in a simple
four-fermion model (1.1). This phenomenon is analogous
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to the formation of Cooper pairs in the theory of super-
conductivity.

Three- and four-point Green’s functions give a diver-
gent contribution in the effective action (3.24), which fol-
lows from (3.24) for n = 3, 4. At the same time, the terms
in (3.24) with the number n = 5 are convergent, and de-
termine the higher-order corrections and in the future will
not be counted. Therefore, calculating formulas similar to
(2.26), (2.30) with (3.19), after renormalization of fields
and substituting into (2.69), we finally have the following
expression for the effective action of fields Φi

1, Φ
i
2:

Seff =

∫
d4x

[
1

2

(
Φi
1∂

2
μΦ

i∗
1 +Φi∗

1 ∂
2
μΦ

i
1

)

+χi∂2μχ
i + κi

(
∂2μ − 4m2

i

)
κi
]

(3.30)

+4miλκ
i
(
|Φi

1|2 + |Φi
2|2
)
− λ2

(
|Φi

1|2 + |Φi
2|2
)2
.

Here we introduced the dimensionless coupling constant
λ2 = Z3. We note that the action (3.30) is similar to the
Higgs sector (after the shift of fields) of the standard the-
ory of electro-weak interactions, with the only difference
that the Higgs fields are introduced for each generation of
fermions. A mass of the fields χi is equal to twice the mass
of the fermion (2mi) corresponding generation.
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As the light scalar particles with masses 2me, 2mμ,
2mτ , are not detected, it is obviously necessary to con-
sider a more general model, except when the leptons are
included in the review as heavy quarks. Note that other
mixed inclusions of lepton interaction are also possible in
choosing the matrix constants in the form of the matrix-
dyad gij = gigj . In this case, as will be shown below (see
section 10), there is one collective field that is common to
all generations of leptons.
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3.1.3 Dynamical symmetry breaking in SU(2)L⊗
U(1)-model with two right singlets and
quark mass generation

In order to allow the formation of dynamic masses of the
bottom and top quarks, it is obviously necessary to build
a four-fermion interaction with two right fermion singlets.
In the beginning, for the sake of simplicity, we consider in
detail only one generation of quarks.

So let

L = −q̄γμ∂μq + ρ20 (q̄LuR) (ūRqL) + λ20 (q̄LdR)
(
d̄RqL

)
(3.31)

be the SU(2) ⊗ U(1)-invariant Lagrangian for the quark
doublet

q =

(
u
d

)

with the four-fermion interaction, including two right sin-
glets

uR =
1

2
(1− γ5)u, dR =

1

2
(1− γ5) d,

where

qL =
1

2
(1 + γ5) q.

The introduction of the quark interaction with intermedi-
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ate W±, Z bosons is the usual substitution in (3.31)

∂μ → Dμ = ∂μ − i
(
gbaμ(x)

τa

2
− 1

2
g′Y aμ(x)

)
and the usage of definitions (1.3). In (3.31) ρ0 and λ0 are
bare constants (of the dimension m−1) of the four-quark
interaction.

Introducing the 8× 8 matrices:

B1 = B′3 = λ0

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 I2 0 0

⎞⎟⎟⎟⎠ ,

B2 = B′4 = λ0

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I2

⎞⎟⎟⎟⎠ ,

B3 = B′1 = λ0

⎛⎜⎜⎜⎝
0 0 I2 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ ,

B4 = B′2 = λ0

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 I2 0
0 0 0 0

⎞⎟⎟⎟⎠ ,

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.1. GLOBAL SU(2)⊗U(1)-INVARIANT MODELS103

(3.32)

B5 = B′7 = ρ0

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 I2
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ ,

B6 = B′8 = ρ0

⎛⎜⎜⎜⎝
0 0 0 0
0 I2 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ ,

B7 = B′5 = ρ0

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
I2 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ ,

B8 = B′6 = ρ0

⎛⎜⎜⎜⎝
I2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ .
The Lagrangian (3.31), after the inclusion of the Schwinger
sources JA (A = 1, 2, ...8 and J3 = J∗1 , J4 = J∗2 , J7 = J∗5 ,
J8 = J∗6 ), can be written in the following form:

L = −q̄γμ∂μq + 1

2
(q̄BAq)

(
q̄B′Aq

)
+
(
q̄B′Aq

)
JA. (3.33)

From the ensuing equations of motion for the quark fields

γμ∂μq −BAq
(
q̄B′Aq

)−B′AJAq = 0, (3.34)
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using the equation

δ

δJA
〈Tq(x)q̄(y)〉 = i〈Tq(x)q̄(y)q̄(x)B′Aq(x)〉

(3.35)

−i〈T q̄(x)B′Aq(x)〉〈Tq(x)q̄(y)〉,
and anti-commutation relations

{qA(x), q+B(y)}|t=t′ = δABδ (x− y) ,

T∂t
(
q(x)q+(y)

)
= ∂t

(
Tq(x)q+(y)

)− δ(x− y),
where T is the operator of chronological ordering, for the
fermion Green’s function [317] G(x, y) = i〈Tq(x)q̄(y)〉 the
following DS equation can be obtained:(
γμ∂μ + iBA

δ

δJA
−B′A〈ΦA〉

)
G(x, y) = δ(x− y). (3.36)

Here

〈ΦA〉 = 〈T q̄(x)BAq(x)〉+ JA(x) (3.37)

are eight scalar collective fields, constructed from the orig-
inal quark fields and satisfying

〈Φ3〉 = 〈Φ∗1〉, 〈Φ4〉 = 〈Φ∗2〉, 〈Φ5〉 = 〈Φ∗7〉, 〈Φ6〉 = 〈Φ∗8〉,

〈Φ1〉 = λ0〈d̄RuL〉+ J1, 〈Φ2〉 = λ0〈d̄RdL〉+ J2,
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〈Φ3〉 = λ0〈ūLdR〉+ J3,

(3.38)

〈Φ4〉 = λ0〈d̄LdR〉+ J4, 〈Φ5〉 = ρ0〈ūRdL〉+ J5,

〈Φ6〉 = ρ0〈ūRuL〉+ J6,

〈Φ7〉 = ρ0〈d̄LuR〉+ J7, 〈Φ8〉 = ρ0〈ūLuR〉+ J8.

We solve equation (3.36) by perturbation theory using an
expansion in loops [348], [349]

G(x, y) = G(0) + εG(1) + ε2G(2) + ...,

(3.39)

〈ΦA〉 = Φ
(0)
A + εΦ

(1)
A + ε2Φ

(2)
A + ....

Parameter ε relates at the end of the computation to one.
Substituting (3.39) into (3.36), considering that the func-
tional derivative of the source takes the n-loop value in the
(n+ 1)-loop, i.e., δ/δJA → εδ/δJA and equating terms of
the same order with respect to ε, we obtain the equations
for the Green function - propagators of fermion fields in
the zero approximation (G(0)) and the equations for (G(1))
in the one-loop correction(

γμ∂μ −B′AΦA

)
G(0)(x, y) = δ(x− y), (3.40)∫

d4z G(0)−1(x, z)G(1)(z, y)
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(3.41)

+

(
iBA

δ

δJA(x)
−B′AΦ(1)

A (x)

)
G(0)(x, y) = 0.

Removing in equation (3.40) Schwinger’s external sources,

leads to the condition Φ
(0)
A (x) = const, then selecting the

gauge:

Φ
(0)
1 = Φ

(0)
5 = 0, m1 = −Φ(0)

6 ρ0 = −Φ(0)∗
6 ρ0,

(3.42)

m2 = −Φ(0)
2 λ0 = −Φ(0)∗

2 λ0,

in the momentum representation, after diagonalization, we
obtain the following expression for the fermion propagator:

G(0)(p) = diag

(−ip̂+m1

p2 +m2
1

,
−ip̂+m2

p2 +m2
2

)
. (3.43)

It follows that the fields of u, d-quarks describe two Dirac
particles with masses m1 and m2, respectively.

The equations of motion for the collective fields ΦA(x)
can be easily obtained from the following relation (see
(3.37)):

Φ
(0)
A (x) = iTr BAG

(0)(x, x) + JA(x). (3.44)
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Putting JA = 0 in (3.44), which, due to translational in-

variance leads to the condition Φ
(0)
A (x) = const, and cal-

culating the traces, we obtain

1 = − iρ20
8π4

∫
d4p

p2 +m2
1

, 1 = − iλ
2
0

8π4

∫
d4p

p2 +m2
2

. (3.45)

These are the gap equations that bind constants ρ0, λ0
with the momentum cut-off Λ and the masses m1, m2.

Differentiating ΦA(x), (3.44), with respect to JB(y),
by definition, taking

ΔAB(x, y) =
δΦA(x)

δJB(y)
, (3.46)

for the propagator ΔAB(x, y) of the field ΦA(x) in the one-
loop approximation, we obtain the equation:[

δAN − i

(2π)4
tr

{
BA

∫
d4p G(0)(p)B′NG

(0)(p− k)
}]

×Δ(1)
NB(k) = δAB. (3.47)

This equation can be written as 8× 8-matrix:

Δ(1)(k) =

(
1

16π2
ln

Λ2

m2

)−1
Δ(k), (3.48)
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(Λ is the parameter of the cut-off, m being the normaliza-
tion point) with the following non-zero elements:

Δ11 = Δ33 =
k2 + 2m2

2

λ20k
2
(
k2 + 2m2

1 + 2m2
2

) ,
Δ22 = Δ44 =

k2 + 2m2
2

λ20k
2
(
k2 + 4m2

2

) ,
Δ17 = Δ71 = Δ35 = Δ53 =

−2m1m2

ρ0λ0k2
(
k2 + 2m2

1 + 2m2
2

) ,
Δ24 = Δ42 =

−2m2
2

λ20k
2
(
k2 + 4m2

2

) ,
Δ55 = Δ77 =

k2 + 2m2
1

ρ20k
2
(
k2 + 2m2

1 + 2m2
2

) ,
Δ66 = Δ88 =

k2 + 2m2
1

ρ20k
2
(
k2 + 4m2

1

) ,
Δ68 = Δ86 =

−2m2
1

ρ20k
2
(
k2 + 4m2

1

) .
Making over the propagator Δ(1)(k) (3.48) the transform
V :

Δ(1)′(k) = VΔ(1)(k)V, V =

(
λ0I4 0
0 ρ0I4

)
(3.49)
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(the transformation of V is not unitary, the propagator
Δ(1)(k) and ΦA do not belong to the field of a single par-
ticle) and then convert U :

Δ(1)′′(k) = UΔ(1)′(k)U−1,

(3.50)

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−m2
M 0 0 0 0 0 m1

M 0
0 1√

2
0 1√

2
0 0 0 0

0 0 −m2
M 0 m1

M 0 0 0
0 1√

2
0 − 1√

2
0 0 0 0

0 0 m1
M 0 m2

M 0 0 0
0 0 0 0 0 1√

2
0 1√

2
m1
M 0 0 0 0 0 m2

M 0
0 0 0 0 0 1√

2
0 − 1√

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
M =

√
m2

1 +m2
2

)
, when overridden

Δ̄(1)′′(k) = Z−13 Δ(1)′′(k), Z−13 =
1

16π2
ln

Λ2

m2
, (3.51)

we obtain the final expression for the desired propagator
Δ̄(1)′′(k) in the diagonal form

Δ̄(1)′′(k) = diag

(
1

k2
,

1

k2 + 4m2
2

,
1

k2
,
1

k2
,

1

k2 + 2m2
1 + 2m2

2

,

(3.52)
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1

k2 + 4m2
1

,
1

k2 + 2m2
1 + 2m2

2

,
1

k2

)
.

The field Φ′′(x) = UΦ′(x) = UV Φ(x), corresponding to
(3.52), becomes

Φ′′ =
1

M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−m2λ
2
0〈d̄RuL〉+m1ρ

2
0〈d̄LuR〉

M√
2
λ20〈d̄d〉

−m2λ
2
0〈ūLdR〉+m1ρ

2
0〈ūRdL〉

M√
2
λ20〈d̄γ5d〉

m1λ
2
0〈ūLdR〉+m2ρ

2
0〈ūRdL〉

M√
2
ρ20〈ūu〉

m1λ
2
0〈d̄RuL〉+m2ρ

2
0〈d̄LuR〉

M√
2
ρ20〈ūγ5u〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.53)

We present here also formulas to find the corrections
to the fermion Green function and the propagator of the
collective fields. From (3.41) and the fact that

δG(0)(x, y)

δJA(x)
= −

∫
d4td4zG(0)(x, t)

×
(
δG(0)−1(t, z)
δJA(x)

)
G(0)(z, y), (3.54)

δG(0)−1(t, z)
δJA(x)

= −B′0
δΦ0(t)

δJA(x)
δ(t− z),
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we find the one-loop correction to G(0)

G(1)(x, y) =

∫
d4zG(0)(x, z)B′AΦ

(1)
A (z)G(0)(z, y)

(3.55)

+

∫
d4zd4tG(0)(x, z)Σ(1)(z, t)G(0)(t, y),

Σ(1)(z, t) = −iBAG
(0)(z, t)B′DΔ

(0)
DA(t, z), (3.56)

where Σ(1)(z, t) is the lowest approximation to the mass
operator. Using (3.39), from (3.36) we can find the n-loop
corrections to the one-particle Green function of fermions.
To find the n-loop corrections to the propagator of the
collective fields it is necessary to use the formula [349]

Δ
(n)
DA(x, y) =

δΦ
(n)
D (x)

δJA(y)
. (3.57)

Similarly, we can calculate the multi-particle Green func-
tion, and apply the reduction formulas [317], to find the
amplitude of the different processes.

Thus, as a result of dynamical breaking of SU(2)L ⊗
U(1)-symmetry u, d-quarks acquired (dynamic) masses
m1, m2. In the spectrum of collective excitations there
are 4 massless (Goldstone) fields and 4 massive states (see
(3.52)). Quark masses are given by the corresponding val-
ues of the vacuum expectation values (3.42). Similarly
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for the other masses of the quarks one can organize the
four-fermion quark interaction of other generations(

c
s

)
,

(
t
b

)
.
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4.1 Local SU(2)L ⊗ U(1)-invariant
model

In the original local SU(2)L ⊗ U(1)-invariant model, an
independent as well as a mixed inclusion of different gener-
ations of fermions in the four-fermion interaction are con-
sidered. This leads to the fact that as a result of dynamic
symmetry breaking the effective interaction Lagrangian of
the gauge vector, fermion and collective scalar fields in
the one-loop approximation is of the same form as in the
theory of GWS. If the inclusion of fermions of different
generations is in an independent manner, the role of mas-
sive scalar fields in each sector plays fermion-antifermion
bound states. In the model with the mixed inclusion of
fermions, the role of the Higgs boson plays one collective
scalar field, which is the sum of fermion-antifermion pairs
of all generations.

Mass formulas for the scalar field and the vector gauge
fields are found. It is noted that the mass of the composite
Higgs particle can be assumed to be mH ≈ 2mt (mt is the
mass of t-quark). The content of this chapter is based on
the works of [341] - [345].
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4.1.1 SU(2)L⊗U(1)-invariant four-fermion model
with independent fermion generations

The locally SU(2)L⊗U(1)-invariant four-fermion Lagrangian
with (n) generations of fermions is chosen in the form (us-
ing the diagonal matrix of the coupling constants λij =
λi0δij (3.17))

L = −L̄nγμDμL
n − R̄nγμDμR

n − 1

4
FμνFμν − 1

4
Ga

μνG
a
μν

+λn0 L̄
nRnR̄nLn, (4.1)

where

Dμ(x) = ∂μ − i
[
gbaμ(x)T

a − 1

2
g′Y aμ(x)

]
,

Fμν = ∂μaν − ∂νaμ,
Ga

μν = ∂μb
a
ν − ∂νbaμ + gfabcbbμb

c
ν (a, b, c = 1, 2, 3).

Combinations of potentials baμ and aμ of gauge fields, as
usual, form known potentials of W±, Z, A-fields, (1.3).

Introducing the notations (β = 1/
√
g2 + g′2):

ξ =

(
νL
ψ

)
, Cμ =

⎛⎜⎜⎜⎝
W+

μ

W−
μ

Aμ

Zμ

⎞⎟⎟⎟⎠ , R = β

⎛⎜⎜⎜⎝
0
0
−g′
g

⎞⎟⎟⎟⎠ ,
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V =

⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠ , H =

⎛⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎠ ,
and Schwinger external sources of scalar JA (A = 1, 2, 3, 4)
and vector JA+

μ = (JW−
μ , JW+

μ , JA
μ , J

Z
μ ) types, the La-

grangian (4.1) is rewritten in the form

L = −ξ̄n∂̂ξn +
λn0
2

(
ξ̄nM ′

Aξ
n) (ξ̄nMAξ

n)+ ξ̄nBA
μ ξ

nCA+
μ

−1

4
CA+
[μν]C

A
[μν] − igCA+

ν CF+
[μν]C

L+
μ

×
(
RAV FHL −RAV LHF +RFV LHA

)
(4.2)

+g2 (δρνδβμ − δρβδνμ)

×CA+
ν CF+

ρ CN+
β CL+

μ V A
(
1

2
V FHN +RFRN

)
HL

+ξ̄nMAξ
nJA + CA+

μ JA
μ .

Here M ′
1 = M3, M

′
3 = M1, M

′
2 = M4, M

′
4 = M2, (see

(3.7)),

B1
μ = B

′2
μ =

g√
2

⎛⎜⎝ 0 0 τ̄μ
0 0 0
0 0 0

⎞⎟⎠ ,
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B2
μ = B

′1
μ =

g√
2

⎛⎜⎝ 0 0 0
τ̄μ 0 0
0 0 0

⎞⎟⎠ ,

B3
μ = B

′3
μ = e

⎛⎜⎝ 0 0 0
0 0 τ̄μ
0 τμ 0

⎞⎟⎠ ,

B4
μ = B

′4
μ =

⎛⎜⎜⎝
1
2β τ̄μ 0 0

0 0 g
′2−g2
2 βτ̄μ

0 g
′2βτμ 0

⎞⎟⎟⎠ .
In order to allow the introduction of the Lorentz gauge

of potentials of vector fields, the Lagrangian (4.2) is aug-
mented by the Lagrangian of “ghost” fields [350]

Lghost = C̄+∂2μC − igCA+
μ

(
∂μC̄

B+
)
CD+KABD

+C̄D+ηD + η̄DCD+, (4.3)

where

C =

⎛⎜⎜⎜⎝
C+

C−

CA

CZ

⎞⎟⎟⎟⎠ , KABD = HAH [BLD] − V AV [BLD]

+RAV [BHD],
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V [BLD] = V BLD − V DLB, L = β

⎛⎜⎜⎜⎝
0
0
g′

g

⎞⎟⎟⎟⎠ ,
ηD are Schwinger’s external sources.

The notations introduced allow us to write initial and
intermediate equations of the model in a more compact
form, but do not interfere to formulate definitive solutions
to these equations in the usual way.

Based on the sum of the Lagrangians (4.2) and (4.3),
using conventional variational methods, equations of mo-
tion for the fields ξ(x), CA

μ (x), C̄
D
μ (x) are as follows:(

∂̂ − λn0M ′
Aξ̄

n(x)MAξ
n(x)−MAJA(x)

−B′A
μ CA

μ (x)

)
ξk(x) = 0, (4.4)

−∂2νCL
μ + ∂ν∂μC

L
ν − ig

[
∂ν
(
CF+
μ CB+

ν

)
+CF+

[νμ]C
B+
ν

]
mLFB

(4.5)

−g2CF+
μ CN+

ν CB+
ν mLFNB = JL

μ + ξ̄nBL
μ ξ

n

+ig
(
∂μC̄

B+
)
CD+KLBD,
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−∂2ν C̄D − igCA+
μ

(
∂μC̄

B+
)
KABD = η̄D, (4.6)

where we use the notations

mLFB = HLV [FRB] + V LR[FHB] +RLH [FV B],

mLFNB = HL
(
H [FV N ]V B +RNR[FV B]

)
+V L

(
V [FHN ]HB +RNR[FHB]

)

+RL
(
V [FRN ]HB +H [FRN ]V B

)
.

We take into account the definition

δS

δJA+
μ (x)

= i
(
TCA

μ (x)S
)
, (4.7)

where the scattering matrix: S = T exp
{
i
∫
d4x L(x)}.

In the Heisenberg representation, we write the following
relation

δ

δJA+
μ (x)

〈Tξn(x)ξ̄n(y)〉 = i〈Tξn(x)ξ̄n(y)CA
μ (x)〉

(4.8)
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−i〈CA
μ (x)〉〈Tξn(x)ξ̄n(y)〉,

by which, with the help of (4.4), the DS equation for the
propagator Gn(x, y) = i〈Tξn(x)ξ̄n(y)〉 of each generation
becomes(

∂̂ + iλn0M
′
A

δ

δJA(x)
−MA〈Φn

A(x)〉+ iBA
μ

δ

δJA
μ (x)

(4.9)

−B′A
μ 〈CA

μ (x)〉
)
Gn(x, y) = δ(x− y).

Here

〈Φn
A(x)〉 = λn0 〈T ξ̄n(x)M ′

Aξ
n(y)〉+ JA(x) (4.10)

are collective scalar fields, 〈CA
μ (x)〉 is the vacuum expec-

tation value of gauge vector fields.
We now use the definition for the propagators of gauge

vector fields

DAB
μν (x, y) =

δ〈CA
μ (x)〉

δJB
ν (y)

(4.11)

and scalar fields

Δn
AB(x, y) =

δ〈Φn
A(x)〉

λn0δJB(y)
. (4.12)

With (4.11), (4.12) and the relations

δ

δJA
μ (x)

=

∫
d4zDBA

νμ (z, x)
δ

δ〈CB
ν (z)〉 , (4.13)
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δ

δJA(x)
= λi0

∫
d4zΔi

BA(z, x)
δ

δ〈Φi
B(z)〉

, (4.14)

we write (4.9) for the propagator of the fermion fields in
the integral form:(

∂̂ −MA〈Φn
A(x)〉 −B

′A
μ 〈CA

μ (x)〉
)
Gn(x, y)

(4.15)

−
∫
d4t Σ(x, t)Gn(t, y) = δ(x− y).

Here

Σ(x, t) = Σ1(x, t) + Σ2(x, t) (4.16)

is the mass operator, where

Σ1(x, t) = i (λn0 )
2M ′

A

∫
d4wd4vGn(x, v)

×Γn
D(w, v, t)Δ

n
DA(w, x), (4.17)

Σ2(x, t) = iBA
μ

∫
d4wd4vGn(x, v)ΓnN

ν (w, v, t)DnA
νμ (w, x),

(4.18)
and the vertex operators are defined as follows:

Γn
D(w, v, t) =

δ (Gn(v, t))−1

δ〈Φn
D(w)〉

, ΓnN
ν (w, v, t) =

δ (Gn(v, t))−1

δ〈CN
ν (w)〉 .

(4.19)
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We obtain the equation for the vacuum expectation 〈CA
μ (x)〉

by using the obvious relations

δ〈CN
μ 〉

δJL
ν

= i〈CN
μ C

L+
ν 〉 − i〈CN

μ 〉〈CL+
ν 〉,

(4.20)
δ〈CN

[μσ]〉
δJL

ν

= i〈CN
[μσ]C

L+
ν 〉 − i〈CN

[μσ]〉〈CL+
ν 〉,

and averaging (4.5) over the vacuum:

−∂2ν〈CL
μ (x)〉+ ∂ν∂μ〈CL

ν (x)〉
−ig (2δσαδμρ − δμαδσρ − δμσδρα)

×
(
−iδ〈T∂αC

F
ρ (x)〉

δJB
σ (x)

+ 〈∂αCF
ρ (x)〉〈CB

σ (x)〉
)
mLF+B

−ig2
(
2δσαδμρ − δμαδσρ

)
DMK

ρσ (x, x)〈CP
α (x)〉MLP+M+K

+g2
(

δ

δJB
ν (x)

DF+N
μν (x, x)

−〈CB+

ν (x)〉〈CN+

ν (x)〉〈CF+

μ (x)〉
)
mLFNB (4.21)

= JL
μ (x) + iTr

[
BL

μG(x, x)
]

+

(
g
δ〈T∂μC̄B+(x)〉

δη̄D(x)
+ ig〈∂μC̄B+(x)〉〈CD+(x)〉

)
KLBD.
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After the variation of (4.21) by JB
ρ (y), we obtain the DS

equation for the propagator of gauge vector fields

−∂2νDLA
μβ (x, y)− ig (2δσαδμρ − δμαδσρ)

×
{[∫

d4v

(
∂xαδ(x− v)δiρ〈CB

σ (x)〉

−〈∂xαCB
ρ (x)〉δ(x− v)δiσ

)
mLC+B+

+g
(
DMK

ρσ (x, x) + i〈CM
ρ (x)〉〈CK+

σ (x)〉
)

×δαimLC+M+K
∫
d4vδ(x− v)

]
DCA

iβ (v, y)

+g〈CP
α (x)〉mLP+F+B δ

δJA
β (y)

DFB
ρσ (x, x)

(4.22)

−mLF+Bi
δ

δJB
σ (x)

δ〈T∂αCF
ρ (x)〉

δJA
β (y)

}

+g2
δ

δJA
β (y)

δ

δJB
ν (x)

DFN
μν (x, x)mLF+NB

= δμβδLAδ(x− y) + iTr

[
BL

μ

δ

JA
β (y)

G(x, x)

]

+g
δ

JA
β (y)

[
δ〈∂μC̄B+(x)〉

δη̄D(x)
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+i〈∂μC̄B+(x)〉〈CD+(x)〉
]
KLBD,

where ∂xα = ∂/∂xα,

mLF+B = mLFB
(
V F ↔ HF

)
,

mLP+M+K = mLPMK
(
V P ↔ HP , VM ↔ HM

)
.

Determining the three-point and four-point Green’s func-
tions for vector gauge fields as follows:

ΓHLC
αμσ (z, x, y) =

δ
(
DLC

μσ (x, y)
)−1

δ〈CH
α (z)〉 ,

(4.23)

ΓMHLC
βαμσ (t, z, x, y) =

ΓHLC
αμσ (z, x, y)

δ〈CM
β (t)〉 ,

we rewrite (4.22) by taking into account equation (4.13),
as ∫

d4v

{
−∂2νδμiδLCδ(x− v)

−ig (2δσαδμρ − δμαδσρ)
[∫

d4z

(
∂xαδ(x− z)δ(z − v)

×δiρ〈CB
σ (x)〉 − 〈CB

ρ (z)〉δ(x− v)δiσ
)
mLC+B+
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+g

(
DMK

ρσ (x, x) + i〈CM
ρ (x)〉

×〈CK+
σ (x)〉

)
δαim

LC+MKδ(x− v)

+i

∫
d4zd4td4w (∂xαδ(x− z))mLF+B + ig〈CP

α (x)〉

×δ(x− z)mLP+F+B
]
DFM

ρη (z, t)DNB
γσ (w, x)ΓCMN

iηγ (v, t, w)

+iTr

{
BL

μ

∫
d4td4w G(x, t)ΓC

i (v, t, w)G(w, x)

}
+g

∫
d4zd4td4w

(
∂xμδ(x− z)

)
(4.24)

×ḠBD(z, t)K̄CQN
i (v, t, w)ḠND(w, x)KLB+D

−ig
∫
d4z

(
∂xμδ(x− z)

×
(
K̄CB(v, z)〈CD+

(x)〉+ 〈C̄B(z)〉KCD+

i (v, x)
)
KLB+D

+g2
∫
d4zd4td4w

(∫
d4md4n

(
DKQ

αj (z,m)DDB
τν (n, x)

×DFM
μρ (x, t)DPN

σν (w, x) +DKB
αν (z, x)

×DFQ
μj (x,m)DDM

τρ (n, t)DPN
σν (w, x)

+DKB
αν (z, x)DFM

μρ (x, t)DPQ
σj (w,m)DDN

τν (n, x)
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×ΓCQD
ijτ (v,m, n)ΓKMP

αρσ (z, t, w)

)
−DKB

αν (z, x)DFM
μρ (x, t)DPN

σν (w, x)

×ΓCKMP
iαρσ (v, z, t, w)

)
mLF+NB

}
DCA

iβ (v, y)

= δμβδLAδ(x− y),
where

K̄CQN
i (v, t, w) =

δ
(
ḠQN (t, w)

)−1
δ〈CC

i (v)〉 ,

K̄CB
i (v, z) =

δ〈C̄B(z)〉
δ〈CC

i (v)〉 ,

KCB+

i (v, z) =
δ〈CB+

(z)〉
δ〈CC

i (v)〉 , ḠBD(z, x) =
δ〈C̄B(x)〉
δη̄D(z)

.

We now introduce the DS equation for the vertex oper-
ator ΓB

ν (z, x, y). Using (4.19), from (4.15), we obtain the
equation

ΓnB
ν (z, x, y) = −B′B

ν δ(z − x)δ(x− y)
(4.25)

−MA
δ〈Φn

A(x)〉
δ〈CB

ν (z)〉δ(x− y)− ΛB
ν (z, x, y),
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where

ΛB
ν (z, x, y) =

δΣ(x, y)

δ〈CB
ν (z)〉 (4.26)

is the vertex function.
Taking the variational derivative of both sides of (4.10),

we find

δ〈Φn
A(x)〉

δ〈CB
ν (z)〉 = i(λn0 )

2
∫
d4td4wd4vΔ

′n
AN (x, t)

×Tr
{
M ′

NG
n(t, w)

[
B

′B
ν δ(w − v)δ(z − w)

(4.27)

+ΛB
ν (z, w, v)

]
Gn(v, z)

}
.

Here we have introduced the Green function Δ
′n
AN (x, t),

satisfying ∫
d4t

[
(λn0 )

2δANδ(x− t)− i(λn0 )2

×Tr
{
M ′

NG
n(x, t)MNG

n(t, x)

}]
Δ

′n
NB(t, y)

(4.28)

= δABδ(x− y).
As a result, we finally obtain the equation

ΓnB
ν (z, x, y) = −B′B

ν δ(z − x)δ(x− y)

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



128 CHAPTER 4.

−MAi(λ
n
0 )

2
∫
d4td4wd4vΔ

′n
AN (x, t)Tr

{
M ′

N

(4.29)

×Gn(t, w)
[
B

′B
ν δ(z − w)δ(w − v) + ΛB

ν (z, w, v)
]
Gn(v, t)

}
×δ(x− y)− ΛB

ν (z, x, y).

Taking the variation with respect to JB(y) from (4.10), we
obtain the DS equation, which is subject to the propagator
(4.12) of collective scalar fields:∫
d4t [λn0δ(x− t)δAN + Pn

NB(x, t)]Δ
n
NB(t, y) = δABδ(x−y),

(4.30)
where

Pn
AN (x, t) = i(λn0 )

2Tr

{
M ′

A

∫
d4wd4vGn(x,w)

×Γn
N (t, w, v)Gn(v, x)

}
(4.31)

is the polarization operator.
Proceeding in a similar way, you can get other DS

equations, in particular, for the propagator of the “ghost”
fields.
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4.1.2 Perturbation expansion and
the effective Lagrangian

To solve the DS equations (4.15), (4.24) and (4.30), we use
an expansion in loops of the form (3.39) (see [348])

〈Φn
A(x)〉 = Φn

0A + εΦn
1A + ε2Φn

2A + ...,

Gn(x, y)) = Gn
0 + εGn

1 + ε2Gn
2 + ...,

〈CA
μ (x)〉 = CA

0μ + εCA
1μ + ε2CA

2μ + ..., (4.32)

DAB
μν (x, y) = DAB

0μν + εDAB
1μν + ε2DAB

2μν + ...,

Δn
AB(x, y) = Δn

0AB + εΔn
1AB + ε2Δn

2AB + ... .

After substituting (4.32) into (4.15), (4.24), and (4.30),
it is necessary to equate the terms containing the same
powers of ε (indicating the order of the loop expansion). It
should be noted that the functional derivative of the source
transfers the n-loop value into the (n+ 1)-loop value.

As a result of the first order of the expansion in loops,
we obtain the following equation for the fermion propaga-
tor:(

∂̂ −MAΦ
n
0A −B

′A
μ CA

0μ

)
Gn

0 (x, y) = δ(x− y). (4.33)

Putting JA
μ (x) = 0, we come to the condition 〈CA

μ (x)〉 = 0

and CA
0μ = 0. This is a consequence of the fact that
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the Lorentz symmetry is not broken spontaneously. Then
(4.33) takes the form (3.14), and the corresponding solu-
tion in momentum space, coincides with (3.19). Recall
that it follows from the form of the Green function (3.19)
that all generations of neutrinos are massless and leptons ψ
(e, μ, τ) as a result of dynamic symmetry breaking acquire
masses m2

n = |Φn
01|2 + |Φn

02|2.
To obtain the mass spectrum ofW±

μ , Zμ, and Aμ fields,
we consider the DS equations for the propagators of the
gauge vector fields (4.22). Using (4.32) and restricting
two-loop approximation, from which we retain only the
diagrams shown in Fig. 4.1, where the wavy lines corre-
spond to the gauge vector fields, dot-dash lines correspond
to “ghosts”, solid lines correspond to fermions and inter-
mittent lines correspond to collective scalar fields. Going
to the momentum space, the DS equation can be written
as

(
k2δμiδLC +ΠLC

1μi(k) + ΠLC
2μi(k)

)
DCA

2iβ (k) = δμβδLA.

(4.34)
Here the polarization operator ΠLC

1μi(k) is defined as fol-
lows:

ΠLC
1μi(k) = RLC

1μi + Π̃LC
1μi(k) + Π̂LC

1μi(k) + Π̄LC
1μi(k), (4.35)
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Figure 4.1: Loop diagrams.

where

RLC
1μi =

ig2

(2π)4
(2δμσδνi − δμiδνσ)

∫
d4pDDK

0σν (p)m
LD+C+K ,

(4.36)
RLC

1μi ≡ (2δμσδνi − δμiδνσ)RLC
σν , (4.37)

Π̃LC
1μi(k) =

ig2

(2π)4
mLF+B (2δσαδμρ − δμαδσρ)

(4.38)

×
∫
d4ppαD

FM
0ρη (p)D

NB
0γσ(p− k)ΓCMN

0iηγ (p, p− k),

Π̂LC
1μi(k) =

ig2

(2π)4
KA+N+QKLB+D

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



132 CHAPTER 4.

×
∫
d4ppμḠ

BQ(p)(pi − ki)ḠND(p− k), (4.39)

Π̄LC
1μi(k) = −

i

(2π)4
tr

{
BL

μ

∫
d4pGn

0 (p)B
′C
i Gn

0 (p− k)
}
.

(4.40)
The analytical expression corresponding to the fourth pole
diagram in Fig. 4.1 has the form

ΠLC
2μi(k) =

(λn0 )
2

(2π)4
tr

{
BL

μ

∫
d4pGn

0 (p)MMG
n
0 (p− k)

}
(4.41)

×Δn
0MN (k)tr

{
M ′

N

∫
d4qGn

0 (q)B
′C
i Gn

0 (q − k)
}
.

Note that the propagator of the collective fields, defined
by (4.12), is associated with the propagator (3.26) by a
transformation of a basis in the space of functions ΦA(x):

(Tn
AB(x, y))

−1 =
[
D1 (Δ

n(x, y))−1D2

]
AB

, (4.42)

where

D1 =

⎛⎜⎜⎜⎝
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞⎟⎟⎟⎠ , D2 =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ . (4.43)
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The relationship (4.42) is due to the definition of the prop-
agator

Tn
AB(x, y) =

δ〈Φn
A(x)〉

λn0δJ
∗
B(y)

. (4.44)

Using the values (3.27) and the relation (4.42), after the
renormalization

(λn0 )
2Δn

0 (k) = λ2Δ̄n
0 (k), (4.45)

where λ2 ≡ Z3, we find

Δ̄n
0 (k) =

1

k2
− 2m2

n

k2(k2 + 4m2
n)

⎛⎜⎜⎜⎝
0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

⎞⎟⎟⎟⎠ . (4.46)

Evaluating (4.41) with (4.46), we obtain non-zero elements
of ΠLC

2μi (up to O(λ2)):

Π11
2μi(k) = Π22

2μi(k) = −
λ2g2

2

∑
n

m2
n

kμkν
k2

(
1

16π2
ln

Λ2

m2

)2

,

(4.47)

Π44
2μi(k) = −λ2

g2 + g
′2

2

∑
n

m2
n

kμkν
k2

(
1

16π2
ln

Λ2

m2

)2

.

We choose the constant λ to be the same for all generations
of fermions.
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By imposing the requirement

kμkνΠμi(k) = 0, (4.48)

with the one-loop approximation, we obtain

ΠLC
1μi(k)+ΠLC

2μi(k) =

(
δμi − kμki

k2

)∑
n

(
ΠLC

1 (k) + ΠLC
2 (k)

)
,

(4.49)
where

Π11
1 (k) = Π22

1 (k) =
g2

3π2
k2 ln

Λ2

m2
,

Π33
1 (k) =

e2

48π2
19k2 ln

Λ2

m2
,

(4.50)

Π34
1 (k) = Π43

1 (k) =
−16g2 + 3g

′2

48π2
eβk2 ln

Λ2

m2
,

Π44
1 (k) =

−16g4 + 3g
′4

48π2
β2k2 ln

Λ2

m2
,

Π11
2 (k) = Π22

2 (k) =
λ2g2

2

∑
n

m2
n

(
1

16π2
ln

Λ2

m2

)2

,

(4.51)

Π44
2 (k) = λ2

g2 + g
′2

2

∑
n

m2
n

(
1

16π2
ln

Λ2

m2

)2

.

As seen from (4.50), one-loop approximation, ΠLC
1 (k), does

not cause the masses of gauge vector bosons, and two-loop
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approximation of ΠLC
2 (k), as it follows from the form of

equations (4.51), leads to the values mW �=, mZ �= 0. Ob-
viously, the appearance of the masses of the intermediate
vector bosons is associated with the formation of the col-
lective scalar fields ΦA(x); the propagator behaves as 1/k

2

(see also [351]).
From (4.51) we find the following expression for the

squared mass of gauge bosons W±, Z:

m2
W =

g2

2λ2

∑
n

m2
n, m2

Z =
g2 + g

′2

2λ2

∑
n

m2
n. (4.52)

It follows from (4.50) and (4.51) that the mass of the
photon field Aμ is equal to zero.

After the regularization procedure, we note that the
propagator of vector gauge fields in this model can be writ-
ten as (in the Landau gauge):

D̄C
2μi(k) =

δμν − kμkν/k2
k2 + m̄2

C +O(g4)
. (4.53)

Here, m̄2
C (at C =W±, Z) are renormalized masses squared

of W±, Z-bosons (see (4.52)):

m̄2
W =

ḡ2

2λ2

∑
n

m2
n, m̄2

Z =
ḡ2 + ḡ

′2

2λ2

∑
n

m2
n, (4.54)

where ḡ, ḡ′ are renormalized coupling constants.
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Thus, due to the four-fermion interaction, the genera-
tion of the lepton masses as e, μ, τ , and the intermediate
vector bosons occurred. A similar situation exists in the
quark sector.

You can go to such a basis in the space of functions
ΦA, in which the propagator of the collective fields (4.46)
is diagonalized and takes the form (see Sec. 3.2)

Δ̄n
2 (q) = diag

(
1

q2
,
1

q2
,
1

q2
,

1

q2 + 4m2
n

)
, ΦA =

⎛⎜⎜⎜⎝
Φn
1

Φ∗n1
χn

κn

⎞⎟⎟⎟⎠ ,
(4.55)

Φn
2 = κn + iχn, κn =

1

2
λn0 〈ψ̄nψn〉.

Thus, for each generation of fermions, subject to the inclu-
sion of each of them, we have three scalar massless (Gold-
stone) fields and one massive field (κn) with the mass 2mn.
It will be shown that the Goldstone fields are “eaten” in
the same way as in the standard model. In the next section
it will be given a more realistic scheme of mixing lepton
and quark generations, which will determine the existence
of a heavy composite scalar (Higgs) boson. Now we calcu-
late the total effective action of the model.

In Sec. 3.1.2 for the global SU(2)L ⊗ U(1)-invariant
model the Lagrangian was built by taking into account
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only the interaction of collective scalar fields with each
other (3.30). We now construct the effective Lagrangian
corresponding to the interaction of fermions and vector
gauge fields with the scalar collective fields. We start from
the integral of the action which has the following structure
(see Fig. 4.2):

S = −
[∫

d4xd4yd4z

{
ξ̄n(x)Γ(n)A(z, x, y)ξn(y)〈Φn

A(z)〉

+
1

2(λn0 )
2
〈Φn∗

A (x)〉Γ(n)NAB
μ (z, x, y)〈Φn

B(y)〉〈CN
μ (z)〉

+
1

2(λn0 )
2
〈CA∗

μ (x)〉Γ(n)NAB
μν (z, x, y)〈CB

ν (y)〉〈Φn
N (z)〉

}
(4.56)

+
1

(λn0 )
2

∫
d4xd4z〈Φn∗

A (x)〉Γ(n)DA
μ (z, x)〈CD

μ (z)〉

+
1

4(λn0 )
2

∫
d4xd4yd4zd4t〈Φn∗

A (x)〉Γ(n)DNAB
μν (t, z, x, y)

×〈Φn
B(y)〉〈CN

ν (z)〉〈CD
μ (t)〉

]
.

The problem reduces to finding the Green functions in-
troduced:

Γ(n)A(z, x, y) = λn0
δ (Gn(x, y))−1

δ〈Φn
A(z)〉

,
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Γ(n)DA
μ (z, x) =

1

λn0

∫
d4t

δ〈Φn
N (t)〉

δ〈CD
μ (z)〉

(
Δ

(n)
NA(t, x)

)−1
,

(4.57)

Γ(n)NAB
μ (z, x, y) =

δ (Δn
AB(x, y))

−1

δ〈CN
μ (z)〉 , Γ(n)NAB

μν (z, x, y)

= λn0
δDAB−1

μν (x, y)

δ〈Φn
N (z)〉 ,

Γ(n)DNAB
μν (t, z, x, y) =

δ (Δn
AB(x, y))

−1

δ〈CD
μ (t)〉δ〈CN

ν (z)〉

=
(λn0 )

2δDAB−1
μν (x, y)

δ〈Φn
D(t)〉δ〈Φn

N (z)〉 .

Restricting one-loop approximation in the momentum rep-
resentation, we have:

Γ
(n)DA
1μ (p) =

iλn0
(2π)4

∫
d4ktr

{
M ′

AG
n
0 (k + p)B

′D
μ Gn

0 (k)
}
.

(4.58)
After a direct computation of (4.58), we find the non-zero

elements of Γ
(n)DA
1μ (p) (up to O(λ2)):

Γ(n)21
μ (p) = −Γ(n)13

μ (p) = − g√
2

mn

λ2
pμ,

(4.59)

Γ(n)42
μ (p) = −Γ(n)44

μ (p) = −mn

λ2
pμ
g2 + g

′2

2
β.
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Accordingly for other Green’s functions, we obtain the re-
lations of the type:

Γ(n)NAB
μ (p, q) = − i(λ

n
0 )

2

(2π)4
tr

{
M ′

A

∫
d4k

[
Gn

0 (k + p)B
′N
μ

(4.60)

×Gn
0 (q+ k)MBG

n
0 (k) +Gn

0MBG
n
0 (k− q)B

′N
μ Gn

0 (k− p)
]}
.

After the integration, up to O(λ2), we have

Γ(n)NAB
μ (p, q) = (pμ + qμ)Z

−1
3 Γ

(n)
NAB, (4.61)

where

Γ
(n)
121 = Γ

(n)
212 = −Γ(n)

134 = −Γ(n)
243 = −

g√
2
,

Γ
(n)
311 = −Γ(n)

333 = e,

(4.62)

Γ
(n)
411 = −Γ(n)

433 =
g
′2 − g2
2

β,

Γ
(n)
422 = −Γ(n)

444 =
g
′2 + g2

2
β.

Similarly, for the function Γ
(n)NAB
1μν , we get

Γ
(n)NAB
1μν (p, q) = − iλn0

(2π)4
tr

{
BA

μ

∫
d4k

[
Gn

0 (k + p)MN
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(4.63)

×Gn
0 (q+k)B

′B
ν G0(k)+G

n
0 (k)B

′B
ν Gn

0 (k−q)MNG
n
0 (k−p)

]}
,

and up to O(λ2) from (4.63), we find that

Γ
(n)NAB
1μν = δμν

mn

λ2
ΓNAB,

Γ123 = Γ131 = Γ313 = Γ332 =
eg√
2
,

Γ124 = Γ314 = Γ342 = Γ141 =
eg′√
2
, (4.64)

Γ211 = Γ222 = Γ411 = Γ422 = −g
2

2
,

Γ244 = Γ444 = −g
′2 + g2

2
.

The function Γ
(n)DNAB
1μν (p, q, k) in the first approximation,

using the expansion in loops, has the final form:

Γ
(n)DNAB
1μν (p, q, k) = − i(λ

n
0 )

2

(2π)4
tr

∫
d4tM ′

AG
n
0 (p+ t)B

′D
μ

(4.65)

×Gn
0 (q + t)B

′N
ν Gn

0 (q + t)MBG
n
0 (t) + ... ,

and after the direct computation leads to

Γ
(n)DNAB
1μν (p, q, k) = δμνZ

−1
3 ΓDNAB, (4.66)
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where

Γ1211 = Γ1222 = Γ1233 = Γ1244 = Γ2111

= Γ2122 = Γ2144 = Γ2133 =
g2

2
,

Γ1321 = Γ1334 = Γ2312 = Γ2343 = Γ3121

= Γ3134 = Γ3243 = Γ3212 = − eg√
2
,

Γ1421 = Γ1434 = Γ2412 = Γ2443 = Γ4121

= Γ4134 = Γ4212 = Γ4243 = − eg
′

√
2
,

(4.67)

Γ3411 = Γ3433 = Γ4311 = Γ4333 = βe
(
g
′2 − g2

)
,

Γ4422 = Γ4444 =
g
′2 + g2

2
,

Γ3311 = Γ3333 = 2e2, Γ4411 = Γ4433 =

(
g
′2 − g2

)2
2

β2.

Thus, the effective interaction Lagrangian corresponding
to the action (4.56) by taking into consideration (4.59)-

(4.67) takes the form (Γ
(n)
0A = −M ′

A):

L = −ψ̄n
Rν

n
LΦ

n∗
1 − ν̄nLψn

RΦ
n
1 − ψ̄nψnκn + iψ̄nγ5ψ

nχn
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− imn

λ2

[
g√
2

(
∂μΦ

n
1W

+
μ − ∂μΦn∗

1 W
−
μ

)
− i

β
∂μχ

nZμ

]

+
i

λ2

[
g√
2

(
W+

μ Φn∗
2 ∂

↔
μ Φn

1 +W−
μ Φn∗

1 ∂
↔
μ Φn

2

)
−eAμΦ

n∗
1 ∂

↔
μ Φn

1

−g
′2 − g2
2

βZμΦ
n∗
1 ∂

↔
μ Φn

1 −
1

2β
ZμΦ

n∗
2 ∂

↔
μ Φn

2

]

+
mn

2

[
eg√
2

(
W+

μ AμΦ
n
1 +W−

μ AμΦ
n∗
1

)
+
eg′√
2

(
W+

μ ZμΦ
n
1 +W−

μ ZμΦ
n∗
1

)
(4.68)

−g2κnW+
μ W

−
μ −

g
′2 + g2

2
κnZ2

μ

]

− 1

λ2

[
Φn∗Φn

(
g2

2
W+

μ W
−
μ +

g
′2 + g2

2
Z2
μ

)
− e√

2

(
Φn∗
2 Φn

1W
+
μ +Φn

2Φ
n∗
1 W

−
μ

) (
gAμ + g′Zμ

)
+|Φn

1 |2
(
βe
(
g
′2 − g2

)
AμZμ

+e2
(
A2

μ − Z2
μ

))]

− 1

λ2

[
4mnκ

nΦn+Φn +
(
Φn+Φn)2] ,
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where Φ∗∂↔μ Φ = Φ∗∂μΦ−(∂μΦ
∗)Φ, Φ+Φ = Φ∗1Φ1+Φ∗2Φ2.

As seen from (4.68), the resulting interaction Lagrangian
has the same form with the corresponding expression of the
GWS theory of electro-weak interactions, with the only
difference that each generation of leptons corresponds to
a variety of scalar fields.

Goldstone fields can be removed using the following
conversion of fermion operators

L =
1

Π

(
Φ′2 −Φ′1
Φ

′∗
1 Φ

′∗
2

)
L′, R = R′, Π =

√
Φ′Φ′+; (4.69)

then

Φ1 = 0, Φ2 = Π, Π+ = Π = κ. (4.70)

As a result, the interaction Lagrangian of fermion, gauge
vector, and massive scalar fields can be written as:

L = − λ√
2
ψ̄nψnκ̄n −

√
2mnλ(κ̄

n)3 − λ4

4
(κ̄n)4

(4.71)

−
(√

2
mn

λ
κ̄n +

(κ̄n)2

2

)(
g2

2
W+

μ W
−
μ +

g2 + g
′2

2
Z2
μ

)
.

Here

κ̄n = −
√
2λn0
2λ

〈ψ̄nψn〉
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is the renormalized collective scalar field playing the role
of a massive Higgs field for each generation of fermions.
In the Lagrangian (4.71) the self-interaction of collective
fields is added, taken from (3.30).

The considered model is a modification of the stan-
dard theory of electro-weak interactions of leptons and is
built by substituting the Higgs Lagrangian by the self-
interaction of leptons. It is shown that, in the two-loop
approximation, in this case, the formation of masses of in-
termediate W± and Z bosons and e, μ, τ leptons takes
place. However, in this scheme, including the four-fermion
interaction, the composite scalar particles - the Higgs par-
ticle counterparts, are lightweight and have the masses
2me, 2mμ, 2mτ .
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4.1.3 Mixed interactions between leptons of
different generations

Let us first consider the interaction of only leptons (3.4)
with the choice of the coupling constants as follows:

λij = λ0iλ0j . (4.72)

We start from the local SU(2)L⊗U(1)-invariant Lagrangian
which has a form similar to (4.1), where, however, instead
of the last term the four-fermion interaction is taken, and
is clearly written in the following expanded form (see (3.1),
(3.4)):

Lint =
∑
i,j

(
λ0iL̄

iRi
) (
λ0jL̄

jRj
)
. (4.73)

Based on this Lagrangian, we formulate DS equations
for various Green’s functions of the fields, find the solutions
of these equations in this approximation, and construct an
effective interaction Lagrangian for the phase with broken
symmetry of the vacuum.

For the fermion Green functionGk(x, y) = i〈ξk(x)ξ̄k(y)〉,
we have the following equation (see (4.9)):(

∂̂ + iλ0kM
′
A

δ

δJA(x)
− λ0kMA〈ΦA(x)〉+ iBA

μ

δ

δJA
μ (x)
(4.74)

−B′A
μ 〈CA

μ (x)〉
)
Gk(x, y) = δ(x− y),

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



146 CHAPTER 4.

where, in contrast to (4.10) of Sec. 6, the relation

〈ΦA(x)〉 =
∑
k

λ0k〈T ξ̄k(x)M ′
Aξ

k(x)〉+ JA(x), (4.75)

defining composite scalar fields, includes the amount of the
contributions of various generations of fermion-antifermion
pairs.

Rewriting (4.75) as

〈ΦA(x)〉 = i
∑
k

λ0kTr
{
M ′

AG
k(x, x))

}
+ JA(x), (4.76)

for the propagator ΔAB(x) = 〈δΦA(x)〉/δJB(y) of scalar
fields 〈ΦA(x)〉, we obtain the equation∫

d4w

[
δANδ(x− w)

+i
∑
k

λ0kTr

{
M ′

A

∫
d4td4zGk(x, t)Γk

N (w, t, z) (4.77)

×Gk(z, x)

}]
ΔNB(w, y) = δABδ(x− y),

which differs from (4.30) by the presence of summation by
generations of leptons.

The DS equation for the propagator of gauge vector
fields

DAB
μν (x, y) =

δ〈CA
μ (x)〉

δJB
ν (y)

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.1. LOCAL SU(2)L ⊗ U(1)-INVARIANT MODEL 147

is formally identical to the same equation (4.24) of Sec.
8; only one needs to take into account in addition to this
that the incoming Green’s function Gk(x, y) satisfies the
equation (4.74).

The solution of (4.74) in one-loop approximation is
similar to (3.19), but the masses of the “bottom” leptons
are now determined by the formula

m2
k = λ20k

(
|Φ01|2 + |Φ02|2

)
, (4.78)

from which the ratio of the masses of the leptons of differ-
ent generations is

mk

mn
=
λ0k
λ0n

. (4.79)

Substituting (3.19) in (4.76) and using (4.78) with 〈ΦA〉 =
const, we obtain the following gap equation connecting the
λ0k, Φ0A and the cut-off parameter Λ:

1 = − i

8π4

∑
k

∫
d4p

λ0kλ0k
p2 +m2

k

. (4.80)

The propagator of scalar fields satisfying the equation
(4.77) has, in a one-loop approximation (on a certain ba-
sis), the type (4.55), but the mass of the scalar field κ (one
for all generations) is expressed as follows:

m2
κ = 4

∑
m4

n∑
m4

k

. (4.81)
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The renormalization constant is given by

Z−13 =
(λ0k)

2

16π2
ln

Λ2

m2
.

The existence of poles in the propagators of the fields
ΦA(x) (4.55) indicates the formation of bound states, cor-
responding to the three massless and one massive scalar
particles, which can be regarded as analogues of three
Goldstone and one Higgs boson. We emphasize once again
that in this case of the inclusion of mixed four-fermion in-
teraction (see (4.73)) the role of a scalar Higgs boson plays
the composite scalar field formed by fermion-antifermion
pairs of all generations (see (4.81)).

The DS equation for the propagator of gauge vector
fields, written in the two-loop approximation in the mo-
mentum space, looks formally as (4.34). The polarization
operator ΠLC

1μν(k) is exactly the same expression (4.35),

and ΠLC
2μν(k) now has the following (analytical) form:

ΠLC
2μν(k) =

∑
k,n

λ0kλ0n
(2π)8

tr

{
BL

μ

∫
d4pGk

0(p)MMG
k
0(p− k)

(4.82)

×Δ1MN (k)tr

{
M ′

N

∫
d4qGk

0(q)B
′C
ν Gn

0 (q − k),
which takes into account only the term of the two-loop ap-
proximation, which is just responsible for the appearance
of the masses of the gauge fields, W±

μ and Zμ.
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After direct integration in (4.82), we find that, up to
O(λ2) non-zero elements of ΠLC

2μν(k) are as follows :

Π11
2μν(k) = Π22

2μν(k) = −Z3

∑
k

g2(λ0kmk)
2

2

×
(

1

16π2
ln

Λ2

m2

)2
kμkν
k2

, (4.83)

Π44
2μν(k) = −Z3

g2 + g
′2

2

∑
k

(λ0kmk)
2

×
(

1

16π2
ln

Λ2

m2

)2
kμkν
k2

.

Taking into account that, if the Lorentz gauge of vector
fields potentials is imposed, the relation (4.48) holds, and
we obtain the masses of the intermediate vector fields

m2
W = Z3

∑
k

g2(λ0kmk)
2

2

(
1

16π2
ln

Λ2

m2

)2

=
g2
∑

km
2
k

2λ2
,

(4.84)

m2
Z = Z3

g2 + g
′2

2

∑
k

(λ0kmk)
2

(
1

16π2
ln

Λ2

m2

)2

=
g2 + g

′2

2

∑
km

2
k

λ2
, mA = 0.
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Here we used the relation∑
k,n

(λ0kmk)
2

λ0nλ0n
=
∑
k

m2
k. (4.85)

The value of

λ−2 =
1

16π2
ln

Λ2

m2
(4.86)

plays the role of a free parameter of the theory, including
the dependence on the cut-off.

It is important to note that the formulas (4.84) for the
masses of gauge vector fields, although defined in this case
by (4.85), based on the assumption of a mixed interaction
of generations of fermions, coincide with similar expres-
sions obtained in Sec. 4.1.2 for the case of independent
incorporated different generations of fermions in the four-
fermion interaction.

We now construct the complete Lagrangian of inter-
acting fermions, collective, scalar and vector gauge fields.
Acting in the same way as it was done in Sec. 4.1.2, we
find the effective interaction Lagrangian in the one-loop
approximation:

L =
∑
k

{
λ0k

[
ψ̄k
Rν

k
LΦ

∗
1 + ν̄kLψ

k
RΦ1 + ψ̄kψkκ− iψ̄kγ5ψ

kχ
]

+
iλ0kmk

λ2

[
g2√
2

(
∂μΦ1W

+
μ − ∂μΦ∗1W−

μ

)
− i

β
∂μχZμ

]
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+
iλ0kλ0k
λ2

[
g2√
2

(
W+

μ Φ∗2∂
↔
μ Φ1 +W−

μ Φ∗1∂
↔
μ Φ2

)
−eAμΦ

∗
1∂
↔Φ1

−g
′2 − g2
2

βZμΦ
∗
1∂
↔
μ Φ1 − 1

2β
ZμΦ

∗
2∂
↔
μ Φ2

]
+
λ0kmk

λ2

[
eg√
2

(
W+

μ AμΦ1 +W−
μ AμΦ

∗
1

)
(4.87)

+
eg′√
2

(
W+

μ ZμΦ1 +W−
μ ZμΦ

∗
1

)
−g2κW+

μ W
−
μ −

g
′2 + g2

2
κZ2

μ

]

−λ0kλ0k
λ2

[
Φ+Φ

(
g2

2
W+

μ W
−
μ +

g
′2 + g2

4
Z2
μ

)

− e√
2

(
Φ∗2Φ1W

+
μ +Φ2Φ

∗
1W

−
μ

)
× (gAμ + g′Zμ

)
+|Φ1|2

(
AμZμeβ(g

′2 − g2) + e2(A2
μ − Z2

μ)
)]

−2
√
2
mkλ

3
0k

λ2
κΦ+Φ+

λ40k
λ2

(Φ+Φ)2
}
,

which corresponds to a set of diagrams shown in Fig. 4.1.
Removing the Goldstone fields (see (4.69)) and intro-

ducing the notations

κ→ − κ√
2
, κ̄ = Z

−1/2
3 κ, G =

λ

(
∑
m2

k)
1/2

, (4.88)
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The Lagrangian (4.87) can be represented as follows:

L = −
∑
k

G√
2
mkψ̄

kψkκ̄− κ̄
(

1√
2G

+
κ̄

4

)

×
(
g2W+

μ W
−
μ +

g2 + g
′2

2
Z2
μ

)
(4.89)

−G
4
m2

κκ̄
3 − G2

16
m2

κκ̄
4.

Thus, there is a formal agreement between the obtained
Lagrangian (4.89) and the corresponding expression of the
standard theory of electro-weak interactions of GWS. In
this case, however, unlike the case of independent switch-
ing of different generations of fermions in the nonlinear
spinor interaction (see Sec. 4.2), when there are several
varieties of scalar fields, the role of the massive scalar field
(the analogue of the Higgs field) has been one bound state

κ̄ = − 1√
2

∑
k,n

√
λ0kλ0k
λ

λ0n〈ψ̄nψn〉, (4.90)

representing the sum of the contributions of lepton-antilepton
couples of all generations.

Since the experimental values of the masses of fields
W±, Z known (mW � 80.6 GeV, mZ � 91 GeV), then
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using the relation ∑
A

mA � m2
τ

and

sin2 θW � 0.226, g2 =
8m2

WGF√
2

, GF � 10−5

m2
p

from (4.81), we find (see (4.84)):

λ2 � g2m2
τ

2m2
W

= 2
√
2GFm

2
τ � 10−4. (4.91)

Therefore the use of perturbation theory in the small value
of λ2/8π � 1 is justified. It follows from (4.86) that the
momentum cut-off Λ, with the values found for λ2, (4.91),
gives a very large value: Λ � m exp(8 × 105) and the
approach should work for large momentum transfer q < Λ.

In this case, however, it must be borne in mind that the
situation may change, given the contribution of light scalar
particles with the mass 2mτ and the coupling constant
(4.91) in the other observables. As calculations show [352],
the contribution of light scalar particles (with m0 → 0),
for example, in the anomalous magnetic moment of the
muon within the experimental limit gives

g0 =
λ2

8π
< 10−8. (4.92)
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Obviously, the value of (4.91) is not consistent with the
experimental limit (4.92). In this connection it is natural
to consider the generalization of the interaction (4.73) for
the case when quarks are included.
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4.1.4 Quark sector

Let us consider one generation of quarks (see Sec. 7). We
obtain the values of the masses of the intermediate vector
bosons in the scheme with the Lagrangian (3.31) using the
appropriate substitution ∂μ → Dμ. The DS equation here
will be of the form (4.34), where we must make a change
in matrices MA → B′A, M

′
A → BA, B

L
μ → TL

μ (see (3.7),
(3.32)). Given that

T 1
μ = T 2′

μ =
g√
2

⎛⎜⎜⎜⎝
0 0 0 τ̄μ
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ ,

T 2
μ = T 1′

μ =
g√
2

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 τ̄μ 0 0
0 0 0 0

⎞⎟⎟⎟⎠ ,

T 3
μ = T 3′

μ = e

⎛⎜⎜⎜⎝
0 −2

3 τ̄μ 0 0
−2

3τμ 0 0 0
0 0 0 1

3 τ̄μ
0 0 1

3τμ 0

⎞⎟⎟⎟⎠ , (4.93)

T 4
μ = T 4′

μ = β
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×

⎛⎜⎜⎜⎜⎝
0

(
−2

3g
′2 + 1

2β2

)
τ̄μ 0 0

−2
3g

′2τμ 0 0 0

0 0 0
(
1
3g

′2 − 1
2β2

)
τ̄μ

0 0 1
3g

′2τμ 0

⎞⎟⎟⎟⎟⎠ ,
the Lagrangian (3.33) by replacing ∂μ → Dμ can be writ-
ten as

L = −q̄∂̂q − 1

4
CA+
[μν]C

A
[μν] +

1

2
(q̄BAq)

(
q̄B′Aq

)
+ q̄TA

μ qC
A
μ

(4.94)

+LC + JA
μ C

A+
μ + q̄B′AqJA;

CA
[μν] = ∂μC

A
ν − ∂νCA

μ , Cμ = (Wμ, Zμ, Aμ),

LC is the interaction Lagrangian of vector gauge fields with
each other (see Chapter 3). The polarization operators
Πμν are also given by (4.35) - (4.41) for the corresponding
changes of the matrices.

Substituting in Πμν the expression for the propagator
of collective scalar fields (3.43), after direct integration we
see that the non-zero elements of the matrix ΠLC

2μν(k) are

Π11
2μν(k) = Π22

2μν(k) = −
g2

2

kμkν
k2

(
m2

1 +m2
2

) 1

16π2
ln

Λ2

m2
,

(4.95)
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Π44
2μν(k) = −

g
′2 + g2

2

kμkν
k2

(
m2

1 +m2
2

) 1

16π2
ln

Λ2

m2
.

Defining

λ−2 =
1

16π2
ln

Λ2

m2

as a free parameter and considering the natural demand
kμkνΠμν(k) = 0, we find that the masses of W± and Z
bosons are given by:

m2
W =

g2

2λ2

(
m2

1 +m2
2

)
, m2

Z =
g
′2 + g2

2λ2

(
m2

1 +m2
2

)
,

(4.96)
where m1, m2 are masses of u and d-quarks. In this case,
the propagator of gauge fields within this approximation
after regularization is written, as usual, in the form (4.53).
Formulas (4.96) here have the same form as in the case of
the lepton sector (4.54).

Thus, in the formation of collective scalar fields, due
to the mechanism of dynamic symmetry breaking, quarks
make additive contributions to the masses ofW±, Z bosons.

When considering all generations of quarks for violat-
ing CP -invariance it is necessary to introduce the Kobayashi
−Maskawa matrix.

Consider the possible generalization of the interactions
(3.4) and (3.31). Suppose there are three generations of

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



158 CHAPTER 4.

leptons and three generations of quarks:

lAL =

(
ν ′A
e′A

)
L

, qA =

(
p′A
n′A

)
,

e′A = (e′, μ′, τ ′), ν ′A = (ν ′e, ν
′
μ, ν

′
τ ), (4.97)

p′A = (u′, c′, t′), n′A = (d′, s′, b′),

where the prime fields indicate that they are eigenstates
of the gauge states, but not eigenstates of mass matrices.
The key point for future constructions is the possibility
to introduce a single fermion-antifermion field of the form
(see also [51]):

Φ′ = f
(e)
AB l̄ALe

′
BR + f

(p)
AB q̄

G
ALp

c′
BR + f

(n)
AB q̄ALn

′
BR, (4.98)

where qG = iτ2q
c, qc is the charge-conjugated field.

Then we can consider a model in which the Lagrangian
is standard (GWS), but instead of using the Higgs La-
grangian we consider the Lagrangian

L4 = Φ′Φ
′+. (4.99)

In this case, a single collective state 〈Φ〉, an analogue of
the Higgs fields, is an excited state of leptons and quarks.
After the transition to the phase with a broken ground
state, we arrive at a model in a form coinciding with the
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GWS, but with a composite Higgs particle. After that,
the transition to the eigenstates of the mass matrix with
a double unitary transformation and introduction phases
violating CP -invariance can be done in the standard way
(see [353]).

The mass formula for the composite Higgs particle will
be here as the type (4.81) (see [51]), but the amount will
be composed of masses of all fermions including quarks.
Then, for the presence of such a heavy t-quark, where its
mass is much greater than the masses of all other quarks,
from (4.81) we obtain the following approximate equation:
mκ � 2mt. This means that if we know the mass of t-
quark (mt = 174 GeV) the scalar boson mass can be es-
timated (mκ � 348 GeV) (of course, quite rudely) in this
scheme (4.98), (4.99). In turn, the mass formula (4.84)
for the intermediate vector bosons in this scheme remains,
and the amount will be included in the contributions of
all fermions (leptons and quarks with their colors). From
(4.84), approximately leaving in the sum only one term
m2

t , we obtain

m2
W � Ncg

2m2
t

2λ2
→ λ2 � 0.8

mt

mW
, (4.100)

where Nc is the number of colors (Nc = 3), so that λ2 �
1.727. Thus (see (4.92) λ2/(8π) � 0.07 < 1, and we can
use the perturbation theory.
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The approach with composite Higgs fields is more cost-
effective and natural, since there is no need to introduce by
“hands” a more fundamental Higgs boson. Through the
introduction of four-fermion interactions (4.98) (4.99) in
this model, as in the standard model of GWS, there is an
analogue of the Higgs particle, but this is not an additional
fundamental field, but a natural product of the dynamic
symmetry breaking - some bound fermion-antifermion state
formed from the fundamental fields of leptons and quarks
of all generations. It should be stressed that the model
will be “working” only under certain restrictions on the
amount of momentum transfer q (and therefore energy).
Indeed, if λ2 = 1.727, it follows from (4.86) that the value
of the momentum cut-off is

Λ = m exp(
8π2

λ2
) � 7m× 1019. (4.101)

It follows, that this scheme is applicable to very high en-
ergies.

Note also that, in turn, demand λ2/(8π) < 1 is not
generally required. Condition λ2/(8π) > 1 means the
transition to a strong-coupling theory, when one can no
longer use approximate calculations based on an expan-
sion in powers of λ2/(8π), and it is necessary to make
accurate calculations.

The main prediction of this approach is the mass of
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the composite scalar particle mκ � 2mt. Note that in
papers [68], [72] authors also make the prediction value
of the mass of the Higgs particle equal to 2mt assuming
a condensation of t-quarks. However, the assumptions in
the approaches of the authors [68], [72] differ from our
consideration (see the Introduction).

Thus, we consider the original model, as mentioned
above, which allows us to give, even rudely, the predic-
tions for the value of the mass of the composite Higgs
boson, mH . In the standard model under the assumption
about the value of the constant λ (λ < 1) in (1.2), one also
receives, at a standard value of v � 250 GeV (see (1.4)),
the limit mH < 350 GeV [353]. This restriction is obvi-
ously not inconsistent with the restriction placed above in
the framework of this approach. However, in the standard
model, in contrast to our scheme, there is no evidence of
the mass connection of mt and mH . Upon the detection
of the heavier Higgs boson (not 125 GeV boson), the rela-
tion mH � 2mt can be checked, and in this sense can be
considered as a prediction.

Note also that when considering the phenomenological
consequences of the model, one must take into account the
radiative corrections. Recall that the momentum cut-off
can be fixed.
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Figure 4.2: One-loop diagrams.
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5.1 Non-perturbative effects

This chapter explores spontaneous chiral symmetry break-
ing in low-energy QCD. It is shown that in the Abelian ap-
proximation of QCD, when the self-interaction of gluons
is taken into account, using the gluon propagator in the
infrared region (Dμν ∼ k−4), the chiral symmetry is spon-
taneously broken, and π-mesons play the role of pseudo-
Goldstone bosons. It is found that in the low-energy limit,
QCD provides an effective four-quark interaction. We cal-
culate the total effective action, the mass spectrum of light
mesons (π, σ) and the quark condensate in this model.

We also consider a different approach to low-energy
QCD, based on the concept of the instanton vacuum. Four-
quark ‘t Hooft’s interaction (1.6) is investigated in the case
of two flavors. Chiral symmetry breaking, and the spec-
trum of masses of light mesons are considered.

It is shown that the two approaches give, with some
approximation, the same masses of π, σ mesons and the
value of the quark condensate. In order to study the con-
finement, the infrared asymptotic behavior of the Green
function is investigated in a simple four-fermion model.
Since the single-fermion Green function possesses a sim-
ple pole in the infrared region, then this indicates that the
four-quark model does not describe confinement. Thus, we
can say that the model with four-quark interaction gives
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only a description of a kind of staging area of strong in-
teractions, which lies between the regions of asymptotic
freedom and quark confinement.

The content of this chapter is based on the results of
[354] - [358].
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5.1.1 Chiral symmetry breaking and effective
action in Abelian chromodynamics

QCD describes the interactions of quarks and gluons at
high energies. In the region of asymptotic freedom, per-
turbation theory is applicable, and the Feynman diagram
technique “works”. In the region of low energy, nonper-
turbative effects occur for which the perturbation theory
calculations are not possible due to the large value of the
coupling constant.

To justify the universality of QCD, along with the abil-
ity to perform calculations at low energies, it is neces-
sary to describe and explain the nonperturbative effects
- chiral symmetry breaking, confinement of quarks, etc.
That is necessary, in particular, to build effective chiral
Lagrangians, which well describe hadron physics at low
energy. This requires, in turn, the reformulation of QCD
in terms of hadronic degrees of freedom.

An important step in this direction was made in [359],
where the computational scheme for large Nc (Nc is the
number of quark colors) was developed at the assumption
of chiral symmetry breaking. There are other approaches
to the problem [126] - [130], [156] - [162], [359].

First, the chiral symmetry breaking in the field theory,
on the model level, has been demonstrated in the works [1]
- [3]. In the framework of QCD, the explanation of chiral
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symmetry breaking is associated with the condensation of
quarks. Phenomenology allows for average vacuum quark
fields of the values 〈ūu〉 = 〈d̄d〉 = −(240−250 MeV)3. We
also know that if the current quark masses are equal to
zero, the Goldstone bosons are the pions.

To simplify the examination, we shall proceed from
Abelian chromodynamics [360]. The non-Abelian nature
of QCD and the self-interaction of gluons are here taken
into account by using a singular infrared asymptotic be-
havior of the gluon propagator [361], [362]. The considered
gluon propagator is a nonperturbative solution of the cor-
responding DS equation. With this simplification of the
usual QCD there are no difficulties caused by the self-
interaction of gluons and the presence of “ghosts”. At the
same time, the Ward−Slavnov−Taylor identities have the
same form as in QCD [360].

This approach differs from the approach developed in
[161], [359], which used the conventional gluon propagator
and not the “infrared” one.

We start from the model that is QCD-inspired, with
the action

S0 =

∫
d4xd4y

{
−ψ̄i(x)

[
γμ
(
∂μ − ig0λaAa

μ(x)
)
+m0i

]
(5.1)

×ψi(x)δ(x− y)− 1

2
Aa

μ(x)
[
Dab

μν(x, y)
]−1

Ab
ν(y)

}
,
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where m0i are the current masses of the quarks, Aa
μ(x) are

gluon fields, and λa are Gell-Mann matrices acting in the
space of colors, Nc = 3. In (5.1) there is a summation over
the quark flavors i = 1, 2, ...Nf . As used herein the gluon
propagator in the infrared region is given by [361], [362]:

Dab
μν(x, y) = δabDμν(x− y)

= δabκ
2
[
(xμ − yμ)(xν − yν)

(xα − yα)2 − βδμν
]
, (5.2)

where κ2 is a parameter with the dimensions of a square
of a mass, and β is a dimensionless constant. Through
this, as already noted, the nonperturbative effect of gluon
self-interaction is automatically taken into account. In the
momentum space the gluon propagator (5.2) gives the sin-
gular infrared asymptotic behavior (k2)−2.

Note that in this approximation for quarks in (5.1) we
use the free propagator with the bare quark masses.

It will be shown below that in the restructuring of
the physical vacuum, quarks acquire dynamical masses,
which lead to the breaking of chiral symmetry. However,
even in the case where the current quark masses are zero
(m0i = 0), the state with massive quarks is energetically
more favorable, i.e. a violation of the chiral symmetry also
occurs.
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Assuming that the coupling constant g0 at low ener-
gies, which we consider, is a constant (see [363]), we thus
eliminate the infrared pole in the coupling constant.

We investigate in more detail the ability of chiral sym-
metry breaking (with m0i = 0) in the model based on
the action (5.1), motivated by QCD, and find an effective
action in terms of the meson degrees of freedom.

Let us use the representation of the generating func-
tional for Green’s functions in the form of a path integral.
Given that the action (5.1) is quadratic in the gluon fields,
you can make a Gaussian integration; as a result we find

Z[η̄, η] = N0

∫
Dψ̄Dψ exp

{
i
(
S + ψ̄η + η̄ψ

)}
,

S =

∫
d4xd4y

{
−ψ̄i(x)

(
γμ∂μ +m0i

)
ψi(x)δ(x− y) (5.3)

−g
2
0

2
ψ̄i(x)γμλ

aψi(x)Dμν(x, y)ψ̄
j(y)γνλ

aψj(y)

}
.

Note that the integral in the form (5.3) was studied for
other types of gluon propagator in the papers [161], [359].

Now it is convenient to introduce bilocal fields [312],
[364], [365]. For this, we use the Fierz transformations.
First of all, we note that the gluon propagator Dab

μν (5.2)
must be symmetric in its Lorentz μ, ν and unitary a, b
indices. First, we find the symmetric part (indicated by
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parentheses) for the direct product of Dirac matrices (see
[366]):

γ(i⊗ γk) ≡
1

2
(γi ⊗ γk + γk ⊗ γi) = 1

4
δikI4⊗ I4+ 1

2
γ(i⊗ γk)

−1

4
δikγj ⊗ γj − 1

4
δikγ5 ⊗ γ5 + 1

2
γ(iγ5 ⊗ γk)γ5 (5.4)

−1

4
δikγlγ5 ⊗ γlγ5 − 2σ(i|λ ⊗ σk)λ +

1

2
δikσμν ⊗ σμν ,

where, as usual, repeated indices imply the summation, I4
is the unit 4× 4-matrix,

σμν =
1

2i
(γμγν − γνγμ) .

We also need the direct matrix product in the space of
colors and flavors [160] - [162]:

λa ⊗ λa =
16

9
I8 ⊗ I8 − 1

3
λa ⊗ λa,

(5.5)

If ⊗ If =
1

NF
If ⊗ If + 2T a ⊗ T a,

where T a are generators of the SU(Nf ) group, acting in
the flavor space.

In the following we restrict ourselves to the light u, d-
quarks with equal masses m0i = m0. In this case, T a =
τa/2.
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Now, using the Fierz transformations, we rewrite (5.3)
with the help of (5.4), (5.5), and (5.2) in the form

Z[η̄, η] = N0

∫
Dψ̄Dψ exp

{
i

∫
d4xd4y

[
−ψ̄(x)

(
γμ∂μ+m0

)

×ψ(x)δ(x− y) + M2

2

[
ψ̄(x)ψ(y)ψ̄(y)ψ(x)

−ψ̄(x)γ5ψ(y)ψ̄(y)γ5ψ(x) (5.6)

+ψ̄(x)τaψ(y)ψ̄(y)τaψ(x)

−ψ̄(x)γ5τaψ(y)ψ̄(y)γ5τaψ(x) + ψ̄η + η̄ψ

]]}
,

where M2 = 8g0κ
2(4β − 1)/9.

Only the part of the four-fermion interaction is recorded
in (5.6), which can lead to spontaneous chiral symmetry
breaking. This is due to the fact that the Lorentz and
color symmetries are natural to consider intact. There-
fore, non-zero can be only vacuum expectations: 〈ψ̄ψ〉 �= 0,
〈ψ̄γ5ψ〉 �= 0, 〈ψ̄γ5τaψ〉 �= 0, 〈ψ̄τaψ〉 �= 0.

When introducing bilocal boson fields ϕ0(x, y), ϕ̃0(x, y),
ϕa(x, y) ϕ̃a(x, y) it is necessary, first of all, to redefine the
normalization constant N0. To do this, we multiply (5.6)
by the constant∫

Dμ exp

{
−i
∫
d4xd4y

1

2M2

[(
ϕ0(x, y)−M2ψ̄(x)ψ(y)

)
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×
(
ϕ∗0(y, x)−M2ψ̄(y)ψ(x)

)
+
(
ϕ̃0(x, y)− iM2ψ̄(x)γ5ψ(y)

)
×
(
ϕ̃∗0(y, x)− iM2ψ̄(y)γ5ψ(x)

)
+
(
ϕa(x, y)−M2ψ̄(x)τaψ(y)

)
(5.7)

×
(
ϕ∗a(y, x)−M2ψ̄(y)τaψ(x)

)
+
(
ϕ̃a(x, y)− iM2ψ̄(x)γ5τ

aψ(y)
)

×
(
ϕ̃∗a(y, x)− iM2ψ̄(y)γ5τ

aψ(x)
)]}

,

where the measure beingDμ = Dϕ0Dϕ
∗
0DϕaDϕ

∗
aDϕ̃0Dϕ̃

∗
0Dϕ̃a

×Dϕ̃∗a. As a result, we obtain the functional

Z[η̄, η] = N

∫
Dψ̄DψDμ exp

{
i

∫
d4xd4y

[
−ψ̄(x)

(
γμ∂μ+m0

)

×ψ(x)δ(x− y) + 1

2
ϕ0(x, y)ψ̄(y)ψ(x) +

1

2
ϕ∗0(y, x)ψ̄(x)ψ(y)

+
i

2
ϕ̃0(x, y)ψ̄(y)γ5ψ(x) +

i

2
ϕ̃∗0(y, x)ψ̄(x)γ5ψ(y)

+
1

2
ϕa(x, y)ψ̄(y)τ

aψ(x) +
1

2
ϕ∗a(y, x)ψ̄(x)τ

aψ(y)

(5.8)

+
i

2
ϕ̃a(x, y)ψ̄(y)γ5τ

aψ(x) +
i

2
ϕ̃∗a(y, x)ψ̄(x)γ5τ

aψ(y)

− 1

2M2

(
ϕ0(x, y)ϕ

∗
0(y, x)+ϕ̃0(x, y)ϕ̃

∗
0(y, x)+ϕa(x, y)ϕ

∗
a(y, x)

+ϕ̃a(x, y)ϕ̃
∗
a(y, x)

)
+ ψ̄η + η̄ψ

]}
.

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.1. NON-PERTURBATIVE EFFECTS 173

Integrating the expression (5.8) over the Fermi fields
ψ, ψ̄, we find

Z[η̄, η] = N

∫
Dμ det

[
(−γμ∂μ −m0) δ(x− y)

+
1

2
(ϕA(x, y) + ϕ∗A(x, y)) ΓA

]
(5.9)

× exp

{
i

∫
d4xd4y

[
− 1

2M2
ϕA(x, y)ϕ

∗
A(y, x)+η̄(x)Sf (x, y)η(y)

]
.

Here ϕA(x, y) = (ϕ0(x, y), ϕ̃0(x, y), ϕa(x, y), ϕ̃a(x, y)),
ΓA = (I2, iγ5, τ

a, iγ5τ
a), and

Sf (x, y) =

[
(γμ∂μ +m0) δ(x−y)−1

2
(ϕA(x, y) + ϕ∗A(x, y)) ΓA

]−1
is Green’s function of quarks in external fields.

The generating functional (5.9) can be written in the
form

Z[η̄, η] = N

∫
Dμ exp

{
i

[
Seff +

∫
d4xd4y η̄(x)Sf (x, y)η(y)

]}
,

Sf (x, y) = − 1

2M2

∫
d4xd4y ϕA(x, y)ϕ

∗
A(y, x)

−iTr ln
[
(−γμ∂μ −m0) δ(x− y) (5.10)
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+
1

2
(ϕA(x, y) + ϕ∗A(x, y)) ΓA

]
.

Now assume that there is the condensation, 〈ψ̄ψ〉 �=
0. To take this into account, it is necessary to make
the appropriate “shift” in the function of the bilocal field
ϕ0(x, y). Assuming that the breaking of translational in-
variance does not occur, we must assume that the vacuum
field depends only on the difference of coordinates x − y.
Let us also assume that the Lorentz invariance, P and CP -
invariance are also not violated. Using these assumptions,
we make the substitution (see [161], [162]):

ϕ0(x, y) = cδ(x− y) + Φ0

(
x+ y

2

)
B(x− y),

(5.11)

ϕA(x, y) = ΦA

(
x+ y

2

)
B(x− y) (A �= 0).

Here, c = const., t = (x+ y)/2 is the center of mass of the
quark-antiquark pairs, ΦA ((x+ y)/2) are real fields, which
describe mesons, and B(x − y) are meson form factors.
Thus, we come to the field theory with nonlocal interaction
[367].

The field Φ0 matches σ-particle, the fields Φ̃0 - η-
meson, Φ̃a are identified with three-plet of pions and Φa

with δa-mesons. We want to focus on the fundamental
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possibility of chiral symmetry breaking and correctly de-
scribe π-mesons. So here the s-quark is ignored, resulting
in the identification of the fields with σ, η, δa-mesons to
be a rough approximation. The generalization as to the
SU(3)f ⊗ SU(3)f -symmetry, which includes the s-quark,
is not a fundamental difficulty.

Given the redefinition (5.11) and expanding the loga-
rithm in (5.10) in powers of the meson fields ΦA, we rep-
resent the effective action in the form:

Sf (x, y) = − 1

2M2

∫
d4xd4y

[
c2 (δ(x− y))2

+2cΦ0

(
x+ y

2

)
B(x− y)δ(x− y)

+Φ2
A

(
x+ y

2

)
B2(x− y)

]
− iTr ln (−γμ∂μ −m0 + c)

+
∞∑
n=1

i

n
Tr

[∫
d4x1...d

4xn

(5.12)

×S0f (xn − x1)ΦA1

(
x1 + x2

2

)
B(x1 − x2)

×ΓA1S0f (x1 − x2)ΦA2

(
x2 + x3

2

)
×B(x2 − x3)ΓA2 × ...S0f (xn−1 − xn)
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×ΦAn

(
xn + x1

2

)
B(xn − x1)ΓAn

]
,

where we have introduced the Green function of the free
quarks, satisfying

(γμ∂μ +m0 − c)S0f (x, y) = δ(x− y). (5.13)

As follows from (5.13), as a result of the restructuring
of the physical vacuum, quarks acquire massesm = m0−c.
Here we have restricted ourselves to the case of equal
masses of u, d-quarks. If we also take into account the
condensation 〈ψ̄τ3ψ〉 �= 0, then we come to the mass split-
ting of u and d quarks. Finally, assuming that the con-
ditions 〈ψ̄γ5ψ〉 �= 0, 〈ψ̄γ5τ3ψ〉 �= 0 hold, we can consider
the violation of CP -parity. However, we shall neglect this
opportunity.

The sum in (5.12) is an expansion in the loops (see Fig-
ure 1). The first term in (5.12) is an unimportant constant
(infinite), which determines the energy of the vacuum.

The minimum condition of the action (5.12) is written
as

δSeff
δΦ0

|ΦA=0 =
ic

M2

∫
d4p B(p)

(2π)4
+ 2mI = 0,

(5.14)

I =
iNc

4π4

∫
d4p B(p)

p2 +m2
,
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where m = m0 − c are dynamical (constituent) quark
masses, B(p) is the Fourier transform of the form factor,
p2 = p2 − p20, d4p = id3pdp0.

It is convenient to choose the form factor of mesons in
the momentum space in the form

B(p) = ϑ
(
p2 + Λ2

)
, (5.15)

where ϑ(u) = 1 for u ≥ 0 and ϑ(u) = 0 for u < 0, and the
normalization condition is

∫
B(x)d4x = 1.

The value of Λ−1 has the dimension of length and is a
fundamental constant that characterizes the area of non-
local interactions of quarks [367]. The choice of form fac-
tors of mesons in the form (5.15) leads to the convergence
of the integrals with momentum cut-off Λ, which has the
physical meaning here.

The transition to local fields occurs with the form fac-
tors in the form of δ-function, i.e., B(x) ∼ δ(x). However,
in this case, there will be difficulties associated with the
divergence of integrals. It is possible, of course, to have a
different choice of form factors (different from (5.15), see
[367]). Note that the advantage of (5.15) is due to the
fact that the relation Bn(p) = B(p) holds, which will be
further used in the calculation of the series (5.12) in the
momentum space.

Equation (5.14) is the equation of the gap [1] - [3],
which is nonanalytic in the coupling constant M2/B(x =
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0), and the solution determines the constant c defining a
dynamical quark mass and condensate 〈ψ̄ψ〉.

Due to equation (5.14) linear terms in the fields Φ0

drop out of the equation (5.12). The quadratic terms in
ΦA in (5.12) define the propagators of mesons. From (5.12)
we find the inverse propagators in the momentum space

Δ−1AB(p) = −δAB
i

M2

∫
d4k B(k)

(2π)4

(5.16)

−iNctr

∫
d4k

(2π)4
S0f (k)ΓAS0f (k − p)ΓBB

2(k).

Given a solution of (5.13), from (5.16) using (5.14), we
obtain

Δ−100 (p) = Δ−111 (p) = Δ−122 (p)

= Δ−133 (p) =
2m0I

m0 −m + Z−13

(
p2 + 4m2

)
(1− J),

Δ−1
0̃0̃

(p) = Δ−1
1̃1̃

(p) (5.17)

= Δ−1
2̃2̃

(p) = Δ−1
3̃3̃

(p) =
2m0I

m0 −m + Z−13 p2(1− J),

J =
Nc

4π2

∫ 1

0
ln

[
1 +

p2

m2
x(1− x)

]
.
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Here we have introduced the renormalization constant

Z−13 = − iNc

4π4

∫
d4pϑ(p2 + Λ2)

(p2 +m2)2
, (5.18)

so that the fields are redefined, ΦAZ
−1/2
3 → ΦA, and there

is a constant

g2 ≡ Z3 =
4π2

Nc

[
ln

(
Λ2

m2
+ 1

)
− Λ2

Λ2 +m2

]−1
. (5.19)

As follows from (5.19), the expansion in g2/4π2 (in
equation (5.12)) corresponds to N−1c -expansion at the con-
dition [

ln

(
Λ2

m2
+ 1

)
− Λ2

Λ2 +m2

]−1
< 1.

For the parameters Λ2, m2, used below, this condition will
be satisfied.

From (5.17) we find the masses (up to O(g2))

mσ = mδ = m2
π+4m2, m2

π = m2
η =

2m0

m0 −mIZ3. (5.20)

In the chiral limit, where the bare quark masses m0 =
0, masses of π and η-mesons are zero, i.e. these mesons
are Goldstone bosons in the broken SU(2)f ⊗ SU(2)f -
symmetry. Then, according to (5.20), we get mσ = 2m,
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as in the original papers [1] - [3]. To determine the mass
of π-mesons from (5.20) it is necessary to set the cut-off
momentum Λ and the values of m0, m, and to take into
consideration the equation (5.14).

We will now relate these parameters to the pion de-
cay constant fπ = 93 MeV. For this, note that the action
(5.12), after calculating the loops, is similar to σ-model
[108]. In this case equation (5.14) is the condition for the
absence of tadpoles. The field shift (5.11) takes into ac-
count the spontaneous chiral symmetry breaking. After
renormalization of fields, according to [108], we have

cZ
−1/2
3 = −fπ. (5.21)

Hence we find the relationship of the dynamic quark
mass m, with a current mass of m0, the renormalized con-
stant (5.19) and fπ:

m−m0 = gfπ. (5.22)

This is the Goldberger−Treiman relation. If you specify
m0 = 5 MeV, Λ = 1 GeV, Nc = 3 (see [81], [82]), we arrive
at (5.19), (5.20) and (5.22) to the values ofmπ = 140 MeV,
m = 241 MeV, in agreement with the experiment. For
these values, according to (5.19), we find the parameter of
the expansion in (5.12): g2/4π2 � 1/6 < 1.
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We now calculate the value of the quark condensate

〈ψ̄ψ〉 = iTrS0f (x, x) = −mNc

2π2

[
Λ2 −m2 ln

(
Λ2

m2
+ 1

)]
.

(5.23)
When Λ = 1 GeV expression (5.23) yields

〈ūu〉 = 〈d̄d〉 = (−248 MeV)3,

which is consistent with phenomenology.
The relations (5.20), (5.22) and (5.23) give the approx-

imate equality
f2πm

2
π = −m0〈ψ̄ψ〉, (5.24)

that is obtained also in the framework of current algebra
[368], [369].

The gap equation (5.14) determines the dimensional
constant M2 associated with a parameter κ2 which is con-
nected with the topological susceptibility of gluons. When
Λ = 1 GeV we obtain the value M = 0.02 GeV.

Calculating the remaining diagrams in Fig. 1 up to the
terms with n = 4, inclusive, according to (5.12), we find

Seff = − 1

2M2

∫
d4xd4y c2 (δ(x− y))2−iTr ln (−γμ∂μ −m)

−1

2

∫
d4x

{
Φ0

(
∂2μ −m2

0

)
Φ0 + Φ̃0

(
∂2μ −m2

η

)
Φ̃0
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+Φ̃a

(
∂2μ −m2

π

)
Φ̃a +Φa

(
∂2μ −m2

δ

)
Φa

−4gm
[
Φ3
0 + 3Φ0Φ

2
a +Φ0

(
Φ̃2
0 + Φ̃2

a

)
+ 2Φ̃0(ΦaΦ̃a)

]
(5.25)

+g2
[
Φ4
0 + (Φ2

a)
2 + 6Φ2

0Φ
2
a + Φ̃4

0 + (Φ̃2
a)

2 + 6Φ̃2
0Φ̃

2
a

+6

(
Φ2
0Φ̃

2
0 +Φ2

aΦ̃
2
0 +Φ2

0Φ̃
2
a

)
+ 24Φ0Φ̃0(ΦaΦ̃a)

+2Φ2
aΦ̃

2
b + 4(ΦaΦ̃a)

2
]}

+O(g2).

Terms with the number n > 4 in (5.12) will give the order
of O(g2), since the corresponding integrals are indepen-
dent of Λ. The action (5.25) involves the interaction of
scalar and pseudoscalar fields with each other and can be
used to calculate the decay widths and cross-sections of
corresponding mesons [81], [82]. The sum of the first two
terms in (5.25) includes vacuum fields and unimportant
constants.

The part of the action (5.25), containing the interact-
ing fields can be written in the algebraic form, which is
clearly invariant under the group SU(2)f ⊗ SU(2)f , if we
use the matrix

Φ = Φ0I2 +Φaτ
a, Φ̃ = Φ̃0I2 + Φ̃aτ

a. (5.26)
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Then, taking

trΦ3 = 2
(
Φ3
0 + 3Φ0Φ

2
a

)
,

trΦΦ̃2 = 2
[
Φ0

(
Φ̃2
0 + Φ̃2

a

)
+ 2Φ0ΦaΦ̃a

]
,

trΦ4 = 2

[
Φ4
0 +

(
Φ2
a

)2
+ 6Φ2

0Φ
2
a

]
,

(5.27)

trΦ2Φ̃2 = 2
(
Φ2
0 +Φ2

a

) (
Φ̃2
0 + Φ̃2

a

)
+ 8Φ0Φ̃0(ΦaΦ̃a),

trΦΦ̃ΦΦ̃ = 2Φ2
0

(
Φ̃2
a + Φ̃2

0

)
+ 2Φ̃2

0Φ
2
a

+8Φ0Φ̃0(ΦaΦ̃a) + 4(ΦaΦ̃a)
2 − 2Φ2

aΦ̃
2
b ,

we find the following compact representation for the La-
grangian of interacting fields:

Lint
eff = gmtr

[
Φ
(
Φ2 + Φ̃2

)]
−g

2

4
tr
[
Φ4 + Φ̃4 + 4Φ2Φ̃2 + 2(ΦΦ̃)2

]
. (5.28)

Note that in the papers [370], [371], from phenomenologi-
cal considerations, the Lagrangian for QCD at low energies
was postulated in the algebraic form similar to (5.28).

The main result of this section is the proof of dynamical
chiral symmetry breaking at low energies in QCD. We have
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used the infrared singular gluon propagator in the Abelian
model of QCD. The effective chiral Lagrangian for scalar
and pseudoscalar meson fields was also obtained, which is
similar to the Lagrangian of the σ-model.

The main dimensional parameter in this approach is
the cut-off momentum, the value of which was chosen to be
Λ = 1 GeV. When setting the bare quark masses m0 = 5
MeV and using the decay constant fπ = 93 MeV, the
experimental values obtained: mπ = 140 MeV, dynamical
quark mass m = 241 MeV and the quark condensate value
〈ūu〉 = 〈d̄d〉 = (−248 MeV)3, which are in good agreement
with phenomenology. Similar values were obtained in [81],
[81] by postulating the initial four-quark Lagrangian.

To characterize the 0− and 0+ meson nonet in this
approach, it is necessary to generalize the above discussion
only on the SU(3)f ⊗ SU(3)f -symmetry.
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5.1.2 On four-quark interaction
induced by instantons

In the study of low-energy QCD instantons cannot be ig-
nored. This is due to the fact that the only known signifi-
cant nonperturbative solutions of nonlinear field equations
in QCD are instanton solutions [186]. It is therefore natu-
ral to expect their appearance in the low-energy region.

We start from the Lagrangian (1.7) (with the addition
of the free Lagrangian with the bare quark mass matrix
m0 = diag(m01,m02)), which describes the interaction of
two quark flavors, due to the presence of the instanton
vacuum.

Using the methods of Chapter 2, by introducing col-
lective fields after the Gaussian integration over the quark
fields, we can write the generating functional for Green’s
functions in the following form:

Z[η̄, η] = N0

∫
DΦA exp

{
i

[
Seff

+

∫
d4xd4y η̄(x)Seff (x, y)η(y)

]}
, (5.29)

where

Seff = −μ
2

2

∫
d4x

[
(Φ0 + σ0)

2 −
(
Φ̃0 + σ̃0

)2
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−Φ2
1 − Φ2

2 − (Φ3 + σ3)
2 + Φ̃2

1 + Φ̃2
2 +

(
Φ̃3 + σ̃3

)2]
(5.30)

−iTr ln [−γμ∂μ −m+ im̃γ5 +ΦAΓA] .

Here

m = diag(m1,m2), m1 = m01 − (σ0 + σ3),

m2 = m02 − (σ0 − σ3), m̃ = diag(m̃1, m̃2),

m̃1 = σ̃0 + σ̃3, m̃2), m̃2 = σ̃0 − σ̃3,

λ =
g20
μ2
, g0 = 1, ΓA = (I, iγ5, τ

a, iγ5τ
a).

Green’s function Sf (x, y) of quarks in external fields obeys
the equation

(γμ∂μ +m0 − ΦAΓA)Sf (x, y) = δ(x− y). (5.31)

We assumed that the most general conditions for vacuum
expectations are 〈ψ̄ψ〉 �= 0, 〈ψ̄γ5ψ〉 �= 0, 〈ψ̄τ3ψ〉 �= 0,
〈ψ̄γ5τ3ψ〉 �= 0. Note that in [206] only the case with the
condition 〈ψ̄ψ〉 �= 0 was considered. The presence of this
quark condensate is taken into account by the “shift” of
the fields

ΦA →
(
Φ0 + σ0, Φ̃0 + σ̃0, Φ1, Φ2, Φ3 + σ3, Φ̃1, Φ̃2,
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Φ̃3 + σ̃3

)
, (5.32)

where σ0, σ̃0, σ3, σ̃3 are constants which are independent
of the coordinates. The equations for the constants σ0, σ̃0,
σ3, σ̃3 are obtained from the requirement of the absence
of linear terms in fields ΦA in the effective action (5.30):

δSeff
δΦA

|ΦA=0 = −μ2σAεA + iTr ΓAS0f = 0, (5.33)

where εA = (1, − 1, − 1, 1), and the free Green function
S0f of quarks obeys the equation (see Sec. 2.3)

(γμ∂μ +m− im̃γ5)S0f (x, y) = δ(x− y). (5.34)

Solution of (5.34) in the momentum space is the matrix

S0f (p)

⎛⎝ −ip̂+m1+im̃1γ5
p2+M2

1
0

0 −ip̂+m2+im̃2γ5
p2+M2

2

⎞⎠ . (5.35)

Here M2
1 = m2

1 + m̃2
1, M

2
2 = m2

2 + m̃2
2, p̂ = pμγμ.

As seen from (5.35), by restructuring the physical vac-
uum, u, d-quarks acquire dynamic (constituent) masses
M1, M2, respectively. The presence of non-zero values of
m̃1, m̃2 (or σ̃0, σ̃3) leads to a dynamic violation of CP -
parity. Note that the interaction Lagrangian (1.6) (and
(1.7)) is not invariant under γ5-transformations (2.35), i.e.
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here, in contrast to the Lagrangian (1.1) UA(1) symme-
try is violated. Therefore, the choice of gauge conditions
cannot be achieved by 〈ψ̄γ5ψ〉 = 0, 〈ψ̄γ5τ3ψ〉 = 0. As it
is known, instantons in the presence of quarks lead to the
need to consider θ-term in the QCD Lagrangian and cause
a complicated topological structure of the vacuum, which
violates conservation of CP -parity [320]. In this approach,
it is shown in the presence of condensates σ̃0 �= 0, σ̃3 �= 0.

With the help of (5.35), equations (5.33) become

μ2σ0 = m1I1 +m2I2, μ2σ3 = −m1I1 +m2I2,

(5.36)

μ2σ̃0 = m̃1I1 + m̃2I2, μ2σ̃3 = −m̃1I1 + m̃2I2,

where

Ij =
iNc

4π4

∫
d4p

p2 +M2
j

(j = 1, 2).

Equations (5.36) are the equations for the gap. As noted
in Sec. 2.4, instead of cut-off regularization in the four-
fermion models it is convenient to use the dimensional
regularization [326]. It preserves the symmetry proper-
ties of the theory. With this regularization the link takes
place (see (2.88))

I2 =

(
M2

M1

)2

I1. (5.37)
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Equations (5.36) can be conveniently written as

μ2 (m01 −m1) = 2m2I2, μ2 (m02 −m2) = 2m1I1,

μ2m̃1 = 2m̃2I2, μ2m̃2 = 2m̃1I1.

When taking into account the conditions (5.37), this sys-
tem of equations leads to dependency

(m01 −m1)M
2
1

m2M2
2

=
(m02 −m2)

m1
=
m̃1M

2
1

m̃2M2
2

=
m̃2

m̃1
. (5.38)

Thus, the 6 independent parameters m01, m02, m1, m2,
m̃1, m̃2 are connected by three equations (5.38). That
leaves only three independent variables. If we use the cut-
off regularization, it is easy to show that equations (5.36)
have the solutions for m1 > m01, m2 > m02 and constants
m̃1, m̃2 have different signs. In this case, relations (5.37)
and (5.38) are not satisfied.

By taking into consideration the conditions (5.36), the
effective action (5.30) can be transformed to

Seff = −μ
2

2

∫
d4x

(
σ20 − σ̃20 − σ23 + σ̃23

)
−

iTr ln (−γμ∂μ −m+ im̃γ5) (5.39)

−μ
2

2

∫
d4x

(
Φ2
0 − Φ̃2

0 − Φ2
a + Φ̃2

a

)
+

∞∑
n=2

i

n
Tr [S0fΦAΓA]

n .
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We now show that equations (5.36) can be obtained
from the minimum of the effective potential. Combining
the constant terms in (5.39), we write

Sconst
eff = −μ

2

2

∫
d4x

(
σ20 − σ̃20 − σ23 + σ̃23

)
(5.40)

−iTr ln (−γμ∂μ −m+ im̃γ5) .

Given that there is a relationship of constant fields (see
Sec. 2.1) Sconst

eff = − ∫ d4xVeff , we find from (5.40) the
effective potential

Veff =
μ2

2
[(m1 −m0) (m2 −m0)− m̃1m̃2]

(5.41)

+
iNc

8π4

∫
d4p ln

(
p2 +M2

1

) (
p2 +M2

2

)
.

Equations (5.36) follow from the minimum of the potential
(5.41):

∂Veff
∂m1

=
∂Veff
∂m2

=
∂Veff
∂m̃1

=
∂Veff
∂m̃2

= 0.

To determine the mass spectrum of mesons, ΦA, we select
from (5.39) the quadratic part

S
(2)
eff = −μ

2

2

∫
d4x

(
Φ2
0 − Φ̃2

0 − Φ2
a + Φ̃2

a

)
+
i

2
Tr [S0fΦAΓA]

2
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(5.42)

= −1

2

∫
d4xd4y ΦA(x)Δ

−1
AB(x, y)ΦB(y),

where the propagator Δ−1AB in the momentum space can
be written as

Δ−1AB(p) = −itr
∫

d4k

(2π)4
S0f (k)ΓAS0f (k−p)ΓB+δABμ

2εA.

(5.43)
Using the dimensional regularization, we can obtain the
relationship between the logarithmically and quadratically
divergent integrals [327] (see (2.92))

M2
1Z

−1
3 ≈ I1, (5.44)

where

Z−13 = − iNc

4π4

∫
d4p

(p2 +M2
1 )

2
(5.45)

is the quadratically divergent integral.
When taking into account (5.44), from (5.36), one ob-

tains the relation

μ2 ≈ −2M1M2Z
−1
3 . (5.46)

After redefining the fields ΦA → Z
−1/2
3 ΦA, from (5.42) by

taking into consideration (5.46), we find the elements of
the mass matrix

m2
00 = (M1 −M2)

2 + 2(m2
1 +m2

2),
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m2
0̃0̃

= (M1 +M2)
2 + 2(m̃2

1 + m̃2
2),

m2
00̃

= −4(m1m̃1 +m2m̃2),

m2
11 = m2

22 = 2(M2
1 +M2

2 +M1M2 +m1m2 − m̃1m̃2),

m2
33 = (M1 +M2)

2 + 2(m2
1 +m2

2),

m2
33̃

= −4(m1m̃1 +m2m̃2),

m2
03 = 2(M2

1 −M2
2 + 2m2

1 − 2m2
2),

m2
0̃3

= m2
30̃

= 4(m2m̃2 −m1m̃1), (5.47)

m2
0̃3̃

= 2(M2
1 −M2

2 + 2m2
2 − 2m2

1),

m2
3̃3̃

= (M1 −M2)
2 + 2(m̃2

1 + m̃2
2),

m2
1̃1̃

= m2
2̃2̃

= 2(M2
1 +M2

2 −M1M2 −m1m2 + m̃1m̃2),

m2
1̃1

= m2
22̃

= −4(m1m̃2 + m̃1m2).

As can be seen from (5.47), there is strong mixing of me-
son fields. To determine the masses of the fields ΦA it is
necessary to diagonalize the mass matrix m2

AB.
Note that the field Φ0 can be identified with σ-meson

and Φ̃a with πa-mesons.
The quantities in (5.47) determine the degree of CP -

violation. However, we know that the strong interactions
with a good accuracy are CP -invariant, i.e. the parameter
to CP -violation is very small. Therefore, let us consider

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.1. NON-PERTURBATIVE EFFECTS 193

in detail only the case of m̃1 = m̃2 = 0, which corresponds
to the equalities 〈ψ̄γ5ψ〉 = 0, 〈ψ̄γ5τaψ〉 = 0. We must,
however, bear in mind that such a transition cannot be
obtained directly from (5.47). This is associated with a
decrease in the number of compensation equations (5.36)
in this case and with the inaccuracy of (5.38) with m̃1 =
m̃2 = 0. As a result, at m̃1 = m̃2 = 0 the relation (5.46) is
not satisfied. In this case, you must use only the first two
equations in (5.36).

Note that it is found in [322] the nonperturbative so-
lution for the quark propagator directly from QCD, which
also violates the conservation of CP -parity. Authors of
[322] also discuss the possible mechanism of reduction of
CP -violating terms.

We neglect also the mass splitting of u and d-quarks,
which requires the conditions 〈ψ̄τ3ψ〉 = 0, σ3 = 0, and
m01 = m02 (m1 = m2). As a result of this restriction of
the equations (5.36) only one equation “survives”, which,
after evaluation of the integral (in the scheme with a cut-
off) I1 = I2 = I, takes the form

μ2
m0 −m
m

=
Nc

2π2

[
m2 ln

(
Λ2

m2
+ 1

)
− Λ2

]
. (5.48)

Equation (5.48) is nontrivial nonanalytic in the constant
λ = 1/μ2 solutions, provided α = 2π2/(λΛ2Nc) < 1 [1].
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From (5.48) the dynamical quark mass m is determined in
the set-up of the constant λ and the momentum cut-off Λ
(with α < 1).

Note that the four-quark interaction, considered in this
section (which is local), (1.6), differs from (5.6) (which is
not local), by signs in front of the terms (ψ̄γ5ψ)

2, (ψ̄τaψ)2

and leads to what is already broken UA(1)-symmetry, in
contrast to the approach of Sec. 5.1. This difference in the
signs is taken into account in the expression for the propa-
gator of the collective fields (5.43) by the signature symbol
εA. As already noted in the previous section, the choice of
the form factor of mesons in the form (5.15) “leaves” the
non-local four-fermion interaction (5.6) to the scheme of
the local interaction, but with the momentum cut-off Λ.
Therefore, so many values to be considered in this section,
will coincide with the results of previous calculations. The
difference is in the expressions for the propagators Δ−1

0̃0̃

and Δ−1aa which is due to the factor εA. The computer
calculations show that equations determining the mass of
the relevant collective fields

Δ−1
0̃0̃

= 0, Δ−1aa = 0 (5.49)

do not have solutions at p2 > 0, and at p2 < 0. This
suggests that the propagators of Δ0̃0̃, Δaa and fields Φ̃0, Φa

do not correspond to the real particles. We noted in Sec.
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5.1 that the identification of the fields Φ̃0, Φa with η and δ-
particles there was arbitrary, since there is a contribution
of the s-quark into real particles, which was not taken
into account. To obtain the masses of mδ and mη in this
approach one should generalize the analysis on SU(3)f ⊗
SU(3)f -symmetry. The formula for the masses of π and
σ mesons here have the same form as in the approach of
Sec. 5.1.

To fix the Λ and calculate m, we find the relation
of these variables with a constant fπ [78] - [82]. Let us
construct an axial (not saved) current corresponding to
SU(2)A-transformations:

ψ′ = exp

(
iαγ5

�n�τ

2

)
ψ, ψ̄′ = ψ̄ exp

(
iαγ5

�n�τ

2

)
, (5.50)

where �n is a unit vector, i.e., �n2 = 1.
Transformations of the quark fields (5.50) generate in-

finitesimal transformations of meson fields

Φ0 + σ0 → Φ0 + σ0 + αnaΦ̃a, Φ̃0 → Φ̃0 − αnaΦa,

(5.51)

Φ̃a → Φ̃a − αna(Φ0 + σ0), Φa → Φa + αnaΦ̃0.

After the renormalization of fields, we have

σ0 =
(m0 −m)√

Z3
=

(m0 −m)

g
(g ≡

√
Z3).
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Applying the Gell-Mann−Levi method [108], we find an
expression for the axial current

Aμ =
∂δLeff

∂∂μα(x)
= na

(
Φa∂μΦ̃0 − Φ̃0∂μΦa

(5.52)

+Φ0∂μΦ̃a − Φ̃a∂μΦ0 − (m−m0)

g
∂μΦ̃a

)
.

If we use (5.52) to describe the decay of π± → μ±ν (see [78]
- [82]), we arrive at the identity of Goldberger−Treiman
(5.22) (see also [216], [82], [372]). Substituting in (5.22) the
value of g2 (5.19), we come to the transcendental equation
relating m, m0 and the momentum cut-off Λ(

fπ
m−m0

)2

=
Nc

4π2

[
ln

(
Λ2

m2
+ 1

)
− Λ2

Λ2 +m2

]
. (5.53)

In Fig. 5.1 there is a graphical relationship between the
dynamic quark massm and the momentum cut-off at Nc =
3, m0 = 0 (see also [206], [216]). Choosing the value of
Λ = 1 GeV, we obtain the value m = 241 MeV. From
(5.48) we can find a constant λ:

λ =

(
NcΛ

4

2π2(Λ2 +m2)
− 2f2π

m2

(m−m0)2

)−1
. (5.54)

The graph of the value of the constant λ versus the cut-off
momentum is shown in Fig. 5.2. When Λ = 1 GeV, we
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obtain the value λ = 7.9 (GeV)−2. Finally, we calculate
the value of the quark condensate from (5.23). In Fig.
5.3 the dependence of the condensate 〈d̄d〉1/3 = 〈ūu〉1/3 =
(〈ψ̄ψ〉/2)1/3 on the momentum cut-off is given.

Here, too, are the relations of current algebra (5.24),
and the Lagrangian of self-interaction of collective fields is
given by (5.28).

For more accurate calculations of the masses of π and
σ mesons it is necessary to solve the equations

Δ−1ãã (p) = 0, Δ−1aa (p) = 0. (5.55)

The numerical solutions of equations (5.55) in the argu-
ment p2(= −m2) for Λ = 1 GeV, m0 = 5 MeV, m = 241
MeV give the following masses of π and σ mesons

mπ = 140 MeV, mσ = 500 MeV. (5.56)

These values do not differ from the approximate values ob-
tained from (5.20), due to the smallness of the expansion
parameter g2/(4π2) (see (5.17)). Masses (5.56) agree well
with the phenomenology of strong interactions [373]. It is
known that σ-boson (or, as it is meant, ε-meson), along
with the π, ρ and ω bosons contributes to the mechanism of
exchange in nucleon-nucleon interaction [373], and it can-
not be ignored. At the same time σ-boson can be treated
as a “cluster” of pions with the corresponding quantum
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numbers. So, for example, the scalar isoscalar of two-pion
exchange corresponds to the exchange of σ-boson. In ad-
dition, to obtain the correct values of the static character-
istics of hadrons, such as polarizabilities (see [374]), it is
necessary to consider the Feynman diagrams with internal
lines corresponding to σ-boson with a mass of (5.56).

So both approaches, considered in Sec. 5.1 and Sec.
5.2, give the same values (in choosing the form factor of
mesons in the form (5.15)) of the masses of π and σ mesons.
The difference is that the instanton approach considers a
breach of UA(1)-symmetry and overcomes the U1-problem
of the mass difference between the η and η′ (see the In-
troduction) in the SU(3)f ⊗ SU(3)f -symmetric scheme.
This suggests that without the contribution of instantons
in the QCD vacuum, apparently, the strong interactions of
hadrons cannot be correctly described. The confinement
of quarks remains open, however.
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5.1.3 Investigation of infrared asymptotic
of Green’s function in the
four-fermion model

In addressing the issue of quark confinement in QCD, one
can study the infrared singularities of the gluon propagator
[375] - [380] and the behavior of the quark Green function
near the mass shell [381] - [384]. In the previous sections we
have shown that at low energy QCD turns into the theory
with the effective four-quark interaction. As part of this
approach the experimental situation of low energy meson
physics [78] - [82] is well described. Therefore, the study
of four-fermion schemes in the infrared energy is yielding
obvious interest. In this connection, the question arises, is
it realized or is there no confinement in the four-fermion
models? To do this, one can use the criteria by which a
confinement is understood as the disappearance of a simple
pole of the fermion Green function at the point p2 = −m2.
To this end, in this section, we examine infrared behavior
of the fermionic Green’s function in a simple four-fermion
massless model with the Lagrangian

L = −ψ̄γμ∂μψ +
κ

2

(
ψ̄ψ
)2
, (5.57)

where κ = g20/μ
2
0 is the constant of self-interaction of the

fermion field with dimensionality m−2. Using the results
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of Sec. 2.1, we can write the Green function of a fermion
in the external collective field (see (2.7))

(γμ∂μ +m− gΦ)K(x, y|Φ) = δ(x− y). (5.58)

Here m = −g0Φ0 is the dynamical mass of the fermion,

g = g0Z
1/2
3 is the renormalized coupling constant, and

Φ = Φ′Z−1/23 is the renormalized collective field. In the
result of vacuum polarization (fermion determinant) of the
field Φ(x) in the effective action the kinetic term Φ∂2μΦ/2
and the mass term m2Φ2/2 are appearing, whereM = 2m
is the mass of the collective field Φ. We now use the ap-
proximation, in which we will consider only the quadratic
terms in fields Φ in the effective action, i.e. we consider

only the expression of S
(2)
eff . Terms of the self-interaction

of fields Φ3 and Φ4 (see diagrams in Fig. 1) are neglected.
The treatment due to such an approximation has math-
ematical difficulties associated with the inability to accu-
rately assess functional integration of non-Gaussian inte-
grals.

Given the approximations, we write the expression for
the quantum
Green’s function

G(x, y) =
δ2Z[η̄, η]

δη̄(x)δη(y)
|η̄=η=0

(5.59)
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= N

∫
DΦK(x, y|Φ) exp

{
i

∫
d4x

1

2
Φ
(
∂2μ −M2

)
Φ

}
.

This Green’s function corresponds to the effective Yukawa
interaction gψ̄ψΦ neglecting the vacuum polarization. The
infrared asymptotic of the Green’s function in the model of
a spinor field with Yukawa interaction was studied in [385].
To study the function (5.59), we apply another method as-
sociated with the solution of (5.58) as a functional integral
[386]. For this we transform equation (5.58):[
∂2μ − (m− gΦ)2 + gγμ∂μΦ

]
D(x, y|Φ) = δ(x− y), (5.60)

where

K(x, y|Φ) = (γμ∂μ −m+ gΦ(x))D(x, y|Φ).

We write the solution of (5.60) in the form [386]

D(x, y|Φ) = −i
∫ ∞
0

dsC

∫
Dν exp

{
i

∫ s

0
dξ

[
ν2μ(ξ)

−
(
m− gΦ

(
x− 2

∫ s

ξ
dη ν(η)

))2

(5.61)

+gγμ(ξ)∂μΦ

(
x− 2

∫ s

ξ
dη ν(η)

)]}

×δ
(
x− y − 2

∫ s

0
dξ ν(ξ)

)
.
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Here we use a functional integration over the auxiliary field
νμ, and the constant C satisfies the condition

C

∫
Dν exp

{
i

∫ s

0
dξ ν2μ(ξ)

}
= 1. (5.62)

We introduce the following notations:

j(z) =

∫ s

0
dξ δ

(
z − x+ 2

∫ s

ξ
dη ν(η)

)
,

(5.63)

[Dν]s0 = CDν exp

{
i

∫ s

0
dξ ν2μ(ξ)

}
,

considering that the solution (5.61) takes the more com-
pact form

D(x, y|Φ) = −i
∫ ∞
0

ds

∫
[Dν]s0 exp

{
−i
∫
d4z j(z)

(5.64)

×
[
(m− gΦ(z))2− gγμ∂μΦ(z)

]}
δ

(
x− y − 2

∫ s

0
dξ ν(ξ)

)
.

This leads to the solution of (5.58)

K(x, y|Φ) =
(
γμ∂μ −m+ ig

δ

δJ(z)

)
(−i)

∫ ∞
0

ds

∫
[Dν]s0

× exp

{
−i
∫
d4z

[
j(z)

(
(m− gΦ(z))2 − gγμ∂μΦ(z)

)
(5.65)
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+J(z)Φ(z)

]}
δ

(
x− y − 2

∫ s

0
dξ ν(ξ)

)
,

where for convenience, the Schwinger source J(z) is intro-
duced.

In what follows we neglect the term gγμ∂μΦ(z) in the
exponent (5.65), which is responsible for the spin effects,
as it contains the matrix γμ. It is justified in the infrared
region of the energy (see [386]). Substituting (5.65) in
(5.59) the functional integral of the Gaussian type arises∫

DΦexp

{
−i
∫
d4z

[
j(z) (m− gΦ(z))2 + J(z)Φ(z)

−1

2
Φ
(
∂2μ −M2

)
Φ

]}

= exp(−ism2)det−1/2
(
−∂2μ +M2 + 2g2jE(z)

)
(5.66)

× exp

[
1

2

∫
d4zEd

4yE

(
JE(z)

−2mgjE(z)
)
Δ(z − y) (JE(y)− 2mgjE(y))

]
.

Here Δ(z − y) satisfies the equation(
−∂2μ +M2 + 2g2jE(z)

)
Δ(z − y) = δE(z − y), (5.67)
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and we made a transition to Euclidean space-time. We will
assume that g2 < 1. This condition is satisfied in the four-
quark schemes describing the low-energy meson physics
[78] - [82]. In this case the solution of (5.67) can be found
by the iteration method. Zeroth and the first terms of Δ
in the coupling constant g are in the momentum space as
follows:

Δ0(p) =
1

p2 +M2
,

(5.68)

Δ1(p) = −2g2jE(p)

p2 +M2

∫
d4kE
(2π)4

exp
[
ik
(
x− 2

∫ s
ξ dη ν(η)

)]
k2 +M2

.

We shall only use the Δ0(p), and therefore believe that the
constant N is chosen from the condition

Ndet−1/2
(
−∂2μ +M2 + 2g2jE(z)

)
= 1.

This requirement is consistent with the fact that the free
(with g = 0) Green’s function has the standard form. Us-
ing (5.65), (5.66) and the approximations made, we obtain
the total Green’s function in the infrared region

G(x, y) = −i
∫ s

0
ds exp(−ism2)

∫
[Dν]s0

(
γμ∂μ −m

−ig δ

δJE(x)

)
δ

(
x− y − 2

∫ s

0
dξ ν(ξ)

)
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× exp

[
−2mg

∫
d4zEJE(z)

×
∫ s

0
dξΔ0

(
z − x+ 2

∫ s

ξ
dη ν(η)

)
(5.69)

+2m2g2
∫ s

0
dξ

∫ s

0
dξ1Δ

0

(
2

∫ ξ

ξ1
dη ν(η)

)

+
1

2

∫
d4zEd

4yEJE(z)Δ
0(z − y)JE(y)

]
.

Taking the variational derivative in (5.69), then putting
JE = 0, and going to the momentum space, we find

G(p) = −i
∫ s

0
ds exp(−ism2)

∫
[Dν]s0

(
ip̂−m

+2mg2
∫ s

0
dξΔ0

(
2

∫ s

ξ
dη ν(η)

))
(5.70)

× exp

[
−2ip

∫ s

0
dξ ν(ξ) + I(s)

]
.

Here

I(s) = 2m2g2
∫ s

0
dξ

∫ s

0
dξ1Δ

0

(
2

∫ ξ

ξ1
dη ν(η)

)
. (5.71)

If in (5.70) g = 0, then we arrive at the free Green function

G0(p) =
−ip̂+m

p2 +m2
,
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where p̂ = pμγμ.
To calculate the functional integral (5.70) we use the

approximate formula [386] - [388]∫
[Dν]F1(ν) expF2(ν) ≈ 〈F1〉 exp〈F2〉, (5.72)

where 〈Fi〉 =
∫
[Dν]Fi(ν) (i = 1, 2).

Note that the approximation (5.72) describes not only
the infrared region, but also the region of high energy [388]
- [390]. Applying (5.72) to (5.70), throwing the last term
in parentheses in (5.70), which gives the correction to the
mass of the fermion, and making the shift of the integra-
tion variable νμ(ξ)− pμ = ωμ(ξ), we obtain

G0(p) = −i
∫ s

0
ds exp

(
−is(p2 +m2)

)
(ip̂−m) exp (F (s)) ,

(5.73)

F (s) = 2m2g2
∫ s

0
dξ

∫ s

0
dξ1

×
∫
[Dω]s0Δ

0

(
2

∫ ξ

ξ1
dη ω(η) + 2p|ξ − ξ1|

)
(5.74)

= 2m2g2
∫ s

0
dξ

∫ s

0
dξ1

∫
d4kE
(2π)4

exp
{−i|ξ − ξ1|(k2 − 2pk)

}
k2 +M2

.

We imply that there is a negative imaginary part in the
exponent of (5.73) (m2 → m2−iε). Expressions (5.73) and
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(5.74) generalize the formulas obtained in [385], as we take
into account the values which are quadratic in the boson
momentum k. It is important to make the corrections to g2

[386]. To evaluate the integral (5.74) we proceed in exactly
the same way as in [385]. After replacing the variable |k| =
M sinhu, k0 = M coshu, d|k|/k0 = du, going to the rest
frame of the fermion and the corresponding integration,
one obtains

F (s) =
sg2mΛ

4π2
+
ig2(sM2 + 1)

8π2
ln

2Λ

M

− g2

16π
exp(isM2)H

(2)
0 (2mMs) (5.75)

− ig
2M2

8π

∫ s

0
ds1 exp(is1M

2)H
(2)
0 (2mMs1),

where the Hankel function is given by

H
(2)
0 (x) =

2i

π

∫ ∞
0

du exp(−ix coshu).

In obtaining (5.75), we used the relation: M = 2m, p2 ≈
−m2. The first three terms in (5.75) are eliminated by the
renormalization of the fermion mass m and related fields.

At low energies, where p2 = −m2, i.e. in the infrared
region, the main contribution to the integral (5.73) “ac-
cumulates” from large s. Therefore, we can replace the
function F (s) by its asymptotic value lims→∞ F (s).
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Considering further that limx→∞H
(2)
0 (x) = 0, and ar-

guing like [385] for the integral (5.73), we obtain

G(p) =
−ip̂+m

p2 +m2
+C(−ip̂+m), (5.76)

where C is a constant. Thus, the Green function of fermions
in the model considered has a simple pole. In this approx-
imation, there is no gain or attenuation pole. This con-
clusion is consistent with the results of [385], which deals
with infrared asymptotic of the fermion Green’s function
in scalar meson physics.

In [391] there is an indication that the consistent con-
sideration of the propagator in quantum electrodynamics
also leads to a singularity in the form of a simple pole in
the infrared region.

In turn, established in [392] (see also [393]) in principle
the possibility of observing the colors in QCD means none
other than the existence of the pole in the asymptotic state
of the quark propagator.

So, in the initial four-fermion simple model described
by the Lagrangian (5.57), confinement is not realized in
the infrared energies. It can be concluded that the four-
quark schemes describe the intermediate region between
the asymptotic freedom and confinement of quarks. In
order to take into account the area of confinement one can
bring the bag model (see e.g. [193]).

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.1. NON-PERTURBATIVE EFFECTS 209

Figure 5.1: The dynamic quark massm vs. the momentum
cut-off Λ.
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Figure 5.2: The constant λ vs. the cut-off momentum Λ.
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Figure 5.3: The condensate 〈d̄d〉1/3 = 〈ūu〉1/3 =
(〈ψ̄ψ〉/2)1/3 vs. the momentum cut-off Λ.
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6.1 Low-energy characteristics

Based on the effective chiral action received by Dyakonov
and Petrov, obtained on the concept of the instanton vac-
uum, the electromagnetic polarizabilities of pions and nu-
cleons are evaluated. The evaluated numerical values of
the polarizabilities agree well with the experiment. For
some long-wave approximation (when only the first three
terms in the expansion of Seeley are used), the values of
the polarizabilities of pions are consistent with the results
of other authors obtained in the framework of the vector
dominance model. Masses of nonets of scalar and pseu-
doscalar mesons in the framework of the SU(3) Nambu−
Jona-Lasinio model are calculated. The possibility of CP -
violation in the model is demonstrated. We have consid-
ered problems of hadron physics at low energies on the
basis of the effective chiral Lagrangian (ECL), including,
in addition to the usual (normal), as well as the anoma-
lous part of the Wess−Zumino Lagrangian. The processes
predicted by ECL, that can be tested, were specified.
Analytical expressions for the probability of the decay π± →
μ+ν̄μ in the field of a plane electromagnetic wave, by tak-
ing into account the polarizability of the pion, are ob-
tained.
The main results presented in this chapter were published
in [394] - [407].
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6.1.1 Electromagnetic polarizabilities of pions

The important characteristics of hadrons associated with a
complex internal structure of particles are the electric and
magnetic polarizabilities. These values show the measure
of the dipole electrical d = αE, and the magnetic m = βH
moments of the particles induced by an external electro-
magnetic field (E, H are the electric and magnetic fields,
respectively). In other words, the electromagnetic polar-
izabilities α, β characterize the properties of the particles
to be deformed in external fields. The potential energy of
the corresponding particle interaction is given by

U = −1

2
αE2 − 1

2
βH2. (6.1)

Since this expression (6.1) is quadratic in E and H, then
the polarizabilities of hadrons appear at the two-photon
interactions [408]. Therefore, the additional interaction
(6.1), as related to two-current effects, gives a correction
to the amplitude of the photon-hadron interaction at small
momenta. The experimental determination of the values
of α, β is possible by studying the Compton effect [408],
measuring the level shifts in meson atoms [409] and the
observation of the Primakoff effect [410] (the emission of
a photon by a particle in the atomic nucleus).

Thus, the electromagnetic polarizabilities can be con-
sidered as the fundamental low-energy characteristics of
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strong interactions of hadrons. Therefore, the calcula-
tion of these quantities is possible within nonperturbative
QCD. The electric and magnetic polarizabilities of pions
were calculated in different models: linear σ-model [374],
[411], [412], using the current algebra [413], dispersion rela-
tions [414], chiral Lagrangians [415], the vector dominance
model [412], in the lattice approach [416], in the nonlo-
cal quark model [417], QCD-string theory [418], [419] and
other models [420]. The main disadvantage of these calcu-
lations is the model-dependent variables of the discussed
α and β. In this regard, of particular interest is the calcu-
lation of the electric and magnetic polarizabilities of pions
within the low-energy formulation of QCD.

As noted above, in the nonperturbative QCD instan-
tons are important. Representation of the QCD vacuum as
a rather rarefied gas of instantons is a good approximation
[190] - [192], [421], [422]. The presence of instantons leads
to the interaction of quarks, described by the Lagrangian
(1.6) [197], [198], [423]. In the region of low energies (< 1
GeV) substantial degrees of freedom belong to constituent
quarks and pions, which are acting as pseudo-Goldstone
bosons (see Sec. 5.1.2) [424].

Consider the problem of the effective action for pions.
Note that appearing in the (5.31) matrix, composed of
collective fields ΦA, can be parameterized as follows (see,
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e.g. [126] - [128]):

m0 − ΦAΓA = HUγ5 . (6.2)

Here H is the Hermitian matrix, ΓA = (I, iγ5, τ
a, iγ5τ

a),
and the unitary matrix Uγ5 of the chiral field is chosen as

Uγ5 = exp

(
iπaτ

aγ5
fπ

)
, (6.3)

where πa are pion fields, fπ = 93 MeV.
Configurations that minimize the effective action in the

limit of large number of colors (Nc → ∞), will give the
value of H = M = const (see [128]). As a result, in the
functional integral (5.29) there will be only the integration
on the fields of pions πa ≡ Φ̃a. In this way you can get the
appropriate effective action for pions. First the ECL for
pions was obtained by Dyakonov and Eides [129] from the
QCD Lagrangian by integration over the quark fields at
Nc →∞. A similar effect was obtained from the theory of
the instanton vacuum theory in [191]. It has been shown
that (see [191]) ECL is applicable at energies up to 600
MeV (Λ = 600 MeV) in Euclidean space and corresponds
to the action

Seff [π] = −Ncln det

(
D

D0

)
, (6.4)

where D0 = i∂̂ + iM , D = i∂̂ + iMUγ5 , ∂̂ = γμ∂μ.
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Here the constituent mass of light (u, d) quarks is taken
to be M = 345 MeV.

Note, it follows from the graph of Fig. 4 that the ex-
trapolation to the value Λ = 600 MeV gets close to this
value of the dynamic mass m. It should also be noted
that the transition from collective fields ΦA to the chiral
unitary field Uγ5 , according to (6.2) with the condition
H =M , corresponds to a transition from the linear to the
nonlinear σ- model (see [108]).

Since appearing in (6.4) the operator D = i∂̂+ iMUγ5

is not Hermitian, the ECL has both real and imaginary
parts. The imaginary part of ECL includes the known
Wess−Zumino term [424] (see the Introduction).

Consider here only the real part of the ECL. Intro-
ducing the interaction of quarks with the electromagnetic
field, according to the substitution ∂μ → ∂μ−iQAμ, where
Q = diag (2/3, − 1/3) e (e is the electron charge), after
squaring the Dirac operator, the authors of [424] got a
real part of the effective chiral pion field in this energy
range

ReSeff [π] = −1

2
NcTr ln

(
DD+

D0D
+
0

)
, (6.5)

where D = i∂̂+ iMUγ5 + im0+QÂ, D0 = i∂̂+ iM + im0,
Â = γμAμ, m0 is the current mass of u, d-quarks.

The use of the proper time method of Fock−Schwinger
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and the calculation of the functional trace (Tr) in the plane
wave basis [424], [425] leads from (6.5) to the expression

ReSeff [π] = −Nc

2

∫
d4x

∫ ∞
0

dt

t
ϕ(t)

×
∫
d4pe−p2t

(2π)4
tr

[
exp

[−t (DD+ − 2ipμ(∂μ − iQAμ)
)]
(6.6)

− exp
[
−t
(
D0D

+
0 − 2ipμ∂μ

)]]
× 1,

where the regularizing function ϕ(t) cuts the integrals at
small t, and the trace tr is taken only on the matrices γμ,
τa.

We use the following decomposition of the chiral field
Uγ5 , (6.3):

Uγ5 � 1 + i
πaτ

aγ5
fπ

− π2a
2f2π

. (6.7)

The obvious relation

[πaτ
a, ∂μ − iQAμ] = −

[
∂μπ0

√
2Dμπ

−√
2D+

μ π
+ −∂μπ0

]
≡ −Πμ,

(6.8)
holds, where Dμ = ∂μ − ieAμ, D

+
μ = ∂μ + ieAμ, π

− =

(π1 − iπ2)/
√
2, π+ = (π1 + iπ2)/

√
2, π0 = π3.
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Hence we find the expression for the squared Dirac
operator in an external field (see (6.5))

DD+ = − [γμ (∂μ − iQAμ)]
2 + (M +m0)

2

(6.9)

+i
M

fπ
γ5Π̂− m0M

f2π
π2a −

M

f2π
πa(∂̂πa),

where Π̂ = γμΠμ.
We now use the quasi-classical approximation [425],

[426], expanding the exponents in (6.6) as power series
with respect to the proper time t (the Seeley decomposi-
tion [427]).

The first two terms of the expansion of (6.6) contain
the mass and kinetic terms:

ReS
(1)
eff = −Ncm0M

4π2f2π

∫
d4x

∫ ∞
0

dt

t2
ϕ(t)e−t(M+m0)2π2a

= −1

2
m2

π

∫
d4xπ2a, (6.10)

ReS
(2)
eff = −1

2

∫
d4x

[
2
(
D+

μ π
+
) (
Dμπ

−)+ (∂μπ0)2]+ ... .
The third term of this expansion for (6.6) includes terms
with the electromagnetic field strength

ReS
(3)
eff =

NcJ1
3!16π2(M +m0)2f2π
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×
∫
d4x

[
12iM2eFμν

(
D+

μ π
+
) (
Dνπ

−) (6.11)

−5

3
m0Me2F 2

μνπ
2
a

]
+ ... ,

where we use the value of the integral J1 =
∫∞
0 dτϕ(τ)e−τ

= 0.682 [425]. In (6.11) we have omitted the higher deriva-
tives of the pion field, which do not contain the tensor Fμν .
These terms do not contribute to the polarizability of pi-
ons.

Linear in Fμν terms in (6.11) determine the charge ra-
dius rπ of a pion. To find them we use the effective La-
grangian [428]

L(1)
eff = 2ieFμν

(
D+

μ π
+
) (
Dνπ

−) 1
6
〈r2π〉. (6.12)

Comparing equations (6.11) and (6.12) we find the value
of the squared charge radius

〈r2π〉 =
3NcJ1
8π2f2π

� 3

4π2f2π
� 0.34 fm2. (6.13)

Value (6.13) coincides with the result of a calculation [421],
obtained by other means, as well as to the value of the
linear σ-model [412]. The experimental value of 〈r2π〉 is
[429]:

〈r2π〉 = (0.44± 0.02) fm2.

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



222 CHAPTER 6.

Note that the quantity (6.13) is obtained only by the
leading term of 1/Nc-decomposition. The theory devel-
oped in [421] - [424] allows us also to consider the following
corrections.

The fourth term of the expansion (6.6) to the proper
time contains terms that are quadratic in the electromag-
netic field. The general form of the Lagrangian, which is
quadratic in the electromagnetic field, describes the polar-
izability and is given by [428], [430], [431]

L(2)
eff =

(
D+

μ π
+
) (
Dνπ

−) (a+ b

mπ
FμαFνα − b

2mπ
F 2
αβδμν

)
(6.14)

+
dmπ

2
F 2
αβπ

+π−,

where the constants a, b, d are related to the pion polar-
izabilities.

We note (see [428]) that the Lagrangian (6.12) can be
rewritten up to a four-divergence as follows:

L(1)
eff = −e

2〈r2π〉
6

F 2
μνπ

+π− − ie(∂μFμν)(π
+D↔ν π

−)
1

6
〈r2π〉,
(6.15)

π+D↔ν π− ≡ π+Dνπ
− − (Dνπ

+)π−. Given that the first
term in (6.15) is a contribution to the polarizability of
the charged pions, and the second term in (6.11) will con-
tribute to the polarizability of both charged and neutral
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pions. Comparing (6.11), (6.15 ) with (6.14), we find the
following values of parameters:

dπ± = − e2

3mπ
〈r2π〉

(
1 +

5m0

9M

)
� −11.76× 10−4 fm3,

(6.16)

dπ0 = − 5NcJ1e
2m0

72π2f2πmπM
� −0.1× 10−4 fm3. (6.17)

Here we take the values mπ = 140 MeV, m0 = 5 MeV.

If one takes into consideration only Re S
(3)
eff (6.11) and

does not consider Re S
(4)
eff , in which case there will be no

structure in the coefficients a and b individually. They
contribute to the sum of the polarizabilities a+ b = α+ β

(see (6.18)). The next term of the expansion Re S
(4)
eff will

have to give the value of α+ β �= 0.

Here we restrict ourselves to the third-order expansion
of the effective action on t. In this approximation, the
main contribution to the polarizability of the charged pion
yields

αcl =
e2〈r2π〉
3mπ

as in the vector dominance model [412].

To establish the connection of parameters a, b, d with
polarizabilities of pions, we consider the non-relativistic
limit of (6.14). Taking the field of dormant pions in the
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form

π− ∼ exp(−imπt), π+ ∼ exp(imπt)

with the normalization and the link Lint = −U (see (6.1)),
we find

α = a− d, β = b+ d,

απ � −βπ � −dπ = 11.76× 10−4 fm3, (6.18)

απ0 � −βπ0 � −dπ0 = 0.1× 10−4 fm3.

The calculated values of (6.18) are in agreement with the
experimental values of [432]

απ+βπ = (1.4±5.5)×10−4 fm3, βπ = (−7.1±4.5)×10−4 fm3,
(6.19)

which are not very accurate.
The experiment for the polarizabilities of neutral pions

gives only the constraint |απ0 | < 35× 10−4 fm3 [429].
Thus, in the third-order expansion of the chiral effec-

tive action to t we obtain the value of the polarizabilities of
the charged pions, which coincides with the calculations in
the vector dominance model. The calculation of the next
term in the expansion will give some corrections to the
values (6.18). Since the accuracy of experimental values
of α, β (6.19) is not high, the calculation of these correc-
tions is not very important. It should be noted that the

real part Re S
(4)
eff , and also the imaginary part Im Seff ,
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which defines the Wess−Zumino action, will contribute to
the sum of the polarizabilities. This follows from the fact
that the relevant Feynman diagrams contain vertices that
define the anomalous part of the action.

In Appendixes A, B, and C, exact solutions of the wave
equation for the charged pions, produced from the La-
grangian (6.14), are obtained for external electromagnetic
fields of the following configurations: a constant magnetic
field, the field of a plane wave, a constant and uniform
electric field. The exact solution of the wave equation in
the external plane wave is used to take into account the
polarizabilities of pions in the process π+ → μ+ν̄μ.
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6.1.2 Electromagnetic polarizabilities of nucle-
ons

There are experimental data on neutron polarizability [433]
and proton polarizability [434]. This is therefore an inter-
esting theoretical study of these characteristics within non-
perturbative QCD. Earlier electromagnetic polarizabilities
were calculated in various models of hadrons: the nonrela-
tivistic quark model [408], the bag model [435], the Skyrme
model [436], the Skyrme model with ρ-mesons [437] - [439],
and the QCD-string theory [440] - [442]. Here we calculate
the electric and magnetic polarizabilities of the nucleon in
the chiral theory [424], based on the concept of the instan-
ton vacuum [188], [189], [421] - [423].

Static electric and magnetic polarizabilities are associ-
ated with a shift of the nucleon mass in the electric and
magnetic fields, respectively (see (6.1)):

δMN = −1

2
αE2 − 1

2
βH2. (6.20)

Low-energy formulation of QCD follows from the the-
ory of the instanton vacuum, and the corresponding par-
tition function is given by [421] - [423]:

Z =

∫
Dψ+DψDU exp

[∫
d4x ψ+

(
i∂̂ + iMUγ5 + im0

)
ψ

]
.

(6.21)
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Note that the effective Lagrangian for pions (6.4) fol-
lows from (6.21) after integration over the quark fields (at
m0 = 0). Nucleon mass can be calculated by the asymp-
totic behavior of the correlator of the nucleon currents in
the Euclidean space:

Π(T ) ≡ 〈JN (T )J+
N (0)〉T→∞ ∼ exp(−MNT ), (6.22)

where JN (x) is the current constructed from quark fields
with the quantum numbers of the nucleon.

To calculate the mass shift of the nucleon in an ex-
ternal electromagnetic field it is necessary to study the
asymptotic behavior of the correlation function (6.22) at
large Euclidean times in an external electromagnetic field.
Using (6.21) with the introduction of the electromagnetic
field by replacing ∂μ → ∂μ − iQAμ, the correlator of the
nucleon current in the external field can be written as a
path integral:

Π(T ) =
1

Z

∫
Dψ+DψDUJN (T )J+

N (0)

(6.23)

× exp

[∫
d4x ψ+

(
i∂̂ +QA+ iMUγ5 + im0

)
ψ

]
,

where A = Aμγμ. The integration of (6.23) on the quark
fields can be done exactly as integral (6.23) is Gaussian.
To calculate the integral over the field U , you can use
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the saddle-point method, which is justified in the limit
Nc → ∞. The saddle-point value of the chiral fields is
given by

U = exp

(
i
xa

r
τaP (r)

)
. (6.24)

Authors of the papers [424], [425] used for the profile func-
tion P (r) a simple one-parameter ansatz

P (r) = 2 arctan

(
r20
r2

)
(6.25)

when the parameter r0 = 0.98/M (M = 375 MeV). Inte-
grals associated with the rotational and translational zero
modes were calculated exactly [400].

To estimate the polarizabilities, the functional decom-
position of traces in powers of the chiral field U can be
used [400]. A similar approach was used in [424] to esti-
mate the moment of inertia, and it was shown that the
accuracy of this approximation is of the order of 10 per
cent. There was obtained in [400] a relation of the electric
polarizability with iso-vector charge radius 〈r2〉T=1:

α =
e2

2(MΔ −MN )
〈r2〉T=1 + F (U),

where the first term of the functional F (U) in powers of
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the derivative of the chiral field U is of the form:

F (U) =
e2

9

Nc

16π2

∫
d3x sin2 P (r).

Note that the connection of the electric polarizability with
the iso-vector charge radius follows from the general prin-
ciples of quantum field theory [408], and such a link is not
for the magnetic polarizability. In our present approach,
in contrast to [436], there is no clear link between the mag-
netic polarizability and the charge radius.

To estimate the electric polarizability we can use either
the experimental values of 〈r2〉T=1 and MΔ −MN , or the
values of these quantities calculated in this approach. The
value of MΔ−MN was computed in [424], and its value is
very close to the experimental one. The charge radius was
estimated at [400] where in the case of a non-zero quark
mass to estimate the integrals, profile function was used,
which has the correct asymptotic behavior at large r:

P (r) = 2 arctan

(
r20
r2

(1 +mπr) exp(−m2
πr)

)
. (6.26)

where mπ = 138 MeV is the mass of π-meson.

The computation of 〈r2〉T=1 with the help of (6.26) was
given in [400], and the experimental value of 〈r2〉T=1 =
0.82 fm2 is obtained with r0 = 0.89/M . Thus, we consider
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a chiral theory which reproduces the value of the charge
radius of the nucleon. On this basis, to evaluate the elec-
tric polarizability one can use the experimental value of
the charge radius.

Magnetic polarizability can be split into two terms β =
βpara+βdia (βpara is paramagnetic and βdia is diamagnetic
polarizabilities), where

βpara = 2
∑
n

|〈0|Mz|n〉|2
En − E0

. (6.27)

In this approach, as well as in the Skyrme model [436],
[437], the sum in (6.27) is saturated by the contribution
of Δ-isobar. This contribution can be calculated using the
ratio between the magnetic moment of the transition N →
Δ and the magnetic moment of the nucleon μNΔ = (μp −
μn)/

√
2 [424], which is well satisfied in the experiment.

The result is:

βpara =
e2

MΔ −MN

(
μp − μn
2MN

)2

. (6.28)

To estimate βdia it is convenient to study the amount of
α + 2βdia, which contains no divergences associated with
the slow decay of the profile function in the chiral limit,
and therefore does not depend much on the choice of the
variational ansatz (6.26). The value of βdia has been cal-
culated in [400].
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Experimental values for proton electromagnetic polar-
izabilities [443] (see also [408]) are

ᾱ = (12± 0.6)× 10−4 fm3,

(6.29)

β̄ = (1.9± 0.5)× 10−4 fm3.

When comparing the static polarizabilities α, β, defined
by (6.20), and the values of ᾱ, β̄, taken from a review of
Compton scattering, one has to consider the link

ᾱ = α+
e2〈r2E〉
3MN

, β̄ = β, (6.30)

and
e2〈r2E〉
3MN

� 3.8× 10−4 fm3.

Calculations of electromagnetic polarizabilities in this
approach gave values in agreement with the experimen-
tal values (6.29) [400]. Improving the accuracy of the
computation of electromagnetic polarizabilities is possible
by clarifying the terms in the expansion of the functional
F (U) in powers of the derivatives of the chiral field U .

So the considered approach gives reasonable values for
the charge radii and electromagnetic polarizabilities of nu-
cleons. Note that the chiral theory of nucleons gives an
opportunity to improve the accuracy of calculations by
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expanding the unknown quantities in the powers of 1/Nc

and the derivatives of the chiral field U , or using computer
calculations of the functional traces.
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6.1.3 The spontaneous CP violation in the SU(3)
NJL model

It is possible nowadays to derive the effective quark-meson
Lagrangians from the fundamental QCD Lagrangian. The
reformulation of QCD in terms of hadrons has not been
completed yet. Therefore, in the domain of low energy,
some phenomenological models are introduced. Local ECL
[444], [102], [445] can describe low energy physics of hadrons
with good accuracy. The instanton vacuum theory [188],
[189], [421], [191] explains the appearance of the chiral con-
densate which leads to the dynamical symmetry breaking
and to the effective four-quark interaction (for two flavors)
[197], [198] (see Sec. 5.2 and also [217], [356]). So, contact
four-fermion interaction modeling quark interactions, take
into account both quarks and mesons [1], [257], [81], [446],
[447], [448]. In such models, the gluon interactions are
neglected and there is no confinement of quarks. There-
fore NJL models are QCD motivated effective models with
some shortcomings. In particular, NJL models make it
possible to decay the scalar mesons into qq̄.

Our goal here is to study the possibility of spontaneous
CP symmetry violation in the SU(3) NJL model. The
electric dipole moments of particles violate CP -invariance
and, in the framework of QCD, can be explained with the
help of the θ-term. The effect of CP breaking in strong
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interactions is small, but the investigation of such a phe-
nomenon is important. It should be noted that the θ-term
is important for the solution of the UA(1) problem. The
axial symmetry, UA(1), is broken by the QCD anomaly.
This may be explained by the interactions of light quarks
and instantons which violate the UA(1)-symmetry. There
is a region of quark masses [449], where CP symmetry
is spontaneously broken. The CP violation leads to the
exotic phenomena, the possibility of η decaying into two
pions.
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6.1.4 The model and perturbation expansion

We start with an NJL model possessing the internal sym-
metry group SU(3)⊗ SU(3) in the chiral limit:

L(x) = −ψ̄(x)(γμ∂μ + m̂0)ψ(x)

(6.31)

+
G

2

{[
ψ̄(x)λaψ(x)

]2
+
[
iψ̄(x)γ5λ

aψ(x)
]2}

,

where λa (a = 0, 1, ..., 8) are the Gell-Mann matrices, λ0 =√
2/3I3 (I3 is the unit 3×3-matrix), ∂μ = (∂/∂xi,−i∂/∂x0)

(x0 is the time), γμ are the Dirac matrices, γ5 = γ1γ2γ3γ4.
The m̂0 is the matrix of bare masses of the quark triplet
ψ(x):

ψ(x) = diag [u(x), d(x), s(x)] , m̂0 = diag (mu,md,ms) .

The summation over color quark degrees of freedom n =
1, 2, ..., NC is implied here. The chiral symmetry is bro-
ken by quark masses and dynamically by the appearance
of condensates. Therefore, for simplicity, we consider only
the formation of the nonet of scalar mesons and the nonet
of pseudoscalar mesons π, K, η, η′. The octets of vec-
tor and pseudovector mesons are ignored here. The UA(1)
symmetry is not broken here as the Lagrangian (1) is in-
variant under γ5-chiral transformations. To violate this
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symmetry “by hand”, one can add to the Lagrangian (1)
the six-quark interaction due to instantons [217]. On the
other hand the UA(1) anomaly appears because of the non-
invariance of the fermion measure in the functional integral
[450]. It should be noted that the QCD anomaly, UA(1),
results in the existence of a ninth Goldstone boson η′ with
the greater mass compared to η.

Using the functional integration method [312] (see chap-
ter 2), the generating functional for Green’s functions

Z[η̄, η] = N0

∫
Dψ̄Dψ exp

{
i

∫
d4x

[
L(x)

+ψ̄(x)η(x) + η̄(x)ψ(x)

]}
, (6.32)

where η̄, η are external sources, with the help of the re-
placement

N0 = N

∫
DφaDφ̃a exp

{
−iM

2

2

×
∫
d4x

[(
φ̃a(x)− i g0

M2
ψ̄(x)γ5λ

aψ(x)

)2

+

(
φa(x)− g0

M2
ψ̄(x)λaψ(x)

)2]}
,

can be cast into

Z[η̄, η] = N

∫
Dψ̄DψDφaDφ̃a
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× exp

{
i

∫
d4x

[
−ψ̄n(x)

[
γμ∂μ + m̂0 − g0

(
φa(x)

+iγ5φ̃a(x)

)
λa
]
ψ(x) (6.33)

−M
2

2

(
φ̃2a(x) + φ2a(x)

)
+ ψ̄(x)η(x) + η̄(x)ψ(x)

]}
,

where G = g20/M
2; g0 is the dimensionless bare coupling

constant and M is the dimensional constant. Equation
(6.33) may be integrated over the ψ̄, ψ, and as a result
equation

Z[η̄, η] = N

∫
DφaDφ̃a exp

{
iS[Φ]

+i

∫
d4x d4y η̄(x)Sf (x, y)η(y)

}
, (6.34)

where the effective action for bosonic collective fields Φa(x) =
φa(x) + iγ5φ̃a(x) is given by

S[Φ] = −M
2

2

∫
d4x

[
φ2a(x) + φ̃2a(x)

]
(6.35)
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−iTr ln [−γμ∂μ − m̂0 + g0Φa(x)λ
a] .

We have used here the relation detQ = exp Tr lnQ (the
Q is an operator). The operator Tr in equation (6.35) in-
cludes the tracing in matrix and space-time variables. The
Green function of quarks, Sf (x, y), obeys the equations

[γμ∂μ + m̂0 − g0Φa(x)λ
a]Sf (x, y) = δ(x− y). (6.36)

The fields φa(x) and φ̃a(x) form nonets of scalar and pseu-
doscalar (π±, π0, K±, K0, K̄0, η, η′) mesons.

The symmetric vacuum in the NJL models is not stable
[257], [446], [447], [448]. The physical vacuum is recon-
structed which results in the appearance of condensates
and the dynamical breaking of SU(3)⊗ SU(3) symmetry.
We imply here that the condensates are formed as follows:

〈ψ̄ψ〉 �= 0, 〈ψ̄λ3ψ〉 �= 0, 〈ψ̄λ8ψ〉 �= 0,

(6.37)

〈ψ̄γ5ψ〉 �= 0, 〈ψ̄γ5λ3ψ〉 �= 0, 〈ψ̄γ5λ8ψ〉 �= 0.

The vacuum expectation values containing the γ5 matrix
are parity and time reversal odd values, and as a result,
they violate CP symmetry. To take into consideration and
to determine condensates, the fields have to be “shifted”
by the constants. Therefore, we make the substitution in
equations (6.35), (6.36)

φ0(x) = φ′0(x) + σ0, φ3(x) = φ′3(x) + σ3,
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φ8(x) = φ′8(x) + σ8, φi(x) = φ′i(x),
(6.38)

φ̃0(x) = φ̃′0(x) + σ̃0, φ̃3(x) = φ̃′3(x) + σ̃3,

φ̃8(x) = φ̃′8(x) + σ̃8, φ̃i(x) = φ̃′i(x),

where i = 1, 2, 4, 5, 6, 7; σ0, σ3, σ8, σ̃0, σ̃3, σ̃8 are coordinate-
independent and Lorentz-invariant constants. The fields
φ′a(x), φ̃′a(x) in equations (6.38) represent quantum exci-
tations over vacuum and are assumed to be small. The
vacuum expectation values (condensates), σ̃0, σ̃3 and σ̃8,
break CP symmetry. Below, the condensates σj and σ̃j
for j = 0, 3, 8 will be obtained from the minimum of the
effective potential defining the energy density of the vac-
uum. To formulate the perturbation theory [312], we use
the saddle-point method. Taking into consideration equa-
tions (6.38), one may rewrite equation (6.35) as follows:

S[Φ′] = −M
2

2

∫
d4x

[(
φ′j(x) + σj

)2
+
(
φ̃′j(x) + σ̃j

)2
+ φ

′2
i + φ̃

′2
i

]
(6.39)

−iTr ln
[
−γμ∂μ − m̂+ i ̂̃mγ5 + g0Φ

′
a(x)λ

a
]
,

where Φ′a(x) = φ′a(x) + iγ5φ̃
′
a(x), i = 1, 2, 4, 5, 6, 7; j =

0, 3, 8,
m̂ = diag (m01,m02,m03) ,

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



240 CHAPTER 6.

̂̃m = diag (m̃1, m̃2, m̃3) ,

m01 = mu − g0
(√

2

3
σ0 + σ3 +

σ8√
3

)
,

m02 = md − g0
(√

2

3
σ0 − σ3 + σ8√

3

)
,

(6.40)

m03 = ms − g0
(√

2

3
σ0 − 2σ8√

3

)
,

m̃1 = g0

(√
2

3
σ̃0 + σ̃3 +

σ̃8√
3

)
,

m̃2 = g0

(√
2

3
σ̃0 − σ̃3 + σ̃8√

3

)
, m̃3 = g0

(√
2

3
σ̃0 − 2σ̃8√

3

)
.

Let us consider the equality

Tr ln
[
−γμ∂μ − m̂+ i ̂̃mγ5 + g0Φ

′
a(x)λ

a
]

= Tr ln
(
−γμ∂μ − m̂+ i ̂̃mγ5)

+Tr ln
[
1− g0S0f (x, y)Φ′a(x)λa

]
,

where the Green function S0f (x, y) obeys the equation[
γμ∂μ + m̂− i ̂̃mγ5]S0f (x, y) = δ(x− y). (6.41)
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Then expanding the logarithm in small fluctuations Φ′a(x),
the effective action (6.35) takes the form

S[Φ′] = −M
2

2

∫
d4x

[(
φ′j(x) + σj

)2
+
(
φ̃′j(x) + σ̃j

)2
+ φ

′2
i + φ̃

′2
i

]
(6.42)

−iTr ln
(
−γμ∂μ − m̂+ i ̂̃mγ5)+ ∞∑

n=1

i

n
Tr
(
g0S0fΦ

′
aλ

a)n ,
where

Tr
(
g0S0fΦ

′
aλ

a)n
= tr

[
gn0

∫
d4x1...d

4xn S0f (xn − x1)Φ′a1λa1 (6.43)

×S0f (x1 − x2)Φ′a2λa2 ...S0f (xn−1 − xn)Φ′anλan
]
,

where the tr[...] means the tracing in matrices. The terms
with n = 3, 4 in equation (6.42) define the decaying and the
scattering of mesons. The fields φ′a and φ̃′a in the effective
action (6.42), after renormalization, describe the physical
scalar and pseudoscalar mesons.
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6.1.5 Propagators of quarks and mesons

To calculate the masses of quarks and mesons it is neces-
sary to find the propagators of quarks and mesons. The
condensates σj and σ̃j for j = 0, 3, 8 can be obtained from

the requirement that terms linear in fields φ′a(x), φ̃′a(x),
which correspond to the “tadpole” diagrams, and are ab-
sent in the effective action (6.42). This leads to the gap
equations

δS[Φ′]
δφ′j(x)

|φ′
j=0 = −M2σj + ig0Tr

[
S0f (x, x)λ

j
]
= 0,

(6.44)

δS[Φ′]
δφ̃′j(x)

|
φ̃′=0

= −M2σ̃j(x)− g0Tr
[
S0f (x, x)γ5λ

j
]
= 0.

To find a solution of equation (6.41), we write it down in
the momentum space:[

ip̂+ m̂− i ̂̃mγ5]S0f (p) = 1, (6.45)

where p̂ = pμγμ, pμ = (p, ip0). It is easy to verify that the
solution to equation (6.45) for the Green function is given
by

S0f (p) = diag

(−ip̂+m01 + im̃1γ5
p2 +m2

1

,
−ip̂+m02 + im̃2γ5

p2 +m2
2

,
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−ip̂+m03 + im̃3γ5
p2 +m2

3

)
, (6.46)

where

m2
1 = m2

01+m̃
2
1, m

2
2 = m2

02+m̃
2
2, m

2
3 = m2

03+m̃
2
3. (6.47)

The poles of the Green function (6.46) define the dynami-
cal (constituent) masses of u, d and s quarks: m1, m2, m3.
The scalar (σj) and pseudoscalar (σ̃j) condensates con-
tribute to the constituent masses of all quarks. The terms
containing m̃j in Eq.(6.46) violate CP -symmetry. Substi-
tuting equation (6.46) into equations (6.44), one obtains a
system of gap equations:

M2σ0 = g0

√
2

3
(I1m01 + I2m02 + I3m03) ,

M2σ3 = g0 (I1m01 − I2m02) ,

M2σ8 =
g0√
3
(I1m01 + I2m02 − 2I3m03) ,

M2σ̃0 = −g0
√

2

3
(m̃1I1 + m̃2I2 + m̃3I3) , (6.48)

M2σ̃3 = −g0 (m̃1I1 − m̃2I2) ,

M2σ̃8 = − g0√
3
(m̃1I1 + m̃2I2 − 2m̃3I3) ,
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where quadratic diverging integrals are given by

Ij =
iNC

4π4

∫
d4p

p2 +m2
j

=
NC

4π2

[
m2

j ln

(
Λ2

m2
j

+ 1

)
− Λ2

]
,

(6.49)
where d4p = id3pdp0, the Λ is a cut-off and there is no sum-
mation in the index j (j = 1, 2, 3) in equation (6.49). The
self-consistent equations (6.48) connect such parameters of
a model as the dimensional constant G, condensates σj (or
dynamical masses of quarks) and a cut-off. The system of
six gap equations (6.48), defining the vacuum expectations
σj , σ̃j , with the help of equations (6.40) can be rewritten
as

(mu −m01) = 2m01GI1, (md −m02) = 2m02GI2,

(6.50)

(ms −m03) = 2m03GI3,

−m̃1 = 2m̃1GI1, − m̃2 = 2m̃2GI2, − m̃3 = 2m̃3GI3.
(6.51)

There are different solutions of gap equations (6.50), (6.51).
We are interested here in the possibilities of CP violation
(m̃j �= 0). Therefore, consider the case when equations
(6.51) have non-trivial solutions. It follows from equations
(6.51) that if three vacuum expectations m̃j (j = 1, 2, 3)
do not equal zero, m̃j �= 0, then I1 = I2 = I3, and therefore

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.1. LOW-ENERGY CHARACTERISTICS 245

m1 = m2 = m3. This is not an interesting case because the
strange quark s is much heavier than the u and d quarks.
Another solution is m̃3 = 0, m̃1 �= 0, m̃2 �= 0. Then from
equations (6.51), we arrive at the casem1 = m2, m̃1 = m̃2,
i.e. isotopic symmetry is not broken, and the gap equation
becomes 2g20I1 = −M2 (I1 = I2). Comparing this equa-
tion with equations (6.50), one makes a conclusion that
mu = md = 0, i.e. the chiral limit for the light quarks is
realized. We expect that pions (π±, π0) will be massless
Goldstone particles in this case. Requiring ms �= 0, one
arrives from equations (6.50) at two gap equations

(ms −m03) = 2m03GI3, − 1 = 2GI1. (6.52)

At the same time, if there is no CP violation, m̃1 = m̃2 =
m̃3 = 0, we can analyze the case mu �= 0, md �= 0, ms �= 0,
and gap equations (6.50) are valid (see [217], [257], [446],
[447], [448] for other studies). We pay attention here to
the case m̃1 = m̃2 �= 0, m̃3 = 0, mu = md = 0, which
requires (see equations (6.50))

σ3 = σ̃3 = 0, σ̃0 =
√
2σ̃8. (6.53)

The independent parameters here are the current quark
mass ms, the cut-off Λ, and the dimensional constant G.

From equation (6.52), one may obtain the part of ef-
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fective action which does not depend on coordinates:

S[σ, σ̃] = −M
2

2

∫
d4x

[
(σj)

2 + (σ̃j)
2
]

−iTr ln
(
−γμ∂μ − m̂+ i ̂̃mγ5) . (6.54)

We can use the relation S[σ, σ̃] = − ∫ d4x Veff [314], [315]
for the constant fields. As a result, one may get from equa-
tion (6.54), with the help of equation (6.40), the effective
potential

Veff =
M2

4g20

[
(m01 −mu)

2 + (m02 −md)
2 + (m03 −ms)

2
]

(6.55)

+
iNC

8π4

∫
d4p ln

(
p2 +m2

1

) (
p2 +m2

2

) (
p2 +m2

3

)
.

We will keep all parameters as non-zero for the possibility
to study as the case with CP violation as well as the case
without CP breaking. Equations (6.48) or (6.50), (6.51)
may be obtained from the condition of the effective poten-
tial (6.55) to realize the minimum:

∂Veff
∂m0j

=
∂Veff
∂m̃j

= 0 (j = 1, 2, 3). (6.56)

To obtain the mass spectrum of mesons, one needs to eval-
uate the terms in equation (6.42), quadratic in fields φ′a,
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φ̃′a. From equation (6.42) we find

S(2)[Φ′] = −M
2

2

∫
d4x

[
φ

′2
a + φ̃

′2
a

]
+
i

2
Tr
(
g0S0fΦ

′
aλ

a)2
(6.57)

≡ −1

2

∫
d4x d4y φ′A(x)Δ

−1
AB(x, y)φ

′
B(y).

In the momentum space the inverse meson symmetric prop-
agator is given by

Δ−1AB(p) = −ig20tr
[∫

d4k

(2π4)
S0f (k)TAS0f (k − p)TB

]

+δABM
2
A, (6.58)

where TA = (λa, iγ5λ
a), φ′A = (φ′a, φ̃′a), and we use the

notation A = (a, ã).
Evaluating the traces in equations (6.58), we obtain the

non-zero elements of the inverse propagators of the scalar
(Φ′a(x)) mesons:

Δ−100 (p) =M2 + g20
2

3
(I1 + I2 + I3) +

1

3

(
p2 + 4m2

01

)
I11(p)

+
1

3

(
p2 + 4m2

02

)
I22(p) +

1

3

(
p2 + 4m2

03

)
I33(p),

Δ−111 (p) = Δ−122 (p) =M2 + g20 (I1 + I2)
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+
[
p2 + (m02 +m01)

2 + (m̃1 − m̃2)
2
]
I12(p),

Δ−133 (p) =M2 + g20 (I1 + I2) +
1

2

(
p2 + 4m2

01

)
I11(p)

+
1

2

(
p2 + 4m2

02

)
I22(p),

Δ−144 (p) = Δ−155 (p) =M2 + g20 (I1 + I3)

+
[
p2 + (m03 +m01)

2 + (m̃1 − m̃3)
2
]
I13(p),

Δ−166 (p) = Δ−177 (p) =M2 + g20 (I2 + I3)

+
[
p2 + (m03 +m02)

2 + (m̃2 − m̃3)
2
]
I23(p), (6.59)

Δ−188 (p) =M2 +
g20
3
(I1 + I2 + 4I3) +

1

6

(
p2 + 4m2

01

)
I11(p)

+
1

6

(
p2 + 4m2

02

)
I22(p) +

2

3

(
p2 + 4m2

03

)
I33(p),

Δ−103 (p) = g20

√
2

3
(I1 − I2) + 1√

6

(
p2 + 4m2

01

)
I11(p)

− 1√
6

(
p2 + 4m2

02

)
I22(p),

Δ−108 (p) =
g20
√
2

3
(I1 + I2 − 2I3) +

√
2

6

(
p2 + 4m2

01

)
I11(p)

+

√
2

6

(
p2 + 4m2

02

)
I22(p)−

√
2

3

(
p2 + 4m2

03

)
I33(p),
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√
2Δ−138 (p) = Δ−103 (p).

One can get from equation (6.58) the inverse propagators
of pseudoscalar (Φ̃′a(x)) mesons:

Δ−1
0̃0̃

(p) =M2 + g20
2

3
(I1 + I2 + I3) +

1

3

(
p2 + 4m̃2

1

)
I11(p)

+
1

3

(
p2 + 4m̃2

2

)
I22(p) +

1

3

(
p2 + 4m̃2

3

)
I33(p),

Δ−1
1̃1̃

(p) = Δ−1
2̃2̃

(p) =M2 + g20 (I1 + I2)

+
[
p2 + (m02 −m01)

2 + (m̃1 + m̃2)
2
]
I11(p),

Δ−1
3̃3̃

(p) =M2 + g20 (I1 + I2)

+
1

2

(
p2 + 4m̃2

1

)
I11(p) +

1

2

(
p2 + 4m̃2

2

)
I22(p),

Δ−1
4̃4̃

(p) = Δ−1
5̃5̃

(p) =M2 + g20 (I1 + I3)

+
[
p2 + (m03 −m01)

2 + (m̃1 + m̃3)
2
]
I13(p),

Δ−1
6̃6̃

(p) = Δ−1
7̃7̃

(p) =M2 + g20 (I2 + I3)

+
[
p2 + (m03 −m02)

2 + (m̃2 + m̃3)
2
]
I23(p), (6.60)

Δ−1
8̃8̃

(p) =M2 +
g20
3
(I1 + I2 + 4I3) +

1

6

(
p2 + 4m̃2

1

)
I11(p)
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+
1

6

(
p2 + 4m̃2

2

)
I22(p) +

2

3

(
p2 + 4m̃2

3

)
I33(p),

Δ−1
0̃3̃

(p) = g20

√
2

3
(I1 − I2)

+
1√
6

(
p2 + 4m̃2

1

)
I11(p)− 1√

6

(
p2 + 4m̃2

2

)
I22(p),

Δ−1
0̃8̃

(p) =
g20
√
2

3
(I1 + I2 − 2I3) +

√
2

6

(
p2 + 4m̃2

1

)
I11(p)

+

√
2

6

(
p2 + 4m̃2

2

)
I22(p)−

√
2

3

(
p2 + 4m̃2

3

)
I33(p),

Δ−1
0̃3̃

(p) =
√
2Δ−1

3̃8̃
(p).

Non-diagonal scalar-pseudoscalar elements of inverse prop-
agators are given by

Δ−1
0̃0

(p) = −4

3
[m01m̃1I11(p) +m02m̃2I22(p) +m03m̃3I33(p)] ,

Δ−1
80̃

(p) = Δ−1
08̃

(p) =
2
√
2

3

[
2m03m̃3I33(p)

−m01m̃1I11(p)−m02m̃2I22(p)

]
, (6.61)

Δ−1
30̃

(p) = Δ−1
03̃

(p) =
√
2Δ−1

83̃
(p) =

√
2Δ−1

38̃
(p)

= 2

√
2

3
[m02m̃2I22(p)−m01m̃1I11(p)] ,
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where the quadratic diverging integrals read

Iij(p) = − ig
2
0NC

4π4

∫
d4k(

k2 +m2
i

) [
(k − p)2 +m2

j

]

=
g20NC

4π2

[
ln

(
Λ2

m2
i

)
− 1 (6.62)

−
∫ 1

0
dx ln

m2
j + x

(
m2

i −m2
j

)
+ p2x(1− x)

m2
i

]
,

and there is no summation in indexes i, j. Inverse prop-
agators (6.59)-(6.61) define the spectrum of mass for the
general case including CP violation.
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6.1.6 The effective action and mass spectrum
of mesons

Poles of the propagators (6.58) give the masses of mesons
which can be estimated by numerical calculations. Here
we make some evaluations of meson masses. From equa-
tions (6.59)-(6.61), one can find the effective action of the
mesonic “free” fields

Sfree[Φ] = −1

2

∫
d4x

[
(∂μΦA(x))

2 +m2
ABφA(x)φB(x)

]
,

(6.63)
where A = (a, ã), φã ≡ φ̃a. The eigenvalues of the sym-
metric mass matrix m2

AB define the mass spectrum. To

obtain the mass matrix, we renormalize fields φ̃a(x) =
Z−1/2φ̃′a(x), φa(x) = Z−1/2φ′a(x), and the constant g2 =
Zg20, so that the variables gφa, gφ̃a are the renormalization-
invariant values. It follows from equation (6.62) that the
renormalization constant can be defined as follows

Z−1 =
g20NC

4π2

[
ln

(
Λ2

m2
1

)
− 1

]
. (6.64)

It is seen from equation (6.64) that the expansion in g2/4π2,
corresponds to the 1/NC expansion. We imply here that
the cut-off Λ is chosen in such a way that g2/4π2 < 1. Us-
ing the gap equations (6.50), (6.51), in the leading order,
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we find from equations (6.59) the elements of the mass
matrix for scalar mesons:

m2
00 = g2

2

3

(
muI1

mu −m01
+

mdI2
md −m02

+
msI3

ms −m03

)

+
4

3

(
m2

01 +m2
02 +m2

03

)
,

m2
11 = m2

22 = g2
(

muI1
mu −m01

+
mdI2

md −m02

)
+(m02 +m01)

2 + (m̃1 − m̃2)
2 ,

m2
33 = g2

(
muI1

mu −m01
+

mdI2
md −m02

)
+ 2

(
m2

01 +m2
02

)
,

m2
44 = m2

55 = g2
(

muI1
mu −m01

+
msI3

ms −m03

)
+(m03 +m01)

2 + (m̃1 − m̃3)
2 ,

m2
66 = m2

77 = g2
(

mdI2
md −m02

+
msI3

ms −m03

)
+(m03 +m02)

2 + (m̃2 − m̃3)
2 , (6.65)

m2
88 =

g2

3

(
muI1

mu −m01
+

mdI2
md −m02

+
4msI3

ms −m03

)

+
2

3

(
m2

01 +m2
02 + 4m2

03

)
,
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m2
08 =

g2
√
2

3
(I1 + I2 − 2I3)

+
2
√
2

3

(
m2

01 +m2
02 − 2m2

03

)
,

m2
03 =

√
2m2

38 = g2
√

2

3
(I1 − I2) + 2

√
2

3

(
m2

01 −m2
02

)
.

One can obtain from equations (6.60) the elements of the
mass matrix for pseudoscalar mesons:

m2
0̃0̃

= g2
2

3

(
muI1

mu −m01
+

mdI2
md −m02

+
msI3

ms −m03

)

+
4

3

(
m̃2

1 + m̃2
2 + m̃2

3

)
,

m2
0̃8̃

=
g2
√
2

3
(I1 + I2 − 2I3) +

2
√
2

3

(
m̃2

1 + m̃2
2 − 2m̃2

3

)
,

m2
0̃3̃

=
√
2m2

3̃8̃
= g2

√
2

3
(I1 − I2) + 2

√
2

3

(
m̃2

1 − m̃2
2

)
,

m2
1̃1̃

= m2
2̃2̃

= g2
(

muI1
mu −m01

+
mdI2

md −m02

)
+(m02 −m01)

2 + (m̃1 + m̃2)
2 ,

m2
4̃4̃

= m2
5̃5̃

= g2
(

muI1
mu −m01

+
msI3

ms −m03

)
+(m03 −m01)

2 + (m̃1 + m̃3)
2 , (6.66)
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m2
6̃6̃

= m2
7̃7̃

= g2
(

mdI2
md −m02

+
msI3

ms −m03

)
+(m03 −m02)

2 + (m̃2 + m̃3)
2 ,

m2
3̃3̃

= g2
(

muI1
mu −m01

+
mdI2

md −m02

)
+ 2

(
m̃2

1 + m̃2
2

)
,

m2
8̃8̃

=
g2

3

(
muI1

mu −m01
+

mdI2
md −m02

+
4msI3

ms −m03

)

+
2

3

(
m̃2

1 + m̃2
2 + 4m̃2

3

)2
.

Using equations (6.61), we find non-diagonal scalar-
pseudoscalar elements of the mass matrix

m2
0̃0

= −4

3
(m01m̃1 +m02m̃2 +m03m̃3) ,

m2
80̃

= m2
08̃

=
2
√
2

3
(2m03m̃3 −m01m̃1 −m02m̃2) , (6.67)

m2
30̃

= m2
03̃

=
√
2m2

83̃
=
√
2m2

38̃

= 2

√
2

3
(m02m̃2 −m01m̃1) .

From equations (6.65)-(6.67) is seen the Goldstone nature
of pseudoscalar mesons: if bare masses of quarks are zero,
σ0 = σ3 = σ8 = 0, m̃j = 0, all pseudoscalar mesons are
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massless. We recall that if m̃j �= 0 (j = 1, 2), gap equa-
tions require the chiral limit: mu = md = 0. If there is no
CP violation (m̃j = 0), one can consider the case mu �= 0,
md �= 0 to have non-zero pion masses. It follows from
equations (6.67) that there is mixing of the scalar φa(x)
and pseudoscalar φ̃a(x) fields due to the CP-violating con-
densates m̃j . The fields φ̃0 and φ̃8 are also mixed cor-
responding to η − η′ mixing. Pions, connected with the
fields φ̃i(x) (i = 1, 2, 3), acquire non-zero masses due to
the presence of the CP -violating condensates even for zero
current masses mu = md = 0. At the same time in the
case m̃1 = m̃2, m̃3 = 0 there is less contribution of CP
violating condensates to the masses of scalar mesons.

To obtain the diagonal matrix mAB, one can make the
transformation of the rotation group for fields φa(x), φ̃a(x)
(a = 0, 3, 8). For the simple mixing of fields φ̃0(x), φ̃8(x),
one obtains

φ̃′0(x) = φ̃0(x) cos θP − φ̃8(x) sin θP ,
(6.68)

φ̃′8(x) = φ̃0(x) sin θP + φ̃8(x) cos θP ,

where tan 2θP = 2m2
0̃8̃
/(m2

8̃8̃
−m2

0̃0̃
). The masses of bosonic

fields φ̃′0(x), φ̃′8(x) become:

m′2
0̃0̃

= m2
0̃0̃
cos2 θP +m2

8̃8̃
sin2 θP −m2

0̃8̃
sin 2θP ,
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(6.69)

m′2
8̃8̃

= m2
0̃0̃
sin2 θP +m2

8̃8̃
cos2 θP +m2

0̃8̃
sin 2θP .

We consider the case m1 = m2 when the isotopic sym-
metry is conserved. It follows then from Eqs. (6.40) that
this requires the vacuum expectation value σ3 = 0. The
relation m1 −mu = −g(√2σ0 + σ8)/

√
3 (after the renor-

malization of the constant g0) is treated as the quark level
version of the Goldberger−Treiman identity [451] with the
pion decay constant (

√
2σ0 + σ8)/

√
3 = fπ = 93 MeV. We

imply here a very small possible contribution of CP vio-
lating condensates to the real masses of mesons. We use
here the value of the constant [330] g = 3.628, so that the
parameter of expansion is g2/4π2 = 1/NC = 1/3. Using
the freedom in the choice of the bare quark mass, we put
mu = md = 5.3 MeV. From the Goldberger−Treiman rela-
tion one obtains the constituent masses of the light quarks
m1 = m2 = 342.7 MeV (m̃j = 0). Following from equation
(6.64): the covariant cut-off Λ is given by Λ = em1 = 931.5
MeV. To find the constituent mass of the s-quark, we find
from the gap equations (6.50) the self-consistent relation
m1(ms − m3)I1 = m3(mu − m1)I3. Setting the free pa-
rameter of the s-quark current mass ms = 166 MeV, for
a given cut-off, one obtains the dynamical strange quark
mass: m3 = 570 MeV. With the help of these masses
and the cut-off Λ, we calculate from equations (6.66) the

 EBSCOhost - printed on 2/13/2023 9:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



258 CHAPTER 6.

masses of π, K mesons and quark condensates

mπ = 139 MeV, mK = 494 MeV,

〈ūu〉 = 〈d̄d〉 = m1I1 = (−252 MeV)3 , (6.70)

〈s̄s〉 = m3I3 = (−268 MeV)3 .

Masses ofK mesons are degenerated here as well as masses
of pions. The masses and condensates (6.70) are agreed
with the phenomenology. The pseudoscalar η′ − η mix-
ing angle, evaluated from equations (6.68), is θP = −35◦.
Masses of η, η′ and their mixing angle are not described
correctly here because we did not take into consideration
the anomaly and the axial symmetry UA(1) is not broken.
It is easy to verify that the Gell-Mann−Oakes−Renner
[452] relation f2πm

2
π = −2mu〈uu〉 is approximately valid.

From Eqs.(6.65) we obtain the elements of the mass
matrix corresponding to nonets of scalar mesons

m00 = 938 MeV, m11 = m22 = m33 = 699 MeV,

m44 = m55 = m66 = m77 = 1013 MeV, (6.71)

m88 = 1128 MeV.

The mixing angle of the φ0 and φ8 fields is θS = −35◦.
Scalar and pseudoscalar fields are not mixed in the case
(see equations (6.67)) when the equality m̃j = 0 is valid.
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We do not identify here the scalar mesons φa(x) with
nonets of known scalar mesons: σ(560), f0(980), κ(900),
a0(980) due to their complicated nature: there are contri-
butions of four-quark states and gluons in these mesons
[453] - [455].

The model under consideration can describe CP vio-
lation in strong interactions. There is a contribution of
CP violating condensates, m̃j , to constituent masses of u,
d and s quarks and to masses of scalar and pseudoscalar
mesons. If the current masses of quarks equal zero, and
CP -violating condensate m̃j = 0, all pseudoscalar mesons
π, K, η, η′ become massless Goldstone bosons. Masses of
all K-mesons are degenerated in the case m01 = m02. In
this model, the appearance of CP -violating condensates
leads to the chiral limit: mu = md = 0 . In the particular
case m̃j = 0, when there is no CP violation, the model
gives reasonable dynamical quark masses, masses of π, K
mesons and quark condensates. At the same time η and η′

mesons cannot be described correctly in the framework of
the model considered because the UA(1) symmetry is not
broken. To take into consideration the UA(1)-anomaly, one
may generalize the model by including the determinant of
six-quark interactions (due to instantons) violating UA(1)
symmetry [217].
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6.1.7 Effective chiral Lagrangians of
the SU(3)-group and low-energy
physics of hadrons

It is known that the QCD Lagrangian at zero current
masses of the quarks has a chiral U(3)L ⊗ U(3)R symme-
try. Due to Adler−Bell−Jackiw anomalies at the quantum
level the original symmetry is spontaneous breaking, which
leads to a lack of parity doublets in the physical spectrum:

U(3)L ⊗ U(3)R/U(1)A → SU(3)L ⊗ SU(3)R ⊗ U(1)V

(6.72)

→ SU(3)V ⊗ U(1)V .

The nonet of pseudo-scalar mesons: π0, π±, K0, K±, η, η′

occurs as Goldstone particles. The chiral field, performing
a non-linear realization of the group SU(3)L ⊗ SU(3)R, is
parameterized as follows:

U(x) = exp

(
2i

Fπ
Φ(x)

)
,

(6.73)

Φ(x) = Φa(x)λ
a =

⎛⎜⎜⎝
π0√
2
+ η√

6
π+ K+

π− − π0√
2
+ η√

6
K0

K− K̄0 − 2√
6
η

⎞⎟⎟⎠ ,
where Fπ =

√
2fπ = 135 MeV.
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The effective action is invariant under the symmetry
group SU(3)L ⊗ SU(3)R, and can be composed of two
parts, a normal part of ΓN and anomalous ΓWZ (calibrated
Wess−Zumino action) [456] - [461]:

Γ = ΓN + ΓWS . (6.74)

The action (6.74) includes U , (6.73), as well as the octet
of vector and axial mesons

V =

⎛⎜⎝
1√
2
(ρ0 + ω) ρ+ K∗+

ρ− 1√
2
(−ρ0 + ω) K∗0

K∗− K̄∗0 ϕ

⎞⎟⎠ , (6.75)

A =

⎛⎜⎝
1√
2
(A0

1 +D) A+
1 Q+

A−1
1√
2
(−A0

1 +D) Q0

Q− Q̄0 −E

⎞⎟⎠ . (6.76)

It is assumed that the vector and axial-vector mesons in-
teract with other fields with the same constant g.

The action of ΓN is invariant under the substitution
U → U−1, and meets the symmetry Φ → −Φ (see [155]).
This part of the action describes a process in which the
number of pseudoscalar mesons NP is even. Besides the
action ΓN is invariant under the reflection operation of
spatial coordinates P0: P0Φ(x, t)P

−1
0 = −Φ(−x, t) . Wit-

ten has noted [155], that there are processes that retain
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only the combination of P = P0(−1)NP , which is the ac-
tual symmetry of strong interactions. For example, the
real, pure strong, processes

K+K−, ηπ0, K0K̄0 → π+π−π0 (6.77)

break apart symmetry P0 and (−1)NP , but keep P . Pro-
cesses of this type are due to anomalies of QCD and are
described by the actions ΓWZ .

In this approach (see [457], [458]) vector and axial-
vector mesons Vμ, Aμ appear as gauge fields and define
strength

FL,R
μν = ∂μA

L,R
ν − ∂νAL,R

μ − ig[AL,R
μ , AL,R

ν ], (6.78)

where

AL
μ =

1

2
(Vμ +Aμ) , AR

μ =
1

2
(Vμ −Aμ) .

In this case, the divergence of the axial current is not equal
to zero ([134]). This situation is true and this approach
is called the theory of massive Yang−Mills fields (MYM)
[459]. There is another approach based on the hidden sym-
metry [460], [462]. It should be noted that the effective
action approach MYM was obtained in [95] based on the
NJL Lagrangian (1.9). At the same time, as shown in Sec.
5.1, NJL Lagrangians are obtained directly from QCD as
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its low energy limit. Thus, the considered approach is jus-
tified in the framework of QCD. In this case, however, the
parameters included in the ΓN , are not independent, but
are calculated accurately. In addition, in the normal part
of the action, ΓN , other terms with higher derivatives of
the chiral field appear. However, to describe the actual
processes of strong interactions in the energy range ∼ 1
GeV it is sufficient consideration of the normal part of the
action ΓN .

In this approach, the spontaneous breaking of the global
SU(3)L⊗SU(3)R symmetry is violated by the mass matrix

M =
2

3

(
m2

K +
1

2
m2

π

)
I3 − 2√

3

(
m2

K −m2
π

)
λ8

(6.79)

= diag
(
m2

π, m
2
π, m

2
K

)
,

where mπ is the mass of π-meson, and mK is the mass of
K-meson.

In contrast to the normal part of the ΓN , the anoma-
lous part of ΓWZ contains no adjustable parameters and
has great predictive power. It describes a large number
of processes with unnatural parity P . Such action ΓWZ

describes the processes of decay π0 → 2γ, γ∗ → 3π in ac-
cordance with the results of current algebra [155]. This
approach naturally turns the KSFR-relation [463], [464]
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and improvedWeinberg’s ratio. Interaction Lagrangians of
pseudoscalar, vector and axial-vector fields LV ΦΦ, LAV Φ,
LAAV , LV V V , LAΦΦΦ, LAAΦΦ, LV V ΦΦ, LAAAΦ, LAAAA,
LV V V V , LΦΦΦΦ, LAΦV V , LAAV V also follow from the ac-
tion ΓN . The expressions for the LV ΦΦ, LAV Φ were found
in [457], [458] to calculate the decay widths of vector and
axial-vector mesons. Using the LV ΦΦ, LAV Φ to describe
the decays ρ0 → π+π−, A+ → π0ρ+ and comparing the
respective widths of the experimental data [458] allow the
fixing of the parameters of the model. After fixing the pa-
rameters, a large number of processes described by these
Lagrangians can be calculated. Thus, the considered ap-
proach based on symmetries has great predictive power.
At energies ≥ 1 GeV the vector dominance hypothesis can
be used, according to which the neutral vector bosons can
be transformed into an electromagnetic field [323], [465],
[466]. This statement is well tested, and the corresponding
interaction Lagrangian has the form

Lem =

√
2e

g
Aμ

(
m2

ρρ
0
μ +

1

3
m2

ωωμ −
√
2

3
m2

ΦΦμ

)
+O(A2

μ),

(6.80)
where mρ = 770 MeV, mω = 783 MeV, mΦ = 1020 MeV,
g = 9.6, e2 = 4πα, α = 1/137.

We now turn to the anomalous part of the effective
action of ΓWZ . On the basis of the Wess−Zumino action
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ΓWZ there were calculated the widths of the radiative de-
cays of vector mesons [458], [459], which are in reasonable
agreement with the experimental data. It should be taken
into account the mixing η and η′-mesons [458]:

η = ηP cos θ+ η′P sin θ, η = −ηP sin θ+ η′P cos θ, (6.81)

at θ = −18◦, and ω, ϕ-mesons

ωμ = ωP
μ − ξϕP

μ , ϕμ = ξωP
μ + ϕP

μ , (6.82)

where |ξ| = 0.076. To obtain correct decay widths of η, η′,
and ϕ-mesons we must also take into account the relations:
FK/Fπ = 1.28, Fη/Fπ = 1.28, Fη′/Fπ = 1.

It should be noted that the anomalous vertexes com-
pared to normal vertexes contain the additional factor of
1/(16π2). So, for example, the contribution from the two
anomalous vertexes will be suppressed compared to the
contribution from the normal part of the ΓN .

The effective Lagrangian should be applied at the tree
level. This follows from the fact that it is obtained from
the accounting loops. If we consider the additional loop
diagrams, they will only lead to a renormalization of the
corresponding quantities. The dependence on the kine-
matic variables is negligible near threshold processes that
hold the effective Lagrangian.

Note also that the anomalous vertexes necessarily con-
tain at least one pseudoscalar meson. This follows from
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the form of the ΓWZ [458]. This implies the following pre-
dictions about the lack of decay channels:

D → ρρ, D → ωω, A1 → ρω,

(6.83)

E± → K∗ρ, E± → K∗ω, E± → K∗±ϕ.

Most hadronic processes that can be observed in e+e−-
collisions have the energy thresholds of 1 − 3 GeV. The
widths of the purely hadronic processes ω → 3π b K∗ →
Kππ, are described by the anomalous part of the La-
grangian LWZ , in good agreement with the experimental
data [458].

We note here also that the effective action obtained by
the calibration of the Wess−Zumino−Witten Lagrangian
under the group U(1) does not violate low energy theorems
[95], [467].

It should be borne in mind that the use of the vector-
dominance does not affect low-energy theorems for the pro-
cesses γ → πππ, π → γγ [468].

Thus, the advantage of this approach is to use the sym-
metry of the strong interactions. The accuracy obtained
(∼ 15 per cent) is the same as the accuracy of SU(3)-
symmetry. To improve the accuracy of the calculations
one can include in a normal part of the Lagrangian ad-
ditional terms with higher powers of derivatives of chiral
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fields. In this case, however, there will be additional un-
known parameters.

As noted above, the quantum loop corrections to the
ECL should not be taken into account. In the papers of
Gasser and Leutwyller [100] - [102] the Lagrangian was
constructed which does not lead to divergences of loop
corrections, i.e. it is renormalizable. In this case, the loop
corrections to the normal parts have linear combinations
of terms of LN , and the amendment to the LWZ gives
a proportional change to all terms of LWZ , due to the
symmetry requirement.

This approach does not consider the question of the
excited states of the higher spin octet of mesons (Regge
partners). These issues require further development.

The verification of the predictions of this approach to
low-energy meson physics experiments is feasible in e+e−-
colliders.

Figure 6.1 shows processes that can be expected on the
basis of LWZ .

Thus, predictions of ECL can be checked in the pro-
cesses shown in Figure 6.1, where in the final state pseu-
doscalar, vector and axial-vector mesons can be created.
Readers can find the detailed descriptions of LN , LWZ

Lagrangians and corresponding processes in [445].
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6.1.8 The decay π+ → μ+ν̄μ in the field of the
plane electromagnetic wave by taking into
account pion polarizabilities

Here we consider the pion decay in the field of the plane
electromagnetic wave with allowance for the polarizability
of the pion. The interest in this problem is primarily due
to the possibility of creating real high-power laser beams
[469]. Accounting for the internal structure of the pion
requires the introduction of coefficients of electromagnetic
polarizabilities. It is convenient to use the exact solutions
of wave equations for the pion in external electromagnetic
fields found in Appendices A, B, C in assessing the impact
of electromagnetic polarizabilities on the observed charac-
teristics of the decay.

The amplitude of the process of π-meson: π+ → μ+ +
ν̄μ, written in the contact approximation of the standard
model, has the form [32]

A =
GF fπ cos θc√

2

∫
d4x ψπP

α
π ψ̃μγα(1 + γ5)ψν , (6.84)

where Pα
π = i∂α − eAα is the kinetic momentum of the

pion, GF is the Fermi constant, θc is the Kabibbo angle,
and ψπ, ψν are wave functions of the pion and neutrino,
respectively.

Since the process is seen here in the electromagnetic
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wave, then we take the exact solution (7.31) of the cor-
responding equation, where the normalization constant
C = 1/

√
2p0. In this case, the quasi-momentum of the

pion is given by

qμ = pμ − a2ν
4
kμ

[
e2

(kp)
− (α+ β)(kp)

mπ

]
(1 + δ20). (6.85)

(See the notation in Appendix C). Summing up the po-
larizations of the particles after the relevant calculations,
we obtain the following expression for the total pion decay
probability (W l is for a linearly polarized wave and W c is
for a circularly polarized wave):

W l(x, χ) =
G2

F f
2
πm

2
μm

2
π cos

2 θc

16π2q0

×
∑
s>s0

∫ 2π

0
dϕ

∫ us

0

du

(1 + u)2

{
ΔA2

0(s, γ, τ)

+x2u

[
A2

1(s, γ, τ)−A0(s, γ, τ)A2(s, γ, τ)

×
(
1− (α+ β)χ2m3

πu

e2x2

)]}
,

W c(x, χ) =
G2

F f
2
πm

2
μm

2
π cos

2 θc

8π2q0
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×
∑
s>s0

∫ us

0

du

(1 + u)2

{
ΔJ2

s (z) +
x2u

2

[
J2
s−1(z) (6.86)

+J2
s+1(z)− 2J2

s (z)

]
+ ε

(
x2us

z
− χz

x

)

×Js(z) [Js−1(z)− Js+1(z)]− (α+ β)χ2m3
π

e2
J2
s (z)

}
,

where u = (kl)/(kq′), l is neutrino momentum, q′ is quasi-
momentum of μ-meson,

ε =
i

a2(kp)
εμνλσa1μa2νkλpσ = ±1

for right (ε = +1) and left (ε = −1) polarization of the
wave (a2 ≡ aμaμ),

x =
ea

mπ
, χ =

e
√
(Fμνqν)2

m3
π

,

An(s, γ, τ) =
1

2π

∫ π

−π
dλ cosn λ

× exp [i(γ sinλ− τ sin 2λ− sλ)] ,

τ =
x3u

8χ
− (α+ β)χm3

πx

8e2
, γ = z cosϕ,
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z =
x2mμ

χmπ

√
u(us − u)

[
1 +

x2

2
(1 + δ20)

]
, (6.87)

us =
xΔ+ 2sχ− (α+ β)χ2m3

πx/e
2

x(1−Δ+ x2)

s0 =
x[−Δ+ (α+ β)χ2m3/(xe2)]

2χ
, Δ = 1−

(
mμ

mπ

)2

,

ϕ is the angle between planes (k,q′) and (k,a) in the cen-
ter of mass system, mμ is the mass of μ-meson, and Js(z)
is the Bessel function.

The analytical expression (6.87) can be evaluated by
numerical integration.

Note that the characteristic value, part of (6.87) and
related to the polarizability of the pion is

ζ =
(α+ β)χ2m3

π

e2
. (6.88)

For real-life high-power lasers the parameter is χ � 1
[469]. Then, using the experimental value for the polar-
izabilities of charged pions (6.19), we obtain a value of
ζ � 10−3. Thus, the effects due to the internal structure
of the pion field to the currently existing lasers are small.
However, increasing the beam intensity when the parame-
ter χ > 1, we can expect the appearance of the structure
of the pions in corresponding experiments.
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Note that for x � 1, following from (6.87) are the
expressions for the probability of the pion decay in the
constant crossed fields. This case is interesting in that
it has substantially reduced the decay of ultra-relativistic
particles in a constant electromagnetic field.
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Figure 6.1: Processes that can be expected on the basis of
LWZ .
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7.1 Conclusion

So, the four-fermion models are used in the theory of
electro-weak and strong interactions in the theory of el-
ementary particles.

Entered in the locally SU(2)⊗U(1)-invariant field model,
the four-fermion interaction for the initial leptons and quarks,
and then taking into account the dynamical symmetry
breaking provides a similar outcome to the Higgs proce-
dure of the mass generation of leptons e, μ, τ , which leaves
neutrinos νe, νμ, ντ massless and gives masses to all quarks
and W±, Z-bosons. The analogue of the scalar Higgs
field arises naturally as a unified field of collective fermion-
antifermion excitations, whose mass is approximately 2mt.
Detection and measurement of the mass of the scalar par-
ticle may shed light on the validity of this approach as a
possible alternative to the standard theory of electro-weak
interactions. It should be noted that despite the discovery
of the 125 GeV scalar boson at LHC, developed and dis-
cussed in this monograph, the direction associated with a
composite Higgs boson continues to grow (see [476], [477]).

It turned out that the need for a four-quark interaction
leads also to considering the low-energy limit of QCD. This
breaks the chiral symmetry as Goldstone bosons are the
π-mesons. This conclusion is consistent with the approach
based on the concept of the instanton vacuum. The four-
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quark interaction does not provide a description of the con-
finement, but covers the intermediate region of the strong
interaction, which lies between the regions of confinement
and the asymptotic freedom of quarks. This is consis-
tent with the studies of other authors. The resulting mass
of the pion, σ-meson and quark condensates matches the
values which follow from phenomenology. The calculated
values of the pion electromagnetic polarizabilities derived
from the chiral Lagrangian, are consistent with experimen-
tal data.

The effective chiral Lagrangian includes a normal part
with two arbitrary parameters and the anomalous part of
the Wess−Zumino allows the description of a large num-
ber of processes, and, in particular, the processes in e+e−-
collisions, and in this sense has a sufficiently great predic-
tive force.

Exact solutions of the wave equation for the pions in
external electromagnetic fields, taking into account their
polarizabilities made it possible to find the probability of
the decay π+ → μ+ν̄μ in the field of a plane electromag-
netic wave. Although the polarizability leads to a weak
effect in supercritical fields it must be taken into account.
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8.1 Appendix

8.1.1 Pion in the field of the uniform external
magnetic field

Consider the motion of the pion in a constant and homoge-
neous magnetic field H = (0, 0, H). The vector potential
can be chosen in the following way:

A1 =
1

2
Hx2, A2 = −1

2
Hx1, A0 = A3 = 0. (8.1)

From the Lagrangian (6.14), we obtain the equation of
motion for the pion field

D2
μϕ−Dμ [(Dνϕ)Kμν ]−m2

π +
mπd

2
F 2
μνϕ = 0, (8.2)

where ϕ ≡ π−,

Kμν =
a+ b

mπ
FμαFνα − b

2mπ
F 2
αβδμν .

Using a variational procedure [328], we find the four-current
density

jμ =
e

2imπ
[ϕ∗∂νϕ− ϕ∂νϕ∗ − 2ieAνϕϕ

∗] (δμν −Kμν) .

(8.3)
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It is easy to see that the current continuity equation ∂μjμ(x)
= 0 holds. If a = b = 0 (Kμν = 0), expression (7.3) coin-
cides with the corresponding expression for the point-like
scalar particle [470].

Note that the kinetic term for the pion (see (6.10) and
(6.14)) will have the standard form, if you do go to the
renormalization of physical field ϕ̄:

ϕ̄ =

(
1 +

b

2mπ
F 2
μν

)1/2

ϕ. (8.4)

Given the link Ek = iFk4, Hk = 1
2εkmnFmn (ε123 = 1), we

find that the charge density for the physical fields is

ρphys =
ie

2mπ

[
ϕ̄∗∂0ϕ̄− ϕ̄∂0ϕ̄∗ + 2ieA0ϕ̄ϕ̄

∗

(8.5)

+ (ϕ̄∗∂nϕ̄− ϕ̄∂nϕ̄∗ − 2ieAnϕ̄ϕ̄
∗)

(α+ β)

mπ
εnkmEkHm

]
.

Formula (7.5) can be used to normalize the wave equa-
tion solutions. The wave equation (7.2) with (7.1) can be
written as[

A
(
∂21 + ∂22

)
+B

(
∂23 − ∂20

)
− eHAJ3

(8.6)
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−e
2H2

4
A(x21 + x22)−m2

πD

]
ϕ = 0,

where

A = 1− aH2

mπ
, B = 1 +

bH2

mπ
, D = 1− dH2

mπ
,

J3 = [r,p]3 = i (x2∂1 − x1∂2) ,
and J3 is the operator of projection of the angular momen-
tum on the x3 axis.

Introducing cylindrical coordinates, x1 = r cosφ, x2 =
r sinφ, and assuming

ϕ(x) =
exp(ilφ)√

2π

exp i(k3x3 − k0t)√
Λ

ψ(r), (8.7)

where l is the orbital quantum number, k0 is the particle
energy, and k3 is the projection of the momentum on the
x3 axis, from (7.6), one obtains the equation

A

(
ψ′′ − l2

r2
+

1

r
ψ′
)
− eHlAψ − e2H2

4
Ar2ψ

(8.8)

+B(k20 − k23)ψ −m2
πDψ = 0.

The requirement that the final solutions of (7.8) are finite
with r → ∞ (see [470], [471]) gives the expression for the
energy (squared) of the particle

k20 = k23 +B−1
[
m2

πD + eHA(2n+ 1)
]
, (8.9)
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where n = s+ l is the principal quantum number.
In the case of a point-like scalar particle we must put

a = b = d = 0 (A = B = D = 1). Then from (7.9) we
obtain the well-known [470] expression for the energy of
a point-like scalar particle in a magnetic field k20 = k23 +
m2

π + eH(2n+ 1).
We now consider the smallness of coefficients a, b, d.

Then, assuming aH2/mπ � 1, bH2/mπ � 1, dH2/mπ �
1, we use the approximation of B−1 � 1− bH2/mπ.

In this case, using (6.18), the expression for the energy
(7.9) takes the form

k20 = k23+m
2
π+eH(2n+1)−βH2mπ− eH

3

mπ
(2n+1)(α+β).

(8.10)
The last two terms in (7.10) give the correction to the
energy of the pion due to its internal structure. For strong
external fields (e.g. in neutron stars) it is to be taken
into account. The solution of equation (7.8) has the same
form as for a point-like particle, and it is expressed by the
Laguerre polynomials.
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8.1.2 Pion in the field of the uniform external
electric field

The vector potential in this case can be chosen in the form

Aμ(x) = (0, 0, 0,−if(x3)) , (8.11)

which implies that E = (0, 0, 0, f ′(x3)).
The solution of equation (7.2) is sought in the form

ϕ(x) = η(x3) exp [i (p1x1 + p2x2 + p4x4))] . (8.12)

Substituting (7.11) and (7.12) in (7.2), we obtain[(
1 +

a

mπ
f

′2
)(

∂23 + 2ep0f + e2f2
)

+
2a

mπ
f ′f ′′∂3 +Δ+

a

mπ
f

′2p20 (8.13)

+f
′2
(
b

mπ

(
p21 + p22

)
−mπd

)]
η(x3) = 0,

where Δ = p20 − p21 − p22 − m2
π. Consider the case of a

constant and uniform electric field when

f(x3) = Cx3. (8.14)

Here C = E3 = E. Equation (7.13) takes the form(
∂23 + a1 + b1x3 + c1x

2
3

)
η(x3) = 0, (8.15)
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a1 =
b

mπ
E2(p21 + p22)−mπdE

2 +Δ+ a
mπ
E2p20

1 + a
mπ
E2

,

(8.16)

b1 = 2ep0E, c1 = e2E2.

If we introduce a new variable z = γ1 + β1x3, then (7.15)
can be reduced to the form of Weber’s equation [472](

∂2z −
1

4
z2 + ε

)
η(z) = 0, (8.17)

where the constants are defined as follows:

ε =
a1
β21
− b1γ1

β31
+
c1γ

2
1

β41
,

γ1
β1

=
b1
2c1

,
c1
β41

= −1

4
. (8.18)

The solution of (7.17) is well known [472] and expressed
in terms of parabolic cylinder functions Dν(z):

η(z) = NDν(z), (8.19)

where ν = ε−1/2, N is the normalization constant. Using
(7.16) and (7.18) we find the value

ε =
i

2eE

⎡⎣(p21 + p22)
(
1− b

mπ
E2
)
+m2

π +mπdE
2

1 + a
mπ
E2

⎤⎦ .
(8.20)
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Given the smallness of a, b, d, using (6.18), we transform
(7.20) to the form

ε =
i

2eE

[
m2

π + p21 + p22 − (p21 + p22)
α+ β

mπ
E2 −mπαE

2
]
.

(8.21)
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8.1.3 Pion in the field of the electromagnetic
plane wave

These results are consistent with those that have been re-
ceived on the basis of an exact solution of the Duffin−Kemmer
equation for a scalar particle in the field of the electromag-
netic wave [473].

Equation (7.2) for this case can be written as[
∂2μ − 2ieAμ∂μ − e2A2

μ −m2
π +mπd(H

2 − E2)

−Kμν

(
∂μ∂ν − 2ieAμ∂ν (8.22)

−ie(∂μAν)− e2AμAν

)
− (∂μKμν)(∂ν − ieAν)

]
ϕ(x) = 0.

It is assumed that the Lorentz condition ∂μAμ = 0 holds.
The vector potential of the field will be given as

Aμ(x) = aiμfi(ϑ) (i = 1, 2). (8.23)

Here ϑ = kμxμ = kx−k0x0, k2μ = 0, kμa
i
μ = 0, aiμa

j
μ = δij ,

fi(ϑ) are arbitrary scalar functions.

We find an expression for the symmetric tensor

Kμν =
α+ β

mπ
(f ′i)

2kμkν , (8.24)
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where f ′i = dfi/dϑ.
The solution of (7.22) can be obtained in the form [474],

[475] (see also [325])

ϕ(x) = χ(ϑ) exp [i(px− ε)] . (8.25)

Here, pμ is the four-momentum of a free particle, i.e. p2 =
−m2

π, px = pμxμ = px− p0x0,

ε =

∫ ϑ

0
dαg(α).

Substituting (7.25) into (7.22), taking into account (7.23),
(7.24) yields

2i(pk)χ′ + 2(pk)gχ+ 2e(pμa
i
μ)fiχ

(8.26)

−e2f2i χ+
α+ β

mπ
(f ′i)

2(pk)2χ = 0.

Since there is an arbitrary function g(ϑ), we can set

g(ϑ) =
e2f2i − 2e(pμa

i
μ)fi

2(pk)
− α+ β

2mπ
(f ′i)

2(pk). (8.27)

Then the solution of (7.26) in view of (7.27) is

χ = C = const. (8.28)
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Finally the function (7.25) can be written as

ϕ(x) = C exp

{
i

[
px−

∫ kx

0
dα

(
e2f2i (α)− 2e(pμa

i
μ)fi(α)

2(pk)
(8.29)

−α+ β

2mπ
(f ′i(α))

2(pk)

)]}
.

The constant C is chosen from the normalization condition
(see [470]).

We now consider various special cases of the potential
(7.23).

a). If you put fi(ϑ) = qϑ (i = 1), the electric and
magnetic fields are

E = (k0a− a0k)q, H = [k,a]q,

and E ⊥ H. Thus, we come to the case of constant crossed
electromagnetic fields. The solution (7.29) for crossed con-
stant fields becomes

ϕ(x) = C exp

{
i

[
px− e2(kx)3q2

6(pk)
+
e(pμa

i
μ)(kx)

2q

2(pk)
(8.30)

+
α+ β

2mπ
(pk)(kx)q2

]}
.

b). Let us consider the case

Aμ(ϑ) = a1μ cosϑ+ δ0a2μ sinϑ,
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where ϑ = kx, (a1μ)
2 = (a2μ)

2 = (aμ)
2, −1 ≤ δ0 ≤ 1, δ0

is a degree of polarization of the wave. When δ0 = 0 we
have the linear polarization of an electromagnetic wave,
and δ0 = ±1 corresponds to a circular polarization of an
electromagnetic wave. In this case, after the integration in
(7.29), we obtain

ϕ(x) = C exp

{
i

[
px− e2(aμ)

2

2(pk)

[
kx

2
(1 + δ20) +

sin(2kx)

4

×(1−δ20)
]
+

e

(pk)
[pμ(a1μ sin(kx)− a2μδ0 cos(kx))] (8.31)

+
α+ β

2mπ
(pk)(aμ)

2
[
kx

2
(1 + δ20)−

sin(2kx)

4
(1− δ20)

]]}
.

Readers can find solutions of equations for a pion in the
external electromagnetic fields of other configurations in
[478]-[481].
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