
C
o
p
y
r
i
g
h
t

2
0
1
9
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 5:54 AM via
AN: 2018975 ; Rahul Kumar.; Machine Learning Quick Reference : Quick and Essential Machine Learning Hacks for Training Smart Data Models
Account: ns335141

Machine Learning Quick
Reference

Quick and essential machine learning hacks for training smart
data models

Rahul Kumar

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning Quick Reference
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Porous Godhaa
Content Development Editor: Ronnel Mathew
Technical Editor: Sagar Sawant
Copy Editor: Safis Editing
Project Coordinator: Namrata Swetta
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Jisha Chirayil
Production Coordinator: Shraddha Falebhai

First published: January 2019

Production reference: 1310119

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-057-7

www.packtpub.com

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Rahul Kumar has got more than 10 years of experience in the space of Data Science and
Artificial Intelligence. His expertise lies in the machine learning and deep learning arena.
He is known to be a seasoned professional in the area of Business Consulting and Business
Problem Solving, fuelled by his proficiency in machine learning and deep learning. He has
been associated with organizations such as Mercedes-Benz Research and Development
(India), Fidelity Investments, Royal Bank of Scotland among others. He has accumulated a
diverse exposure through industries like BFSI, telecom and automobile. Rahul has also got
papers published in IIM and IISc Journals.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewers
Chiheb Chebbi is a Tunisian infosec enthusiast, author, and technical reviewer with
experience in various aspects of information security, focusing on investigations into
advanced cyber attacks and researching cyber espionage. His core interests lie in
penetration testing, machine learning, and threat hunting. He has been included in many
halls of fame. The proposals he has put forward with a view to giving presentations have
been accepted by many world-class information security conferences.

I dedicate this book to every person who makes the security community awesome and fun!

Dat Tran is currently co-heading the data team at idealo.de, where he leads a team of data
scientists and data engineers. His focus is to turn idealo into a machine learning
powerhouse. His research interests range from traditional machine learning to deep
learning. Previously, he worked for Pivotal Labs and Accenture. He is a regular public
speaker and has presented at the PyData and Cloud Foundry summits. He also blogs about
his work on Medium. His background is in operations research and econometrics. He
received his MSc in Economics from Humboldt University, Berlin.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Quantifying Learning Algorithms 7
Statistical models 8
Learning curve 8

Machine learning 9
Wright's model 10

Curve fitting 15
Residual 19

Statistical modeling – the two cultures of Leo Breiman 19
Training data development data – test data 21

Size of the training, development, and test set 22
Bias-variance trade off 22
Regularization 25

Ridge regression (L2) 26
Least absolute shrinkage and selection operator 27

Cross-validation and model selection 27
K-fold cross-validation 27

Model selection using cross-validation 29
0.632 rule in bootstrapping 29
Model evaluation 31

Confusion matrix 31
Receiver operating characteristic curve 34

Area under ROC 36
H-measure 36
Dimensionality reduction 37
Summary 39

Chapter 2: Evaluating Kernel Learning 40
Introduction to vectors 41

Magnitude of the vector 41
Dot product 43

Linear separability 44
Hyperplanes 45
SVM 47

Support vector 51
Kernel trick 53

Kernel 54
Back to Kernel trick 56

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Kernel types 56
Linear kernel 57
Polynomial kernel 57
Gaussian kernel 59

SVM example and parameter optimization through grid search 60
Summary 63

Chapter 3: Performance in Ensemble Learning 64
What is ensemble learning? 65

Ensemble methods 66
Bootstrapping 67

Bagging 69
Decision tree 71

Tree splitting 74
Parameters of tree splitting 76

Random forest algorithm 76
Case study 78

Boosting 87
Gradient boosting 88

Parameters of gradient boosting 92
Summary 96

Chapter 4: Training Neural Networks 97
Neural networks 98

How a neural network works 98
Model initialization 99
Loss function 99
Optimization 101
Computation in neural networks 102

Calculation of activation for H1 103
Backward propagation 104
Activation function 104

Types of activation functions 105
Network initialization 107

Backpropagation 108
Overfitting 109
Prevention of overfitting in NNs 109
Vanishing gradient 109

Overcoming vanishing gradient 113
Recurrent neural networks 116

Limitations of RNNs 117
Use case 118

Summary 121

Chapter 5: Time Series Analysis 122
Introduction to time series analysis 123

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

White noise 123
Detection of white noise in a series 124

Random walk 126
Autoregression 128
Autocorrelation 128
Stationarity 129

Detection of stationarity 130
AR model 135
Moving average model 135
Autoregressive integrated moving average 136
Optimization of parameters 144

AR model 144
ARIMA model 144

Anomaly detection 145
Summary 148

Chapter 6: Natural Language Processing 149
Text corpus 149

Sentences 150
Words 150

Bags of words 150
TF-IDF 153

Executing the count vectorizer 155
Executing TF-IDF in Python 156

Sentiment analysis 157
Sentiment classification 163

TF-IDF feature extraction 163
Count vectorizer bag of words feature extraction 164

Model building count vectorization 164
Topic modeling 165

LDA architecture 167
Evaluating the model 170
Visualizing the LDA 170
The Naive Bayes technique in text classification 173

The Bayes theorem 173
How the Naive Bayes classifier works 174

Summary 177

Chapter 7: Temporal and Sequential Pattern Discovery 178
Association rules 179
Apriori algorithm 182

Finding association rules 183
Frequent pattern growth 185

Frequent pattern tree growth 186
Validation 189

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Importing the library 191
Summary 192

Chapter 8: Probabilistic Graphical Models 193
Key concepts 193
Bayes rule 194
Bayes network 196

Probabilities of nodes 198
CPT 201
Example of the training and test set 202

Summary 210

Chapter 9: Selected Topics in Deep Learning 211
Deep neural networks 211

Why do we need a deep learning model? 212
Deep neural network notation 213
Forward propagation in a deep network 214
Parameters W and b 216
Forward and backward propagation 217
Error computation 219

Backward propagation 220
Forward propagation equation 222
Backward propagation equation 222
Parameters and hyperparameters 223
Bias initialization 223

Hyperparameters 223
Use case – digit recognizer 224

Generative adversarial networks 229
Hinton's Capsule network 230

The Capsule Network and convolutional neural networks 231
Summary 232

Chapter 10: Causal Inference 233
Granger causality 233
F-test 237

Limitations 238
Use case 238

Graphical causal models 239
Summary 242

Chapter 11: Advanced Methods 243
Introduction 243
Kernel PCA 246
Independent component analysis 250

Preprocessing for ICA 252
Approach 252

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

Compressed sensing 254
Our goal 255

Self-organizing maps 258
SOM 259

Bayesian multiple imputation 262
Summary 263

Other Books You May Enjoy 264

Index 267

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
Machine learning involves developing and training models to predict future outcomes. This
book is a practical guide to all the tips and tricks related to machine learning. It includes
hands-on, easy-to-access techniques on topics such as model selection, performance tuning,
training neural networks, time series analysis, and a lot more.

This book has been tailored toward readers who want to understand not only the concepts
behind machine learning algorithms, but also the mathematics behind them. However, we
have tried to strike a balance between these two.

Who this book is for
If you're a machine learning practitioner, data scientist, machine learning developer, or
engineer, this book will serve as a reference point for building machine learning solutions.
You will also find this book useful if you're an intermediate machine learning developer or
data scientist looking for a quick, handy reference to all the concepts of machine learning.
You'll need some exposure to machine learning to get the best out of this book.

What this book covers
Chapter 1, Quantification of Learning, builds the foundation for later chapters. First, we are
going to understand the meaning of a statistical model. We'll also discuss the thoughts of
Leo Breiman about statistical modeling. Later, we will discuss curves and why they are so
important. One of the typical ways to find out the association between variables and
modeling is curve fitting, which is introduced in this chapter.

To build a model, one of the steps is to partition the data. We will discuss the reasoning
behind this and examine an approach to carry it out. While we are building a model, more
often that not it is not a smooth ride, and we run into several issues. We often encounter
overfitting and underfitting, for several reasons. We need to understand why and learn
how to overcome it. Also, we will be discussing how overfitting and underfitting are
connected to bias and variance. This chapter will discuss these concepts with respect to
neural networks. Regularization is one of the hyperparameters that is an integral part of the
model building process. We will understand why it is required. Cross-validation, model
selection, and 0.632+ bootstrap will be talked about in this chapter, as they help data
scientists to fine-tune a model.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

Chapter 2, Evaluating Kernel Learning, explains how support vector machines (SVMs) have
been among the most sophisticated models and have grabbed a lot of attention in the areas
of classification and regression. But practitioners still find them difficult to grasp as it
involve lots of mathematics. However, we have tried to keep it simple and mathematical
too, so that you should be able to understand the tricks of SVMs. Also, we'll look at the
kernel trick, which took SVMs to another level by making computation simple, to an extent.
We will study the different types of kernel and their usage.

Chapter 3, Performance in Ensemble Learning, explains how to build models based on the
concepts of bagging and boosting, which are ruling the world of hackathons. We will
discuss bagging and boosting in detail. They have led to the creation of many good
algorithms, such as random forest and gradient boosting. We will discuss each in detail
with the help of a use case so that you can understand the difference between these two.
Also, an important part of this chapter deals with the optimization of hyperparameters.

Chapter 4, Training Neural Networks, covers neural networks, which have always been
deemed black box algorithms that take lots of effort to understand. We have tried to unbox
the complexities surrounding NNs. We have started with detailing how NNs are analogous
to the human brain. This chapter also covers what parameters such as weights and biases
are and how an NN learns. An NN's learning process involves network initialization, a
feedforward system, and cost calculation. Once a cost is calculated, backpropagation kicks
off.

Next comes the challenges in the model, such as exploding gradients, vanishing gradients,
and overfitting. This chapter encompasses all such problems, helps us understand why
such challenges occur, and explains how to overcome them.

Chapter 5, Time-Series Analysis, covers different time series models for analyzing demand
forecasting, be it stock price or sales forecasting, or anything else. Almost every industry
runs into such use cases. In order to carry out such use cases, there are multiple approaches,
and what we have covered is autoregressive models, ARMA, ARIMA, and others. We have
started with the concepts of autoregression. Then comes stationarity, which is an important
element of such models. This chapter examines stationarity and how we can detect it. Also,
assessment of the model is covered too. Anomaly detection in econometrics is also
discussed at length with the help of a use case.

Chapter 6, Natural Language Processing, explains what natural language processing is
making textual data talk. There are a number of algorithms that make this work. We cannot
work with textual data as it is. It needs to be vectorized and embedded. This chapter covers
various ways of doing this, such as TF-IDF and bag-of-words methods.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

We will also talk about how sentiment analysis can be done with the help of such
approaches, and compare the results of different methods. We then move on to topic
modeling, wherein the prime motive is to extract the the main topics from a corpus. And
later, we will examine a use case and solve it with a Bayesian approach.

Chapter 7, Temporal and Sequential Pattern Discovery, focuses on why it is necessary to study
frequent itemsets and how we can deal with them. We cover the use of the Apriori and
Frequent Pattern Growth algorithms to uncover findings in transactional data.

Chapter 8, Probabilistic Graphical Models, covers Bayesian networks and how they are
making a difference in machine learning. We will look at Bayesian networks (trees)
constructed on conditional probability tables.

Chapter 9, Selected Topics in Deep Learning, explains that as the world is transitioning from
simple business analytics to deep learning, we have lots to catch up on. This chapter
explores weight initialization, layer formation, the calculation of cost, and backpropagation.
And subsequently, we will introduce Hinton's capsule network and look at how it works.

Chapter 10, Causal Inference, discusses algorithms that provide a directional view around
causality in a time series. Our stakeholders often mention the causality behind the target
variable. So, we have addressed it using the Granger causality model in time series, and we
have also discussed Bayesian techniques that enable us to achieve causality.

Chapter 11, Advanced Methods, explains that there are number of state-of-the-art models in
the pipeline, and they need a special mention in this book. This chapter should help you
understand and apply them. Also, we have talked about independent component analysis
and how it is different from principal component analysis. Subsequently, we discuss the
Bayesian technique of multiple imputation and its importance. We will also get an
understanding of self-organizing maps and why they are important. Lastly, we will also
touch upon compressed sensing.

To get the most out of this book
This book requires a basic knowledge of Python, R, and machine learning.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com
http://www.packt.com/support

Preface

[4]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Machine-Learning-Quick-Reference. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​9781788830577_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Now we will extract a bootstrap sample with the help of the resample function:"

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com
https://github.com/PacktPublishing/Machine-Learning-Quick-Reference
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/%209781788830577_ColorImages.pdf

Preface

[5]

A block of code is set as follows:

#using "resample" function generate a bootstrap sample
boot_samp = resample(dataset, replace=True, n_samples=5, random_state=1)

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com/

1
Quantifying Learning

Algorithms
We have stepped into an era where we are building smart or intelligent machines. This
smartness or intelligence is infused into the machine with the help of smart algorithms
based on mathematics/statistics. These algorithms enable the system or machine to learn
automatically without any human intervention. As an example of this, today we are
surrounded by a number of mobile applications. One of the prime messaging apps of today
in WhatsApp (currently owned by Facebook). Whenever we type a message into a textbox
of WhatsApp, and we type, for example, I am..., we get a few word prompts popping up,
such as ..going home, Rahul, traveling tonight, and so on. Can we guess what's happening
here and why? Multiple questions come up:

What is it that the system is learning?
Where does it learn from?
How does it learn?

Let's answer all these questions in this chapter.

In this chapter, we will cover the following topics:

Statistical models
Learning curves
Curve fitting
Modeling cultures
Overfitting and regularization
Train, validation, and test
Cross-validation and model selection
Bootstrap method

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[8]

Statistical models
A statistical model is the approximation of the truth that has been captured through data
and mathematics or statistics, and acts as an enabler here. This approximation is used to
predict an event. A statistical model is nothing but a mathematical equation.

For example, let's say we reach out to a bank for a home loan. What does the bank ask us?
The first thing they would ask us to do is furnish lots of documents such as salary slips,
identity proof documents, documents regarding the house we are going to purchase, a
utility bill, the number of current loans we have, the number of dependants we have, and
so on. All of these documents are nothing but the data that the bank would use to assess
and check our creditworthiness:

What this means is that your creditworthiness is a function of the salary, number of loans,
number of dependants, and so on. We can arrive at this equation or relationship
mathematically.

A statistical model is a mathematical equation that arrives at using given
data for a particular business scenario.

In the next section, we will see how models learn and how the model can keep getting
better.

Learning curve
The basic premise behind the learning curve is that the more time you spend doing
something, the better you tend to get. Eventually, the time to perform a task keeps on
plummeting. This is known by different names, such as improvement curve, progress
curve, and startup function.

For example, when you start learning to drive a manual car, you undergo a learning cycle.
Initially, you are extra careful about operating the break, clutch, and gear. You have to keep
reminding yourself when and how to operate these components.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[9]

But, as the days go by and you continue practicing, your brain gets accustomed and trained
to the entire process. With each passing day, your driving will keep getting smoother and
your brain will react to the situation without any realization. This is called subconscious
intelligence. You reach this stage with lots of practice and transition from a conscious
intelligence to a subconscious intelligence that has got a cycle.

Machine learning
Let me define machine learning and its components so that you don't get bamboozled by
lots of jargon when it gets thrown at you.

In the words of Tom Mitchell, "A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E." Also, another theory says that machine learning is
the field that gives computers the ability to learn without being explicitly programmed.

For example, if a computer has been given cases such as, [(father, mother), (uncle, aunt),
(brother, sisters)], based on this, it needs to find out (son, ?). That is, given son, what will be
the associated item? To solve this problem, a computer program will go through the
previous records and try to understand and learn the association and pattern out of these
combinations as it hops from one record to another. This is called learning, and it takes
place through algorithms. With more records, that is, more experience, the machine gets
smarter and smarter.

Let's take a look at the different branches of machine learning, as indicated in the following
diagram:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[10]

We will explain the preceding diagram as follows:

Supervised learning: In this type of learning, both the input variables and output
variables are known to us. Here, we are supposed to establish a relationship
between the input variables and the output, and the learning will be based on
that. There are two types of problems under it, as follows:

Regression problem: It has got a continuous output. For example,
a housing price dataset wherein the price of the house needs to be
predicted based on input variables such as area, region, city,
number of rooms, and so on. The price to be predicted is a
continuous variable.
Classification: It has got a discrete output. For example, the
prediction that an employee would leave an organization or not,
based on salary, gender, the number of members in their family,
and so on.

Unsupervised learning: In this type of scenario, there is no output variable. We
are supposed to extract a pattern based on all the variables given. For example,
the segmentation of customers based on age, gender, income, and so on.
Reinforcement learning: This is an area of machine learning wherein suitable
action is taken to maximize reward. For example, training a dog to catch a ball
and give it—we reward the dog if they carry out this action; otherwise, we tell
them off, leading to a punishment.

Wright's model
In Wright's model, the learning curve function is defined as follows:

The variables are as follows:

Y: The cumulative average time per unit
X: The cumulative number of units produced
a: Time required to produce the first unit
b: Slope of the function when plotted on graph paper (log of the learning rate/log of
2)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[11]

The following curve has got a vertical axis (y axis) representing the learning with respect to
a particular work and a horizontal axis that corresponds to the time taken to learn. A
learning curve with a steep beginning can be comprehended as a sign of rapid progress.
The following diagram shows Wright's Learning Curve Model:

However, the question that arises is, How is it connected to machine learning? We will discuss
this in detail now.

Let's discuss a scenario that happens to be a supervised learning problem by going over the
following steps:

We take the data and partition it into a training set (on which we are making the1.
system learn and come out as a model) and a validation set (on which we are
testing how well the system has learned).
The next step would be to take one instance (observation) of the training set and2.
make use of it to estimate a model. The model error on the training set will be 0.
Finally, we would find out the model error on the validation data.3.

Step 2 and Step 3 are repeated by taking a number of instances (training size) such as 10, 50,
and 100 and studying the training error and validation error, as well as their relationship
with a number of instances (training size). This curve—or the relationship—is called a
learning curve in a machine learning scenario.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[12]

Let's work on a combined power plant dataset. The features comprised hourly average
ambient variables, that is, temperature (T), ambient pressure (AP), relative humidity (RH),
and exhaust vacuum (V), to predict the net hourly electrical energy output (PE) of the
plant:

importing all the libraries
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import learning_curve
import matplotlib.pyplot as plt

#reading the data
data= pd.read_excel("Powerplant.xlsx")

#Investigating the data
print(data.info())
data.head()

From this, we are able to see the data structure of the variables in the data:

The output can be seen as follows:

The second output gives you a good feel for the data.

The dataset has five variables, where ambient temperature (AT) and PE (target variable).

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[13]

Let's vary the training size of the data and study the impact of it on learning. A list is
created for train_size with varying training sizes, as shown in the following code:

As discussed here we are trying to vary the size of training set
train_size = [1, 100, 500, 2000, 5000]
features = ['AT', 'V', 'AP', 'RH']
target = 'PE'
estimating the training score & validation score
train_sizes, train_scores, validation_scores = learning_curve(estimator =
LinearRegression(), X = data[features],y = data[target], train_sizes =
train_size, cv = 5,scoring ='neg_mean_squared_error')

Let's generate the learning_curve:

Generating the Learning_Curve
train_scores_mean = -train_scores.mean(axis = 1)
validation_scores_mean = -validation_scores.mean(axis = 1)
import matplotlib.pyplot as plt
plt.style.use('seaborn')
plt.plot(train_sizes, train_scores_mean, label = 'Train_error')
plt.plot(train_sizes, validation_scores_mean, label = 'Validation_error')
plt.ylabel('MSE', fontsize = 16)
plt.xlabel('Training set size', fontsize = 16)
plt.title('Learning_Curves', fontsize = 20, y = 1)
plt.legend()

We get the following output:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[14]

From the preceding plot, we can see that when the training size is just 1, the training error
is 0, but the validation error shoots beyond 400.

As we go on increasing the training set's size (from 1 to 100), the training error continues
rising. However, the validation error starts to plummet as the model performs better on the
validation set. After the training size hits the 500 mark, the validation error and training
error begin to converge. So, what can be inferred out of this? The performance of the model
won't change, irrespective of the size of the training post. However, if you try to add more
features, it might make a difference, as shown in the following diagram:

The preceding diagram shows that the validation and training curve have converged, so
adding training data will not help at all. However, in the following diagram, the curves
haven't converged, so adding training data will be a good idea:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[15]

Curve fitting
So far, we have learned about the learning curve and its significance. However, it only
comes into the picture once we tried fitting a curve on the available data and features. But
what does curve fitting mean? Let's try to understand this.

Curve fitting is nothing but establishing a relationship between a number of features and a
target. It helps in finding out what kind of association the features have with respect to the
target.

Establishing a relationship (curve fitting) is nothing but coming up with a mathematical
function that should be able to explain the behavioral pattern in such a way that it comes
across as a best fit for the dataset.

There are multiple reasons behind why we do curve fitting:

To carry out system simulation and optimization
To determine the values of intermediate points (interpolation)
To do trend analysis (extrapolation)
To carry out hypothesis testing

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[16]

There are two types of curve fitting:

Exact fit: In this scenario, the curve would pass through all the points. There is1.
no residual error (we'll discuss shortly what's classed as an error) in this case. For
now, you can understand an error as the difference between the actual error and
the predicted error. It can be used for interpolation and is majorly involved with
a distribution fit.

The following diagram shows the polynomial but exact fit:

The following diagram shows the line but exact fit:

Best fit: The curve doesn't pass through all the points. There will be a residual2.
associated with this.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[17]

Let's look at some different scenarios and study them to understand these differences.

Here, we will fit a curve for two numbers:

importing libraries
 import numpy as np
 import matplotlib.pyplot as plt
 from scipy.optimize import curve_fit

writing a function of Line
 def func(x, a, b):
 return a + b * x
 x_d = np.linspace(0, 5, 2) # generating 2 numbers between 0 & 5
 y = func(x_d,1.5, 0.7)
 y_noise = 0.3 * np.random.normal(size=x_d.size)
 y_d = y + y_noise
 plt.plot(x_d, y_d, 'b-', label='data')

 popt, pcov = curve_fit(func, x_d, y_d) # fitting the curve
 plt.plot(x_d, func(x_d, *popt), 'r-', label='fit')

From this, we will get the following output:

Here, we have used two points to fit the line and we can very well see that it becomes an
exact fit. When introducing three points, we will get the following:

 x_d = np.linspace(0, 5, 3) # generating 3 numbers between 0 & 5

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[18]

Run the entire code and focus on the output:

Now, you can see the drift and effect of noise. It has started to take the shape of a curve. A
line might not be a good fit here (however, it's too early to say). It's no longer an exact fit.

What if we try to introduce 100 points and study the effect of that? By now, we know how
to introduce the number of points.

By doing this, we get the following output:

This is not an exact fit, but rather a best fit that tries to generalize the whole dataset.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[19]

Residual
Residuals are the difference between an observed or true value and a predicted (fitted)
value. For example, in the following diagram, one of the residuals is (A-B), where A is the
observed value and B is the fitted value:

The preceding scatter plot depicts that we are fitting a line that could represent the
behavior of all the data points. However, one thing that's noticeable is that the line doesn't
pass through all of the points. Most of the points are off the line.

The sum and mean of residuals will always be 0. ∑e =0 and mean of e =0.

Statistical modeling – the two cultures of
Leo Breiman
Whenever we try to analyze data and finally make a prediction, there are two approaches
that we consider, both of which were discovered by Leo Breiman, a Berkeley professor, in
his paper titled Statistical Modeling: Two Cultures in 2001.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[20]

Any analysis needs data. An analysis can be as follows:

A vector of X (Features) undergoes a nature box, which translates into a response. A nature
box tries to establish a relationship between X and Y. Typically, there are goals pertaining
to this analysis, as follows:

Prediction: To predict the response with the future input features
Information: To find out and understand the association between the response
and driving input variables

Breiman states that, when it comes to solving business problems, there are two distinct
approaches:

The data modeling culture: In this kind of model, nature takes the shape of a
stochastic model that estimates the necessary parameters. Linear regression,
logistic regression, and the Cox model usually act under the nature box. This
model talks about observing the pattern of the data and looks to design an
approximation of what is being observed. Based on their experience, the scientist
or a statistician would decide which model to be used. It is the case of a model
coming before the problem and the data, the solutions from this model is more
towards the model's architecture. Breiman says that over-reliance on this kind of
approach doesn't help the statisticians cater to a diverse set of problems. When it
comes to finding out solutions pertaining to earthquake prediction, rain
prediction, and global warming causes, it doesn't give accurate results, since this
approach doesn't focus on accuracy, and instead focuses on the two goals.
The algorithm modeling culture: In this approach, pre-designed algorithms are
used to make a better approximation. Here, the algorithms use complex
mathematics to reach out to the conclusion and acts inside the nature box. With
better computing power and using these models, it's easy to replicate the driving
factors as the model keeps on running until it learns and understands the pattern
that drives the outcome. It enables us to address more complex problems, and
emphasizes more on accuracy. With more data coming through, it can give a
much better result than the data modeling culture.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[21]

Training data development data – test data
This is one of the most important steps of building a model and it can lead to lots of debate
regarding whether we really need all three sets (train, dev, and test), and if so, what should
be the breakup of those datasets. Let's understand these concepts.

After we have sufficient data to start modelling, the first thing we need to do is partition the
data into three segments, that is, Training Set, Development Set, and Test Set:

Let's examine the goal of having these three sets:

Training Set: The training set is used to train the model. When we apply any1.
algorithm, we are fitting the parameter in the training set. In the case of a neural
network, finding out about the weights takes place.

Let's say in one scenario that we are trying to fit polynomials of various degrees:

f(x) = a+ bx → 1st degree polynomial
f(x) = a + bx + cx2 → 2nd degree polynomial
f(x) = a + bx + cx2 + dx3 → 3rd degree polynomial

After fitting the model, we calculate the training error for all the fitted models:

We cannot assess how good the model is based on the training error. If we do
that, it will lead us to a biased model that might not be able to perform well on
unseen data. To counter that, we need to head into the development set.

Development set: This is also called the holdout set or validation set. The goal2.
of this set is to tune the parameters that we have got from the training set. It is
also part of an assessment of how well the model is performing. Based on its
performance, we have to take steps to tune the parameters. For example,
controlling the learning rate, minimizing the overfitting, and electing the best
model of the lot all take place in the development set. Here, again, the
development set error gets calculated and tuning of the model takes place after
seeing which model is giving the least error. The model giving the least error at
this stage still needs tuning to minimize overfitting. Once we are convinced
about the best model, it is chosen and we head toward the test set.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[22]

Test set: The test set is primarily used to assess the best selected model. At this3.
stage, the accuracy of the model is calculated, and if the model's accuracy is not
too deviated from the training accuracy and development accuracy, we send this
model for deployment.

Size of the training, development, and test set
Typically, machine learning practitioners choose the size of the three sets in the ratio of
60:20:20 or 70:15:15. However, there is no hard and fast rule that states that the
development and test sets should be of equal size. The following diagram shows the
different sizes of the training, development, and test sets:

Another example of the three different sets is as follows:

But what about the scenarios where we have big data to deal with? For example, if we have
10,000,000 records or observations, how would we partition the data? In such a scenario,
ML practitioners take most of the data for the training set—as much as 98-99%—and the
rest gets divided up for the development and test sets. This is done so that the practitioner
can take different kinds of scenarios into account. So, even if we have 1% of data for
development and the same for the test test, we will end up with 100,000 records each, and
that is a good number.

Bias-variance trade off
Before we get into modelling and try to figure out what the trade-off is, let's understand
what bias and variance are from the following diagram:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[23]

There are two types of errors that are developed in the bias-variance trade off, as follows:

Training error: This is a measure of deviation of the fitted value from the actual
value while predicting the output by using the training inputs. This error
depends majorly on the model's complexity. As the model's complexity
increases, the error appears to plummet.
Development error: This is a measure of deviation of the predicted value, and is
used by the development set as input (while using the same model trained on
training data) from the actual values. Here, the prediction is being done on
unseen data. We need to minimize this error. Minimizing this error will
determine how good this model will be in the actual scenario.

As the complexity of the algorithm keeps on increasing, the training error goes down.
However, the development error or validation error keeps going down until a certain point,
and then rises, as shown in the following diagram:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[24]

The preceding diagram can be explained as follows:

Underfitting: Every dataset has a specific pattern and properties due to the
existing variables in the dataset. Along with that, it also has a random and latent
pattern which is caused by the variables that are not part of the dataset.
Whenever we come up with a model, the model should ideally be learning
patterns from the existing variables. However, the learning of these patterns also
depends on how good and robust your algorithm is. Let's say we have picked up
a model that is not able to derive even the essential patterns out of the
dataset—this is called underfitting. In the preceding plots, it is a scenario of
classification and we are trying to classify x and o. In plot 1, we are trying to use a
linear classification algorithm to classify the data, but we can see that it is
resulting in lots of misclassification errors. This is a case of underfitting.
Overfitting: Going further afield from plot 1, we are trying to use complex
algorithms to find out the patterns and classify them. It is noticeable that the
misclassification errors have gone down in the second plot, since the complex
model being used here is able to detect the patterns. The development error (as
shown in the preceding diagram) goes down too. We will increase the
complexity of the model and see what happens. Plot 3 suggests that there is no
misclassification error in the model now. However, if we look at the plot below
it, we can see that the development error is way too high now. This happens
because the model is learning from the misleading and random patterns that
were exhibited due to the non-existent variables in the dataset. This means that it
has started to learn the noise that's present in the set. This phenomenon is called
overfitting.
Bias: How often have we seen this? This occurs in a situation wherein we have
used an algorithm and it doesn't fit properly. This means that the function that's
being used here has been of little relevance to this scenario and it's not able to
extract the correct patterns. This causes an error called bias. It crops up majorly
due to making a certain assumption about the data and using a model that might
be correct but isn't. For example, if we had to use a second degree polynomial for
a situation, we would use simple linear regression, which doesn't establish a
correct relationship between the response and explanatory variables.
Variance: When we have a dataset that is being used for training the model, the
model should remain immune, even if we change the training set to a set that's
coming from the same population. If variation in the dataset brings in a change in
the performance of the model, it is termed a variance error. This takes place due
to noise (an unexplained variation) being learned by the model and, due to that,
this model doesn't give a good result on unseen data:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[25]

We will explain the preceding diagram as follows:

If the Training Error goes down and (Development Error-Training Error) rises,
it implies a High Variance situation (scenario 1 in the preceding table)
If the Training Error and Development Error rises and (Development Error-
Training Error) goes down, it implies a High Bias situation (scenario 2 in the
preceding table)
If the Training Error and Development Error rises and (Development Error-
Training Error) goes up as well, it implies High Bias and High Variance
(scenario 3 in the preceding table)
If the Training Error goes up and the Development Error declines, that
is, (Development Error-Training Error) goes down, it implies Low Bias and Low
Variance (scenario 4 in the preceding table)

We should always strive for the fourth scenario, which depicts the training error being low,
as well as a low development set error. In the preceding table, this is where we have to find
out a bias variance trade-off, which is depicted by a vertical line.

Now, the following question arises: how we can counter overfitting? Let's find out the
answer to this by moving on to the next section.

Regularization
We have now got a fair understanding of what overfitting means when it comes to machine
learning modeling. Just to reiterate, when the model learns the noise that has crept into the
data, it is trying to learn the patterns that take place due to random chance, and so
overfitting occurs. Due to this phenomenon, the model's generalization runs into jeopardy
and it performs poorly on unseen data. As a result of that, the accuracy of the model takes a
nosedive.

Can we combat this kind of phenomenon? The answer is yes. Regularization comes to the
rescue. Let's figure out what it can offer and how it works.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[26]

Regularization is a technique that enables the model to not become complex to avoid
overfitting.

Let's take a look at the following regression equation:

The loss function for this is as follows:

The loss function would help in getting the coefficients adjusted and retrieving the optimal
one. In the case of noise in the training data, the coefficients wouldn't generalize well and
would run into overfitting. Regularization helps get rid of this by making these estimates or
coefficients drop toward 0.

Now, we will cover two types of regularization. In later chapters, the other types will be
covered.

Ridge regression (L2)
Due to ridge regression, we need to make some changes to the loss function. The original
loss function gets added by a shrinkage component:

Now, this modified loss function needs to be minimized to adjust the estimates or
coefficients. Here, the lambda is tuning the parameter that regularizes the loss function.
That is, it decides how much it should penalize the flexibility of the model. The flexibility of
the model is dependent on the coefficients. If the coefficients of the model go up, the
flexibility also goes up, which isn't a good sign for our model. Likewise, as the coefficients
go down, the flexibility is restricted and the model starts to perform better. The shrinkage
of each estimated parameter makes the model better here, and this is what ridge regression
does. When lambda keeps going higher and higher, that is, λ → ∞, the penalty component
rises, and the estimates start shrinking. However, when λ → 0, the penalty component
decreases and starts to become an ordinary least square (OLS) for estimating unknown
parameters in a linear regression.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[27]

Least absolute shrinkage and selection operator
The least absolute shrinkage and selection operator (LASSO) is also called L1. In this case,
the preceding penalty parameter is replaced by |βj|:

By minimizing the preceding function, the coefficients are found and adjusted. In this
scenario, as lambda becomes larger, λ → ∞, the penalty component rises, and so estimates
start shrinking and become 0 (it doesn't happen in the case of ridge regression; rather, it
would just be close to 0).

Cross-validation and model selection
We have already spoken about overfitting. It is something to do with the stability of a
model since the real test of a model occurs when it works on unseen and new data. One of
the most important aspects of a model is that it shouldn't pick up on noise, apart from
regular patterns.

Validation is nothing but an assurance of the model being a relationship between the
response and predictors as the outcome of input features and not noise. A good indicator of
the model is not through training data and error. That's why we need cross-validation.

Here, we will stick with k-fold cross-validation and understand how it can be used.

K-fold cross-validation
Let's walk through the steps of k-fold cross-validation:

The data is divided into k-subsets.1.
One set is kept for testing/development and the model is built on the rest of the2.
data (k-1). That is, the rest of the data forms the training data.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[28]

Step 2 is repeated k-times. That is, once the preceding step has been performed,3.
we move on to the second set and it forms a test set. The rest of the (k-1) data is
then available for building the model:

4. An error is calculated and an average is taken over all k-trials.

Every subset gets one chance to be a validation/test set since most of the data is used as a
training set. This helps in reducing bias. At the same time, almost all the data is being used
as validation set, which reduces variance.

As shown in the preceding diagram, k = 5 has been selected. This means that we have to
divide the whole dataset into five subsets. In the first iteration, subset 5 becomes the test
data and the rest becomes the training data. Likewise, in the second iteration, subset 4 turns
into the test data and the rest becomes the training data. This goes on for five iterations.

Now, let's try to do this in Python by splitting the train and test data using the K neighbors
classifier:

from sklearn.datasets import load_breast_cancer # importing the dataset
from sklearn.cross_validation import train_test_split,cross_val_score # it
will help in splitting train & test
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[29]

BC =load_breast_cancer()
X = BC.data
y = BC.target

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=4)

knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
print(metrics.accuracy_score(y_test, y_pred))

knn = KNeighborsClassifier(n_neighbors=5)
scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy')
print(scores)
print(scores.mean())

Model selection using cross-validation
We can make use of cross-validation to find out which model is performing better by using
the following code:

knn = KNeighborsClassifier(n_neighbors=20)
print(cross_val_score(knn, X, y, cv=10, scoring='accuracy').mean())

The 10-fold cross-validation is as follows:

10-fold cross-validation with logistic regression
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
print(cross_val_score(logreg, X, y, cv=10, scoring='accuracy').mean())

0.632 rule in bootstrapping
Before we get into the 0.632 rule of bootstrapping, we need to understand what
bootstrapping is. Bootstrapping is the process wherein random sampling is performed with
a replacement from a population that's comprised of n observations. In this scenario, a
sample can have duplicate observations. For example, if the population is (2,3,4,5,6) and we
are trying to draw two random samples of size 4 with replacement, then sample 1 will be
(2,3,3,6) and sample 2 will be (4,4,6,2).

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[30]

Now, let's delve into the 0.632 rule.

We have already seen that the estimate of the training error while using a prediction is 1/n
∑L(yi,y-hat). This is nothing but the loss function:

Cross-validation is a way to estimate the expected output of a sample error:

However, in the case of k-fold cross-validation, it is as follows:

Here, the training data is X=(x1,x2.....,xn) and we take bootstrap samples from this set
(z1,.....,zb) where each zi is a set of n samples.

In this scenario, the following is our out-of-sample error:

Here, fb(xi) is the predicted value at xi from the model that's been fit to the bootstrap
dataset.

Unfortunately, this is not a particularly good estimator because bootstrap samples that have
been used to produce fb(xi) may have contained xi. OOSE solves the overfitting problem,
but is still biased. This bias is due to non-distinct observations in the bootstrap samples that
result from sampling with replacement. The average number of distinct observations in
each sample is about 0.632n. To solve the bias problem, Efron and Tibshirani proposed the
0.632 estimator:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[31]

Model evaluation
Let's look at some of the model evaluation techniques that are currently being used.

Confusion matrix
A confusion matrix is a table that helps in assessing how good the classification model is. It
is used when true values/labels are known. Most beginners in the field of data science feel
intimidated by the confusion matrix and think it looks more difficult to comprehend than it
really is; let me tell you—it's pretty simple and easy.

Let's understand this by going through an example. Let's say that we have built a
classification model that predicts whether a customer would like to buy a certain product
or not. To do this, we need to assess the model on unseen data.

There are two classes:

Yes: The customer will buy the product
No: The customer will not buy the product

 From this, we have put the matrix together:

What are the inferences we can draw from the preceding matrix at first glance?

The classifier has made a total of 80 predictions. What this means is that 80
customers were tested in total to find out whether he/she will buy the product or
not.
54 customers bought the product and 26 didn't.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[32]

The classifier predicts that 56 customers will buy the product and that 24 won't:

The different terms pertaining to the confusion matrix are as follows:

True Positive (TP): These are the cases in which we predicted that the customer
will buy the product and they did.
True Negative (TN): These are the cases in which we predicted that the customer
won't buy the product and they didn't.
False Positive (FP): We predicted Yes the customer will buy the product, but they
didn't. This is known as a Type 1 error.
False Negative (FN): We predicted No, but the customer bought the product.
This is known as a Type 2 error.

Now, let's talk about a few metrics that are required for the assessment of a classification
model:

Accuracy: This measures the overall accuracy of the classifier. To calculate this,
we will use the following formula: (TP+TN)/Total cases. In the preceding scenario,
the accuracy is (50+20)/80, which turns out to be 0.875. So, we can say that this
classifier will predict correctly in 87.5% of scenarios.
Misclassification rate: This measures how often the classifier has got the results
wrong. The formula (FP+FN)/Total cases will give the result. In the preceding
scenario, the misclassification rate is (6+4)/80, which is 0.125. So, in 12.5% of
cases, it won't produce correct results. It can also be calculated as (1- Accuracy).
TP rate: This is a measure of what the chances are that it would predict yes as the
answer, and the answer actually is yes. The formula to calculate this
is TP/(Actual:Yes). In this scenario, TPR = (50/54)= 0.92. It's also called
Sensitivity or Recall.
FP rate: This is a measure of what the chances are that it would predict yes, when
the actual answer is no. The formula to calculate this rate is FP/(Actual:No). For
the preceding example, FPR = (6/26)= 0.23.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[33]

TN rate: This is a measure of what the chances are that it would predict no, when
the answer is actually no. The formula to calculate this is TN/(Actual:No). In this
scenario, TNR= (20/26)= 0.76. It can also be calculated using (1-FPR). It's also
called Specificity.
Precision: This is a measure of correctness of the prediction of yes out of all the
yes predictions. It finds out how many times a prediction of yes was made
correctly out of total yes predictions. The formula to calculate this is
TP/(Predicted:Yes). Here, Precision = (50/56)=0.89.
Prevalence: This is a measure of how many yes were given out of the total
sample. The formula is (Actual:Yes/ Total Sample). Here, this is 54/80 = 0.67.
Null error rate: This is a measure of how wrong the classifier would be if it
predicted just the majority class. The formula is (Actual:No/Total Sample). Here,
this is 26/80=0.325.
Cohen's Kappa value: This is a measure of how well the classifier performed
compared to how well it would have performed simply by chance.
F-Score: This is a harmonic mean of recall and precision, that
is, (2*Recall*Precision)/(Recall+Precision). It considers both Recall and Precision as
important measures of a model's evaluation. The best value of the F-score is 1,
wherein Recall and Precision are at their maximum. The worst value of the F-
score is 0. The higher the score, the better the model is:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[34]

Receiver operating characteristic curve
We have come across many budding data scientists who would build a model and, in the
name of evaluation, are just content with the overall accuracy. However, that's not the
correct way to go about evaluating a model. For example, let's say there's a dataset that has
got a response variable that has two categories: customers willing to buy the product and
customers not willing to buy the product. Let's say that the dataset has 95% of customers
not willing to buy the product and 5% of customers willing to buy it. Let's say that the
classifier is able to correctly predict the majority class and not the minority class. So, if there
are 100 observations, TP=0, TN= 95, and the rest misclassified, this will still result in 95%
accuracy. However, it won't be right to conclude that this is a good model as it's not able to
classify the minority class at all.

Hence, we need to look beyond accuracy so that we have a better judgement about the
model. In this situation, Recall, Specificity, Precision, and the receiver operating
characteristic (ROC) curve come to rescue. We learned about Recall, specificity, and
precision in the previous section. Now, let's understand what the ROC curve is.

Most of the classifiers produce a score between 0 and 1. The next step occurs when we're
setting up the threshold, and, based on this threshold, the classification is decided.
Typically, 0.5 is the threshold—if it's more than 0.5, it creates a class, 1, and if the threshold
is less than 0.5 it falls into another class, 2:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[35]

For ROC, every point between 0.0 and 1.0 is treated as a threshold, so the line of threshold
keeps on moving from 0.0 to 1.0. The threshold will result in us having a TP, TN, FP, and
FN. At every threshold, the following metrics are calculated:

True Positive Rate = TP/(TP+FN)

True Negative Rate = TN/(TN + FP)

False Positive Rate = 1- True Negative Rate

The calculation of (TPR and FPR) starts from 0. When the threshold line is at 0, we will be
able to classify all of the customers who are willing to buy (positive cases), whereas those
who are not willing to buy will be misclassified as there will be too many false positives.
This means that the threshold line will start moving toward the right from zero. As this
happens, the false positive starts to decline and the true positive will continue increasing.

Finally, we will need to plot a graph of the TPR versus FPR after calculating them at every
point of the threshold:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[36]

The red diagonal line represents the classification at random, that is, classification without
the model. The perfect ROC curve will go along the y axis and will take the shape of an
absolute triangle, which will pass through the top of the y axis.

Area under ROC
To assess the model/classifier, we need to determine the area under ROC (AUROC). The
whole area of this plot is 1 as the maximum value of FPR and TPR – both are 1 here. Hence,
it takes the shape of a square. The random line is positioned perfectly at 45 degrees, which
partitions the whole area into two symmetrical and equilateral triangles. This means that
the areas under and above the red line are 0.5. The best and perfect classifier will be the one
that tries to attain the AUROC as 1. The higher the AUROC, the better the model is.

In a situation where you have got multiple classifiers, you can use AUROC to determine
which is the best one among the lot.

H-measure
Binary classification has to apply techniques so that it can map independent variables to
different labels. For example, a number of variables exist such as gender, income, number
of existing loans, and payment on time/not, that get mapped to yield a score that helps us
classify the customers into good customers (more propensity to pay) and bad customers.

Typically, everyone seems to be caught up with the misclassification rate or derived form
since the area under curve (AUC) is known to be the best evaluator of our classification
model. You get this rate by dividing the total number of misclassified examples by the total
number of examples. But does this give us a fair assessment? Let's see. Here, we have a
misclassification rate that keeps something important under wraps. More often than not,
classifiers come up with a tuning parameter, the side effect of which tends to be favoring
false positives over false negatives, or vice versa. Also, picking the AUC as sole model
evaluator can act as a double whammy for us. AUC has got different misclassification costs
for different classifiers, which is not desirable. This means that using this is equivalent to
using different metrics to evaluate different classification rules.

As we have already discussed, the real test of any classifier takes place on the unseen data,
and this takes a toll on the model by some decimal points. Adversely, if we have got
scenarios like the preceding one, the decision support system will not be able to perform
well. It will start producing misleading results.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[37]

H-measure overcomes the situation of incurring different misclassification costs for
different classifiers. It needs a severity ratio as input, which examines how much more
severe misclassifying a class 0 instance is than misclassifying a class 1 instance:

Severity Ratio = cost_0/cost_1

Here, cost_0 > 0 is the cost of misclassifying a class 0 datapoint as class 1.

It is sometimes more convenient to consider the normalized cost c = cost_0/(cost_0 +
cost_1) instead. For example, severity.ratio = 2 implies that a false positive costs twice as
much as a false negative.

Dimensionality reduction
Let's talk about a scenario wherein we have been given a dataset from a bank and it has got
features pertaining to bank customers. These features comprise customer's income, age,
gender, payment behavior, and so on. Once you take a look at the data dimension, you
realize that there are 850 features. You are supposed to build a model to predict the
customer who is going to default if a loan is given. Would you take all of these features and
build the model?

The answer should be a clear no. The more features in a dataset, the more likely it is that
the model will overfit. Although having fewer features doesn't guarantee that overfitting
won't take place, it reduces the chance of that. Not a bad deal, right?

Dimensionality reduction is one of the ways to deal with this. It implies a reduction of
dimensions in the feature space.

There are two ways this can be achieved:

Feature elimination: This is a process in which features that are not adding value
to the model are rejected. Doing this makes the model quite simple. We know
from Occam's Razor that we should strive for simplicity when it comes to
building models. However, doing this step may result in the loss of information
as a combination of such variables may have an impact on the model.
Feature extraction: This is a process in which we create new independent
variables that are a combination of existing variables. Based on the impact of
these variables, we either keep or drop them.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[38]

Principal component analysis is a feature extraction technique that takes all of the variables
into account and forms a linear combination of the variables. Later, the least important
variable can be dropped while the most important part of that variable is retained.

Newly formed variables (components) are independent of each other, which can be a boon
for a model-building process wherein data distribution is linearly separable. Linear models
have the underlying assumption that variables are independent of each other.

To understand the functionality of PCA, we have to become familiar with a few terms:

Variance: This is the average squared deviation from the mean. It is also called a
spread, which measures the variability of the data:

Here, x is the mean.

Covariance: This is a measure of the degree to which two variables move in the
same direction:

In PCA, we find out the pattern of the data as follows: in the case of the dataset having high
covariance when represented in n of dimensions, we represent those dimensions with a
linear combination of the same n dimensions. These combinations are orthogonal to each
other, which is the reason why they are independent of each other. Besides, dimension
follows an order by variance. The top combination comes first.

Let's go over how PCA works by talking about the following steps:

Let's split our dataset into Y and X sets, and just focus on X.1.
A matrix of X is taken and standardized with a mean of 0 and a standard2.
deviation of 1. Let's call the new matrix Z.
Let's work on Z now. We have to transpose it and multiply the transposed matrix3.
by Z. By doing this, we have got our covariance matrix:

Covariance Matrix = ZTZ

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Quantifying Learning Algorithms Chapter 1

[39]

Now, we need to calculate the eigenvalues and their corresponding eigenvectors4.
of ZTZ. Typically, the eigen decomposition of the covariance matrix into PDP⁻¹ is
done, where P is the matrix of eigenvectors and D is the diagonal matrix with
eigenvalues on the diagonal and values of 0 everywhere else.
Take the eigenvalues λ₁, λ₂, …, λp and sort them from largest to smallest. In doing5.
so, sort the eigenvectors in P accordingly. Call this sorted matrix of
eigenvectors P*.
Calculate Z*= ZP*. This new matrix, Z*, is a centered/standardized version of X,6.
but now each observation is a combination of the original variables, where the
weights are determined by the eigenvector. As a bonus, because our eigenvectors
in P* are independent of one another, the columns of Z* are independent of one
another.

Summary
In this chapter, we studied the statistical model, the learning curve, and curve fitting. We
also studied two cultures that Leo Breiman introduced, which describe that any analysis
needs data. We went through the different types of training, development, and test data,
including their sizes. We studied regularization, which explains what overfitting means in
machine learning modeling.

This chapter also explained cross validation and model selection, the 0.632 rule in
bootstrapping, and also ROC and AUC in depth.

In the next chapter, we will study evaluating kernel learning, which is the most widely
used approach in machine learning.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Evaluating Kernel Learning

In machine learning, pattern finding is an area that is being explored to the hilt. There are
many methods and algorithms that can drive this kind of work and analysis. However, in
this chapter, we will try to focus on how kernels are making a significant difference to the
whole machine learning outlook. The application of kernel learning doesn't have any
boundaries: starting from a simple regression problem to a computer vision classification, it
has made its presence felt everywhere. Support vector machine (SVM) is one of those
algorithms that happens to make use of kernel learning.

In this chapter, we will be focusing on the following concepts:

Concepts of vectors, linear separability, and hyperplanes
SVM
Kernel tricks
Gaussian process
Parameter optimization

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[41]

Introduction to vectors
Before moving on to the core topic, we would like to build a foundation for getting there.
Hence, this segment of the chapter is very important. It might look familiar to you and
many of you will be cognizant about this. However, going through this channel will set the
flow.

A vector is an object that has both a direction and magnitude. It is represented by an arrow
and with a coordinate (x, y) in space, as shown in the following plot:

As shown in the preceding diagram, the vector OA has the coordinates (4,3):

Vector OA= (4,3)

However, it is not sufficient to define a vector just by coordinates—we also need a
direction. That means the direction from the x axis.

Magnitude of the vector
The magnitude of the vector is also called the norm. It is represented by ||OA||:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[42]

To find out magnitude of this vector, we can follow the Pythagorean theorem:

OA2 = OB2 + AB2

= 42 + 32

= 16 + 9

= 25

Hence:

OA = √25 = 5

||OA||= 5

So, if there is a vector x = (x1,x2,....,xn):

||x||= x1
2 + x2

2+........+xn
2

And direction of this vector as:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[43]

Dot product
The dot product of two vectors returns a number that happens to be scalar. It is a
representation of how two vectors are associated with each other.

Geometrically, the dot product of two vectors x and y would be as follows:

x . y= ||x|| ||y|| cosθ

θ is the angle between the vector x and y.

However, algebraically, we get the following:

Geometrically, we get the following:

θ=β-α

cosθ=cos(β-α)

cosθ = cosβ cosα + sinβ sinα

cosθ = (x1/||x||) (y1/||y||) + (x2/||x||) (y2/||y||)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[44]

||x||||y|| cosθ= x1 y1 + x2y2

x . y = x1 y1 + x2y2

Linear separability
Linear separability implies that if there are two classes then there will be a point, line,
plane, or hyperplane that splits the input features in such a way that all points of one class
are in one-half space and the second class is in the other half-space.

For example, here is a case of selling a house based on area and price. We have got a
number of data points for that along with the class, which is house Sold/Not Sold:

In the preceding figure, all the N, are the class (event) of Not Sold, which has been derived
based on the Price and Area of the house and all the instances of S represent the class of the
house getting sold. The number of N and S represent the data points on which the class has
been determined.

In the first diagram, N and S are quite close and happen to be more random, hence, it's
difficult to have linear separability achieved as no matter how you try to separate two
classes, at least one of them would be in the misclassified region. It implies that there won't
be a correct possible line to separate the two. But the second diagram depicts datasets that
can easily be separated based on given conditions.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[45]

Separation methodology changes based on the number of dimensions. If there is just one
dimensional situation, we can have a point separating classes. Adding more dimensions
will require a different arrangement to split the class. Once we have got a 2D situation, a
line (as seen previously) will be required to separate it. Similarly, more than 2D will need a
plane (a set of points) in order to separate the classes, as shown:

Separation method:

Number of dimensions Separation method
1 Point
2 Line
3 Plane

What if we have more than 3D? What do we do? What's the solution? Any guesses?

Hyperplanes
Many of you will have guessed it right. We use hyperplanes when it comes to more than
3D. We will define it using a bit of mathematics.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[46]

A linear equation looks like this: y = ax + b has got two variables, x and y, and a y-intercept,
which is b. If we rename y as x2 and x as x1, the equation comes out as x2=ax1 + b which
implies ax1 - x2 + b=0. If we define 2D vectors as x= (x1,x2) and w=(a,-1) and if we make use of
the dot product, then the equation becomes w.x + b = 0.

Remember, x.y = x1y1 + x2y2.

So, a hyperplane is a set of points that satisfies the preceding equation. But how do we
classify with the help of hyperplane?

We define a hypothesis function h:

h(xi) = +1 if w.xi + b ≥ 0

-1 if w.xi + b < 0

This could be equivalent to the following:

h(xi)= sign(w.xi + b)

It could also be equivalent to the following:

sign(w.xi) if (x0=1 and w0=b)

What it means is that it will use the position of x with respect to the hyperplane to predict a
value for y. A data point on one side of the hyperplane gets a classification and a data point
on other side of hyperplane gets another class.

Because it uses the equation of a hyperplane that happens to be the linear combination of
the values, it is called a linear classifier. The shape of hyperplane is by w as it has elements
as b and a responsible for the shape.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[47]

SVM
Now we are ready to understand SVMs. SVM is an algorithm that enables us to make use
of it for both classification and regression. Given a set of examples, it builds a model to
assign a group of observations into one category and others into a second category. It is a
non-probabilistic linear classifier. Training data being linearly separable is the key here. All
the observations or training data are a representation of vectors that are mapped into a
space and SVM tries to classify them by using a margin that has to be as wide as possible:

Let's say there are two classes A and B as in the preceding screenshot.

And from the preceding section, we have learned the following:

g(x) = w. x + b

Where:

w: Weight vector that decides the orientation of the hyperplane
b: Bias term that decides the position of the hyperplane in n-dimensional space
by biasing it

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[48]

The preceding equation is also called a linear discriminant function. If there is a vector
x1 that lies on the positive side of the hyperplane, the equation becomes the following:

g(x1)= w.x1 +b >0

The equation will become the following:

g(x1)<0

If x1 lies on the positive side of the hyperplane.

What if g(x1)=0? Can you guess where x1 would be? Well, yes, it would be on the
hyperplane, since our goal is to find out the class of the vector.

So, if g(x1)>0 => x1 belongs to Class A, g(x1)<0 => x1 belongs to Class B.

Here, it's evident that we can find out the classification by using the previous equation. But
can you see the issue in it? Let's say the boundary line is like the following plot:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[49]

Even in the preceding scenario, we are able to classify those feature vectors here. But is it
desirable? What can be seen here is that the boundary line or the classifier is close to the
Class B. It implies that it brings in a large bias in the favor of Class A but penalizes Class B.
As a result of that, due to any disturbances in the vectors close to the boundary, they might
cross over and become part of Class A, which might not be correct. Hence, our goal is to
find an optimal classifier that has got the widest margin, like what is shown in the
following plot:

Through SVM, we are attempting to create a boundary or hyperplane such that the distance
from each of the feature vectors to the boundary is maximized so that any slight noise or
disturbance won't cause the change in classification. So, in this scenario, if we try to bring in
certain yi which happens to be the class belonging to xi, we get the following:

yi= ± 1

yi (w.xi + b) will always be greater than 0. yi(w.xi + b) >0 because when xi ∈ class A, w.xi +b>0
then yi>0, so the whole term will be positive. Also, if xi ∈ class B, w.xi + b<0 then yi<0, and it
will make the term positive.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[50]

So, now if we have to redesign it, we say the following:

w.xi + b> γ where γ is the measure of the distance of hyperplane from xi.

And if there is a hyperplane w.x + b = 0, then the distance of point x from the preceding
hyperplane is as follows:

 w.x + b/ ||w||

Hence, as mentioned previously:

w.x + b/ ||w|| ≥ γ

w.x + b ≥ γ.||w||

On performing proper scaling, we can say the following:

w.x + b ≥ 1 (since γ.||w|| = 1)

It implies that if there is a classification to be arrived at based on the previous result, it
follows this:

w.x + b ≥ 1 if x ∈ class A and

w.x + b ≤ -1 if x ∈ class B

And now, again, if we bring in a class belonging to yi here, the equation becomes the
following:

yi (w.xi + b) ≥ 1

But, if yi (w.xi + b) = 1, xi is a support vector. Next, we will learn what a support vector is.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[51]

Support vector
We draw two boundary lines passing through feature vectors of one class closest to the
feature vectors of another class. The center line of these boundary lines is the hyperplane
we have been talking about. For example, for Class B, a boundary line is passing through p
and q along the way and another boundary line through r and s because p and q are the
closest to the feature vectors of Class B and so are r and s. These are called support vectors.
We will understand now why these are called support vectors:

Let's say that if we try to remove one of the feature vectors that is not so close to the
boundary line, we will not have an impact on the position or orientation of the hyperplane
because the hyperplane's position is decided by boundary lines crossing through vectors p,
q, r, and s. And, since these are the points holding (supporting) the hyperplane together,
they have been named support vectors.

So, this equation yi (w.xi + b) = 1 holds true when xi is p, q, r, or s.

We will go back to the equation w.x + b/ ||w|| ≥ γ; here, we are trying to maximize γ, and
in order to do so either we need to maximize b or minimize ||w||.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[52]

Or we can say we have to minimize w.w. If we convert that into a function, Φ(w) = w.w has
to be minimized. Φ(w) =1/2(w.w) (here 1/2 has been added for mathematical convenience).

So, the objective function of SVM becomes Φ(w) =1/2(w.w), which has to be
minimized subject to constraints, as follows:

yi (w.xi + b) = 1

Since it is a constrained optimization problem, it can be converted into an unconstrained
optimization problem using the Lagrangian multiplier.

Hence, L(w,b)= 1/2(w.w) - ∑ αi [yi(w.xi+b) - 1] where αi is the Lagrangian
multiplier, L(w,b)= 1/2(w.w) - ∑ αi yi (w.xi) -∑ αi yi b + ∑ αi.

Let's find out w and b by using maxima and minima calculus:

δL/δb = 0

It results in ∑ αi yi=0, δL/δw = 0 would result in ∑ αi yi xi = w. Now, putting these results
back into the Lagrangian function yields the following:

L= ∑ αi - 1/2 ∑ αi αj yi yj (xj.xi)

It means that if the value of αi is very high then the corresponding x. There will be a lot of
influence on the position of the hyperplane. Hence, for classification and for unknown
feature vector z, the required equation would be the following:

D(z) = Sign(∑ αi xi yi z + b)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[53]

If D(z) >0, then z would belong to class A and if D(z)<0, z ∈ class B. Let's try to perform a
case study in Python:

Kernel trick
We have already seen that SVM works smoothly when it comes to having linear separable
data. Just have a look at the following figure; it depicts that vectors are not linearly
separable, but the noticeable part is that it is not being separable in 2D space:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[54]

With a few adjustments, we can still make use of SVM here.

Transformation of a two-dimensional vector into a 3D vector or any other higher
dimensional vector can set things right for us. The next step would be to train the SVM
using a higher dimensional vector. But the question arises of how high in dimension we
should go to transform the vector. What this means is if the transformation has to be a two-
dimensional vector, or 3D or 4D or more. It actually depends on the which brings
separability into the dataset.

Kernel
A non-separable dataset like the one used previously is always a tough thing to deal with,
however, there are ways to deal with it. One way is to set the vectors into higher
dimensions through transformation. But, can we really do it when we have millions of data
or vector in reckoning? It will take lots of computation and, also, time. That's where kernel
to saves our day.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[55]

We have seen the following equation. In this, only the dot product of the training examples
are responsible for making the model learn. Let's try to do a small exercise here:

Let's take two vectors here:

x1=[4,8]
x2= [20,30]

Now, build a transformation function that will help in transforming these 2D vectors into
3D.

The function to be used in order to transform is the following:

t(x1,x2)= (x12,x1 x2 √2,x22)

#transformation from 2-D to 3-D vector
def t(x):
 return [x[0]**2, np.sqrt(2)*x[0]*x[1], x[1]**2]

Now let's use this function:

x1_3D= t(x1)
x2_3D= t(x2)

print(np.dot(x1_3D,x2_3D))# the result is 102400

But can't we do this without transforming the values. Kernel can help us in doing it:

def kernel(a, b):
 return a[0]**2 * b[0]**2 + 2*a[0]*b[0]*a[1]*b[1] + a[1]**2 * b[1]**2

It's the time to use this kernel now:

kernel(x1,x2) #the result is 102400

Isn't it quite thrilling to see such an amazing result that is the same as before, without using
transformation? So, kernel is a function that leads to the dot-product-like result in another
space.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[56]

Back to Kernel trick
So, now we have got a fair understanding of kernel and its importance. And, as discussed
in the last section, the kernel function is:

K(xi,xj)= xi . xj

So, now the margin problem becomes the following:

This is subject to 0 ≤ αi ≤ C, for any i = 1, ..., m:

Applying the kernel trick simply means replacing the dot product of two
examples with a kernel function.

Now even the hypothesis function will change as well:

This function will be able to decide on and classify the categories. Also, since S denotes the
set of support vectors, it implies that we need to compute the kernel function only on
support vectors.

Kernel types
We're going to explain the types of in this section.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[57]

Linear kernel
Let's say there are two vectors, x1 and x2, so the linear kernel can be defined by the
following:

K(x1, x2)= x1 . x2

Polynomial kernel
If there are two vectors, x1 and x2, the linear kernel can be defined by the following:

K(x1, x2)= (x1 . x2 + c)d

Where:

c: Constant
d: Degree of polynomial:

def polynomial_kernel(x1, x2, degree, constant=0):
 result = sum([x1[i] * x2[i] for i in range(len(x1))]) +
constant
 return pow(result, degree)

If we use the same x1 and x2 as used previously, we get the following:

x1= [4,8]
x2=[20,30]
polynomial_kernel(x1,x2,2,0)
result would be 102400

If we increase the degree of polynomial, we will try to get influenced by other vectors as the
decision boundary becomes too complex and it will result in overfitting:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[58]

Polynomial kernel using degree as 6.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[59]

Gaussian kernel
The polynomial kernel has given us a good boundary line. But can we work with
polynomial kernels all the time? Not in the following scenario:

The solution is a radial basis function or Gaussian kernel. It's nothing but the similarity
function of the vectors to translate them into a high dimensional space or infinite
dimensional space. Its value depends on the distance from the Gaussian kernel function,
as follows:

K(x,x') = exp(-γ ||x-x'||2)

Without loss of generality, let :

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[60]

With the help of this RBF as a similarity function, all the feature vectors get calculated.

SVM example and parameter optimization
through grid search
Here, we are taking a breast cancer dataset wherein we have classified according to
whether the cancer is benign/malignant.

The following is for importing all the required libraries:

import pandas as pd
import numpy as np
from sklearn import svm, datasets
from sklearn.svm import SVC
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.utils import shuffle
%matplotlib inline

Now, let's load the breast cancer dataset:

BC_Data = datasets.load_breast_cancer()

The following allows us to check the details of the dataset:

print(BC_Data.DESCR)

This if for splitting the dataset into train and test:

X_train, X_test, y_train, y_test = train_test_split(BC_Data.data,
BC_Data.target, random_state=0)

This is for setting the model with the linear kernel and finding out the accuracy:

C= 1.0
svm= SVC(kernel="linear",C=C)
svm.fit(X_train, y_train)
print('Accuracy-train dataset: {:.3f}'.format(svm.score(X_train,y_train)))
print('Accuracy- test dataset: {:.3f}'.format(svm.score(X_test,y_test)))

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[61]

We get the accuracy output as shown:

Accuracy-train dataset: 0.967

Accuracy- test dataset: 0.958

Setting the model with the Gaussian/RBF kernel and accuracy is done like this:

svm= SVC(kernel="rbf",C=C)
svm.fit(X_train, y_train)
print('Accuracy-train dataset: {:.3f}'.format(svm.score(X_train,y_train)))
print('Accuracy- test dataset: {:.3f}'.format(svm.score(X_test,y_test)))

The output can be seen as follows:

Accuracy-train dataset: 1.000

Accuracy- test dataset: 0.629

It's quite apparent that the model is overfitted. So, we will go for normalization:

min_train = X_train.min(axis=0)
range_train = (X_train - min_train).max(axis=0)
X_train_scaled = (X_train - min_train)/range_train
X_test_scaled = (X_test - min_train)/range_train

This code is for setting up the model again:

svm= SVC(kernel="rbf",C=C)
svm.fit(X_train_scaled, y_train)
print('Accuracy-train dataset:
{:.3f}'.format(svm.score(X_train_scaled,y_train)))
print('Accuracy test dataset:
{:.3f}'.format(svm.score(X_test_scaled,y_test)))

The following shows the output:

Accuracy-train dataset: 0.948

Accuracy test dataset: 0.951

Now, the overfitting issue cannot be seen any more. Let's move on to having an optimal
result:

parameters = [{'kernel': ['rbf'],
 'gamma': [1e-4, 1e-3, 0.01, 0.1, 0.2, 0.5],
 'C': [1, 10, 100, 1000]},
 {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
clf = GridSearchCV(SVC(decision_function_shape='ovr'), parameters, cv=5)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[62]

clf.fit(X_train, y_train)
print("Best parameters set found on development set:")
print()
print(clf.best_params_)
print()
print("Grid scores on training set:")
print()
means = clf.cv_results_['mean_test_score']
stds = clf.cv_results_['std_test_score']
for mean, std, params in zip(means, stds, clf.cv_results_['params']):
 print("%0.3f (+/-%0.03f) for %r"
 % (mean, std * 2, params))
print()

With the help of grid search, we get the optimal combination for gamma, kernel, and C as
shown:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating Kernel Learning Chapter 2

[63]

With the help of this, we can see and find out which combination of parameters is giving us
the better result.

Here, the best combination turns out to be a linear kernel with a C value of 1.

Summary
In this chapter, we were introduced to vectors, magnitude of vector, and the dot product.
We learned about SVMs that can be used for both classification and regression. We studied
support vectors and kernels and the different types of kernels. Lastly, we studied the SVM
example and parameter optimization through grid search.

In the next chapter, we will learn about performance in ensemble learning.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Performance in Ensemble

Learning
So far, we have learned that no two models will give the same result. In other words,
different combinations of data or algorithms will result in a different outcome. This
outcome can be good for a particular combination and not so good for another
combination. What if we have a model that tries to take these combinations into account
and comes up with a generalized and better result? This is called an ensemble model.

In this chapter, we will be learning about a number of concepts in regard to ensemble
modeling, which are as follows:

Bagging
Random forest
Boosting
Gradient boosting
Optimization of parameters

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[65]

What is ensemble learning?
Sometimes, one machine learning model is not good enough for a certain scenario or use
case as it might not give you the desired accuracy, recall, and precision. Hence, multiple
learning models—or an ensemble of models captures the pattern of the data and gives
better output.

As an example, let's say we are trying to decide on a place where we would like to go in the
summer. Typically, if we are planning for a trip, the suggestions for the place pours in from
all corners. That is, these suggestions might come from our family, websites, friends, and
travel agencies, and then we have to decide on the basis of a good experience that we had
in the past:

Family: Let's say that whenever we have consulted a family member and listened
to them, there has been a 60% chance that they were proven right and we ended
up having a good experience on the trip.
Friends: Similarly, if we listen to our friends, they suggest places where we
might have a good experience. In these instances, a good experience occurred in
50% of cases.
Travel websites: Travel websites are another source where we can get loads of
information regarding where to visit. If we choose to take their advice, there's a
35% chance that they were right and we had a good experience.
Travel agencies: Another piece of advice and information might flow from travel
agencies if we go and check with them first. Based on our past experiences, we
saw that they were right in 45% of cases.

However, we have to accumulate all of the preceding inputs and make a decision since no
source has been 100% correct so far. If we combine these results, the accuracy scenario will
be as follows:

1 - (60% * 50% * 35% * 45%)
1- 0.04725 = 0.95275

Accuracy is close to 95%.

From this, we are able to see the impact of ensemble modeling.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[66]

Ensemble methods
Primarily, there are three methods of building an ensemble model, that is, Bagging,
Boosting, and Stacking:

We will discuss each method one by one. However, before we get into this, we need to
understand what bootstrapping is, which sets the basis for Bagging and Boosting.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[67]

Bootstrapping
Bootstrapping is a statistical technique that's used to draw an inference about the
parameters of population based on the samples drawn from it with replacement and
averaging these results out. In the event of sampling with replacement, samples are drawn
one after another, and once one sample is drawn from the population, the population is
replenished with the sampled data:

In the preceding diagram, there is a dataset that has got multiples components
(A, B, C, D, E, F, G, H, and I). To start, we need to draw three samples of the same size.
Let's draw Sample 1 randomly and say that the first element turned out to be A. However,
before we draw the second element of Sample 1, A is returned to the dataset. A similar
process takes place for the entire draw. This is called Sampling with Replacement. Hence,
we have a chance of selecting the same item multiple times in a set. By following this
process, we have drawn three samples, that is, Sample 1, Sample 2, and Sample 3.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[68]

When we take a step further down, which is determining the statistics (various metrics) on
Sample 1, Sample 2, and Sample 3, we find out a mean or an average of all the statistics to
infer something about the dataset (population). This entire process is called
bootstrapping and the drawn samples are termed bootstrapped samples. This can be
defined with the following equation:

Inference about the Dataset(Population) = Average(sample 1,sample 2,............,sample N)

If you look at the preceding diagram carefully, there might be a scenario wherein a few
elements of the dataset haven't been picked or are not part of those three samples:

Sample 1: (A, E, H, C)
Sample 2: (F, G, A, C)
Sample 3: (E, H, G, F)

Therefore, the elements that haven't been picked are B, D, and I. The samples that were not
part of the drawn samples are called out-of-bag (OOB) samples.

Let's do a simple coding exercise to see how this can be done in Python:

Here, we will be using the sklearn and resample functions. Let's import the1.
necessary libraries:

#importing Libraries
from sklearn.utils import resample

Next, create a dataset that we will need to sample:2.

dataset=[10,2

Now, we will extract a bootstrap sample with the help of the resample function:3.

0,30,40,50,60,70,80,90,100]

#using "resample" function generate a bootstrap sample
boot_samp = resample(dataset, replace=True, n_samples=5,
random_state=1)

We will use list comprehension to extract an OOB sample:4.

#extracting OOB sample
OOB=[x for x in dataset if x not in boot_samp]

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[69]

Now, let's print it:5.

print(boot_samp)

We get the following output:

[60, 90, 100, 60, 10]

We can see that there is a repetition of 60 in the sampling. This is due to sampling
with replacement.

Next, we need to print the following code:6.

print(OOB)

We get the following output:

[20, 30, 40, 50, 70, 80]

By this end of this, we want to have a result that's as follows:

OOB = Dataset - Boot_Sample

=[10,20,30,40,50,60,70,80,90,100] - [60,90,100,60,10]

=[20,30,40,50,70,80]

This is the same result we have got from the code.

Bagging
Bagging stands for bootstrap aggregation. Hence, it's clear that the bagging concept stems
from bootstrapping. It implies that bagging has got the elements of bootstrapping. It is a
bootstrap ensemble method wherein multiple classifiers (typically from the same
algorithm) are trained on the samples that are drawn randomly with replacements
(bootstrap samples) from the training set/population. Aggregation of all the classifiers takes
place in the form of average or by voting. It tries to reduce the affect of the overfitting issue
in the model as shown in the following diagram:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[70]

There are three stages of bagging:

Bootstrapping: This is a statistical technique that's used to generate random
samples or bootstrap samples with replacement.
Model fitting: In this stage, we build models on bootstrap samples. Typically,
the same algorithm is used for building the models. However, there is no
restriction on using different algorithms.
Combining models: This step involves combining all the models and taking an
average. For example, if we have applied a decision tree classifier, then the
probability that's coming out of every classifier is averaged.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[71]

Decision tree
A decision tree is a supervised learning technique that works on the divide-and-conquer
approach. It can be used to address both classification and regression. The population
undergoes a split into two or more homogeneous samples based on the most significant
feature.

For example, let's say we have got a sample of people who applied for a loan from the
bank. For this example, we will take the count as 50. Here, we have got three attributes, that
is, gender, income, and the number of other loans held by the person, to predict whether to
give them a loan or not.

We need to segment the people based on gender, income, and the number of other loans
they hold and find out the most significant factor. This tends to create the most
homogeneous set.

Let's take income first and try to create the segment based on it. The total number of people
who applied for the loan is 50. Out of 50, the loan was awarded to 20 people. However, if
we break this up by income, we can see that the breakup has been done by income <100,000
and >=100,000. This doesn't generate a homogeneous group. We can see that 40% of
applicants (20) have been given a loan. Of the people whose income was less than 100,000,
30% of them managed to get the loan. Similarly, 46.67 % of people whose income was
greater than or equal to 100,000 managed to get the loan. The following diagram shows the
tree splitting on the basis of income:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[72]

Let's take up the number of loans now. Even this time around, we are not able to see the
creation of a homogeneous group. The following diagram shows the tree splitting on the
basis of the number of loans:

Let's get on with gender and see how it fares in terms of creating a homogeneous group.
This turns out to be the homogeneous group. There were 15 who were female, out of which
53.3% got the loan. 34.3% of male also ended up getting the loan. The following diagram
shows the tree splitting based on gender:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[73]

With the help of this, the most significant variable has been found. Now, we will dwell on
how significant the variables are.

Before we do that, it's imperative for us to understand the terminology and nomenclature
associated with the decision tree:

Root Node: This stands for the whole population or dataset that undergoes a
split into two or more homogeneous groups
Decision Node: This is created when a node is divided into further subnodes
Leaf Node: When there is no possibility of nodes splitting any further, that node
is termed a leaf node or terminal node
Branch: A subsection of the entire tree is called a branch or a Sub-tree:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[74]

Tree splitting
There are various algorithms that help when it comes to tree splitting, all of which take us
to the leaf node. The decision tree takes all of the features (variables) that are available into
account and selects the feature that would result in the most pure or most homogeneous
split. The algorithm that's used to split the tree also depends on the target variable. Let's go
through this, step by step:

Gini index: This says that if we select two items at random from a population,1.
they must be from the same class. The probability for this event would turn out
to be 1 if the population is totally pure. It only performs binary splits.
Classification and regression trees (CARTs) make use of this kind of split.

The following formula is how you calculate the Gini index:

Here, p(t) is the proportion of observations with a target variable with a value of t.

For the binary target variable, t=1, the max Gini index value is as follows:

= 1 — (1/2)^2— (1/2)^2
= 1–2*(1/2)^2
= 1- 2*(1/4)

= 1–0.5
= 0.5

A Gini score gives an idea of how good a split is by how mixed the classes are in
the two groups that were created the by the split. A perfect separation results in a
Gini score of 0, whereas the worst case split results in 50/50 classes.

For a nominal variable with k level, the maximum value of the Gini index is (1-
1/k).

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[75]

Information gain: Let's delve into this and find out what it is. If we happened to2.
have three scenarios, as shown in the following diagram, which can be described
easily?

Since Z seem to be quite homogeneous and all of the values of it are similar, it is
called a pure set. Hence, it requires less effort to explain it. However, Y would
need more information to explain as it's not pure. X turns out to be the impurest
of them all. What it tries to convey is that randomness and disorganization adds
to complexity and so it needs more information to explain. This degree of
randomness is known as entropy. If the sample is completely homogeneous, then
the entropy is 0. If the sample is equally divided, its entropy will be 1:

Entropy = -p log2p - q log2q

Here, p means the probability of success and q means the probability of failure.

Entropy is also used with a categorical target variable. It picks the split that has
the lowest entropy compared to the parent node.

Here, we must calculate the entropy of parent node first. Then, we need to
calculate entropy of each individual node that's been split and post that, including
the weighted average of all subnodes.

Reduction in variance: When it comes to the continuous target variable,3.
reduction in variance is used. Here, we are using variance to decide the best split.
The split with the lowest variance is picked as the criteria to split:

Variance =

Here, is the mean of all the values, X, is the real values, and n is the number of
values.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[76]

The calculation of variance for each node is done first and then the weighted average of
each node's variance makes us select the best node.

Parameters of tree splitting
There are a number of parameters that we need to tune or be aware of:

Max_depth: One of the most important parameters is max_depth. It captures the
essence of how deep the tree can get. More depth in the tree means that it is able
to extract more information from the features. However, sometimes, excessive
depth might be a cause of worry as it tends to bring along overfitting as well.
min_samples_split: This represents the minimum number of samples required
to split an internal node. This can vary between considering at least one sample
at each node to considering all of the samples at each node. When we increase
this parameter, the tree becomes more constrained as it has to consider more
samples at each node. An increase in the value of min_samples_split tends to
be underfitted.
min_samples_leaf: This is the minimum number of samples required to be at a
leaf node. Increasing this value to the maximum might cause underfitting.
max_features: This is maximum number of features to be considered for the
best split. It might cause overfitting when there is an increase in the max number
of features.

Now, we are well equipped to understand the random forest algorithm. We're going to talk
about that next.

Random forest algorithm
The random forest algorithm works with the bagging technique. The number of trees are
planted and grown in the following manner:

There are N observations in the training set. Samples out of N observations are
taken at random and with replacement. These samples will act as a training set
for different trees.
If there are M input features (variables), m features are drawn as a subset out of
M and of course m < M. What this does is select m features at random at each
node of the tree.
Every tree is grown to the largest extent possible.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[77]

Prediction takes place based on the aggregation of the results coming out of all
the trees. In the case of classification, the method of aggregation is voting,
whereas it is an average of all the results in the case of regression:

Let's work on a case study, since that will help us understand this concept more in detail.
Let's work on breast cancer data.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[78]

Case study
The data that is given in this case study is about patients who were detected with two kinds
of breast cancer:

Malignant
Benign

A number of features are given here that have characteristics in regard to the cell nuclei that
have been computed from the fine-needle aspiration (FNA) of a breast mass. Based on
these features, we need to predict whether the cancer is malignant or benign. Follow these
steps to get started:

Import all the required libraries:1.

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
#importing our parameter tuning dependencies
from sklearn.model_selection import (cross_val_score,
GridSearchCV,StratifiedKFold, ShuffleSplit)
#importing our dependencies for Feature Selection
from sklearn.feature_selection import (SelectKBest, RFE, RFECV)
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.cross_validation import ShuffleSplit
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import f1_score
from collections import defaultdict
Importing our sklearn dependencies for the modeling
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import KFold
from sklearn import metrics
from sklearn.metrics import (accuracy_score, confusion_matrix,
 classification_report, roc_curve, auc)

Load the breast cancer data:2.

data= pd.read_csv("breastcancer.csv")

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[79]

Let's understand the data:3.

data.info()

We get the following output:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[80]

Let's consider data.head() here:4.

data.head()

From this, we get the following output:

We get the data diagnosis from the following code:5.

data.diagnosis.unique()

The following is the output for the preceding code:

The data is described as follows:6.

data.describe()

We get this output from the preceding code:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[81]

data['diagnosis'] = data['diagnosis'].map({'M':1,'B':0})

datas = pd.DataFrame(preprocessing.scale(data.iloc[:,1:32]))
datas.columns = list(data.iloc[:,1:32].columns)
datas['diagnosis'] = data['diagnosis']

datas.diagnosis.value_counts().plot(kind='bar', alpha = 0.5, facecolor =
'b', figsize=(12,6))
plt.title("Diagnosis (M=1, B=0)", fontsize = '18')
plt.ylabel("Total Number of Patients")
plt.grid(b=True)

data_mean =
data[['diagnosis','radius_mean','texture_mean','perimeter_mean','area_mean'
,'smoothness_mean', 'compactness_mean', 'concavity_mean','concave
points_mean', 'symmetry_mean', 'fractal_dimension_mean']]

plt.figure(figsize=(10,10))
foo = sns.heatmap(data_mean.corr(), vmax=1, square=True, annot=True)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[82]

from sklearn.model_selection import train_test_split, cross_val_score,
cross_val_predict
from sklearn import metrics
predictors = data_mean.columns[2:11]
target = "diagnosis"
X = data_mean.loc[:,predictors]
y = np.ravel(data.loc[:,[target]])
Split the dataset in train and test:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=0)
print ('Shape of training set : %i & Shape of test set : %i' %
(X_train.shape[0],X_test.shape[0]))

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[83]

print ('There are very few data points so 10-fold cross validation should
give us a better estimate')

The preceding input gives us the following output:

param_grid = {
 'n_estimators': [25, 50, 100, 150, 300, 500],
 "max_depth": [5, 8, 15, 25],
 "max_features": ['auto', 'sqrt', 'log2']
 }
#use OOB samples ("oob_score= True") to estimate the generalization
accuracy.
rfc = RandomForestClassifier(bootstrap= True, n_jobs= 1, oob_score= True)
#let's use cv=10 in the GridSearchCV call
#performance estimation
#initiate the grid
grid = GridSearchCV(rfc, param_grid = param_grid, cv=10, scoring
='accuracy')
#fit your data before you can get the best parameter combination.
grid.fit(X,y)
grid.cv_results_

Let's find out the best scores, parameter and the estimator from the
gridsearchCV
print("GridSearhCV best model:\n ")
print('The best score: ', grid.best_score_)
print('The best parameter:', grid.best_params_)
print('The best model estimator:', grid.best_estimator_)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[84]

model = RandomForestClassifier() with optimal values
model = RandomForestClassifier(bootstrap=True, class_weight=None,
criterion='gini',
 max_depth=8, max_features='sqrt', max_leaf_nodes=None,
 min_impurity_decrease=0.0, min_impurity_split=None,
 min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, n_estimators=150, n_jobs=1,
 oob_score=True, random_state=None, verbose=0, warm_start=False)
model.fit(X_train, y_train)

print("Performance Accuracy on the Testing data:",
round(model.score(X_test, y_test) *100))

From this, we can see that the performance accuracy on the testing data is 95.0:

#Getting the predictions for X
y_pred = model.predict(X_test)
print('Total Predictions {}'.format(len(y_pred)))

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[85]

Here, the total predictions is 114:

truth = pd.DataFrame(y_test, columns= ['Truth'])
predictions = pd.DataFrame(y_pred, columns= ['Predictions'])
frames = [truth, predictions]
_result = pd.concat(frames, axis=1)
print(_result.shape)
_result.head()

10 fold cross-validation with a Tree classifier on the training dataset#
10 fold
#splitting the data, fitting a model and computing the score 10 consecutive
times
cv_scores = []
scores = cross_val_score(rfc, X_train, y_train, cv=10, scoring='accuracy')
cv_scores.append(scores.mean())
cv_scores.append(scores.std())

#cross validation mean score
print("10 k-fold cross validation mean score: ", scores.mean() *100)

From this, we can see that the 10 k-fold cross validation mean score is 94.9661835749:

printing classification accuracy score rounded
print("Classification accuracy: ", round(accuracy_score(y_test, y_pred,
normalize=True) * 100))

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[86]

Here, we can see that the classification accuracy is 95.0:

Making the Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(12,6))
ax = plt.axes()
ax.set_title('Confusion Matrix for both classes\n', size=21)
sns.heatmap(cm, cmap= 'plasma',annot=True, fmt='g') # cmap
plt.show()

The classification Report
target_names = ['Benign [Class 0]', 'Malignant[Class 1]']
print(classification_report(y_test, y_pred, target_names=target_names))

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[87]

y_pred_proba = model.predict_proba(X_test)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
auc = metrics.roc_auc_score(y_test, y_pred_proba)
plt.plot(fpr,tpr,label="curve, auc="+str(auc))
plt.legend(loc=4)
plt.show()

The preceding graph is a receiver operating characteristic (ROC) metric, which is used to
evaluate classifier output quality using cross-validation.

The preceding plot shows the ROC response to our chosen features
(['compactness_mean', 'perimeter_mean', 'radius_mean', 'texture_mean',
'concavity_mean', 'smoothness_mean']) and the diagnosis-dependent variable that
was created from k-fold cross-validation.

A ROC area of 0.99 is quite good.

Boosting
When it comes to bagging, it can be applied to both classification and regression. However,
there is another technique that is also part of the ensemble family: boosting. However, the
underlying principle of these two are quite different. In bagging, each of the models runs
independently and then the results are aggregated at the end. This is a parallel operation.
Boosting acts in a different way, since it flows sequentially. Each model here runs and
passes on the significant features to another model:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[88]

Gradient boosting
To explain gradient boosting, we will take the route of Ben Gorman, a great data scientist.
He has been able to explain it in a mathematical yet simple way. Let's say that we have got
nine training examples wherein we are required to predict the age of a person based on
three features, such as whether they like gardening, playing video games, or surfing the
internet. The data for this is as follows:

To build this model, the objective is to minimize the mean squared error.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[89]

Now, we will build the model with a regression tree. To start with, if we want to have at
least three samples at the training nodes, the first split of the tree might look like this:

This seems to be fine, but it's not including information such as whether they play video
games or browse the internet. What if we plan to have two samples at the training nodes?

Through the preceding tree, we are able to get certain information from features, such
as SurfInternet and PlaysVideoGames. Let's figure out how residuals/errors come along:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[90]

Now, we will work on the residuals of the first model:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[91]

Once we have built the model on residuals, we have to combine the previous model with
the current one, as shown in the following table:

We can see that the residuals have come down and that the model is getting better.

Let's try to formulate what we have done up until this point:

First, we built a model on the data f1(x) = y.1.
The next thing we did was calculate the residuals and build the model on2.
residuals:

h 1(x)=y- f1(x)

The next step is to combine the model, that is, f2(x)= f1(x) + h 1(x).3.

Adding more models can correct the errors of the previous models. The preceding
equation will turn out to be as follows:

f3(x)= f2(x) + h2(x)

The equation will finally look as follows:

fm(x)= fm-1(x) + hm-1(x)

Alternatively, we can write the following:

 hm(x)= y- fm(x)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[92]

Since our task is to minimize the squared error, f will be initialized with the mean4.
of the training target values:

Then, we can find out fm+1, just like before:5.

fm(x)= fm-1(x) + hm-1(x)

Now, we can use gradient descent for our gradient boosting model. The objective function
we want to minimize is L. Our starting point is fo(x). For iteration m=1, we compute the
gradient of L with respect to fo(x). Then, we fit a weak learner to the gradient components.
In the case of a regression tree, leaf nodes produce an average gradient among samples
with similar features. For each leaf, we step in the direction of the average gradient. The
result is f1 and this can be repeated until we have fm.

We modified our gradient boosting algorithm so that it works with any differentiable loss
function. Let's clean up the preceding ideas and reformulate our gradient boosting model
once again.

Parameters of gradient boosting
There are different parameters to consider before applying gradient boosting for the breast
cancer use case:

Min_samples_split: The minimum number of samples required in a node to
be considered for splitting is termed min_samples_split.
Min_samples_leaf: The minimum number of samples required at the terminal
or leaf node is termed min_samples_leaf.
Max_depth: This is the maximum number of nodes allowed from the root to the
farthest leaf of a tree. Deeper trees can model more complex relationships,
however, causing the model to overfit.
Max_leaf_nodes: The maximum number of nodes at the leaves in a tree. Since
binary trees are created, a depth of n would produce a maximum of 2n leaves.
Hence, either max_depth or max_leaf_nodes can be defined.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[93]

Now, we will apply gradient boosting for the breast cancer use case. Here, we are loading
the libraries that are required to build the model:

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import classification_report, confusion_matrix,
roc_curve, auc

We are now done with the various steps of data cleaning and exploration while performing
random forest. Now, we will jump right into building the model.

Here, we will perform a grid search to find out the optimal parameters for the gradient
boosting algorithm:

param_grid = {
 'n_estimators': [25, 50, 100, 150, 300, 500], # the more parameters, the
more computational expensive
 "max_depth": [5, 8, 15, 25],
 "max_features": ['auto', 'sqrt', 'log2']
 }
gbm =
GradientBoostingClassifier(learning_rate=0.1,random_state=10,subsample=0.8)
#performance estimation
#initiate the grid
grid = GridSearchCV(gbm, param_grid = param_grid, cv=10, scoring
='accuracy')
#fit your data before you can get the best parameter combination.
grid.fit(X,y)
grid.cv_results_

We get the following output:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[94]

Now, let's find out the optimal parameters:

#Let's find out the best scores, parameter and the estimator from the
gridsearchCV
print("GridSearhCV best model:\n ")
print('The best score: ', grid.best_score_)
print('The best parameter:', grid.best_params_)
print('The best model estimator:', grid.best_estimator_)

The output can be seen as follows:

Now, we will build the model:

model2 = GradientBoostingClassifier(criterion='friedman_mse', init=None,
 learning_rate=0.1, loss='deviance', max_depth=5,
 max_features='sqrt', max_leaf_nodes=None,
 min_impurity_decrease=0.0, min_impurity_split=None,
 min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, n_estimators=150,
 presort='auto', random_state=10, subsample=0.8, verbose=0,
 warm_start=False)
model2.fit(X_train, y_train)

print("Performance Accuracy on the Testing data:",
round(model2.score(X_test, y_test) *100))

The performance accuracy on the testing data is 96.0:

#getting the predictions for X
y_pred2 = model2.predict(X_test)
print('Total Predictions {}'.format(len(y_pred2)))

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[95]

The total number of predictions is 114:

truth = pd.DataFrame(y_test, columns= ['Truth'])
predictions = pd.DataFrame(y_pred, columns= ['Predictions'])
frames = [truth, predictions]
_result = pd.concat(frames, axis=1)
print(_result.shape)
_result.head()

Let's perform cross-validation:

cv_scores = []

scores2 = cross_val_score(gbm, X_train, y_train, cv=10, scoring='accuracy')
cv_scores.append(scores2.mean())
cv_scores.append(scores2.std())

#cross validation mean score
print("10 k-fold cross validation mean score: ", scores2.mean() *100)

The 10 k-fold cross-validation mean score is 94.9420289855:

#printing classification accuracy score rounded
print("Classification accuracy: ", round(accuracy_score(y_test, y_pred2,
normalize=True) * 100))

The classification accuracy is 96.0:

Making the Confusion Matrix
cm = confusion_matrix(y_test, y_pred2)
plt.figure(figsize=(12,6))
ax = plt.axes()
ax.set_title('Confusion Matrix for both classes\n', size=21)
sns.heatmap(cm, cmap= 'plasma',annot=True, fmt='g') # cmap
plt.show()

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performance in Ensemble Learning Chapter 3

[96]

By looking at the confusion matrix, we can see that this model is better than the previous
one:

Summary
In this chapter, we studied ensemble learning and its different methods, namely bagging,
boosting, and stacking. We even saw what is bootstrapping which is the root for ensemble
learning methods such as bagging and boosting. We also learned about decision trees and
its approach of divide and rule with example of people applying for loan. Then we covered
tree splitting and the parameters to split a decision tree, moving on to the random forest
algorithm. We worked on a case study of breast cancer using the concepts covered. We also
discovered the difference between bagging and boosting and gradient boosting. We also
discussed on parameters of gradient boosting to use it our example of breast cancer.

In the next chapter, we will learn about training neural networks.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Training Neural Networks

When you hear the term neural networks, it gives you a sense that its a form of biological
terminology pertaining to brains. And I have to tell you candidly that it's a no brainer to
guess that and, in fact, we are treading along the right path by doing so. We will see how it
is connected to that.

Neural networks have brought in a revolution in the data science world. Until 2011, due to
not having enough computation power, the people rooting for neural networks were not
able to propagate it to the extent that they wanted. But, with the advent of cheaper
computation solutions and more research in the area of neural networks, they have taken
the data science and artificial world by storm. Neural networks are an algorithm that can be
applied in both supervised and unsupervised learning. With deeper networks, they are able
to provide solutions to unstructured data, such as images and text.

In this chapter, we will cover the following topics:

Neural networks
Network initialization
Overfitting
Dropouts
Stochastic gradient descent
Recurrent neural networks

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[98]

Neural networks
Let me explain first of all what neurons are and how they are structured. The following
labelled diagram shows a typical neuron:

We define neuron as an electrically excitable cell that receives, processes, and transmits
information through electric and chemical signals. A dendrite is a part of it that receives
signals from other neurons. One thing that we need to pay attention to is that just a single
neuron can't do anything and there are billions of neurons connected to each other, which
enables the electro-chemical signal flow and, in turn, the information to flow through it.
The information passes through an axon and a synapse, before being transmitted.

When it comes to a neural network, the structure doesn't change much. Let's have a look at
it. In the middle, we have a neuron and this neuron gets signals from three other neurons,
X1, X2, and X3. All three neurons are connected by arrows that act like a synapse. These
neurons, X1, X2, and X3, are called input layer neurons. After passing through the neuron,
we get the output value. It's interesting to see that the human brain gets an input signal
through all the sensors such as eyes, ear, touch, and nose and that all the synapses let these
electro-chemical signals go, and output comes as vision, voice, sense of touch, and smell. A
similar process is followed in the case of a neural network.

How a neural network works
Let's say we have one set of input and output as follows:

Input (X) Output (Y)
2 4
3 6
4 8

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[99]

5 10
6 12

In the preceding table, input and output might look to have a linear relationship; however,
that is not always the case. In addition, every time the model needs to initialize. Let's
understand the meaning of initialization.

Model initialization
Going by the preceding table, the network is trying to find a relationship between input
and output. For example, let's assume the relationship that comes through is the following:

Y = W. X

In the preceding equation, Y and X are known, and based on that W has to be found out.
But, finding out the value of W in one iteration is rare. It has to be initialized first. Let's say
W is initialized with the value of 3. And the equation turns out to be as follows:

Y= 3X

Input (X) Actual Output (Y)
2 6
3 9
4 12
5 15
6 18

Now we have to assess the output and whether it is close to the desired output.

Loss function
So far, the model has been randomly initialized and with this we have been able to get an
output. In order to assess if the actual output is close to the desired output, loss function is
introduced. It enables the generalization of the model, and figures out how well the model
is able to reach the desired output.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[100]

We can have a look at the new table, which has got actual output as well as desired output:

Input (X) Actual Output (Ya) Desired Output (Y)
2 6 4
3 9 6
4 12 8
5 15 10
6 18 12

If we have to put the loss function down, it has to be as follows:

Loss Function = Desired Output-Actual Output

However, putting loss function this way would invite both kinds of values: negative and
positive. In the case of a negative value for the loss function, it would mean that the
network is overshooting as Desired Output < Actual Output and in the reverse scenario
(Desired Output > Actual Output), the network would undershoot. In order to get rid of this
kind of thing, we will go for having an absolute loss:

Input(X) Actual Output (Ya) Desired Output (Y) Loss=Y-Ya Absolute Loss

2 6 4 -2 2

3 9 6 -3 3

4 12 8 -4 4

5 15 10 -5 5

6 18 12 -6 6

Total Absolute Loss = 20

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[101]

Having this approach of absolute loss will do no good to the model, as if we try to see the
preceding table gingerly, the smallest loss is of 2 units and the maximum coming through is
6 units. One might get a feeling that the difference between maximum and minimum loss is
not much (here, 4 units), but it can be huge for the model. Hence, a different route is taken
altogether. Rather than taking absolute loss, we would go for the square of losses:

Input(X) Actual output (Ya) Desired output (Y) Loss=Y-Ya Square of Loss

2 6 4 -2 4

3 9 6 -3 9

4 12 8 -4 16

5 15 10 -5 25

6 18 12 -6 36

Now, the more the loss, the more the penalization. It can easily make things evident where
we have more losses.

Optimization
We have to figure out a way to minimize the total loss function and it can be achieved by
changing the weight. It can be done by using a crude method like modifying the parameter
W over a range of -500 to 500 with a step 0.001. It will help us to find a point where the sum
of squares of error becomes 0 or minimum.

But this approach will work out in this scenario because we don't have too many
parameters here and computation won't be too challenging. However, when we have a
number of parameters, the computation would take a hit.

Here, mathematics comes to our rescue in the form of differentiation (maxima and minima
approach) in order to optimize the weights. The derivative of a function at a certain point
gives the rate at which this function is changing its values. Here, we would take the
derivative of loss function. What it will do is to assess an impact on total error by making a
slight adjustment or change in weight. For example, if we try to make a change in weight
which is δW, W= W+ δW, we can find out how it is influencing loss function. Our end goal
is to minimize the loss function through this.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[102]

We know that the minima will be arrived at w=2; hence, we are exploring different
scenarios here:

w<2 implies a positive loss function, negative derivative, meaning that an
increase of weight will decrease the loss function
w>2 implies positive loss function, but the derivative is positive, meaning that
any more increase in the weight will increase the losses
At w=2, loss=0 and the derivative is 0; minima is achieved:

Computation in neural networks
Now, let's look at a simple and shallow network:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[103]

Where:

I1: Input neuron 1
I2: Input neuron 2
B1: Bias 1
H1: Neuron 1 in hidden layer
H2: Neuron 2 in hidden layer
B2: Bias 2
O1: Neuron at output layer

The final value comes at the output neuron O1. O1 gets the input from H1, H2, and B2.
Since B2 is a bias neuron, the activation for it is always 1. However, we need to calculate the
activation for H1 and H2. In order to calculate activation of H1 and H2, activation for I1, I2,
and B1 would be required. It may look like H1 and H2 will have the same activation, since
they have got the same input. But this is not the case here as weights of H1 and H2 are
different. The connectors between two neurons represent weights.

Calculation of activation for H1
Let's have a look at the part of network involving just H1:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[104]

The hidden layer comes out as in the following formula:

Where:

A: Activation function
xi: Input values
wi: Weight values

In our scenario, there are three input values, n=3:

x1 = I1 = Input value 1 from first neuron
x2 = I2= Input value 2 from second neuron
x3 = B1 = 1
w1 = Weight from I1 to H1
w2 = Weight from I2 to H1
w3 = Weight from B1 to H1

Backward propagation
In this step, we calculate the gradients of the loss function f(y, y_hat) with respect to A, W,
and b called dA, dW, and db. Using these gradients, we update the values of the parameters
from the last layer to the first.

Activation function
Activation function is typically introduced in the neural network in order to induce non-
linearity. Without non-linearity, a neural network will have little chance to learn non-
linearity. But you might question as to why why we need non-linearity in the first place. If
we deem every relationship as a linear one, then the model won't be able to do justice to the
actual relationship because having a linear relationship is a rarity. If applied linearity, the
model's output won't be a generalized one.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[105]

Also, the main purpose of an activation function is to convert an input signal into an
output. Let's say if we try to do away with an activation function, it will output a linear
result. Linear function is a polynomial of the first degree and it's easy to solve but, again,
it's not able to capture complex mapping between various features, which is very much
required in the case of unstructured data.

Non-linear functions are those that have a degree more than one. Now we need a neural
network model to learn and represent almost anything and any arbitrary complex function
that maps inputs to outputs. Neural networks are also called universal function
approximators. It means that they can compute and learn any function. Hence, activation
function is an integral part of a neural network to make it learn complex functions.

Types of activation functions
Sigmoid: This type of activation function comes along as follows:1.

The value of this function ranges between 0 and 1. It comes with a lot of issues:

Vanishing gradient
Its output is not zero-centered
It has slow convergence

Hyperbolic tangent function (tanh): The mathematical formula to represent it is2.
this:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[106]

The value of this function ranges between -1 and +1. However, it still faces the
vanishing gradient problem:

Rectified Linear Units (ReLU): Mathematically, we represent it in the following3.
manner:

Going by the preceding diagram, ReLU is linear for all positive values, and zero
for all negative values. This means that the following are true:

It's cheap to compute as there is no complicated math. The model
can therefore take less time to train.
It converges faster. Linearity means that the slope doesn't hit the
plateau when x gets large. It doesn't have the vanishing gradient
problem suffered by other activation functions such as sigmoid or
tanh.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[107]

Network initialization
So far, we have seen that there are a number of stages in a neural network model. We
already know that weight exists between two nodes (of two different layers). The weights
undergo a linear transformation and, along with values from input nodes, it crosses
through nonlinear activation function in order to yield the value of the next layer. It gets
repeated for the next and subsequent layers and later on, with the help of backpropagation,
optimal values of weights are found out.

For a long time, weights used to get randomly initialized. Later on, it was realized that the
way we initialize the network has a massive impact on the model. Let's see how we
initialize the model:

Zero initialization: In this kind of initialization, all the initial weights are set to
zero. Due to this, all the neurons of all the layers perform the same calculation,
which results in producing the same output. It will make the whole deep
network futile. Predictions coming out of this network would be as good as
random. Intuitively speaking, it doesn't perform symmetry breaking. Normally,
during forward propagation of a neural network, each hidden node gets a signal
and this signal is nothing but the following:

If a network is initialized with zero, then all the hidden nodes will get zero signal
because all the inputs will be multiplied by zero. Hence, no matter what the input
value is, if all weights are the same, all units in the hidden layer will be the same
too. This is called symmetry, and it has to be broken in order to have more
information capturing a good model. Hence, the weights are supposed to be
randomly initialized or with different values:

Random initialization: This kind of initialization helps in symmetry breaking. In
this method, the weights are randomly initialized very close to zero. Every
neuron doesn't perform the same computation as the weight is not equal to zero:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[108]

He-et-al initialization: This initialization depends on the size of the previous
layer. It helps in attaining a global minimum of the cost function. The weights are
random but differ in range depending on the size of the previous layer of
neurons:

Backpropagation
Backpropagation takes place once feed forward is completed. It stands for backward
propagation of errors. In the case of neural networks, this step begins to compute the
gradient of error function (loss function) with respect to the weights. One can wonder why
the term back is associated with it. It's due to gradient computation that starts backwards
through the network. In this, the gradient of the final layer of weights gets calculated first
and the the weights of the first layer are calculated last.

Backpropagation needs three elements:

Dataset: A dataset that consists of pairs of input-output where is the
input and is the output that we are expecting. Hence, a set of such input-
outputs of size N is taken and denoted as .
Feed-forward network: In this, the parameters are denoted as θ. The parameters,

, the weight between node j in layer lk and node i in layer lk-1, and the
bias for node i in layer lk-1. There are no connections between nodes in the same
layer and layers are fully connected.
Loss function: L(X,θ).

Training a neural network with gradient descent requires the calculation of the gradient of
the loss/error function E(X,θ) with respect to the weights and biases . Then, according
to the learning rate α, each iteration of gradient descent updates the weights and
biases collectively, denoted according to the following:

Here denotes the parameters of the neural network at iteration in gradient descent.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[109]

Overfitting
We have already discussed overfitting in detail. However, let's have a recap of what we
learned and what overfitting is in a neural network scenario.

By now, we are cognizant of the fact that, when a large number of parameters (in deep
learning) are available at our disposal to map and explain an event, more often than not,
the model built using these parameters will tend to have a good fit and try to showcase that
it has the ability to describe the event properly. However, the real test of any model is
always on unseen data, and we were able to assess how the model fares on such unseen
data points. We expect our model to have an attribute of generalization and it will enable
the model to score on test data (unseen) in alignment with the trained one. But, a number of
times our model fails to generalize when it comes to the unseen data, as the model has not
learned the insights and causal relationship of the event. In this scenario, one might be able
to see the huge gulf of variance in training accuracy and test accuracy and, needless to say,
it is not what we are seeking out of the model. This phenomenon is called overfitting.

In deep learning, there are millions of parameters you may encounter and in all likelihood,
you might fall into the trap of overfitting. As we had defined overfitting in the first chapter,
it happens when a model learns the detail and noise in the training data to the extent that it
negatively impacts the performance of the model on new data.

Prevention of overfitting in NNs
As we already discussed in the earlier chapters, overfitting is a major issue that needs to be
considered while building models as our work doesn't get over only at training phase. The
litmus test for any model takes place on unseen data. Let's explore the techniques of
handling overfitting issues in neural networks.

Vanishing gradient
Neural networks have been a revelation in extracting complex features out of the data. Be it
images or texts, they are able to find the combinations that result in better predictions. The
deeper the network, the higher the chances of picking those complex features. If we keep on
adding more hidden layers, the learning speed of the added hidden layers get faster.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[110]

However, when we get down to backpropagation, which is moving backwards in the
network to find out gradients of the loss with respect to weights, the gradient tends to get
smaller and smaller as we head towards the first layer. It that initial layers of the deep
network become slower learners and later layers tend to learn faster. This is called
the vanishing gradient problem.

Initial layers in the network are important because they are responsible to learn and detect
the simple patterns and are actually the building blocks of our network. Obviously, if they
give improper and inaccurate results, then how can we expect the next layers and the
complete network to perform effectively and produce accurate results? The following
diagram shows the figure of a ball that rolls on a steeper slope:

Just to make it a little simpler for us all, let's say that there are two slopes: one being steeper
and the other being less steep. Both slopes have got balls rolling down them and it is a no
brainer that the ball will roll down the steeper slope faster than the one that is not as steep.
Similar to that, if the gradient is large, the learning and training gets faster; otherwise,
training gets too slow if the gradient is less steep.

From backpropagation intuition, we are aware of the fact that the optimization algorithms
such as gradient descent slowly seeko attain the local optima by regulating weights such
that the cost function's output is decreased. The gradient descent algorithm updates the
weights by the negative of the gradient multiplied by the learning rate (α) (which is small):

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[111]

It says that we have to repeat until it attains convergence. However, there are two scenarios
here. The first is that, if there are fewer iterations, then the accuracy of the result will take a
hit; the second is that more iterations result in training taking too much time. This happens
because weight does not change enough at each iteration as the gradient is small (and we
know α is already very small). Hence, weight does not move to the lowest point in the
assigned iterations.

Let's talk about that activation function, which might have an impact on the vanishing
gradient problem. Here, we talk about the sigmoid function, which is typically used as an
activation function:

It translates all input values into a range of values between (0,1). If we have to find out the
derivative of the sigmoid function then:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[112]

Let's plot it now:

It is quite evident that the derivative has got the maximum value as 0.25. Hence, the range
of values under which it would lie is (0,1/4).

A typical neural network looks like the following diagram:

Once the weight parameters are initialized, the input gets multiplied by weights and gets
passed on through an activation function and, finally, we get a cost function (J).
Subsequently, backpropagation takes place to modify the weights through gradient descent
in order to minimize J.

In order to calculate the derivative with respect to first weight, we are using the chain rule.
It will turn out to be like the following:

If we just try to study the derivatives in the middle of the preceding expression, we get the
following:

Part 1—from the output to hidden2.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[113]

Since the output is the activation of the 2nd hidden unit, the expression turns out to be like
the following:

Similarly for part 2, from hidden 2 to hidden 1, the expression turns out to be like the
following:

On putting everything together, we get the following:

We know that the maximum value of the derivative of the sigmoid function is 1/4 and the
weights can typically take the values between -1 and 1 if weights have been initialized with
standard deviation 1 and mean 0. It will lead to the whole expression being smaller. If there
is a deep network to be trained, then this expression will keep on getting even smaller and,
as a result of that, the training time will become slow-paced.

Overcoming vanishing gradient
From the preceding explanation of vanishing gradient, it comes out that the root cause of
this problem is the sigmoid function being picked as an activation function. The similar
problem has been detected when tanh is chosen as an activation function.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[114]

In order to counter such a scenario, the ReLU function comes to the rescue:

ReLU(x)= max(0,x)

If the input is negative or less than zero, the function outputs as zero. In the second
scenario, if the input is greater than zero, then the output will be equal to input.

Let's take the derivative of this function and see what happens:

Case 1: x<0:

Case 2: x>0:

If we have to plot it, we get the following:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[115]

So, the derivative of ReLU is either 0 or 1. The plot comes out to be like a step function.
Now, we can see that we won't face the vanishing gradient problem as the value of the
derivative doesn't lie between 0 and 1.

However, it's still not true. We might still face this problem when the input value happens
to be negative and we know that derivative turns out to be zero in this scenario. Typically,
it doesn't happen that the weighted sum ends up negative, and we can indeed initialize
weights to be only positive and/or normalize input between 0 and 1, if we are concerned
about the chance of an issue like this occurring.

There is still a workaround for this kind of scenario. We have got another function called
Leaky ReLU, which appears as the following formula:

RELU (x) = max (εx, x)

Here, the value of ε is typically 0.2–0.3. We could plot it, as follows:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[116]

Recurrent neural networks
Our thought process always has a sequence. We always understand things in an order. For
example, if we watch a movie, we understand the next sequence by connecting it with the
previous one. We retain the memory of the last sequence and get an understanding of the
whole movie. We don't always go back to the first sequence in order to get it.

Can a neural network act like this? Traditional ones typically cannot operate in this manner
and that is a major shortcoming. This is where recurrent neural networks make a difference.
It comes with a loop that allows information to flow:

Here, a neural network takes an input as Xt and throws an output in the form of ht . A
recurrent neural network is made up of multiple copies of the same network that pass on
the message to the successor.

If we were to go and unroll the preceding network, it would look like the following:

This chain-like nature reveals that recurrent neural networks are intimately related to
sequences and lists. They are the natural architecture of neural networks to use for such
data. Since the network has got an internal memory, RNNs are able to remember the input
they received which, in turn, enables them to come up with accurate and precise results and
predictions.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[117]

So far, we have been talking about sequential data. But we need to have a proper
understanding of this term, sequential data. This form of data is an order data where there
exists a relationship between data at time t and the data at time t-1. An example of that kind
of data can be financial data, time-series data, video, and so on. RNNs allow us to operate
over sequences of vectors. For example, look at the following image:

Each rectangle is represented as a vector, and arrows stand for functions. Input vectors are
in red, output vectors are in blue, and green vectors hold the RNN's state:

Vanilla mode of processing can be done without including RNN, from a fixed-
sized input to output
Sequencing the output in a proper format
Sequencing the input
Sequencing the input and output (for example, machine translation: an RNN
which reads a sentence in English and then outputs a sentence in some other
language, like German).
Syncing the sequenced input and output (for example, video classification where
label each frame of the video)

Limitations of RNNs
Recurrent neural networks function just right when it comes to short-term dependencies.
What this means is that, if there is just a single statement to be dealt with, a neural network
operates fine. For example, if there is a sentence, India's capital is __, in this scenario we
would invariably get the correct result as this is a universal statement and there is nothing
like a context here. This statement has no dependency on the previous sentence and here,
there is no previous sentence either.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[118]

Hence, the prediction would be India's capital is New Delhi.

Afterall, the vanilla RNN's does not understand the context behind an input. We will
understand with an example:

Staying in India meant that I gravitated towards cricket. But, after 10 years, I moved to the US for
work.

The popular game in India is ___.

One can see that there is a context in the first sentence and then it changes in the second
one. However, prediction has to be done by the network on the basis of the first one. It is
highly likely that the popular game in India is cricket, but context plays a role here and it
has to be understood by the network. Simple RNN is a failure here.

That is where Long Short-Term Memory (LSTM) comes into the picture.

Use case
Let's work on a use case that will help us in understanding the network.

We will work on a time series problem. We have got the Google stock price dataset. One
being training and the other being test. We will now look at a use case to forecast the stock
prices of Google:

Let's start by importing the libraries:1.

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

Next, import the training set:2.

dataset_train = pd.read_csv('Google_Stock_Price_Train.csv')
training_set = dataset_train.iloc[:, 1:2].values

 Feature scaling is done in the next step:3.

from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (0, 1))
training_set_scaled = sc.fit_transform(training_set)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[119]

Let's create a data structure with 60 time steps and 1 output:4.

X_train = []
y_train = []
for i in range(60, 1258):
 X_train.append(training_set_scaled[i-60:i, 0])
 y_train.append(training_set_scaled[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)

Next, reshape the data:5.

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1],
1))

Now, import the Keras libraries and packages:6.

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Dropout

 We will initialize the RNN with the regressor function:7.

regressor = Sequential()

Now, add the first LSTM layer and some dropout regularization:8.

regressor.add(LSTM(units = 50, return_sequences = True, input_shape
= (X_train.shape[1], 1)))
regressor.add(Dropout(0.2))

 Now, add the second LSTM layer and some dropout regularization:9.

regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))

Add the third LSTM layer and some dropout regularization:10.

regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))

Add a fourth LSTM layer and some dropout regularization:11.

regressor.add(LSTM(units = 50))
regressor.add(Dropout(0.2))

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[120]

Finally, add the output layer:12.

regressor.add(Dense(units = 1))

 Next, we will compile the RNN:13.

regressor.compile(optimizer = 'adam', loss = 'mean_squared_error')

 We will fit the RNN to the training set:14.

regressor.fit(X_train, y_train, epochs = 100, batch_size = 32)

 We get the real stock price of 2017 as shown:15.

dataset_test = pd.read_csv('Google_Stock_Price_Test.csv')
real_stock_price = dataset_test.iloc[:, 1:2].values

We get the predicted stock price of 2017 as shown:16.

dataset_total = pd.concat((dataset_train['Open'],
dataset_test['Open']), axis = 0)
inputs = dataset_total[len(dataset_total) - len(dataset_test) -
60:].values
inputs = inputs.reshape(-1,1)
inputs = sc.transform(inputs)
X_test = []
for i in range(60, 80):
 X_test.append(inputs[i-60:i, 0])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
predicted_stock_price = regressor.predict(X_test)
predicted_stock_price = sc.inverse_transform(predicted_stock_price)

 Finally, we will visualize the results as shown:17.

plt.plot(real_stock_price, color = 'red', label = 'Real Google
Stock Price')
plt.plot(predicted_stock_price, color = 'blue', label = 'Predicted
Google Stock Price')
plt.title('Google Stock Price Prediction')
plt.xlabel('Time')
plt.ylabel('Google Stock Price')
plt.legend()
plt.show()

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Training Neural Networks Chapter 4

[121]

Summary
In this chapter, we have learned about neural networks along with their working, and were
introduced to backward propagation and the activation function. We studied network
initialization and how can we initialize the different types of models. We learned about
overfitting and dropouts in the neural network scenario.

We introduced the concept of RNN, and studied a use case regarding the Google stock
price dataset. In the next chapter, we will study time series analysis.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Time Series Analysis

In this chapter, we will take a look at time series analysis and learn several ways of
observing and capturing an event at different points in time. We will introduce the concept
of white noise and learn about its detection in a series.

We will take the time series data and compute the differences between the consecutive
observations, which will lead to the formation of a new series. These concepts will help us
deep dive into time series analysis and help us build a deeper understanding around it.

In this chapter, we will cover the following topics:

Introduction to time series analysis
White noise
Random walk
Autoregression
Autocorrelation
Stationarity
Differencing
AR model
Moving average model
Autoregressive integrated moving average
Optimization of parameters
Anomaly detection

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[123]

Introduction to time series analysis
There are several occasions when we might try to observe and capture an event at different
points in time. Often, we would end up drawing a correlation or association between
adjacent observations that cannot be handled by an approach that deals with data that is
independent and identically distributed. The approach that takes all of this into
consideration in a mathematical and statistical manner is called time series analysis.

Time series analysis has been used in a number of fields, such as the automotive, banking,
and retail industries, product development, and so on. There is no boundary for its use, and
so analysts and data scientists are exploring this area to the hilt in order to derive the
maximum benefit for organizations.

In this section, we will go through a few of the concepts around time series analysis that
will lay the foundation for a deeper understanding in the future. Once we have established
this foundation, we will jump into modeling.

White noise
A simple series with a collection of uncorrelated random variables with a mean of zero and
a standard deviation of σ2 is called white noise. In this, variables are independent and
identically distributed. All values have the same variance of σ2. In this case, the series is
drawn from Gaussian distribution, and is called Gaussian white noise.

When the series turns out to be white noise, it implies that the nature of the series is totally
random and there is no association within the series. As a result, the model can't be
developed, and prediction is not possible in this scenario.

However, when we typically build a time series model with a nonwhite noise series, we try
to attain a white noise phenomenon within the residuals or errors. In simple terms,
whenever we try to build a model, the motive is to extract the maximum amount of
information from the series so that no more information exists in the variable. Once we
build a model, noise will always be part of it. The equation is as follows:

Yt = Xt + Error

So the error series should be totally random in nature, which implies that it is white noise.
If we have got these errors as white noise, then we can go ahead and say that we have
extracted all the information possible from the series.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[124]

Detection of white noise in a series
We can detect white noise by using the following tools:

Line plot: Once we have a line plot, we can have an idea of whether the series
has a constant mean and variance
Autocorrelation plot: Having a correlation plot can give us an inkling as to
whether there is an association among lagged variables
Summary: Checking the mean and variance of the series against the mean and
variance of meaningful contiguous blocks of values in the series

Let's do this in Python:

First, we will import all the required libraries as follows:1.

from random import gauss
from random import seed
from pandas import Series
from pandas.tools.plotting import autocorrelation_plot
from matplotlib import pyplot

Next, we will set up the white noise series for us to analyze, as follows:2.

seed(1000)
#creating white noise series
series = [gauss(0.0, 1.0) for i in range(500)]
series = Series(series)

Let's take the summary or statistic of it using the following code:3.

print(series.describe())

We will get the following output:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[125]

Here, we can see that the mean is approaching zero and the standard deviation is
close to 1.

Let's make a line plot now to check out the trend, using the following code:4.

series.plot()
pyplot.show()

We will get the following output:

The line plot looks totally random, and no trend can be observed here.

It's time to make an autocorrelation plot. Let's set one up using the following5.
code:

autocorrelation_plot(series)
pyplot.show()

We will get the following output:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[126]

Even in an autocorrelation function plot, the correlation breaches the band of our
confidence level. This tells us that it is a white noise series.

Random walk
Random walk is a time series model where the current observation is equal to the previous
observations with a random modification. It can be described in the following manner:

 xt= xt-1 + wt

In the preceding formula, wt is a white noise series.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[127]

Sometimes, we might come across a series that reflects irregular growth. In these cases, the
strategy to predict the next level won't be the correct one. Rather, it might be better to try to
predict the change that occurs from one period to the next—that is, it may be better to look
at the first difference of the series in order to find out a significant pattern. The following
figure shows a random walk pattern:

In each time period, going from left to right, the value of the variable takes an independent
random step up or down, which is called a random walk.

It can also be described in the following way:

y(t)= bo + b1*xt-1 + wt

The following list explains the preceding formula:

y(t): Next value in the series
bo: Coefficient, which, if set to a number other than zero, means that the random
walk comes along with a drift
b1: Coefficient, which is set to 1
wt: White noise

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[128]

Autoregression
An autoregression is a time series model that typically uses the previous values of the same
series as an explanatory factor for the regression in order to predict the next value. Let's say
that we have measured and kept track of a metric over time, called yt, which is measured at
time t when this value is regressed on previous values from that same time series. For
example, yt on yt-1:

As shown in the preceding equation, the previous value yt-1 has become the predictor here
and yt is the response value that is to be predicted. Also, εt is normally distributed with a
mean of zero and variance of 1. The order of the autoregression model is defined by the
number of previous values that are being used by the model to determine the next value.
Therefore, the preceding equation is a first-order autoregression, or AR(1). If we have to
generalize it, a kth order autoregression, written as AR(k), is a multiple linear regression in
which the value of the series at any time (t) is a (linear) function of the values at
times t−1, t−2, …, t−k.

The following list shows what the following values means for an AR(1) model:

When β1 = 0, yt, it is equivalent to white noise
When β1 = 1 and β0= 0, yt, it is equivalent to a random walk
When β1 = 1 and β0 ≠ 0, yt, it is equivalent to a random walk with drift
When β1 < 1, yt, it tends to oscillate between positive and negative values

Autocorrelation
Autocorrelation is a measure of the correlation between the lagged values of a time series.
For example, r1 is the autocorrelation between yt and yt-1; similarly, r2 is the autocorrelation
between yt and yt-2. This can be summarized in the following formula:

In the preceding formula, T is the length of the time series.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[129]

For example, say that we have the correlation coefficients, as shown in the following
diagram:

To plot it, we get the following:

The following are some observations from this autocorrelation function plot:

r4 is higher than other lags, which is mostly because of a seasonal pattern
The blue lines are the indicators of whether correlations are significantly different
from zero
Autocorrelation at lag 0 is always 1

Stationarity
A common assumption for a few of the time series models is that data has to be stationary.
Let's look at what stationarity means regarding time series.

A stationary process is one for which the mean, variance, and autocorrelation structure
doesn't change over time. What this means is that the data doesn't have a trend (increasing
or decreasing).

We can describe this by using the following formulas:

E(xt)= μ, for all t

E(xt
2)= σ2, for all t

cov(xt,xk)= cov(xt+s, xk+s), for all t, k, and s

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[130]

Detection of stationarity
There are multiple methods that can help us in figuring out whether the data is stationary,
listed as follows:

Plotting the data: Having a plot of the data with respect to the time variable can
help us to see whether it has got a trend. We know from the definition of
stationarity that a trend in the data means that there is no constant mean and
variance. Let's do this in Python. For this example, we are using international
airline passenger data.

First, let's load all the required libraries, as follows:

 from pandas import Series
from matplotlib import pyplot
%matplotlib inline

data = Series.from_csv('AirPassengers.csv', header=0)
 series.plot()
 pyplot.show()

We will get the following output:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[131]

It is quite clear from the plot that there is an increasing trend here and that it
would vindicate our hypothesis that it is a non-stationary series.

Dividing the data set and computing the summary: The next method would be
to divide the data series into two parts and compute the mean and variance. By
doing this, we will be able to figure out whether the mean and variance are
constant. Let's do this by using the following code:

X = data.values
partition =int(len(X) / 2)
X1, X2 = X[0:partition], X[partition:]
mean1, mean2 =np.nanmean(X1),np.nanmean(X2)
var1, var2 = np.nanvar(X1), np.nanvar(X2)
print('mean1=%f, mean2=%f' % (mean1, mean2))
print('variance1=%f, variance2=%f' % (var1, var2))

The output is as follows:

mean1=182.902778, mean2=377.694444 variance1=2244.087770,
variance2=7367.962191

We can see that the mean and variance of series 1 and series 2 are not equal, and
so we can conclude that the series is not stationary.

Augmented Dickey-Fuller test: The augmented Dickey-Fuller test is a statistical
test that tends to give an indication with a certain level of confidence as to
whether the series is stationary. A statistical test takes the data and tests our
hypothesis about the data using its assumption and process. Eventually, it yields
the result with a certain degree of confidence, which helps us in taking the
decision.

This test is nothing but the unit root test, which tries to find out whether the time
series is influenced by the trend. It makes use of the autoregressive (AR) model
and optimizes the information criterion at different lag values.

Here, the null hypothesis is as follows:

Ho: The time series has got the unit root, which implies that the series is
nonstationary

The alternate hypothesis is as follows:

H1: The time series doesn't have a unit root and, as such, it is stationary

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[132]

As we know from the rules of hypothesis testing, if we have chosen a significance level of
5% for the test, then the result would be interpreted as follows:

If p-value >0.05 =>, then we fail to reject the null hypothesis. That is, the series is
nonstationary.

If p-value <0.05 =>, then the null hypothesis is rejected which means that the series is
stationary.

Let's perform this in Python:

First, we will load the libraries, as follows:1.

import pandas as pd
import numpy as np
import matplotlib.pylab as plt
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 25, 6

Next, we load the data and time plot as follows:2.

data = pd.read_csv('AirPassengers.csv')
print(data.head())
print('\n Data Types:')
print(data.dtypes)

The output can be seen in the following diagram:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[133]

We then parse the data as follows:3.

dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m')
data = pd.read_csv('./data/AirPassengers.csv',
parse_dates=['Month'], index_col='Month',date_parser=dateparse)
print(data.head())

We then get the following output:

ts= data["#Passengers"]
ts.head()

From this, we get the following output:

Then we plot the graph, as follows:4.

plt.plot(ts)

The output can be seen as follows:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[134]

Let's create a function to perform a stationarity test using the following code:5.

from statsmodels.tsa.stattools import adfuller
def stationarity_test(timeseries):
 dftest = adfuller(timeseries, autolag='AIC')
 dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-
value','#Lags Used','Number of Observations Used'])
 for key,value in dftest[4].items():
 dfoutput['Critical Value (%s)'%key] = value
 print(dfoutput)

stationarity_test(ts)

The output can be seen as follows:

Since p-value > 0.05 and the t-statistic is greater than all the critical values (1%,5%,10%), tt
implies that the series is nonstationary as we failed to reject the null hypothesis.

So what can be done if the data is nonstationary? We use differencing to make the
nonstationary data into stationary data.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[135]

AR model
An AR model is a part of the stochastic process, wherein specific lagged values of yt are
used as predictor variables and regressed on yt in order to estimate its values. Lagged
values are values of the series of the previous period that tend to have an impact on the
current value of the series. Let's look at an example. Say we have to assess and predict
tomorrow's weather. We would start by thinking of what today's weather is and what
yesterday's weather was, as this will help us in predicting whether it will be rainy, bright
and sunny, or cloudy. Subconsciously, we are also cognizant of the fact that the weather of
the previous day might have an association with today's weather. This is what we call
an AR model.

This has a degree of uncertainty that results in less accuracy in the prediction of future
values. The formula is the same as the formula for a series with p lag, as follows:

In the previous equation, ω is the white noise term and α is the coefficient, which can't be
zero. The aggregated equation appears as follows:

Occasionally, we might talk about the order of a model. For example, we might describe an
AR model as being of order p. In this case, the p represents the number of lagged variables
used within the model. For example, an AR(2) model or second-order AR model looks like
the following:

Moving average model
A moving average model (MA) is a linear combination of historic white noise error terms.
Let's have a look at the equation of the model:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[136]

Here, ω is the white noise with E(ωt)=0 and variance = σ2.

In order to find out the order of the AR model, we need to plot a partial autocorrelation
function plot, and then look for the lag where the upper confidence level has been crossed
for the first time.

Autoregressive integrated moving average
An autoregressive integrated moving average (ARIMA) model is a combination of the
following elements:

Autoregressive operator: We have already learned what this means; just to
reiterate, it is the lags of the stationarized series. It is denoted by p, which is
nothing but the number of autoregressive terms. The PACF plot yields this
component.
Integration operator: A series that needs to be differenced to be made stationary
is said to be an integrated version of a stationary series. It is denoted by d, which
is the amount of differencing that is needed to transform the nonstationary time
series into a stationary one. This is done by subtracting the observation from the
current period from the previous one. If this has been done only once to the
series, it is called first differenced. This process eliminates the trend out of the
series that is growing at a constant rate. In this case, the series is growing at an
increasing rate, and the differenced series needs another round of differencing,
which is called second differencing.
Moving average operator: The lags of the forecasted errors, which is denoted by
q. It is the number of lagged forecast errors in the equation. The ACF plot would
yield this component.

The ARIMA model can only be applied on stationary series. Therefore, before applying it,
the stationarity condition has to be checked in the series. The ADF test can be performed to
establish this.

The equation of ARIMA turns looks like the following:

The first part of the equation (before the - sign) is the autoregressive section, and the second
part (after the - sign)is the MA section.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[137]

We can go ahead and add a seasonal component in ARIMA as well, which would be
ARIMA (p,d,q)(p,d,q)s. While adding it, we need to perform seasonal differencing, which
means subtracting the current observation from the seasonal lag.

Let's plot ACF and PACF in order to find out the p and q parameters.

Here, we take the number of lags as 20 and use the
statsmodel.tsa.stattools library to import the acf and pacf functions, as follows:

from statsmodels.tsa.stattools import acf,pacf
lag_acf= acf(ts_log_dif,nlags=20)
lag_pacf = pacf(ts_log_dif, nlags=20,method="ols")

Now we will plot with the help of matplotlib using the following code:

plt.subplot(121)
plt.plot(lag_acf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
plt.axhline(y=1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
plt.title('Autocorrelation Function')

The output is as follows:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[138]

Here, we are measuring the correlation between the time series with a lagged version of
itself. For instance, at lag 5, ACF would compare the series at time instant t1, t2 with the
series at instant t1-5, …, t2-5. It is a plot of the coefficients of the correlation with its lagged
values.

If we look at the preceding plot carefully, we will see that the upper confidence level line
has been crossed at lag 2. Therefore, the order of MA would be 2 and q=2.

A partial correlation between the series and lagged values is plotted, and it gives us
a partial auto correlation functional (PACF) plot. It's a very interesting term. If we go on
and compute the correlation between a Y variable and X3 while we know that Y has a
separation association with X1 and X2, the partial correlation addresses that portion of the
correlation that is not explained by their correlations with X1 and X2.

Here, the partial correlation is the square root (reduction in variance by adding a variable
(here, X3) while regressing Y on the other variables (here X1, X2)).

In the case of a time series, partial autocorrelation between Y & lagged value Yt-3 will be the
value that is not explained by a correlation between Y and Yt-1 and Yt-2, as shown in the
following code:

#Plot PACF:
plt.subplot(122)
plt.plot(lag_pacf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
plt.axhline(y=1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
plt.title('Partial Autocorrelation Function')
plt.tight_layout()

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[139]

We will get the following output:

If we look at the preceding plot carefully, we will see that the upper confidence level line
has been crossed at lag 2. Therefore, the order of AR would be 2 and p=2.

Let's try out an AR model that is of the order (p=2, d=1, q=0). The d value has been taken as
1, since it is a case of single differencing. The residual sum of the square has been calculated
as well to judge how good the model is and compare it with others, as shown in the
following code:

from statsmodels.tsa.arima_model import ARIMA
model1 = ARIMA(ts_log, order=(2, 1, 0))
results_AR = model1.fit(disp=-1)
plt.plot(ts_log_dif)
plt.plot(results_AR.fittedvalues, color='red')
plt.title('RSS: %.4f'% sum((results_AR.fittedvalues-ts_log_dif)**2))

The output can be seen as follows:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[140]

Now, we can have a look at the model summary that depicts the coefficients of AR1 and
AR2 using the following code:

results_AR.summary()

Now, let's build an MA model of the order (p=0,d=1,q=2) using the following code:

model2 = ARIMA(ts_log, order=(0, 1, 2))
results_MA = model2.fit(disp=-1)
plt.plot(ts_log_dif)
plt.plot(results_MA.fittedvalues, color='red')
plt.title('RSS: %.4f'% sum((results_MA.fittedvalues-ts_log_dif)**2))

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[141]

The output can be seen as follows:

Now, let's combine these two models and build an ARIMA model using the following code:

model3 = ARIMA(ts_log, order=(2, 1, 2))
results_ARIMA = model.fit(disp=-1)
plt.plot(ts_log_dif)
plt.plot(results_ARIMA.fittedvalues, color='red')
plt.title('RSS: %.4f'% sum((results_ARIMA.fittedvalues-ts_log_dif)**2))

The output is as follows:

We can experience a dip in the value of RSS from the AR model to ARIMA. Now RSS=
1.0292:

results_ARIMA.summary()

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[142]

We can see the coefficients of AR1, AR2, MA1, and MA2, and, if we go by p values, we can
see that all these parameters are significant, as shown in the following screenshot:

Let's turn the predicted values into a series using the following code:

predictions_ARIMA_dif= pd.Series(results_ARIMA.fittedvalues, copy=True)
print(predictions_ARIMA_dif.head())

We will get the following output:

The way to convert the differencing to log scale is to add these differences consecutively to
the base number. An easy way to do this is to first determine the cumulative sum at the
index and then add it to the base number. The cumulative sum can be found using the
following code:

predictions_ARIMA_dif_cumsum = predictions_ARIMA_dif.cumsum()
print(predictions_ARIMA_dif_cumsum.head())

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[143]

From this, we will get the following output:

We will create a series with all values as the base number and add the differences to it in
order to add to the base series, as follows:

predictions_ARIMA_log = pd.Series(ts_log.ix[0], index=ts_log.index)
predictions_ARIMA_log =
predictions_ARIMA_log.add(predictions_ARIMA_dif_cumsum,fill_value=0)
predictions_ARIMA_log.head()

The following shows the output:

Let's now find out the forecast using the following code:

predictions_ARIMA = np.exp(predictions_ARIMA_log)
plt.plot(ts)
plt.plot(predictions_ARIMA)
plt.title('RMSE: %.4f'% np.sqrt(sum((predictions_ARIMA-ts)**2)/len(ts)))

The output can be seen as follows:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[144]

Optimization of parameters
Let's look at how to optimize the parameters of the models.

AR model
import statsmodels.tsa.api as smtsa
aic=[]
for ari in range(1, 3):
 obj_arima = smtsa.ARIMA(ts_log_diff, order=(ari,2,0)).fit(maxlag=30,
method='mle', trend='nc')
 aic.append([ari,2,0, obj_arima.aic])
print(aic)

[[1, 2, 0, -76.46506473849644], [2, 2, 0, -116.1112196485397]]

Therefore, our model parameters are p=2, d=2, and q=0 in this scenario for the AR
model, as the AIC for this combination is the least.

ARIMA model
Even for the ARIMA model, we can optimize the parameters by using the following code:

import statsmodels.tsa.api as smtsa
aic=[]
for ari in range(1, 3):
 for maj in range(1,3):
 arima_obj = smtsa.ARIMA(ts_log, order=(ari,1,maj)).fit(maxlag=30,
method='mle', trend='nc')
 aic.append([ari,1, maj, arima_obj.aic])
print(aic)

The following is the output you get by executing the preceding code:

[[1, 1, 1, -242.6262079840165], [1, 1, 2, -248.8648292320533], [2, 1, 1,
-251.46351037666676], [2, 1, 2, -279.96951163008583]]

The combination with the least Akaike information criterion (AIC) should be chosen.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[145]

Anomaly detection
Anomalies are essentially abnormal patterns in a series that are irregular deviations from
the expected behavior. For example, many of us have watched a cricket match. One form of
getting out in this game is to be caught out, and before the ball travels straight to the hands
of a fielder, it has to touch the bat of a batsman. If the stadium is very noisy, sometimes it is
too difficult for anyone to judge whether the ball has touched the bat or not. To solve this
problem, umpires use a device called the snickometer to help them make the call. The
snickometer uses the sound from the stump mic to generate a plot of the mic's sound. If the
plot is a straight line, then the ball did not make contact with the bat; otherwise, the plot
will show a spike. Therefore, a spike is a sign of an anomaly. Another example of an
anomaly could be the detection of a malignant tumor in a scan.

Anomaly detection is a technique that we can use to figure out aberrant behavior. An
anomaly can also be called an outlier. The following list shows several different anomalies:

Point anomalies: A point anomaly is a point that breaches the boundary of a
threshold that has been assigned to keep the whole system in check. There is
often a system in place to send an alert when this boundary has been breached by
a point anomaly. For example, fraud detection in the financial industries can use
point anomaly detection to check whether a transaction has taken place from a
different city to the card holder's usual location.
Contextual anomalies: Context-specific observations are called contextual
anomalies. For example, it is commonplace to have lots of traffic on weekdays,
but a holiday falling on a Monday may make it look like an anomaly.
Collective anomalies: A set of collective data instances helps in detecting
anomalies. Say that someone is unexpectedly trying to copy data form a remote
machine to a local host. In this case, this anomaly would be flagged as a potential
cyber attack.

In this section, we will focus on contextual anomalies and try to detect them with the help
of a simple moving average.

First, let's load all the required libraries as follows:

import numpy as np # vectors and matrices
import pandas as pd # tables and data manipulations
import matplotlib.pyplot as plt # plots
import seaborn as sns # more plots
from sklearn.metrics import mean_absolute_error
import warnings # `do not disturb` mode
warnings.filterwarnings('ignore')
%matplotlib inline

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[146]

Next, we read the dataset using the following code. We are keeping the same
dataset—namely, AirPassenger.csv:

data = pd.read_csv('AirPassengers.csv', index_col=['Month'],
parse_dates=['Month'])
 plt.figure(figsize=(20, 10))
 plt.plot(ads)
 plt.title('Trend')
 plt.grid(True)
 plt.show()

We get the output as follows:

Now we will write a function and create a threshold for detecting the anomalies using the
following code:

def plotMovingAverage(series, window, plot_intervals=False, scale=1.96,
plot_anomalies=False):
 rolling_mean = series.rolling(window=window).mean()
 plt.figure(figsize=(15,5))
 plt.title("Moving average\n window size = {}".format(window))
 plt.plot(rolling_mean, "g", label="Rolling mean trend")
 # Plot confidence intervals for smoothed values
 if plot_intervals:
 mae = mean_absolute_error(series[window:], rolling_mean[window:])
 deviation = np.std(series[window:] - rolling_mean[window:])

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[147]

 lower_bond = rolling_mean - (mae + scale * deviation)
 upper_bond = rolling_mean + (mae + scale * deviation)
 plt.plot(upper_bond, "r--", label="Upper Bond / Lower Bond")
 plt.plot(lower_bond, "r--")
 # Having the intervals, find abnormal values
 if plot_anomalies:
 anomalies = pd.DataFrame(index=series.index,
columns=series.columns)
 anomalies[series<lower_bond] = series[series<lower_bond]
 anomalies[series>upper_bond] = series[series>upper_bond]
 plt.plot(anomalies, "ro", markersize=10)
 plt.plot(series[window:], label="Actual values")
 plt.legend(loc="upper left")
 plt.grid(True)

Now, let's introduce anomalies to the series using the following:

data_anomaly = data.copy()
data_anomaly.iloc[-20] = data_anomaly.iloc[-20] * 0.2

Now, let's plot it to detect the anomalies introduced using the following code:

plotMovingAverage(data_anomaly, 4, plot_intervals=True,
plot_anomalies=True)

The following diagram shows the output:

Now, the introduced anomaly can be seen after 1959 as a dip in the number of travelers. It
should be noted, however, that this is one of the simpler methods. ARIMA and Holt-
Winters can also be used in this scenario.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis Chapter 5

[148]

Summary
In this chapter, we learned about time series analysis and white noise. We were introduced
to the concepts of random walk, autoregression, autocorrelation, and stationarity, which
describes how to figure out whether data is stationary.

We also learned about differencing, taking the time series data and computing the
differences between consecutive observations that lead to the formation of a new
series. This chapter also talked about the AR model, which is a part of a stochastic process
wherein the specific lagged values of yt are used as predictor variables and regressed on
yt in order to estimate the values. We also learned two optimization parameters, namely
the AR model and ARIMA model.

In the next chapter, we will learn about natural language processing.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Natural Language Processing

How fast has the world been changing? Well, technology and data have been changing just
as quickly. With the advent of the internet and social media, our entire outlook on data has
changed. Initially, the scope of most data analytics revolved around structured data.
However, due to so much unstructured data being pumped in through the internet and
social media, the spectrum of analytics has broadened. Large amounts of text data, images,
sound, and video data are being generated every second. They contain lots of information
that needs to be synthesized for business. Natural language processing is a technique
through which we enable a machine to understand text or speech. Although unstructured
data has a wide range, the scope of this chapter will be to expose you to text analytics.

Structured data is typically made up of fixed observations and fixed columns set up in
relational databases or in a spreadsheet, whereas unstructured data doesn't have any
structure, and it can't be set up in a relational database; rather, it needs a NoSQL database,
example, video, text, and so on.

In this chapter, you will learn about the following topics:

The document term matrix
Different approaches to looking at text
Sentiment analysis
Topic modeling
The Bayesian technique

Text corpus
A text corpus is text data that forms out of a single document or group of documents and
can come from any language, such as English, German, Hindi, and so on. In today's world,
most of the textual data flows from social media, such as Facebook, Twitter, blogging sites,
and other platforms. Mobile applications have now been added to the list of such sources.
The larger size of a corpus, which is called corpora, makes the analytics more accurate.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[150]

Sentences
A corpus can be broken into units, which are called sentences. Sentences hold the meaning
and context of the corpus, once we combine them together. Sentence formation takes place
with the help of parts of speech. Every sentence is separated from other sentences by a
delimiter, such as a period, which we can make use of to break it up further. This is called
sentence tokenization.

Words
Words are the smallest unit of corpuses and take the shape of sentences when we put them
in order by following the parts of speech. When we break down the sentences into words, it
is called word tokenization.

Bags of words
When we have text as input data, we can't go ahead and work with raw text. Hence, it's
imperative for that text input data to get converted into numbers or vectors of numbers, in
order to make it usable for a number of algorithms.

A bag of words model is one of the ways to make the text usable for the algorithms.
Essentially, it is a representation of text that works on the occurrence of words in the
document. It has nothing to do with the structure, order, and location; this model only
looks for the count of the words as a feature.

The thought process behind this model is that having similar content means having a
similar document.

The different steps to be taken in the bag of words model are as follows:

Building the corpus: In this step, the documents are collected and combined
together to form a corpus. For example, the famous song from the TV series
Friends has been used here as a corpus:

I will be there for you
When the rain starts to pour

I will be there for you
Like I have been there before

I will be there for you

Let's consider each line of this song as a separate document.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[151]

Vocabulary building: In this step, we figure out the unique words in the corpus
and create a list of them:

I
will
be
there
for
you
when
the
rain
starts
to
pour
like
have
been
before

Document vector creation: Now, it's time to convert each document of text into a
vector.

The simple way to do this is through a Boolean route. This means that raw text will be
transformed into a document vector, with the help of the presence/absence of that text in
the respective document.

For example, if the first line of the song is turned into a document containing I will be there
for you, then the document vector will turn out as follows:

Document vector
I 1
will 1
be 1
there 1
for 1
you 1
when 0
the 0

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[152]

rain 0
starts 0
to 0
pour 0
like 0
have 0
been 0
before 0

All the words that are present in the document are marked as 1, and the rest are marked as
0.

Hence, the document vector for the first sentence is [1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0].

Similarly, the document vector for the second sentence is [0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0].

As the size of the corpus continues to increase, the number of zeros in the document vector
will rise, as well. As a result of that, it induces sparsity in the vector and it becomes a sparse
vector. Computing a sparse vector becomes really challenging for various algorithms. Data
cleansing is one of the ways to counter it, to some extent:

Cleansing the text: This would involve transforming all of the corpus into a
single case (either upper (preferably) or lower). The punctuation must be taken
out of the corpus. Stemming, which means finding the root words of the text, can
be incorporated, and will be able to reduce the unique words in the corpus. Also,
removal of stop words, such as is and of, might be able to abate the pain of
sparsity.

Count vector: There is another way to create the document vector, with the help
of the frequency of the words appearing in the document. Let's suppose that
there is a corpus comprised of N documents and T tokens (words) have been
extracted. These T tokens will form our dictionary. Hence, the dimension of the
count vector matrix will turn out to be N X T. Every row contains the frequency
of tokens (words) in that respective document comprising the dictionary.

For example, let's suppose that we have three documents:

N1: Count vector has got count in it
N2: Is count vector better than the Boolean way of creating feature vector?
N3: Creation of feature vector is very important

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[153]

After removing stopwords, the count vector matrix turns out like the following table:

count vector got it better than Boolean way creating feature creation important
N1 2 1 1 1 0 0 0 0 0 0 0 0
N2 1 2 0 0 1 1 1 1 1 1 0 0
N3 0 1 0 0 0 0 0 0 0 1 1 1

Now, take a look at the matrix dimension carefully; since N=3 and T=12, that makes this a
matrix of 3 x 12.

We will look at how the matrix formation has taken place. For document N1, the number of
times the count has occurred in it is 2, the number of times the vector has come is 1, and so
on. Taking these frequencies, we enter these values. A similar process has been completed
for the other two documents, as well.

However, this has a drawback. A highly frequent word might start to dominate the
document, and the corpus, too, which will result in having limited information extracted
out of the features. To counter this, term frequency inverse-document frequency (TF-IDF)
has been introduced.

TF-IDF
As we understood the limitation of count vectorization that a highly frequent word might
spoil the party. Hence, the idea is to penalize the frequent words occurring in most of the
documents by assigning them a lower weight and increasing the weight of the words that
appear in a subset of documents. This is the principle upon which TF-IDF works.

TF-IDF is a measure of how important a term is with respect to a document and the entire
corpus (collection of documents):

TF-IDF(term) = TF(term)* IDF(term)

Term frequency (TF) is the frequency of the word appearing in the document out of all the
words in the same document. For example, if there are 1,000 words in a document and we
have to find out the TF of a word NLP that has appeared 50 times in that very document,
we use the following:

TF(NLP)= 50/1000=0.05

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[154]

Hence, we can conclude the following:

TF(term) = Number of times the term appears in the document/total number of terms in the
document

In the preceding example , comprised of three documents, N1, N2, and N3, if the TF of the
term count in the document N1 needs to be found, it will turn out to be like the following
formula:

TF(count) N1= 2/ (2+1+1+1) = 2/5 = 0.4

It indicates the contribution of words to the document.

However, IDF is an indicator of how significant this term is for the entire corpus:

IDF("count") = log(Total number of documents/Number of documents containing the term "count")

IDF("count") = log(3/2)= 0.17

Now, let's calculate the IDF for the term vector:

IDF("vector")=log(3/3)= 0

How do we interpret this? It implies that if the same word has appeared in all of the
documents, then it is not relevant to a particular document. But, if the word appears only in
a subset of documents, this means that it holds some relevance to those documents in
which it exists.

Let's calculate the TF-IDF for count and vector, as follows:

TF-IDF(count) for Document N1= TF(count)*IDF(count)= 0.4 * 0.17 = 0.068

TF-IDF(vector) for Document N1 = TF(vector)* IDF(vector)= (1/5)*0 = 0

It is quite evident that, since it assigns more weight to the count in N1, it is more important
than the vector. The higher the weight value, the rarer the term. The smaller the weight, the
more common the term. Search engines makes use of TF-IDF to retrieve the relevant
documents pertaining to a query.

Now, we will look at how to execute the count vectorizer and TF-IDF vectorizer in Python.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[155]

Executing the count vectorizer
The following are the steps for executing the CountVectorizer:

Import the library required for the count vectorizer:1.

from sklearn.feature_extraction.text import CountVectorizer

Make a list of the text:2.

text = [" Machine translation automatically translate text from one
human language to another text"]

Tokenize the list of the text and build the vocabulary:3.

vectorizer.fit(text)

You will get the following output:

Let's take a look at the vocabulary that was created:4.

print(vectorizer.vocabulary_)

We get the following output:

Now, we have to encode it, as follows:5.

vector = vectorizer.transform(text)

Let's get a summary of the vector and find out the term matrix:6.

print(type(vector))
print(vector.toarray())

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[156]

We get the following output:

Executing TF-IDF in Python
The following are the steps for executing TF-IDF in Python:

Import the library, as follows:1.

from sklearn.feature_extraction.text import TfidfVectorizer

Let's make a corpus by adding four documents, as follows:2.

corpus = ['First document', 'Second document','Third
document','First and second document']

Let's set up the vectorizer:3.

vectorizer = TfidfVectorizer()

We extract the features out of the text as follows:4.

X = vectorizer.fit_transform(corpus)
print(vectorizer.get_feature_names())
print(X.shape)

The output is as follows:

Here comes the document term matrix; every list indicates a document:5.

X.toarray()

We get the following output:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[157]

Sentiment analysis
Sentiment analysis is one of the application areas of natural language processing. It is
widely in use across industries and domains, and there is a big need for it in the industry.
Every organization is aiming to focus customers and their needs. Hence, to understand
voice and sentiment, the customer turns out to be the prime goal, as knowing the pulse of
the customers leads to revenue generation. Nowadays, customers voice their sentiments
through Twitter, Facebook, or blogs. It takes some work to refine that textual data and
make it consumable. Let's look at how to do it in Python.

Here, verbatims of cinegoers have been taken from IMDB. This is shared on GitHub, too.

We will launch the libraries , as follows:

import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt
 sns.set(color_codes=True)
 import os
 print(os.listdir())

We will load the dataset, as follows:

data= pd.read_csv("imdb_master.csv",encoding = "ISO-8859-1")

Now, let's explore the data and its dimensions:

print(data.head())
print(data.shape)

We get the following output:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[158]

We only need two variables, review and label, to build the model. We will just keep both
of them in the data. A new dataframe has been created , as follows:

Newdata= data[["review","label"]]
Newdata.shape

Now, this is the step where we need to check how many categories are in label, as we are
only interested in keeping the positive and negative ones:

g= Newdata.groupby("label")
g.count()

The output is as follows:

Now, it's clear that there are three categories and we will get rid of unsup, as follows:

sent=["neg","pos"]

Newdata = Newdata[Newdata.label.isin(sent)]
Newdata.head()

We get the following output:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[159]

Our data has now been set up. However, since we got rid of a few rows, we will reset the
index of the data, as it sometimes causes some issues:

print(len(Newdata))
Newdata=Newdata.reset_index(drop=True) Newdata.head()

The output is as follows:

We are done with it. Now, we will encode the label variable in order to make it usable for
machine learning models. We have to use LabelEncode for that, as follows:

from sklearn.preprocessing import LabelEncoder
 labelencoder = LabelEncoder()
 Newdata["label"] = labelencoder.fit_transform(Newdata["label"])

We have to work on cleansing part of the data, in order to make it clean and standard, as
follows:

Newdata["Clean_review"]= Newdata['review'].str.replace("[^a-zA-Z#]", " ")

Newdata.head()

The output is as follows:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[160]

Here, we are trying to get rid of the words that are less than 3 in length as the idea is that
most of the words that are less than 3 in length don't have much of an impact on the
meaning:

Newdata['Clean_review'] = Newdata['Clean_review'].apply(lambda x: '
'.join([w for w in x.split() if len(w)>3]))
 Newdata.shape

The tokenization of the data can now take place, as follows:

tokenized_data = Newdata['Clean_review'].apply(lambda x: x.split())
 tokenized_data.shape

We are making use of stemming, in order to get rid of different variations of the same
words. For example, we will look at satisfying, satisfy, and satisfied, as follows:

from nltk.stem.porter import *
 stemmer = PorterStemmer()
 tokenized_data = tokenized_data.apply(lambda x: [stemmer.stem(i) for i in
x])
 tokenized_data.head()

The output is as follows:

After stemming, we have to join the data back, as we are heading towards producing a
word cloud:

for i in range(len(tokenized_data)):
 tokenized_data[i] = ' '.join(tokenized_data[i])

tokenized_data.head()

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[161]

We get the following output:

Here, the tokenized data has been combined with the old Newdata dataframe:

Newdata["Clean_review2"]= tokenized_data
 Newdata.head()

The following is the output for the preceding code:

A word cloud combining all of the words together has been produced:

all_words = ' '.join([str(text) for text in Newdata['Clean_review2']])
 from wordcloud import WordCloud
 wordcloud = WordCloud(width=800, height=500, random_state=21,
max_font_size=110).generate(all_words)
 plt.figure(figsize=(10, 7))
 plt.imshow(wordcloud, interpolation="bilinear")
 plt.axis('off')
 plt.show()

The output can be seen as follows:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[162]

Now, we will make a word cloud for negative and positive sentiments separately, as
follows:

For Negative sentiments, we will use the following:

Negative =' '.join([text for text in
Newdata['Clean_review2'][Newdata['label'] == 0]])
 wordcloud1= WordCloud(width=800, height=500, random_state=21,
max_font_size=110).generate(Negative)
 plt.figure(figsize=(10, 7))
 plt.imshow(wordcloud1, interpolation="bilinear")
 plt.title("Word Cloud- Negative")
 plt.axis('off')
 plt.show()

The following output shows a word cloud for Negative sentiments:

We will use the following for Positive sentiments:

Positive=' '.join([text for text in
Newdata['Clean_review2'][Newdata['label'] == 1]])
 wordcloud2 = WordCloud(width=800, height=500, random_state=21,
max_font_size=110).generate(Positive)
 plt.figure(figsize=(10, 7))
 plt.imshow(wordcloud, interpolation="bilinear")
 plt.title("Word Cloud-Positive")
 plt.axis('off')
 plt.show()

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[163]

The following output shows a word cloud for Positive sentiments:

Sentiment classification
We will take two approaches to sentiment classification (positive and negative), as follows:

TF-IDF
Count vectorization

Let's see which one gives us the better result.

TF-IDF feature extraction
The following code will provide us with the TF-IDF feature extraction:

from sklearn.feature_extraction.text import TfidfVectorizer
tfidf= TfidfVectorizer(max_df=0.9,min_df= 2, max_features=1000,
 stop_words="english")
tfidfV = tfidf.fit_transform(Newdata['Clean_review2'])

tfidf.vocabulary_

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[164]

We will get the following output:

Count vectorizer bag of words feature extraction
The following code will show the count vectorizer for a bag of words:

from sklearn.feature_extraction.text import CountVectorizer
 bow_vectorizer = CountVectorizer(max_df=0.90, min_df=2, max_features=1000,
stop_words='english')
 # bag-of-words
 bow = bow_vectorizer.fit_transform(Newdata['Clean_review2'])

Model building count vectorization
For building count vectorization we can split the data into train and test dataset as follows:

from sklearn.linear_model import LogisticRegression
 from sklearn.model_selection import train_test_split
 from sklearn.metrics import f1_score,accuracy_score
 # splitting data into training and validation set
 xtrain, xtest, ytrain, ytest = train_test_split(bow, Newdata['label'],
random_state=42, test_size=0.3)
 lreg = LogisticRegression()
 lreg.fit(xtrain, ytrain) # training the model
 prediction = lreg.predict_proba(xtest) # predicting on the validation set
 prediction_int = prediction[:,1] >= 0.3 # if prediction is greater than or
equal to 0.3 than 1 else 0

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[165]

 prediction_int = prediction_int.astype(np.int)
 print("F1 Score-",f1_score(ytest, prediction_int))
 print("Accuracy-",accuracy_score(ytest,prediction_int))

We get the following output:

Here, we attain an accuracy of 84%. Let's see how the TF-IDF approach fares:

from sklearn.linear_model import LogisticRegression
 # splitting data into training and validation set
 xtraintf, xtesttf, ytraintf, ytesttf = train_test_split(tfidfV,
Newdata['label'], random_state=42, test_size=0.3)
 lreg = LogisticRegression()
 lreg.fit(xtraintf, ytraintf) # training the model
 prediction = lreg.predict_proba(xtesttf) # predicting on the test set
 prediction_int = prediction[:,1] >= 0.3 # if prediction is greater than or
equal to 0.3 than 1 else 0
 prediction_int = prediction_int.astype(np.int)
 print("F1 Score-",f1_score(ytest, prediction_int))
 print("Accuracy-",accuracy_score(ytest,prediction_int))

The output is as follows:

Here, the accuracy turns out to be 83.8% (a little less than the count vectorizer).

This completes building a model for sentiment classification.

Topic modeling
Modeling is a methodology that's used to identify a topic and derive hidden patterns
exhibited by a text corpus. Topic modeling resembles clustering, as we provide the number
of topics as a hyperparameter (similar to the one used in clustering), which happens to be
the number of clusters (k-means). Through this, we try to extract the number of topics or
texts having some weights assigned to them.

The application of modeling lies in the area of document clustering, dimensionality
reduction, information retrieval, and feature selection.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[166]

There are multiple ways to perform this, as follows:

Latent dirichlet allocation (LDA): It's based on probabilistic graphical models
Latent semantic analysis (LSA): It works on linear algebra (singular value
decomposition)
Non-negative matrix factorization: It's based on linear algebra

We will primarily discuss LDA, which is considered the most popular of all.

LDA is a matrix factorization technique that works on an assumption that documents are
formed out of a number of topics, and, in turn, topics are formed out of words.

Having read the previous sections, you should be aware that any corpus can be represented
as a document-term matrix. The following matrix shows a corpus of M documents and
a vocabulary size of N words that makes an M x N matrix. All of the cells in this matrix
have the frequency of the words in that particular document:

This M x N matrix of Document & Words gets translated into two matrices by LDA: M x X
matrix of Documents & Topics and X x N matrix of Topics & Words.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[167]

LDA architecture
In the LDA architecture, there are M number of documents having an N number of words,
that get processed through the black strip called LDA. It delivers X Topics with Cluster of
words. Each topic has psi distribution of words out of topics. Finally, it also comes up with
a distribution of topics out of documents, which is denoted by phi.

The following diagram illustrates LDA:

With regard to the Alpha and Beta hyperparameters: alpha represents document-topic
concentration and beta represents topic-word concentration. The higher the value of alpha,
the more topics we get out of documents. On the other hand, the higher the value of beta,
the more words there are in a topic. These can be tweaked based on the domain knowledge.

LDA iterates through each word of every document and assigns and adjusts a topic for it. A
new topic X is assigned to it, on the basis of the product of two probabilities: p1= (topic
t/document d), which means the proportion of the words of a document assigned to topic t,
and p2=(word w/topic t), which refers to the proportion of assignments to topic t spread over
all the documents, which has the word w associated with it.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[168]

With the number of passes, a good distribution of topic-word and topic-documents is
attained.

Let's look at how it's executed in Python:

In this step, we are loading dataset = fetch_20newsgroups, which comes1.
from sklearn:

from sklearn.datasets import fetch_20newsgroups
 dataset = fetch_20newsgroups(shuffle=True, random_state=1,
remove=('headers', 'footers', 'quotes'))
 documents = dataset.data

In this step, we will clean the dataset. In order to do that, the stopwords and2.
WordNetLemmatizer functions are required. Hence, the relevant libraries are
must be loaded, as follows:

from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
import string

Ensure that you have downloaded the following dictionaries:3.

import nltk
nltk.download("stopwords")
nltk.download("wordnet")

Here, a clean function is created to put the words in lowercase. Remove the4.
stopwords and pick the words that have a length greater than 3. Also, it makes
it punctuation-free. Finally, lemmatize it , as follows:

stop = set(stopwords.words('english'))
punc = set(string.punctuation)
lemma = WordNetLemmatizer()
def clean(doc):
 stopw_free = " ".join([i for i in doc.lower().split() if i not
in stop and len(i)>3])
 punc_free = ''.join(ch for ch in stop_free if ch not in punc)
 lemmatized = " ".join(lemma.lemmatize(word) for word in
punc_free.split())
 return lemmatized
 doc_clean = [clean(doc).split() for doc in documents]

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[169]

Now, we have to make the document term matrix with the help of the gensim5.
library. This library will also enable us to carry out LDA:

import gensim
from gensim import corpora

A document term matrix based on a bag of words is created here:6.

corpus = corpora.Dictionary(doc_clean)
 doc_term_matrix = [corpus.doc2bow(doc) for doc in doc_clean]

Here, a similar matrix is being created with the help of TF-IDF:7.

from gensim import models
tfidf = models.TfidfModel(doc_term_matrix)
corpus_tfidf = tfidf[doc_term_matrix]

Let's set up the model with a TF-IDF matrix. The number of topics has been given8.
as 10:

lda_model1 = gensim.models.LdaMulticore(corpus_tfidf,
num_topics=10, id2word=corpus, passes=2, workers=2)

Let's take a look at the topic with words:9.

print(lda_model1.print_topics(num_topics=5, num_words=5))

The output is as follows:

A similar exercise will be done for the bag of words; later, we will compare it:10.

lda_model2 = gensim.models.LdaMulticore(doc_term_matrix,
num_topics=10, id2word=corpus, passes=2, workers=2)

print(lda_model2.print_topics(num_topics=5, num_words=5))

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[170]

We get the following output:

Evaluating the model
Log perplexity is a measure of how good an LDA model is. The lower the value of the
perplexity, the better the model is:

print("lda_model 1- Perplexity:-",lda_model.log_perplexity(corpus_tfidf))
print("lda_model 2- Perplexity:-
",lda_model2.log_perplexity(doc_term_matrix))

The output for the log perplexity is as follows:

Visualizing the LDA
In order to visualize the data, we can use the following code:

import pyLDAvis
import pyLDAvis.gensim
import matplotlib.pyplot as plt
%matplotlib inline

pyLDAvis.enable_notebook()
visual1= pyLDAvis.gensim.prepare(lda_model, doc_term_matrix, corpus)
visual1

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[171]

The output will be as follows:

We can enable the notebook here, as follows:

pyLDAvis.enable_notebook()
 visual2= pyLDAvis.gensim.prepare(lda_model2, doc_term_matrix, corpus)
 visual2

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[172]

The output is as follows:

Let's try to interpret this.

On the left hand side, we have the topics, and on the right, we have the terms/words:

A bigger circle size means more frequent topics.
Topics that are overlapping or closer to one another are similar.
Upon selecting a topic, the most representative words for the selected topic can
be seen. This reflects how frequent the word is. One can toggle the weight of each
property by using the slider.
Hovering over a topic will provide the contribution of words to the topic on the
right and upon clicking on the word, we will see the circle size changing, which
reflects how frequent that term is in that topic.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[173]

The Naive Bayes technique in text classification
Naive Bayes is a supervised classification algorithm that is based on Bayes theorem. It is a
probabilistic algorithm. But, you might be wondering why it is called Naive. It is so
because this algorithm works on an assumption that all the features are independent of
each other. However, we are cognizant of the fact that independence of features might not
be there in a real-world scenario. For example, if we are trying to detect whether an email is
spam or not, all we look for are the keywords associated with spams such as Lottery,
Award, and so on. Based on these, we extract those relevant features from the email and
say that if given spam-related features, the email will be classified as spam.

The Bayes theorem
The Bayes theorem helps us in finding posterior probability, given a certain condition:

P(A|B)= P(B|A) * P(A)/P(B)

A and B can be deemed as the target and features, respectively.

Where, P(A|B): posterior probability, which implies the probability of event A, given that B
has taken place:

P(B|A): The likelihood that implies the probability of feature B, given the target
A
P(A): The prior probability of target A
P(B): The prior probability of feature B

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[174]

How the Naive Bayes classifier works
We will try to understand all of this by looking at the example of the Titanic. While the
Titanic was sinking, a few of the categories had priority over others, in terms of being
saved. We have the following dataset (it is a Kaggle dataset):

Person category Survival chance

Woman Yes

Kid Yes

Kid Yes

Man No

Woman Yes

Woman Yes

Man No

Man Yes

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[175]

Kid Yes

Woman No

Kid No

Woman No

Man Yes

Man No

Woman Yes

Now, let's prepare a likelihood table for the preceding information:

Survival chance
No Yes Grand Total

Category Kid 1 3 4 4/15= 0.27
Man 3 2 5 5/15= 0.33
Woman 2 4 6 6/15= 0.40

Grand Total 6 9 15
6/15 9/15
0.40 0.6

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[176]

Let's find out which category of people had the maximum chance of survival:

Kid - P(Yes|Kid)= P(Kid|Yes) * P(Yes)/P(Kid)

P(Kid|Yes) = 3/9= 0.3

P(Yes) = 9/15 =0.6

P(Kid)= 4/15 =0.27

P(Yes|kid) = 0.33 *0.6/0.27=0.73

Woman - P(Yes|Woman)= P(Woman|Yes) * P(Yes)/P(Woman)

P(Woman|Yes) = 4/9= 0.44

P(Yes) = 9/15 =0.6

 P(Woman)= 6/15 =0.4

P(Yes|Woman) = 0.44 *0.6/0.4=0.66

Man - P(Yes|Man)= P(Man|Yes) * P(Yes)/P(Man)

P(Man|Yes) = 2/9= 0.22

 P(Yes) = 9/15 =0.6

 P(Man)= 6/15 =0.33

P(Yes|Man) = 0.22 *0.6/0.33=0.4

So, we can see that a child had the maximum chance of survival and a man the least chance.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing Chapter 6

[177]

Let's perform the sentiment classification with the help of Naive Bayes, and see whether the
result is better or worse:

from sklearn.naive_bayes import MultinomialNB
splitting data into training and validation set
xtraintf, xtesttf, ytraintf, ytesttf = train_test_split(tfidfV,
Newdata['label'], random_state=42, test_size=0.3)
NB= MultinomialNB()
NB.fit(xtraintf, ytraintf)
prediction = NB.predict_proba(xtesttf) # predicting on the test set
prediction_int = prediction[:,1] >= 0.3 # if prediction is greater than or
equal to 0.3 than 1 else 0
prediction_int = prediction_int.astype(np.int)
print("F1 Score-",f1_score(ytest, prediction_int))
print("Accuracy-",accuracy_score(ytest,prediction_int))

The output is as follows:

Here, we can see that our previous results were better than the Naive Bayes results.

Summary
In this chapter, we studied corpus building techniques that consists of sentences and
words, which includes a bag of words to make the texts usable for the algorithms. You also
learned about TF-IDF and how important a term is with respect to a document and the
entire corpus. We went over sentiment analysis, along with classification and TF-IDF
feature extraction.

You were also introduced to topic modeling and evaluating models, which includes
visualizing LDA. We covered the Bayes theorem and working with the Naive Bayes
classifier. In the next chapter, you will learn about temporal and sequential pattern
discovery.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Temporal and Sequential

Pattern Discovery
Many of us have visited retail shops such as Reliance and Walmart for our household
needs. Let's say that we are planning to buy an iPhoneX from Reliance Digital. What we
would typically do is search for the model by visiting the mobile section of the store, and
then select the product and head toward the billing counter.

But, in today's world, the goal of the organization is to increase revenue. Can this be done
by pitching just one product at a time to the customer? The answer is a clear no. Hence,
organizations began mining data relating to frequently bought items. They try to find out
associations between different items and products that can be sold together, which gives
assisting in right product placement. Typically, it figures out what products are being
bought together and organizations can place products in a similar manner.

This is what we are going to talk about in this chapter. How do we come up with such rules
by means of machine learning? We will discuss number of techniques here.

In this chapter, we will cover the following topics:

Association rules
Frequent pattern growth
Validation

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[179]

Association rules
Association rule mining is a technique that focuses upon observing frequently occurring
patterns and associations from datasets found in databases such as relational and
transactional databases. These rules do not say anything about the preferences of an
individual; rather, they rely chiefly on the items within transactions to deduce a certain
association. Every transaction is identified by a primary key (distinct ID) called, transaction
ID. All these transactions are studied as a group and patterns are mined.

Association rules can be thought of as an if—then relationship. Just to elaborate on that, we
have to come up with a rule: if an item A is being bought by the customer, then the chances
of item B being picked by the customer too under the same transaction ID (along with item
A) is found out. You needs to understand here that it's not a causality, rather, it is co-
occurrence pattern that comes to the fore.

There are two elements of these rules:

Antecedent (if): This is an item/group of items that are typically found in the
itemsets or datasets
Consequent (then): This comes along as an item with an antecedent/group of
antecedents

Have a look at the following rule:

{Bread, milk} ⇒ {Butter}

The first part of this rule is called antecedent and the second part (after the arrow) is
consequent. It is able to convey that there is a chance of Butter being picked in a transaction
if Bread and Milk are picked earlier. However, the percentage chance for the consequent to
be present in an itemset, given the antecedent, is not clear.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[180]

Let's look at a few metrics that will help us in getting there:

Support: This is a measure of the frequency of the itemset in all the transactions.1.
For example, there are two itemsets popping up through the number of
transactions for a retail outlet such as Walmart: itemset A = {Milk}, itemset B =
{laptop}. Given that support is how frequent the itemset is in all the transactions,
we are asked to find out which itemset has got the higher support. We know that
itemset A will have higher support because Milk features in everyday grocery
lists (and, in turn, the transaction) at a greater probability than laptop. Let's add
another level of association and study with two new itemsets: itemset A= {milk,
cornflakes}, itemset B= {milk, USB Drive}. The purchasing frequency of milk and
cornflakes together will be higher than milk and USB Drive. It will make the
support metric higher for A.

Let's translate this into mathematics:

Support(A, B) = Transactions comprising A and B/Total number of transactions

Here's an example:

The total number of transactions is 10,000
Transactions comprising A and B = 500
Then support (A, B) = 500/10000= 0.05
5% of transactions contain A and B together

Confidence: This indicates how likely item 1 is to be purchased/picked when2.
item 2 is already picked. In other words, it measures the likelihood of the
occurrence of consequent transactions given that the antecedent is already there
in the transaction. In other words, it is the probability of the occurrence of
Butter in the transaction if Bread has already been part of that transaction. It is
quite clear that it is a conditional probability of the occurrence of the consequent
while having the antecedent:

Confidence(A ⇒ B) = Transactions comprising A and B/Transactions
comprising A
Confidence can be transformed in terms of support
Confidence(A ⇒ B) = Support(A, B)/Support(A)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[181]

Here's an example:

Transactions with the itemset as milk = 50
Transactions with the itemset as cereal = 30
Transactions comprising milk and cereal = 10
Total number of transactions = 100
Confidence(milk ⇒ Cereal) = 10/(50 +10) = 0.167

It means that there is 16.7% probability of that event taking place.

A drawback of the confidence is it only accounts for how popular item 1 is, but
not item 2. If item 2 is equally frequent, there will be a higher chance that a
transaction containing item 1 will also contain item 2. Hence, it will result in an
inflated outcome. To account for the frequency of both constituent items, we use a
third measure called lift.

Lift: This is an indicator of how likely it is that item B will be picked in the3.
cart/transaction, given that item A is already picked, while keeping a tab on the
frequency of item B. A lift value greater than 1 says that there is a great
association between item A and item B, which implies that there is a good chance
that item B will be picked if item A is already in the cart. A lift value of less than 1
means that the chances are slim that item B will be picked if item A is already
present. If the lift value hits zero, it means no association can be established here.

Lift(A⇒B) = (Transactions comprising A and B/(Transactions comprising A))/fraction of
Transaction comprising B

Implies:

= Support(A, B)/(Support(A) * Support(B))

Lift(milk⇒cereal) = (10/(50+10))/0.4

= 0.416

We will see this in a better format here. The probability of having cereal in the cart with the
knowledge that milk is already in the cart (which is called confidence) = 10/(50+10) = 0.167.

The probability of having cereal in the cart without the knowledge that milk is in the cart =
(30+10)/100 = 0.4.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[182]

It means that having knowledge that milk is already in the cart reduces the chance of
picking cereal from 0.4 to 0.167. It is a lift of 0.167/0.4= 0.416 and is less than 1. Hence, the
chances of picking cereal while milk is already in the cart are very small.

Apriori algorithm
Apriori is a classical algorithm that is used to mine frequent itemsets to derive various
association rules. It will help set up a retail store in a much better way, which will aid
revenue generation.

The anti-monotonicity of the support measure is one of the prime concepts around which
Apriori revolves. It assumes the following:

All subsets of a frequent itemset must be frequent
Similarly, for any infrequent itemset, all its supersets must be infrequent too

Let's look at an example and explain it:

Transaction ID Milk Butter Cereal Bread Book
t1 1 1 1 0 0
t2 0 1 1 1 0
t3 0 0 0 1 1
t4 1 1 0 1 0
t5 1 1 1 0 1
t6 1 1 1 1 1

We have got the transaction ID and items such as milk, butter, cereal, bread, and book. 1
denotes that item is part of the transaction and 0 means that it is not.

We came up with a frequency table for all the items along, with support (division
by 6):

Items Number of transactions Support
Milk 4 67%
Butter 5 83%
Cereal 4 67%
Bread 4 67%
Book 3 50%

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[183]

We will put a threshold of support at 60%, which will filter out the items by
frequency as these are the ones that can be addressed as frequent itemsets in this
scenario:

Items Number of transactions
Milk 4
Butter 5
Cereal 4
Bread 4

Similarly, we form the number of combinations (two at a time, three at a time,
and four at a time) with these items and find out frequencies:

Items Number of transactions
Milk, Butter 4
Milk, Cereal 3
Milk, Bread 2
Butter, Bread 3
Butter, Cereal 4
Cereal, Bread 2

Now, again, we have to find out the support for the preceding examples and filter them by
threshold, which is support at 60%

Similarly, the combinations have to be formed with three items at a time (for example, Milk,
Butter, and Bread) and support needs to be calculated for them. And, finally, we will filter
them out by threshold. The same process needs to be done by doing four items at a time.
The step that we have done till now is called frequent itemset generation.

Finding association rules
In order to find the association rules, we have to first search for all of the rules that have
support greater than the threshold support. But the question arises: how do we find these?
A possible way to find this is by brute force, which means to list all the possible association
rules and calculate the support and confidence for each rule. Later, remove all the rules that
fail the confidence and support thresholds.

Given there are n items in the set I, the total number of possible association rules is 3n - 2n+1 +
1.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[184]

If X is a frequent itemset with k elements, then there are 2k - 2 association rules.

Let's see how to execute association rules in Python:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

data = pd.read_csv('association_mining.csv', header = None)

transactions = []
for i in range(0, 7501):
 transactions.append([str(data.values[i,j]) for j in range(0, 20)])

If we are asking for an item to appear three times in a day for seven days' time, the support
will be 3 x 7/7051. 7051 is the total number of transactions. We will keep the confidence as
20% in the beginning:

from apyori import apriori
rules = apriori(transactions, min_support = 0.003, min_confidence = 0.2,
min_lift = 3, min_length = 2)

results = list(rules)
results

We can visualize the output by running the results command from the preceding code:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[185]

Frequent pattern growth
Frequent pattern growth (FP-growth) is a frequent itemset generation technique (similar to
Apriori). FP-Growth builds a compact-tree structure and uses the tree for frequent itemset
mining and generating rules. It is faster than Apriori and can throw results with large
datasets.

Let's go through the steps of FP-Growth:

Setting up the transactions: This step sets up the items by frequency. However,1.
the items are set up vertically, not horizontally. That means transforming input
from transaction to items:

t_id Items
1 (B, C, D, A)
2 (B, C, D)
3 (D, A)
4 (A, B)
5 (A, C, B)

Finding the frequency: Now we have to find out the frequency of each item2.
individually:

Items Frequency
A 4
B 4
C 3
D 3

Let's set up the minimum threshold or minimum support as 50%:

Min Support = (5*50/100) = 2.5
Ceiling of minimum support = 2.5 ~ 3

Prioritize the items by frequency: Since all the items have a frequency greater3.
than or equal to minimum support, all the items will be part of it. Also, based on
their frequency, priority or rank will be assigned to the items:

Items Frequency Rank
A 4 1
B 4 2

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[186]

C 3 3
D 3 4

The order of the items is: A, B, C, and D (by frequency in descending order)

Ordering the items by priority: Now the order of items will be set according to4.
the priority given to various items based on frequency. Currently, the order is A,
B, C, and D:

t_id Items Order by priority
1 (B, C, D, A) (A, B, C, D)
2 (B, C, D) (B, C, D)
3 (D, A) (A, D)
4 (A, B) (A, B)
5 (A, C, B) (A, B, C)

Frequent pattern tree growth
We will study the different frequent pattern tree growth from the following rows:

Row 1: Every FP-Tree starts with a null node as a root node. Let's draw the first
row of the tree order along with their frequency:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[187]

Row 2: It has got {B,C,D}. A is missing, so we can not merge it with the earlier
node. Hence, we will have to create another node, altogether as shown here:

Row 3: It has got {A,D}. B and C are missing, but we can tie it with the earlier
node. A encounters a repetition, so frequency will change. It becomes 2 now:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[188]

Row 4: It has got {A,B}. We can tie it with the earlier node and will traverse on
the previous node. A and B encounters a repetition, so frequency will change for
it. It becomes 3 and 2 respectively:

Row 5: It has got {A,B,C}. Again, it can be tied with the earlier node and A, B, and
C see a repetition, so the frequency will change for them. It becomes 4, 3, and 2
respectively:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[189]

Validation
Now, let's count the frequency of the final tree that we have got and compare the frequency
of each item with the table to ensure that we have got the correct frequencies in the table:

A:4
B:4
C:3
D:3

Now we will go from bottom to top. We will find out the branches where D appears:

We can see that there are three branches where D appears:

BC: 1
ABC: 1
A: 1

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[190]

These branches are termed as conditional pattern base for D. While we do this, there are
points to be kept in mind:

Even if we traverse from bottom to top, we write the branches in a top-to-bottom
manner
D is not part of it
1 represents the frequency of occurrence of D in each branch

Now, the conditional pattern for D results in the conditional frequencies for A, B, and C,
which are 2, 2, and 2. All are less than the minimum support (3). Hence, there can't be any
conditional FP- Tree for it.

Now, let's do it for C. C is appears in the following branches:

The branches end up like this:

B:1
AB:2

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[191]

It results in A:2 and B:3. So, B fit with the bill in accordance with the minimum support.
Now the conditional tree ends up like this:

Similarly, conditional pattern finding is done for different combinations. Thus, it sets up the
frequent item dataset.

Let's see how it can be done in Python. We will be using a library called pyfpgrowth. Also,
we shall create an itemset in the following section.

Importing the library
In order to perform validation we will import the library and build the transactions as
shown here:

import pyfpgrowth

We build our transactions like so:

transaction = [["bread", "butter", "cereal"],
 ["butter", "milk"],
 ["bread", "milk"],
 ["butter", "cereal", "milk"],
 ["egg", "bread"],
 ["egg", "butter"],
 ["cereal", "milk"],
 ["bread", "butter", "cereal", "egg"],
 ["cereal", "bread", "butter"]]

Minimum support is defined now to find the pattern. find_frequent_patterns(),
where transactions are the list of items bought at each transaction, and 2 is the
minimum threshold set for support count:

patterns = pyfpgrowth.find_frequent_patterns(transaction, 2)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Temporal and Sequential Pattern Discovery Chapter 7

[192]

Finally, we have to define the confidence to get the rules. Rules are generated based on the
patterns and 0.5 is the minimum threshold set for confidence. Then, we store the rules in a
dataframe named rules. rules initially consists of an antecedent, a consequent, and the
confidence value:

rules = pyfpgrowth.generate_association_rules(patterns, 0.5)
print(rules)

We get the output as follows:

This is how we get the rules. FP-growth tends to have the edge over Apriori as it is faster
and more efficient.

Summary
In this chapter, we have studied association rules. We also discussed the Apriori algorithm,
which is used for mining frequent itemsets to derive various association rules. We also
learned about frequent pattern growth (FP-growth), which is similar to Apriori and about
the frequent itemset generation technique, which is similar to the Apriori algorithm.
Finally, we saw how FP-growth tends to have an edge over Apriori, as it is faster and more
efficient, using an example.

In the next chapter, we will study probabilistic graphical models. We will learn in depth
about the Bayesian rules and Bayesian networks.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
Probabilistic Graphical Models

Before we get into Bayesian network (BN) concepts, we should be aware of the theories of
probability. So, we will try to touch upon them and build the foundation of BNs.

We already know that probability is the degree of certainty/uncertainty of an event
occurring. However, it can be also termed as the degree of belief, which is more commonly
used when we talk about BN.

When we toss a fair coin, we say that the degree of belief around the event of heads/tails
happening is 0.5. It implies that our belief of heads happening is as strong as tails. The
probability can be seen as follows:

p(Heads)=p(tails)=0.5

In this chapter, we will cover the following topics:

Bayesian rules
Bayesian networks

Key concepts
We will cover a few key concepts before moving on to the body of the chapter:

In the case of discrete distribution, a probability mass function is used to find out
the probability, p(X= x), where X is a discrete random variable and x is a real
value number.
In the case of continuous distribution, probability density function is used to find
out the probability p(X <= x). In this scenario, a probability curve is plotted and
the area under the curve (integration) helps us with the probability.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[194]

Conditional probability is to understand this, a cricket match can be the perfect
example. Suppose there is a game scheduled between India and Australia and we
are trying to pass on our belief of India triumphing. Do you think that the
probability will be impacted by the team selected by India? Will the probability
of India winning the match be impacted if Virat Kohli and Rohit Sharma are part of
the team? So, p(India winning|Rohit and Virat are playing) denotes the probability
of India winning, given that Rohit and Virat are playing. Essentially, it means that
the probability of one event is dependent on the probability of another event. It is
called conditional probability.

The probability of x, given y, can be expressed as follows:

The chain rule computes the joint distribution of a set of random variables using
their conditional probabilities. From conditional probability, we know that

.

It implies that if there are events. The joint
probability distribution turns out like this:

Bayes rule
Bayes rule is one of the building blocks of probability theory. It stems from conditional
probability and joint probability and extends beyond.

We will explain this in a simple way by again taking an example from cricket. In cricket,
pitch condition varies as you go from one place to another and it is one of the factors that
can be significant when deciding the team. The outcome can also be dependent upon it.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[195]

Let's say the Indian team goes to Australia for a game and we have to predict the belief of
an Indian player scoring a century (100 runs) in the game. If that player has got experience
of playing in that country, we might say with strong belief that he might score a century.
But, there is another player who is a first-timer in this country. What would the the prior
belief be for him? Of course, many would have less belief that he would score a century.

However, our prior belief will change as we see the way the player is performing. That is,
more data about the player will be at our disposal as more games are played by that player.
Based on that, posterior belief will keep getting updated. It changes a lot, largely due to the
observations or more data (which is called likelihood). Bayes rule is based on these
concepts.

Let's say that Ai forms a mutually exhaustive event with B:

The probability of B will be as follows:

We get the probability of B from conditional probability like so:

Hence:

Now, extracting the value of from equation 2 and putting it in equation 1, we get
this:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[196]

After replacing the value of P(B) from the preceding equation, we get this:

Have a look at equation 3 first. This is called Bayes rule.

P(A|B) is called posterior, which needs to be estimated. In the preceding example, this
would be the probability of scoring a century given that the player has got the earlier
experience of playing there.

P(B|A) is called the likelihood, which is the probability of observing the new evidence,
given our initial hypothesis. For example, the probability of a player having previous
experience in playing cricket get to score a century.

P(A) is called the prior, which is the probability of our hypothesis without any additional
prior information.

P(B) is called the marginal likelihood, which is the total probability of observing the
evidence.

Bayes network
Bayes network is a type of probabilistic graphical model that can be used to build models to
address business problems. Applications of this are quite wide. For example, it can be used
in anomaly detection, predictive modeling, diagnostics, automated insights, and many
other applications.

It is totally understandable that a few words used here would have been alien to you till
now. For example, what do we mean by graphical here?

A graph forms out of a set of nodes and edges. Nodes are represented by N={N1,N2…..Nn},
where independent variables are sitting at every node. Edges are the connectors between
nodes. Edges can be denoted by E={E1, E2…..En} and can be of two types:

Directed, represented by
Undirected, represented by:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[197]

With the help of nodes and edges, a relationship between the variables is exhibited. It can
be a conditional independence relationship or a conditional dependence relationship. BN is
one a techniques that can introduce causality amongst variables. Although causality is not
an essential part of it, having this (causality) in the network can make the structure quite
compact.

Let's see it through an example. There are a number of variables, such as waking up late, an
accident on the highway, a rainy day, a traffic jam, they will be late for work, and being late
for a meeting. If an individual has got up late, it means being late for work. An accident on
the highway can cause a traffic jam and, in turn, this will result in being late for work. On a
rainy day, the roads can be more prone to accidents and, also, there can be slow-moving
traffic that will cause a traffic jam and, in turn, this will result in being late for work. The
following diagram explains the example:

This kind of network is called a directed acyclic graph. Acyclic means that there is no cycle
in the network. We are talking about a relationship between variables here. For example,
waking up late and being late for a meeting are typically not independent. But they are
conditionally independent, given being late for work.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[198]

Also, it might seem that waking up late has no connection and relationship with an
accident on the highway. That is, they may appear to be independent of each other.
However, if you know the value of being late for work, then these two can be called
conditionally independent.

So, BN allows conditional independence between nodes. At the same time, it is an efficient
representation of joint probability distribution, which is enabled by a chain rule.

Let's say that X represents n independent variables or nodes. Arcs or a directed
arrow represents the probabilistic dependence or independence amongst variables. An
absence of an arc would mean probabilistic independence. The network is a directed acyclic
graph wherein the local probability distribution is kept at each node, which is also called
the conditional probability table (CPT).

If we talk about the previous network, then we need the probability distribution required to
address the whole network. For the purpose of simplicity, we will keep all the nodes as
Boolean.

Probabilities of nodes
Let's look at the probability at each node and find out how many probabilities would
appear there.

The nodes carrying Late Wake-up and Rainy Day are the parent nodes as there are no
nodes leading to such nodes. The different nodes can be seen in the following points:

Node (Late Wake-up): Being one of the parent nodes, we will be looking just to1.
find out the probability of waking up late. Hence, the count of probability to be
found out is 1 here.
Node (Rainy Day): Like the late wake-up node, the count of probability is 1 here2.
as well.
Node (Accident on the highway): As it is a child node of rainy day, it talks about3.
the probability of the accident given the rainy day and the probability of the
accident given it's not a rainy day. So, the count of probability is 2 here.
Node (Traffic Jam): It has got two parents (rainy day and accident). Rainy day4.
has got two values, which are true and false, the same as accident. Combining
both will yield four different combinations. Hence, the count of probability will
be 4.
Node (Late for work) and Node (Late for meeting): A similar explanation5.
applies to these two nodes as well. The count for the probabilities of these is 4:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[199]

The total number of probabilities are 1 + 2 + 1 + 4 + 4 + 4 = 16.

Had it been just a normal joint probability distribution instead of BN, we would have had
26-1 probabilities. Hence, BN makes the network quite compact. Also, another more basic
assumption we have to be mindful of is that each node is conditionally independent of its
non-descendants given its immediate parents. For example, waking up late and being late
for a meeting are conditionally independent in the case that late for work is also there.
Generally, we can express BN in the following manner, which displays how joint
distribution can be translated into a compact structure:

If G is the graph, Xi is a node in the graph G, and P are the parents of the Xi node.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[200]

Here are a few notes about the equations:

The right-hand side of the equation is the application of the chain rule, which
exhibits conditional independence relations. It is a graph-structured
approximation of the joint probability distribution.
Of course, the graph has to be acyclic.
It can provide the convenience to display the relationship among various events.

Now, let's take a simple scenario to showcase the CPT. The following is the combination of
three events as shown:

If it rains, the dog starts barking and the man skips work:

Probability of rain (yes/no)
Probability that the dog will bark (yes/no)
Probability that the man will skip work (yes/no)

Let's have the network prepared as a directed acyclic graph. All these nodes reflect an
event, and directed arrows are conditional probabilities. We will see here how to read this
graph:

Connector 1 indicates the probability of the dog barking if it rains
Connector 2 indicates the probability of the man skipping his work if the dog
barks

The following diagram shows the flow chart for both the probabilities:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[201]

CPT
Let's do the CPT for connector 1:

The dog barks The dog doesn't bark Aggregate
It rains 10 4 14
It doesn't rain 8 5 13
Aggregate 18 9 27

Here, we are talking about the following scenarios:

Probability (Dog barks|It rains) = 10/14
Probability (Dog doesn't bark | It rain) = 4/14
Probability (Dog barks | It doesn't rain) = 8/13
Probability (Dog doesn't bark | It doesn't rain) = 5/13

 The dog barks The dog doesn't bark
It rains 10/14 4/14
It doesn't rain 8/13 5/13

The following diagram shows the probabilities in detail:

Let's say if the probability of rain = P(rain) =0.6 then the probability of no rain = P(no rain) =
0.4.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[202]

Let's say that the CPT for the man skipping work is as follows:

 The man skips work The man doesn't skip work
The dog barks 0.8 0.2
The dog doesn't bark 0.3 0.7

The probability of every event has to be calculated with respect to the
parent node.

And now, we are supposed to find out the probability of the man skipping work and the dog
barks but it doesn't rain = P (Man skips work, the dog barks, it doesn't rain):

= P (Man skips work|the dog barks) *P (the dog barks|it doesn't rain) *P(it doesn't rain)

=0.8 * (8/13) *0.4

=0.1969

Example of the training and test set
Let's take a use case and work it out in Python. We are going to use Titanic data from
Kaggle.
The data has been split into two groups:

Training set (train.csv)
Test set (test.csv)

The data is about the passengers who traveled on the Titanic. It captures their features:

pclass: Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd
gender: Gender
Age: Age in years
sibsp: Number of siblings/spouses aboard the Titanic
parch: Number of parents/children aboard the Titanic
ticket: Ticket number
fare Passenger: Fare

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[203]

cabin: Cabin number
embarked: Port of embarkation C = Cherbourg, Q = Queenstown, and S =
Southampton

We have got to build the model to predict whether or not they survived the sinking of the
Titanic. Initially, import the parameters as shown:

import pandas as pd
import numpy as np

We are loading the datasets here:

traindf= pd.read_csv("train.csv")
testdf= pd.read_csv("test.csv")

We have to look for the number of unique values for each variable since BNs are discrete
models:

for k in traindf.keys():
 print('{0}: {1}'.format(k, len(traindf[k].unique())))

The output is as follows:

In order to save our system from too much computation and to avoid load on it, we will
reduce the number of variables:

for k in traindf.keys():
 if len(traindf[k].unique())<=10:
 print(k)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[204]

We get the following output:

Now, we are left with six variables.

Also, we have to discretize continuous variables in case they needs to be made part of the
model:

import math
def forAge(row):
 if row['Age'] < 10:
 return '<10'
 elif math.isnan(row['Age']):
 return "nan"
 else:
 dec = str(int(row['Age']/10))
 return "{0}0's".format(dec)
 decade=traindf.apply(forAge, axis=1)
 print("Decade: {1}".format(k, len(decade.unique())))

The output is as follows:

Let's do the pre-processing now:

def preprocess(df):
 # create a dataframe with discrete variables (len<10)
 filt=[k for k in df.keys() if len(df[k].unique())<=10]
 filtr2=df[filt].copy()
 forAge = lambda row: int(row['Age']/10) if not math.isnan(row['Age']) else
np.nan
 filtr2['Decade']=df.apply(forAge, axis=1)
 filtr2=filtr2.dropna()
 filtr2['Decade']=filtr2['Decade'].astype('int32')
 return filtr2

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[205]

For traindf and testdf, we use the following:

ptraindf= preprocess(traindf)
ptestdf=preprocess(testdf)

We need to save this data, since the pyAgrum library accepts only files as inputs:

ptraindf.to_csv('post_train.csv', index=False)
ptestdf.to_csv('post_test.csv', index=False)

df=pd.read_csv('post_train.csv')
for k in df.keys():
 print("{} : {}".format(k, df[k].unique()))

The output can be seen as follows:

import pyAgrum as gum
import pyAgrum.lib.notebook as gnb

Now, it's time to build the model. Here, you need to be watchful while choosing
the RangeVariable and LabelizedVariable variables:

template=gum.BayesNet()
template.add(gum.RangeVariable("Survived", "Survived",0,1))
template.add(gum.RangeVariable("Pclass", "Pclass",1,3))
template.add(gum.LabelizedVariable("Gender",
"Gender",0).addLabel("female").addLabel("male"))
template.add(gum.RangeVariable("SibSp", "SibSp",0,8))
template.add(gum.RangeVariable("Parch", "Parch",0,9))
template.add(gum.LabelizedVariable("Embarked",
"Embarked",0).addLabel('').addLabel('C').addLabel('Q').addLabel('S'))
template.add(gum.RangeVariable("Decade", "Calculated decade", 0,9))
gnb.showBN(template)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[206]

The output can be seen as follows:

For learnBN(), we use the following:

learner = gum.BNLearner('post_train.csv', template)
bn = learner.learnBN()
bn

The following is the output:

Now that we have the model, let's try to extract the information from it:

gnb.showInformation(bn,{},size="20")

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[207]

We get the output as follows:

The entropy of a variable means that the greater the value, the more uncertain the variable's
marginal probability distribution is. The lower the value of entropy, the lower the
uncertainty. The Decade variable has got the highest entropy, which means that it is evenly
distributed. Parch has got low entropy and distribution is non-even.

A consequence of how entropy is calculated is that entropy tends to get bigger if the
random variable has many modalities.

Finding the inference gives us a view of the marginal probability distribution here:

gnb.showInference(bn)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[208]

The output can be seen as follows:

Now, let's see how classification can be done:

gnb.showPosterior(bn,evs={},target='Survived')

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[209]

We get the output as follows:

More than 40% of passengers survived here. But, we are not pushing any conditions.

Let's say we want to find out what the chances of a young male surviving are:

gnb.showPosterior(bn,evs={"Gender": "male", "Decade": 3},target='Survived')

The following is the output:

So, the chances are 20.6%.

If we have to find out the chances of an old lady surviving, we go about it as follows:

gnb.showPosterior(bn,evs={"Gender": "female", "Decade":
8},target='Survived')

The output is as follows:

Now, in order to evaluate the model to find out how good it is, we will plot the ROC curve:

from pyAgrum.lib.bn2roc import showROC
 showROC(bn, 'post_train.csv','Survived',"1",True,True)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Probabilistic Graphical Models Chapter 8

[210]

The following is the output:

Here, AUC comes out to be 0.893508 and it's quite decent.

We are done with the modeling part here. Also, we have learned about probability theory,
Bayesian networks, the calculation of CPT, and how to execute it in Python.

Summary
This chapter has given us an understanding of probability theory. Also, the application of
probability theory has been put into use. We got an idea of Bayes rule and BNs and how it
is formed. We got our hands dirty with the calculation of a CPT. Finally, we looked at a use
case to understand how classification can be done with the help of BNs. The readers will
now have the skill to have an in-depth knowledge of Bayes rules and BNs.

In the next chapter, we will study selected topics in deep learning.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Selected Topics in Deep

Learning
In Chapter 4, Training Neural Networks, we looked at what an artificial neural network
(ANN) is and how this kind of model is built. You can say that a deep neural network is an
elongated version of an ANN; however, it has got its own set of challenges.

In this chapter, we will learn about the following topics:

What is a deep neural network?
How to initialize parameters
Adversarial networks—generative adversarial networks and Bayesian generative
adversarial networks
Deep Gaussian processes
Hinton's Capsule network

Deep neural networks
Let's recap on what we learned in Chapter 4, Training Neural Networks. A neural network is
a machine emulation of the human brain that is seen as a set of algorithms that have been
set out to extract patterns out of data. It has got three different layers:

Input layer
Hidden layer
Output layer

Sensory numerical data (in the form of a vector) passes through the input layer and then
goes through the hidden layers to generate its own set of perceptions and reasoning to yield
the final result in the output layer.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[212]

Can you recall what we learned in Chapter 4, Training Neural Networks, regarding the
number of layers in ANN and how we count them? When we have got the layers like the
ones shown in the following diagram, can you count the number of layers? Remember, we
always count just the hidden layer and the output layer. So, if somebody is asking you how
many layers there are in your network, you don't include the input layer while answering:

Yes, that's right—there are two layers in the preceding architecture. What about for the
following network?

This network has got three layers, which includes two hidden layers. As the layers increase,
the model becomes deeper.

Why do we need a deep learning model?
A deep learning model is a highly non-linear model that has got multiple layers with
multiple nodes acting in sequence to solve a business problem. Every layer has been
assigned a different task.

For example, if we have got a face detection problem, hidden layer 1 finds out which edges
are present in the image. Layer 2 finds out the combination of edges, which start taking the
shape of eyes, a nose, and other parts. Layer 3 enables the object models, which creates the
shape of the face. The following diagram shows the different hidden layers:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[213]

Here, we have got a logistic regression model, also known as a single layer neural
network. Sometimes, it is also called the most shallow network. The second network that
can be seen here has got a two-layer network. Again, it's a shallow network, but it's not as
shallow as the previous one. The next architecture has got three layers, which is making
things more interesting now. The network is getting deep now. The last architecture has got
a six layer architecture, which is comprised of five hidden layers. The number of layers is
getting even deeper.

Deep neural network notation
The explanation of the notation is as follows:

l: Number of layers is 4
n[l]: Number of nodes in layer l

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[214]

For the following architecture, this is as follows:

n [0]: Number of nodes in input layer, that is, 3
n [1]: 5
n [2]: 5
 n [3]: 3
n [4]: 1
a [l]: Activations in layer l:

As we already know, the following equation goes through the layers:

z = wTX + b

Hence, we get the following results:

 Activation: a = σ(z)
w[l]: Weight in layer l
b[l]: Bias in layer l

Forward propagation in a deep network
Let's see how these equations set up for layer 1 and layer 2. If the training example set, X is
(x1, x2, x3) for the preceding network.

Let's see how the equation comes along for layer 1:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[215]

The activation function for layer 1 is as follows:

The input can also be expressed as follows:

For layer 2, the input will be as follows:

The activation function that's applied here is as follows:

Similarly, for layer 3, the input that's applied is as follows:

The activation function for the third layer is as follows:

Finally, here's the input for the last layer:

This is its activation:

Hence, the generalized forward propagation equation turns out to be as follows:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[216]

Parameters W and b
Let's talk about the following architecture. First, let's note down what we learned about in
the previous section. Take a look at the following diagram:

Here, we can see the following:

l: Number of layers: 6
n [l]: Number of nodes in layer
n [0]: Number of nodes in input layer: 3 ::
n [1]: Number of nodes in first layer: 4 ::

The equation for this is as follows:

n [2]= 4 :: n [3] = 4 :: n [4] = 4 :: n [5] =3 :: n [6]= 1

Implementing forward propagation would mean that hidden layer 1 can be expressed via
the following equation:

…..(1)

Can you determine the dimensions of z, w, and X for forward propagation?

Let's discuss this. X indicates the input layer vectors or nodes, and we know that there are 3
nodes. Can we find out the dimension of the input layer? Well, yes, it's (n[0], 1) –
alternatively, you can say that it is (3,1).

What about for first hidden layer? Since the first hidden layer has got three nodes, the
dimension of z[1] will be (n [1],1). This means that the dimension will be (4,1).

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[217]

The dimensions of z[1] and X have been ascertained. By looking at the preceding equation, it
is evident that the dimensions of z[1] and w[1]X have to be the same (from linear algebra). So,
can you come up with the dimension of w[1]? We know from linear algebra that matrix
multiplication between matrix 1 and 2 is possible only when the number of columns of
matrix 1 is equal to the number of rows of matrix 2. So, the number of columns of w[1] has to
be equal to the number of rows of matrix X. This will make the number of columns of w[1]3.
However, as we've already discussed, the dimensions of z[1] and w[1]X have to be the same,
and so the number of rows of the former should be equal to the number of rows of the
latter. Hence, the number of rows of w[1]will turn out to be 4. Alright, we have got the
dimension of w[1] now, which is (4,3). To make this more general, we can also say that the
dimension of w[1] is (n[1],n[0]). Similarly, the dimension of w[2] will be equal to (n[2],n[1]) or
(number of nodes of the current layer, number of nodes of the previous layer). It will make
the dimension of w[2] (4,4). Let's generalize this. Let's look at the dimension of the following
equation:

w[1]= (n[1],n[l-1])

What about the dimension of bias b[1]? Can you make use of linear algebra and figure that
out? This must be a cake walk for you by now. Yes, you would have probably guessed it
correctly by now. It is has the same dimension as z[1]. Let me explain this, for everyone’s
benefit. Going by the equation, the dimension of the left-hand side should be equal to the
dimension of the right-hand side. Besides, w[1]X + b[1] is an addition of two matrices and it is
well-known that two matrices can only be added if they have the same dimension; that is,
they must have the same number of rows and columns. So, the dimension of b[1] will be
equal to w[1]X; in turn, it will be equal to z[1] (which is (4,1)).

In terms of generalization, the dimension of b[1]= (n[1], 1).

For backpropagation, this is as follows:

Dimension of dw[l]= (n[l],n[l-1])
Dimension of db[l]= (n[l], 1)

Forward and backward propagation
Let me show you how forward pass and backward pass work with the help of an example.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[218]

We have got a network that has got two layers (1 hidden layer and 1 output layer). Every
layer (including the input) has got two nodes. It has got bias nodes as well, as shown in the
following diagram:

The notations that are used in the preceding diagram are as follows:

IL: Input layer
HL: Hidden layer
OL: Output layer
w: Weight
B: Bias

We have got the values for all of the required fields. Let's feed this into the network and see
how it flows. The activation function that's being used here is the sigmoid.

The input that's given to the first node of the hidden layer is as follows:

InputHL1 = w1*IL1 + w3*IL2 + B1

InputHL1= (0.2*0.8)+(0.4*0.15) + 0.4 =0.62

The input that's given to the second node of the hidden layer is as follows:

InputHL2 = w2*IL1 + w4*IL2 + B1

InputHL2 = (0.25*0.8) +(0.1*0.15) + 0.4 = 0.615

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[219]

To find out the output, we will use our activation function, like so:

OutputHL1 = = 0.650219

OutputHL2 = = 0.649081

Now, these outputs will be passed on to the output layer as input. Let's calculate the value
of the input for the nodes in the output layer:

InputOL1 = w5*Output_HL1 + w7*Output_HL2 + B2 = 0.804641

InputOL2= w6*Output_HL1 + w8*Output_HL2 + B2= 0.869606

Now, let's compute the output:

OutputOL1 = = 0.690966

OutputOL2 = = 0.704664

Error computation
We can now calculate the error for each output neuron using the square error function and
sum them together to get the total error:

Etotal =

EOL1 = Error at first node of output layer =

=0.021848

EOL2 = Error at second node of output layer =

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[220]

=0.182809

Total Error = Etotal= EOL1 + EOL2 = 0.021848 + 0.182809 = 0.204657

Backward propagation
The purpose of backpropagation is to update each of the weights in the network so that
they cause the actual output to be closer to the target output, thereby minimizing the error
for each output neuron and the network as a whole.

Let's focus on an output layer first. We are supposed to find out the impact of change in w5
on the total error.

This will be decided by . It is the partial derivative of Etotal with respect to w5.

Let's apply the chain rule here:

= 0.690966 – 0.9 = -0.209034

= 0.213532

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[221]

InputOL1 = w5*OutputHL1 + w7*OutputHL2 + B2

= 0.650219

Now, let's get back to the old equation:

To update the weight, we will use the following formula. We have set the learning rate to
be α = 0.1:

Similarly, are supposed to be calculated. The approach remains the
same. We will leave this to compute as it will help you in understanding the concepts
better.

When it comes down to the hidden layer and computing, the approach still remains the
same. However, the formula will change a bit. I will help you with the formula, but the rest
of the computation has to be done by you.

We will take w1 here.

Let's apply the chain rule here:

This formula has to be utilized for w2, w3, and w4. Please ensure that you are doing partial
differentiation of E_total with respect to other weights and, in the end, that you are using
the learning rate formula to get the updated weight.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[222]

Forward propagation equation
We know the equations around it. If the input for this is a[l-1], then the output will be a[l].
However, there is a cache part, which is nothing but z[l], as shown in the following diagram:

 Here, this breaks down into w[1]a[l-1] +b[l] (remember that a[0] is equal to X).

Backward propagation equation
The following equations would be required to execute backward propagation:

These equations will give you an idea of what is going on behind the scenes. Here, a suffix,
d, has been added, which is a representation of the partial derivative that acts during
backward propagation:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[223]

Parameters and hyperparameters
While we are getting on with building a deep learning model, you need to know how to
keep a tab on both parameters and hyperparameters. But how well do we understand
these?

When it comes down to parameters, we have got weights and biases. As we begin to train
the network, one of the prime steps is to initialize the parameters.

Bias initialization
It is a common practice to initialize the bias by zero as the symmetrical breaking of neurons
is taken care of by the random weights' initialization.

Hyperparameters
Hyperparameters are one of the building blocks of the deep learning network. It is an
element that determines the optimal architecture of the network (for example, number of
layers) and also a factor that is responsible for ensuring how the network will be trained.

The following are the various hyperparameters of the deep learning network:

Learning rate: This is responsible for determining the pace at which the network
is trained. A slow learning rate ensures a smooth convergence, whereas a fast
learning rate may not have smooth convergence.
Epoch: The number of epochs is the number of times the whole training data is
consumed by the network while training.
Number of hidden layers: This determines the structure of the model, which
helps in achieving the optimal capacity of the model.
Number of nodes (neurons): There should be a trade-off between the number of
nodes to be used. It decides whether all of the necessary information has been
extracted to produce the required output. Overfitting or underfitting will be
decided by the number of nodes. Hence, it is advisable to use it with
regularization.
Dropout: Dropout is a regularization technique that's used to increase
generalizing power by avoiding overfitting. This was discussed in detail in
Chapter 4, Training Neural Networks. The dropout value can be between 0.2 and
0.5.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[224]

Momentum: This determines the direction of the next step toward convergence.
With a value between 0.6 and 0.9, it handles oscillation.
Batch size: This is the number of samples that are fed into the network, after
which a parameter update happens. Typically, it is taken as 32, 64, 128, 256.

To find the optimal number of hyperparameters, it is prudent to deploy a grid search or
random search.

Use case – digit recognizer
The Modified National Institute of Standards and Technology (MNIST) is in fact the
dataset of computer vision for hello world. Considering its release in 1999, this dataset has
served as the main fundamental basis for benchmarking classification algorithms.

 Our goal is to correctly identify digits from a dataset of tens of thousands of handwritten
images. We have curated a set of tutorial-style kernels that cover everything from
regression to neural networks:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import seaborn as sns
%matplotlib inline
from sklearn.model_selection import train_test_split
import itertools
from keras.utils.np_utils import to_categorical # convert to one-hot-
encoding
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
sns.set(style='white', context='notebook', palette='deep')
np.random.seed(2)

Load the data
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")

Y_train = train["label"]
Drop 'label' column
X_train = train.drop(labels = ["label"],axis = 1)

Y_train.value_counts()

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[225]

The output of the preceding code is as follows:

X_train.isnull().any().describe()

Here, we get the following output:

test.isnull().any().describe()

Here, we get the following output:

X_train = X_train / 255.0
test = test / 255.0

By reshaping the image into 3 dimensions, we get the following:

 Reshape image in 3 dimensions (height = 28px, width = 28px, canal = 1)
X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1)

Encode labels to one hot vectors
Y_train = to_categorical(Y_train, num_classes = 10)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[226]

Split the dataset into train and the validation set
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train,
test_size = 0.1, random_state=2)

By executing the following code, we will be able to see the numbered plot:

pic = plt.imshow(X_train[9][:,:,0])

The output is as follows:

The sequential model is now as follows:

model = Sequential()
model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same',
activation ='relu', input_shape = (28,28,1)))
model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[227]

model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax"))

When we define the optimizer, we get the following output:

Define the optimizer
optimizer = SGD(lr=0.01, momentum=0.0, decay=0.0)

When we compile the model, we get the following output:

Compile the model
model.compile(optimizer = optimizer, loss = "categorical_crossentropy",
metrics=["accuracy"])

epochs = 5
batch_size = 64

Next, we generate the image generator:

datagen = ImageDataGenerator(
 featurewise_center=False, # set input mean to 0 over the dataset
 samplewise_center=False, # set each sample mean to 0
 featurewise_std_normalization=False, # divide inputs by std of the dataset
 samplewise_std_normalization=False, # divide each input by its std
 zca_whitening=False, # apply ZCA whitening
 rotation_range=10, # randomly rotate images in the range (degrees, 0 to
180)
 zoom_range = 0.1, # Randomly zoom image
 width_shift_range=0.1, # randomly shift images horizontally (fraction of
total width)
 height_shift_range=0.1, # randomly shift images vertically (fraction of
total height)
 horizontal_flip=False, # randomly flip images
 vertical_flip=False) # randomly flip images
datagen.fit(X_train)

history = model.fit_generator(datagen.flow(X_train,Y_train,
batch_size=batch_size),
 epochs = epochs, validation_data = (X_val,Y_val),
 verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[228]

The output can be seen as follows:

We predict the model as follows:

results = model.predict(test)
select with the maximum probability
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
results

The output can be seen as follows:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[229]

Generative adversarial networks
Generative adversarial networks (GANs) are another form of deep neural network
architecture, and is a combination of two networks that compete and cooperate with each
other. It was introduced by Ian Goodfellow and Yoshua Bengio in 2014.

GANs can learn to mimic any distribution of data, which ideally means that GANs can be
taught to create an object that's similar to an existing one in any domain, such as images,
music, speech, and prose. It can create photos of any object that has never existed before.
They are robot artists in a sense, and their output is impressive.

It falls under unsupervised learning wherein both of the networks learn their task upon
training. One of the networks is called the generator and the other is called
the discriminator.

To make this more understandable, we can think of a GAN as a case of a counterfeiter
(generator) and a cop (discriminator). At the outset, the counterfeiter shows the cop fake
money. The cop works like a detective and finds out that it is a fake money (you can think
of D as a detective too if you want to understand how a discriminator works). The cop
passes his feedback to the counterfeiter, explaining why the money is fake. The
counterfeiter makes a few adjustments and makes new, fake money based on the feedback
it received. The cop says that the money is still fake and he shares his new feedback with
the counterfeiter. The counterfeiter then attempts to make new, fake money based on the
latest feedback. The cycle continues indefinitely until the cop is fooled by the fake money
because it looks real. When a GAN model is being created, the generator and discriminator
start to learn from scratch and from each other. It may seem that they are pitted against
each other, but they are helping each other learn. The feedback mechanism between these
two is helping the model to be more robust.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[230]

A discriminator is quite a good learner, since it is capable of learning anything from the real
world. That is, if you want it to learn about images of cats and dogs, and its 1,000 different
categories where it's asked to differentiate between the images, it will be able to do so
without any hassle, like so:

Noise goes into the generator; then, the output of the generator goes through the
discriminator and we get an output. Simultaneously, the discriminator is being trained on
the images of dogs. However, in the very beginning, even the dog images can be classified
by the discriminator as being non-dog images, and it picks up on this error. This error gets
back propagated through the network.

Hinton's Capsule network
Geoffrey Hinton, the father of deep learning, created a huge stir in the space of deep
learning by introducing a new network. This network was called the Capsule Network
(CapsNet). An algorithm to train this network was also brought forth, which is called
dynamic routing between capsules. For the first time, Hinton spoke about it in 2011 in the
paper called transforming autoencoder. In 2017 November, a full paper was published by
Hinton and his team regarding the Capsule network.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[231]

The Capsule Network and convolutional neural
networks
The convolutional neural network (CNN) has been one of the most important milestones
in the area of deep learning. It has got everyone excited and has been the cornerstone for
new research, too. But, as they say, Nothing is perfect in this world. Nor is our beloved CNN.

Can you recall how CNNs work? The most important job of a CNN is to execute
convolution. What this means is that once you pass an image through CNN, the features,
such as edges and color gradients, are extracted from image pixels by the convolution layer.
Other layers will combine these features into a more complex one. And on top of it, once
the dense layer is kept, it enables the network to carry out the classification job. The
following diagram shows the image that we are working on:

The preceding diagram is a basic CNN network, which is being used to detect the car in the
image. The following diagram shows the image of a car that is in perfect order, and a
fragmented image of the same:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected Topics in Deep Learning Chapter 9

[232]

Let's say we pass on these two images through the CNN network (to detect the car) – what
will be the response of the network for both images? Can you ponder over this and come
up with an answer? Just to help you, a car has got a number of components such as wheels,
a windshield, a bonnet, and so on, but a car is deemed as a car to human eyes when all of
these parts/components are set in order. However, for a CNN, only the features are
important. A CNN doesn't take relative positional and orientational relationship into
account. So, both of these images will be classified as a car by the network, even though this
is not the case to the human eye.

 To make amends, CNNs include max-pooling, which helps in increasing the view of a
higher layer's neurons, thus making the detection of higher order features possible. Max-
pooling makes CNNs work, but at the same time, information loss also takes place. It's a big
drawback of CNN.

Summary
In this chapter, we studied deep neural networks and why we need a deep learning model.
We also learned about forward and backward prorogation, along with parameters and
hyperparameters. We also talked about GANs, along with deep Gaussian processes, the
Capsule Network, and CNNs.

In the next chapter, we will study causal inference.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

10
Causal Inference

 In this final chapter, we will learn about the following topics:

Granger causality in time series (econometric approach to causality)
Graphical models causality

Granger causality
In time series, we typically use univariate data. That is, we use a single series to predict its
future values. Let's say that we are studying Google's stock price data, and we are asked to
forecast the future values of stock prices. In this case, we will need historic data of Google's
stock prices. Based on that, we will make predictions.

However, at times, we need multiple time series to make a forecast. But why is it that we
need multiple time series? Any guesses?

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Causal Inference Chapter 10

[234]

The following graph shows Google's stock price data:

The answer is that we need to understand and explore the relationship between multiple
time series as this can improve our forecast. For example, we have got correlated time series
of GDP Deflator: Services and WPI: All Commodities, as follows:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Causal Inference Chapter 10

[235]

It is quite evident that these two seem to carry a relationship. When we have to forecast
GDP Deflator: Services, we can use WPI: All Commodities time series data as input. This
is called Granger causality.

To put it more aptly, Granger causality is one of the ways to investigate causality between
two variables in a time series. This method is a probabilistic account of causality.

Even though we are talking about causality here, it isn't exactly the same. Typically,
causality is associated with a situation where variable 1 is the cause of variable 2 or vice
versa. However, with Granger causality, we do not test a true cause and effect relationship.
The fundamental reason to know is whether a particular variable comes before another in
the time series.

You aren't testing a true cause and effect relationship. What you want to know is whether a
particular variable comes before another in the time series. That is to say, if we find
Granger causality in the data, then there isn't any causal link in the true sense of the word.

When econometricians say cause, what they mean is Granger-cause,
although a more appropriate word might be precedence. Granger
causality was proposed by a Nobel laureate in Economics, Prof Clive
Granger, in 2003.

Let's look at one more example. Here, we have GDP per capita for OECD nations. We can
see that the number of OECD countries have a similar growth and pattern in GDP. We can
assume that these countries are responsible for each other's GDP growth due to
dependencies.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Causal Inference Chapter 10

[236]

The following is a graph that shows GDP per capita for OECD countries:

We can utilize the series of one country to forecast for another one. More often than not,
this kind of relationship is prevalent more in financial time series. The stock market of
India, NSE/BSE, and so on may have an impact on NYSE. Therefore, NYSE indices can be
used to make a forecast for NSE indices.

Let's infuse a bit of mathematics into this. Let's say there are two time series, X(t) and Y(t).
If the past values of X(t) are helping to predict the future values of Y(t), it is said that X(t)
Granger causes Y(t).

So, Y(t) is a function of the lag of Y(t) and also of the lag of X(t). It can be expressed as as
follows:

Y(t) = f(Yt-p, Xt-p)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Causal Inference Chapter 10

[237]

However, this only holds true in the following situations:

Cause takes place prior to effect. What this means is that Y(t) = f(Xt-1),
Cause has got significant information about the future values of its effect, for
example:

Y(t) = a1 Yt-1 + b1 Xt-1 + error

Xt-1 is adding an extra effect on Y(t). The magnitude of effect is decided by b1.

Let's say we have two equations:

Yt= a0+ a1* Yt-1

Yt= a0 + a1*Yt-1 + a2*Xt-1

The null hypothesis here is as follows:

H0: a2=0: What this means is that there is no effect of other series, where Xt-1 on
Yt

The alternate hypothesis here is as follows::

H1: a2≠ 0: What this means is that there is a significant effect of other series,
where Xt-1 on Yt

We run a t-test to determine whether there is a significant effect of other series of Xt-1 on
Yt.

If the null hypothesis is rejected, we can say that it is a case of Granger causality.

F-test
The basic steps for running this test are as follows:

Formulate the null hypothesis and its alternative. 1.
Choose the lags. These can depend on the amount of data you have. One way2.
to choose lags i and j is to run a model order test. It would be easier to pick up
multiple values and run the Granger test to see if the results are the similar for
different lag levels.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Causal Inference Chapter 10

[238]

Also identify the f-value. The two equations can be used to find out whether βj =3.
0 for all lags j.

Limitations
The different limitations of this approach are as follows:

Granger causality is not a true causality
If X(t) affects Y(t) through a third variable, Z(t), then it is difficult to find Granger
causality

Use case
Here, we have a multivariate time series dataset called AirQualityUCI. We have to test
whether NOx has a Granger causality of NO2.

Since we don't have a library in Python for multivariate Granger causality, we will do this
in R by using the lmtest package.

Load the lmtest library. In case the library isn't there, you will need to install it, as follows:

install.packages("lmtest")
library(lmtest)

Load the data. Then, make use of the grangertest function to find out whether there is
any significant relationship between NOx and NO2:

data= read.csv("AirQualityUCI.csv")
grangertest(NOx.GT. ~ NO2.GT., order = 3, data = data)

The output for this is as follows:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Causal Inference Chapter 10

[239]

So, the f-test has become significant, which means that the coefficients of lagged NO2 have
a significant impact on NOx.

Graphical causal models
This model was covered in detail in Chapter 8, Probabilistic Graphical Models. We will also
look into it briefly here, too.

Bayesian networks are directed acyclic graphs (DAGs) where the nodes represent variables
of interest (for example, the temperature of a device, the gender of a patient, a feature of an
object, the occurrence of an event, and so on). Causal influences among the variables are
represented using links. The strength of an influence can be potrayed by conditional
probabilities that are linked to each cluster of the parent-child nodes in the network. In the
following diagram we can see the causal models, that have a node and an edge:

The node represents the variables and the edges stand for conditional relationship between
the variables. What we are looking for is full joint probability distribution. Here, the
conditional dependency is being spoken. Rain causes the ground to be wet. However,
winning the lottery has nothing to do with other variables. It's got conditional
independence, as shown in the following diagram:

Here, the probability for conditional independence is as follows:

P(Lottery,Rain, Wet Ground)= P(Lottery) P(Rain) P(Wet Ground | Rain)

Therefore, we can say that a Bayesian network describes a probability distribution among
all variables by putting conditional probability as edges.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Causal Inference Chapter 10

[240]

Let's look at an example in Python:

First, we need to load the library, CausalGraphicalModel, as follows:1.

from causalgraphicalmodels import CausalGraphicalModel

Let's set up the model for a condition that if somebody is doing a Job and if it's2.
powered by Smartwork and Hardwork, he/she reaps rewards and eventually,
ends up having a promotion:

Model = CausalGraphicalModel(
 nodes=["Job", "Smartwork", "Hardwork", "Reward", "Promotion"],
 edges=[
 ("Job", "Smartwork"),
 ("Job", "Hardwork"),
 ("Smartwork", "Reward"),
 ("Hardwork", "Reward"),
 ("Reward", "Promotion")
]
)
Model.draw()

The following is the output of the preceding code:

Let's obtain the distribution:3.

print(Model.get_distribution())

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Causal Inference Chapter 10

[241]

Then we will get the following as a output:

Let's extract all of the conditional independence relationships:4.

Model.get_all_independence_relationships()

Here, we are able to assess the conditional independence among the variables.

Let's mix this in with Reward:5.

Intervene = Model.do("Reward")
Intervene.draw()

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Causal Inference Chapter 10

[242]

Summary
In this chapter, we studied Granger causality, which is where we use a single time series to
predict its future values, along with the different models of graphical causality models.
The graphical causality models cover two examples that will give us a basic idea about the
graphical causal models.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
Advanced Methods

We have made it to the final chapter of this book. However, this doesn't mean that we can
ignore the topics that we are going to discuss in the upcoming sections. These topics are
state of the art and will separate you from the rest.

In this chapter, we will cover the following topics:

Kernel principal component analysis
Independent component analysis
Compressed sensing
Bayesian multiple imputations
Self-organizing maps

Introduction
In the previous chapter, we understood what principal component analysis (PCA) is, how
it works, and when we should be deploying it. However, as a dimensionality reduction
technique, do you think that you can put this to use in every scenario? Can you recall the
roadblock or the underlying assumption behind it that we discussed?

Yes, the most important assumption behind PCA is that it works for datasets that are
linearly separable. However, in the real world, you don't get this kind of dataset very often.
We need a method to capture non-linear data patterns.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[244]

On the left-hand side, we have got a dataset in which there are two classes. We can see that
once we arrive at the projections and establish the components, PCA doesn't have an effect
on it and that it is not able to separate it by a line in a 2D dimension. That is, PCA can only
function well when we have got low-level dimensions and linearly separable data. The
following plot shows the dataset of two classes:

This is why we bring in the kernel method: so that we can merge it with PCA to achieve it.

Just to recap what you learned about the kernel method, we will discuss it and its
importance in brief:

We have got data in a low dimensional space. However, at times, it's difficult to
achieve classification (green and red) when we have got non-linear data (as
shown in the following diagram). This being said, we do have a clear
understanding that having a tool that can map the data from a lower to a higher
dimension will result in a proper classification. This tool is called the kernel
method.
The same dataset turns out to be linearly separable in the new feature space.

The following diagram shows data in low and high dimensional spaces:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[245]

To classify the green and red points in the preceding diagram, the feature mapping
function has to take the data and change is from being 2D to 3D, that is, Φ = R2 → R3. The
equation for this is as follows:

The goal of the kernel method is to figure out and choose kernel function K. This is so that
we can find the geometry feature in the new dimension and classify data patterns. Let's see
how this is done:

Here, Phi is a feature mapping function. But do we always need to know the feature
mapping function? Not really. Kernel function K does the trick. With a given kernel
function, K, we can come up with a feature space, H. Two of the popular kernel functions
are Gaussian and polynomial kernel functions.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[246]

Picking an apt kernel function will enable us to figure out the characteristics of the data in
the new feature space quite well.

Now that we have made ourselves familiar with the kernel trick, let's move on to the Kernel
PCA.

Kernel PCA
The Kernel PCA is an algorithm that not only keeps the main spirit of PCA as it is, but goes
a step further to make use of the kernel trick so that it is operational for non-linear data:

Let's define the covariance matrix of the data in the feature space, which is the1.
product of the mapping function and the transpose of the mapping function:

It is similar to the one we used for PCA.

The next step is to solve the following equation so that we can compute principal2.
components:

Here, CF is the covariance matrix of the data in feature space, v is the eigenvector,
and λ (lambda) is the eigenvalues.

Let's put the value of step 1 into step 2 – that is, the value of CF in the equation of3.
step 2. The eigenvector will be as follows:

Here, is a scalar number.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[247]

Now, let's add the kernel function into the equation. Let's multiply Φ(xk) on both4.
sides of the formula, :

Let's put the value of v from the equation in step 3 into the equation of step 4, as5.
follows:

Now, we call K . Upon simplifying the equation from step 5 by6.
keying in the value of K, we get the following:

On doing eigen decomposition, we get the following:

On normalizing the feature space for centering, we get the following result:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[248]

Now, let's execute the Kernel PCA in Python. We will keep this simple and work on the Iris
dataset. We will also see how we can utilize the new compressed dimension in the model:

Let's load the libraries:1.

import numpy as np # linear algebra
import pandas as pd # data processing
import matplotlib.pyplot as plt
from sklearn import datasets

Then, load the data and create separate objects for the explanatory and target2.
variables:

iris = datasets.load_iris()
X = iris.data
y = iris.target

Let's have a look at the explanatory data:3.

X

Let's split the data into train and test sets, as follows:4.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
= 0.25, random_state = 0)

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[249]

Now, we can standardize the data:5.

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

Let's have a look at X_train:6.

X_train

The output is as follows:

Now, let's apply the kernel PCA on this. Here, we are trying to condense the data7.
into just two components. The kernel that's been chosen here is the radial basis
function:

from sklearn.decomposition import KernelPCA
kpca = KernelPCA(n_components = 2, kernel = 'rbf')
X_train2 = kpca.fit_transform(X_train)
X_test2 = kpca.transform(X_test)

We have got the new train and test data with the help of the kernel PCA.

Let's see what the data looks like:8.

X_train2

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[250]

We get the following as output:

Now, we've got two components here. Earlier, X_train showed us four variables. Now,
the data has been shrunk into two fields.

Independent component analysis
Independent component analysis (ICA) is similar to PCA in terms of dimensionality
reduction. However, it originated from the signal processing world wherein they had this
problem that multiple signals were being transmitted from a number of sources, and there
were a number of devices set up to capture it. However, the problem was that the captured
signal by the device was not very clear as it happened to be a mix of a number of sources.
They needed to have clear and independent reception for the different devices that gave
birth to ICA. Heralt and Jutten came up with this in.

The difference between PCA and ICA is that PCA focuses upon finding uncorrelated
factors, whereas ICA is all about deriving independent factors. Confused? Let me help you.
Uncorrelated factors imply that there is no linear relationship between them, whereas
independence means that two factors have got no bearing on each other. For example,
scoring good marks in mathematics is independent of which state you live in.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[251]

An underlying assumption for this algorithm is that the variables are linear mixtures of
unknown latent and independent variables.

The data xi (t) is modeled using hidden variables si(t):

Here, i= 1,2,3..........n.

It can also be written in the form of matrix decomposition as x=As:

Here, we have the following:

A: Constant mixing matrix
s: Latent factor matrices, which are independent of each other

We have to estimate the values of both A and s while we have got X.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[252]

In other words, our goal is to find W, which is W= A-1, which is an unmixing matrix.

Here, sij has to be statistically independent of and non-Gaussian (not following normal
distribution).

Preprocessing for ICA
The preprocessing of ICA can be done as follows:

Centering: The first step is to center x. That is, we need to subtract its mean
vector from x so as to make x a zero-mean variable.
Whitening: Before putting the data through ICA, we are supposed to whiten the
data. This means that the data has to be uncorrelated. Geometrically speaking, it
tends to restore the initial shape of the data and only the resultant matrix needs
to be rotated.

Approach
To find out what unmixing matrices are independent, we have to bank upon non-
Gaussianity. Let's see how we can do this.

Here, we will need to maximize the kurtosis, which will turn the distribution into a non-
Gaussian. This will result in independent components. The following diagram shows an
image of fast ICA:

For this, we have the FastICA library in Python.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[253]

Let's look at how we can execute this in Python. We will work with the same Iris data. This
might not be an ideal dataset for executing ICA, but this is being done for directional
purposes. To execute the code in Python, we will need to perform the following steps:

First, we need to load the library:1.

import numpy as np # linear algebra
import pandas as pd # data processing
import matplotlib.pyplot as plt
from sklearn import datasets

Now, we need to load the data:2.

iris = datasets.load_iris()
X = iris.data
y = iris.target

Let's partition the data into train and test sets:3.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
= 0.25, random_state = 0)

Let's make the data a standard scalar:4.

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

Now, we need to load in the ICA library:5.

from sklearn.decomposition import FastICA

We carry out ICA as follows. We will stick to three components here:6.

ICA = FastICA(n_components=3, random_state=10,whiten= True)
X=ICA.fit_transform(X_train)

We will then plot the results, as follows:7.

plt.figure(figsize=(8,10))
plt.title('ICA Components')
plt.scatter(X[:,0], X[:,1])
plt.scatter(X[:,1], X[:,2])
plt.scatter(X[:,2], X[:,0])

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[254]

The output for this is as follows:

We can see the three different components here (by color).

Compressed sensing
Compressed sensing is one of the easiest problems to solve in the area of information
theory and signal processing. It is a signal acquisition and reconstruction technique where
the signal is compressible. The signal must be sparse. Compressed sensing tries to fit
samples of a signal to functions, and it has a preference to use as few basic functions as
possible to match the samples. This is described in the following diagram:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[255]

This is one of the prime equations that we see in linear algebra, where y is a M x 1 matrix,
phi is a M x N matrix that has got a number of columns that is higher than the number of
rows, and x is a N x 1 matrix comprising k non-zero entries. There are so many unknowns,
which is expressed as an N length vector and M measurements, wherein M << N. In this
type of equation, we know that many solutions are possible since the null space of this
matrix is non-trivial. Hence, this equation can accommodate many solutions.

Our goal
Our goal is to find out the solution with a least possible non-zero entry of all of the
solutions. That is, the solution should give us as few non-zeros as possible. Are you
wondering where this can be applied? There are plenty of applications for it. The areas
where it can be applied are as follows:

Signal representation
Medical imaging
Sparse channel estimation

Let's say that we have got a time signal. This signal is highly sparse, but we know a little bit
about it as it has a few frequencies. Can you sense what it is from the earlier equation? Yes,
it can be deemed as X.

Let's call this unknown signal X. Now, even though we don't know the whole signal, we
can still make observations about it, or samples, as shown in the following code:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import scipy.optimize as spopt
import scipy.fftpack as spfft
import scipy.ndimage as spimg
import cvxpy as cvx

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[256]

This will form a random equation:

x = np.sort(np.random.uniform(0, 15, 30))
y = 5 + 0.5 * x + 0.1 * np.random.randn(len(x))

Now, we need to fit the l1 norm. We get the following output:

l1 = lambda x0, x, y: np.sum(np.abs(x0[0] * x + x0[1] - y))
opt1 = spopt.fmin(func=l1, x0=[1, 1], args=(x, y))

Then, we need to fit the l2 norm. We get the following output:

l2 = lambda x0, x, y: np.sum(np.power(x0[0] * x + x0[1] - y, 2))
opt2 = spopt.fmin(func=l2, x0=[1, 1], args=(x, y))

y2 = y.copy()
y2[3] += 5
y2[13] -= 10
xopt12 = spopt.fmin(func=l1, x0=[1, 1], args=(x, y2))
xopt22 = spopt.fmin(func=l2, x0=[1, 1], args=(x, y2))

By summing up the two sinusoids, we get the following output:

n = 10000
t = np.linspace(0, 1/5, n)
y = np.sin(1250 * np.pi * t) + np.sin(3000 * np.pi * t)
yt = spfft.dct(y, norm='ortho')
plt.figure(figsize=[10,5])
plt.plot(t,y)
plt.title('Original signal')
plt.xlabel('Time (s)')
plt.ylabel('y')

Now, let's take the sample out of n:

m = 1000 # 10% sample
ran = np.random.choice(n, m, replace=False) # random sample of indices
t2 = t[ran]
y2 = y[ran]

Let's create the idct matrix operator:

create idct matrix operator
A = spfft.idct(np.identity(n), norm='ortho', axis=0)
A = A[ran]
do L1 optimization
vx = cvx.Variable(n)
objective = cvx.Minimize(cvx.norm(vx, 1))

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[257]

constraints = [A*vx == y2]
prob = cvx.Problem(objective, constraints)
result = prob.solve(verbose=True)

The output for this is as follows:

To reconstruct the signal, we must do the following:

x = np.array(vx.value)
x = np.squeeze(x)
signal = spfft.idct(x, norm='ortho', axis=0)

That is how we reconstruct the signal.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[258]

Self-organizing maps
Self-organizing maps (SOM) were invented by Teuvo Kohonen in the 1980s. Sometimes,
they are known as Kohonen maps. So, why do they exist? The prime motive for these kind
of maps is to reduce dimensionality through a neural network. The following diagram
shows the different 2D patterns from the input layers:

They take the number of columns as input. As we can see from the 2D output, it transforms
and reduces the amount of columns in the dataset into 2D.

The following link leads to the the 2D output: https:/ ​/​www. ​cs.​hmc. ​edu/ ​~kpang/ ​nn/ ​som.
html

The depiction of the preceding diagram in 2D talks about a health of the country based on
various factors. That is, it shows whether they are rich or poor. Some other factors that are
taken into account are education, quality of life, sanitation, inflation, and health. Therefore,
it forms a huge set of columns or dimensions. Countries such as Belgium and Sweden seem
to show similar traits, depicting that they have got a good score on the health indicator.

Since this is an unsupervised learning technique, the data wasn't labeled. Based on patterns
alone, the neural network is able to understand which country should be placed where.

Similar to the situation we just covered, opportunities are aplenty where self-organizing
maps can be utilized. It can be thought as being similar in nature to K-means clustering.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html
https://www.cs.hmc.edu/~kpang/nn/som.html

Advanced Methods Chapter 11

[259]

SOM
Let's go through process of how SOMs learn:

 Each node's weights are initialized by small standardized random values. These1.
act like coordinates for different output nodes.
The first row's input (taking the first row from all of the variables) is fed into the2.
first node.
Now, we have got two vectors. If V is the current input vector and W is the3.
node's weight vector, then we calculate the Euclidean distance, like so:

The node that has a weight vector closest to the input vector is tagged as the4.
best-matching unit (BMU).
A similar operation is carried out for all the rows of input and weight vectors.5.
BMUs are found for all.
Once the BMU has been determined for every iteration, the other nodes within6.
the BMU's neighborhood are computed. Nodes within the same radius will have
their weights updated. A green arrow indicates the radius. Slowly, the
neighborhood will shrink to the size of just one node, as shown in the following
diagram:

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[260]

The most interesting part of the Kohonen algorithm is that the radius of the7.
neighborhood keeps on shrinking. It takes place through the exponential decay
function. The value of lambda is dependent on sigma. The number of iterations
that have been chosen for the algorithm to run is given by the following
equation:

The weights get updated via the following equation:8.

Here, this is as follows:

t= 1, 2... can be explained as follows:

L(t): Learning rate
D: Distance of a node from BMU
σ: Width of the function

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[261]

Now, let's carry out one use case of this in Python. We will try to detect fraud in a credit
card dataset:

Let's load the libraries:1.

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

Now, it's time to load the data:2.

data = pd.read_csv('Credit_Card_Applications.csv')
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values

Next, we will standardize the data:3.

from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (0, 1))
X = sc.fit_transform(X)

Let's import the minisom library and key in the hyperparameters, that is,4.
learning rate, sigma, length, and number of iterations:

from minisom import MiniSom
som = MiniSom(x = 10, y = 10, input_len = 15, sigma = 1.0,
learning_rate = 0.5)
som.random_weights_init(X)
som.train_random(data = X, num_iteration = 100)

Let's visualize the results:5.

from pylab import bone, pcolor, colorbar, plot, show
bone()
pcolor(som.distance_map().T)
colorbar()
markers = ['o', 's']
colors = ['r', 'g']
for i, x in enumerate(X):
 w = som.winner(x)
 plot(w[0] + 0.5,
 w[1] + 0.5,
 markers[y[i]],
 markeredgecolor = colors[y[i]],
 markerfacecolor = 'None',
 markersize = 10,
 markeredgewidth = 2)
show()

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[262]

The following output will be generated from the preceding code:

We can see that the nodes that have a propensity toward fraud have got white
backgrounds. This means that we can track down those customers with the help of those
nodes:

mappings = som.win_map(X)
frauds = np.concatenate((mappings[(8,1)], mappings[(6,8)]), axis = 0)
frauds = sc.inverse_transform(frauds)

 This will give you the pattern of frauds.

Bayesian multiple imputation
Bayesian multiple imputation has got the spirit of the Bayesian framework. It is required to
specify a parametric model for the complete data and a prior distribution over unknown
model parameters, θ. Subsequently, m independent trials are drawn from the missing data,
as given by the observed data using Bayes' Theorem. Markov Chain Monte Carlo can be
used to simulate the entire joint posterior distribution of the missing data. BMI follows a
normal distribution while generating imputations for the missing values.

Let's say that the data is as follows:

Y = (Yobs, Ymiss),

Here, Yobs is the observed Y and Ymiss is the missing Y.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Methods Chapter 11

[263]

 If P(Y|θ) is the parametric model, the parameter θ is the mean and the covariance matrix
that parameterizes a normal distribution. If this is the case, let P(θ) be the prior:

Let's make use of the Amelia package in R and execute this:

library(foreign)
dataset = read.spss("World95.sav", to.data.frame=TRUE)

library(Amelia)

myvars <- names(dataset) %in% c("COUNTRY", "RELIGION", "REGION","CLIMATE")
newdata <- dataset[!myvars]

Now, let's make the imputation:

impute.out <- amelia(newdata, m=4)

Summary
In this chapter, we have studied the Kernel PCA, along with ICA. We also studied
compressed sensing, the goals of compressed sensing, and self-organizing maps and how
they work. Finally, we concluded with Bayesian multiple imputations.

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Python Machine Learning - Second Edition
Sebastian Raschka, Vahid Mirjalili

ISBN: 9781787125933

Understand the key frameworks in data science, machine learning, and deep
learning
Harness the power of the latest Python open source libraries in machine learning
Master machine learning techniques using challenging real-world data
Master deep neural network implementation using the TensorFlow library
Ask new questions of your data through machine learning models and neural
networks
Learn the mechanics of classification algorithms to implement the best tool for
the job
Predict continuous target outcomes using regression analysis
Uncover hidden patterns and structures in data with clustering
Delve deeper into textual and social media data using sentiment analysis

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/big-data-and-business-intelligence/python-machine-learning-second-edition

Other Books You May Enjoy

[265]

TensorFlow Machine Learning Cookbook
Nick McClure

ISBN: 9781786462169

Become familiar with the basics of the TensorFlow machine learning library
Get to know Linear Regression techniques with TensorFlow
Learn SVMs with hands-on recipes
Implement neural networks and improve predictions
Apply NLP and sentiment analysis to your data
Master CNN and RNN through practical recipes
Take TensorFlow into production

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/big-data-and-business-intelligence/tensorflow-machine-learning-cookbook

Other Books You May Enjoy

[266]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

0
0.632 rule
 in bootstrapping 29, 30

A
activation function 104
Akaike information criterion (AIC) 144
ambient pressure (AP) 12
ambient temperature (AT) 12
anomalies
 collective anomalies 145
 contextual anomalies 145
 point anomalies 145
anomaly detection 145, 146, 147
antecedent 179
Apriori algorithm
 about 182, 183
 association rules, finding 183
AR model
 about 135
 parameters optimization 144
AR(1) 128
AR(k) 128
area under curve (AUC) 36
area under ROC (AUROC) 36
artificial neural network (ANN) 211
association rules
 about 179, 181
 finding 183
augmented Dickey-Fuller test 131
autocorrelation 128, 129
autocorrelation plot 126
autoregressive (AR) model 128, 131
autoregressive integrated moving average (ARIMA)

model 136, 139, 141, 143
autoregressive operator 136

B
backpropagation 108
backward propagation 104, 217, 219, 220, 221
backward propagation equation 222
bag of words model 150
bagging (Bootstrap aggregation) 69
Bayes network
 about 196, 198
 conditional probability table (CPT) 201, 202
 nodes, probabilities 198, 200
 test set 202, 205, 209, 210
 training set 202, 205, 209, 210
Bayes rule 194, 196
Bayes theorem
 about 173
 Naive Bayes classifier, working 174, 176, 177
Bayesian multiple imputation 262
Bayesian network (BN) 193
best-matching unit (BMU) 259
bias 24
bias initialization
 about 223
 digit recognizer 224, 227
 hyperparameters 223
bias-variance trade off 22, 25
boosting
 about 87
 gradient boosting 88, 90, 92
bootstrapping
 0.632 rule 29, 30
 about 67, 68, 69, 70
branch 73
branches, machine learning
 reinforcement learning 10
 supervised learning 10
 unsupervised learning 10

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

[268]

C
Capsule Network (CapsNet) 230, 231, 232
Classification and regression trees (CART) 74
collective anomalies 145
compressed sensing
 about 254, 255
 goal 255, 257
computation, neural networks
 activation for H1,calculating 103, 104
conditional probability 194
conditional probability table (CPT) 198, 201, 202
confidence 181
confusion matrix
 about 31, 33
 False Negative (FN) 32
 False Positive (FP) 32
 True Negative (TN) 32
 True Positive (TP) 32
contextual anomalies 145
convolutional neural network (CNN) 231, 232
corpora 149
count vectorizer
 executing 155
cross-validation
 about 27
 used, for model selection 29
curve fitting
 about 15, 16, 18
 residual 19

D
data sets, model building
 about 21
 development set 21
 test set 22
 training set 21
Decision Node 73
decision tree
 about 71, 72
 branch 73
 Decision Node 73
 Leaf Node 73
 Root Node 73
 tree splitting 74, 75

deep learning model
 need for 212, 213
deep neural network
 about 211, 212
 backward propagation 217, 219
 error computation 219
 forward propagation 214, 215, 217, 219
 notation 213, 214
 parameter b 216, 217
 parameter W 216, 217
development set
 about 21
 size 22
digit recognizer 224, 227
dimensionality reduction 37, 39
directed acyclic graph 197
discriminator 229
dot product 43
dynamic routing between capsules 230

E
electrical energy output (PE) 12
elements, association rules
 antecedent (if) 179
 consequent (then) 179
elements, autoregressive integrated moving

average (ARIMA) model
 autoregressive operator 136
 integration operator 136
 moving average operator 136
elements, backpropagation
 dataset 108
 feed-forward network 108
 loss function 108
ensemble learning 65
ensemble model
 about 64, 66
 building, methods 66
entropy 75
error computation 219
errors, bias-variance trade off
 development error 23
 training error 23

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

[269]

F
F-test
 about 237
 limitations 238
 use case 238
False Negative (FN) 32
False Positive (FP) 32
fine needle aspirate (FNA) 78
first differenced 136
forward propagation equation 222
forward propagation
 about 217, 219
 in deep neural network 214, 215
frequent itemset generation 183
frequent pattern growth (FP-growth)
 about 185
 frequency, finding 185
 items, prioritizing by frequency 185
 items. ordering by priority 186
 transactions, setting up 185
 validation 189, 191
frequent pattern tree growth 186, 188

G
Gaussian kernel 59, 60
Gaussian white noise 123
generative adversarial networks (GANs) 229, 230
generator 229
Gini index 74
gradient boosting
 about 88, 90, 92
 parameters 92, 94, 95
Granger causality 233, 235, 237
graphical causal models 239, 241
grid search
 parameters optimization 60, 61, 63
 SVM example optimization 60, 61, 63

H
H-measure 36, 37
Hinton's capsule network 230
hold out set 21
hyperbolic tangent function (tanh) 105
hyperparameters

 about 223
 batch size 224
 dropout 223
 epoch 223
 learning rate 223
 momentum 224
 number of hidden layers 223
 number of nodes 223
hyperplanes 45, 46
hypothesis testing
 about 131
 rules 132

I
ICA preprocessing
 about 252
 centering 252
 whitening 252
improvement curve 8
Independent component analysis (ICA)
 about 250, 251
 approach 252, 253, 254
input layer neurons 98
integration operator 136

K
k-fold cross-validation 27, 28
Kernel 54, 55
kernel method 244
Kernel PCA 246, 248, 249, 250
Kernel trick 53, 54, 56
Kohonen maps 258

L
latent dirichlet allocation (LDA)
 about 166
 evaluation 170
 used, for topic modeling 166
 visualization 170, 172
latent semantic analysis (LSA)
 used, for topic modeling 166
LDA architecture 167, 169
Leaf Node 73
Leaky ReLU 115
learning 9

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

[270]

learning curve
 about 8
 machine learning 9
 Wright's model 10, 12, 14
least absolute shrinkage and selection operator

(LASSO) 27
likelihood 195
linear discriminant function 48
linear kernel 57
linear separability 44, 45
Long Short-Term Memory (LSTM) 118
loss function 99, 101

M
machine learning 9
marginal likelihood 196
methods, ensemble model building
 bootstrapping 67, 68, 69
methods, stationarity detection
 augmented Dickey-Fuller test 131
 data set, dividing 131
 data, plotting 130
 summary, computing 131
metrics, association rules
 confidence 180
 lift 181
 support 180
model evaluation
 about 31, 33
 confusion matrix 31, 33
model initialization 99
model selection
 about 27
 with cross-validation 29
Modified National Institute of Standards and

Technology (MNIST) 224
moving average model (MA) 135
moving average operator 136

N
Naive Bayes classifier
 working 174, 176, 177
network initialization
 about 107
 He-et-al Initialization 108

 random initialization 107
 zero Initialization 107
neural networks
 about 97, 98
 activation function 104
 backward propagation 104
 computation 102
 loss function 99, 101
 model initialization 99
 optimization 101
 overfitting, preventing 109
 working 98
non-negative matrix factorization
 used, for topic modeling 166
norm 41
notation 213, 214
null hypothesis 131

O
optimization 101
ordinary least square (OLS) 26
out-of-bag (OOB) sample 68
outlier 145
overall accuracy 34
overfitting
 about 24, 109
 preventing, in NN 109

P
parameters 223
parameters optimization
 about 144
 of AR model 144
 of ARIMA model 144
 parameters optimization 144
 through grid search 60, 61, 63
parameters, tree splitting
 Max_depth 76
 max_features 76
 min_samples_leaf 76
 min_samples_split 76
partial auto correlation functional (PACF) plot 138
point anomalies 145
polynomial kernel 57
posterior 196

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

[271]

principal component analysis (PCA) 243
prior 196
problems, supervised learning
 classification 10
 regression problem 10
progress curve 8
pure set 75
pyfpgrowth 191
Python
 TF-IDF, executing 156

R
random forest algorithm
 about 76
 case study 78, 80, 83, 87
random walk 126, 127
recall 32
receiver operating characteristic (ROC) curve 34,

36

receiver operating characteristic (ROC) metric 87
Rectified Linear Units (ReLU) 106
recurrent neural networks (RNNs)
 about 116, 117
 limitations 117
 use case 118, 120
regularization 25
reinforcement learning 10
relative humidity (RH) 12
residual 19
ridge regression (L2) 26
Root Node 73

S
Sampling with Replacement 67
second differencing 136
self-organizing maps (SOM)
 about 258
 reference 258
 working 259, 260, 261, 262
sensitivity 32
sentence tokenization 150
sentences 150
sentiment analysis 157, 158, 160, 161, 163
sentiment classification
 about 163

 count vectorizer bag of words feature extraction
164

 model building count vectorization 164
 TF-IDF feature extraction 163
shallow network 213
sigmoid 105
single layer neural network 213
snickometer 145
Specificity 33
stages, bagging (Bootstrap aggregation)
 bootstrapping 70
 model, fitting 70
 models, combining 70
startup function 8
stationarity 129
stationarity detection 130, 133, 134
statistical model 8
statistical modeling-two cultures 19, 20
steps, bag of words model
 corpus, building 150
 count vector 152
 document vector creation 151
 text, cleansing 152
 vocabulary, building 151
sub-tree 73
subconscious intelligence 9
supervised learning 10
support vector 51, 52
Support vector machine (SVM) 40, 47, 48, 49, 50
SVM example optimization
 through grid search 60, 61, 63
symmetry 107

T
temperature (T) 12
term frequency (TF) 153
term frequency inverse-document frequency (TF-

IDF)
 about 153, 154
 count vectorizer, executing 155
 executing, in Python 156
 working 153
test set
 about 21, 22
 size 22

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

text classification
 Naive Bayes technique 173
text corpus
 about 149
 sentences 150
 words 150
time series analysis 123
tools, white noise detection
 autocorrelation plot 124
 line plot 124
 summary 124
topic modeling
 about 165, 166
 Naive Bayes technique, in text classification 173
 with latent dirichlet allocation (LDA) 166
 with latent semantic analysis (LSA) 166
 with non-negative matrix factorization 166
training set
 about 21
 size 22
transaction ID 179
transforming autoencoder 230
tree splitting
 about 74, 75
 parameters 76
True Negative (TN) 32
True Positive (TP) 32
Type 1 error 32
Type 2 error 32
types, activation function
 hyperbolic tangent function (tanh) 105
 Rectified Linear Units (ReLU) 106
 sigmoid 105
types, kernel
 Gaussian 59, 60
 linear 57
 polynomial 57
types, regularization

 least absolute shrinkage and selection operator
(LASSO) 27

 ridge regression (L2) 26

U
underfitting 24
universal function approximators 105
unknown signal X 255
unsupervised learning 10

V
vacuum (V) 11
validation set 21
validation, frequent pattern growth (FP-growth)
 library, importing 191
vanishing gradient problem 110
vanishing gradient
 about 109, 111, 113
 overcoming 113, 115
variance error 24
vectors
 about 41
 dot product 43
 magnitude 41, 42

W
ways, dimensionality reduction
 feature elimination 37
 feature extraction 37
white noise
 about 123
 detecting, in series 124, 125
word tokenization 150
words 150
words, text corpus
 bag of words model 150
Wright's model 10, 12, 14

 EBSCOhost - printed on 2/9/2023 5:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Quantifying Learning Algorithms
	Statistical models
	Learning curve
	Machine learning
	Wright's model

	Curve fitting
	Residual

	Statistical modeling – the two cultures of Leo Breiman
	Training data development data – test data
	Size of the training, development, and test set

	Bias-variance trade off
	Regularization
	Ridge regression (L2)
	Least absolute shrinkage and selection operator

	Cross-validation and model selection
	K-fold cross-validation

	Model selection using cross-validation
	0.632 rule in bootstrapping
	Model evaluation
	Confusion matrix

	Receiver operating characteristic curve
	Area under ROC

	H-measure
	Dimensionality reduction
	Summary

	Chapter 2: Evaluating Kernel Learning
	Introduction to vectors
	Magnitude of the vector
	Dot product

	Linear separability
	Hyperplanes
	SVM
	Support vector

	Kernel trick
	Kernel
	Back to Kernel trick

	Kernel types
	Linear kernel
	Polynomial kernel
	Gaussian kernel

	SVM example and parameter optimization through grid search
	Summary

	Chapter 3: Performance in Ensemble Learning
	What is ensemble learning?
	Ensemble methods
	Bootstrapping

	Bagging
	Decision tree
	Tree splitting
	Parameters of tree splitting

	Random forest algorithm
	Case study

	Boosting
	Gradient boosting
	Parameters of gradient boosting

	Summary

	Chapter 4: Training Neural Networks
	Neural networks
	How a neural network works
	Model initialization
	Loss function
	Optimization
	Computation in neural networks
	Calculation of activation for H1

	Backward propagation
	Activation function
	Types of activation functions

	Network initialization
	Backpropagation

	Overfitting
	Prevention of overfitting in NNs
	Vanishing gradient
	Overcoming vanishing gradient

	Recurrent neural networks
	Limitations of RNNs
	Use case

	Summary

	Chapter 5: Time Series Analysis
	Introduction to time series analysis
	White noise
	Detection of white noise in a series

	Random walk
	Autoregression
	Autocorrelation
	Stationarity
	Detection of stationarity

	AR model
	Moving average model
	Autoregressive integrated moving average
	Optimization of parameters
	AR model
	ARIMA model

	Anomaly detection
	Summary

	Chapter 6: Natural Language Processing
	Text corpus
	Sentences
	Words
	Bags of words

	TF-IDF
	Executing the count vectorizer
	Executing TF-IDF in Python

	Sentiment analysis
	Sentiment classification
	TF-IDF feature extraction
	Count vectorizer bag of words feature extraction
	Model building count vectorization

	Topic modeling
	LDA architecture
	Evaluating the model
	Visualizing the LDA
	The Naive Bayes technique in text classification

	The Bayes theorem
	How the Naive Bayes classifier works

	Summary

	Chapter 7: Temporal and Sequential Pattern Discovery
	Association rules
	Apriori algorithm
	Finding association rules

	Frequent pattern growth
	Frequent pattern tree growth
	Validation
	Importing the library

	Summary

	Chapter 8: Probabilistic Graphical Models
	Key concepts
	Bayes rule
	Bayes network
	Probabilities of nodes
	CPT
	Example of the training and test set

	Summary

	Chapter 9: Selected Topics in Deep Learning
	Deep neural networks
	Why do we need a deep learning model?
	Deep neural network notation
	Forward propagation in a deep network
	Parameters W and b
	Forward and backward propagation
	Error computation

	Backward propagation
	Forward propagation equation
	Backward propagation equation
	Parameters and hyperparameters
	Bias initialization
	Hyperparameters
	Use case – digit recognizer

	Generative adversarial networks
	Hinton's Capsule network
	The Capsule Network and convolutional neural networks

	Summary

	Chapter 10: Causal Inference
	Granger causality
	F-test
	Limitations
	Use case

	Graphical causal models
	Summary

	Chapter 11: Advanced Methods
	Introduction
	Kernel PCA
	Independent component analysis
	Preprocessing for ICA
	Approach

	Compressed sensing
	Our goal

	Self-organizing maps
	SOM

	Bayesian multiple imputation
	Summary

	Other Books You May Enjoy
	Index

