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Preface

The International School of Physics “Enrico Fermi” on the Foundations of Quantum
Theory was organized by the Italian Physical Society in Villa Monastero, Varenna, Italy,
during July 8-13, 2016 in collaboration with the Wilhelm und Else Heraeus-Stiftung. In
the great tradition of the Fermi Schools the main goal was to provide an overview of
the recent theoretical and experimental developments of an active field of research, in
this case the foundations of quantum mechanics. The timing is especially appropriate
considering the fact that the last “Enrico Fermi” Summer School on this topic took place
in 1977.

Quantum mechanics is characterized by a dichotomy of unparalleled agreement be-
tween theory and experiment on the one hand, and an enormous variety of interpretations
of the underlying mathematical formalism on the other. David Mermin(1) proposed a
very pragmatic approach to this situation: “Shut up and calculate”!

However, triggered by the rapid advance of experimental techniques in quantum op-
tics, and the development of the field of quantum technology which takes advantage of the
correlations of entangled quantum systems, the question of the interpretation of quantum
mechanics has recently again received a lot of attention. Moreover, the old conundrum
of the physical reality of the wave function has now been tested by experiments using
single photons.

These two examples are only to serve as an illustration of this active field. Indeed,
the topics discussed at our school included but were not limited to the history and
interpretations of quantum theory, the principle of complementarity and wave-particle
duality, quantum theory from first principles, the reality of the wave function, the concept
of the photon, measurement in quantum theory, the interface of quantum theory and
general relativity, and quantum optical tests of quantum theory.

The present volume summarizes the lectures presented at our School which was at-
tended by more than 80 participants including students, lecturers and seminar speakers
from all over the world. All young scientists presented their research in two poster

(1) See for example: N. D. Mermin, What’s wrong with this pillow?, Physics Today, 42 (4)
(1989) 9. It is interesting that this quote is often attributed to Richard P. Feynman but we
recommend N. D. Mermin, Could Feynman have said this?, Physics Today, 57 (5) (2004) 10.

XV

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



XVI Preface

sessions which were each introduced by a “poster-flash” session. We are most grateful
to Europhysics Letters for supporting a prize for the best posters. Dennis Rätzel (First
Prize), Yael Avni (Second Prize), and Da-Wei Wang (Third Prize) together with the win-
ners of the Fourth Prize Sven Abend, Lorenzo Catani and Piotr Roztocki were invited
to summarize their contributions in this volume.

The Proceedings of the International School of Physics “Enrico Fermi” on the Foun-
dations of Quantum Theory start from a historical perspective by two contributions by
Nancy Thorndike Greenspan describing the life and the science of Max Born based on
her book entitled The End of the Certain World.

In the spring of 1925 Werner Heisenberg had escaped from Göttingen to the island
of Helgoland to cure his hay fever. It was there that he discovered quantum mechanics.
Considering the radical changes in the principles it is not surprising that his seminal
article in Zeitschrift für Physik is hard to read. Manfred Kleber in his contribution
summarizes in a pregnant way the underlying ideas of Heisenberg’s transition from Born’s
Atommechanik to Matrizenmechanik.

Although quantum mechanics originally started from matrix mechanics, today we
almost always employ the formulation pioneered by Erwin Schrödinger based on a time-
dependent wave function. The history and the derivation of the Schrödinger equation
constitute the topic of the lectures by Wolfgang P. Schleich. His main theme is the
linearization of the nonlinear wave equation of statistical mechanics.

Gerd Leuchs in his contribution complements the previous more mathematical ap-
proach towards the Schrödinger wave equation by a more intuitive one. He employs a
combination of the analogy between matter and water waves, and dispersion relations.

In 1935 Schrödinger identified entanglement as the trademark of quantum mechanics.
Indeed, it is at the very heart of Bell’s inequalities and many alien features of quantum
theory can be traced back to it. Edward Fry in his lectures summarizes in an impressive
way the early history of this field emphasizing the important role of Grete Hermann.
Already in 1935 she discovered the flaw in von Neumann’s proof that it is impossible to
complete quantum mechanics. Da-Wei Wang extends these two-particles considerations
to three particles and proposes a new way to generate mesoscopic Greenberger-Horne-
Zeilinger states. In the same spirit Piotr Roztocki employs in his contribution a frequency
comb to create scalable quantum states.

The lectures by Marlan O. Scully illuminate the problem of time in the process of
a quantum measurement. When and how does the observer change or reduce the state
vector? Three frequently employed scenarios illustrate how “before” and “after” argu-
ments can be misleading: The Einstein-Podolsky-Rosen situation, Wigner’s friend and
the quantum eraser.

John Archibald Wheeler (1911-2008) in his seminal article It from bit has vividly
argued that quantum theory is information theory. In this way he can be considered
the father of quantum information. He often stated that it should be possible to derive
quantum mechanics from information theory. Christopher A. Fuchs has followed this path
and has proposed the new interpretation of quantum mechanics, Quantum Bayesianism
(QBism). In his lectures he first summarizes the most prominent interpretations of
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Preface XVII

quantum mechanics and then provides an introduction into QBism. In the same spirit
Giacomo Mauro D’Ariano derives from elementary principles of information theory free
quantum field theories.

Across from Varenna at the West end of Lake Como is the place where Niels Bohr in
1927 introduced the principle of complementarity stimulated by Heisenberg’s uncertainty
relation. Sabine Wölk in her lecture notes employs simple measurements on quantum
systems to compare complementarity and entanglement both of which have their roots
in non-commuting operators.

The field of experimental quantum optics has opened new avenues towards tests of the
foundations of quantum mechanics. Here the process of spontaneous parametric down
conversion (SPDC) plays a central role and has created an avalanche of applications. Ralf
Menzel in his lectures emphasizes the role of the mode function of the electromagnetic
field as the carrier of the photon, and reviews his experiments on stimulated coherence
and complementarity.

Quantum imaging is another product of SPDC. In his lecture Robert W. Boyd sum-
marizes this active field by giving three examples: ghost imaging, imaging based on
interaction-free measurements and imaging based on Mandel’s induced coherence.

The reality of the wave function is an often debated question. So far it has been
part of more philosophical discussions. However, SPDC has moved this realm from
Gedanken experiments to real ones. The lectures by Andrew White addressed these
issues. Unfortunately, due to time constraints he was not able to provide us with a
paper. Likewise Aephraim Steinberg could not contribute. Fortunately, the notes by
Lorenzo Catani et al. address some aspects of these questions. In particular, they discuss
contextuality as a resource in quantum computation.

We recall that quantum mechanics originated from the analysis of blackbody radia-
tion. In contrast to conventional wisdom Max Planck did not quantize the light in the
resonator but the mechanical oscillators in the walls. Quantized electrodynamics had to
wait till the Drei-Männer-Arbeit of Born, Heisenberg and Pascal Jordan. They rederived
the result of Albert Einstein concerning the fluctuations of the radiation field in the ther-
mal state from a field theoretical approach. The Casimir effect, that is the attraction
of two uncharged conducting plates, is another consequence of these fluctuations. Yael
Avni in her contribution summarizes her recent work with Ulf Leonhardt on Casimir
forces in spherically symmetric dielectric media.

The theories of special and general relativity together with quantum mechanics are
rightfully considered the major revolutions in physics of the 20th century. Despite the
fact that by now they are almost 100 years old, general relativity and quantum mechanics
have not been unified yet. The lectures of Daniel M. Greenberger provide insight into
the reasons for the resistance and identify the strange roles of proper time and mass. He
also discusses consequences originating from considering them as dynamical variables.

The field of atom optics is perfectly suited to probe this interface of quantum me-
chanics and general relativity. On the one hand we use the wave nature of atoms for
interferometry, on the other hand due to their mass the atoms feel gravity. Ernst M.
Rasel in his lectures provides an introduction into atom interferometry, discusses a quan-

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



XVIII Preface

tum test of the equivalence principle and gives an outlook to experiments in space. The
contribution of Sven Abend et al. expands on this theme and discusses a new avenue
based on an atom-chip gravimeter.

Since light represents energy it must also gravitate. Already in 1931 Richard Tolman
together with Paul Ehrenfest and Boris Podolsky showed that a pencil of light leads to
a curvature of spacetime. The contribution by Dennis Rätzel et al. summarizes gravita-
tional properties of light.

Not included in this volume are two other highlights of our school. Nancy Thorndike
Greenspan had discovered a movie taken by the Nobel Prize winner Irving Langmuir at
the Solvay Meeting of 1927. It was impressive to see the famous quantum physicists of
the time “in action” rather than sitting around a table. Moreover, our school ended with
the playing of the Mozart piano concerto A-major KV 488 recorded around 1965 by the
Bavarian Radio Symphony Orchestra under the conductor Rudolf Albert. The soloist
was Werner Heisenberg. We owed this pleasure to Manfred Kleber who had found this
treasure. Many thanks, Manfred, for sharing it with us!

All activities were inspired by the breathtaking beauty of Lake Como, the Villa Monas-
tero and its gardens, and by the rich heritage by the Enrico Fermi International School
of Physics. The success of the school measured by the exceptionally large number of
interactions between the participants and the extremely lively discussions, during and
immediately after the talks, in the park and on several excursions, is also due to the
excellent organizational and administrative support provided by the staff of the Italian
Physical Society. We are also most grateful to the Wilhelm und Else Heraeus-Stiftung
for its generous monetary support.

E. M. Rasel, W. P. Schleich and S. Wölk
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Science in tumultuous times

Nancy Thorndike Greenspan(∗)
Washington DC, USA

Summary. — Germany and German science underwent seismic upheavals from the
start of World War I to the end of World War II. The political history exemplifies
nationalistic aggression. The scientific history showcases breath-taking insights into
understanding nature. Both histories revolutionized the world’s future. How did the
individual scientist maintain his focus and discipline to make these break-throughs
in the midst of chaos? The lives of Max Born and his friends and colleagues give a
glimpse into what they endured and what they accomplished.

Introduction

In the first half of the 20th century, physicists, particularly Germans, faced a chaotic
environment—war, hyper-inflation, anti-Semitism, economic depression, and constant
moral dilemmas. In one way or another, these conditions held for all German physicists.
Well-funded research and social stability were not the order of any day. Yet through
it all, they pierced some of nature’s most mysterious phenomena, general relativity and
quantum physics being the two most obvious. Understanding something of this tur-

(∗) Nancy Thorndike Greenspan is a writer based in Washington DC. Her most recent book is
The End of the Certain World: The Life and Science of Max Born.
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2 Nancy Thorndike Greenspan

bulence lends added respect for what they accomplished. Some historians argue that
the unpredictability surrounding them contributed to their understanding of this new
perception of science [1].

As a German, a scientist, and a Jew, the life of Max Born—and those of his friends—
reflects the major historical events of early 20th century.

1. – The years of the First World War (1914-1918)

Berlin, Spring 1918. Two men, one meticulous in the uniform of the Prussian Army,
the other slightly disheveled in the recognizable black suit of an academic. The two,
obviously friends and close in age — one is 36 and the other 39 — sit at an outdoor
café drinking ersatz black coffee. Both are lean from the severe deprivations of the
war. The years in Berlin had been physically tough. By war’s end, the inhabitants of
Berlin consumed about 1000 calories per day and 3/10 of a pound of meat per week.
Two years earlier, they had largely existed on as many pounds of turnips as they could
buy.

Throughout the war years, the army officer, Max Born, and the rumpled scholar,
Albert Einstein, spent many an hour discussing science and war at such a café. What-
ever problems occurred in everyday life, they had a panacea — theorizing about and
expounding on the foundations of nature, looking for new insights into the mysteries
of the universe. Born watched Einstein pull together the last pieces of his general
theory of relativity, later describing it as “the greatest feat of human thinking about
nature” [2].

At the start of their friendship in 1915, the science they agreed on; the war they did
not. Einstein, a pacifist, was convinced that Germany should lose the war. He argued
his views forcefully. Born struggled between love of country and a distain for Prussian
militarism learned from his father. Eventually Born rationalized his patriotic feelings and
ended his muddle. Einstein persuaded him that the country’s future was as a republic
under an elected socialist democratic government.

Born and his friends in Berlin worked for the war effort under some of Germany’s
top scientists. Einstein did not serve and had the freedom to pursue his science at will.
But weapons and warfare did not stymie the research interests of junior scientists such
as Max Born and his close friend James Franck.

Born headed a weapons research branch in the Artillerie-Prüfungs (Testing)-
Kommission (the APK). His assigned project was “sound ranging”: determining the
position of the enemy’s artillery. With data on the arrival time of the discharge sound
from a gun at various points one could calculate where the sound waves intersected, i.e.,
the enemy’s gun. In addition to intricate calculations on timing, adjustments for inter-
ference factors such as wind, background noise, and the impact of the shells’ bow waves
on the propagation of sound had to be made.

The urgent needs of the army required the research to be conducted quickly, creating
the need to recruit other scientists. Born’s office swarmed with old friends from his
university days in Breslau and his lecturer days in Göttingen — Erwin Madelung, Alfred
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Landé, Rudi Minkowski (nephew of Hermann), and Fritz Reiche. (See Appendix A.) To
his dismay there was no position for Otto Stern at the APK, but he helped to place him
out of harm’s way at a research division at the University of Berlin.

For Born, the primary benefit of the APK was sheltering physicists from the menace
of the front and saving them for Germany’s future. He stayed awake at night worrying
about how to do more.

At the beginning of the sound-ranging project, Born tried to keep up with research
by reading physics articles at night or attending various colloquia in the city. It frus-
trated him. But as the work for the army waned, opportunities opened up. Born and
Landé emptied desk drawers of military graphs and calculations and re-filled them with
calculations of the lattice energy of ionic crystal.

Niels Bohr had sent Born his article “On the Quantum Theory of the Line Spectrum,
(Pt1)”. Born with Landé—and some input from Minkowski— immediately began apply-
ing the information on the stability of the atom to Born’s earlier research on the structure
of solids. Investigating the simple ionic crystal, they calculated the forces between the
lattice points that would determine the structure and stability of it. They found that
using the Bohr-Sommerfeld ring-model to calculate one of the variables determining com-
pressibility gave incorrect results. This particular research raised doubts in Born’s mind
about Bohr’s ring model and further aroused his curiosity about quanta.

Working across town at the Kaiser Wilhelm Institute, James Franck took a different
path. He joined the team of the renowned chemist Fritz Haber who was the Germans’
lead scientist on gas warfare. Experiments by Franck and his colleague Gustav Hertz
had already confirmed Einstein’s interpretation of the photoelectric effect. (They won
the Nobel Prize in 1925 for discovering laws governing the collision of an electron with
an atom.) Throughout the war years they continued their research with Franck even
managing to submit a paper with Hertz while hospitalized with a severe case of pleurisy.
At the Institute, Franck with Otto Hahn, worked on the defensive side of the research.
They were human guinea pigs, testing masks in a room filled with poison gas.

Early on Haber had offered Born the same opportunity. Born rejected it. In his reply
to Haber, he condemned the use of gas warfare and created a rift between them.

At war’s end, in the midst of the turmoil from Germany’s surrender and a threatened
Bolshevik revolution, with the trams shut down because of street fighting, Born walked
the few miles across the fields to Dahlem from his apartment. His purpose was to talk
to Franck about verifying his calculations on lattice energies. He wanted to compare the
theoretical ones to measured data on their chemical companion, heats of formation.

Shortly after Born arrived at Franck’s office, Haber happened by. An awkwardness
hung between them for a minute but quickly dissolved into a friendly rapport. Haber
took an immediate interest in Born’s ideas. Working together over the next few weeks,
they dissected the process by which metals form an ionic compound. Their work resulted
in the Born-Haber cycle, a means of calculating lattice energies. The value for lattice
energies that Born derived from theory was so accurate that it is now often used to
calculate electron affinities.

During these same weeks at war’s end, Einstein and Born set out to rescue officials
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from the University of Berlin who had been arrested by students. They succeeded after
somewhat bizarre events involving an audience with Germany’s new Chancellor Friedrich
Ebert and conflict with “red” soldiers who barred them from entering the Reichstag. At
the end, they felt that they had witnessed what they had hoped for: the birth of a free,
democratic, socialist Germany.

The shift in power did not bring harmony or stability to Germany. In fact, after the
surrender in November 1918, the German people endured an eight-month blockade kept
in place by the British to ensure that Germany met the Allied demands presented at
Versailles. Children starved, babies went without milk, suicides floated down the River
Spree, everyone was cold for lack of heating fuel, thousands died. Destitution similar to
the war years continued and bitterness churned inside the people.

2. – Post-War years (1919-1921)

In 1919, the German government granted Born a professorship as head of the Depart-
ment of Theoretical Physics at the University of Frankfurt. Born found a disorganized
department consisting of two assistants, a mechanic, and a lecturer —small, but an ex-
emplary group. The lecturer was Otto Stern who was shortly joined by Walther Gerlach.
Stern was trying to verify that the distribution and the mean of the velocities of atoms
followed the Maxwell-Boltzmann distribution. At this point he was creating the molec-
ular beam method. But creeping inflation threatened the continuation of his research.
The department research budget had completely run out.

At just that moment Albert Einstein came to the rescue—indirectly. In November
1919, British physicist Arthur Eddington announced that he had confirmed an element
of Einstein’s general theory — the deflection of light through the gravitational field of
the Sun. Overnight, Einstein and his theory became international celebrities. Born
held three lectures on relativity for the general public in Frankfurt and filled a large
auditorium at the university. Charging admission, he raised almost 7000 marks. The
funds financed the research that later won Stern a Nobel Prize. Einstein, impressed with
Born’s industry, teased him:

“And you, Max, are giving lectures on relativity to save the institute from
penury, and writing papers as if you were a single young man living in splendid
isolation in his own specially heated apartment, with none of the worries of
a paterfamilias. How do you do it?” [3].

Germany continued to suffer through waves of political instability with French troops
occupying the Rhineland, including Frankfurt, and politicians falling to assassination.
Europe’s eastern countries offered no better and heightened the volatility. The plight
of Paul Epstein, who had already done seminal research on quantum theory, namely on
the Stark effect, is a microcosm of insecurity and an embodiment of its effect on young
scientists.

Epstein was a man with many countries and no place to go. He was Russian by birth,
had earned a Ph.D. at the University of Munich under Arnold Sommerfeld and after the
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war carried a Polish passport because Poland’s redrawn border with Russia now included
his birthplace. His dilemma was that Russia was too dangerous; Polish universities did
not want a German-educated professor; and German universities did not want a person
with a Polish passport, having just ceded its northeast area to Poland.)

Born did not know Epstein well, but he committed himself to finding him a position.
But where to look? Born himself was a tainted emissary. The countries to the west—
France, England, and Belgium—were out because they still had no official contact with
Germany. Physicists in the US harbored similar animosity. After lengthy searching,
he was able to find Epstein a position at California Institute of Technology through an
American friend—a rarity for Germans to have in those days.

One factor inhibiting German research was the refusal of scientists in Allied countries
to reconcile, which even included circulating journal reprints to them. The impasse arose
because of the Manifesto of Ninety-Three signed by German scientists and intellectuals,
such as Max Planck, at the start of the war. The Manifesto disavowed Germany’s
responsibility for starting the war, or for violating the neutrality of Belgium, or for
harming its citizens. (Born had not sign. He was too junior.) It enraged British and
American scientists at the time. And some six years later the fury still gripped them.
Contacting them was asking for an insult. Born learned this lesson when he reached out
to Harvard chemist and Nobel Prize winner Theodore Richards.

A Swedish friend wrote to Richards on Born’s behalf to ask if he would collaborate
on measuring the compressibility of a specific list of salts—to aid in investigating Bohr’s
planar concept of the structure of matter. Richards answered that he was willing to help
Born since he had not signed the Manifesto. Otherwise, he was unwilling to shake the
hand of a German scientist and called for Germans to repent. Born replied through his
friend, his answer alluding to the devastation of the blockade:

“You write him that we will not forgive as long as the body politic exists
which holds, both as a party and a judge, for its right to impose starvation
on an entire people” [4].

Shortly after, Born established cordial relations with old friend Irving Langmuir at
GE in Schenectady NY. He wrote Langmuir of his frustration.

“Several days ago, Niels Bohr was in Berlin. I discussed much with him about
quantum theory and atomic structure. It is a pity that American scholars
cannot participate in the discussion; otherwise one would reach agreement
quickly” [5].

Although Born’s main research in Frankfurt was not quantum theory, by lecturing on
it and studying Bohr’s articles and Sommerfeld’s Atomic Structure and Spectral Lines,
he stayed in the discussion.

Always hoovering in the background were repercussions from the Treaty of Versailles.
In 1921, Born and Einstein corresponded about its impact. Einstein, painting an opti-
mistic picture of world events perhaps to avoid anxiety, wrote,
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“You need not be so depressed by the political situation. The huge reparation
payments and the threats are only a kind of moral nutrition for the dear public
in France, to make the situation appear rosier to them. The more impossible
the conditions, the more certain it is that they are not going to be put into
practice” [6].

Einstein believed that the slovenliness of the French and the growing disunity among
the Allies would undermine the intent and impact. Born saw it differently:

“I can see the effect of this power politics on the minds of the people; it
is a wholly irreversible accumulation of ugly feelings of anger, revenge, and
hatred . . . It seems to me that new catastrophes will inevitably result from
all this. The world is not ruled by reason; even less by love” [7].

Against this political and economic backdrop Born was called to the chair of the theo-
retical physics department at the University of Göttingen. On leaving Frankfurt in 1921,
he proposed Otto Stern as his successor, which included his promotion from lecturer to
assistant professor. The University—so called the “Jewish University” because its origi-
nal benefactors had been Jewish and its bylaws stipulated no religious discrimination—
and the government’s education department refused to make the appointment. A pro-
fessor there said to Born: “I think very highly of Stern, but he has such an analytical
Jewish intellect” [8]. Born felt the decision personally.

An ultimatum that Born placed on accepting the chair in Göttingen was Franck’s
appointment to a chair in experimental physics. He also wanted another assistant pro-
fessor. When Frankfurt rejected Stern, Born wanted him to come to Göttingen. He got
Franck, but not Stern. Part of the reason was the budget, the other was anti-Semitism.
The unofficial Jewish quota on the Göttingen faculty was already oversubscribed.

3. – Quantum mechanics (the 1920s)

By the time Born settled in Göttingen, the infamous hyper-inflation had begun. In
November 1921, there were 330 marks to one American dollar. Two years later the rate
was over 4 trillion marks. Starving students became a constant concern. In addition to
worries about their general survival, Born found them too cold and too hungry to study.
He raised funds to support them both academically and personally and wrote scores of
letters to find them teaching positions until he had exhausted all possibilities and himself.

The inflation ended in January 1924, just over a year before the formulation of quan-
tum mechanics tumbled forth. During the inflationary period, much of the basic frame-
work of QM was developed—and much of it in Göttingen by Born and his assistants.

Born’s ambition was “to bring Göttingen physics to further heights” [9]. Wolfgang
Pauli was part of the plan. Discontented with Göttingen and Born’s mathematical ap-
proach, he only lasted for about six months. Following his departure he and Born contin-
ued their collaboration on applying perturbation theory to the helium atom. At first they
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thought that their results confirmed an old claim by Niels Bohr about the orientation of
the axes of its two electrons. But ultimately they found that the results conflicted with
experimental data.

Born would soon discuss these results with Bohr. In 1922, Bohr came to Göttingen
for—the Bohr Festspiele, as it became known. Bohr lectured for two weeks describing
his theory, which he considered unfinished, with its focus on spectral lines and their
connection with the elements of the periodic table. He proposed the Correspondence
Principle as a means to address a troublesome problem with this theory, namely that
the orbital frequency of an electron did not correspond with the transition frequency
(emission/absorption). The Correspondence Principle ensured that, although the two
frequencies were never equal, they converged in the limit of high quantum numbers.

The lectures often went past the dinner hour. Friedrich Hund observed that they were
scientifically nourished. But given the economic conditions, physically famished. For the
next three years, nothing stopped the quantum fervor there.

The Festspiele, organized by Born and David Hilbert, signaled to British and French
scientists that their refusal to admit German scientists to their conferences and their
boycott of German ones would not marginalize them. Born’s trip to the US three years
later, where he introduced unaware American physicists to the new quantum mechanics,
shows that the lack of contact hardly compromised the Germans’ scientific prowess.
Perhaps the opposite occurred.

The rupture was fully healed in September, 1927—nine years after the armistice—
with the Volta Conference at Como, Italy, one of the first international gatherings to
freely invite German scientists. Max Planck did not accept the invitation until he was
sure that was really the case.

The Volta Conference, held to commemorate the centennial of Alessandro Volta’s
death, was in part a precursor to the Solvay conference a month later. It included
more than 70 physicists from 13 countries. As the conference took place shortly after
Heisenberg discovered the uncertainty principle, quantum physics was the highlight. So
was the new political order. Several speakers praised Benito Mussolini and among the
banners hanging high in the hall, Russia’s new flag with the hammer and sickle was
prominent. Born delivered a lecture on the statistical interpretation of the wave function;
Bohr gave one on “The Quantum Postulate and the Recent Development of Atomic
Theory”; Heisenberg did not present but used the comment period to discuss uncertainty.

Bohr’s ideas, although still in process, heralded the beginning of the Copenhagen
interpretation on quantum physics. It was the formal introduction to his new overarch-
ing concept of complementarity where waves and particles were mutually exclusive but
absolutely necessary to each other. In spite of that the conference was, in Born’s words,
“dull”. His most significant event turned out to be bumping into Ernest Rutherford and
Francis Aston as those two also escaped from the boredom. The relationship forged with
Rutherford that day was instrumental in Born’s receiving a position at the University of
Cambridge when he fled Germany in 1933.

After Born’s triumphal trip to the US in 1925-26 spreading the quantum gospel,
Göttingen was awash with eager students and learned professors who, drunk with quan-
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tum spirits, continued to explore and expand the theory. Copenhagen with Bohr was
much the same. And for a few years there was stability, but then, on October 29, 1929,
the stock market crashed. Some students, such as Edward Teller and John von Neu-
mann, still followed the path to the quantum fount in Göttingen as repressive Eastern
European regimes squeezed them out. The science continued, but this time the political
climate rocked by high unemployment took a sharp turn to the political right rather than
the left.

4. – Exile (1933)

Starting in April 1933, life in Göttingen and in other parts of Germany gradually
came to an end for most Jewish professors. The Nazi regime dismissed them from their
positions and barred them from entering classrooms. On May 10, the day of the book
bonfires, the Borns took a train to the South Tyrol—Selva Gardena—leaving Göttingen
behind to await judgment on his future. Who would have him?

A letter from Born to physicist Paul Ehrenfest in Leiden conveys some small piece of
the impact of this moment.

“This is a completely new and wonderful experience — the high mountains in
the spring. I feel like thanking the powers in Berlin for making this possible.
. . . We forget all the evil we have experienced and take a deep breath at night
and breathe the good air. In the morning I walk for a couple of hours and
have time to ponder the meaning of what we’ve been through. Anger and
bitterness slowly disappear except at night. They come back in nightmares
and in long hours of wakefulness” [10].

Clearly trying to put the situation in perspective and weigh his worth, Born soon
wrote to Ehrenfest again:

“At the beginning of quantum mechanics I had the experience that bold things
occur to me (e.g. the matrices, the confidence relationships, the perturbation
calculations, the transformation SUS−1, etc., the shares of Heisenberg, Jor-
dan, and me are rather equal, the formulas about 90% mine)” [11].

Perhaps this recounting helped Born emotionally, but Ehrenfest, although living safely
in the Netherlands, was beyond words. He committed suicide two months later.

In June, Heisenberg sent Born a letter that Born described as the “well-formulated
attitude of well-meaning German colleagues” [12]. Heisenberg wrote that he was shocked
to learn that Born did not want to return to Göttingen. He felt that Born must simply
wait until the situation sorted out [13]. He clung to a future scenario where their lives were
not affected adversely. “Surely, with time the ugly will be separated from the beautiful”,
and that “in the new political situation there are those who are well worth the wait” [14].
Heisenberg envisioned Born, Franck, and mathematician Richard Courant, returning to
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a Göttingen unaffected by the political changes. Although some would certainly be
affected, he said, it would only be a few.

For Born the tumult outweighed the science, but there was some. Since the essentials
for his research were a pencil and paper, Born used them to delve into physics and push
the outside world away. Reaching back to his research as a graduate student, when the
electromagnetic mass of the electron stirred his imagination, he decided to apply quantum
theory to the electromagnetic field and create a new field theory. His first foray was to
investigate Maxwell’s equations to determine their compatibility to quantum theory. In
the midst of this, two students somehow managed to find him in Selva Gardena—one from
Cambridge and one from South Africa. With them he created the “Selva University”,
and the threesome worked daily on the porch of the cabin or under the trees.

Later in the summer, much more of the scientific community found its way to Selva.
Born assessed it as “nearly a mathematical physics conference”. Visitors were:

– Hermann Weyl, mathematician, Göttingen (who was about to leave),

– Anny Schrödinger (Weyl’s companion and Erwin Schrödinger’s wife),

– Wolfgang Pauli, Zurich, and his sister,

– Max and Marga Planck, Berlin,

– Joe Mayer, physicist, Baltimore, (Maria Goeppert’s husband),

– Arnold Eucken, physical chemist, Göttingen,

– Hermann Mark, physical chemist, Vienna,

– Frederick Lindemann, physicist, Oxford (later Lord Cherwell and Churchill’s advi-
sor)

– Artur Schnabel and Therese Behr, pianist and singer, Tremezzo, Lake Como.

Quite a diverse collection for the rustic village: Jew, non-Jew, German, Austrian,
British, American, chemist, physicist, mathematician, pianist, singer. All were safe by
virtue of nationality or academic position, except for Mark, a Jew, who later drove out
of Austria flying a Nazi flag on his car and secreting his wealth in coat hangers made
from platinum that he had created.

One can only guess at the conversation. Perhaps for the first time with such an august
gathering of physicists, science was on the back burner. The real work was finding safe
positions for young colleagues. The sequela was that many of Germany’s most promising
scientists would leave.

Lindemann had come from England specifically to pluck talented young physicists.
He traveled from university to university in his chauffeured touring car. Earlier Born
had written him about finding positions for his Göttingen assistants and students —
as he said those “under his wing” [15]—such as Edward Teller, Lothar Nordheim, Fritz
London, and Walter Heitler. Born was especially concerned for Edward Teller, writing
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earlier to Ehrenfest, “Teller is an unusually talented person who deserves every support,
and he is already weighted down enough by being a Hungarian Jew” [16]. To Lindemann
he wrote, “take Teller’s name to heart” [17]. Lindemann did find temporary positions
for Fritz London and Edward Teller in England. Heitler went to Bristol when Born
persuaded an anti-Nazi “Aryan” student, Martin Stobbe, to give him his position. (Born
then had to place Stobbe). Nordheim, the last one standing, finally found a temporary
position in Holland. Except for Heitler, who ended up in Dublin, the others eventually
received offers from universities in the US. Almost all the physicists who initially worked
in England moved to positions in the US. The British had almost no ability or, perhaps,
desire to retain them.

Born himself received a number of offers and chose a position at Cambridge University
limited to three years. Correspondence with Ralph Fowler, the chair of theoretical physics
at the Cavendish Library, suggests that the position was created specifically for Born.

Once in Cambridge, Born continued his research on nonlinear electrodynamics with
the young Polish physicist, Leopold Infeld. However, the plight of German-Jews absorbed
much of his time. He became the physics representative for the Swiss-based Emergency
Committee for German Scientists in Exile and for the British Society for the Protection
of Science and Learning. Sometimes these duties and his emotions overwhelmed him.
He wrote to Einstein, “Almost every week some unfortunate wretch approaches me per-
sonally, and every day I receive letters from people left stranded” [18]. He continued to
search for any opportunity—Turkey, Russia, China, India, anywhere—for the younger
generation of scientists and he placed many of them.

Besides the expulsion from Göttingen and worry about the safety of family and friends,
the year 1933 further reinforced Born’s sense of loss. Heisenberg, Schrödinger and Dirac
won Nobel Prizes for their contributions to quantum theory.

Heisenberg wrote Born a conciliatory letter, which he posted from Switzerland.

“The fact that I am to receive the Nobel Prize alone, for work done in
Göttingen in collaboration — you, Jordan and I — this fact depresses me
and I hardly know what to write to you. I am, of course, glad that our com-
mon efforts are now appreciated, and I enjoy the recollection of the beautiful
time of collaboration. I also believe that all good physicists know how great
was your and Jordan’s contribution to the structure of quantum mechanics
— and this remains unchanged by a wrong decision from outside” [19].

Born later wrote to Michael Polanyi about the issue of priority, noting that he was,

“the first to write down a real quantum-mechanical formula, not only pq−qp =
h/2πi but also q′ = ∂H/∂p, p′ = ∂H/∂q as matrix equations. [. . . ] I think
you will not mind if I inform you privately. For we are both in the about the
same position, without the backing of a big nation” [20].

Born did not blame Heisenberg for the confusion. Polanyi did.
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5. – The atom bomb (1945)

When the atom bomb was dropped, Born wrote to his son: “What have they done
to my beautiful science?” Science had given Born both a sense of optimism and a sense
of order. He believed all of his life that “Science was a noble pursuit like philosophy
and art and true religion”. He acknowledged to his son that this belief was not easy to
sustain when science was, as he said, “perverted to destruction and hatred” [21]. One
of the ironies for Born was that many of the top researchers in Los Alamos were his
former students and collaborators, including Edward Teller, Eugene Wigner, John von
Neumann, Klaus Fuchs, and Robert Oppenheimer, who earned his Ph.D. with Born in
Göttingen in 1927 and had been a close collaborator while there.

The Americans and British had great respect for the tremendous talent in Germany
and understood that the bomb had to be developed before the Germans did so. Many
of those working in the Manhattan project were German and only a few years earlier
had been close friends and colleagues with those working on Hitler’s bomb project. Born
begrudgingly knew that it had to be done. In thinking back, though, he chastised himself
for not having stressed to his students the moral responsibility involved in scientific
research.

6. – The Nobel Prize (1954)

Born ultimately received the Nobel Prize for his pioneering work in quantum theory,
specifically for the discovery of the statistical interpretation of Schrödinger’s wave func-
tion — a wave that was not a continuous cloud of electric charges as Schrödinger had
argued but rather, as Born theorized, a cloud of the probability of finding a particle in
a certain state after a collision. Born was particularly pleased that the Royal Swedish
Academy honored this discovery because it was one that he had found completely on
his own.

7. – Conclusion (1970)

Born’s contemporaries and his students spun helplessly with him in the same dramatic
web. Over the course of more than 30 years, they all took different routes to keep their
lives together and continue their science. At the end of his life, Born summed up his
philosophy on science and humanity:

“I am convinced that ideas such as absolute certitude, absolute exactness,
final truth, and so on are figments of the imagination which should not be
admissible in any field of science. On the other hand, any assertion of prob-
ability is either right or wrong from the standpoint of the theory on which
it is based. This loosing of thinking seems to me the greatest blessing which
modern science has given us. For the belief in a single truth and in being the
possessor thereof is the root cause of all evil in the world” [22].
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I would like to thank Joseph D. Martin, Ph.D. at Michigan State University, for his
review of this lecture and his very helpful comments.

Appendix A.

A few of the scientists saved by Max Born during war and the aftermath with some
of their scientific accomplishments

1. Erwin Madelung: quantum theory/ Madelung Constant, Madelung Equations,
Madelung Rule

2. Alfred Landé: quantum theory/ Landé g-factor; Landé interval rule

3. Rudolf Minkowski: astronomer/ supernovae: Apollo asteroid 1620 Geographos;
Planetary Nebula M2-9; Minkowski (moon crater)

4. Fritz Reiche: quantum theory/Thomas-Reiche-Kuhn sum rule; supersonic flow

5. Otto Stern: (Nobel Prize) quantum theory/ Stern-Gerlach effect; atomic magnetic
moment; molecular beam epitaxy

6. Max Wertheimer: psychologist/co-founder of Gestalt therapy

7. Erich von Hornbostel: ethnomusicologist/pioneer in this field; timing used in
sound ranging

8. Paul Epstein: quantum theory/interpretation of the Stark effect and the Zeeman
effect

9. Edward Teller: nuclear and molecular theory/Gamow-Teller Effect, Jahn-Teller
Effect, Renner-Teller Effect, and many more

10. Fritz London: physical chemistry-quantum theory/London equations, London
moment, London dispersion forces

11. Lothar Nordheim: quantum theory/Fowler-Nordheim tunneling, Fowler-
Nordheim-type equations, field electron emission

12. Martin Stobbe: He may have died during WWII

13. Walter Heitler: quantum theory/quantum electrodynamics, quantum field theory
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Appendix B.

German scientists whose research during these turbulent years earned Nobel Prizes.

1. James Franck and Gustav Hertz(1925): discovery of the laws governing the impact
of an electron upon an atom

2. Max Born (1954): statistical studies of atomic wave functions

3. Walther Bothe (1954): invention of the coincidence method

4. Werner Heisenberg* (1932): creation of quantum mechanics

5. Erwin Schrödinger (1933): introduction of wave equations in quantum mechanics

6. Otto Stern* (1943): discovery of the magnetic moment of the proton

7. Wolfgang Pauli* (1945): discovery of the exclusion principle of electrons

8. Eugene Wigner* (1963): principles governing interaction of protons and neutrons
in the nucleus (Maria Goeppert Mayer* also received the Nobel Prize in 1963 for
a different discovery. She was a student of Born’s with Wigner. She did her Nobel
Prize work in the 1940s.)

*Students of Born.
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Summary. — Quantum mechanics has many fathers. The contributions of some
have been lost to its story in part because of political events, the personalities of
the fathers, and the overarching Copenhagen Interpretation that highlighted the
ideas of Niels Bohr and Werner Heisenberg. One physicist who made fundamental
contributions but who is little acknowledged is Max Born. His mathematical for-
mulations provided much of the basis for the solution as well as the interpretation
and completion of Heisenberg’s mathematical insight.

Introduction

Max Born was one of the seminal thinkers in quantum theory. Much of what he
created became part of the Copenhagen Interpretation of quantum mechanics. Because
of this, his singular importance has sometimes been overlooked. But Born spent 15 years,
1912-27, searching for a quantum theory and was instrumental in finding one. Here is
his story.
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The End of the Certain World: The Life and Science of Max Born.
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1. – Breslau, Germany (now Wroclaw, Poland)

A bit of background. . .Born (1882 to 1970) grew up in Breslau, Germany, the grandson
of a wealthy textile manufacturer. As a child, Born was surrounded by music and art.
His mother’s family was integral to the city’s cultural life and generously funded the arts.
Whenever musicians were in town—Johannes Brahms, Richard Strauss, Klara Schumann,
Joseph Joachim—they stayed with and entertained family members. His father Gustav
was a beloved professor of embryology at the University of Breslau, who before his early
death hypothesized accurately about the role of the corpus luteum. Although both
families were Jewish by birth, they were as assimilated as possible.

In his school days Born was a very average student. His bad memory hindered his
academic interests because the academics, including mathematics, relied on rote learning.
Consequently math became a strong dislike. After graduating from the Gymnasium, he
went to the University of Breslau, where first he studied philosophy. He found it a bad
fit. A friend persuaded him to try mathematics. Much to his surprise, he discovered that
the abstractions and analytical thought, so distinct from the earlier exercises, excited
him. He had found his strength.

2. – Göttingen

In 1907, the University of Göttingen awarded Born a Ph.D. in mathematics. Initially
his ambition was to be a mathematician in the mold of his mentors David Hilbert and
Hermann Minkowski, two of the great mathematicians at the turn of the 20th century.
But early on he failed to work out the proof of the transcendental character of the roots
of the wavelike Bessel function(1), and his seeming lack of creativity in pure mathematics
confronted him. For his dissertation and thereafter, he refocused on applied mathematics
and the physical world, but he never forgot Hilbert’s dictum: “a perfect formulation to
a problem is already half its solution” [1]. For the rest of his career, Born stripped the
problem of nonessentials, simplifying without losing the core, and solved. First principles
were his base.

The mystery of quanta was not Born’s first scientific quest. His early work centered
on crystal dynamics, a research area as important to a future quantum theory as that of
spectral lines [2].

His first inkling that the life of quanta needed further exploration came in 1912 when
he and his housemate Theodor von Kármán—later famous for characterizing airflows in
aerodynamics—wrote a theoretical paper on the specific heat of solids. Born created
a detailed, repeating three-dimensional model of a solid structure that included all the
basic concepts of lattice dynamics. (The real inner structure of a solid was not yet
known.) The theoretical results fit experimental ones in all temperature ranges for the
first time. In the conclusion Born wrote that he could not “suppress certain doubts” [3]

(1) That no algebraic equation with integral coefficients exists with π as its root.
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about the assumptions underlying the quantum theory of radiation. He knew that there
must be something deeper — exactly what was not clear to him.

This doubt was one of two that drew Born’s attention to quantum theory. The second
grew out of another paper on crystal dynamics. In this research Born realized that the
Bohr-Sommerfeld ring model of the atom, visually similar to the Solar System, was not
correct. He wrote, “The planar electron orbits are insufficient, atoms are seemingly
spatial objects” [4]. He needed a space-filling, three-dimensional model such as a cube.
Later Born recalled that that result was the “second hint given by lattice dynamics
that in atomic dimensions we ought to face the fact that quite a new mechanics was
needed” [5].

3. – Frankfurt

After WWI, the University of Frankfurt called Born to the chair of theoretical physics.
He did not involve himself in quantum research there, but he did keep up on the field,
giving a seminar on it and studying Arnold Sommerfeld’s book Atomic Structure and
Spectral Lines. However, even though he respected Sommerfeld’s accomplishment, he
did not like his method. Born considered it guessing. In Hilbertian fashion, Born wanted
to develop a general theoretical framework, asking questions that led to mathematical
solutions as he had done in crystal dynamics.

In 1919, Born invited Wolfgang Pauli to work with him in Frankfurt. Pauli was then
in Munich studying with Arnold Sommerfeld. In his letter Born wrote:

“You regard the application of the continuum theory to the interior of the
electron as meaningless because it is principally not a question of observable
things. I have pursued just these thoughts for a long time, certainly until now
without positive success, namely that the path out of the quantum difficulty
has to be sought from quite principled points: one is not allowed to transfer
the concepts of space and time as a 4-dimensional continuum from the macro-
scopic experience to the atomic world which demands obviously another type
of number manifold for an adequate picture” [6].

Born harkened back to the inconsistencies of Bohr’s model and reiterated his own
approach: to throw out “superfluous elements and describe as simply as possible” [7].
He knew that the macroscopic continuum of the classical world did not describe the
microscopic world of the electron.

On November 27, 1920, Born wrote to the US chemist Gilbert Lewis:

“One thing shines out of the chaos: the classical relationship between the
motion of charged particles (nuclei and electrons) and radiation is wrong and
must be described by a Mittlewert Erscheinung, the true laws are quantum
laws that unfortunately we know only little about” [8].
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4. – Göttingen again

In 1921, Born moved from Frankfurt to Göttingen to become head of the Theoretical
Physics Institute at the University. He again invited Pauli to work with him, and this
time Pauli accepted. He was an ideal partner for furthering Born’s goal of exploring
basic quantum principles. In his recently completed dissertation under Sommerfeld, Pauli
had applied Bohr’s quantum conditions to the hydrogen molecule ion — a three-body
problem. His results did not match experimental ones given by spectral lines. Born and
Pauli attacked another three-body problem, applying perturbation theory to the helium
atom. Again, it was unsuccessful.

Pauli’s assistantship with Born lasted only about 6 months. Rural Göttingen was
just too quiet for city-loving Pauli. But probably as limiting was Pauli’s dislike of Born’s
mathematical approach. Pauli’s own was more physical and intuitive. In later years,
Pauli never missed an opportunity to deliver a jab at Born’s proclivity.

A few months later, in June 1922, Niels Bohr came to Göttingen for two weeks of
lectures on his quantum theory. History remembers it as the Bohr Festspiele. About
100 German physicists attended, one of whom was Arnold Sommerfeld with his young
protégé Werner Heisenberg. Quickly assessing Heisenberg’s talents, Born arranged for
him to work in Göttingen while Sommerfeld was on sabbatical. Niels Bohr saw the same
qualities in Heisenberg, but his invitation to Copenhagen came too late.

Stimulated by those two weeks of intense thought and discussion, Born immediately
wrote a short article, “On the Model of the Hydrogen Molecule”. Its two-pages boldly
signaled his future research intentions on quantum theory.

“The time is perhaps past when the imagination of the investigator was given
free rein to devise atomic and molecular models at will. Rather, we are now
in a position to construct models with some certainty, although still by no
means complete certainty, based on the quantum rules” [9].

Clarity, energy, and a view to the future stamped Born’s remarks.
That fall, with Heisenberg, Born re-launched his plan to systematically determine

where Bohr’s quantum theory could predict experimental results. His goal was to examine
a version of the three-body problem more sophisticated than the one with Pauli. He
wanted to use the excited helium atom to explore the behavior of electrons in aperiodic
motion(2).

(2) Born M., Problems of Atomic Dynamics (Frederick Ungar Publishing Co., New York) 1960,
p. xiii-xiv. Born’s terminology of “aperiodic” motions or processes may be unfamiliar to modern-
day physicists. He is referring simply to unbound situations, such as the scattering problem, or
the continuum states above E = 0 for the hydrogen atom. These are “aperiodic” in the sense
that there is no Bohr quantization condition based on angular momentum. They were crucial
in leading Born to the statistical interpretation of the wave function amplitude as a probability
density.
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To expand his own knowledge of perturbation theory and to introduce his students to
it, Born started a Monday night seminar to study Poincaré’s celestial mechanics. Then he
and Heisenberg applied Poincaré’s theory to confirm Bohr’s buildup of the periodic table.
Finally they turned to systematically exploring the excited helium atom. Conclusion:
They found no agreement with experimental results. A further confirmation for Born on
the need for a new quantum theory.

In the summer of 1923, Born wrote to Einstein, “As always I am thinking hopelessly
about quantum theory, trying to find a recipe for calculating helium and the other atoms;
but I am not succeeding in this either” [10].

A few months later, Born offered a new course, “Perturbation Theory Applied to
Atom Mechanics”. These lectures later became his first book on quantum theory. True
to his word about the demise of the old quantum theory, he began the lectures by
proposing a major new approach — to incorporate the electron’s transitions from one
stationary state to the next by mathematically acknowledging the discrete nature of the
jump. Rather than using differential equations, which assume continuity, he replaced
them with difference formulas for discontinuities. He made the jumps an integral part of
the theory.

There was probably some cross-fertilization here. At the same time as Born’s seminar,
his good friend and colleague Richard Courant, head of mathematics at the University,
was holding a seminar on difference equations. The idea of continuity versus discontinuity
had also regained focus with Arthur Holly Compton’s research on the wave-particle
duality of light. Heisenberg reported to Pauli that he was incorporating Born’s new
mathematical formulation into his own quantum model.

In Copenhagen a few months later, Niels Bohr and his colleague Dutch physicist
Hendrik Kramers, along with the young American post-doctoral student John Slater,
were working out a new theory. Within the trio, disagreement brewed. Slater proposed
that energy and momentum are conserved in each absorption and emission process. Bohr
insisted that they were only conserved statistically over a large number of processes. This
assumption allowed him to avoid accepting light quanta, for which he had distaste. (By
this time it was strongly implied by the Compton Effect.)

The ultimate importance of the Bohr-Kramers-Slater theory lay in Slater’s concept
of a virtual radiation field originating from virtual oscillators. Kramers capitalized on
this idea by incorporating it into his dispersion theory. He relied on atomic transitions
rather than the non-observable orbits of electrons. Born followed up on these ideas by
publishing “On Quantum Mechanics” in which he laid out a quantum discretizing rule
using difference equations. Optimism overtook Born as he wrote to a friend that they
would soon “get to the bottom of it” [11].

Heisenberg went to Copenhagen to work with Bohr for the winter of 1924-25. Ph.D.
student Pascual Jordan became Born’s new assistant. Their immediate research objective
was to introduce the concept of transition quantities into Planck’s original 1900 quantum
theory. From there, they planned to investigate collisions.

They were just finishing their article, “Quantum theory of Aperiodic Processes”, when
Heisenberg returned from Copenhagen with some new ideas. These, he did not share.
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But discussions did ensue among the three on Born’s and Jordan’s new realization. They
had discovered that the number of quantum jumps (the transition probabilities) related to
the observed spectral line intensities, the squares of their amplitudes. Born also proposed
that one could formulate transition amplitudes (later interpreted as the matrix elements
of the position and momentum operators). He thought this idea might be central to a
new theory. Observability was also a striking feature of the Born/Jordan article:

“A postulate of great reach and fruitfulness states that only such quantities
should enter into the true laws of nature which are in principle observable
and measurable” [12].

Observability was not a new idea in quantum theory. Pauli had talked about it for
years, as had Born, and in a dispersion paper, Kramers had included only observable
quantities. But Born and Jordan made it explicit for the first time.

All of this was intellectual fodder for Heisenberg. Working on his own, he came up
with a strange multiplication rule. Again he did not share. Instead in late-May, he left
for Helgoland to rest, recover from hay fever, and clear his thoughts. While there, he was
inspired to use his multiplication rule to derive the energies of the quantum stationary
states and compare them with the observed spectral line intensities. Amazing to him,
the two agreed.

When Heisenberg returned to Göttingen in early July, he handed his article to Born
and asked him to review it. He explained that he was not sure what it all meant and
whether it was nonsense or not. He needed Born’s advice and insight.

Born read the article and puzzled over the mathematical configurations. He recognized
that Heisenberg had created multiplication rules for the transition amplitudes. He did
not immediately recognize the mathematical technique. Restless and not sleeping, he
continued to ponder. Tracing the logic and rewriting Heisenberg’s version of Bohr’s
quantum conditions for p (momentum) and q (position), Born realized that the product
of pq did not equal qp. They did not commute. Heisenberg had used matrix multiplication
unknowingly. At that time he did not what matrices were.

Born then left for a conference where he saw Pauli. He asked Pauli to collaborate
on understanding Heisenberg’s formulation. Pauli declined characteristically, saying, “I
know you are fond of tedious and complicated formalism. You are only going to spoil
Heisenberg’s physical ideas by your futile mathematics” [13].

Back in Göttingen, Born noted the assignments for Jordan and his other assistants in
the July 23 entry of his Daybook. He specified for himself “Heisenberg’s Quantum Me-
chanics”. Under “new problems”, he wrote: “Connection between de Broglie’s theory and
the Duane-Compton derivation of [x-ray] interference” [14]. With that entry, he stopped
writing in his Daybook — and he stopped thinking about de Broglie’s wave theory. For
about the next four days, Heisenberg’s article with its symbolic multiplication of transi-
tion amplitudes became his intense focus. Then he sent it off to the Zeitschrift für Physik.

From there, he did not look back. Using Heisenberg’s formula, he found that the
value of the diagonal elements pq− qp equaled h/2πi. As for the off-diagonal elements,
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he arrived at the conclusion that they were zero. The fundamental commutation law
of quantum mechanics was, therefore, pq − qp = h/2πiI. Born later considered his
discovery of this formula to be the “climax of my research” [15].

Quickly Born worked to expand Heisenberg’s insight into a more comprehensive treat-
ment. The result was a joint article with Pascual Jordan, who had worked at Born’s side
throughout. In late October, the two reunited with Heisenberg and launched into ex-
panding the features of quantum mechanics in their so-called “three-man” paper.

But Jordan and Heisenberg had to finish the article without Born. During the sum-
mer, not foreseeing that the answer to the quantum puzzle was quite so near at hand,
Born had scheduled a trip to America for the fall of 1925. Leaving the research behind
was wrenching for him.

Just before departing, he wrote to Niels Bohr and expressed his pleasure at Heisen-
berg’s discovery:

“I am so glad that Heisenberg’s idea pleases you. I believe with complete
certainty that it signifies great progress and that the form, which Jordan and
I have given it, is in a certain sense somewhat final, so far as one can say that
at all in physics. For me, the possibility of this formulation has an entirely
personal charm. Since my student times, I suffer with an idée fixe, that is to
say, that all significant laws of physics must find their adequate formulation
as invariants of linear substitutes. [. . .] Everything I did myself, e.g. the
contribution on lattice theory of the crystal, always ran out of this” [16].

5. – America

Born arrived in New York City on November 11, 1925. During the next four months
and covering 6000 miles, he crisscrossed the US spreading the new quantum gospel to
important centers of physics. Thousands of people, scientists and non-scientists, were
introduced to the new theory from Göttingen. (See table I.)

This exposure explains in part why so many young American physicists soon travelled
to Born and Göttingen. It became, as Karl Compton later dubbed it, “the fount of
quantum wisdom” [17].

On Saturday, November 14, 1925, Born arrived in Cambridge, MA and MIT. During
his two-month stay he gave 30 lectures—the first 10 titled “The Lattice Theory of Rigid
Bodies” and the next 20 “The Structure of the Atom”. Born’s excitement about the
theory growing, he described the lectures as “successful, almost sensational” [18]. In
April 1926, MIT published them as The Problems of Atomic Dynamics. It was the first
book to present the new quantum theory.

Besides the lectures at MIT and others at Harvard, intense discussions about the new
theory at lunch, dinner, or on a walk filled Born’s days. Ideas bubbled up. When he met
the young MIT mathematician Norbert Wiener (now famous as the father of cybernetics),
he thought that a more precise method of Fourier analysis developed by Wiener could be
applied to the problems of the continuous spectrum, such as collision theory. Collision
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Table I. – Itinerary for 1925/1926 US trip.

Arrival Places Faculty/hosts

11/11/25 New York NY Henry Goldman

11/14/25- Massachusetts Institute of Paul Heymans Hans Mueller

1/22/26 Technology , Cambridge MA Norbert Wiener C. L. Norton

Pres. S. W. Stratton

Harvard University , Cambridge, MA Theodore Lyman Edwin C. Kemble

John C. Slater Percy Bridgeman

12/24/25 Rockefeller Foundation, New York NY Wickliffe Rose

01/23/26 General Electric Co., Schenectady NY Willis Whitney Irving Langmuir

David Coolidge Saul Dushman

Albert Hull W. H. Mott-Smith

Burt L. Newkirk

01/26/26 Cornell University , Ithaca NY Ernest Merritt Floyd Richtmyer

Earle Kennard Livingston Ferrand

W. A. Hurwitz Virgil Snyder

Frederick Bedell R. Clifton Gibbs

02/01/26 University of Buffalo, Buffalo NY Cooke Edward Moore

02/02/26 University of Chicago, Chicago IL Henry Gale A. H. Compton

Arthur Dempster Harvey B. Lemon

Albert A. Michelson

02/10/26 California Institute of Technology Robert Millikan Paul Epstein

Pasadena CA Svein Rosseland Fritz Zwicky

George Glocker Joseph Mattauch

Roscoe Dickinson Harry Bateman

Richard Tolman Dayton Clarence Miller

Edwin Hubble Ernest Charles Watson

Wayne B. Hales Harold Delos Babcock

02/24/26 University of California Berkeley CA Gilbert N. Lewis Leonard Loeb

Hertha Sponer Frederick Brackett

Edward London Pres. W. W. Campbell

03/07/26 University of Wisconsin, Madison WI Max Dresden Alexander Mieklejohn

John Van Vleck Leonard Ingersoll

John Roebuck Harnack (nephew of Adolf)

Pres. Glenn Frank Hagans

03/12/26 Columbia University , New York NY George Pegram Kronig

Bergen Davis Wills

Harold Webb

Rockefeller Foundation, New York NY Wickcliffe Rose

General Electric Co., New York NY Pres. Gerard Swope

03/15/26 Princeton University , Princeton NJ Karl Compton Oswald Veblen

Dean West James W. Alexander

Henry Russel Sebastian Karrer

03/20/26 Philosophical Society Gregory Breit Otto LaPorte

Washington DC Sebastian Karrer

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



But God does play dice: The path to quantum mechanics 23

experiments in the lab of his colleague James Franck had triggered Born’s interest in
the interaction of matter with matter as well as of matter with radiation. This problem
had seemed impossible to handle with matrices. In the three-man paper, Born had
outlined the problem and an approach for replacing an element of a matrix referring to
two discrete states by a function of two continuous variables. With the rules for the
transition unknown, he could go no further.

By the end of November, Born and Wiener began to generalize matrices as linear op-
erators using Wiener’s method. They replaced the mathematics of discontinuous energy
spectra with more general systems with continuous spectra. The article was ready by
the Christmas holiday. Born was pleased with the results.

Then came a great surprise. In December 1925, Born received a reprint of the ar-
ticle “The fundamental equations of quantum mechanics”, from the Proceedings of the
Royal Society, written by someone he had never heard of, one Paul Dirac. Here was a
formulation of quantum mechanics similar to the one that he, Jordan, and Heisenberg
had just completed. How had Dirac done this? It turned out that in the fall Cambridge
University physicist Ralph Fowler had received the galley proofs of Heisenberg’s article
on the new quantum formulation and sent them on to Dirac, asking for his opinion.
Dirac’s formulation was the answer.

Born gave his last lecture at MIT on January 22, 1926. One thousand people attended.
The General Electric Research Lab in Schenectady NY was Born’s next stop. Greatly

impressed after his three-day stay, he deemed it “the center of American physics; more
even than Harvard” [19]. In the following nine days, Born lectured at Cornell, the
University of Buffalo, and the University of Chicago. On February 10, he arrived in
Pasadena CA for two weeks at the California Institute of Technology. Carl Eckart’s
recollection echoed those of many others:

“I was not greatly attracted to this [the new quantum theory], but in the late
winter of 1925 or early 1926 Born came to Pasadena, and his lucid lectures
aroused my interest[. . .]. He had conferred with Norbert Wiener on operator
calculus, and the interpretation of the commutative law for p and q as identical
with the differentiation operator was very strongly emphasized in his lectures.
The result was that I spent the spring of 1926 working rather intensively
with this operator formulation and was completely familiar with what is now
known as the Schrödinger operator (the energy operator) before Schrödinger’s
appeared in Pasadena [20].

At the end of the Pasadena lectures Born traveled north to the University of California
at Berkeley to deliver the Hitchcock lectures. Then he began his trip back to the East
coast. His one stop was the University of Minnesota where he dined with John Van
Vleck, who traveled from Wisconsin, and his father, a mathematician there. Van Vleck
was one of the few American physicists actively pursuing quantum physics in early 1926.
He and Born had already been corresponding.

Back on the East Coast, there were more lectures at Columbia University and an
important visit with Wickcliffe Rose of the Rockefeller Foundation, The Foundation was
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just beginning a program to support the exchange of young physicists. The meeting with
Born solidified funding for American students to study with him and his colleagues in
Göttingen.

A March 19, 1926 article in The New York Times, “His Dynamic Theory Rivals
Einstein’s”, heralded Born’s next stop in Princeton. It quoted Karl Compton: “Born
[. . .] has been particularly successful in stimulating and developing his younger colleagues
and students, who have made Göttingen a great centre of activity in modern physics” [21].

By the time Born reached his final stop of Washington DC, he was exhausted and sick
with the flu. He managed to lecture at the Philosophical Society but never made it to the
Bureau of Standards. He sailed from New York on March 24, 1926. In his wake American
science was turning upside down: he had lectured on the new quantum theory at twelve
universities and research centers; he had inspired ideas in hundreds of physicist, young
and old, and he had published the first book on the new quantum theory. E. C. Kemble,
then a junior professor at Harvard, reviewed the book. He began with the statement:
“it would perhaps be rash to say that the year 1925 marks the beginning of a new era in
physics”. He followed this miscalculation by describing the tremendous value of Born’s
lectures to American physicists [22].

Over the next few years many of those in Born’s audiences made their way to
Göttingen. Norbert Wiener from MIT, E. C. Kemble from Harvard, Earle Kennard
at Cornell, E. U. Condon from Berkeley were but a few who arrived in Goettingen for
the 1926 winter term. (Robert Oppenheimer shared this same time in Goettingen, but
his inducement was Born’s visit to Cambridge, England not Cambridge, Massachusetts.)
Other physicists, for instance Karl Compton from Princeton, visited later in the year as
did those from closer at hand, such as Paul Dirac, who, after the startling introduction
with his article, became a close and lasting friend.

6. – Göttingen

Born weathered the surprise of the Dirac article only to be hit with another big one
once back in Göttingen: Schrödinger’s article on wave mechanics. First, it created anxiety
in the advocates of quantum mechanics. Which formulation—waves or particles—held
for the quantum world? Fortunately, in May, Schrödinger quickly resolved the confusion
by mathematically demonstrating that the two forms were equivalent.

Then there was Born’s deep frustration when he saw that he and Wiener had stopped
just short of discovering wave mechanics. Using the complicated and nontransparent
operator theory, they had developed a formula equivalent to Schrödinger’s commutation
law but applied it only to the variable time instead of to both time and momentum.
Seeing his short-sightedness, Born considered this lapse as “the most outstanding example
of my being quite close to an important discovery and letting it slip by” [23].

In hindsight the work with Wiener does not seem for naught. It must have sharpened
Born’s curiosity about waves. In any case, he recovered from his trip and from his lapse
and started thinking about Schrödinger’s wave equation. He was inspired to examine
the result of a free particle, such as an electron, colliding with an atom. He saw that
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Schrödinger’s equation allowed a description of stationary states as well as quantum
jumps. And he found a probabilistic outcome to the collision. In his article in June 1926,
he wrote: “One gets no answer to the question”, what is the state after the collision”,
but only to the question, “how probable is a specific outcome of the collision”. His initial
thinking about a probabilistic outcome? That it was, “a philosophical question for which
physical arguments alone are not decisive” [24].

In his second paper, however, he warmed to the idea of an indeterminate outcome
and expanded his thoughts. He explicitly contradicted Schrödinger’s interpretation that
electron waves were clouds of electricity by theorizing that they were the probability
of finding a particle in a certain place after a collision. Inspired by Einstein’s earlier
representation of waves as guides for light quanta, he envisioned “ghost fields” [25]. And
ghostly it was. Born’s statistical interpretation was the death knell of causality. It ended
the reign of determinism in physics—for most. But not for all.

Einstein and Schrödinger, in particular, never accepted this new reality. Schrödinger
was so distressed with Born’s interpretation that at one point he wished that he had
never written his original article.

In March 1926, prior to the publication of Born’s article on Schrödinger’s wave
function, Einstein commented on quantum mechanics in a letter to Born’s wife: “The
Heisenberg-Born concepts leave us all breathless, and have made a deep impression on
all theoretically oriented people” [26]. It is Einstein’s only comment on the initial stages
of quantum mechanics in letters with the Borns. After Born’s statistical interpretation,
Einstein called on a higher order to buttress his objections. In his now famous quote he
wrote to Born that the statistical interpretation was:

“certainly imposing. But an inner voice tells me that it s not yet the real
thing. The theory says a lot, but does not really bring us closer to the secret of
the ‘Old One’. I, at any rate, am convinced that He does not play dice” [27].

Born had anticipated that some physicists would argue for a deeper physical level that
maintained cause and effect. In his second paper, he wrote that some would “assume
that there are other parameters, not given in the theory, that determine the individual
event” [28]. Given his own reliance on Einstein’s early insight in his creating this theory,
he may not have thought his good friend would be the one.

The controversy over the statistical nature of quantum mechanics came to a head in
October 1927 at the Solvay Conference in Brussels. Born and Heisenberg made a joint
presentation, reviewing its basic features. Their pronouncements were unequivocal.

“We regard quantum mechanics as a complete theory for which the funda-
mental physical and mathematical hypotheses are no longer susceptible of
modification. . . Our fundamental hypothesis of essential indeterminism is in
accord with experiment. The subsequent development of the theory of radi-
ation will change nothing in this state of affairs” [29].

The exchanges between the two main combatants, Einstein and Bohr, became mythic
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in the physics community but they did not create unity. Both left standing, neither
bowed.

The Solvay Conference became the springboard for the Copenhagen Interpretation,
a theory prominently emphasizing Bohr’s complementarity and Heisenberg’s uncertainty
principle. It cemented the importance of discontinuities embodied in matrix mechanics
and the observer’s role in quantum measurement. Believers, especially Heisenberg and
Pauli, proselytized under the rubric of The Copenhagen Interpretation, sweeping in all
components including Born’s. His contribution of the statistical interpretation of the
wave function, which established the basis for uncertainty, became almost subsumed—
even after the Nobel Prize committee recognized his achievement in 1954.

Einstein, for one, did not forget its origins nor consider it trivial. At the time of the
award, Einstein tried to be gracious without capitulating. He wrote,

“it was your [. . .] statistical interpretation of the description (of quantum theory) which
has decisively clarified our thinking. It seems to me that there is no doubt about this at
all, in spite of our inconclusive correspondence on the subject” [30].

No uncertainty existed for Born. On his tombstone is chiseled:

pq− qp = h/2πi.

∗ ∗ ∗
I would like to thank Joseph D. Martin, Ph.D., Michigan State University, for his

review of this lecture and his very helpful comments.
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From the Bohr model to Heisenberg’s quantum
mechanics
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Summary. — The development of quantum mechanics is inseparably connected
with Niels Bohr and Werner Heisenberg. We review the period during which the
Bohr model was developed, reached its limits, and was finally replaced by Heisen-
berg’s quantum mechanics. We show how the theory was obtained by a team of
brilliant scientists. In this lecture we bring together historical aspects and mathe-
matical details.

1. – Introduction

This is a short story of the development of quantum mechanics. The theory was
worked out in the first half of the last century and came into existence through intensive
work of the world’s brightest scientists who were part of a scientific network. It was
developed and kept alive through mutual scientific visits and exchange of knowledge
through (surface) mail. Niels Bohr and Werner Heisenberg belonged to this team of highly
competent theoretical physicists who all worked with the same mission: Understand the
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Fig. 1. – Modernized sketch of the Balmer (1885) and Lyman (1906) line series.

world of atoms! The story begins with the Bohr model and ends with Heisenberg’s
quantum mechanics — just before the appearance of Schrödinger’s wave mechanics.

2. – From Balmer to Bohr

The paradigm shift from classical physics to quantum physics started practically un-
noticed with Balmer’s Wunderformel (wonder formula) [1]. Johann J. Balmer was a
Swiss mathematician and physicist who in 1885 studied the position of the four(!) visi-
ble spectral lines of hydrogen atoms obtained with high precision by Anders J. Ångström
who had made careful studies of the spectrum of the Sun, in particular the Fraunhofer
lines. Balmer fitted their position with an empirical formula:

(1) λn = 3645, 6
n2

n2 − 4
Å (n = 3, 4, 5, 6),

where n runs — as we know today — from n = 3 through integer numbers to infinity
(see fig. 1). The ensemble of the wavelengths λn forms the Balmer series. Balmer’s
formula (1) describes an amazing regularity of the spectral lines emitted by hydrogen
atoms (in vacuum). However, in 1885 it was impossible to relate the formula to the
underlying atomic structure. After all the electron was discovered only in 1897 by Joseph
J. Thomson.

As is well known, it was Max Planck who in 1900 had to postulate a strange property
of the so-called blackbody radiation (Hohlraumstrahlung) which stands for the radiation
coming out of a hot box. In order to find a correct mathematical description for the
intensities of the frequency distribution of the blackbody radiation, Planck had to assume
that the radiation leaves the box discontinuously in tiny portions of energy E = hν, with
ν being one of the many frequencies emitted by the box. Planck’s constant h would soon
turn out to play a decisive role in the upcoming theory of quanta.

For his 1905 explanation of the photoelectric effect Einstein came up with the idea
of a “needle radiation” (Nadelstrahlung), meaning that light will always come in small
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pieces which were later called photons. The photoelectric effect did not, however, give a
clue how positive and negative charges are distributed in an atom. At that time, many
scientists believed in the so-called plum pudding model introduced by J. J. Thomson
who thought that the positive charge of an atom should be uniformly distributed over
the volume of the atom. This uniform background forms the “pudding” with the electrons
being the “plums”. They are positioned at fixed points about which they can vibrate
and emit and absorb radiation according to classical electrodynamics.

The situation changed when one of Thomson’s former students, Ernest Rutherford
together with his students Hans W. Geiger and Ernest Marsden measured the scattering
of α-particles by a thin metal foil. They found a small but finite probability for backscat-
tering of the α-particles. Some time in 1911 Rutherford concluded from an analysis of
the data that the atom must contain a very small nucleus, probably positively charged.
Rutherford’s model for the nucleus eventually triggered Bohr’s model for the atom.

Niels Bohr (1885-1962) [2] had studied physics at the University of Copenhagen and
submitted his doctoral thesis (in Danish) on “Studies on the electron theory in metals”
in the year 1911. In 1912 he began his postdoctoral time at the University of Cambridge
to work with J. J. Thomson on the binding problem of electrons in metals. Cambridge
and Manchester were at that time the leading places for theoretical and experimental
atomic physics. But it seems that Bohr was not happy with Thomson’s plum pudding
model of the atom. By some lucky coincidence he got acquainted in the same year with
Rutherford’s α-particle experiments in Manchester.

Rutherford’s research group shared its knowledge and results willingly with Bohr. In
particular Georg von Hevesy and Charles G. Darwin made him familiar with the new
atomic and nuclear physics. In order to learn more about the atom, Darwin had studied
the energy loss of α-particles passing through matter. The data suggested that the
energy loss for small scattering angles of the α-particles was caused by electrons. Bohr
concluded from the experimental results that the atomic electrons had to be bound to
the nucleus. He was flexible enough not to insist that this binding had to be harmonic.
Without going into details we can safely say that it was Rutherford’s discovery of the
nucleus which made Bohr picturize the atom as an almost pointlike nucleus surrounded
by moving electrons. The motion was governed by electric forces between all particles.
Stability of the molecules (and atoms) had to be achieved through the motion of the
electrons. In fact, in the presence of a central heavy point charge a ring of electrons can
only be stable if it rotates in such a way that the attractive Coulomb force is counter-
balanced by the centrifugal force.

In 1912 Bohr wrote a letter to Rutherford, known as Rutherford Memorandum in
which he explained the binding of small molecules by electrons that move on discrete
orbits. He chose the orbits through intelligent guessing. The most interesting candidate
was the H2-molecule. He described its spatial configuration by two nuclei with fixed
distance and two electrons rotating synchronously on opposite sides of a circular orbit
with diameter of about 10−8 cm and with its center half way between the two nuclei.
Bohr however did not think that he had got a final answer to the binding problem. In
a letter [3] to his brother Harald he considered the model to be “perhaps a little bit
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of reality”. He was intrigued by the question what the electrons are doing in an atom.
When he went back to Denmark for a break of his postdoc work, Bohr was still heavily
occupied with this problem. He came much closer to its solution when he was reminded of
the Balmer formula (1) by one of his colleagues. In 1888 the Swedish physicist Johannes
Rydberg had cast this formula in the form

(2)
1
λ

= R

(
1

n′2 −
1
n2

)
(n = n′ + 1, n′ + 2, n′ + 3, . . . , ),

with R = 1.097 107 m−1 being the Rydberg constant. The Balmer series is obtained
for n′ = 2. In 1906 a second spectral series with n′ = 1 had been discovered in the
ultraviolet by Theodore Lyman (see fig. 1). Equation (2) would be useful for Bohr
because it characterizes the observed spectral lines of hydrogen by their frequency ν = c

λ

instead of their wavelength λ.
Bohr was bold enough to assume that, in contradiction to classical physics a bound

electron in a hydrogen can move only on one out of a discrete set of stationary orbits.
Transitions between the orbits n and n′ with energies En and En′ are possible through
emission (En > En′) or absorption (En < En′) of a light quantum with frequency νn′,n.
The Einstein-Bohr frequency condition

(3) En − En′ = h νn′,n

reflects energy conservation.
Motivated by Planck’s hypothesis, E = hν, Bohr considered ν = ω/(2π) to be the

mechanical frequency of the electron in a circular orbit with radius r. The kinetic or-
bital energy Ekin should be half the total energy E in analogy to a harmonic oscillator.
Discrete orbits have discrete kinetic energies which Bohr quantized by making the ansatz

(4) Ekin =
1
2

nhν

(
=

1
2

nh̄ω

)
(n = 1, 2, 3, . . .)

with h̄ = h/(2π). At this point Bohr introduced the (realistic) Coulomb force between
electron and positive nuclear core. Stability of the atom was guaranteed through the
balance between centrifugal force and the attractive electric Coulomb force. This balance
requires the potential energy Epot to be twice the negative of the kinetic orbital energy,

(5) Ekin =
n

2
h̄ω =

Ze2

2r
= −1

2
Epot.

(In SI-units Ze2 has to be replaced by Ze2/(4πε0).) By making use of v = rω the discrete
energies En = Ekin + Epot follow immediately:

(6) En = −μ

2

(
Ze2

h̄

)2 1
n2

(n = 1, 2, 3, . . .),
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with μ being the (reduced) mass of the electron. From the last equation and by using (2)
both the wave lengths and the frequencies of the emitted radiation could be calculated.
Balmer’s Wunderformel was demystified. But Bohr had also found the radius r of each
allowed electron orbit together with the corresponding orbital angular momentum L,

(7) L = nh̄

which is also quantized. This beautiful result of the Bohr model should be valid in atoms
and in molecules.

In 1913 Bohr submitted three papers to the Philosophical Magazine after showing
them to Rutherford. They were entitled “On the constitution of atoms and molecules”.
In the first paper [4] which was devoted to the hydrogen atom he presented his world-
famous model of the atom. Bohr used four principles to explain his model:

– The electron revolves around the nucleus in the Coulomb field of the proton. The
motion on all (closed) orbits occurs according to the laws of classical mechanics.
Therefore the formalism of classical mechanics remains valid which includes the
possibility to use the canonical equations without modifications.

– The orbital motion of the electron is free of energy losses. No radiation is emitted
as one would expect from classical electrodynamics.

– The bound electron can move on discrete stationary orbits only. The allowed orbits
are obtained from constraints imposed by quantum effects.

– In the limit of large masses and orbits (large quantum numbers) the new theory
has to pass over into classical mechanics. This is the correspondence principle.

3. – The Bohr model between success and failure

Bohr’s formulation of his “quantum theory” introduces the concept of quantization
but leaves the formalism of classical mechanics untouched. It was quickly realized that
the quantization conditions could be most simply stated within the Hamilton-Jacobi
equation by using action-angle variables. The important quantity is the action integral
(or action function) Jk defined as the constant area enclosed by closed stream lines in
(qk, pk) phase space. As an example we consider the quantized action integral (see fig. 2)

(8) J =
∮

	pd	l = nh,

for the hydrogen problem. The quantization condition on the r.h.s. of (8) will determine
the discrete energy eigenvalues of hydrogen. For the calculation of the line integral along
the elliptical orbit we need the classical energy E of an electron in the Coulomb field of
the proton

(9) E =
	p 2

2μ
− e2

r

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



34 M. Kleber

Fig. 2. – Elliptical orbit: Planetary model of an electron in the field of a proton.

with μ being again the reduced electron mass. The analytic expression for J depends
only on the semimajor axis a of the ellipse:

(10) J = 2π
√

μ ae2 = nh.

For an attractive 1/r2 force law there is a well-known relation between a and the binding
energy |E|:
(11) a =

e2

2 |E| .

Knowledge of the energy determines the semimajor axis of the ellipse a but leaves the
value of the semiminor axis b ≤ a arbitrary.

From the last two equations one obtains the quantized binding energies of the electron
in hydrogen:

(12) En = −μ

2

(
e2

h̄

)2 1
n2

.

Bohr had used circular orbits to obtain the binding energies in hydrogen. For circular
motion the action integral J is simply the orbital angular momentum multiplied by 2π:
J = 2πL.

In 1916 Arnold Sommerfeld extended the Bohr model to elliptical orbits. The Bohr-
Sommerfeld model, as it was usually named from then on, used the fact that radial and
angular motion are separable for the classical Coulomb (or Kepler) problem. Sommerfeld
showed that the elliptic motion can be characterized by two quantum numbers which,
from a classical point of view determine size and shape of the ellipse. Actually, there is a
third quantum number nφ that specifies the projection of the orbital angular momentum
onto the z-axis (or some other fixed axis). The three internal quantum numbers nr, nφ

and nθ add up to the principal quantum number n

(13) n = nr + nφ + nθ, (n = 1, 2, 3, . . .).

The Bohr-Sommerfeld model was the basis for explaining the splitting of spectral lines
in external electric and magnetic fields. The sum l = nφ + nθ is the quantum number
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l = 0, 1, 2, . . . of the angular momentum whereas m = nφ is the magnetic quantum
number.

Paul Epstein who had joined Sommerfeld in Munich for his PhD work studied the
effect of a static electric field on the quantum numbers. He could show that the linear
Stark effect in hydrogen can be solved exactly for the hydrogen atom within the Bohr-
Sommerfeld model. For this problem the agreement with the experiment was perfect.
Sommerfeld was also successful in explaining the normal Zeeman effect. And, amazingly,
his relativistiv extension of the model could also explain the (relativistic) hyperfine level
splitting of hydrogen. The scientists seemed to be on the right track.

Einstein however wrote a note of caution [5]: “. . . it remains unsatisfactory to de-
pend on the separation of variables which has probably nothing to do with the problem
of quantization”. Einstein suggested a coordinate-invariant principle for quantizing sep-
arable systems as well as non-separable systems. Only for separable systems Einsteins
principle reduces to the Bohr-Sommerfeld quantization rule. In this context we should
point out that Wolfgang Pauli was not aware of Einstein’s paper when he came to Som-
merfeld in 1918 to work for his doctoral thesis on the properties of the hydrogen molecule
ion H+

2 . So he used the unmodified quantization conditions of Bohr and Sommerfeld
which for his case were too restrictive and therefore gave a positive ground state energy
in contradiction to experiment [6, 7].

Einstein’s important work remained unnoticed for several decades. Only Louis de
Broglie [8] referred to the paper in his seminal thesis on the wave properties of matter.

In 1920, after finishing Gymnasium (an advanced high school), Werner Heisenberg
(1901-1976) [9,10] enrolled in the University of Munich to study physics with Sommerfeld
who immediately recognized his student’s great scientific pontential. One year before,
Sommerfeld had finished his famous book on “Atomic Structure and Spectral Lines” [11].
Sommerfeld was a great teacher and Heisenberg a highly intelligent student. Within one
year’s time Heisenberg could already publish a paper on the anomalous Zeeman effect.
The electron spin was unknown at that time. Therefore, a convincing explanation of the
anomalous Zeeman effect within the Bohr-Sommerfeld model was impossible. Questions
about the validity of the Bohr-Sommerfeld theory were brought up. It was a fortunate
coincidence that Heisenberg met Wolfgang Pauli [12] in Munich which marked the begin-
ning of a lifelong friendship. Discussing physics and understanding the mysterious world
of atoms was their common ambition.

Sommerfeld supported his talented students. In the summer of 1922 he travelled
with Heisenberg to Göttingen in order to attend a workshop on urgent quantum prob-
lems. The workshop was called the “Bohr -Festival” because Bohr was the main speaker.
Göttingen’s famous mathematicians David Hilbert, Felix Klein, Carl Runge and Richard
Courant were in the audience. And of course Max Born [13], Göttingen’s leading
theoretician with his co-workers Friedrich Hund and Pascual Jordan. Also Pauli from
Hamburg and other prominent scientists like Paul Ehrenfest and Oskar Klein. The Bohr-
Sommerfeld model was not a final theory. There was growing conflict with spectroscopic
data. Bohr complained in one of his Göttingen talks “. . . how incomplete and uncertain
everything still is”.
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Heisenberg’s active participation in the “Bohr-Festival” resulted in an invitation to
work with Born in Göttingen and also one to work with Bohr in Copenhagen. But first
he had to get his Ph.D. in Munich. He received it in 1923 with a work on turbulence,
another research field of Sommerfeld. Thereafter Heisenberg came to Göttingen to work
with Born as his assistant. One of their first projects was to understand the spectrum
of helium. However, this “simple” two-electron problem could not be solved with the
Bohr-Sommerfeld theory. Some success was achieved by implementing other ideas and
methods into the theory, including Pauli’s exclusion principle. We do not discuss them
here because they are not essential for Heisenberg’s groundbreaking work.

One had to find a way out of the serious difficulties of the Bohr-Sommerfeld theory. In
this almost hopeless situation Heisenberg was lucky to obtain a grant to join Bohr’s group
in Copenhagen. He stayed at Bohr’s institute from September 1924 to April 1925. There
he met another young physicist of exceptional quality, Hendrik Kramers [14], who was
working on the connection between classical mechanics and quantum theory. Kramers
and Heisenberg were both studying the interaction between matter and radiation, and
they got along well with each other. Their joint paper [15] on the refraction of radia-
tion by atoms uses for the first time Fourier series for the amplitudes of the scattered
radiation. The calculational methods were taken from Born’s paper on “Quantum me-
chanics” [16](1) (see also [17] which contains a very useful collection of relevant papers
from Bohr to Heisenberg in English).

When Heisenberg returned to Göttingen he had not solved the problems with the
Bohr-Sommerfeld model. But influenced by Bohr and Kramers and convinced that this
model could not be saved, Heisenberg was “fabricating quantum mechanics” as he wrote
in a letter to Pauli dated June 21, 1925. A new quantum mechanics had to replace
the old Bohr-Sommerfeld quantum mechanics. It did not take Heisenberg long to write
the famous paper entitled “Über quantentheoretische Umdeutung kinematischer und
mechanischer Beziehungen” [18] (“Quantum-theoretical reinterpretation of kinematic and
mechanical relations” [17]). In the abstract of the paper Heisenberg announces that he
tries to “establish a basis for a theoretical quantum mechanics that is exclusively based
on relationships between quantities which are in principle observable”. He wanted to
get rid of the time-dependent position and the orbital period of an electron which he
considered to be unobservable. As Dirac explains [19]: “Heisenberg puts forward a new
theory which suggests that it is not the equations of classical mechanics that are in any
way at fault, but the mathematical operations by which physical results are deduced
from them require modifications”.

4. – Heisenberg’s path from classical physics to quantum mechanics

The main problem in understanding Heisenberg’s paper is that it contains so much
information that “one cannot see the forest for the trees”. Fortunately Heisenberg wrote

(1) The name quantum mechanics appears in the literature here for the first time.
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two letters, one to Ralph Kronig in Copenhagen and a second one, on June 24, to Pauli
where he clearly explained his main new ideas. The letter to Pauli is contained in [17].
The difficulty for today’s reader lies in understanding the reinterpretation of the classical
action. It is the quantized action integral J which plays a key role in Heisenberg’s desire
to obtain an adequate description of observable atomic properties. In the following we
work out the three steps that lead from classical to quantum mechanics.

– The classical action is analyzed in Fourier space.

– The classical Fourier coefficients are transformed into amplitudes which depend on
two “co-ordinates”.

– The equation of motion for the amplitudes is used to determine algebraically the
energy spectrum of the quantum system.

4.1. Action integral in Fourier space. – Like in the old quantum mechanics of Bohr
and Sommerfeld, the important variable is the action integral. In the absence of friction
or radiation a stationary bound state in one dimension is always periodic in time,

(14) J =
∮

period

P dQ =
∮

period

P
dQ

dt
dt =

∫ T

0

P
dQ

dt
dt.

As usual T denotes the period of the motion. Here the particle’s time-dependent position
Q(t) and momentum P (t) are denoted with capital letters. Small letters are reserved for
their corresponding Fourier expansion coefficients x(τ) and p(τ):

(15) Q(t) =
∞∑

τ=−∞
x(τ)eiτωt with ω =

2π

T
= 2π ν.

An analogous expansion holds true for P (t):

(16) P (t) =
∞∑

τ=−∞
p(τ)eiτωt.

Because of

(17)
∫ T

0

p(τ ′)eiτ ′ωt x(τ)eiτωt dt = T p(τ ′)x(τ)δτ ′,−τ

the action variable J can be easily expressed through the Fourier coefficients

(18) J = 2πi

∞∑
τ=−∞

τ p(−τ)x(τ).

For the following it is helpful if we arrange the Fourier coefficients x(τ) and p(τ) according
to their argument τ along the τ -axis (see fig. 3). The action integral is a sum of bilinear
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x(0)x(-1)x(-2) x(1) x(2) x(τ)

p(0)p(-1)p(-2) p(0) p(1) p(2) p(τ). . .

. . .
τ

Fig. 3. – Geometric illustration of the bilinear terms in (18) by two equally long arrows pointing
in opposite directions.

terms, x(τ) p(τ ′) with τ ′ = −τ . This condition on τ ′ makes J independent of time as
it must be the case for stationary states. We can picturize this condition by using two
equally long arrows in fig. 3 which point into opposite directions, one from 0 to τ and
the other from 0 to −τ . For charged particles such an arrow indicates the possibility
to emit or absorb harmonic radiation. Figure 3 indicates a radiative transition between
ground state and first overtone separated by Δτ = ±1 which corresponds to ΔE = ±hν.
Higher-harmonic transitions with |τ | > 1 can be piturized accordingly. The length of
an arrow is proportional to the corresponding transition energy between the two states
which it connects. One-dimensional periodic motion exhibits only one basic frequency,
ν = 1/T , with equidistant overtones as shown in the figure.

x(0)x(-1)x(-2) x(1) x(2) x(τ)

p(0)p(-1)p(-2) p(1) p(2) p(τ). . .

. . .
τ

Fig. 4. – Same as fig. 3 for a non-equidistant frequency spectrum.

4.2. Extension to an arbitrary frequency spectrum. – The frequency spectrum of hy-
drogen is not equidistant. A schematic plot of this new situation is shown in fig. 4.
An expansion of the action variable as before does not work because the corresponding
arrows have different lengths. We have seen before that a stationary contribution to the
action integral J requires the two phases in the bilinear products (17) to cancel. Op-
posite phases are generally only possible if we draw closed loops as shown in fig. 5 The
index 0 characterizes the average property of the periodic motion. Each of the periodic
stationary bound states in the hydrogen atom has its own quantum number n and its
own action function J = Jn. By replacing the index 0 with n we arrive at the numbering
given in fig. 6. The arrows are now conveniently described by their starting point and
by their endpoint. In the example of fig. 6, the Fourier coefficient x(n, n − 1) denotes
a transition amplitude from state n − 1 to state n (read the indices in x(n, n − 1) from
right to left). It was Heisenberg’s brilliant idea to replace the Fourier coefficients in (18)

x(0)x(-1)x(-2) x(1) x(2) x(τ)

p(0)p(-1)p(-2) p(0) p(1) p(2) p(τ). . .

. . .
τ

Fig. 5. – Arrows with the same length but pointing in opposite directions.
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nn-1n-2 n+1 n+2 n+τ

. . .

. . .

. . .

. . .x(n,n-1)

p(n-1,n)

Fig. 6. – Fourier coefficients that depend on two states n and m.

with quantities x(n, m) (in Heisenberg’s notation a(n, m)) and the frequencies with the
transition frequencies from state m to state n. He had “fabricated” the correspondence
scheme for replacing classical Fourier coefficients by quantum transition amplitudes:

x(1)p(−1) −→ x(n, n− 1)p(n− 1, n),(19)

x(τ)p(−τ) −→ x(n, n− τ)p(n− τ, n).(20)

Heisenberg knew from Einstein’s paper on the quantum theory of radiation [20] and
from the many discussions with Kramers that the (observable) intensity of radiation
for a transition from state m to state n was proportional to the square of the transition
amplitudes. The square of the amplitudes (or their absolute values) should be observable
quantities which should be linked to theory. Making use of (19) and (20) the quantized
version of (18) now reads

(21) J = 2πi
∞∑

τ=−∞
τ x(n, n− τ)p(n− τ, n) = nh = J(n).

In this form the action depends only on transition amplitudes and is no longer restricted
to periodic motion – a constraint given up earlier by Born and Jordan [21].

4.3. The appearance of non-commuting quantities . – Heisenberg differentiated the
action (21) with respect to n:

(22)
∂

∂n
J(n) = 2πi

∞∑
τ=−∞

τ
∂

∂n
Λτ (n) = h

with

(23) Λτ (n) := x(n, n− τ) p(n− τ, n).

A similar expression was discussed by Born in his already mentioned important paper
on quantum mechanics [16] which preceded Heisenberg’s paper. There Born argues by
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invoking the correspondence principle that a classical expression of the form τ ∂
∂nΛτ (n),

where n is discrete, should be replaced by the corresponding difference form(2):

(24) τ
∂

∂n
Λτ (n) −→ Λτ (n + τ)− Λτ (n),

which means that

(25) τ
∂

∂n
Λτ (n) −→ p(n, n + τ) x(n + τ, n)− x(n, n− τ) p(n− τ, n).

As a result of this substitution rule we now obtain from (22)

(26) 2πi

∞∑
τ=−∞

p(n, n + τ) x(n + τ, n)− x(n, n− τ) p(n− τ, n) = h.

Replacing the summation index τ with the summation indices l = n + τ and l = n− τ ,
respectively yields the famous commutation relation between x and p:

(27)
∞∑

l=−∞
p(n, l) x(l, n)− x(n, l) p(l, n) =

h̄

i
.

Heisenberg did not write down this fundamental commutation relation between momen-
tum coordinate and space coordinate because he had replaced the momentum by the
velocity, P (t) = m d

dtQ(t) (see also next section). Equation (27) is due to Born who real-
ized that Heisenberg’s new theory was based on matrix calculation. In 1925 Heisenberg
was not familiar with matrix calculation although his multiplication law for transition
amplitudes in eqs. (7) and (8) of his paper is written in matrix notation. One page later
Heisenberg remarks that “Whereas in classical theory x(t)y(t) is always equal to y(t)x(t)
this is not necessarily the case in quantum theory”. The new quantum mechanics got the
name “matrix mechanics”. Its complete formulation was accomplished in refs. [22,19,23].
We should point out that it was Pascual Jordan who showed [22] that Heisenberg’s theory
satisfies energy conservation and the Einstein-Bohr frequency relation (3).

To appreciate what Heisenberg had achieved we follow his calculation of the quantized
energy levels of a harmonic oscillator.

5. – Quantization of the linear harmonic oscillator

In his paper [18,17] (see also [24,25]) Heisenberg considers space-dependent forces. He
takes over the classical equation of motion ẍ + f(x) = 0 (here in one spatial dimension).

(2) The replacement rule is not quite unique. With the same reasoning one could also substitute
τ ∂

∂n
Λτ (n) −→ Λτ (n) − Λτ (n − τ).
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To avoid confusion with the Fourier coefficients we replace x(t) as we have done before
by Q(t):

(28) Q̈(t) + f(Q) = 0.

We now show how Heisenberg quantizes the linear harmonic oscillator as is explained in
his letter to Pauli (see [17]). Writing

(29) Q̈n(t) + ω2Qn(t) = 0,

where Qn is the n-th periodic solution of the oscillator and going over to Fourier space
as before we have

(30) Qn(t) =
∞∑

τ=−∞
xn(τ) exp(iτωnt) = Q∗

n(t),

because Qn(t) is real. The frequencies ωn must satisfy the Einstein-Bohr rule (3). A
harmonic oscillator lacks higher harmonics; therefore ωn = ω. By combining the last two
equations we obtain

(31)
∞∑

τ=−∞
xn(τ)[−τ2ω2 + ω2] exp(iτωt) = 0.

It follows that all coefficients xn(τ) must be zero except xn(τ = 1) which oscilates with
frequency ω(n + 1, n) = ω and xn(τ = −1) which oscillates with frequency ω(n− 1, n) =
−ω(3). Heisenberg used the substitution rule

xn(1) −→ x(n, n− 1) = x(n− 1, n)∗,

xn(−1) −→ x(n, n + 1) = x(n + 1, n)∗

and expressed the momentum by the velocity Q̇n

(32) Pn(t) = μ Q̇n(t) = iμ ω [xn(1) exp(iωt)− xn(−1) exp(−iωt)].

Heisenberg was then in a position to evaluate (27). From the two contributing terms
l = n + 1 and l = n− 1 he readily obtained

(33) 2μ ω
[ |x(n, n + 1)|2 − |x(n, n− 1)|2 ] = h̄.

(3) This is a special case of the Ritz combination principle, also used by Heisenberg:
xn(τ) exp[iτωnt]) −→ x(n + τ, n) exp[iω(n + τ, n)t] with ω(n, l) + ω(l, m) = ω(n, m).
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The equation defines a recursion relation:

(34) |x(n + 1, n)|2 = |x(n, n− 1)|2 +
h̄

2μ ω

Negative values of n are not possible. Therefore matrix elements with negative indices
must be zero. Using n = 0 in (34) one obtains

(35) |x(1, 0)|2 = |x(0, 1)|2 =
h̄

2μ ω
.

and from there

(36) |x(n, n + 1)|2 = |x(n + 1, n)|2 = (n + 1)
h̄

2μ ω
.

In a last step Heisenberg used this result to calculate the quantized energies

(37) En =
μ

2
Q̇2

n(t) +
μ

2
ω2Q2

n(t)

of the harmonic oscillator. He did this during a stay in Helgoland where he cured a heavy
attack of hay fever. Using the matrix elements (36) which determine both Qn(t) and
Q̇n(t) he obtained the (by now) well-known result

(38) En = h̄ ω

(
n +

1
2

)
.

The nonvanishing (dipole) transition matrix elements to and from state n are indicated
in fig. 7 together with the equidistant energies En. From the figure we infer that the
Einstein-Bohr frequency condition (3) is satisfied since we have as mentioned before
ω(n + 1, n) = ω, and ω(n − 1, n) = −ω. The zero-point energy of the ground state had
been anticipated before from Planck’s blackbody radiation formula. But Heisenberg had
for the first time developed a mathematical method that does not use Bohr’s quantization
scheme. He obtained the whole spectrum of the oscillator, the ground state included from
which obviously no radiation can be emitted.

The transition amplitudes shown in the figure are needed in the scattering of light
by atoms (or molecules) when internal degrees of freedom of the atom are excited. Such
type of inelastic scattering is the nowadays well known Raman scattering. Let us point
out that Heisenberg spent much effort in his paper to quantize the anharmonic oscillator.
There the frequencies are not known a priori. Heisenberg calculated them in second order
in the anharmonicity together with the quantized energies which satisfy the Einstein-Bohr
frequency condition (3). The details of this lengthy calculation can be found in [26].

Finally, let us mention that Pauli obtained [27] the hydrogen spectrum from an intri-
cate calculation within Heisenberg’s theory.
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Fig. 7. – Energies and matrix elements for the linear harmonic oscillator. x(b, a) is the matrix
element of the operator (matrix) x for a transition from state a to state b.

6. – Light at the end of the tunnel

It is here where we terminate our story of the discovery of quantum mechanics. Heisen-
berg’s contribution to modern quantum mechanics cannot be overestimated. The same is
true for Bohr’s ground breaking ideas when he introduced his model. The two scientists
reached the light of new scientific insight by crossing a dark tunnel which links classical
physics to quantum physics.

Some final remarks should be in order. Most textbooks on quantum mechanics do
not spend much effort on Heisenberg’s matrix approach to quantum mechanics because
Schrödinger’s wave method yields a much easier access. Schrödinger submitted the first
of his three papers on quantum mechanics in January 1926 [28, 29] (see also [30]), a
few days after Pauli had submitted his sophisticated calculation of the Balmer formula
using Heisenberg’s matrix mechanics. Schrödinger’s wave function method simplified the
calculation of quantum properties considerably. Although his wave mechanics looked
different from Heisenberg’s matrix mechanics, Schrödinger was able to show that the two
approaches to quantum mechanics are identical.

In 1926 Heisenberg was again in Copenhagen where he taught theoretical physics in
Danish. During his stay in Denmark Heisenberg provided further evidence of his ex-
traordinary scientific abilities when he solved the long-standing (two-electron) helium
problem by making use of the Schrödinger equation in combination with the Pauli prin-
ciple. Heisenberg’s uncertainty principle followed and then in 1932 he got the Noble
Prize, ten years after Bohr had gotten this prestigeous award.

The spirit of the Bohr model is still alive because in its extended and improved
semiclassical version it can be a surprisingly good approximation to exact quantum-
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mechnical results. For example, the low-lying electronic states of H+
2 which Pauli failed to

calculate can be quite accurately reproduced in semiclassical quantization [31]. Another
important application is the semiclassical helium atom [32]. The Bohr model also serves
as a beautiful example for dimensional scaling [33]. Finally, the coordinate-invariant
quantization scheme developed by Einstein on the basis of the Bohr-Sommerfeld model
is of great use to understand and to deal with the difficulties in quantizing classically
chaotic motion [34,32].
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[18] Heisenberg W., Über quantenmechanische Umdeutung kinematischer und mechanischer
Beziehungen, Z. Phys., 33 (1925) 879, received July 29, 1925.

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



From the Bohr model to Heisenberg’s quantum mechanics 45

[19] Dirac P. A. M., The Fundamental Equations of Quantum Mechanics, Proc. R. Soc. A,
109 (1926) 642, received November 7, 1925.

[20] Einstein A., Zur Quantentheorie der Strahlung, Phys. Zeit., 18 (1917) 121.
[21] Born M. and Jordan P., Zur Quantentheorie aperodischer Vorgänge, Z. Phys., 33 (1925)

479.
[22] Born M. and Jordan P., Zur Quantenmechanik, Z. Phys., 34 (1925) 858, received

Sept. 27, 1925.
[23] Born M., Heisenberg W. and Jordan P., Zur Quantenmechanik II, Z. Phys., 35 (1926)

557, received Nov. 16, 1925.
[24] Park D., Classical Dynamics and its Quantum Analogues (Springer Verlag, Berlin) 1990.
[25] Razavy M., Heisenberg’s Quantum Mechanics (World Scientific, Singapore) 2011.
[26] Aitchison I. A. R., MacManus D. A. and Snyder T. M., Understanding Heisenberg’s

“magical” paper of July 1925: A new look at the calculational details, Am. J. Phys., 72
(2004) 1370.
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1. – Introduction

The quantum world [1] displays many mind-boggling phenomena. Schrödinger cats [2,
3], Einstein-Podolsky-Rosen correlations [4] and complementarity [5] are only a few of the
many manifestations of the micro-cosmos which are alien to the classical way of thinking.
Ultimately, the origin of these features is the linearity of quantum theory [6]. Indeed,
the Schrödinger equation is a linear equation, and the superposition of two solutions is,
therefore, again a solution.

In order to probe the linearity of quantum mechanics, non-linear Schrödinger equa-
tions of various forms have been suggested [7-9]. However, in every experimental test,
for example employing neutron interferometry [10, 11] or rf spectroscopy of laser-cooled
stored ions [12], the superposition principle has prevailed.

In contrast to quantum theory, classical mechanics is in general a non-linear theory
and the superposition principle does not hold. Despite this distinct difference, both
theories are intimately connected. Indeed, the Hamilton-Jacobi equation of classical
mechanics leads [13-15] to a non-linear wave equation which is amazingly close, but not
identical to the Schrödinger equation.

To the best of our knowledge there is no procedure how to arrive at the linear
Schrödinger equation starting from classical mechanics. In our lecture notes we show
that this direct path from classical to quantum mechanics is possible when we allow an
additional current in the continuity equation.

1.1. Linearization of the non-linear wave equation. – Despite an extensive litera-
ture [16] on the connection between the Hamilton-Jacobi and the Schrödinger equation
we have not been able to find the arguments summarized in our lecture notes. The key
element of our approach is a mathematical identity which involves the time derivative as
well as the Hamiltonian of the Schrödinger equation acting on a wave consisting of an
amplitude and a phase. Our relation shows that a quantum wave, that is a wave which
satisfies the Schrödinger equation, can be interpreted as one whose phase is coupled in a
special way to its amplitude.

Indeed, the equation of motion for the amplitude is again a Schrödinger equation
but with the momentum operator being replaced by the momentum operator plus the
gradient of the phase function, and the potential by the potential plus the time derivative.
This substitution is familiar from the concept of gauge invariance. However, in the
present context we use the transformed Schrödinger equation for the amplitude to define
the familiar Schrödinger equation for the complete wave.

For the reader not interested in the mathematical details of the different approaches
towards the Schrödinger equation discussed in the present lectures, we have summarized
them in fig. 1. In order to distinguish between rigorous derivations, and assumptions
based on generalizations of successful concepts, we have introduced in this diagram solid
and dashed lines, respectively.

In fig. 1 we compare and contrast four approaches towards the Schrödinger equation:
The first one, proposed by Ralph Schiller [13] and shown on the left-hand side of the
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Fig. 1. – Four routes connecting the Hamilton-Jacobi equation of non-relativistic classical me-
chanics with the linear Schrödinger equation and the non-linear wave equation. The Van Vleck
determinant D obtained by appropriate differentiations of the classical action S(cl) satisfies the
Van Vleck continuity equation which follows from the Hamilton-Jacobi equation. As a result,

the super-classical wave ψ(cl) ≡ D1/2eiS(cl)/h̄ satisfies a non-linear wave equation similar to
the Schrödinger equation, but with a non-linearity given by the potential Q[|ψ((cl))|]. Here we
have defined Q[|ϕ|] ≡ h̄2/(2m)Δ|ϕ|/|ϕ| for an arbitrary wave ϕ = ϕ(r, t). When we impose
the boundary conditions on ψ(cl) familiar from quantum mechanics, we arrive at semi-classical

quantum mechanics. For the slightly generalized wave ψ
(cl)
R ≡ A

(cl)
R eiS(cl)/h̄ we have replaced

D1/2 by a real-valued amplitude A
(cl)
R but still maintain a continuity equation of the form of Van

Vleck. In this case the Hamilton-Jacobi equation together with the continuity equation leads
again to the classical non-linear wave equation but now with the non-linearity Q[|ψ(cl)

R |]. Here
we have to postulate rather than derive the continuity equation as indicated by the dashed line.
Nevertheless, conservation of matter is inherent in the two non-linear wave equations, which
are equivalent to classical statistical mechanics. Finally we allow a complex-valued amplitude

R of the quantum wave ψ(q) ≡ R eiS(cl)/h̄, and generalize the continuity equation to a quantum
continuity equation. In this case we arrive at the linear Schrödinger equation and at a complete
quantum-mechanical description. The linearization of the classical non-linear wave equation is
made possible by an additional contribution to the current due to an extra momentum origi-

nating from the quantum continuity equation. The wave ψ(q) ≡ A(q)eiS(q)/h̄, familiar from the
Madelung-Bohm formulation of quantum mechanics with a real-valued amplitude A(q) and a
phase S(q) which not only contains S(cl) but also the phase β of R, leads us from the Schrödinger
equation to the quantum Hamilton-Jacobi equation with the Madelung-Bohm quantum potential
Q(MB) ≡ −Q[|ψ(q)|], and the quantum continuity equation.

figure, defines a wave ψ(cl) ≡ D1/2eiS(cl)/h̄ with an amplitude and a phase given by the
Van Vleck determinant D and the classical action S(cl), respectively. Since the Hamilton-
Jacobi equation implies [17] the Van Vleck continuity equation, our mathematical identity
reduces to a non-linear wave equation. Despite its resemblance of quantum mechanics
this equation still represents [13] classical statistical mechanics. Only when we impose
appropriate boundary conditions on ψ(cl) do we obtain the semi-classical description [18]
of quantum mechanics, and ψ(cl) turns into the primitive WKB wave function [18].

In the second approach suggested by Nathan Rosen [14,15], and outlined in the center
of fig. 1, we replace the amplitude D1/2 of ψ(cl) by an arbitrary real-valued amplitude A

(cl)
R

which obeys a classical continuity equation à la Van Vleck. Again, the wave equation
for the classical wave ψ

(cl)
R ≡ A

(cl)
R eiS(cl)/h̄ following from our mathematical identity is

non-linear. As indicated by the dashed horizontal line in fig. 1 connecting the Van Vleck
continuity equation and the one of Rosen, we have now entered uncharted territory.
Indeed, we had to postulate rather than could derive this conservation law. Needless to
say, the classical non-linear wave equation implies the continuity equation.

The third approach depicted on the right-hand side of fig. 1 achieves the linearization
of the non-linear wave equation by allowing the amplitude R of the quantum wave ψ(q) ≡
R eiS(cl)/h̄ to take on complex values. Indeed, both the Schiller as well as the Rosen
concept are based on real-valued amplitudes. As a consequence of the complex nature
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of the amplitude R ≡ |R|eiβ the momentum of the particle is not just the classical
momentum ∇S(cl), but also contains the quantum momentum h̄∇β.

Obviously, we have to include this term in the definition of the current which gives
rise to the quantum continuity equation. Again this step can only be motivated but
not proven from first principles as indicated in fig. 1 by the dashed line connecting the
classical and the quantum continuity equations.

The fourth approach summarized at the bottom right of fig. 1 highlights the
connections between the hydrodynamic formulation of quantum mechanics by Erwin
Madelung [19] and David Bohm [20], the Hamilton-Jacobi equation of classical mechan-
ics, and our approach towards the Schrödinger equation. Indeed, the decomposition
ψ(q) ≡ A(q)eiS(q)/h̄ of the Schrödinger wave ψ(q) into a real-valued amplitude A(q) and
a real-valued phase S(q) transforms the linear Schrödinger equation into the Hamilton-
Jacobi equation with a non-linear quantum potential, and recovers the quantum continu-
ity equation. Now the quantumness of the Schrödinger wave is included in the phase S(q)

rather than the amplitude R. Obviously, the relations A(q) = |R| and S(q) ≡ h̄β + S(cl)

connect the amplitude and the action of the Madelung-Bohm wave to the corresponding
ones of the third approach.

Finally, we emphasize that the quantumness of the wave increases from the top to
the bottom of fig. 1, that is as we make the transition in the amplitude of the wave from
the square root of the Van Vleck determinant D, or an arbitrary real-valued amplitude
A

(cl)
R governed by the classical continuity equation, to the complex-valued R determined

by the quantum continuity equation. Whereas the first two approaches only provide a
semi-classical description based on WKB waves which satisfy a classical non-linear wave
equation, the third and fourth one obtain the full quantum theory based on the linear
Schrödinger equation.

1.2. Key ideas of our previous approaches. – At this point it is worthwhile to put the
present discussion into the context of our earlier studies of the origin of the Schrödinger
equation. Here we were guided by three principles: i) symmetric coupling [21] between
amplitude and phase equations, ii) more freedom in phase [22], and iii) elimination of
classical concepts [23].

Indeed, ref. [21] starts from a general mathematical identity for complex-valued func-
tions which relates the operators appearing in the Schrödinger equation to terms rem-
iniscent of the continuity equation and the classical Hamilton-Jacobi equation. The
postulate of a conservation law for the intensity of a wave with its phase determined by
the classical action leads to a non-linear wave equation. In this situation, the equation
for the amplitude is driven by the gradient of the phase but the phase equation is free of
the amplitude.

We can restore this broken symmetry in the coupling of the two equations by attaching
the non-linearity to the equation of motion of the phase rather than the wave. In this
case the resulting wave equation is linear, and corresponds to the Schrödinger equation.

In ref. [22] we start from a complex-valued function whose phase is determined in its
dynamics by the Hamilton-Jacobi equation, but do not specify yet the time evolution of
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the amplitude. As a result, we obtain a master wave equation whose two extreme limits
represent the non-linear wave equation of classical statistical mechanics, and the linear
Schrödinger equation of quantum mechanics.

In the first case the amplitude remains real for all times. However, in the second one
the equation for the amplitude is such that it immediately accumulates phases even if
initially the amplitude was purely real.

Hence, the phase of a quantum wave is the sum of the classical action and that of
the amplitude. More freedom in phase in quantum than in classical physics therefore
constitutes the main theme of ref. [22].

We emphasize that the approach pursued in the present lecture notes is closely related
to, but also different from the one in ref. [22]. Indeed, we start again from a general
mathematical identity which, in contrast to the one of ref. [21], is at the heart of gauge
transformations. Moreover, we make the superposition principle the overarching idea of
our lectures and obtain from it the Schrödinger equation.

The elimination of classical mechanics and the emergence of the Schrödinger equation
is the guiding principle of ref. [23]. Again, we consider a wave consisting of the product of
a complex-valued amplitude and a phase factor. Three assumptions lead us straight to the
Schrödinger equation: i) The dynamics of the phase is governed by the classical action,
ii) the equation of motion for the amplitude of the wave is determined by the condition
that the desired linear wave equation is free of the classical action and its derivatives,
and iii) there exists a continuity equation for the intensity of the wave. An additional
consequence of this approach is the phase invariance of the Schrödinger equation.

Needless to say, our four approaches towards the Schrödinger equation share a lot of
features and are strongly intertwined. They obviously represent different aspects of the
same problem.

1.3. Outline. – Our lecture notes are organized as follows: We start in sect. 2 by a his-
torical account describing the developments that took place in the mid 1920’s leading to
the Schrödinger equation. Here we emphasize especially the application [24] of Hermann
Weyl’s concept [25] of parallel transport to the electron in an atom. This article [24] by
Schrödinger, published already in 1922, and thus even before matrix mechanics, was an
important stepping stone towards the Schrödinger equation.

We then dedicate sect. 3 to a brief review of several alternative derivations of the
Schrödinger equation. The work [26] closest to ours adds momentum fluctuations
governed by the Heisenberg uncertainty relation to the Hamilton-Jacobi equation, and
uses a variational principle to obtain from it the Schrödinger equation.

In sect. 4 we establish the mathematical identity which is at the very heart not only
of our approach towards the Schrödinger equation but also of gauge transformations.
Whereas the latter connects two wave functions we use the identity to define quantum
waves by postulating a specific equation of motion for the amplitude of the wave.

We gain more insight into the physical meaning of the amplitude equation in sect. 5
by choosing the classical action expressed in units of Planck’s constant as the phase
field. In this way we get a rather unusual Schrödinger equation which mixes classical
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and quantum mechanics. We emphasize that this equation for the amplitude of the wave
is completely equivalent to the familiar Schrödinger equation for the total wave.

Still the question remains why this particular wave equation for the amplitude should
hold true. An answer emerges in sect. 6 where we take advantage of the Hamilton-Jacobi
equation to simplify the amplitude equation. This analysis shows that the amplitude of
a quantum wave has to assume complex values, and has to involve Planck’s constant. As
a consequence of the complex nature of the amplitude a quantum phase and a quantum
current emerge. Their existence guarantees the linearity of the Schrödinger equation.

Indeed, classical waves given by purely real amplitudes can only lead to a non-linear
wave equation as shown in sect. 7. Here the non-linearity is given by the quantum
potential of the Madelung-Bohm theory. Fortunately, a special class of classical waves
suggests a way to the linear Schrödinger equation. Indeed, waves with an amplitude
determined by the Van Vleck determinant are the WKB waves of semi-classical quantum
mechanics. Nevertheless, we face a non-linear wave equation. Fortunately it reduces to
the linear Schrödinger equation under appropriate conditions.

Finally we dedicate sect. 8 to a summary of our journey from the classical to the
quantum domain arriving at the linear Schrödinger equation. We conclude in sect. 9 by
summarizing our results and by providing an outlook.

In order to keep our lecture notes self-contained we have included two appendices.
In appendix A we rederive the continuity equation satisfied by the Van Vleck determi-
nant, first in one, and then in an arbitrary number of space dimensions. We dedicate
appendix B to the proof that the familiar WKB wave function obeys a non-linear wave
equation.

2. – Road towards the Schrödinger equation

At the beginning of the last century the discrete energy spectrum of an atom repre-
sented a great mystery. Indeed, the early successes of Niels Bohr’s and Arnold Sommer-
feld’s Atommechanik [27] which explained this phenomenon by imposing quantization
conditions on the classical orbits of the electrons, were soon overcast by serious problems
indicating that this approach could not represent the ultimate answer.

It was Werner Heisenberg [28] who in the spring of 1925 recognized in a lonely night
on the island of Helgoland that the key to an understanding of the atom is not the motion
of the electron on a single orbit, but the jump between two different ones. As a result,
one has to deal with a new type of mechanics where the position and, by the same token,
the momentum of a particle are characterized by two indices rather than a single one.

Max Born and Pascal Jordan immediately identified [29] these objects as matrices
familiar from linear algebra. Matrix mechanics as outlined by these three scientists in
the Drei-Männerarbeit [30] was born. For a concise summary of matrix mechanics we
refer to the lectures of Manfred Kleber in this volume [31].

At the same time Erwin Schrödinger had embarked on an at first sight completely
different route. He formulated a wave equation which governs the propagation of a
quantity called Feldskalar (wave function) describing the electron in the atom. Moreover,
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he was also able to resolve the apparent contradiction between the discontinuous quantum
jumps of Heisenberg, and the continuous time evolution of his wave function. Indeed,
both approaches represent different, but completely equivalent points of view.

Due to its simplicity the Schrödinger formulation of quantum mechanics quickly su-
perseded the matrix one. Today, the Schrödinger equation is the central tool to address
phenomena of the microscopic world.

Despite its success, the origin of the Schrödinger equation is murky. Indeed,
Schrödinger in his original papers [32] arrived at it in a rather convoluted way [33]. He
was obviously motivated by the ideas of Louis de Broglie [34], who in 1924 had proposed
the wave nature of matter.

Indeed, Felix Bloch recalls [35] that when Schrödinger summarized these ideas in a
physics colloquium at the request of Peter Debye he was challenged by Debye to find
a wave equation. Amazingly only a couple of weeks later, Schrödinger could present in
another colloquium his equation, together with the solutions of the hydrogen atom, the
harmonic oscillator, and many other elementary quantum systems.

One might wonder [36] how Schrödinger could arrive that quickly at his wave equation
and obtain such a wealth of results. The answer to this riddle emerges when we recall
that Schrödinger was not only familiar with de Broglie’s idea of matter waves but he had
also learned from Hermann Weyl to employ the parallel transport of a vector to define a
field. This concept was the beginning [37] of gauge theories [38].

In 1918 Weyl [39] proposed a unification of gravitation and electricity by postulating
that a vector, when transported along a closed path, does not only change its orientation
as a result of the curvature of spacetime induced by the gravitational field, but also its
length. This length change expressed by the Weyl Streckenfaktor is the exponential of
the line integral of the four-vector potential describing the electromagnetic field.

Although this idea immediately attracted criticism from Albert Einstein [40] it was
decisive for the development of wave mechanics. Indeed, in 1922 Schrödinger [24] assumed
that the electron in the Bohr atom would carry such a vector along its closed orbit.
Although he never discussed the exact nature of the vector, which was spelled out only
in 1927 by Fritz London [41] after the discovery of wave mechanics, he found that in this
case the line integral is proportional to an integer multiple of Planck’s constant h = 2πh̄.

Schrödinger speculated that if the constant of proportionality in the exponential func-
tion would involve the imaginary unit “i”, and h̄ in the form i/h̄ the exponential length
change would turn into a periodic phase factor, and the Bohr orbit could be understood
as a resonance phenomenon of a wave. Hence, in Schrödinger’s article of 1922 phase
factors which are central to quantum theory, and manifest themselves for example in the
Aharonov-Bohm effect [42,43], were born.

Schrödinger’s article [24] is remarkable since it appeared two years before de Broglie’s
great insight into the wave nature of matter, and three years before Schrödinger’s own
development of wave mechanics. However, it was not till 1929 that Weyl [44] recognized
that his idea of a length change along a closed path, when translated into phase factors,
unifies quantum mechanics and electrodynamics rather than gravity and electrodynamics.

Indeed, in order to preserve the form invariance of the Schrödinger equation under a

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



The linearity of quantum mechanics and the birth of the Schrödinger equation 55

phase transformation of the wave function Weyl introduces the electromagnetic potentials
which allow to him to absorb the additional terms arising from the transformation. This
elemination is made possible by the gauge invariance of the electromagnetic field. It goes
without saying that Weyl’s seminal paper [44] has given rise to the development of gauge
theories [45,46] which are at the very heart of particle physics.

3. – Comparison with the literature

It is straightforward to start from quantum mechanics and move towards classical
mechanics. The most prominent example of such an approach is due to Madelung [19]
and Bohm [20], who decompose [47] the wave function into an amplitude and a phase
factor. The Schrödinger equation then leads to the continuity equation and the Hamilton-
Jacobi equation of classical mechanics with an additional potential which is proportional
to the square of Planck’s constant. This potential is commonly referred to as the quantum
potential [48].

In our lectures notes we move in the opposite direction. We use the Hamilton-Jacobi
equation of classical mechanics, that is in the absence of a quantum potential, to derive
a wave equation for a wave consisting of an arbitrary amplitude and a phase given by the
classical action. A particular choice of this amplitude eliminates in this wave equation all
remnants of classical mechanics and the Schrödinger equation emerges. This amplitude
which gives birth to quantum mechanics follows from a Schrödinger equation containing
the gradient of the gauge field making contact with Schrödinger’s paper of 1922.

We are aware of several alternative derivations of the Schrödinger equation and men-
tion here only a few. For an interesting approach using the dispersion relation of matter
we refer to the lectures by Gerd Leuchs in this volume [49].

The best known derivation of the Schrödinger equation is due to Richard P. Feyn-
man [50] and is based on his path integral formulation of quantum mechanics. A rather
radical idea [51] claims that the time-dependent Schrödinger equation is an approxi-
mation, and arises from the elimination of degrees of freedom of the time-independent
Schrödinger equation of two coupled systems. The most elementary example is the re-
duction of the three-dimensional Helmholtz equation in the paraxial wave approximation
which leads to a time-dependent Schrödinger equation in two dimensions. An even more
extreme position was taken by Willis E. Lamb [52], who asked the question: “Suppose
Newton had invented quantum mechanics”, or argued in favor of a superclassical theory.

A derivation of the Schrödinger equation based on quantum field theory was outlined
in ref. [53]. Moreover, an interesting connection between the path integral and the
Hamilton-Jacobi equation was suggested by ref. [54].

The work closest to our approach can be found in ref. [26]. Here momentum fluc-
tuations have been added to the Hamilton-Jacobi equation which when subjected to
the Heisenberg uncertainty relation lead to the Schrödinger equation. The connection
between ref. [26] and our lecture notes comes to light when we recall that the momen-
tum is determined by the gradient of the phase. Hence, additional contributions to the
momentum imply additional phases. Indeed, our approach eliminates the remnants of
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classical physics by allowing the phase of the wave function to go beyond the one given
by the classical action. Since this quantum phase is determined by another Schrödinger
equation, the uncertainty principle is satisfied automatically.

4. – Why zero?

We start our “derivation” of the Schrödinger equation by first establishing a mathe-
matical identity which is at the very heart of gauge invariance. However, the logic of our
approach is opposite to the standard one. Indeed, our mathematical relation allows us
to define for an arbitrary phase field a quantum wave by postulating a specific dynamics
of its amplitude.

4.1. A curious mathematical identity . – Throughout these notes we consider waves
Φ = Φ(r, t) which depend on the three-dimensional position vector r and the time
coordinate t, and represent them by the position- and time-dependent amplitude A =
A(r, t) and phase α = α(r, t) in the form

(1) Φ = Aeiα.

Here we do not assume that A is real and positive. In the course of these notes, we shall
find that quantum mechanics requires complex-valued amplitudes.

We differentiate Φ with respect to time to obtain the relation

(2) ih̄
∂Φ
∂t

= eiα

[
ih̄

∂A

∂t
− h̄

∂α

∂t
A

]
,

and recall the identity

(3) −h̄2ΔΦ = eiα

(
h̄

i
∇ + h̄∇α

)2

A,

which follows immediately when we express A in the form

(4) A = e−iαΦ.

Next we subtract on both sides of eq. (2) the term

(5) ĤΦ ≡ − h̄2

2m
ΔΦ + V Φ,

where V ≡ V (r, t) denotes a scalar function which may depend on position and time,
and m denotes the mass of the particle.

Together with eq. (3) we arrive at the identity

(6) ih̄
∂Φ
∂t
− ĤΦ = eiα

[
ih̄

∂A

∂t
− 1

2m

(
h̄

i
∇ + h̄∇α

)2

A−
(

V + h̄
∂α

∂t

)
A

]
.
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It is amusing that just by appropriate differentiations of the decomposition, eq. (1), of
the wave Φ into an amplitude A and a phase α, we have found a mathematical identity
which contains on its left-hand side all the ingredients of the Schrödinger equation, and
on the right-hand side a Schrödinger equation for A.

The latter emerges from the one of Φ by the substitutions

(7)
h̄

i
∇→ h̄

i
∇ + h̄∇α

and

(8) V → V + h̄
∂α

∂t
,

familiar from Weyl’s concept [44] of gauge transformations.

4.2. Definition of a quantum wave by its amplitude. – However, we emphasize that
the approach of Weyl is the inverse of ours. Indeed, he first assumes that ψ ≡ ψ(r, t)
satisfies the Schrödinger equation

(9) ih̄
∂ψ

∂t
= Ĥψ,

and then argues that the wave function

(10) ψ̃ ≡ ψe−iΛ

with the gauge field Λ = Λ(r, t) obeys the transformed Schrödinger equation

(11) ih̄
∂ψ̃

∂t
=

1
2m

(
h̄

i
∇ + h̄∇Λ

)2

ψ̃ +
(

V + h̄
∂Λ
∂t

)
ψ̃.

Since, Weyl starts from the Schrödinger equation, eq. (9), for ψ, the left-hand side of
our mathematical identity, eq. (6), vanishes. As a consequence, the right-hand side of
eq. (6), that is the equation of motion for ψ̃ has to vanish as well, and eq. (11) has to
hold.

In contrast, we employ the mathematical identity, eq. (6), to define quantum waves

(12) ψ ≡ Reiα

as waves whose amplitudes R ≡ R(r, t) make the right-hand side of eq. (6) vanish, that
is they follow from the equation of motion

(13) ih̄
∂R

∂t
=

1
2m

(
h̄

i
∇ + h̄∇α

)2

R +
(

V + h̄
∂α

∂t

)
R.
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Hence, for a given phase function α = α(r, t) this partial differential equation determines
the amplitude R of the wave ψ which by virtue of eq. (6), now satisfies the Schrödinger
equation.

4.3. Formulation of the problem. – So far, we have not specified the form of α, nor
have we given an argument why eq. (13) should hold true. Indeed, the central question
is:

Why does the right-hand side of the mathematical identity, and therefore also
the left-hand side vanish?

Hence, the question is not anymore: “Why does the Schrödinger equation contain the
operators we are familiar with?”, but “Why is the amplitude R of a quantum wave with
phase α given by eq. (13)?”

5. – Classical mechanics guides the amplitude of the Schrödinger wave

The answer as to the origin of the vanishing of the mathematical identity must emerge
from physics. Indeed, it is the Hamilton-Jacobi formulation of classical mechanics which
provides us with insight. In this section we first briefly review this approach towards
classical mechanics, and then analyze the consequences of the classical action as a phase
field.

5.1. Hamilton-Jacobi theory in a nutshell . – In classical mechanics we are interested
in determining the trajectory r = r(t) of a particle of mass m moving in a position- and
time-dependent potential V = V (r, t). Many ways of treating this problem ranging from
Newton’s equation to Hamilton’s equations [55] offer themselves.

Most relevant for the present discussion is the formulation of classical mechan-
ics in terms of the action S(cl) = S(cl)(r, t; ε) which satisfies the Hamilton-Jacobi
equation [55,56]

(14) −∂S(cl)

∂t
=

1
2m

(
∇S(cl)

)2

+ V.

Here we have included the superscript (cl) to indicate that we deal with the classical
action, and ε is a time-independent parameter. In particular, S(cl) can take on only real
values.

Equation (14) describes the propagation of surfaces of constant phase S(cl) as a func-
tion of time. The motion of a particle given by the classical momentum p ≡ mdr/dt is
orthogonal to these planes and thus p = ∇S(cl).

5.2. Classical action as a phase field . – Since S(cl) represents wave fronts, it is sug-
gestive to define the wave

(15) ψ(q) ≡ ReiS(cl)/h̄,
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and require it to be a quantum wave.
In this case the phase function α of the mathematical identity, eq. (6), reads

(16) α ≡ 1
h̄

S(cl),

and according to eq. (13) the amplitude R of the quantum wave has to satisfy the equation
of motion

(17) ih̄
∂R

∂t
=

1
2m

(
h̄

i
∇ + ∇S(cl)

)2

R +
(

V +
∂S(cl)

∂t

)
R.

This partial differential equation is reminiscent of the Schrödinger equation for a charged
particle in an electromagnetic field described by a vector potential and a scalar potential.
In the present case however, these roles are played by the classical momentum p ≡∇S(cl)

and the energy ∂S(cl)/∂t, respectively.
Our approach of starting from the mathematical identity, eq. (6), of a general wave

Φ, and then imposing the amplitude condition, eq. (13), has opened up a new aspect of
the Schrödinger equation which is not apparent in the standard formulation of quantum
mechanics. Indeed, we now have two different methods to address a given quantum
problem.

We can either solve the familiar Schrödinger equation

(18) ih̄
∂ψ(q)

∂t
= Ĥψ(q)

for the wave function ψ(q) with the Hamiltonian, eq. (5). In this formulation the con-
nection to classical mechanics is lost, since we have eliminated [23] the action.

Alternatively, we may solve the Schrödinger equation, eq. (17), for the amplitude
R of the wave. Here the classical action S(cl) appears explicitly in the kinetic energy
operator as ∇S(cl), and with the scalar potential V as ∂S(cl)/∂t. Hence, the classical
field S(cl) = S(cl)(r, t; ε), that is, classical mechanics serves as a guiding field for the
amplitude R of the quantum wave ψ(q). We note that this interpretation is reminiscent
of the pilot-wave theory of de Broglie.

We emphasize that both ψ(q) and R must be normalizable. Moreover, according to
eq. (15) their initial values ψ(q)(r, t = 0) and R(r, t = 0) are connected by the identity

(19) ψ(q)(r, t = 0) = R(r, t = 0) exp
[

i
h̄

S(cl)(r, t = 0; ε)
]

to the initial action S(cl)(r, t = 0; ε).
Needless to say, we are not aware of a solution of eq. (17) for R in the presence of an

arbitrary S(cl). Such an expression would allow us to solve, with the help of the definition
eq. (15) of ψ(q) in terms of R and S(cl), the Schrödinger equation in the presence of an
arbitrary potential V = V (r, t).
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6. – Quantum condition implies linear Schrödinger equation

In the preceding section we have considered the amplitude condition, eq. (13), for the
special example α ≡ S(cl)/h̄ of a phase function, and have arrived at the transformed
Schrödinger equation, eq. (17) for the amplitude R of the wave. We recall that this
equation ensures the Schrödinger equation, eq. (18), for ψ(q).

Thus the origin of the Schrödinger equation is intimately related to the questions:
i) What is the meaning of eq. (17), and ii) why should it be satisfied in nature?

6.1. Emergence of a quantum phase. – To answer these questions, we first take advan-
tage of the Hamilton-Jacobi equation (14) to simplify eq. (17). Indeed, the discussion of
sect. 5 has not even used the dynamics of S(cl) which now reduces eq. (17) to

(20)
∂R

∂t
= i

h̄

2m
ΔR− ∇S(cl)

m
·∇R− 1

2
∇ ·

(∇S(cl)

m

)
R.

We note that the first term on the right-hand side of this equation is proportional to the
imaginary unit i and Planck’s constant. As a result, in the course of time the amplitude
R must assume complex values. Moreover, it must involve h̄ explicitly.

Hence, h̄ enters the wave ψ(q) not only through its phase S(cl)/h̄ but also its amplitude
R. For this reason, and since the condition leads us straight to the Schrödinger equation,
we refer to eq. (20) as the quantum condition.

The quantum condition, eq. (20), enforces a complex-valued amplitude

(21) R ≡ |R|eiβ ≡ A(q)eiβ

of the wave ψ(q) where the absolute value |R| ≡ A(q), as well as the phase β, depend on
h̄. But why is this so seemingly innocent property powerful enough to lead us straight
from the Hamilton-Jacobi equation of classical mechanics to the Schrödinger equation
summarizing quantum mechanics?

We gain insight into this question when we slightly rewrite the quantum condition,
eq. (20), with the decomposition eq. (21). For this purpose we express eq. (20) in real
and imaginary parts.

With the help of the identities eqs. (2) and (3), applied to A(q) defined by eq. (21)
instead of Φ, eq. (20) turns after minor calculation into the relation

2
∂A(q)

∂t
+ i2

∂β

∂t
A(q) = −

{
A(q)∇ ·

(
1
m

∇S(q)

)
+

2
m

∇S(q) ·∇A(q)

}
(22)

+i
{

h̄

m
ΔA(q) − h̄

m
A(q)(∇β)2 − 2A(q) ∇S(cl)

m
·∇β

}
,

where we have introduced the abbreviation

(23) S(q) ≡ h̄β + S(cl)
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for the sum of the quantum and the classical actions, h̄β and S(cl), respectively.
Hence, by taking real and imaginary parts of eq. (22) we find the two equations

(24) 2
∂A(q)

∂t
+ A(q)∇ ·

(∇S(q)

m

)
+ 2∇A(q) · 1

m
∇S(q) = 0

and

(25) −∂β

∂t
=

h̄(∇β)2

2m
+

∇S(cl)

m
·∇β − h̄

2m

ΔA(q)

A(q)
.

Here we have used the fact that the classical action S(cl) is real.
In summary, the mathematical identity, eq. (6), implies that the Schrödinger equation

holds for ψ(q) provided the amplitude R satisfies the wave equation, eq. (13). For the
special choice of the phase function α ≡ S(cl)/h̄, eq. (13) enforces via eq. (20) the fact
that R is complex. The amplitude |R| ≡ A(q) and the phase angle β then need to obey
the coupled equations of motion for A(q) and β given by eqs. (24) and (25), respectively.

6.2. Continuity equation with quantum current . – More insight into the physics of
the two equations, eqs. (24) and (25), emerges when we multiply eq. (24) by A(q) which
yields the continuity equation

(26)
∂

∂t
ρ + ∇ · j = 0.

Here we have introduced the density

(27) ρ ≡ |R|2 =
(
A(q)

)2

,

together with the current

(28) j ≡
(
A(q)

)2 1
m

∇S(q).

When we recall the definition, eq. (23), of S(q), we recognize that two terms contribute
to the current: Indeed, the classical current

(29) j(cl) ≡
(
A(q)

)2 ∇S(cl)

m

is determined mainly by the classical action S(cl).
In contrast, the quantum current

(30) j(q) ≡
(
A(q)

)2 ∇(h̄β)
m
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involves h̄ through the phase β as well as A(q).
This decomposition of j allows us to answer the question concerning the special role of

a complex-valued amplitude R enforced by the quantum condition. Whereas, for a real-
valued amplitude R we have β = 0 and thus j(q) = 0, the quantum condition enforces a
non-vanishing quantum current.

6.3. Quantum Hamilton-Jacobi equation. – We conclude by briefly addressing the
equation of motion, eq. (25), for β. For this purpose we multiply both sides by h̄ which
provides us with the equation of motion

(31) −∂(h̄β)
∂t

=
(∇(h̄β))2

2m
+

∇S(cl)

m
·∇(h̄β) +Q(MB)[A(q)]

for the quantum action h̄β. Here we have introduced the Madelung-Bohm quantum
potential

(32) Q(MB)[|ϕ|] ≡ −Q[|ϕ|] ≡ − h̄2

2m

Δ|ϕ|
|ϕ|

for a complex-valued function ϕ = ϕ(r, t).
We emphasize that eq. (31) is reminiscent of the classical Hamilton-Jacobi equation

eq. (14) with two small, but important differences: The appearance of i) a convective
derivative ∇S(cl) ·∇(h̄β)/m, and ii) the Madelung-Bohm quantum potential Q(MB).

When we add to the equation of motion, eq. (31) for the quantum action h̄β the one
for the classical action S(cl), that is the classical Hamilton-Jacobi equation, eq. (14), we
arrive at the quantum Hamilton-Jacobi equation

(33) −∂S(q)

∂t
=

(∇S(q))2

2m
+ V +Q(MB)[A(q)]

for the total action S(q) defined by eq. (23).
This analysis shows that the convective derivative in eq. (31) is a consequence of

the quadratic non-linearity of the Hamilton-Jacobi equation, and the total action being
the sum of the classical and the quantum action. The Madelung-Bohm potential Q(MB)

reflects the fact that according to eq. (25) the quantum phase β is driven by the amplitude
A(q) through the ratio ΔA(q)/A(q).

7. – Classicality condition implies non-linear wave equation

The quantum current introduced in the preceding section is a consequence of the
equation of motion, eq. (20), for the amplitude R of a quantum wave. By virtue of the
mathematical identity, eq. (6), it gives rise to the linear Schrödinger equation.

The importance of the quantum current stands out most clearly when we consider for
the moment a real-valued amplitude A

(cl)
R . Here we have included a subscript R in the

amplitude as to reflect the fact that Nathan Rosen has advocated this approach. As a
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result of A
(cl)
R being real, β vanishes, and eq. (25) cannot be satisfied since there are no

terms left to compensate the term ΔA
(cl)
R /A

(cl)
R driving β.

In the present section we analyze the wave equations resulting from such a classicality
condition. Here we consider first the general case of a real-valued amplitude, and then
focus on a specific one given by the Van Vleck determinant. The latter is directly
connected to the primitive WKB wave functions [18].

7.1. General real amplitude. – According to eq. (25), a wave

(34) ψ
(cl)
R ≡ A

(cl)
R eiS(cl)/h̄

with a real amplitude A
(cl)
R does not obey the Schrödinger equation. Indeed, the mathe-

matical identity, eq. (6), yields for ψ
(cl)
R the relation

[
ih̄

∂

∂t
− Ĥ

]
ψ

(cl)
R =(35) [

h̄2

2m
ΔA

(cl)
R + ih̄

(
∂A

(cl)
R

∂t
−∇A

(cl)
R · ∇S(cl)

m
− 1

2
A

(cl)
R ∇ ·

(∇S(cl)

m

))]
eiS(cl)/h̄,

where we have also made use of the classical Hamilton-Jacobi equation, eq. (14).
Since we require A

(cl)
R to be real, we have to subject it to the condition

(36)
∂A

(cl)
R

∂t
= ∇A

(cl)
R · ∇S(cl)

m
+

1
2

A
(cl)
R ∇ ·

(∇S(cl)

m

)
.

When we multiply this equation by A
(cl)
R we find the classical continuity equation

(37)
∂

∂t
ρ(cl) + ∇ · j(cl) = 0,

which contains, apart from the density

(38) ρ(cl) ≡
(
A

(cl)
R

)2

determined by the amplitude A
(cl)
R , only the classical current

(39) j(cl) ≡
(
A

(cl)
R

)2 ∇S(cl)

m
,

in complete agreement with eq. (29).
As a result, the amplitudes A

(cl)
R following from the condition eq. (36) are independent

of h̄. For this reason we refer to it as the classicality condition.
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According to eq. (35) a classical wave of the form eq. (34) with the amplitude A
(cl)
R

given by the classicality condition, eq. (36), satisfies the non-linear wave equation [13-15].

(40) ih̄
∂ψ

(cl)
R

∂t
= Ĥψ

(cl)
R + Q[|ψ(cl)

R |]ψ(cl)
R .

Here we have recalled the definitions, eqs. (32) and (34) of Q and ψ
(cl)
R , and have made

use of the fact that |ψ(cl)
R | = A

(cl)
R .

Hence, the classicality condition, eq. (36), corresponding to a vanishing quantum
current connects the Hamilton-Jacobi equation, eq. (14), of classical mechanics with the
non-linear wave equation, eq. (40). In contrast, the quantum condition, eq. (20) which
enforces a non-vanishing quantum current takes us straight to the linear Schrödinger
equation, eq. (18). Obviously the linearization of the non-linear wave equation is due to
the existence of the quantum current.

7.2. Amplitude given by Van Vleck determinant . – So far we have not provided an
explicit expression for the amplitude of the wave. Indeed, our arguments have rested
exclusively on the corresponding equations of motion, eqs. (20) and (36) representing
the quantum and classical conditions, or the associated continuity equations, eqs. (26)
and (37), respectively. We now give an explicit expression for a classical wave which
we identify as the primitive WKB function [18]. This identification will guide us to the
Schrödinger equation.

7.2.1. Super-classical waves. In appendix A we recall that the Van Vleck determi-
nant [17]

(41) D ≡
∣∣∣∣∂2S(cl)

∂xk∂εl

∣∣∣∣ ,
formed by the second derivatives of the classical action S(cl) with respect to the Cartesian
coordinates xk and the constants of motion εl with (k, l) = 1, 2, 3, satisfies [17, 13] the
continuity equation

(42)
∂

∂t
D + ∇ ·

(
D

1
m

∇S(cl)

)
= 0.

Indeed, as shown in appendix A this conservation law is a consequence of the classical
Hamilton-Jacobi equation.

We can now define a wave

(43) ψ(cl) ≡ D1/2eiS(cl)/h̄,

whose amplitude is given by the square root of the Van Vleck determinant.
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Since D1/2 is real-valued, and we have the continuity equation, eq. (42), the wave
ψ(cl) enjoys the classicality condition, eq. (36). Therefore, ψ(cl) obeys the non-linear
wave equation

(44) ih̄
∂ψ(cl)

∂t
= Ĥψ(cl) + Q[|ψ(cl)|]ψ(cl).

We emphasize that despite its similarity to the linear Schrödinger equation the non-
linear wave equation, eq. (44), for ψ(cl) still only represents classical mechanics. Indeed,
the Hamilton-Jacobi equation, eq. (14), together with the Van Vleck continuity equation,
eq. (42), neither of which involve h̄, is equivalent to the non-linear wave equations,
eq. (44). For this reason, and to distinguish them from the classical waves of Rosen we
refer to ψ(cl) as super-classical waves.

7.2.2. Super-classical waves are WKB waves. Nevertheless, we are already rather close
to quantum mechanics. This fact stands out most clearly when we restrict ourselves for
the moment to one space dimension with coordinate x.

In this case we find from appendix A the explicit expression

(45) D =
m

p

for the Van Vleck determinant D in terms of the classical momentum

(46) p(x;E) =
√

2m[E − V (x)]

of the particle of mass m and energy E in a potential V .
When we recall the corresponding classical action

(47) S(cl)(x, t;E) ≡
∫ x

x0

dx̃ p(x̃;E)− Et,

where x0 is an arbitrary position, the super-classical wave ψ(cl) defined by eq. (43) reads

(48) ψ(cl)(x, t) ≡ N 1√
p

exp
[

i
h̄

∫ x

x0

dx̃ p(x̃, E)
]

exp
[
− i

h̄
Et

]
,

where N is a normalization constant, and thus represents the familiar primitive WKB
wave function [18].

As argued above, ψ(cl) satisfies [18] the non-linear wave equation, eq. (44). However, it
is instructive to rederive this wave equation directly from the explicit expression, eq. (48),
of ψ(cl).

In appendix B we perform this calculation and demonstrate that in this case Q takes
the explicit form

(49) Q ≡ h̄2

2m

d2

dx2

(
1√
p

)√
p.
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Needless to say, this expression also follows immediately from the definition, eq. (32),
of Q together with the relation

(50)
∣∣∣ψ(cl)

∣∣∣ =
|N |√

p
,

which is a consequence of eq. (48).
We note that ψ(cl) is an excellent approximation of the exact solution of the

Schrödinger equation in situations when we can neglect Q compared to the effect of
Ĥ on ψ(cl). The explicit expression, eq. (49), of Q in terms of the second derivative
of the square root of p allows us to argue [18] that this condition is satisfied when the
particle is appropriately away from the turning points of the classical motion where p

vanishes, and for potentials V which vary sufficiently slowly.
Hence, for the special class of classical waves represented by WKB waves, and specific

domains of space, the non-linear wave equation is almost indistinguishable from the linear
Schrödinger equation. In this sense we have achieved the desired linearization.

8. – From Van Vleck via Rosen to Schrödinger

We have now reached the point where we can follow the path from the classical to the
quantum world as promised in the introduction of these lecture notes, and outlined in
fig. 1. This approach brings out most clearly that it is the linearity of quantum mechanics
which gives birth to the Schrödinger equation.

We have come a long way since we have embarked on our journey in search for the
origin of the Schrödinger equation. On our trip we have met several wave functions
summarized in table I. We now analyze them one more time. However, in contrast to
the discussion of the preceding sections which traversed fig. 1 from the bottom right,
corresponding to the quantum world, to the top left representing the classical world, we
presently move in the opposite direction, starting from the super-classical wave ψ(cl) and
finally arriving at the quantum wave ψ(q).

8.1. The need for linearity . – The super-classical wave ψ(cl) consisting of an amplitude
given by the square root of the Van Vleck determinant, and a phase determined by the
classical action corresponds to classical physics. We emphasize that neither the Hamilton-
Jacobi equation nor the continuity equation contain Planck’s constant. Nevertheless, we
are close to, but not quite at quantum theory. Although ψ(cl) corresponds to a primitive
WKB wave function, it does not satisfy the linear Schrödinger equation but a non-linear
wave equation due to the presence of the classicality enforcing potential Q.

Only under appropriate conditions such as being away from the turning points, and
for slowly varying potentials can we neglect the non-linearity associated with the classi-
cality, and arrive at the linear Schrödinger equation. Obviously in this part of space, ψ(cl)

contains a grain of quantum mechanics, and we marvel at the fact that a quantity con-
structed exclusively out of classical building blocks, such as the Van Vleck determinant
and the classical action, can be so close to quantum theory.
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Table I. – Summary of the building blocks such as amplitude and phase, their dynamics and
the resulting wave equations of the four major wave functions employed in these lecture notes to
analyze the origin of the Schrödinger equation. For this reason we have not included the wave
functions ψ and ψ̃ which made their appearance in the discussion of the gauge principle. Nor
have we mentioned the function ϕ used in the definition of the potential Q.

Wave function Dynamics of phase Dynamics of amplitude Wave equation

ψ(cl) ≡ D1/2eiS(cl)/h̄ classical Hamilton-Jacobi continuity equation for non-linear

D ≡ Van Vleck equation for S(cl) ρ ≡ D and ρ∇S(cl)/m

determinant is real

S(cl) ≡ classical action

ψ
(cl)
R ≡ A

(cl)
R eiS(cl)/h̄ classical Hamilton-Jacobi continuity equation non-linear

A
(cl)
R is real equation for S(cl) for ρ ≡ (A

(cl)
R )2 and

S(cl) ≡ classical action ρ∇S(cl)/m

ψ(q) ≡ ReiS(cl)/h̄ classical Hamilton-Jacobi continuity equation linear

R ≡ A(q)eiβ equation for for ρ ≡ |R|2 and Schrödinger

R is complex S(cl) and quantum ρ[∇(h̄β) + ∇S(cl)]/m equation

A(q) and β are real equation for β

ψ(q) ≡ A(q)eiS(q)/h̄ quantum Hamilton-Jacobi continuity equation linear

S(q) ≡ h̄β + S(cl) equation for S(q) for ρ ≡ (A(q))2 and Schrödinger

A(q) and S(q) are real ρ∇S(q)/m equation

The form of ψ(cl) is one part. However, the boundary conditions on ψ(cl) are another.
Indeed, standing matter waves are an experimental fact. They can be described in their
most elementary form by a superposition of a right- and a left-running wave, eq. (48),
with identical amplitudes.

Likewise, a scattering situation with a wave approaching from the left requires re-
flected and transmitted waves. Again these secondary waves are of the form of eq. (48).

However, both boundary conditions, corresponding either to a bound state, or a
scattering state are intimately connected to the superposition principle, and thus to the
linearity of the Schrödinger equation.

8.2. Linearization due to quantum current . – Neglecting the classicality enforcing
potential at least in some domain of space in order to obey the superposition principle
points us in the right direction. However, we need a more rigorous argument.

For this purpose we now go a step further and slightly generalize the derivation of
the non-linear wave equation, eq. (44), based on the classical Hamilton-Jacobi equation
and the continuity equation of Van Vleck by allowing [14,15] a wider class of amplitudes,
namely real-valued amplitudes A

(cl)
R . Unless A

(cl)
R = D1/2, we cannot derive a classical

continuity equation, eq. (37), which would ensure the classicality condition, eq. (36).
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However, we may postulate it, and it is indeed reasonable to assume a conservation
law for matter. Unfortunately, for a classical wave ψ

(cl)
R defined in this way, we arrive

again [14,15] at the non-linear Schrödinger equation.
The next and final step in the generalization is to allow complex-valued amplitudes

R of the wave ψ(q). Again, we cannot verify a quantum continuity equation, but infer it
from conservation of matter. In this case, we arrive at the linear Schrödinger equation.

The linearization, which was already alluded to by the WKB wave, and is now made
rigorous, originates from the introduction of a complex-valued amplitude which manifests
itself in a phase and a current in addition to the classical ones. Since the corresponding
action depends explicitly on Planck’s constant we find a quantum phase and a quantum
current in addition to the classical phase and the classical current originating from the
classical action.

We emphasize that the linear Schrödinger equation and the non-linear wave equation
resulting from the quantum and the classical current lead again to continuity equations.
Therefore, the dynamics of the wave is consistent with the assumed continuity equations.

9. – Summary and outlook

We are now in the position to summarize our main results. In order to gain some
insight into the theoretical underpinning of the Schrödinger equation, and its connection
to classical mechanics, we have started from a mathematical identity which is at the
heart of gauge transformations. We have then considered a general wave whose phase
is governed in its dynamics by the classical Hamilton-Jacobi equation. The equations
of motion of the amplitudes of the waves follow from the mathematical identity when
apply either the classicality or the quantum condition. Moreover, the corresponding
wave equations give rise to continuity equations with a density and a current. For the
quantum condition an additional current appears, and the equation for the total wave
is the Schrödinger equation. In contrast, a non-linear wave equation emerges from the
classicality condition.

Needless to say, both the non-linear wave equation as well as the linear Schrödinger
equation following from the classically and the quantum condition, respectively, imply
continuity equations identical to the ones following from the equations of motion of the
amplitudes of the corresponding waves. Therefore, the classicality and the quantum
conditions and the resulting wave equations are consistent with each other.

Moreover, our approach has brought to light two completely equivalent descriptions
of quantum mechanics: i) the Schrödinger equation for ψ which is free of any remnants
of classical mechanics such as ∇S(cl), and ii) the Schrödinger equation for R which does
remember its roots in the classical world, and contains ∇S(cl) and ∂S(cl)/∂t in a form
reminiscent of a vector potential and a scalar potential.

We can trace this absence of classical concepts in the familiar Schrödinger equation
back to the quantum condition. However, one might also argue that a theory describing
the microscopic world should be furthest away from classical mechanics. For this reason,
it should be free of derivatives of S(cl). Indeed, the quantum condition just achieves this
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goal since it eliminates the remnants of classical mechanics, and at the same time gives
birth to the linear Schrödinger equation.

Hence, we are tempted to pursue an approach analogous to the one that has led
Heisenberg to the matrix mechanics: Eliminate classical concepts that cannot be observed
in principle, and derive in this way the Schrödinger equation! Unfortunately, the pursuit
of this intriguing idea goes beyond the scope of our lecture notes and has to be postponed
to a future publication [23].

∗ ∗ ∗
On December 3, 2013 our friend Donald H. Kobe passed away after a long life dedi-

cated to science and religion. It is with great pleasure that we acknowledge his decisive
influence on us. Indeed, it was Don who had triggered our interest in the deeper origin
of the Schrödinger equation which initiated our series of articles on this topic. In this
adventure we have immensely enjoyed the heated exchange of arguments supporting dif-
ferent points of view which ultimately led to many insights. Unfortunately, we were not
able to publish all of our results before Don’s untimely death. The present lecture notes
fall into this category and emerged from a manuscript prepared originally in close collab-
oration with Don. For this reason, we feel it is appropriate to still include him in the list
of coauthors. We have also profited from numerous fruitful discussions with L. Cohen,
J. P. Dahl, J. Dalibard, W. D. Deering, M. Fleischhauer, R. F. O’Connell, H. Paul, E.
Sadurni, A. A. Svidzinsky and W. H. Zurek. D. M. G. is grateful to the Alexander von
Humboldt-Stiftung for a Wiedereinladung which made this work possible, and to Ulm
University and, in particular to IQST for the gracious hospitality. M. O. S. acknowl-
edges the support of the Office of Naval Research (Award No. N00014-16-1-3054), the
Air Force Office of Scientific Research (Award No. FA9550-18-1-0141) and the Robert A.
Welch Foundation (Grant No. A-1261). Moreover, W. P. S. thanks the Hagler Institute
of Advanced Study at Texas A&M University for a Faculty Fellowship and Texas A& M
AgriLife for the support of this work. The research of the IQST is financially supported
by the Ministry of Science, Research and Arts Baden-Württemberg.

Appendix A.

Van Vleck continuity equation

In order to keep our lecture notes self-contained we rederive in this appendix the Van
Vleck continuity equation for two cases: The first one is for a single degree of freedom,
and brings out the essential ingredients of the calculation. The second one addresses an
arbitrary number of degrees. Here, the derivation is slightly more involved and hides the
inner workings of the continuity equation behind an opaque curtain of mathematics.

Although these calculations can be found in the literature, for example in the lecture
notes of Wolfgang Pauli on field quantization [57], or in the first article [13] by Ralph
Schiller we have decided to include them here for the sake of completeness. In particular,
we rederive the Jacobi formula [58] for the differentiation of a determinant which is at
the heart of the Van Vleck continuity equation.
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Moreover, these derivations contain important ingredients of the WKB approxima-
tion, and thereby provide a foundation for appendix B where we show that the wave
equation of the primitive WKB wave function [18] is identical to the non-linear wave
equation of classical mechanics.

A.1. One-dimensional case. – In this section we first rederive the equation of mo-
tion for the one-component version of the Van Vleck determinant in the presence of a
position- and time-dependent potential. We then illustrate the consequences of the so-
obtained Van Vleck continuity equation for a time-independent potential, and focus on
the interplay between density and current.

A.1.1. Derivation of continuity equation. We start from the definition of the quantity

(A.1) D ≡ ∂2S

∂x ∂ε

as the second derivative of the classical action S ≡ S(x, t; ε) with respect to the coordinate
x and the constant ε of integration. For the sake of simplicity in notation we suppress
throughout this appendix the superscript (cl) indicating that we are dealing with the
classical action.

Indeed, S is the solution of the classical Hamilton-Jacobi equation

(A.2) −∂S

∂t
=

1
2m

(
∂S

∂x

)2

+ V

for a particle of mass m moving in a position- and time-dependent potential V = V (x, t).
From the definition, eq. (A.1), of D we find interchanging the order of the derivatives

the identity

(A.3)
∂

∂t
D =

∂

∂t

(
∂2S

∂x ∂ε

)
=

∂

∂x

(
∂

∂ε

(
∂S

∂t

))
,

which with the help of the Hamilton-Jacobi equation, eq. (A.2), reduces to

(A.4)
∂

∂t
D = − ∂

∂x

(
∂

∂ε

[
1

2m

(
∂S

∂x

)2

+ V

])
.

Since the potential V does not depend on ε, the corresponding derivative with respect
to ε vanishes, and we arrive at the relation

(A.5)
∂

∂t
D = − ∂

∂x

[
∂

∂ε

(
1

2m

(
∂S

∂x

)2
)]

= − ∂

∂x

(
1
m

∂S

∂x

∂

∂ε

(
∂S

∂x

))
,

or

(A.6)
∂

∂t
D = − ∂

∂x

[
D

1
m

(
∂S

∂x

)]
.
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In the last step we have again interchanged the order of the differentiations with respect
to x and ε, and have recalled the definition, eq. (A.1), of D.

Hence, we have verified that the Hamilton-Jacobi equation, eq. (A.2), implies for the
quantity D defined by eq. (A.1) the continuity equation

(A.7)
∂

∂t
D +

∂

∂x

[
D

1
m

(
∂S

∂x

)]
= 0,

where D represents a density ρ and

(A.8) jx ≡ D
1
m

∂S

∂x

is a current.

A.1.2. Explicit expressions for density and current from action. We now use the solution

(A.9) S(x, t; ε) ≡
∫ x

x0

dx̃ p(x̃; ε)− εt

of the Hamilton-Jacobi equation, eq. (A.2), for a time-independent potential V = V (x)
to derive an explicit expression for D, and find the current.

For this purpose we substitute the ansatz, eq. (A.9), into the Hamilton-Jacobi equa-
tion, eq. (A.2), which yields with

(A.10)
∂S

∂x
= p and

∂S

∂t
= −ε

the identity

(A.11) ε =
p2

2m
+ V.

Hence, we can identify for the case of a time-independent potential the constant ε of
integration with the energy E of the particle, and find the explicit expression

(A.12) p2(x;E) = 2m[E − V (x)]

for the square of the momentum p.
Next we obtain D from its definition, eq. (A.1), together with the explicit form,

eq. (A.9), of S. Indeed, interchanging the order of differentiations yields with eq. (A.10)
the identity

(A.13) D =
∂2S

∂x ∂E
=

∂

∂E

(
∂S

∂x

)
=

∂p

∂E
.

From the conservation of energy expressed by eq. (A.12) we arrive by differentiation
at the relation

(A.14)
∂

∂E
p2 = 2p

∂p

∂E
= 2m,

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



72 W. P. Schleich, D. M. Greenberger, D. H. Kobe and M. O. Scully

or

(A.15)
∂p

∂E
=

m

p
,

and eq. (A.13) reduces to

(A.16) D ≡ ρ =
m

p
.

Hence, the one-dimensional version of the Van Vleck determinant, that is the one-
dimensional density is inversely proportional to the momentum. This result is in complete
accordance with the corresponding expression obtained from statistical mechanics.

We conclude by substituting eq. (A.10) into eq. (A.8) to obtain the explicit expression

(A.17) jx = ρ
p

m
≡ ρ · v,

for the current familiar from statistical mechanics.

A.1.3. Density and current from continuity equation. Needless to say, the continuity
equation (A.7) provides us with the same expressions. Indeed, when we recall that the
present discussion deals with a stationary system, and thus

(A.18)
∂

∂t
D = 0,

eq. (A.7) immediately yields

(A.19) 0 =
∂

∂x

(
D

1
m

∂S

∂x

)
=

∂

∂x

(
D

p

m

)
,

where in the last step we have used eq. (A.10).
Obviously, the relation

(A.20) D
p

m
= constant

implies, up to the constant, the expressions eqs. (A.16) and (A.17) for D and jx, respec-
tively.

A.2. Multi-dimensional case. – Next we turn to the multi-dimensional case where we
have N degrees of freedom, that is N Cartesian coordinates xk which in turn imply N con-
stants εl of integration. In this case the classical action S ≡ S(x1, . . . , xN , t; ε1, . . . , εN )
depends on time, but most importantly on N coordinates xk, as well as on N constants
εl.

Thus we consider the Van Vleck determinant

(A.21) D ≡
∣∣∣∣ ∂2S

∂xk ∂εl

∣∣∣∣
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formed by all second derivatives of the action S with respect to xk and εl.
The derivation of the corresponding continuity equation relies on two ingredients: (i)

the Jacobi formula [58]

(A.22) dM =MTr(M−1dM) ≡M (M−1)lk(dM)kl

for the differential dM of a determinant M of a matrix M revisited in the next section,
and (ii) the Hamilton-Jacobi equation

(A.23) −∂S

∂t
=

1
2m

(
∂S

∂xj

)(
∂S

∂xj

)
+ V.

Throughout this part of the appendix we adhere to the Einstein summation conven-
tion, and sum over indices which appear twice. Moreover, we allow the potential V to
display a position as well as a time dependence.

We first apply the Jacobi formula, eq. (A.22), to the matrix M defined by the matrix
elements

(A.24) Mkl ≡ ∂2S

∂xk ∂εl

and find the relation

(A.25)
∂

∂t
D = D(M−1)lk

∂

∂t
Mkl,

or

(A.26)
∂

∂t
D = D(M−1)lk

∂

∂xk

[
∂

∂εl

(
∂S

∂t

)]
,

where we have interchanged the order of differentiations.
Moreover, we obtain from the Hamilton-Jacobi equation, eq. (A.23), the expression

(A.27)
∂

∂εl

(
∂S

∂t

)
= − 1

2m

∂

∂εl

[(
∂S

∂xj

)(
∂S

∂xj

)]
= − 1

m

∂S

∂xj

∂2S

∂xj ∂εl
= − 1

m

∂S

∂xj
Mjl,

where in the first step we have made use of the fact that the potential V does not depend
on the constants εl of integration, and have recalled in the last step the definition,
eq. (A.24) of the matrix elements Mjl.

When we substitute this result into eq. (A.26), and employ the product rule we arrive
at the formula

(A.28)
∂

∂t
D = −D(M−1)lk

1
m

∂

∂xk

(
∂S

∂xj

)
Mjl −D(M−1)lk

1
m

∂S

∂xj

∂Mjl

∂xk
.

Next we note the symmetry relation

(A.29)
∂Mjl

∂xk
=

∂

∂xk

(
∂2S

∂xj ∂εl

)
=

∂

∂xj

(
∂2S

∂xk ∂εl

)
=

∂Mkl

∂xj
,
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which follows from the definition eq. (A.24) of the matrix elements Mjl by interchanging
the order of the two differentiations with respect to the coordinates xk and xj , and
slightly rearrange the order of terms in eq. (A.28) which leads us to

(A.30)
∂

∂t
D = −D

m

∂

∂xk

(
∂S

∂xj

)
Mjl

(
M−1

)
lk
− 1

m

∂S

∂xj
D

(
M−1

)
lk

∂Mkl

∂xj
.

At this point we recall the identity

(A.31) Mjl

(
M−1

)
lk

= δjk

corresponding to MM−1 = �, and use the Jacobi formula, eq. (A.22), to establish the
relation

(A.32)
∂

∂xj
D = D

(
M−1

)
lk

∂Mkl

∂xj

for the differentiation of D with respect to xj .
With the help of these formulae eq. (A.30) reduces to

(A.33)
∂

∂t
D = −D

m

∂

∂xj

(
∂S

∂xj

)
− 1

m

∂S

∂xj

∂D

∂xj
,

or

(A.34)
∂

∂t
D +

∂

∂xj

[
D

1
m

(
∂S

∂xj

)]
= 0,

which constitutes the Van Vleck continuity equation.

A.3. Differential of a determinant . – For the sake of completeness we provide in this
section the essential ideas needed in the derivation of the Jacobi formula [58]

(A.35) dM =MTr(M−1dM) ≡M(M−1)lk(dM)kl

for the differential dM of the determinant M corresponding to the matrix M with
the elements (M)ij ≡ Mij . Here M−1 is the inverse of M and Tr denotes the trace.
Throughout this section we assume that we deal with a N × N matrix where N is an
integer.

Since M =M(M11,M12, . . . , MNN ) is a function of all N2 elements Mij we find for
the differential the expression

(A.36) dM =
∂M
∂Mij

dMij ,

where we follow again the Einstein summation convention and sum over i as well as j.
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Next we recall the Laplace expansion

(A.37) M =
N∑

r=1

Mir mir

of the determinantM by elements of the i-th row where the co-factor mir ≡ (−1)i+rMir

contains the determinant Mir of the matrix obtained from M by deleting the i-th row
and the r-th column. Since here we only sum over r we have denoted this summation
explicitly.

We emphasize that the result for M is independent of the row we have used for the
expansion. Moreover, an expansion by columns is possible as well.

From the Laplace expansion, eq. (A.37), we find immediately the relation

(A.38)
∂M
∂Mij

=
N∑

r=1

∂Mir

∂Mij
mir,

where we have made use of the fact that the co-factors mir are independent of Mij since
we have deleted the i-th row.

With the help of the identity

(A.39)
∂Mir

∂Mij
= δrj ,

eq. (A.38) reduces to

(A.40)
∂M
∂Mij

= mij ,

and eq. (A.36) reads

(A.41) dM = mijdMij ,

where now we sum again over both indices.
Provided the determinant M is non-vanishing the inverse M−1 of M is given by

(A.42)
(
M−1

)
ij

=M−1mji,

or

(A.43) mij =M (
M−1

)
ji

,

and thus eq. (A.41) turns into

(A.44) dM =M (
M−1

)
ji

dMij ,

that is the Jacobi formula, eq. (A.35).
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Appendix B.

Non-linear wave equation for WKB wave

In this appendix we rederive [18] the wave equation for the primitive WKB wave

(B.1) φ ≡ N√
p
eiS/h̄,

where N is a normalization constant, and

(B.2) p(x;E) ≡
√

2m[E − V (x)]

denotes the classical momentum of the particle of mass m, and energy E in the time-
independent potential V = V (x).

In complete analogy to appendix A we suppress again for the sake of simplicity in
notation the superscript (cl) in the classical action

(B.3) S(x, t;E) ≡
∫ x

x0

dx̃ p(x̃;E)− Et,

where x0 is an arbitrary coordinate.
Our calculation shows that φ defined by eq. (B.1) can be interpreted as a solution of

the non-linear wave equation discussed in sect. 7. Indeed, the non-linearity is the origin
of the deviation of the WKB wave from the exact solution of the Schrödinger equation.

When we differentiate φ with respect to time and coordinate we find the relations

(B.4) ih̄
∂

∂t
φ = Eφ

and

(B.5)
∂

∂x
φ ≡ φ′ = N

[(
1√
p

)′
eiS/h̄ +

1√
p
eiS/h̄

(
i
h̄

∂S

∂x

)]
,

or

(B.6) φ′ = N
[(

1√
p

)′
eiS/h̄ +

1√
p
eiS/h̄

(
i
h̄

p

)]
.

In the last step we have used the relation

(B.7)
∂S

∂x
= p

following from the definition, eq. (B.3), of S. Moreover, throughout the remainder of
this appendix prime denotes differentiation with respect to x.
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One more differentiation yields

(B.8) φ′′ = N
{(

1√
p

)′′
eiS/h̄ +

i
h̄

[
2
(

1√
p

)′
p +

1√
p
p′
]

eiS/h̄ +
(

i
h̄

p

)2 1√
p
eiS/h̄

}
,

where we have used again eq. (B.7).
We can simplify this expression when we recall the identity

(B.9) 2
(

1√
p

)′
= −p−3/2p′,

which makes the terms in the square bracket of eq. (B.8) cancel each other.
Next, we multiply eq. (B.8) by h̄2/(2m), and arrive with the definition, eq. (B.2), of

p at the formula

(B.10)
h̄2

2m
φ′′ =

h̄2

2m

[
√

p

(
1√
p

)′′]
φ− (E − V )φ.

Finally, we eliminate the term Eφ with the identity eq. (B.4), and obtain the result

(B.11)
h̄2

2m

∂2

∂x2
φ = −ih̄

∂

∂t
φ + V φ +

h̄2

2m

[
√

p

(
1√
p

)′′]
φ,

that is

(B.12) ih̄
∂

∂t
φ = Ĥφ +

h̄2

2m

[
√

p

(
1√
p

)′′]
φ.

Here we have recalled the familiar definition

(B.13) Ĥ ≡ − h̄2

2m

∂2

∂x2
+ V (x)

of the Hamiltonian.
From the definition eq. (B.1) of φ we obtain the relation

(B.14) |φ| = |N |√
p

,

which allows us to identify the last term in eq. (B.12) as the potential

(B.15) Q[|φ|] ≡ h̄2

2m

|φ|′′
|φ| ,

defined by eq. (32).
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As a result, we find that the primitive WKB wave φ defined by eq. (B.1) satisfies the
non-linear wave equation

(B.16) ih̄
∂

∂t
φ = Ĥφ + Q [|φ|] φ

of classical statistical mechanics.
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Summary. — For any kind of wave phenomenon one can find ways to derive the
respective dispersion relation from experimental observations and measurements.
This dispersion relation determines the structure of the wave equation and thus
characterizes the dynamics of the respective wave. Different wave phenomena are
thus governed by different differential equations. Here we want to emphasize the
experimental approach to matter waves, but before doing so we will discuss and test
the procedure for other types of waves, in particular water waves.

1. – Preludium

There are a number of ways how one can motivate or even derive the wave equation
for matter waves from theoretical principles. In two recent papers Schleich, Greenberger,
Kobe and Scully revisit the Schrödinger equation and point out the importance of the
phase dynamics and of the strong coupling between phase and amplitude [1, 2]. In this
lecture I want to show to what extent one can obtain the Schrödinger equation starting
from specific experimental observations. I will not simply “postulate the classical-to-
quantum rules” [1], but show in a consistent way how one can construct a wave equation
from experimental observations of a wave phenomenon. In principle this approach works
for any wave phenomenon and some examples are given.
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Any linear partial differential equation of spatio-temporal variables is solved by a
plane wave ansatz

(1) f(t, 	x) = e−iωt+i
PD

l=1 klxl ,

with ω denoting the temporal frequency and 	k =
∑D

l=1 kl 	xl
(0) denoting the wave vector

or spatial frequencies. The dimension D can be one, two or three, and the 	xl
(0) represent

the D unit vectors in position space. Inserting eq. (1) in any linear partial differential
equation yields a relation between ω and kl, l = 1 to D. In the standard cases this results
in a relation between ω and |	k| = k called the dispersion relation for this type of wave
phenomenon. In this process each temporal derivative ∂

∂t yields −iω and each spatial
derivative ∂

∂xl
yields ikl.

Conversely, if you have the characteristic dispersion relation for a particular type of
wave phenomenon g(ω, k1, k2, k3) = 0, then you get to the wave equation by making the
following substitutions in g(ω, k1, k2, k3)ψ(	x, t) = 0: substitute i ∂

∂t for ω and −i ∂
∂xl

for
each kl. ψ(	x, t) is the function describing the wave motion provided it is a solution to
the equation

(2) g

(
i
∂

∂t
,−i

∂

∂x1
,−i

∂

∂x2
,−i

∂

∂x3

)
ψ(	x, t) = 0.

Note that, while this procedure tells us the mathematical structure of the differential
equation determining the wave dynamics, called the wave equation, it tells us nothing
about the physical nature of “the wave”. To illustrate this point, let us take light in
vacuum and apply the procedure. First we need experimental evidence for the dispersion
relation. This we get from astronomical observations: objects on the sky, changing with
time, do not change their colour, such as a moon reappearing from behind Jupiter, or the
varying star Algol in Perseus or a supernova such as SN 1987A [3]. This means that the
speed of light is the same for all frequencies or ω = c|	k|. Strictly speaking it is the group
velocity, which is constant. This would imply that the frequency is linearly dependent on
the modulus of 	k including a constant offset. Here we assume that this offset is zero. For
the experimental evidence one has to measure both the frequency and the wavelength.
The former is facilitated by the frequency comb technique developed by Hänsch [4] and
Hall [5] and the latter is routinely done with a spectrometer. Without some coherence
of the light waves we would not have this information.

Before we can apply the transformation used to obtain eq. (2), we have to get rid of
the modulus of 	k. There are two possibilities.

1) We restrict the discussion to one spatial dimension and consider only waves propa-
gation in one direction. This reduces the dispersion relation to ω = kx. This choice,
however, does not give us any interesting insight. The more interesting optical phe-
nomenon in vacuum is diffraction requiring at least two spatial dimensions. This
brings us to the second possibility.
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2) We square ω = c|	k| yielding ω2 = c2(k2
x + k2

y + k2
z). Applying the above transfor-

mation, we obtain the familiar wave equation for light

(3)
(

∂2

∂t2
− c2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

))
Ψ(t, x, y, z) = 0.

In the case of light we cannot easily “see” the physical quantity, which oscillates.
As a result, in the history of optics one had to make assumptions about some fluidum
called ether, the substance assumed to oscillate and carrying the energy. Needless to
emphasise that this ether had to uniformly fill the whole universe. After James Clark
Maxwell’s stroke of genius, making the connection between light and electromagnetism,
the electric field and the magnetic field were associated with this ether. At the time
scientists were thinking in terms of the Galileo transformation when relating mutually
moving coordinate systems and expected to be able to see an effect of the lab and the
Earth moving through this ether. Using a specially developed interferometer Albert
Abraham Michelson showed first alone and later with Edward Williams Morley [6] and
with higher precision that there was no evidence for this relative motion. In order to
adjust the theory to cope with this null result, George Francis FitzGerald [7] proposed
to replace the Galileo transformation with a new transformation which a few years later
was also derived by Hendrik Antoon Lorentz [8]. The Lorentz transformation, as it is
often called, introduced a Lorentz-invariant ether. Maxwell’s equations for empty space
survived because they were curiously enough invariant under the Lorentz transformation.
It was when Einstein showed that the Lorentz transformation is a direct consequence of
assuming that the speed of light in empty space is the same in all inertial co-ordinate
systems and independent of their relative velocity, that a paradigm shift happened and
the concept of the ether was abandoned. Since then the name ether has this old-fashioned
and backward connotation. However, our modern concept of the vacuum is not that of
empty space, but rather of a space filled with vacuum fluctuations. The vacuum —acting
much like a dielectric would do— screens the bare point charge of e.g. the electron [9,10],
an effect called vacuum polarization, to give rise to the elementary charge observed
in low-energy experiments. At higher energy collisions between point charge particles
the screening reduces [11, 12] giving rise to a modification of the effective charge and
equivalently to the so-called running of the fine-structure constant (for all this, see also
the “Further readings” section, second item). As a result, one might today think again
of ether, but now it is a modern Lorentz-invariant quantum ether the properties of which
are determined by the different types of charged elementary particles responsible for
the vacuum fluctuations. And these properties determine the parameters appearing in
Maxwell’s equations giving rise to an interesting connection between high-energy physics
and low-energy optics (see “Further readings” section). Anyway, the purpose of the
present section was to underline and emphasize that dispersion relations tell us little if
anything about the physical nature of a wave, they tell us only about the mathematical
structure of the wave equation and the dynamics of the solution.
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2. – Water waves

Water waves are an interesting example, as we will see, because of their added com-
plexity. The types we will discuss here are the deep water waves, not affected by a finite
water depth, and waves of wavelength longer than a few centimeters, for which surface
tension can be neglected. The properties of this special type of water wave are governed
by gravitation.

We begin by experimentally determining the dispersion relation. A straightforward
experiment uses a wave machine. A movable wall in a large enough basin moves forward
and backward with a time period of T . The medium responds by developing a wave with
a particular wavelength λ. The experimental finding is that [13]

λ ∝ T 2.(4)

This result is independent of amplitude as long as it is not too large. The physical
explanation is that both the inertial property and the gravitational restoring force are
proportional to the same mass in a single hump of the wave.

There are other ways to obtain the same result. You can also stand at a pond and
through stones into the water watching the pattern develop [14] and possibly even taking
a video of the waves. For a particular size and weight of the stone you will get a specific
pair of values for the temporal and the spatial period. Using stones of different size and
weight you can get different pairs of values. Looking closely one sees that the circular
wave pattern created after a single throw of a stone develops a chirp, further out the
periods become longer. Thus the video taken after a single throw with one particular
stone will give you different pairs of values. All combined one again retrieves λ ∝ T 2.

The last way I want to mention briefly involves analysing the wave pattern behind
any object moving fast enough through water. A duck at typical travelling speed is
fast enough. Behind these objects a conical wave pattern develops, the opening angle
of which is surprisingly independent of the speed (fig. 1). Already William Thomson,
better known as Lord Kelvin, determined this opening angle to be θ = 2arcsin(1/3) or
approximately 38.94 degrees [15]. The group velocity being half as large as the phase
velocity in the case of water determines this mathematical relationship [11]:

∂ω

∂k
= ω/2k.(5)

Integrating this equation yields again the relation shown in eq. (4). This corresponds
to the dispersion relationship ω2 ∝ k. The proportionality constant must have the dimen-
sion of acceleration. Considering that these waves are driven by gravitation one might
guess that it should be the gravitational acceleration on Earth, which is g. Quantita-
tive measurements in the first two experimental possibilities discussed above to obtain
the dispersion relation yield also this proportionality factor. The full dispersion relation
is [11]

ω2 = gk.(6)
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Fig. 1. – Wave pattern behind a duck traveling on water.

2.1. Wave equation for water waves . – Here again we have the complication that
the modulus of the wave vector 	k appears. Unlike in the case of light discussed in the
preludium it makes sense to restrict the discussion to one dimension of 	k. This already
reveals some non-trivial properties of these special types of waves. The corresponding
wave equation is [16]

∂2

∂t2
Ψ(t, x) = gi

∂

∂x
Ψ(t, x).(7)

We note two points: first of all in this particular case we notice that we know from
observation the physical nature of the wave. It is the height of the water surface that
oscillates. Secondly the differential equation contains the imaginary unit. This would
imply that the solution consists of complex function values, but how can this be related
to the height of the water surface? Let us first address this latter point. We can get rid
of the imaginary unit by writing the wave function as the sum of a real and an imaginary
part Ψ = Ψr + iΨi. Inserting this into eq. (7) the real terms on the left hand side have
to match the real term on the right and the same holds for the imaginary terms. This
yields two real-valued coupled differential equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂2

∂t2
Ψr(t, x) = −g

∂

∂x
Ψi(t, x),

∂2

∂t2
Ψi(t, x) = g

∂

∂x
Ψr(t, x).

(8)

We see that the imaginary unit in eq. (7) simply means that the differential equation
describes the combined dynamics of two real functions. In the two equations in (8) the
roles of Ψr and Ψi are interchanged and there is a difference in sign. Using the dispersion
relation ω2 = gk, the set of eqs. (8) is solved by⎧⎨

⎩Ψr = a sin(ωt− kx),

Ψi = a cos(ωt− kx).
(9)

For positive k eq. (9) describes a wave propagating in the positive x direction. We
already mentioned that observation reveals that the height of the surface is oscillating.
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But the height is only one real variable. What is then the other oscillating variable,
i.e. the other one of the two functions? Taking a closer look at water waves we notice that
the surface is not only going up and down but also to and fro. We notice this whenever
something is floating in the water and the motion is up and to and down and fro.

A particular point on the surface is obviously making a circular motion properly
described by eqs. (9). So we found that the two functions Ψr and Ψi describe the vertical
and longitudinal periodic motions of the positions of surface molecules. However, our
approach does not tell us whether the height of the surface is described by the real or the
imaginary part of the wave function. So we have two choices, resulting in two different
wave patterns. In fig. 2a the water molecules at the crest move against the propagation
direction of the crest and the crest is wider than the trough(1). This solution is, however,
not compatible with the observation in nature. Figure 2b shows the other possibility
compatible with eq. (9), the water molecules move along with the crest and the crest is
more peaked [17]. Inspection of water waves in nature shows that fig. 2b is the proper
description. For a full mathematical treatment see e.g. Horace Lamb [11].

Everybody enjoying the waves near a beach has experienced the power of the wave
crest when one is hit and pushed to the beach. The trick is to dive under the crest —where
the velocity of the water molecules is much smaller than at the surface and one swiftly
reappears in the next valley. One can thus exploit this special wave pattern in both
directions: diving under the crest when going into the sea and body surfing on the slope
preceding the crest when coming back. It is quite remarkable that all this is made possible
by the occurrence of the imaginary unit in eq. (7), giving rise to the circular motion.

Note that recently, when analysing the wake field of fast boats, Rabaud and Moisy [18]
reported on some discrepancies to Lord Kelvin’s postulate that the wake field angle is
constant. The observed reduction of the wakefield angle is attributed to fast enough
small boats not necessarily exciting any water waves with a phase velocity at or close to
the boat velocity.

3. – Matter wave

With this digression to water waves we are well prepared to tackle the problem of mat-
ter waves. Again we start by looking for some experimental evidence for the dispersion
relation, i.e. for a wave phenomenon in nature associated with matter waves hoping to
extract the dispersion relation for matter waves. The obvious showcases are interfer-
ence patterns, which we recognize as such, when a matter wave is diffracted off a small
structure. It goes without saying that this structure must have a dimension somewhat
comparable to the wavelength of the matter waves in order to see a pronounced effect.

(1) This is a valid mathematical model compatible with eq. (9), http://demonstrations.

wolfram.com/MotionOfParticlesInOceanWaves/. However, Yuliya Troitskaya of IAP-RAS
pointed out to me that for the solution shown in fig. 2a the amplitude of the circular motion
grows exponentially with distance from the surface, which is unphysical.
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a)

b)

Fig. 2. – (a) Propagation of deep-water surface waves is the result of a circular motion of the
surface molecules. Variant 1: the individual molecules in the crest are moving in the opposite
direction to the crest. The same is true for the molecules below the surface (details of the
collective motion not shown). (b) Propagation of deep-water surface waves is the result of a
circular motion of the surface molecules. Variant 2: the individual molecules in the crest are
moving along with the crest. The same is true for the molecules below the surface (details of
the collective motion not shown).

We choose diffraction of electrons by randomly oriented graphite crystals [19] (fig. 3).
In a vacuum chamber electrons emitted by a hot wire at high negative potential −U0

accelerate towards a grounded metal aperture. Electrons passing through the central
aperture hole emerge as an expanding electron beam with an average velocity given by

u2 =
2eU0

m
.(10)

The mass m and charge −e of the electron are fixed quantities in the non-relativistic
regime. The electron beam hits a thin target made of graphite powder scattering the
electrons towards a fluorescent screen. The fluorescence intensity at a particular point
on the screen indicates the flux of electrons impinging at this point. What one observes
is a pattern of concentric rings reminiscent of the rings around a bright yellow streetlight
when looking through the fogged window of a bus at wintertime. The halo occasionally
seen around the moon is the same optical phenomenon only that a mono disperse layer
of ice crystals in the upper atmosphere takes over the role of the fogged glass. Likewise,
the effect observed with fogged glass is also the more pronounced the more mono disperse
the size distribution of the fine droplets on the glass is. The angle under which a ring is
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Fig. 3. – Sketch of an apparatus for studying the diffraction of electrons after impinging on
graphite. The angle α is proportional to the wavelength, as we know from analogous scenarios
in optics, such as a coloured halo of the moon. This angle changes when the electron acceleration
voltage U0 is varied.

observed is proportional to the wavelength —red light appearing further out than blue
light. We do not see the matter wave directly, but we see something, which is very close
to an interference pattern we know. Hence we proceed with the assumption that electrons
behave like waves under this condition. Based on this analogy we conclude that also here
the angle α is proportional to the wavelength of the electrons for small angles for which
the sine function can be replaced by its argument. Next we vary the acceleration voltage
U0 and find that this changes also the angle under which the rings appear on the screen.
A more quantitative measurement yields the following relation:

α ∝ U
−1/2
0 =

(
u
√

m/2e
)−1/2

.(11)

When thinking of electrons as waves we cannot help but thinking of more or less
localised wave packets. In wave language the group velocity u = ∂ω

∂k gives the speed of
the wave packet. Using in addition α ∝ λ, we can transform eq. (11) into

λ ∝
(

∂ω

∂k

)−1

, or
∂ω

∂k
∝ Ak,(12)

where the constant A turns out to be h̄/m, see footnote(2). This translates to the integral
form ∫

dω =
h̄

m

∫
kdk, and to ω =

h̄

2m
k2 + C.(13)

(2) When repeating the experiment with particles of a different mass, one notices that the
wavelength depends not only on the velocity but also on the mass, such that the wavelength is
inversely proportional to the linear momentum of the particle. This proportionality constant is
a fundamental constant: Planck’s constant h. It is in principle possible to determine h/2π from
diffraction experiments of this kind.

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



Wave phenomena and wave equations 89

This is the dispersion relation for matter waves we were looking for. C is the inte-
gration constant, i.e. it is not a function of k or ω but may well be a function of other
parameters such as position and time.

3.1. Wave equation for matter wave. – In eq. (13), it is the square of the wave vector,
which enters. Therefore we can directly proceed with transforming k and ω into the
corresponding differential operators, yielding

i
∂

∂t
Ψ(t, 	x) = − h̄

2m
ΔΨ(t, 	x) + C(t, 	x)Ψ(t, 	x).(14)

Multiplying eq. (14) by h̄ yields the Schrödinger equation (see p. 112 in [20]) and C

allows for accommodating the potential V (t, x), which may depend on the spatial and
also on the temporal co-ordinates,

ih̄
∂

∂t
Ψ(t, 	x) = − h̄2

2m
ΔΨ(t, 	x) + V (t, 	x)Ψ(t, 	x).(15)

4. – Final remark

We thus achieved our goal to derive the wave equation for matter waves and could
stop here. But the journey through the empirical derivation of the various wave equations
for the different types of wave phenomena in physics gives also room for speculation. In
the case of the water waves the asymmetry between the temporal and spatial differential
operators gave rise to the imaginary unit in the wave equation, which in turn meant
that this wave equation could be written as two coupled real differential equations. And
indeed we found that the water waves are associated with a 2D motion. Now, in the case
of matter waves, we have the same situation and could write eq. (15) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h̄
∂

∂t
Ψr(t, 	x) = − h̄2

2m
ΔΨi(t, 	x) + V (t, 	x)Ψi(t, 	x),

h̄
∂

∂t
Ψi(t, 	x) =

h̄2

2m
ΔΨr(t, 	x)− V (t, 	x)Ψr(t, 	x),

(16)

with real functions Ψr and Ψi, with Ψ = Ψr + iΨi. So far we have a physical inter-
pretation only for the squared modulus of the full wave function |Ψ|2 = Ψ2

r +Ψ2
i and one

might speculate whether new evidence will bring to light more physical insight. Recently,
in a most remarkable paper, Schleich, Greenberger, Kobe, and Scully also address this
very question. But they followed a different approach. Instead of writing Ψ = Ψr + iΨi

they used an amplitude and a phase function, Ψ(	r, t) = A(	r, t)eiθ(
r,t), also resulting in
two coupled real valued differential equations. The square of the amplitude represents
the spatial density (or rather the position) and the gradient of the phase represents the
momentum. This provides novel insight into the classical quantum transition.
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5. – Further readings

Regarding the two other lectures I gave, I would like to point attention to manuscripts
available on arXiv.org:

– “Time reversal symmetry - a powerful tool in quantum optics”
arXiv:1205.1374 and arXiv:1309.6167

– “Evidence at low energy for high energy particles”
arXiv:1612.03394 and arXiv:1612.06263

∗ ∗ ∗
I thank Shadi Sorayya and Ankan Bag for helping preparing the manuscript.
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Summary. — A brief history of the beginnings of quantum mechanics will be
presented together with arguments regarding its interpretation; including the very
important, but ignored, argument by Grete Hermann. The early discussions were
basically philosophical and it was not until Bell produced his inequality that an ex-
perimental test became a real possibility. Nevertheless, in the two decades following
Bell’s development of his inequality, there was a negative attitude by many physi-
cists towards questioning quantum mechanics and a disdain for doing experiments
to test a Bell inequality. Nevertheless, four experiments were done in the 1970’s
by young physicists at the beginning of their careers; those initial experiments and
their results will be briefly described. It should be noted that by the 1980’s and
with the completion of the experiments led by the young Alain Aspect, the culture
had begun to change and many experiments have since been done; these culminate
in the three recent tests of Bell inequalities that for the first time simultaneously
closed both the detection and locality loopholes.

1. – Introduction

Quantum entanglement reaches to the heart of the foundations of quantum mechan-
ics and is the essential feature that makes quantum information processing (including
quantum teleportation, quantum computation and quantum cryptography) different from
classical information processing. Entanglement produces a special quantum state with a
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subtle kind of correlation that has no classical equivalent and suggests a “spooky action
at a distance”.

Studies of entanglement have focused on tests of Bell inequalities; twenty-seven of
them are listed in these references [1-27]; all but one [2] of these experimental tests
have satisfied the Bell inequality and violated what were thought to be its quantum-
mechanical predictions (it was just the second of all these Bell inequality experiments).
The first experimental tests [1-6] of the Bell inequalities were done with photons and
are considered to contain loopholes. The two main loopholes were “enforcing locality”
and “detection efficiency”. In 1982, Aspect, et al. [7] made the first major step towards
closing the locality loophole. Then, in 1998 the locality condition was fully enforced in
an experiment by Zeilinger’s group at Innsbruck [14]. Their experiment employed truly
random analyzer settings that were outside each other’s light cone; that experiment gave
a clear violation of a Bell inequality.

Since massive particles present a different approach to entanglement, several propos-
als for atom-based experiments with high detection efficiency have been advanced [28-31].
The first such experiment by Rowe et al. [16] used two massive particles (9Be+ ions in
an ion trap) to provide a conclusive test; their detection efficiency is considered to be
essentially 100%. But, there are concerns due to the time required for multiple tran-
sitions in the detection process, and due to the close proximity of the 9Be+ ions that
leads to the possibility for an “outcome dependence” loophole [32]. While some of the
previous experiments have closed either the “locality” or the “detection efficiency” loop-
hole, it is only recently that both loopholes have been closed simultaneously in a single
experiment; this was actually achieved in three different experiments by independent
groups in the fall of 2015 [25-27]. One of these three was also the first and only test
of a Bell inequality to use fermions [25]; all of the other Bell inequality tests have used
bosons.

2. – Early history

Near the end of the 19th century, classical mechanics (Newton) together with classical
electrodynamics (Maxwell) appeared to provide a firm and final foundation for all of
science. There was a sense that only the details were left. As examples, in 1894 Albert
A. Michelson (Michelson-Morley experiment) said “[. . . ] it seems probable that most of
the grand underlying principles have been firmly established and that further advances are
to be sought chiefly in the rigorous application of these principles [. . . ]” [33, 34]. And,
in 1874 Philipp von Jolly who was Max Planck’s physics professor at the University of
Munich, advised Planck against going into physics. He told Planck that, “in this field,
almost everything is already discovered, and all that remains is to fill a few holes” [35].
But, Planck persisted and actually did the only experimental work of his career under
Jolly’s guidance before turning to theoretical physics.

However, the limits of classical physics began to manifest themselves. Discoveries of
fascinating phenomena that did not fit the classical picture inspired radical conjectures
and led to the development of Quantum Mechanics. Examples are:
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i) 1901 Radiation energy distribution (Planck). Measurements of the intensity of
blackbody radiation as a function of wavelength disagreed dramatically with the classical
Rayleigh-Jeans prediction. By analyzing energy and entropy, Planck concluded that only
integer multiples of a quantized amount of energy (E = hν) can be absorbed or emitted,
where h is now known as Planck’s constant and ν is the frequency of the radiation [36].
With this restriction there was excellent agreement between theory and experiment. Thus
we have the first appearance of a quantum and the beginnings of quantum mechanics.
And, this fundamental discovery was from someone who was advised against even going
into physics [35]!

ii) 1905 Photoelectric effect (Einstein). When light is incident on a metal surface,
electrons can be emitted. Classically, this is thought to be a transfer of energy from
the light to the electron. But it was experimentally shown that the kinetic energy of
the emitted electrons is independent of the light intensity and that the kinetic energy
of emitted electrons depends on the frequency (wavelength) of the light. In fact, if the
wavelength of the light is greater than some specific value (depending on the metal), no
electrons are emitted. Einstein provided a solution by proposing that, as Planck had
argued, light actually consists of discrete packets (photons) of energy E = hν. If E0 is
the energy required to remove an electron from the surface, then if hν is greater than
E0, electrons will be emitted; if not, no electrons will be emitted. And, the amount by
which hν is greater than E0 determines the kinetic energy of emitted electrons. Einstein’s
proposal was confirmed experimentally by Millikan in 1914 [37].

iii) 1913 Bohr model of the H atom (Bohr). The Rydberg formula for spectral lines
of an atom worked well for hydrogen and hydrogen-like atoms, but there was no theo-
retical justification. Bohr proposed that the electron would orbit the nucleus in circular
orbits [38], but only in orbits of a radius r for which the electron’s orbital angular mo-
mentum L was quantized in integral multiples of Planck’s constant h divided by 2π or
simply �. Specifically, Bohr’s model sets L = mvr = n�, where m is the mass of the
electron, v is the speed of the electron, and n is an integer. Setting the centripetal force
on the electron equal to the coulomb attraction, Bohr then showed that the electron in
an orbit with this quantized angular momentum would have a total energy (kinetic plus
potential) proportional to 1/n2. The change in the energy of an electron when it moves
from one orbit to another with smaller (larger) radius would be the energy of the photon
emitted (absorbed) in the process. This, model successfully reproduced the wavelengths
of the spectral lines of hydrogen. Of course, there was still the question of why the cir-
cular orbits would be stable because classically an electron undergoing such centripetal
acceleration should radiate energy.

iv) 1922 Electron spin (Stern-Gerlach). Classically, if a particle with a magnet mo-
ment passes through an inhomogeneous magnetic field, it will be deflected from its
straight path by an amount depending on the angle between the directions of the mag-
netic moment and the field gradient. Consequently, if particles in a beam have a classical
magnetic moment based on their spin angular momentum, they will be deflected into a
continuous distribution.

Otto Stern and Walther Gerlach did the experiment with silver atoms using appara-
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Fig. 1. – Stern-Gerlach apparatus to observe the quantization of angular momentum.

tus illustrated in fig. 1. Rather than the classical prediction of a continuous distribution,
the beam of silver atoms were either deflected up or down into two spots [39]. This was
a clear demonstration that not only is the spatial orientation of the angular momen-
tum quantized, but that the orientation of the measurement apparatus determines the
quantum-mechanical spatial orientation.

v) 1923 Compton Scattering (Compton). Compton observed that when light is scat-
tered by an electron, the wavelength of the light increases, this increase is called the
Compton shift; at low intensities it cannot be explained in the classical theory of elec-
tromagnetic waves. The important consequence is that Compton scattering is a demon-
stration that light can be like a stream of particles (photons) that have energy hv; the
directions and energies of the scattered photons and electrons just follow from the conser-
vation of energy and momentum. For the photon momentum, Compton used Einstein’s
mass energy relation E = mc2 to write mc2 = hv where m is the “mass” of the photon;
and since the photon is traveling with speed c, its momentum is p = mc. From these two
relations he finds the photon momentum p = hv/c = h/λ. Compton not only derived his
scattering formula, he verified it experimentally [40].

vi) 1924 Wave properties of matter (De Broglie). De Broglie argued that since light
has both wave and particle like properties, electrons (which have particle properties)
should also have wave properties. From Einstein’s mass energy relation, Compton had
argued that the photon momentum is p = h/λ. De Broglie just reversed that relation
to argue that a particle of mass m, speed v and hence momentum p = mv must have a
wavelength λ = h/p = h/mv [41].

vii) 1927 Electron matter waves (Davisson-Germer). Clinton J. Davisson and Lester
H. Germer observed electron diffraction from a nickel crystal and thereby made the
first experimental observation of the wavelength of a moving electron [42]. The lattice
spacing in the nickel was d = 0.215 nm and a peak in the number of scattered electrons
(constructive interference) was observed at θ = 50◦. From the grating equation, the wave-
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length required to produce constructive interference would be λ = d sin θ = 0.165 nm.
Since the energy of the incident electrons was 54 eV, their wavelength according to de
Broglie would be λ = 0.167 nm, in good agreement with the experimental result.

viii) 1927 Uncertainty Principle (Heisenberg). If a particle acts like a wave, then
its position is described by a wave function that only gives the quantum-mechanical
probability of observing the particle at any specific position. To better constrain the
position requires a superposition of plane waves; the more plane waves the better localized
the quantum-mechanical probability of observing the particle at a specific location. But,
since each plane wave represents a different particle momentum, more waves used to
provide better position localization means a wider distribution of momentum possibilities.
A result of these analyses is the Heisenberg Uncertainty Principle for momentum and
position, σxσp ≥ �/2 [43].

3. – The beginnings of quantum mechanics

All these beautiful experimental results led to a broad interest in the development
of quantum mechanics and to a euphoria in physics that was widespread by the end of
the 1920’s. And, in the mid to late 1920’s Bohr and Heisenberg were largely responsible
for the development of what was eventually called the Copenhagen Interpretation [44]
of quantum mechanics; its objective was an attempt to provide a foundation for under-
standing the quantum world of atoms and waves. Basically, quantum mechanics predicts
probabilities for the specific values that measurements can produce. In the Copenhagen
Interpretation physical systems typically do not have definite properties prior to being
measured; the act of measurement affects the system, causing the set of probabilities
to reduce to only one of the specific quantum-mechanical values that are possible (wave
function collapse).

But, there were a few physicists who had concerns; perhaps foremost among them was
Einstein. Einstein was uneasy about the implications of quantum mechanics even though
he had made seminal contributions to its development. In a letter to E. Schrödinger
dated May 31 (1928), Einstein wrote: “The Heisenberg-Bohr tranquilizing philosophy —
or religion? — is so delicately contrived that, for the time being, it provides a gentle
pillow for the true believer from which he cannot very easily be aroused. So let him
lie there. But this religion has so damned little effect on me [. . . ]” [45]. In a letter to
Max Born dated November 7, 1944, Einstein wrote: “You believe in God playing dice
and I in perfect laws in the world of things existing as real objects [. . . ]” [46]. Basically,
Einstein was concerned about quantum mechanics because it could only give probabilities
(i.e. a throw of the dice) for the outcome of a measurement; he felt nature should be
deterministic. Consequently, he liked to make comments to the effect that God does not
play dice; and at one point Bohr may have responded: “Einstein, stop telling God what
to do!” [47].

Clearly, quantum mechanics presents some conceptual and interpretive problems.
These are clearly expressed by several other quotes: Niels Bohr wrote: “If quantum
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Fig. 2. – Bohm’s version of the EPR argument.

mechanics hasn’t profoundly shocked you, you haven’t understood it yet” [48]. And,
Richard Feynman wrote: “No, you’re not going to be able to understand it [quantum
mechanics] [. . . ]. It is my task to convince you not to turn away because you don’t un-
derstand it. You see my physics students don’t understand it either. That is because I
don’t understand it. Nobody does” [49]. Although quantum mechanics remains counter-
intuitive and unsettling for some, the big thing going for it is that it is wildly successful
— its predictions have never been found to be incorrect!

By the mid 1930s, Einstein had accepted quantum mechanics as a consistent theory
for the statistics of the behavior of atoms. He recognized that quantum mechanics was
“the most successful physical theory of our time” [50]. But nevertheless, he felt it was
an “incomplete theory”. His concerns were most successfully presented in the famous
EPR paper “Can quantum-mechanical description of physical reality be considered com-
plete?” [51]. The EPR discussion was based on non-commuting operators such as position
and momentum, but Bohm has presented their argument in an especially beautiful form
based on noncommuting measurements in different directions of the spin of two spin-1/2
particles that were originally in a spin-zero singlet state [52,53].

Bohm’s approach is depicted in fig. 2; it uses the Stern-Gerlach magnets to observe
whether a spin–one-half particle is deflected up or down along the direction of the magnet
axis (as in fig. 1). A quantum-mechanical representation for the singlet state of the two
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spin-1/2 particles is

(1) |Ψ〉 =
1√
2
{|↑〉Bob|↓〉Alice − |↓〉Bob|↑〉Alice} .

Initially, both Stern-Gerlach magnets are oriented so as to measure the spin in the
Z direction: spin up (+Z) or down (−Z). Now, if Bob measures spin up (+Z), then
Alice will always observe spin down (−Z), and vice-versa. But, suppose Bob is free to
rotate his Stern-Gerlach so that it measures spin along either X or Z, while Alice only
measures along Z. If Bob rotates to X, then whenever he measures spin up (+X), Alice
will only observe spin down (−Z) half the time, i.e. 50% probability. But if Bob rotates
to Z, then whenever he measures spin up (+Z), Alice will observe spin down (−Z) every
time, 100% probability. How can Bob’s decision to measure in the X or Z direction be
affecting Alice’s measurements?

To summarize, if Bob’s measurement of the spin of particle #1 in the Z-direction has
outcome “spin-up” (+Z), then one can predict with certainty that Alice’s measurement of
the spin of particle #2 in the Z-direction will have the outcome “spin-down” (−Z). And,
Einstein would therefore argue that if it is certain the measurement will give spin down
(−Z), there must be something “real” about the spin of particle #2 in the Z-direction.
Specifically, there must be some additional parameters (i.e. “hidden variables”) that if
known would specify the spin in the Z-direction. Similarly, if Bob’s measurement of
the spin of particle #1 in the X-direction has outcome “spin-up” (+X), then one can
predict with certainty that Alice’s measurement of the spin of particle #2 in the X-
direction would have the outcome “spin-down” (−X). And, Einstein would therefore
argue that there is something “real” about the spin of particle #2 in the X-direction.
Since quantum mechanics does not simultaneously encompass two components of the
spin, Einstein concludes that quantum mechanics is “incomplete”.

Perhaps the impact on locality was also a big concern to Einstein. Specifically, if the
spin direction of particle #2 in the Z-direction were not a “real” property of particle
#2, then the measurement on particle #2 would appear to depend non-locally on the
orientation of Stern-Gerlach analyzer #1.

Three years prior to the EPR paper, John von Neumann had already supposedly
proved you could not supplement quantum mechanics in the sense that Einstein wanted.
This was in his book on the foundations for quantum mechanics [54,55], a pioneering work
that had an overpowering influence on the physics community. Of course, Von Neumann
was an extraordinary mathematician and computer scientist; he was regarded as one of
the foremost mathematicians of the 20th century, and he made many major contributions
to a number of scientific fields, e.g. mathematics, computer science, statistics, physics,
and economics.

Von Neumann’s book provided the basis for a broad acceptance and understand-
ing of his approach to the new quantum mechanics. Jammer’s historical studies into
the response of the scientific community concluded that, “he was hailed by his follow-
ers and credited even by his opponents as having succeeded in bringing the foremost
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methodological and interpretative problem of quantum mechanics down from the realm
of speculation into the reach of mathematical analysis and empirical decision” [56]. In
the words of Louis Caruana, “von Neumann provided what seemed to be a bulwark
protecting the Copenhagen Interpretation against the claim that determinism could be
recovered, and in doing so, he was satisfying the needs of the physics community. He
legitimised mathematically what the great majority of physicists had quite peacefully
accepted as the “constraint” of the new very powerful theory. It should be remembered
that this “impossibility proof” was just one part of a book which puts the whole of
quantum mechanics on a ‘proper’ mathematical and axiomatic base” [57].

For 20 years, scientists believed it was “impossible” to complete quantum mechanics.
The 1932 proof by von Neumann was a dominant factor. There were hostile and bitter
arguments. But, it was all philosophy; there were no experimental proofs. Then, in
1952 David Bohm did the “impossible”; he developed a model of a deterministic “hidden
variable” theory that reproduced the predictions of quantum mechanics [58]. However,
Bohm’s approach did not get much traction in the mainstream physics community, mainly
because it was inherently non-local. In a letter to Max Born dated May 12, 1952, Einstein
wrote “Have you noticed that Bohm believes (as deBroglie did, by the way, 25 years ago)
that he is able to interpret the quantum theory in deterministic terms? That way seems
too cheap to me. But you, of course, can judge this better than I” [59].

John Stewart Bell noted that Bohm’s “hidden variable” model was non-local and
went on to develop one of the most important theorems of quantum physics, Bell’s The-
orem [60]. He also showed that von Neumann’s “impossibility” proof was circular; von
Neumann’s basic axioms for quantum mechanics inherently excluded deterministic pre-
dictions! David Mermin has even stated that “von Neumann’s argument was silly” [61].
For perspective, Jeffrey Bub has argued that Bell misconstrued von Neumann’s proof
and that the physics community as a whole had misinterpreted his proof [62].

Actually, the flaw in von Neumann’s proof had been previously discovered by Grete
Hermann in 1935 [63]; but, her work basically went unnoticed until after Bell had redis-
covered the flaw almost 30 years later. Von Neumann’s proof and the fact that Hermann’s
critique of it was not on the radar screen of the physics community for decades proba-
bly had a strong influence on the development of quantum mechanics. In fact, “Some
have posited that had her critique not remained nearly unknown for decades, the histor-
ical development of quantum mechanics may have been greatly affected; in particular,
it has been speculated that a wider awareness of her work would have put in question
the unequivocal acceptance of the Copenhagen interpretation of quantum mechanics,
by providing a credible basis for the further development of nonlocal hidden variable
theories” [64].

This history is discussed in a superb book, “The Age of Entanglement” by Louisa
Gilder [65]. On page 161, she points out that at Princeton around 1938 “Einstein pro-
ceeded to open von Neumann’s tome and point to the assumption that, unbeknownst
to him, Grete Hermann had criticized a few years earlier. “Why should we believe in
that?” he asked [. . . ]” And on page 195, she emphasizes that “Von Neumann was one of
the greatest minds of the twentieth century, and few aside from the distracted Einstein
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and the ignored Grete Hermann wondered if it could perhaps be von Neumann who was
mistaken”. Basically, von Neumann had made such important scientific contributions
and was so highly regarded that whatever he said was accepted.

So, what was von Neumann’s “impossibility” proof? And, what did Einstein point to
in von Neumann’s book when he said “Why should we believe in that?”. Basically, von
Neumann’s objective was to provide axioms to create a rigorous axiomatic foundation
for quantum mechanics. The problem that Hermann immediately identified and that
Einstein, and then eventually Bell saw was that one of von Neumann’s axioms basically
precluded “hidden variables”. Clearly, if the basic assumptions of a theory preclude
“hidden variables”, then that theory can be used to prove their non-existence. The
axiom in question is

(2) 〈ϕ|A|ϕ〉+ 〈ϕ|B|ϕ〉 = 〈ϕ|A + B|ϕ〉,

where A and B are operators and each quantity is an expectation value. This is rigorously
true in QM, regardless of whether the operators A and B commute. But, suppose i) there
are “hidden variables” that prescribe the result of each measurement and ii) that A and
B do not commute. Then, for any single system in state |ϕ〉, the “hidden variables” tell
us what the result for each measurement would be; those results cannot be expected to
satisfy this axiom.

As an example: Suppose A and B are operators for spin angular momentum. For
simplicity, drop the factor �/2 everywhere, then A and B are just Pauli matrices with
eigenvalues ±1. Specifically, take

A = σx =
(

0 1
1 0

)
, B = σy =

(
0 −i

i 0

)
,(3)

σ45 =
1√
2
(σx + σy) =

1√
2

(
0 1− i

1 + i 0

)
,

where σ45 is the operator for measurement of spin in the x-y plane at an angle of 45◦ to
the x and y axes. All three operators (σx, σy, and σ45) have eigenvalues ±1.

Now von Neumann’s axiom states

(4) 〈σx〉+ 〈σy〉 =
1√
2
〈σx + σy〉.

Again, in QM this is rigorously accurate for the average over an ensemble of systems,
but to impose it on every member of the ensemble is “silly” (as Mermin and Bell have
both said). In particular, for each member of the ensemble the eigenvalue is ±1, hence
for each member the axiom requires the impossible result,

(5) (±1) + (±1) =
1√
2

(±1).

The axiom is simply invalid for a hidden variable theory.
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Fig. 3. – Pab, the probability that particle 1 deflects in the +
a direction and particle 2 deflects
in the +
b direction.

4. – Bell Inequalities

John Stewart Bell considered an EPR-type experiment [60] and assumed i) locality, i.e.
two spatially separated systems can affect each other only after a time delay greater than
the time it takes light to travel from one system to the other; and ii) the “completion”
of quantum mechanics, i.e. hidden variables. He showed that with these assumptions,
the statistical predictions of any local theory that “completes” quantum mechanics in
the sense of Einstein must satisfy an inequality and that under appropriate experimental
conditions the statistical predictions of quantum mechanics will violate that inequality.
The incredible significance of this work is that after decades of philosophical arguments, a
definitive laboratory experiment was possible. The ultimate goal of any theory in physics
or science in general is to find experimental verification; Bell provided a way to do that!

A derivation for a simple example of a Bell inequality was provided by Eugene
Wigner [66]. He used Bohm’s version of the EPR argument (fig. 2) with two spin-1/2
particles in a total spin zero (singlet) state and chose three different directions 	a,	b,	c in
the x-z plane (fig. 2) for possible orientations of the two Stern-Gerlach magnets. Now
consider, for example, the probability Pab of observing spin up for particle 1 in direction
	a and spin up for particle 2 in direction 	b, similarly for Pbc and Pac. For the notation to
describe this, Pab is written as in fig. 3.

Now if there are hidden variables that specify all components of the spin, then we
can add some information to the expression for Pab in fig. 3. Specifically, since particle
1 deflected in the +	a direction, then the hidden variables tell us that particle 2 would
deflect in the −	a direction; similarly since particle 2 deflected in the +	b direction, then
the hidden variables tell us that particle 1 would deflect in the −	b direction. So Pab is
rewritten as in fig. 4.

Fig. 4. – Expressions for Pab, Pbc, and Pac including some hidden-variable information.

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



History leading to Bell’s inequality and experiments 101

Now, Pab does not involve any measurements in the direction 	c; but if there are
hidden variables, the two particles will always deflect in opposite directions. Considering
all possibilities for results in direction 	c, Pab can be written as two terms. One term has
plus and minus in direction 	c for particles 1 and 2, respectively; the second term has
minus and plus,

(6) Pab = P(+−+| −+−) + P(+−−| −++).

In a similar fashion, the expressions for Pbc and Pac are

Pbc = P(+ +−| − −+) + P(−+−|+−+),(7)

Pac = P(+ +−| − −+) + P(+−−| −++).(8)

Now note that the second terms in Pab and Pac are identical, as also are the first term
Pbc and Pac. It follows immediately that

(9) Pab + Pbc = Pac + P(+−+| −+−) + P(−+−|+−+).

Since probabilities are always positive, it follows that

(10) Pab + Pbc ≥ Pac.

This is a Bell inequality that will be satisfied if there are hidden variables. What
about the quantum-mechanical predictions? In quantum mechanics the probability of
two particles having spin “up” in directions θa and θb is

(11) Pab =
1
4
{1− cos(θa − θb)}.

Take θa = 0◦, θb = 45◦, θc = 90◦, then

(12) Pab = Pbc =
2−√2

8
; Pac =

1
4
.

Inserting these values in the Bell inequality, eq. (10), gives

(13)
2−√2

4
≥ 1

4
,

which is clearly not valid; i.e. the quantum-mechanical predictions do not satisfy the
Bell inequality. So now it is critical to do an experiment to determine if the quantum
predictions are correct or if the Bell inequality is satisfied.

Physically, Bell’s result shows that any hidden-variable theory that also satisfies lo-
cality will restrict the strength of the statistical correlations; there is an upper limit on
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their magnitude. Quantum mechanics predicts very strong correlations that can violate
that restriction.

It was argued that quantum mechanics is an incomplete theory. Specifically, since its
predictions for spatially separated systems were incompatible with locality, there must
be something more, e.g. hidden variables. Basically, the argument is that locality implies
quantum mechanics is “incomplete”. The irony is that Bell showed just the reverse —
if locality is retained, then the quantum mechanical predictions for spatially separated
systems cannot be reproduced by any theory that “completes” quantum mechanics.

5. – Initial experiments

A famous paper by Clauser, Horne, Shimony, and Holt laid the ground work for all the
initial experiments; they involved polarization correlations between photons in an atomic
cascade [67]. But, the environment in the physics community for doing such experiments
to test quantum mechanics was caustic at best. In Louisa Gilder’s book [65] there are
several quotes that provide a good sense of that environment:

1) “Clauser was trying to get a job. “I must have applied to at least a dozen dif-
ferent places, and at all of them I was totally rejected”. Universities were uneasy
about hiring a professor who would encourage the next generation to question the
foundations of quantum theory”.

2) “Fry himself had better luck with academia”. Realizing that the tenure committee
was about to reject the Bell experimenter, one of Fry’s friends asked Pipkin (Holt’s
advisor at Harvard) to come to College Station, TX.” . . . Pipkin’s renown in atomic
Physics won over the skeptical committee”. Fry got tenure!

3) After Aspect visited with John Bell and completed a presentation on his planned
experiment, “[. . . ] Bell asked his first question with a trace of irony: “Have you
a permanent position?” Aspect was only a graduate student, but — because of
the uniqueness of the French system, and in drastic contrast to his counterparts in
America — his position at the École Normale Supérieure was actually permanent.
Even with this advantage, it was not easy. There will be serious fights, Bell warned
him”.

The first five experiments will be briefly reviewed in chronological order. The data
from the second experiment satisfied the Bell Inequality and disagreed with the quan-
tum mechanical predictions, all the others violated the Bell inequality and agreed with
QM. All these experiments employ a two photon cascade, and the coincidence rates are
measured as a function of the angle between the polarizer transmission axes. The Bell
inequality for these experiments was

(14) δ =
∣∣∣∣R(67.5◦)

R0
− R(22.5◦)

R0

∣∣∣∣ ≤ 1
4

,
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Fig. 5. – The 551.3 nm and 422.7 nm cascade in the Freedman/Clauser experiment.

where R(67.5◦) and R(22.5◦) are the measured coincidence rates with angles of 67.5◦

and 22.5◦ between the polarizer transmission axes and R0 is the coincident rate with
polarizers removed.

The first experiment was completed by Freedman and Clauser at Berkeley in 1972 [1].
They used the two photon cascade in Ca shown in fig. 5. In their experiment a beam
of Ca atoms was produced in a vacuum system. At the observation point, a D2 arc
lamp was used to excite the Ca atoms to the 4s6p 1P1 state. Approximately 7% of
the excited atoms decay to the initial state, 4p2 1S0, of the cascade. The two cascade
photons, 551.3 nm and 422.7 nm, pass through pile-of-plates polarizers and are detected
in coincidence as a function of the angle between the polarizer transmission axes. They
observed δ = 0.300 ± 0.008 in violation of the Bell inequality, eq. (14), and agreement
with the quantum-mechanical prediction δQM = 0.301. They collected data for 200 hours
for these results.

The second experiment was completed by Holt and Pipkin at Harvard in 1973 [2].
They used the two photon cascade in Hg shown in fig. 6. They used the zero nuclear
spin isotope of 198Hg in a cell and pumped the atoms into the 91P1 state with a 100 eV
electron beam. The polarization coincidence rates were measured with calcite polarizers.
They observed δ = 0.216±0.013 in agreement with the Bell inequality and disagreement
with the quantum-mechanical prediction δQM = 0.266. Nothing appears to have been
published as to what might have gone wrong with this experiment

The third experiment was published by Clauser at Berkeley in 1976 [3]. It was a
repeat version of the Holt/Pipkin experiment, (fig. 6), but using a cell in which only
91% of the Hg was the zero nuclear spin isotope, 202Hg. The atoms were pumped into
the 91P1 state with a 135 eV electron beam. The polarization coincidence rates were
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Fig. 6. – The 567.6 nm and 404.7 nm cascade in the Holt/Pipkin experiment.

measured with calcite polarizers. He observed δ = 0.2885 ± 0.0093 in violation of the
Bell inequality and agreement with the quantum-mechanical prediction δQM = 0.2848.
Data were collected for 412 hours for these results.

The fourth experiment was published a few months later in 1976 by Fry/Thompson
at Texas A&M [4]. They used the two photon cascade in 202Hg shown in fig. 7. A beam
of natural Hg isotopic abundance was passed through a solenoid electron gun where
Hg atoms were excited to the metastable 63P2 state. Further downstream only 200Hg
atoms were excited to the 73S1 initial state of the cascade by using a narrow linewidth
laser at 546.1 nm; so that only cascade photons from the zero nuclear spin isotope 200Hg
were observed. This was the first experiment to use a laser to populate the initial state
of the cascade. Polarization correlations between the cascade photons at 435.8 nm and
253.7 nm were observed using pile of plates polarizers. The initial state of the cascade
had angular momentum J = 1 (previous experiments had J = 0 in the initial state).
The quantum-mechanical predictions required measurement of the relative populations
in the mJ = 0, ±1 substates. They observed δ = 0.296 ± 0.04 in violation of the Bell
inequality and agreement with the quantum-mechanical prediction δQM = 0.294± 0.007.
Data were collected for 80 minutes for these results.

The fifth experiment was completed by Aspect/Grangier/Roger in Paris in 1981 [5].
They did exactly the same experiment as the 1972 Freedman/Clauser experiment
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Fig. 7. – The 435.8 nm and 253.7 nm cascade in the Fry/Thompson experiment.

Fig. 8. – The 551.3 nm and 422.7 nm cascade in the Aspect/Grangier/Roger experiment.
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(including pile of plates polarizers), except rather than using an arc lamp to excite a
state that partially decayed to the initial state of the cascade, they directly excited the
initial state of the cascade via a two-photon process. They used 406.7 nm from a single-
mode krypton ion laser and 581 nm from a tunable single-mode rhodamine 6G dye laser,
see fig. 8. They observed δ = 0.3072 ± 0.0043 in violation of the Bell inequality and
agreement with the quantum-mechanical prediction δQM = 0.308 ± 0.002. This was a
great scheme; they observed 150 coincidences per second.

These five experiments all had two important loopholes, detection efficiency and en-
forcing locality. The detection efficiency concern is that if some particles are not de-
tected, maybe nature will arrange to only detect those particles that give the quantum-
mechanical result. The locality loophole concerns the possibility that information will
be communicated between the particles if the experimental decisions are not made in
a time less than the time it takes light to travel between the particles and the mea-
surement apparatus. Shortly after this fifth experiment, Aspect’s group performed an
experiment with dual channel polarizers [6] to make the test more robust and another
experiment [7] that was the first to address locality concerns. Since then there have been
many Bell inequality experiments as discussed in the introduction, including the recent
three experiments [25-27] that were the first to simultaneously close both the detection
efficiency and locality loopholes and the first and only experiment with fermions [25].

For the future, an especially interesting experiment would be one that is an exact
experimental realization of Bohm’s version of the EPR experiment with two spin one-
half particles. Specifically, the experiment with two 199Hg atom in a nuclear spin singlet
state [30]. It would also close both loopholes and be the second test with fermions, but it
is especially attractive because of its simplicity and exact analogy to Bohm’s approach.
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Summary. — A mechanism of a chiral spin wave rotation is introduced to system-
atically generate mesoscopic Greenberger-Horne-Zeilinger states.

1. – Introduction

One of the astounding principles of quantum mechanics is that a quantum object can
exist in a superposition state, e.g., a spin in a superposition of up and down states, |ψ〉 =
(| ↑〉+ | ↓〉)/√2. Applying this principle to two quantum particles, a superposition state
such as a singlet state |ψ〉 = (| ↑↓〉− | ↓↑〉)/√2 allows the instantaneous determination of
the quantum state of the second particle after one measures the quantum state of the first
particle, as revealed by Einstein, Podolsky and Rosen in 1935 [1]. This instantaneous
determination seems like a violation of a principle of the special relativity, i.e., nothing
can travel faster than light, leading to the so-called EPR paradox. The incompleteness
of quantum mechanics and the existence of hidden variables were therefore suspected.

In a seminal paper by Bell in 1964 [2], an equality was proposed to show that the
statistical results of quantum mechanics is incompatible with any local hidden-variable
theories. Subsequent experiments overwhelmingly support the predictions of quantum
mechanics. In particular, any local hidden-variable theories are excluded by loophole-free
experiments in 2015 [3].
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Fig. 1. – Basic steps of a quantum zipper sewing GHZ states. 1, initialize an all-down state. 2, flip
the first spin. 3, prepare the second spin in a superposition of the up and down states. 4, introduce
an interaction among the red spins, which leads to chiral spin wave rotations as shown in
eq. (1). 5, send a π pulse to flip the second spin. 6, send in a π pulse to flip the fourth
spin. 7, introduce the same interaction as in step 4 among the red spins until achieving the state
shown in this step. 8, send a π pulse to flip the third spin. Repeat the steps 6-8 until zipping
all spins in the GHZ state, each time adding two spins to the GHZ chain. For a GHZ state with
2n + 1 spins, we need in total 2n π pulses and one π/2 pulse.

In the exploration of EPR paradox, the Greenberger-Horne-Zeilinger (GHZ) states [4]
play an important role. It concerns with a three-particle entangled state, |ψ〉 =
(| ↑↑↑〉 + | ↓↓↓〉)/√2, which allows a direct contradiction between the predictions of
quantum mechanics and local hidden-variable theories with a single test, in contrast
to the statistical nature of Bell’s inequality. GHZ states have also been found use-
ful in the Heisenberg limit metrology [5]. Mesoscopic GHZ states with M particles
|ψ〉 = (| ↑ 〉⊗M + | ↓ 〉⊗M )/

√
2 can be generated by using the Mølmer-Sørensen ap-

proach [6] in ion traps, with M up to 14 in experiments [7]. To generate GHZ states in a
wide range of quantum systems, new mechanisms are highly wanted. Here we introduce
a “quantum zipper” to sew GHZ states in a systematic way.

The basic process for generating GHZ states is shown in fig. 1. We start with an
all-down state and send a π pulse to the first spin to flip it up. Then we send a π/2 pulse
to prepare the second spin in a superposition of the up and down states. The following
step 4 is crucial. We introduce a special interaction between the first three spins, which
undergo opposite chiral spin wave rotations for | ↑↓↓〉 and | ↓↑↑〉 states,

| ↑↓↓〉 → | ↓↑↓〉 → | ↓↓↑〉 → | ↑↓↓〉,(1a)

| ↓↑↑〉 → | ↑↑↓〉 → | ↑↓↑〉 → | ↓↑↑〉.(1b)

The spin states move to the right for the states containing one up spin while they move
to the left for the states containing two up spins. The step 4 corresponds to the rotations
| ↑↑↓〉 → | ↑↓↑〉 and | ↑↓↓〉 → | ↓↑↓〉 in eq. (1). We then send a π pulse to the second spin
and prepare the first three spins in a GHZ state, as shown in the step 5. Following and
repeating the steps 6-8 (see fig. 1 caption), we can zip the following spins into a GHZ
state.

2. – Mechanism

In a previous work, we studied chiral photon rotations among three cavities by gen-
erating a synthetic magnetic field [8]. The process in eq. (1) can be realized in a similar

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



Sewing Greenberger-Horne-Zeilinger states with a quantum zipper 111

way by the following Hamiltonian:

(2) H = ih̄κ

3∑
j=1

σ+
j+1σ

−
j + H.c.,

where σ+
j and σ−

j are the raising and lowering operators for the jth spin and the summa-
tion over j is cyclic. The Hamiltonian in eq. (2) commutes with

∑
σz

j and the number
of up spins is conserved. We first investigate the dynamics in the subspace expanded
by | ↑↓↓〉, | ↓↑↓〉 and | ↓↓↑〉, in which the eigenfrequencies are λ1 = 0, λ2 =

√
3κ and

λ3 = −√3κ. The corresponding eigenstates are

|ψ1〉 =
1√
3
(| ↑↓↓〉+ | ↓↑↓〉+ | ↓↓↑〉),(3a)

|ψ2〉 =
1√
3
(| ↑↓↓〉+ ei2π/3| ↓↑↓〉+ ei4π/3| ↓↓↑〉),(3b)

|ψ3〉 =
1√
3
(| ↑↓↓〉+ ei4π/3| ↓↑↓〉+ ei2π/3| ↓↓↑〉).(3c)

The evolution of the initial state |Ψ(0)〉 = | ↑↓↓〉 = (|ψ1〉+ |ψ2〉+ |ψ3〉)/
√

3 is

|Ψ(t)〉 =
1√
3

3∑
j=1

e−iλjt|ψj〉 =
1
3
[(1 + 2 cos(

√
3κt))| ↑↓↓〉(4)

+(1 + 2 cos(
√

3κt− 2π/3))| ↓↑↓〉+ (1 + 2 cos(
√

3κt + 2π/3))| ↓↓↑〉].

It is clear that at time t = T ≡ 2π/(3
√

3κ), |Ψ(T )〉 = | ↓↑↓〉, and at time t = 2T ,
|Ψ(2T )〉 = | ↓↓↑〉. We obtain the chiral spin wave rotation in eq. (1a).

We can follow the same procedure to calculate the dynamics in the subspace with two
up spins, | ↓↑↑〉, | ↑↓↑〉 and | ↑↑↓〉. The spin states move to the left, as shown in eq. (1b).
To understand this surprising result, we try to know how | ↓↑↑〉 evolves based on the
knowledge that the state | ↑↓↓〉 rotates to the right. By reversing our definition of up
and down, the state | ↓↑↑〉 becomes | ↑↓↓〉 in the new basis. To express the Hamiltonian
in this upside down basis, we need to make the replacement σ+

j → σ−
j and σ−

j → σ+
j ,

which results in H → −H. The state evolves backward in time, i.e., the spin wave moves
to the left.

3. – Implementation

The key feature of the Hamiltonian in eq. (2) is the imaginary interaction strength
between the spins. Previously we proposed the synthetic magnetic field for photons by
oscillating the frequencies of three cavities that are coupled to the same spin [8]. Here we
consider three spins with oscillating frequencies coupled to the same cavity mode. Let
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us first consider two spins with frequencies being modulated with different phases. The
interaction Hamiltonian can be written as

(5) HI = h̄ga†[σ−
1 eif cos(νdt+φ1) + σ−

2 eif cos(νdt+φ2)] + H.c.,

where a is the annihilation operator of the cavity, f , νd and φj are the modulation am-
plitude, frequency and phase for the j-th spin. We assume the central frequencies of the
spins are the same as that of the cavity. Since eif cos(νdt+φj) =

∑∞
n=−∞ inJn(f)ein(νdt+φj)

where Jn(f) is the nth order Bessel function of the first kind, we can expand the inter-
action Hamiltonian HI =

∑
n hneinνdt, where

(6) hn = inJn(f)h̄ga†[σ−
1 einφ1 + σ−

2 einφ2 ] + inJn(−f)h̄g[σ+
1 einφ1 + σ+

2 einφ2 ]a,

The effective Hamiltonian is [8]

(7) He = h0 +
∞∑

n=1

1
nh̄νd

[hn, h−n] = h0 + i
h̄g2

νd
η(σ+

2 σ−
1 − σ+

1 σ−
2 ),

where η = 2
∑∞

n=1 J2
n(f) sin[n(φ2 − φ1)]/n. When f = 2.4, J0(f) = 0 and h0 = 0, we

obtain the imaginary interaction strength between the two spins. We introduce the third
spin with the same modulation amplitude f and frequency νd but a different phase φ3,
and we set φj = 2jπ/3. We obtain He = H in eq. (2) with κ = g2η/νd and η = 0.307.

In the experiments, the transition frequencies of the spins can be modulated by the
dynamic Stark shift of a detuned light field with modulated intensities. The spins can be
atoms coupled to a one-dimensional waveguide that can mediate long range interactions
between atoms [9].
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Summary. — In the classical regime, frequency comb sources have revolution-
ized high-precision metrology and spectroscopy; in this paper, we discuss recent
developments, which are extending their use to scalable quantum state generation.

1. – Optical quantum state preparation

Optical quantum state generation and control is, besides its importance towards an-
swering fundamental questions in quantum mechanics, a basis for quantum information
applications. In particular, specially-prepared (e.g. single-, entangled-, and multi-photon)
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Fig. 1. – a) A frequency comb generated through b) spontaneous four-wave mixing, the nonlinear
optical process occurring when a resonance of a c) χ(3) microring resonator is optically-excited.

quantum states constitute the underlying resources for secure quantum communica-
tions [1] and powerful quantum computing [2]. The platforms chosen for quantum state
generation must thus point towards “out-of-lab” portability, while, most importantly,
allowing for scalable access to complex states. Although photons experience an excep-
tionally low decoherence that allows them to preserve their state for a long time, large
intricate optical quantum states nevertheless remain difficult to prepare and entangle.

Frequency combs (broadband optical sources that have equidistantly-spaced, coherent
spectral lines, fig. 1a) operated in the classical regime have revolutionized high-precision
metrology/spectroscopy. Recently, their properties have begun to be explored in the
context of quantum state generation. This approach brings many benefits, especially
for the creation of large quantum states. Frequency combs offer many experimentally-
accessible frequency modes in a single spatial mode, giving high dimensionality at a low
footprint cost. This enables many simultaneously-operating channels for quantum state
generation and the manageable scaling of the setup footprint with state complexity.

2. – Quantum frequency combs from bulk-based systems

The first investigations of quantum frequency combs, based on bulk free-space se-
tups, quickly revealed their potential for the generation of large quantum states. This
approach exploited the effect of spontaneous parametric down-conversion in below-
threshold–operated optical parametric oscillators to generate continuous-variable non-
classical states (i.e. squeezed vacuum). In particular, each cavity mode of such a fre-
quency comb can be described by a quantum harmonic oscillator and, analogously to
the position and momentum observables, the field’s continuous-variable Hilbert space
can be described by its amplitude- or phase-quadrature observables. Through the tai-
lored superposition of nonlinear optical processes to link these comb modes, complex
states [3] and even quantum networks [4] can be generated. Furthermore, their proper-
ties can be verified by observing the squeezed (quantum-noise reduced) field quadratures
via homodyne detection characterization.

Quantum state preparation efforts using this and related approaches have been re-
markably successful, especially for the generation of many complex states with e.g. the
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simultaneous generation of 15 quadripartite entangled quantum states using 60 cav-
ity modes [3] or the generation of one 60-mode and two 30-mode copies of a dual-rail
quantum-wire state [5]. Richer excitation spectra and more tailored nonlinear optical in-
teractions are predicted to enable larger states [3], and even in the latter experiment the
mode number was limited by measurement, not generation, with the maximum number
of entangled modes predicted to be at least 6700 [5].

However, the use of such bulk-based approaches coincides with the necessity of using
large, expensive, very complex, and actively-stabilized setups (unsuitable for “out-of-
lab”, portable use). As well, thus far, the continuous-variable non-classical states that
have been demonstrated with this approach have not yet achieved the quality (amount
of squeezing) required for optical quantum computation.

3. – Integrated quantum frequency combs

In recent years, integrated (on-chip) photonics has stood out as a promising platform
for quantum optics, combining mass-producibility (exploiting existing and established
silicon chip technologies), portability, and operational stability with a diverse variety
of functionalities for quantum state engineering highlighted by demonstrations of on-
chip photon sources, path-entangled quantum states, and basic algorithms [6]. However,
realizations of on-chip quantum states and quantum gates have mainly focused on the
use of polarization- or path-entangled photons, wherein each state dimension corresponds
to a waveguide mode. Such architectures are intrinsically limited, as the state/gate
complexity directly scales with the quantum circuit footprint and intricacy.

The on-chip generation of classical frequency combs is a very active research field, and
many of its principles were assimilated into the first demonstrations of on-chip quantum
combs. As materials used for on-chip integration usually exhibit third-order optical
nonlinearities (χ(3)), spontaneous four-wave mixing (SFWM) is used for the generation
of on-chip quantum frequency combs. The nonlinearity mediates the annihilation of
two photons from an excitation field and the simultaneous generation of two daughter
photons named signal and idler (the sum of the signal and idler energies is equal to the
total energy of the annihilated photons, fig. 1b). To increase the efficiency of this process
and also provide the equidistant-line feature of combs, cavity enhancement in on-chip
resonant structures is used, particularly in high-Q microring resonators (fig. 1c).

By optically-exciting a single microring resonance, SFWM symmetrically populates
neighboring resonances with photon pairs, creating a stable source of several-channel
heralded single photons (wherein the signal heralds the presence of the idler, and vice
versa) [7]. The double-pulse excitation of a single resonance (Ψpulses = |1〉+ exp(iθ)|2〉),
was used to demonstrate the generation of time-bin entangled photon pairs (where the
generated photon pair is in a coherent superposition of the first and second time bin,
Ψphotons = |1〉signal|1〉idler + exp(iθ)|2〉signal|2〉idler, see [8] for further details) over the
entire frequency comb spectrum [9]. Quantum state tomography confirmed the high
fidelity (0.96) and purity (1.0) of this entangled comb source. The frequency comb na-
ture, enabled by the resonance characteristics of the microring, allows the construction
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of more complex states. As the generated photons and the excitation field have equal
resonance bandwidths in the ring cavity, the coherence length of different photon pairs
is the same and matches the excitation field coherence time. This enables the multipli-
cation of Bell states and the generation of a four-photon time-bin entangled state comb.
The realization of this four-photon entangled state was confirmed through four-photon
quantum interference with a measured visibility of 89% (without background correction)
and through quantum state tomography (exhibiting a fidelity of 64%) [9]. More recently,
on-chip resonators have also been used to generate high-dimensional entangled photon
pairs [10].

This integrated approach, besides its on-chip portability, presents several benefits.
The quantum comb spans the S, C, and L telecommunications bands, with photon fre-
quencies corresponding to standard telecommunication channels spaced by 200 GHz (this
large spacing arises from the small cavity size, making the modes easily addressable via
the standard filters typically used in telecommunications). A measured photon band-
width of 110 MHz signifies compatibility with state-of-the-art quantum memories, and
the generation process is also very efficient due to cavity enhancement. However, not
all components in the photonic circuit are presently integrated; future work may thus
be directed towards the implementation of emerging technologies, such as on-chip high-
isolation filters and single-photon detectors.

4. – Conclusion

Quantum frequency combs, both in bulk and integrated setups, are a scalable platform
for quantum state generation and control. Their versatility, demonstrated in their use as
single-photon, entangled-photon, and multi-photon state sources, suggests they will play
an important role in future practical implementations of quantum technologies.

∗ ∗ ∗
PR and CR acknowledge support from the NSERC Vanier Canada Graduate Schol-

arship program. MK acknowledges support from the FQRNT-MELS and Marie
Sk�lodowska-Curie grant programs. RM acknowledges support from the Discovery, Strate-
gic, Steacie, Acceleration, and CRC Programs (NSERC); the MESI PSR-SIIRI Initiative
(Quebec); the ITMO Fellowship and Professorship Program (#074-U 01, Russian Fed-
eration); and the 1000 Talents Sichuan Program (China).

REFERENCES

[1] Kimble H. J., Nature, 453 (2008) 1023.
[2] Walther P., Resch K. J., Rudolph T., Schenck E., Weinfurter H., Vedral V.,

Aspelmeyer M. and Zeilinger A., Nature, 434 (2005) 169.
[3] Pysher M., Miwa Y., Shahrokhshahi R., Bloomer R. and Pfister O., Phys. Rev.

Lett., 107 (2011) 030505.
[4] Roslund J., de Arajo R. M., Jiang S., Fabre C. and Treps N., Nat. Photon., 8 (2014)

109.

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



Quantum state generation via frequency combs 117

[5] Chen M., Menicucci N. C. and Pfister O., Phys. Rev. Lett., 112 (2014) 120505.
[6] Bonneau D., Silverstone J. W. and Thompson M. G., Silicon Quantum Photonics, in

Silicon Photonics III, edited by Pavesi L. and Lockwood D. J. (Springer International
Publishing AG) 2016, pp. 41–82.

[7] Reimer C., Caspani L., Clerici M., Ferrera M., Kues M., Peccianti M., Pasquazi

A., Razzari L., Little B. E., Chu S. T., Moss D. J. and Morandotti R., Opt. Express,
22 (2014) 6535.

[8] Brendel J., Gisin N., Tittel W. and Zbinden H., Phys. Rev. Lett., 82 (1999) 2594.
[9] Reimer C., Kues M., Roztocki P., Wetzel B., Grazioso F., Little B. E., Chu S. T.,

Johnston T., Bromberg Y., Caspani L., Moss D. J. and Morandotti R., Science,
351 (2016) 1176.

[10] Kues M., Reimer C., Roztocki P., Romero Cortés L., Sciara S., Wetzel B.,

Zhang Y., Cino A., Chu S., Little B., Moss D., Caspani L., Azaña J. and
Morandotti R., Nature, 546 (2017) 622.

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



This page intentionally left blank

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



Proceedings of the International School of Physics “Enrico Fermi”
Course 197 “Foundations of Quantum Theory”, edited by E. M. Rasel, W. P. Schleich and S. Wölk
(IOS, Amsterdam; SIF, Bologna) 2019
DOI 10.3254/978-1-61499-937-9-119

Time after time: From EPR
to Wigner’s friend and quantum eraser

Marlan O. Scully

Texas A & M University - College Station, TX 77843, USA

Baylor University - Waco, TX, 76798, USA

Daniel M. Greenberger

City University of New York - New York, NY 10031, USA

Wolfgang P. Schleich

Texas A & M University - College Station, TX 77843, USA

Ulm University - Ulm, 89069, Germany

Summary. — The famous Einstein-Podolsky-Rosen (EPR) “paradox” is a good ex-
ample of how “before” and “after” arguments can be misleading. Wigner’s friend is
an even better case asking questions such as: when and how does the observer change
or “reduce” the state vector? Perhaps the best and most insightful Lehrbeispiel of
how to think about before and after issues comes from the quantum eraser. In this
case Baysian logic helps clear up before and after confusion via detailed, but simple,
calculations.
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1. – Introduction

During the present Enrico Fermi School on the foundation of quantum physics it
became clear that there was some diversity of opinion (confusion) concerning e.g. the
famous Einstein-Podolsky-Rosen (EPR) [1, 2] “paradox” and the role of the observer
in quantum measurement. In many such discussions the issue of time before and after
measurement came in. Our lectures were thus revised to address these issues and the
three of us felt that the present notes might help clarify the key role of timing in quantum
measurement theory.

The strange nature of time in quantum mechanics was first unveiled by Einstein et
al. [1] who tried to infer the state of a system “just before” a measurement event, by
what the state was after the observation [2]. Wigner [3, 4] took things further by asking
when state reduction takes place: at the time the apparatus (or friend) registers an event,
or only “when some information” (the yes or no of my friend) enters my consciousness?
Schwinger et al. [5-7] resolve the Wigner conundrum showing that the incorporation of
the observer is enough to produce reduction-type decoherence [8]. The friend never needs
to communicate with us. More recently timing in atom two-slit quantum eraser [9, 10]
scenarios has been discussed. Here “which slit” measurements can be made and/or erased
before or after the atoms are registered on a screen. Many thought that in order to “see”
an interference pattern the “which way” (which slit) information has to be erased before
the atom hits the screen [11]. This reasonable conclusion is incorrect, as we show by
careful calculation.

The order and tenor of the presentation of these three topics is as follows:

1. The Einstein et al. logic is presented using the spin-1
2 approach of Bohm and the

before-after paradoxical EPR arguments are resolved by using the reduced density
matrix.

2. The role of the observer, i.e. Wigner’s friend, and the process of observation are
illustrated by Wigner’s study of coherence and decoherence. Schwinger et al. [5-7]
show that the friend never needs to communicate his measurement result in order
to wipe-out coherence. The mere fact that our friend “knows” is enough to destroy
coherence – she never needs to tell us.

3. Quantum eraser and the timing of the eraser event provide insight into the effects
of timing of which-way (Welcher Weg) local measurements before and after distant
observation. Baysian statistical arguments are used to resolve the timing problem.

2. – The Einstein-Podolsky-Rosen (EPR) problem

In the following, we first present the EPR problem in Einstein’s own words. His point
of view is also summarized in fig. 1. We then present the density matrix approach [2] to
resolving the EPR problem.
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Fig. 1. – (a) z-orientation of SGA, (b) x-orientation of SGA.

Let us begin by quoting Einstein from his 1936 Franklin Society paper [1] where he
says at the bottom of p. 375:

“The ψ function does not in any way describe a condition which could be
that of a single system; it relates rather to many systems, to ‘an ensemble of
systems’ in the sense of statistical mechanics.”

We will use the statistical or density matrix throughout our discussion. He then goes on
to say (p. 376):

“Consider a mechanical system constituted of two partial systems A and B

which have interaction with each other only during limited time. Let the ψ

function before their interaction be given. Then the Schrödinger equation will
furnish the ψ function after the interaction has taken place. Let us now deter-
mine the physical condition of the partial system A as completely as possible
by measurements. Then the quantum mechanics allows us to determine the ψ
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function of the partial system B from the measurements made, and from the
ψ function of the total system. This determination, however, gives a result
which depends upon which of the determining magnitudes specifying the con-
dition of A has been measured(for instance coordinates or momenta). Since
there can be only one physical condition of B after the interaction and which
can reasonably not be considered as dependent on the particular measurement
we perform on the system A separated from B it may be concluded that the
function is not unambiguously coordinated with the physical condition. This
coordination of several ψ functions with the same physical condition of sys-
tem B shows again that the function cannot be interpreted as a (complete)
description of a physical condition of a unit system.”

Following the Bohm formulation of the EPR problem in terms of the spin-singlet
states in the z-representation appropriate to a Stern-Gerlach apparatus (SGA) as in
fig. 1a, we write

(1) |Ψ(z)
AB〉 =

1√
2

[| ↑a↓b〉 − | ↓a↑b〉] ,

and in the x-representation

(2) |Ψ(x)
AB〉 =

1√
2

[|+a −b〉 − | −a +b〉] .

In fig. 1 we see that the state vector (or density matrix) for the AB system gives
different descriptions of the state of spin b depending on what kind of measurement (z-
or x-orientation of the SGA) one envisions, that is

(3) ρ
(z)
B =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

0 0

)
,

or(
0 0

0 1

)
,

on the one hand, or

(4) ρ
(x)
B =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
1 1

1 1

)
,

or

1
2

(
1 −1

−1 1

)
,

on the other.
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Fig. 2. – (a) Reduced density matrix in z-representation (b) Reduced density matrix in x-
representation, where |S〉 denotes the spin singlet state of eqs. (1) and (2).

Thus there is more than one density matrix ρ (or state vector ψ) for a single system
(spin b). This is what EPR consider “paradoxical”.

Next, we show how the resolution of the problem is achieved via the reduced density
matrix

(5) ρ̃B = TrAρAB .

In fig. 2 we see that the density matrix for the B system (spin b) is the same for
both the z- and x-representation, that is we have the same density matrix ρB = 1

2 ( 1 0
0 1 )

for subsystem B (spin b) in both the z- and x-representations. This resolves the EPR
problem; however, the EPR paper points to a deep fact of quantum mechanical life: b

spin has neither up and down, nor in and out character before spin a is measured. This
is the main take-away lesson.

The before and after character of the time sequence is to be emphasized: Only after
measuring the spin of atom a, the spin of b is known. Furthermore, it is argued, spin b

must be the same before as after. The error in this logic is, as is now well-known, atom
b has no state vector before measurement. It has only the statistical mixture of fig. 2.

In the next section we follow in the foot steps of Wigner in the study of coherence
and observation.

3. – Of Wigner and Wigner’s friends

A key aspect of the EPR conundrum is the after and before character of their argu-
ments. In essence they say: After we learn the results of subjecting our spin (atom a) to
a z-deflection due to a SGA as in fig. 1a, we can infer the spin state of atom b. Then, the
argument goes, we “know” the state of the b atom even before the measurement because
we did nothing to atom b so it must have been in the same state ( | ↑b〉 or | ↓b〉) before
and after the measurement on atom a.
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Moreover, we could have chosen to subject atom a to a x-oriented SGA and learn the
state |+b〉 or |−b〉 of atom b. Hence, before even measuring the state of atom a we have
two state vectors as depicted in fig. 1 for atom b. The “before and after” nature of things
is a key part of the EPR logic.

Then comes Wigner with his observer friend. He envisions an EPR singlet-type system
in which his friend monitors one system, say atom a, and tells Wigner what he observes
so that Wigner then performs the associated state reduction. In Wigner’s words:

“It is natural to inquire about the situation if one does not make the obser-
vation oneself but lets someone else carry it out. What is the wave function
if my friend looked at time t? [· · · ] However, even in this case, in which the
observation was carried out by someone else, the typical change in the wave
function occurred only when some information (the yes or no of my friend)
entered my consciousness.”

For example if the friend reports atom a to be in the state | ↑a〉 then the state
reduction to be performed is

(6)
1√
2
[| ↑a↓b〉 − | ↓a↑b〉]→ | ↑a↓b〉.

But clever Mr. Wigner asks: When should the state reduction be performed:

– After my friend told me the result of his measurement?

– Before he told me but when the measurement was actually performed?

Such before and after questions are clarified by designing very specific “experiments”
together with the appropriate analysis. The next section on the quantum eraser makes
this point in some detail: However, we now consider the observation-state-reduction
issue following the Schwinger team [5-7] of Wigner’s friends who resolve subtle problems
flagged by Wigner.

It is a tenet of the “Copenhagen interpretation” that the act of measuring “reduces”
the wave function to a single eigenstate. The problem may be summarized by noting
that before its measurement the system of interest is represented by a state vector such
as

(7a) |ψ〉 =
∑
m

am|m〉,

or the density matrix

(7b) ρ =
∑
m,n

a∗
man|n〉〈m|.
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Fig. 3. – Side view of the Stern-Gerlach interferometer (SGI) showing the spins split into two
paths and reunite.

But upon “looking” at the system it is found to be in some state

(8a) |ψ〉 = |m〉,

or equivalently is represented by the density matrix

(8b) ρ = |m〉〈m| .

Please note that it is the off-diagonal nature of the density matrix (7b) that leads to
“trouble”. As has been observed: the paradoxes associated with quantum theory typi-
cally involve the off-diagonality of the density matrix.

Thus, it seems that the simple act of “looking” has changed (reduced) the represen-
tation of the system from the general (off-diagonal) density matrix (7b) to the simpler
expression (8b). In this regard, Wigner considered a Stern-Gerlach interferometer (SGI)
in which a polarized beam of spin-1

2 particles is split into two partial beams, and then
subsequent Stern-Gerlach deflecting magnets are used to reconstitute these two beams
into one, as in fig. 3.

In later work the Schwinger team [5-7] considered the fate of a spin-1
2 particle when a

detector is present that is sensitive to the passage of particles along one trajectory, but not
the other as in fig. 4. It is not surprising that coherence is destroyed as soon as one is able
to tell along which path the atom traveled. Most people argue that decoherence arises
from dynamical perturbations. However, ref. [7] clearly shows that the loss of coherence
in measurements on quantum systems can be traced to the information gleaned by the
measuring apparatus (“friend”) and the system (spin) being observed. The objective of
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Fig. 4. – SGI with micromaser welcher Weg detector in plane along the upper path.

ref. [7] is to understand what happens to spin coherence when a “which path” detector,
(i.e. a friend) is in place along one arm of the SGI. It is generally agreed that spin
coherence is destroyed, when one is able to tell along which path the spin-1

2 atom traveled
through the SGI. But, the question, how this loss of coherence arises is controversial.
Some argue that the system under observation is affected in a form analogous to the
recoil acquired by the scattering of the photon in “Heisenberg’s microscope.” Others
point out that the large number of degrees of freedom in the macroscopic measuring
apparatus, leads to an irreversible loss of coherence.

Schwinger et al. show that the loss of coherence in measurements on quantum systems
can always be traced to information and/or correlation between the (relevant) degrees
of freedom of the measuring apparatus and the system being observed.

Following [7] we add two micromaser cavities [8] to the upper path as in fig. 4. The
single-mode maser fields are prepared such that the probability that a spin-up atom
entering cavity 1 is spin-down between the cavities and spin-up again after leaving cavity
2 is practically equal to unity. Since only the upper partial beam runs through the
cavities, the evolution operator describing the SGI with the cavities has the structure

(9) U(ti, tf ) = USGI(ti, tf )
[
1 + σz(ti)

2
U (↑)

cav(ti, tf ) +
1− σz(ti)

2
U (↓)

cav(ti, tf )
]

.

We consider two extreme situations: i) the cavities are prepared in coherent states of
the maser fields which are classical states of the electromagnetic field. ii) In contrast,
the so-called number states may be used.

We find that classical coherent maser states preserve spin coherence, but number
states destroy it. That is, which-path information is potentially available, provided the
properties of the maser fields are changed by the interaction. It is here that the distinction
between coherent states and number states enters.

The welcher Weg nature of these two extreme situations, that is number versus
coherent-state preparation, is also clearly displayed upon expressing the state of the
spin-photon system in terms of states referring to measurements at the final time tf . As
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in

100% for maser
in coherent state

50% for maser
in number state

Fig. 5. – SGI with micromasers and SGA for final σx measurements, comparing classical coherent
states and number states.

shown in [7] at t = tf , the spin⊗detector state reads

(10a) |Ψ(tf )〉 =
1√
2

(|N1, N2, ↓〉+ |N1 + 1, N2 − 1, ↑〉) .

The spin-up and spin-down components are physically distinguished here, inasmuch as
there is a one-to-one correspondence between spin down and final photon counts N1, N2,
as well as spin up and N1 + 1, N2 − 1. This spin-photon number coupling signifies the
correlations established by the interaction. In short, number-state preparation provides
us with a good welcher Weg detector.

In contrast, cavities prepared in classical coherent states lead to the final state going
as

(10b) |Ψ(tf )〉 =
1√
2

(|α1e
−iβ , α2e

−iβ , ↓〉+ |α1e
−iβ , α2e

−iβ , ↑〉) .

Here the photon and spin degrees of freedom are evidently uncorrelated, no information
is available, and therefore we do not have a welcher Weg detector.

In order to sharpen the discussion of the SGI with a cavity-which-way detector in
place we write the density matrix of the spin-1

2 system after passing through the cavities
and reuniting the spins from the upper and lower arms of the SGI. From ref. [7] the spin
density matrix then reads

(11) ρspin(tf ) =
1
2

[
1 〈a†

1(ti)〉〈a2(ti)〉/
√

N1N2

〈a1(ti)〉〈a†
2(ti)〉/

√
N1N2 1

]
,

where N1(N2) is the mean photon number in cavity 1(2) and a†
1(a2) is the creation

(annihilation) operator for cavity 1(2).
Thus we see that for coherent states in cavities 1 and 2 the spin density matrix is

( 1 1
1 1 ), while for number states in the cavities 〈a†

1〉 and 〈a2〉 vanish, and the spin density
matrix is ( 1 0

0 1 ) as summarized in fig. 5.
Hence, loss of spin coherence (as in state reduction) is caused by and associated with

the mere presence of a good detector (friend). We also note that there is no need for a
macroscopic number of states in the detector, and no need for information to enter “my
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consciouseness”. But what if we “erase” the information in the detector? Will coherence
then return? We next turn to such questions.

4. – Quantum eraser and the Mohrhoff conundrum

In sect. 2 we have shown how the EPR “two-states-for-one-reality” can be resolved
using the reduced density matrix. However, there are many related subtle questions. For
example, the problem of Wigner’s friend. What if the friend forgets, or has his memory
erased? How does the timing of the erasure affect the outcome? Questions such as these
are addressed in this section on the quantum eraser.

To lay the ground work for the present problem we recall the abstract from the
article summarizing the resolution refutation [12] of the before and after problem posed
by Mohrhoff [11]:

“Recently, Mohrhoff [Am. J. Phys. 64, 1468−1475 (1996)] has analyzed a
thought experiment of ours [Nature (London) 351, 111-116 (1991)] where a
double-slit interferometer for atoms is supplemented by a pair of which-way
detectors. Owing to the quantum nature of these detectors, the experimenter
can choose between acquiring which-way knowledge and observing an inter-
ference pattern. The latter option makes use of a procedure called “quantum
erasure.” Mohrhoff (along with other bright colleagues who have made similar
statements) claims erroneously that the experimenter has to make this choice
before the atom hits the screen. We readdress this issue here and demonstrate
that our original assertion was correct: The experimenter can choose between
which-way knowledge and quantum erasure at any time, even after the atom
has left its mark on the screen.”

The set-up shown in fig. 6 is a simple physical model of a quantum-eraser experiment
following ref. [12]. We consider an array of detectors at the screen at various points ri.
Each detector has a shutter which opens at time ta for a short time τa. The quantum-
erasure photodetector is activated by opening its shutters at time tμ for a time τμ. Then,
we can easily calculate the state vector for the total system.

At time t = 0 the total state vector is

(12a) which way: |Ψ(i)(0)〉 =
1√
2

[|μ1γ1〉+ |μ2γ2〉]⊗ |β〉|gi〉,

which can also be written as

(12b) which wave: |Ψ(i)(0)〉 =
1√
2

[|μ+γ+〉+ |μ−γ−〉]⊗ |β〉|gi〉,

where |μ±〉 = 1√
2
[|μ1〉 ± |μ2〉] denotes the quantum state of the μ-photon with a similar

expression for |γ±〉 describing the γ-photon. The μ-photon detector atom in the ground
(excited) state is β (α) and the i-th detector has excited (ground) state ei (gi).
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Fig. 6. – Quantum-eraser set-up. The photon detector is represented by a two-level system
which is excited upon absorption of a photon. The screen consists of an array of detectors.
The microwave (μ) and visible photons (γ) are emitted in cascade from atom 1 or 2 located at
the position 1 or 2 of the figure. The quantities ψ1 and ψ2 are the γ-photon wave functions as
discussed in the text.

Later in time the state |Ψ(i)(0)〉 in the ± basis reads

|Ψ(i)(t, ta, tμ)〉 =
{ 1√

2

[
cos

(
g
τμ

2

)
|μ+〉|β〉 − i sin

(
g
τμ

2

)
|0〉|α〉

]
|γ+(t)〉(13)

+
1√
2

[|μ−〉|β〉] |γ−(t)〉
}
⊗ |D〉,

where the states |γ±〉 are related to the photon wave function at the i-th detector by

ψ±(ri, t) = 〈0|Ê(ri)|γ±(t)〉 =
E
r1i

θ(t− r1i/c)e−γ(t−r1i/c)eiωt(14)

± E
r2i

θ(t− r2i/c)e−γ(t−r2i/c)eiωt.

Here g is the coupling constant between the detector atom and the μ-photon, |D(t)〉
denotes the detector array state vector, E is a constant, and r1i(r2i) is the distance from
the 1(2) atom to the i-th detector.

Now if we send an atom through the apparatus and find it excites the i-th detector at
time ta; and if we do not activate the quantum eraser then we must use the which-way
state (12a) and we can correlate the likelihood of exciting the i-th detector |ψ1(ri, ta)|2/2
and |ψ2(ri, ta)|2/2.

However, if we choose to open the eraser shutter at tμ ≈ ta, i.e., after the γ-photon has
been detected at ri on the screen, we can now measure which wave, i.e. use state (12b).
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Here we do not make any measurements of the type discussed in the previous paragraph.
Let us now write the joint count probability that the photodetector is excited at time
tμ, and the i-th screen detector records a count at time ta as

(15) P (ei;α; ta, tμ) = 〈Ψ(i)(ta, tμ)|{|ei〉〈ei| ⊗ |α〉〈α|}|Ψ(i)(ta, tμ)〉,

and consulting eq. (13) we see that eq. (15) is just

(16a) P (ei;α; ta, tμ) =
1
2
|ψ+(ri)|2 sin2

(
g
τμ

2

)
.

It is useful to write this expression in terms of the conditional probability P (ei|α) as

(16b) P (ei;α) = P (ei|α)P (α),

because the probability of finding the i-th detector excited given that the μ-photon de-
tector atom is in the excited state α goes (for perfect detectors) as P (ei|α) = 1

2 |ψ+(ri)|2.
Furthermore P (α) = sin2(g τμ

2 ), so that using (16b) we obtain (16a).
But, Mohrhoff argued, this is only valid if we open the μ-photon shutter before the

γ-photon hits the detector array. To see that this line of reasoning is not correct we turn
things around and note that information gleaned from the probability of exciting the i-th
detector independent of the state of the μ-detector is P (ei) = 1

2 [|ψ+(ri)|2 + |ψ−(ri)|2],
and the conditional probability of exciting the cavity detector given the i-th atom excited
(from eq. (13)) is

(17) P (α|ei) =
|ψ+(ri)|2 sin2

(
g

τμ

2

)
|ψ+(ri)|2 + |ψ−(ri)|2 ,

where the denominator arises from normalization (1). Hence, we have the joint proba-
bility

(18) P (α; ei; tμ, ta) =
|ψ+(ri)|2 sin2(g τμ

2 )
|ψ+(ri)|2 + |ψ−(ri)|2 ×

1
2
[|ψ+(ri)|2 + |ψ−(ri)|2],

which is the same as (16a).

(1) Perhaps better said: P (α, ei) is the probability that if the detector i is excited with proba-
bility

P =
|ψ+(ri)|2

|ψ+(ri)|2 + |ψ−(ri)|2 ,

then the μ-photon detector atom will be in the excited state α with the probalility

P sin2
“
g
τμ

2

”
= P (α, ei).

.
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This resolves the Mohrhoff problem. Do we want particle-like welcher-weg informa-
tion? Then keep the eraser shutters closed and use eq. (12a). Do we want wave-like
complementary information? Then open the eraser shutters and use eq. (12b). It does
not matter in which order the atomic detection and the photodetection occur. The result
is the same.

5. – Summary

EPR logic says that the density matrix of spin B of the AB singlet state has a density
matrix determined after measuring spin a of the form ρ

(z)
B = | ↑〉〈↑〉 or | ↓〉〈↓ |. However a

different choice of measurement would yield ρ
(x)
B = |x〉〈x| or |−x〉〈−x|. Thus EPR argue

that the two different density matrices ρ
(z)
B and ρ

(x)
B describe the B spin before measuring

A. In fact the correct density matrix before measurement is the reduced density matrix
given in fig. 2.

Wigner takes the timing question further by including an observer (friend) who makes
a measurement at time t1 and tells us the results at time t2. When should the wave func-
tion collapse, or equivalently the decoherence of the density matrix take place? Wigner
sharpens the decoherence issue by introducing a Stern-Gerlach interferometer (SGI) to
study the question of decoherence. Following Schwinger et al. we extend the Wigner SGI
to include an observation device sensitive to which path the spins take. We show that
the density matrix of the spins becomes diagonal when the detector is included in the
quantum-mechanical treatment. Questions concerning the timing of collapse or decoher-
ence, i.e. state reduction times never arise. Futhermore, macroscopic detectors are not
needed to decohere the spins.

The Wigner friend/which-way detector however suggests the interesting question con-
cerning the possibility of which-path information eraser. Indeed, erasing such information
makes it possible to regain coherence e.g. interference fringes. But do we have to erase
which-slit information before the γ-photons hit the screen? This is a well-posed question
which we can and do answer in the negative. As in the case of EPR and Wigner’s SGI,
we answer these questions by carrying out detailed calculations on simpler but realistic
gedanken experiments with no philosophical discourse.

We conclude that Quantum Theory is a complete and self-contained discipline which
can answer any physically sensible question including those involving quantum measure-
ment.
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Summary. — This article situates QBism among other well-known interpretations
of quantum mechanics. QBism has its roots in personalist Bayesian probability
theory, is crucially dependent upon the tools of quantum information, and in latest
developments has set out to investigate whether the physical world might be of a
type sketched in the philosophies of pragmatism, pluralism, nonreductionism, and
meliorism. Beyond conceptual issues, the technical side of QBism is focused on the
mathematically hard problem of finding a good representation of quantum mechanics
purely in terms of probabilities, without amplitudes or Hilbert-space operators. The
best candidate representation involves an entity called a symmetric informationally
complete quantum measurement, or SIC. Contemplation of it gives a way to think
of the Born rule as an addition to the rules of probability theory, applicable when an
agent considers gambling on the consequences of her actions on the external world,
duly taking into account a new universal capacity: namely, Hilbert-space dimension.
The article ends by showing that the egocentric elements in QBism represent no
impediment to pursuing quantum cosmology and even open up possibilities never
dreamt of in the usual formulations.

1. – Introduction

Chauncey Wright a nearly forgotten philosopher of
real merit, taught me when young that I must not
say necessary about the universe, that we don’t
know whether anything is necessary or not. So I
describe myself as a bettabilitarian. I believe that
we can bet on the behavior of the universe in its
contact with us. [Our underlining; his italics.]

— Oliver Wendell Holmes, Jr.

Quantum physics works. But why?
The mathematical apparatus which we heft onto physics students is astonishingly suc-

cessful. It guides our understanding of phenomena from the submicroscopic clustering of
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quarks to the spectra of quasars, and it underpins technological advances that perfuse
throughout our lives. But when we take a moment and ask—whether in a dorm room or
the pages of a philosophy journal—what the theory is all about, we find ourselves thrash-
ing about in decades of accumulated murk. How much of the mathematical gadgetry is
human convention and historical happenstance, and how much of it truly indicates the
character of the natural world that was here before we were and would endure in our
absence? Can we take discourse about observership and agency, about what it means
to be an agent whose actions have consequences, about the relation between truth and
what works in practice, and make honest mathematics of it?

According to the research program of QBism [1-13], the answer is wholeheartedly
Yes. On one hand, QBism is a way of investing meaning in the abstract structure
of quantum theory: It tells us that quantum theory is fundamentally about agency,
actions, consequences and expectations. On the other, QBism points out the virtue
of reconstructing quantum theory from deep, physical principles. Of all the ideas and
theorems that look important, which are the ideas, the captivating and compelling seed
from which all the formulae would grow given only careful thinking?

We can illustrate the trouble with quantum mechanics by comparing it with other
areas of physics in which we have collectively honed our understanding to a high degree of
sophistication. Two examples that come to mind are the science of thermodynamics and
the special theory of relativity. An old joke has it that the three laws of thermodynamics
are “You can’t win,” “You can’t break even,” and “You can’t get out of the game.” To
these, we ought to prepend the zero-th law, which we could state as, “At least the scoring
is fair.” But consider the premise of the joke, which is really rather remarkable: There
are laws of thermodynamics—a concise list of deep physical principles that underlie and
nourish the entire subject. Likewise for special relativity: Inertial observers Alice and
Bob can come to agree on the laws of physics, but no experiment they could ever do
can establish that one is “really moving” and the other “really standing still”—not even
measuring the speed of light. We invest a little mathematics, and then close and careful
consideration of these basic principles yields all the details of the formal apparatus, with
its nasty square roots or intermingling partial derivatives.

This level of understanding brings many advantages. Having the deep principles
set out in explicit form points out how to test a theory in the most direct manner.
Moreover, it greatly aids us when we teach the theory. We do not have to slog through
all the confusions that bedeviled the physicists who first developed the subject, to say
nothing of the extra confusions created by the fact that “historical” pedagogy is almost
inevitably a caricature. In addition, a principled understanding helps us apply a theory.
As we work our way into a detailed calculation, we can cross-check against the basic
postulates. Does our calculation imply that signals travel faster than light? Does our
seventeenth equation imply that entropy is flowing the wrong way? We must have made
an error! And, when we found our theory upon its deep principles, we have a guide for
extending our theory, because we know what properties must obtain in order for a new,
more general theory to reduce to our old one in a special case.
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To our great distress, we must admit that in the matter of quantum mechanics, the
physics profession lacks this level of understanding.

Instead, we have a mathematical apparatus and day-to-day experience on how to
apply it successfully. But the deep principles remain elusive. What we have in their
place is almost a century of “interpretations” cooked up for the theory—campfire stories
told to give meaning to the mathematics and say what it is “all about.” And what a
host of tales have there been!

– Copenhagen Interpretations – Bohr, Heisenberg, Pauli, von Weizsäcker, Peierls,
Wheeler (they’re actually all different!)

– Nonlocal Hidden Variables – de Broglie, Bohm, Bub (early on), Maudlin, Goldstein,
Valentini, Norsen, Hardy

– Stochastic Mechanics – Nelson, Smolin (Lee)

– Modal Interpretations – Kochen, Dieks, van Fraassen, Bub (later on), Healey (for
a time), Spekkens & Sipe (briefly)

– Quantum Logics – Birkhoff & von Neumann, Mackey, Jauch, Piron, Finkelstein,
Putnam

– Consciousness-Induced Collapse Theories – Wigner, von Neumann

– Objective Collapse Models – Ghirardi-Rimini-Weber, Pearl, Penrose, Frigg, Gisin,
Tumulka, Albert

– Consistent Histories – Griffiths, Omnès

– Transactional Interpretation – Cramer, Kastner

– Relational Interpretations – Rovelli, Spekkens (TBA)

– Ensemble Interpretation – Einstein (?), Ballentine

– Informational Interpretations – Zeilinger, Brukner, Bub (presently)

– Superdeterminism – Bell (as a joke), ’t Hooft (in full seriousness)

– Many-Worlds Interpretations – Everett, Albert & Loewer, Barbour, Coleman,
Deutsch (early version), Deutsch (later version), DeWitt, Gell-Mann & Hartle, Ge-
roch, Graham, Greaves, Lockwood, Papineau, Saunders, Smolin (John), Tegmark,
Vaidman, Wallace, Zurek . . .

This list is far from exhaustive, and as already hinted abundantly, two authors listed
under the same bullet may well disagree on significant issues(1).

(1) Over the years, the many-worlders in particular have done a remarkably poor job of agreeing
with one another about what specifically there are supposed to be many of.
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It is often said that “all interpretations of quantum mechanics make the same pre-
dictions, so we cannot tell them apart by experiment.” This is false for at least two
reasons, a small one and a big one. The small point is that some ideas classified among
the “interpretations” are deliberately fashioned to depart from quantum theory in some
way. Objective Collapse models are the chief examples of this. But more importantly, it
is not clear that all of the interpretations can be made to yield predictions at all, when
they are thought upon with adequate stringency.

We should also mention the attitude that there is no point to “interpreting” quantum
theory, because quantum theory will turn out to be wrong anyway. Perhaps the reason
why we have yet to fit quantum physics together with gravity is that the quantum side is
fundamentally defective, in some fashion that has only manifested when we put the full
weight of general relativity upon it. (Feynman even speculated that gravity itself could
be the result of quantum mechanics breaking down, in which case “quantizing gravity”
would be meaningless [14].) Fair enough! But how, then, do we modify quantum theory
in such a way that it still works in all the many places it has worked so far?

So the field of quantum foundations is not unfounded; it is absolutely vital to physics
as a whole. But what constitutes “progress” in quantum foundations? How would one
know progress if one saw it? Through the years, it seems the most popular strategy
has been to remove the observer from the theory just as quickly as possible, and with
surgical precision. In practice this has generally meant to keep the mathematical structure
of quantum theory as it stands (complex Hilbert spaces, operators, tensor products, etc.),
but, by hook or crook, find a way to tell a story about the mathematical symbols that
involves no observers at all.

In short, the strategy has been to reify or objectify all the mathematical symbols of
the theory and then explore whatever comes of the move. All the various interpretations
that result see quantum states as physical entities, like a blob of ψ-flavored gelatin, sliding
about in accord with its own dynamical laws. Three examples suffice to give a feel: In
the de Broglie-Bohm “pilot wave” version of quantum theory, there are no fundamental
measurements, only “particles” flying around in a 3N -dimensional configuration space,
pushed around by a wave function regarded as a real physical field in that space. In
“spontaneous collapse” versions, systems are endowed with quantum states that generally
evolve unitarily, but from time-to-time collapse without any need for measurement. In
Everettian or “many-worlds” quantum mechanics, it is only the world as a whole—
they call it a multiverse—that is really endowed with an intrinsic quantum state, and
that quantum state evolves deterministically, with only an illusion from the inside of
probabilistic “branching.”

The trouble with all these interpretations as quick fixes for quantum strangeness is
that they look to be just that, really quick fixes. They look to be interpretive strategies
hardly compelled by the particular details of the quantum formalism, giving only more
or less arbitrary appendages to it. This already explains in part why we have been
able to exhibit three such different strategies, but it is worse: Each of these strategies
gives rise to its own set of tough-to-swallow ideas. Pilot-wave theories, for instance,
give instantaneous action at a distance, but not actions that can be harnessed to send
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detectable signals. If so, then what a delicately balanced high-wire act nature presents
us with. And how much appeal does the idea of waves pushing particles about really
have when it turns out that, in order to be consistent, “position measurements” don’t
really measure particle positions [15]? Or take the Everettians. Their world purports to
have no observers, but then it has no probabilities either. What are we then to do with
the Born rule for calculating quantum probabilities? Throw it away and say it never
mattered? It is true that quite an effort has been made by the Everettians to rederive
the rule by one means or another. But these attempts may have re-imported at least
as much vagueness as they claim to eliminate [16-20]. To many in the outside world,
it looks like the success of these derivations depends upon where they are assessed—for
instance, whether in Oxford [21,22] or Cambridge [23,24].

QBists hold that the way forward is to own up to the following lesson. Before there
were people using quantum theory as a branch of physics, before they were calculating
neutron-capture cross-sections for uranium and working on all the other practical prob-
lems the theory suggests, there were no quantum states. The world may be full of stuff
and things of all kinds, but among all the stuff and all the things, there is no unique,
observer-independent, quantum-state kind of stuff.

The immediate payoff of this strategy is that it eliminates the conundrums arising in
the various objectified-state interpretations. A paraphrase of a quote by James Hartle
makes the point decisively [25]:

A quantum-mechanical state being a summary of the observers’ information
about an individual physical system changes both by dynamical laws, and
whenever the observer acquires new information about the system through
the process of measurement. The existence of two laws for the evolution of
the state vector becomes problematical only if it is believed that the state
vector is an objective property of the system. If, however, the state of a
system is defined as a list of [experimental] propositions together with their
[probabilities of occurrence], it is not surprising that after a measurement
the state must be changed to be in accord with [any] new information. The
“reduction of the wave packet” does take place in the consciousness of the
observer, not because of any unique physical process which takes place there,
but only because the state is a construct of the observer and not an objective
property of the physical system.

The objective quantum state is the latter-day equivalent of the luminiferous æther.
But recognizing this is only the first step of an adventure. Luckily the days for this expedi-
tion are ripe, thanks in large part to the development of the field of quantum information
theory in the last 25 years—that is, the multidisciplinary field that has brought about
quantum cryptography, quantum teleportation, and will one day bring about full-blown
quantum computation. Terminology can say it all: A practitioner in this field, whether
she has ever thought an ounce about quantum foundations, is just as likely to say “quan-
tum information” as “quantum state” when talking of any |ψ〉. “What does the quantum
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teleportation protocol do?” A now completely standard answer is: “It transfers quantum
information from Alice’s site to Bob’s.” What we have here is a change of mindset [6].

What the facts and figures, protocols and theorems of quantum information pound
home is the idea that quantum states look, act, and feel like information in the technical
sense of the word—the sense provided by probability theory and Shannon’s information
theory. There is no more beautiful demonstration of this than Robert Spekkens’s “toy
model” for mimicking various features of quantum mechanics [26]. In that model, the
“toys” are each equipped with four possible mechanical configurations; but the players,
the manipulators of the toys, are consistently impeded from having more than one bit of
information about each toy’s actual configuration. (Or a total of two bits for each two
toys, three bits for each three toys, and so on.) The only things the players can know
are their own states of uncertainty about the configurations. The wonderful thing is
that these states of uncertainty exhibit many of the characteristics of quantum informa-
tion: from the no-cloning theorem to analogues of quantum teleportation, quantum key
distribution, entanglement monogamy, and even interference in a Mach-Zehnder interfer-
ometer. More than two dozen quantum phenomena are reproduced qualitatively, and all
the while one can always pinpoint the underlying cause of this: The phenomena arise in
the uncertainties, never in the mechanical configurations. It is the states of uncertainty
that mimic the formal apparatus of quantum theory, not the toys’ so-called ontic states
(states of reality).

What considerations like this tell the ψ-ontologists(2)—i.e., those who attempt to
remove the observer too quickly from quantum mechanics by giving quantum states an
unfounded ontic status—was well put by Spekkens:

[A] proponent of the ontic view might argue that the phenomena in ques-
tion are not mysterious if one abandons certain preconceived notions about
physical reality. The challenge we offer to such a person is to present a few
simple physical principles by the light of which all of these phenomena be-
come conceptually intuitive (and not merely mathematical consequences of
the formalism) within a framework wherein the quantum state is an ontic
state. Our impression is that this challenge cannot be met. By contrast,
a single information-theoretic principle, which imposes a constraint on the
amount of knowledge one can have about any system, is sufficient to derive
all of these phenomena in the context of a simple toy theory . . .

The point is, far from being an appendage cheaply tacked on to the theory, the idea of
quantum states as information has a simple unifying power that goes some way toward
explaining why the theory has the very mathematical structure it does(3). By contrast,

(2) This beautiful word, not to be confused with a practitioner of Scientology, was coined by
Christopher Granade [27].
(3) We say “goes some way toward” because, though the toy model makes about as compelling
a case as we have ever seen that quantum states are states of information (an extremely valuable
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who could take the many-worlds idea and derive any of the structure of quantum theory
out of it? This would be a bit like trying to regrow a lizard from the tip of its chopped-
off tail: The Everettian conception never purported to be more than a reaction to the
formalism in the first place.

But there are still deep puzzles left outstanding. Above all, there are the old questions
of Whose information? and Information about what?—these certainly must be addressed
before any resolution of the quantum mysteries can be declared a success. It must also
be settled whether quantum theory is obligated to give a criterion for what counts as an
observer. Finally, because no one wants to give up on physics, we must tackle head-on
the most crucial question of all: If quantum states are not part of the stuff of the world,
then what is? What sort of stuff does quantum mechanics say the world is made of?

An understanding of the quantum, like all things worth having, will not come easily.
But this much is sure: The glaringly obvious (that a large part of quantum theory, the
central part in fact, is about information) should not be abandoned rashly. To do so
is to lose grip of the theory as it is applied in practice, with no better grasp of reality
in return. If on the other hand, one holds fast to the central point about information,
initially frightening though it may be, one may still be able to reconstruct a picture of
reality from the unfocused edge of one’s vision. Often the best stories come from there
anyway.

So, what is the overarching story of QBism, and what does the QB stand for anyway?
The Q clearly stands for Quantum, but the B? Initially, we had taken the B to stand
for Bayesian, the interpretation of probability from which our efforts grew. This is
reflected in much of the literature on the subject—see, for instance, the title of the
Stanford Encyclopedia of Philosophy article on QBism [13]. However, QBists eventually
became dissatisfied with this meaning for the B, as there are just too many varieties of
Bayesianism [28]—QBism only represents one very specific strain of it [11]. So, for a
time we would say jokingly that the B rather stands for Bruno de Finetti, our hero in
probability theory. But eventually and with good reason, we landed on the idea of B for
Bettabilitarian! This rolling word, coined by U.S. Supreme Court Justice Oliver Wendell
Holmes, Jr. seemed to capture QBism perfectly. Author Louis Menand, in his magisterial
book The Metaphysical Club: A Story of Ideas in America [29], put it like this:

“The loss of certainty” is a phrase many intellectual historians have used the
characterize the period in which Holmes lived. But the phrase has it back-
ward. It was not the loss of certainty that stimulated the late-nineteenth-
century thinkers with whom Holmes associated; it was the discovery of un-
certainty. Holmes was, in many respects, a materialist. He believed, as he

step forward), it gravely departs from quantum theory in other aspects. For instance, by its na-
ture, it can give no Bell inequality violations or analogues of the Kochen-Specker noncolorability
theorems. Later sections of this paper will indicate that the cause of the deficit is that the toy
model differs crucially from quantum theory in its answer to the question Information about
what?

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



140 Christopher A. Fuchs and Blake C. Stacey

Fig. 1. – “May not the creatia of a quantum observer’s actions likewise be such additions to the
universe as to enhance its total value? And on this view, is not the QBist quantum observer—the
agent—a kind of superhero for the universe as a whole, making extra things happen wherever,
whenever he is called to duty?” (Drawing courtesy of Mark Staff Brandl.)

put it, that “the law of the grub . . . is also the law for man.” And concern-
ing the hope of social betterment, he was something worse than a pessimist.
“I despise,” he said, “the upward and onward.” But he was not entirely a
determinist, because he did not think that the course of human events was
fixed . . . . Complete certainty was an illusion; of that he was certain. There
were only greater and lesser degrees of certainty, and that was enough. It
was, in fact, better than enough; for although we always want to reduce the
degree of uncertainty in our lives, we never want it to disappear entirely, since
uncertainty is what puts the play in the joints. Imprecision, the sportiveness,
as it were, of the quantum, is what makes life interesting and change possi-
ble. Holmes liked to call himself a “bettabilitarian”: we cannot know what
consequences the universe will attach to our choices, but we can bet on them,
and we do it every day.
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And that is it—that is QBism! To be a QBist is to use quantum theory to be a “better
bettabilitarian” in this world in which we are all immersed and which we shape with our
every action.

Let us unroll this big idea.

2. – Exactly how quantum states fail to exist

An experimental physicist usually says that an “ex-
perimentally determined” probability has an “er-
ror,” and writes P (H) = NH/N ± 1/2

√
N . There

is an implication in such an expression that there
is a “true” or “correct” probability which could be
computed if we knew enough, and that the observa-
tion may be in “error” due to a fluctuation. There
is, however, no way to make such thinking logically
consistent. It is probably better to realize that the
probability concept is in a sense subjective, that it
is always based on uncertain knowledge, and that
its quantitative evaluation is subject to change as
we obtain more information.

— Richard P. Feynman
The Feynman Lectures on Physics

Every area of human endeavor has its bold extremes. Ones that say, “If this is going to
be done right, we must go this far. Nothing less will do.” In probability theory, the bold
extreme is the personalist Bayesian account of probability [30]. It says that probability
theory is of the character of formal logic—a set of criteria for testing consistency. In the
case of formal logic, the consistency is between truth values of propositions. However
logic itself does not have the power to set the truth values it manipulates. It can only
say if various truth values are consistent or inconsistent; the actual values come from
another source. Whenever logic reveals a set of truth values to be inconsistent, one must
dip back into the source to find a way to alleviate the discord. But precisely in which
way to alleviate it, logic gives no guidance. “Is the truth value for this one isolated
proposition correct?”. Logic itself is powerless to say.

The key idea of personalist Bayesian probability theory is that it too is a calculus of
consistency (or “coherence” as the practitioners call it), but this time for one’s decision-
making degrees of belief. Probability theory can only say if various degrees of belief are
consistent or inconsistent with each other. The actual beliefs come from another source,
and there is nowhere to pin their responsibility but on the agent who holds them. Dennis
Lindley put it nicely in his book Understanding Uncertainty [31]:

The Bayesian, subjectivist, or coherent, paradigm is egocentric. It is a tale of
one person contemplating the world and not wishing to be stupid (technically,
incoherent). He realizes that to do this his statements of uncertainty must
be probabilistic.
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A probability assignment is a tool an agent uses to make gambles and decisions—it is a
tool she uses for navigating life and responding to her environment. Probability theory
as a whole, on the other hand, is not about a single isolated belief, but about a whole
mesh of them. When a belief in the mesh is found to be incoherent with the others,
the theory flags the inconsistency. However, it gives no guidance for how to mend any
incoherences it finds. To alleviate the discord, one can only dip back into the source
of the assignments—specifically, the agent who attempted to sum up all her history,
experience, and expectations with those assignments in the first place. This is the reason
for the terminology that a probability is a “degree of belief” rather than a “degree of
truth” or “degree of facticity.”

To give an example of how mere internal consistency can yield the mathematical rules
of probability is to quantify the consequences of acting upon beliefs in terms of costs and
benefits. An agent, whom we can call Alice, does business with a bookie, whose goal is
to profit by exposing inconsistencies in Alice’s mesh of beliefs. Alice’s goal is to avoid
gambling in a way that forces her into a sure loss. The bookie buys and sells lottery
tickets of the form

(1) Worth $1 if the event E occurs.

Based on her own expectations about the event E, Alice assigns a number p(E), which
is the price in dollars at which she is willing to buy or to sell a lottery ticket of this
form. The normative rule that Alice should avoid a sure loss implies bounds on p(E): If
p(E) < 0, then Alice would be willing to pay money to have the bookie take the ticket
off her hands, whereas if p(E) > 1, she would be willing to pay more for a ticket than it
could ever be worth. Furthermore, consider two events E and F , which Alice believes to
be mutually exclusive. Alice must strive for consistency in her pricing for the following
three tickets. First,

(2) Worth $1 if E.

Second,

(3) Worth $1 if F .

And finally,

(4) Worth $1 if E or F .

The value of the third ticket should be the sum total value of the first two. If Alice
sets her prices such that p(E or F ) > p(E) + p(F ), then the bookie can have a set of
transactions that lead her into a sure loss. In the jargon, Alice is vulnerable to a “Dutch
book”: The bookie sells Alice the third ticket and buys the first two, leaving Alice in
debt. Whichever event happens, Alice cannot recoup the loss. Likewise, the bookie
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can lead Alice into a sure loss if Alice chooses p(E or F ) < p(E) + p(F ). In this way,
striving to satisfy the normative rule of avoiding sure loss, Alice builds up the theory
of probabilities: Her personal probability for an event E is simply her fair price for a
gamble upon E.

Suppose now that Alice feels compelled to making assignments p(E), p(F ), and
p(E or F ) such that p(E or F ) �= p(E) + p(F ). She detects that something is amiss.
What to do to fix the problem? For this, probability theory says nothing: It’s now up
to Alice to make an adjustment somewhere, somehow, or else she will be vulnerable to a
sure loss.

Where personalist Bayesianism breaks away the most from other developments of
probability theory is that it says there are no external criteria for declaring an isolated
probability assignment right or wrong. The only basis for a judgment of adequacy comes
from the inside, from the greater mesh of beliefs Alice may have the time or energy to
access when appraising coherence.

It was not an arbitrary choice of words to title this section Exactly How Quantum
States Fail To Exist, but a hint of what we must elaborate to develop a perfected vaccine
against the fever of quantum interpretations. This is because the phrase has a precursor in
a slogan that Bruno de Finetti, the founder of personalist Bayesianism, used to vaccinate
probability theory itself. In the preface to his seminal book [32], de Finetti writes,
centered in the page and in all capital letters,

PROBABILITY DOES NOT EXIST.

It is a powerful statement, constructed to put a finger on the single most-significant
cause of the conceptual problems in pre-Bayesian probability theory. A probability is
not a solid object, like a rock or a tree that the agent might bump into, but a feeling, an
estimate inside herself.

Previous to Bayesianism, probability was often thought to be a physical property(4)—
something objective and having nothing to do with decision-making or agents at all. But
when thought so, it could be thought only inconsistently so. And hell hath no fury like an
inconsistency scorned. The trouble is always the same in all its varied and complicated
forms: If probability is to be a physical property, it had better be a rather ghostly one—
one that can be told of in campfire stories, but never quite prodded out of the shadows.
Here’s a sample dialogue:

Pre-Bayesian: Ridiculous, probabilities are without doubt objective. They
can be seen in the relative frequencies they cause.

Bayesian: So if p = 0.75 for some event, after 1000 trials we’ll see exactly
750 such events?

(4) Witness Richard von Mises, who even went so far as to write, “Probability calculus is part of
theoretical physics in the same way as classical mechanics or optics, it is an entirely self-contained
theory of certain phenomena [. . . ]” [33].
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Pre-Bayesian: You might, but most likely you won’t see that exactly.
You’re just likely to see something close to it.

Bayesian: “Likely”? “Close”? How do you define or quantify these things
without making reference to your degrees of belief for what will happen?

Pre-Bayesian: Well, in any case, in the infinite limit the correct frequency
will definitely occur.

Bayesian: How would I know? Are you saying that in one billion trials I
could not possibly see an “incorrect” frequency? In one trillion?

Pre-Bayesian: OK, you can in principle see an incorrect frequency, but it’d
be ever less likely !

Bayesian: Tell me once again, what does “likely” mean?

This is a cartoon of course, but it captures the essence and the futility of every such
debate. It is better to admit at the outset that probability is a degree of belief, and deal
with the world on its own terms as it coughs up its objects and events. What do we gain
for our theoretical conceptions by saying that along with each actual event there is a
ghostly spirit (its “objective probability,” its “propensity,” its “objective chance”) gently
nudging it to happen just as it did? Objects and events are enough by themselves.

Similarly for quantum mechanics. Here too, if ghostly spirits are imagined behind the
actual events produced in quantum measurements, one is left with conceptual troubles
to no end. The defining feature of QBism [1-12] is that it says along the lines of de
Finetti, “If this is going to be done right, we must go this far.” Specifically, there can
be no such thing as a right and true quantum state, if such is thought of as defined by
criteria external to the agent making the assignment: Quantum states must instead be
like personalist, Bayesian probabilities.

The direct connection between the two foundational issues is this. Quantum states,
through the Born rule, can be used to calculate probabilities. Conversely, if one assigns
probabilities for the outcomes of a well-selected set of measurements, then this is math-
ematically equivalent to making the quantum-state assignment itself. The two kinds
of assignments determine each other uniquely. Just think of a spin-1

2 system. If one
has elicited one’s degrees of belief for the outcomes of a σx measurement, and similarly
one’s degrees of belief for the outcomes of σy and σz measurements, then this is the
same as specifying a quantum state itself: For if one knows the quantum state’s projec-
tions onto three independent axes, then that uniquely determines a Bloch vector, and
hence a quantum state. Something similar is true of all quantum systems of all sizes
and dimensionality. There is no mathematical fact embedded in a quantum state ρ that
is not embedded in an appropriately chosen set of probabilities(5). Thus generally, if
probabilities are personal in the Bayesian sense, then so too must be quantum states.

What this buys interpretatively, beside airtight consistency with the best understand-
ing of probability theory, is that it gives each quantum state a home. Indeed, a home

(5) See sect. 7 where this statement is made precise in all dimensions.
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localized in space and time—namely, the physical site of the agent who assigns it! By this
method, one expels once and for all the fear that quantum mechanics leads to “spooky ac-
tion at a distance,” and expels as well any hint of a problem with “Wigner’s friend” [34].
It does this because it removes the very last trace of confusion over whether quantum
states might still be objective, agent-independent, physical properties.

The innovation here is that, for most of the history of efforts to take an informational
point of view about quantum states, the supporters of the idea have tried to have it both
ways: that on the one hand quantum states are not real physical properties, yet on the
other there is a right and true quantum state independent of the agent after all. For
instance, one hears things like, “The right quantum state is the one the agent should
adopt if he had all the information.” The tension in these two desires leaves their holders
open to attack on both flanks and general confusion all around.

Take first instantaneous action at a distance—the horror of this idea is often one of
the strongest motivations for those seeking to take an informational stance on quantum
states. But, now an opponent can say:

If there is a right quantum state, then why not be done with all this squabbling
and call the state a physical fact to begin with? It is surely external to the
agent if the agent can be wrong about it. But, once you admit that (and
you should admit it), you’re sunk: For, now what recourse do you have to
declare no action at a distance when a delocalized quantum state changes
instantaneously?

Here I am with a physical system right in front of me, and though my prob-
abilities for the outcomes of measurements I can do on it might have been
adequate a moment ago, there is an objectively better way to gamble now
because of something that happened far in the distance? (Far in the dis-
tance and just now.) How could that not be the signature of action at a
distance? You can try to defend yourself by saying “quantum mechanics is
all about relations”(6) or some other feel-good phrase, but I’m talking about
measurements right here, in front of me, with outcomes I can see right now.
Ones entering my awareness—not outcomes in the mind of God who can see
everything and all relations. It is that which I am gambling upon with the

(6) A typical example is of a woman traveling far from home when her husband divorces her.
Instantaneously she becomes unmarried—marriage is a relational property, not something local-
ized at each partner. It seems to be popular to give this example and say, “Quantum mechanics
might be like that.” The conversation usually stops without elaboration, but let’s carry it a little
further: Suppose the woman, Carol, is right in front of Alice. Alice has a set of probabilities for
what might happen should she buy Carol a celebratory bottle of tequila and congratulate Carol
on losing the deadbeat. Would the far-off divorce mean that there is instantaneously a different
set of probabilities that Alice could use for weighing the consequences of those actions? Not at
all. Alice would have no account to change her probabilities (not due to the divorce, anyway)
until Alice became aware of Carol’s changed relation, however long it might take that news to
get to Alice.
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help of the quantum formalism. An objectively better quantum state would
mean that my gambles and actions, though they would have been adequate
a moment ago, are now simply wrong in the eyes of the world—they could
have been better. How could the quantum system in front of me generate
outcomes instantiating that declaration without being privy to what the eyes
of the world already see? That’s action at a distance, I say, or at least a
holism that amounts to the same thing—there’s nothing else it could be.

Without the protection of truly personal quantum-state assignments, action at a
distance is there as doggedly as it ever was. And things only get worse with “Wigner’s
friend” if one insists there be a right quantum state. As it turns out, the method of
mending this conundrum displays one of the most crucial ingredients of QBism. Let us
put it in plain sight.

“Wigner’s friend” is the story of two agents, Wigner and his friend, and one quantum
system—the only deviation we make from a more common presentation(7) is that we
put the story in informational terms. It starts off with the friend and Wigner having
a conversation: Suppose they both agree that some quantum state |ψ〉 captures their
mutual beliefs about the quantum system(8). Furthermore suppose they agree that at
a specified time the friend will make a measurement on the system of some observable
(outcomes i = 1, . . . , d). Finally, they both note that if the friend gets outcome i, he will
(and should) update his beliefs about the system to some new quantum state |i〉. There
the conversation ends and the action begins: Wigner walks away and turns his back to
his friend and the supposed measurement. Time passes to some point beyond when the
measurement should have taken place.

What now is the “correct” quantum state each agent should have assigned to the
quantum system? We have already concurred that the friend will and should assign
some |i〉. But what of Wigner? If he were to consistently dip into his mesh of beliefs,
he would very likely treat his friend as a quantum system like any other: one with
some initial quantum state ρ capturing his (Wigner’s) beliefs of it (the friend), along
with a linear evolution operator(9) U to adjust those beliefs with the flow of time(10).
Suppose this quantum state includes Wigner’s beliefs about everything he assesses to
be interacting with his friend—in old parlance, suppose Wigner treats his friend as an
isolated system. From this perspective, before any further interaction between himself
and the friend or the other system, the quantum state Wigner would assign for the two
together would be U(ρ ⊗ |ψ〉〈ψ|)U†—most generally an entangled quantum state. The

(7) For instance, see ref. [35].
(8) Being Bayesians, of course, they don’t have to agree at this stage—for recall |ψ〉 is not a
physical fact for them, only a catalogue of beliefs. But suppose they do agree.
(9) We suppose for the sake of introducing less technicality that U is a unitary operation, rather
than the more general completely positive trace-preserving linear maps of quantum information
theory [36]. This, however, is not essential to the argument.
(10) For an explanation of the status of unitary operations from the QBist perspective, as per-
sonal judgments directly analogous to quantum states themselves, see sect. 7 and refs. [2,5,37].
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Fig. 2. – In contemplating a quantum measurement, one makes a conceptual split in the world:
one part is treated as an agent, and the other as a kind of reagent or catalyst (one that brings
about change in the agent itself). The latter is a quantum system of some finite dimension d. A
quantum measurement consists first in the agent taking an action on the quantum system. The
action is represented formally by a set of operators {Ei}—a positive-operator–valued measure.
The action generally leads to an incompletely predictable consequence Ei for the agent. The
quantum state |ψ〉 makes no appearance but in the agent’s head; for it captures his degrees
of belief concerning the consequences of his actions, and, in contrast to the quantum system
itself, has no existence in the external world. Measurement devices are depicted as prosthetic
hands to make it clear that they should be considered an integral part of the agent. The sparks
between the measurement-device hand and the quantum system represent the idea that the
consequence of each quantum measurement is a unique creation within the previously existing
universe. Two points are decisive in distinguishing this picture of quantum measurement from
a kind of solipsism: 1) The conceptual split of agent and external quantum system: If it were
not needed, it would not have been made. 2) Once the agent chooses an action {Ei} to take,
the particular consequence Ek of it is beyond his control—that is, the actual outcome is not a
product of his whim and fancy.

state of the system itself for Wigner would be gotten from this larger state by a partial
trace operation; in any case, it will not be an |i〉.

Does this make Wigner’s new state assignment incorrect? After all, “if he had all the
information” (i.e., all the facts of the world) wouldn’t that include knowing the friend’s
measurement outcome? Since the friend should assign some |i〉, shouldn’t Wigner himself
(if he had all the information)? Or is it the friend who is incorrect? For if the friend
had “all the information,” wouldn’t he say that he is neglecting that Wigner could
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put the system and himself into the quantum computational equivalent of an iron lung
and forcefully reverse the so-called measurement? I.e., Wigner, if he were sufficiently
sophisticated, should be able to force

(5) U(ρ⊗ |ψ〉〈ψ|)U† −→ ρ⊗ |ψ〉〈ψ|.

And so the back and forth goes. Who has the right state of information? The conundrums
simply get too heavy if one tries to hold to an agent-independent notion of correctness
for otherwise personalistic quantum states. A QBist dispels these and similar difficulties
by being conscientiously forthright. Whose information? “Mine!” Information about
what? “The consequences (for me) of my actions upon the physical system!” It’s all
“I-I-me-me mine,” as the Beatles sang.

The answer to the first question surely comes as no surprise by now, but why on earth
the answer for the second? Why something so egocentric, anthropocentric, psychology-
laden, and positivistic (we’ve heard any number of expletives) as the consequences (for
me) of my actions upon the system? Why not simply say something neutral like “the
outcomes of measurements”? Or, why not fall in line with Wolfgang Pauli and say [38]:

The objectivity of physics is [. . . ] fully ensured in quantum mechanics in
the following sense. Although in principle, according to the theory, it is in
general only the statistics of series of experiments that is determined by laws,
the observer is unable, even in the unpredictable single case, to influence the
result of his observation—as for example the response of a counter at a partic-
ular instant of time. Further, personal qualities of the observer do not come
into the theory in any way—the observation can be made by objective regis-
tering apparatus, the results of which are objectively available for anyone’s
inspection. [Our emphasis.]

To the uninitiated, our answer for Information about what? surely appears to be a cow-
ardly, unnecessary retreat from realism. But it is the opposite. The answer we give is
the very injunction that keeps the potentially conflicting statements of Wigner and his
friend in check, at the same time as giving each agent a hook to the external world in
spite of QBism’s egocentric quantum states. Pauli’s statement certainly wouldn’t have
done that. Results objectively available for anyone’s inspection? This is the whole issue
with “Wigner’s friend” in the first place. If both agents could just “look” at the counter
simultaneously with negligible effect in principle, we would not be having this discussion.

You see, for the QBist, the real world, the one both agents are embedded in—with
its objects and events—is taken for granted. What is not taken for granted is each
agent’s access to the parts of it he has not touched. Wigner holds two thoughts in his
head: 1) that his friend interacted with a quantum system, eliciting some consequence
of the interaction for himself, and 2) after the specified time, for any of Wigner’s own
further interactions with his friend or system or both, he ought to gamble upon their
consequences according to U(ρ⊗|ψ〉〈ψ|)U †. One statement refers to the friend’s potential
experiences, and one refers to Wigner’s own. So long as it is explicit that U(ρ⊗|ψ〉〈ψ|)U†

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



QBism: Quantum theory as a hero’s handbook 149

refers to the latter—i.e., how Wigner should gamble upon the things that might happen
to him—making no statement whatsoever about the former, there is no conflict. The
world is filled with all the same things it was before quantum theory came along, like
each of our experiences, that rock and that tree, and all the other things under the sun;
it is just that quantum theory provides a calculus for gambling on each agent’s own
experiences—it doesn’t give anything else than that. It certainly doesn’t give one agent
the ability to conceptually pierce the other agent’s personal experience. It is true that
with enough effort Wigner could enact eq. (5), causing him to predict that his friend will
have amnesia to any future questions on his old measurement results. But we always
knew Wigner could do that—a mallet to the head would have been good enough.

The key point is that quantum theory, from this light, takes nothing away from the
usual world of common experience we already know. It only adds(11). At the very least it
gives each agent an extra tool with which to navigate the world. More than that, the tool
is here for a reason. QBism says that when an agent reaches out and touches a quantum
system—when he performs a quantum measurement—this process gives rise to birth in
a nearly literal sense. With the action of the agent upon the system, the no-go theorems
of Bell and Kochen–Specker assert that something new comes into the world that wasn’t
there previously: It is the “outcome,” the unpredictable consequence for the very agent
who took the action. John Archibald Wheeler said it this way, and we follow suit, “Each
elementary quantum phenomenon is an elementary act of ‘fact creation’.” [39].

With this much, QBism has a story to tell on both quantum states and quantum
measurements, but what of quantum theory as a whole? The answer is found in taking it
as a universal single-user theory in much the same way that Bayesian probability theory
itself is. It is a user’s manual that any agent can pick up and use to help make wiser
decisions in this world of inherent uncertainty(12). To say it in a more poignant way:
In my case, it is a world in which I am forced to be uncertain about the consequences
of most of my actions; and in your case, it is a world in which you are forced to be
uncertain about the consequences of most of your actions. “And what of God’s case?
What is it for him?” Trying to give him a quantum state was what caused this trouble in
the first place! In a quantum mechanics with the understanding that each instance of its

(11) This point will be much elaborated on in sect. 9.
(12) Most of the time one sees Bayesian probabilities characterized (even by very prominent
Bayesians like Edwin T. Jaynes [40]) as measures of ignorance or imperfect knowledge. But
that description carries with it a metaphysical commitment that is not at all necessary for the
personalist Bayesian, where probability theory is an extension of logic. Imperfect knowledge? It
sounds like something that, at least in imagination, could be perfected, making all probabilities
zero or one—one uses probabilities only because one does not know the true, pre-existing state
of affairs. Language like this, the reader will notice, is never used in this paper. All that
matters for a personalist Bayesian is that there is uncertainty for whatever reason. There
might be uncertainty because there is ignorance of a true state of affairs, but there might
be uncertainty because the world itself does not yet know what it will give—i.e., there is an
objective indeterminism. As will be argued in later sections, QBism finds its happiest spot in
an unflinching combination of “subjective probability” with “objective indeterminism.”
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Fig. 3. – The Born rule is not like the other classic laws of physics. Its normative nature
means, if anything, it is more like the Biblical Ten Commandments. The classic laws on the
left give no choice in their statement: If a field is going to be an electromagnetic field at all, it
must satisfy Maxwell’s equations; it has no choice. Similarly for the other classic laws. Their
statements are intended to be statements concerning nature just exactly as it is. But think of
the Ten Commandments. “Thou shalt not steal.” People steal all the time. The role of the
Commandment is to say, “You have the power to steal if you think you can get away with it, but
it’s probably not in your best interest to do so. Something bad is likely to happen as a result.”
Similarly for “Thou shalt not kill,” and all the rest. It is the worshipper’s choice to obey each
or not, but if he does not, he ought to count on something potentially bad in return. “And I
commend enjoyment,” urges Ecclesiastes, “for man has nothing better under the sun than to
eat, to drink and to be merry.” This is a guideline for behavior—but one conditioned on, and
justified in terms of, the character of the natural world. The Born rule guides, “Gamble in such
a way that all your probabilities mesh together through me.” The agent is free to ignore the
advice, but if he does so, he does so at his own peril. Yet, as with the advice of Ecclesiastes,
the specifics of the rule can tell us about the character of the world we inhabit.

use is strictly single-user—“My measurement outcomes happen right here, to me, and I
am talking about my uncertainty of them.”—there is no room for most of the standard,
year-after-year quantum mysteries.

The only substantive conceptual issue left(13) before synthesizing a final vaccine is

(13) Not to worry, there are still plenty of technical ones, as well as plenty more conceptual ones
waiting for after the vaccination.
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whether quantum mechanics is obligated to derive the notion of agent for whose aid the
theory was built in the first place. The answer comes from turning the tables: Thinking
of probability theory in the personalist Bayesian way, as an extension of formal logic,
would one ever imagine that the notion of an agent, the user of the theory, could be
derived out of its conceptual apparatus? Clearly not. How could you possibly get flesh
and bones out of a calculus for making wise decisions? The logician and the logic he uses
are two different substances—they live in conceptual categories worlds apart. One is in
the stuff of the physical world, and one is somewhere nearer to Plato’s heaven of ideal
forms. Look as one might in a probability textbook for the ingredients to reconstruct
the reader herself, one will never find them. So too, the QBist says of quantum theory.

What counts as a “user” of quantum theory? Must the user be conscious? We
find that an inopportune way of phrasing things, for it takes the issue too far afield.
Instead, we prefer to say it is whatever it takes to be a user of probability theory. Dogs
don’t collapse wave functions because dogs don’t use wave functions. Upon reading this
argument, one correspondent immediately protested: “But ants already use probabilities,
it has been shown. For the paths they take, one can model the trajectories with an
appropriate choice of probabilities and utilities.”

To which the QBist involved replied, “No, that’s not what I mean. And that is
no proof whatsoever that ants use probability theory in the sense I mean it. To use
probability theory, I mean one must use it internally, and in a normative sense.” Prob-
ability assignments spring from an attempt to organize one’s previous experience for the
purpose of future actions. Ants are surely not using it normatively. Modeling agents
from the outside (at least in the discussions we’ve seen so far) never takes into account
the normative struggle that is required for any but the most trivial probability assign-
ments.

With this we finally pin down the precise way in which quantum theory is “different
in character from any physical theory posed before.” For the QBist, quantum theory is
not something outside probability theory—it is not a picture of the world as it is, as say
Einstein’s program of a unified field theory hoped to be—but rather it is an addition to
probability theory itself. As probability theory is a normative theory, not saying what
one must believe, but offering rules of consistency an agent should strive to satisfy within
his overall mesh of beliefs, so it is the case with quantum theory. If quantum theory is
a user’s manual, one cannot forget that the world is its author. And from its writing
style, one may still be able to tell something of the author herself. The question is how
to tease out the psychology of the style, frame it, and identify the underlying motif.

To take this idea into one’s mindset is all the vaccination one needs against the threat
that quantum theory carries something viral for theoretical physics as a whole. A healthy
body is made healthier still. With this protection, we are for the first time in a position
to ask, with eyes wide open to what the answer could not be, just what after all is the
world made of? Far from being the last word on quantum theory, QBism, we believe, is
the start of a great adventure. An adventure full of mystery and danger, with hopes of
triumph . . . and all the marks of life.
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3. – Teleportation

“Teleportation” in the quantum information sense isn’t so very much like the Star
Trek version as the press always wants to portray it. It’s not about getting things from
here to there without going in between, but about making your information stop being
about this and start being about that without being about anything else in between.
In slightly stuffier language: Quantum teleportation is the transference of an agent’s
predictions about one object onto another object that has never interacted with the
first.

In the usual way the teleportation drama is staged, the cast of characters includes an
Alice and a Bob who share two systems in a maximally entangled state, and implicitly,
a Charlie who prepares a third system in the state of his choice and then hands it off
to Alice. Alice then performs a measurement on the two systems in her possession and
announces the result of the measurement to Bob. The teleportation process is completed
with Bob performing an operation on his system conditioned upon his newly acquired
information.

In what sense is it completed? Only in this: If Charlie has the promise that Alice and
Bob went through all the actions described above, then he can safely ascribe the same
quantum state to Bob’s system that he had originally ascribed to the system he handed
off to Alice.

The way in which the story is typically told leads one to ask, “How is so much
information transmitted?” and “Just how does the information get from Alice to Bob?”
The honest answer is that no information is transmitted in the process of teleportation
(excepting the two bits that tell Bob which action to perform). The only nontrivial thing
transferred in the process of teleportation is reference. Charlie’s information—that is, his
compendium of Bayesian degrees of belief—stops being about the qubit he just handed
off to Alice and starts being about Bob’s.

Here’s a corresponding classical example. In place of entanglement, let us equip Alice
and Bob each with a coin (oriented heads or tails) encased in a magical opaque box.
These magical opaque boxes have the following properties: 1) though one cannot see
how a coin is oriented within it, one can nevertheless reach inside a box and turn the
coin over if one wishes, and 2) if one touches two of these boxes together, they will glow
green if the coins within them have the same orientations, and they will glow red if they
have opposite orientations—the glowing reveals nothing about the actual orientation of
either coin, only about their relationship. Finally let us stipulate the following for Alice
and Bob: That their opaque boxes contain identically oriented coins, but Alice and Bob
(or anyone else for that matter) know nothing more about the coins beyond that. In
other words, Alice and Bob possess HH or TT, but they do not know which.

Now, as in quantum teleportation let us introduce a third character, Charlie. Charlie
has an opaque box of his own. But let us give him some partial certainty about the
orientation of his coin. Particularly, let us suppose he ascribes a probability p for his
coin to be heads. This is a real number between 0 and 1, and in principle it might take
an arbitrarily huge number of bits to specify.
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Here’s the protocol. Charlie hands off his coin (encased in a magical opaque box) to
Alice. Alice touches her newly acquired box to her old box. The two glow red or green,
and she communicates the result to Bob. If the result was green, Bob leaves his coin
alone. If the result was red, he reaches into his opaque box and turns the coin over.
Meanwhile, Alice randomizes the coins in her possession, i.e., she shuffles them so that
Charlie no longer knows which is which. Thus from Charlie’s perspective, he now knows
nothing about the coin in the original box he gave Alice, and he would write down a
50–50 distribution for heads versus tails. Charlie’s original state for his original coin is,
in this way, “destroyed”. At that point the “teleportation” process is completed.

Again we can ask, “In what sense is it completed?” Only in this: If Charlie has the
promise that Alice and Bob went through all the actions described above, then he can
safely ascribe the same probability p to the coin in Bob’s box (i.e., p that it will be heads)
that he had originally ascribed to the coin in his own box. In other words, Charlie has
everything it takes to update his epistemic state about the orientation of the coin in
Bob’s box to what he had originally thought of the coin in his own box.

Is this wildly exciting? The stuff that would make headlines in papers all around the
world and be called “teleportation”? At the material cost of transferring a single bit
from Alice to Bob, has Charlie instantaneously transferred an arbitrarily stupendously
big number of bits (in the form of the real number p) between the two sites? Not at
all! The only thing that was materially transported from one site to the other was a
single bit (that the boxes glowed red or green). The rest was just “conditionalizing” or
“updating”. And there is no shocking headline in that.

4. – The meaning of no-cloning

It is often underappreciated that taking a stand on the interpretation of quantum
states carries with it a fairly distinctive force on one’s research. For, the stand one
takes implicitly directs the analogies (and disanalogies) one will seek for comparing clas-
sical physics to quantum physics. At least this is the case for an information theoretic
conception of quantum states.

In 1995, one of the authors (CAF) was quite taken with a point that both Asher
Peres and Michael Berry emphasized in their discussions of quantum chaos and more
broadly [41]. In making a comparison between quantum mechanics and classical Hamil-
tonian mechanics, the proper correspondence is not between quantum states and points
in phase space, but between quantum states and Liouville distributions on the phase
space. The key insight is that the points of phase space are meant to represent states of
reality, whereas the Liouville distributions are rather explicitly meant to represent one’s
uncertainty about the true state of reality. In an information theoretic conception of
quantum states, a quantum state too should not be a state of reality, but uncertainty
about something (maybe not uncertainty of the true state of reality, but nonetheless
uncertainty about something).

If the analogy worked once, then it should be tested further afield! Furthermore,
maybe one could even take the insight the other way around, from quantum to classical.
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This prompted the thought that despite all the hoopla over the no-cloning theorem, there
was nothing particularly quantum mechanical about it. Classical Liouville evolution
preserves phase space volume—this any graduate student versed in Goldstein’s classical-
mechanics book [42] knows—but a less emphasized consequence of it is that Hamiltonian
evolution must preserve the overlap between Liouville distributions as well (as Peres and
Berry had been stressing in their quantum chaos work). But then the same argument
that drives the proof of the no-cloning theorem for quantum states would also drive
it for classical Liouville distributions—for the no-cloning theorem is a nearly immediate
consequence of the fact that unitary evolutions preserve Hilbert-space inner products. So,
nonorthogonal quantum states cannot be cloned, but neither can nonorthogonal classical
Liouville distributions [43].

A historical aside: The issue of no-cloning boils down to an almost immediate con-
sequence of unitarity—inner products cannot decrease. In fact, Wigner’s theorem on
symmetries [44] even shows that the group of time-continuous, inner-product preserving
maps on Hilbert space is strictly equivalent to the unitary group. Therefore, it is an
intriguing historical fact that Wigner himself just missed the no-cloning theorem! In a
1961 paper, Wigner took on the question, “How probable is life?” [45]. He did this by
identifying the issue of self-reproduction with the existence of the types of maps required
for the cloning of quantum states. He didn’t tackle the question of cloning for a com-
pletely unknown quantum state head on, but instead analysed the “fraction” of unitary
operators on a tensor-product Hilbert space that can lead to a cloning transformation
for at least some states. Nevertheless, he states quite clearly that an arbitrary linear
superposition of clonable states ought also to be clonable. But this, of course, cannot
be.

The fact that both teleportation and no-cloning arise in classical statistical theories
has implications for the project of reconstructing quantum theory. In our search for deep
principles, should we try to rederive quantum physics from the postulate that “quantum
information can be teleported,” or that “quantum information cannot be cloned”? These
phenomena being not at all fundamentally quantum makes them feel like poor candidates
for the seed from which quantum theory grows. It would be far better to seek that
essential DNA in the answer to the question, Information about what?

5. – The essence of Bell’s theorem, QBism style

It is easy enough to say that a quantum system (and hence each piece of the world)
is a “seat of possibility.” In a spotty way, certain philosophers have been saying similar
things for 150 years. What is unique about quantum theory in the history of thought is
the way in which its mathematical structure has pushed this upon us to our very surprise.
It wasn’t that all these grand statements on the philosophical structure of the world were
built into the formalism, but that the formalism reached out and shook its users until
they opened their eyes. Bell’s theorem and all its descendants are examples of that.

So when the users opened their eyes, what did they see? From the look of several
recent prominent expositions [46-48], the lesson was indisputably what Tim Maudlin put
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so forcefully in [49],

What Bell proved, and what theoretical physics has not yet properly ab-
sorbed, is that the physical world itself is nonlocal.

The world really is full of spooky action at a distance—live with it and love it! But
conclusions drawn from even the most rigorous of theorems can only be additions to
one’s prior understanding and beliefs when the theorems do not contradict those beliefs
flat out. Such was the case with Bell’s theorem. It has just enough room in it to not
contradict a misshapen notion of probability, and that is the hook and crook that the sci-
fi fans have thrived on. A QBist, however, with a different understanding of probability
and a commitment to the idea that quantum measurement outcomes are personal, draws
quite a different conclusion from the theorem. In fact it is a conclusion from the far
opposite end of the spectrum: It tells of a world unknown to most monist and rationalist
philosophies: The universe, far from being one big nonlocal block, should be thought of as
a thriving community of connubial, but otherwise autonomous entities. That the world
should violate Bell’s theorem remains, even for QBism, the deepest statement ever drawn
from quantum theory. It says that quantum measurements are moments of creation.

This language has already been integral to our presentation, but seeing it come about
in a formalism-driven way like Bell’s makes the issue particularly vivid. Here we devote
some effort to showing that the language of creation is a consequence of three things:
1) the quantum formalism, 2) a personalist Bayesian interpretation of probability, and
3) the elementary notion of what it means to be two objects rather than one. We do not
do it however with Bell’s theorem precisely, but with an argument that more directly
implicates the EPR “criterion of reality” as the source of trouble with quantum theory.
The thrust of it is that it is the EPR criterion that should be jettisoned, not locality.

Our starting point is like our previous setup—an agent and a system—but this time
we make it two systems: One of them, the left-hand one, is ready. The other, the right-
hand one, is waiting. The agent will eventually measure each in turn(14). Simple enough
to say, but things get hung at the start with the issue of what is meant by “two systems?”
A passage from a 1948 paper of Einstein [50] captures the essential issue well:

If one asks what is characteristic of the realm of physical ideas independently
of the quantum-theory, then above all the following attracts our attention:
the concepts of physics refer to a real external world, i.e., ideas are posited
of things that claim a “real existence” independent of the perceiving subject
(bodies, fields, etc.), and these ideas are, on the one hand, brought into
as secure a relationship as possible with sense impressions. Moreover, it is
characteristic of these physical things that they are conceived of as being
arranged in a space-time continuum. Further, it appears to be essential for

(14) It should be noted how we depart from the usual presentation here: There is only the single
agent and his two systems. There is no Alice and Bob accompanying the two systems.
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this arrangement of the things introduced in physics that, at a specific time,
these things claim an existence independent of one another, insofar as these
things “lie in different parts of space.” Without such an assumption of the
mutually independent existence (the “being-thus”) of spatially distant things,
an assumption which originates in everyday thought, physical thought in the
sense familiar to us would not be possible. Nor does one see how physical
laws could be formulated and tested without such a clean separation. [. . . ]

For the relative independence of spatially distant things (A and B), this idea
is characteristic: an external influence on A has no immediate effect on B;
this is known as the “principle of local action,” [. . . ]. The complete suspen-
sion of this basic principle would make impossible the idea of (quasi-) closed
systems and, thereby, the establishment of empirically testable laws in the
sense familiar to us.

We hope it is clear to the reader by now that QBism concurs with every bit of this.
Quantum states may not be the stuff of the world, but QBists never shudder from positing
quantum systems as “real existences” external to the agent. And just as the agent has
learned from long, hard experience that he cannot reach out and touch anything but his
immediate surroundings, so he imagines of every quantum system, one to the other. What
is it that A and B are spatially distant things but that they are causally independent?

This notion, in Einstein’s hands(15), led to one of the nicest, most direct arguments
that quantum states cannot be states of reality, but must be something more like states
of information, knowledge, expectation, or belief [52]. The argument is important—let
us repeat the whole thing from Einstein’s most thorough version of it [53]. It more than
anything sets the stage for a QBist development of a Bell-style contradiction.

Physics is an attempt conceptually to grasp reality as it is thought indepen-
dently of its being observed. In this sense on speaks of “physical reality.”
In pre-quantum physics there was no doubt as to how this was to be un-
derstood. In Newton’s theory reality was determined by a material point
in space and time; in Maxwell’s theory, by the field in space and time. In
quantum mechanics it is not so easily seen. If one asks: does a ψ-function
of the quantum theory represent a real factual situation in the same sense in
which this is the case of a material system of points or of an electromagnetic
field, one hesitates to reply with a simple “yes” or “no”; why? What the
ψ-function (at a definite) time asserts, is this: What is the probability for
finding a definite physical magnitude q (or p) in a definitely given interval, if
I measure it at time t? The probability is here to be viewed as an empirically
determinable, therefore certainly as a “real” quantity which I may determine

(15) Beware! This is not to say in the hands of EPR—Einstein, Podolsky, and Rosen. The
present argument is not their argument. For a discussion of Einstein’s dissatisfaction with the
one appearing in the EPR paper itself, see [51].
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if I create the same ψ-function very often and perform a q-measurement each
time. But what about the single measured value of q? Did the respective
individual system have this q-value even before this measurement? To this
question there is no definite answer within the framework of the theory, since
the measurement is a process which implies a finite disturbance of the system
from the outside; it would therefore be thinkable that the system obtains
a definite numerical value for q (or p) the measured numerical value, only
through the measurement itself. For the further discussion I shall assume
two physicists A and B, who represent a different conception with reference
to the real situation as described by the ψ-function.

A. The individual system (before the measurement) has a definite value of
q (or p) for all variables of the system, and more specifically, that value
which is determined by a measurement of this variable. Proceeding from
this conception, he will state: The ψ-function is no exhaustive descrip-
tion of the real situation of the system but an incomplete description;
it expresses only what we know on the basis of former measurements
concerning the system.

B. The individual system (before the measurement) has no definite value of
q (or p). The value of the measurement only arises in cooperation with
the unique probability which is given to it in view of the ψ-function only
through the act of measurement itself. Proceeding from this conception,
he will (or, at least, he may) state: The ψ-function is an exhaustive
description of the real situation of the system.

We now present to these two physicists the following instance: There is to be a
system which at the time t of our observation consists of two partial systems
S1 and S2, which at this time are spatially separated and (in the sense of
classical physics) are without significant reciprocity. The total system is to be
completely described through a known ψ-function ψ12 in the sense of quantum
mechanics. All quantum theoreticians now agree upon the following: If I make
a complete measurement of S1, I get from the results of the measurement and
from ψ12 an entirely definite ψ-function ψ2 of the system S2. The character
of ψ2 then depends upon what kind of measurement I undertake on S1.

Now it appears to me that one may speak of the real factual situation of the
partial system S2. Of this real factual situation, we know to begin with, before
the measurement of S1, even less than we know of a system described by the
ψ-function. But on one supposition we should, in my opinion, absolutely
hold fast: The real factual situation of the system S2 is independent of what
is done with the system S1, which is spatially separated from the former.
According to the type of measurement which I make of S1, I get, however,
a very different ψ2 for the second partial system. Now, however, the real
situation of S2 must be independent of what happens to S1. For the same
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real situation of S2 it is possible therefore to find, according to one’s choice,
different types of ψ-function. . . .

If now the physicists, A and B, accept this consideration as valid, then B

will have to give up his position that the ψ-function constitutes a complete
description of a real factual situation. For in this case it would be impossible
that two different types of ψ-functions could be coordinated with the identical
factual situation of S2.

Aside from asserting a frequentistic conception of probability, the argument is nearly
perfect. It tells us one important reason why we should not be thinking of quantum
states as the ψ-ontologists do. Particularly, it is one we should continue to bear in
mind as we move to a Bell-type setting: Even there, there is no reason to waiver on its
validity. It may be true that Einstein implicitly equated “incomplete description” with
“there must exist a hidden-variable account” (though we do not think he did), but the
argument as stated neither stands nor falls on this issue.

There is, however, one thing that Einstein does miss in his argument, and this is
where the structure of Bell’s thinking steps in. Einstein says, “to this question there
is no definite answer within the framework of the theory” when speaking of whether
quantum measurements are “generative” or simply “revealing” of their outcomes. If we
accept everything he said above, then with a little clever combinatorics and geometry
one can indeed settle the question.

Let us suppose that the two spatially separated systems in front of the agent are
two ququarts (i.e., each system is associated with a four-dimensional Hilbert space H4),
and that the agent ascribes a maximally entangled state to the pair, i.e., a state |ψ〉 in
H4 ⊗H4 of the form,

(6) |ψ〉 =
1
2

4∑
i=1

|i〉|i〉.

Then we know that there exist pairs of measurements, one for each of the separate
systems, such that if the outcome of one is known (whatever the outcome), one will
thereafter make a probability-one statement concerning the outcome of the other. For
instance, if a nondegenerate Hermitian operator H is measured on the left-hand system,
then one will thereafter ascribe a probability-one assignment for the appropriate outcome
of the transposed operator HT on the right-hand system. What this means for a Bayesian
agent is that after performing the first measurement he will bet his life on the outcome
of the second.

But how could that be if he has already recognized two systems with no instantaneous
causal influence between each other? Mustn’t it be that the outcome on the right-hand
side is “already there” simply awaiting confirmation or registration? It would seem
Einstein’s physicist B is already living in a state of contradiction.

Indeed it must be this kind of thinking that led Einstein’s collaborators Podolsky and
Rosen to their famous sufficient criterion for an “element of [preexistent] reality” [51]:
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If, without in any way disturbing a system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity, then
there exists an element of reality corresponding to that quantity.

Without doubt, no personalist Bayesian would ever utter such a notion: Just because he
believes something with all his heart and soul and would gamble his life on it, it would
not make it necessarily so by the powers of nature—even a probability-one assignment is
a state of belief for the personalist Bayesian. But he might still entertain something not
unrelated to the EPR criterion of reality. Namely, that believing a particular outcome
will be found with certainty on a causally disconnected system entails that one also
believes the outcome to be “already there” simply awaiting confirmation.

But it is not so, and the QBist has already built this into her story of measure-
ment. Let us show this presently(16) by combining all the above with a beautifully sim-
ple Kochen–Specker style construction discovered by Cabello, Estebaranz, and Garćıa-
Alcaine (CEGA) [57]. Imagine some measurement H on the left-hand system; we will
denote its potential outcomes as a column of letters, like this:

(7)

a

b

c

d

Further, since there is a fixed transformation taking any H on the left-hand system to
a corresponding HT on the right-hand one, there is no harm in identifying the notation
for the outcomes of both measurements. That is to say, if the agent gets outcome b (to
the exclusion of a, c, and d) for H on the left-hand side, he will make a probability-one
prediction for b on the right-hand side, even though that measurement strictly speaking
is a different one, namely HT. If the agent further subscribes to (our Bayesian variant of)
the EPR criterion of reality, he will say that he believes b to be TRUE of the right-hand
system as an element of reality.

Now let us consider two possible measurements, H1 and H2 for the left-hand side,
with potential outcomes

(8)

a

b

c

d

and

e

f

g

h

respectively. Both measurements cannot be performed at once, but it might be the case
that if the agent gets a specific outcome for H1, say c particularly, then not only will

(16) Overall this particular technique has its roots in Stairs [54], and seems to bear some resem-
blance to the gist of Conway and Kochen’s “Free Will Theorem” [55,56].
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he make a probability-one assignment for c in a measurement of HT
1 on the right-hand

side, but also for e in a measurement of HT
2 on it. Similarly, if H2 were measured on

the left, getting an outcome e; then he will make a probability-one prediction for c in a
measurement of HT

1 on the right. This would come about if H1 and H2 (and consequently
HT

1 and HT
2 ) share a common eigenvector. Supposing so and that c was actually the

outcome for H1 on the left, what conclusion would the EPR criterion of reality draw? It
is that both c and e are elements of reality on the right, and none of a, b, d, f , g, or h

are. Particularly, since the right-hand side could not have known whether H1 or H2 was
measured on the left, whatever c and e stands for, it must be the same thing, the same
property. In such a case, we discard the extraneous distinction between c and e in our
notation and write

(9)

a

b

c

d

and

c

f

g

h

for the two potential outcome sets for a measurement on the right.
We now have all the notational apparatus we need to have some fun. The genius

of CEGA was that they were able to find a set of nine “interlocking” Hermitian opera-
tors H1,H2, . . . , H9 for the left, whose set of potential outcomes for the corresponding
operators on the right would look like this:

(10)

a

b

c

d

a

e

f

g

h

i

c

j

h

k

g

l

b

e

m

n

i

k

n

o

p

q

d

j

p

r

f

l

q

r

m

o

Take the second column as an example. It means that if H2 were measured on the left-
hand system, only one of a, e, f , or g would occur—the agent cannot predict which—but
if a occurred, he would be absolutely certain of it also occurring in a measurement of
HT

1 on the right. And if e were to occur on the left, then he would be certain of getting
e as well in a measurement of HT

5 on the right. And similarly with f and g, with their
implications for HT

8 and HT
4 .

The wonderful thing to note about (10) is that every letter a, b, c, . . . , r occurs exactly
twice in the collection. But the EPR criterion of reality (or our Bayesian variant of it)
would require exactly one letter to have the truth value TRUE in each column, with the
other three having the value FALSE. In total, nine values of TRUE: A clean contradiction!
For if every letter occurs exactly twice in the collection, whatever the total number of
TRUE values is, it must be an even number.

To emphasize the point, let us sketch a similar argument for the case where the two
halves are both qutrits, quantum systems of dimension 3. Again, the argument is a
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Fig. 4. – Each ray in Asher Peres’s qutrit Kochen-Specker construction can be written as a ray
in R3 and illustrated by where those rays intersect a cube.

little variation of the EPR thought experiment. This time, we begin by ascribing to our
bipartite system the maximally entangled state

(11) |ψ〉 =
1
2

3∑
i=1

|i〉|i〉.

The experimentalist—let us call her Alice—considers making a measurement on the left-
hand particle in some basis. If Alice obtains outcome number 2 on the left side, then she
can predict that if she were to make a particular measurement on the right side, she would
get outcome number 2. (The bases for the left-hand and right-hand measurements are
related by a transpose operation.) So, under the assumption of Einsteinian locality and
the EPR criterion, Alice would say, “Aha! It must be the case that there is an element
of reality on the right side corresponding to outcome number 2 of that measurement.
It’s something inherent in that body.” But we can play this game with any basis: If
Alice were to get outcome i for a measurement on one particle, she would predict with
certainty that she would get outcome i for that measurement, transposed, on the other
particle.

We’re talking about noncommuting variables here; by the EPR criterion and locality,
Alice would conclude it must be the case that there were elements of reality associated

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



162 Christopher A. Fuchs and Blake C. Stacey

with those noncommuting observables. But it is no fun to consider only one basis, or
only two. Instead, we proceed to analyze a whole set of them, corresponding to one of the
qutrit Kochen-Specker constructions, for instance the one that Asher Peres found [41].
In order to present this construction in a concise way, let us use an abbreviated notation
in which a “2” stands for

√
2 and an overline means a minus sign. Thus, “11̄2” stands for

the ray (1,−1,
√

2)T. We tabulate the following ten sets of three orthogonal rays apiece:

(12)

001 100 010

101 1̄01 010

011 01̄0 100

11̄2 1̄12 110

102 2̄01 010

211 01̄1 2̄11

201 010 1̄02

112 11̄0 1̄1̄2

012 100 02̄1

121 1̄01 12̄1

The EPR criterion tells us that for each basis, there exists an “element of physical
reality” that determines what the outcome of a measurement in that basis will be. This
applies to each row above: According to the EPR criterion, in any set of three orthogonal
rays, one must be marked TRUE and the other two marked FALSE. But if we start
labeling our rays, marking each one orthogonal to a TRUE ray with FALSE, eventually
we hit a point where we can’t do it consistently. We end up marking a set of three
orthogonal rays all FALSE, which is against the rules.

For each of these bases, Alice would have said, “By making a measurement here, I
draw an inference about the element of reality over there.” She can do it for one, she
can do it for another, and another . . . but she can’t do it for all of them without running
into trouble!

Something must give. The quick reaction of most of the quantum foundations com-
munity has been to question the causal independence of the two systems under consid-
eration. But if one gives up on the autonomy of one system from the other—after very
explicitly assuming it—this surely amounts to saying that there were never two systems
there after all; the very idea of separate systems is a broken concept. This first raises
a minor conundrum: Why then would the quantum formalism engender us to formulate
our description from beginning to end in terms of H3 ⊗ H3, rather than simply a raw
nine-dimensional space H9? Why is that separating symbol ⊗, apparently marking some
kind of conceptual distinction, always hanging around?

Reaching much deeper however, if one is willing to throw away one’s belief in systems’
autonomy from each other, why would one ever believe in one’s own autonomy? All
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stringent reason for it gets lost, and indeed as Einstein warns, what now is the meaning
of science? As Hans Primas once emphasized [58],

It is a tacit assumption of all engineering sciences that nature can be manip-
ulated and that the initial conditions required by experiments can be brought
about by interventions of the world external to the object under investiga-
tion. That is, we assume that the experimenter has a certain freedom of action
which is not accounted for by first principles of physics. Without this freedom
of choice, experiments would be impossible. Man’s free will implies the abil-
ity to carry out actions, it constitutes his essence as an actor. We act under
the idea of freedom, but the topic under discussion is neither man’s sense of
personal freedom as a subjective experience, nor the question whether this
idea could be an illusion or not, nor any questions of moral philosophy, but
that the framework of experimental science requires the freedom of action as
a constitutive though tacit presupposition.

If the left-hand system can manipulate the right-hand system, even when by assumption
it cannot, then who is to say that the right-hand system cannot manipulate the agent
herself? To put it still differently: If one is never allowed to assume causal independence
between separated systems because of a contradiction in the term, then one can never
assume it of oneself either, even with respect to the components of the world that one
thinks one is manipulating. It would be a wackier world than even the one QBism
entertains.

But QBism’s world is not such a bad world, and some of us find its openness to
possibility immensely exciting. What gives way in this world is not the idea of reality,
but simply the narrow-minded EPR criterion for it. We jettison both the idea that
a probability-one assignment implies there is a pre-existent outcome (property) “over
there” waiting to be revealed and, barring that, that it must have been “over here” pre-
existent, waiting to be transferred and then revealed. The solution lies closer to one of
John Wheeler’s quips, “No question? No answer.” A probability-one assignment lays no
necessary claim on what the world is, but what the agent using it believes with all her
heart and soul. In the case of our present example, what the agent believes is that if an
outcome b came about as a result of her action H on the left-hand system, an outcome
b would come about if she were to perform the action HT on the right-hand system.
But if she does not walk over to the right-hand system and take the action, there is no
good sense in which the outcome (or property) b is already there. Measurement is not a
passive process, but instead a fundamentally participatory one.

At the instigation of a quantum measurement, something new comes into the world
that was not there before; and that is about as clear an instance of creation as one can
imagine. Sometimes one will have no strong beliefs for what will result from the creation
(as with the measurement of H), and sometimes one will have very strong beliefs (as
with the subsequent measurement of HT), but a free creation of nature it remains.
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6. – The quantum de Finetti theorem

You know how men have always hankered after un-
lawful magic, and you know what a great part in
magic words have always played. If you have his
name, . . . you can control the spirit, genie, afrite,
or whatever the power may be. Solomon knew the
names of all the spirits, and having their names,
he held them subject to his will. So the universe
has always appeared to the natural mind as a kind
of enigma, of which the key must be sought in the
shape of some illuminating or power-bringing word
or name. That word names the universe’s princi-
ple, and to possess it is after a fashion to possess
the universe itself.

But if you follow the pragmatic method, you can-
not look on any such word as closing your quest.
You must bring out of each word its practical cash-
value, set it at work within the stream of your ex-
perience. It appears less as a solution, then, than
as a program for more work, and more particu-
larly as an indication of the ways in which existing
realities may be changed.

Theories thus become instruments, not answers to
enigmas, in which we can rest. We don’t lie back
upon them, we move forward, and, on occasion,
make nature over again by their aid.

— William James

Since the beginning, those who brought Bayesian probability into quantum physics
have been on the run proving technical theorems whenever required to close a gap in
their logic or negate an awkwardness induced by their new way of speaking. It was never
enough to “lie back upon” the pronouncements: They had to be shown to have substance,
something that would drive physics itself forward. A case in point is the quantum de
Finetti theorem [3, 59].

The term “unknown state” is ubiquitous in quantum information: Unknown quan-
tum states are teleported, protected with quantum error correcting codes, used to check
for quantum eavesdropping, and arise in innumerable other applications. For a QBist,
though, the phrase can only be an oxymoron: If quantum states are compendia of be-
liefs, and not states of nature, then the state is known to someone, at the very least
the agent who holds it. But if so, then what are experimentalists doing when they say
they are performing quantum-state tomography in the laboratory? The very goal of the
procedure is to characterize the unknown quantum state a piece of laboratory equipment
is repetitively preparing. There is certainly no little agent sitting on the inside of the
device devilishly sending out quantum systems representative of his beliefs, and smiling
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as the experimenter on the outside slowly homes in on those private thoughts through
his experiments.

The quantum de Finetti theorem is a result that allows the story of quantum-state
tomography to be told purely in terms of a single agent—namely, the experimentalist in
the laboratory. In a nutshell, the theorem is this. Suppose the experimentalist walks into
the laboratory with the very minimal belief that, of the systems her device is spitting
out (no matter how many), she could interchange any two of them and it would not
change the statistics she expects for any measurements she might perform. Then the
theorem says that “coherence with this belief alone” requires her to make a quantum-
state assignment ρ(n) (for any n of those systems) that can be represented in the form:

(13) ρ(n) =
∫

P (ρ) ρ⊗n dρ,

where P (ρ) dρ is some probability measure on the space of single-system density operators
and ρ⊗n = ρ⊗ · · · ⊗ ρ represents an n-fold tensor product of identical quantum states.

To put it in words, this theorem licenses the experimenter to act as if each individual
system has some state ρ unknown to her, with a probability density P (ρ) representing
her ignorance of which state is the true one. But it is only as if —the only active quantum
state in the picture is the one the experimenter actually possesses in her mind, namely
ρ(n). When the experimenter performs tomography, all she is doing is gathering data
system-by-system and updating, via Bayes rule [60], the state ρ(n) to some new state
ρ(k) on a smaller number of remaining systems. Particularly, one can prove that this
form of quantum-state assignment leads the agent to expect that with more data, she
will make her P (ρ) more and more narrow, and thus she will approach ever more closely
a posterior state of the form ρ(k) ≈ ρ⊗k. This is the real, underlying reason that excuses
the habit of speaking of tomography as revealing “the unknown quantum state.”

One important consequence of this theorem is the following. Suppose that Alice is
collaborating with Bob. From her perspective, Bob is a physical system. Alice math-
ematically models Bob as having expectations about the sequence of systems they are
studying, expectations that matter to Alice because she can ask Bob questions and get
answers. In Alice’s mental model of Bob, she writes a de Finetti representation PB(ρ),
satisfying the same general properties as her own expectations, which she encodes into
the function PA(ρ). Alice imagines that she and Bob are receiving the same data. It
follows from the quantum de Finetti theorem that if PA(ρ) and PB(ρ) initially agree to
at least a small extent, then Alice should expect that their expectations will come into
greater and greater agreement.

Furthermore, just as there is a de Finetti theorem to make sense of “unknown states,”
there is a de Finetti theorem to make sense of “unknown measurements” and “unknown
processes” [61].

Despite the explicitly foundational motivation, the quantum de Finetti theorem has
nonetheless fared like a stand-alone result for quantum information theory. Among other
things, it turned out to be useful for proving the security of some quantum key distribu-
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tion schemes [62-64], it became an important component in the analysis of entanglement
detection [65, 66], and even served in an analysis of the quantum state of propagating
laser light [67,68].

During the effort to prove the quantum de Finetti theorem, Carlton Caves brought
attention to a special type of quantum measurement. Up to that point, those of us who
were bringing Bayesianism to quantum physics were in the habit of regarding a quantum
state ρ as a “catalogue of probabilities.” This way of thinking rested on the old way
of modeling measurements, that is, the von Neumann tradition, where a measurement
corresponds to an orthonormal basis. The Born rule lets us get probabilities out of a
density matrix ρ, yet no single von Neumann basis can yield sufficient information to
reconstruct ρ; hence, the “catalogue of probabilities” language. But quantum information
theory brought a new manner of thinking, in which a measurement can be any collection
of positive operators that sum to the identity—a Positive-Operator–Valued Measure, or
POVM. This change of perspective opened the possibility of an informationally complete
experiment, i.e., a single measurement whose statistics suffice to reconstitute an entire
density matrix ρ. Once we have constructed an “IC” POVM, we can then replace any ρ

with a probability distribution. One matrix ρ, one vector 	p.
At first, Caves believed that proving the quantum de Finetti theorem would require a

specific type of IC POVM. Luckily, this turned out to be wrong: Finding a construction
of an IC POVM in arbitrary finite Hilbert-space dimension was enough. However, the
particular kind of IC POVM to which Caves called attention soon took on a life of its
own, and it is to that kind which we now turn.

7. – Seeking SICs – The Born rule as fundamental

If quantum theory is so closely allied with probability theory, then why is it not written
in a language that starts with probability, rather than a language that ends with it? Why
does quantum theory invoke the mathematical apparatus of complex amplitudes, Hilbert
spaces, and linear operators? This question quickly brings us to the research frontier.

For, actually there are ways to pose quantum theory purely in terms of probabilities—
indeed, there are many ways, each with a somewhat different look and feel [69]. The work
of W. K. Wootters is an example, and as he emphasized long ago [70],

It is obviously possible to devise a formulation of quantum mechanics without
probability amplitudes. One is never forced to use any quantities in one’s
theory other than the raw results of measurements. However, there is no
reason to expect such a formulation to be anything other than extremely
ugly. After all, probability amplitudes were invented for a reason. They
are not as directly observable as probabilities, but they make the theory
simple. I hope to demonstrate here that one can construct a reasonably
pretty formulation using only probabilities. It may not be quite as simple as
the usual formulation, but it is not much more complicated.

What has happened in the intervening years is that the mathematical structures of
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quantum information theory have grown significantly richer than the ones he had based
his considerations on—so much so that we may now be able to optimally re-express the
theory. What was once “not much more complicated,” now has the promise of being
downright insightful.

The key ingredient is a hypothetical structure called a “symmetric informationally
complete positive-operator-valued measure,” or SIC (pronounced “seek”) for short. This
is a set of d2 rank-one projection operators Πi = |ψi〉〈ψi| on a finite d-dimensional Hilbert
space such that

(14) |〈ψi|ψj〉|2 =
1

d + 1
whenever i �= j.

Because of their extreme symmetry, it turns out that such sets of operators, when they
exist, have three very fine-tuned properties: 1) the operators must be linearly independent
and span the space of Hermitian operators, 2) there is a sense in which they come as
close to an orthonormal basis for operator space as they can under the constraint that
all the elements in a basis be positive semi-definite [71], and 3) after rescaling, they form
a resolution of the identity operator, I =

∑
i

1
dΠi.

The symmetry, positive semi-definiteness, and properties 1) and 2) are significant be-
cause they imply that an arbitrary quantum state ρ—pure or mixed—can be expressed
as a linear combination of the Πi. Furthermore, the expansion is likely to have some
significant features not found in other, more arbitrary expansions. The most significant
of these becomes apparent when one takes property 3 into account. Because the op-
erators Hi = 1

dΠi are positive semi-definite and form a resolution of the identity, they
can be interpreted as labeling the outcomes of a quantum measurement device—not a
standard-textbook, von Neumann measurement device whose outcomes correspond to
the eigenvalues of some Hermitian operator, but to a measurement device of the most
general variety allowed by quantum theory, the POVMs [36,41]. Particularly noteworthy
is the smooth relation between the probabilities P (Hi) = tr(ρHi) given by the Born rule
for the outcomes of such a measurement(17) and the expansion coefficients for ρ in terms
of the Πi:

(15) ρ =
d2∑

i=1

(
(d + 1)P (Hi)− 1

d

)
Πi.

There are no other operator bases that give rise to such a simple formula connecting
probabilities with density operators.

Before getting to that, however, we should reveal what is so consternating about the
SICs: It is the question of when they exist. Despite years of growing effort since the

(17) There is a slight ambiguity in notation here, as Hi is dually used to denote an operator and
an outcome of a measurement. For the sake of simplicity, we hope the reader will forgive this
and similar abuses.
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definition was first introduced [72-74], no one has been able to show that they exist in
completely general dimension. All that is known firmly is that they exist in dimensions 2
through 144 inclusive, as well as in some scattered cases beyond those: 147, 168, 172, 195,
199, 228, 259 and 323. Dimensions 2–21, 24, 28, 30, 31, 35, 37, 39, 43 and 48 are known
through direct or computer-assisted analytic proof; the remaining solutions are known
through numerical calculation, satisfying eq. (14) to high precision (in some cases, up to
16000 digits accuracy)(18). For the remainder of the article we will proceed as if they
do always exist for finite d. At least this is the conceit of our story. We note in passing,
however, that the SIC existence problem is not without wider context: If they do exist,
they solve at least four other (more practical, non-foundational) optimality problems in
quantum information theory [71, 76-79]. In addition, the results they imply for Lie and
Jordan algebras indicate that if SICs didn’t always exist, linear algebra itself would have
a drastically different character from one dimension to another [80]. It would be a nasty
trick if SICs failed to exist!

So suppose they do. Thinking of a quantum state as literally an agent’s probabil-
ity assignment for the outcomes of a potential SIC measurement leads to a new way to
express the Born rule for the probabilities associated with any other quantum measure-
ment. Consider the diagram in fig. 4. It depicts a SIC measurement “in the sky,” with
outcomes Hi, and any standard von Neumann measurement “on the ground”(19). For
the sake of specificity, let us say the latter has outcomes Dj = |j〉〈j|, the vectors |j〉
representing some orthonormal basis. We conceive of two possibilities (or two “paths”)
for a given quantum system to get to the measurement on the ground: “Path 1” is that
it proceeds directly to the measurement on the ground. “Path 2” is that it proceeds
first to the measurement in the sky and only subsequently to the measurement on the
ground—the two measurements are cascaded.

Suppose now, we are given the agent’s personal probabilities P (Hi) for the outcomes
in the sky and his personal conditional probabilities P (Dj |Hi) for the outcomes on the
ground subsequent to the sky. I.e., we are given the probabilities the agent would assign
on the supposition that the quantum system follows Path 2. Then “coherence alone” (in
the Bayesian sense) is enough to tell what probabilities P (Dj) the agent should assign
for the outcomes of the measurement on the ground—it is given by the Law of Total
Probability applied to these numbers:

(16) P (Dj) =
∑

i

P (Hi)P (Dj |Hi).

(18) Numerical and some analytical solutions up through dimension 67 are detailed in [75].
Others were reported to us by Andrew Scott and Marcus Appleby. Numerical solutions in
dimensions 122 through 142 and in dimension 144 are due to Michael C. Hoang, in collaboration
with the authors, using the Chimera supercomputer.
(19) Do not, however, let the designation “SIC sitting in the sky” make the device seem too
exalted to be of any interest. Already, announcements of experimental implementations have
been made for qubits [81], qutrits [82], and still higher-dimensional systems [83].
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Fig. 5. – Any quantum measurement can be conceptualized in two ways. Suppose an arbitrary
von Neumann measurement “on the ground,” with outcomes Dj = 1, . . . , d. Its probabilities
P (Dj) can be derived by cascading it with a fixed fiducial SIC measurement “in the sky” (of
outcomes Hi = 1, . . . , d2). Let P (Hi) and P (Dj |Hi) represent an agent’s probabilities, assuming
the measurement in the sky is actually performed. The probability Q(Dj) represents instead the
agent’s probabilities under the assumption that the measurement in the sky is not performed.
The Born rule, in this language, says that P (Dj), P (Hi), and P (Dj |Hi) are related by the
Bayesian-style eq. (19).

That takes care of Path 2, but what of Path 1? Is this enough information to recover the
probability assignment Q(Dj) the agent would assign for the outcomes on Path 1 via a
normal application of the Born rule? That is, that

(17) Q(Dj) = tr(ρDj)

for some quantum state ρ? Maybe, but the answer will clearly not be P (Dj). One has

(18) Q(Dj) �= P (Dj)

simply because Path 2 is not a coherent process (in the quantum sense!) with respect to
Path 1—there is a measurement that takes place in Path 2 that does not take place in
Path 1.
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What is remarkable about the SIC representation is that it implies that, even though
Q(Dj) is not equal to P (Dj), it is still a function of it. Particularly,

Q(Dj) = (d + 1)P (Dj)− 1(19)

= (d + 1)
d2∑

i=1

P (Hi)P (Dj |Hi)− 1.

The Born rule is nothing but a kind of Quantum Law of Total Probability! No complex
amplitudes, no operators—only probabilities in, and probabilities out. Indeed, it is
seemingly just a rescaling of the old law, eq. (16). And in a way it is.

Earlier, we stressed the importance of considering quantum measurements in all their
generality: The notion of “measurement” should include all POVMs, not just the von
Neumann ones. So, what happens if the measurement on the ground is an arbitrary
POVM, not necessarily given by an orthonormal basis? Then,

(20) Q(Dj) =
d2∑

i=1

[
(d + 1)P (Hi)− 1

d

]
P (Dj |Hi).

This is only slightly more intricate than our previous expression, eq. (19), which is itself
a special case of this more general formula. And the general formula is still quite similar
to the classical prescription for combining conditional probabilities: We simply stretch
the P (Hi) and then shift them to preserve the overall normalization.

But beware: One should not interpret eq. (20) as invalidating probability theory itself
in any way! For the old Law of Total Probability has no jurisdiction in the setting of
our diagram, which compares a two distinct, mutually exclusive hypothetical scenarios.
Path 1 is what Alice intends to do, but she recognizes that she could in principle follow
Path 2 instead, and eq. (20) sets the standard of consistency to which Alice should strive
when meshing her probabilities together(20). Indeed as any Bayesian would emphasize,
if there is a distinguishing mark in one’s considerations—say, the fact of two distinct
experiments, not one—then one ought to take that into account in one’s probability as-
signments (at least initially so). Thus there is a hidden, or at least suppressed, condition
in our notation: Really we should have been writing the more cumbersome, but hon-
est, expressions P (Hi|E2), P (Dj |Hi, E2), P (Dj |E2), and Q(Dj |E1) all along. With this

(20) This is one place where we can point out a mild historical antecedent to QBism. In the
historical study [84], it is pointed out that Born and Heisenberg, already at the 1927 Solvay
conference, refer to the calculation |cn(t)|2 = |P

m Smn(t)cm(0)|2 and say, “it should be noted
that this “interference” does not represent a contradiction with the rules of the probability
calculus, that is, with the assumption that the |Snk|2 are quite usual probabilities.” Their
reasons for saying this may have been different from our own, but at least they had come this
far.
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explicit, it is no surprise that,

(21) Q(Dj |E1) �=
∑

i

P (Hi|E2)P (Dj |Hi, E2).

The message is that quantum theory supplies something—a new form of “Bayesian co-
herence,” though empirically based (as quantum theory itself is)—that raw probability
theory does not. The Born rule in these lights is an addition to Bayesian probability, not
in the sense of a supplier of some kind of more-objective probabilities, but in the sense
of giving extra normative rules to guide the agent’s behavior when she interacts with the
physical world.

It is a normative rule for reasoning about the consequences of one’s proposed actions in
terms of the potential consequences of an alternative action. It is like nothing else physical
theory has contemplated before. Seemingly at the heart of quantum mechanics from the
QBist view is a statement about the impact of hypotheticals on our expectations for the
actual. The impact parameter is metered by a single, significant number associated with
each physical system—its Hilbert-space dimension d. The larger the d associated with
a system, the more Q(Dj) must deviate from P (Dj). Of course this point must have
been implicit in the usual form of the Born rule, eq. (17). What is important from the
QBist perspective, however, is how the new form puts the significant parameter front
and center, displaying it in a way that one ought to nearly trip over.

Understanding this as the goal helps pinpoint the role of SICs in our considerations.
The issue is not that quantum mechanics must be rewritten in terms of SICs, but that
it can be(21). Certainly no one is going to drop the usual operator formalism and all
the standard methods learned in graduate school to do their workaday calculations in
SIC language exclusively. It is only that the SICs form an ideal coordinate system for a
particular problem (an important one to be sure, but nonetheless a particular one)—the
problem of interpreting quantum mechanics. The point of all the various representations
of quantum mechanics (like the various quasi-probability representations of [69], the
Heisenberg and Schrödinger pictures, and even the path-integral formulation) is that
they give a means for isolating one or another aspect of the theory that might be called
for by a problem at hand. Sometimes it is really important to do so, even for deep
conceptual issues and even if all the representations are logically equivalent(22). In our
case, we want to bring into plain view the idea that quantum mechanics is an addition
to Bayesian probability theory—not a generalization of it [85], not something orthogonal
to it altogether [86], but an addition. With this goal in mind, the SIC representation is

(21) If everything goes right, that is, and the damned things actually exist in all dimensions!
(22) Just think of the story of Eddington-Finkelstein coordinates in general relativity. Once
upon a time it was not known whether a Schwarzschild black hole might have, beside its central
singularity, a singularity in the gravitational field at the event horizon. Apparently it was a
heated debate, yes or no. The issue was put to rest, however, with the development of the
coordinate system. It allowed one to write down a solution to the Einstein equations in a
neighborhood of the horizon and check that everything was indeed all right.
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a particularly powerful tool. Through it, one sees the Born rule as a replacement for a
usage of the Law of Total Probability that one would have made in another context (one
mutually exclusive with the first).

Furthermore it is similarly so of unitary time evolution in a SIC picture. To explain
what this means, let us change considerations slightly and make the measurement on the
ground a unitarily rotated version of the SIC in the sky. In this setting, Dj = 1

dUΠjU
†,

which in turn implies a simplification of eq. (20) to,

(22) Q(Dj) = (d + 1)
d2∑

i=1

P (Hi)P (Dj |Hi)− 1
d

,

for the probabilities on the ground. Note what this is saying! As the Born rule is a
replacement for the Law of Total Probability, unitary time evolution is a replacement for
it as well. For, if we thought in terms of the Schrödinger picture, P (Hi) and Q(Dj) would
be the SIC representations for the initial and final quantum states under an evolution
given by U†. The similarity is no accident. This is because in both cases the conditional
probabilities P (Dj |Hi) completely encode the identity of a measurement on the ground.

Moreover, it makes abundantly clear another point of QBism that has not been ad-
dressed so much in the present paper. Since a personalist Bayesian cannot turn his
back on the clarification that all probabilities are personal judgments, placeholders in
a calculus of consistency, he certainly cannot turn his back on the greater lesson eqs. (20)
and (22) are trying to scream out. Just as quantum states ρ are personal judgments
P (Hi), quantum measurement operators Dj and unitary time evolutions U are personal
judgments too—in this case P (Dj |Hi). The only distinction is the technical one, that one
expression is an unconditioned probability, while the other is a collection of conditionals.
Most importantly, it settles the age-old issue of why there should be two kinds of state
evolution at all. When Hartle wrote, “A quantum-mechanical state being a summary of
the observers’ information about an individual physical system changes both by dynami-
cal laws, and whenever the observer acquires new information about the system through
the process of measurement”, what is his dynamical law making reference to? There are
not two things that a quantum state can do, only one: Strive to be consistent with all
the agent’s other probabilistic judgments on the consequences of his actions, across all
hypothetical scenarios. The SICs emphasize and make this point clear.

In fact, much of the most intense research of the UMass Boston QBism group is
currently devoted to seeing how much of the essence of quantum theory is captured by
eq. (20). We are frankly quite happy to have an extremely hard problem about the
structure of quantum states spaces leading our thinking! (And, as we’ll see in the next
section, it is a problem that prompts a traveler to question the received wisdom about the
boundary between physics and pure mathematics.) For instance, one way to approach
this is to take eq. (20) as a fundamental axiom and ask what further assumptions are
required to recover all of quantum theory. To give some hint of how a reconstruction of
quantum theory might proceed along these lines, note eq. (15) again. What it expresses
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is that any quantum state ρ can be reconstructed from the probabilities P (Hi) the
state ρ gives rise to. This, however, does not imply that plugging just any probability
distribution P (Hi) into the equation will give rise to a valid quantum state. A general
probability distribution P (Hi) in the formula will lead to a Hermitian operator of trace
one, but it may not lead to an operator with nonnegative eigenvalues. Indeed it takes
further restrictions on the P (Hi) to make this true. That being the case, the QBist
starts to wonder if these restrictions might arise from the requirement that eq. (20)
simply always make sense. For note, if P (Dj) is too small in the special case of eq. (19),
Q(Dj) will go negative; and if P (Dj) is too large, Q(Dj) will become larger than 1.
So, P (Dj) must be restricted. But that in turn forces the set of valid P (Hi) to be
restricted as well. And so the argument goes. We already know how to reconstruct many
features of quantum theory in this fashion [5,87-89]. The question now is how to get the
whole theory in the most economical way [90]. Should we succeed, we will have a new
development of quantum theory, one that puts its beguiling deviation from classicality,
as encoded in eq. (20), front and center.

Another exciting development comes from loosening the form of eq. (20) to something
more generic:

(23) Q(Dj) =
n∑

i=1

[αP (Hi)− β]P (Dj |Hi); ,

where there is initially no assumed relation between α, β, and n as there is in eq. (20).
Then, under a few further conditions with only the faintest hint of quantum theory in
them—for instance, that there should exist measurements on the ground for which, under
appropriate conditions, one can have certainty for their outcomes—one immediately gets
a significantly more restricted form for what becomes the analogue of eq. (19):

(24) Q(Dj) =
(

1
2
qd + 1

) n∑
i=1

P (Hi)P (Dj |Hi)− 1
2
q.

Here, very interestingly, the parameters q and d can only take on integer values, q =
0, 1, 2, . . . ,∞ and d = 2, 3, 4, . . . ,∞, and n = 1

2qd(d− 1) + d.
The q = 2 case can be identified with the quantum mechanical one we have seen

before. On the other hand, the q = 0 case can be identified with the usual vision of
the classical world: A world where hypotheticals simply do not matter, for the world
just “is.” In this case, an agent is well advised to take Q(Dj) = P (Dj), meaning that
there is no operational distinction between experiments E1 and E2 for her. It should not
be forgotten however, that this rule, trivial though it looks, is still an addition to raw
probability theory. It is just one that meshes well with what had come to be expected by
most classical physicists. To put it yet another way, in the q = 0 case, the agent says to
herself that the fine details of her actions do not matter. This to some extent authorizes
the view that observation is a passive process in principle—again the classical worldview.
Finally, the cases q = 1 and q = 4, though not classical, track still other structures that
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have been explored previously: They correspond to what the Born rule would look like
if alternate versions of quantum mechanics, those over real [91] and quaternionic [92]
vector spaces, were expressed in the equivalent of SIC terms(23).

Several years ago, Rüdiger Schack gave a talk on this material in Zurich, and Rob
Spekkens asked, “Why that particular choice for modification of the Law of Total Prob-
ability?” Schack replied, “If one is going to modify it in any way at all, this is the
simplest modification one can imagine”. The remarkable fact is that the simplest pos-
sible modification to the Law of Total Probability carries with it so much interlocking
structure.

If all that you desire is a story that you can tell about the current quantum formalism,
then all this business about SICs and probabilistic representations might be of little
moment. Of our fellow QBists, we know of one who likely doesn’t care one way or the
other about whether SICs exist. Another would like to see a general proof come to
pass, but is willing to believe that QBism can just as well be developed without them—
i.e., they are not part of the essential philosophical ideas—and is always quick to make
this point. On the other hand, we two are inclined to believe that QBism will become
stagnant in the way of all other quantum foundations programs without a deliberate
effort to rebuild the formalism. SICs might not be the only path to this goal [94], but
they engage our attention for the following reason.

Formula (24) from the general setting indicates more strongly than ever that it is the
role of dimension that is key to distilling the motif of our user’s manual. Quantum theory,
seen as a normative addition to probability theory, is just one theory (the second rung
above classical) along an infinite hierarchy. What distinguishes the levels of this hierarchy
is the strength q with which dimension “couples” the two paths in our diagram of fig. 5. It
is the strength with which we are compelled to deviate from the Law of Total Probability
when we transform our thoughts from the consequences of hypothetical actions upon a
d’s worth of the world’s stuff to the consequences of our actual ones. Settling upon
q = 2 (i.e., settling upon quantum theory itself) sets the strength of the coupling, but
the d variable remains. Different systems, different d, different deviations from a naive
application of the Law of Total Probability.

In some way yet to be fully fleshed out, each quantum system seems to be a seat
of active creativity and possibility, whose outward effect is as an “agent of change” for
the parts of the world that come into contact with it. Observer and system, “agent and

(23) The equivalent of SICs (i.e., informationally complete sets of equiangular projection oper-
ators) certainly do not exist in general dimensions for the real-vector-space case—instead these
structures only exist in a sparse set of dimensions, d = 2, 3, 7, 23, . . .. With respect to the
quaternionic theory, it appears from numerical work that they do not generally exist in that
setting either [93]. Complex quantum mechanics, like baby bear’s possessions, appears to be just
right. This raises the possibility that if one had reason to think that the user’s manual should
be one of those three alternatives—real, complex and quaternionic—demanding the existence
of SIC-type structures in all dimensions could narrow down the choice exactly to the complex
case.
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reagent,” might be a way to put it. Perhaps no metaphor is more pregnant for QBism’s
next move than this: If a quantum system is comparable to a chemical reagent, then d

is comparable to a valence. But valence for what more exactly?

8. – Mathematical intermezzo: The sporadic SICs

Before we leap off into cosmological speculations, let us take a moment to make a
few things more concrete. What does a SIC look like, anyway? How do we write one
out explicitly? One of the ongoing challenges of SIC research is that the solutions look
so complicated: As we go up in the dimension, the vectors soon take many pages of
computer printout. Moreover, there are not obvious relations between a SIC vector in
one dimension and one in another, so finding one solution doesn’t help with finding the
next. It is only recently that we have been able to tease out some interconnections
happening beneath the surface. In this section, we’ll explore the patterns that bind sets
of SIC solutions together [95,96].

A SIC is group covariant if it can be constructed by starting with a single vector (the
fiducial) and acting upon that vector with the elements of some group. All known SICs
are group covariant, although since group covariance simplifies the search process, this
could be a matter of the light being under the lamppost. Furthermore, in all known cases
but one, that group is a Weyl-Heisenberg group. Working in dimension d, let ωd = e2πi/d,
and define the shift and phase operators

(25) X |j〉 = |j + 1〉 and Z |j〉 = ωj
d |j〉 ,

where the shift is modulo d. Products of powers of X and Z, together with dimension-
dependent phase factors that we can neglect for the present purposes, define the Weyl-
Heisenberg group for dimension d.

A historical aside: This group dates back to the earliest days of quantum physics.
Note that the two operators X and Z just fail to commute, doing so up to a phase factor:

(26) ZX = ωXZ.

In July of 1925, Max Born had the idea that he could solve one of the equations in
Heisenberg’s seminal 1925 paper if he made an ansatz that the position observable q̂ and
momentum observable p̂ satisfied the commutation relation [97,98]

(27) q̂p̂− p̂q̂ = i�Î .

Pascual Jordan later proved that Born’s ansatz was the only one that could work, and
the paper they wrote up together was received by Zeitschrift für Physik on 27 September
1925. It was titled “On Quantum Mechanics.” On the same day, Max Born received a
letter from Hermann Weyl [99] saying that a previous discussion they had earlier in the
month inspired him to generalize Born’s relation (27) to eq. (26). Part of what pleased
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Weyl was that his generalization was not dependent upon infinite-dimensional spaces—
Weyl’s relation would always have a solution in the complex matrices, finite and infinite
dimensional. And by that circumstance he declared to have a way of “defining a general
quantum system”—to each would be associated a “phase space.” In the discrete case,
the points of the phase space would be associated with the operators

(28) (m,n) −→ XmZn.

See Weyl’s 1927 textbook [100], as well as Julian Schwinger’s later development and
extension of the idea in [101]. If a SIC covariant under the Weyl-Heisenberg group always
exists, then it would mean that not only could a phase space be associated with a quantum
system abstractly, but that the points of the phase space very directly correspond to the
outcomes of a potential measurement. It is interesting to see how some of the earliest
math in one of the earliest formulations of the theory—Weyl’s—came so close to what
we are working with today!

In d = 2, we can draw a SIC in the Bloch representation. Any qubit SIC forms a
tetrahedron inscribed in the Bloch sphere [74]. One such tetrahedron is, in terms of the
Pauli matrices,

(29) Πs,r =
1
2

(
I +

1√
3
(sσx + rσy + srσz)

)
,

where the sign variables s and r take the values ±1. The outcome probabilities for a
state |ψ〉 = α|0〉+ β|1〉 are given by the Born rule, p(s, r) = tr(Πs,r|ψ〉〈ψ|)/2. Explicitly,

(30) p(s, r) =
1
4

+
√

3
12

sr
(|α|2 − |β|2) +

√
3

6
Re [αβ∗(s + ir)] .

This expression simplifies in terms of the Cartesian coordinates (x, y, z) of points on the
Bloch sphere:

(31) p(s, r) =
1
4

+
√

3
12

(sx + ry + srz) .

Two SICs in higher dimensions will be important for our purposes. First is the Hesse
SIC in d = 3, constructed by applying the Weyl-Heisenberg group to the fiducial

(32)
∣∣∣ψ(Hesse)

0

〉
=

1√
2
(0, 1,−1)T.

Second is the Hoggar SIC in d = 8. We have multiple choices of fiducial in this case, but
they all yield structures that are equivalent up to unitary or antiunitary transformations,
so for brevity we speak of “the” Hoggar SIC [102]. One such fiducial [103,104] is

(33)
∣∣∣ψ(Hoggar)

0

〉
∝ (−1 + 2i, 1, 1, 1, 1, 1, 1, 1)T.

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



QBism: Quantum theory as a hero’s handbook 177

Fig. 6. – The lowest levels of a dimension tower. Conjecturally, Weyl-Heisenberg SICs in these
dimensions are related by way of algebraic number theory [95]. The arithmetical meaning of
the arrows is left as an exercise to the interested reader.

The Hoggar SIC is the only known case where the group that constructs the SIC from
the fiducial is not the Weyl-Heisenberg group for d dimensions itself [102]. It is, however,
of a related kind: It is the tensor product of three copies of the qubit Weyl-Heisenberg
group. The more we poke at the Hoggar SIC, the more odd and unusual things turn up
about it [104]. We’ll take a look at one of them in this section.

The SICs in dimensions 2 and 3, as well as the Hoggar SIC in dimension 8, stand
apart in some respects from the other known solutions [95, 105]. Recently, Appleby et
al. [95] found a link between SICs and algebraic number theory. Their results apply to
Weyl-Heisenberg SICs in dimensions 4 and larger. The SICs in dimensions 2 and 3, as
well as the Hoggar SIC, fall outside of this category. Either their dimensions are too
small, or (in the case of the Hoggar SIC) they have the wrong symmetry group. We can
think of them as the sporadic SICs.

First, let us sketch the picture for the SICs studied by Appleby et al.. The pattern,
which is just beginning to come clear, is a story about number fields. To a physicist, a
“field” means something like the electric field, but to a number theorist, a field is a set of
numbers where addition and multiplication can both be done, and where both additive
and multiplicative inverses exist, and everything plays together nicely. The real numbers
R constitute a field, as do the rational numbers Q within them. We can build up a field
by starting with some base, like the rationals, and augmenting it with a new element. For
example, let us invent a number “

√
3,” about which all we know is that it is a positive

number that solves the equation x2 − 3 = 0. We then consider all the numbers of the
form a+ b

√
3, where a and b are rational. This set is a new field, Q extended by the new

ingredient
√

3, which we write as Q(
√

3).
The connection between SICs and number fields happens when we take the inner-
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product conditiont that defines a SIC,

(34) |〈ψj |ψk〉|2 =
1

d + 1
,

and we leave off the magnitude-squared step:

(35) 〈ψj |ψk〉 =
eiθjk

√
d + 1

.

The phase factors eiθjk turn out to live within very special number fields, and they are
particularly special numbers within those fields. They are units of ray class fields or
extensions thereof —as Bengtsson quips, “These words carry deep meaning for algebraic
number theorists” [106]. They mean that we are knocking on the door of Hilbert’s twelfth
problem, one of the last remaining unsolved puzzles on history’s most influential list of
mathematical challenges [107]. And, remember, we got here because we were trying to
find a better way to talk about probability in quantum mechanics!

Part of this still-emerging story [95] is that SICs in different dimensions are related in
a hidden way because their number fields are related. The SIC phase factors live in fields
that are extensions twice over of the rationals. That is, for a Weyl-Heisenberg SIC in di-
mension d, the phase factors eiθjk make their home in an extension of Q(

√
(d− 3)(d + 1)).

Because we can factor perfect squares out from under the radical sign, different values
of d can yield the same extension of Q. This has led to the image of a dimension tower,
an infinite sequence {d1, d2, d3, . . .} where each dj follows neatly from those before, and
the number theory tells us how to build a SIC in each dj . But this remains in the realm
of conjecture.

And what of the sporadic SICs? Quite unexpectedly, the qubit SICs, the Hesse SIC
and the Hoggar SIC also connect to a subject in pure mathematics that has gone mostly
un-utilized in physics. Specifically, their symmetries are linked with a lattice of integers in
the set of numbers known as the octonions [96]. Physics students grow familiar with the
complex numbers C by repeated exposure, internalizing the image of a number plane that
extends out on either side of the number line. The quaternions (usually written with an H

for William Hamilton) and the octonions (denoted O) arise when one tries to repeat this
dimension-doubling stunt, from two dimensions to four and then to eight. It so happens
that familiar properties of arithmetic are lost with each repetition: Multiplication of
quaternions is not commutative, but it is still associative. And multiplication of octonions
is not even associative! Nineteenth-century physics made much use of quaternions to
study 3D rotations, and they still find application in geometry, for example in computer
graphics. Octonions are less familiar still, and are perhaps best known for their relations
to exceptional structures in mathematics. John Baez observed [108],

Often you can classify some sort of gizmo, and you get a beautiful system-
atic list, but also some number of exceptions. Nine times out of 10 those
exceptions are related to the octonions.
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It so transpires that this applies to SICs, too. Moreover, the link with octonionic integers
connects the sporadic SICs to the problem of sphere packing, that is, the question of how
to fit Euclidean spheres of arbitrary dimension together in the most efficient way [109].

A few years ago, one of the authors (BCS) was attending an interdisciplinary workshop
and, over lunch, fell into conversation with a mathematician who had that morning
lectured on higher-dimensional sphere packing. After a little while, the mathematician
asked, “And what are you working on?”

“Too many different things—but one problem has the same feel as sphere packing,
because solutions in one dimension don’t seem to tell you about solutions in others. I
guess the math people know it as the problem of ‘complex equiangular lines’.”

“Ah! SICs! You know, when I first heard about that conjecture, I thought I could
just sit down and solve it. But that didn’t quite happen.”

As the mathematical properties of SIC dimensionalities grow more intriguing, we are
led back to the question of what the dimension of a Hilbert space means physically.

9. – Hilbert-space dimension as a universal capacity

It is entirely possible to conceive of a world com-
posed of individual atoms, each as different from
one another as one organism is from the next.

— John Dupré

A common accusation heard by the QBist(24) is that the view leads straight away to
solipsism, “the belief that all reality is just one’s imagining of reality, and that one’s self
is the only thing that exists”(25). The accusation goes that, if a quantum state |ψ〉 only
represents the degrees of belief held by some agent—say, the one portrayed in fig. 1—
then the agent’s beliefs must be the source of the universe. The universe could not exist
without him: This being such a ridiculous idea, QBism is dismissed out of hand, reductio
ad absurdum. It is so hard for the QBist to understand how anyone could think this (it
being the antithesis of everything in his worldview) that a little of our own Latin comes
to mind: non sequitur. See fig. 7.

A fairer-minded assessment is that the accusation springs from our opponents “hear-
ing” much of what we do say, but interpreting it in terms drawn from a particular
conception of what physical theories always ought to be: Attempts to directly represent
(map, picture, copy, correspond to, correlate with) the universe—with “universe” here

(24) For perhaps the loudest, see ref. [110].
(25) This is the definition of The American Heritage New Dictionary of Cultural Literacy, third
edition (2005). Encyclopedia Brittanica (2008) expands, “in philosophy . . . the extreme form
of subjective idealism that denies that the human mind has any valid ground for believing in
the existence of anything but itself. The British idealist F. H. Bradley, in Appearance and
Reality (1897), characterized the solipsistic view as follows: ‘I cannot transcend experience, and
experience is my experience. From this it follows that nothing beyond myself exists; for what is
experience is its (the self’s) states”’.
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Fig. 7. – Sarcasm. In a lecture bottlenecked by repeated accusations of QBism’s solipsism, the
authors sometimes use the following technique to move things along. Referring to the previous
fig. 1, one asks the stubborn accuser, “What about this diagram do you not get? It shows an
agent and a physical system external to him. It says that a quantum state is a state of belief
about what will come about as a consequence of his actions upon the system. The quantum state
is not a state of nature, but so what? There is an agent with his belief; there is a system that
is not part of him; and there is something that really, eventually comes about—it is called the
outcome. No agent, no outcome for sure, but that’s not solipsism: For, no system, no outcome
either! A quantum measurement without an external system participating would be like the
sound of one hand clapping, a Zen koan. If we were really expressing solipsism, wouldn’t a
diagram like the one above be more appropriate? A big eyeball surveying nothing. Now there’s
really no external system and nothing to act upon. That’s solipsism.”

thought of in its totality as a pre-existing, static system; an unchanging, monistic some-
thing that just is. From such a “representationalist” point of view, if a) quantum theory
is a proper physical theory, b) its essential theoretical objects are quantum states, and
c) quantum states are states of belief, then the universe that “just is” corresponds to a
state of belief. This chain of deduction is logical and clear, but completely misguided.

QBism sidesteps the poisoned dart, as the previous sections have tried to convey, by
asserting that quantum theory is just not a physical theory in the sense the accusers want
it to be. Rather it is an addition to personal, Bayesian, normative probability theory.
Its normative rules for connecting probabilities (personal judgments) were developed in
light of the character of the world, but there is no sense in which the quantum state itself
represents (pictures, copies, corresponds to, correlates with) a part or a whole of the
external world, much less a world that just is. In fact the very character of the theory
seems to point to the inadequacy of the representationalist program when attempted on
the particular world we live in.

There are no lofty philosophical arguments here that representationalism must be
wrong always and in all possible worlds (perhaps because of some internal inconsis-
tency(26)). Representationalism may well be true in this or that setting—we take no
stand on the matter. We only know that for nearly 90 years quantum theory has been

(26) As, e.g., Rorty [111] might try to argue.
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actively resistant to representationalist efforts on its behalf. This suggests that it might
be worth exploring some philosophies upon which physics rarely sets foot. Physics of
course should never be constrained by any one philosophy (history shows it nearly always
lethal), but it does not hurt to get ideas and insights from every source one can. If one
were to sweep the philosophical literature for schools of thought representative of what
QBism actually is about, it is not solipsism one will find, but nonreductionism [112,113],
(radical) metaphysical pluralism [114,115], empiricism [116,117], indeterminism and me-
liorism(27) [118], and above all pragmatism [29,119].

A form of nonreductionism can already be seen in play in our answer to whether the
notion of agent should be derivable from the quantum formalism itself. We say that
it cannot be and it should not be, and to believe otherwise is to misunderstand the
subject matter of quantum theory. But nonreductionism also goes hand in hand with
the idea that there is real particularity and “interiority” in the world. Think again of
the “I-I-me-me mine” feature that shields QBism from inconsistency in the “Wigner’s
friend” scenario. When Wigner turns his back to his friend’s interaction with the system,
that piece of reality is hermetically sealed from him. That phenomenon has an inside, a
vitality that he takes no part in until he again interacts with one or both relevant pieces
of it. With respect to Wigner, it is a bit like a universe unto itself.

If one seeks the essence of indeterminism in quantum mechanics, there may be no
example more directly illustrative of it than “Wigner’s friend.” For it expresses to a tee
William James’s notion of indeterminism [118]:

[Chance] is a purely negative and relative term, giving us no information
about that of which it is predicated, except that it happens to be disconnected
with something else—not controlled, secured, or necessitated by other things
in advance of its own actual presence. [. . . ] What I say is that it tells us
nothing about what a thing may be in itself to call it “chance.” [. . . ] All you
mean by calling it “chance” is that this is not guaranteed, that it may also
fall out otherwise. For the system of other things has no positive hold on the
chance-thing. Its origin is in a certain fashion negative: it escapes, and says,
Hands off! coming, when it comes, as a free gift, or not at all.

(27) Strictly speaking, meliorism is the doctrine “that humans can, through their interference
with processes that would otherwise be natural, produce an outcome which is an improvement
over the aforementioned natural one.” But we would be reluctant to take a stand on what
“improvement” really means. So said, all we mean in the present essay by meliorism is that
the world before the agent is malleable to some extent—that his actions really can change it.
Adam said to God, “I want the ability to write messages onto the world.” God replied, “You
ask much of me. If you want to write upon the world, it cannot be so rigid a thing as I had
originally intended. The world would have to have some malleability, with enough looseness for
you to write upon its properties. It will make your world more unpredictable than it would have
been—I may not be able to warn you about impending dangers like droughts and hurricanes as
effectively as I could have—but I can make it such if you want.” And with that Adam brought
all host of uncertainties to his life, but he gained a world where his deeds and actions mattered.
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This negativeness, however, and this opacity of the chance-thing when thus
considered ab extra, or from the point of view of previous things or distant
things, do not preclude its having any amount of positiveness and luminosity
from within, and at its own place and moment. All that its chance-character
asserts about it is that there is something in it really of its own, something
that is not the unconditional property of the whole. If the whole wants this
property, the whole must wait till it can get it, if it be a matter of chance.
That the universe may actually be a sort of joint-stock society of this sort, in
which the sharers have both limited liabilities and limited powers, is of course
a simple and conceivable notion.

And once again [120],

Why may not the world be a sort of republican banquet of this sort, where
all the qualities of being respect one another’s personal sacredness, yet sit at
the common table of space and time?

To me this view seems deeply probable. Things cohere, but the act of cohesion
itself implies but few conditions, and leaves the rest of their qualifications
indeterminate. As the first three notes of a tune comport many endings,
all melodious, but the tune is not named till a particular ending has actually
come,—so the parts actually known of the universe may comport many ideally
possible complements. But as the facts are not the complements, so the
knowledge of the one is not the knowledge of the other in anything but the
few necessary elements of which all must partake in order to be together at
all. Why, if one act of knowledge could from one point take in the total
perspective, with all mere possibilities abolished, should there ever have been
anything more than that act? Why duplicate it by the tedious unrolling,
inch by inch, of the foredone reality? No answer seems possible. On the
other hand, if we stipulate only a partial community of partially independent
powers, we see perfectly why no one part controls the whole view, but each
detail must come and be actually given, before, in any special sense, it can
be said to be determined at all. This is the moral view, the view that gives
to other powers the same freedom it would have itself.

The train of logic back to QBism is this. If James and our analysis of “Wigner’s
friend” are right, the universe is not one in a very rigid sense, but rather more truly a
pluriverse(28). To get some sense of what this can mean, it is useful to start by thinking

(28) The term “pluriverse” is again a Jamesian one. He used it interchangeably with the word
“multiverse,” which he also invented [121]. Unfortunately the latter has been coopted by the
Everettian movement for their own—in the end monistic—purposes: “The world is one; it is the
deterministically evolving universal quantum state, the ‘multiverse’.” Too bad. Multiverse is a
tempting word, but we stick with pluriverse to avoid any confusion with the Everettian usage.
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about what it is not. A good example can be found by taking a solution to the vacuum
Maxwell equations in some extended region of spacetime. Focus on a compact subregion
and try to conceptually delete the solution within it, reconstructing it with some new
set of values. It can’t be done. The fields outside the region (including the boundary)
uniquely determine the fields inside it. The interior of the region has no identity but
that dictated by the rest of the world—it has no “interiority” of its own. The pluriverse
conception says we’ll have none of that. And so, for any agent immersed in this world
there will always be uncertainty for what will happen upon his encounters with it. To
wit, where there is uncertainty there should be Bayesian probabilities, and so on and so
on until much of the story we have already told.

What all this hints is that for QBism the proper way to think of our world is as the
empiricist or the radical metaphysical pluralist does. Let us launch into making this
clearer, for that process more than anything will explain how QBism hopes to interpret
Hilbert-space dimension.

The metaphysics of empiricism can be put like this. Everything experienced, ev-
erything experienceable, has no less an ontological status than anything else. A child
awakens in the middle of the night frightened that there is a monster under her bed,
one soon to reach up and steal her arm—that we-would-call-imaginary experience has no
less a hold on onticity than a Higgs-boson detection event at the LHC, or the minuscule
wobbles at LIGO that shook the scientific world. They are of equal status from this
point of view—they are equal elements in the filling out and making of reality. There is
indeed no doubt that we should call the child’s experience imaginary. That, however, is
a statement about the experience’s meaning and interpretation, not its existence. The
experience as it is exists, period. It is what it is. Like the biblical burning bush, each
experience declares, “I am that I am.” Most likely in the present example, the experience
will be a little piece of the universe isolated, on its own, and of no great consequence.
But one never knows until all future plays out. Some lucky dreams have built nations.
Maybe the same is true of some lucky Higgs-boson events. Most though, surely, will be
of the more minor fabric of existence. All in all, the world of the empiricist is not a
sparse world like the world of Democritus (nothing but atom and void) or Einstein (noth-
ing but unchanging spacetime manifold equipped with this or that field), but a world
overflowingly full of variety—a world whose details are beyond anything grammatical
(rule-bound) expression can articulate.

Yet this is no statement that physics should give up, or that physics has no real role
in coming to grips with the world. It is only a statement that physics should better
understand its function. What is being aimed for here finds its crispest, clearest contrast
in a statement Richard Feynman once made [122]:

If, in some cataclysm, all of scientific knowledge were to be destroyed, and
only one sentence passed on to the next generation of creatures, what state-
ment would contain the most information in the fewest words? I believe it is
the atomic hypothesis (or the atomic fact) that all things are made of atoms—
little particles that move around in perpetual motion, attracting each other

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



184 Christopher A. Fuchs and Blake C. Stacey

when they are a little distance apart, but repelling upon being squeezed into
one another. [. . . ]

Everything is made of atoms. That is the key hypothesis.

The issue for QBism hangs on the imagery that usually lies behind the phrase “everything
is made of.” William James called it the great original sin of the rationalistic mind [123]:

Let me give the name of “vicious abstractionism” to a way of using concepts
which may be thus described: We conceive a concrete situation by singling out
some salient or important feature in it, and classing it under that; then, in-
stead of adding to its previous characters all the positive consequences which
the new way of conceiving it may bring, we proceed to use our concept priva-
tively; reducing the originally rich phenomenon to the naked suggestions of
that name abstractly taken, treating it as a case of “nothing but” that, con-
cept, and acting as if all the other characters from out of which the concept
is abstracted were expunged. Abstraction, functioning in this way, becomes
a means of arrest far more than a means of advance in thought. It mutilates
things; it creates difficulties and finds impossibilities; and more than half the
trouble that metaphysicians and logicians give themselves over the paradoxes
and dialectic puzzles of the universe may, I am convinced, be traced to this
relatively simple source. The viciously privative employment of abstract char-
acters and class names is, I am persuaded, one of the great original sins of
the rationalistic mind.

What is being realized through QBism’s peculiar way of looking at things is that physics
actually can be done without any accompanying vicious abstractionism. You do physics
as you have always done it, but you throw away the idea “everything is made of [Essence
X]” before even starting.

Physics—in the right mindset—is not about identifying the bricks with which nature
is made, but about identifying what is common to the largest range of phenomena it can
get its hands on. The idea is not difficult once one gets used to thinking in these terms.
Carbon? The old answer would go that it is nothing but a building block that combines
with other elements according to the following rules, blah, blah, blah. The new answer
is that carbon is a characteristic common to diamonds, pencil leads, deoxyribonucleic
acid, burnt pancakes, the space between stars, the emissions of Ford pick-up trucks, and
so on—the list is as unending as the world is itself. For, carbon is also a characteristic
common to this diamond and this diamond and this diamond and this. But a flawless
diamond and a purified zirconium crystal, no matter how carefully crafted, have no such
characteristic in common: Carbon is not a universal characteristic of all phenomena. The
aim of physics is to find characteristics that apply to as much of the world in its varied
fullness as possible. However, those common characteristics are hardly what the world is
made of—the world instead is made of this and this and this. The world is constructed
of every particular there is and every way of carving up every particular there is.
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An unparalleled example of how physics operates in such a world can be found by
looking to Newton’s law of universal gravitation. What did Newton really find? Would
he be considered a great physicist in this day when every news magazine presents the
most cherished goal of physics to be a Theory of Everything? For the law of universal
gravitation is hardly that! Instead, it merely says that every body in the universe tries
to accelerate every other body toward itself at a rate proportional to its own mass and
inversely proportional to the squared distance between them. Beyond that, the law says
nothing else particular of objects, and it would have been a rare thinker in Newton’s
time, if any at all, who would have imagined that all the complexities of the world could
be derived from that limited law. Yet there is no doubt that Newton was one of the
greatest physicists of all time. He did not give a theory of everything, but a Theory
of One Aspect of Everything. And only the tiniest fraction of physicists of any variety,
much less the TOE-seeking variety, have ever worn a badge of that more modest kind.
It is as H. C. von Baeyer wrote in one of his books [124],

Great revolutionaries don’t stop at half measures if they can go all the way.
For Newton this meant an almost unimaginable widening of the scope of his
new-found law. Not only Earth, Sun, and planets attract objects in their
vicinity, he conjectured, but all objects, no matter how large or small, attract
all other objects, no matter how far distant. It was a proposition of almost
reckless boldness, and it changed the way we perceive the world.

Finding a theory of “merely” one aspect of everything is hardly something to be ashamed
of: It is the loftiest achievement physics can have in a living, breathing nonreductionist
world.

Which leads us back to Hilbert space. Quantum theory—that user’s manual for
decision-making agents immersed in a world of some yet to be fully identified character—
makes a statement about the world to the extent that it identifies a quality common to
all the world’s pieces. QBism says the quantum state is not one of those qualities. But
of Hilbert spaces themselves, particularly their distinguishing characteristic one from the
other, dimension(29), QBism carries no such grudge. Dimension is something one posits
for a body or a piece of the world, much like one posits a mass for it in the Newtonian
theory. Dimension is something a body holds all by itself, regardless of what an agent
thinks of it.

That this is so can be seen already from reasons internal to the theory. Just think
of all the arguments rounded up for making the case that quantum states should be
interpreted as of the character of Bayesian degrees of belief. None of these work for

(29) Hardy [125, 126] and Dakić and Brukner [127] are examples of foundational efforts that
also emphasize this quantum analogue to what Eötvös tested on platinum and copper [128].
Hardy put it this way in one of his axioms, “There exist systems for which N = 1, 2, · · · , and,
furthermore, all systems of dimension N , or systems of higher dimension but where the state is
constrained to an N dimensional subspace, have the same properties”.
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Hilbert-space dimension. Take one example, an old favorite—Einstein’s argument about
conditioning quantum states from afar. In sect. 5 of this paper we repeated the argument
verbatim, but it is relevant to note that before Einstein could write down his ψ12, he
would have had to associate some Hilbert spaces H1 and H2 with S1 and S2 and take
their tensor product H1⊗H2. Suppose the dimensionalities of these spaces to be d1 and
d2, respectively. The question is, is there anything similar to Einstein’s argument for
changing the value of d2 from a distance? There isn’t. ψ2 may be forced into this or that
subspace by choosing the appropriate measurement on S1, but there is no question of
the whole Hilbert space H2 remaining intact. When it is time to measure S2 itself, one
will still have the full arsenal of quantum measurements appropriate to a Hilbert space
of dimension d2 to choose from—none of those fall by the wayside. In Einstein’s terms,
d2 is part of the “real factual situation” of S2(30).

The claim here is that quantum mechanics, when it came into existence, implic-
itly recognized a previously unnoticed capacity inherent in all matter—call it quan-
tum dimension. In one manifestation, it is the fuel upon which quantum computation
runs [128,132]. In another it is the raw irritability of a quantum system to being eaves-
dropped upon [76, 133]. In eqs. (19) and (20) it was a measure of deviation from the
Law of Total Probability induced by hypothetical thinking. And in a farther-fetched sce-
nario to which we will come back, its logarithm might just manifest itself as the squared
gravitational mass of a Schwarzschild black hole [134,135].

When quantum mechanics was discovered, something was added to matter in our
conception of it. Think of the apple that inspired Newton to his law. With its discovery
the color, taste, and texture of the apple didn’t disappear; the law of universal gravitation
didn’t reduce the apple privatively to just gravitational mass. Instead, the apple was at
least everything it was before, but afterward even more—for instance, it became known
to have something in common with the Moon. A modern-day Cavendish would be able
to literally measure the further attraction an apple imparts to a child already hungry to
pick it from the tree. So similarly with Hilbert-space dimension. Those diamonds we
have already used to illustrate the idea of nonreductionism, in very careful conditions,
could be used as components in a quantum computer [136]. Diamonds have among their

(30) Take a coin, and imagine flipping it. We generally write down a (subjective) probability
distribution over two outcomes to capture our degrees of belief of which way the flip will go.
But of course it is a judgement call that it can only go two ways. Steven van Enk would say
it could always land on its side; so he would always write down a probability distribution over
three outcomes. If one takes (p0, p1) as a subjective assignment, the number 2 is objective
with respect to it: It is something we imagine or hypothesize about the coin. If one takes
the (p0, p1, p2) as a subjective assignment, then the number 3 is objective with respect to it:
It will fall one of three ways regardless of what we believe about which of the three ways it
will fall. So objectivity/subjectivity comes in layers. We call something objective, and then
make probability assignments in the subjective layer above it. But of course, the first “calling
something objective” has a personal element in itself. Recently, techniques have started to
become available to “test” the supposition of a dimension against one’s broader mesh of beliefs;
see [129-131].
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many properties something not envisioned before quantum mechanics—that they could
be a source of relatively accessible Hilbert space dimension and as such have this much
in common with any number of other proposed implementations of quantum computing.
Diamonds not only have something in common with the moon, but now with the ion-trap
quantum-computer prototypes around the world.

Diamondness is not something to be derived from quantum mechanics. It is that
quantum mechanics is something we add to the repertoire of things we already say
of diamonds, to the things we do with them and the ways we admire them. This is
a very powerful realization: For diamonds already valuable, become ever more so as
their qualities compound. And saying more of them, not less of them as is the goal
of all reductionism, has the power to suggest all kinds of variations on the theme. For
instance, thinking in quantum mechanical terms might suggest a technique for making
“purer diamonds”—though to an empiricist this phrase means not at all what it means
to a reductionist. It means that these similar things called diamonds can suggest exotic
variations of the original objects with various pinpointed properties this way or that.
Purer diamond is not more of what it already was in nature. It is a new species, with
traits of its parents to be sure, but nonetheless stand-alone, like a new breed of dog.

To put it still differently, and now in the metaphor of music, a jazz musician might
declare that a tune once heard thereafter plays its most crucial role as a substrate for
something new. It is the fleeting solid ground upon which something new can be born.
The nine tracks titled Salt Peanuts in CAF’s mp3 player(31) are moments of novelty in
the universe never to be recreated. So of diamonds, and so of all this quantum world.
Or at least that is the path QBism seems to indicate(32).

To the reductionist, of course, this seems exactly backwards. But then, it is the
reductionist who must live with a seemingly infinite supply of conundrums arising from
quantum mechanics. It is the reductionist who must live in a state of arrest, rather than
moving on to the next stage of physics. Take a problem that has been a large theme
of the quantum foundations meetings for the last 30 years. To put it in a commonly
heard question, “Why does the world look classical if it actually operates according to
quantum mechanics?” The touted mystery is that we never “see” quantum superposition
and entanglement in our everyday experience. But have you ever seen a probability
distribution sitting in front of you? Probabilities in personalist Bayesianism are not the
sorts of things that can be seen; they are the things that are thought. It is events that
are seen.

The real issue is this. The expectation of the quantum-to-classical transitionists(33)
is that quantum theory is at the bottom of things, and “the classical world of our ex-
perience” is something to be derived out of it. QBism says “No. Experience is neither

(31) Charlie Parker, Dizzy Gillespie, Charlie Parker, Charlie Parker, Charlie Parker, Joshua
Redman, Miles Davis Quintet, Arturo Sandoval, “The Quintet” (Massey Hall, 1953).
(32) A nice logical argument for this can be found in [137].
(33) See [138,139] for particularly clear discussions of the subject.
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classical nor quantum. Experience is experience with a richness that classical physics
of any variety could not remotely grasp”. Quantum mechanics is something put on top
of raw, unreflected experience. It is additive to it, suggesting wholly new types of ex-
perience, while never invalidating the old. To the question, “Why has no one ever seen
superposition or entanglement in diamond before?”, the QBist replies: “It is simply be-
cause before recent technologies and very controlled conditions, as well as lots of refined
analysis and thinking, no one had ever mustered a mesh of beliefs relevant to such a range
of interactions (factual and hypothetical) with diamonds”. No one had ever been in a
position to adopt the extra normative constraints required by the Born rule. For QBism,
it is not the emergence of classicality that needs to be explained, but the emergence of
our new ways of manipulating, controlling, and interacting with matter that do.

In this sense, QBism declares the quantum-to-classical research program unnecessary
(and actually obstructive(34)) in a way not so dissimilar to the way Bohr’s 1913 model
of the hydrogen atom declared another research program unnecessary (and actually ob-
structive). Before Bohr, everyone thought that the only thing that could count as an
explanation of the hydrogen atom’s stable spectrum was a mechanical model. Bohr’s
great genius in comparison to all the other physicists of his day was in being the first to
say, “Enough! I shall not give a mechanistic explanation for these spectra we see. Here
is a way to think of them with no mechanism”. Researchers had wasted years seeking an
unfulfillable vision of the world, and that certainly was an obstruction to science.

All is not lost, however, for the scores of decoherentists this policy would unforgivingly
unemploy. For it only suggests that they redirect their work to the opposite task. The
thing that needs insight is not the quantum-to-classical transition, but the classical-to-
quantum! The burning question for the QBist is how to model in Hilbert-space terms
the common sorts of measurements we perform just by opening our eyes, cupping our
ears, and extending our fingers.

Take a professional baseball player watching a ball fly toward him: He puts his whole
life into when and how he should swing his bat. But what does this mean in terms of
the immense Hilbert space a quantum theoretical description would associate with the
ball? Surely the player has an intuitive sense of both the instantaneous position and
instantaneous momentum of the baseball before he lays his swing into it—that’s what
“keeping his eye on the ball” means. Indeed it is from this intuition that Newton was
able to lay down his laws of classical mechanics. Yet, what can it mean to say this given
quantum theory’s prohibition of simultaneously measuring complementary observables?
It means that whatever the baseball player is measuring, it ain’t that—it ain’t position
and momentum as usually written in operator terms. Instead, a quantum model of
what he is doing would be some interesting, far-from-extremal single POVM—perhaps

(34) Without an ontic understanding of quantum states, quantum operations, and unitary time
evolutions—all of which QBism rejects [2, 5, 37]—how can the project even get off the ground?
As one can ask of the Big Bang, “What banged?”, the QBist must ask, “In those days of the
world before agents using quantum theory, what decohered?”.
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even one that takes into account some information that does not properly live within
the formal structure of quantum theory (the larger arena that Howard Barnum calls
“meaty quantum physics” [140]). For instance, that an eigenvector |i〉 of some Hermitian
operator, though identically orthogonal to fellow eigenvectors |j〉 and |k〉 in the Hilbert-
space sense, might be closer in meaning to |k〉 than to |j〉 for some issue at hand.

So the question becomes how to take a given common-day measurement procedure and
add to it a consistent quantum description? The original procedure was stand alone—it
can live without a quantum description of it—but if one wants to move it to a new level
or new direction, having added a consistent quantum description will be most helpful
to those ends. Work along these lines is nascent, but already some excellent examples
exist [141]. Of course, unconsciously it is what has been happening since the founding
days of quantum mechanics. Here, we find an affinity with a comment of John Stuart
Bell, one buried in a letter to Rudolf Peierls and almost lost to physics history [10]:

I have the impression as I write this, that a moment ago I heard the bell of
the tea trolley. But I am not sure because I was concentrating on what I was
writing. [. . . ] The ideal instantaneous measurements of the textbooks are
not precisely realized anywhere anytime, and more or less realized, more or
less all the time, more or less everywhere.

QBism thinks of the textbook “ideal instantaneous measurements” as on the same con-
tinuum as listening for the tea trolley. But what POVM elements should one write for
the latter? Only time, actively spent in new research, will tell.

The important question is how matter can be coaxed to do new things. It is in the
ways the world yields to our desires, and the ways it refuses to, that we learn the depths
of its character.

I give you an object of this much gravitational mass. What can you do with
it? What can you not? And when you are not about, what does it cause?

I give you an object of this much quantum dimension. What can you do with
it? What can you not? And when you are not about, what does it cause?

If taken seriously what do these questions imply by their very existence? That they
should have meaningful answers! Here is one example. A knee-jerk reaction in many
physicists upon hearing these things is to declare that dimension as a capacity collapses
to a triviality as soon as it is spoken. “All real-world systems possess infinite-dimensional
Hilbert spaces. And it doesn’t take quantum field theory to be completely correct to
make that true; a simple one-dimensional harmonic oscillator will do. It has an infinite-
dimensional Hilbert space.” But maybe not. Maybe no real-world quantum system has
that much oomph. Just as one can treat the Earth’s inertial mass as infinite for many a
freshman mechanics problem, or a heat bath as infinite for many a thermodynamical one,
maybe this is all that has ever been going on with infinite-dimensional Hilbert spaces.
It is a useful artifice when a problem can be economically handled with a differential
equation. (Ask Schrödinger.) It is worth noting that when the algebraists set about
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making a rigorous statement of what a quantum field theory ought to be, they seem
only to be able to make progress by imposing a postulate that says, roughly, “In a QFT,
the states that are localized in space and bounded in energy form a finite-dimensional
space” [142].

And with this, we come to nearly the farthest edge of QBism. It is the beginning of
a place where quantum mechanics must step past itself. To make quantum dimension
meaningful in ontic terms, as a quality common to all physical objects, is to say it should
be finite—going up, going down from this object to the next, but always finite. Every
region of space where electromagnetism can propagate, finite. Every region of space
where there is a gravitational “field,” finite.

It means that despite its humble roots in nonrelativistic quantum mechanics, there is
something already cosmological about QBism. It tinkers with spacetime, saying that in
every “hole” (every bounded region) there is an interiority not given by the rest of the
universe and a common quality called dimension. It says that there is probably some-
thing right about the “holographic principles” arising from other reaches of physics [143].
Recognizing entropy as a personal concept (entropy is a function of probability), QBism
would suspect that it is not an entropy bound that arises from these principles, but
perhaps a dimension bound [8,128].

Invocations of a “holographic principle” in quantum gravity research traditionally
contain a statement along the lines of, “The information in a volume actually lives on
its boundary.” These locutions grow more opaque the more closely they are studied.
To talk of the “degrees of freedom existing on the boundary” is to trap oneself within
obsolete intuitions. Fundamentally, probabilities do not exist without a gambler, and
likewise, “information” does not exist without an agent concerned with communication
and computation. (The latter statement is the logarithm of the former.) Two orthogonal
quantum states for a system are not two distinct physical configurations, in the sense
of classical physics. Rather, they are two maximally distinct hypotheses for its possible
future behavior consequent upon an agent’s action. Alice’s quantum state for a system—
whether a benzene ring or a black hole—does not live on the system’s boundary, nor in
its bulk. It lives in Alice’s mesh of beliefs, along with all her other fears and aspirations.

A novel perspective requires new images and metaphors, which can in turn stimulate
novel technical developments. How do we distance ourselves from the language that
Hilbert-space dimension quantifies “the number of distinct states a system can be in”?
For this mode of thought is at the root of all the loose talk in trying to interpret those
holographic principles.

Suppose that Alice has access to a localized physical phenomenon that she wishes to
employ in a quantum communication scheme. Her goal is to detect, as well as possible,
whether her communiqués are being eavesdropped upon. A technical result from a few
years ago indicates that the maximal achievable sensitivity to eavesdropping is a simple
function of the Hilbert-space dimension [76]. (In fact, a SIC furnishes a set of states
that saturates this bound.) If we take the holographic principle to say that the maximal
Hilbert-space dimension of a phenomenon grows with the area that bounds it, then we
have a relation between optimal “sensitivity to the touch” and a boundary area. Indeed,
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Fig. 8. – Quantum cosmology from the inside. The agent in fig. 1 can consider measurements on
ever larger systems. There is nothing in quantum mechanics to bar the systems considered from
being larger and larger, to the point of eventually surrounding the agent. Pushed far enough,
this is quantum cosmology! Why all this insistence on thinking that “an agent must be outside
the system he measures” in the cosmological context should mean “outside the physical universe
itself”? It means outside the system of interest, and that is the large-scale universe. Nor is there
any issue of self-reference at hand. One would be hard pressed to find a cosmologist who wants
to include his beliefs about how the beats of his heart correlate with the sidereal cycles in his
quantum-state assignment for the external universe. The symbol |Ψuniverse〉 refers to the green
boxes alone.

sensitivity being tied to boundary area is an appealing image: For the boundary is the
only thing an agent can touch in the first place!

10. – Quantum cosmology from the inside

Theodore Roosevelt’s decision to build the Panama
Canal shows that free will moves mountains, which
implies, by general relativity, that even the curva-
ture of space is not determined. The stage is still
being built while the show goes on.

— John Conway and Simon Kochen [55]

Let us, however, step back from that farthest edge for a moment and discuss cosmology
as it is presently construed before taking a final leap!
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Sometimes it is claimed that a point of view about quantum theory like QBism’s would
make the enquiries of quantum cosmology impossible. For instance, David Deutsch once
wrote [144]:

The best physical reason for adopting the Everett interpretation lies in quan-
tum cosmology. There one tries to apply quantum theory to the universe as
a whole, considering the universe as a dynamical object starting with a big
bang, evolving to form galaxies and so on. Then when one tries, for example
by looking in a textbook, to ask what the symbols in the quantum theory
mean, how does one use the wave function of the universe and the other
mathematical objects that quantum theory employs to describe reality? One
reads there, “The meaning of these mathematical objects is as follows: first
consider an observer outside the quantum system under consideration [. . . ].”
And immediately one has to stop short. Postulating an outside observer is
all very well when we’re talking about a laboratory: we can imagine an ob-
server sitting outside the experimental apparatus looking at it, but when the
experimental apparatus—the object being described by quantum theory—is
the entire universe, it’s logically inconsistent to imagine an observer sitting
outside it. Therefore the standard interpretation fails. It fails completely
to describe quantum cosmology. Even if we knew how to write down the
theory of quantum cosmology, which is quite hard incidentally, we literally
wouldn’t know what the symbols meant under any interpretation other than
the Everett interpretation.

But this is nonsense. It is not hard to imagine how to measure the universe as a whole:
You simply live in it.

What are the typical observables and predictables of cosmology? The Hubble con-
stant, the cosmological constant, the degree of inhomogeneity of the cosmic microwave
background radiation, total baryon number in this or that era of the universe, perhaps
others. To do quantum cosmology is to ask how an application of quantum mechanics can
be made with regard to these quantities. For the QBist quantum theory would be used
as it always is: As a normative calculus of consistency for all probability assignments
concerned. Quantum theory advises an agent to make all his probability assignments
derivable from a single quantum state. Write it like this if you wish—a big, fat wave
function (it’s the whole universe after all):

(36) |Ψuniverse〉.

Why not? We are swimming in this ocean called the universe, and we have to do physics
from inside of it. But then all the rest of the universe is outside each of us. This wave
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function represents an agent’s catalogue of beliefs for the relevant things outside(35).
The only point here is that QBism has every bit as much right to do cosmology as

any other interpretation of quantum mechanics. The only difference is that QBism does
it from the inside.

More exciting is the possibility that once it does all that (its own version of what the
other interpretations might have done), its power may not be exhausted. For, noting
how the Big Bang itself is a moment of creation with some resemblance to every indi-
vidual quantum measurement, one starts to wonder whether even it “might be on the
inside.” Certainly QBism has creation going on all the time and everywhere; quantum
measurement is just about an agent hitching a ride and partaking in that ubiquitous
process.

At the end of a long article it doesn’t hurt to speculate. We let William James and
John Archibald Wheeler do the work for us. First more sweepingly [145],

Our acts, our turning-places, where we seem to ourselves to make ourselves
and grow, are the parts of the world to which we are closest, the parts of which
our knowledge is the most intimate and complete. Why should we not take
them at their facevalue? Why may they not be the actual turning-places and
growing-places which they seem to be, of the world—why not the workshop
of being, where we catch fact in the making, so that nowhere may the world
grow in any other kind of way than this?

Irrational! we are told. How can new being come in local spots and patches
which add themselves or stay away at random, independently of the rest?
There must be a reason for our acts, and where in the last resort can any
reason be looked for save in the material pressure or the logical compulsion
of the total nature of the world? There can be but one real agent of growth,
or seeming growth, anywhere, and that agent is the integral world itself. It
may grow all-over, if growth there be, but that single parts should grow per
se is irrational.

But if one talks of rationality—and of reasons for things, and insists that they
can’t just come in spots, what kind of a reason can there ultimately be why
anything should come at all?

Then, more modernly [39],

Each elementary quantum phenomenon is an elementary act of “fact cre-
ation.” That is incontestable. But is that the only mechanism needed to

(35) There is one issue with assigning a state vector |Ψuniverse〉. One doesn’t even write down
a pure quantum state for laser light when its phase is unknown; a mixed state is more appro-
priate [67]. It is hard to imagine why one would write down a pure state for the large-scale
universe. Who would have beliefs that strict of it? Be that as it may, a pure state is cer-
tainly allowed in principle. Even people with the most unreasonable of initial beliefs (from an
outsider’s perspective) want to gamble consistently.
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create all that is? Is what took place at the big bang the consequence of
billions upon billions of these elementary processes, these elementary “acts of
observer-participancy,” these quantum phenomena? Have we had the mech-
anism of creation before our eyes all this time without recognizing the truth?
That is the larger question implicit in your comment [“Is the big bang here?”].

When cosmology hails from the inside, the world stands a chance of being anything it
wants to be.

11. – The future

It is difficult to escape asking a challenging ques-
tion. Is the entirety of existence, rather than being
built on particles or fields of force or multidimen-
sional geometry, built upon billions upon billions
of elementary quantum phenomena, those elemen-
tary acts of “observer-participancy,” those most
ethereal of all the entities that have been forced
upon us by the progress of science?

— John Archibald Wheeler

Imagine our universe at a time when there were no agents about to use the laws of
probability theory as an aid in their gambles—i.e., before the cruel creativity of Dar-
winian selection had brought forth any such agents. Were there any quantum states in
the universe then? We QBists say No. It’s not a matter of the quantum state of the
universe waiting until a qualified PhD student came along before having its first collapse,
as John Bell joked, but that there simply weren’t any quantum states. Indeed, though
we know little about elsewhere under Heaven, here on Earth there weren’t any quantum
states until 1926 when Erwin Schrödinger wrote the first one down. The reason is simple:
The universe is made of something else than ψ-flavored gelatin. But then, what of the
Born rule? To this, in contrast, a QBist would say, “Aha, now there’s a sensible ques-
tion.” For the Born rule is among the set of relations an agent should strive to attain in
his larger mesh of probability assignments. That normative rule indicates the character
of the natural world, a character that is present even when there are no agents to make
use of it. As Craig Callender once paraphrased it, in QBism, it is the normative rule
which is nature’s whisper, not the specific terms within it.

Any of us can use quantum theory, but you can only use it for yourself. By way
of analogy, consider the single-celled organisms called Euglena. These are “flagellate
protists”—microbes with tails coming off of them. The tail arose from evolutionary
pressures, so that a Euglena can move from environments where there are depleted
nutrients to environments where there’s an abundance of nutrients. It’s a tool. Quantum
mechanics is like the Euglena’s tail. It’s something we evolved in the 1920s, and since it’s
been shown to be such a good tool, we keep using it and we pass it on to our children.
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The tail of a Euglena is a single-user tail. But we can look at the tail and ask, “What
might we learn about the environment by studying the tail’s structure?” We might notice
the tail is not completely circular, and that might tell us something about the viscosity
of the medium the Euglena travels through. We might look at the ratio of the length of it
to the width of it in various places, and that might tell us about features of the microbial
environment. Likewise, quantum mechanics is a single-user theory, but by dissecting it,
we can learn something about the world that all of us are immersed in.

In this way, QBism is carrying out what Einstein called the program of the real [146]:

A basic conceptual distinction, which is a necessary prerequisite of scien-
tific and pre-scientific thinking, is the distinction between “sense-impressions”
(and the recollection of such) on the one hand and mere ideas on the other.
There is no such thing as a conceptual definition of this distinction (aside
from circular definitions, i.e., of such as make a hidden use of the object to
be defined). Nor can it be maintained that at the base of this distinction there
is a type of evidence, such as underlies, for example, the distinction between
red and blue. Yet, one needs this distinction in order to be able to overcome
solipsism. Solution: we shall make use of this distinction unconcerned with
the reproach that, in doing so, we are guilty of the metaphysical “original
sin.” We regard the distinction as a category which we use in order that we
might the better find our way in the world of immediate sensations. The
“sense” and the justification of this distinction lies simply in this achieve-
ment. But this is only a first step. We represent the sense-impressions as
conditioned by an “objective” and by a “subjective” factor. For this concep-
tual distinction there also is no logical-philosophical justification. But if we
reject it, we cannot escape solipsism. It is also the presupposition of every
kind of physical thinking. Here too, the only justification lies in its useful-
ness. We are here concerned with “categories” or schemes of thought, the
selection of which is, in principle, entirely open to us and whose qualification
can only be judged by the degree to which its use contributes to making the
totality of the contents of consciousness “intelligible.” The above mentioned
“objective factor” is the totality of such concepts and conceptual relations
as are thought of as independent of experience, viz., of perceptions. So long
as we move within the thus programmatically fixed sphere of thought we are
thinking physically. Insofar as physical thinking justifies itself, in the more
than once indicated sense, by its ability to grasp experiences intellectually,
we regard it as “knowledge of the real.”

After what has been said, the “real” in physics is to be taken as a type of
program, to which we are, however, not forced to cling a priori.

There is so much still to do with the physics of QBism, and this article has just
started scratching the surface. Just one example: The technical problems with SICs
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are manifest. For instance, there must be a reason a proof of their existence has been
so recalcitrant. An optimist would say it is because they reach so deeply into the core
of what the quantum is telling us! In any case, we do suspect that when we get the
structure of SICs down pat, eq. (20), though already so essential to QBism’s distillation
of quantum theory’s message, will seem like child’s play in comparison to the vistas the
further knowledge will open up.

But the technical also complements and motivates the conceptual. So far we have
only given the faintest hint of how QBism should be mounted onto a larger empiri-
cism. It will be noticed that QBism has been quite generous in treating agents as
physical objects when needed. “I contemplate you as an agent when discussing your
experience, but I contemplate you as a physical system before me when discussing my
own”. Our solution to “Wigner’s friend” is the great example of this. Precisely be-
cause of this, however, QBism knows that its story cannot end as a story of gambling
agents—that is only where it starts. Agency, for sure, is not a derivable concept as
the reductionists and vicious abstractionists would have it, but QBism, like all of sci-
ence, should strive for a Copernican principle whenever possible. We have learned so
far from quantum theory that before an agent the world is really malleable and ready
through their intercourse to give birth. Why would it not be so for every two parts
of the world? And this newly defined valence, quantum dimension, might it not be a
measure of a system’s potential for creation when it comes into relationship with those
other parts?

In this article, we have focused on what QBism has to say about small quantum sys-
tems. This is, in part, an example of QBism showing its ancestry in quantum information
theory. But, as the science journalist James Burke once said, the revolutionary ideal ad-
mits no half-measures: The lessons of QBism must apply more broadly than qubits and
qutrits. What does taking the principles of QBism on board mean for how one thinks
about special relativity [7]? What about the practice of renormalization in statistical
physics and field theory [147]? Or classical probability, information theory and machine
learning [148, 149]? The study of SICs has already changed the shape of the bound-
ary between physics and pure mathematics [95,104,106]. How far must the changes go?
What, we might even ask, do Jamesian pragmatism, empiricism and radical metaphysical
pluralism mean for the nature of mathematical truth?

It is a large research program whose outline is just taking shape. It hints of a world, a
pluriverse, that consists of an all-pervading “pure experience,” as William James called
it(36). Expanding this notion, making it technical, and letting its insights tinker with
spacetime itself is the better part of future work. Quantum states, QBism declares, are
not the stuff of the world, but quantum measurement might be. Might a one-day future
Shakespeare write with honesty,

(36) Aside from James’s originals [114,117], further reading on this concept and related subjects
can be found in refs. [150-156].
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Our revels are now ended. These our actors,
As I foretold you, were all spirits and
Are melted into air, into thin air skip . . .
We are such stuff as

quantum measurement is made on.
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homogeneity, locality, and isotropy. The inherent discrete nature of the informa-
tional derivation leads to an extension of quantum field theory in terms of a quan-
tum cellular automata and quantum walks. A simple heuristic argument sets the
scale to the Planck one, and the currently observed regime where discreteness is
not visible is the so-called “relativistic regime” of small wave vectors, which holds
for all energies ever tested (and even much larger), where the usual free quantum
field theory is perfectly recovered. In the present quantum discrete theory Einstein
relativity principle can be restated without using space-time in terms of invariance
of the eigenvalue equation of the automaton/walk under change of representations.
Distortions of the Poincaré group emerge at the Planck scale, whereas special rel-
ativity is perfectly recovered in the relativistic regime. Discreteness, on the other
hand, has some plus compared to the continuum theory: 1) it contains it as a spe-
cial regime; 2) it leads to some additional features with GR flavor: the existence of
an upper bound for the particle mass (with physical interpretation as the Planck
mass), and a global De Sitter invariance; 3) it provides its own physical standards
for space, time, and mass within a purely mathematical adimensional context. The
lecture ends with future perspectives.

1. – Introduction

The logical clash between General Relativity (GR) and Quantum Field Theory (QFT)
is the main open problem in physics. The two theories represent our best theoretical
frameworks, and work astonishingly well within the physical domain for which they have
been designed. However, their logical clash requires us to admit that they cannot be
both correct. One could argue that there must exist a common theoretical substratum
from which both theories emerge as approximate effective theories in their pertaining
domains—though we know very little about GR in the domain of particle physics.

What we should keep and what we should reject of the two theories? Our experi-
ence has thought us that of QFT we should definitely keep the Quantum Theory (QT)
of abstract systems, namely the theory of the von Neumann book [10] stripped of its
“mechanical” part, i.e. the Schrödinger equation and the quantization rules. This leaves
us with the description of generic systems in terms of Hilbert spaces, unitary transfor-
mations, and observables. In other words, this is what nowadays is also called Quantum
Information, a research field indeed very interdisciplinary in physics.

There are two main reasons for keeping QT as valid. First, it has been never falsified
in any experiment in the whole physical domain—independently of the scale and the kind
of system. This has lead the vast majority of physicists to believe that everything must
behave according to QT. The second and more relevant reason is that QT, differently
from any other chapter of physics, is well axiomatized, with purely mathematical axioms
containing no physical primitive. So, in a sense, QT is as valid as a piece of pure
mathematics. This must be contrasted with the mechanical part of the theory, with
the bad axiomatic of the so-called “quantization rules”, which are extrapolated and
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generalized starting from the heuristic argument of the Ehrenfest theorem, which in
turn is based on the superseded theory of classical mechanics, and with the additional
problem of the ordering of canonical non-commuting observables(1). No wonder then
that the quantization procedure doesn’t work well for gravity!

To what we said above we should add that today we know that the QT of von
Neumann can be derived from six information-theoretical principles [3, 1], whose episte-
mological value is not easy to give up(2). On the contrary, it is the mechanical part of
QFT that rises the main inconsistencies, e.g. the Malament theorem [13], which makes
any reasonable notion of particle untenable [14].

The logical conclusion is that what we need is a field theory that is quantum ab initio.
But how to avoid quantization rules? The idea is simply to consider a countable set of
quantum systems in interaction, and to make the easiest assumptions on the topology
of their interactions. These are: locality, homogeneity, and isotropy. Notice that we are
not using any mechanics, nor relativity, and not even space and time. And what we get?
We get: Weyl, Dirac [4], and Maxwell [7]. Namely: we get free quantum field theory!

The new general methodology suggested to the above experience is then the follow-
ing: 1) no physical primitives in the axioms; 2) physics only as interpretation of the
mathematics (based on experience, previous theories, and heuristics). In this way the
logical coherence of the theory is mathematically guaranteed. In this paper we will see
how the proposed methodology can be actually carried out, and how the informational
paradigm has the potential of solving the conflict between QFT and GR in the case of
special relativity, with the latter emergent merely from quantum systems in interaction:
Fermionic quantum bits at the very tiny Planck scale. In synthesis the program is an
algorithmization of theoretical physics, aimed to derive the whole physics from quantum
algorithms with finite complexity, upon connecting the algebraic properties of the algo-
rithm with the dynamical features of the physical theory, preparing a logically coherent
framework for a theory of quantum gravity [8, 9].

Section 2 is devoted to the derivation from principles of the quantum-walk theory.
More precisely, from the requirements of homogeneity and locality of the interactions of
countably many quantum systems one gets a theory of quantum cellular automata on the
Cayley graph of a group G. Then, upon restricting to the simple case of evolution linear
in the discrete fields, the quantum automaton becomes what is called in the literature
quantum walk. We further restrict to the case with physical interpretation in an Euclidean
space, resorting to considering only Abelian G.

In sect. 3 the quantum walks with minimal field dimension that follow from the
principles of sect. 2 are reported. These represent the Planck-scale version of the Weyl,
Dirac, and Maxwell quantum field dynamics, which are recovered in the relativistic regime
of small wave vectors. Indeed, the quantum-walk theory, being purely mathematical—
and so adimensional—nevertheless contains its own physical LTM standards written in

(1) The problem of ordering is avoided miraculously thanks to the fortuitous non-occurrence in
nature of Hamiltonians with products of conjugated observables.
(2) For short reviews, see also refs. [11,12].
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the intrinsic discreteness and non-linearities of the theory. A simple heuristic argument
based on the notion of mini black-hole (from a matching of GR-QFT) leads to the Planck
scale. It follows that the relativistic regime contains the whole physics observed up to
now, including the most energetic events from cosmic rays.

In addition to the exact dynamics in terms of quantum walks, a simple analytical
method is also available in terms of a dispersive Schrödinger equation, suitable to the
Planck-scale physics for narrow-band wave-packets. As a result of the unitarity constraint
for the evolution, the particle mass turns out to be upper bounded (by the Planck mass),
and has domain in a circle, corresponding to having also the proper time (which is
conjugated to the mass) as discrete. Effects due to discreteness that are in principle
visible are also analyzed, in particular a dispersive behavior of the vacuum, that can be
detected by deep-space ultra-high energy cosmic rays.

Section 4 is devoted to how special relativity is recovered from the quantum-walk
discrete theory, without using space-time and kinematics. It is shown that the trans-
formation group is a non-linear version of the Poincaré group, which recovers the usual
linear group in the relativistic limit of small wave vectors. For non-vanishing masses
generally also the mass gets involved in the transformations, and the De Sitter group
SO(1, 4) is obtained.

This lecture note end with a brief section on the future perspectives of the theory.
Most of the results reported in the present review have been originally published in

refs. [4-7, 15-20] coauthored with members of the QUit group in Pavia.

2. – Derivation from principles of the quantum-walk theory

The derivation from principles of quantum field theory starts from considering the
unitary evolution A of a countable set G of quantum systems, with the requirements of
homogeneity, locality, and isotropy of their mutual interactions. These will be precisely
defined and analyzed in the following dedicated subsections. All the three requirements
are dictated from the general principle of minimizing the algorithmic complexity of the
physical law. The physical law itself is described by a finite quantum algorithm, and
homogeneity and isotropy assess the universality of the law.

The quantum system labeled by g ∈ G can be either associated to an Hilbert space
Kg, or to a set of generators of a C∗-algebra(3)

(1) ψg ≡ {ψν
g}, g ∈ G, ν ∈ [sg] := {1, 2, . . . , sg}, sg <∞.

The evolution occurs in discrete identical steps(4)

(2) A ψg = UψgU
†, U unitary,

(3) The two associations can be connected through the GNS construction.
(4) More generally the map A is an automorphism of the algebra.
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describing the interactions among systems. When the unitary evolution is also local,
namely A ψg is spanned by a finite subset Sg ⊂ G, then A is called Quantum Cellular
Automaton. We restrict to evolution linear in the generators, namely

(3) A ψg = UψgU
† =

∑
g′

Ag,g′ψg′ ,

where Ag,g′ is an sg×sg′ complex matrix called transition matrix. Here in all respects the
quantum cellular automaton is described by a unitary evolution on a (generally infinite)
Hilbert space H =

⊕
g∈G Hg, with Hg = Span{ψν

g}ν∈[sg]. In this case the quantum
cellular automaton is called quantum walk. Here the system simply corresponds to a
finite-dimensional block component of the Hilbert space, regardless the bosonic/fermionic
nature of the field. In the derivation of free quantum field theory from principles, the
quantum walk corresponds to the evolution on the single-particle sector of the Fock space,
whereas for the interacting theory a generally non-linear quantum cellular automaton is
needed. Simple generalization to Fock-space sectors with fixed number of particles are
also possible.

2.1. The quantum system: qubit, fermion or boson? – At the level of quantum walks,
corresponding to the Fock space description of cellular quantum automata (leading to
free QFT in the non-relativistic limit), it does not make any difference which kind of
quantum system is evolving. Indeed one can symmetrize or anti-symmetrize products
of wave functions, as it is done in usual quantum mechanics, or else just take products
with no symmetrization. Things become different when the vacuum is considered, and
particles are created and annihilated by operating with algebra generators on the vacuum
state, as in the interacting theory. Therefore, as far as we are concerned with free
QFT, which kind of quantum system should be used is a problem that can be safely
postponed.

However, there are still motivations for adopting a kind of quantum system instead of
another. For example, a reason for discarding qubits as algebra generators is that there is
no easy way of expressing the operator U making the evolution in eq. (3) linear, whereas,
when ψg is bosonic or fermionic this is always possible choosing U exponential of bilinear
forms in the fields. On the other hand, a reason to chose fermions instead of bosons is the
requirement that the amount of information in a finite number of cells be finite, namely
one has finite information density in space(5). The relation between Fermionic modes
and finite-dimensional quantum systems, say qubits has been studied in the literature,
and the two theories have been proven to be computationally equivalent [22]. However,
the quantum theory of qubits and the quantum theory of fermions differ in the notion
of what are local transformations [23, 24], with local fermionic operations mapped into
non-local qubit transformations and vice versa.

(5) Richard Feynman is reported to like the idea of finite information density, because he felt
that: “There might be something wrong with the old concept of continuous functions. How could
there possibly be an infinite amount of information in any finite volume?” [21].
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Fig. 1. – The linear eq. (3) endows the set G with a directed graph structure. We build a directed
graph with an arrow from g to g′ wherever the two are connected by a non-null matrix Agg′ in
eq. (3).

In conclusion, the derivation from informational principles of the fundamental particle
statistics still remains an open problem. One could promote the finite information density
to the level of a principle, or motivate the Fermionic statistics from other principles
of the same nature of those in ref. [3] (see e.g. refs. [23, 24]), or derive the Fermionic
statistics from properties of the vacuum (e.g. having a localized non-entangled vacuum
in order to avoid the problem of particle localization), and then recover the bosonic
statistics as a very good approximation, with the Bosonic mode corresponding to a special
entangled state of pairs of Fermionic modes [7], as it will be reviewed in subsect. 3.9. This
hierarchical construction will also guarantee the validity of the spin-statistic connection
in QFT.

2.2. Quantum walks on Cayley graphs(6). – The linear eq. (3) endows the set G with a
directed graph structure Γ(G, E), with vertex set G and edge set E = {(g, g′)|Ag,g′ �= 0}
directed from g to g′ (see fig. 1). In the following we will denote by Sg := {Ag,g′ �= 0} the
set of non-null transition matrices with first index g, and by Ng := {g′ ∈ G|Ag,g′ �= 0}
the neighborhood of g.

2.2.1. The homogeneity principle. The assumption of homogeneity is the requirement
that every two vertices are indistinguishable, namely for every g, g′ ∈ G there exists a
permutation π of G such that π(g) = g′ which commute with any discrimination proce-
dure consisting of a preparation of local modes followed by a general joint measurement.
In ref. [19] it is shown that this is equivalent to the following set of conditions ∀g ∈ G

one has

H1 sg = s;

H2 there exists a bijection Ng ↔ N with a fixed set N ;

H3 Sg contains the same s× s transition matrices, namely Sg = S := {Ah1}|N |
i=1;

H4 Ag,g′ = Ahi
∈ S ⇒ Ag′,g = Ahj

∈ S;

(6) This subsection is based on results of refs. [4] and [18].
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Condition H2 states that Γ(G, E) is a regular graph—i.e. each vertex has the same
degree. Condition H3 makes Γ(G, E) a colored directed graph, with the arrow directed
from g to g′ for Ag,g′ = Ah ∈ S and the color associated to h(7). Condition H3 introduces
the following formal action of symbols hi ∈ S on the elements g ∈ G as

(4) Agg′ = Ahi
⇒ ghi = g′.

Clearly such action is closed for composition. From condition H4 one has that

(5) Ag′g = Ahj
⇒ g′hj = g,

and composing the two actions we see that ghihj = g, and we can write the label hj

as hj =: h−1
i . We thus can build the free group F of words made with the alphabet S.

Each word corresponds to a path over Γ(G, E), and the words w ∈ F such that gw = g

correspond to closed paths (also called loops). Notice that by construction, one has
Aπ(g)π(f) = Agf = Ahi

, which implies that π(g)hi = π(f) = π(ghi), from which one can
prove that f ′w = π(f)w = π(fw) = π(f) = f ′ (see [19]). Thus we have the following:

H5 If a path w ∈ F is closed starting from f ∈ G, then it is closed also starting from
any other g ∈ G.

The subset R ⊂ F of words w such that gw = g is obviously a group. Moreover R is a
normal subgroup of G, since gwrw−1 = (gw)rw−1 = (gw)w−1 = g, namely wrw−1 ∈ R

∀w ∈ F,∀r ∈ R. Obviously the equivalence classes are just elements of G, which means
that G = F/R is a group. Pick up any element of G as the identity e ∈ G. It is clear
that the elements of the quotient group F/R are in one-to-one correspondence with the
elements of G, since for every g ∈ G there is only one class in F/R whose elements lead
from e to g (write g = ew for every w ∈ F , w representing a path leading from e to
g). The graph Γ(G, E) is thus what is called in the literature the Cayley graph of the
group G (see the definition in the following). The Cayley graph is in correspondence
with a presentation of the group G. This is usually given by arbitrarily dividing the set
as S = S+ ∪ S− with S− := S−1

+ (8), and by considering a set W of generators for the
free group of loops R. The group G is then given with the presentation G = 〈S+|W 〉,
in terms of the set of its generators S+ (which along with their inverses S− generate the
group by composition), and in terms of the set of its relators W containing group words
that are equal to the identity, with the goal of using these words in W to establish if any

(7) If two transition matrices Ah1 = Ah2 are equal, we conventionally associate them with two
different labels h1 	= h2 in such a way that

P
f∈Nπ(g)

Aπ(g)fψπ−1(f) =
P

f∈Ng
Agfψf . If such

choice is not unique, we will pick an arbitrary one, since the homogeneity requirement implies
that there exists a choice of labeling for which all the construction that will follow is consistent.
(8) The above arbitrariness is inherent the very notion of group presentation and corresponding
Cayley graph, and will be exploited in the following, in particular in the definition of isotropy.
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two words of elements of G correspond to te same group element. The relators can also
be regarded as a set of generators for R.

The definition of Cayley graph is then the following.

Cayley graph of G.. Given a group G and a set S+ of generators of the group, the Cayley
graph Γ(G, S+) is defined as the colored directed graph with vertex set G, edge set
{(g, gh); g ∈ G, h ∈ S+} with the edge directed from g to gh with color assigned by h

(when h = h−1 we conventionally draw an undirected edge).
Notice that a Cayley graph in addition to being a regular graph, it is also vertex-

transitive—i.e. all sites are equivalent, in the sense that the graph automorphism group
acts transitively upon its vertices. The Cayley graph is also called arc-transitive when its
group of automorphisms acts transitively not only on its vertices but also on its directed
edges.

2.2.2. The locality principle. Locality corresponds to require that the evolution is com-
pletely determined by a rule involving a finite number of systems. This means having
each system interacting with a finite number of systems (i.e.|N | <∞ in H2), and having
the set of loops generating F as finite and containing only finite loops. This corresponds
to the fact that the group G is finitely presented, namely both S+ and W are finite in
G = 〈S+|W 〉.

The quantum walk then corresponds to a unitary operator over the Hilbert space
H = �2(G)⊗ Cs of the form

(6) A =
∑
h∈S

Th ⊗Ah,

where T is the right-regular representation of G on �2(G), Tg|g′〉 = |g′g−1〉.

2.2.3. The isotropy principle. The requirement of isotropy corresponds to the statement
that all directions on Γ(G, S+) are equivalent. Technically the principle affirms that there
exists a choice of S+, a group L of graph automorphisms on Γ(G, S+) that is transitive
over S+ and with faithful unitary (generally projective) representation U over Cs, such
that the following covariance condition holds:

(7) A =
∑
h∈S

Th ⊗Ah =
∑
h∈S

Tl(h) ⊗ UlAhU†
l , ∀ l ∈ L.

As a consequence of the linear independence of the generators Th of the right regular
representation of G one has that the above condition (7) implies

(8) Al(h±1) = UlAh±1U†
l .

Equation (8) implies that the principle of isotropy requires the Cayley graph Γ(G, S+)
to be arc-transitive (see subsect. 2.2.1).
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We remind that the split S = S+ ∪ S− is non-unique (and in addition one may
add to S the identity element e corresponding to zero-length loops on each element
corresponding to self-interactions). Therefore, generally the quantum walk on the Cayley
graph Γ(G, S+) satisfies isotropy only for some choices of the set S+. It happens that
for the known cases satisfying all principles along with the restriction to quasi-isometric
embeddability of G in Euclidean space (see subsect. 2.3) such choice is unique.

2.2.4. The unitarity principle. The requirement that the evolution be unitary translates
into the following set of equations bilinear in the transition matrices as unknown

(9)
∑
h∈S

A†
hAh =

∑
h∈S

AhA†
h = Is,

∑
h,h′∈S

h−1h′=h′′

A†
hAh′ =

∑
h,h′∈S

h′h−1=h′′

Ah′A†
h = 0.

Notice that the structure of equations already satisfy the homogeneity and locality prin-
ciples. The solution of the systems of equations (9) is generally a difficult problem.

2.3. Restriction to Euclidean emergent space. – How a discrete quantum algorithm
on a graph can give rise to a continuum quantum field theory on space-time? We re-
mind that the flow of the quantum state occurs on a Cayley graph and the evolution
occurs in discrete steps. Therefore the Cayley graph must play the role of a discretized
space, whereas the steps play the role of a discretized time, namely the quantum automa-
ton/walk has an inherent Cartesian-product structure of space-time, corresponding to a
particular chosen observer. We will then need a procedure for recovering the emergent
space-time and a re-interpretation of the notion of inertial frame and of boost in the
discrete, in order to recover Poincaré covariance and the Minkowski structure. The route
for such procedure is opened by geometric group theory, a field in pure mathematics ini-
tiated by Mikhail Gromov at the beginning of the nineteen(9). The founding idea is the
notion of quasi-isometric embedding, which allows us to compare spaces with very differ-
ent metrics, as for the cases of continuum and discrete. Clearly an isometric embedding
of a space with a discrete metric (as for the word metric of the Cayley graph) within a

(9) The absence of the appropriate mathematics was the reason of the lack of consideration of a
discrete structure of space-time in earlier times. Einstein himself was considering this possibility
and lamented such lack of mathematics. Here a passage reported by John Stachel [25]:
“But you have correctly grasped the drawback that the continuum brings. If the molecular view
of matter is the correct (appropriate) one, i.e., if a part of the universe is to be represented by
a finite number of moving points, then the continuum of the present theory contains too great
a manifold of possibilities. I also believe that this too great is responsible for the fact that our
present means of description miscarry with the quantum theory. The problem seems to me how
one can formulate statements about a discontinuum without calling upon a continuum (space-
time) as an aid; the latter should be banned from the theory as a supplementary construction not
justified by the essence of the problem, which corresponds to nothing “real”. But we still lack the
mathematical structure unfortunately. How much have I already plagued myself in this way!”
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space with a continuum metric (as for a Riemaniann manifold) is not possible. However,
what Gromov realized to be geometrically relevant is the feature that the discrepancy
between the two different metrics is uniformly bounded over the spaces. More precisely,
one introduces the following notion of quasi-isometry.

Quasi-isometry. Given two metric spaces (M1, d1) and (M2, d2), with metric d1 and d2,
respectively, a map f : (M1, d1) → (M2, d2) is a quasi-isometry if there exist constants
A ≥ 1, B, C ≥ 0, such that ∀g1, g2 ∈M1 one has

(10)
1
A

d1(g1, g2)−B ≤ d2(f(g1), f(g2)) ≤ Ad1(g1, g2) + B,

and ∀m ∈M2 there exists g ∈M1 such that

(11) d2(f(g),m) ≤ C.

The condition in eq. (11) is also called quasi-onto.
It is easy to see that quasi-isometry is an equivalence relation. It can also be proved

that the quasi-isometric class is an invariant of the group, i.e. it does not depend on
the presentation, i.e. on the Cayley graph. Moreover, it is particularly interesting for
us that for finitely generated groups, the quasi-isometry class always contains a smooth
Riemaniann manifold [26]. Therefore, for a given Cayley graph there always exists a
Riemaniann manifold in which it can be quasi-isometrically embedded, which is unique
modulo quasi-isometries, and which depends only on the group G of the Cayley graph.
Two examples are graphically represented in fig. 2.

2.3.1. Geometric group theory. With the idea of quasi-isometric embedding, geometric
group theory connects geometric properties of the embedding Riemaniann spaces with
algebraic properties of the groups, opening the route to a geometrization of group theory,
including the generally hard problem of establishing properties of a group that is given
by presentation only(10).

The possible groups G that are selected from our principles are infinitely many, and we
need to restrict this set to start the search for solutions of the unitarity conditions (2.3)
under the isotropy constraint. Since we are interested in a theory involving infinitely
many systems (we take the world as infinite!), we will consider infinite groups only. This
means that when we consider an Abelian group, we always take it as free, namely its only
relators are those establishing the Abelianity of the group. This is the case of G = Zd,
with d ≥ 1.

A paradigmatic result [26] of geometric group theory is that an infinite group G is
quasi-isometric to an Euclidean space Rd if and only if G is virtually-Abelian, namely
it has an Abelian subgroup G′ ⊂ G isomorphic to Zd of finite index (namely with

(10) One should consider that the Dehn’s problem of establishing if two words of generators
correspond to the same group element is generally undecidable. The same is true for the problem
of establishing if the presentation corresponds to the trivial group!
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Fig. 2. – From ref. [19] (colors online). Given a group G and a set S+ of generators, the Cayley
graph Γ(G, S+) is defined as the colored directed graph having set of nodes G, set of edges
{(g, gh); g ∈ G, h ∈ S+}, and a color assigned to each generator h ∈ S+. Left figure: the
Cayley graph of the Abelian group Z2 with presentation Z2 = 〈a, b|aba−1b−1〉, where a and
b are two commuting generators. Right figure: the Cayley graph of the non-Abelian group
G = 〈a, b|a5, b5, (ab)2〉. The Abelian-group graph is embedded into the Euclidean space R2, the
non-Abelian G into the Hyperbolic space H2 with negative curvature.

a finite number of cosets). Another result is that a group has polinomial growth iff it is
virtually-nihilpotent, and if it has exponential growth then it is not virtually-nihilpotent,
and in particular non-Abelian, and is quasi-isometrically embeddable in a manifold with
negative curvature.

In the following we will restrict to groups that are quasi-isometrically embeddable
in Euclidean spaces. As we will see soon, such restriction will indeed lead us to free
quantum field theory in Euclidean space. It would be very interesting to address also the
case of curved spaces, to get hints about quantum field theory in curved space. Unfor-
tunately, the case of negative curvature corresponds to groups, as the Fuchsian group in
fig. 2, whose unitary representations (that we need here) are still unknown [27-29]. The
virtually-nihilpotent case also would be interesting, since it corresponds to a Riemani-
ann manifold with variable curvature [29], however, a Cayley graph that can satisfy the
isotropy constraint could not be found yet [30].

I close this section with some comments about the remarkable closeness in spirit
between the present program and the geometric group theory program. The main general
goal of geometric group theory is the geometrization of group theory, which is achieved
studying finitely-generated groups G as symmetry groups of metric spaces X, with the
aim of establish connections between the algebraic structure of G with the geometric
properties of X [31]. In a specular way the present program is an algorithmization of
theoretical physics, with the general goal of deriving QFT (and ultimately the whole
physics) from quantum algorithms with finite complexity, upon connecting the algebraic
properties of the algorithm with the dynamical features of the physical theory. This will
allow a coherent unified axiomatization of physics without physical primitives, preparing
a logically coherent framework for a theory of quantum gravity.
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3. – Quantum walks on Abelian groups and free QFT as their relativistic
regime

As seen in subsect. 2.3, from the huge and yet mathematically unexplored set of
possibilities for the group G of the quantum walk, we restrict to the case of G virtually-
Abelian, which corresponds to G quasi-isometrically embeddable in a Euclidean space.
As we will see in the present section, the free QFT that will be derived from such choice
exactly corresponds to the known QFT in Euclidean space.

Since we are interested in the physics occurring in R3, we need to classify all possible
Cayley graphs of G having Z3 as subgroup with finite index, and then select all graphs
that allow the quantum walk to satisfy the conditions of isotropy and unitarity. We
can proceed by considering increasingly large dimension s > 0 (defined in H1), which
ultimately corresponds to the dimension of the field—e.g. a scalar field for s = 1, a spinor
field for s = 2, etc.

3.1. Induced representation, and reduction from virtually-Abelian to Abelian quantum
walks. – An easy way to classify all quantum walks on Cayley graphs with virtually-
Abelian groups is provided by a theorem in ref. [20], which establishes the following:

A quantum walk on the Cayley graph of a virtually-Abelian group G with Abelian
subgroup H ⊂ G of finite index iH and dimension s is also a quantum walk on the
Cayley graph of H with dimension s′ = siH .

This is just the induced-representation theorem [32-34] in group theory, here applied
to quantum walks. The multiple dimension s′ = sih corresponds to tiling the Cayley
graph of G with a tile made with a particular choice of the cosets of H. The new set of
transition matrices of the new walk for H can be straightforwardly evaluated in terms of
those for G (generally self-interactions within the same tile can occur, corresponding to
zero-length loops in the Cayley graph). In fig. 3 two examples of such tiling procedure
are given.

The induced-representation method guarantees that scanning all possible virtually-
Abelian quantum walks for increasing s is equivalent to scan all possible Abelian quantum
walks, since e.g. the set of Abelian walks of dimension s = nm will contain all virtually-
Abelian walks with s = n and index m, etc. We therefore resort to consider only Abelian
groups.

3.2. Isotropy and orthogonal embedding in R3. – We will also assume that the repre-
sentation of the isotropy group L in (7) induced by the embedding in R3 is orthogonal,
which implies that the graph-neighborhood is embedded in a sphere S2 ⊂ R3 (we want
homogeneity and isotropy to hold locally also in the embedding space R3). We are then
left with the classification of the Cayley graphs of Z3 satisfying the isotropic embedding
in R3: these are just the Bravais lattices.

3.3. Quantum walks with Abelian G. – When G is Abelian we can greatly simplify the
study of the quantum walk by using the wave vector representation, based on the fact
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Fig. 3. – From ref. [20] (colors online). Two examples of reduction of a quantum walk on the
Cayley graph of a virtually-Abelian group G to that of a quantum walk on the Cayley graph
of an Abelian subgroup H ⊂ G with finite index iH . The graphs on the left of the figures
are the Cayley graph of G (it is easy to see that both groups are non-Abelian). The graphs
on the right represents a choice of the Cayley graph of the subgroup H = Z2, with the tiling
corresponding to the induced representation (the elements of H are the black bullets). Top
figures: G = 〈a, b | a4, b4, (ab)2〉. The index is iH = 4. The subgroup generators are hx = a−1b
and hy = ba−1. The tiling is defined by the coset representatives e, a, a2, a3. Bottom figures:
G = 〈a, b | a2b−2〉. The index is iH = 2. The subgroup generators are h1 = ba and h2 = a2 (or
h1 = ba and h3 = ab−1), with the tiling the cosets representatives e, a.

that the irreducible representations of G are one-dimensional. The interesting case is for
d = 3, but what follows holds for any dimension d. We will label the group elements
by vectors g ∈ Zd, and use the additive notation for the group composition, whereas
the right-regular representation of Zd on �2(Zd) will be written as Th|g〉 = |g − h〉.
This can be diagonalized by Fourier transform, corresponding to write the operator A in
block-form in terms of the following direct integral:

(12) A =
∫

B

d3k |k〉〈k| ⊗Ak, Ak :=
∑
h∈S

e−ik·hAh, |k〉 :=
1√|B|

∑
g∈G

e−ik·g|g〉,

where B is the Brillouin zone, and |k〉 is a plane wave(11). Notice that the quantum
walk is unitary if and only if Ak is unitary for every k ∈ B.

(11) The Brillouin zone is a compact subset of R3 corresponding to the smallest region containing
only inequivalent wave vectors k. (See ref. [4] for the analytical expression.)
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3.4. Dispersion relation. – The spectrum {e−iω
(i)
k } of the operator Ak is usually given

in terms of the so-called dispersion relations ω
(i)
k versus k. As in usual wave-mechanics,

the speed of the wave-front of a plane wave is given by the phase velocity ω
(i)
k /|k|, whereas

the speed of a narrow-band packet peaked around the value wave vector k0 is given by
the group velocity ∇kω

(i)
k evaluated at k0.

3.5. The relativistic regime. – As we will see in subsect. 3.8.3 an heuristic argument
will lead us to set the scale of discreteness of the quantum walk (and similarly the
quantum cellular automaton for the interacting theory) at the Planck scale. The domain
|k| � 1 then corresponds to wave vectors much smaller than the Planck vector, which is
much higher than any ever observed wave vector(12). Such regime includes that of usual
particle physics, and is called relativistic regime. To be precise, the regime is defined by
a set of wave-packets that are peacked around k = 0 with r.m.s. value much smaller than
the Planck wave vector, which we will refer shortly to as narrow-band wave-packets.

I want to emphasize here that we have never used any mechanical concept in our
derivation of the quantum walk, including the notion of Hamiltonian: the dynamics is
given in term of a single unitary operator A. A notion of effective Hamiltonian could be
considered as the logarithm of A, which would correspond to an Hamiltonian providing
the same unitary evolution, and which would even interpolate it between contiguous
steps. For this reason we will call such an operator interpolating Hamiltonian. In the
Fourier direct-integral representation of the operator, the interpolating Hamiltonian will
be given by the identity e−iH(k) := Ak. It is easy to see that the relativistic limit
H0(k) of H(k), corresponding to consider narrow-band wave-packets centered at k = 0,
is achieved by expanding it at the first order in |k|, i.e. H(k) = H0(k) + O(|k|2). The
interpolated continuum-time evolution in the relativistic regime will be then given by the
first-order differential equation in the Schrödinger form

(13) i∂tψ(k, t) = H0(k)ψ(k, t).

Rigorous quantitative approaches to judge the closeness between free QFT and the rel-
ativistic regime of the quantum walk have been provided in ref. [6] in terms of channel
discrimination probability, and in ref. [4] in terms of fidelity between the two evolutions.
Numerical values will be provided at the end of subsect. 3.8.

3.6. Schrödinger equation for the ultra-relativistic regime. – In the ultra-relativistic
regime of wave vectors comparable to the Planck vector, an obvious option is that of
evaluating the evolution by a numerical evaluation of the exact quantum walk(13). How-
ever, even in such regime we still have an analytical method available for evaluating the

(12) The highest momentum observed is that of a ultra-high-energy cosmic ray, which is k ∼
10−8.
(13) A fast numerical technique to evaluate the quantum walk evolution numerically exploits the
Fourier transform. For an application to the Dirac quantum walk see ref. [35].
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Fig. 4. – From ref. [6] (colors online). Test of the quality of the approximation of the Schrödinger
equation (14) at for different time t of the Dirac quantum walk with mass m = 0.6 in one space
dimension of ref. [6]. Comparison of the probability distribution (in red) and the solution of the
Schrödinger equation (in blue). Right figures: the state is a superposition of Hermite functions
multiplied by the Gaussian peaked around momentum k0 = 3π/10, for drift and diffusion
coefficients v = 0.73 and D = 0.31, respectively. The mean value moves at the group velocity
given by the drift coefficient v. The approximation remains accurate even for position spread
σ̂ = 20 Planck lengths. Left figures: The same four times comparison for the quantum walk
with m = 0.4, and an initial Gaussian state peaked around the momentum k0 = 0.1. In this
case the drift velocity and the diffusion coefficient are respectively v = 0.22 and D = 2.30.
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evolution of some common physical states. Indeed, for narrow-band wave-packets cen-
tered around any value k0 one can write a dispersive Schrödinger equation by expanding
the interpolating Hamiltonian H(k) around k0 at the second order, thus obtaining

(14) i∂tψ̃(x, t) = ± [
v · ∇+ 1

2D · ∇∇
]
ψ̃(x, t),

where ψ̃(x, t) is the Fourier transform of ψ̃(k, t) := e−ik0·x+iω0tψ(k, t), v = (∇kω)(k0) is
the drift vector, and D = (∇k∇kω)(k0) is the diffusion tensor. This equation approxi-
mates very well the evolution, even in the Planck regime and for large numbers of steps,
depending on the bandwith (see an example in fig. 4 from ref. [6]).

3.7. Recovering the Weyl equation(14). – In subsect. 3.2 we were left with the classi-
fication of the Cayley graphs of Z3 satisfying the isotropic embedding in R3, which are
just the Bravais lattices. For dimension s = 1 it is easy to show that the only solution
of the unitarity constraints gives the trivial quantum walk A = I(15). We then consider
s = 2. Now, the only inequivalent isotropic Cayley graphs are the primitive cubic (PC)
lattice, the body centered cubic (BCC), and the rhombohedral. However only in the BCC
case, whose presentation of Z3 involves four vectors S+ = {h1,h2,h3,h4} with relator
h1 + h2 + h3 + h4 = 0, one finds solutions satisfying all the assumptions of sect. 2. The
isotropy group is given by the group L of binary rotations around the coordinate axes,
with the unitary projective representation on C2 given by {I, iσx, iσy, iσz}. The group
L is transitive on the four BCC generators of S+. There are only four solutions (modulo
unitary conjugation) that can be divided in two pairs A± and B±. The two pairs of
solutions are connected by transposition in the canonical basis, i.e. A±

k = (B±
k )T . The

solutions B±
k can be also obtained from the solution A±

k by shifting the wave vector k
inside the Brillouin zone(16) to the vectors [4]

(15) k1 =
π

2
(1, 1, 1), k2 = −π

2
(1, 1, 1), k3 = −π

2
(1, 0, 0).

The A±
k solutions in the wave vector representation are

(16) A±
k = Iu±

k − iσ± · ñ±
k

with

(17) ñ±
k :=

⎛
⎝sxcycz ∓ cxsysz

cxsycz ± sxcysz

cxcysz ∓ sxsycz

⎞
⎠ , u±

k := cxcycz ± sxsysz,

(14) This section is a synthesis of the results of ref. [4]. It should be noticed that there isotropy
is not even assumed in solving eqs. (9). A simplified derivation making use of isotropy and full
detailed analysis of all possible Cayley graphs will be available soon [30].
(15) Also more generally one has A = Th.

(16) The first Brillouin zone B for the BCC lattice is defined in Cartesian coordinates as −√
3π ≤

ki ± kj ≤ √
3π, i 	= j ∈ {x, y, z}.
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where ci := cos(ki/
√

3), si := sin(ki/
√

3), and σ+ = σ, σ− = σT . The spectrum of A±
k

is {e−iω±
k }, with dispersion relation given by

(18) ω±
k = arccos(cxcycz ∓ sxsysz).

It is easy to get the relativistic limit of the quantum walk using the procedure in sub-
sect. 3.5. This simply corresponds to substituting ci = 1 and si = ki/

√
3 in eq. (17),

thus obtaining

(19) i∂tψ(k, t) =
1√
3
σ± · kψ(k, t).

Equation (19) are the two Weyl equations for the left and the right chiralities. For G = Zd

with d = 1, 2 one obtains the Weyl equations in dimension d = 1, 2, respectively [4]. All
the three quantum walks have the same form in eq. (16), namely

(20) Ak = ukI − iσ · ñk,

with dispersion relation

(21) ωk = arccos uk,

and with the analytic expression of uk and nk depending on d and on the chirality
(see ref. [4]). Since the quantum walks in eq. (17) or (20) have the Weyl equations as
relativistic limit, we will also call them Weyl quantum walks.

The interpolating Hamiltonian is H(k) = σ · nk, with nk := (ωk/ sin ωk)ñk playing
the role of an helicity vector, and with relativistic-limit being given by H0(k) = 1√

d
σ ·k,

which coincides with the usual Weyl Hamiltonian in d dimensions upon interpreting the
wave vector k as the particle momentum.

We conclude the present subsection by emphasizing that one additional advantages
of the discrete framework is that the Feynman path-integral is well defined, and it is also
exactly calculated analytically in some cases. Indeed, in refs. [36] and [37] the discrete
Feynman propagator for the Weyl quantum walk has been analytically evaluated with
a closed form for dimensions d = 1 and d = 2, and the case of dimension d = 3 will be
published soon [38].

3.8. Recovering the Dirac equation. – From subsect. 3.7 we know that all quantum
walks derivable from our principles for s = 2 give the Weyl equation in the relativistic
limit. We now need to increase the dimension s of the field beyond s = 2. However, the
problem of solving the unitarity equations (9) becomes increasingly difficult, since the
unknown are matrices of increasingly larger dimension s ≥ 3 (we remind that the equa-
tions are bilinear non-homogeneus in the unknown transition matrices, and a canonical
procedure for the solution is unknown). What we can do for the moment is to provide
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only some particular solutions using algebraic techniques. Two ways of obtaining solu-
tions for s = 4 is to start from solutions in dimension s = 2 and built the direct-sum
and tensor product of two copies of the quantum walk in such a way that the obtained
quantum walk for dimension s = 4 still satisfies the principles. We will see that the quan-
tum walks that we obtain in the relativistic limit give the Dirac equation when using the
direct sum, whereas they give the Maxwell equation (plus a static scalar field) when we
use the tensor product.

When building a quantum walk in 2× 2 block form, all four blocks must be quantum
walks themselves. The requirement of locality of the coupling leads to off-diagonal blocks
that do not depend on k. A detailed analysis of the restrictions due to the unitarity
conditions (9) shows that, modulo unitary change of representation independent on k(17),
we can take the off-diagonal matrix elements as proportional to the identity, whereas the
diagonal blocks are just given by the chosen quantum walk and its adjoint, respectively.
We then need to weight the diagonal blocks with a constant n and the off-diagonal
identities with a constant m, and unitarity requires having |n|2+|m|2 = 1. Then, starting
from the walk Ak that leads us to the Weyl equations for all dimension d = 1, 2, 3, the
walk, modulo unitary equivalence(18), can be recast in the form [4]

(22) Dk :=
(

nAk im

im nA†
k

)
, n2 + m2 = 1, n ∈ R+, m ∈ R.

Also the sign of m can be changed by a unitary equivalence (a “charge-conjugation”),
however, we keep m with changing sign for reasons that will explained in subsect. 3.8.2.
The walk (22) with s = 4 can be conveniently expressed in terms of gamma matrices in
the spinorial representation as follows:

(23) Dk := nIuk − inγ0γ · ñk + imγ0,

where the functions uk and ñk depend on the choice of Ak in eq. (22), i.e. on d = 1, 2, 3.
The dispersion relation of the quantum walk (23) is simply given by

(24) ωk = arccos[
√

1−m2uk].

We will see now that the quantum walks in eq. (22) in the small wave vector limit and
for m � 1 all give the usual Dirac equation in the respective dimension d, with m

corresponding to the particle rest mass, whereas n works as the inverse of a refraction
index of vacuum. In fact, the interpolating Hamiltonian H(k) is given by

(25) H(k) =
ωk

sin ωk
(nγ0γ · ñk −mγ0),

(17) This can also be e.g. the case of an overall phase independent of k.
(18) Also the solutions with walk B± = (Ak)T are contained in eq. (22), since they can be
achieved either by a shift in the Brillouin zone or as σyB±σy = A±†, with the exchange of the
upper and lower diagonal blocks that can be done unitarily.
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with relativistic limit given by

(26) H0(k) =
n√
d
γ0γ · k + mγ0,

and to the order O(m2) we get the Dirac Hamiltonian

(27) H0(k) =
1√
d
γ0γ · k + mγ0.

One has the Dirac Hamiltonian, with the wave vector k interpreted as momentum and the
parameter m interpreted as the rest mass of the particle. In the relativistic limit (26) the
parameter n plays the role of the inverse of a refraction index of vacuum. In principle this
can produce measurable effects from bursts of high-energy particles of different masses
at the boundary of the visible universe, and would be complementary to the dispersive
nature of vacuum (see subsects. 3.8.3 and 3.9.2).

In the following we will also call the quantum walk in eq. (22) Dirac quantum walk(19).
In ref. [36] the discrete Feynman propagator for the Dirac quantum walk has been

analytically evaluated with a closed formal for dimension d = 1, generalizing the solution
of ref. [39] for fixed mass value.

3.8.1. Discriminability between quantum walk and quantum field dynamics. In sub-
sect. 3.5 we mentioned that rigorous quantitative approaches to judge the closeness
between the two dynamics have been provided in ref. [6], and in ref. [4] in terms of
fidelity between the two unitary evolutions. For the Dirac quantum walk for a pro-
ton mass one has fidelity close to unit for N � m−3 = 2.2 ∗ 1057, corresponding to
t = 1.2 ∗ 1014s = 3.7 ∗ 106 years. The approximation is still good in the ultra-relativistic
case k � m, e.g. for k = 10−8 (as for an ultra-high-energy cosmic ray), where it holds
for N � k−2 = 1016 steps, corresponding to 5 ∗ 10−28 s. However, one should notice that
practically the discriminability in terms of fidelity corresponds to having unbounded
technology, and such a short time very likely corresponds to unfeasible experiments. On
the other hand, for a ultra-high-energy proton with wave packet width of 100 fm the time
required for discriminating the wave packet of the quantum walk from that of QFT is
comparable with the age of the universe.

(19) For d = 1, modulo a permutation of the canonical basis, the quantum walk corresponds
to two identical and decoupled s = 2 walks. Each of these quantum walks coincide with the
one dimensional Dirac walks derived in ref. [6]. The last one was derived as the simplest s = 2
homogeneous quantum cellular walk covariant with respect to the parity and the time-reversal
transformation, which are less restrictive than isotropy that singles out the only Weyl quantum
walk in one space dimension.
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3.8.2. Mass and proper-time. The unitarity requirement in eq. (22) restrict the rest
mass to belong to the interval

(28) m ∈ [−1, 1].

At the extreme points ±1 of the interval the corresponding dynamics Dk = ±iγ0 are
identical (they differ for an irrelevant global phase factor). This means that the domain
of the mass has actually the topology of a circle, namely

(29) m ∈ S1.

From the classical relativistic Hamiltonian [40]

(30) H = 	p · 	q + c2mτ − L,

with 	p and 	q canonically conjugated position and momentum and L the Lagrangian, we
see that the proper time τ is canonically conjugated to the rest mass m. This suggests
that the Fourier conjugate of the rest mass in the quantum walk can be interpreted as
the proper time of a particle evolution, and being the mass a variable in S1, we conclude
that the proper time is discrete, in accordance with the discreteness of the dynamical
evolution of the quantum walk. This result constitutes a non-trivial logical coherence
check of the present quantum walk theory.

3.8.3. Physical dimensions and scales for mass and discreteness. We want to emphasize
that in the above derivation everything is adimensional by construction. Dimensions
can be recovered by using as measurement standards for space, time, and mass the
discreteness scale for space a∗ and time t∗ (a∗ is half of the BCC cell side, t∗ the time-
length of the unit step), along with the maximum value of the mass m∗ (corresponding
to |m| = 1 in eq. (22)). From the relativistic limit, the comparison with the usual
dimensional Dirac equation leads to the identities

(31) c = a∗/t∗, � = m∗a∗c,

which leave only one unknown among the three variables a∗, t∗ and m∗. At the maximum
value of the mass |m| = 1 in eq. (22) we get a flat dispersion relation, corresponding to
no flow of information: this is naturally interpreted as a mini black-hole, i.e. a particle
with Schwarzild radius equal to the localization length, i.e. the Compton wavelength.
This leads to an heuristic interpretation of m∗ as the Planck mass, and from the two
identities in eq. (31) we get the Planck scale for discreteness. Notice that the value of
m∗ can be in principle obtained from the dispersion of vacuum as m∗ � 1√

3
�k

c(k)−c(0) for
small k, which can be in principle measured by the Fermi telescope from detection of
ultra high energy bursts coming from deep space.
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3.9. Recovering Maxwell fields(20). – In subsects. 3.7 and 3.8 we showed how the
dynamics of free quantum fields can be derived starting from a countable set of quantum
systems with a network of interactions satisfying the principles of locality, homogeneity,
and isotropy. Within the present finitistic local-algorithmic perspective one also considers
each system as carrying a finite amount of information, thus restricting the quantum field
to be Fermionic (see also subsect. 2.1). However, one may wonder how the physics of the
free electromagnetic field can be recovered in such a way and, generally, how Bosonic fields
are recovered from Fermionic ones. In this section we answers to these questions. The
basic idea behind is that the photon emerges as an entangled pair of Fermions evolving
according to the Weyl quantum walk of sect. 3.7. Then one shows that in a suitable
regime both the free Maxwell equation in 3d and the Bosonic commutation relations are
recovered. Since in this subsection we are actually considering operator quantum fields,
we will use more properly the quantum automaton nomenclature instead of the quantum
walk one.

Consider two Fermionic fields ψ(k) and ϕ(k) in the wave vector representation, with
respective evolutions given by

(32) ψ(k, t + 1) = Wkψ(k, t), ϕ(k, t + 1) = W ∗
kϕ(k, t).

The matrix Wk can be any of the Weyl quantum walks for d = 3 in eq. (16), (the whole
derivation is independent on this choice), whereas W ∗

k = σyWkσy denotes the complex
conjugate matrix. We introduce the bilinear operators

(33) Gi(k, t) := ϕT
(
k
2 , t

)
σiψ

(
k
2 , t

)
= ϕT (k, 0)

(
W †

k
2

σiWk
2

)
ψ
(
k
2 , 0

)
by which we construct the vector field

(34) G(k, t) := (G1(k, t), G2(k, t), G3(k, t))T

and the transverse field

(35) GT (k, t) := G(k, t)−
(

nk
2

|n k
2
| ·G(k, t)

)
nk

2

|n k
2
| ,

with nk := (ωk/ sin ωk)ñk and ñk given in eq. (17). By construction the field GT (k, t)
satisfies the following relations:

nk
2
·GT (k, t) = 0,(36)

GT (k, t) = Exp
(
−i2nk

2

· Jt

)
GT (k, 0),(37)

(20) The entire subsection is a short review of ref. [7].
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where we used the identity

(38) exp
(− i

2v · σ
)
σ exp

(
i
2v · σ

)
= Exp(−iv · J)σ,

the matrix Exp(−iv ·J) acting on σ regarded as a vector, and J = (Jx, Jy, Jz) represent-
ing the infinitesimal generators of SU(2) in the spin 1 representation. Taking the time
derivative of eq. (37) we obtain

(39) ∂tGT (k, t) = 2nk
2

×GT (k, t).

If EG and BG are two Hermitian operators defined by the relation

(40) EG := |nk
2

|(GT + G†
T ), BG := i

∣∣∣∣nk
2

∣∣∣∣ (G†
T −GT ),

then eq. (36) and eq. (39) can be rewritten as

∂tEG = i2nk
2

×BT (k, t), ∂tBG = −i2nk
2

×ET (k, t),(41)

2nk
2

·EG = 0, 2nk
2

·BG = 0.

Equations (41) have the form of distorted Maxwell equations, with the wave vector k
substituted by 2nk

2

, and in the relativistic limit |k| � 1 one has 2nk
2

∼ k and the usual

free electrodynamics is recovered.

3.9.1. Photons made of pairs of fermions. Since in the Weyl equation the field is
fermionic, the field defined in eqs. (35) and (40) generally does not satisfy the correct
bosonic commutation relations. The solution to this problem is to replace the operator
G defined in eq. (35) with the operator F defined as

(42) F(k) :=
∫

dq
(2π)3

fk(q)ϕ
(
k
2 − q

)
σ ψ

(
k
2 + q

)
,

where
∫

dq
(2π)3 |fk(q)|2 = 1,∀k. In terms of F(k), we can define the polarization operators

εi(k) of the electromagnetic field as follows:

εi(k) := ui
k · F(k, 0), i = 1, 2,(43)

ui
k · nk = u1

k · u2
k = 0, |ui

k| = 1, (u1
k × u2

k) · nk > 0.(44)

In order to avoid technicalities from continuum of wave vectors, we restrict to a discrete
wave vector space, corresponding to confinement in a cavity. Moreover we assume |fk(q)|2
to be uniform over a region Ωk which contains Nk modes, i.e.

(45) |fk(q)|2 =

⎧⎨
⎩

1
Nk

, if q ∈ Ωk,

0, otherwise.
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Fig. 5. – From ref. [7] (colors online). Left: In a rectilinear polarized electromagnetic wave, the
polarization plane (in green) is slightly tilted with respect the plane orthogonal to k (in gray).
Right: vector 2nk

2

(in green), which is orthogonal to the polarization plane; wave vector k (in

red) and group velocity (in blue) for the value |k| = 0.8 and different directions. Notice that
the three vectors are not parallel (the angles between them depend on k).

Then, for a given state ρ of the field we denote by Mϕ,k (respectively, Mψ,k) the mean
number of type ϕ (respectively, ψ) Fermionic excitations in the region Ωk. One can then
show that, for states such that Mξ,k/Nk ≤ ε� 1 for both ξ = ϕ,ψ and forall k we have

(46) [εi(k), εj†(k′)]− = δi,jδk,k′ ,

i.e. the polarization operators are Bosonic operators.

3.9.2. Vacuum dispersion. According to eq. (41) the angular frequency of the electro-
magnetic waves is given by the modified dispersion relation

(47) ω(k) = 2
∣∣∣∣nk

2

∣∣∣∣ ,
which recovers the usual relation ω(k) = |k| in the relativistic regime. In a dispersive
medium, the speed of light is the group velocity ∇kω(k) of the electromagnetic waves,
and eq. (47) predict that the vacuum is dispersive, namely the speed of light generally
depends on k (see fig. 5 for directions of vectors). Such dispersion phenomenon has been
already analyzed in some literature on quantum gravity, where several authors considered
how a hypothetical invariant length (corresponding to the Planck scale) could manifest
itself in terms of modified dispersion relations [41-45]. In these models the k-dependent
speed of light c(k), at the leading order in k := |k|, is expanded as c(k) ≈ 1 ± ξkα,
where ξ is a numerical factor of the order 1, while α is an integer. This is exactly
what happens in our framework, where the intrinsic discreteness of the quantum cellular
automata A±

k leads to the dispersion relation of eq. (47) from which one obtains the
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following k-dependent speed of light:

(48) c∓(k) ≈ 1± 3
kxkykz

|k|2 ≈ 1± 1√
3
k.

Equation (48) is obtained by evaluating the modulus of the group velocity and expanding
in powers of k with the assumption kx = ky = kz = 1√

3
k, (k = |k|)(21). Notice that the

dispersion is not isotropic, and can also be superluminal, though uniformly bounded [4] by
a factor

√
d (which coincides with the uniform bound of the quasi-isometric embedding).

The prediction of dispersive behavior, as for the present automata theory of quantum
fields, is especially interesting since it is experimentally falsifiable, and, as mentioned in
subsect. 3.8.3, allows to experimentally set the discreteness scale. In fact, differently to
the other mentioned birefringence effects, the disperision effect, although is extremely
small in the relativistic regime, it accumulates and become magnified during a huge
time of flight. For example, observations of the arrival times of pulses originated at
cosmological distances (such as in some γ-ray bursts [46-49]), have sufficient sensitivity
to detect corrections to the relativistic dispersion relation of the same order as in eq. (48).

4. – Recovering special relativity in a discrete quantum universe(22)

We have seen how relativistic mechanics, and more precisely free QFT, can be re-
covered without using any mechanical primitive, and without making any use of special
relativity, including the relativity principle itself. However, one may wonder how dis-
creteness can be reconciled with Lorentz transformations, and most importantly, how
the relativity principle itself can be restated in purely mathematical terms, without us-
ing the notions of space-time and inertial frame. In this section we will see how such goal
can be easily accomplished.

The relativity principle is expressed by the statement:

Galileo’s Relativity Principle: The physical law is invariant with the inertial frame.

Otherwise stated: the physics that we observe, or, equivalently, its mathematical repre-
sentation, is independent on the inertial frame that we use.

What is a frame? It is a mathematical representation of physical laws in terms of
space and time coordinates. What is special about the inertial frame? A convenient way
of answering is the following:

Inertial frame: a reference frame where energy and momentum are conserved for
an isolated system.

(21) Notice that, depending on the quantum walk A+(k) of A−(k) in eq. (16) we obtain correc-
tions to the speed of light with opposite sign.
(22) This entire section is a review of the main results of ref. [18].
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When a system is isolated? This is established by the theory. In classical mechanics,
a system is isolated if there are no external forces acting on it. In quantum theory a
system is isolated when its dynamical evolution is described by a unitary transformation
on the system’s Hilbert space. At the very bottom of its notion, the inertial frame is
the mathematical representation of the physical law that makes its analytical form the
simplest. In classical physics, if we include the Maxwell equations among the invariant
physical laws, what we get from Galileo’s principle is Einstein’s special relativity.

The quantum walk/automaton is an isolated system (it evolves unitarily). Mathemat-
ically the physical law that brings the information about the constants of the dynamics
in terms of their Hilbert eigenspaces is provided by the eigenvalue equation. For the case
of virtually-Abelian group G (which ultimately leads to physics in Euclidean space) the
eigenvalue equation has the general form corresponding to eqs. (19) and (21)

(49) Akψ(ω,k) = eiωψ(ω,k),

with the eigenvalues usually collected into s dispersion relations (the two functions ω±(k)
for the Weyl quantum walk). This translates into the following re-interpretation of
representations of the eigenvalue equation:

Quantum-digital inertial frame: Representation in terms of eigen-spaces of the
constants of the dynamics of the eigenvalue equation (49).

Using such notion of inertial frame, the principle of relativity is still the Galileo’s prin-
ciple. The group of transformations that connect different inertial reference frames will
be the quantum digital-version of the Poincaré group:

Quantum-digital Poincaré group: group of changes of representations in terms of
eigenspaces of the dynamical constants that leave the eigenvalue equation (49)
invariant.

It is obvious that the changes of representations make a group. Since the constants of
dynamics are k and ω±, a change of representation corresponds to an invertible map
k → k′(k), where with k we denote the four-vector k := (ω,k).

In the following subsection we will see how the inherent discreteness of the algorithmic
description leads to distortions of the Lorentz transformations, visible in principle at huge
energies. Nevertheless, Einstein’s special relativity is perfectly recovered for |k| � 1,
namely at energy scales much higher than those ever tested.

On the other hand, as we will see in the following, discreteness has some plus compared
to the continuum theory, since it contains the continuum theory as a special regime, and
moreover it leads to some additional features with GR flavor: 1) it has a maximal particle
mass with physical interpretation in terms of the Planck mass; 2) it leads to a De Sitter
invariance (see subsect. 4.2). And this, in addition to providing its own physical standards
for space, time, and mass within a purely mathematical context (subsect. 3.8.3).
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4.1. Quantum-digital Poincaré group and the notion of particle(23). – The eigenvalue
equation (49) can now be rewritten in “relativistic notation” as follows:

(50) nμ(k)σμψ(k) = 0,

upon introducing the four-vectors

(51) k = (ω,k), n(k) = (sinω,n(k)), σ = (I, σ), σ = (σx, σy, σz),

where the vector n(k) is defined in eq. (16), namely

(52) n(k) · σ :=
i

2
(Ak −A†

k).

As already mentioned, since the constants of dynamics are k and ω±, a change of repre-
sentation corresponds to a map k �→ k′(k). Now the principle of relativity corresponds
to the requirement that the eigenvalue equation (50) is preserved under a change of
representation. This means that the following identity must hold:

(53) nμ(k)σμ = Γ̃−1
k nμ(k′)σμ Γk,

where Γk, Γ̃k are invertible matrices representing the change of representation.
The simplest example of change of observer is the one given by the trivial relabeling

k′ = k and by the matrices Γk = Γ̃k = eiλ(k), where λ(k) is an arbitrary real function
of k. When λ(k) is a linear function we recover the usual group of translations. The
set of changes of representation k �→ k′(k) for which eq. (53) holds are a group, which
is the largest group of symmetries of the dynamics. In covariant notation the dispersion
relations are rewritten as follows:

(54) n±
μ (k)nμ±(k) = 0,

and in the small wave vector regime one has n(k) ∼ k, recovering the usual relativistic
dispersion relation.

In addition to the neighbour of the wave vector k0 = (0, 0, 0), the Weyl equations can
be recovered from the quantum walk (16) also in the neighborhood of the wavevectors
in eq. (15). The mapping between the vectors ki exchange chirality of the particle and
double the particles to four species in total: two left-handed and two right-handed(24).

(23) For a simpler analysis in one space dimensions and the connection with doubly-special
relativity and relative locality, see ref. [50]. For a connection with Hopf algebras for position
and momentum see ref. [51].
(24) Discreteness has doubled the particles: this corresponds to the well-known phenomenon of
fermion doubling [52].
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In the following we will therefore more generally refer to the relativistic regime as the
neighborhoods of the vectors {ki}3i=0.

The group of symmetries of the dynamics of the quantum walks (16) contains a non-
linear representation of the Poincaré group, which exactly recovers the usual linear one
in the relativistic regime. For any arbitrary non-vanishing function f(k) one introduces
the four-vector

(55) p(f) = D (f)(k) := f(k)n(k)

and rewrite the eigenvalue equation (50) as follows:

(56) p(f)
μ σμψ(k) = 0.

Upon denoting the usual Lorentz transformation by Lβ for a suitable f [18] the Brillouin
zone splits into four regions Bi, i = 1, . . . , 4 centered around ki i = 0, . . . 3, such that the
composition

(57) L
(f)
β := D (f)−1LβD (f)

is well defined on each region separately. The four invariant regions corresponding to
the four different massless Fermionic particles show that the Wigner notion of “particle”
as invariant of the Poincaré group survives in a discrete world. For fixed function f the
maps L

(f)
β provide a non-linear representation of the Lorentz group [53-55]. In figs. 6

the orbits of some wave vectors under subgroups of the non-linear Lorentz group are
reported. The distortion effects due to underlying discreteness are evident at large wave
vectors and boosts. The relabeling k → k′(k) = L

(f)
β (k) satisfies eq. (53) with Γk = Λβ

and Γ̃k = Λ̃β for the right-handed particles, and Γk = Λ̃β and Γ̃k = Λβ for the left-handed
particles, with Λβ and Λ̃β being the (0, 1

2 ) and (1
2 , 0) representation of the Lorentz group,

independently of k in each pertaining region.
For varying f , one obtains a much larger group, including infinitely many copies of

the non-linear Lorentz one. In the small wave vector regime the whole group collapses
to the usual linear Lorentz group for each particle.

4.2. De Sitter group for non-vanishing mass. – Up to now we have analyzed what
happens with massless particles. For massive particles described by the Dirac walk (22),
the rest-mass m gets involved into the frame transformations, and their group becomes a
non-linear realization of the De Sitter group SO(1, 4) with infinite cosmological constant,
where the rest mass m of the particle plays the role of the additional coordinate. One
recovers the previous non-linear Lorentz group at the order O(m2).

5. – Conclusions and future perspectives: the interacting theory, . . . , gravity?

The logical connections that have lead us to build up our quantum-walk theory of fields
leading to free QFT are summarized in fig. 7. The free relativistic quantum field theory
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Fig. 6. – From ref. [18] (colors online). The distortion effects of the Lorentz group in the present
quantum walk theory leading to the Weyl quantum field in the relativistic limit. Top left figure:
the orbit of the wave vectors k = (kx, 0, 0), with kx ∈ {.05, .2, .5, 1, 1.7} under the rotation around
the z-axis. Top right figure: the orbit of wave vectors with |k| = 0.01 for various directions in
the (kx, ky)-plane under the boosts with β parallel to k and |β| ∈ [0, tanh 4]. Bottom figure: the
orbit of the wave vector k = (0.3, 0, 0) under the full rotation group SO(3).

emerges as a special regime (the relativistic regime) of the evolution of countably many
Fermionic quantum bits, provided that their unitary interactions satisfy the principles of
homogeneity, locality, and isotropy, and with the restrictions of linearity of the evolution
and of quasi-isometric embedding of the graph of interaction in an Euclidean space.

We are left now with the not easy task of recovering also the interacting relativis-
tic quantum field theory, where particles are created and annihilated. We will need to
devise which additional principles are missing that will lead to the interacting theory,
breaking the linearity assumption. This is likely to be related to the nature of a gauge
transformation. How can this be restated in terms of a new principle? From the point
of view of a free theory, the interaction can be viewed as a violation of homogeneity,
corresponding to the presence of another interacting field—namely the gauge-field. The
gauge-field can be regarded as a restoration of homogeneity by a higher-level homoge-
neous “meta-law”. For example, one can exploit the arbitrariness of the local bases of
the Hilbert block subspaces Cs for the Weyl automata, having the bases dependent on
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Fig. 7. – Logical scheme of the derivation from principles of the present quantum-walk theory of
fields, with the known free quantum field theory as its relativistic limit. The top six principles
from which quantum theory of abstract system is derived are not discussed in the present lecture,
and can be found in refs. [3, 1].

the local value of the wave function of the gauge automaton made with pairs of entangled
Fermions, as for the Maxwell automaton. In order to keep the interaction local, one can
consider an in situ interaction. In such a way one would have a quantum ab initio gauge
theory, without the need of artificially quantizing the gauge fields, nor of introducing
mechanical Lagrangians. A d = 1 interacting theory of the kind of a Fermionic Hub-
bard quantum cellular automaton, has been very recently analytically investigated by
the Bethe ansatz [56], and two-particle bound states have been established. It should be
emphasized that for d = 3 just the possibility of recovering QED in the relativistic regime
would be very interesting, since it will provide a definite procedure for renormalization.
Very interesting will be also the analysis of the full dynamical invariance group, leading
also to a non-linear version of the Poincaré group, with the possibility that this restricts
the choice of the function f in eq. (55). Studying the full symmetry group of the inter-
acting theory will also have the potential of providing additional internal symmetries,
e.g. the SU(3) symmetry group of QCD, with the Fermion doubling possibly playing
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the role in adding physical particles. The mass as a variable quantum observable (as
in subsects. 3.8.2 and 4.2) may provide rules about the lifetimes of different species of
particles. The additional quasi-static scalar mode entering in the tensor-product of the
two Weyl automata that give the Maxwell field in subsect. 3.9 may turn out to play a
role in the interacting theory, e.g. playing the role of a Higg boson providing the mass
value, or even being pivotal for gravitation. But for now we are just in the realm of
speculations.

What we can say for sure is that it is not just a coincidence that so much physics
comes out from so few general principles. How amazing is the whole resulting theory
which, in addition to having a complete logical coherence by construction, it also winks
at GR through the two non-trivial features of the maximum mass, and the De Sitter
invariance. And with special relativity derived without space-time and kinematics, in a
fully quantum ab initio theory. So much from so little? This is the power of the new
information-theoretical paradigm.

∗ ∗ ∗
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A Quantum-Digital Universe.
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Summary. — Since the beginning of quantum mechanics, many puzzling phenom-
ena which distinguish the quantum from the classical world, have appeared such as
complementarity, entanglement or contextuality. All of these phenomena are based
on the existence of non-commuting observables in quantum mechanics. Furthermore,
theses effects generate advantages which allow quantum technologies to surpass clas-
sical technologies. In this lecture note, we investigate two prominent examples of
these phenomena: complementarity and entanglement. We discuss some of their
basic properties and introduce general methods for their experimental investigation.
In this way, we find many connections between the investigation of complementarity
and entanglement. One of these connections is given by the Cauchy-Schwarz in-
equality which helps to formulate quantitative measurement procedures to observe
complementarity as well as entanglement.

1. – Introduction

The quantum world inhabits many features such as complementarity [1], entangle-
ment [2] or contextuality [3, 4] which distinguish it from the well-known classical world.
These very puzzling features have been the starting point of many discussions from the
very first beginning of quantum mechanics. Furthermore, they are also the key ingre-
dients of the advantages offered by quantum technology nowadays. Therefore, getting
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an understanding of these features, as deep as possible, is important to understand the
foundations of quantum mechanics as well as developing new applications of quantum
technologies.

The most famous of these phenomena is doubtlessly entanglement, which was first dis-
cussed by Einstein, Podolski and Rosen [5] and later quantified by Bell [6]. After hearing
the first time about entanglement, some people have the impression that entanglement is
equal to anticorrelation between the measurement results of two parties. The reason for
this misunderstanding is the famous example of the Bell state |ψ−〉 = (|01〉 − |10〉)/√2
where a spin-measurement in z-direction on particle A reveals exactly the opposite mea-
surement result than a measurement on particle B. However, this behavior has nothing
to do with entanglement. First of all, the Bell state |φ+〉 = (|00〉 + |11〉)/√2 is also
entangled but leads to perfect correlation of spin measurements in z-direction on par-
ticle A and B. Second, perfect anticorrelation also exist for classical measurements.
Assume for example a box with a big sock and a small sock. The socks are randomly
distributed between Alice and Bob. A measurement of the size (big ≡ 1, small ≡ −1)
also leads to perfect anticorrelation. Therefore, anticorrelation alone is not an indicator
for entanglement or quantumness in general.

In general, a measurement in a single measurement-basis alone can never demonstrate
quantum properties such as entanglement, discord, coherence or duality, because these
measurement can always be simulated by a classical system. Quantum behavior can only
be proven by measuring at least two observables which do not commute. In the classical
world different observables always commute and are jointly measurable. Consecutively,
different correlation between measurements Aj and Bj can influence each other as we
illustrate on our example with the socks. Here, we use the measurement of the color (blue
≡ 1, red striped ≡ −1) as a second measurement-basis. We asume e.g. that with a certain
probability p1 the big sock is blue and the small one is red striped and with probability
p2 it is the other way around such that 〈A1B1〉 = 〈A2B2〉 = 〈A2B1〉 = −1/

√
2. By fixing

these three correlations, the fourth correlation is bounded by

(1) − 1√
2
≤ 〈A1B2〉 ≤ 0

as summarized in table I.
In quantum physics, not all observables are jointly measurable, e.g. the observables

described by the Pauli-spin matrices σA
x ⊗ σB

x and σA
z ⊗ σB

z are jointly measurable but
σA

z ⊗ σA
x is not jointly measurable with the previous two. Therefore, the correlations

〈σA
x σB

x 〉 and 〈σA
z σB

z 〉 can exist at the same time. However, they destroy the correlation
〈σA

z σB
x 〉.

As an example, we choose the observables A1 = σx, A2 = σz and B1 = (σx +σz)/
√

2,
B2 = (σz − σx)/

√
2 and the state |ψ−〉. In this case, the resulting correlations 〈A1B1〉 =

〈A2B2〉 = 〈A2B1〉 = −1/
√

2 are the same as in the classical example. However, because
these three observables are not jointly measurable, they do not bound the correlation
〈A1B2〉 as in the classical way and we get for our example 〈A1B2〉 = +1/

√
2 which is
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Table I. – Comparison of classical and quantum correlations. The observable are defined in the
following way: i) A1 = B1 = size and A2 = B2 = color for the classical case, ii) A1 = σx,
A2 = σz and B1 = (σx + σz)/

√
2, B2 = (σz − σx)/

√
2 for the quantum state. The correlations

〈A1B1〉, 〈A2B2〉 and 〈A2B1〉 bound the allowed correlations 〈A1B2〉 in the classical case but not
in the quantum case.

State 〈A1B1〉 〈A2B2〉 〈A2B1〉 〈A1B2〉

p1 +p2 −1/
√

2 −1/
√

2 −1/
√

2 −1/
√

2 ≤ · · · ≤ 0

|ψ−〉 = (|01〉 − |10〉)/√2 −1/
√

2 −1/
√

2 −1/
√

2 1/
√

2

classically forbidden (see table I).
A more general formulation of the connection between different correlations is given

by the Bell inequalities such as the CHSH-inequality [7]

(2) |〈A1B1 + A2B2 + A2B1 −A1B2〉| ≤
sep

2,

which limits the correlation between classical observables. However, it can be violated
by using non-commuting observables and entangled states.

The phenomenon of non-commuting observables lies at the very heart of quantum
mechanics and does not only induce the phenomenon of entanglement but also other
quantum phenomena such duality and uncertainty [8-11], contextuality [3] or discord [12].

The aim of this lecture note is to give students with basic knowledge of quantum
mechanics a better understanding of these quantum phenomena. Therefore, we will con-
centrate on a few selected topics, wave-particle duality as an example of complementarity
(in sect. 2) and entanglement (in sect. 3), rather than trying to give a complete picture.

In detail, we introduce in sect. 2.1 the basic observables for wave-like and particle-like
behavior and discuss the quantitative formulation of the wave-particle duality. Then, we
give an overview of more advanced topics of wave-particle duality such as the quantum
eraser (sect. 2.2) and higher-order wave-particle duality (sect. 2.3). We finish this chap-
ter by pointing out the connection between measurements of wave-particle duality and
entanglement in sect. 2.4.

We start our investigation of entanglement (sect. 3) by summarizing the basic defini-
tions and entanglement criteria for bipartite entanglement in sect. 3.1. Then, we discuss
in detail tripartite entanglement in sect. 3.2 and illustrate why tripartite entanglement
is more than just the combination of bipartite entanglement. We finish this section by a
brief overview on multipartite entanglement in sect. 3.3 and a discussion on the spatial
distribution of entanglement in sect. 3.4.

During the whole article, we will pay special attention on how these quantum features
can be quantified and observed. Of special interested is the Cauchy-Schwarz inequality
which helps to quantify duality as well as entanglement with a few simple measurements.
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2. – Wave-particle duality

Wave-particle duality is closely related to the question of what is light, which is one
of the key questions that inspired the development of quantum mechanics. Already the
old Greeks discussed the nature of light, if light is a stream of particles (Democritus) or
a ray (Plato, Aristotle). In the 17th century, the description of light as a wave (Huygens)
made the construction of high quality lenses possible. In the 18th and 19th century, the
wave-theory of light was very successful to describe and explain refraction, diffraction
and interference (Fresnel, Young).

However, the wave theory of light completely failed to explain effects such as the
Compton effect, black body radiation or the photo effect investigated in the late 19th
century and the beginning of the 20th century. The contradiction of the wave- and the
particle-nature of light might be best expressed by Einstein:

“It seems as though we must use sometimes the one theory and sometimes the other,
while at times we may use either. We are faced with a new kind of difficulty. We have two
contradictory pictures of reality; separately neither of them fully explains the phenomena
of light, but together they do”(1).

The solution of this dilemma is given by the concept of complementarity best described
by:

“If information on one complementary variable is in principle available even if we
choose not to know it . . . we will lose the possibility of knowing the precise value of the
other complementary variable” [13].

Two complementary variable are the which-way information D and the fringe visibility
V in a double-slit experiment or an interferometer. The complementarity principle can
than be formulated in a quantitative way by

(3) D2 + V 2 ≤ 1,

with 0 ≤ D,V ≤ 1. This inequality was first derived by D.M. Greenberger and A. Yasin
for a specific way of defining the which-way information in a neutron interferometer [9]
before it was proven in a general way by B.-G. Englert [10].

In the following, we will first discuss in sect. 2.1 the two observables of which-way
information and fringe visibility and how to measure and interpret them before we derive
eq. (3). Then, we discuss the generalization of this inequality to pairs of entangled
particles in sect. 2.2 leading to the phenomenon of the so-called quantum eraser [14,15].
Finally, we discuss wave-particle duality in the multi-photon case in sect. 2.3. Although,
the wave-particle inequality eq. (3) is valid in the mulit-photon case, it is very often not
very informative. Therefore, we introduce a generalizations of eq. (3) to the multi-photon
case in sect. 2.3.

(1) Einstein, source: en.wikipedia.org/wiki/Wave-particle duality
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Fig. 1. – General two-mode state |ψ〉 of an interferometer. Different measurements can be
performed by changing the phase ϕ between the two paths and by inserting or excluding a beam
splitter.

2.1. Wave-particle duality: an inequality. – In the following, we will investigate the
properties of a two mode quantum state |ψ〉 with a measurement setup given in fig. 1.
|ψ〉 can be described by

(4) |ψ〉 = f(a†
1, a

†
2)|0〉1|0〉2

with the creation operator a†
j acting on mode j. The main properties of the creation and

annihilation operator are given by

[aj , a
†
k] = δj,k,(5)

a†|n− 1〉 =
√

n|n〉,(6)

a|n〉 =
√

n|n− 1〉,(7)

where |n〉 describes a quantum state consisting of n photons. In the following, we assume
that we are able to perform two different kind of measurements i) a simple photon number
measurement in both modes described by their mean values

(8) nj = 〈n̂j〉 = 〈a†
jaj〉

or ii) an interferometric measurement as shown in fig. 1. Here, first the phase between
both modes is changed via a unitary time evolution described by

(9) U(ϕ) = exp[−iϕ a†a].
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Then, both modes described by a1 and a2 interact with each other via a 50 : 50 beam
splitter leading to the output modes

(10) a3 =
1√
2
(a1 + a2), a4 =

1√
2
(a1 − a2).

Finally, a measurement of the photon number in each output mode is performed. The
description of the beam splitter is not unique and depends on the experimental real-
ization of the beam splitter. However, all results obtained in this manuscript are valid
independent of the actually used beam splitter transformation.

These two measurements can be used to measure the particle-like behavior, in form
of the distinguishability, and the wave-like behavior, in form of the visibility. These two
observables can then be used to quantify the wave-particle duality as we will show in this
section.

2.1.1. Distinguishability. If the photon behaves like a particle, it can only be in one
of the two modes at the same time. If we always prepare the same quantum state, we
find |〈a†

1a1−a†
2a2〉| = 1. As a consequence, we quantify the particle-like behavior via the

distinguishability D = |〈D̂〉| with

(11) D̂ ≡ a†
1a1 − a†

2a2

〈a†
1a1〉+ 〈a†

2a2〉
,

which corresponds to a measurement setup as shown in fig. 1 without the beam splitter.
In other description of wave-particle duality, D describes the which-way information

we gained by a measurement of a state |ψ̃〉 before the state reaches the beam splitter [10].
However, in this case our state |ψ〉 just describes the state |ψ̃〉 after it was disturbed by
the first measurement. In this case, the first which-way measurement is just part of the
preparation of the state and the measurement described in our scenario is just a second
measurement which will reveal exactly the same value if nothing happened in between.

In both cases D described the probability of guessing the path of the photon cor-
rectly either after the fist measurement [10] or in the next experiment. Here, D = 1
corresponds to perfect knowledge and the photon will be always found in the same arm
of an interferometer, whereas D = 0 corresponds to no knowledge at all and the photon
will be detected in both arms with equal probability.

2.1.2. Visibility. One important property of waves is that they can interfere with each
others whereas particles cannot. The quality of an interference signale S(ϕ) as depicted
in fig. 2 can be measured by the visibility V which is given be the normalized difference
between the maximum and the minimum of the signal

(12) V =
Smax − Smin

Smax + Smin
.
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Fig. 2. – Definition of fringe visibility in terms of the observables 〈a†
3a3〉ϕ and 〈a†

4a4〉ϕ. The two
observables depend on the variable ϕ and 〈a†

4a4〉ϕ correspond to 〈a†
3a3〉ϕ+π/2 shifted by π.

A value of V = 1 corresponds to perfect fringe visibility and perfect wave-like behavior
whereas V = 0 indicates that no fringes at all are visible. If the phase shift and the beam
splitter are present in fig. 1, then the two observables 〈a†

3a3〉 and 〈a†
4a4〉 correspond to ex-

actly two measurement points of the interference signal separated by δϕ = π. Therefore,
the fringe visibility is given by V = max

ϕ
〈V̂ 〉 with

(13) V̂ ≡ a†
3a3 − a†

4a4

〈a†
3a3〉+ 〈a†

4a4〉
.

However, we want to describe the fringe visibility as a property of the initial state. As
a consequence, we need to rewrite V̂ in terms of the input modes of the beam splitter.
With the help of the transformations

a3 =
1√
2
(a1e−iϕ + a2),(14)

a4 =
1√
2
(a1e−iϕ − a2),(15)

we arrive finally at

(16) V̂ =
a†
1a2e iϕ + a1a

†
2e−iϕ

〈a†
1a1〉+ 〈a†

2a2〉
.

As a consequence, the fringe visibility is given by

(17) V = max
ϕ
〈V̂ 〉 =

2|〈a†
1a2〉|

〈a†
1a1〉+ 〈a†

2a2〉
.
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2.1.3. The wave-particle inequality. After defining a measure of particle-like and wave-
like behavior, the main question is if we can observe both at the same time. The comple-
mentarity principle forbids D = 1 and V = 1 at the same time. However, what happens
if we have some but not perfect path information, that is 0 < D < 1. How much fringe
visibility is possible in this case? This question can be answered by a simple calculation.
The sum of the squares of both observables is given by

(18) D2 + V 2 = 1− 4
〈a†

1a1〉〈a†
2a2〉 − |〈a†

1a2〉|
〈a†

1a1〉+ 〈a†
2a2〉

.

The Cauchy-Schwarz inequality given by

(19) |〈φ|φ̃〉| ≤ 〈φ|φ〉〈φ̃|φ̃〉

leads to

(20) 〈a†
1a1〉〈a†

2a2〉 − |〈a†
1a2〉| ≥ 0,

if we identify 〈φ| = 〈ψ|a†
1 and |φ̃〉 = a2|ψ〉. This inequality is also true for mixed states,

which can be proven either with the convexity of D and V or again with the Cauchy-
Schwarz inequality. As a consequence, we finally arrive at

(21) D2 + V 2 ≤ 1,

quantifying the wave-particle duality. Similar to the Heisenberg uncertainty relation, this
inequality needs to be understood as a preparation inequality. That means, independent
of how we measure D and V , there exists no state ρ which can be prepared in such a way
that D2 + V 2 > 1. This is reflected by the fact that in the derivation of the inequality,
we assumed that either the distinguishability or the visibility will be measured in each
single run of the experiment, but never both at the same time. However, there exist also
setups, with the goal of simultaneous measurements of D and V with the help of e.g.
entangled photons. For a short overview, see sect. 2.2.

In table II we have determined the distinguishability and the visibility for different
states. |ψ1〉 and |ψ2〉 are examples of two pure states with perfect particle-like behavior.
The state ρ = p|ψ1〉〈ψ1|+(1−p)|ψ2〉〈ψ2| is an example of mixed state. The distinguisha-
bility D2 = (2p− 1)2 reduces with the mixedness γ = Tr ρ2 = D2/2 + 1/2. However, no
fringe visibility is gained by mixing.
|ψ3〉 is an example of a state with perfect fringe visibility. In general, every pure one

photon state can be written in the form of |ψ4〉. By tuning the variable α any amount
of D or V can be establish. However, for a given α, the inequality eq. (21) is always
saturated. A further investigation of |ψ4〉 reveals, that a pure one-photon state leading
to fringe visibility is always entangled and in this case V is a measure of entanglement
(for further details about entanglement see sect. 3). However, the relation between fringe
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Table II. – Distinguishability and visibility for different two-mode states.

State D1 V1

|ψ1〉 = |01〉 1 0

|ψ2〉 = |10〉 1 0

p|ψ1〉〈ψ1| + (1 − p)|ψ2〉〈ψ2| (2p − 1)2 0

|ψ3〉 = (|1, 0〉 + |0, 1〉)/√2 0 1

|ψ4〉 = (cos α|1, 0〉 + sin α|0, 1〉)/√2 cos2(2α) sin2(2α)

|ψ5〉 = |1, 1〉 0 0

|ψ6〉 = |2, 0〉 + |0, 2〉 0 0

|ψ7〉 = (|0〉 + |1〉)(|0〉 + |1〉) 0 1/2
1
4
|ψ1〉〈ψ1| + 1

4
|ψ2〉〈ψ2| + 1

2
|ψ3〉〈ψ3| 0 1/2

visibility and entanglement is only true for single-photon states. If several photons might
be present, than also product states such as e.g. |ψ7〉 are able to produce interferences
fringes. In general, eq. (21) is also valid for multi-photon states as exemplified by the
lower 4 examples in table II. However, in many cases the inequality does not contain
much information because both observables are equal to zero and it is not possible to
distinguish entangled states from separable states. For example the product state |ψ7〉
and the mixed entangled state ρ = 1

4 |ψ1〉〈ψ1| + 1
4 |ψ2〉〈ψ2| + 1

2 |ψ3〉〈ψ3| inhabit the same
values for D and V . However, also for multi-photon states, meaningful duality inequalities
can be establish as we will show in sect. 2.3.

2.2. Simultaneous measurements. – In the previous section, we discussed the wave-
particle duality in a simple scheme, where we either measured the distinguishability D

or the visibility V or had at least a defined temporal order of the measurements. Similar
to the EPR setup [5] where position and momentum of a particle are measured “simulta-
neously”, we can also measure the distinguishability and the visibility simultaneously by
using entanglement and a setup as shown in fig. 3. To perform this task, we entangle our
photon A with another photon B with respect to their path information. In this way, we
are able to measure the interference of a photon A and later decide if we want to measure
also its which-way information with the help of photon B. If we decide to measure the
which-way information, the inference pattern must be erased due to the wave-particle
duality, whereas the interference survives if we decide to not to measure the which-way
information. This phenomenon is known as delayed choice quantum eraser [14, 15]. On
the first sight, this phenomenon occurs to be quite puzzling because it seems that the
measurement at photon B changes the past of photon A. However, a simple analysis of
this setup reveals that nothing is really erased and that eq. (21) is also valid in this case.

To understand this phenomenon, we assume a simple setup as displayed in fig. 3. The
photons A and B are prepared in a superposition |Ψ〉AB = (|00〉+ |11〉)/√2 where either
both photons appear in the upper or lower arm of the interferometer. The interferometer

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



244 S. Wölk

Fig. 3. – Quantum eraser: Two entangled photons are both either prepared in the upper arm or
the lower arm of the interferometer. Photon A travels to the right and is detected at detector A1

or A2. Photon B travels to the left and is detected at detector B1, B2, B3 or B4. Coincidence
measurement of photon A with detecting photon B at detector 3 or 4 leads to interference
whereas clicks at B1 or B2 “erase” the interference.

is built in such a way, that photon A reaches the detector A1 or A2 before photon B

reaches any beamsplitter or detector. Furthermore, the phase ϕ is chosen in such a
way that detector A1 (B3) clicks if photon A (B) is in state (|+〉 = |0〉 + |1〉)/√2 and
detector A2 (B4) clicks for the state |−〉 = (|0〉 − |1〉)/√2. By inserting the additional
beamsplitters and detectors B1 and B2 the photon itself randomly chose if the which-way
information (detector B1 or B2 clicks) or the interference (detector B3 or B4 clicks) is
measured.

Let us first assume, that Alice (measuring photon A) and Bob (measuring photon B)
do not communicate. What does Alice observe? In this case, the reduce state at Alice
side is given by

(22) ρA = Tr B(|Ψ〉AB〈Ψ|) =
1
2
(|0〉〈0|+ |1〉〈1|)

which is a completely mixed state. From table II we know that the fringe visibility for
this state is given by VA = 0. By rewriting the reduced state ρA = (|+〉〈+|+ |−〉〈−|)/2
we can also interpret this experiment in such a way, that Alice gets randomly the state
|+〉 with fringe visibility V+ = 1 and the state |−〉 with V− = −1. As long as Alice is
not able to distinguish whether she gets the state |+〉 or |−〉 via post selection, she is
not able to see fringe visibility. The distinguishability DA would be also equal to zero if
Alice would have decided to measure it. As a consequence, Alice can neither see fringes
nor does she has any which-path information without communicating with Bob.

If Alice and Bob communicate with each other, we have to rewrite the state |Ψ〉AB

in the corresponding measurement basis depending on the measurement outcomes. We
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rewrite the state

(23) |Ψ〉AB =
1√
2
(|00〉+ |11〉) =

1
2
[(|+〉+ |−〉)|0〉B + (|+〉 − |−〉)|1〉B ]

for a measurement of distinguishability at Bobs side (detector 1 or 2 clicks) and a fringe
visibility measurement at Alice side. As a consequence, a click at detector B1=̂|0〉B
corresponds to an equal probability that either A1=̂|+〉 or A2=̂|−〉 clicks. The same
happens for a click at detector B2. As a consequence, a click at B1 or B2 does not help
Alice to postselect between |+〉 and |−〉.

However, if B3 or B4 clicks, we describe the state by

(24) |Ψ〉AB =
1√
2
(|00〉+ |11〉) =

1√
2
(|+ +〉+ | − −〉).

As a consequence, if Alice selects only the measurement outcomes which correspond to
a click at B3=̂|+〉 (B4=̂|−〉) at Bob sides, she gets a perfect fringe visibility of VA|B3 = 1
(VA|B4 = −1).

As a consequence, the wave-particle duality in the form of eq. (21) stays also valid
in this scenario. Furthermore, it is not the which-way measurement at Bobs side which
erases the fringe visibility at Alice side. However, it is the interference measurement at
Bobs side which helps Alice to post select her measurement results to make the fringes
appear.

In general, no violation of the wave-particle duality is possible if the experimental
data is analyzed correctly. However, sometimes the post selection as described above is
not that apparent in a real experiment [16]. In these cases a violation of eq. (21) can
occur due to unfair sampling [17,18].

2.3. Higher-order wave-particle duality. – The wave-particle duality as formulated in
eq. (21) is valid for all states independent of the involved number of photons. However,
the last four examples of table II also reveal, that eq. (21) might be not very informative
if higher photon numbers are involved. In these cases, the generalization of eq. (21) to
higher-orders photon numbers as demonstrated in this section come into play.

2.3.1. Higher-order distinguishability. The idea of a higher-order distinguishability of
order k is to be only sensitive to states with at least k photons. Therefore, we define the
k-th–order distinguishability

(25) D̂k ≡ (a†
1)

kak
1 − (a†

2)
kak

2

〈(a†
1)kak

1〉+ 〈(a†
2)kak

2〉
,

where we have used the k-th–order autocorrelation function. In contrast to the k-th–
moment of the number operator given by (a†a)k, the measurement of (a†)kak requires a
different measurement setup [19]. Therefore, it really takes additional information into
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Fig. 4. – The k-th–order autocorrelation function can be interpreted as the probability to get
exactly k out of n photons at detector M1.

account, whereas the higher moments can be estimated by a detailed data analysis of
the data already collected for the distinguishability D1.

Possible measurements can e.g. be performed by detectors which need k-times the
energy of a single photon to be activated [20] or by photon counting measurements with
single-photon resolution.

The action of the k-th–order autocorrelation function on a Fock state |n〉 is given by

(26)
1
k!

(â†)kâk|n〉 =
(

n

k

)
|n〉.

As a consequence, the k-th–order autocorrelation function is non-zero for states with
n > k photons. Contributions with different photon numbers n are weighted with the
binomial coefficient

(
n
k

)
. This fact can be best understood if we consider a measurement

setup as given in fig. 4. Here, a Fock state of exactly n photons and the vacuum state
interact on a 50:50 beam splitter. As a consequence, the probability that k photons leave
the beam splitter at exit one is given by

(
n
k

)
/
√

2n similar to classical probability theory.
The k-th–order distinguishability takes only the diagonal elements of the state ρ in

the computational basis into account. We exemplify the different contribution for a state
of constant total photon number 〈a†

1a1 + a†
2a2〉 = 4 for D3 and D2 in fig. 5.

2.3.2. Higher-order visibility. In a similar way, the fringes visibility V can be generalized
to

(27) V̂ ≡ (a†
1)

kak
2 e iϕ + ak

1(a†
2)

ke−iϕ

〈(a†
1)kak

1〉+ 〈(a†
2)kak

2〉
,
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Fig. 5. – The distinguishability Dk is given by the sum of all diagonal terms with at least k
excitations in a single mode weighted with different weight factors depending on k and the
number of excitations.

where we have used the k-th–order coherence

(28)
1
k!
〈n + k, j|(â†

1)
kâk

2 |n, j + k〉 =

√(
n

k

)(
j

k

)
.

As a consequence, the k-th–order visibility is sensitive to states where coherence exist
between states where exactly k photons change from one mode to the other. Therefore,
Vk is determined by the k-th off-diagonal of ρ in the computational basis as demonstrated
in fig. 6.

Fig. 6. – The visibility Vk is determined by the off-diagonal elements of the state. Each order k
is given by another secondary diagonal.
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Higher-order visibilities Vk cannot be measured by a single measurement setting in
contrast to the first order visibility V . Nevertheless, the measurement setup depicted in
fig. 1 together with detectors described by (a†)kak can determine Vk if the measurements
are performed for several different phases ϕj . We will demonstrate this measurement
procedure for k = 2. In this case, the sum of the expectation values of both detectors
for an arbitrary but fixed phase ϕ is given by

R+
2,ϕ ≡ 〈(a†

3)
2(a3)2 + (a†

4)
2(a4)2〉(29)

=
1
2
〈(a†

1)
2a2

1 + (a†
2)

2a2
2 + 4a†

1a1a
†
2a2 + (a†

1)
2a2

2e iϕ + a2
1(a

†
2)

2e−iϕ︸ ︷︷ ︸
∼V̂2

〉.(30)

By using the correct phase relations, we are able to isolate the real and the imaginary
part of 〈(a†

1)
2a2

2〉 and arrive at

(31) 2|(a†
1)

kak
2 |2 =

(
R+

2,ϕ′ −R+
2,ϕ′+π/2

)2

︸ ︷︷ ︸
real part

+
(
R+

2,ϕ′−π/4 −R+
2,ϕ′+π/4

)2

︸ ︷︷ ︸
imaginary part

.

In general, odd orders of Vk are determined by the difference of the detectors M3 and
M4 whereas even orders by their sum. By defining

(32) R±
k,ϕ ≡

2k−1

k
〈(a†

3)
k(a3)k ± (a†

4)
k(a4)k〉,

we get for odd orders of k

(33) 2|(a†
1)

kak
2 |2 =

22k−2

k2

⎡
⎣(k−1∑

m=0

R−
k,ϕ′+2mπ/k

)2

+

(
k−1∑
m=0

R−
k,ϕ′−π/(2k)+2mπ/k

)2
⎤
⎦

and

2|(a†
1)

kak
2 |2 =(34)

22k−2

k2

⎡
⎣(k−1∑

m=0

(−1)mR+
k,ϕ′+mπ/k

)2

+

(
k−1∑
m=0

(−1)mR+
k,ϕ′−π/(2k)+mπ/k

)2
⎤
⎦

for even orders [21].

2.3.3. Higher-order wave-particle duality. The higher-order distinguishability and visi-
bility are again connected by the Cauchy Schwarz inequality

(35)
∣∣∣〈(a†

1)
kak

2〉
∣∣∣2 ≤ 〈(a†

1)
kak

1〉〈(a†
2)

kak
2〉
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Table III. – Higher-order distinguishability and visibility for different two-mode states including
the examples of table II which involve multi-photon states.

State D1 V1 D2 V2

|ψ5〉 = |1, 1〉 0 0 0 0

|ψ6〉 = |2, 0〉 + |0, 2〉 0 0 0 1

|ψ7〉 = (|0〉 + |1〉)(|0〉 + |1〉) 0 1/2 0 0
1
4
|ψ1〉〈ψ1| + 1

4
|ψ2〉〈ψ2| + 1

2
|ψ3〉〈ψ3| 0 1/2 0 0

|ψ8〉 = |20〉 1 0 1 0

|ψ9〉 = |4, 2〉 + |2, 4〉 0 0 0 (6/7)2

similiar to the first-order wave-particle duality. As a result, we get in the higher-order
case an exactly similar duality relation given by

(36) D2
k + V 2

k = 1 + 4

∣∣∣〈(a†
1)

kak
2〉
∣∣∣2 − 〈(a†

1)
kak

1〉〈(a†
2)

kak
2〉(

〈(a†
1)kak

1〉+ 〈(a†
2)kak

2〉
)2 ≤ 1

as for the first order. Determining the higher-order observables for the initial example
states given in table II leads to the results shown in table III, which reveals the advantages
of using a series of observables and duality relations instead of a single one. The here
introduced higher-order duality interprets a collection of k photons as a single larger
quasi particle. As a consequence, we get non-zero results for D2 and V2 for the states
|ψ6〉 = |02〉 + |20〉, |ψ8〉 = |2, 0〉 and |ψ9〉. The states |ψ5〉 and |ψ7〉 including also two
photons states lead to Dk = Vk = 0 on the other hand because the two photons do not
bunch together.

2.4. Duality and entanglement . – The higher-order visibility Vk is similar to the first-
order visibility an indicator of entanglement if the total photon number of the state is
fixed. However, for states with a varying total photon number additional measurements
are necessary for proving entanglement. As we will demonstrate in sect. 3 entangle-
ment can be verified by comparing diagonal and off-diagonal elements with the help of
the Cauchy-Schwarz inequality. Entanglement criteria can be developed by applying
the Cauchy-Schwarz inequality (CSI) only to subsystems (for more details see sect. 3)
whereas the duality inequality follows from applying the CSI to the total system. As
a consequence, the higher-order visibility V̂k needs to be compared to the higher-order
coincidence

(37) Ĉk ≡ (a†
1)

kak
1(a†

2)
kak

2(
〈(a†

1)kak
1〉+ 〈(a†

2)kak
2〉
)2 ,

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



250 S. Wölk

Fig. 7. – Measurement setup of a coincidence measurement Ck necessary to prove entanglement
together with Vk.

which can be measured by a setup similar to fig. 7. Separable states obey the inequality

(38) V 2
k ≤

sep
4Ck,

which follows directly from eq. (59), which we will prove in the next section, by using
Â1 = (a†

1)
k, B̂2 = ak

2 and Â2 = B̂1 = 1. Violation of this inequality demonstrates
entanglement.

In general, also the distinguishability Dk can be used to detect entanglement by using
the observable Wk = max

ϕ
|〈Ŵk〉| with

(39) Ŵk ≡ ak
1ak

2 e iϕ + (a†
1)

k(a†
2)

ke−iϕ

〈(a†
1)kak

1〉+ 〈(a†
2)kak

2〉
.

Entanglement of a state is demonstrated if it violates the inequality

(40) D2
k + W 2

k ≤
sep

1,

which can be proven again by eq. (59).

Table IV. – Results of the entanglement test using eq. (38).

State D1 V1 C1 W1 Entangled

|ψ4〉 = (cos α|1, 0〉 + sin α|0, 1〉)/√2 cos2(2α) sin2(2α) 0 0 yes

|ψ5〉 = |1, 1〉 0 0 1/4 0 no

|ψ7〉 = (|0〉 + |1〉)(|0〉 + |1〉) 0 1/2 1/16 0 no

ρ = 1
4
|ψ1〉〈ψ1| + 1

4
|ψ2〉〈ψ2| + 1

2
|ψ3〉〈ψ3| 0 1/2 0 0 yes
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The entangled states of table II can all be detected by the criterion eq. (38) as demon-
strated in table IV. On the other side, eq. (40) only detects states with coherence between
|n, j〉 and |n + k, j + k〉 such as e.g. |ψ〉 =

√
3|00〉+ |11〉 with D1 = 0 but W1 =

√
3.

3. – Entanglement

Entanglement [2] is the most puzzling and gainful concept of quantum mechanics and
a direct consequence of the concept of superposition of quantum states. Originally this
effect was formulated 1935 as a contradiction to reality obeying local realism by Einstein,
Podolsky and Rosen [5]. It took 29 years until the difference between local realism
and quantum mechanics could be quantified [6] and experimentally tested by means of
the Bell inequality. Many experiments [22-26] have been performed since then, which
strongly support the concept of quantum mechanics. Most importantly entanglement is
used in quantum technologies such as quantum information processing [27] and quantum
metrology [28] to overcome limits of classical devices.

A deep understanding of entanglement in theory and experiment helps us to develop
quantum technologies. Therefore, it is also important to develop entanglement crite-
ria [29] which can be easily applied to experiments to certify and investigate the existing
entanglement in a given setup and its behavior under the influence of noise.

The most famous entanglement criterion is given by the Bell inequality in eq. (2).
However, not all entangled states violate the Bell inequalities. Moreover, many highly
entangled states such as the Greenberger-Horne-Zeilinger (GHZ) state [30] which violate
Bell inequalities are very vulnerable with respect to noise and therefore not the best
choice for e.g. quantum metrology under realistic conditions [31]. Thus, further criteria
to characterize entanglement also for weakly entangled states are necessary.

In the following, we will give a small review about entanglement with special attention
given to the question of experimental entanglement characterization. We first define
bipartite entanglement and give several examples of how to detect it experimentally.
Then, we will continue with tripartite and multipartite entanglement and demonstrate
that multipartite entanglement is more than the summation of bipartite entanglement.

3.1. Bipartite entanglement . – A pure quantum state is entangled, if it cannot be
written as

(41) |Ψ〉A,B = |ψ〉A ⊗ |φ〉B ;

a mixed quantum state is entangled, if it cannot be written as

(42) ρA,B =
∑

j

pj |ψj〉A〈ψj | ⊗ |φj〉B〈φj |.

A problem of this definition is that the decomposition of a mixed quantum state is
not unique. Therefore eq. (42) indicates separability if such a decomposition is found.
Though, a decomposition including entangled states does not prove that the mixed state
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itself is entangled. The definition of bipartite entanglement of pure states, on the other
hand, can be used to directly demonstrate entanglement with the help of the Schmidt
decomposition [32].

3.1.1. Schmidt decomposition. The Schmidt decomposition [32] is a method to trans-
form a bipartite pure state |ψ〉A,B into the following form:

(43) |Ψ〉A,B =
r∑

j=1

pj |aj〉|bj〉,

where {|aj〉} and {|bj〉} form an orthogonal basis of the two parties A and B, respectively.
The maximal summation index r is called Schmidt rank and indicates entanglement if
r > 1. We will demonstrate the Schmidt decomposition on the example

(44) |Ψ〉A,B =
1√
6

(
|00〉+ |01〉+

√
2|10〉 −

√
2|11〉

)
.

This state is obviously not in the form given by eq. (43) because the basis states |0〉, |1〉
appear twice for each party. To determine the correct basis states for the Schmidt
decomposition, we have to determine the eigenstates of the reduced density matrix

ρB = Tr A (|Ψ〉A,B〈Ψ|) ,(45)

=
1
3
|+〉〈+|+ 2

3
|−〉〈−|,(46)

with |±〉 = (|0〉 ± |1〉)/√2. The Schmidt coefficients are given by pj =
√

λj with the
eigenvalues λj of ρB . The Schmidt decomposition of the state |Ψ〉A,B is given by its
decomposition into the eigenstates of ρB . Thus, the Schmidt decomposition of |Ψ〉A,B is
given by

(47) |Ψ〉A,B =

√
1
3
|0〉A|+〉B +

√
2
3
|0〉A|−〉B ,

and |Ψ〉A,B is obviously entangled since r = 2 > 1. The Schmidt rank is independent
of whether it is determined via the reduced density matrix of system A or system B.
In a simplified version, the Schmidt decomposition states that a pure bipartite state is
entangled if its reduced density matrices are mixed. However, to apply the Schmidt
decomposition the state has not only to be pure, but also we need full knowledge about
the state. This is rather difficult and extensive measurements are required. Nevertheless,
the Schmidt decomposition can be very helpful to identify the optimal measurement
directions for experimental entanglement verification [33] as we will demonstrate with
the following example.
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One way to detect entanglement of a two-qubit system is to measure various combi-
nations of the Pauli matrices, that is

(48) Mj,k = σj ⊗ σk.

The sum of these observables is bounded from above by

(49)
3∑

j,k=1

〈Mj,k〉sep ≤ 1

for separable states, whereas this bound can be violated by entangled states (for proof
see Appendix A). In the worst case, 9 observables are needed to be measured to detect
entanglement via this criterion. Though, for pure entangled states, it is sufficient to
measure two observables, if the right directions are chosen [33]. To find these directions,
Alice and Bob need to determine their reduced density matrices by measuring their local
bloch vectors defined by 	v = (〈σx〉, 〈σy〉, 〈σz〉)T . With the help of the eigenstates |v〉 and
|v⊥〉 of the operator V = 	v	σ they define the new measurement directions

(50) σz′ = |v〉〈v| − |v⊥〉〈v⊥|, σy′ = i|v⊥〉〈v| − i|v〉〈v⊥|.

Every pure entangled state can then be detected by solely measuring Mz′z′ and My′y′ and
using eq. (49). In contrast to the Schmidt decomposition, the states do not necessarily
need to be pure. As soon as we find Mz′z′ +My′y′ > 1 we know that the state is entangled
independent of whether the state is pure or not. The only difference is, that for strongly
mixed states, maybe additional terms have to be measured to exceed the threshold.

3.1.2. The positive partial transpose criterion. In a real quantum experiment, we can
never guarantee pure quantum states. Furthermore, interesting phenomena of entangle-
ment appear when we consider not only pure but mixed states (see sect. 3.2). Therefore,
it is very convenient to have entanglement criteria, which are also valid for mixed states.
The most famous criterion for entanglement of mixed states is the positive partial trans-
pose (PPT) criterion [34,35]. It is based on the fact, that the transposition is a positive
but not completely positive map. This means that the transpose of ρA is positive semidef-
inite (ρT

A ≥ 0) if ρA itself is positive semidefinite. Still, if the transpose is only applied to
a subsystem of a composed quantum state ρA,B , this is not necessarily the case. Assume
for example the Bell state |ψ+〉A,B = (|00〉 + |11〉)/√2 and its corresponding density
matrix

(51) ρA,B ≡ 1
2

(|00〉〈00|+ |11〉〈00|+ |00〉〈11|+ |11〉〈11|) .

Its partial transpose is given by

(52) ρPT
A,B =

1
2

(|00〉〈00|+ |01〉〈10|+ |10〉〈01|+ |11〉〈11|)
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with the resulting eigenvalues λ = ±1/2. In the matrix representation (here in the
standard computational basis |00〉, |01〉, |10〉, |11〉) the partial transposition is calculated
by dividing the matrix into 4 submatrices is seen below

(53)

⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠ ⇒

PPT

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ .

The partial transpose is then calculated by either exchanging the two off-diagonal ma-
trices as a total or by transposing each submatrix depending on whether the partial
transpose should be calculated with respect to partition A or B. This example shows
that the partial transpose of an entangled state can lead to negative eigenvalues. We call
states with negative partial transpose such as |ψ+〉 NPT-states.

On the other hand, the partial transpose of a separable state

(54) ρPT
sep =

∑
j

pj |ψj〉A〈ψj | ⊗ |φ∗
j 〉B〈φ∗

j |

with ρT
B = ρ∗B , stays a valid quantum state with positive eigenvalues. As a consequence,

we find that a state is entangled if it possesses a negative partial transpose. Yet, this
criterion is only necessary and sufficient for 2 × 2 and 2 × 3 systems [35]. For all other
systems, we can make no statement about the entanglement if a state is PPT.

Nevertheless, if a state is PPT or not is a very important property. First of all, even
if a state with PPT is entangled, it is only bound entangled [36]. This means, even if
Alice and Bob possess several copies of this state, they cannot create the singlet state
|ψ−〉 out of them by using only local operations and classical communication (LOCC).
In addition, bipartite bound entangled states cannot be directly used for teleportation or
densed coding. Though, they can support these tasks if used as additional resources [37].
Furthermore, PPT can be much easier tested and can be used to detect multipartite
entanglement with the help of semidefinite programming [38]. As a consequence, the
PPT criterion is a very important criterion for theoretical entanglement investigations.
However, the experimental application of the PPT criterion suffers from several disad-
vantages. First of all, total knowledge of the state is necessary (gained e.g. by state
tomography) which leads to great experimental effort. Furthermore, experimental state
tomography can lead to negative eigenvalues of the state ρ itself [39] if using linear in-
version. The use of the maximum-likelihood method to avoid this negativity can lead
to an overestimation of the entanglement [40]. Hence, the most convenient way to ex-
perimentally verify entanglement is given by inequalities directly based on experimental
observables as we will demonstrate in the next section.

3.1.3. Detecting entanglement with the help of the Cauchy-Schwarz inequality. The most
convenient way to experimentally detect entanglement are inequalities of expectation val-
ues. There exist many different kinds of entanglement criteria based on inequalities, e.g.
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for discrete and continuous variables [41,42] in the bipartite and multipartite case [43-45].
Originally, they have been developed with different methods such as using uncertainty
relations or using the properties of separable states. Although all the above-cited criteria
did not seem to have much in common on the first sight, all of them can be proven
with a single general method [46]. This general method is given by the Cauchy-Schwarz
inequality as we will demonstrate in this section.

The expectation value of an operator can be upper bounded by the Cauchy-Schwarz
inequality by interpreting it as the scalar product of two vectors. In general, an operator
O can be part of the bra- or the ket-vector or can be split into O = O1O2. Therefore,
the most general bound is given by

(55) | 〈ψ|O1︸ ︷︷ ︸

x†

O2|ψ〉︸ ︷︷ ︸

y

|2 ≤ 〈ψ|O1O
†
1|ψ〉︸ ︷︷ ︸

|
x|2
〈ψ|O†

2O2|ψ〉︸ ︷︷ ︸
|
y|2

.

Hence, we get the general bound

(56) |〈A1A2B1B2〉|2 ≤ 〈A1A
†
1B1B

†
1〉〈A†

2A2B
†
2B2〉

for a bipartite state where the operators A and B acting solely on subsystem A or B,
respectively. The expectation value 〈AB〉 factorizes for product states (ps). As a result,
we find the upper bound

|〈A1A2B1B2〉|2 =
ps
|〈A1A2〉||〈B1B2〉|(57)

≤
ps
〈A1A

†
1〉〈A2A

†
2〉〈B1B

†
1〉〈B2B

†
2〉(58)

for product states. Expectation values of different subsystems can be recombined again,
which leads us to the general entanglement criterion

(59) |〈A1A2B1B2〉|2 ≤
sep
〈A1A

†
1B

†
2B2〉〈A†

2A2B1B
†
1〉.

This inequality is also valid for mixed separable states [46]. If eq. (59) provides a stricter
bound than eq. (56), then it can be used to detect entanglement. For example, the
criterion [42]

(60) |〈am(b†)n〉|2 ≤
sep
〈(a†)mam(b†)nbb〉,

where a and b denote the annihilation operators of system A and B, follows directly by
choosing A2 = a, B1 = b† and A1 = B2 = 1. The entanglement criterion

(61) |ρ01,10|2 ≤
sep

ρ00,00ρ11,11,
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with ρjk,nm denoting the matrix entries of a two-qubit state, follows from A1 = B2 =
|0〉〈0| and A2 = B†

1 = |0〉〈1|.
The best lower bound for separable states is achieved by using operators of the form

A1 = |a〉〈ϕ| and A2 = |ϕ〉〈α| with |a〉, |α〉 and |ϕ〉 being arbitrary states of system A

and likewise choosing the operators B1 and B2. The criterion is independent of the
state ϕ and linear combinations of such operators lead to weaker bounds [46]. In the
bipartite case, the entanglement criterion given in eq. (59) detects only states with NPT
and it is necessary and sufficient for two-qubit states if we optimize over all measurement
directions. In addition, it detects all NPT states of the form

(62) ρ = p|ψ〉〈ψ|+ 1− p

d
1d.

The choice of the best operator given by A1A2 = |a〉〈α| with two arbitrary but different
states |a〉, |α〉 leads to a measurement of mean values of non-Hermitian operators. As a
consequence, |〈A1A2B1B2〉| cannot be measured directly. Nevertheless, the expectation
value of a non-Hermitian operator O can be estimated via the two Hermitian operators

2Re [〈O〉] = 〈O + O†〉,(63)

2Im [〈O〉] = 〈iO† − iO〉.(64)

In photon experiments, the real and imaginary part can be measured e.g. with the help of
a beam splitter (compare sect. 2.1.2). In experiments with trapped ions, the off-diagonal
terms can be obtained by measurements in the basis

(65) | ←〉 = (|0〉+ e iφ|1〉)/
√

2, | →〉 = (|0〉+ e i(φ+π)|1〉)
√

2.

The parity of the measurement given by the probability that the blochvectors of both
ions point in the same direction

(66) Π(ϕ) = P←,← + P→,→

then determines the off-diagonal elements via 2|ρ00,11| = Πmax −Πmin .

3.2. Tripartite entanglement . – One might think first, that multipartite entanglement
can be characterized by investigating the entanglement of all possible bipartite splits.
However, this is only true for pure states. Mixed entangled states cannot be fully char-
acterized by this attempt.

There exist 4 different groups of tripartite states. If A,B and C denoting the three
partition, then the different groups can be characterized in the following way [47]:

1. Fully separable states

(67) ρsep =
∑

j

pj ρA
j ⊗ ρB

j ⊗ ρC
j .
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Fig. 8. – Demonstration of the characterization of entanglement in a tripartite systems. The
inner red dot represents the fully separable states which is a subset of the biseparable states
(inner blue triangle). States which lie outside of the triangle are genuine multipartite entangled.
There exist different kinds of bipartite states: i) bipartite states with respect to every bipartition
(overlapped of all three ellipses), ii) bipartite states with respect to a given bipartition (single
ellipse), iii) convex combination of bipartite states (convex triangular hull) [38].

2. Biseparable states with respect to a given partition, e.g. A|BC

(68) ρA|BC =
∑

j

pj ρA
j ⊗ ρBC

j .

3. General bipartite states, which are convex combination of bipartite states with
respect to different bipartitions

(69) ρbs = p1 ρA|BC + p2 ρAB|C + p3 ρAC|B .

4. Genuine multipartite entangled states given by all states which cannot be repre-
sented by eq. (69).

So, on the one hand there exist states which are biseparable under every bipartition but
not fully separable. On the other hand, there also exist states which are not separable
under any given bipartition, but are still not genuine multipartite entangled. The dif-
ferent types of tripartite states form a nested structure consisting of convex groups as
shown in fig. 8.

Entanglement in the tripartite case can be also detected with the help of inequalities
of expectation values. In ref. [42], the authors suggested that their entanglement criterion
can be generalized to the multipartite case by

(70)

∣∣∣∣∣
〈

N∏
k=1

Ok

〉∣∣∣∣∣
2

≤
sep

〈
j∏

k=1

O†
kOk

N∏
k=j+1

OkO†
k

〉
,
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with Ok being an operator acting on system k. Still, this generalization just divides all
parties into the two subgroups {1, 2, . . . , j} and {j + 1, . . . , N}. As a result, it does not
investigate real multipartite entanglement but only bipartite entanglement with respect
to a given bipartition.

A more advanced generalization is given by

(71)

∣∣∣∣∣
〈

n∏
k=1

Ok

〉∣∣∣∣∣ ≤sep
n∏

k=1

〈(O†
kOk)n/2〉1/n,

which is not equivalent to checking a given single bipartition. Nevertheless, it cannot
reveal the complex structure of tripartite entanglement because it is still based on com-
binations of bipartite entanglement [46]. For example, eq. (71) is not only valid for
separable states, but also for states were for each pair of subsystems k and j we find a
bipartition M |M̄ such that k ∈ M and j ∈ M̄ and the state ρ is biseparable for this
bipartition M |M̄ . In the tripartite case, this means that e.g. states which are biseparable
under the partition A|BC and B|AC do not violate eq. (71).

A more complete characterization of tripartite entanglement can be achieved with
the criteria developed in ref. [44]. Here, the entanglement of three-qubit states are
investigated by developing entanglement criteria based on the matrix entries ρj,k given
in the standard product basis {|000〉, |001〉, . . . , |111〉}. General biseparable states (bs)
satisfy the inequalities

|ρ1,8| ≤
bs

√
ρ2,2ρ7,7 +

√
ρ3,3ρ6,6 +

√
ρ4,4ρ5,5,(72)

|ρ2,3|+ |ρ2,5|+ |ρ3,5| ≤
bs

√
ρ1,1ρ4,4 +

√
ρ1,1ρ6,6 +

√
ρ1,1ρ7,7 +

1
2
(ρ2,2 + ρ3,3 + ρ5,5).(73)

Violation of at least one of the two inequalities indicates genuine multipartite entangle-
ment. Fully separable states obey the inequalities

|ρ1,8| ≤
sep

(ρ2,2ρ3,3ρ4,4ρ5,5ρ6,6ρ7,7)1/6,(74)

|ρ1,8| ≤
sep

(ρ1,1ρ
3
4,4ρ5,5ρ6,6ρ7,7)1/6.(75)

These inequalities are also able to detect weak entangled states such as states which are
bisarable under every bipartition but still not fully separable [44].

Criteria for genuine multipartite entanglement can be generated by convex combina-
tions of biseparable criteria. There exists also a general method to derive entanglement
criteria for weak entangled states such as multipartite states which are PPT under every
bipartition. This general method is based on the Hölder inequality, which is a general-
ization of the Cauchy-Schwarz inequality.

For product states, we factorize again the expectation value

(76) 〈A1A2B1B1C1C2〉 ≤
sep

∑
j

pj |〈A1A2〉j | · |〈B1B2〉j | · |〈C1C2〉j |,
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where we have used that each separable state ρ can be written as a convex combination
ρ =

∑
j pj |ψj〉ps〈ψj | of product states. Consecutively, we use the Cauchy-Schwarz in-

equality for each single subsystem A, B or C and recombine them again. At this point, it
is also possible to increase the number of expectation values by using 〈OO†〉 = k

√〈OO†〉k.
In this way, we find e.g. the inequality

|〈A1A2B1B2C1C2〉| ≤
sep

∑
j

pj
4
√
〈A1A

†
1B1B

†
1C

†
2C2〉j〈A1A

†
1B

†
2B2C1C

†
1〉j(77)

× 4
√
〈A†

2A2B1B
†
1C1C

†
1〉j〈A†

2A2B
†
2B2C

†
2C2〉j .

This inequality still depends on the representation ρ =
∑

j pj |ψj〉ps〈ψj | which is not
unique. However, with the help of the generalized Hölder inequality

(78)
∑

j

pjxjyj ≤
(∑

j

pjx
1/r
j

)r(∑
j

pjy
1/s
j

)s

and 〈O〉 =
∑

j pj〈O〉 we finally arrive at

|〈A1A2B1B2C1C2〉| ≤
sep

4
√
〈A1A

†
1B1B

†
1C

†
2C2〉sep〈A1A

†
1B

†
2B2C1C

†
1〉(79)

× 4
√
〈A†

2A2B1B
†
1C1C

†
1〉sep〈A†

2A2B
†
2B2C

†
2C2〉.

This inequality cannot be derived by combining bipartite entanglement criteria and can
therefore also detect PPT states such as

(80) �α =
1

8 + 8α

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 + α 0 0 0 0 0 0 2
0 α 0 0 0 0 2 0
0 0 α 0 0 -2 0 0
0 0 0 α 2 0 0 0
0 0 0 2 α 0 0 0
0 0 -2 0 0 α 0 0
0 2 0 0 0 0 α 0
2 0 0 0 0 0 0 4 + α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a PPT entangled state for 2 ≤ α ≤ 2
√

2 [48, 49, 46]. The entanglement of this
state can be detected with the help of eq. (79) for 2 ≤ α < 2.4.

The entanglement criteria eq. (71), eq. (74) and eq. (75) can be also derived with the
above described scheme. However, eq. (71) and eq. (74) cannot detect the entanglement
of the state �α [46].
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Fig. 9. – Comparison of the entanglement categories: n-separability (nsep), k-producibility (kp)
and entanglement depth (kd).

3.3. Multipartite entanglement . – The exact characterization of tripartite entangle-
ment includes already many different kinds of entanglement as we have seen in the pre-
vious section. Therefore, the investigation of mulit-partite entanglement concentrates on
a few very characteristic properties instead of pursuing for a complete characterization
which would be too complicated. In general, there exist different ways of categorizing
multipartite entanglement: i) n-separability and ii) k-producibility/entanglement depth
k [50, 51].

The first categorization asks whether a pure state |ψ〉 can be separated into the
product of n groups. As a result, we call a pure state |ψ〉 n-separable if it can be written
as

(81) |ψ〉 = |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φn〉.

A mixed state is n-separable, if it is a convex combination of n-separable pure states.
In general, each of the states |φj〉 can consist of an arbitrary number of parties not
necessarily of equal dimension. Moreover, a n-separable state is also n − 1 separable
and so on. Thus, the declaration of a state as n-separable is in general only a lower
bound on the separability if not declared differently. To proof that a N -partite state is
entangled, we need to proof that this state is not N -separable. For genuine multipartite
entanglement, we need to show that is not biseparable.

The second categorization does not ask about the number of groups but how many
parties are in each group (see fig. 9). This question can be asked in two different ways:
i) the kp-producibility asks how many entangled particles are needed to create a state
and ii) the entanglement depth k defines how much entanglement can be extracted from
the state. On the one hand, a kp-producible state is also kp + 1 producible and so on.
Hence, it is an upper bound of the actual entanglement. On the other hand, a state
of entanglement depth kd inhabits also a depth of kd − 1 and so on. Therefore, the
entanglement depth is a lower bound. We call a state k-partite entangled if kp = kd = k.

Multipartite entanglement plays an important role in quantum metrology
schemes [28]. Here, the precision ( θ)2 of determining an unknown parameter θ is
lower bounded by

(82) ( θ)2 ≥ 1
sk2 + r

,

for a k-partite entangled state of a total number of N = sk + r parties [52].
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Fig. 10. – The magentic gradient field (lower picture) give rise to a position-dependent rotation
of the spin (upper picture). The projection of the spin in one direction leads to a sinusoidal
observable.

Multipartite entanglement can be detected e.g. by measuring the global spin 	J =∑
k 	σk [53, 54]. For k-partite entangled states, the variance ( Jz)2 is limited by

(83) ( Jz)2 ≥ Jmax · Fk/2

⎛
⎝

√
〈J2

x + J2
y 〉

Jmax

⎞
⎠ ,

with the effective spin length
√
〈J2

x + J2
y 〉 and the maximal spin Jmax = N/2 for spin 1/2

particles. The function Fk/2 can be determined numerically by using that the state min-
imizing ( Jz)2 is symmetric and given by |Ψ〉 = |ψ〉⊗N/k [53]. In this way, entanglement
of more than 680± 35 87Rb atoms has been demonstrated experimentally [54].

3.4. The spatial distribution of entanglement . – The entanglement depth k is an im-
portant variable characterizing a state as long as no spatial dependencies are involved.
Though, the size of experimental available quantum systems has grown in recent times.
As a consequence, the approximation that our quantum system under investigation cou-
ples only to spatially constant fields becomes weaker. Furthermore, the spatial distri-
bution of entanglement helps also to investigate quantum phase transitions [55-59] or to
distinguish different ground states of the generalized Heisenberg spin-chain [60,61].

An example of a position-dependent field coupled to a quantum systems is given
e.g. by a magnetic gradient field inducing a position dependent rotation of the spin as
depicted in fig. 10. The projection of the spin leads to the sinusoidal observable

(84) 	B =
∑

j

sin
(
2π

xj

λ

)
	σj

with the position xj of particle j and the wavelength λ determined by the gradient and
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w = 16
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w = 1

Fig. 11. – Variance of the observable 
B for different parameters λ and entanglement configu-
rations for N = 16 particles. Pairs of encircled particles form together the state |ψ−〉. The
product state (non-encircled particles, w = 1) is chosen in such a way, that it minimizes the
variance. Although, both entangled states possess the same entanglement depth k = 2, they
exhibit quite different behavior due to their different spatial distribution of entanglement. The
red dashed-dotted line corresponds to the w = 2 entanglement configuration (blue dashed line)
optimized over all states with the given entanglement configuration.

the interaction time. The variance (� �B)2 = (�Bx)2 + (�By)2 + (�Bz)2 can be used
to determine the entanglement of the state similar to the variance of the total spin.
However, (� �B)2 not only depends on the amount of entanglement but also on its spatial
distribution. Assume for example a state |Ψ〉 =

⊗
{j,k} |ψ−〉j,k consisting of pairs of

particles in the state |ψ−〉j,k = (|01〉j,k − |10〉j,k)/
√

2. The variance of this state now
depends on the spatial distribution of the |ψ−〉j,k states as shown in fig. 11. Whereas
(�J)2 is equal to zero for all configurations, (�B)2 is only equal to zero if the entangled
pairs |ψ−〉j,k are situated in such a way, that the coupling strength aj = sin(2πxj/λ) is
equal for entangled particles j and k. The variance becomes larger, the more the coupling
strengths aj and ak differ from each other. This behavior is not only valid for the singlet
state |ψ−〉 but stays also valid if we minimize over all states. In general, we find the
lower limit of the variance [62]

(85) min
|ψ〉

(Δ �B)2(j,k) =

⎧⎨
⎩a2

j

(
2 + 2ε2 − 4ε2

(1−ε)2

)
, −1 ≤ ε ≤ ε0,

3a2
j (1 − ε)2, ε0 ≤ ε ≤ 1,

where we assumed with out loss of generality |aj | > |ak| and defined ε = ak/aj and
ε0 = 2 −√

3 ≈ 0.27. Here, we want to note that the state minimizing (Δ �B)2(j,k) is given
by the singlet state |ψ−〉 for ε > 2 − √

3. In this way, the minimal variance for states,
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Fig. 12. – Comparison of entanglement depth (a) and entanglement width in 1D (b) and 2D
(c) or a graph (d) of the state |Ψ〉 = |ψ1,3,6〉 ⊗ |ψ4,5〉 ⊗ |ψ2〉: whereas the entanglement depth
disregards any spatial ordering, the definition of entanglement width requires the particles to
be spatially ordered, e.g. in a spin chain or a grid. The entanglement depth of the state |Ψ〉 in
(a) is given by k = 3 (since maximally three particles are entangled). This is a lower bound on
the entanglement width in (b), which equals w = 6 (since entanglement occurs over a distance
of six particles in the chain). In the case of the 2d grid in (c) we distinguish between the
width in the horizontal direction (wx = 3) and vertical direction (wy = 2). In a general graph
(d) where edges denote possible interaction between two particles there might exist different
ways to connect two particles. In this case, we take always the shortest way to determine the
entanglement width [62].

where only nearest-neighbor entanglement between particles j and j + 1 for odd j is
allowed, can be determined. As can be seen in fig. 11 this bound (red dashed-dotted
line) is valid for the product states and the nearest-neighbor configuration of |ψ−〉 but is
violated by other spatial configurations.

Similar to multipartite entanglement, the exact investigation of the spatial distri-
bution of entanglement is very resource intensive or even impossible for many-particle
states. Hence, we define instead the width of entanglement (see fig. 12) as a characteristic
measure of the spatial distribution of entanglement similar to the entanglement depth
for multipartite entanglement.

To define the width of entanglement w we need to define a spatial ordering given e.g.
by a linear chain of trapped ions (fig. 12 b)), a lattice of cold atoms (fig. 12 c)) or a
graph with given interactions (fig. 12 d)). The distance between two particles is then
determined by following the given structure and counting particles in between. As a
consequence, the width of entanglement w of a pure state |Ψ〉 =

⊗
j |ψj〉 is defined as

the maximal distance w of two entangled particles within the states |ψj〉. A completely
separable state exhibits an entanglement width of w = 1. The entanglement width of a
mixed state is defined by the minimum with w over all decomposition � =

∑
k pk|ψk〉〈ψk|,
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that is

(86) w(�) = min
decompositions

[
max

k
{w(ψk)}

]
.

By definition, the entanglement depth is a lower bound of the entanglement width.
However, the entanglement width does not make any statement about the entanglement
depth.

To use the variance (�B)2 to detect the width of entanglement, we need to not only
optimize over the state but to also find the optimal pairing. For example, for the width
w = 2 ion j might be entangled with j − 1 or j + 1 or not entangled at all. Still, these is
a classical optimization problem which for some configurations is easy to solve or can be
at least approximated [62]. For example, for N particles situated at xj = x0 + j · d with
d = λ/(2N) and x0 = d/2 the optimal pairing for only nearest-neighbor entanglement is
given by entangling all odd particles j with their right neighbor j +1. As a consequence,
the variance (�B)2 for states with entanglement width w ≥ 2 are bounded from below by

(87) (Δ �B)2 ≥ 3
2
N

[
1 − cos

( π

N

)]
≈ 3π2

4N
.

In this way, the width of entanglement can be determined without addressing of single
subsystems, solely with global measurements.

4. – Conclusion

In summary, we have discussed in this lecture note different quantum properties such
as the wave-particle duality and entanglement. However, both phenomena are based like
many other quantum properties on non-commuting observables. As a result, measure-
ment procedures to observe wave-particle duality or entanglement are based on similar
principles such as the Cauchy-Schwarz inequality. The only difference is that to observe
wave-particle duality or the Heisenberg uncertainty, we apply these principles on the
whole system whereas we apply them to single subsystems to observe entanglement.
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I thank M.S. Zubairy, O. Gühne and W.P. Schleich for fruitful discussions on these

topics and D. Kiesler, S. Altenburg, T. Kraft, H. Siebeneich, P. Huber and J. Hoffmann
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Appendix A.

Proof of eq. (49)

A separable state can be decomposed into ρ =
∑

n pn|αn〉〈αn|⊗|βn〉〈βn| with
∑

n pn =
1 and |αn〉,|βn〉 being arbitrary normalized states of system A and B, respectively. The
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expectation values of the joined observables Mj,k factorize for the product states |αn〉|βn〉.
Therefore, the sum of the observables can be rewritten by

(A.1)
3∑

j,k=1

〈Mj,k〉sep =
∑

n

pn〈αn|(σx + σy + σz)|αn〉〈βn|(σx + σy + σz)|βn〉

for separable states. Since 〈σx + σy + σz〉 ≤ 1 and
∑

n pn = 1 we find

(A.2)
3∑

j,k=1

〈Mj,k〉sep ≤ 1.
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[51] Gühne O., Tóth G. and Briegel H. J., New J. Phys., 7 (2005) 229.
[52] Hyllus P., Laskowski W., Krischeck R., Schwemmer C., Wieczorek W.,
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Summary. — In quantum physics we are confronted with new entities which consist
indivisible of an energy packet and a coupled wave. The complementarity principle
for certain properties of these quantum objects may be their main mystery. Photons
are especially useful to investigate these complementary properties. A series of
new experiments using spontaneous parametric down-conversion (SPDC) as a tool
allowed the detailed analysis of the physical background of this complementarity
and offers a new conceptual perspective. Based on these results a straightforward
explanation of these sometimes counterintuitive effects is given.

1. – Introduction

Complementarity is one of the most fundamental and important principles of quantum
physics. It was mentioned the first time by Niels Bohr in 1927 (at the Fermi conference
in Como) as a consequence of the uncertainty of certain pairs of quantum physical pa-
rameters and published one year later [1]. The most prominent pair of such parameters
are position and momentum. Other pairs, as e.g. electric and magnetic field strengths
of photons, can be derived from them. But complementarity is also a consequence of
the wave-particle-duality and as such very widely investigated in quantum optics. The
most prominent example of this duality appears in the double-slit experiment with single
photons, where we obtain interference structures in the light pattern behind the double
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slit if no which-slit information is available and no interference (but diffraction) if the
knowledge about which slit the photon has passed is available [2].

In his famous lectures on physics Richard Feynman wrote in 1964 that the wave-
particle dual behavior contains the basic mystery of quantum mechanics [3]. Later he even
pronounced it more by saying it may be even the only mystery of quantum mechanics. In
1984 Marlan Scully, Berthold Englert and Herbert Walther stated that: Complementarity
is deeper and more general and fundamental to quantum mechanics than uncertainty [4].

Although the present theoretical concepts of quantum physics provide a complete set
of recipes to calculate all results which have so far been observed with quantum systems
these experimental results are sometimes quite counterintuitive. Therefore it seems to be
worthwhile to investigate the physical background of complementarity in further detail to
reach a better conceptual understanding. As will turn out at the end of this manuscript
it seems possible to identify a more or less hidden physical entity as responsible for these
astonishing effects. Its action is completely included in our theoretical concepts in a very
optimal way. But it is only indirectly observable: the quantum vacuum [5].

For the investigation of complementarity and for the detailed analysis of the wave-
particle-duality photons as quantum objects are especially useful. In our everyday life
at room temperature only about 1% of the light modes are occupied by photons, 99%
are empty. So far the energy packets of photons can easily be separated with their
related modes in contrast to the spectral range of radio waves. On the other side in the
high-energy region the wave properties are very difficult to observe because of technical
difficulties in this very-short-wavelength range.

As a result in the measuring process the energy packet of the photon is measured as a
click. But the photon modes show interference and diffraction. Clicks are not observed at
spots of distractive interference. On the other side, even single photons can be detected
in spatial regions which would never be illuminated without the diffraction, e.g. in the
dark region behind the knife edge. Therefore it can be concluded that the single photon
(as any other quantum object) consists of an energy packet and an associated wave which
are not separable. This duality has far-reaching consequences in the measuring process.

In general light or single photons as the constitutents of light are distributed spec-
trally, temporarily, spatially and in their polarization. But usually the detection
system of light is only sensitive in certain ranges of these distributions. As a result in the
measurement process the single photons are detected only within the chosen distribution
of frequency, time, space and polarization. These distributions define the modes of the
detection system which are known from classical optics.

Only photons within the detection mode can be registered as clicks.

As a result in each physical situation only a certain selection of the photons and thus
only a certain selection of the reality of that quantum system is registered. As will be
shown below this selection determines the properties of the observed reality. In other
words:

It is the measuring process which selects the properties of the quantum
object in a certain physical situation.
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Of course photons cannot be detected if they are never generated. Thus the result
of the measurement is the convolution of the modes of generation with the modes of
detection. (In many cases the distributions of the generation process are much wider
than the distributions of the detection process and therefore in these cases the detection
modes play the dominant role).

Regarding complementarity two fundamental aspects can be extracted from the non-
separable energy packet and wave nature of single photons (as for all of other quantum
objects):

1) The wave nature of the photon results in a number of uncertainty relations as
e.g. for space and momentum. The spatial modes of single photons as used in quantum
field theory are solutions of the classical Maxwell or Helmholtz equations. These modes
exist in free space either occupied or not occupied by photon energy packets. The clas-
sical light mode with the smallest product of beam waist diameter and divergence is the
TEM00-Gauss-mode. The spatial uncertainty within the beam waist and the momentum
uncertainty within the divergence fulfill exactly the Heisenberg uncertainty relation be-
tween space and momentum [6], which is no surprise because the underlying quantum
theory is a wave description.

The uncertainty relations describe the complementarity between the
involved parameters of the considered quantum object

(as e.g. the photon).

2) The photon modes in consideration may show certain coherence properties. If we
assume for simplicity the mode function system of Gauss-Laguerre and Gauss-Hermite
modes the longitudinal and the transversal coherence lengths of these modes can be
defined [7]. Therefore the question arises how coherent are single photons in these modes
and how distinguishable are they. The coherence is usually characterized by the visibility
V of the fringes of an interference experiment which is calculated from V = (Cmax −
Cmin)/(Cmax + Cmin). Cmax and Cmin are the maximum and the minimum photon
count rates of the fringes. The distinguishability can be measured in coincidence with
the reference photon as a marker for one of the two paths the photon can take. The
distinguishability D follows from D = (Rpath1 − Rpath2)/(Rpath1 + Rpath2). In this
formula Rpath1 and Rpath2 are the coincidence count rates measured for the observed
photon in path 1 and in path 2 in coincidence with a reference photon marking path
1. As an example think of the double-slit experiment, there path 1 relates to slit 1 and
path 2 relates to slit 2. From a fundamental quantum optical calculation there follows
that D2 + V 2 equals in maximum 1 [8] and [9]. This relation is also true for physical
situations of uncertainties larger than Heisenberg’s uncertainty relation would demand,
as will be shown below.

The relation between visibility and distinguishability is the second
fundamental aspect of the complementarity principle for quantum objects.

Both aspects of complementarity are a consequence of the modes of the photons. Thus
it is the wave nature of the photons and not the particle-like aspect which is responsible
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Fig. 1. – Scheme of the emitted light in SPDC: The entangled signal (red) and idler (green)
photons occur at opposite sides of the cone.

for complementarity. The not separable energy packets of the single photons are only
the reason for occupied (excited) or not occupied (not excited) modes.

To investigate the physical background of these aspects of the complementarity prin-
ciple a set of new experiments was performed to show in detail the properties of single
photons in certain modes.

2. – Spontaneous parametric down-conversion (SPDC) as a tool

In spontaneous parametric down-conversion an optically transparent crystal with a
second-order nonlinearity (χ(2)) is used to generate two entangled photons from one
pump photon. In this process energy and momentum is conserved. By choosing a
suitable orientation of the crystal phase matching between the wave of the pump photon
and the two waves of the newly produced photons can be realized and thus the efficiency
of the process enlarged significantly [10, 6] and [11]. The two new photons are usually
named signal and idler photons. In type-I phase matching which is realized by a special
orientation of the crystal the signal and the idler photons belong to the same light cone
structure which is emitted cylindrically symmetric around the pump photon direction as
illustrated in fig. 1.

Because of momentum conservation the two photons appear on opposite sides of
the cone. As a result of the entanglement of the two photons including their temporal
synchronization one of the photons (e.g. the idler photon) can be used as a reference
for the other photon (then the signal photon). This allows in addition to usual single-
photon measurements coincidence measurements from the simultaneous observation of
two clicks. Because of the entanglement (and correlation), the properties of the signal
photon can be determined from measuring the correlated properties of the idler photon.
As will be shown below this allows new measurements regarding the investigation of the
complementarity principle.

But even more important information is available from using spontaneous parametric
down-conversion for the investigation of complementarity. In the quantum description of
the generation of the new photons the 3-wave mixing of the pump mode with the vacuum
modes is applied.
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Fig. 2. – Scheme of 3-wave-mixing process with the vacuum field contribution.

The electric field components of the signal and the idler field are given by the following
equations:

E
(+)
signal(r, t) = as0(r, t) + Capump(r, t)a

†
i0(r, t),(1)

E
(+)
idler(r, t) = ai0(r, t) + Capump(r, t)a

†
s0(r, t).(2)

With this simplified model as used in [12] and [13] an effective Hamiltonian is applied.
The couplings are described by apumpa

†
i0 and apumpa

†
s0, where apump, as and ai (a†

pump,
a†

s and a†
i ) are photon annihilation (creation) operators for the pump, signal, and idler

fields. This way the annihilation (creation) of the pump photon and the simultaneous
creation (annihilation) of signal and idler photons in the SPDC 3-wave mixing process
with the vacuum field contributions as0 as signal vacuum and ai0 as idler vacuum is
considered. The electric fields leaving the crystal are the sum of the created photon
fields and the undisturbed vacuum fields crossing the crystal. This description of the
SPDC process is illustrated in fig. 2.

The important observation here is that in this spontaneous parametric down-
conversion the vacuum fields are directly involved in the generation process of the two
new photons. This allowed the investigation of the physical background of complemen-
tarity with new experiments using SPDC as a tool. By measuring a single signal photon
or single idler photon these vacuum fields will not play any role. But if the two photons
are measured in coincidence these vacuum fields will mix in the formulas of the measured
intensity as Glauber described in his photodetection theory of the measuring process [14]
and thus entanglement is provided.

In summary, spontaneous parametric down-conversion (SPDC) allows a detailed in-
vestigation of the influence of the vacuum fields in the generation process of single photons
and in the entanglement process. This will be, as shown below, a very powerful tool to
investigate complementarity.

3. – Induced coherence in the 3-crystal set up

As published in [13] the addition of the third crystal in the known induced coherence
setups [15] and with higher visibility described in [16] allows a very direct observation of
the randomness of the vacuum fields. The experimental setup is shown in fig. 3.
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Fig. 3. – Scheme of the induced coherence setup with 3 crystals as published and described in
detail in [13].

In this set up the crystals BBO 1 and BBO 2 are aligned for the same idler mode
and crystal BBO 1 and BBO 3 are aligned for the same signal mode. Therefore the two
signal photons s1 and s2 are perfectly coherent as well as the idler photons i1 and i3 if the
whole setup is aligned well. As a result at detector A perfect fringes with visibilities of
almost 1 could be measured if crystal BBO 3 was not pumped and in the same way with
detector D visibilities of almost 1 could be detected if crystal BBO 2 was not pumped.
But if all three crystals are pumped, simultaneously, both interference diagrams show an
incoherent background as is shown in fig. 4.

As was shown in ref. [13] this result can be explained using the set of equations as
given in eqs. (1) and (2) from above. The result is illustrated in fig. 5. As can be seen
from this figure and also shown in eq. (3) the fields of the signal photon 1 and of the
signal photon 2 are coherent because in the generation process of these two photons the
pump is a coherent state and therefore the fields of pump 1 and pump 2 have a fixed
phase relation. The idler vacuum responsible for the 3-wave mixing in the generation
process of the two photons is the same. Therefore the 3-wave mixing process in the
two crystals BBO1 and BBO2 is realized with the same phase relations and thus the
two signal photons are generated with the same phase as can be seen in the following
equation (of course the path delays between the two crystals have to be recognized):

(3) E
(+)
S−BS(r, t) = as10 + ias20e

iφs2 + C1apump1a
†
i0 + iC2apump2a

†
i0e

iφs2 .

The situation for the generation of the two idler photons, idler photon i1 and idler
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Fig. 4. – Experimental results of the interference fringes in the 3-crystal–induced coherence
measurement of fig. 3 as published and described in [13] in detail. On left the count rate of
the signal photons measured with detector A and on right the count rate of the idler photons
measured with detector D are shown. Although the signal photons of crystal BBO1 and BBO3
are perfectly coherent all photons of crystal BBO2 are not coherent and produce the background
signal in this figure on the left. The same argument is valid for the idler photons at detector D.

Fig. 5. – Scheme of the induced coherence setup with the vacuum field contribution.

photon i2, is completely different as illustrated in fig. 5 and in the following equation:

(4) E
(+)
I−BS(r, t) = ai10 + iai20e

iφi2 + C1apump1a
†
s10 + iC2apump2a

†
s20e

iφi2 .

Although the two idler photons from the two crystals BBO 1 and BBO 2 are excita-
tions of the same spatial vacuum mode as already shown in fig. 5 the generation process
of the two idler photons is a 3-wave mixing of the pump, which is again coherent, but of
two clearly distinguishable signal vacuum fields signal vac1 and signal vac2. These two
vacuum fields are of course not at all coherent (which is also demonstrated by the result
of the experiment, see fig. 4, right). As result the idler photon i1 and the idler photon
i2 have a random phase relation. Thus in the induced coherence experiment with three
crystals as shown in fig. 3 for the idler photons detected with detector D a coherent signal
can be observed for the photons produced in crystal BBO 1 or BBO 3. But all the idler
photons generated in crystal BBO 2 are not coherent neither to the photons from BBO
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1 nor to the photons from BBO 3. As result all the idler photons generated in BBO 2
appear as an incoherent background in the interference measurement at detector D as
observed in fig. 4, right.

The same argumentation is valid for the measurement at detector A. All the signal
photons generated in crystal BBO 3 are not coherent to the signal photons generated in
crystal BBO 1 or in crystal BBO 2. As result all the signal photons from crystal BBO 2
appear as incoherent background in the interference measurement at detector A.

Regarding the question of complementarity from these experimental results it can be
summarized:

Photons generated by the same vacuum field will be coherent if all other
participating fields are also coherent. But if the photons are generated by
different vacuum fields they are not coherent.

This is also true even if the two photons belong to the same spatial TEM00 mode as
it was applied in the experiments above for both the idler channel i1 and i2 as well as the
signal channel s1 and s3. This means it is possible to generate single photons in the same
spatial mode but with different phases. These photons are, as in the experiment above,
also distinguishable. In the described measurement they could easily be distinguished by
measuring the related signal photon s1 and s2 as reference for the idler photons i1 and
i2 or the idler photons i1 and i3 for the signal photons s1 and s3 in coincidence.

As a summary of these experimental results it can be concluded that:

The randomness of the vacuum fields causes temporal complementarity.

4. – Stimulated coherence

The random phase of a vacuum field mode can be overwritten by the coherent mode
of a laser [17] as described in detail in [18]. In our experiment the radiation of a HeNe-
laser was used as stimulating light field in the 3-wave mixing process inside the SPDC-
crystal in the same TEM00 mode as was used in the idler channels of the two separated
crystals BBO1 and BBO3 in the induced coherence experiment above (see fig. 3). The
experimental scheme is depicted in fig. 6.

As can be seen from the scheme of fig. 6 the two crystals BBO1 and BBO3, which are
positioned in the same way as in fig. 3, are coupled via the signal channel s1 and s3. As
in the experiment of fig. 3 these two signal channels would be not coherent without the
HeNe-laser radiation as a consequence of the random phase of the two distinguishable
vacuum fields in the idler channels i1 and i3. But by overwriting these two idler vacuum
channels with the coherent light field of the HeNe-laser the phases of the two signal
channels are fixed and an interference with a high visibility of 0.95 was observed at
detector A if one of the pump laser radiation is delayed as shown in fig. 7 [18].

In this case the remaining spontaneous emission triggered by the vacuum fields ap-
pears as an incoherent background in this measurement. But their count rate is so low
that it is almost not visible in the single-photon interference pattern.
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Fig. 6. – Scheme of the setup with two sequential BBO-crystals for measuring stimulated coher-
ence overwriting the random vacuum field as described in detail and published in [18].

This effect can also be demonstrated by using two crystals in a parallel arrangement
as is also described in detail in [18]. The two SPDC-crystals BBO2 and BBO3 are
pumped coherently from the same pump laser source as in all other experiments before
and the HeNe-laser radiation is applied in the idler channels of the two crystals. The
experimental scheme is depicted in fig. 8.

If a delay line is inserted in the beam of signal 3 it is possible to observe single-photon
interference between the two signal channels s2 and s3 at detector A. The result of this
measurement is given in fig. 9.

As can be seen from this fig. 9 the single-photon count rate for the signal photons
provided from crystals BBO2 or BBO3 shows clear fringes as a function of the delay
of the signal beam with high visibility of 98%. Without the HeNe-laser radiation no

Fig. 7. – Interference of single signal photons emitted from crystals BBO1 or BBO3 of fig. 6 while
changing the delay between pump 1 and pump 3 resulting in a visibility of 95% as published
in [18].
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Fig. 8. – Scheme of the setup with two parallel pumped BBO-crystals for measuring stimulated
coherence by overwriting the random vacuum field as described in detail and published in [18].

Fig. 9. – Interference measurement between the single signal photons from crystals BBO2 or
BBO3 of fig. 8 while changing the delay between signal 2 and signal 3 resulting in a visibility of
98% as published in [18].

single photon interference could be observed at all. Again the remaining spontaneous
emission triggered by the random vacuum fields appears as an incoherent background
in this measurement, but with very low count rate that it is almost not visible in this
measurement.

Summarizing this part of the discussion it can be stated:

The random vacuum fields can be overwritten by coherent light fields, e.g.

from laser sources.
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Fig. 10. – Scheme of the spatial emission of spontaneous parametric down-conversion (type I)
of a BBO crystal and the position of the two TEM00 signal photon modes signal 1 and signal
2 which are selected by the detection system and superimposed for investigating the lateral
coherence between them as published in [19].

5. – Complementarity in the spatial dimension

After discussing the complementarity for single photons in the temporal dimension the
next step is their investigation in the spatial dimension as published in [19]. While above
the temporal coherence of single photons and their distinguishability were analyzed now
the coherence of single photons which are potentially belonging to two or more spatial
modes will be discussed. Therefore single-photon interference was measured for photons
in transversally distributed modes. These modes are superimposed and the resulting
visibility and distinguishability of these modes is measured.

For this purpose an experiment was set up in which spontaneous parametric down-
conversion (type I) was used as a tool again. The scheme is depicted in fig. 10.

In this case a single light cone is emitted behind the crystal with a cylindrical sym-
metry around the pump beam direction. The single idler and signal photons appear on

Fig. 11. – Scheme of the Mach-Zehnder-interferometer for measuring the interference of different
positions of the selected TEM00 modes of signal 1 and signal 2 within the cone.
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Fig. 12. – Measured visibility of the interference fringes of the two TEM00 modes of signal 1 and
signal 2 as a function of their tangential distance along the emitted cone structure as published
in [19].

opposite sides of the cone. Our spatially selective TEM00 mode detector was set up to
measure a small emission share from this cone in the areas of signal 1 and signal 2 as
depicted in fig. 10. The resulting two TEM00 modes of signal 1 and signal 2 were fed
into a Mach-Zehnder interferometer as shown in fig. 11.

With this arrangement different TEM00 modes of the emitted single photons could be
overlaid using a delay line for zero delay and the interference visibility could be measured
as a function of the distance of the two TEM00 modes within the cone as shown in fig. 10
right. The result of this measurement is shown in fig. 12.

The maximum visibility in this case was determined to about 90% as a consequence
of no corrections for any background or other disturbing signals. The experimentally
observed width of the visibility curve demonstrated that only photons inside the TEM00

detection mode are coherent as described in detail in [19].
The also available idler photon on the opposite side of the light cone (see fig. 10, left)

can be used as a reference for the signal photon. From the coincidence measurement
of the idler and the signal photons the distinguishability D between the two TEM00

measured modes could be determined. The result of this measurement is given in fig. 13.
From these two measurements at each distance between the two TEM00 modes signal

1 or signal 2 the complementarity value of D2 + V 2 was determined to values between
0.8 and 0.9 [19]. These values confirm that in this measurement the complementarity
principle in the spatial dimension is nicely fulfilled. The reason why the sum is slightly
below 100% is a consequence of the not corrected visibility measurement of fig. 12.

These experimental results can be summarized in the following way:

– Photons in a TEM00 mode are only coherent from the same mode.

– These photons are not distinguishable.
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Fig. 13. – Distinguishability between the single photon in the TEM00-modes signal 1 or signal 2
as a function of the tangential distance of signal 2 in relation to the signal 1 as published in [19].

Regarding complementarity in the spatial dimension it can be concluded:

Distinguishable spatial modes are generated from different vacuum fields.
Because of the randomness of the vacuum fields these modes are not
coherent. Thus also in the spatial dimension complementarity is a

consequence of the randomness of the vacuum fields.

6. – Complementarity for single photons in higher-order spatial modes

After having the mode concept applied for single photons in the fundamental mode,
successfully, the question about complementarity for photons in higher-order spatial
modes will be asked. These modes show intensity structures with at least two or more
humps as e.g. the TEM01 Gauss-Laguerre or Gauss-Hermite modes. The electric field
has opposite phases in the neighboring humps and between the humps both the electric
field and the intensity is 0 (see fig. 14).

This suggests the questions: Does a single photon in such higher-order mode show
interference as the classical mode would do and can the single photon be localized in one
of the humps?

For investigating the complementarity principle for single photons in such higher-
order spatial modes reference photons are needed to determine the distinguishability as
in all previous measurements described above. The known way to realize such a photon
correlation is spontaneous parametric down-conversion as described above.

Therefore we applied photons in a TEM01 mode to pump at type II SPDC crystal [20].
Indeed the out coming signal and idler photons showed a double-hump structure in the
near field of the crystal similar as the pump photon. Therefore the single signal photons in

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



280 R. Menzel

Fig. 14. – Calculated intensity (top) and electric field patterns (bottom) for a TEM00 (left) and
a TEM01 (right) mode. Both the electric field and the intensity of the TEM01-mode are zero
between the two humps.

this TEM01-like mode near field structure were used in the Youngs double-slit experiment
as shown fig. 15 and described in detail in [20].

The two humps of the signal photon light were imaged onto the two slits. With
the idler photon detector as reference “which-slit” information based on the near field
correlation could be measured in coincidence if the signal photon detector was placed
right behind the double slit. A very strong correlation of more than 95% was found for

Fig. 15. – Scheme of the double-slit experiment using a TEM01 mode to pump at type-II SPDC
crystal as described in detail and published in [20]. The two humps of the signal photons were
imaged onto the double slit and the idler photons coupled out with a polarizing beam splitter
and imaged on the idler detector for reference.
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the two photons emitted both from the same hump of the pump mode. We observed
this result also for single-photon pairs in higher-order modes as e.g. TEM02 or TEM11

modes.
While imaging the single-signal SPDC-photons onto the double slit as shown in fig. 15

and described in detail in [20] interference fringes with good visibility in the range of 0.6
could be observed in the far field behind the slits. This result seems to be conflict with
the complementarity principle. But this simple arrangement of fig. 15 includes an unfair
sampling for the measured photons. Much more photons are detected for the “which-slit”
information compared to the photons observed in the interference measurement as it was
discussed in ref. [21].

A detailed analysis showed that this simple experiment shows a reach variety of
transversal light structures behind the SPDC crystal as a consequence of the TEM01

pump mode [22] and the resulting complex phase matching conditions. Unfortunately
the higher-order pump mode does not directly transform to the same down-converted
mode of the signal and idler photons.

But based on the results of this complicated and full theoretical description of the
SPDC process without any fitting parameters [22] and the realized almost perfect match
of the experimental results it was possible to modify the experimental setup with aper-
tures in the far field between the crystal and the polarizing beam splitter (near the lens
in fig. 15) to avoid the unfair sampling. Both the idler and the signal photon detector are
measuring the same photon pairs in the near and in the far field of the signal photons,
then. Thus which-slit information and interference visibility can directly be combined in
this modified setup.

This way it was possible to obtain the double-slit interference with signal photons in
a TEM01-like mode to our knowledge for the first time. The result as described in detail
in [23] is shown in fig. 16.

As can be seen from the left side of fig. 16 the far field interference pattern of the
signal photons shows on this side of the emitted light cone a dip in the middle of the
interference structure. This indicates that the electric field of the two humps imaged onto
the two slits has a phase shift of 180 because otherwise the maximum of the interference
would be obtained in the middle of that structure. So far the TEM01-like mode structure
is confirmed from this observation.

On the right side of fig. 16 the distinguishability D, the visibility V and the D2 + V 2

values of the signal photons are given as a function of the vertical position of the idler
detector in this coincidence measurement. If the idler detector is positioned in the middle
of the TEM01 mode the visibility is as high as possible (V = 1) and the distinguishability
D of the signal photon passing slit 1 or slit 2 is zero. If the idler detector is moved outside
of the middle of the mode the visibility drops and the distinguishability increases. The
D2 + V 2 value is 1 in maximum which is expected and is a little bit smaller in between.

Therefore also for single photons in a higher-order transversal mode (in our case
TEM01) the complementarity principle is fulfilled. But in the context of the previous
discussions the physical background of this behavior can be analysed, too. First it can
be concluded that even single photons in a higher-order transversal mode show the clas-
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Fig. 16. – Result of the double-slit interference with signal photons in a TEM01-like mode (left)
and the associated distinguishability and visibility measurements (right) as described in detail
in [23] with the setup of fig. 15 but with apertures for fair sampling.

sically expected interference probability structure. Although the near field coincidence
measurement of the signal and idler photon pair shows a strong localization of the emis-
sion spot of the bi-photon in just one of the humps the interference pattern is given by
the full mode.

It can be concluded from this experiment that also the higher-order transversal modes
exist as non-occupied vacuum field modes. With this physical background there is a very
intuitive explanation of the result of fig. 16:

As long as our detectors see the vacuum field contributions in the generation pro-
cess of the bi-photons only in the desired TEM01 mode the obtained visibility V is 1
as a consequence of the coherence of this mode. But as soon as the idler detector is
moved towards one of the humps photons not belonging to the desired TEM01 mode
are measured. These photons are generated by different vacuum fields. These vacuum
fields are not coherent to the vacuum fields of the first mode. Therefore the visibility
drops. But then the two modes become distinguishable and the distinguishability D in
this measurement increases. In any case the D2 + V 2 value is maximum one.

Finally these measurements can be summarized in the following way:

Photons in a higher-order transversal modes are coherent and not
distinguishable and vice versa (D2 + V 2 = 1).

7. – Conclusion

In summary of the here discussed experiments the complementarity principle was
demonstrated as a consequence of the measuring process, which makes a selection of the
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mode function and the involved vacuum field contributions. Finally this may give a new
conceptual perspective towards quantum optics.

The physics behind the complementarity principle may be summarized as follows:

– uncertainty is a consequence of the wave nature of quantum objects

– duality is a consequence of the energy packet in this wave (mode)

– the detection system selects coherent or distinguishable modes

– vacuum field modes are random: intrinsic randomness in QM

– coherent (laser) modes can overwrite the random vacuum fields

The most important consequence of this discussion is:

Only modes based on the same vacuum are coherent.

Therefore each experimental situation can be analyzed for the measured modes and
their vacuum contributions. Complementarity means that photon modes based on the
same vacuum will be coherent because the excitation of these modes does not change
their phase. But as in the example of the 3-crystal experiment the same spatial mode
can be excited by different vacuum field contributions and then the single-photon modes
can be incoherent. Therefore the final consequence of this discussion is:

The physics of the vacuum field modes causes complementarity in
quantum optics.
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Summary. — We present a brief overview of the field of quantum imaging, concen-
trating on some recent results. Quantum imaging is a specific example of quantum
metrology, and we thus start out with a discussion of quantum metrology includ-
ing the generation of squeezed light and the generation of entangled photon pairs
through the process of spontaneous parametric downconversion (SPDC). We then
proceed to review three different examples of quantum imaging, namely ghost imag-
ing, imaging based on interaction-free measurements, and imaging based on Man-
del’s induced coherence.

1. – What is quantum imaging?

The goal of quantum imaging is to produce “better” images using quantum methods.
These images can be better in that they are created through use of a very small number
of photons, that they possess better spatial resolution, or that the possess a better signal-
to-noise ratio. From a more abstract point of view, one can say that quantum imaging
is image formation that exploits the quantum properties of the transverse structure of
light fields. In this paper, we present a review of some recent work on this topic. A good
summary of earlier work is presented in the book Quantum Imaging [1].
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Fig. 1. – Laboratory setup for the demonstration of sub-shot-noise sensitivity through use of
squeezed light [4].

2. – Brief history of quantum methods in metrology

Before turning our attention to quantum imaging, it is instructive to first review
the usefulness of quantum methods more generally for their use in metrology. Under
proper conditions, quantum methods allow one to perform optical measurements with
an accuracy that exceeds the “standard quantum limit”, the limit imposed by shot noise
in a measurement apparatus.

One example of a quantum method in metrology is the use of squeezed light [2].
Squeezed light refers to a light field in which the fluctuations in one conjugate variable
are suppressed at the expense of having increased fluctuations in the other conjugate
variable. One specific example of squeezed light is quadrature-squeezed light, in which
the fluctuations of one quadrature of the field (the part oscillating as cosωt, for example)
are suppressed and the fluctuations in the other quadrature (the part oscillating as sinωt)
are increased. Certain nonlinear optical interactions can create light fields with this
squeezing property. Quadrature-squeezed light was first demonstrated by the group of
Slusher in 1985 [3]. Its application to precision metrology was demonstrated by the group
of Kimble [4]. The experimental setup of this work is shown in fig. 1. P1 and P2 represent
phase modulators placed inside a Mach-Zehnder interferometer. These devices represent
the phase objects to be measured by the interferometer. The input to the interferometer
is provided by a coherent laser beam E1 and from the squeezed-vacuum output of an
optical parametric oscillator (OPO). Some of the measured results are shown in fig. 2.
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Fig. 2. – Example of data collected with the setup of fig. 1 [4].

The top right figure shows the noise in the output when the OPO is blocked so that
the (fluctuating) electromagnetic vacuum enters through the left port. In obtaining this
trace, phase modulator P1 is modulated at 50 Hz to vary the output power. The dashed
line at Φ = 0 shows the standard quantum limit (shot noise level). The bottom right
figure shows the noise level when the OPO is unblocked so that squeezed vacuum is
injected into the left port. One sees that the noise level is decreased by approximately
3 dB. This decreased noise level allows one to make more accurate measurements of any
phase shift between the two arms of the interferometer.

Another example of quantum methods in metrology is afforded through use of twin
beams. Twin beams are beams of light that contain identical fluctuations. Therefore,
although each beam is “noisy”, the difference in the intensities of the beams has greatly
reduced noise and in principle is entirely noise free. Quantum metrology based on twin
beams has been studied extensively by the group of Fabre and coworkers [5]. One example
is shown in fig. 3. Here one of the beams falls passes through a potassium vapor cell and
is detected by DET2. Its twin falls directly onto detector DET1. The difference in the
two photocurrents is measured and is plotted in fig. 4 as a function of the frequency of
the light. The trace on the left is seen to be much less noisy than the trace on the right
obtained without the use of twin beams.
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Fig. 3. – Laboratory setup for the demonstration of sub-shot-noise sensitivity through the use
of twin beams [5].

Another quantum resource of considerable interest in metrology and in quantum tech-
nologies is afforded by entangled light fields. Applications of entangled light fields include
quantum teleportation and quantum cryptography. Entangled light sources are also used
for performing fundamental tests of quantum mechanics, such as its inherent nonlocality
as illustrated in Einstein-Podolsky-Rosen correlations. In the next section, we review
one of the standard means of generating entangled photon pairs.

Fig. 4. – Demonstration of sub-shot-noise sensitivity using the setup of fig. 3 [5].

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



Quantum imaging 289

 

ω

ω

ω

(a)

(c)(b)

Fig. 5. – (a) Process of parametric downconversion (PDC). (b) Energy conservation in PDC.
(c) Wave vector conservation in PDC.

3. – Parametric downconversion and the generation of entangled photons

A primary method for the creation of entangled photons is through the process of
parametric downconversion (PDC). This process is illustrated in fig. 5. Part (a) of the
figure shows an intense laser beam illuminating a crystal characterized by a second-order
nonlinear optical response. On occasion a pump photon splits into two new photons as
a consequence of the nonlinear response of the system. For historical reasons these two
photons are known as the signal and idler photon, with considerable arbitrariness as to
which photon is the signal and which is the idler. Part (b) of the figure illustrates this
process in terms of an energy-level diagram, and part (c) shows how photon momentum
is conserved in this process.

The photon pairs created by this process are said to be entangled, and they can
show entanglement by means of any of their degrees of freedom, such as (a) polarization,
(b) time and energy, (c) position and transverse momentum, or (d) angular position
and orbital angular momentum. As an example of what is meant by entanglement, we
consider the specific case of time-energy entanglement. The photons created by the PDC
process of fig. 5 have the property that if the signal frequency ωs is measured, then one
can immediately predict that the idler frequency is given by ωi = ωp − ωs. However, if
instead of measuring the frequency of the signal photon, one measures the moment of
time when it was created, one always finds that the idler photon was created at the same
moment of time. However, by measuring the moment of time when the signal photon
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Fig. 6. – Illustration of the process of ghost imaging.

was created, one loses all knowledge of its energy, and in fact one even loses all knowledge
of the energy of the idler photon. Likewise, when one measures the energy of the signal
photon, one loses all knowledge of the emission time of both signal and idler photons.
In fact, one can wait until both photons have long left the crystal and become well
separated from one another before deciding which property (energy or emission time) of
the signal photon to measure. Nonetheless, the idler photon is always found to have the
same property perfectly correlated with that of the signal photon. This property is the
key experimental signature of entanglement: the two photons have properties that are
completely correlated even in two mutually unbiased bases.

4. – What is ghost imaging and what are its properties?

Ghost imaging, also known as coincidence imaging, is a special sort of imaging tech-
nique that can offer significant advantages under certain circumstances. Ghost imaging
was originally reported by Strekalov et al. [6] and by Pittman et al. [7] and has subse-
quently been studied by many groups [8-20].

The process of ghost imaging is shown schematically in fig. 6. A laser beam incident
from the left excites a second-order nonlinear crystal where parametric downconversion
(PDC) occurs, leading to the generation of a pair of spatially entangled photons. One
of these photons falls onto an object to be imaged. If it falls onto a low-loss region of
the object, it will be transmitted and will be detected by the bucket detector shown in
the figure. This detector provides no spatial information about the object. The other
photon falls onto a photodetector array. This detector records the position of this photon
and thus the position of the other photon in the plane of the object. By performing a
coincidence measurement between these two measurements, one is able to determine the
intensity structure of the object based on measurements of the properties of photons that
have never physically interacted with the object. For this reason, this imaging method
has been referred to as “ghost imaging”.

There has been an ongoing discussion as to whether ghost imaging is a “quantum”
phenomenon. The first demonstration of ghost imaging by Strekalov et al. [6] made
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Fig. 7. – Setup for two-color ghost imaging. The BBO nonlinear crystal is designed to split
pump photons at 350 nm into signal photons at 460 nm and idler photons at 1550 nm.

use of the correlations of entangled photons and certainly was quantum in this sense.
However, the question was still open as to whether other types of correlations of a
purely classical nature could be used to perform ghost imaging. One group [8] held
that ghost imaging was a purely quantum effect. This claim was refuted by Bennink
et al. (2002) [9] who reported the observation of ghost imaging through use of light
beams that showed only classical correlations. The situation was clarified by the work of
Gatti et al. [10], who developed a criterion for demonstrating quantum features of ghost
imaging, namely the presence of correlations in both the near and far fields of the source
of light source. These features were subsequently verified experimentally by Bennink et
al. (2004) [12]. Specifically, they demonstrated that good ghost images were observed
using the correlations of both the near and far fields of a parametric downconversion
source, but that a classically correlated source could produce good ghost images in only
one conjugate plane.

Aside from questions associated with the quantum or classical origin of ghost imaging,
the fact remains that ghost imaging can provide new possibilities for image formation
that are not available using traditional techniques. One example of such a modality is
that of two-color ghost imaging. In this process, the light that illuminates the object can
be of a significantly different wavelength of the light that falls onto the detector array.
One achieves entanglement between two beams of very different wavelength by adjusting
the orientation of the nonlinear crystal used to perform parametric downconversion to
achieve phasematching for nondegenerate (different wavelength) conditions. An example
of such a two-color ghost imaging measurement setup [19] is shown in fig. 7. A beta
barium borate (BBO) nonlinear crystal is designed to split pump photons at 350 nm into
signal photons at 460 nm and idler photons at 1550 nm. The 1550 nm photons fall onto
the object, and the transmitted photons are registered by a sensitive “bucket” detector.
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Fig. 8. – Ghost images recorded in the laboratory using the setup of fig. 7. The images show
the properties of two stencils at a wavelength of 1550 nm, as recorded by a camera sensitive to
460 nm light. The objects are gold stencils on a silicon substrate.

This detector acts as a trigger for an imaging detector (labeled ICCD) that is sensitive
to the 460 nm light. This trigger pulse must arrive approximately 50 ns before the image-
bearing photon. These workers thus make use of an image-preserving delay line to ensure
that the image-bearing photon arrives at the correct time. Some images obtained with
this system are shown in fig. 8.

To summarize this section, we have seen that traditional ghost imaging is not an
intrinsically quantum phenomenon, although some methods of ghost imaging can dis-
play quantum features. We will next turn to other sorts of quantum imaging that are
intrinsically quantum in nature.

5. – Interaction-free imaging

In this section, we describe a quantum imaging procedure known as interaction-free
imaging. Before we do so, let us first ask the question of what constitutes a quantum
measurement. As a specific example, we consider the process shown in fig. 9. Here
a single photon falls onto a beam splitter, and we wish to determine through which
output port the photon leaves. In Situation 1, the detector to the right of the beam
splitter registers the photon (the detector “clicks”). We thus know with certainty that
the photon exited through the right-side output port of the beam splitter. Let us now
consider the circumstance of Situation 2. In this case, the detector does not click. If we
assume that the detector is ideal in that it registers every photon that falls onto it, we
thereby conclude that the photon must have exited through the upper output port of
the beam splitter. We thus reach the provocative conclusion that the lack of a detection
event can constitute a quantum measurement. Similar situations have been described by
Renninger [21] and by Dicke [22].

We next describe what is meant by an interaction-free measurement. The con-
cept of an interaction-free measurement was introduced theoretically by Elitzur and
Vaidman [23]. Interaction-free measurements were described experimentally by Kwiat et
al. [24]. For conceptual clarity, we consider the situation described by White et al. [25]
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Fig. 9. – Even the lack of a detection event can constitute a quantum measurement.

as shown in fig. 10. Part a shows the situation in which a single photon falls onto a
Mach-Zehnder interferometer in which the path lengths have been adjusted so that all
light exits through the horizontal output port and falls onto detector D1. Part b shows
what happens if an opaque object is placed into the upper arm of the interferometer.
The presence of this object blocks the upper path and thereby frustrates the destructive
interference that prevented light from exiting through the port leading to detector D2.
Thus, 25% of the time the incident photon will fall onto D2 and produce a click. This
result is quite perplexing. It shows that one can deduce that an opaque object is located
within the interferometer. However, we know that the photon did not physically strike
the object, because the object is assumed to be opaque and we also know that the photon
was detected by D2. White et al. [25] developed this concept into a form of quantum
imaging. They placed a focusing system into the upper arm of the interferometer and
translated various objects through the focal region. In this way, they were able to map
out the transmission profiles of these objects, as measured by photons that never directly
interacted with the object.

6. – Imaging by Mandel’s induced coherence

We next turn to another imaging modality, known as imaging by induced coherence.
It is also known as imaging with undetected photons, as it was called in the original
publication [26] demonstrating this effect. This procedure is fully quantum in nature.

As a first step, let us review the concept of induced coherence as described initially by
the group of Mandel [27]. Their experimental setup is shown in fig. 11. Two parametric
downconversion crystals NL1 and NL2 are pumped by a UV line of an argon ion laser.
The signal beams from each crystal are combined at beam splitter BSO, and the power
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Fig. 10. – The concept of an interaction-free measurement. Adapted from White et al. [25] with
permission.

hitting detector Ds is measured as a function of the position of BSO as it is translated
vertically. The results are shown in fig. 12. Interference fringes are observed when the
idler beams from the two crystals are aligned (curve A). However, these fringes disappear
when the idler beam path between the two crystals is blocked (curve B).

Fig. 11. – Setup for studying induced coherence [27], reproduced with permission.
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Fig. 12. – Results from the induced-coherence experiment of fig. 11. Curve A corresponds to
the neutral density filter (NDF of fig. 11) having a transmission of 91%; curve B corresponds to
the NDF having zero transmission.

These results are perhaps unexpected for the following reasons. In performing this
measurement, the pump intensity was kept sufficiently low that there was essentially
no induced emission from NL2. By this, one means, for example, that when the idler
beam between the two crystals was blocked, the emission rate from NL2 did not change
(decrease) by a measurable amount. Moreover, the emission rates from NL1 and NL2
were sufficiently low that there were essentially never photons from both NL1 and NL2
present simultaneously within the measure-ment device. Nonetheless, interference fringes
were observed. The explanation of this effect is that interference occurs in quantum
mechanics when two pathways are indistinguishable. Specifically, when the idler paths
are unblocked and aligned, there is no way to tell if a photon arriving at Ds came from
NL1 and NL2. Conversely, if a beam block is placed between the two crystals, then a
“click” at Di demonstrates that the photon pair was created in NL2. Thus, the pathways
to Ds from NL1 and NL2 become distinguishable, and the interference no longer occurs.

These ideas were implemented in an imaging context by the group of Zeilinger in work
published in 2014 [26]. Their experimental setup is shown in fig. 13. It is similar to that
of fig. 11, except that an object O (the stencil of a cat) is placed in the pathway between
NL1 and NL2. Also, the pump laser wavelength is 532 nm. The nonlinear crystals are
cut for nondegenerate SPDC producing a signal photon at 810 nm and an idler photon
at 1550 nm. D1 is a dichroic beamsplitter. The idler photon is directed along path d
and the signal photon along path c. The image of the object O is thus impressed onto
the idler photon, which is combined with the pump beam at D2 and both beams enter
NL2 where another signal beam is created. The idler beam is then expelled from the
setup at D3. The two signal beams from paths c and e are now combined at BS2 where
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Fig. 13. – Left: Experimental setup to perform imaging based on induced coherence. Right:
Image of a cat obtained with this experimental arrangement.

they interfere. The image of the cat, shown to the right of the figure, is created by the
interference. As in the experiment of Mandel [27], the intensity of the idler beam in path
d is too small to induce emission. Only the coherence of this beam is transferred to the
signal beam in the process of PDC in NL2.

7. – Technology for quantum imaging

Significant technological progress has been made in recent years in the development
of sensitive low-noise cameras. These cameras have properties that approach the ideal
situation of a 100% detection quantum efficiency and a vanishing dark-count rate. Two
of these modern cameras are as follows.

– Electron multiplied CCD (EMCCD) cameras have a detection quantum efficiency
of about 80%, but have a background dark count rate of about 0.02 counts per
pixel per readout. These specifications render these cameras suitable for many
applications in quantum information.

– Intensified CCD (ICCD) cameras have a detection quantum efficiency of only about
20%, but can be gated in such a way that there are essentially no dark counts in
an integration time. The ICCD camera was mentioned earlier in this chapter. It is
the camera used in the work presented earlier in relation to fig. 7.

In the remainder of this section we describe the results of one particular study, that
of Edgar et al. [28], which made use of an EMCCD camera. We note also the work of
the group of Walmsley on similar topics [29]. To establish the context of the study of
Edgar et al. [28], we present fig. 14, which shows the distribution of light produced by
spontaneous parametric downconversion. Clearly the light is emitted into a very large
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Fig. 14. – Spatial and spectral distribution of light generated by the process of spontaneous
parametric downconversion (SPDC).

number of spatial and frequency modes of the field. Light emitted at opposite sides of
the distribution are spatially entangled, for the reasons described in the description of
fig. 5. Historically, one usually examined the nature of this entanglement through the
use of point detectors that are raster-scanned through the intensity pattern. However,
in the study of Edgar et al., the entanglement of the entire distribution was measured
simultaneously through use of an EMCCD camera.

The experimental setup of Edgar et al. [28] is shown in fig. 15. The pump source is a
continuously running mode-locked Nd:YAG laser that is frequency tripled to produce an
output at 350 nm. A BBO nonlinear crystal cut for type-I degenerate phase matching
produces entangled photon pairs at 700 nm through the process of SPDC. In part (a) of
the figure the plane of the BBO crystal is imaged onto the EMCCD to allow the mea-
surement of correlations in position space. In part (b) the Fourier plane of the crystal is
imaged onto the EMCCD to allow the measurement of correlations in transverse momen-
tum. As spectral filter (not shown in the figure) centered at 700 nm with a bandwidth
of 10 nm is placed immediately in front of the camera so that only photons of nearly the
same wavelength were detected.

Some of the results of this study are shown in fig. 16. The panel on the left shows
that there is a strong correlation in the spatial positions of the signal and idler photons.
The panel on the right shows that there is a strong anticorrelation between the momenta
of the signal and idler photons. Strong correlations in either position or momentum
(whichever one chooses to measure) is the key signature of quantum entanglement. This
thought can be rendered quantitative in terms of the Reid criterion which states that

Δ2
min(x1|x2) Δ2

min(px1|px2) >
�2

4
,
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Fig. 15. – Experimental scheme used to measure (a) position and (b) momentum correlations.
In (a) the camera is in an image plane of the PDC crystal; in (b) it is in the Fourier plane of
the crystal.

Fig. 16. – Probability distributions for joint detections in the image plane (left) and far-field
(right).

where Δ2
min(r1|r2) is the minimum inferred variance, describing the minimum uncertainty

in measuring the variable r1 conditional on the measurement of variable r2. The violation
of this inequality is a signature of entanglement. Edgar et al. [28] report an uncertainty
product of

Δ2
min(x1|x2) Δ2

min(px1|px2) > 6 × 10−4�2,
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which is an indication of strong entanglement. Edgar et al. also estimate that there are
2500 spatial modes of the light field that are entangled.

8. – Summary and discussion

Quantum imaging is a still-developing field with important implications. Quantum
methods can be used to form images that are better than classical images in terms of
sensitivity and spatial resolution. From a different perspective, imaging methods can
be used the enhance the protocols of quantum information. Image science is capable
of exploiting the parallelism that is intrinsic to many of the procedures of quantum
information science. One example is the simultaneous entanglement involving a very
large number of modes of the optical field [28,30].

In this paper, we have presented a broad overview of quantum imaging, while con-
centrating on several imaging protocols of current research interest. Three different
examples of quantum imaging are described, namely ghost imaging, imaging based on
interaction-free measurements, and imaging based on Mandel’s induced coherence.
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Summary. — Spekkens’ toy model (SM) is a non-contextual hidden-variable model
made to support the epistemic view of quantum theory, where quantum states are
states of partial knowledge about a deeper underlying reality. Despite being a classi-
cal model, it has reproduced many features of quantum theory (entanglement, tele-
portation, . . . ): (almost) everything but contextuality, which therefore seems to be
the inherent quantum feature. In addition to the importance in foundation of quan-
tum theory, the notion of contextuality seems to be a crucial resource for quantum
computation. In particular it has been proven that, in the case of odd prime discrete
dimensional systems, contextuality is necessary for universal quantum computation
in state-injection schemes of computation based on stabilizer quantum mechanics
(SQM). The latter is a subtheory of quantum mechanics which is very popular in
the field of quantum computation and quantum error correction. State-injection
schemes consist of a classically-simulable part (like SQM) and a resource state that
boosts the computation to a quantum improvement. In the odd-dimensional case,
SM is operationally equivalent to SQM. In the even-dimensional case, the equiva-
lence only holds in terms of structure, not in terms of statistical predictions. This
because qubit-SQM shows contextuality, while qudit(odd dimensions)-SQM does
not. We believe that SM can be a valid tool to study contextuality as a resource in
the field of quantum computation. Restricted versions of SM compatible with quan-
tum mechanics (QM) can be used as the non-contextual classically-simulable part of
state-injection schemes thus opening other scenarios where studying if contextuality
is necessary for quantum computational speed-up.
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1. – Spekkens’ toy model

In the last decades many attempts to better understand quantum theory through
hidden-variable models have been developed [1-3]. Nowadays a big question in quantum
foundations is whether to interpret the quantum state according to the ontic view, i.e.
where it completely describes reality, or to the epistemic view, where it is a state of in-
complete knowledge of a deeper reality which can be described by the hidden variables.
In 2005 R. Spekkens [4] constructed a non-contextual hidden-variable model to support
the epistemic view of quantum mechanics. The aim of the model was to replace quantum
mechanics by a hidden-variable theory with the addition of an epistemic restriction (i.e. a
restriction on what an observer can know about reality). The first version of the model [4]
refers only to two-dimensional systems (inspired by the quantum bits) and, despite its
simplicity, it has obtained many results that were thought to belong only to quantum me-
chanics (e.g. the no-cloning theorem and teleportation). A later version of the model [5],
with a more rigorous mathematical formulation, has extended the theory to all discrete
prime and continuous degrees of freedom. The latter has been shown to be operationally
equivalent, except for the two-dimensional case, to sub-theories of quantum mechanics,
so-called quadrature quantum mechanics, which in the discrete case correspond to SQM.
Almost all the features of quantum mechanics are reproduced there, approximately every-
thing but contextuality (and the related Bell non-locality), which therefore arises as the
signature of quantumness. Spekkens’ theory has influenced much research over the years
(e.g., [16-20]) and it also addresses many key issues in quantum foundations: whether
the quantum state describes reality or not, finding a derivation of quantum theory from
intuitive physical principles and classifying the inherent non-classical features.

In this section we describe Spekkens’ theory for discrete dimensional systems by defin-
ing, in a physically motivated way, what are the states, the measurement observables and
the outcomes. The updating rules for the state of a system after a measurement can be
found in [6].

We denote with Ω ≡ (Zd)2n the discrete phase space of n d-dimensional systems(1).
Let us consider a fiducial set of quadrature variables in the phase space (capital letters),
Xj and Pj (like position and momentum in the standard classical mechanics), on each
system j, where j ∈ 0, . . . , n − 1, taking values in 0, . . . , d − 1. These variables allow
us to define the ontic states (the reality) associated to the systems. Each ontic state
represents a set of values for the fiducial observables Xj and Pj , and so an ontic state is
denoted by a point in the phase space λ ∈ Ω. We call Xj and Pj observables because
they correspond to proper measurable quantities that uniquely define the ontic state.
We can refer to Ω as a vector space where the ontic states are vectors (bold characters)
whose components (small letters) are the values of the fiducial variables:

(1) λ = (x0, p0, x1, p1, . . . , xn−1, pn−1).

(1) The dimension d is any positive number, odd or even, prime or non-prime, unless differently
specified.
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Spekkens’ theory imposes a restriction on what an observer can know about the ontic
state of a system. This means that what an observer can know about the system is
described by an epistemic state which is a probability distribution p(λ) over Ω.

A generic observable, denoted by O, is defined by any linear combination of fiducial
variables:

(2) O =
∑
m

(amXm + bmPm),

where am, bm ∈ Zd and m ∈ 0, . . . , n − 1. The observables live in the dual space Ω∗,
which is isomorphic to Ω itself. Therefore we can define them as vectors, in analogy with
ontic states, O = (a0, b0, a1, b1, . . . , an−1, bn−1). The formalism provides a simple way of
evaluating the outcome σ of any observable measurement O given the ontic state λ, i.e.
by computing their inner product :

(3) σ = OT λ =
∑

j

(ajxj + bjpj),

where all the arithmetic is over Zd.
The epistemic restriction of ST is called classical complementarity principle and it

states that two observables can be simultaneously measured when their Poisson bracket
is zero, and in this case we will say that they commute. This can be simply rephrased in
terms of the symplectic inner product :

(4) 〈O1,O2〉 ≡ O1
T JO2 = 0,

where J =
⊕n

j=1[
0 1−1 0 ]j is the symplectic matrix.

A subspace of commuting observables, thus satisfying the classical complementarity
principle, is called isotropic. This means that the subspace of the variables jointly known
by the observer is an isotropic subspace. We denote the subspace of known variables
as V = span{O1, . . . , On} ⊆ Ω, where Oi denotes one of the generators (commuting
observables) of V . Taking into account this definition we can define an epistemic state
by the set of known variables V , and also the values σ1, . . . , σn that these variables take.
This means that OT

j · w = σj , where w ∈ V is the ontic state that evaluates the known
observables and it is called the shift vector. The set of ontic states consistent with the
epistemic state described by (V,w) is V ⊥ + w, where the perpendicular complement of
V is, by definition, V ⊥ = {a ∈ Ω | aT b = 0 ∀ b ∈ V }. The proof of this result can
be found in [6]. By assumption the probability distribution associated to the epistemic
state (V,w) is uniform (indeed we expect all possible ontic states to be equiprobable),
so the probability distribution of one of the possible ontic states in the epistemic state
(V,w) is

(5) P(V,w)(λ) =
1
dn

δV ⊥+w(λ),
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where the delta is equal to one only if λ ∈ V ⊥ + w (note this means that the theory is
a possibilistic theory).

The aim of Spekkens is to show that epistemic states in his theory are the analogue
of quantum states in quantum theory (fig. 1). The analogue of unitary evolutions in
quantum theory here corresponds to a subset of all the possible permutations (symplectic
affine transformations). The elements of a sharp measurement are here represented as
an epistemic state, by virtue of the duality between states and measurements. In the
odd-dimensional case the operational equivalence between SM and SQM is proven by
using Gross’ Wigner functions [6, 15] Figures 1(a) and 1(b) picture the notions defined
so far in the two-dimensional case. The notion of entanglement is depicted in fig. 1(c).

2. – Contextuality

In 1967 Kochen-Specker showed that no non-contextual hidden-variable models can
ever reproduce all the results of quantum mechanics [3]. The theorem, that can be
seen as a complement to Bell’s theorem [2], highlights the new concept of contextuality.
Probably the most intuitive and popular way to express this concept is through the
so-called Mermin square [9]:

The square is composed by nine Pauli observables on a two-qubit system. Each row
and each column is composed by commuting (simultaneously measurable) observables.
With the assumption that the functional relation between observables is preserved in
terms of their outcomes (e.g. if an observable C is the product of two observables A, B,
also its outcome c is the product of the outcomes a, b of A, B), and that the outcome of
each observable does not depend on which other commuting observables are performed
with it (non contextuality), the square shows that it is impossible to predict the outcome
of each observable among all the rows and columns without falling into contradiction.
For example, if we start by assigning values, say ±1, to the observables starting from
the first (top left) row on, the contradiction can be easily seen when we arrive at the
last column and last row (red circles), that bring different results to the same observable
Y ⊗ Y , as witnessed by the following simple calculation, (X ⊗ Z) · (Z ⊗ X) = Y ⊗ Y ,
and (X ⊗ X) · (Z ⊗ X) = −(Y ⊗ Y ). Measurement contextuality refers to the fact that
the outcome of a measurement does depend on the other compatible measurements that
we perform with it (i.e. on the contexts). More recent versions of contextuality do not
only consider sharp measurements, but also preparations and transformations [7]. Non-
contextual inequalities have been developed to quantify contextuality [11-13] and in 2014
Howard et al. [14] used Cabello-Severini-Winter inequality to prove that contextuality is

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



Spekkens’ toy model and contextuality as a resource in quantum computation 305

Fig. 1. – Spekkens’ toy states of one and two bits. Panels (a) and (b) show the elementary
system of Spekkens’ theory in two dimension: the bit. One possible ontic state of one bit is
shown in (a), where the observer both knows X = 0 and P = 0, so λ = (0, 0). The epistemic
restriction — classical complementarity principle — in this case corresponds to saying that
at maximum the observer has “half” of the knowledge about the ontic state. For example a
possible epistemic state is shown in (b), where the observer only knows the variable X = 0,
so V = span{(1, 0)} and w = (0, 0). In this case the epistemic state X = 0 of one bit can
be seen as the analogue of the quantum state |0〉 of one qubit. Panel (c) shows two kinds of
two-bits epistemic states of maximal knowledge. The state on the left is a non-correlated state
(X1 = 0 = X2), indeed we have the knowledge of the states of the individual subsystems, while
the state on the right (X1 = X2 and P1 = P2) is perfectly correlated (i.e. entangled), indeed
it would be impossible to know the states of the individual subsysytems, but we know exactly
the correlation between them (in the case above we know that they have the same ontic states).
This trade-off in choosing if knowing the correlation or the states of the individual subsystems
is something which is not present in any classical theory.

necessary for universal quantum computation in a state-injection scheme of computation
based on stabilizer quantum mechanics. The latter is a subtheory of quantum mechanics
where only common eigenstates of tensors of Pauli operators are considered and only
unitaries belonging to the Clifford group and Pauli measurements are allowed. The pre-
vious state-injection scheme consists of two parts (fig. 2): the “classical” part of the

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



306 L. Catani, D. E. Browne and N. de Silva

Fig. 2. – State-injection scheme of computation. Quantum computation by state injection
consists of a non-contextual and efficiently classically simulable part (like a stabilizer circuit)
and a “magic” resource state (given by a non-Clifford gate) that boosts it to universal quantum
computation. Howard et al. [14] have found that if the resource state can be distilled into a
magic one then it must show contextuality. We want to study a similar state-injection scheme
for qubits based on other sub-theories of SM compatible with QM instead of SQM.

computation which is composed by stabilizer circuits, which are known to be efficiently
classically simulable [8], and the resource state. The classical part of the computation
is boosted to quantum universality by injecting a particular resource state, called magic
state. The result states that if the resource state can be distilled into a magic one then
it shows a violation of CSW-inequality, i.e. contextuality. The result holds only for
qudits (odd dimensions). Note that the contextuality considered in the above scenario
is state-dependent (indeed it is injected by the magic state), while the one presented
in the Mermin square scenario is state-independent. We conclude this section on con-
textuality by highlighting which are the philosophical assumption behind the notion of
contextuality: counterfactual realism and counterfactual compatibility. The former says
that results of unperformed tests have the same degree of reality of the results of per-
formed tests. In this sense contextuality consists of a logical contradiction between an
actual outcome that happens and a potential outcome that does not. Counterfactual
compatibility roughly says that the common observable (e.g. Y ⊗ Y ) considered in the
two incompatible contexts (e.g. last row and last column of the Mermin square) is exactly
the same in the two scenarios. In other words the result of an unperformed test does not
depend on the choice of compatible observables that can be performed with it [10].

3. – Restricting SM as a subtheory of QM

Spekkens’ model is a hidden-variable model that is not operationally equivalent to
quantum theory, indeed it does not show contextuality. Nevertheless we could consider
sub-theories of SM that are compatible (thus showing the same statistics of measure-
ments) with QM. A simple example of a sub-theory of SM which is compatible with QM
is the following. Let us consider one qubit system where the allowed measurements(2)
are the Pauli X, Z and the allowed gates are H, X, Y , Z, where H is the Hadamard gate

(2) Note that setting the allowed measurements also sets the allowed states. If the allowed
measurements are the Pauli X, Z, the allowed states are the eigenstates of ±X, Z.
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and X, Y , Z are the Pauli unitary transformations. All the measurements/states have
a faithful representation in SM and the unitaries are symplectic affine transformations.
However if we add the Pauli Y measurement and the S gate, where S = [ 1 0

0 i ] in the
computational basis, we obtain a theory which is not faithfully represented in SM. The
gate S is not symplectic and it would imply a different action in SM and QM. Our aim
is to understand the mathematical prerequisites for sub-theories of SM to coincide with
QM (even in the case of many qubits with entangling gates) and develop frameworks
for that. An interesting idea is to treat these restricted versions of SM compatible with
QM as the non-contextual classically simulable part of state-injection schemes. Inspired
by Howard’s result [14], we can then analyse the role of contextuality in qubit quantum
computation by injecting resources that boost valid Spekkens’ sub-theories of QM to
universal quantum computation. We think that the above construction is just one pos-
sible application of Spekkens’ toy model in quantum computation. Its correspondence
with SQM could suggest other possible applications, like the ones related to SQM in
non-prime dimensions [6].
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Summary. — The most well-known manifestation of the Casimir effect is the at-
traction of two uncharged conducting plates. However, it turns out that Casimir
forces are all around us: they originate from vacuum fluctuations of the electromag-
netic field that excite dipoles in dielectric and conducting materials. These dipoles
then interact with each other, generating measurable forces between macroscopic
bodies: the Casimir force. A naive calculation of the Casimir force produces infini-
ties, and though extensive work has been done in the field, there is still no universal
prescription to renormalize the force. In this paper, we introduce the subject of
Casimir forces and focus on the Casimir self-stress inside a homogeneous sphere.
We discuss previous calculations and suggest an additional renormalization scheme
that could solve the problem.

1. – Introduction

In 1948 Casimir predicted the attraction of two uncharged conducting plates [1] in a
simple calculation, relying only on the zero point energy of the electromagnetic field,

(1) E =
∞∑

n=0

1
2
h̄ωn(a),
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where a is the distance between the plates, and the summation is over the eigenmodes of
the system. The fact that the energy depends on the distance a, indicates the existence
of a force, as F = −∇E. Casimir calculated this force (per unit area) to be,

(2)
Fc

A
= − h̄cπ2

240a4
.

Almost half a century later, his result was verified to good accuracy in experiment [2].
Casimir’s calculation, though elegant, does not provide full insight as to the nature

of these forces. The picture becomes clearer once one realizes that Casimir’s result is
a limiting case of a much more general theory. Consider first a system of two neutral
atoms. Thanks to the quantum vacuum, even at zero temperature electric and magnetic
fields constantly fluctuate in space, excite the atoms and induce dipoles in them. The
dipoles interact with one another and become correlated, giving rise to an attractive force
between the atoms [3].

Later the theory was extended by Lifshitz et al. [4, 5] to apply to macroscopic bod-
ies as well: fluctuations of the quantum vacuum induce fluctuating dipoles in dielectric
materials, these dipoles interact with one another and generate measurable forces be-
tween macroscopic bodies. Casimir’s result (eq. (2)) is recovered in the limit where the
dielectrics become perfect conductors.

The spherical problem. – In 1953, Casimir suggested that vacuum fluctuations might
cause a conducting spherical shell to contract [6], in a way analogous to the case of two
conducting plates. The idea was originally directed to resolve the Lorentz model: a clas-
sical model for the structure of an electron, suggesting that it is a conducting, uniformly
charged spherical shell. The problem with the model is that enormous electric repulsion
will “break” the shell. To settle this, in 1905 Henri Poincaré postulated the existence of
some “Poincaré stress”, pointing towards the inside of the shell and stabilizing it.

Casimir pointed out that based on similarities to the two-plate case, the zero point
energy of a conducting spherical shell should be of the form

(3) E = α
h̄c

a
,

where a is the radius of the sphere and α is a pre-factor determined by the spherical
geometry. Therefore, he thought, it could be that the Casimir stress is the mysterious
Poincaré stress. One can verify that the condition is

(4) α =
e2

h̄c
,

which is equivalent to α being the fine-structure constant. This means that if the con-
jecture is true, the fine-structure constant can be derived from geometry, without any
reference to physical constants of nature.
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Fig. 1. – Due to Casimir forces (a) two conducting plates attract themselves, (b) two hemispheres
attract each other. (c) Can the Casimir force inside a conducting spherical shell be repulsive?

Finally, in 1968 Boyer calculated the Casimir stress on a spherical conducting shell [7].
Although the magnitude of α was relatively close to the desired one, the sign was opposite:
the Casimir stress was found to be repulsive.

Boyer’s calculation, though impressive, lacked physical justification of its regulariza-
tion techniques. Ten years later Julian Schwinger et al. obtained the same result by a
seemingly more physical calculation [8]. Nevertheless, this result still raises questions.
For example, in [9] it was shown that the Casimir force between two conducting hemi-
spheres is attractive, regardless of the distance between them. Repulsion in a closed
sphere suggests a counterintuitive discontinuity of the force (fig. 1). However, it should
be kept in mind that in [9] the force is derived only from the interaction between the
two hemispheres. It might be that due to Casimir stress each hemisphere by itself would
expand, possibly solving the contradiction.

2. – Renormalization and Lifshitz theory

Naive calculation of the Casimir force usually produces infinity. That is due to the di-
vergence of elements of the form: 〈0|Ê(r)2|0〉, 〈0|B̂(r)2|0〉 which appear in the expression
for the energy and for the stress tensor. The Casimir force cannot actually be infinite,
which means that we are including unphysical contributions and renormalization is re-
quired. So far there is no universal mathematically rigorous prescription to renormalize,
which constitutes the main difficulty in Casimir force calculations (apart from numerical
complexity).

The best candidate so far to renormalize the Casimir force in realistic materials is
Lifshitz theory, where the force density is described by the electromagnetic stress tensor:

f = ∇ · σ,(5)

σ = 〈0|Ê ⊗ D̂|0〉 + 〈0|B̂ ⊗ Ĥ|0〉 − 1
2

(
〈0|Ê · D̂|0〉 + 〈0|B̂ · Ĥ|0〉

)
I3,(6)

I3 being the identity 3 × 3 tensor. A “point split” is made in order to regularize the
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Fig. 2. – The renormalization: Subtract the direct interaction between adjacent points (right)
from the full interaction (left). Only the scattered waves that probe the geometry remain.

divergence:

(7) 〈0|Ê(x) ⊗ Ê(x)|0〉 → 〈0|Ê(x) ⊗ Ê(x′)|0〉,

where x is a 4-vector, and the limit x → x′ it taken only at the very end. The problem
then translates into the problem of finding the fields at point x that result from a dipole
at point x′ (for a derivation see [10,11]). The interaction between the two points can be
divided into direct interaction mediated by “outgoing waves”, and indirect interaction
which consists of waves that scatter from their surroundings [12]. In Lifshitz theory one
subtracts the contribution of the direct self-interaction. It corresponds to a homogeneous
space with no scattering, which from symmetry considerations, should not generate any
Casimir force (fig. 2).

Lifshitz’s approach and renormalization works well for piecewise homogeneous me-
dia. The general formula it produces for a 3-layer system described in fig. 3a at zero
temperature is

(8)
F

A
= − h̄

2π2

∫ ∞

0

Re
∫ ∞

0

dqqkz
m

(
AM

r AM
l e2ikz

md

1 − AM
r AM

l e2ikz
md

+
AE

r AE
l e2ikz

md

1 − AE
r AE

l e2ikz
md

)
dω,

where AE and AM are the reflection coefficients for the two polarizations (in the direction
of the electric field and the magnetic field), defined by

(9) AE
r,l =

μr,lk
z
m − μmkz

r,l

μr,lkz
m + μmkz

r,l

, AM
r,l =

εr,lk
z
m − εmkz

r,l

εr,lkz
m + εmkz

r,l

and kz
i =

√
εiμi

ω2

c2 − q2, i = r, l, m (see fig. 3a).
Casimir’s result (eq. (2)) is recovered by substituting the properties of a perfect mirror,

which are εr = εl → −∞, εm = μm = μr = μl = 1.
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Fig. 3. – (a) Planar dielectric consisting of three homogeneous layers with different permittivities
and permeabilities (ε and μ). l, r and m stand for left, right and middle. The outer layers are
extended to infinity. (b) Dielectric sphere surrounded by dielectric background.

3. – Results

We considered a simple generalization of the spherical geometry: a homogeneous
sphere surrounded by a homogeneous background, with different permittivities and per-
meabilities ε1,2, μ1,2, as shown in fig. 3b. Applying the machinery of Lifshitz theory we
calculated the components of the stress tensor as a function of the radius, and found that
they diverge as r and r′ approach a, the radius of the sphere. However, the force density,

(10) fr = (∇ · σ)r =
1
r2

∂r

(
r2σr

r

)− 1
r
σθ

θ − 1
r
σφ

φ ,

was found to be zero everywhere except on the surface of the sphere. To calculate the
total force on the surface of the sphere we integrated fr over an infinitesimally thin shell:

(11) Fr = 4πa2 (σr
r |r=a+ − σr

r |r=a−) − 8π

∫ a+ε

a−ε

(
rσθ

θ(r)dr
)
,

where we used the relation σθ
θ = σφ

φ . We found that the force diverges for any choice of
ε1,2, μ1,2. In previous calculations [8,13] the integral in eq. (11) was ignored, but that is
not justified since σθ

θ diverges like ε−4 in the general case, and like ε−3 in the limit of
a perfectly conducting spherical shell (the ε−3 divergence can disappear by taking the
Cauchy principal value of the integral, but then a divergence of ε−2 remains). Therefore,
although the known result of the self-stress in a conducting spherical shell might be real,
it cannot be determined yet: an additional renormalization is needed.

Inspired by Lifshitz’s renormalization in piecewise homogeneous media, we propose
the following additional renormalization. Consider the interaction between the points r
and r′ surrounded by two mirror walls. It can be decomposed into direct interaction and
multiple reflections (fig. 4a). The strength of the interaction diverges at two limits. One
is the limit r → r′, due to the direct interaction term which we already subtract (fig. 2).
The second divergence appears when we take the limit of r and r′ being infinitesimally
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Fig. 4. – (a) First three orders of multiple reflections decomposition. Direct interaction (thin
line), first reflection (thick line) and second reflection (dashed line). (b) z and z′ are very close to
the left wall. The direct interaction and first reflection give infinite, unphysical contributaions.

close to one of the walls. This divergence is caused by the first reflection term, describing
a wave emitted from r, hitting the wall one time and bouncing back to r′. It essentially
goes through zero distance and hence its strength diverges (fig. 4b). Since we are only
interested in the stress on the walls, the first reflection, similar to the direct interaction
term, is merely an artifact of the point splitting procedure which we need to exclude.

This source of divergence does not present a problem in the planar case, where the
walls are flat: although σx

x and σy
y diverge, σz

z does not, and therefore the force in the z

direction is finite. However, in a spherical geometry, the walls are curved. Therefore all
the components of the stress tensor are affected by the first reflection, which causes the
force to diverge. We expect that identification and subtraction of the first reflection in
a sphere will make the renormalization complete, and reveal the true Casimir self-stress
in a sphere.

REFERENCES

[1] Casimir H. B. G., Proceedings of the KNAW, 51 (1948) 793.
[2] Lamoreaux S. K., Phys. Rev. Lett., 78 (1997) 5.
[3] Casimir H. B. G. and Polder D., Phys. Rev., 73 (1948) 360.
[4] Lifshitz E. M., Sov. Phys., 2 (1956) 73.
[5] Dzyaloshinskii I. E., Lifshitz E. M. and Pitaevskii L. P., Adv. Phys., 10 (1961) 165.
[6] Casimir H. B. G., Physica, 19 (1953) 846.
[7] Boyer T. H., Phys. Rev., 174 (1968) 1764.
[8] Milton K. A., DeRaad L. L. and Schwinger J., Ann. Phys. (N.Y.), 115 (1978) 388.
[9] Kenneth O. and Klich I., Phys. Rev. Lett., 97 (2006) 160401.

[10] Scheel S., The Casimir stress in real materials, in Forces of the Quantum Vacuum, edited
by Simpson W. M. A. and Leonhardt U. (Weizmann Institute of Science, Israel) 2015,
pp. 107-138.

[11] Leonhardt U., in Essential Quantum Optics: From Quantum Measurements to Black
Holes (Cambridge University Press) 2010, pp. 231-249.

[12] Griniasty I. and Leonhardt U., arXiv:1703.02211.
[13] Milton K. A. and Ng Y. J., Phys. Rev. E, 55 (1997) 4207.

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



Proceedings of the International School of Physics “Enrico Fermi”
Course 197 “Foundations of Quantum Theory”, edited by E. M. Rasel, W. P. Schleich and S. Wölk
(IOS, Amsterdam; SIF, Bologna) 2019
DOI 10.3254/978-1-61499-937-9-315

The strange roles of proper time and mass in physics

Daniel M. Greenberger

City College (CCNY) of the City University (CUNY) of New York

New York, NY 10031, USA

Summary. — Mass is conventionally introduced into physical theories as a pas-
sive parameter, m0. As such, it plays no dynamical role in the theory, nor can it
change. But in practice, particles decay and recombine, changing their mass. They
also acquire binding energies, changing their mass, and may also have an energy
uncertainty, and so also a mass uncertainty. Similarly, the proper time of a particle
is described along its trajectory. But quantum mechanically, trajectories can be
split and recombined, or they may not be well-defined at all. So the proper time
also has a dynamical role to play. We also show that there is a natural extension to
the equivalence principle that is needed to include unstable particles. Both proper
time and mass should be treated as quantum-mechanical operators, whose values
are determined by measurement. The Hamiltonian formalism has a natural exten-
sion to include them as an extra coordinate and conjugate momentum, allowing one
to construct both a classical and quantum theory of particles that can decay, have
binding energies and obey the uncertainty principle.

1. – Mass: The role it plays, and the role it ought to play

Newton weirdly defined the mass of a body as the density times the volume, which
set off a controversy that continues today. Mach worried about how an inertial system
was defined, and how one could separate “fictitious” forces due to acceleration from real
forces in an inertial system. His solution was that reference frames are defined relative
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to each other, and settled on the “fixed stars”, far away, as defining an inertial system.
This question was settled by Einstein’s Equivalence Principle, which we shall discuss in
sect. 3.

The property of the mass that we find upsetting is that it enters into both classical
physics and relativity in a very passive way. It is a parameter that enters as a property
of a body, but that plays no dynamical role in the interaction of bodies. Since there is no
mechanism for affecting the mass, it is always conserved. There are no changing masses,
as there is no way to change them. Even in “varying mass” problems, like accelerating
rockets, or falling chains, the total mass is conserved. It merely moves from one body to
another.

In relativity, interactions cause the energy to change, and since energy and mass are
sort of equivalent, one would expect the mass to change also. But it does not. If two
bodies interact, and form a bound state, they are held together by the binding energy.
This should automatically change the mass of the state, but it does not. For example, if
an electron and proton come near each other, they can combine into a hydrogen atom,
whose total energy is less than that of the rest masses of the two free particles, and maybe
give off a photon as they combine, to conserve energy. But the bound system has not
changed its mass by virtue of binding. Of course the change can be put in by hand, and
it is important, since if the H atom meets another particle, both its inertial mass and its
gravitational mass will be that of the atom, not of the original particles. What bothers
us here is that the same interaction that forms the bound state should automatically
change the mass of the system for us, through the dynamics, via an equation of motion.
But the mass is a purely passive actor, and nothing affects it.

Another problem that bothers us is when particles decay. If a particle can decay into
two other particles, each of the particles is represented by a field, each of which has its
own rest mass. The decay is represented by an interaction, whose role is to swallow the
original particle, and replace it by the two daughters, each of which is created with its
own mass. One can verify the mass of each by, for example, passing it through a slit and
measuring the diffraction pattern. Each particle is created with its own mass, which we
verify with the slits. But this description is inconsistent with quantum mechanics.

Actually, these particles are created in an entangled state. We do not know the mass
of either one until one of them meets its slit and acquires a definite mass. To think of a
particle as having a definite mass before meeting a slit is EPR thinking. It violates Bell’s
theorem. We say that two entangled particles do not each have a definite spin state until
we measure it, but we think of them as having a definite mass state from the time they
are created. There must be a nice Bell experiment that proves this to be wrong.

If the original particle had several decay modes instead of one, and one of several
pairs of particles is created, and they travel through the Earth’s gravitational field before
meeting a slit, or something else to determine the mass, the mass of these decay modes
is undetermined until the mass of a daughter particle is measured.

In fact, a free particle does not have a mass at all until it is measured. If the decay pro-
cess uniquely identifies it, that is one thing. But if it does not, the mass is unknown until
it is detected. So the mass is a quantum-mechanical operator, just like any observable.
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And it is really inconsistent not to treat it as one. Even in the non-relativistic limit, this
has consequences. One of the main purposes of these lectures is to point this out.

2. – Proper time: The role it plays, and the role it ought to play

In classical physics the time is a universal parameter, totally unaffected by the physics
that takes place in a given reference frame. There is no use for the concept of proper time.
In classical special relativity the proper time is kinematically determined, τ̇ =

√
1 − v2,

(we will usually use the convention c = 1). One needs only a trajectory, and the speed,
to determine it. There is no way to otherwise affect it by whatever physics is taking
place. In general relativity, things are different. The proper time is also still determined
by the geometry of space, but now there is extra flexibility.

In general relativity dτ =
√

gμνdxμdxν −→
NR

√
(1 + 2ϕ − v2)dt, where NR means in

the non-relativistic region, meaning here the weak field limit. So the passage of proper
time is affected by the gravitational potential. One could immerse a local system in a
constant potential, and its clock would run at a different rate from one far away. This
means that one can not only re-set the clock, but also re-set the rate at which it runs.

In classical mechanics, one feature of an independent dynamical variable (q) is that
one can arbitrarily set both the initial value q0, and its initial rate of change q̇0, and
the system will subsequently evolve via an equation of motion, independently of how the
initial values came to be. So within general relativity, the flexibility exists to regard the
proper time as an independent variable, whose history will be determined by a dynamical
equation of motion, even though this freedom is not normally exercised. Here one has
the capacity to turn the proper time into an independent degree of freedom.

But why should one want to do this? The best answer comes from quantum-
mechanical considerations. Classical particles tend to have unique trajectories. But
quantum-mechanically, particles can behave like waves, and if a particle approaches a
beam splitter, it can be coherently split into two amplitudes. The two paths may have
different histories, involving different proper times. For example look at the situation
in fig. 1. Here a beam is split, and one of them goes through an E field to slow it up,
and another to speed it up again to its original speed. The other beam remains at its
same speed, but its path is longer, so the two beams can meet again at some time t

and interfere at a second beam splitter. The two beams have accumulated two different
proper times. So, what is the proper time of the recombined beam? Do their proper
times interfere? What if the original particle was unstable. When will the recombined
particle decay? Will it show proper time interference fringes in the decay pattern? So
far as we know, issues like this, which one can theoretically guess the answer to, have
never been decided experimentally.

The preceding example seems to show that the proper time is an observable, and
should be treated like any other observable, and be represented by an operator, which
can be measured along each path. The dynamical variable conjugate to the proper time is
the mass, and promoting the mass and proper time to the status of independent variables
has consequences, such as an uncertainty principle between them.
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Fig. 1. – The Proper Time of a Superposition. Here a particle is split by an interferometer,
and the two amplitudes take different proper times before recombining, which leads to questions
about the subsequent behavior of the particle.

3. – The equivalence principle and the extended equivalence principle

3.1. Stable particles: The equivalence principle. – Einstein, when he was looking for a
way to extend special relativity, said he suddenly realized that a body in free fall would
not feel a gravitational field. He later referred to that as “the happiest moment in my
life”. It implies that a body in free fall locally behaves like it is in an inertial reference
frame. This solves a problem that has always plagued the Newtonian formulation, to
which we alluded earlier. Namely, how can one experimentally tell whether one is really
in an inertial system. If one is accelerating, one will feel “fictitious forces”, like the
“centripetal force”, and the question arises as to how one tells this apart from “real
forces”, caused by pushes and pulls.

Einstein’s answer was that being in free fall, when these fictitious forces vanish, is
equivalent to being in an inertial system locally, and defines experimentally, as best as
it can be defined, what an inertial system is. In such a system locally, all particles will
move inertially, with no acceleration. If you drop a heavy and a light body, they will
float away with no forces on them, and their masses will be irrelevant. Instead, if one
is on a body accelerating with respect to this inertial system, all the objects floating
along with the original inertial system will appear to be accelerating at the same rate,
independently of their masses.

So to a body accelerating with respect to an inertial system, it looks just like there
is a gravitational field present, that accelerates all bodies at the same rate, since that is
the hallmark of a gravitational field. These observations then make up the Equivalence
Principle, which states that being at rest in an accelerating system is equivalent to being
at rest in a gravitational field. (This is usually called the “strong equivalence principle”.)
Of course this can only be true locally, meaning over a very small distance.

There is also what is usually called the “weak equivalence principle”, which only
concludes that all particles, regardless of their mass, fall with the same acceleration in an
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external gravitational field. We like to introduce this principle by saying that in a system
with non-gravitational external forces, one only needs one parameter to determine the
motion of a body, its mass. That is a minor miracle, as nature could have made things
much more complicated. But in the special case of a system with only gravitational
external forces, a truly major miracle occurs. One does not need any parameters at all
to describe the body. Locally, all bodies behave identically. The motion of the particle
is completely determined by its environment. So its motion depends on the geometry of
the space surrounding it. The particle itself gives no contribution locally to its motion,
and the particle moves along a geodesic in this environment, along as straight a line as
is possible, taking the shortest path.

As a special case, as we have pointed out, a free particle has no specific mass attached
to it. All free particles act identically. This is an important consequence of the weak
equivalence principle. This is why the mass must be a quantum-mechanical operator. It
is not until it is measured (by a non-gravitational force) that it collapses into a definite
quantum state, with a definite mass eigenvalue. This is the meaning of the statement
that it is only when a non-gravitational force acts on the particle, that its mass becomes
defined. This is true classically, for a point particle, and it defines the transition to
quantum mechanics, but we shall see that quantum-mechanically, other considerations
enter to complicate the matter.

To illustrate the equivalence principle, Einstein’s most famous example was of an
elevator suspended somewhere in space, with no masses around it. A person standing
in the elevator, holding two masses in his outstretched arms, feels no forces. But if the
elevator is suddenly accelerated upward, the person will feel a “fictitious” force, due to
the acceleration, pulling him downward. Furthermore, if he simultaneously drops the
two masses in his hands, they will both fall at the same rate, regardless of their masses.
Of course, they are standing still, while he is being accelerated upward. Now if instead,
the elevator was kept standing still, while a gravitational field was suddenly turned on,
the person would feel exactly the same force as before, pulling him downward. Again, if
he let go of the two masses, they would fall at the same rate. In this case it is due to a
“real” gravitational force. According to the equivalence principle, he cannot tell the two
situations apart locally.

One can analyze the two cases to see what is going on. In one case (fig. 2), the elevator
is at rest, and there is a gravitational field present [1]. In the elevator, there are two
observers, (1), who is at rest on the floor and who feels the gravitational field, and (ff),
who at t = 0, lets go and enters into free fall. A third observer, (2), is at rest at the
top of the elevator, and emits a photon (γ) at time t = 0, downward toward (1). If the
photon has frequency ω0, to observer (2) as he emits it, it will also have frequency ω0 to
observer (ff), who is just in free fall, and momentarily at rest with respect to (2). But
because (ff) is in free fall, the frequency of the photon will remain ω0 to him, throughout
its flight. If L is the height of the elevator, it will take a time approximately T ≈ L/c to
reach (ff), who is still close to the bottom of the elevator. But during this short time (ff)
will have reached a velocity v = gT , with respect to (1), and to him as (1) is approaching
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Fig. 2. – According to equivalence, in a gravitational field, observer (1) will see a higher frequency
photon than observer (2), who emitted it.

the light beam, the frequency that (1) will receive will be Doppler-shifted by

(1) ω1 = (1 + v/c)ω0 = (1 + gL/c2)ω0 = [1 + (ϕ2 − ϕ1)/c2]ω0,

with respect to (ff). To (1), who feels gravity, (ϕ2−ϕ1) is the potential difference between
observers (2) and (1). Thus the photon at (1), who is at a lower potential, will appear to
(ff) to be blue-shifted. Alternatively, one might say that his clocks are running slower,
since more waves pass per second,

(2) τ̇1 = [1 + (ϕ1 − ϕ2)/c2]τ̇2.

The clock at (1) is running slower than that at (2), and so more ticks have taken place,
during the passage of a given number of waves, so their frequency is higher. Clocks are
affected by the gravitational potential difference between two points, even if they are at
rest with respect to each other.

By the equivalence principle, this scenario is equivalent to the elevator being accel-
erated upward with acceleration g, in which case the red shift is caused by the Doppler
Effect, rather than a gravitational potential difference, as a consequence of looking at the
Equivalence Principle in the accelerated frame. If instead of the photon having been sent
vertically, it had been sent horizontally, it would have landed at a lower height than it
was emitted from. This shows that a photon’s trajectory is bent in a gravitational field.

But the photon has no rest mass, only energy. So an even further result of the
equivalence principle is that energy concentrations, rather than mass concentrations, are
attracted in a gravitational field. Now energy is the fourth component of a 4-vector, and
not a scalar like the mass. (The source also attracts with its energy, not its mass.) So
in the non-relativistic limit, Newton’s law of gravity behaves like the 00 component of a
tensor, the energy-momentum tensor, rather than like a scalar.
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Fig. 3. – An unstable particle is not an inertial system. Compared with the free-fall observer,
there is a τ -dependent potential present, even for an unstable particle at rest.

3.2. Unstable particles: The extended equivalence principle. – So far, everything we
have said assumes that we are talking about stable particles, and we have been comparing
two points, (1) and (2), at different locations. But the equivalence principle can be
extended. When a particle decays its mass changes, and m = m(τ). The proper time is
the appropriate variable here, because we know experimentally that the lifetime, t0, is
different in coordinate systems where the particle is moving, and so we need the invariant
lifetime, τ0. We can construct the “Compton frequency” ωc, (ωc(τ) = m(τ)c2/h̄), to
represent the mass of the particle, which in the case of an unstable particle will change
with time. The Compton frequency is a scalar, and so is not a true frequency, which
would be the fourth component of a 4-vector. But as the particle decays, the change in
Compton frequency acts like a Doppler effect, and there will be an “effective” velocity.
If we think of the “free fall” system as an inertial system, it will have a constant mass.
Now a decaying particle will no longer represent an inertial system, but an accelerating
system. The nature of this acceleration will immediately become apparent. Instead of a
Doppler effect, if we think of the equivalent gravitational potential, we can write

(3) ωc = (1 − ϕ(τ)/c2)ωc0 or m = (1 − ϕ(τ)/c2)mc0.

Here the subscript 0 refers to an inertial system, i.e., one with constant mass.
The meaning of this equation is that we can think of an accelerated system not only

in terms of a spatial acceleration, where the equivalent gravitational potential represents
the potential difference between two different spatial points (pts. (1) and (2) in fig. 2),
but also can represent the potential difference at a single point, at two different proper
times (pt. (1) in fig. 3). In fig. 3, the point marked (ff) represents a point in “free-fall”,
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which in this case means the proper time at the same point (1) in the elevator, which
is at rest in free space, but which at (ff) represents the proper time relative to a stable
particle that might be sitting there. A stable particle represents an inertial system. A
decaying particle at point (1), even though also at rest, is no longer an inertial system,
but represents a system accelerating in proper time, rather than in space. The relation
between the proper times of the decaying and stable particles is given by eq. (2), or
equivalently,

(4) τ̇ ≈ (1 + ϕ(τ)/c2)τ̇0.

Equation (4) represents the proper time of the decaying system relative to that of the
inertial, or free-fall system, to first order. In the free-fall system, τ̇0 = 1. But the
decaying system, even if it is located at the same point in space as the inertial system,
will obey eq. (4).

In special relativity, one can construct a “light-clock” to determine the rate of a
moving clock relative to a stationary one, but in that case, both clocks are on stable
particles. In the case where the particle is unstable, we must resort to the phase of the
wave function, which will be

(5) eiΦ = ei(p·r−Et)/h̄ → eim(γv·vt−γt)/h̄ = e−imt/γh̄ → e−i
R

mdτ/h̄ = e−i
R

Ldt/h̄.

Here, Φ represents the phase, not the gravitational potential. The phase is the action,
controlled by the Lagrangian. The phase is an invariant, and as the mass changes, so
will the rate of passage of proper time. Thus at the same point in 3-space, this rate of
passage of time will be different for a stable particle and an unstable one. Specifically,
we will have

(6)
∫

Ldt =
∫

mdτ = m0

∫
dt = m0

∫
dτ

(1 + ϕ/c2)
.

(from eq. (3)). While in the free-fall system τ̇0 = 1, in a decaying system at rest with
respect to the free-fall system, eq. (3) gives us

(7) dτ = (1 + ϕ/c2)dt,

and in general, in a decaying system moving with speed v, we would have

dτ2 = (1 + ϕ(τ))2dt2 − dx2/c2,(8)

dτ =
√

(1 + ϕ(τ))2 − v2/c2dt.

Equivalently,

(9) m0 = m(1 + ϕ/c2).
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Equation (8) represents an extension of the geometry of special relativity (and also of
general relativity, since now gμν = f(τ)), however when we place the theory in the
context of a Hamiltonian formulation, it will follow as an equation of motion.

Equation (8), which says that τ̇ can be a f(τ), implies that τ can be a time-varying
f(t), which makes the situation for a decaying particle very different from that for a
stable one. So one of the unexpected predictions of equivalence, just like the one that a
gravitational field will bend a photon, is that a clock sitting on an unstable particle will
run at a different rate from that of a stable particle sitting at the very same location.

τ̇ = f(xμ), for a stable particle,(10)

τ̇ = f(xμ; τ), for a decaying particle.

(We note that according to eq. (10), for a decaying particle τ̇ changes as a f(τ).
This is not to be confused with the fact that τ̇ is not the same for all systems in free-fall.
Different inertial systems have their own rate of τ̇ . For example if two inertial systems are
moving with respect to each other, then if system (1) is at rest with respect to coordinate
time t, then τ̇ = 1. But then if one is at rest with respect to a system (2), moving at
speed v with respect to system (1), then τ̇2 =

√
1 − v2. Similarly, if a system (3) is at

rest with respect to system (1), but it has a constant gravitational potential ϕ0, then
τ̇3 = 1 + ϕ0.)

The quantity dτ =
√

gμνdxμdxν plays a special role in determining the geometry of
space-time. In general relativity the gμν determine the curvature of space and the motion
of bodies embedded in it and they are functions of the coordinates xμ. So although the
interaction of particles is determined by the non-gravitational forces between them, the
very presence of gravitational forces affects their motion through the geometrical effect
they generate on space-time itself, through the gμν .

But by now allowing the gμν to also depend directly on τ , the gμν are also affected
by the stability of the masses of particles imbedded in space-time, and through this
dependence they directly control the rates of decay of these particles. The interactions
between particles that make them decay are non-gravitational, but the execution of the
decay is affected by the τ -dependent potentials acting on them. This is a completely
new role for gravity. It is a dynamical property of geometry and is necessarily quantum-
mechanical, as m and τ become conjugate variables, which implies, among other things,
an uncertainty relation between them.

Whereas gravitation has traditionally been thought of as the very weak sister of the
other forces, so that it can be ignored in the formulation of most of the laws of nature, it
turns out that to the contrary, it directly affects how the other forces carry out their roles,
and change masses, and it can never be ignored as soon as one concedes that particles
are not always stable, and can decay through interactions. This is a completely different
role for gravity than merely the conventional one of causing spacetime to curve.

Our belief is that the hope that one could ever correctly and smoothly combine gravity
and quantum physics together into a general theory governing all of physics, will remain
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unfulfilled so long as one ignores the dynamical interdependence of mass and proper time
(which includes the τ -dependence of the gμν).

4. – Incorporating mass and proper time as dynamical variables

We have stated that mass and proper time should be considered as conjugate dy-
namical variables. The next question is can they be incorporated into the formalism of
mechanics? It turns out that the standard Hamiltonian formalism is almost begging to
be generalized to include this modification [2]. First let us consider a free particle. The
standard variables are x and p as the coordinate and its conjugate momentum. Now they
are to be supplemented by τ and m (really mc2, for dimensional reasons). Before we
begin, we should again point out that if mass is to be considered a dynamical variable,
then the mass must be considered to be the energy in the rest frame of the system. So if
the energy is uncertain, then the mass will also be. Thus the mass, m0 that appears in,
say the Klein-Gordon equation for the particle, or in the Dirac equation, is the “nominal”
mass. The actual mass may be quite different. If the mass is experimentally determined,
it may well have a Δm associated with it.

Similarly, the proper time is the time as measured in the particle’s free fall system. It
can also be considered in its rest system, but if there is a gravitational potential present
there, it will include that. If the particle is unstable, that includes its τ -dependent
gravitational potential.

So the Hamiltonian should be H(x, p; τ,m). The standard equations of motion are

(11) ẋ =
∂H

∂p
, ṗ = −∂H

∂x
.

These are to be supplemented by

(12) τ̇ =
∂H

∂m
, ṁ = −∂H

∂τ
.

For a free particle, we use the standard Hamiltonian,

(13) H =
√

p2 + m2.

There is no x-dependence here, and so there are no forces, and p will be constant. The
equation for ẋ = v will be, from eq. (11),

(14) ẋ = v =
p√

p2 + m2
, p =

mv√
1 − v2

= mvγ.

where γ = 1/
√

1 − v2. The second equation here comes from solving the first equation
for p. The equation for τ̇ is, from eq. (12),

(15) τ̇ =
m√

p2 + m2
=

m

mγ
=

√
1 − v2.
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And so, instead of being a geometrical necessity, the equation for τ̇ follows dynamically,
as an equation of motion. Since there is no τ dependence, m will be a constant, from
eq. (12). But, just as a potential that depends on x destroys the homogeneity of space,
and produces a force that changes p, so too would a potential dependent upon τ produce
a force that would change m, from eq. (12). Thus we see that we have here a dynamics
where m does not have to be a constant, and if an atom, say, were to be excited above
its ground state, then the mass could change to accomodate this. Also, one could have
a classical theory of decaying particles, something that could not happen in ordinary
classical dynamics.

The next simplest case would be an external potential acting on the particle. To be
consistent with our discussion of the equivalence principle, as a gravitational potential it
would have to act on the energy, rather than the mass, so we take as our Hamiltonian,

(16) H =
√

p2 + m2(1 + ϕ(τ)).

This example shows a particle at rest, or moving at constant speed (since there is no x-
dependence), decaying into the void. Of course, in a more realistic example, it would be
decaying into something, and the problem would need more structure. but the problem
is instructive in giving insight into the nature of the theory. Of course, ϕ could be a
function of x, instead of τ , but then it would just be a standard dynamics problem,
where m is constant, and the force is a function of x.

Actually, we shall take the simplest case, namely, a particle at rest decaying. For the
momentum to remain zero, the decay would have to be uniform in all directions, so one
can think of the particle spherically decaying. Then the Hamiltonian simplifies to

(17) H = m(1 + ϕ(τ)).

Since m and τ are dynamical variables, and H does not explicitly depend on t, the
coordinate time, then H will be a constant in time. So we write

(18) H = m(1 + ϕ(τ)) = m0, m =
m0

1 + ϕ(τ)
.

One assumes that one knows m(τ), and one solves for ϕ(τ), and τ(t). So one discovers
that even though the particle is at rest, τ �= t. There is a “decay red shift”, as predicted
by the extended equivalence principle.

As a simple example, assume that

(19) m = m0 + Δe−ατ .

For example this could refer to an atom in an excited state decaying down to the ground
state. It could also refer to a particle giving off massive particles, like a nucleus going
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into a lighter one. In this case

m0 + Δe−ατ =
m0

1 + ϕ(τ)
,(20)

ϕ(τ) =
m0

m0 + Δe−ατ
− 1 = − (Δ/m0)e−ατ

1 + (Δ/m0)e−ατ
.

From eq. (12) we have

(21) τ̇ = 1 + ϕ(τ), t = τ +
Δ

m0α
(1 − e−ατ ).

Here we set τ = 0 at t = 0. And we see that as

(22) t → ∞, t → τ +
Δ

m0α
.

So the potential creates a “force” that makes the particle decay, which also alters the
rate at which proper time runs. If instead of being at rest, the particle was traveling at
constant speed v, one can make a Lorentz transformation in order to bring it to rest.
However because of the decay red shift, the proper time is no longer the time in the rest
system of the particle, so one must make an “extended Lorentz Transformation”, which
is dictated by the extended Equivalence Principle.

5. – An extended Lorentz transformation and Schrödinger equation

In our example of a decaying particle above, the proper time, according to the ex-
tended equivalence principle, is given by eq. (8), where ϕ is determined by the external
field, and may be a f(xμ, τ). The Hamiltonian for a particle in an external field will
be given by eq. (16), and we see that this is consistent with the extended equivalence
principle:

H =
√

p2 + m2(1 + ϕ),(23)

v =
∂H

∂p
=

p(1 + ϕ)√
p2 + m2

, p =
mv√

(1 + ϕ)2 − v2
,

τ̇ =
∂H

∂m
=

m(1 + ϕ)√
p2 + m2

=
√

(1 + ϕ)2 − v2

The equation for p, and for τ̇ come from rearranging the equation for v. So this form of
the Hamiltonian is consistent with the extended equivalence principle. Gravity is coupled
to the energy, rather than the mass, and the formula for τ̇ agrees with that of eq. (8).
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The “extended” Lorentz transformation comes from using the invariance of the proper
time. In other words, writing

dx′ = a(dx − vdt),(24)

dt′ = b(dt − edx),

and solving for the coefficients a, b, e, by using the invariance of the proper time, as in
the usual derivation,

(25) dτ2 = (1 + ϕ(τ))2dt′2 − dx′2 = (1 + ϕ(τ))2dt2 − dx2.

This yields the result

dx′ = γ(dx − vdt),(26)

dt′ = γ(dt − (v/κ2)dx),

γ =
κ√

κ2 − v2
, κ = (1 + ϕ(τ)).

What we have done is introduce the extended gravitational Lorentz transformation,
which is for a vector gravitational theory. Presumably in a complete theory, we would
need a tensor theory. But in this simpler theory, all the main phenomena are present.

We can write a theory of variable mass particles, that can decay and change to
accomodate binding energy changes. Classically there is a “decay red shift”, so that a
clock sitting on a decaying particle runs at a different rate than one on a stable particle
at the same point and at the same time. And in a quantized theory there will be an
uncertainty principle between the mass and proper time on a particle.

What would the quantum equivalent of our example of a decaying particle be? If we
adopt eq. (16) for our quantum Hamiltonian, it will reduce to eq. (17) for the quantum
case, with mop = (h̄/i)∂/∂τ . Then the Schrödinger decay equation will be

(27) (1 + ϕ)
h̄

i

∂ψ

∂τ
= ih̄

∂ψ

∂t
.

or, if we introduce the variable z,

(28) dz =
dτ

1 + ϕ(τ)
, z =

∫
dτ

1 + ϕ(τ)
.

the equation and solution becomes

(29)
∂ψ

∂z
= −∂ψ

∂t
, ψ = ψ0(z − t).

This is the same as the classical solution of τ̇ = (1 + ϕ), only now it says that ψ is
a wave packet centered on the classical solution. There is a slight complication here, in
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that eq. (27) is not Hermitian, but this will affect only the normalization of the solution.
To see this, we symmetrize the problem,

h̄

i

(
∂ψ

∂τ
+

1
2

(
ϕ

∂ψ

∂τ
+

∂

∂τ
(ϕψ)

))
= ih̄

∂ψ

∂t
,(30)

(1 + ϕ)
∂ψ

∂τ
+

1
2

∂ϕ

∂τ
ψ = −∂ψ

∂t
.

The solution to this equation is just

(31) ψ(z, t) =
1√

1 + ϕ(τ)
ψ0(z − t),

as promised, where ψ0 is the previous solution. If the particle is moving at a constant
velocity v, instead of being at rest, then one can solve eq. (16) instead, by first making
a Lorentz transformation on the system.
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Summary. — We examine here some of the effects that are produced by considering
mass and proper time as dynamical variables. First we consider Galilean invariance
and point out that the Bargmann Theorem that masses cannot be superimposed
in non-relativistic (NR) quantum theory is no longer valid. We also point out that
while Galilean invariance is a consistent requirement of the NR Schrödinger equation
as such, it provides a poor description of the NR limit of Lorentz invariance, as
the proper time leaves a residue that is independent of c in this limit. Next we
show that there is an inevitable uncertainty relation between mass and proper time
and give several examples. Finally, we show that the classical limit is different for
non-gravitational forces, and for gravitational forces that lead to the equivalence
principle.

1. – The Lorentz transformation and the Galilean transformation

1.1. The Bargmann theorem in non-relativistic physics. – The Lorentz Transformation
(LT) is the boost of a system from its rest frame, to a frame moving with velocity v,
using relativistic dynamics. The Galilean Transformation (GT) is also the boost of a
system from its rest frame to a frame moving with velocity v, but using Newtonian
dynamics. One would think that in the limit of slow-moving systems, where v � c, the
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LT would smoothly flow into the GT, and in classical physics this is the case. But in
quantum mechanics, there are residual phase effects that persist in the low velocity limit,
yet they cannot be explained in the Newtonian limit. By “persist”, we mean that they
are present and independent of c, and have experimentally observable consequences.
Now the Schrödinger equation is consistent with Newtonian physics, and the GT is a
legitimate operation there. But the Schrödinger equation is also a legitimate limit of
the Klein-Gordon equation, or the Dirac equation, in the non-relativistic limit, and one
would expect a consistency in this limit between the LT and the GT.

But such is not the case, and the problem shows up most clearly in a well-known
theorem due to Bargmann that says one cannot superimpose particles of different mass
in non-relativistic quantum mechanics [1]. Of course, relativistically one can certainly
superimpose particles of different mass, and in the non-relativistic limit, one can have
a superposition between an atom in an excited state and in its ground state. Non-
relativistically one says that the superposition is between two energy states, but if one
believes relativity, it is also between two different mass states.

If one has a superposition between two mass states, say

(1) ψ = ψ1(r, t, m1) + ψ2(r, t, m2),

in an inertial system at rest, then one can also describe this wave function in a reference
frame moving at constant velocity. What Bargmann did was to make a series of four
transformations into first, a frame translated by a distance a, then into a frame moving
with velocity v, then a frame frame translated back by a distance −a, and finally into
one moving at velocity −v. After this series of transformations, according to the GT,
one has landed back where one started, at the initial point r, at the same time t, as the
transformations commute with each other.

But there is a complication here. For the GT, besides carrying one into the boosted
frame, also has an extra phase factor tagging along with it. This is allowed in Wigner’s
original discussion of symmetry operations, because while probability distributions are
unaffected by unitary transformations, wave functions can get extra phases, that cancel
out when one takes |ψ|2. It is interesting that one does not need such a phase factor for
the LT, or for 3-d rotations, but it is required to make the GT work properly. While this
extra phase factor appears rather mysterious in the formalism, we shall see that it has a
simple but important physical interpretation. We shall explain that soon, but for now it
suffices to say that this extra phase factor that tags along in the GT is proportional to
m, the mass of the system. The upshot is that when one makes the Bargmann series of
transformations that end up back in the original system, at the original point, nonetheless
there is an extra phase factor that tags along with the product of the transformations,
and this phase factor is proportional to m, namely ei m

h α(v,a). This has the effect of
transforming eq. (1) into

(2) ψ = eim1α/h[ψ1(r, t, m1) + ei(m2−m1)α/hψ2(r, t, m1)].
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So by merely rewriting a wave function in a different reference frame (actually the
same frame after making a transformation equivalent to the unit transformation), one has
picked up a relative phase factor between the terms, one that can actually be measured in
an interference experiment. This would seem to be intolerable, and Bargmann’s solution
was to impose a superselection rule on the system, that one cannot superimpose particles
of different mass. Furthermore this rule seems perfectly compatible with the fact that
mass is preserved in Newtonian physics.

1.2. The problem with the Bargmann theorem. – While the Bargmann theorem may
at first glance seem innocuous enough, nonetheless, it ought to set off alarm bells, for
a number of reasons. First, as we have mentioned, the theorem is certainly not true
in relativistic physics, and even in the non-relativistic limit it ought to be true that
E = mc2. But also, how can a restriction that is not true for a larger symmetry group
(the LT) be true for a more restricted symmetry group (the GT)? Usually things are the
other way around. For example if you have the full rotational symmetry then angular
momentum will be conserved. But if you only have cylindrical symmetry, then only Lz

will be conserved. How can the limited GT imply a greater symmetry restriction on
the system than the full symmetry LT? It does not seem to make sense. Would not it
make more sense if instead, the extra phase coherence that appears in eq. (2) could be
explained, rather than being outlawed by fiat, because it is inconvenient? And of course
it can be explained, in a way that sheds some light on the GT.

In the Bargmann proof, one makes a series of transformations, ending up with the
unit transformation. One can better make sense of this by using, not the GT directly,
but a more general transformation, the Extended Galilean Transformation (EGT), which
transforms a system according to

(3) x → x′ = x − ξ(t), t → t′ = t.

Here ξ is an arbitrary f(t), so the transformation is into a rigid accelerated system,
rather than merely being restricted to one moving at constant velocity, so it includes
the GT as a special case. It is non-relativistic, since t does not change, but it is general
enough to incorporate rigid accelerations, and thus to discuss the equivalence principle
in the non-relativistic limit.

In order to describe a wave function that is a superposition of different masses, eq. (1),
we will have to look directly at the Schrödinger equation. Then under the transforma-
tion (3), we will have

(4)
∂

∂x
=

∂

∂x′ ,
∂2

∂x2
=

∂2

∂x′2 ,
∂

∂t
=

∂

∂t′
− ξ̇

∂

∂x′ ,

and the free particle Schrödinger equation will become

(5) − �2

2m

∂2ψ

∂x′2 = i�

(
∂ψ

∂t′
− ξ̇

∂ψ

∂x′

)
.
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Here we are assuming the standard Schrödinger equation, where m and τ are not
considered to be dynamical variables. The problem with this equation is the last term
has a momentum dependent potential, which is not what we would want in an accelerated
system, but rather a static potential, so that we can say that a transformation to an
accelerated system is equivalent to being in a gravitational field. We can solve this
problem by making a unitary transformation,

(6) ψ(x, t) = eif(x′,t′)ϕ(x′, t′).

The function f is uniquely determined by the requirements that we want the term in
∂ϕ
∂x′ to vanish, and we also want the extra purely time dependent terms, that appear in
the potential after the transformation, to vanish. This gives the result,

f(x′, t) =
m

�

(
ξ̇x′ +

1
2

∫
ξ̇2dt

)
,(7)

ψ(x, t) = eif(x′,t)ϕ(x′, t),

− �2

2m

∂2ϕ

∂x′2 + mξ̈x′ϕ = i�
∂ϕ

∂t
.

Here we dropped the prime on the t. Equation (7) for ϕ(x′, t) is the equation for
the wave function in the accelerated system, and it contains a gravitational term in the
potential, V (x′) = mξ̈x′, as one would expect from the equivalence principle.

So the extended Galilean transformation describes the equivalence principle, but it
also says more, as we shall see when we analyze the phase term eif .

In the special case of a uniform velocity transformation, the extended Galilean Trans-
formation reduces to the usual GT. In that case we have

f −→
GT

m

�
(x′v +

1
2
v2t), ξ → vt;(8)

ψ(x, t) = eimα(x′, t)/�ϕ(x′, t).

This is the mysterious phase factor α(= f) in the GT, and we see that it is proportional
to m, as we promised.

To find the meaning of the phase change, first we calculate it for the series of four
transformations in Bargmann’s calculation, performed non-relativistically with the GT.
Here we have

(9) r1 = r − a, r2 = r1 − vt, r3 = r2 + a, r4 = r3 + vt = r.

So the fourth transformation brings us back to r. For the wave functions, the translations
follow the simple rule:

(10) ψ1(r1) = ψ(r), ψ3(r3) = ψ2(r2),
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while the boosts follow eq. (6), with f given by eq. (8),

ϕ′(r′) = e−i m
h (±vr′+ 1

2 v2t)ψ(r),(11)

ϕ4(r4) = e−i m
h (−vr4+

1
2 v2t)ψ(r3),

ϕ2(r2) = e−i m
h (+vr2+

1
2 v2t)ψ(r1).

When we combine eqs. (10) and (11) with eq. (9), we finally get

(12) ψ4(r4) = ei m
h vaψ(r).

If these four transformations had been made relativistically instead, we would have
had

r1 = r − a, t1 = t; r2 = γ(r1 − vt1), t2 = γ(t1 − vr1);(13)

r3 = r2 + a/γ, t3 = t2; r4 = γ(r3 + vt3), t4 = γ(t3 + vr3);

where γ = 1/
√

1 − v2. Note that in r3, one has to translate back by a/γ, because of the
Lorentz contraction, in order to land back at the original point. This gives

(14) r4 = r, t4 = t + va, Δt = t4 − t = va.

So when the four transformations are finished, they land back at the original point, but
not at the same time as they started. When one makes a closed loop of transformations
in space, they do not form a closed loop in time. The additional time is nothing but
the twin-paradox effect. The phase factor in eq. (2) is e−iΔmc2Δτ/�, and it agrees with
the phase factor in eq. (12) obtained from the GT. So the mysterious phase factor that
enters into the GT is nothing but the non-relativistic residue of the twin-paradox, which
is independent of c, and so must show up, even in a non-relativistic calculation. It is
a true physical effect, and the phase difference is meaningful. The problem is that the
GT does not recognize the concept of proper time, and so the phase factor becomes
an embarrassment, and must be expunged by fiat, which is the reasoning behind the
Bargmann theorem. It is consistent within Newtonian theory, but experimentally it is
untenable, and shows why the GT is not the non-relativistic limit of the LT. Another
lesson to be learned by this is that there are proper time residue effects that show up in
the non-relativistic limit, and are independent of c. They are correctly explained by the
extended GT, which is consistent with the equivalence principle.

An interesting insight comes from considering m and τ as quantum operators [2].
Note that, just as when p is an operator, Pop = �

i
∂
∂x , so that

(15) eiap/�ψ(x) = ψ(x + a),
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then it will also be true when m is an operator, mop = �

i
∂
∂τ , that

(16) eiamopψ(τ) = ψ(τ + a),

and so eq. (7) becomes

ei(ξ̇x+ 1
2

R
ξ̇2dt)

mop
� ψ(x, τ ; t) = ψ(x, [τ + (ξ̇x +

1
2

∫
ξ̇2dt)]; t)(17)

= ψ(x, [τ + δτ ]; t),

and the system automatically compensates for the extra proper time involved.

2. – The mass-proper time uncertainty relation

The mass of a particle has been defined as the energy in its rest frame. That definition
allows the mass to fluctuate. The mass of a particle that occurs in the free particle Klein-
Gordon equation, or the free particle Dirac equation, we call the “nominal” mass of the
particle. Its actual inertial or gravitational mass will not be that. For example if two
hydrogen atoms pass each other by, the inertial masses of the system will be given to
lowest order by that of the Hydrogen atoms, and not by the constituent particles.

Similarly, the proper time means the proper time in the rest system. For example,
when an atomic clock is flown and undergoes a change in proper time, a mixture of the
velocity and gravitational effects on the plane, it responds to the effect on its center of
mass system, and not to the individual effects on its constituents.

Given the role of mass and proper time as conjugate dynamical variables, then, when
quantized, the system will be subject to the uncertainty principle,

(18) c2Δm · Δτ ≥ �/2,

just as with any other set of conjugate variables. That means if one tries to measure
m, or τ , for a system, they must be controlled by this inequality. And in fact, this is
required for the consistency of the theory, in that if this were not true, one could violate
the uncertainty principle for another set of variables. One can prove the uncertainty
principle between m and τ by making a wave packet and using the standard proof, but
instead, we shall show how it works, and how it contributes to the general consistency
of the theory, by giving several examples.

There is one caution in applying this principle. Take a free particle. As it propagates
its phase will be

(19) eiα = ei(p·r−ωt) = ei(p·vt−ωt) = eimγ(v2−1)t = e−imτ .

In the non-relativistic limit, one factors out e−imt, leaving

(20) e−imτ = e−imte−im(t−τ),
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Fig. 1. – A gravitational scattering experiment of a small mass off a large one to determine the
mass M , of the large mass. The gravitational field of the small mass prevents a clock on the
large mass from being accurately read in the laboratory.

and it is this factor that obeys the uncertainty principle in this limit. So when we refer
to Δτ , we mean Δ(t − τ), and this translates to

dτ =
√

1 + 2ϕ − v2dt−→
NR

dτ = (1 + ϕ − v2/2)dt,(21)

Δτ ≡ [Δ(t − τ)] = (Δϕ)t, or (Δv2)t/2 or (ϕ − v2/2)Δt.

The first example is an attempt to measure the mass of a heavy particle, M , by grav-
itationally scattering a much lighter particle, m, off of it, and measuring the deflection
of m, described in fig. 1.

If the initial velocity of the light body and its mass are known accurately, then

(22) θ ∼ px/p ∼
∫

Fxdt/mv

Here F is the gravitational force exerted by M , b in the figure is the impact parameter,
and the effective distance over which the impulse is exerted is within the dotted lines, so∫

dt ∼ b/v. Then

(23) F ∼ GMm

b2
,

∫
Fdt ∼ GMm

bv
∼ px.

Therefore,

(24) θ ∼ GM/bv2, M ∼ bv2θ/G ∼ bvpx/mG.

If the momentum transfer is measured to within Δpx, then

(25) ΔM ∼ bvΔpx/mG.
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However, the distance of closest approach cannot be known to within

(26) Δb · Δpx ∼ �,

and therefore, because the particle m, while passing M , exerts a gravitational force on
it so that the gravitational potential at M is unknown by

(27) Δϕ ∼ Gm

b2
Δb.

Over the time of closest approach T ∼ b/v, the clock on M will become uncertain by

(28) Δτ ∼ TΔϕ ∼ Gm

bv
Δb.

This will be true, no matter how accurately the clock on M was known before the
experiment, or how accurate the lab clock t is known. And so

(29) Δτ · ΔM ∼ GmΔb

bv

bvΔpx

mG
∼ ΔbΔpx ∼ �.

The quantity Δτ refers to how accurately the clock sitting on M can be known to
an observer in the laboratory, and it needs no further assumptions than the uncertainty
principle between x and p. One would get the same result if one wanted to determine
the mass and proper time of a clock sitting on m.

A similar experiment is the famous one discussed by Bohr and Einstein. This was
the one where Einstein proposed the experiment in fig. 2, which purported to produce a
situation in which both t and E can be perfectly known for a system. It was refuted by
Bohr by pointing out that Einstein had forgotten to include the uncertainties introduced
by general relativity (really just the equivalence principle).

In this experiment, a box contains a gas of photons, and it is very accurately weighed
(in the Earth’s g field) before the experiment. Inside the box is a clock, which is set
to open a trap door at a specific time, for a specific interval, to release a train of light.
Afterward, the box is weighed again, and the energy emitted, E, is accurately determined.
Ignoring the effects of gravity, it would seem that one has obtained independent, accurate
measurements of both E and t, which would violate the uncertainty principle. Bohr
argued that to accurately measure the mass of the box, m, the scale must be at rest. If
the reading takes time T , then in order to accurately determine x, the scale reading, the
uncertain impulse imparted by the reading process must be less than gΔmT , in order to
get an accuracy Δp, in the momentum, and thus the mass m. Then

(30) Δx > �/Δp > �/gΔmT.

But if x is uncertain, then the gravitational potential ϕ = gx is uncertain, and

(31) ΔT/T ∼ Δϕ = gΔx,
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Fig. 2. – Einstein’s experiment on weighing a box of photons, which was refuted by Bohr, who
noted that Einstein had neglected equivalence in his argument. It can much more naturally be
discussed in terms of ΔmΔτ rather than in terms of ΔEΔt. See text for particulars.

from which one sees that

(32) Δx · Δp ∼ ΔT

Tg
· gΔmT ∼ Δm · ΔT ∼ �.

This uncertainty results from the inability of the laboratory observer to know the
reading on the clock attached to the box, which is precisely the proper time in the box.
So although Bohr discussed the experiment in terms of E and t, we see that the concepts
involved are clearly Δm and Δτ . One could convert the experiment to one measuring
ΔE and Δt in the laboratory, by inserting a screen into the emitted beam and detecting
the time received and the energy hitting the screen.

An important further point to be made here is that Bohr has often been criticized
for bringing the gravitational shift, a concept foreign to non-relativistic theory, into the
discussion. But we have already seen that there are many residual effects of relativis-
tic theory that intrude themselves into the non-relativistic limit. The fallacy is not in
including them, but rather is caused by arbitrarily excluding them.

We shall give an example that has nothing to do with gravity, but rather with the
connection between velocity and proper time. Consider an attempt to measure the mass
of a particle by using a mass spectrometer. A charged particle is sent into a region where
a magnetic field exists, so it moves in a circle, and its mass is determined by measuring
the radius of the circle as in fig. 3. There is no magnetic field below the horizontal line.

The particle enters from below, and there is a magnetic field B perpendicular to the
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Fig. 3. – A non-gravitational example of the uncertainty principle between m and τ . There is
a magnetic field perpendicular to the plane of the paper, and the particle enters from below,
bends, and lands on a screen. The mass is determined by R and the diffraction at the screen
gives an uncertainty to τ .

plane of the paper. The force on the particle is evB/c, and so

(33) mv2/R = evB/c, R = mvc/eB.

The particle hits the screen (the horizontal line) at x = 2R. The biggest uncertainty
in x comes from the slit width, a, and so

(34) Δm = ΔR eB/cv = aeB/2cv.

As the particle passes through the slit, it undergoes diffraction, and gets a spread Δθ =
Δpx/p. However in bending by Δθ, the total distance traveled is changed by 2Δs =
2RΔθ.

The change in the distance traveled directly maps into a change in the time taken
(with c = 1),

(35) Δt = 2Δs/v = 2RΔθ/v = 2RΔpx/pv.

The change in proper time is given by

(36) τ =
√

1 − v2 t ∼ (1 − v2/2) t, Δτ =
v2Δt

2
=

vRΔpx

p
,

and so

(37) Δτ · Δm =
vRΔpx

p

aeB

2v
=

RΔpx

mv

ΔxeB

2
=

1
2
ΔpxΔx ∼ �

2
,

since R = mv/eB.
All these examples are vindicated by showing that they can be converted into different

pairs of conjugate variables, which are known to obey the uncertainty principle. This in-
terconnectivity shows the interdependence of all uncertainty relations, so that they must
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be valid for all sets of conjugate variables, including mass and proper time. Thinking
that one can invalidate one pair of uncertainties, without invalidating all of them, was
precisely Einstein’s problem in his argument with Bohr. However, it would be experi-
mentally convincing if one could produce an experiment where it is natural to conduct
the experiment by measuring the mass and proper time, while it would be difficult to
convert it into an uncertainty relation for other sets of variables.

3. – The classical limit of the equivalence principle

3.1. The strange mass scaling in phase space. – The way the weak equivalence principle
manifests itself in quantum theory is somewhat peculiar, and the correspondence prin-
ciple for external gravitational forces is different from that for non-gravitational forces.
Classically, the trajectory of a body subject to an external gravitational field will be
independent of its mass. This means (assuming that the body is captured in a closed
orbit) that r �= f(m), v �= f(m), and E = mf(r, v), so r and v are independent of the
mass and the energy is linearly dependent on it. We also define the canonical momentum
such that it is linear in m, p = mf(r, v). However quantum mechanically, the situation
is quite different. The de Broglie wavelength is defined such that it depends on the mo-
mentum, and therefore the mass. Therefore all these functions depend on the mass, in a
very specific way. If we look at the Bohr orbits, we find that

∮
pdq = nh,

∮
vdq = nh/m,(38)

q, v = f(nh/m), E, p = m f(nh/m).

(Here we left out the irrelevant 1/2 in n + 1/2). This is a dimensional argument, so it is
also valid for the Schrödinger equation. As an example, take the case of a gravitational
Bohr atom, where a mass m is bound to a much larger mass M :

electric : V = e2/r, rn =
�2n2

me2
, En =

me4

2�2n2
;(39)

gravitational : e2 → GMm,

rn =
�2n2

GMm2
=

1
GM

(
n�

m

)2

, En =
G2M2m3

2�2n2
=

G2M2

2
m

( m

�n

)2

.

Here, the integral
∮

vdq, which should not depend on the mass, is a function of (�n/m).
The really interesting question here is that if the quantum-mechanical solution de-

pends on the mass, how can the mass dependence drop out in the classical limit? That’s
a real question, and the answer is that it drops out in a peculiar way. If one has two
different particles, one of mass m1, and the other of mass m2, K times heavier than m1,
so m2 = Km1, and if m1 is in some orbit characterized by n1, then m2 will be in an
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Fig. 4. – Because of the equivalence principle, there is a scaling of the momentum and the
quantum number n in the high n limit, in order to preserve equivalence. This is different from
the high n limit for non-gravity forces. Here the effect is shown in phase space.

orbit characterized by n2 = Kn1. Thus

(40) r1 = f

(
n1�

m1

)
, r2 = f

(
n2�

m2

)
= f

(
Kn1�

Km1

)
= r1.

So the mass does not drop out in the classical limit, rather it scales so that if one particle
is in a given orbit, a heavier particle will be in a higher orbit, scaled proportionally to
its relative mass. This is because there is no fundamental unit of length in the theory.
Rather every different potential will have its own unit of length. In the gravitational
Bohr atom, the unit of length will be r(n = 1) in eq. (39). This scaling is only possible
for n � 1, where the orbits will be close together, almost continuous. As n gets smaller,
each case will have its own r(n = 1), and weak equivalence breaks down.

If there were a fundamental length, it would enter as a new fundamental constant
of nature. There is no reason to expect it to be the Planck length. The Planck length,
λP , is a length constructed of known constants, λP =

√
G�/c3 ∼ 10−34 cm. It is where

gravity and quantum theory are expected to clash and various “quantum foam” effects
appear. But this assumes that no new physics will intervene in the meantime. This
same type of assumption has been made in the past, and it suffers a bad history. After
the development of relativity, it was assumed that classical electricity would break down
when the “classical radius of the electron” was reached, rC = (e2/mc2) ∼ 10−13 cm,
where the potential energy of the electron matched its rest mass. But before we ever
got there came quantum mechanics, the Bohr radius at 10−8 cm, and pair creation at
∼ 10−11 cm. This argument never predicted the emergence of �.

We like to use the following argument against assuming that the Planck length is the
next true landmark on the length scale. Imagine that we knew about quantum theory
and gravity, but not about Maxwell’s equations, and we wanted to predict a fundamental
velocity in nature. c∗. A good guess might be

(41) c∗ = Gm2
n/� = 10−28 cm/sec
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This comes out closer to the speed of darkness, rather than light. Dirac noted that
the fundamental constants tend to group themselves in sets that differ by multiples of
1020 from each other. Our c∗ differs from c by about 1040, which fits into this analysis,
and seems to indicate to us that there is something really important missing from our
knowledge of nature. This is reinforced by looking at the radius of the gravitational
Bohr atom, eq. (38), consisting of two neutrons. This gives about rn ∼ 1027 cm, around
the size of the universe, with a preposterously small energy. This would tend to throw
the entire interpretation of the theory into doubt, and sets off alarms to us about our
complacency concerning what we think we know about gravity.

So the weak equivalence principle breaks down at low quantum numbers, and is
implemented at high quantum numbers by the scaling phenomena we alluded to. At
high quantum numbers, x is independent of the mass, but p, the momentum, varies
linearly with the mass, so it also scales as K in this limit. The situation in phase space
is depicted in fig. 4.

4. – The different correspondence principles for gravity and non-gravity
forces: matrix elements in the classical limit

Because of the scaling we have indicated, the correspondence limit is different for the
case of an external gravitational force, from that for a non-gravitational force. In the
semiclassical limit, for a bound state, we can take the wave function as

(42) ψE(x) =
A√
p(x)

ei
R x

a
pdx/�.

Here p(x) is given by the equation

(43)
p2

2m
+ V (x) = E.

The situation is as depicted in fig. 5. This is the WKB wave function and is valid in the
high n limit. We can determine the difference in energy between two neighboring levels
from

(44)
∮

pEdx = nh,

∮
pE+δEdx =

∮ (
pE +

∂p

∂E
δE

)
dx = (n + 1)h.

From eq. (43), we have

(45) p δp/m = v δp = δE,

so that

δE

∮
∂p

∂E
dx = δE

∮
dx

v
= δE

∮
dt = δE Tn = h,(46)

δE = h/Tn = �ωn.
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Fig. 5. – We are looking at a bound system with turning points a and b. The WKB wave
function is good for high n orbits, but because of a scaling in the mass, the correspondence limit
is different for gravitational and non- gravitational forces.

Thus the energy levels, in the region where Δn � n, are equally spaced, and

(47) En+Δn ≈ En + Δn �ωn.

We can determine approximately the normalization constant in eq. (42) from

(48)
∫ b

a

|ψE |2 dx = 1.

We integrate only over the allowed region because ψ decays exponentially to zero in the
unallowed region. So

1 =
∫ |A|2

p
dx =

|A|2
m

∫ b

a

dx

v
=

|A|2
m

1
2

∮
dx

v
=

|A|2
2m

Tn,(49)

An =
√

2m

Tn
.

If one has some function f(x), and one wants the matrix element fmn, then

fmn =
∫

ψ∗
E(m)f(x)ψE(n)dx, m ∼ n,(50)

fmn =
2m

Tn

∫
f(x)
pn(x)

e−i
R x

a
(pm−pn)dx/�.

Now we know from eqs. (42)-(44) that

(51) pm = pn+Δn = pn +
(hωnΔn)

v
,

so

(52)
∫ x

a

(pm − pn)dx/� = ωnΔn

∫ x

a

dx/v = ωnΔn t(x),

where t is the time in going from a to x.
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Thus,

(53) fmn =
2
Tn

∫ b

a

f(x)e−iΔnωnt(x) dx

v
=

1
Tn

∮
f(x(t))e−iΔnωntdt.

Classically, we know that if we have some function f(t), and the period is ω in a
particular orbit (which corresponds to the nth quantum orbit, so ω ≈ ωn) then we can
expand it in a fourier series,

f(t) =
∑

f�e
i�ω t.(54) ∮

f(t)e−ikωtdt =
∑

f�

∮
ei(�−k)ωtdt(55)

=
∑

f�Tδ�k = fkT ;

f� =
1
T

∮
f(t)e−i�ωtdt.

Comparison of this result with eq. (53) shows that the matrix element fn+�, n is equal to
the corresponding classical Fourier component f�, or

(56) fn+�,n → f�, � � n, n � 1.

Thus we see that in the classical limit, it is the overlap between successive orbits that
goes over to the classical result. For example, in the Hydrogen atom, the expansion of the
ellipse, r(t) =

∑
r� ei�ω t, gives the terms of the dipole moment exmn that determine the

intensity of spectral lines. Because of this, Bohr could use the correspondence principle
to determine the intensities before quantum mechanics was invented.

But we also see, that the correspondence limit tells us that in the classical gravitational
case, the classical fourier component f�(m1) corresponds to the component fK�(m2 =
Km1), for a particle m2 = Km1, that is K times heavier. So in order to preserve the
Equivalence principle, this scaling property carries over into the classical correspondence
limit of the theory. Thus we see that even in the correspondence limit, this limit is
different for gravitational and non-gravitational forces.

We have tried to point out that one can certainly treat mass and proper time as
independent conjugate dynamical variables, which will have experimental consequences.
Some of these are:

1. That even in a non-relativistic experiment one can see fringes from a superposi-
tion of mass states, contradicting the Bargmann theorem. There should also be other
experiments emphasizing the non-relativistic residues of relativistic experiments.

2. One should be able to detect fringes in proper time between the amplitudes of a
particle that has been coherently recombined, especially if it is unstable.

3. One should be able to verify the ΔmΔτ uncertainty relation experimentally in
convincing ways.

4. One should be able to see the “decay red shift” separating an unstable particle
from a stable alternative, and see fringes between them.
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We are currently working to obtain convincing experimental tests of all these conclu-
sions. We do not think quantum theory is quite consistent without them.
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Summary. — We provide an introduction into the field of atom optics and review
our work on interferometry with cold atoms, and in particular with Bose-Einstein
condensates. Here we emphasize applications of atom interferometry with sources
of this kind. We discuss tests of the equivalence principle, a quantum tiltmeter, and
a gravimeter.
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1. – Introduction

Based on the pioneering work [1, 2] by Mark Kasevich and Steve Chu starting in
1991, light-pulse atom interferometry has grown into an extremely successful tool for
precision measurements. Indeed, ground-breaking experiments have been performed in
the fields of inertial sensing and tests of the foundations of physics. Inertial sensing
covers measurements of the local gravitational acceleration [3-23], or rotations, for ex-
ample of the Earth [24-30], as well as gravity gradiometry [31, 32]. The present lecture
notes aim at providing an introduction into, and an overview over this rapidly mov-
ing field. Moreover, our article complements the corresponding lectures by Daniel M.
Greenberger.

In this section we intend to motivate this branch of physics located at the interface
of atomic physics, quantum optics and solid state research, and to give a preview of
coming attractions. In order to focus on the essential ideas we keep this section brief and
postpone more detailed discussions to the later sections.

We start in sect. 1.1 by mentioning applications of interferometry with cold atoms
ranging from tests of the foundations of physics to quantum sensors. We then outline
in sect. 1.2 the realization of optical elements in atom optics such as beam splitters
and mirrors leading us in sect. 1.3 to various sources for our interferometers. Here we
emphasize especially the use of an atom chip as a trap and a mirror for laser light opening
the avenue towards a quantum tiltmeter and a gravimeter. An outline of our lecture notes
in sect. 1.4 concludes our introduction.

1.1. Applications of atom interferometry . – The scope of testing fundamental physics
with atom interferometry comprises on the one hand measurements of fundamental
constants such as Newton’s gravitational constant G [19, 33-35] and Sommerfeld’s fine-
structure constant α [36-40]. Indeed, the result for α obtained with photon-recoil mea-
surements in recent years [38] has entered into the determination of the CODATA value.
Moreover, a measurement of α has been reported this year [40] with an accuracy of
2.0 · 10−10, which is even more accurate than the best measurements to date, based on
measuring the anomalous magnetic moment of the electron [41].

On the other hand, testing the pillars of general relativity, for example, the universal-
ity of free fall (UFF) resulting from Einstein’s equivalence principle [42], is of particular
interest. The most elementary test of the UFF is to compare the measurements of local
gravity with a classical and an atomic [3, 43] gravimeter.

More elaborate set-ups use two different quantum objects, for instance, two isotopes
of the same atomic species, or two different atomic species, and measure their free-fall
rate within the same device [18, 44-48]. Future experiments of this kind are expected to
catch up to, or even overcome today’s best classical tests of the UFF based on Lunar-
Laser-Ranging [49], torsion balance experiments [50], or space missions using free-falling
test masses [51].

In addition, atom interferometers can also test different models in particle physics in
the search for unknown forces or dark energy [52-54]. Even more exotic experiments aim
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for the detection of gravitational waves [55-58], new probes of the foundations of quantum
mechanics, such as delayed-choice experiment [59], or for the creation of atomic Einstein-
Podolsky-Rosen pairs [60,61].

Especially in absolute gravimetry, the sensitivity of atomic sensors is competitive with
classical devices [62]. The conventional sensors used for geodesy [63] can be categorized
as absolute gravimeters, such as the falling-corner cube gravimeters [64, 65], and rela-
tive gravimeters like superconducting gravimeters [66-68], which have a changing bias
over time.

State-of-the-art atomic gravimeters operate with Raman-type beam splitters and cold
atoms, which are either dropped or launched from optical molasses —a technique invented
for cesium fountain clocks [69, 70]. State-of-the-art laboratory grade examples of these
gravimeters [14, 23, 71, 72] reach inaccuracies in the low μGal regime. The maturity of
this technology has now arrived at a level that commercial products with a specified
sensitivity of better than 10μGal [73-75] are available.

1.2. Optical elements for atoms. – The coherent manipulation of matter waves is
a central element in every matter wave interferometer [76]. Two methods to realize
beam splitters and mirrors based on light pulses offer themselves: Raman [1] and Bragg
diffraction [77, 78]. However, these techniques imply conceptual differences which have
to be considered when constructing an atom interferometer aimed at measuring inertial
effects [79].

Indeed, Raman diffraction, where an atomic Λ-scheme is driven, requires a phase-
stable microwave coupling between two hyperfine ground states of an atom usually es-
tablished by two phase-locked lasers. Working with two different internal states of an
atom from an ensemble with a wide velocity distribution has the advantage of velocity
filtering with blow-away pulses and state-selective detection [13,80]. These state-labeling
features are described in detail by Christian Bordé [81].

In contrast, Bragg diffraction involves only a single atomic ground state and allows
us to construct with a single laser system a pure momentum, or recoil beam splitter.
However, due to the transition frequency being in the radio-frequency (RF) range, the
detection needs to be spatially resolved, and, in order to distinguish different diffraction
orders [13,82], requires a momentum distribution below recoil.

1.3. Sources for atom optics. – Today’s generation of atomic inertial sensors typically
operates with cold atoms released or launched from an optical molasses. This approach
was taken in our simultaneous, dual-species Raman-type interferometer with molasses-
cooled 87Rb and 39K ensembles which measured the Eötvös ratio to ηRb,K = (0.3± 5.4) ·
10−7. The velocity distribution and finite size of these sources of atoms limit the efficiency
of the beam splitters as well as complicate the analysis of systematic uncertainties.

These limitations can be overcome by the use of atomic ensembles with a typical
average momentum well below the recoil of a photon, for example Bose-Einstein con-
densates (BECs) [83, 84]. The width of a momentum distribution corresponding to a
BEC can be further reduced after reaching the regime of ballistic expansion, where all
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mean field energy is converted to the kinetic energy, by the application of the delta-kick
collimation (DKC) technique [85].

Atom-chip technologies offer the possibility to generate a BEC and perform DKC in
a fast and reliable way, resulting in miniaturized atomic devices. BECs are very useful
for Bragg and double Bragg diffraction [86, 87] leading to high diffraction efficiencies.
Indeed, such beam splitters and mirrors can reach an efficiency of above 95% facilitating
interferometry with high contrast.

Furthermore, BECs offer novel methods of coherent manipulation with high fidelity,
to realize for example a tiltmeter [86]. A combination of double Bragg diffraction and
Bloch oscillations gives rise to a relaunch procedure with an efficiency larger than 75%
for the diffraction of atoms in a retro-reflected optical lattice [87]. The novelty of this
method originates from the fact that it relies on a single laser beam, which is also used
as a beam splitter, and thus does not lead to an increased complexity of the setup.

We realize a Mach-Zehnder interferometer (MZI) by dropping ensembles directly after
release, or accelerating them upwards after a certain time of free fall. The interferometry
is performed as in a fountain, such that the total time 2T of the interferometer can be
extended. Here T is the time between the first beam-splitter pulse and the central mirror
pulse.

We utilize an atom chip [87] for BEC generation and state preparation, including
magnetic sub-state transfer, DKC and Stern-Gerlach-type deflection. A special feature
of our setup is that the light field, which forms the MZI by Bragg diffraction, is reflected
by the atom chip itself. In this way, the chip also serves as an inertial reference inside
the vacuum chamber leading to a compact atom-chip gravimeter.

All atom-optics operations, the interferometry as well as the detection of the output
states of the atom interferometer, are integrated into a volume of less than a cube of
one centimeter side length. In the fountain mode, the MZI can be extended to have the
total interferometer time 2T = 50 ms with a large contrast C = 0.8, which yields an
intrinsic sensitivity Δg/g = 1.4 · 10−7. The state preparation comprised of DKC and
Stern-Gerlach-type deflection makes an important contribution to this achievement by
improving the contrast and reducing the detection noise. An estimation of systematic
uncertainties for the current setup and their projection onto a future device prove that
it is possible to reach sub-μGal accuracies with a fountain-type geometry.

1.4. Overview . – Our lecture notes are organized as follows. In sect. 2 we introduce the
basic tools of atom interferometry such as beam splitters, mirrors, and optical lattices to
construct a MZI for atoms. We then turn in sect. 3 to tests of the equivalence principle. In
particular, we present a dual-species atom interferometer for 87Rb and 39K to investigate
the UFF. Next, we present in sect. 4 interferometers utilizing BECs on an atom chip. We
introduce the technique of DKC and present a quantum tiltmeter as well as a gravimeter
exploiting this technology. Finally, we conclude in sect. 5 by providing an outlook on
future devices such as the very long base line atom interferometry (VLBAI) facility and
atom interferometers in space.
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2. – Tools of atom interferometry

An atom interferometer requires the realization of a beam splitter and a mirror for
atom waves. The underlying processes have to be coherent and phase-stable in order to
establish an interference pattern. Several options for such elements exist, and we analyze
prominent ones exploited in current experiments below. In particular, in sect. 2.1 we
discuss beam splitters and mirrors based on Bragg and Raman diffraction. Next, in
sect. 2.2 we focus on the manipulation and accelerations of atoms by optical lattices.
Concluding, we introduce in sect. 2.3 a common interferometer geometry based on beam
splitters and mirrors.

2.1. Beam splitters and mirrors. – Beam splitters and mirrors for matter waves can be
realized with the help of mechanical gratings [88,89], or electromagnetic waves [1,2,90-92].
While single-photon electric or magnetic dipole transitions can implement a coherent
electromagnetic coupling, the assessment in sect. 2.1.1 focuses on stimulated two-photon
transitions. For this purpose, we first introduce the Rabi model which describes the
atom-light interaction in an effective two-level system before we proceed to two-photon
transitions in a three-level system. Here the absorption of a photon from a field with
frequency ω1 is followed by stimulated emission into a field with frequency ω2, and vice
versa.

Next, we consider in sect. 2.1.2 the momentum transfer due to the atom-light interac-
tion which is at the very heart of the sensitivity of atom interferometers to inertial forces.
We also discuss two standard approaches towards beam splitters. Raman diffraction is
a widely used technique designed for atoms which have been laser-cooled in optical mo-
lasses without the application of additional cooling steps. Bragg diffraction is a powerful
tool for delta-kick collimated Bose-Einstein condensates, since the velocity dispersion of
the ensemble is of major relevance for the manipulation efficiency.

In sect. 2.1.3 we then concentrate on the generalization of a multi-photon coupling
utilizing Bragg diffraction, and conclude in sect. 2.1.4, where we take into account the
effects of the finite size of the atom cloud and the laser beam on the atom-light interaction.

2.1.1. Rabi oscillations and two-photon coupling. We consider the atom as an effective
two-level system consisting of the internal states |g〉 and |e〉 with energies �ωg and �ωe,
respectively, and a dipole moment d. The time evolution of the state populations under
the influence of a resonant (ω0 = ωeg ≡ ωe−ωg) electromagnetic field E ≡ E0 cos(ω0τ+φ)
at time τ with frequency ω0 and phase φ is determined by the Rabi frequency

Ωeg ≡ 〈e|d · E0 |g〉
�

= Γ
√

I

2Isat
,(1)

expressed in terms of the intensity I of the light field with the saturation intensity Isat,
and the natural linewidth Γ of the transition. Indeed, Ωeg is assumed to be constant
and is a measure of the coupling strength between the atom modeled by the two atomic
states |g〉 and |e〉, and the electromagnetic field E.
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Fig. 1. – Three-level atom interacting with two light fields. A two-photon coupling between the
atomic states |g〉 and |e〉 is established by two electromagnetic fields of frequencies ω1 and ω2,
with Ω1 and Ω2 being the Rabi frequencies of the corresponding one-photon transitions. Here
Δ is the common detuning of the two-photon transition from the intermediate state |i〉, and δ(2)

is the two-photon detuning.

Off-resonant driving with a non-vanishing detuning δ ≡ ωeg−ω0 is taken into account
in the effective Rabi frequency

Ωeff ≡
√

|Ωeg|2 + δ2 ,(2)

which always leads to a faster oscillation of the probability

Pe(τ, δ, Ωeg) =
1
2

(
Ωeg

Ωeff

)2

[1 − cos(Ωeffτ)](3)

to find after an interaction time τ the atom in the excited state |e〉 if the atom is initially
prepared in the ground state |g〉.

The reduced amplitude of the oscillation is determined by the ratio Ωeg/Ωeff of the
resonant and the effective Rabi frequency. For a vanishing detuning, that is δ = 0, the
amplitude of Pe is unity, whereas for a large detuning, |δ| � |Ωeg|, the amplitude of Pe

tends towards zero.
Rabi oscillations can be driven efficiently only for long-lived states, that is for states

in which Ωeff is large compared to the inverse lifetime of the working states |g〉 and |e〉.
A common method to avoid decays from |e〉 to |g〉 is to choose these states such that
the selection rules forbid a single-photon transition between them. The two states could
then be coupled via a two-photon transition, which requires an intermediate state |i〉.

As depicted in fig. 1, light fields with frequencies ω1 and ω2 induce non-resonant
transitions, where the transitions |g〉 ←→ |i〉 and |i〉 ←→ |e〉 are detuned by Δ and
Δ + δ(2), respectively. Consequently, the frequency difference δω ≡ ω1 − ω2 is equal to
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the frequency difference ωeg between the working states plus the two-photon detuning
δ(2), that is δω ≡ ωeg + δ(2). Here and in the following, the superscript (2) indicates a
two-photon process.

The intermediate state can now be short-lived itself, since it is only virtually pop-
ulated, but enables sufficient coupling via simultaneous stimulated absorption and
emission. The resulting two-photon Rabi frequency Ω12, which drives the transition
|g〉 ←→ |e〉 in the case Δ � Ωj with j = 1, 2, is governed by the product of both Rabi
frequencies Ω1 and Ω2 as well as the common detuning Δ of the two-photon transition
to the intermediate state |i〉, that is

Ω12 ≡ Ω∗
1Ω2

2Δ
=

Γ1Γ2

4Δ

√
I1

Isat,1

I2

Isat,2
.(4)

Here Ij and Isat,j denote the intensity and the saturation intensity of the corresponding
light beam, and Γj is the natural linewidth of the corresponding transition.

In this case we return to an effective two-level system where the probability

Pe

(
τ, δ(2),Ω12

)
=

1
2

(
Ω12

Ω(2)
eff

)2 [
1 − cos

(
Ω(2)

eff τ
)]

(5)

to find the atom in the excited state |e〉 now depends on the two-photon Rabi frequency
Ω12, and the corresponding effective Rabi frequency

Ω(2)
eff =

√
|Ω12|2 + (δ(2))2,(6)

determined by the two-photon detuning δ(2).
A fundamental loss mechanism of the coherent dynamics is spontaneous emission

which is fortunately suppressed due to the fact that the two-photon transition is off-
resonant by the detuning Δ relative to the intermediate state |i〉. The rate Rsp of residual
spontaneous decay then reads

Rsp ≡
√

Γ1Γ2

2Δ
|Ω12| =

(Γ1Γ2)
3
2

8Δ2

√
I1

Isat,1

I2

Isat,2
.(7)

For sufficiently large detuning it is possible to suppress spontaneous emission almost
completely.

Moreover, the presence of an off-resonant light field has an influence on the atomic
energy structure. Indeed, the one-photon ac-Stark shift causes an energy shift

δEac
j = −�|Ωj |2

4Δj
(8)
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of the undisturbed atomic states |g〉 (j = 1) and |e〉 (j = 2), determined by the detuning
Δj , and the Rabi frequency Ωj of the corresponding transition [93] with Δ1 ≡ Δ and
Δ2 ≡ Δ + δ(2).

Furthermore, for high-precision measurements such as the ones discussed in these
lectures also the two-photon light shift has to be considered, which depends on the details
of the internal atomic structure, as well as on the polarization of the light fields [94-96].

Finally, we consider two special cases of the Rabi dynamics given by eq. (5), namely
“π/2”- and “π”-pulses, which are determined by their enclosed pulse areas. For fixed
laser intensities I1 and I2, we define these pulses by their specific interaction times
τπ/2 ≡ π/

(
2Ω(2)

eff

)
and τπ ≡ π/Ω(2)

eff , leading us to the probabilities

Pe

(
τπ/2, δ

(2),Ω12

)
=

1
2

(
Ω12

Ω(2)
eff

)2

(9)

and

Pe

(
τπ, δ(2),Ω12

)
=

(
Ω12

Ω(2)
eff

)2

,(10)

where we have made use of eq. (5).
In the ideal case with δ(2) = 0, a π/2-pulse creates an equally weighted superposition

of |g〉 and |e〉 when starting in one of the two working states. In contrast, a π-pulse inverts
the states |g〉 and |e〉. Due to their functions in an interferometer, these pulses are called
“beam splitter” and “mirror” for atoms, in complete analogy to their counterparts in
optics for light beams.

2.1.2. Bragg and Raman diffraction. So far we have only discussed the dynamics of
internal atomic states induced by the atom-light interaction. However, the use of an atom
interferometer for inertial sensing requires sensitivity to external degrees of freedom, in
particular, the atomic center-of-mass motion relative to a reference frame. We satisfy this
requirement when we recall that during the atom-light interaction the electromagnetic
field does not only transfer energy, but also momentum to the atoms.

We now consider a two-photon process induced by two light fields with the wave
vectors k1 and k2. In the case of counter-propagating fields, that is k ≡ k1 ≈ −k2,
the momentum transfer between atom and field is maximal and approximately 2�k. For
co-propagating beams, that is k1 ≈ k2, the momentum transfer is minimal and almost
zero.

Furthermore, due to the fact that the dispersion relation of a free particle is parabolic,
a non-zero momentum p0 of the atom and the resulting frequency shift have to be taken
into account. Indeed, any offset p0 results in a Doppler shift

ωD ≡ p0 · keff

m
(11)
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of the transition frequencies due to the motion of the atoms of mass m relative to the
light fields. It vanishes only for atoms at rest.

These considerations also lead us to the definition

ωrec ≡ �|keff |2
2m

(12)

of the recoil frequency associated with the light fields. Here, and in eq. (11) we have
introduced the notation keff ≡ k1 −k2 to identify the effective momentum transfer �keff

during a two-photon process.
In the general case of an n-th–order transition and counter-propagating light fields

with k ≡ k1 ≈ −k2, the total momentum transfer

n�keff ≡ n�(k1 − k2) ≈ 2n�k(13)

is the sum of the momenta transferred by n photon pairs and can achieve large values.
In a quantum mechanical treatment of the atomic center-of-mass motion, an n-th–

order two-photon transition couples the momentum eigenstates |p0〉, corresponding to
the momentum p0 before the interaction, and |pn〉, representing the momentum pn ≡
p0 +n�keff after the interaction. Based on the considerations of sect. 2.1.1, we also have
to include a coupling to the internal states. However, since a change of a momentum
eigenstate does not necessarily require a change of an internal atomic state, different
types of diffraction are possible [81].

We call an atomic scattering process a “Raman”-type diffraction if the atom-light
interaction couples two different internal states of the atom, whereas we call it a “Bragg”-
type diffraction if the internal state is unchanged. More sophisticated schemes employ
double Raman diffraction [6, 97], or double Bragg diffraction [86, 98]. They lead to a
larger momentum transfer, and hence provide us with an increased sensitivity as well as
the elimination of certain noise sources due to the symmetric structure of the diffraction
process.

2.1.3. Multi-photon coupling by Bragg diffraction. Bragg diffraction of a matter wave is
defined in complete analogy to the diffraction of an electromagnetic field by a crystal [99,
100]. Here the roles of light and matter are interchanged.

Indeed, when an atomic beam or ensemble is diffracted from two counter-propagating
light fields of the frequencies ω1 and ω2 the Bragg condition reads

δEkin = n�δω ≡ n�(ω1 − ω2),(14)

where

δEkin ≡ (p0 + n�keff)2

2m
− p2

0

2m
(15)

is the change of the kinetic energy of the atom associated with its change in momentum.
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Fig. 2. – Momentum transfer of 2n�k in n-th–order Bragg diffraction represented by the level
scheme (a) and density plots (b) measured experimentally for n = 1, 2, 3, 4 and 5. This figure is
an adaptation of figs. 4.7 and 5.12 in ref. [101].

For the case of first-order diffraction, n = 1, eqs. (14) and (15) give a very intuitive
picture of the scattering process. An atom scatters two photons with momenta �k1 and
�k2 from two traveling light waves if their energy difference �δω matches the energy
δEkin an atom has to absorb to climb the kinetic energy parabola, depicted in fig. 2(a).

When we use eqs. (14) and (15) and the definitions eqs. (11) and (12) of the Doppler
shift ωD and the photon recoil ωrec, we arrive at the condition

ω1 − ω2 = nωrec + ωD,(16)

for the frequency difference which drives the diffraction process of the n-th order.
The case of scattering more than one photon pair at a time, n > 1, leads to the

population of higher-order momentum states |pn〉 with pn = p0 + n�keff , since ideally
every momentum state in between is not on resonance and should not be populated, as
shown in fig. 2(a).

In fig. 2(b) we present density plots for multi-photon Bragg diffraction with n =
1, 2, 3, 4 and 5, and note that the simultaneous scattering of n pairs of photons has been
realized experimentally up to n = 12. This achievement allows us to construct a beam
splitter [102] with a momentum transfer of 24 �k, where k = |k|. For 87Rb the spacing
between subsequent Bragg orders is only 15 kHz, which leads to populating multiple
orders.

For the n-th–order Bragg transition the calculation of the transition probability Pn

requires considerations [103] that go beyond the two-state assumption. The product
of the Rabi frequency Ωeff governed by the laser intensity I, and the duration τ of the
atom-light interaction are the major ingredients. Indeed, the product of these parameters
determines if a clean Rabi oscillation into a single momentum state is possible, or if
multiple states are populated.
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In the Bragg regime where a single order is dominantly populated, the generalized
transition probability

Pn(τ) ≡ sin2

[
1
2

∫ τ

0

dτ ′Ωn(τ ′)
]

(17)

from the initial momentum state |p0〉 to the n-th–order momentum state |pn〉 is deter-
mined by a new effective Rabi frequency Ωn, as discussed in detail in ref. [103].

In order to perform an n-th–order transition, an increase in the laser power is re-
quired. An approximate solution obtained in ref. [103] presents conditions for a so-called
“quasi-Bragg” regime, in which the probability to populate a single higher-order state is
significantly larger compared to the one for a population of all other orders by applying
short and intense pulses.

In order to achieve a large momentum transfer without the increase of laser power,
one can use sequential pulses. Indeed, the same momentum transfer as in the case of
a single n-th–order transition may be achieved at the cost of a larger total time of the
beam splitting process, and a more complex waveform. For a sequence consisting of np

sequential pulses the resonance condition to drive the ns-th sequential transition with an
n-th–order Bragg pulse reads

ω1 − ω2 = (2ns − 1)nωrec + ωD(18)

with ns = 1, . . . , np. We emphasize that the frequency difference ω1 − ω2 has to be
adjusted for each sequential transition.

In principle, there is no restriction on combining any number np of sequential pulses
with any achievable Bragg order n, to obtain a particular transfer efficiency. For example,
a sequence of beam splitters transferring 6 �k each, leads to a total splitting [104] of
102 �k, or a sequence of first-order transitions results [105] in 90�k.

2.1.4. Influence of atom cloud and beam size. In the single-atom picture, or in the case
of a highly monochromatic ensemble, one can always find for fixed laser powers I1, I2 and
a common detuning Δ, an interaction time τ , for which the amplitude of the transition
probability given by eqs. (5) and (6) is unity. Here we assume that the two-photon
detuning δ(2) vanishes. In this case the beam-splitter efficiency is only limited by the
loss of atoms due to spontaneous decay with the rate Rsp, expressed by eq. (7).

However, a non-zero temperature Ta of the atoms, and therefore a spread σv in the
velocity v of the atomic ensemble needs to be taken into account, as it induces a broad-
ening of the transition frequency due to the Doppler shift keff · v, eq. (11). Even for
BECs, the beam-splitter efficiency may change drastically, when we employ for example
higher-order Bragg diffraction [82].

We estimate the influence of such a velocity distribution by the use of a Gaussian
distribution

f3D(v) ≡ 1
(2π)3/2σ3

v

exp
[
− (v − v0)2

2σ2
v

]
(19)
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of velocities v across the atomic ensemble which is isotropic in all three spatial dimensions
and has a width

σv ≡
√

kBTa

m
(20)

determined by the temperature Ta and the Boltzmann constant kB. Here v0 is an arbi-
trary offset velocity.

The total probability Pe to find the atom in the excited state |e〉 then reads

Pe(τ) ≡
∫∫∫

d3v f3D(v)Pe

[
τ, δ(2)(v),Ω12

]
,(21)

where Pe[τ, δ(2)(v),Ω12] is the excitation probability given by eq. (5) for the atomic
velocity v, and d3v is the three-dimensional volume element in velocity space.

In order to evaluate the integral over v, we recall that according to eq. (5) the proba-
bility Pe[τ, δ(2)(v),Ω12] is determined by the two-photon detuning δ(2) which enters into
the effective Rabi frequency Ω(2)

eff given by eq. (6). We assume here that the two-photon
detuning δ(2) ≡ keff · v is solely induced by the Doppler shift, and hence depends only
on the projection of the velocity v onto the wave vector keff .

Thus, the three-dimensional integral, eq. (21), reduces to a one-dimensional integral
over the x-component vx of the velocity v if we align the x-axis with the direction of
keff , giving rise to

Pe(τ) =
∫

dvx f1D(vx)Pe

[
τ, δ(2)(vx),Ω12

]
,(22)

with the one-dimensional Gaussian distribution

f1D(vx) ≡ 1
(2π)1/2σv

exp
[
− (vx − vx,0)2

2σ2
v

]
.(23)

We emphasize that the x-component vx,0 of the offset velocity v0 can be compensated
by an adjustment of the frequency difference δω of the two light fields.

Unfortunately, the velocity spread is not the only effect we need to account for. Indeed,
the atomic ensemble has also a finite size and interacts with two laser beams having for
example Gaussian intensity profiles

Ij(y, z) ≡ I0,j exp

[
−2(y2 + z2)

w2
j

]
(24)

in the (y, z)-plane, where I0,j is the amplitude and wj is the radius of the beam for
j = 1, 2.

The finite size of the laser beams causes a spatially dependence Ω12 = Ω12(r) of the
Rabi frequency due to the dependence Ij = Ij(r) of the intensity on the position r of the
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atom within the two beams. As a result, for two collimated laser beams aligned along
the x-direction, the excitation probability

Pe

[
τ, δ(2),Ω12(r)

]
= Pe

[
τ, δ(2),Ω12(y, z)

]
(25)

only depends on the coordinates y and z perpendicular to keff .
Moreover, we model the spatial transverse distribution of the atomic ensemble by a

Gaussian

s2D(y, z) ≡ 1
2πσ2

y

exp
(
−y2 + z2

2σ2
y

)
(26)

of width σy = σz centered at the maximum intensity of the beams (y = z = 0) in the
(y, z)-plane.

When we combine eqs. (22) and (26), the total probability in three dimensions reads

Pe(τ) ≡
∫∫

dy dz

∫
dvx s2D(y, z)f1D(vx)Pe

[
τ, δ(2)(vx),Ω12(y, z)

]
,(27)

and is determined by the widths σv, σy, the laser beam radii wj as well as the Rabi
frequency Ω12 depending on the maximum laser intensity I0,j .

Usually, the velocity distribution f1D can be assumed to be time-independent if no
external force is acting. However, the spatial distribution s2D is always a function of
time, since the cloud spreads due to the non-vanishing width σv of the velocity distri-
bution. Hence, finding the three-dimensional probability Pe is more complicated if these
assumptions are not valid. Even in the case of perfect monochromatic light fields, the
efficiency of the coherent processes is fundamentally limited by the finite size and velocity
of the cloud of atoms [82].

2.2. Optical lattices. – In the preceding sections we have discussed the possibility
of changing the atomic momentum with the help of the atom-light interaction leading
to Bragg and Raman diffraction. However, there exists also the option of a sequential
momentum transfer in an optical lattice. In particular, a large effect occurs due to Bloch
oscillations in an accelerated optical lattice [106-109].

2.2.1. Bloch theorem. In one space dimension we can obtain an optical lattice by
retroreflecting a light field propagating in the x-direction and having the wave vector k,
from a mirror. This process leads to the formation of a standing light wave, and hence,
to an effective periodic potential

V (x) ≡ 4Vdip sin2(kx) =
1
2
V0[1 − cos(2kx)](28)

for atoms with the amplitude V0 = 4Vdip, where Vdip is the magnitude of the atom-light
interaction [110]. The factor of four results from the amplification of the electric field E
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by a factor of two due to the retro-reflection, and the quadratic scaling of the light field
intensity I ∝ |E|2.

The potential given by eq. (28) is periodic with the period d ≡ π/k given in units of
the wave number k ≡ |k| ≡ 2π/λ, and the amplitude

V0 ≡ �Γ2

2Δ
I

Isat
(29)

of the potential V can be expressed in terms of the intensity I, the saturation intensity
Isat, the natural linewidth Γ, and the detuning Δ. Here we have used eq. (1) and eq. (8)
for the ac-Stark shift.

According to the Bloch theorem [111], the wave function

ψ�,q(x) ≡ eiqxu�,q(x)(30)

of an atom in a periodic potential V , eq. (28), is the product of a plane wave eiqx with
the quasi-momentum �q, and an amplitude u�,q(x) ≡ 〈x|u�,q〉 having the same period d

as the original potential V . Here � denotes the discrete band index.
The Bloch state |u�,q〉 obeys the Schrödinger equation

[ (p̂ + �q)2

2m
+ V (x̂)

]
|u�,q〉 = E�(q) |u�,q〉 ,(31)

where the corresponding quasi-energy

E�(q) = E�

(
q +

2π

d

)
(32)

has a period 2π/d = 2k as a function of q. Therefore, following the convention of solid-
state physics, the quasi-momentum �q can be restricted to the interval (−π�/d, +π�/d] =
(−�k,+�k], that is the first Brillouin zone [111].

In order to work in this interval, it is natural to consider atomic ensembles with a
narrow momentum distribution, that is mσv � �k. As an example, both a BEC [112],
and a distribution of cold atoms prepared by a velocity filter in one dimension [106,107]
fulfill this condition.

2.2.2. Bloch oscillations. The Bloch states |u�,q〉 following from eq. (31) and describing
an atom in an optical lattice are stationary ones. Therefore, dynamics only occurs if an
additional force F is acting, which can be either an external force, such as gravity, or an
acceleration of the lattice itself.

When an atom in an optical lattice is suddenly exposed to a spatially uniform force
F , the Bloch states |u�,q〉 are no longer eigenstates [106,107] of the new Hamiltonian

ĤF ≡ p̂2

2m
+ V (x̂) − F x̂.(33)

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



Atom interferometry and its applications 359

Fig. 3. – Bloch oscillations in the first Brillouin zone (a) caused by a force F acting on the
center-of-mass motion of the atoms and transfer efficiency ηtot as a function (b) of the lattice
depth V0 for the different momentum transfers Δp. When the force is weak enough to avoid
inter-band transitions, the atoms undergo an adiabatic acceleration for the time τacc = 1 ms
while they cross the individual Brillouin zones. Up to Δp = 100 �k the fraction ηtot of atoms
remaining in the target momentum state can be held above 0.9. The solid lines are given by
the product ηtot = ηspηLZ normalized to the measured maximum transfer efficiency, where ηsp

and ηLZ are defined by eqs. (40) and (42), accordingly. This figure is an adaptation of figs. 4.11
and 5.23 in ref. [101].

Indeed, for a small value of F , such that there are no inter-band transitions and the
adiabatic assumption is valid, the wave function ψ�,q(0), eq. (30), evolves into

ψ�,q(τ)(x) = exp
{
− i

�

∫ τ

0

E�[q(t)]dt

}
eiq(τ)xu�,q(τ)(x),(34)

and, apart from a phase factor and a linear shift of the quasi-momentum

�q(τ) ≡ �q(0) + Fτ,(35)

preserves its original form.
Because �q changes linearly in time τ , the wave function ψ�,q(τ) has a temporal peri-

odicity given by the Bloch period

τBloch ≡ 2π�

|F |d ,(36)

which is the time after which the change FτBloch of the quasi-momentum is equal to the
width 2π�/d of the first Brillouin zone, displayed in fig. 3(a).

Moreover, since the quasi-energy E� = E�(q), eq. (32), is a periodic function with
period 2π/d, the velocity

〈v�〉(q) ≡ 1
�

dE�(q)
dq

(37)
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of an atom in the Bloch wave u�,q(τ) has the same periodicity.
Furthermore, according to eq. (35) the quasi-momentum �q = �q(τ) is swept linearly

in time τ . Hence, 〈v�〉[q(τ)] is periodic in time with the Bloch period τBloch, eq. (36). Its
temporal average vanishes. This oscillation is called Bloch oscillation and fig. 3(a) shows
its representation for the first Brillouin zone.

Bloch oscillations allow us to couple the momentum eigenstate |p0〉 of a free particle
to the momentum eigenstate |pnp

= p0 + 2np�k〉, by sequentially transferring np times
the momentum 2�k. The associated momentum transfer is the same as the one obtained
when driving a sequence of np first-order Bragg pulses as discussed in sect. 2.1.3. For
this purpose, |p0〉 is adiabatically transferred to the lowest band of the Bloch lattice with
� = 0 by increasing the lattice depth V0. In order to avoid inter-band transitions this
transfer has to be adiabatic, that is the change dV0/dτ of the potential amplitude V0,
eq. (29), has to be much smaller than ΔE2/�, where ΔE denotes the energy difference
between the bands depicted in fig. 3(a),

Atoms in the fundamental band are then coherently accelerated by applying a linear
chirp 2πα to the frequency difference δω ≡ ω1 − ω2 of the two counterpropagating light
waves with frequencies ω1 and ω2, that is [107]

δω(τ) ≡ 2πατ.(38)

This chirp is equivalent to the effective force

|F | =
2πm

keff
|α|(39)

of eq. (33) with keff ≡ 2k.
The accelerated lattice generated by this chirp is very well controllable and allows

us to efficiently couple the momentum states |p0〉 and |pnp
〉 by a sequential adiabatic

transfer of the quasi-momentum �q of the lattice to the atoms. Finally, the atoms are
unloaded from the lattice by slowly decreasing the potential amplitude V0.

2.2.3. Landau-Zener transitions. In order to estimate the efficiency of driving Bloch
oscillations and the associated momentum transfer, we have to take into account two
main loss mechanisms: Spontaneous emission and inter-band transitions.

Although the detuning Δ is large, still an appreciable fraction of atoms is lost due
to spontaneous emission. We characterize the surviving fraction of atoms after the short
acceleration time τacc by the parameter

ηsp ≡ 1 − Rspτacc ,(40)

where Rsp is defined by eq. (7).
The second loss mechanism results from the fact that the lattice is not infinitely deep

and the momentum transfer is not fast enough. These deficiencies give rise to inter-band
transitions. Indeed, for a lattice generated by two counter-propagating light waves with
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the time-dependent frequency difference δω given by eq. (38), the chirp α has to obey
the adiabaticity criterion

|α| ≡
∣∣∣∣ d
dτ

δω

2π

∣∣∣∣ = np
ωrec

τacc
� ΔE2

�2
.(41)

Here ΔE denotes the energy of the band gap shown in fig. 3(a) and we aim at transferring
np pairs of photons during the time τacc.

We estimate the efficiency of the momentum transfer with the familiar Landau-Zener
formula [113]

ηLZ =
[
1 − exp

(
−π

2
ΔE2

�2α

)]np

,(42)

which provides us with the surviving fraction of atoms for a given chirp rate α and band
gap energy ΔE. The power np in eq. (42) indicating the number of transitions reflects
the fact that an inter-band transition may take place at each crossing of the Brillouin
zone, that is whenever a photon pair is scattered.

The total fraction

ηtot ≡ ηspηLZ(43)

of surviving atoms after the acceleration is given by the product of ηsp and ηLZ defined
by eqs. (40) and (42).

In fig. 3(b) we show by dots the measured efficiencies ηtot to transfer the momentum
Δp as a function of the lattice depth V0 for a fixed acceleration period τacc = 1 ms. The
solid lines are based on eq. (43) normalized to the measured maximum transfer efficiency.
For Δp = 20 �k and 200 �k the solid line fits almost perfectly. However, for the data
points with Δp = 50 �k and 100 �k, residual resonant tunneling is visible, which is not
taken into account in the Landau-Zener formula, eq. (42).

In principle, there are no fundamental limits on the amount Δp of momentum that
can be transferred by Bloch oscillations during a fixed time. It is a purely technical issue.

However, a limitation that is not easy to overcome is the spontaneous emission char-
acterized by the rate Rsp, given by eq. (7). It effectively reduces the total fraction ηtot of
atoms, since the laser detuning Δ and the laser power P cannot be increased arbitrarily.
For a laser detuning Δ = 100 GHz, even at the largest lattice depth V0 = 23�ωrec, the
relative contribution of spontaneous emission still stays at the few percent level. Up to
an acceleration of 100 �k/ms, the transfer efficiencies per photon ηtot/�k can be held
at a level of ηtot/�k > 0.999. However, for larger values of the acceleration, the rela-
tive transfer efficiency starts to decrease due to a violation of the adiabaticity criterion,
eq. (41).

2.3. Mach-Zehnder interferometer for gravity measurements. – Measurements of grav-
ity with atoms typically employ a MZI [1-4,114-116] which is similar to its original optical
analogue and consists of three elements: two beam splitters and one mirror.
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Fig. 4. – Mach-Zehnder interferometer (MZI) for atoms. The spacetime diagram (a) shows the
atomic trajectories due to a three-pulse sequence consisting of i) an initial π/2-pulse to prepare
a superposition of the two different momentum states |p0〉 and |p1〉 of the atomic center-of-mass
motion, ii) a π-pulse to exchange the imprinted momenta, and iii) a final π/2-pulse to obtain
the interference in the atomic population in an exit port. In (b) we depict a fringe scan for an
adjusted laser phase Δφlaser in the interval [0, 2π]. Figure (a) is reproduced from fig. 4.15(b) in
ref. [101].

2.3.1. Set-up. The first beam splitter generates a coherent superposition of two dif-
ferent momentum states |p0〉 and |p1〉 of the atomic center-of-mass motion. This super-
position results in two spatially separated trajectories associated with each of the two
momentum states, as depicted in fig. 4(a). After a time T , a mirror exchanges these
two momentum states, leading to a redirection of the trajectories. Finally, after a to-
tal duration of 2T , the two trajectories overlap again, and the second beam splitter is
applied.

As discussed in sect. 2.1.1 we describe beam splitters and mirrors realized by the
atom-light interaction in the Rabi formalism, and the corresponding pulse sequence for
the MZI reads π/2-π-π/2. Here the two beam splitters (π/2-pulse) are separated from
the mirror (π-pulse) by T . Usually, the momentum transfer �keff induced by a beam
splitter or mirror is parallel or antiparallel to the gravitational acceleration g as shown
in fig. 4(a).

The interference signal of the interferometer is determined by the atomic population

P (Δφ) =
1
2
[1 − C cos(Δφ)](44)

in the momentum state |p1〉 after the final beam splitter, where C and Δφ are the
contrast and the total phase shift, respectively.

In the remainder of these lectures we consider only a perfectly closed interferometer,
where the two wave packets propagated along the two trajectories perfectly overlap after
the total interferometer time 2T . In this case we obtain the maximal contrast C = 1.
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2.3.2. Contributions to phase shift. The total phase shift Δφ of the MZI reads [117,118]

Δφ = Δφlaser + Δφac + Δφ2ph + Δφinert,(45)

where the laser phase

Δφlaser ≡ φ1 − 2φ2 + φ3(46)

is determined by the laser phases φ1, φ2, and φ3 imprinted on the atom wave during the
atom-light interaction due to the first, second, and third pulse. The phase Δφlaser is of
the form of a discrete second derivative. Unless φ3 is used to modulate the signal, as
depicted in fig. 4(b), the laser phase vanishes.

The single- and two-photon light shifts Δφac and Δφ2ph may lead to an offset shift,
which in the first order depends on the difference in phase imprinted during the first
and last pulse. In contrast to Raman diffraction, where the ratio of the intensities of the
two frequency components needs to be properly adjusted [94,95], the phase Δφac can be
intrinsically suppressed in interferometers based on Bragg diffraction [96].

The two leading-order contributions to the phase shift

Δφinert ≡ Δφgrav + Δφrot(47)

containing inertial effects, originate from the gravitational acceleration g

Δφgrav ≡ keff · g T 2,(48)

and from the rotation of the Earth with frequency ΩE

Δφrot ≡ 2keff · (ΩE × v0)T 2,(49)

representing the Sagnac effect. Here v0 is the velocity of the atoms before the first beam
splitter.

2.3.3. Influence of non-zero pulse duration. If the duration τp of a pulse is not negligibly
short compared to the pulse separation time T , a modification of Δφgrav given by eq. (48)
is necessary [119-122]. For a Gaussian-shaped pulse of width στp we find the new pulse
separation time

T ′ ≡ T + τp − τ ′
p ,(50)

where

τ ′
p ≡

√
2πστp(51)
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is the duration of an equivalent box-shaped pulse covering the same area as the Gaussian-
shaped one. Here we have assumed equally long π- and π/2-pulses, which, however, differ
in intensity.

As a result the improved expression

Δφgrav = keff · g T ′2
[
1 +

(
1 +

2
π

) τ ′
p

T ′ + . . .
]

(52)

for Δφgrav represents a Taylor expansion in powers of τ ′
p/T ′.

Hence, the influence of the correction due to a non-zero pulse duration decreases for
larger T , since the duration τp is independent of the separation T .

2.3.4. Measurement of gravitational acceleration. The phase Δφ accumulated in an
atom interferometer does not only depend on the laser phase Δφlaser, but also on the
time dependence of the laser frequency Δν = Δν(τ). In the following we restrict ourselves
to a one-dimensional problem with the gravitational acceleration g = |g|, and neglect for
the time being the phase contributions Δφlaser and Δφrot.

During the free fall of the atom the resonance frequency of the transition changes due
to the Doppler effect, eq. (11). This effect needs to be taken into account by a proper
change of the detuning Δν(τ) after a certain free-fall time τ .

Indeed, the appropriate time dependence

Δν(τ) =
δω(τ)

2π
(53)

of the chirp originates from the requirement for δω to stay on resonance, eq. (18), where
the Doppler frequency ωD = ωD(0), eq. (11), is replaced by

ωD(τ) = ωD(0) − keffgτ.(54)

Chirping the laser frequency is not only a necessity to remain on resonance, but the
chirp rate α also defines the acceleration a = 2πα/keff , compare to eq. (39), of the
wavefronts of the Bragg lattice during free fall. In particular, the adjustment of 2πα can
be used to modulate the interferometer phase Δφ in a way that

Δφ(α, T ) =
(

g − 2πα

keff

)
keffT 2.(55)

It is the control of this chirp rate that allows us to realize an atomic gravimeter.
Indeed, eq. (55) relates the output of the atom interferometer P (Δφ), eq. (44), depending
on the gravitational acceleration g, to the two well-controlled parameters T and α. To
extract g, we evaluate the dependence of the output signal P (Δφ) on one parameter with
the other one fixed.

Figure 5 displays P = P (Δφ) versus the variation of the pulse separation time T for
three different values of 2πα/keff , namely 0, 3g/4, and g. The closer the ratio 2πα/keff is
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Fig. 5. – Local gravitational acceleration g obtained from the measurement of the chirp rate in
an atomic gravimeter. The number of atoms in the exit port of an atom interferometer governed
by P = P (Δφ) is counted for different chirp rates α of the laser frequency displayed here for the
three lattice wavefront accelerations 2πα/keff = 0, 3g/4, and g. For increasing pulse separation
time T , a chirped sinusoidal oscillation is obtained. The chirp rate decreases with increasing α
and finally vanishes for 2πα/keff = g. This picture is an adaptation of fig. 2.4 in ref. [95] and
fig. 4.19 in ref. [101].

to the gravitational acceleration g, the slower is the oscillation chirp, and for 2πα/keff = g

the oscillations vanish completely.
When there is a significant mismatch between the chirp rate α and the free-fall rate

g, a reduction in excitation efficiency due to a non-compensated Doppler shift appears.
This effect was neglected in eq. (55) and fig. 5.

We conclude by noting that in a real experiment the ratio 2πα/keff differs from the
gravitational acceleration by less than one percent.

3. – Equivalence principle and atom interferometry

A prime application of an inertially sensitive atom interferometer is its use as a probe
of Einstein’s equivalence principle (EEP). We devote the present section to this topic and
emphasize that the results summarized therein have originally been published in ref. [47].

First, we outline in sect. 3.1 a framework for testing the universality of free fall
(UFF). We then present in sect. 3.2 an experiment based on a dual-species rubidium and
potassium interferometer using atoms released from an optical molasses together with
Raman diffraction to probe the UFF. Finally, we summarize our results and perform the
associated data analysis in sect. 3.3.
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3.1. Frameworks for tests of the universality of free fall . – In spite of being 36 orders
of magnitude weaker than the Coulomb interaction, gravitation dominates on a cos-
mological scale. Since astrophysical objects are electrically neutral gravitation governs
the structure of our universe. Einstein’s metric theory of gravity [123], that is general
relativity, provides us with the tools necessary to understand a vast variety of astronom-
ical phenomena and makes verifiable predictions, such as the existence of gravitational
waves [124, 125]. As of today, however, a completely satisfactory microscopic theory of
quantum gravity merging general relativity with quantum mechanics is still lacking.

The EEP is a cornerstone of general relativity, and unification attempts in general
imply the violation of at least one of its three central assumptions: i) local position
invariance, ii) local Lorentz invariance, and iii) the UFF. Ranging from the famous
Pound-Rebka experiment [126] and gravity probe A [127], to the extremely sensitive
torsion balance experiments [128] and lunar laser ranging [49, 129, 130], the EEP has
been tested extensively.

Experiments employing matter wave interferometry have recently extended the land-
scape of classical UFF tests by entering the quantum domain. The UFF postulates the
equality of inertial mass min and gravitational mass mgr. Given two bodies A and B it
can be tested by obtaining the Eötvös ratio

ηA,B ≡ 2
gA − gB

gA + gB
= 2

(mgr
min

)A − (mgr
min

)B
(mgr

min
)A + (mgr

min
)B

(56)

for their respective gravitational accelerations gA and gB.
Any non-zero measurement of ηA,B would imply a composition-dependent inequality

of inertial and gravitational mass. Indeed, the values

ηEarth,Moon = (−0.8 ± 1.3) · 10−13(57)

based on Lunar-Laser-Ranging [49,129,130] and

ηBe,Ti = (0.3 ± 1.8) · 10−13(58)

employing torsion balances [128] have provided the best constraints on violations of the
UFF for a number of years.

Alternatively, one can also compare pairs of freely-falling test masses. The best result
on ground [131] corresponds to

ηCu,U = (1.3 ± 5.0) · 10−10.(59)

Moreover, a recent test in space [51,132] obtained

ηTi,Pt = [−0.1 ± 0.9(stat) ± 0.9(syst)] · 10−14(60)
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corresponding to an order of magnitude improvement of the bounds set by previous
experiments.

The tests listed above employ classical test masses. In analogy to the first observa-
tion of a gravitation-induced phase in a neutron interferometer [133], the acceleration
measured by the interference of a quantum object can be compared to that of a clas-
sical object [3, 43], or the differential gravitational phase shifts between two quantum
objects [18, 44, 46, 48, 134] can be exploited to search for violations of the UFF. Beyond
the comparison of two isotopes of strontium in 2014 [46], the latter approach was ex-
tended to comparing the free-fall acceleration of the two different elements rubidium and
potassium [47].

Experiments using quantum objects are beneficial because they are generally subject
to systematic effects different from those dominating classical tests. Moreover, unique
properties of quantum objects, such as a macroscopic coherence length [135] and spin
polarization [136-139] can be tested as features possibly coupling to EEP-violating effects.
Furthermore, the set of available test masses is enhanced by those that can be laser-
cooled and chosen as to maximize the sensitivity to violations. This approach can be
clearly illustrated by dilaton models [140], and the so-called Standard Model Extension
(SME) [141,142], which both provide consistent frameworks for parametrizing violations
of the EEP.

Violations of the UFF can be naturally parameterized by writing the acceleration gX

of a species X as

gX = (1 + βX)g,(61)

where βX is a small parameter which is species dependent, and vanishes in the absence
of UFF violations.

For dilaton models one has

βX = D1Q
′1
X + D2Q

′2
X ,(62)

where D1 and D2 are fundamental violation parameters, whereas Q′1
X and Q′2

X are effective
charges that mainly depend on the proton and neutron numbers of species X [140].

The Eötvös ratio for two species A and B is then given by

ηA,B ≈ βA − βB = D1(Q′1
A − Q′1

B ) + D2(Q′2
A − Q′2

B ),(63)

and the differences of the effective charges, which determine the sensitivity to violations
associated with D1 or D2 are listed in table I for several test pairs.

Similarly, for the SME one has

βX = fβe+p−n
X

βe+p−n + fβe+p+n
X

βe+p+n + fβē+p̄−n̄
X

βē+p̄−n̄ + fβē+p̄+n̄
X

βē+p̄+n̄,(64)

where βe+p−n, βe+p+n, βē+p̄−n̄, and βē+p̄+n̄ parametrize the violations for various
weighted combinations of elementary particles. Moreover, the sensitivity factors fβe+p−n

X

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



368 S. Abend, M. Gersemann, C. Schubert, etc.

Table I. – Comparison of test masses A and B analyzed in the dilaton model. The charges Q′1
X

and Q′2
X with X being either A or B are calculated according to ref. [140]. A larger absolute num-

ber corresponds to a larger anomalous acceleration, and thus a higher sensitivity to violations of
the EEP. For Ti and Cu natural occurrence of isotopes is assumed. This table is a reproduction
of table 2.1 in ref. [95].

A B Ref. (Q′1
A − Q′1

B ) · 104 (Q′2
A − Q′2

B ) · 104

9Be Ti [128] −15.46 −71.20

Cu 238U [131] −19.09 −28.62

85Rb 87Rb [18,44] 0.84 −0.79

87Sr 88Sr [46] 0.42 −0.39

6Li 7Li(a) [143] 0.79 −10.07

39K 87Rb [47] −6.69 −23.69

(a)
A UFF test comparing 6Li vs. 7Li has not yet been performed.

(fβē+p̄−n̄
X

) and fβe+p+n
X

(fβē+p̄+n̄
X

) are charges related to the neutron excess, and the overall
baryon number in a given normal matter (antimatter) nucleus [142].

The corresponding Eötvös ratio reads

ηA,B ≈ βA − βB = Δf−nβe+p−n + Δf+nβe+p+n + ¯Δf−nβē+p̄−n̄ + ¯Δf+nβē+p̄+n̄,(65)

with

Δf−n ≡ fβe+p−n
A

− fβe+p−n
B

,(66)

Δf+n ≡ fβe+p+n
A

− fβe+p+n
B

,

¯Δf−n ≡ fβē+p̄−n̄
A

− fβē+p̄−n̄
B

,

¯Δf+n ≡ fβē+p̄+n̄
A

− fβē+p̄+n̄
B

.

These differences of sensitivity factors are listed in table II for relevant test pairs.
Tables I and II clearly show that the choice of test masses heavily influences the

achievable impact on global violation bounds. Specifically, this information allows us
to use novel test pairs that were previously unconstrained, or only weakly constrained,
to improve the bounds on certain violation parameters [142, 146]. Here, a new, and
independent result can have an enormous impact on the global model even if it does not
reach the state-of-the-art sensitivity.
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Table II. – Comparison of test masses A and B analyzed in the Standard Model Extension. The
sensitivity factors Δf−n, Δf+n, ¯Δf−n, and ¯Δf+n are calculated according to ref. [142]. Relevant
nuclide data is taken from ref. [144]. A larger absolute number corresponds to a larger anoma-
lous acceleration, and thus higher sensitivity to violations of the EEP. For Ti and Cu natural
occurrence of isotopes [145] is assumed. This table is a reproduction of table 2.2 in ref. [95].

A B Ref. Δf−n · 102 Δf+n · 104 ¯Δf−n · 105 ¯Δf+n · 104

9Be Ti [128] 1.48 −4.16 −0.24 −16.24

Cu 238U [131] −7.08 −8.31 −89.89 −2.38

85Rb 87Rb [18,44] −1.01 1.81 1.04 1.67

87Sr 88Sr [46] −0.49 2.04 0.81 1.85

6Li 7Li(a) [143] −7.26 7.79 −72.05 5.82

39K 87Rb [47] −6.31 1.90 −62.30 0.64

(a)
A UFF test comparing 6Li vs. 7Li has not yet been performed.

3.2. Simultaneous 87Rb and 39K interferometer . – To test the UFF, we operate two
Mach-Zehnder-type matter wave interferometers [1] with laser-cooled 87Rb and 39K as
shown in fig. 6. To leading order, the phase shift in each interferometer reads

Δφi =
(

gi − αi

keff,i

)
keff,iT

2,(67)

and can be deduced by counting the atoms in the exit ports. Here the effective wavefront
acceleration αi/keff,i introduced by linearly ramping the Raman laser frequency difference
is utilized to null the phase shift induced by the gravitational acceleration. We emphasize
that the definition of the chirp rate αi differs by a factor of 2π from the definition of the
chirp rate α in sect. 2.3.4.

An ensemble of 8 · 108 atoms (3 · 107 atoms) of rubidium (potassium) atoms is col-
lected from a two-dimensional magnetooptical trap, then sub-Doppler cooled [147-149]
to TRb = 27 μ K (TK = 32μ K), and after being optically pumped to the |Fi = 1〉 man-
ifold, released into free fall. Three two-photon Raman pulses separated in time by T

are applied to coherently split, redirect, and recombine the atoms during free fall. For
detection, the population in |Fi = 2〉 as well as the total population in |Fi = 1〉 and
|Fi = 2〉 are obtained via state-selective fluorescence detection, yielding the normalized
excitation probability. The overall cycle time is about 1.6 s

A global minimum of the interference fringes appears independently of the free evo-
lution time T , when the condition gi − αi/keff,i = 0 is fulfilled. We display this concept
for the upward and downward directions of the momentum transfer(1) in fig. 7.

(1) The differential signal of the upward and downward directions of the momentum transfer
allows us to suppress [31,118] spurious phase shifts independent of the direction of keff .
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Fig. 6. – Spacetime diagram of a dual-species Mach-Zehnder atom interferometer in a constant
gravitational field for the downward (thick lines) and upward (thin lines) direction of the momen-
tum transfer. Stimulated Raman transitions at times 0, T , and 2 T couple the states |Fi = 1, p〉
and |Fi = 2, p ± � keff,i〉, where i stands for Rb (blue lines) or K (red lines). The velocity change
induced by the Raman pulses is not to scale compared to the gravitational acceleration. This
figure is reproduced from fig. 5.1 in ref. [95].

Fig. 7. – Determination of the differential gravitational acceleration of rubidium and potassium.
Typical interference signals and sinusoidal fits as a function of the effective Raman wavefront
acceleration are shown for pulse separation times T = 8ms (black squares and solid black line),
T = 15 ms (red circles and dashed red line), and T = 20ms (blue diamonds and dotted blue line)
both for the upward (+) and downward (−) directions of the momentum transfer. The central

fringe positions a
(±)
i (g) (dashed vertical lines), where i is Rb or K, are shifted symmetrically

around gi = [a
(+)
i (g)−a

(−)
i (g)]/2 (solid vertical line). The data sets are corrected for slow linear

drifts and offsets. This figure is reproduced from fig. 5.2 in ref. [95].
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3.3. Data analysis and result . – Over a duration of about four hours we have tracked
the central fringe position a

(±)
i (g) by scanning across the minimum in 10 steps with

alternating directions of the momentum transfer at a pulse separation time of T = 20 ms.
Two scans yield gi = [a(+)

i (g)− a
(−)
i (g)]/2 and can be used to compute the Eötvös ratio,

eq. (56).
Systematic effects affecting our measurement are listed in table III. The total bias

Δηtot = −5.4 · 10−8 is subject to an uncertainty δηtot = 3.1 · 10−8. Considering the
systematic and statistical uncertainty as well as the bias from table III, an overall result of

ηRb,K = (0.3 ± 5.4) · 10−7(68)

is obtained.
The column δηadv points to possible future improvements (indicated in bold face) us-

ing a common optical dipole trap [150] as a source to further cool and collocate rubidium
as well as potassium, and gain better control over their initial conditions.

The statistical uncertainty ση = 5.4·10−7 after 4096 s of integration time is dominated
by technical noise in the potassium interferometer. This limitation can be improved in
several ways.

For instance, the implementation of a sequence preparing a single mF state would
reduce the number of background atoms that currently lower the contrast. Moreover,
selecting a narrower velocity class, as well as lower temperatures to begin with, would
improve the beam splitting efficiency and consequently the contrast, too.

Table III. – Systematic biases Δη and comparison between the uncertainties δη and δηadv of
the Eötvös ratio in the current, and in an advanced set-up. The improved values highlighted
in bold face arise from the use of an optical dipole trap. The uncertainties are assumed to be
uncorrelated at the level of the inaccuracy. This table is a reproduction of table 5.1 in ref. [95].

Contribution Δη δη δηadv

Second-order Zeeman effect −5.8 · 10−8 2.6 · 10−8 3.0 · 10−9

Wavefront aberration 0 1.2 · 10−8 3.0 · 10−9

Coriolis force 0 9.1 · 10−9 1.0 · 10−11

Two-photon light shift 4.1 · 10−9 8.2 · 10−11 8.2 · 10−11

Effective wave vector 0 1.3 · 10−9 1.3 · 10−9

First-order gravity gradient 0 9.5 · 10−11 1.0 · 10−12

Total −5.4 · 10−8 3.1 · 10−8 4.4 · 10−9
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4. – Atom-chip–based BEC interferometry

Today’s generation of inertial sensors based on atom optics typically operates with
cold atoms, released or launched from an optical molasses exemplified by the experiment
discussed in the previous section. The velocity distribution and the finite size of these
sources limit the efficiency of the beam splitters as well as the analysis of the systematic
uncertainties. We can overcome these limitations by employing ensembles with a momen-
tum distribution well below the photon recoil limit, which can be achieved with BECs.

After reaching the regime of ballistic expansion, where the mean-field energy has
been converted into kinetic energy, the momentum distribution of a BEC can be nar-
rowed down even further by the technique of delta-kick collimation (DKC) [85,151-154].
Moreover, atom-chip technology offers the possibility to generate a BEC and perform
DKC in a fast and reliable fashion, paving the way for miniaturized atomic devices. We
devote sect. 4.1 to an introduction to DKC and note that the results reported in this
section have originally been published in ref. [85].

The use of BECs allows us to implement Bragg and double Bragg diffraction with
efficiencies above 95%, and thus to perform interferometry with high contrast. In sect. 4.2
we demonstrate a quantum tiltmeter using a MZI based on double Bragg diffraction with
a tilt precision of up to 4.5μrad. The results presented in this section have originally
been published in ref. [86].

In sect. 4.3 we discuss an experiment combining double Bragg diffraction and Bloch
oscillations, where we have implemented [87] a relaunch procedure with more than 75%
efficiency in a retro-reflected optical lattice. We emphasize that here we rely on a single
laser beam only, which also comprises the beam splitter resulting in a set-up of signifi-
cantly reduced complexity.

Our relaunch technique allowed us to build a gravimeter on a small baseline with
a comparably large interferometry time of 2T = 50 ms in the MZI for a fixed free-fall
distance. At a high contrast of C = 0.8 the interferometer reaches an intrinsic sensitivity
to gravity of

Δg/g = 1.4 · 10−7.(69)

A key element of this result was the state preparation comprising DKC and Stern-
Gerlach-type deflection, which improved the contrast and reduced the detection noise.
The results presented in this section have originally been reported in ref. [87].

4.1. Delta-kick collimation. – The desire to reach long expansion times serves as a
motivation for DKC by a magnetic lens [155]. Recent experiments have shown expansion
rates corresponding to a few nK in 3D in the drop tower [85] with QUANTUS-1, or even
pK in 2D in a 10 m fountain [154]. These widths in momentum space are smaller than
those of the coldest reported condensates [156]. For a detailed study of DKC using the
QUANTUS-1 apparatus in the drop tower and also on ground we refer to refs. [157,158].

After the release from the trap, the BEC starts to expand freely and falls away from
the trap due to the gravitational acceleration. During the first milliseconds after release
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Fig. 8. – Principle of delta-kick collimation (DKC) explained in phase space. After release an
ensemble of cold atoms has an initial distribution in the phase space spanned by position x and
momentum p. After a time T0 the cloud has expanded in space giving rise to a tilted ellipse
which is then rotated in phase space by a collimating pulse. This figure is an adaptation of
fig. 1.3(c) in ref. [101].

most of the mean-field energy is converted into kinetic energy. The required time for this
conversion depends on the atomic density of the condensate, and hence, on the steepness
of the trap from which the BEC is released. The final expansion rates in the ballistic
regime can be precisely evaluated by time-of-flight measurements.

Even a BEC has a non-zero velocity spread leading after some expansion time to an
increased cloud size, and possibly to a reduction in performance of an atom interferometer
due to an increased detection noise, or larger contributions to systematic uncertainties. A
condensate released from a shallow trap expands slowly enough to perform experiments
with short free-fall times. Moreover, these condensates have a momentum width that is
small enough to reach high Bragg diffraction efficiencies.

Indeed, for trapping frequencies of f(x,y,z) = (18, 46, 31) Hz and N = 104 atoms the
resulting expansion rate along the beam-splitting axis is σv ≈ 750 μm/s≈ 0.125 �k/m,
which corresponds to an effective temperature in the beam direction of about 5 to 10 nK.
Thus, for this number of atoms the mean-field conversion in a time of texp � 10 ms is
acceptable for interferometry.

However, for larger densities of the condensate, the use of DKC becomes necessary.
In fig. 8 we illustrate the essential idea of DKC with the time evolution of a phase-space
distribution. The shearing in phase space caused by the free evolution of the condensate
leads to a tilted ellipse that can be rotated by applying a harmonic potential for a suitable
time τDKC, so as to align its major axis with the x-axis.

Indeed, when we consider the potential VDKC(x) ≡ mω2
DKCx2/2 applied for a short

time τDKC, the resulting change Δp in the momentum p is approximately given by

Δp ∼= F (x)τDKC = −dVDKC

dx
τDKC = −mω2

DKCx τDKC.(70)

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



374 S. Abend, M. Gersemann, C. Schubert, etc.

Assuming that most of the expansion takes place in the ballistic regime, and that the
spatial size xf when the DKC pulse is applied at time T0 is much larger than the initial
size xi, such that xf ≈ piT0/m, the induced momentum change reads

Δp = −piω
2
DKCτDKCT0.(71)

The initial momentum width pi considered here includes the contribution from the mean-
field energy that was converted into kinetic energy.

In complete analogy to the power P of an optical lens the strength of a delta kick is
defined by S ≡ ω2

DKCτDKC. For a given T0 the optimal choice that leads to Δp = −pi

corresponds to S = 1/T0, or equivalently, to

ω2
DKCτDKCT0 = 1.(72)

However, even in this case the minimum value attainable for the final momentum
width is limited by Liouville’s theorem, that is conservation of phase-space volume. This
minimal value is determined by the ratio of the phase-space volume of the initial ensemble,
and the spatial width xf when the DKC pulse is applied. In principle this limitation can
be reduced by increasing T0 which leads to a larger xf .

In a realistic implementation uncertainties in the relevant parameters lead to an un-
certainty δp in the induced momentum change which should be smaller than the targeted
final momentum width pf , namely

δp = piδ(ω2
DKCτDKCT0) < pf .(73)

When we take into account the optimal choice, eq. (72), the requirement, eq. (73),
can be expressed in terms of the relative errors for the individual parameters, that is

2
δωDKC

ωDKC
+

δτDKC

τDKC
+

δT0

T0
<

pf

pi
.(74)

For ground-based experiments, the waiting time T0 and other quantities determining
the errors are not only limited by technical means, but also by the free fall away from
the chip, which reduces the trap frequencies of the potential, and restricts T0 to times
smaller than 6 ms. For a shallow trap the expansion after this time is not even in the
ballistic regime, and the mean-field potential is still non-negligible. Thus, a release from
the trap with a faster initial expansion is required to increase xf prior to collimation.

We conclude our brief review of DKC by mentioning that the anharmonicities of the
generated potential represent another source of errors. Indeed, they cause deformations
when the condensates are too large.
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4.2. Quantum tiltmeter based on double Bragg diffraction. – An interesting exten-
sion of Bragg diffraction occurs when a retro-reflected pair of laser beams interacts with
atoms that are at rest with respect to the mirror, such that the Doppler shift ωD van-
ishes. In this case the transitions with opposing effective wave vectors are degenerate
in frequency, and simultaneously diffract the atomic wave packets in both directions.
The difference in momenta between both arms in an interferometer is then increased
to 4�k. This symmetric diffraction called “double Bragg diffraction” was proposed in
ref. [98] as a generalization of Bragg diffraction in complete analogy to double Raman
diffraction [97], and experimentally demonstrated in ref. [86]. We emphasize that the
traditional Bragg diffraction can be referred to as single or uni-directional Bragg diffrac-
tion, since only a single pair of laser beams drives the transition, while the other one is
off resonant.

4.2.1. Rabi oscillations. In fig. 9(a) we show the coupling scheme for first-order double
Bragg diffraction. The transition frequency is given by the Bragg condition, eq. (14),
with the recoil frequency ωrec.

Fig. 9. – First-order double Bragg diffraction represented by the corresponding transitions (a),
the comparison (b) between experimental observations and numerical simulations of the Rabi
oscillations in the normalized populations as a function of the square-pulse duration, and their
spectral decomposition (c). The energy diagram in (a) shows the resonant (solid lines) and
off-resonant (dashed lines) light-induced transitions between the atomic momentum states |0�k〉
(black), |±2�k〉 (blue) and |±4�k〉 (red). The experimental values (squares) and numerical sim-
ulations (solid curves) based on ref. [98] displayed in (b) are in good agreement. The frequency
spectrum (c) of the simulated population N1/Ntot displays components close to 2ωrec which
stem from the off-resonant couplings depicted in (a) by dashed lines. The broad double-peaked
structure at the Rabi, and twice the Rabi frequency, which is a consequence of the detuned
three-level system with non-vanishing p0 and/or δp, leads to the modulation of the oscillations
observed in (b). This figure is reproduced from ref. [86] with permission of the authors, copyright
American Physical Society (2016).
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Due to the intrinsic symmetry of the diffraction process, a beam splitter of this kind
offers several advantages for atom interferometry. Most prominently, the populations of
the output ports no longer depend on the laser phase Δφlaser, since the wave functions of
the center-of-mass motion in the two arms have the same laser phase imprinted during
each pulse(2). Moreover, we can choose the order of the diffraction process by matching
the detuning δ with the kinetic energy gained during the scattering.

Rabi oscillations for double Bragg diffraction are more complicated than for single
Bragg diffraction, since more states and transitions have to be taken into account. In
the case of first-order double Bragg diffraction δ is chosen to correspond to the recoil
frequency ωrec ≡ (2�k)2/(2m�) inducing resonant transitions between the momentum
states |0〉 and | ± 2�k〉 depicted in fig. 9(a) by solid lines, together with off-resonant
transitions to these, and higher momentum states indicated by dashed lines. Being off-
resonant, the latter transitions are substantially suppressed.

When the width of the momentum distribution is small enough we can observe Rabi-
type oscillations [86] as a function of the atom-light interaction time as shown in fig. 9(b).
Here we also display numerical simulations [98] of the Rabi oscillations and the normalized
atom populations are defined as

n0 ≡ N0/Ntot and nj ≡ (N−j + Nj)/Ntot (j = 1, 2),(75)

where Nj is the number of atoms in the momentum state |2j�k〉 with j = −2,−1, 0, 1
and 2, and Ntot ≡

∑2
j=−2 Nj .

4.2.2. Tilt measurements. In most atom interferometers tilt variations can be significant
and lead to an uncertainty in the quantity being measured. Hence, these devices are either
designed to minimize the effect of tilts or do not allow to distinguish a tilt from other
sources inducing a phase shift [13].

We have designed an atom interferometer to measure slight deviations from the hori-
zontal direction with respect to gravity. In this quantum tiltmeter we diffract a delta-kick
collimated BEC with small initial momentum and low expansion rate from laser beams
and induce first- or higher-order double Bragg transitions.

Figure 10(a) illustrates the corresponding symmetric geometry emerging from a first-
order (blue solid lines) double Bragg process, where the initial wave packet is split,
redirected and recombined. A stepwise tilt of the whole apparatus changes the orientation
α of the interferometer with respect to gravity g and induces a phase shift. As a result,
the interference signal, that is the normalized populations at the exit ports, exhibits
oscillations as a function of the change Δα in the tilt angle exemplified by fig. 10(b).
This process can be extended to successive first-order (black dashed lines) and second-
order (red dotted lines) double Bragg processes as displayed in fig. 10(c) and (d).

(2) Needless to say, this feature is only present when we neglect off-resonant processes.
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Fig. 10. – Three double Bragg interferometers employed as tiltmeters (a) and the interference
signals corresponding to first-order (b), successive first-order (c), and second-order Gaussian
pulses (d) as a function of the tilt angle Δα. For each angular step in Δα, the normalized
population n0 in the exit ports is measured 50 times. The blue solid, black dashed and red
dotted lines represent sinusoidal fits of those datasets. Fitting the histograms of n0 over a range
of tilt settings corresponding to one, or two complete fringe periods, and fitting them with
a theoretical distribution (black) which assumes that all noise sources combined with the tilt
scan lead to an approximately uniform phase-shift distribution, yield contrasts of 43%, 29% and
23%, respectively. Further analysis reveals a tilt precision of 4.5 μrad, 5.9 μrad, and 4.6 μrad,
respectively. This figure is reproduced from ref. [86] with permission of the authors, copyright
American Physical Society (2016).

4.3. Sensitive atom-chip gravimeter on a compact baseline. – Quantum sensors for
gravimetry based on cold atoms have been with us for more than two decades [2, 3, 23],
and can reach today accuracies competitive with falling corner cube gravimeters [43].
However, compact gravimeters using BECs have been demonstrated only recently [11,87].

Due to their small extent and expansion rates, BECs which are delta-kick colli-
mated have attracted attention for large-scale devices on ground [159], and in space
missions [160]. In light of these experiments systematic uncertainties specific to BECs
have been analyzed [161, 162], and novel techniques have been introduced [163]. These
achievements will allow sensors relying on BECs to target sub-μGal accuracies in the
near future, and to overcome current limitations set by cold atoms [14,23,71,72].

The use of an atom chip for all preparation steps, and as a retro-reflector is the
novelty of our approach [87] summarized in this section. Although our experiment is a
proof-of-principle, it nevertheless represents an important pathway to the application of
an atom-chip gravimeter for precision measurements important for example in geodesy.

4.3.1. Relaunch of atoms in a retro-reflected optical lattice. In order to increase the
observation time of a BEC on a small baseline, we have developed a simple but extremely
valuable method to relaunch a BEC using Bloch oscillations in a retroreflected or dual
lattice. Our procedure differs substantially from previous ones, which either rely on
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Fig. 11. – Relaunch of atoms in a retro-reflected optical lattice represented by an amplitude
(a) and frequency modulation (b) of the lattice and compared to a single-lattice acceleration
together with density plots (c) of the final momentum distribution. The relaunch sequence
circumvents the zero-velocity crossing of the dual lattice by a double Bragg pulse inverting
the momentum. The two frequency components of the dual lattice are depicted in red and
blue. In (c) we compare the momentum inversion with a 16 �k double Bragg diffraction pulse
(middle) to the one after the deceleration (left), and a simple sweep through resonance with
Bloch oscillations (right). This figure is an adaptation of figs. 5.17 and 5.25(b) in ref. [101].

i) two crossed beams reflected from a mirror surface [164], ii) two opposing beams [17],
iii) velocity selection from a molasses [12,13,165], or iv) the transfer of only a few photons
from a standing wave [166,167]. Indeed, we employ a retro-reflected optical lattice which
is a common configuration in atomic sensors.

The novelty, and at the same time the challenge of our method is that for the ex-
periment we use only a single beam along the vertical axis with linearly polarized laser
light of two co-propagating frequency components. They form in total four lattices: two
moving lattices with opposite velocity, and two additional ones at rest.

We perform the relaunch procedure in three steps to avoid a zero-crossing of the
velocities of the lattices: i) a lattice deceleration, ii) a momentum inversion pulse, and
iii) a lattice acceleration.

Our sequence starts by loading the atoms adiabatically into one of the lattices where
the Bloch oscillations for deceleration are performed until the atomic motion is almost
stopped. The atoms are then adiabatically unloaded from the lattice with only a few
�k/m of residual velocity.

After a small waiting time to carefully match the resonance condition to the velocity
of the atoms, a higher-order double Bragg diffraction pulse is applied which inverts the
momentum.

Finally, a second lattice acceleration sequence follows, which precisely speeds up the
atomic ensemble to launch it on a parabolic trajectory with an adjustable apex close to
the atom-chip surface.
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In fig. 11(a) and (b) we show the amplitude and frequency modulation of the dual-
lattice light used to perform the relaunch sequence. Compared to a single-lattice acceler-
ation this scheme is rather complex, since the additional lattices from the retro-reflection
are shifted out of resonance by the Doppler effect of the falling atoms. Unfortunately, this
effect does not allow the acceleration of the lattices in a way that the atomic ensemble
crosses the zero-momentum state without losing a major fraction of atoms as depicted
in fig. 11(b).

These losses result from the fact that when the atoms are at rest, the two moving
optical lattices are both on resonance with the atoms —one attempting to move the atoms
upwards, and the other one to move them downwards. This feature reduces the fraction
of atoms that are launched upwards to about one-half of the atom number achieved by
double Bragg diffraction. Moreover, when the velocity of the atoms almost vanishes,
non-adiabatic transitions arise due to parasitic acceleration in the non-resonant lattice.
They remove atoms from the upward moving lattice, and further reduce the number of
launched atoms to about one quarter.

Fortunately, a combination of Bloch oscillations in an optical lattice together with
higher-order Bragg diffraction prevents these losses. In this scheme most of the momen-
tum is transferred via Bloch oscillations with an efficiency close to unity to stop and
launch the atoms. Since only a smaller fraction of momentum needs to be transferred by
a single Bragg pulse, this sequence maintains a high overall efficiency.

4.3.2. Experimental sequence of the atom-chip gravimeter. Bragg diffraction combined
with the relaunch allows us to implement a sensitive gravimeter with the atom chip.
Figure 12 shows the spacetime diagram of the fountain geometry.

Subsequent to the adiabatic rapid passage we also perform Stern-Gerlach-type deflec-
tion by a magnetic field pulse with a duration of τSG = 7 ms using the Z-wire on the
chip. In this way we remove the atoms remaining in magnetic sensitive states leading to
an enhanced contrast.

The maximum value of the preparation time τprep is limited to 34 ms due to the
end of the detection region 7 mm below the chip. The relaunch process has an overall
duration of τlaunch = 2.9 ms. With a relaunch realized after the largest waiting time of
τprep = 33.2 ms the total time of flight τToF after initial release of the atoms is greatly
increased to τToF = 97.6 ms.

The interferometer sequences start after the atoms have been launched on their foun-
tain trajectories. The final waiting time τsep after τToF > 90 ms to separate the output
ports can be reduced from τsep ≥ 20 ms to τsep ≥ 10 ms provided DKC is used. The re-
maining time 2T ≡ τToF−τprep−τlaunch−τsep < 51 ms can be entirely used for the inter-
ferometry, which allows us to use a pulse separation time as large as T = 25 ms. The limit
in T on our current baseline of 7 mm is reached with T = 25 ms. Any further extension
beyond this value would result in a reduced contrast due to insufficient port separation.

State-of-the-art Raman-type gravimeters routinely operate with pulse separation
times of 70 ms [72] or larger [23, 71]. To further increase the scale factor, not only
first-order but also higher-order Bragg diffraction can be implemented in the MZI. At
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Fig. 12. – Atom-chip gravimeter with an extended free-fall time of up to τToF ≈ 100 ms repre-
sented in spacetime (left) and space (right). The preparation of the atomic ensemble is performed
during τprep before the relaunch. The elongated free-fall time allows us, after the expansion time
T0, to employ DKC (for the time τDKC) as well as adiabatic rapid passage (for the time τARP)
and Stern-Gerlach-type deflection (for the time τSG) to reduce the expansion rate, and to remove
atoms remaining in magnetic sensitive states. The relaunch in the retro-reflected optical lattice
is realized as described. The MZI features up to third-order Bragg diffraction, pulse separation
times up to T = 25ms, and a detection after a separation time of τsep ≥ 10ms. This figure is
reproduced from fig. 6.3 in ref. [101].

the moment third-order Bragg diffraction has an efficiency of above 90%. With future
improvements, already fourth-order Bragg diffraction will compensate a decrease by a
factor of two in the pulse separation time T .

To perform higher-order Bragg diffraction, we have used shorter beam-splitter pulses,
but at larger laser powers. More specifically, we have employed Gaussian-shaped pulses
of widths στ = 12.5 μs.

The first π/2-pulse of the MZI follows with a short delay of one millisecond after the
relaunch to maximize the time available for interrogation. To avoid π-pulses at the apex
the timing of the MZI needs to be placed asymmetrically around the apex of the fountain.
In this case, both lattices are on resonance, and losses due to double Bragg diffraction,
and standing waves disturb the π-pulse. As a consequence, the Doppler detuning δ of the
π-pulse should satisfy the condition δ > 100 kHz, or correspondingly, the time difference
to the apex should be of the order of 7–8 ms. Consequently, the separation time of the
outputs is always larger than τsep > 14 ms.

A larger momentum transfer slightly reduces the free-fall time, because depending on
the direction of the momentum transfer ±�keff the atoms are either kicked towards the
atom chip, or downwards such that they leave the detection region faster. By choosing the
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momentum transfer of the second and final lattice acceleration in the relaunch sequence
according to the direction of the momentum transfer of the beam splitter, the height of
the parabola can be maximized. As a consequence, the pulse separation time T can be
held constant, independently of ±�keff , as depicted in fig. 12. In both cases the free fall
time τToF of the atoms is slightly reduced due to the recoil imprinted during the beam
splitting process.

4.3.3. Analysis of the interferometer output. Since for pulse separation times larger than
T > 5 ms the background vibration level leads to a complete loss of the fringe pattern [168]
we can no longer employ the common fringe fit method, or an Allan deviation analysis.
Even when the laser phase and the chirp rate are identical in subsequent measurements,
the output phase scatters over multiple 2π-intervals, as illustrated in fig. 13(a). As a
consequence, at these high levels of sensitivity the readout of a gravity-induced phase
shift is impossible without having additional information about the vibrations during the
interferometry, such as seismic correlation.

We emphasize that the beam splitters still operate with high fidelity, and oscillations
between the output ports are clearly visible. However, the simple peak-to-valley, or
standard-deviation calculation over- or underestimates the contrast, and does not yield
a useful noise analysis for the output signals.

One method to solve the problem of distinguishing between useful contrast C, and
technical noise σΔφ ≡ σP /C, rests on a histogram analysis revealing the contrast of an
interferometer without relying on fringe visibility [169]. Here σP denotes the fluctuation
in the measured population.

In this approach the output signals of a data set are first split into bins of equal size
containing the normalized population P , and then the data points within each interval are
counted. The resulting histogram shows a characteristic double-peak structure reflecting
the sinusoidal dependence of the interference signal. This structure results from a simple
noise model, assuming that for a completely random signal the probability to find an
output state with a normalized population at top or bottom of a sinusoidal fringe pattern
is larger than at the middle. We emphasize that this method requires sufficient statistics
over several hundred experimental cycles with a stable signal.

We extract the contrast C ≡ A/P0 from a fit of the distribution according to fig. 13(b),
with the amplitude A of the signal and its mean P0. As input for the fitting routine
a kernel density estimation (KDE) of the data points is used, rather than the histogram
itself(3).

In a KDE each data point is weighted with a Gaussian function of a fixed width
σKDE = 0.01. All Gaussian functions are then added and the signal normalized such
that in the end a continuous distribution properly reflects the density of data points
without loss of information.

For the width σkde it is only of importance to choose a value smaller than the ex-

(3) This evaluation yields a slightly better intrinsic sensitivity compared to the value published
ref. [87].
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Fig. 13. – Extraction of the interferometer phase from a noisy signal with the help of the
probability density. Vibrational noise completely washes out a sinusoidal signal (a), and only
fluctuations are left to be measured in the normalized population between the two output ports.
The corresponding histogram exhibits a characteristic double-peak structure from which we
extract the contrast C ≡ A/P0 given by the amplitude A of the sinusoidal signal and its mean
P0. The output (b) of a MZI in a fountain geometry using delta-kick collimated ensembles
with a pulse separation time of T = 25ms and first-order Bragg diffraction resembles noise
after roughly 1 000 measurements have been taken. Nevertheless, we can obtain a contrast of
C = 0.86 and a technical noise σΔφ close to the shot noise from the histogram. This figure is
an adaptation of figs. 6.11 and 6.17(c) in ref. [101].

pected technical noise. If the histogram is fitted for a small number nbin of bins, the
histogram would yield insufficient information to be properly fit, and would lead to a
larger uncertainty in the extracted parameters.

In our fountain geometry the expected gain in contrast is between 5% and 10% and
results from two factors: i) We can employ delta-kick collimated BECs with ultra-slow
expansion and ii) the Stern-Gerlach-type deflection purifies the magnetic sub-states.
With this configuration the pulse separation time can even be extended to T = 25 ms.
At this time, the output ports are still separated due to the smaller final size of the
clouds.
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The measurements and evaluation depicted in fig. 13(b) are for our MZIs formed
by first-order Bragg diffraction and T = 25 ms. The histogram analysis reveals that
the contrast remains at C = 0.86. The technical noise level σΔφ = 14 mrad is ex-
tracted from the widths of the outer peaks in the fit to the density distribution, which
is close to the calculated shot noise of 11 mrad for N = 8000 atoms. This remark-
able result is due to the interplay between the high-fidelity Bragg diffraction and the
DKC.

These ultra-slow expansion rates allow for even longer flight times, and also give rise
to a boost in sensitivity. Indeed, the largest intrinsic sensitivity Δg/g = 1.4 · 10−7 was
observed after a τToF = 97.6 ms at a noise of σΔφ = 14 mrad. This achievement represents
an important step towards compact but precise sensors.

5. – Outlook

Atom interferometry is a cornerstone of precision measurements with a wealth of
promising applications. In particular, we expect atomic gravimeters based on BECs to
reach sub-μGal accuracies in the near future. In sect. 5.1 we highlight the origins of
measurement uncertainties, and present mitigation strategies for future devices.

The tools and methods for BEC interferometry outlined in these lecture notes have
opened the path towards significantly enhanced scale factors due to an extended free
evolution time. For this reason we focus in sect. 5.2 on very long baseline atom in-
terferometers. Moreover, we devote sect. 5.3 to space-borne devices and analysize the
potential for future gravity measurements as well as tests of fundamental physics such
as the UFF.

5.1. Reduced systematic uncertainties in future devices. – The main drive for sensors
based on BECs is the reduction of systematic uncertainties. We now assess the potential
of an atom chip gravimeter to reach sub-μGal accuracies. For this purpose we identify
in table IV the origins of the largest contributions to the measurement uncertainty and
suggest mitigation strategies.

To get a realistic estimate of the dominant uncertainties for a future experiment, our
calculations [170] use a state-of-the-art flux of 105 atoms per second at a repetition rate
of 1 Hz. For a free-fall distance of 1 cm the free-fall time increases to τToF = 135 ms. If
the needed detection separation time stays at τsep > 15 ms, a maximum pulse separation
time of T = 35 ms remains, which combined with a fourth-order beam splitter leads to
the shot-noise limited intrinsic sensitivity [87]

(Δg/g)/
√

Hz = 5.3 · 10−9.(76)

The flux of 105 atoms/s achieved in the QUANTUS-2 experiment is sufficient [170] to
reach this inferred sensitivity and a cycle time of roughly 1 s.
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Table IV. – Estimates of the major systematic uncertainties in the atom-chip gravimeter. As
a result, the determination of local gravity with a relative accuracy Δg/g < 1 · 10−9 in less than
100 s seems possible [87]. This table is a reproduction of table 6.9 in ref. [101].

Contribution due to Mitigation strategy Noise Bias

(Δg/g)/
√

Hz Δg/g

Intrinsic sensitivity Next-generation source [170] 5.3 · 10−9 0

Mean-field shift Tailored expansion and DKC [85,154] 1.5 · 10−10 6.4 · 10−11

Launch velocity Scatter 70 μm/s, stability 15 μm/s [118] 1.5 · 10−12 3.1 · 10−13

Wavefront quality λ/10 chip-coating, � = 2 cm beam [171] 6.7 · 10−10 2.8 · 10−10

Self gravity Detailed modeling of chip mount [172] 1.2 · 10−12 5 · 10−10

Light-shifts Suppressed in Bragg diffraction [96] 1.4 · 10−12 1.4 · 10−10

Magnetic fields Three-layer magnetic shield [173] 1 · 10−10 2.6 · 10−10

Target estimation Uncertainty after less than 100 s ≈ 7.8 · 10−10

In addition, we need to be able to detect atoms at the output ports at the shot noise
limit, which corresponds to 4.5 mrad for this atom flux and cycle time assuming a contrast
of C = 0.7. Suppressing the vibrational background noise is the crucial remaining noise
source to be mitigated. A state-of-the-art vibration isolation would significantly improve
the sensitivity, although maximum performance may only be reached at a vibrational
quiet site [174].

The mean-field shift can be relaxed when we first lower the atomic density by a faster
spreading of the wave packet during the 45 ms after release from the trap but before
relaunch, and then stop it by DKC [85, 154]. For the final size of 300μm at the first
pulse, 105 atoms and 1% splitting-ratio stability, phase shifts introduced by the mean
field [11] can be sufficiently suppressed below μGal, while expansion rates corresponding
to nK temperatures preserving the beam-splitter fidelity are achievable.

Fluctuations in the launch velocity, which cause a bias due to the Coriolis effect or
gravity gradients [118, 175], can be characterized to the required level and optimized by
the tested release procedure. The measured scattering of 70 μm/s and the stability of
15 μm/s of the launch velocity is sufficient to suppress this shift.

The surface quality of the atom chip is crucial for preserving the high efficiencies and
contrasts obtained for lower and higher-order Bragg diffraction and for Bloch oscillations.
It must be significantly improved for a device of the next generation.

Indeed, a residual roughness of λ/10 typical for a standard mirror is assumed here. For
a beam with a diameter of 2 cm the phase shifts resulting from the wavefront curvature are
insignificant since BECs are smaller, and expand slower compared to thermal clouds [171,
176]. Furthermore, the possibility of analyzing the fringe patterns in the density profiles
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at the exit ports [85,163,175] may allow the characterization of systematic errors arising
from wavefront distortions.

The proximity of the atoms to the chip leads to a bias phase shift caused by the
gravitational field [172] of the chip. A mass reduction of the chip mount by a factor of
two, combined with a finite-element analysis of the mass distribution which calculates
the self-gravity effect with an accuracy of 10%, is sufficient to reach the target level.

Compared to Raman diffraction the influence of light shifts is reduced in MZIs based
on Bragg diffraction. Since the two-photon light shift scales [96] with the third power of
the inverse of the atomic velocity, it is negligible in the fountain geometry.

Finally a three-layered shield instead of a single-layered one, resulting in a residual
gradient below 10 ± 3 mG/m, should be sufficient to suppress any residual bias [173].

5.2. Very long baseline atom interferometry . – Apart from high-contrast interferome-
try, delta-kick collimated BECs with effective temperatures below 1 nK enable extended
free-evolution times, which can significantly increase the scale factor kT 2 for acceleration
measurements. Ground-based setups require a large vacuum vessel to venture into the
regime of seconds [9, 105, 177]. For example, a device with a height of 10 m implies a
total free-evolution time 2T = 2.8 s when operated in the fountain mode [162]. This
scenario would increase the scale factor by 25–300 compared to the current generation
of gravimeters.

Indeed, with 105 atoms, first-order Bragg diffraction, and a cycle time of 5.3 s, the
shot noise limit for full contrast would be at 0.2 nm/(s2

√
Hz), which is competitive with

the superconducting gravimeter GWR iOSG [66]. In contrast to the latter, VLBAI also
provides us with absolute measurements and possible further enhancements via large
momentum transfer.

Environmental vibrations impose a typical limit in gravimeters, preventing the utili-
sation of larger scale factors. Therefore, a sophisticated vibration isolation, correlation
with external sensors, or a combination of both is required [22,169,178].

Measurement schemes using gravity gradiometers, or testing the UFF intrinsically
suppress the impact of vibration noise since the relevant quantity is encoded in the
differential acceleration between two atom interferometers [18, 31]. Indeed, for gradiom-
etry, ensembles from two different sources can be injected into interferometers, or two
ensembles can be generated from a single source via a large momentum beam splitting
process [179]. The latter approach implies a well-defined distance between the two in-
terferometers which avoids noise contributions from a relative position jitter due to the
outcoupling from two different sources and reduces systematic errors. Operating the in-
terferometer with 105 atoms divided into two ensembles, first-order Bragg diffraction in
the interferometer, a total interferometer time 2T = 1 s, a cycle time of 4 s, and a baseline
of 5 m between the interferometers would lead to a shot noise limit of 6.3 ·10−10/(s2

√
Hz)

for gravity gradients. Further improvements are possible by upgrading the first-order
Bragg diffraction to large momentum transfer.

A test of UFF with 87Rb and 170Yb may lead to the shot noise limit 0.1 nm/(s2
√

Hz)
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of measurements of differential accelerations, implying a statistical uncertainty 4 · 10−14

in the Eötvös parameter after 24 h of integration, which is competitive with experi-
ments on the ground achieving 10−13 [49, 130, 180], and in space reaching 10−14 [51],
with the added benefit of different species. The assumptions are 2 · 105 (1 · 105) atoms,
eighth- (fourth-) order Bragg transitions at 780 nm (at 399 nm) for 87Rb (170Yb), a to-
tal free evolution time 2T = 2.6 s, and a cycle time of 12.6 s [162]. Here, the transfer
functions of the two interferometers will not be ideally matched due to the different
wave vectors, requiring an auxiliary sensor to suppress vibration noise via cross correla-
tion [178,181].

Relevant systematics [162] originates from i) wavefront errors [118,176] suppressed by
the low and matched expansion rates to be traded off against residual mean-field contri-
butions [11], ii) magnetic field inhomogeneities affecting 87Rb [25, 56] and reduced by a
magnetic shield, iii) rotations countered by a tip-tilt stage [71, 159, 182], and iv) gravity
gradients coupling to the relative displacements of the two elements, which have to be
assessed with the device itself [183]. In fact, the requirements on the relative position
and velocity of the two initial wave packets due to gravity gradients can be substantially
relaxed thanks to an effective compensation technique proposed in ref. [184], which has
been experimentally demonstrated both for UFF tests [185] and gradiometry measure-
ments [186].

5.3. Space-borne atom interferometers. – The microgravity environment of a space-
borne atom interferometer provides us with access to even longer free-evolution times.
Moreover, no seismic noise disturbs the measurement. Indeed, since both the device
and the atomic ensemble are in free-fall, the movement of the atoms with respect to the
potentials for trapping and DKC is decreased, opening up a different parameter range
for reducing residual expansion rates and mean-field contributions. The measurement
may even benefit from a much smaller gravitational sag and the absence of a lattice
launch. We also have the possibility of a signal modulation to suppress systematics if
the apparatus is inertial pointing [160,187].

A test of the UFF in space could profit from all these advantages and go beyond an
accuracy of about 10−14. The updated Space-Time Explorer and Quantum Equivalence
Principle Space Test (STE-QUEST) scenario [188], based on a previous version of a dual-
species interferometer with 87Rb and 85Rb [160, 173, 189, 190], proposes a dual-species
interferometer with 87Rb and 41K and a target uncertainty in the Eötvös parameter of
2 · 10−15.

This goal assumes 106 atoms of each species, beam splitters based on double Bragg
diffraction [86, 97], a total interferometer time of 2T = 10 s, a cycle time of 20 s, and
a highly elliptical orbit for the clock comparison part of the mission with a perigee of
∼ 2500 km, an apogee of ∼ 33600 km and an orbital period of 10.6 h. Around perigee,
the instrument observes a strong signal, whereas around apogee it almost vanishes. Ad-
ditional measurements in between are utilized for calibration. The target uncertainty is
reached after 1.2 years, limited by the small part of the orbit close to earth. A circular
orbit in a dedicated mission could reduce this time to a few months.
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Summary. — We introduce two generations of quantum gravimeters using Bose-
Einstein condensates generated in atom-chip–based set-ups. The first one is a pro-
totype gravimeter implemented in QUANTUS-1, that allows us to demonstrate the
first atom-chip–based gravity determination. The second device is a next generation
quantum gravimeter QG-1, targeting sub-μGal uncertainties for mobile applications.

1. – Introduction

Today’s inertially sensitive atom interferometry devices operate mostly with sources of
laser-cooled atoms [1-3] and are now commercially available [4,5]. The finite temperature
and size of these sources limit the efficiency of employed beam splitters and the analysis
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Fig. 1. – (a) Scheme of our atom-chip–based gravimeter set-up. (b) Exemplary laser phase scan
and corresponding density profiles for T = 0 demonstrating high-contrast interferometry.

of systematic uncertainties to a few μGal (1μGal = 10−8 m/s2). These limits can be
overcome by the use of ultracold sources such as a delta-kick collimated Bose-Einstein
condensate (BEC) with an extremely narrow velocity distribution far below the photon
recoil [6]. In the future, a detailed systematic analysis will allow to suppress the two
most relevant sources of uncertainties, namely center-of-mass motion [7] and wavefront
errors [8] exploiting the point-like nature of BECs [9,10]. Atom-chip technologies [11] offer
the possibility to generate a BEC and perform delta-kick collimation in a fast and reliable
away. We show two generations of experiments — a prototype and a next generation
device — which use the combination of such an ensemble each generated in a robust
and miniaturized atom-chip set-up together with the application of Bragg diffraction
as a beam splitter for atom interferometry. Already today, the prototype allows us to
perform inertially sensitive measurements at high contrast, while the next generation will
significantly improve on the atom interferometer’s sensitivity.

2. – Atom-chip–based gravimeter prototype in QUANTUS-1

In the QUANTUS-1 apparatus [12] we demonstrate the first atom-chip–based quan-
tum gravimeter in detail described in ref. [13]. A specialty of our set-up depicted in
fig. 1(a) is that the atom chip is used for the generation of BECs, state preparation,
including magnetic sub-state transfer, delta-kick collimation and Stern-Gerlach–type de-
flection as well as itself as a retro-reflector for the beam splitting light fields. In that
way, Mach-Zehnder interferometers (MZI) using Bragg diffraction to measure gravity can
be formed and their output ports detected in a cube below the atom chip with a side
length of less than one centimeter. The apparatus reliably provides us 87Rb BECs of up
to 1.5 · 104 atoms in the hyperfine state F = 2, mF = 2 within 15 s mainly limited by
the loading of the magneto-optical trap from background vapor. Using a simple experi-

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



Atom-chip–based quantum gravimetry with BECs 395

mental implementation with freely-falling Bose-Einstein condensates out-coupled from a
shallow (46, 31, 18) Hz trap at 50 nK and transferred in τsep ≈ 10 ms to the non-magnetic
sub-state via an adiabatic rapid passage allows for MZI with pulse separation times up
to T = 5 ms constrained by the end of the detection region 7 mm below the atom chip
which limits the total time of free-fall to ToF = 35 ms minus the final separation of
the output ports τdet ≈ 15 ms. Figure 1(b) shows the visualization of detected density
profiles of a laser phase scan obtained for T = 0 in this devices which reveals a large
interferometric contrast and low technical noise. The free-fall rate of the BECs is mea-
sured by chirping the difference of the laser frequencies with a rate α, such that the
lattice motion precisely matches the acceleration of the atoms in a way that the total
phase shift φMZI = (keff ·g − 2πα)T 2 vanishes independently of T for the special case
of α = keff ·g/(2π), where the atom number in one output port of the MZI assumes a
minimum [1]. With this scheme a determination of local gravitational acceleration g with
an uncertainty of Δg/g = 1.3 · 10−5 after roughly eight hours of integration has been
demonstrated, which is limited by background vibrations acting on the non-isolated set-
up. The intrinsic sensitivity, however, operating a MZI with first-order Bragg diffraction,
an obtained interferometric contrast of C > 0.75 and the largest chosen pulse separa-
tion time of T = 5 ms is significantly better. Indeed the phase read out, which only
includes all non-inertial noise contributions, is operated close to the shot noise limit for
N = 10 000 detected atoms and thus would allow to measure gravity to Δg/g = 3.2·10−6.
Nonetheless, already in this simple prototype important techniques for the determination
of gravity using BECs have been demonstrated, which are of valuable contribution to the
next generation of atomic quantum sensors interesting for geodetic Earth observation.

3. – Next generation quantum gravimeter QG-1 for mobile applications

The quantum gravimeter QG-1 is designed to be a compact, transportable absolute
gravimeter based on Bragg interferometry with ultracold 87Rb atoms. From a techno-
logical point of view, QG-1 will in every relevant aspect improve on the QUANTUS-1
prototype, by the use of a specifically for gravimetry engineered sensor head depicted in
fig. 2(a) in which the drop baseline is enlarged to approx. 30 cm enabling free evolution
times up to T = 100 ms using freely-falling BECs from a next generation high-flux atom-
chip source. The complete device consists only of the sensor head, placed on a vibration
isolation platform and a single temperature stabilized 19 inch rack containing all sub-
components which allows for an over all compact and transportable device capable of
operation under non-laboratory conditions. The vacuum chamber itself is mounted in-
side a three-layer magnetic shield with the ion getter pump outside of the shield. Rather
than using the atom chip itself as the retro-reflector, in the QG-1 the beam splitting
light field is reflected from the atom chip at a 45◦ angle from the top of the apparatus
onto a retro-reflecting mirror at the lower end of the vacuum system. Besides providing
a superior optical quality, this allows for placing the inertial reference close to a seis-
mometer and counter-acting the Earth’s rotation via a piezo-controlled tip-tilt mirror

 EBSCOhost - printed on 2/13/2023 8:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



396 S. Abend, M. Gebbe, M. Gersemann, etc.

Fig. 2. – (a) Sensor head of the quantum gravimeter QG-1. (b) Photograph of the latest
generation atom chip built at the IQ. (c) Scheme of the laser system and light distribution.

stage [14]. All necessary light fields for cooling, trapping, beam splitting and absorption
detection of the final interferometer state are provided using a single frequency-doubled
1560 nm fiber laser system [15] with an output power of 3 W at 780 nm placed on a single
60 × 40 cm breadboard sketched in fig. 2(b). The atomic source system for the QG-1
device is similar to ref. [16] which combines a high-flux 2D+MOT with a next generation
atom chip shown in fig. 2(b) achieving 105 condensed atoms per second, or even 4 · 105

condensed atoms in 1.6 seconds. With such a flux the QG-1 will be able to achieve a
shot-noise limited sensitivity of 10–15μGal/s allowing to reach the targeted uncertainty
below 1 μGal in less than 200 s of integration. The major scientific motivation for the
construction of the QG-1 device lies in establishing atom interferometers for geodetic
field application in the cooperation with the group of J. Müller and L. Timmen from
the Institut für Erdmessung - IfE in Hannover, who are long-term experts in the field of
absolute gravimetry. The cooperation with the IfE in the framework of the Collaborative
Research Center geo-Q [17] has the final goal of a gravity measurement campaign leading
to a more accurate observation of the so-called Fennoscandian uplift [18, 19].
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Gravitational properties of light

D. Rätzel, M. Wilkens and R. Menzel
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Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany

Summary. — In this article, recent work by the authors on the gravitational
properties of light is reviewed. In the first part, the gravitational field of a laser pulse
of finite lifetime is investigated in the framework of linearized gravity. In the second
part, the dependence of the differential cross section for gravitational photon-photon
scattering on the polarization entanglement between the photons is investigated
in Perturbative Quantum Gravity. These investigations are of conceptual interest
regarding the properties of light and its constituents, the photons.

In general relativity, all energy-momentum leads to a gravitational effect, therefore so
does the energy-momentum of light. However, the gravitational field of light shows inter-
esting differences to the gravitational field of massive matter. This is because the speed
of light c is also the speed of small deviations of the gravitational field, the characteristic
speed if the curvature of the spacetime is small on the length scale of the wavelength of
the deviations [1, 2]. Hence, light travels as fast as its effect on the gravitational field.
It is the aim of the first part of this article to present the gravitational properties of a
pulse of laser light in the framework of Linearized Gravity.

The first approach to the gravitational field of light in General Relativity can be found
in [3] by Tolman, Ehrenfest and Podolsky, where the gravitational effect of an infinites-
imally thin, cylindrical pulse of unpolarized light of finite lifetime was investigated. In
particular, it was found that a parallel propagating test pulse is not affected if the test
beam is co-propagating, but is deflected if it is counter-propagating.
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Fig. 1. – The laser pulse is modeled with finite extension L in the direction of propagation,
but negligible extension Δ(z) in the transverse x/y-directions, Δ(z) � L. It travels from the
emitter to the absorber over a distance D along the z-axis. The figure was originally published
in [8] under the CC Attribution 3.0 license https://creativecommons.org/licenses/by/3.0/.

In a series of subsequent articles, the gravitational field of light has been investi-
gated using the full Einstein equations. Light was represented as a null-fluid of massless
particles in [4], the Lorentz-boosted Schwarzschild-metric of a point mass in the limit
v → c, m → 0 was derived by [5] and exact plane wave solutions of the coupled Maxwell-
Einstein theory were derived in [6]. In [7], it was shown that the interaction between
pulses running slower than the speed of light — e.g. in a wave guide — is non-zero.

In the following we will shortly present the model we use and the results. For a full
derivation and a more extensive review of preliminary work by other authors see [8] where
the work we are going to present in the first part of this article was originally published un-
der the CC Attribution 3.0 license https://creativecommons.org/licenses/by/3.0/.
In accordance with the established model, the pulse is represented as a “needle of null
stuff”, in our case consisting of coherently polarized electromagnetic radiation. Our
model aims to catch the essential ingredients of a laser pulse, which are 1) its localizability,
2) its masslessness, and 3) its polarization. The spacetime events representing the emis-
sion and absorption of the pulse are also included (see fig. 1). However, the gravitational
effects of emitter and absorber and their evolution during their emission is not considered
here. We have shown in [8] that these effects are neglectable for small distances to the
pulse trajectory. In [9], we have derived the full gravitational field of the whole emission
process for a specific situation — the emission of two light pulses from a single atom.
The gravitational field of light can be expected to be small, which justifies splitting the
metric into a flat background metric and a perturbation gμν = ημν + hμν . The Einstein
equations can then be written as a wave equation and solved using the method of retarded
potentials. The only non-zero components turn out to be h00 = h11 = −h10 = −h01.
We define hp = h00. In fig. 2, hp is plotted in the x-z-plane for different times after the
events of the emission of the pulse. The position of the pulse of length L corresponds to
the bright spot in the main plot. It is propagating in the positive z-direction as fast as
its effect on the metric — with the speed of light. For distances to the trajectory of the
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Fig. 2. – The plots show the metric perturbation hp = h00 = h11 = −h10 = −h01 for a pulse of
length L in the coordinates (ct, x, y, z) in the (x, y)-plane for different times t. hp is normalized to
units of κ and then the logarithm of the logarithm is taken. The figure was originally published
in [8] under the CC Attribution 3.0 license https://creativecommons.org/licenses/by/3.0/.

pulse much smaller than the distance from the observer to the emitter, the gravitational
field approaches the form of a plane fronted parallel propagating wave (pp-wave) [4].

In fig. 3, the metric perturbation is plotted for linearly and circularly polarized light
and ρ/r � 1. The metric perturbation is modulated as the norm of the electric field
strength (|E|2) for linearly polarized light. For circularly polarized light no modula-
tion arises. Since the energy momentum tensor is independent of the orientation of the
polarization, the metric perturbation is independent of the orientation of the polariza-
tion. The laser pulse induces curvature only on spherical shells of thickness L (pulse
length) that expand from the point of creation and annihilation. For the most part,
these shells are causally disconnected from the pulse. Therefore, the curvature is due to
creation/annihilation alone. In particular, the emission induces an attraction and the
absorption induces a repulsion.

The world line γμ(λ) of free test particles is governed by the geodesic equation γ̈μ =
−Γμ

ρσγ̇ργ̇σ with gμν γ̇μγ̇ν = −1 for massive test particles, and gμν γ̇μγ̇ν = 0 for massless
test particles. The strongest laser pulses available today have a pulse power in the
range of 1015 W. At a distance of 2.5 mm for a massive test particle at rest, this gives
the acceleration γ̈x ≈ −4GP

c3x ≈ −10−18 m
s2 . We can compare this acceleration to the

acceleration experienced by a test particle in the Newtonian potential induced by a small
spherical, massive object. At a distance of r = 2.5 mm, a mass of only M = 10−13 kg
would be necessary to provide the same acceleration as the laser we considered above.

A periodically pulsed laser produces a periodically varying gravitational field. Close
to the beamline, the corresponding tidal forces can be compared to those induced by a
gravitational wave. For a laser of 1015 W, they are of the same order as those due to a
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Fig. 3. – These plots show the double logarithm of the metric perturbation hp for a linearly
polarized pulse of length L and central wavelength λ = 2πc

ω
= 2

3
L in the x-y-plane at t =

50000L/c, after its emission at z = 0. hp is normalized to units of κ = 4GAu0/c4 and then the
logarithm of the logarithm is taken. The figure was originally published in [8] under the CC
Attribution 3.0 license https://creativecommons.org/licenses/by/3.0/.

gravitational wave of angular frequency ω = 103 Hz and amplitude h+ = 10−22. This is of
the same order as the strain induced by gravitational waves detected by LIGO, however,
only in a very small region close to the beamline. Hence, the detection of gravitational
waves could be an ideal application for micrometer scale gravitational wave detectors as
the one proposed in [10].

In agreement with the authors of [3], we find from the geodesic deviation equation
that massless test particles moving in the same direction as the pulse are not deflected
while counter-propagating pulses are deflected four times more strongly than massive
particles at rest containing the same energy. The exact differential cross section (DCS)
for the scattering of infinitely short light pulses based on the classical results for their
gravitational field presented in [5] and [4] was derived in [11]. In the limit of one photon
per pulse, this DCS can be seen as the classical DCS for photon-photon scattering. For
small scattering angles, it coincides with the polarization averaged DCS from Perturba-
tive Quantum Gravity (PQG) which was derived in [12,13].

The independence of the gravitational field of a laser pulse from its helicity is one of
the most interesting predictions of our work. In contrast in the framework of PQG the
gravitational interaction between photons depends on their polarization. This result was
already derived in [14] and [13].

In PQG, the initial two-photon state can also be entangled like |Ψ〉ϕ,ρ =
cos ϕ|p1, 1; p2, 2〉 + eiρ sin ϕ|p1, 2; p2, 1〉, where ξ1, ξ2 ∈ {1, 2} in the state |p1, ξ1; p2, ξ2〉
label the linear polarization directions (in plane ξi = 2) and ϕ ∈ [0, π/2] parametrizes
the entanglement of the state: for ϕ = 0 and ϕ = π/2, the state is not entangled,
and for ϕ = π/4, it is maximally entangled. The parameter ρ ∈ [−π/2, 3π/2) governs
the relative phase of the superposed states |p1, 1; p2, 2〉 and |p1, 2; p2, 1〉. In particular,
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|Ψ〉π/4,0 = |Ψ+〉 and |Ψ〉π/4,π = |Ψ−〉 are known as the symmetric and the anti-symmetric
Bell state, respectively. We find for the DCS

(1)
dσ|ψ〉e

dΩ
=

8
sin4 θ

l4P
λ2

[
4(1 + sin(2ϕ) cos ρ) + (1 − sin(2ϕ) cos ρ)

(
cos θ + cos3 θ

)2
]
,

where lP =
√

Gh̄
c3 ≈ 1.6162×10−35 m is the Planck length and λ is the wavelength of the

photons in the center of momentum frame. We published this result in [15] together with
a more extensive derivation and interpretation. We found that polarization entangled
photons gravitate more in the symmetric Bell state, ρ = 0 and ϕ = π/4, and less in the
antisymmetric Bell state, ρ = π and ϕ = π/4. Furthermore, the differential cross section
for photon-photon scattering due to vacuum polarization in Quantum Electrodynamics
shows the same dependence on the entanglement. The dependence on the polarization
entanglement can be interpreted in the sense of quantum interference and in the sense
of localized particles using Glauber’s delayed coincidence measurement. The latter leads
to the probability [16]

Pi→f ∝
∑

f

∣∣∣〈f |E(+)
2 (t, x)E(+)

1 (t′, x′)|Ψ〉ϕ,ρ

∣∣∣2 ∝
[
1 + sin(2ϕ) cos

(
2
h̄

p · (x′ − x) + ρ

)]
.

This shows that the probability to find two photons at two given points closer than
πλ/4 = πh̄c/4E is increased for photons in the symmetric Bell state and decreased for
photons in the antisymmetric Bell state when compared to not entangled photons, ϕ = 0
and ϕ = π/2. This naturally fits into the idea of particles interacting via forces that
decay with the distance between these particles.

By investigating the gravitational properties of light we can hope to gain insight
into the properties of photons. We have gone beyond a classical treatment of the grav-
itational properties of light by investigating photon-photon scattering in Perturbative
Quantum Gravity. In particular, we have investigated the effect of entanglement in
photon-photon scattering. The DCS for gravitational photon-photon scattering at a
wavelength of 500 nm is of the order 10−124 m2. Hence, the the effect is far from being
directly experimentally accessible. However, as entanglement is an inherently quantum
mechanical property, the effect of the entanglement of light on its gravitational properties
exists in the overlap between quantum mechanics and gravity, which makes it a question
of general physical interest.
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Unità di Pavia
Dipartimento di Fisica “A. Volta”
Via Bassi 6
I-27100 Pavia
Italy
tel: 0039 0382 98748
dariano@unipv.it

Edward Fry

Department of Physics and Astronomy
4242 TAMU
College Station
TX 77843-4242
USA
tel: 001 979 845 7717
fry@physics.tamu.edu
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