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I 

INTRODUCTION 

In her review of Gerold Ungeheuer's Elemente einer akustischen 
Theorie der Vokalartikulation (Springer-Verlag 1962), Ilse Lehiste1 

states: "The question might be asked whether, after the appearance 
of Fant's comprehensive volume2, it is at all possible to make a new 
and original contribution to the acoustic theory of vowel produc-
tion". Frankly speaking, I do not like such discouraging statements 
and I am sure dr Fant does not like them either. Being an engineer 
myself, I greatly admire Fant's work and certainly appreciate its 
originality. Nevertheless, my approach to the problem of the pre-
diction of the formant frequencies of the vowels is different from 
that of Fant. 

This monograph has been written with a purely linguistic pur-
pose. In the Netherlands there exists a new generation of linguistic 
students and also a group of mature linguists who are no longer 
content with the traditional verbal labels of the phonemes. It is 
the duty of the physically and mathematically trained phonetician 
to provide these malcontents with a manageable concept of the 
relation between articulation and acoustics. More specifically for 
the vowels, there is a need for a workable model of the generation 
of the formant positions. 

Predictions of the formant positions based on a simple model 
need not necessarily bear the hall-mark of inaccuracy. By suitably 
choosing the values of its few parameters with an eye to the real 
shape of the vocal tract as seen in X-ray photographs, one can form 
1 Language, Volume 39, Number 3 (1963). 
1 G. Fant, Acoustic theory of speech production (Mouton, The Hague 1961). 

 EBSCOhost - printed on 2/9/2023 9:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



12 INTRODUCTION 

fair estimations that compare favourably with the results of calcu-
lations of more pretentious models of the vocal tract. 
The model around which this monograph centres is called the loss-
free twin-tube resonator. A formula producing the formants of 
the twin-tube resonator can be found in literature but we shall 
show in the following chapters that until now the possibilities of 
its graphical solution have not been sufficiently explored. Maybe 
the reason for this neglect is that the twin-tube was seen as a bad 
imitation of the vocal tract rather than as a good model of it. It 
can even be shown, as in Chapter VII, that Hellwag's vowel triangle, 
published as early as 1781, comes to the fore as a vector diagram 
of the first two formants as predicted by the twin-tube model. 

An acoustical model is, as a rule, representative of SOME properties 
only of a real vocal tract. Therefore it is always an approximation 
of the physical reality in the real vocal tract. Nevertheless, the 
calculation of the model must be taken seriously and its results 
must be checked as much as possible by measurements on 'hard 
ware' models, conveniently made of hard plastics. 

For not too high frequencies, a hard-walled tube with uniform 
cross-area may be treated as a one-dimensional problem, that is, 
plane waves may be supposed to be running to and fro in the tube 
following the direction of its axis. 

We found it necessary, however, to introduce in our models sec-
tions with non-uniform cross-area, such as diabolos, defined in this 
monograph as exponential twin-horns. One needs a manageable 
differential equation for describing the physical behaviour of such 
sections. Some authors, for instance Ungeheuer3, advocate the 
application of Webster's horn equation even to the complete vocal 
tract. We only succeeded in solving Webster's horn equation in 
special cases like, for instance, the exponential horn. As this was 
the horn we needed we were able to introduce it in a variant of the 
twin-tube model. 

To an outsider possessing a smattering of phonetics a formant 

3 G. Ungeheuer, Elemente einer akustischen Theorie der Vokalartikulation 
(Springer-Verlag 1962). 
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INTRODUCTION 13 

may seem to be a comparatively problemless tangible thing, lying in 
waiting to be measured by a suitable method. Even in the phonetic 
sciences one runs the risk of being accused of riding a hobby-horse 
when one underlines the arbitrary nature of a formant definition. 
In spite of the (fortunate) fact that fundamentally different formant 
definitions often lead to frequencies in the same order of magnitude, 
in spite of the fact that contrasts between formant positions prove 
to be more important than absolute formant positions, we should 
not consider formant theory as a free-for-all for loose or arbitrary 
formulations. Definitions labelled as traditional or practical do not 
improve the clear comprehension of the mechanism of speech and 
hearing. Our ultimate scientific aim should be that clear compre-
hension. Chapter III should be considered as a first, faltering step 
towards this goal. 

This monograph is hopefully announced as a contribution to 
linguistics. However, its author is vividly aware of the fact that the 
average linguist will not be able to digest all physical and mathe-
matical problems without the assistance of an acoustically trained 
physicist or engineer. Nevertheless, we do hope that the interested 
linguist will be able to appreciate the conclusions drawn from the 
calculations. This monograph is also meant for the acoustician who 
wishes to team up with linguists in phonetic research. He may be 
irritated somewhat by the elaborate treatment of what he considers 
as details or general knowledge. On the other hand, it is quite 
healthy for engineers and kindred spirits to come down to earth 
every now and then in order to realize how and if their mathemati-
cal concepts fit into the real mechanism of speech and hearing. 
To-day, phonetics is no longer a one-man science. Insight into the 
mechanism of speech and hearing can only be gained via a close 
co-operation between linguists, engineers, physicists, physiologists, 
psychologists, speech therapists, anthropologists and so on. Let us 
suppose, for a moment, that one wants to concentrate on articula-
t o r problems only, waiving all other aspects of phonetics for what-
ever reason. As long as the articulatory terms and descriptions 
have the character of real and effective articulation recipes they are 
very practicable: in the ideal case they permit us to realize in the 
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14 INTRODUCTION 

long run the speech sounds of a language so that a native talker of 
that language is able to identify them correctly. Articulation recipes, 
however, only show HOW to produce a series of contrasting speech 
sounds, but do not explain WHY the listener is able to discriminate 
between them, though we know THAT he is able to do so. The aim 
of the phonetic sciences as a whole is to get an over-all picture, 
including production, transmission and sensory reception of the 
speech sounds. One is, of course, completely free to restrict oneself 
to empirically derived articulation recipes but in that case one shuts 
out a broad and interesting field, namely, acoustics and sensory 
reception. A very striking example of the one-sidedness of articula-
tion recipes is met in audiology: the audiologist needs acoustic 
labels of the speech sounds and, moreover, he wants them in such 
a form that he can understand WHY a defective organ of hearing 
fails to discriminate between them. 
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II 

PHYSIOLOGICAL CONSIDERATIONS 

In this short monograph a detailed treatment of the anatomy of 
the vocal tract would certainly be out of place. For greater descrip-
tion the reader is referred to the well-known text-books. This 
admittedly brief chapter is merely intended to persuade the reader 
to see the vocal tract as a slim tube extending from the vocal cords 
to the mouth opening. Though this view has a typically modern 
ring it dates back much further than is generally recognized. As 
early as in 1765 De Brosses describes the vocal tract as a tube that 
can be varied in diameter and that can be lengthened or shortened, 
see figure II.2. 

The modern motive for preferring to see the vocal tract as a slen-
der tube stems from acoustic theory. If the total length of a tube is 
much larger than its diameter, its acoustic behaviour may be stream-
lined to such a degree that the calculation boils down to a one-
dimensional problem (see Chapter III). 

Figure II. 3 demonstrates the oblong shape of the vocal tract. The 
wall of the tube is for the larger part formed by the wall of the 
pharynx, the epiglottis, the tongue, the soft- and the hard palate, 
the teethridges (including the teeth) and the lips. The axial length I 
of the vocal tract is indicated by the dot-stripe line between the 
arrow-heads. 

As a rule the vocal tract is supposed to end at a point just outside 
the lips. In certain vowels, however, the vocal tract must be as-
sumed to end at a point inside the mouth, even behind the teeth. 
During the production of the vowels the vocal folds (cords) are 
generally regarded as a hard wall bounding the vocal tract at the 
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16 PHYSIOLOGICAL CONSIDERATIONS 

other end, in spite of the fact that they open and close rhythmically 
at an average rate of at least 150 times per second. As slow motion 
moving pictures of the larynx show, the just mentioned wall moves 
to and fro in the axial direction of the vocal tract, but we shall 
ignore the resultant length modulation. 

During phonation the larynx may be regarded as a machine-gun 
projectilling air puffs into the vocal tract. In normal voices the 
vocal folds open slowly whereas they close with a snap. It is this 
closing snap, this abrupt ending of the air puff that is able to excite 
the vocal tract to action in the form of powerful damped oscilla-
tions. As a rule the reaction to the slow onset of the puff is of no 
practical importance. 

.. T. I[) T. ,, 

J\ A / L _ _ t 

Figure II. 1 
Two examples of wave forms that are able to excite the vocal tract 

in a proper way. 

The fact that the closing snap is the main source of excitation 
permits us to apply Heaviside's method to the vocal tract, see 
Chapter III. 

The time interval between two subsequent snaps may be called 
the REPETITION period T0. Formally speaking, there is no objection 
against calling 

F0 = ^r (II.D 

the repetition frequency of the snaps. 
For periodic wave forms as shown in fig. II. 1, Ta and F0 are 

constants. For other wave forms Ta and F0 may vary from snap 
to snap. Confining ourselves to periodic wave forms, we mention 
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ipoîtrine peut fournir l'air. Les confonnei 
font les articulations de ce même foi* 
que l'on fait pi fier par on certain organe,, 
comme à travers d'une filiere , ce quF 
lui donne une forme. Cette forme fr 
donne en un feol mfbmt 5î ne peur être 
permanente. Que fi elle p.iroît Pétre darls 
quelques articulations fortes qu'on appelle 
tfprit* rudes , ce n'eft pins un fem clair 
êt diillruft ; ce n'eft qn'rm fixement 
fourd qu'on eft o&ligé d'appeîler dta nom 
confradr&oire de voyelle muette. Ainfi la 
voix & Ta confonne font comme la ma/-
tiere Si la- forme , la iûbftanc* & le 
mode. LTnfframent général de la voix, 
doit être crmiidéré comme un htyau long1 

qui s'étend depuis le fond de fa gorge 
jufqu'au bord extérieur des levres. C e 
tuyau eft fucceptible d'être refferré félon 
nn diamètre pins grand ou moindre, 
d'être étendu cm 5?courci félon une lon-~ 
gueur plus grande ou moindre. Ainfi le* 
fimple fon qni en fort repré fente à Fo-
xeifle l'état où on a tenu le tuyau e» y 

Figure II.2 

Photostatic reproduction of page 109 of: De Brosses, Traité de la formation 
méchanique des langues et des principes physiques de l'étymologie, Tom. I, nr 101 

(Paris 1765). 
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PHYSIOLOGICAL CONSIDERATIONS 17 

that more often than not T„ is called the fundamental period and 
F0 the fundamental frequency. The term: fundamental is a con-
cession to Fourier analysis and refers to the possibility of devel-
oping the glottal wave into a Fourier series containing the funda-
mental frequency F0 and its harmonics 2 F„, 3 F0, 4 F0 etc. As we 
do not make use of this mathematical possibility in this monograph 
we only mention it for the sake of completeness. 

Figure II.3 
Semi-schematic representation of the anatomy of the vocal tract. 
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18 PHYSIOLOGICAL CONSIDERATIONS 

Already one snap is sufficient to pursuade the vocal tract to 
produce its complete set of damped oscillations, in other words its 
formants, see Chapter III. Speaking in terms of information theory : 
all subsequent snaps are redundant as long as the vocal tract is kept 
in the same articulatory position. This statement is not weakened 
by the fact that, in order to arrive at a decision, the nervous system 
needs a time interval of several repetition periods. It is not neces-
sary, and, in my opinion, it is even incorrect, to explain this time-
delay as an inherent feature of a linear filter with a limited band 
width. 

The acoustic effect of lowering the soft palate during the produc-
tion of a vowel is called nasalisation. In some languages nasalisa-
tion is a speech defect or just a mannerism. In other languages it 
is a phonemic tool. 

In this monograph we shall very briefly discuss nasalisation in 
Appendix § 1. 
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Ill 

ON THE DEFINITION OF THE FORMANTS 

A browse through the literature on vowels of the past 100 years 
leads to the conclusion that the investigators have always intuitively 
felt that the interpretation of vowel sounds by a listener might be 
related to phenomena often loosely referred to as resonance, tuning, 
natural frequencies, amplified overtones, formants, zones of am-
plification, etc etc. 

In judging the scientific level of the early literature on vowels one 
must bear in mind the lack of physical tools and mathematical in-
sight which was characteristic of many investigators of those days. 
In the course of time a great confusion of terms came into being. 

In 1928 Hermann Gutzmann1 still distinguishes between the 
FORMANT theory of L. Hermann and the OVERTONE theory of 
Helmholtz. 
In 1926 Carl Stumpf2, however, attaches a different meaning to 
the term "formant" originally coined by L. Hermann as the fre-
quency of a damped oscillation set up in the vocal tract by an air 
puff emitted by the vocal cords. He applies it to a certain region 
of overtones. Much confusion has been caused by this deplorable 
generalisation. As it is not advisable to put the clock back the 
term formant in its present vagueness should be maintained in the 
hope that the authors of to-day will not fail to indicate what they 
mean by this term in their publications. 

Strictly speaking, an investigator who calculates the vibrations 
1 H. Gutzmann, Physiobgie der Stimme und Sprache (Braunschweig 1928, 
2 Auflage), p. 128. 
1 C. Stumpf, Die Sprachlaute (Springer Verlag Berlin 1926), p. 63. 
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20 ON THE DEFINITION OF THE FORMANTS 

of the vocal tract does not need to be primarily interested in percep-
tion. His first aim is to find the time course of the vibrations that 
leave the mouth during the production of vowel sounds. No doubt 
he does know that these time functions carry 'something' to the ear 
of the listener and that certain changes in that 'something', brought 
about by changes in the configuration of the vocal tract, convey 
a meaning to the listener, but for the time being this is not his prob-
lem yet. Nevertheless, he may hope that the mathematical equa-
tions describing the behaviour of the vocal tract allow him to define 
mathematical quantities (with the dimension of a frequency or a 
time) that are characteristic of a certain configuration or geometric 
changes of the tract. It may be expected that there will be more 
than one way to do so. 

When there is sound in the air the air pressure P at a certain 
location in space shows small variations denoted by p around its 
average value P„: 

The variation p is called the sound pressure. It is a so-called scalar 
which means that it is completely given by only one number though 
that number depends on time and on the coordinates in space of 
the point where we measure the sound pressure. This dependence 
is mathematically indicated as follows: 

where x, y and z are the three dimensions in space and t represents 
time. We say that p is a function of x, y, z and t. 

Also the density Q, defined as the mass of the air per unit of 
volume, displays a variation s around its average value Q0 : 

The variation s is called the condensation. It can be proved that, 
for the usual small variations met in practice, p is proportional to s 
in the following way: 

P = P* + P (III.l) 

p=p(x,y,z,t) (III.2) 

e = £<> + •* (III.3) 

p = c2 s (III.4) 
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ON THE DEFINITION OF THE FORMANTS 21 

where c is the well-known velocity with which sound travels in free 
space. For air of vocal tract temperature we take that velocity 
as high as 350 m/sec. In practice, because of formula (III.4), p only 
is mentioned, not in the least because it is easy to measure p by 
appropriate microphones. 

The vibrating air particles move to and fro around their positions 
of equilibrium. In doing so they cover very small distances and 
develop very low velocities. The so-called particle velocity v is 
defined as the distance an air particle travels during a very short 
time-interval, devided by that interval. Even in loud sounds v 
reaches peak values of less than 1 m/hour, a snail's pace considered 
to be paradoxical by many but nevertheless being correct. People 
without a physical background are inclined to mix up the particle 
velocity with the velocity of propagation c. One should bear in 
mind, however, that the particle velocity pertains to the transport 
of mass whereas the velocity of propagation describes the transport 
of energy which can take place at a much higher velocity. 

Generally speaking it is not sufficient to merely state the absolute 
value v of the particle velocity. The particle velocity is a vector 
which is a mathematical way of saying that it has a direction in 
space. The air particles move to and fro along the so-called stream-
lines. We need not, however, in this monograph, make an excursion 
into vector theory because the following simplifications eliminate 
the need for such an unwelcome digression. 

In order to facilitate the calculations the vocal tract which is 
virtually boomerang-shaped, is bent in such a way that its axis 
becomes a straight line which at the sime time may serve as our 
.x-axis. Moreover, the streamlines are supposed to be essentially 
parrallel to the x-axis so that only the velocity-component u in 
the direction of the x-axis has to be taken into account. The next 
simplification is to suppose that the particle velocity u is the same 
throughout a cross-area perpendicular to the axis. The same holds 
good for the sound pressure p. This means that u and p are func-
tions only of x and t : 
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22 ON THE DEFINITION OF THE FORMANTS 

sound pressure 
p=p(x,t) (III.5) 

particle velocity 
u = u(x,t) (III.6) 

By straightening the vocal tract and idealizing its streamlines we 
have strait-jacketed our problem into a one-dimensional problem. 
This method is followed by the majority of investigators. Never-
theless, we should not neglect the possibility that the damage in-
flicted on physical reality by the one-dimensional strait-jacket may 
render certain refinements in our calculations far-fetched if we 
accept the accuracy of the calculated formant frequencies as a 
criterion. On top of that comes a problem which is important to 
the linguist : with what accuracy does the mathematically defined 
formant frequency describe the physiological data the nervous sys-
tem derives from the time-functions presented to the ear? 

An advantage of the one-dimensional approach is that the so-
called volume velocity U can be defined in the following simple way: 

U = S u (III.7) 
where S is the area of the cross-section of the tube over which the 
particle velocity u is supposed to be constant with respect to x. 
As a matter of fact Webster's equation is based on the volume 

x>0 
throat 

Figure in . l 
The vocal tract seen as an acoustic device that transforms a sound pressure p{o) 
and a volume velocity U(o) at the throat into a sound pressure p(/) and a volume 

velocity U(l) at the mouth opening. 
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ON THE DEFINITION OF THE FORMANTS 23 

velocity in order to get the cross-area of the tube, which is a function 
of x: 

S = S(:c) (III.8) 

into the picture, that is the differential equation, at all. 
From now on our calculations will aim at the determination of 

sound pressure p and volume velocity U in the vocal tract, especially 
at the beginning and the end. 

Though the average layman will readily accept the loose formula-
tion that the larynx produces a sound which is modified by the 
vocal tract in a way that is characteristic of the vowel under dis-
cussion, he might frown at the idea that in order to calculate that 
modification it is necessary to take into account two acoustic 
quantities, the familiar sound pressure and the less popular volume 
velocity. This necessity, forced on us by nature, has an advantage, 
however, because it places the vocal tract in the same class with the 
electric four-terminal networks the theory of which is already well-
developed. In the calculation of electric networks the electric volt-
age as well as the electric current appear in the differential equa-
tions. It is very convenient to regard sound pressure and electric 
voltage as analogous quantities. The same can be said of volume 
velocity and electric current. We may even go so far as to denote 
analogous quantities by the same symbol, as is done in figure III.2, 

X 

direct ion o f t r a n s m i s s i o n 

Figure III.2 
Equivalent electric four-terminal network of the vocal tract 
p. : input voltage, analogous to sound pressure at the throat 
Uc: input current, analogous to volume velocity at the throat 

Pi : output voltage, analogous to sound pressure at the mouth-opening 
U, : output current, analogous to volume velocity at the mouth-opening. 
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24 ON THE DEFINITION OF THE FORMANTS 

where a passive electric four-terminal network is depicted with the 
application of acoustic symbols for the electric quantities. In that 
way the vocal tract comes to the fore in the disguise of an electric 
network. The analogy between figure 111.1 and figure III.2 is 
obvious. 

Electric circuit theory shows, that for sinusoidal oscillations, the 
following linear relations exist between the quantities at the input 
and the output: 

Po = A Pi + BUt (III.9) 

U0 = Cpl + DUl (III. 10) 

The coefficients A, B, C and D are called the general circuit para-
meters of the network. They depend on the configuration and on 
the values of the electric components of the network such as re-
sistors, capacitors and solenoids. As a rule they are functions of 
frequency (remember we suppose sinusoidal vibrations!). In the 
vast majority of networks these components are so-called lumped, 
but they may also be distributed continuously as, for instance, in 
the telephone cable. The vocal tract is analogous to a cable: its 
acoustic 'components' are continuously distributed though we shall 
see that, for low frequencies, it may sometimes be regarded as being 
composed of lumped components. This is the case in the well-
known Helmholtz-resonances with which we shall deal later on. 

For the usual electric networks there is the following extra-rela-
tion between the general circuit parameters : 

AD-BC = 1 (111.11) 

In the language of network theory we say that the network obeys 
the reciprocity theorem but we shall not press this point here. The 
critical reader will notice that the extra-relation (III. 11) allows us 
to reduce the number of general circuit parameters to a mere three 
but for reasons of mathematical simplicity one always operates 
with four parameters, bearing in mind there is a useful relation 
between them. 

If we succeed in determining A, B, C and D for the vocal tract 
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they can be expected to depend on frequency, on the way in which 
the cross-section varies with respect to x and on the total length of 
the tract. In order to definitely find the parameters we must first 
find a differential equation for the vocal tract, next solve it for 
sinusoidal vibrations, then calculate separately sound pressure and 
volume velocity and finally introduce the boundary conditions at 
both ends of the tube. Unfortunately the average linguistic reader 
does not possess the necessary mathematical background to per-
form or to understand the sketched procedure. It is a consoling 
thought, however, that only in special cases this procedure is mathe-
matically possible even for the expert mathematician. 

In connection with the twin-tube resonator it will become neces-
sary to calculate the general circuit parameters of a network con-
sisting of two known four-terminal networks in tandem as is shown 
in figure III.3. 

> X 
direct ion of transmission 

Figure III.3 

Two four-terminal networks in tandem seen as one single, resultant network. 

Each network has its own set of relations : 
P o ^ A ^ + B^z (III. 12) p2 = A2pt + B2Ul (111.14) 
U, = CtPi + D^t (III. 13) U2 = Ctft + DiUt (III. 15) 
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The calculation is based on the principle that the output volume 
velocity U2 of the first network is at the same time the input volume 
velocity of the second network. Furthermore the output sound 
pressure p2 of the first network is also the input sound pressure of 
the second network. 

It is possible to eliminate p2 and U2 from the equations (III. 12), 
(III. 13), (III. 14) and (III. 15). Omitting the mathematics we get: 

p0 = ( A ^ + B^Jpt + iA^ + B1D2)Ul (111.16) 
U„ = (A2C, + C2Dt)Pl + (D,D2 + C ^ 2 ) ul (in. 17) 

These expressions describe a new four-terminal network with the 
general circuit parameters: 

A = A1A2 + B1C2 (111.18) 
B= AiB2+BiD2 (III. 19) 
C = A2Ct + CaDi (111.20) 
D = Z V ^ + C A (111.21) 

Especially equation (111.21) will proove to be important for the 
calculation of the twin-tube model. 

Before going on, we must realize that the general circuit para-
meters as we have defined them, refer to the hypothetical case 
where a sinusoidal vibration is being transmitted through the vocal 
tract from the throat to the mouth. This situation certainly does not 
represent the actual mode of action of the throat which does not 
produce sinusoidal vibrations. 

Sinusoidal vibrations are introduced as mathematical tools for 
solving or simplifying the differential equations that govern the 
physical phenomena in question. Once the reaction of a network 
to a sinusoidal excitation has been determined, it is mathematically 
possible to predict the reaction of that network to an arbitrary 
time function. This possibility is based on the fact that, as a rule, 
an arbitrary time function may be considered as the sum of a, 
usually large, number of sinusoidal time functions with different 
frequencies. This step, back to reality, from the frequency concept 
to the actual excitation of the vocal tract, is more often than 
not, omitted. The consequences of this omission for the definition 
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of the formants will be discussed in some detail in this chapter. 
We shall now return to and start from fig. III.2 which, as has been 

said already, refers to the hypothetical case where a sinusoidal vi-
bration is transmitted through the vocal tract. As visualized in 
fig. III.4, the throat is treated as a sinusoidal electromotoric force e 
in series with an internal impedance3 Z0. The mouth-opening is 
considered as a load-impedance Z,. 

Evidently 

Po = e—U0Z0 
and 

Pi = U,Z, 

(Iir.22) 

(111.23) 

• 
i 
!U. m 

O * ; e I 

A B C D 

A D - B C = 1 

1 3> 
t h r o a t v o c a l t r a c t 

I 

I ; 
! m o u ( h I 
i i 

Figure III.4 
The throat considered as a source of sinusoidal vibrations. 

It is possible to calculate U, as well as U„ by combining (III.9), 
(III. 10), (111.22) and (111.23), which finally yields: 

e 

V„ = 

B + DZ0 + AZt + CZ.Z, 

e 

Z0 + 
AZ, + B 
CZ, + D 

(III. 24) 

(111.25) 

In practically all calculations of the vocal tract one permits oneself 
the following, simplifying assumptions: 

* The (acoustic) impedance is defined here as the sound pressure divided by 
the volume velocity. 
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Z,-*0 (111.26) 
and 

Z„~* oo (1H.27) 

Equation (111.26) persuades us to consider the mouth-opening as 
a dead short circuit. Consequently the sound pressure pt = 0 (or 
at least very low), in other words there is always a pressure node 
in the mouth-opening. 
Equation (111.27) expresses the belief that for sinusoidal vibrations 
the internal impedance of the throat is very high and independent 
of frequency. 

By introducing (111.26) and (111.27) into (111.24) and (111.25) we 
simply get: 

and 

u, = ¿L (IIL28) 

Uo = Y (III.29) 

Combination of (111.28) and (III.29) yields: 

U, = ^ (111.30) 

Let us first precise the way in which the quantities in (111.30) depend 
on frequency. 

The driving volume velocity U0, determined by (111.29), has the 
same amplitude for all frequencies. 

The general circuit parameter D of the vocal tract does depend 
on frequency. It is, mathematically speaking, a complex quantity 
with, in general, a real and an imaginary part. In order to express 
the variation of D with the frequency (o — Infix, would be possible 
to write D = D(co), but in view of what follows later on in this 
chapter it is advisable to use the following notation: 

D = D(jco) (111.31) 
with 

j (ni.32) 
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vocal t ract 

Figure III.5 
The vocal tract driven by a sinusoidal constant volume velocity U„ at the throat 

side and loaded by a short circuit (pressure node) at the mouth side. 

From (III. 30) it is very clear that Ut varies with frequency (both in 
amplitude and phase) because D does so. The graph depicting 
|£/,|, that is the amplitude of Ut, as a function of co o r / i s known 
as the frequency response curve, an example of which is shown in 
fig. III.6. 

N 

Figure III.6 
Example of a frequency response curve. The frequency locations of the peaks 
are called the resonance frequencies and may be defined as the resonance 

FORMANTS. 

As a rule the curve will show peaks (relative maxima). 
The frequency locations of these maxima (as well as those of the 

minima!) are given by the roots of the following equation: 

(111.33) 

The roots corresponding to the maxima are called the resonance 
frequencies (x>u co2, co3 etc {Fu F2, F3 etc). It is very tempting in-
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deed to define the resonance frequencies as the formant frequencies. 
In order to avoid confusion, the formants defined in this way, we 
shall call the resonance formants. 

The method of defining the formants as resonance frequencies 
is open to criticism. We might as well label this method as the 
sweep-frequency method because the throat is replaced by a con-
stant volume velocity source U„ with a variable frequency. The 
way in which £/, at the (short circuited) mouth-side reacts to that 
source is used as a vehicle for defining the formant frequencies. 
In order to measure the resonance frequencies of a real talker it is 
necessary to remove his throat and to replace it by a small loud-
speaker that produces a constant volume velocity. Most talkers 
would object against such a procedure. 
As a matter of fact Jw. van den Berg has actually (and very ably) 
applied the sweep-frequency method in a patient whose larynx had 
been removed by surgery, as is illustrated in fig. III.7. 

Now we have to accept the simple fact that a normal talker does 
not utilize a sweep-frequency method for conveying to a listener 
data on the shape of his vocal tract during the production of a 
vowel. His throat generates air-puffs instead. Even a spectrograph 
does not indicate resonance frequencies in its picture: it can at best 
depict spectral lines the frequencies of which are multiples of F0, 
the fundamental frequency of the vocal folds, corresponding to the 
number of air-puffs produced per second by the larynx. Relatively 
strong spectral lines may be defined as FILTER FORMANTS, however, 
but they do not coincide with the resonance formants. 

One might even doubt whether transmission theory with its 
etceteras is applicable to the vocal tract at all. Transmission theory 
was primarily created for the purpose of designing transmission 
links of which both the sending and receiving ends were available 
for measurement. At the sending end of the channel any type of 
signal could be expected. Transmission theory with its frequency 
concept provides a tool for predicting how an arbitrary signal will 
be distorted by the channel in question. It describes the channel, 
not the signal. 

The ear of the listener, backed by the nervous system, is not a 
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Figure III.7 

Replacement of the surgically removed pathological throat of a patient by a 
small loudspeaker producing a sinusoidal vibration. Taken f rom: J. van den 
Berg, Physica van de stemvorming, met toepassingen, 1953, Diss. Groningen. 
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transmission meter, it is a signal-detector, as it were caring very 
little for a process to which it has no access. 

It is not necessary, however, to throw overboard the routine of 
transmission theory, though I still believe that habit is often 
stronger than progress. By keeping intact the frequency concept, 
we can predict how a vocal tract will react to the application of 
a so-called step-function at the throat-side. 

Figure III.8 
Applying a volume velocity step to the vocal tract at the throat-side. The volume 

velocities U0 and U, are no longer sinusoidal! 

As shown in figure III.8, we suddenly make the (no longer sinus-
oidal!) volume velocity U0 jump from the value o to the value 
U0= V and see how the vocal tract reacts to that disturbance. 
This is called the method of Heaviside. 

Mathematically speaking, this method of driving the vocal tract 
by a step-function is as arbitrary as driving it by a sine function 
but we shall see that it leads to another formant definition that is 
more in harmony with the mode of action of the larynx. 

The Heaviside method, as it were parasitically, 'borrows' the 
concept of the general circuit parameter D(jco) from its competitor, 
the sweep-frequency method. By way of improvement, however, it 
replaces the purely imaginary variable jco by the complex variable 
P• 

! 

v 

t(ime) »-

JG)-*p 
so that we get : 

D = D(p) 

(111.34) 

(111.35) 
with 

P = a +jb (111.36) 
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Taking (111.35) as a starting point we can make the following 
elaborations. 

For p = 0 we have 
D = D(0) (111.37) 

By differentiation we get : 

j j D ( p ) = D'(p), (III. 38) 

a matter of notation. 
Furthermore we define 

Pt = at+jb, (111.39) 
as one of the roots of 

D(p) = 0 (111.40) 

Now the scene is set for the presentation of Heaviside's formula 

which is claimed4 to describe the reaction of the vocal tract to the 
unit-impulse V. 
The right hand member of (111.41) shows a constant component 

W ) ( I I L 4 2 ) 

corresponding with a 'lift' of the sound curve and the, acoustically 
more interesting term 

( I , I - 4 3 ) 

which represents the superposition of a number of so-called damped 
oscillations. Without losing ourselves in too many details we can 
state that the roots pt usually come in pairs and that, for instance 
a root 

/>i = fli+A (111.44) 
4 The proof of Heaviside's formula can be found in any good textbook on 
operational calculus. 
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is accompanied by its conjugate 
Pi = a2 +jb2 = di—jbi 

Now its appears, that (111.43) produces sums like 
r.t e 1 — e 2 

2j 

(ra.45) 

(111.46) 

for which can be written when (111.44) and (111.45) are applied: 

(111.47) e'^ie^' -e-ibit) 

or 
e^'sin b ^ (111.48) 

As calculations show that always ay < 0 this formula represents 
a damped oscillation as depicted in fig. IÏÏ.9, 

variable 
quantity 

tO me) 

Figure ni.9 
Graphic representation of a damped oscillation characterized by the frequency 
bi — 2Fi and the time constant a t . The frequency Ft betrays itself in the curve 
as the reciprocal of the time-interval 7\ (the period) between two subsequent 
zero-crossings with the same polarity. There are indications, that the nervous 

system of the listener is able to interpret in some way the interval 

The frequency of this oscillation is given by 
i>! -- 2nFt 

whereas the rate of decay is governed by the time-constant 

(111.49) 
1 
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We shall not, in this chapter, occupy ourselves with the time-
constant but concentrate ourselves on the frequency Fx (or ¿»J 
instead. 

is called one of the NATURAL frequencies of the system because 
it represents the frequency of one of the collection of damped 
oscillations the system produces when left to itself, after it has been 
subjected to an initial shock-like disturbance. It is the frequency 
of a typical transient. 

As apparent from figure III.8 the natural frequency is directly 
visible as the reciprocal of the time-interval T1 between two subse-
quent zero-crossings with the same polarity. 

As early as in the nineteenth century L. Hermann5, one of the 
first to produce visible sound curves, drew attention to the damped 
oscillations so clearly discernible in the sound wave that leaves the 
mouth in real speech. These oscillations prove that the velocity 
puffs leaving the larynx must have a step-like ending (thereby 
betraying that the vocal cords close with a snap) which produces 
powerful damped oscillations in the vocal tract, and a much more 
gradual beginning which only generates weak oscillations. There-
fore it is attractive to define the natural frequencies as formants, 
the NATURAL formants. 

So at the moment we are faced with the choice between two 
possible definitions of the formants, the resonance formants and 
the natural formants. It is possible to keep this choice in the domain 
of mathematics. Both types have been derived from the same gener-
al circuit parameter D(joi) by subjecting it to different mathematical 
procedures as shown by (111.33) and (111.40). Strictly speaking both 
procedures are arbitrary though the definition of the natural for-
mant is better adapted to the actual production of the vowels. 

We need not stress the point here because later on we shall see 
that both definitions will coincide when all dissipation in the vocal 
tract is neglected, as is, for instance, done in the method of Webster 
to be described in the next chapter. 

' L. Hermann, Phonophotographische Untersuchungen (Pfliigers Arch., 1889-
1895). 
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IV 

ON WEBSTER'S HORN EQUATION 

Though Webster's equation was originally created for the design 
of loudspeaker horns, it is very tempting indeed to try to apply it 
to the vocal tract. We shall briefly outline its derivation in order 
to expose the underlying simplifications. 

In Webster's method the rigorous three-dimensional mathemati-
cal treatment with the walls as a bounding surface is playfully 
avoided by incorporating the wall already in the condition of con-
tinuity which, as shown in figure IV. 1, is formulated via a one-
dimensional approximation. 

U-» -k-U+ë̂ dx X 

Figure IV. 1 
A hard-walled tube with variable cross-area. 

The tube is cut into slices with a thickness of dx. Then one calcu-
lates what happens within a slice during the short time-interval dt. 
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During the interval dt the following mass has entered the slice 
through the surface S : 

g.u.S.dt (IV.l) 

where u is the particle velocity and Q the density (mass per unit of 
volume). 

During the same interval dt the following mass escapes from the 

3S 
slice through the surface S + ^dx: 

e.(u + ^dx)(S + ^ dx) dt (IV.2) 

or, neglecting terms with (dx)2: 

e [u.S.dt +S-^-dxdt^ (IV.3) 

By subtracting (IV.l) from (IV.3) we find that the slice has seeming-
ly produced the mass: 

e ^ d x d t (IV.4) 

According to the principle of continuity no creation of mass is 
possible so that this mass has been delivered at the cost of the 
density Q in the slice. By decreasing its density the slice has contri-
buted the following mass: 

-Sdx^dt (IV.5) 

By demanding that (IV.4) equals (IV.5) we get, after dividing both 
members by the product dx dt : 

S(Su) _ SQ 
(IV.6) 

This equation is the crux of Webster's method. The cross area S 
has been elegantly included in a differential quotient, in that way 
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even giving rise to the volume velocity Su already defined in the 
foregoing chapter. We must not be blind, however, to the cost 
of elegance. It was necessary to suppose that the air particles 
entered and left the slice at right angles, leaving in mid-air how 
such a miracle might be accomplished by goings-on in the slice. 
In other words, we have tampered with the stream-lines. 

Figure IV.2 
Deriving the dynamic equation. 

Figure IV.2 shows how a thin cylindrical slice with the volume 
Sdx and the mass gSdx can be thought as moving to and fro in 
the direction of the x-axis under influence of a force which is being 
furnished by the pressure difference between both surfaces S. 

The resultant force in the positive direction of x equals: 

-SÖ/dx 
ox 

(IV.7) 

du The acceleration -=- given by this force to the mass of the cylinder 
at 

is determined by 

- S S / d x = eSdx% 
ox dt 

(IV.8) 

T - « ~ < I V - 9 > 6x K dt 

The appearance of a total derivative in the right-hand member of 
(1V.9) is not the result of a printing error. The dynamic law dic-
tates a total derivative and is also restricted to movements along 
the stream-lines. Strictly speaking 

 EBSCOhost - printed on 2/9/2023 9:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



38 ON WEBSTER'S HORN EQUATION 

du _ Su Su 

Tt ~ J i + Jxu 
(IV.10) 

but, for the small velocities met in phonetic problems, the second 
term in the right-hand member is always neglected so that we get 

du 

dt 

Su 

St 

Combination of (IV.9) and (IV. 11) yields 

Sp Su 

Sx 6 St 

(IV.ll) 

(IV. 12) 

the equation of motion containing only partial derivatives, a proper-
ty which is very convenient for the derivation of a manageable par-
tial differential equation in p or u. For that purpose we also need 

and 
p = c2s 

e = Qo + s 

(III.4) 

(01.3) 

Because we wish to consider the vocal tract as an acoustical four-
terminal network it will appear to be advantageous to derive a 
partial differential equation in 9, the so-called velocity potential 
which is defined in the following way 

u = 
SO 

5x 

Also p can be derived from 6 as follows 

56 

(IV. 13) 

(VI.14) 

This formula can be proved by partially differentiating both mem-
bers to x, which yields 

S p _ _ „ 

öx ÖtÖX 

ö20 öu 
= - Q ° J i 

(IV. 15) 
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Equation (IV. 15) is the same as (IV. 12) provided we replace Q by 
QB. The replacement of Q by Q„ when Q appears as a coefficient is 
a sacrifice we have to accept anyhow if we want to arrive at a 
manageable differential equation. 

By combining (IV.6), (III.4), (III.3), (IV. 13) and (IV. 14) we final-
ly find: 

S26 15S56 1 526 

dx2 + S5xte~ ° <IV-16) 

This expression is known as Webster's horn equation. In the liter-
ature on this subject-matter it is generally held that the following 
two drawbacks of Webster's equation prevent its application to 
phonetic problems: 

1. Webster's equation does not contain terms that can take care of 
dissipation so that only loss-free tubes can be calculated. 

2. It is impossible to present a general solution of Webster's equa-
tion; it can only be solved in special cases. 

In this monograph, however, we confine ourselves to the calculation 
of loss-free models. Moreover, we only need to calculate the expo-
nential horn, a special case in which Webster's equation can be 
solved indeed. 

Let us first, as usual, suppose sinusoidal vibrations and define 
8(x,t) as: 

0(x,t) = 0(X)EJO" ( I V . 1 7 ) 

Introduction of (IV. 17) into (IV. 16) yields 

d20 1 dS d0 co2 

—Z+ + — 
dx S dx dx c 

We may use total derivatives now because we have freed ourselves 
from the time dimension. 

As is apparent from the formulas in fig. IV.3 the differential 
equation folds down to 
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& + + 0 V . 1 » 

Suppose there is a solution 

0(x) = Aebx (IV.20) 

where A and b represent constants, then introduction of this 
solution into (IV. 19) yields: 

CO2 
b2 + mb + ~ = 0 (IV.21) 

or 

, m , /m3 co7 

~2 V "T"~~ 2 ^ 7 - 7 <IV-22> 

This can be written as follows 

(IV.23) 2 c V 4a>2 2 v v ' 

where 

f = — 
V J TOC i=2 (IV.24) 

4co2 

The role of v will become apparent when we study the complete 
solution for 6 as a function of x and t : 

0(^,0 = ^ ! 6 + A 2 6 (IV.25) 

Vhere are two constants, A1 and A2, because there are also two 
roots of b that fulfil equation (IV.22). 

The second term of the right-hand member of (IV.25) represents 
a wave travelling in the positive direction of x at the speed v, in 
other words travelling from the throat to the mouth. 

The first term of the right-hand member represents a wave tra-
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veiling in the negative direction of x at the speed v, so from the 
mouth to the throat. 

mc As equation (IV.24) shows, however, for frequencies above 

the velocity v > c, which means that the waves travel at supersonic 
speeds! Needless to say that this state of affairs does not correspond 
to physical reality. Let us call this consequence of Webster's horn 
equation the SUPERSONIC PARADOX. 

tn c 
For the frequency co = — the waves even travel at an infinite 

speed. 
Below that frequency the velocity v becomes imaginary and there 

is no wave propagation at all in the tube. There the exponential 
horn is supposed to have a cut-off frequency. We must, however, 
refer this cut-off frequency to the domain of science-fiction because 
in reality the vocal tract easily conducts the breathstream which 
represents the frequency 0. 

So we see, that Webster's equation leads to the supersonic para-
dox and is unduly breath-taking as well. 

throat mouth 

Figure IV.3 
The exponential horn 

The quantity m is called the flare of the horn. 
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There is no reason, however, for discrediting Webster's equation 
on basis of the supersonic paradox and the paradoxical cut-off 
frequency. These two paradoxes are nothing but seeming prob-
lems : the decomposition of the stationary solution 6{x,t) into two 
travelling waves as revealed by formula (IV.25), is nothing but a 
mathematical feature. Physically speaking, there are no two in-
dependent waves that run in opposite directions at supersonic 
speeds; there is nothing but the stationary wave pattern! 

Interesting enough though, in a tube with constant cross-area, 
in other words with m = o, the mathematical waves 'travel' at the 
normal speed c, as shown by formula (IV.24). This seemingly 
normal behaviour lures our attention away from the fact, that even 
in that case there are no two independent travelling waves: physi-
cally speaking, there 'is' a stationary wave pattern. 

Though we shall not, in this monograph, calculate the conical 
horn, we point to the interesting and, at the same time, misleading 
fact, that in a conical horn the mathematical waves also travel at 
the speed c, in that way providing themselves with a physical 'alibi'. 

In the next chapter we shall, among other things, calculate the 
general circuit parameters of the exponential horn, at the same time 
presenting its formant formula. 
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THE GENERAL CIRCUIT PARAMETERS A N D THE 
FORMANTS OF THE EXPONENTIAL HORN 

In the foregoing chapters we have seen that a manageable calcula-
tion of the vibrations in the vocal tract boils down to the calculation 
of a much simpler one-dimensional model. Such a model does not 
pretend to predict the real values of sound pressure, particle veloci-
ty and density in every corner of the vocal tract! 

Taking the formant frequencies of the model as a criterion for 
its worthwhileness, we should feel most satisfied when the formant 
positions predicted with the aid of the model are in fair agreement 
with those measured at the real vocal tract. 

One of the 'selling points' of a workable model is that variation 
of its parameters corresponds with demonstrable articulatory ac-
tions. A model becomes a caricature, however, when it exhibits 
properties that are physically untenable. In the case of the expo-
nential horn Webster's equation only seemingly leads to physical 
nonsense: the supersonic paradox and the paradoxical cut-off fre-
quency are nothing but mathematical pleasantries. 

Starting from the general horn equation: 

we may, without actually solving it, derive some interesting proper-
ties as to the influence of growth of the vocal tract on the formant 
positions. Let us first consider the factor 

d20 1 dSde co2 

dx2 + Sdxdx + c2 
0 = 0 

(IV. 18) 

1 dS=d_ 

Sdx~ dx 
-¡-InS (V.l) 
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in formula (IV. 18). Suppose we multiply all cross-areas by the 
same factor a, then 

This property gives rise to the law of proportional transversal 
growth: the formant positions of the tube do not change when all 
cross-areas are multiplied by the same factor, provided the bound-
ary conditions do not depend on S. 

aS(x) 

Figure V. l 

The two types of proport ional growth. 

In order to illustrate another type of proportional growth we in-
troduce the new variable a given by 

X = Oil (V. 3) 
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In that case the horn equation may be written as follows: 

d20 1 dS do co2l2 

Ta2 + sTaTa + ~? 0 = 0 ™ 

Let us first of all define proportional axial growth. Suppose we 
have a tube, characterized by the index 1, the cross-area of which 
depends on x in the following way: 

5 = (V.5) 

When we stretch this tube 1 so that all its axial dimensions are 
multiplied by the same factor, as is shown in figure V. 1 a new tube, 
tube 2, comes into being. 

The relation between the tubes 1 and 2 is given by 

SMh) = S2(al2) (V .6 ) 

where a is identical for both tubes. 
For tube 1 we have the following horn equation: 

d20 £ 
da.2 da U n S l ( a l ^ d £ + ( ^ J 0 = O (V.7) 

For tube 2 we arrive at: 

d20 
da2 

In view of (V.6) it becomes clear that both tubes may be described 
by the same horn equation provided we drive them with different 
frequencies ft>x and co2 between which the following relation exists: 

<wi/i = co2l2 (V.9) 

This means that a formant frequency Fu derived from (V.7), will 
correspond to a formant frequency F2, derived from (V.8), in the 
following way: 

FJi = F2l2 (V.10) 

which leads to the law of proportional axial growth: when all axial 
dimensions of the tube are multiplied by the factor a, its formants 
change inversely proportional to that same factor a. 
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These two laws of growth were also stated and derived by 
Ungeheuer1. 

With respect to the velocity of sound c we may formulate the 
following law: when the velocity of sound of the medium in the 
tube is changed by a factor a, the formant frequencies change 
proportional to the same factor. 

We shall now calculate the general circuit parameters of the 
exponential horn, the shape of which is determined by: 

S(x) = S0£mx (V.ll) 

It is possible to express the flare m in terms of the cross-areas S0 

and St at the beginning and the end of the exponential horn, and 
the length / of the horn as follows: 

m = (V.12) 

This formula has the following consequences: during proportional 
axial growth of an exponential horn its flare changes inversely 
proportional to its length. On the other hand the flare is not af-
fected by proportional transversal growth. 

We shall now return to the exponential horn and calculate its 
general circuit parameters. For that purpose we shall rewrite (IV. 25) 
as follows: 

0(x,t) = A^'i'e»" + A2eb2*e
Ja" (V.13) 

with 
. m ¡n? (0s m . / to1 m2 .., . .. 

bt 2 + ) / T ~ ? = - T V - U ) 

and 
, m fm1 a? m . /or m2 ... . 

= - T •- Jt - = - 2 - ( } 

Equation (V.13) enables us to determine both p and U. 
We know already that 

S f f 

(IV. 14) 
1 G. Ungeheuer, Elemente einer akustischen Theorie der Vokal-artikulation 
(Springer-Verlag 1962). 
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whereas (IV. 13) gives rise to 

(V.16) 

The expressions (V.13), (IV. 14) and (V.l 1) make it possible to treat 
the exponential horn as an acoustical four-terminal network, to 
calculate its general circuit parameters and, finally, to find a simple 
formula for its formants. 

Though p and U are, of course, functions of time, it is sufficient 
to deal only with their amplitudes, which are merely functions of x. 
We may rightly do so because only sinusoidal functions of time 
are taken into consideration. Although we indicated the amplitude 
of the velocity potential 6(x,t) by the separate symbol 0(x), we shall 
simply denote the amplitude of p(x,t) as p(x) or even as p. We shall 
also denote the amplitude of U(x,t) by U(x) or simply by U. 

u. u, 

throat 
x = 0 

moût h 

direction of transmission 

Pi 

Figure V.2 
The general horn seen as a four-terminal network. 
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As already stated in Chapter III, and again illustrated in figure V.2, 
the general circuit parameters A, B, C and D are defined as follows 

p0 = Apl + BUl (III.9) 

U0 = Cpi + DUi (III. 10) 

Still keeping the same direction of transmission, namely from 
x = 0 to x — I, we can rewrite these equations as follows 

Pi — Dp0 — BU0 (V.17) 

Ul = -Cp0 + AU0 (V.18) 

It is in this form that the general circuit parameters will come to 
the fore in our calculation. 

As we confine ourselves to the amplitudes, we can derive from 
(IV. 14) 

p(x) = -Jcdqo0(x) (V.19) 

and from (V.16) 

U(x) = S J (V.20) 

From (V.13) we can derive 

0(x) = A1ebtX + A2eb2X (V.21) 

from which equation we can determine A1 and A2 by demanding 
that for x = 0 

P(x) = P„ (V. 22) 

and 

U(x) = Ua (V.23) 

We finally find, after having applied (V.19) and (V.20): 
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b P° | U ' 
A2 = > g . So (V.25) 

b2 - b! 

The following step will be to introduce (V.24) and (V.25) into 
(V.21), then to apply (V.19) and (V.20), next to put x = /, so that 
we finally find px and Ut as functions of p„ and U0. As a matter of 
fact we shall find nothing but the equations (V.17) and (V.18) with: 

A ( V . 2 6 ) 
S0 b2 - bt 

B - ' f ^ ^ f (V.27) 
i>„ b2 - bt 

<? Mi _ MI 

D . " * : " - ^ ' 1 ' (V.29) 
b 2 - b 1 

These are the general circuit parameters we are looking for. It is 
easy to verify that indeed 

AB — CD = 1 (V.30) 

because from the expressions (V.ll), V.14) and (V.15) we may 
derive that 

= em l (V.31) and e ( 6 '+ bl)l = eml (V.32) 

We are now in a position to derive the formant formula of the 
exponential horn. If we suppose the radiation impedance of the 
mouthopening to be very low and the impedance of the throat to 
be very high, the formant frequencies are given by (see Chapter III) 

D = 0 (V. 33) 

or, taking into account (V.29): 

b2ehl' - b^"2' = 0 ( V . 3 4 ) 
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When we finally apply (V.14) and (V.15) we ultimately get: 
71 la? mr, 2 la? tan - T — I /-j- — 

\j c2 4 myj c2 
m 

(V.35) 

or, applying (V.12) 

»'-I 
c 

<jl2 
i/n ?! 

Sa 

(V.36) 
Several interesting facts are shown by (V.34) and (V.35). 

In the first place the much derided, paradoxical cut-off frequency 
comes to the fore as a true formant, as the frequency 

0) = In- (V. 37) 

obeys the formant formulas. 
In the second place, as can be expected, the formant formula 

(V.36) demonstrates the laws of proportional growth: the areas 
and S0 appear as a quotient so that proportional transversal 

growth has no influence on the formant frequencies, whereas the 
frequency a> always appears in the form of the 'package': 

col 
c ' 

in that way supporting the law of proportional axial growth. 
In this monograph we are only interested in the exponential horn 

as a means for modifying the shape of the tubes of the twin-tube 
model. As a model for the complete vocal tract the exponential 
horn with its parameter m can only produce a very limited vocal 
gesture2. 

For m = 0 the formant formula folds down to simply: 

0 ) 1 A 
cos— = 0 c 

(V.38) 

1 The terminology: vocal gesture was introduced by G.E. Peterson, see Bell 
Laboratories Record, XXIX, No 11 (Nov. 1951). 
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with the roots for F = 2n 

i ^ , F2 = 3 ^ , F3 = 5 £ e t c . (V.39) 

These are the well-known formants of the organ pipe closed at one 
end. 
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VI 

THE METHOD OF THE LOSS-FREE 
TWIN-TUBE RESONATOR 

As Andrew M. Gleason has so ably said1: "When a mathematician 
meets a problem he cannot solve, like any other scientist he tries 
to solve instead some related problem which seems to contain only 
part of the difficulties of the original." Because we could not suc-
ceed in finding a general solution for an arbitrarily shaped tube 
we must fall back on a model that is composed of a, preferably 
small, number of simple, comparatively problemless, tubes. This 
method is referred to as 'plumbing' in our laboratory. The behav-
iour of those tubes in tandem can be predicted via their respective 
general circuit parameters, as already explained in Chapter III. 
Of course the question is: how few tubes and how simple? 

A model consisting of one single tube with a constant cross-area 
and the same length as the vocal tract is not very realistic because 
it can only produce the neutral vowel [a]. Because the length of 
the tube is its only relevant parameter, it can only produce formant 
frequencies that are odd multiples of the first formant. 

But already the twin-tube resonator, depicted in figure VI. 1, is 
able to generate the complete gamut of formant positions the real 
vocal tract has at its disposal. 

The use of tubes with constant cross-areas as building blocks has 
several advantages. One hardly suffers any mental agony when 
supposing that the streamlines in the tube are parallel with its axis. 
Furthermore the waves in the tube travel at the ordinary velocity 
of sound c. 

1 Andrew M. Gleason (Harvard), Science, Volume 145, Number 3631 (31 July 
1964), p 451. 
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Because in this case m = 0 and S(x) = S, the general circuit 
parameters of the tube become very simple. As can easily be de-
rived from the formulas (V.26), (V.27), (V.28) and (V.29), a tube 
with the cross-area S and the length I has the following parameters 

_ (ol o„c .ml _ . S . col .. A = D = cos— B = j^rsm— C = j—sin— (VI. 1) 
C b e Q.C C 

throat mouth 

\ 101 
.St 

- a 
Figure VI. 1 

The three parameters of the twin-tube resonator: 
the total length I 
the eccentricity P s 

the constriction factor k — — 

According to (111.21), two tubes in tandem have the following D 
parameter: 

D = D^ + CyBi (111.21) 

with tube 1 at the sending end. 
Using (VI. 1) and noticing that the indices 1 and 2 must be inter-

changed because, adhering to the already existing tradition in 
literature, we call the length of the tube at the mouthside, we have 

0)11 0)L S 2 . Oil i . 0)12 /„r^ D = cos —- cos — s i n —- sin —- (VI.2) 
c c c c 

 EBSCOhost - printed on 2/9/2023 9:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



5 4 THE METHOD OF THE LOSS-FREE TWIN-TUBE RESONATOR 

The formants of the loss-free twin-tube are found by putting 

D = 0 (VI.3) 
or 

. colt t (ol2 t an—-tan—-
c c 

i l 
S2 

(VI.4) 

This formula, and its direct graphical interpretation via tan and cot 
functions, is already known in literature2 3 but, in our opinion, its 
possibilities have not been fully explored. Its graphical interpreta-
tion, for instance, is greatly facilitated by the introduction of the 
new variable ft, see figure VI. 1: 

Apparently — 1 < ß < 1. 
Using the general theorem 

tan x . tan y = cos(x — y) — cos (x -(- y) 
cos(x — y) + cos(x + y) 

and calling 

S2 

(VI.5) 

(VI.6) 

(VI.7) 

(VI.8) 

the constriction factor, or opening ratio, we can transform (VI.4) 
as follows 

col 1 — k „ml cos— = r cost?— 
c 1 + k K c 

(VI.9) 

It is quite easy to see that the formants of the twin-tube model obey 
t h e TWO LAWS OF PROPORTIONAL GROWTH". 

* G. Fant, Acoustic theory of speech production (Mouton, The Hague 1961). 
8 J.L. Flanagan, Speech Analysis, Synthesis and Perception (Springer Verlag-
Berlin-Heidelberg-New York 1965). 
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1. multiplication of all cross-areas by the same factor cannot make 
itself felt in the formant formula (proportional TRANSVERSAL 

growth); 
2. when all axial dimensions of the tube are multiplied by the same 

factor a, the eccentricity /? does not change; consequently the 
tormant will change inversely proportional to a, because a> only 
appears in the product a>l (proportional AXIAL growth). 

Formula (VI.9) is extremely inviting for the construction of a nomo-
gram. It presents the formant frequencies as the points of inter-
section of two cosines. As the parameters k and /? only operate in 
the right-hand member it is advantageous to keep the parameter / 
at a constant value (preferably its average value) and deal with its 
variations later on. In this way the left-hand member becomes a 
stationary curve in our nomogram, to be intersected by diiferent 
types of right-hand members. 

Let us first investigate the character of the parameter /?, called 
the ECCENTRICITY because it marks the position of the constriction 
relative to the centre of the vocal tract. 

Figure VI.2 
Two geometrically different twin-tubes with the same formants (compensatory 

mechanism). 

The first thing to strike us is that the sign of /? cannot make itself 
felt in (VI.9). Consequently the two twin-tubes depicted in figure 
VI.2 have the same formants because they only differ in the sign of 

4SI 
\ 
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/?. So the twin-tube model houses a compensatory mechanism 
which applies to all formants, Fu F2, F3 etc. It is not necessary, of 
course, to formulate this mechanism via the eccentricity /?. Reversal 
of the sign of fi in (VI.5) and (VI.6) comes down to interchanging l± 

and l2 which, as (VI.4) shows, does not influence the formants as 
long as and S2 are not interchanged. 

The twin-tube method is based on the acoustical importance of 
the joint of the two tubes, the only place between throat and lips 
where the cross-area makes a step. The joint may be rightly called 
the point (or place) of articulation. 

In formula (VI.9) the factor 

1 ~ k = ^ L Z l i = r (vi.ll) 
1 + fc S2 + S1

 K ' 

comes to the fore as a typical reflection factor. We are pursuaded 
to see the reflection-free case (Sl = S2, corresponding with only 
ONE tube with constant cross-section) as a sort of basic situation 
with its characteristic (though neutral) formant pattern and to 
regard deviations from that pattern as the result of reflections at 
the joint when we take k ^ 1. 

It is also possible, however, to see only the mouth and the throat 
as 'official' reflections and to treat the joint differently. At the 
joint the volume-velocity U and the sound pressure p remain con-
tinuous but there is a step in the particle velocity w. The stream-
lines in tube 2 are abruptly 'squeezed' into the smaller tube 1. 

At the joint 

S2u2 = S^ (VI. 12) 
or 

ux = | 2 « 2 (VI. 13) 

This step-like behaviour of the particle velocity can be described as 
a rapid in a river. We shall point out in Chapter VIII how the 
rapid plays a role in the concept of the so-called fractured stationary 
waves we can add to the twin-tube resonator. 

 EBSCOhost - printed on 2/9/2023 9:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



THE METHOD OF THE LOSS-FREE TWIN-TUBE RESONATOR 5 7 

An interesting class of vowels produced by the twin-tube is re-
presented by /? = 0, in other words the joint is exactly at the centre 
of the model. In that case the formant formula boils down to: 

c o s T = T + T ( V L 1 4 ) 

As is shown in figure VI.3 the formants of these vowels are found 
by intersecting the cosine with horizontal lines. 

A few typical examples are presented. 
For k = 1, in other words, when St = S2, the twin-tube de-

generates into one single tube. The formants are found as the 
points of intersection between the cosine and the /-axis. These 
zero-crossings are given by 

cos— = 0 (VI. 15) c 

which yields the frequencies 

Fi = i y , F2 — j ' j etc. (VI. 16) 

These are, by the way, the well-known resonances of the organ pipe 
closed at one end, which form a series of odd multiples of one 
fundamental resonance frequency, namely 

Fi = i y (VI. 17) 

Taking / = 17.5 cm as an average value for the real vocal tract and 
c — 35 000 cm/sec for the warm air leaving the throat, we find 
F1 = 500 Hz(c/s) and F2 = 1500 Hz which is in good agreement 
with the values found by Peterson and Barney for the neutral vowel 
[a] in their classical measurements4 we shall quote more than once 
in this monograph. 

4 G. E. Peterson and H. L. Barney, "Control Methods Used in a Study of 
Vowels", J ASA, Vol. 24, Nr 2 (March 1952), pp. 175-184. 
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When k = 8 the line will be well below the /-axis because then 

1—k 
1 + k ® (VI. 18) 

v V VF3 F4/ k=1 
\ / • 

Y y C o s M \ / 

1 1 1 1 1 1 1 
7 v c 
4 X T 

Figure VI.3 
Nomogram for the formants of the twin-tube resonator for /? = 0 (to = 2 i t f ) . 

The formants Fx and F2 are close together at both sides of the 
frequency 

* 2l 
(VI. 19) 

For I — 17.5 cm this centre-frequency corresponds with 1000 Hz. 
Therefore the twin-tube with 

y? = 0, k = 8, / = 17.5 cm 

could pose as a model for [a] in Dutch. 
When, on the other hand, we try k = the line of intersection 

will be well above the /-axis because now 

1 -k 
\ + k = +i (VI.20) 

This configuration is characterized by a low value of Fi (a typical 
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Helmholtz resonator!) and a twin-formant around the centre-
frequency 

F = (VI.21) 

Depending on the value of I there are several possibilities. For 
instance, for I = 17.5 cm the centre-frequency lies at 2000 Hz. As 
can be read form the nomogram in that case Fy = 217 Hz. Conse-
quently, for P = 0, k = i , I = 17.5 cm the twin-tube model gener-
ates something between [ti] and [i] for the average Dutch talker. 
For I = 14.5 cm, however, the centre-frequency is located at 2414 
Hz whereas Fi = 262 Hz. So, in the case of /? = 0, k = / = 
14.5 cm the twin-tube model produces [i] in Dutch. 

Let us now try some other values of /?, keeping k at the value 
k = b 

For fi = + i , see figure VI.4, the length of the front tube is 
= In order to find the formants we must determine the 

points of intersection between cos — and Jcos^—. There is a Ft 

c 
well below and a second formant F2 at the frequency 

F 2 = (VI.22) 

For 1 = 17.5 cm we have F2 = 1500 Hz. We can read F1 from the 
picture, which yields JFJ = 200 Hz. This combination is certainly 
acceptable for [u] in Dutch. We might remark in passing, that for 
p = + I (and also for fi = — $) variation of k does NOT influence 
the position of F2. As we shall see in Chapter VIII the point of 
constriction is located in a loop or node in this case. 

For f} = + I we have a very short tube in front. Reading both 
c c 

formants from the nomogram, we get Ft = 0.139-^ and F2 = 0.57-^. 

For 1=22 cm, this comes down to Fy = 220 Hz and F2 = 900 Hz, 
which acceptably describes [u] in Dutch. 

 EBSCOhost - printed on 2/9/2023 9:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



60 THE METHOD OF THE LOSS-FREE TWIN-TUBE RESONATOR 

f ,u 

Figure VI.4 

The formants of the twin-tube model for k = 0 = + J and P — + g. 

The few examples presented thus far in this chapter demonstrate 
the flexibility of the twin-tube model with its parameters k, P and I. 
By suitable choice of these three basic parameters the twin-tube will 
generate any combination of F t and F2 the real vocal tract is able 
to produce. 

In Chapter X we shall show how the 3 parameters can be deduced 
from the real vocal tract, among other things via radiograms. 

The ^-parameter has three interesting regions: 
k > 1, describing the vowels traditionally called open 
k — 1, pertaining to the neutral vowel 
k < 1, referring to the close vowels. 

In words: 
in open vowels the widest tube is in front 
in close vowels the narrowest tube is in front 
in the neutral vowel there is no clear distinction between the wide 

and the narrow tubes. 
We are not sure, however, that every phonetician will use the 

notions 'open' and 'close' in the above-mentioned sense. 
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It is a pity that the hope that the ^-parameter is in some elegant 
way related to the traditional back-front opposition is false. 

The unambiguously defined ^-parameter indicates the position 
of the acoustically relevant, step-like constriction. For instance, 
for [u], with /? = + I, the real place of articulation is in FRONT, at 
the lips. Nevertheless, [u] is traditionally labelled as a back vowel 
because the hump of the tongue is at the back of the mouth (which 
is, after all, only half-way the vocal tract). The constriction of the 
vocal tract at the hump of the tongue is not step-like so that it 
has only a secundary acoustical importance. In articulating [u], 
space is created just behind the important lip-constriction. Also, 
the vocal tract is widened at the throat-side. Therefore the hump 
of the tongue in [u] should be considered as an acoustically harmless 
'parking place' for tongue matter. 

The /-parameter is not only influenced by the anatomical con-
straints of the speaker, which depend on age and sex and individual 
variations. A speaker is able to control the axial length / of his 
vocal tract by manipulations with his lips, tongue (tip and hump) 
and larynx. For instance, in [u] the vocal tract begins at the outside 
of the pouted lips, whereas in [i] it begins just behind the teeth. The 
role of / comes to the fore in an interesting way in the vector re-
presentation of the formants of the twin-tube, which is discussed 
in the next chapter. 
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VII 

VECTOR REPRESENTATION OF THE 
TWIN-TUBE FORMANTS 

In this chapter we shall confine ourselves to the vector representa-
tion of merely the first two formants Ft and F2. Perhaps needless 
to say we are fully aware of the fact that this procedure might not 
be harmless in all cases, in spite of its apparent advantages. 

Figure VII. 1 

Definition of the vowel-vector. 
The choice of the axes for Fi and F2 harmonizes with the shape of Hellwag's 

vowel-triangle. 

When, in general, two numbers are characteristic of a certain 
notion, it is possible to represent these numbers as a point in a 
plane, having these two numbers as co-ordinates. As shown in fig. 
VII. 1, this formal procedure may be applied to the formants F t and 
F2 of, for instance the vowel [i]. We are fully justified calling this 

F, 

F. 
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point [i] because its co-ordinates represent the two formants that 
are thought to be characteristic of the vowel [i] in question. 

The line connecting the point [i] with the origin is defined as the 
vowel vector [i]; its angle a is called its argument. Evidently 

tana = J i (VII. 1) 
2 

It is interesting to compare the formants of vowels with the same 
argument, as is done in figure VII.2. Because 

tana = = U (VII.2) 
* 2 * 2 

the formants of [i*] can be deduced from those of [i] by multiplying 
them by the same factor. This means that the vocal tract which 
produces [i] has been subjected to proportional axial growth. 

IN PROPORTIONAL AXIAL GROWTH THE FORMANTS SLIDE ALONG 

LINES THROUGH THE ORIGIN, IN OTHER WORDS ALONG THE ARROWS 

OF THE VOWEL VECTORS. 

Figure VII.2 
The formant shifts in the vowel diagram due to proportional axial growth. 

When, see fig. VII.2, [a], [a] and [i] represent three vowels produced 
by different configurations of the same vocal tract, proportional 
axial growth of that tract will yield the formant positions [a*], [a*] 
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64 VECTOR REPRESENTATION OF THE TWIN-TUBE FORMANTS 

and [i*]. Because all formants are divided by the same factor the 
lines 3*-i* and a-i will be parallel. The same can be said of the 
lines a*-s* and a-a, and of the pair a*-i* and a-i. 
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Figure VII.3 
The formants of men, women and children. The averages have been taken 
from Table II given by Peterson and Barney in their paper 'Control methods 
used in a study of the vowels', J AS A Volume 24, Number 2 (March 1952). 
The formants frequencies Fi and F2 have been plotted on linear scales. The 
children have the highest formants, the men the lowest. The women are in 

between. 

We discovered an interesting application of figure VII.2 by study-
ing and interpreting the results of the well-known measurements of 
Peterson and Barney1. In a separate table they present, among 
other things, the average values of the first two formants of a large 
group of talkers pronouncing the same vowels in isolated words. 
They also give separate averages for children, women and men. 
By plotting these averages on LINEAR frequency scales we could 

1 I.e. 
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produce figure VII.3. There is a strong tendency in phonetics, 
especially in the United States, to use non-linear frequency scales 
for plotting formant positions in vowel diagrams. For instance, 
one uses a linear scale for Fl and the so-called mel-scale for F2. 
We shall not, in this monograph, discuss the possible worthwhile-
ness of logarithmic scales or the mel-scale for the interpretation of 
formant frequencies by the nervous system. Graphical interpreta-
tion of formulas is greatly furthered by sticking to linear scales as 
long as possible. This principle is illustrated by figure VII.3 where 
the corresponding vowels of children, women and men show the 
striking tendency to lie on straight lines through the origin. This 
proves that PROPORTIONAL AXIAL GROWTH IS AT WORK HERE. For 
the sake of completeness we here repeat that proportional trans-
versal growth does not influence the formant positions. As to the 
accuracy with which the points fall on the lines, we must bear in 
mind that the formants have been measured by means of the spectro-
graph. A spectrograph can only measure in steps equal to the fun-
damental frequency of the vocal cords. Consequently, the formants 
have been measured by Peterson and Barney in steps of, on the 
average, 264 Hz for children, 223 Hz for women and 132 Hz for 
men. 

For the sake of clarity we have selected the vowels [u], [i] and [a], 
representing the corner-points of Hellwag's classical vowel-triangle 
(1781), and shown them separately in figure VII.4. As we expected, 
the three triangles have the same shape. This fact throws an inter-
esting light on several problems keeping linguists and phoneticians 
busy. 
While learning to speak the child does not (and indeed cannot) 
reproduce the absolute values of the vowel-formants of the adult 
speakers in its environment. In the long run the child learns to 
master the muscular activity necessary for producing the same 
number of perceptively different vowel sounds used for coding pur-
poses by adult speakers of the same language in situations where 
the need for utmost clarity is greatest. Gradually the child, in his 
own language, learns to choose the normalized number of percep-
tually different tongue positions realizable within the limiting 
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6 6 VECTOR REPRESENTATION OF THE TWIN-TUBE FORMANTS 

boundaries of the lips, the teeth, the back and the bottom of the 
mouth etc. He uses and needs his ear in this process but certainly 
does not match the absolute values of his formants to an example. 

m 

uio 

1101 2SH SIM 

\ \ 
\ \ man 

• __ woman 
\ child \ u \ o . - / 

- \ r X - r 

\ \\ V^ ' 
\ \\ \ / s' 

/ y w ^ ^ ' v y 

X ' \ 

Figure VII.4 
The evidence of proportional axial growth in the vowel triangles of children, 

women and men. 

Once settled in a certain period of life the neurological programs 
for controlling the articulatory muscles do not change materially 
as the child grows up. Apparently the tongue maintains the same 
relative position in the vocal tract for each vowel. Lengthening of 
the vocal tract by growth makes the formants shift downwards and 
there are no compensatory attemps on the part of the talker to make 
them stay in their 'youthful' positions. Obviously the often postu-
lated auditory feed-back mechanism for regulating the articulatory 
movements is not at work here. 

Every talker has his own vowel system. The range of his formant-
frequencies is limited by the dimensions of his vocal tract. The 
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listener has to cope with the difficulty that the absolute values of 
the formants of the vowels differ from talker to talker. He is helped, 
among other things, by the fact that in a given language all talkers 
have the same number of vowels. A listener is able to adapt him-
self in a surprisingly short time to the formant positions of a talker.2 

When he is not able to do so, for instance when isolated words of 
unknown talkers are presented to him, his identifications of the 
intended vowels become rather faulty.3 

When we admit that the exact acoustic imitation of the vowels 
is not the aim in learning to speak, we can understand why the 
inherited shapes of parts of the vocal tract, like the hard palate, 
can withstand supposed 'compensatory' actions. 

The vowel-diagram of an individual talker need not have exactly 
the same shape as the average diagrams presented in fig. VII.3 and 
fig. VII.4, but the sequence of the constituent vowels with respect 
to Fx and F2 will be the same which is sufficient for the listener who 
knows the language in question. 

In phonemics one tries to find 'invariants', unambiguous descrip-
tions on some level of the phonemes. It has become clear by now 
that one should not look for these invariants on the acoustic level. 
The place where to find them is the articulatory level. 

From the figures VII.3 and VII.4 it is apparent that the average 
child, the average woman and the average man give essentially the 
same commands to their articulators when producing a certain 
vowel, in spite of the fact that this sameness gets lost on the level 
of the absolute values of the formants. These commands, given 
subconsciously by the talker, may be of the following nature: 

form a very narrow tube between the tongue and the palate, 
beginning just behind the upper teeth and ending near the centre 
of the vocal tract, at the same time creating a wide back cavity. The 
reader will have noticed that this is the command for [i]. In terms 
of the twin-tube parameters: adjust k, (1 and I to the appropriate 
values for [i], 

2 Peter Ladefoged and D. E. Broadbent, 'Information conveyed by vowels', 
J ASA, Vol. 29, No. 1 (January, 1957), pp. 98-104. 
s Peterson and Barney, I.e. 
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The parameters k and /? are true 'shape' parameters. The para-
meter / is of a hybrid nature. It is consequent to split / up in the 
following manner: 

l = y i . (VII.3) 

where y is a true (dimensionless) shape parameter and /„ represents 
the average length of the vocal tract of the talker whose vowels we 
are investigating. 

From fig. VII.3 we derive 

/ . : / . : /. = 1 : 1 . 1 6 : 1 . 3 5 
average average average 

child woman man 

So, the parameters k, /? and y merely determine the shape of a vocal 
tract, leaving it to the parameter /„ to decide at what absolute 
frequencies the formants will be located. 

It is possible now to give a modern content to the, up to now, 
rather loosely defined square 'phonetic' brackets []. For instance, 
for the vowel [i] we may define: 

[i] = [k„ ft, Yf] (VII.4) 

Likewise we have 

[a] = [ka, p., y j (VII.5) 

and 

[u] = [ku, pu, Y„] (VII.6) 

etc., etc. Between the square brackets are the true invariants. 
We shall now, as illustrated in figure VII.5, represent the first two 
formants of the twin-tube in a vector diagram. For that purpose 
we make use of the examples given in the figures VI.3 and VI.4 
of the foregoing chapter. In the nomogram we introduce /„ instead 
of / so that the role of the parameter y comes to the fore. 
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Figure VII.5 
The vector representation of the formants of the twin-tube resonator leading 
to the vowel triangle postulated by Hell wag in his 1781 thesis De formatione 

loquelae. 

For the benefit of the reader the values of the parameters k, /? 
and y of our examples have been collected in the following table. 

TABLE VII. 1 

vowel k ß y 

M 1 ? 1 
[a] 8 0 1 
[u] i 4- 1 1.26 
W i 0 0.83 
[Ü] i 1 
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The vector construction can best be illustrated following the simple 
case of [a] with k = 1 and y = 1. In that case the twin-tube has 
the length la which serves as a description of the anatomic limita-
tions of the vocal tract in question. 

The formants Ft and F2 come to the fore as the first two zero-

crossings of cos The values of F, and F2 must be plotted on 

the corresponding axes for Ft and F2 depicted below the nomogram. 
The plotting of F2 comes down to simply projecting the second 
zero-crossing on the horizontal F2-axis. The value of F t cannot 
be directly projected on the vertical ivaxis. This is easily effected, 
however, by projecting Fy on the line F^ = F2 drawn through the 
origin, first. In that way it is even possible to have different scales 
for F1 and F2, which is useful for giving the intended vowel diagram 
a suitable shape. The resulting point in the FXF2 plane can now 
be called [a]. 

For [a] we suppose that the vocal tract also has the length /„, so 
that we may take y = 1. Furthermore we have k — 8. 

For [ii] we again put y = 1, but now k = £ and /? = 

In this case F2 coincides with the second zero-crossing of c o s ^ p . 

The first formant assumes a low value. 
The construction of [i] is slightly more complicated. In that case 

the length of the vocal tract is less than l0; as radiograms show, we 
have, for instance, / = 0.83 /„ or y = 0.83. We first construct the 
vector [i„], corresponding with y = 1, /? = 0 and k — We then 
subject the twin-tube to proportional axial shrinking by multiplying 
all axial dimensions by the factor 0.83. Consequently ALL formants 
are divided by the factor 0.83; in other words [i„] slides along a line 

through the origin until its arrow is lengthened by a factor ¡¡^ . 

We may then call the new vector [i]. 
For the construction of [u] a similar construction has to be applied. 

In [u] the length of the vocal tract is greater than /„. For instance, 
y — 1.26. We now have to shorten the arrow of [u„] by dividing it 
by 1.26. We call the resultant vector [u]. 
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Figure VII.6 
Photographic reproduction of page 25 of Hellwag's thesis on which appears 

his classical vowel triangle. 
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VECTOR REPRESENTATION OF THE TWIN-TUBE FORMANTS 7 1 

The points u, it, i and a in figure VII. 5 delimit a triangle, standing 
on its top a and having u, ii, i for basis. The internal point 3 has 
the character of a sort of centre of gravity. 

Hellwag's vowel triangle (1781), depicted in figure VII.6, has 
the same top and the same basis. The other vowels of Hellwag 
can be constructed too in figure VII. 5 by choosing suitable values 
for k, P and y. The neutral vowel [a] is not mentioned by Hellwag, 
but we shall not tackle that problem here. 

It is highly rewarding that the twin-tube parameters lead to the 
same systematic arrangement of the vowels as Hellwag's triangle. 
This certainly makes the twin-tube an attractive model for lin-
guistic use. 

In Chapter X we shall show how to estimate the twin-tube para-
meters by studying actual radiograms and other data. 
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VIII 

STATIONARY WAVE-PATTERNS IN THE 
TWIN-TUBE RESONATOR 

When, in a tube with constant cross-area, two equally strong sine 
waves having the same frequency travel in opposite directions, a 
stationary wave pattern will ensue: 

JM< + ; < • > ( ' -
As + Ae (VIII.l) 

or 

2Acos^-eia" (VIII.2) 

This is the complex notation for 

2.A cos ~~~ cos cot (VIII. 3) 

This formula tells us that there is a sinusoidal vibration with the 
frequency co in every point of the tube, but that its amplitude is 
a function of x. 

cox 

At the points where cos—^ = 0, there is no vibration at all. 

These points are called the nodes (see figure VIII.l). 

At the points where cos = ± 1 the amplitude shows a maxi-

mum. These points are called the loops or anti-nodes. 
The statioriary wave-pattern of figure VIII.l is directly applicable 

to the case of the single tube, [a], which in Chapter VI came to the 
fore as a degeneration of the twin-tube resonator (k — 1). Ac-
cording to (VI. 16) in this case there are the following formants 

 EBSCOhost - printed on 2/9/2023 9:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



STATIONARY WAVE-PATTERNS IN THE TWIN-TUBE RESONATOR 7 3 

Figure Vin.l 
Amplitude envelope of stationary wave. The distance between two adjacent 
nodes (or loops) is defined as half a wave-length. The wave-length is indicated 

by the symbol X . 

F x = \C-X and F 2 = ^ (VI.16) 

Because 

c = F . 1 = ^ - 1 (VIII.4) 
271 

we have 

l = and / = |A2 (VIII.5) 

Evidently the single tube 'contains' parts of the stationary wave-
pattern of figure VIII. 1. 

In the upper part of figure VIII.2 the case of fa] has been depicted. 
For the single tube with its constant cross-area we need not dis-

tinguish between the volume velocity and the particle velocity. 
The velocity always has a node at the throat and a loop in the 

mouth opening. 
The sound pressure always has a loop at the throat and a node 

in the mouth opening.1 

In the case of the second formant there is an additional node in 
the tube, located between the throat and the mouth-opening. 

The stationary wave-pattern in the single tube permits us to re-
present the acoustic phenomena in the tube as follows. The sound 
waves travel to and fro between the throat and the mouth opening 
at the speed c . There is a 'hard' reflection at the throat and a 'soft' 
1 See Chapter III. The pressure node is there by definition. 
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reflection in the mouth opening. As a matter of fact the two waves 
travelling in opposite directions are each other's reflections. 

In a hard reflection a wave returns immediately and with the 
same amplitude. In a soft reflection a wave also returns with the 
same amplitude but after a delay of seconds, given by 

= ^ = l (VIII.6) 

volume velocity and 
particle velocity 

volume velocity 

sound pressure 

Figure vni.2 
Fractured stationary wave-patterns in all cases but [a]. 
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I 1 T 
It takes a wave - = — = — seconds (for the first formant) to 

travel the length of the tube. During one complete vibration, in 
other words during the interval T, the wave travels twice the length 
of the tube and only once suffers a delay of \ T a t the soft reflection 

T 
in the mouth opening. Accordingly, 2 x — + ^ T = T. The hard 

reflection does not produce a delay. 
In figure VIII.3 a model of the soft reflection in the mouth-open-

ing is given. It is composed of two equally heavy billiard balls 
suspended on strings. The black ball is lifted and then set free at 
the time ix. At the time t2 it has gained speed; at the moment t3 

it collides with the white ball, transferring almost at once its full 
kinetic energy to the white ball. The black ball remains at rest 
now whereas the white ball proceeds on its own. This process is 
referred to by billiard players as 'stun and stab'. The white ball 
continues its circular path until its kinetic energy has been trans-
ferred completely into potential energy at the time t&. It returns, 
gains speed at tt and at the time ?7 collides with the black ball. 
Now the black ball takes over the complete kinetic energy of the 
white one. The net result of this interesting procedure is that the 
black ball has been reflected with a time delay equal to one half 
of the period of the pendulum. 

The hard reflection of the sound waves at the throat can also be 
illustrated by a pendulum-model, see figure VI1I.4, in which a ball 
hits a solid wall and is immediately reflected. 

Things become slightly more complicated when the single tube 
is pinched so that it changes into a twin-tube. For the CALCULA-

TION of the formants we still have the twin-tube formula, either in 
its traditional form: 

(VIII.7) 

or in its eccentricity transformation : 

(VIII. 8) 
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For the sake of completeness we add, that this formula can also 
be written as: 

t, 

/

ÄSs mm*®. 

A ¿6 

t> 

éô 

g p p 

é o 4> à • ö 
Figure VUI.3 

Pendulum-model of the soft, delayed reflection of the sound waves in the mouth-
opening. 

cos CO h + li 1 -k 
1 + k 

COS CO h - h (VIII.9) 

If we should want to describe or see the formant positions as 
WAVE LENGTHS, we may write the formant formula as follows: 

I 1 - k I cos2rtT = rcos Bin-: 
A 1 + k A 

(VIII. 10) 

. l,+l2 1 - k . 1, - Z, 
COS27T 1 , 2 = - ¡-COS 2 U 1 , 2 

A 1 + k A 
(VIII. 11) 
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Though, as we have already shown, there is an elegant way of 
graphically solving the formant formulas, we may ask ourselves 
whether it is still worthwhile to think in the simple terms of station-
ary waves in order to achieve a better physical insight into the birth 
of the formants. The waves keep running to and fro in the tube 
but they are reflected at three places instead of only at two, namely, 
at the throat, in the mouth-opening and at the JOINT between the 
two tubes. 

Figure VIII.4 
Pendulum-model of the hard, non-delayed reflection of the sound waves at the 

throat. 

Once more the net result, however, is a stationary wave pattern 
in each of the two tubes. These patterns, of course, have the same 
frequency but different amplitudes now. No extra nodes or loops 
are introduced by pinching the [a] tube, but the distance between 
a node and a loop is not necessarily equal to now. We shall 
illustrate this behaviour for a case with fi = 0 and k > 1, the [a] 
like vowel represented in the bottom part of figure VIII.2. 

As explained in Chapter VI, at the joint in the twin-tube where 
the cross-area makes a step, the volume velocity remains continuous 
whereas the particle velocity makes a step in the opposite direction: 
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when the cross-area steps down the particle velocity goes up. This 
is the typical behaviour of a rapid in a stream. 

Though the volume velocity remains continuous its derivative 
with respect to x makes a step. The same can be said of the sound 
pressure. 

Let us discuss F t first. Though the quarter wave-length, \ k, does 
no longer 'fit' into the twin-tube, because the tube is too long for 
that, it still plays an interesting part. The throat-tube contains 
part of an, in this case, undersized pattern that cannot reach 
the mouth-opening. On the other hand the mouth-tube contains 
part of a likewise undersized pattern that cannot reach the 
throat. These united patterns, however, 'fill' the whole twin-tube 
because they have DIFFERENT amplitudes and are linked together 
at the joint by the condition of continuity. In that way the wave-
pattern, as it were, skips part of the too long twin-tube. 

In the case of F2 the twin-tube, being too short, cannot contain 
three quarter wave-lengths. The throat-tube 'houses' part of an 
oversized J a pattern that tries to protude from the mouth. On the 
other hand the mouth-tube holds part of a likewise oversized f A 
pattern that tries to pierce the throat. Again the united patterns 
fill the whole twin-tube. 

The concept of the stationary waves is, as it were, saved by the 
inequality of the amplitudes of the wave patterns in the two tubes. 
It is possible to calculate the ratio of these amplitudes for the 
general case of the twin-tube. As the twin-tube model is meant 
to be a formant generator and not a good imitation of the physical 
processes going on in the real vocal tract, we shall not overload 
this monograph with these calculations, the linguistic importance 
of which must certainly be doubted. 

In Chapter VI, see figure VI.4, we drew attention to the fact, that 
for P — ^ (and also for ft = —y) the position of Fz was independent 
of the value of the constriction factor k. So, starting from [a], it 
is not possible to alter F2 by pinching the tube at the position /j = 

or at /, = As can be seen from figure VIII.2 we cannot alter 
F2 when the place of articulation is in a loop or a node. 

As figure VIII. 5 clearly shows, in the twin-tube model the Helm-
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holtz resonances come to the fore as the FIRST formants oi the 
vowels with a low value of k. As a practical example the value 
k = $ has been demonstrated. 

We want to show first of all, that the formant formula of the 
twin-tube model is in agreement with the classical formula of the 
frequency of the Helmholtz resonator. As we have neglected the 
end correction in the twin-tube, we must likewise neglect this 
correction in the Helmholtz formula2, which then may be written 
as follows 

Inyj^v 

with: /x, the length of the neck 
Si, the cross-area of the neck 
V, the volume of the cavity. 

(VIII. 12) 

When, as is the case for the twin-tube, the cavity has a constant 
cross-area, we may write 

V = l2Sz (VIII. 13) 

Furthermore, it can be directly derived from (VI. 5) and (VI. 6) that 
the product 

h h = i / 2 ( l -£ 2 ) (VIII. 14) 

Combination of (VIII.12), (VIII.13) and (VIII.14) yields: 

c 2 I fc F = (VIII. 15) 

When we develop the formant formula (VI.9) into a series, which 
makes sense for low values of co, and only take into consideration 
the first two terms of the series for the cosines, we get 

' See for instance: J. W. S. Rayleigh, The Theory of Sound, II, p. 491 and 
E. Skudrzyk, Die Grundlagen der Akustik, p. 350, etc. 
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80 STATIONARY WAVE-PATTERNS IN THE TWIN-TUBE RESONATOR 

This can be written as 

(VIII. 17) 

By comparing (VIII. 15) and (VIII. 17) we see that these formulas 
are in fair agreement provided k « 1, which indeed is the case for 
the vowels in question. 

Figure VIII.5 
Fractured stationary wave patterns in the Helmholtz-variety of the twin-tube 

model. 

The classical formula's for the frequency of the Helmholtz reso-
nance have been derived assuming that the air in the neck of the 
resonator moves to and fro as a lumped mass. The wave pattern 
in figure VIII.5 shows that the particle velocity is practically con-
stant indeed in the mouth tube which forms the neck of the reso-
nator. 

Another assumption in the classical approach is that the air in 
the cavity behaves like an elastic cushion, as a stiffness without 
mass effects. The pattern shows the particle velocity is very low 
indeed in the cavity as a result of the step at the point of constric-

(practically) constant 

particle velocity in 

n e c k 

particle 
velocity 

(practically) constant 
s o u n d pressure in ' 
cavity 

s o u n d 
pnessixe 
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tion. This is in harmony with the image of a rapid we have formed 
of the joint. 

Finally, it is supposed that the pressure is constant throughout 
the cavity. This assumption is supported by the shape of the 
pressure pattern which comes to the fore in figure VIII.5. 
An interesting case is represented by k -*• 0 or k -* oo, two con-

1 — k ditions we shall describe as saturation. For k 0, „ . ,—• 1 
1 + k 

whereas for fc -*• oo, ^ — ^ -* — 1. 
1 + k 

In the case of close saturation (k -*• 0) the formant formula in 
its (VIII.9) version simply boils down to 

Oil 0)(l, — 12) cos— = cos ; — c c 

By eliminating l2 we arrive at: 

col col 2ml, . col . 2col, cos — = cos —cos + sin —sin 
c c c c c 

By eliminating we get: 

col col 2coL . col . 2col, cos— = cos—cos + sin—sin 
c c c c c 

Expression (VIII. 19) is true provided 

2colt . 2c»/! cos = 1 and sin = 0 c c 

which leads to the condition that 

2 colt = n12n 

(VIII.18) 

(VIII.19) 

(VIII.20) 

(VIII.21) 

(VIII.22) 

where n1 is an integer (nt = 0, 1, 2, 3, etc.). 
As 

(YIII.23) 
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8 2 STATIONARY WAVE-PATTERNS IN THE TWIN-TUBE RESONATOR 

we finally have 

h = (VIII.24) 

Likewise, by solving (VIII.20) we get 

l2 = (VIII.25) 

where n2 is an integer too. 
Summarizing, in the case of close saturation the formants come 

to the fore as the 3.^1, etc. resonances of BOTH tubes. 

In the case of open saturation (k oo) the formant formula reduces 
to 

(Ol <0(ll — /,) /-% J m 

cos— = - c o s — ^ — — (VIII.26) 

which ultimately leads to 

h = (VIII.27) and 

l2 = m2^ (VIII.28) 

where nix and m2 are odd integers ( = 1,3, 5, etc.). 
Summarizing, in the case of open saturation the formants come 

to the fore as the J A, 3 5 . ^ 1 , etc. resonances of both tubes. 

In practice the vocal tract is never completely saturated because in 
vowels the airstream may never entirely be blocked. Consequently, 
in vocal tracts approaching close saturation will not be equal to 
zero but will reach its lowest practical value instead. The second for-
mant, F2, will come close to the resonance of the longest tube. 
Normally this will be the \X resonance of the back cavity but this is 
not necessary. In vocal tracts approaching open saturation F1 will 
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be close to the ¿wave length resonance of the longest tube. The 
second formant will be supplied by the tube having a length suitable 
for producing the next higher frequency. 
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IX 

THE VOWEL TRIANGLE AS A LIMITING 
CONTOUR OF THE FORMANTS OF THE 

VOCAL TRACT 

In Chapter VII we have seen that the vector diagram formed by 
[u], [i], [a] (or [a]) and [a] of a talker has the shape of a triangle with 
[a] in the middle. When we introduce in this diagram, as done in 
figure IX. 1, the other vowels, we notice that they all remain within 
a contour, which has the shape of a crude triangle also. The figure 
represents the 10 vowels of the average male speaker of the Peterson 
and Barney experiment, with [a] and [u] thrown in as additional 
fillers. We shall show now how the twin-tube method is able to 
predict the necessary presence of the three sides of the triangular 
contour. 

The position of the upper side is fixed by the fact that the lowest 
practicable values of k (around k = produce Helmholtz reso-
nances at practically the same low value of Fy ; the point of inter-
section between cos— and v—^cosB — is confined to the 

c 1 + k y c 

limited low frequency region, see figure VII.5. 
The left-hand side is a self-evident boundary. It represents the 

line F1 = F2. AS we call the lowest formant Fx and the highest 
formant F2, the region between the line F1 = F2 and the Ft-axis is 
a forbidden zone because in that domain F2 < Ft. The extent to 
which the formant positions do approach the boundary is deter-
mined by the maximal length a talker can give to his vocal tract 
by lowering his larynx, protruding his lips and moving backwards 
the hump of his tongue. In these actions he is limited by anatomical 
restrictions. Also the highest feasible value of k (around k = 8) 
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plays a role. For instance, the line F1 = F2 is reached for = 0, 
k = oo. 

The right-hand side of the triangle plays an interesting part too. 
As figure VII. 5 clearly shows, for a given length of the twin-tube F2 

reaches a maximum for /? = 0, that is for a twin-tube with the joint 
exactly in the middle. The only means of further increasing F2 

Figure IX. 1 
The triangular contour of the vowel inventory of a talker as predicted by the 

twin-tube model. 

consists in making the vocal tract shorter. As already mentioned 
shortening of the vocal tract is effected by eliminating the influence 
of the lips, by keeping the hump of the tongue low and by pulling up 
the larynx. As these activities are limited by the anatomical restric-
tions of the talker the formant positions cannot fall too far to the 
right side of the dotted line in figure IX. 1. In that way the limiting 
contour retains a triangular shape. 

HELLWAG, in 1781 , did not, and indeed could not base his famous 
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triangle on acoustical calculations. It looks more as if he were 
inspired by the anatomical restrictions of the human vocal appara-
tus which, as we have seen, have their important say in the theory 
of the twin-tube model. 

The success of the twin-tube method in predicting the triangular 
shape of man's vowel inventory certainly proves that this method is 
of practical value for linguistics. 

In the vector representation of the vowel formants we have, in 
this monograph, confined ourselves to depicting Ft and F2 only. 
We wish to state explicitly that this restriction has nothing to do 
with the well-known hypothesis that vowels can be presented ade-
quately (whatever this may mean) by two-formant approximations. 
The twin-tube model is NOT a two-formant generator; it generates 
all formants including the much disputed F3 though accuracy can-
not be expected. The twin-tube model is not connected with prob-
lems of perception or interpretation by the nervous system. The 
task of the model is to generate formants at the frequency locations 
to be expected on the basis of visible speech patterns of vowels1 

produced by real vocal tracts. For instance, it predicts the twin-
formants at the appropriate positions: the well-known F2F3 twin 
for [i]-like vowels and the Ft F2 twin of the [a]-type, as is very clearly 
shown in figure VI.3. 

It remains an interesting fact, however, that Hellwag's vowel 
triangle can be correlated with the Fy F2 vector diagram, indepen-
dent of the possible influence of F3 on things. 

The role of F3 in perception, or rather in phonemic interpreta-
tion, is still under discussion. A promising, though not exactly 
problemless, approach seems to be the study of two-formant syn-
thetic vowels. 

As early as 1952 a group of investigators at the Haskins-labo-
ratories2 published some interesting results of their experiments 
1 R. K. Potter, G. A. Kopp and H. C. Green, Visible Speech (D. van Nos-
trand, Inc. 1947). 
* P. Delattre, A. M. Liberman, F. S. Cooper and L. J. Gerstman, "An experi-
mental study of the acoustic determinants of vowel color: observations on one-
and two-formant vowels synthesized from spectrograph»: patterns", Word, Vol. 
8, no 3 (1952). 
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with two-formant synthetic vowels. Using the well-known, if not 
famous, pattern playback, they studied one- and two-formant syn-
thesized vowels and found that, as a rule, F1 of a synthetic vowel 
was higher than F2 of a vowel produced by a real vocal tract. They 
suggested, though not in the same words, that the F2 of a syn-
thesized two-formant vowel had to play the role of a combined 
F2 F3 of a 'natural' vowel. Though we do not pretend to contradict 
that statement we should like to add a possible additional reason 
for arriving at higher second formants in synthesized vowels. 

During experiments on artificial two-formant vowels in the 
Institute of Phonetic Sciences of the University of Amsterdam, the 
following experience was gained. When subjects were invited to 
produce the vowel system of their native language by adjusting 
the formant controls of a two-formant generator3 they tried to use 
to advantage the entire F2 range of the apparatus. They created 
a system of optimally contrasting formant positions, they could not 
even realize with their own vocal tract: for instance, F2 of [i] 
corresponded with the highest F2 obtainable with the apparatus 
whereas F2 of [u] was the lowest F2 of the machine. The subjects 
did not disclose a tendency to copy the absolute frequency positions 
of their own vowels. The obvious conclusion is: the subjects follow 
their ingrained urge to fully exploit the frequency range of the 
formant generating system they control, be that system their own 
vocal tract or some sort of formant synthesizer. 

In our opinion the further study of this phonemic urge is more 
important to LINGUISTICS than experiments on the matching of, 
for instance, 'vowel colour'. 

* J. G. Blom and J. Z. Uys, "Some Notes on the Existence of a 'Universal 
Concept' of Vowels", Phonetica (1966), 15, pp. 65-85. 
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X 

APPLICATION OF THE TWIN-TUBE METHOD 
TO THE VOWEL SYSTEM OF DUTCH 

The opening of this chapter is a summary, meant as a caution for 
the benefit of the reader. The method of the loss-free twin-tube 
resonator as we use it in this monograph must not be seen as a 
precision method of predicting the absolute values of the formant 
positions of a particular vocal tract. In the process of speaking and 
hearing the role of the absolute values of the formant frequencies 
must be a minor one for several reasons. The anatomical differ-
ences between talkers intending the same vowel, as well as the 
talkers' individual ways of controlling their articulatory muscles 
cause their formant frequencies to spread largely. On top of that 

H ^ h— 

F,[u] F , l ù ] F , I i : 
H H Y— 

H ^ 

F > 1 F,[U] 

e t c . e t c . 

Figure X.l 
Showing how the phonemic contrast F2[u] < F2[ii] < F2[i] is independent of 

the absolute values of the formant positions. 
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there is a considerable overlap of the formants of adjacent vowels. 
On the perception side, the Peterson and Barney experiment1 has 
shown that a listener is not able by far to correctly identify, that is, 
in agreement with the talker's intention, the vowels in a series of 
isolated words, randomly composed of words uttered by a large 
number of DIFFERENT talkers. The successful identification by a 
listener of isolated words uttered by ONE AND THE SAME talker is 
no doubt due to the listener's interpretation of the talker's complete 
vowel system (which he can get to know in an often surprisingly 
short time) and NOT to his classification of the separate vowels 
solely on the basis of their own absolute formant frequencies. The 
success of the mechanism of speech and hearing must be attributed 
to the interpretation by the listener of vowel formant SEQUENCES 
instead of absolute vowel formant positions. An illustration of 
this principle is given in figure X.l, showing how the contrast 
between the second formants of, for instance, the vowels [u], [u] 
and [i] in Dutch is 'carried' by the sequence of those formants. 

We may formulate our view as follows: the vowel triangle is 
a conventional two-dimensional structure of phonemically relevant 
formant sequences. Consequently, for linguistic, that is phonemic 
purposes, one needs a model that is able to predict the relevant 
formant sequences ( and NOT the absolute formant positions) on 
basis of parameters that are known to be active in real speech 
production. Such a model is the loss-free twin-tube resonator 
with its parameters 

k, the constriction factor or opening ratio 
/?, the eccentricity 
y, the length modulation factor. 

In this chapter our aim is to find a set of three parameters for each 
of the vowels of Dutch. We must bear in mind that no absolute 
values are called for: it is the SEQUENCE of the corresponding 
formant positions that counts. Consequently only the correct 
sequence of the parameters is of importance. 

1 l.c. 
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T A B L E X.1 
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In Table X.l the normalized values of /?, y and k have been 
presented. They have been chosen in such a way that their correct 
sequence has been taken into account. Moreover, pains have been 
taken to ensure that the set of parameters can be related to a real 
vocal tract in spite of the fact that their values have been stream-
lined a little bit in order to arrive at round figures. 
The natural limitations of the human anatomy have been, as it 
were, incorporated in the Table. This especially applies to the 
range of the parameter y, the modulation of the length of the vocal 
tract as measured along its axis between the position of the vocal 
cords and the free end of the mouth tube. 

It is interesting to notice how the length of the vocal tract is 
influenced by the way in which the mouth tube is being for-
med. 

For instance, in the vowels [i], [I] and [e] (the numbers 9, 10 and 
11 of Table X.l) the blade of the tongue plays the dominant role: 
the lips are inactive. Consequently the vocal tract may be thought 
to begin BEHIND the teeth. The hump of the tongue is in a low 
position whereas the position of the throat is high. In other words, 
there are three reasons why the AXIS of the vocal tract is short. 
We propose y = f as a normalized value in this case. 

In the vowels [u], [o], [o] and [a] (the numbers 1, 2, 3 and 4 of 
Table X.l) the protruded lips are highly involved in the creation of 
the mouth tube. The blade of the tongue is inactive. The hump 
of the tongue has a high position whereas the position of the throat 
is low in this case. Now there are reasons for having a long vocal 
tract. We propose y = | here as a normalized value. 

In the vowels [u], [o] and [a] (numbers 5, 6 and 7) the mouth tube 
is the result of the joint efforts of the lips and the blade of the 
tongue. The hump of the tongue is low now whereas the throat 
is not excessively lowered. Therefore the length of the vocal tract 
is about average so that we propose y — 1 for this series. Also in 
[a] and [e] (numbers 8 and 12) no extreme shortening or lengthening 
of the axis takes place so that we may group these vowels under 
y = l too. 

The order of magnitude of the length of the vocal tract can be 
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derived easily from an X-ray photograph by tracing the axis of the 
tract with the aid of a curvimeter as used in reading maps. 

When the formant positions of a vowel are known, the deter-
mination of the corresponding twin-tube parameters is highly 
facilitated by the nomogram shown in figure X.2. For the sake of 
simplicity the length of the vocal tract has been normalized to the 
average value /„. We shall free ourselves from this restriction later 
on. 

Using the procedure illustrated in figure VII. 5 we have con-
structed three lines corresponding with the values /? = 0, ft = i 
and fi = I- The points on these lines represent different values of 
k, namely, k = \,k = = = 1 and k = 8. The three lines 
meet in the point k = 1, the neutral position characterized by F1 = 

c 3 c 
4 T a n d F 2 = 4 l 

Values for y may be introduced in the nomogram by dividing 
both co-ordinates of a point by y, that is by making a point slide 
along the arrow of its vowel vector (see Chapter VII). In figure X.2 
an example has been given for the set of values /? = 0, k — y = 

The principle of sliding may be applied to other points too, 
provided we keep the variations of y within the anatomical limita-
tions of a real vocal tract. 

The nomogram brings to the fore the role the parameter /? plays 
in the contrast between the open vowels {k = 8). As the nomo-
gram holds good for all languages it is interesting to note the mutual 
formant positions of English [a], [ae] and [e] in, for instance, figure 
VII.3. The shape of the diagram formed by those vowels is in 
agreement with the shape of the diagram formed by the points 

y = 6 4 fi = 0 k = 8 
y = 1 i k = 8 
y = 1 7 9 k = 8 

in our nomogram displayed in figure X.2. (In Dutch the contrast 
between [ae] and [e] does not function phonemically.) 
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The vowels of Dutch represented in Table X.l may also be 
grouped in the Hellwag-fashion as shown in figure X.3. This 
arrangement is in agreement with the corresponding vector dia-
grams based on Ft and F2. Moreover it is very helpful for memo-
rizing the vowel inventory. 

Figure X.2 
Nomogram for facilitating the estimation of the normalized values of the twin-
tube parameters. The three drawn lines represent three values of /?. The points 
on these lines represent some values of k. Values for y may be introduced by 
DIVIDING both coordinates of a point by y, as is shown for the examples /? = 0, 

k = i , 7 = |and P = 0, k = 8, y = f. 

In the following figures we have given inside views of the vocal tract 
in the midsagittal plane for some characteristic vowels of one and 
the same Dutch speaker. The drawings have been adapted by 
Mr G. van Gelder, speech therapist, from X-ray photographs kind-
ly made for me by Prof Dr B. G. Ziedses des Plantes, professor of 
radiology, director of the X-ray laboratory of the University of 
Amsterdam. 
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In every picture the axis of the vocal tract has been indicated, 
together with the point of articulation according to the normalized 
value of the twin-tube parameter fi for the vowel in question. Also 
the length of the tract, as measured in cm along the axis by means 
of a curvimeter, has been indicated. 

Eẑ  cz:-
J 1 I — ' I ; ' a. I I a 8 r ~ £ 
1 , 1—-—i n ^ , 

Figure X.3 
Hellwag - arrangement of the vowel phonemes of Dutch. Only the values of 

the parameters y and k have been indicated. 

It stands to reason that views in the midsagittal plane do not 
permit us to determine the A>parameter with a high degree of 
accuracy. One should use cross-sections perpendicular to the axis 
for that purpose or take refuge in conclusions from, for instance, 
palatograms or measured formant frequencies. It is very helpful, 
however, that in the chosen examples k is either very high, namely 
equal to 8, or very low, namely equal to 
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The vowel [u] in Dutch 
The mouth tube is formed solely by the lips. The wide throat tube resembles 

a diabolo. The vocal tract is extremely long. 

I=1B 

Figure X.5 
The vowel [u] in Dutch 

The mouth tube is formed by the lips and the tongue. The length of the tract is 
about average. 
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1=11 0=« 

The vowel [i] in Dutch 
The mouth tube is formed solely by the tongue. The vocal tract is extremely 

short: note the high position of the vocal chords. 
.=17* 

J3-I 

The vowel [a] in Dutch 
The length of the vocal tract is about average. Note the narrow throat tube. 
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XI 

THE FORMANTS OF RESONATORS 
CONTAINING EXPONENTIAL HORNS 

The model of the twin-tube resonator comprises two tubes with 
uniform cross-areas. Though this simple model suffices for the 
prediction of the, phonemically relevant, mutual formant contrasts 
of most vowels, it certainly cannot illustrate everything. The twin-
tube method can be successfully applied only to sustained vowels 
and vowels in carefully pronounced isolated words. It fails, how-
ever, to illustrate dynamic processes like, for instance, diphthongs 
and vowels in free running speech for reasons we shall bring to 
the fore later on. The cause of this failure must not be sought in 
the twin-tube method itself. The real cause lies in the fundamentally 
different ways of production of isolated vowels on the one hand 
and of diphthongs and free running speech on the other hand. 
Therefore we shall, in this chapter, discuss another formant gener-
ating model that is better geared to the needs of dynamic processes. 

The study of X-ray photographs of the real vocal tract provides 
a cue for modifying the twin-tube model. One notices that parts 
of the vocal tract may roughly have the shape of an hour-glass in 
spite of the fact that they are being approximated by tubes with 
a uniform cross-area. Two questions arise 
(a) how far may one constrict a tube without endangering the 

twin-tube model as a method for predicting the formant con-
trasts between the vowels 

(b) does excessive constriction possibly have a function in speech 
production. 

We shall try to answer both questions by calculation. A simple 
way of calculating a constricted part of the vocal tract is to treat 
it as an exponential horn. As we have seen in Chapters IV and V, 
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it is possible to solve Webster's horn equation for the exponential 
horn; the values of the general circuit parameters of this type of 
horn are given by the equations (V.26), (V.27), (V.28) and (V.29). 
For the purpose of calculating the exponential diabolo, see figure 
XI.2, it is not necessary to fully elaborate these equations by filling 
in by and b2. For the time being we may keep them simply. It is 
convenient, however, to denote the total length of a diabolo by the 
symbol 1. For that reason we shall denote the length of the ex-
ponential horn by so that we arrive at the following expressions 
for the general circuit parameters of the exponential horn. 

h Fiblt - h pibl1 

b2 -
A = € (XI.1) 

imo e*"2' - Eibl1 

B = h h <XL2> ¿>0 b z - b! 

e pi<nt piW _ pibil 
C ^ j ^ - b ^ I (XI.3) 

a>Qo t>2 ~ b i 

h P*bil - h Fib2' 
D = ^-r J i i — (XI.4) 

b 2 ~ b i 

The reader will have noticed that we have also changed S, into 

S ( i / ) = S0e*ml. 

We shall now calculate the general circuit parameters of a series 
arrangement of two exponential horns which are each other's 
images as depicted in figure XI.2. 

 EBSCOhost - printed on 2/9/2023 9:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



THE FORMANTS OF RESONATORS 99 

Figure XI.1 
The exponential horn and its characteristics. 

Figure XI.2 
Series arrangement of an exponential horn and its image (so-called exponential 

diabolo). 
Note: in this case m < 0 because we have defined: 

S(x) = S0eT*. 

When a four-terminal network is reversed its parameters A and D 
change places whereas its parameters B and C remain the same. 
This principle is illustrated in figure XI.3. Making use of the for-
mula's (111.18), (III. 19), (111.20) and (111.21) we arrive at 

A, = + 5,C 2 = 2AB—1 = 2BC + 1 (XI.5) 
Bt = AtB2 +^£>2 = 2AB (XI.6) 
Ct = A2C1 + C2D± = 2 CD (XI.7) 
A = Z>iZ>2+C^Bz = 2AD—1 = 2 5 C + 1 (XI. 8) 
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being the general circuit parameters of the exponential diabolo. 
Now we know its parameters we are able to use the diabolo as 

a building block for models of the vocal tract. Let us first consider 
a diabolo that represents the complete vocal tract. This case is 
illustrated in figure XI.4. 

t ransmiss ion 

At Bt Ct Dt 

Figure XI. 3 
The general circuit parameters of the series arrangement of a tube and its image. 

m - m 

Figure XI.4 
The formants of a diabolo closed at one end. They are given by D, = 0. 

We find the formants by putting Dt = 0 and making use of (XI.8), 
(XI.2) and (XI.3) which yields: 

/ o r n r ^ _ m2c2  

V 7 4 4co2 (XI.9) 
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In other words, the formants come to the fore as the point of inter-
section between the functions 

I 5 T 2 2 co m , , m c cos /—r — I and y = -r~r \J c 4 4 co 

It is very tempting, though not worthwhile, to try to perform a 
graphical solution of (XI.9) with the aim of describing the vocal 
gesture which is the result of pinching a tube with constant cross-
area in the middle, so that an exponential diabolo comes into being. 
It is scarcely rewarding to do so because (XI.9) pertains to the 
stationary condition; its application to the rapid change in the 
formant positions measured, for instance, during the roll-off of a 
diphthong is rather risky. Things are still more complicated by 
the fact, that during the diphthong, at least in Dutch, the repetition 
frequency of the vocal cords diminishes appreciably. As experi-
ments with vowel synthesizers show, interesting phase effects may 
result. 

With a view to the foregoing, it is more realistic to use (XI.9) for 
describing the beginning and the end of a vocal gesture. 

Starting from m — 0, the tube with constant cross-area, we have 

cos — = 0 (XI. 10) c 

with the well-known formants 

Fi=\j (XI.11) 

and 

F2 = ^ (XI. 12) 

When we pinch the tube in the middle, then m ^ 0, and there will 
1 c appear a formant below - y, given by 

/W C —— . A, 
CO = — (XI. 13) 

or 
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(XI. 14) 

This, after all is nothing but the paradoxical cut-off frequency of 
the exponential horn. 

When we suppose that (XI.9) is able to describe the relatively 
stationary beginning and end positions of the gesture, we have 
proved that, in some way or another, F, has fallen down from the 

1 c tfl c value t 7 to the value -¡- in accordance with what we measure in 

We shall not, in this monograph, attempt to predict by calcula-
tion the avalanche effect in the shift of F1 in the diphthong variant 
of the twin-tube model. As I have explained elsewhere2, it is pos-
sible to materialize our models, both of vowels and diphthongs, in 
hardware and to drive these by means of an artificial throat in the 
form of an acoustic siren. The dynamic exponential twin-horn of 
the diphthongs, for instance, may be realized as a water-filled 
rubber sleeve which produces a constriction around its middle when 
water is pumped into it. The sound curves produced with the aid 
of this gadget display the accelerated shift of Fu accompanied by 
the (in Dutch) necessary decrease of the frequency of the air puffs 
(falling intonation). 

Figure XI. 5 
The formants of a diabolo closed at both ends. They are given by C, = 0. 

4 ri 

practice. 

m - m 

2 H. Mol, The vowel siren as a tool in speech research, Nomen, Leyden studies 
in linguistic and phonetics (Mouton, The Hague 1969), pp. 104-113. 
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For cases of close saturation it is interesting to calculate the 
stationary waves in a diabolo closed at BOTH ends, see figure XI.5. 
In order to find the formants we must now make use of the Cpara-
meter of the diabolo. This can best be seen from (III. 10). The 
condition that pt = 0 in spite of the fact that UB = Ut = 0 obvious-
ly requires that C = 0. 

The Cparameter of the diabolo, called C, in this chapter, is given 
by (XI.7). We finds the formants by putting Ct = 0 and making 
use of (XI.3) and (XI.4) which yields: 

la? M 7 . , 2 JeP n? tan / - j - - — i l / — - — y] c 4 m-y c 4 

and 
i~i r . co m . 

(XI. 15) 

(XI. 16) 

We see that expression (XI. 15) is sensitive to the sign of m. Starting 
from m = 0 we have 

c o s g = 0 and s i n ^ = 0 (XI. 17) 

These formulas together produce the well-known formants of the 
tube with constant cross-area closed at both ends : 

F l = Yvp2 = 2TV p3==3Tv e t c e t c" 

So the lowest formant is F1 = a half-wavelength mode of the 
tube. 

It is apparent from (XI. 15) and (XI. 16) that in this case also the 
lfl c cut-off frequency co = is a formant, but its frequency is so low 

that we need not take it into account for not too high values of m. 
We shall, therefore, concentrate on the way in which the original 

c 
frequency = — behaves when the tube is made to shrink (m < 0) 
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or to bulge (m > 0) around its 'waist'. It is possible to derive from 
(XI. 15) that 

F1<~ior m < 0 

F l > Ti f o r m > 

Interestingly enough, this behaviour with respect to the sign of m 
may best be illustrated by the triplet-tube model depicted in figure 
XI.6. This model can be explained via the twin-tube model likewise 
shown in the figure. In the twin-tube model there is, by definition, 
a pressure node at the mouth-opening, meaning that the (radiation) 
impedance 'looking' into space is equal to zero. 

Also, for all formant frequencies of the twin-tube, the impedance 
looking back into the mouth-opening is equal to zero as well, see 
Appendix § 2). Consequently, when we load a twin-tube by its 
image, its original formants, including Fu will remain the same, 

No 1 

F, 

UP 

A 

No 2 

No 3 
F, 

DOWN 

TWIN-TUBE TRIPLET-TUBE 

Figure XI.6 
Paired configurations with the same first formant. 
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though higher modes are added to it. As F t of the open twin-tube 
No. 1 is higher than that of the neutral twin-tube No. 2, and F1 of 
the closed twin-tube No. 3 is lower than that of the neutral tube, we 
may conclude the following: 

of the double configuration No. 2 goes down by pinching the 
tube and goes up by making the tube bulge around its middle. 
Therefore the triplet-tube may be considered as a model for the 
exponential diabolo. 

We shall now derive a general formula for the formants of a 
twin-tube resonator in which the throat tube has been replaced 
with a diabolo, see figure XI.7. 

Figure XI.7 

Back diabolo variant of the twin-tube resonator. 

The formant formula is as follows: 

DiDl + C1B1 = 0 (XI. 18) 

By studying the formulas (XI.2), (XI.3) and (XI.4) we learn that C2 

is proportional to S0 and that Bt is inversely proportional to S, 
whereas D1 and D2 do not contain the factors S and S0. Conse-

§ 
quently, in the special case of close saturation where — o the 

o 
product C2Bt completely overrides the term DLD2 so that (XI. 18) 
folds down to simply: 

C2Ä! = 0 (XI. 19) 
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Now 2?! = 0 produces the formants contributed by the mouth 
tube, whereas 

C2 = 0 (XI.20) 

leads to nothing but (XI. 15) and (XI. 16), pertaining to a diabolo 
closed at both ends, with its corresponding triplet-tube depicted in 
figure XI.6. 

Figure XI.8 
Front diabolo variant of the twin-tube resonator. 

When, as is shown in figure XI.8, the mouth tube is replaced 
with a diabolo, application of (XI. 18) leads to: 

DjDi + Cj-BJ = 0 (XI.21) 
5 

In the special case of open saturation — 0, so that (XI.21) re-
duces to: 0 

DtD2 = 0 (XI.22) 

leading to D2 — 0 and Dj = 0, which in turn, is nothing but (XI.9), 
pertaining to a diabolo closed at ONE end. 

In practice one meets realisations of [u] with a second formant 
that is considerably lower than the value suggested by the half 
wave-length resonance of the back cavity. Obviously, the hour-
glass constriction is at work here for which the exponential diabolo 
is a convenient model that lowers F2. In this case the back diabolo 
variant of the twin-tube resonator, depicted in figure XI.7, may be 
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applied and, more in particular, its variant of close saturation 
illustrated in figure XI.6. It is interesting to notice how, in the case 
of [u], the additional lowering of F2 as a result of the diabolo-effect, 
enhances the contrast between [u] and [i]. 

In order to check the assumptions worked into the calculations 
of our models we have constructed several hard-walled plastic 
models, four of which have been depicted in figure XI.9. 

The throat tubes of these four resonators have the same length 
l2 and the same volume V. This may be easily checked by filling 
them with water and measuring their contents with the aid of a 
graduated glass. The mouth tubes of the resonators are identical. 
The classical Helmholtz formula, complete with end correction, for 
the FIRST formant of the three resonators, is as follows 

When we consider the second formant of the resonators No 2 and 
No 3 as the half wave-length resonance of the saturated throat tube 
we have 

Formula (XI.24) does not hold good for resonator No 1, containing 
a conical diabolo.3 Neither does it hold good for resonator No 4. 

The values for Ft and F2, obtained with the aid of formulas 
(XI.23) and (XI.24) and the numerical data presented in figure XI.9 
have been collected in Table XI. 1. 

There is an easy method of producing the separate formants of 
necked resonators, namely, by blowing over the edge of the neck, 
in that way giving birth to a periodical series of eddies, in the same 
manner as the edge-tone of an organ pipe, see figure XI. 10. 

(XI.23) 

(XI.24) 

3 For reasons of mechanical simplicity this diabolo has been made conical 
instead of exponential. 
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l,=1.Scm 17.2cm d,=1 c m 

Sj = IIJB5cm' Sj=7.56 cm 1 S0=12.55cm! 

Sj=S.2a cm® S'r|l,) = 12.25 S l j i p ^ H c m 1 

v= 131cm1 c=34fl00 c m / s 

Figure XI.9 
Comparison of the formants of four particular resonators. 

By adjusting the velocity of blowing one is able to excite the desired 
formant: the higher the velocity, the higher the formant. The perio-
dicity of a formant may be conveniently and accurately determined 
by feeding the tone via a microphone into an electronic counter. 

Strictly speaking, the edge tone-technique of exciting the formants 
is in itself a formant definition. The discrepancies between the cal-
culated and measured frequencies must partly be judged in this light. 

Table XI. 1 shows that resonators No 2 and No 3 are practically 
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Figure XI.10 
Formant excitation by means of edge tones. 

TABLE XI. 1 

Resonator No. F, (Hz) F j (Hz) 

calculated measured calculated measured 

1 264 250 X 830 

2 1 254 250 910 1065 

3 « 4 \ 254 247 988 10S8 

4 • E Ü : ^ 254 247 X 1205 

identical in acoustic respect. Obviously, the SHAPE of the cross-
area, be it square or triangular, is of little importance. 
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The resonators No 1, No 2, and No 3 have practically the same 
Fi because they have the same volume and the same mouth tube. 
The second formant of No 1, however, is considerably lower than 
those of No 2 and No 3. This reduction in frequency is the result 
of a corresponding reduction of the cross-area in the middle of the 
throat tube by a factor 4. Though resonator No 1 contains a conical 
diabolo, it displays the same trend as our model with the exponential 
diabolo: a reduction of F2. 

As mentioned earlier in this chapter, the formant-generating ex-
pression (XI. 15) is sensitive to the sign of the flare m. This behav-
iour should be borne out by our plastic resonators. Resonator 
No 4 in figure XI.9, though it is a conical diabolo, is meant to 
illustrate the case of an exponential twin-horn with a positive value 
of m. As shown in Table XI. 1, resonator No 4 is characterized by 
F2 = 1205 Hz, zo indeed above the \k resonance. This rise is, in 
this case, the result of an augmentation of the cross-area in the 
middle of the throat tube by a factor 2. 

Applications of the saturated twin-tube with front diabolo will 
be discussed in Chapter XII. 
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XII 

THE TWIN-TUBE RESONATOR WITH FRONT 
DIABOLO AS A MODEL FOR THE FORMANTS 
OF MONOLITHIC DIPHTHONGS AND VOWELS 

IN RUNNING SPEECH 

There is a traditional tendency to use the term: diphthong for any 
sequence of two vowels. In this chapter we shall not deal with 
sequences of two vowels in which BOTH vowels have a phonemic 
function. This is, for instance, the case in DUTCH for: 

taai, [t] [a] [i], meaning "tough" 
taak, [t] [a] [k], meaning "task" 

Here final [i] is opposed to the consonant [k] and has, as it were, 
the function of a consonant. The elements [a] and [i] are easily 
recognizable without the intervention of instrumental tricks like 
segmentation techniques, perhaps because they function as separate 
phonemes in the (Dutch) language. 

We shall restrict ourselves here to discussing three Dutch diph-
thongs of a vastly different nature, namely the diphthongs in normal 
orthography written as ou (or also au), ui and ei (or also if). They 
appear, for instance, in the following key-words: 

bout [b] [ou] [t], meaning "bolt" 
buit [b] [ui] [t], meaning "loot" 
meid [m] [ei] [t], meaning "maid" 
bijt [b] [ei] [t], meaning "bite". 

The phonetic symbols [ou], [ui] and [ei] do not in the least pretend 
to indicate the nature of the two vowel elements: they are merely 
(ill-)inspired by orthography. Translated into phonetic reality 
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[ou] means going from something near [a] to something near [u] 
[ui] means going from something near [A] to something near [ii] 
[ei] means going from something near [s] to something near [i]. 

As a matter of fact this is not a very satisfying description but until 
now no one has done very much better. 

TABLE XII.l 
Dutch word Phonetic English 

transcription translation 
bout b ou t bolt 
buTt b ui t loot 
bijt b ei t bite 
boet b u t barn 
boot b o t boat 
bot b o t blunt 
baat b a t profit 
beet b e t bit 
bed b e t bed 
biet b i t beet 
bad b a t bath 
hout h ou t wood 
hoed h u t hat 
haat h a t hatred 
had h a t had 
huid h ui t skin 
heet h e t hot 
kous k ou s stocking 
kaas k a s cheese 
kas k a s cash 
kees k e s Dutch boy's name 
kies k i s molar 
kuis k ui s chaste 
koos k o s chose 
kus k A s 

etc., etc. 
kiss 

Distributional properties of the monolithic diphthongs in Dutch. In order to avoid 
possible confusion inspired by orthography, we have emphasized the diphthongs. 
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We shall, in this chapter, call the diphthongs [ou], [ui] and [ei] 
MONOLITHIC diphthongs because, whatever their articulatory struc-
ture may be, they function as single phonemes in Dutch. Conse-
quently, the complete monolithic diphthong is opposed to other 
vowels or other monolithic diphthongs, as is shown in Table XII. 1. 

<£k& £kA A A 
AA AA 

• AA AA AA 
•AA AA AA 

Li] [«¡]. [ui] .[u] [ou] 

Figure XII. 1 
Palatograms of four different speakers pronouncing the three monolithic diph-
thongs of Dutch. They are depicted together with the palatograms of the cor-
responding final elements pronounced as separate vowels. 
All palatograms have been taken from the collection present at the Institute 
of Phonetic Sciences of the University of Amsterdam. This collection was 

set up by the then director dr. Louise Kaiser. 

Apart from distributional reasons there are phonetic grounds for 
putting the monolithic diphthongs in a special class in Dutch. 

In the first place there is the fact, that the elements of a mono-
lithic diphthong can only be brought to attention by segmentation 
techniques. The elements are only heard as such when they are 
separately exposed in ABSENCE of the rapid transition from the first 
element to the second. When the transition is separately exposed 
the Dutch listener states he 'hears' the 'complete' diphthong. 

In figure XII.2 the oscillogram of Dutch ei has been depicted. 
It shows what one hears when certain parts of the sound curve are 
picked out and presented separately to a listener. The [e] like ele-
ment has a high F1 clearly visible in the picture as a damped oscil-
lation whereas the [i] like element displays a much lower Ft. In the 
normal perception of a word containing [ei] the rapid intervocalic 
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transition heard as [ei] completely overrides the other cues coming 
from [e] and [i]. Figures XII.3 and XII.4 show the remaining two 
monolithic diphthongs of the same speaker. 

As the oscillograms show, the intervocalic transition from the 
first element to the second one takes place in the very short time-
interval of some six vocal periods. Now the, generally, slow tongue 
movements do not, in connection with the twin-tube model,suggest 
such rapid changes of the formants. Therefore, we must look for 
an accelerating mechanism that translates relatively slow move-
ments of the articulators into rapid movements of the formants in 
the frequency domain. 

It is a known fact, see figure XII. 1, that, for the monolithic diph-
thongs of Dutch, the palatograms of the final elements do NOT 
coincide with the palatograms of these elements when they are 
being realized as separate vowels. In the cases of [ei] and [ui] we see 
very clearly, that the blade of the tongue has less contact with the 
palate than in [i] and [ii], especially in front. The case of [ou] is 
not very illuminating because neither in [ou] nor in [u] the contact 
between the tongue and the palate is of any importance. We may 
safely assume, that the monolithic diphthongs are realized via an 
articulatory mechanism that is different from that of the normal 
vowels. More in particular we may say that the tip of the tongue 
is lowered in the diphthongs. 

Experiments with two-formant vowel generaters show that the 
monolithic diphthongs of Dutch can be acceptably produced by 
keeping F2 constant and varying only Fu it being understood that 
each diphthong has its own fixed value of F2. 

Summarizing a model generating the vocal gestures of the mono-
lithic diphthongs of Dutch should have the following features 

a. a constant F2 

b. a suitable palatogram 
c. an accelerating mechanism. 

These requirements are met by the saturated twin-tube with front 
diabolo as discussed in Chapter XI and depicted in figure XI.8. 
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Figure XII.2 
Oscillogram of the monolithic diphthong [ei] in Dutch. 

Figure XII.3 
Oscillogram of the monolithic diphthong [ou] in Dutch. 
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Figure XII.4 
Oscillogram of the monolithic diphthong [ui] in Dutch. 
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The constant F2 is provided by the £ wave-length mode of the 

throat tube having the frequency -r j - (unless that frequency is 
4 / 2 

higher than that of the % wave-length mode of the mouth tube, but 
the latter frequency is practically constant too. 

The widening shape of the front diabolo is in harmony with the 
requirement of less tongue-palate contact in front. 

Unfortunately, we have not been able to predict the avalanche 
effect in F1 by calculation but, as shown in Chapter XI, we have 
verified this effect experimentally by realizing the model in hard-
ware. 

[eu] 
1 : 1 

—4s— 

' 2 . ' 

F, = 1 000 H z -

F, = 1101 H z 

v - — 

[ui] 
1 : 2 

2 "1 

F,= 75D H z — ~ 

F, = 1500 H z 

[el] 
t : 3 

2 1 

F,-fi67 Hz • 

F = 2000 H z 

Figure Xn.5 
The saturated twin-tube with front diabolo as a model for generating the 

formants of the monolithic diphthongs of (accepted) Dutch. 

Note: The arrows behind the first formants indicate that Ft makes a downward 
shift when the front-tube is squeezed into the shape of a diabolo. 

Figure XII. 5 illustrates the three values of F2 we have selected 
for our model that generates the vocal gestures of the three mono-
lithic diphthongs of Dutch. 

The selected values of F2 at the same time pin down the starting 
points of Fx. The dotted diabolo's indicate that the F±-shifts are 
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- !» 2E F, 

M 
M 

fa] 

[•1 

[T.] 
til* 

It? 

M* 

[61 

[.11 
[ulj 

[«I 
M 

Figure Xn.6 
The three normalized vocal gestures of the saturated twin-tube model with 
front diabolo, corresponding with the monolithic diphthongs [ou], [ui] and [ei] 
of Dutch. The gestures have been placed against the background of the vowel 
system of Dutch, including the two (tentative) vowel targets [7\] and [T2\ of 

running speech. 

being brought about by 'diabolic' constriction of the mouth tube, 
symbolized by the change of the flare m of one half of the symmetri-
cal diabolo. 

Anybody studying the oscillograms of the monolithic diphthongs 
will discover that it is not necessary to run through the complete 
gestures indicated in figure XII. 6. As predicted by my co-operator 
Mr. J. G. Blom1 a limited gesture in the correct direction often 
suffices. Moreover, he will discover that the length of the final 
element depends on the phonetic environment in which the diph-
thong appears and may in point of fact be very short. 

1 Private communication. 
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In order to possible avoid confusion we here want to emphasize 
that we restrict ourselves in this monograph to the monolithic 
diphthongs of accepted Dutch. For instance, we here leave alone 
the other monolithic diphthongs in Dutch, or in other languages, 
where the intervocalic transition, be it accelerated or not, does NOT 
carry the phonemic cue. We hope to discuss the diphthong prob-
lems in more detail in a separate monograph. 

On several occasions, we drew attention to the fact that in free 
running speech one uses a vowel system that is vastly different from 
the triangular set of formant positions characteristic of isolated 
key words.2 The behaviour of the talkers in running speech can 
best be described by saying that, see figure XII.7, they do not aim 
at 12 vowel targets (the 12 vowels of Dutch) but instead of 12 at 
2 only. The centres of these two targets have been transferred from 
figure XII.7 to figure XII.6 and introduced there as [Tx] and [T2]. 
Though their positions are admittedly only tentative and need 
further confirmation by big scale measurements, they give rise to 
the following hypothesis: 

In free running speech one is inclined, one talker more so than 
the other, to realize the vowels via a reduced system of articulation 
that may be described by the model of the saturated twin-tube with 
front diabolo. 

The basic shape of all vowels is the open vowel with narrow 
throat tube. 

One contents oneself with producing only two different con-
trasting lengths of the throat tube. 

One contents oneself with producing only two different con-
trasting ('diabolic') constrictions of the mouth tube. 

The shortest throat tube always appears together with the nar-
rowest mouth tube, whereas, on the other hand, the longest throat 
tube always appears together with the widest mouth tube. 

* See, for instance, H. Mol, Fundamentals ofPhonetics I, The Organ of Hearing 
(Mouton & Co, The Hague 1963), fig. 21. 
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Figure XII.7 

(Taken from Fundamentals of Phonetics I: The Organ of Hearing by H. Mol, 
Mouton & Co, The Hague 1963). Period of second formant versus frequency 
of first formant for 12 Dutch vowels appearing in a simple, freely pronounced 
sentence. The data of this pilot investigation refer to 15 talkers taken at random 
from a group of 100 talkers. The numbers on the axes represent periods, in 
harmony with the fact that the formants were indeed measured as periods and 

not as frequencies. 
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APPENDIX 

1. NASALITY 

As early as 1951 Pierre Delattre states1: "Starting from an oral 
vowel, if we lower the velum while holding all other speech organs 
immobile, the frequency of formant 3 rizes considerably while the 
frequencies of formants 1 and 2 remain fairly stable." 

In the same paper he indicates how the rise of formant 3 "does 
not seem to be related to the nasal quality of the nasal vowels". 

So, obviously, the cue for nasality must be carried by other things 
than the frequency locations of the formants. Especially in lan-
guages where this cue is thought to have a phonemic function it will 
be worthwhile to look for it in the sound waves leaving the vocal 
tract of the speaker. Now as the twin-tube method only predicts 
the formant positions, it is at first sight unfit for application to the 
nasal vowels. However, the experiment described by Delattre is 
somewhat misleading. This is apparent from what he remarks about 
the French nasal vowels when he describes what happens when one 
denasalizes these vowels "by raising the velum and holding all 
other organs immobile": "The results of such denasalizing does 
not give the French oral vowels [e], [oe], [o], [a] but some strange 
vowels that do not exist in French (nor probably in any language), 
for the organic positions of the four French nasals (and their 
formants 1 and 2) are not the same of any French orals. This can 
1 Pierre Delattre, "The physiological Interpretation of Sound Spectrograms", 
PMLA, Volume LXVI No 5 (Sept, 1951), pp. 864-875. 

 EBSCOhost - printed on 2/9/2023 9:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



120 APPENDIX 

be shown by synthetic speech as well as by human speech". 
In other words, the French nasals already clearly distinguish 

themselves from the orals by their formant positions, a contrast that 
can indeed be described by the twin-tube model. On top of that 
comes the cue of nasality, for which the twin-tube model in its 
present form cannot present a description. One might raise the 
interesting question whether the direct acoustic cue of lowering the 
velum as such, really functions phonemically. 

2. THEVENIN'S THEOREM AS A VEHICLE FOR DEFINING 
THE FORMANTS IN A LOSS-FREE ACOUSTICAL NETWORK 

According to Thevenin's theorem the current U through the im-
pedance Z belonging to an electrical network, see figure XIII. 1, 
may be written as: 

where Z„ is the impedance of the network looking into the termi-
nals 1, 2 and the electromotoric force e is the open voltage across 
the terminals 1, 2, that is the voltage when Z is removed. 

As a rule e, Z and Z0 are functions of frequency. Now, when 
there are no losses in the network, it is possible that for some special 
frequencies: 

U = —-— z + z0 
(XIII. 1) 

z 

Figure XIII. 1 
Thévenin's theorem. 

z+z„ = o (XIII.2) 
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so that: 

| £ / |=oo (XIII.3) 

(provided nothing dramatic happens to e for those frequencies). 
The frequencies, given by (XIII.2), for which (XIII.3) is true may 
be defined as resonance frequencies or, in this case, as formant 
frequencies. 

In the analogous acoustical case, we may apply (XIII.2) for 
defining and calculating the formants of the twin-tube resonator, 
see figure XIII.2. 

z=o 

Figure Xni.2 
Thevenin - method of defining the formants of the twin-tube resonator. 

As the volume velocity U in the mouth opening comes to mind 
first as an interesting victim of resonance phenomena, we have 

Z = 0 
so that (XIII.2) boils down to 

Z„ = 0 

(XIII.4) 

(XIII.5) 

as formant generating equation. 
Let us first derive some auxiliary formula's. From (111.25) we 

may directly conclude, that the acoustical impedance of a tube, 
characterized by its general circuit parameters A, B, C and D, and 
terminated by an impedance Z2, is given by 

Zi = 
AZ2 + B 
CZ2 + D (XIII. 6) 
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Starting from (XIII.6) and at the same time applying (VI. 1) we can 
easily derive the following formulas for a tube with constant cross-
area S and the length /: 

closed tube: ^ cot — open tube: j ^ tan — (XIII.7) 
( Z 2 = - j oo) j S C (Z2

C = 0) 

We are now able to calculate Za via (XIII.6). We have to consider 
that A, B, C and D pertain to the mouth tube and that Z2 refers to 
the throat tube closed at the throat end. Moreover, it is sufficient 
to introduce only A and B because Z0 = 0 when 

AZ2 + B = 0 (XIII.8) 

After some elaboration of (XIII.8) we finally arrive at: 

t a n ^ t a n ^ = * (XIII.9) 
c c S2 

This is nothing but the well-known formant formula of the twin-
tube. 

As illustrated in figure XIII.3 there is another way of finding the 
formants of the twin-tube. 
Instead of the volume velocity in the mouth opening we may study 
the resonances of the volume velocity at the point of articulation, 
that is at the place where the mouth tube and the throat tube meet. 

In this case application of (XIII.2) leads to simply: 

Figure XIII.3 
Thévenin-method of defining the formants of the twin-tube resonator. 
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B f o o t ^ l + j ^ t a n ^ i = 0 (XIII.10) 
jS2 c St c 

or, again: 

t a n ^ t a n ^ = f i (XIII.9) c c S2 

When calculating the formants of the twin-tube Fant3 also divides 
the resonator at the point of articulation. Principally, it should be 
possible to cut the resonator at an arbitrary spot but we shall not 
deal with this somewhat tricky problem in this monograph. 

3. NUMERICAL SOLUTION OF THE FORMANT FORMULA 

For those exploring the behaviour of the twin-tube model numerical 
solution of the formant formula in the following form 

COI 1 - f c -Oil /VTTT11\ cos — = ^ ^ c o s P — (XIII. 11) 

is of great help. At the Institute of Phonetic Sciences of the Uni-
versity of Amsterdam this solution is performed on the computer 
IBM 1130 available there. The program relevant to this purpose 
was made by mr J. G. Blom, engineer in chief at this Institute, who 
called it TWNTE. 

Application description 
Program TWNTE is a users oriented computer program to solve 
the formant formula of the twin-tube model. 

The program is self-instructive. No programming knowledge is 
required. 

Within reasonable limits the user can make a free choice of all 
parameters including the velocity of sound. 

For each set of parameters the program computes the first 4 

* Fant, I.e. p. 63. 
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formants, with an accuracy of 1 c/s, using the method of Bolzano 
iteration. 
Diagnostic messages are provided. 

The program is written in Fortran IV (subset) for IBM 1130 but 
can easily be modified for other computers. 

Minimum machine configuration: 
Central processing unit 
Console typewriter 
Console printer 

The following items are given below : 
TYPICAL OUTPUT 
SAMPLE OF DIAGNOSTIC MESSAGES 
PROGRAM LISTING. 
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PROGRAM TWNTE, 
TWNTE COMPUTES Fl,F2,F3,F<t OF THE TWINTUBE MODEL OF THE VOCAL TRACT. 
DEFINITION OF PARAMETERS. 

01 02 

0.5L 
X D X 
X 0.5L 

K»02/01 (RATIO OF CROSSSECTIONS) 
BETA-D/0.5L (RELATIVE ECCENTRICITY) 
L*LENGTH IN CM 
V-35000. CM/SEC (VELOCITY OF SOUND) 

TO CHANGE V SET DATA ENTRY SWITCH 11». 
USE KEYBOARD TO ENTER PARAMETER VALUES. 
USE A DECIMAL POINT AND PRESS END OF FIELD KEY. 
IF YOU STRIKE A WRONG KEY PRESS ERASE FIELD KEY AND REENTER PARAMETERS. 
FIRST PRESS PROGRAM START KEY. 

BETA L 
( ) ( ) V= 35000.CM/S 

U. 17.5 

Fl= 500.C/S F2* 1500.C/S F3- 2500. C/S Fl»« 3500.C/S 

( ) 
1. 

PRESS PROGRAM START KEY TO ENTER NEW PARAMETERS. 
SET DATA ENTRY SWITCH 15 AND PRESS PROGRAM START KEY TO STOP. 

BETA 

8. 17.5 
V« 35000.CM/S 

Fl- 781».C/S F2- 1217.C/S F3= 2784.C/S F4» 3217.C/S 

( ) 
.125 

BETA 

0. 17.5 
V- 35000.CM/S 

Fl- 217.C/S F2- 178U.C/S F3- 2217.C/S Fi»= 3781».C/S 

( ) 
.125 

( 
BETA 

0. 
) ( 

13. 
) V- 35000.CM/S 

Fl- 292.C/S F2- 2U01.C/S F3- 2981». C/S FI»- 5093, C/S 

V 
( ) 

70000. 
RESET DATA ENTRY SWITCH 14 AND PRESS PROGRAM START KEY. 
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K BETA L 
( ) ( ) ( ) V» 70000.CM/S 

1. 0. 17.5 

Fl= 1000.C/S F2= 3000.C/S F3» 5000.C/S FU» 7000.C/S 

K BETA L 
( ) ( ) ( ) V» 70000.CM/S 

8. 0. 17.5 

Fl= 1568.C/S F2= 2U33.C/S F3» 5567.C/S FU» 6U33.C/S 

V 
( ) 

35000. 
RESET DATA ENTRY SWITCH 1U AND PRESS PROGRAM START KEY. 

K BETA L 
( ) ( ) ( ) V- 35000.CM/S 

.125 .78 22. 

Fl= 21(6.C/S F2= 971. C/S F3» 1823.C/S F4» 2697.C/S 

END OF TWNTE 

K BETA L 
( ) ( ) ( ) 

7.5 1. 17.5 
»• PARAMETER OUT OF FIELD, 
*• ENTER PARAMETERS AND PRESS END OF FIELD KEY. 

K BETA L 
( ) ( ) ( ) 

12. 1. 17.5 
*• K OUTSIDE RANGE 0.1,10, 
«« ENTER PARAMETERS AND PRESS END OF FIELD KEY. 

K BETA L 
( ) ( ) C ) 

8. 2. 17.5 
»• BETA OUTSIDE RANGE -1,+1, 
** ENTER PARAMETERS AND PRESS END OF FIELD KEY. 

K BETA L 
( ) ( > ( ) 

8. .5 28. 
** L OUTSIDE RANGE 10,25, 
** ENTER PARAMETERS AND PRESS END OF FIELD KEY. 

K BETA L 
( ) ( ) ( ) 

V= 35000.CM/S 

V» 35000.CM/S 

V= 35000.CM/S 

V= 35000.CM/S 

V» 35000.CM/S 
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// JOB 
// FOR 
•LIST AML 
»ONE WORD INTEGERS 
*IOC5tTYPEWRITER»KEYBOARD»DISK I 
•LIST SOURCE PROGRAM 
C 
C PROGRAM TWNTE 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THIS BASIC FORTRAN IV WRITTEN PROGRAM COMPUTES 
THE F1»F2»F3 AND F4 OF THE TWINTUBE-MODEL. 
TWNTE IS PRIMARY WRITTEN FOR AN IBM 1130 SYSTEM» 
BUT CAN EASELY BE MODIFIED FOR EVERY COMPUTER -
WITH TYPEWRITER IN AND OUTPUT. 

AUTHOR J.G.BLOM. 

TWNTE 
REALLNGTH 
DIMENSr0NF0R(4) .AC(6> 

5 FORMAT('PROGRAM TWNTE.'/'TWNTE COMPUTES F1.F2.F3.F4 OF THE '. 
l'TWINTUBE MODEL OF THE VOCAL TRACT.'/ 
l'DEFINITION OF PARAMETERS.1/I 

10 F0RMATI22X.'.'.3X.' 'I 
15 F0RMAT(22X.'.'.3X.'.') 
20 FORMAT(6X»>....••.••••.•...»•««••) 
25 FORMAT(6X »'.•»15X» ' • ' Ï 
30 FORMAT(6X.'.'.5X.'01'.8X.*.*.10X.'02'> 
35 FORMAT(22X»'X D X') 
40 FORMAT(6X.'X'.5X.'0.5L',6X.'X'.6X.'0.5L',6X.'X'//) 
45 FORMATI'K»02/01 1RATI0 OF CftOSSSECTIONS)•/ 

l'BETA»D/0.5L (RELATIVE ECCENTRICITY)•/ 
l'L'LENGTH IN CM'/ 
11V«35000. CM/SEC (VELOCITY OF SOUND)•> 

50 FORMAT(//'TO CHANGE V SET DATA ENTRY SWITCH 14.'/'USE KEYBOARD TO TWNT0290 
1ENTER PARAMETER VALUES.'/'USE A DECIMAL POINT AND PRESS END OF FIETWNT0300 
ILD KEY.'/»IF YOU STRIKE A WRONG KEY PRESS ERASE FIELD KEY AND REENTWNT0310 
ITER PARAMETERS.'/'FIRST PRESS PROGRAM START KEY.'//) TWNT0320 

55 FORMATISX.'K'.lSX.'BETA'.lôX.'L«/ TWNT0330 
13X.M )'.9X,'( )',9X.'( )'.9X,'V=',F7.0.'CM/SM TWNT0340 

TWNT0010 
TWNT0020 
TWNT0030 
TWNT0040 
TWNT0050 
TWNT0060 
TWNT0070 
TWNT0080 
TWNT0090 
TWNT0100 
TWNT0110 
TWNT0120 
TWNT0130 
TWNT0140 
TWNT0150 
TWNT0160 
TWNT0170 
TWNTOlflO 
TWNT0190 
TWNT0200 
TWNT0210 
TWNT0220 
TWNT0230 
TWNT0240 
TWNT0250 
TWNT0260 
TWNT0270 
TWNT0280 

60 FORMAT(/'PRESS PROGRAM START KEY TO ENTER NEW PARAMETERS.'/ TWNT0350 
1 * SET DATA ENTRY SWITCH 15 AND PRESS PROGRAM START KEY TO STOP.'/) TWNT0360 

65 FORMAT(8X.'V'/3X.'I )') TWNT0370 
70 FORMATi'»« PARAMETER OUT OF FIELD.') TWNT0380 
75 FORMAT('** ENTER PARAMETERS AND PRESS END OF FIELD KEY.') TWNT0390 
80 FORMAT('*» L OUTSIDE RANGE 10.25.') TWNT0400 
85 FORMATi'** BETA OUTSIDE RANGE -1.+1.') TWNT0410 
90 FORMATi '** K OUTSIDE RANGE 0.1.10.M TWNT0420 
95 FORMATI'»» V OUTSIDE RANGE 10000.100000.') TWNT.0430 

100 FORMATI'RESET DATA ENTRY SWITCH 14 AND PRESS PROGRAM START KEY.1/)TWNT0440 
105 FORMATI'END OF TWNTE'//) TWNT0.450 
110 F0RMAT'(3IF4.0.2F7.0>) TWNT0460 
115 F0RMATt/4t'F'.Il.'«'.F7.0.'C/S'.3X)/> TWNT0470 
120 FORMAT(F4.0.F9.0.F4.0) TWNT048.0 

INT * 0 TWNT0490 
C « 35060. TWNT0500 
C -VELOCITY OF SOUND TWNT0S10 
WRITEI1.5) TWNT0520 
WRITE(l.lO) TWNT0530 
WRITEtl.15) TWNT0540 
WRITE(1»20) TWNT0550 
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PAfi£ 02 

WRITEW.2SJ TWNT0560 
WRITEU.SO» TWT0S70 
WRITE<1.251 TWNT0580 
WRITEU.20) TWNT0590 
W-RITEU.15» TWNT0600 
WRITE(ltlÖ) TWNT0610 
WRITE<1.35) TWNT0620 
WR1TEU.40) TW*T0630 
WRITE!1»*5) TWNT0640 
WRITEI1.50) TWNT0650 

125 PAUSE TWNT0660 
CALL DATSW(15tNSTOP) TWNT0670 
GOTO(260>130)»NSTOP TWNT0680 

130 CALL DATSW(14.NV) TWNT0690 
GOTO(135 »1651.NV TWNT0700 

135 WRITEI1.65I TWNT0710 
B * 0. TWNT0720 
BB - 0. TWNT0730 
READ(6.120)B.C.BB TWNT0740 
B » B + BB TWNT0750 
IF (B) 140.1*5,140 TWNT0760 

140 WRITEU.70) TWNT0770 
WRITEI1.75) TWNT0780 
GOTO 135 TWNT0790 

145 IF (C - 10000.) 155.150.150 TWNT0800 
150 IF (C - 100000.) 160.160.155 TWNT0810 
155 WRITEI1.95) TWNT0820 

WRITE(1.75) TWNT0830 
GOTO 135 TWNT0840 

160 WRITE!1.100) TKNT0850 
PAUSE TWNT0860 

165 WRITE(1.55)C TWNT0870 
DO 170 1*1.6 TWNT0880 

170 AC(I) « 0. TWNT0890 
READ(6.110)AC(1).AK.AC(2) .AC (3) .BETA. AC (4) .AC( 5) .LNGTH.AC (6) TWNT0900 
AK «RATIO OF CROSSSECTIONS TWNT0910 
BETA -RELATIVE ECCENTRICITY TWNT0920 
LNGTH-LENGTH OF TWINTUBE TWNT0930 
CALL DATSW(15.NSTOP) TWNT0940 
GOTO(260.175).NSTOP TWNT0950 

175 DO 180 1*2.6 TWNT0960 
180 AC(1I « AC(1) + AC (I ~) TWNT0970 

IF (AC(1)) 185.190.185 TWNT0980 
165 WRITEI1.70) TWNT0990 

WRITEI1.75) TWNT1000 
GOTO 130 TWNT1010 

190 IF (LNGTH - 10.) 200.195.195 TWNT1020 
195 IF (LNGTH - 25.) 205.205.200 TWNT1030 
200 WRITEI1.80) TWNT1040 

WRITEI1.T5) TWNT1050 
GOTO 130 TWNT1060 

205 IF (ABS(BETA) - 1.) 215.215.210 TWNT1070 
210 WRITE(1»85) TWNT1080 

WRITE(1.75) TWNT1090 
GOTO 130 TWNT1100 

215 IF (AK - 10.) 220.220.225 TWNT1110 
220 IF (AK - .1) 225.230.230 TWNT1120 
225 WRITEU.90) TWNT1130 

WRITE(1.75) TWNT1140 
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PAGE 03 

GOTO 130 TWNT1150 
230 P » 6.283825 » LNGTH / C TWNT1160 

P « 6.283825 » LNGTH ! C TWNT1170 
Q • P » BETA TWNT1180 
R • «1. - AK> / U . + AK> TWNT1190 
F - 0. TWNT1200 
DO 250 K«l>4 TWNT1210 
N • 0 TWNT1220 
OF - 32. TWNT1230 
T1 » ( - 1.) » » K TWNT1240 
GOTO 240 TWNT1250 

235 OF « OF / 2. TWNT1260 
IF IOF - .251 250.250.240 TWNT1270 
STOP ITERATION IF STEP SMALLER THAN .5 C/SEC. TWNT1280 

240 N " N • 1 TWNT1290 
T2 » ( - 1.) » » N TWNT1300 

245 F » F - T2 » DF TWNT1310 
IF <T1 • T2 * (COSIP * F) - R » COSIO * F))) 235.250.245 TWNT1320 

250 FORIKI « F + .5 TWNT1330 
WRITE(1.1151(I.FORI I I.I-1.41 TWNT1340 
INT • INT + 1 TWNT1350 
IF (INT - 1) 255.255.125 TWNT1360 

255 WRITEU.60) TWNT1370 
GOTO 125 TWNT1380 

260 WRITEI1.105) TWNT1390 
CALL EXIT TWNT1400 
END TWNT1410 
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