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About

This section briefly introduces the authors, the coverage of this book, the technical skills you'll 
need to get started, and the hardware and software requirements required to complete all of 
the included activities and exercises.

Preface

>
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ii | Preface

About the Book
Data Science for Marketing Analytics covers every stage of data analytics, from working 
with a raw dataset to segmenting a population and modeling different parts of it based 
on the segments.

The book starts by teaching you how to use Python libraries, such as pandas and 
Matplotlib, to read data from Python, manipulate it, and create plots using both 
categorical and continuous variables. Then, you'll learn how to segment a population 
into groups and use different clustering techniques to evaluate customer segmentation. 
As you make your way through the chapters, you'll explore ways to evaluate and select 
the best segmentation approach, and go on to create a linear regression model on 
customer value data to predict lifetime value. In the concluding chapters, you'll gain 
an understanding of regression techniques and tools for evaluating regression models, 
and explore ways to predict customer choice using classification algorithms. Finally, 
you'll apply these techniques to create a churn model for modeling customer product 
choices.

By the end of this book, you will be able to build your own marketing reporting and 
interactive dashboard solutions.

About the Authors

Tommy Blanchard earned his PhD from the University of Rochester and did his 
postdoctoral training at Harvard. Now, he leads the data science team at Fresenius 
Medical Care North America. His team performs advanced analytics and creates 
predictive models to solve a wide variety of problems across the company.

Debasish Behera works as a data scientist for a large Japanese corporate bank, where 
he applies machine learning/AI to solve complex problems. He has worked on multiple 
use cases involving AML, predictive analytics, customer segmentation, chat bots, and 
natural language processing. He currently lives in Singapore and holds a Master's in 
Business Analytics (MITB) from the Singapore Management University.

Pranshu Bhatnagar works as a data scientist in the telematics, insurance, and mobile 
software space. He has previously worked as a quantitative analyst in the FinTech 
industry and often writes about algorithms, time series analysis in Python, and similar 
topics. He graduated with honors from the Chennai Mathematical Institute with a 
degree in Mathematics and Computer Science and has completed certification books 
in Machine Learning and Artificial Intelligence from the International Institute of 
Information Technology, Hyderabad. He is based in Bangalore, India.
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Objectives

• Analyze and visualize data in Python using pandas and Matplotlib

• Study clustering techniques, such as hierarchical and k-means clustering

• Create customer segments based on manipulated data

• Predict customer lifetime value using linear regression

• Use classification algorithms to understand customer choice

• Optimize classification algorithms to extract maximal information

Audience

Data Science for Marketing Analytics is designed for developers and marketing analysts 
looking to use new, more sophisticated tools in their marketing analytics efforts. It'll 
help if you have prior experience of coding in Python and knowledge of high school 
level mathematics. Some experience with databases, Excel, statistics, or Tableau is 
useful but not necessary.

Approach

Data Science for Marketing Analytics takes a hands-on approach to the practical aspects 
of using Python data analytics libraries to ease marketing analytics efforts. It contains 
multiple activities that use real-life business scenarios for you to practice and apply 
your new skills in a highly relevant context.

Minimum Hardware Requirements

For an optimal student experience, we recommend the following hardware 
configuration:

• Processor: Dual Core or better

• Memory: 4 GB RAM

• Storage: 10 GB available space
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Software Requirements

You'll also need the following software installed in advance:

• Any of the following operating systems: Windows 7 SP1 32/64-bit, Windows 8.1 
32/64-bit, or Windows 10 32/64-bit, Ubuntu 14.04 or later, or macOS Sierra or 
later.

• Browser: Google Chrome or Mozilla Firefox

• Conda

• Python 3.x

Conventions

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Import 
the cluster module from the sklearn package."

A block of code is set as follows:

plt.xlabel('Income')

plt.ylabel('Age')

plt.show()

New terms and important words are shown in bold. Words that you see on the screen, 
for example, in menus or dialog boxes, appear in the text like this: "The Year column 
appears to have matched to the right values, but the line column does not seem to 
make much sense."

Installation and Setup

We recommend installing Python using the Anaconda distribution, available here: 
https://www.anaconda.com/distribution/.

It contains most of the modules that will be used. Additional Python modules can 
be installed using the methods here: https://docs.python.org/3/installing/index.
html. There is only one module that is used that is not part of the standard Anaconda 
distribution; use one of the methods in the linked page to install it:

• kmodes
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If you do not use the Anaconda distribution, make sure you have the following modules 
installed:

• jupyter

• pandas

• sklearn

• numpy

• scipy

• seaborn

• statsmodels

Installing the Code Bundle

Copy the code bundle for the class to the C:/Code folder.

Additional Resources

The code bundle for this book is also hosted on GitHub at: https://github.com/
TrainingByPackt/Data-Science-for-Marketing-Analytics.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!
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Learning Objectives

By the end of this chapter, you will be able to:

• Create pandas DataFrames in Python

• Read and write data into different file formats

• Slice, aggregate, filter, and apply functions (built-in and custom) to DataFrames

• Join DataFrames, handle missing values, and combine different data sources

This chapter covers basic data preparation and manipulation techniques in Python, which is the 
foundation of data science.

Data Preparation and 
Cleaning

1
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Introduction
The way we make decisions in today's world is changing. A very large proportion of our 
decisions—from choosing which movie to watch, which song to listen to, which item to 
buy, or which restaurant to visit—all rely upon recommendations and ratings generated 
by analytics. As decision makers continue to use more of such analytics to make 
decisions, they themselves become data points for further improvements, and as their 
own custom needs for decision making continue to be met, they also keep using these 
analytical models frequently.

The change in consumer behavior has also influenced the way companies develop 
strategies to target consumers. With the increased digitization of data, greater 
availability of data sources, and lower storage and processing costs, firms can now 
crunch large volumes of increasingly granular data with the help of various data science 
techniques and leverage it to create complex models, perform sophisticated tasks, and 
derive valuable consumer insights with higher accuracy. It is because of this dramatic 
increase in data and computing power, and the advancement in techniques to use this 
data through data science algorithms, that the McKinsey Global Institute calls our age 
the Age of Analytics.

Several industry leaders are already using data science to make better decisions and 
to improve their marketing analytics. Google and Amazon have been making targeted 
recommendations catering to the preferences of their users from their very early 
years. Predictive data science algorithms tasked with generating leads from marketing 
campaigns at Dell reportedly converted 50% of the final leads, whereas those generated 
through traditional methods had a conversion rate of only 17%. Price surges on Uber for 
non-pass holders during rush hour also reportedly had massive positive effects on the 
company's profits. In fact, it was recently discovered that price management initiatives 
based on an evaluation of customer lifetime value tended to increase business margins 
by 2%–7% over a 12-month period and resulted in a 200%–350% ROI in general.

Although using data science principles in marketing analytics is a proven cost-effective, 
efficient way for a lot of companies to observe a customer's journey and provide a 
more customized experience, multiple reports suggest that it is not being used to 
its full potential. There is a wide gap between the possible and actual usage of these 
techniques by firms. This book aims to bridge that gap, and covers an array of useful 
techniques involving everything data science can do in terms of marketing strategies 
and decision-making in marketing. By the end of the book, you should be able to 
successfully create and manage an end-to-end marketing analytics pipeline in Python, 
segment customers based on the data provided, predict their lifetime value, and model 
their decision-making behavior on your own using data science techniques.
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This chapter introduces you to cleaning and preparing data—the first step in any 
data-centric pipeline. Raw data coming from external sources cannot generally be 
used directly; it needs to be structured, filtered, combined, analyzed, and observed 
before it can be used for any further analyses. In this chapter, we will explore how 
to get the right data in the right attributes, manipulate rows and columns, and apply 
transformations to data. This is essential because, otherwise, we will be passing 
incorrect data to the pipeline, thereby making it a classic example of garbage in, 
garbage out.

Data Models and Structured Data
When we build an analytics pipeline, the first thing that we need to do is to build a 
data model. A data model is an overview of the data sources that we will be using, their 
relationships with other data sources, where exactly the data from a specific source 
is going to enter the pipeline, and in what form (such as an Excel file, a database, or a 
JSON from an internet source). The data model for the pipeline evolves over time as 
data sources and processes change. A data model can contain data of the following 
three types:

• Structured Data: This is also known as completely structured or well-structured 
data. This is the simplest way to manage information. The data is arranged in a flat 
tabular form with the correct value corresponding to the correct attribute. There 
is a unique column, known as an index, for easy and quick access to the data, and 
there are no duplicate columns. Data can be queried exactly through SQL queries, 
for example, data in relational databases, MySQL, Amazon Redshift, and so on.

• Semi-structured data: This refers to data that may be of variable lengths and that 
may contain different data types (such as numerical or categorical) in the same 
column. Such data may be arranged in a nested or hierarchical tabular structure, 
but it still follows a fixed schema. There are no duplicate columns (attributes), 
but there may be duplicate rows (observations). Also, each row might not contain 
values for every attribute, that is, there may be missing values. Semi-structured 
data can be stored accurately in NoSQL databases, Apache Parquet files, JSON 
files, and so on.

• Unstructured data: Data that is unstructured may not be tabular, and even if it is 
tabular, the number of attributes or columns per observation may be completely 
arbitrary. The same data could be represented in different ways, and the attributes 
might not match each other, with values leaking into other parts. Unstructured 
data can be stored as text files, CSV files, Excel files, images, audio clips, and so on.
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4 | Data Preparation and Cleaning

Marketing data, traditionally, comprises data of all three types. Initially, most data 
points originated from different (possibly manual) data sources, so the values for a 
field could be of different lengths, the value for one field would not match that of other 
fields because of different field names, some rows containing data from even the same 
sources could also have missing values for some of the fields, and so on. But now, 
because of digitization, structured and semi-structured data is also available and is 
increasingly being used to perform analytics. The following figure illustrates the data 
model of traditional marketing analytics comprising all kinds of data: structured data 
such as databases (top), semi-structured data such as JSONs (middle), and unstructured 
data such as Excel files (bottom):

Figure 1.1: Data model of traditional marketing analytics
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A data model with all these different kinds of data is prone to errors and is very 
risky to use. If we somehow get a garbage value into one of the attributes, our entire 
analysis will go awry. Most of the times, the data we need is of a certain kind and if 
we don't get that type of data, we might run into a bug or problem that would need 
to be investigated. Therefore, if we can enforce some checks to ensure that the data 
being passed to our model is almost always of the same kind, we can easily improve the 
quality of data from unstructured to at least semi-structured.

This is where programming languages such as Python come into play. Python is an 
all-purpose general programming language that not only makes writing structure-
enforcing scripts easy, but also integrates with almost every platform and automates 
data production, analysis, and analytics into a more reliable and predictable pipeline. 
Apart from understanding patterns and giving at least a basic structure to data, Python 
forces intelligent pipelines to accept the right value for the right attribute. The majority 
of analytics pipelines are exactly of this kind. The following figure illustrates how most 
marketing analytics today structure different kinds of data by passing it through scripts 
to make it at least semi-structured:

Figure 1.2: Data model of most marketing analytics that use Python
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By making use of such structure-enforcing scripts, we will have a pipeline of semi-
structured data coming in with expected values in the right fields; however, the data is 
not yet in the best possible format to perform analytics. If we can completely structure 
our data (that is, arrange it in flat tables, with the right value pointing to the right 
attribute with no nesting or hierarchy), it will be easy for us to see how every data 
point individually compares to other points being considered in the common fields, and 
would also make the pipeline scalable. We can easily get a feel of the data—that is, see 
in what range most values lie, identify the clear outliers, and so on—by simply scrolling 
through the data.

While there are a lot of tools that can be used to convert data from an unstructured/
semi-structured format to a fully structured format (for example, Spark, STATA, and 
SAS), the tool that is most commonly used for data science, can be integrated with 
practically any framework, has rich functionalities, minimal costs, and is easy-to-use 
for our use case, is pandas. The following figure illustrates how a data model structures 
different kinds of data from being possibly unstructured to semi-structured (using 
Python), to completely structured (using pandas):

Figure 1.3: Data model to structure the different kinds of data

Note

For the purpose of this book, we will assume that you are more or less comfortable 
with NumPy.
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pandas
pandas is a software library written in Python and is the basis for data manipulation and 
analysis in the language. Its name comes from "panel data," an econometrics term for 
datasets that include observations over multiple time periods for the same individuals.

pandas offers a collection of high-performance, easy-to-use, and intuitive data 
structures and analysis tools that are of great use to marketing analysts and data 
scientists alike. It has the following two primary object types:

• DataFrame: This is the fundamental tabular relationship object that stores data 
in rows and columns (like a spreadsheet). To perform data analysis, functions and 
operations can be directly applied to DataFrames.

• Series: This refers to a single column of the DataFrame. The value can be accessed 
through its index. As Series automatically infers a type, it automatically makes all 
DataFrames well-structured.

The following figure illustrates a pandas DataFrame with an automatic integer index (0, 
1, 2, 3...):

Figure 1.4: A sample pandas DataFrame

Now that we understand what pandas objects are and how they can be used to 
automatically get structured data, let's take a look at some of the functions we can use 
to import and export data in pandas and see if the data we passed is ready to be used 
for further analyses.
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Importing and Exporting Data With pandas DataFrames

Every team in a marketing group can have its own preferred data type for their specific 
use case. Those who have to deal with a lot more text than numbers might prefer using 
JSON or XML, while others may prefer CSV, XLS, or even Python objects. pandas has a 
lot of simple APIs (application program interfaces) that allow it to read a large variety 
of data directly into DataFrames. Some of the main ones are shown here:

Figure 1.5: Ways to import and export different types of data with pandas DataFrames

Note

Remember that a well-structured DataFrame does not have hierarchical or nested 
data. The read_xml, read_json(), and read_html() functions (and others) cause 
the data to lose its hierarchical datatypes/nested structure and convert it into 
flattened objects such as lists and lists of lists. Pandas, however, does support 
hierarchical data for data analysis. You can save and load such data by pickling 
from your session and maintaining the hierarchy in such cases. When working with 
data pipelines, it's advised to split nested data into separate streams to maintain 
the structure.
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When loading data, pandas provides us with additional parameters that we can pass 
to read functions, so that we can load the data differently. Some additional parameters 
that are used commonly when importing data into pandas are given here:

• skiprows = k: This skips the first k rows.

• nrows = k: This parses only the first k rows.

• names = [col1, col2...]: This lists the column names to be used in the parsed 
DataFrame.

• header = k: This applies the column names corresponding to the kth row as the 
header for the DataFrame. k can also be None.

• index_col = col: This sets col as the index of the DataFrame being used. This can 
also be a list of column names (used to create a MultiIndex) or None.

• usecols = [l1, l2...]: This provides either integer positional indices in the 
document columns or strings that correspond to column names in the DataFrame 
to be read. For example, [0, 1, 2] or ['foo', 'bar', 'baz'].

Note

There are similar specific parameters for almost every in-built function in pandas. 
You can find details about them with the documentation for pandas available at 
the following link: https://pandas.pydata.org/pandas-docs/stable/.

Viewing and Inspecting Data in DataFrames

Once you've read the DataFrame using the API, as explained earlier, you'll notice that, 
unless there is something grossly wrong with the data, the API generally never fails, and 
we always get a DataFrame object after the call. However, we need to inspect the data 
ourselves to check whether the right attribute has received the right data, for which we 
can use several in-built functions that pandas provides. Assume that we have stored the 
DataFrame in a variable called df then:

• df.head(n) will return the first n rows of the DataFrame. If no n is passed, by 
default, the function considers n to be 5.

• df.tail(n) will return the last n rows of the DataFrame. If no n is passed, by 
default, the function considers n to be 5.

• df.shape will return a tuple of the type (number of rows, number of columns).
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• df.dtypes will return the type of data in each column of the pandas DataFrame 
(such as float, char, and so on).

• df.info() will summarize the DataFrame and print its size, type of values, and the 
count of non-null values.

Exercise 1: Importing JSON Files into pandas

For this exercise, you need to use the user_info.json file provided to you in the 
Lesson01 folder. The file contains some anonymous personal user information collected 
from six customers through a web-based form in JSON format. You need to open a 
Jupyter Notebook, import the JSON file into the console as a pandas DataFrame, and 
see whether it has loaded correctly, with the right values being passed to the right 
attribute.

Note

All the exercises and activities in this chapter can be done in both the Jupyter 
Notebook and Python shell. While we can do them in the shell for now, it is highly 
recommended to use the Jupyter Notebook. To learn how to install Jupyter and 
set up the Jupyter Notebook, check https://jupyter.readthedocs.io/en/latest/install.
html. It will be assumed that you are using a Jupyter Notebook from the next 
chapter onward.

1. Open a Jupyter Notebook to implement this exercise. Once you are in the console, 
import the pandas library using the import command, as follows:

import pandas as pd

2. Read the user_info.json JSON file into the user_info DataFrame:

user_info = pd.read_json("user_info.json")

3. Check the first few values in the DataFrame using the head command:

user_info.head()
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You should see the following output:

Figure 1.6: Viewing the first few rows of user_info.json

4. As we can see, the data makes sense superficially. Let's see if the data types match 
too. Type in the following command:

user_info.info()
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You should get the following output:

Figure 1.7: Information about the data in user_info

From the preceding figure, notice that the isActive column is Boolean, the age 
and index columns are integers, whereas the latitude and longitude columns 
are floats. The rest of the elements are Python objects, most likely to be strings. 
Looking at the names, they match our intuition. So, the data types seem to match. 
Also, the number of observations seems to be the same for all fields, which implies 
that there has been no data loss.

Note

The 64 displayed with the type above is an indicator of precision and varies on 
different platforms.
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5. Let's also see the number of rows and columns in the DataFrame using the shape 
attribute of the DataFrame:

user_info.shape

This will give you (6, 22) as the output, indicating that the DataFrame created by 
the JSON has 6 rows and 22 columns.

Congratulations! You have loaded the data correctly, with the right attributes 
corresponding to the right columns and with no missing values. Since the data was 
already structured, it is now ready to be put into the pipeline to be used for further 
analysis.

Exercise 2: Identifying Semi-Structured and Unstructured Data

In this exercise, you will be using the data.csv and sales.xlsx files provided to you in 
the Lesson01 folder. The data.csv file contains the views and likes of 100 different posts 
on Facebook in a marketing campaign, and sales.xlsx contains some historical sales 
data recorded in MS Excel about different customer purchases in stores in the past few 
years. We want to read the files into pandas DataFrames and check whether the output 
is ready to be added into the analytics pipeline. Let's first work with the data.csv file:

1. Import pandas into the console, as follows:

import pandas as pd

2. Use the read_csv method to read the data.csv CSV file into a campaign_data 
DataFrame:

campaign_data = pd.read_csv("data.csv")

3. Look at the current state of the DataFrame using the head function:

campaign_data.head()
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Your output should look as follows:

Figure 1.8: Viewing raw campaign_data

From the preceding output, we can observe that the first column has an issue; we 
want to have "views" and "likes" as the column names and for the DataFrame to 
have numeric values.

4. We will read the data into campaign_data again, but this time making sure that we 
use the first row to get the column names using the header parameter, as follows:

campaign_data = pd.read_csv("data.csv", header = 1) 

5. Let's now view campaign_data again, and see whether the attributes are okay now:

campaign_data.head()

Your DataFrame should now appear as follows:

Figure 1.9: campaign_data after being read with the header parameter
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6. The values seem to make sense—with the views being far more than the likes—
when we look at the first few rows, but because of some misalignment or missing 
values, the last few rows might be different. So, let's have a look at it:

campaign_data.tail()

You will get the following output:

Figure 1.10: The last few rows of campaign_data

7. There doesn't seem to be any misalignment of data or missing values at the end. 
However, although we have seen the last few rows, we still can't be sure that all 
values in the middle (hidden) part of the DataFrame are okay too. We can check 
the datatypes of the DataFrame to be sure:

campaign_data.info()

You should get the following output:

Figure 1.11: info() of campaign_data
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8. We also need to ensure that we have not lost some observations because of our 
cleaning. We use the shape function for that:

campaign_data.shape

You will get an output of (100, 2), indicating that we still have 100 observations 
with 2 columns. The dataset is now completely structured and can easily be a part 
of any further analysis or pipeline.

9. Let's now analyze the sales.xlsx file. Use the read_excel function to read the file 
in a DataFrame called sales:

sales = pd.read_excel("sales.xlsx")

10. Look at the first few rows of the sales DataFrame:

sales.head()

Your output should look as follows:

Figure 1.12: First few rows of sales.xlsx

From the preceding figure, the Year column appears to have matched to the right 
values, but the line column does not seem to make much sense. The Product.1, 
Product.2, columns imply that there are multiple columns with the same name! 
Even the values of the Order and method columns being Water and Bag, 
respectively, make us feel as though something is wrong.

11. Let's look at gathering some more information, such as null values and the data 
types of the columns, and see if we can make more sense of the data:

sales.info()
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Your output will look as follows:

Figure 1.13: Output of sales.info()

As there are some columns with no non-null values, the column names seem to 
have broken up incorrectly. This is probably why the output of info showed a 
column such as revenue as having an arbitrary data type such as object (usually 
used to refer to columns containing strings). It makes sense if the actual column 
names start with a capital letter and the remaining columns are created as a result 
of data spilling from the preceding columns.
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12. Let's try to read the file with just the new, correct column names and see whether 
we get anything. Use the following code:

sales = pd.read_excel("sales.xlsx", names = ["Year", "Product line", 
"Product type", "Product", "Order method type", "Retailer Country", 
"Revenue", "Planned revenue", "Product cost", "Quantity", "Unit cost", 
"Unit price", "Gross Profit", "Unit sale price"])

You get the following output:

Figure 1.14: Attempting to structure sales.xlsx

Unfortunately, the issue is not just with the columns, but with the underlying values 
too. The value of one column is leaking into another and thus ruining the structure. 
Understandably, the code fails because of length mismatch. Therefore, we can conclude 
that the sales.xlsx data is very unstructured.

With the use of the API and what we know up till this point, we can't directly get this 
data to be structured. To understand how to approach structuring this kind of data, we 
need to dive deep into the internal structure of pandas objects and understand how 
data is actually stored in pandas, which we will do in the following sections. We will 
come back to preparing this data for further analysis in a later section.
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Structure of a pandas Series

Let's say you want to store some values from a data store in a data structure. It is not 
necessary for every element of the data to have values, so your structure should be 
able to handle that. It is also a very common scenario where there is some discrepancy 
between two data sources on how to identify a data point. So, instead of using default 
numerical indices (such as 0-100) or user-given names to access it, like in a dictionary, 
you would like to access every value by a name that comes from within the data source. 
This is achieved in pandas using a pandas Series.

A pandas Series is nothing but an indexed NumPy array. To make a pandas Series, all 
you need to do is create an array and give it an index. If you create a Series without 
an index, it will create a default numeric index that starts from 0 and goes on for the 
length of the Series, as shown in the following figure:

Figure 1.15: Sample pandas Series

Note

As a Series is still a NumPy array, all functions that work on a NumPy array, work 
the same way on a pandas Series too.
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Once you've created a number of Series, you might want to access the values associated 
with some specific indices all at once to perform an operation. This is just aggregating 
the Series with a specific value of the index. It is here that pandas DataFrames come 
into the picture. A pandas DataFrame is just a dictionary with the column names as keys 
and values as different pandas Series, joined together by the index:

Figure 1.16: Series joined together by the same index create a pandas Dataframe

This way of storing data makes it very easy to perform the operations we need on the 
data we want. We can easily choose the Series we want to modify by picking a column 
and directly slicing off indices based on the value in that column. We can also group 
indices with similar values in one column together and see how the values change in 
other columns.
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Other than this one-dimensional Series structure to access the DataFrame, pandas also 
has the concept of axes, where an operation can be applied to both rows (or indices) 
and columns. You can choose which one to apply it to by specifying the axis, 0 referring 
to rows and 1 referring to columns, thereby making it very easy to access the underlying 
headers and the values associated with them:

Figure 1.17: Understanding axis = 0 and axis = 1 in pandas

Data Manipulation
Now that we have deconstructed the structure of the pandas DataFrame down to its 
basics, the rest of the wrangling tasks, that is, creating new DataFrames, selecting or 
slicing a DataFrame into its parts, filtering DataFrames for some values, joining different 
DataFrames, and so on, will become very intuitive.

Selecting and Filtering in pandas

It is standard convention in spreadsheets to address a cell by (column name, row name). 
Since data is stored in pandas in a similar manner, this is also the way to address a cell 
in a pandas DataFrame: the column name acts as a key to give you the pandas Series, 
and the row name gives you the value on that index of the DataFrame.
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But if you need to access more than a single cell, such as a subset of some rows and 
columns from the DataFrame, or change the order of display of some columns on the 
DataFrame, you can make use of the syntax listed in the following table:

Figure 1.18: A table listing the syntax used for different operations on a pandas DataFrame

Creating Test DataFrames in Python

We frequently need to create test objects while building a data pipeline in pandas. Test 
objects give us a reference point to figure out what we have been able to do up till that 
point and make it easier to debug our scripts. Generally, test DataFrames are small 
in size, so that the output of every process is quick and easy to compute. There are 
two ways to create test DataFrames—by creating completely new DataFrames, or by 
duplicating or taking a slice of a previously existing DataFrame:

• Creating new DataFrames: We typically use the DataFrame method to create a 
completely new DataFrame. The function directly converts a Python object into a 
pandas DataFrame. The DataFrame function will, in general, work with any iterable 
collection of data (such as dict, list, and so on). We can also pass an empty 
collection or a singleton collection to the function.

For example, we will get the same DataFrame through either of the following lines 
of code:

pd.DataFrame({'category': pd.Series([1, 2, 3])}
pd.DataFrame([1, 2, 3], columns=['category'])
pd.DataFrame.from_dict({'category': [1, 2, 3]})
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The following figure shows the outputs received each time:

Figure 1.19: Output generated by all three ways to create a DataFrame

A DataFrame can also be built by passing any pandas objects to the DataFrame 
function. The following line of code gives the same output as the preceding figure:

pd.DataFrame(pd.Series([1,2,3]), columns=["category"])

• Duplicating or slicing a previously existing DataFrame: The second way to create 
a test DataFrame is by copying a previously existing DataFrame. Python, and 
therefore, pandas, has shallow references. When we say obj1 = obj2, the objects 
share the location or the reference to the same object in memory. So, if we change 
obj2, obj1 also gets modified, and vice versa. This is tackled in the standard library 
with the deepcopy function in the copy module. The deepcopy function allows the 
user to recursively go through the objects being pointed to by the references and 
create entirely new objects.

So, when you want to copy a previously existing DataFrame and don't want the 
previous DataFrame to be affected by modifications in the current DataFrame, 
you need to use the deepcopy function. You can also slice the previously existing 
DataFrame and pass it to the function, and it will be considered a new DataFrame. 
For example, the following code snippet will recursively copy everything in df1 and 
not have any references to it when you make changes to df:

import pandas
import copy
df = copy.deepcopy(df1)
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Adding and Removing Attributes and Observations

pandas provides the following functions to add and delete rows (observations) and 
columns (attributes):

• df['col'] = s: This adds a new column, col, to the DataFrame, df, with the Series, 
s.

• df.assign(c1 = s1, c2 = s2...): This adds new columns, c1, c2, and so on, with 
series, s1, s2, and so on, to the df DataFrame in one go.

• df.append(df2 / d2, ignore_index): This adds values from the df2 DataFrame to 
the bottom of the df DataFrame wherever the columns of df2 match those of df. 
Alternatively, it also accepts dict and d2, and if ignore_index = True, it does not use 
index labels.

• df.drop(labels, axis): This remove the rows or columns specified by the labels 
and corresponding axis, or those specified by the index or column names directly.

• df.dropna(axis, how): Depending on the parameter passed to how, this decides 
whether to drop rows (or columns if axis = 1) with missing values in any of the 
fields or in all of the fields. If no parameter is passed, the default value of how is any 
and the default value of axis is 0.

• df.drop_duplicates(keep): This removes rows with duplicate values in the 
DataFrame, and keeps the first (keep = 'first'), last (keep = 'last'), or no 
occurrence (keep = False) in the data.

We can also combine different pandas DataFrames sequentially with the concat 
function, as follows:

• pd.concat([df1,df2..]): This creates a new DataFrame with df1, df2, and all other 
DataFrames combined sequentially. It will automatically combine columns having 
the same names in the combined DataFrames.

Exercise 3: Creating and Modifying Test DataFrames

This exercise aims to test the understanding of the students about creating and 
modifying DataFrames in pandas. We will create a test DataFrame from scratch and add 
and remove rows/columns to it by making use of the functions and concepts described 
so far: 

1. Import pandas and copy libraries that we will need for this task (the copy module 
in this case):

import pandas as pd
import copy
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2. Create a DataFrame, df1, and use the head method to see the first few rows of the 
DataFrame. Use the following code:

df1 = pd.DataFrame({'category': pd.Series([1, 2, 3])})
df1.head()

Your output should be as follows:

Figure 1.20: The first few rows of df1

3. Create a test DataFrame, df, by duplicating df1. Use the deepcopy function:

df = copy.deepcopy(df1)
df.head()

You should get the following output:

Figure 1.21: The first few rows of df

4. Add a new column, cities, containing different kinds of city groups to the test 
DataFrame using the following code and take a look at the DataFrame again:

df['cities'] = pd.Series([['Delhi', 'Mumbai'], ['Lucknow', 'Bhopal'], 
['Chennai', 'Bangalore']])
df.head()
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You should get the following output:

Figure 1.22: Adding a row to df

5. Now, add multiple columns pertaining to the user viewership using the assign 
function and again look at the data. Use the following code:

df.assign(
    young_viewers = pd.Series([2000000, 3000000, 1500000]),
    adult_viewers = pd.Series([2500000, 3500000, 1600000]),
    aged_viewers = pd.Series([2300000, 2800000, 2000000])
)
df.head()

Your DataFrame will now appear as follows:

Figure 1.23: Adding multiple columns to df

6. Use the append function to add a new row to the DataFrame. As we know that the 
new row contains partial information, we will pass the ignore_index parameter as 
True:

df.append({'cities': ["Kolkata", "Hyderabad"], 'adult_viewers': 2000000, 
   'aged_viewers': 2000000, 'young_viewers': 1500000}, ignore_index = 
True)
df.head()
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Your DataFrame should now look as follows:

Figure 1.24: Adding another row by using the append function on df

7. Now, use the concat function to duplicate the test DataFrame and save it as df2. 
Take a look at the new DataFrame:

df2 = pd.concat([df, df], sort = False)
df2

df2 will show duplicate entries of df1, as shown here:

Figure 1.25: Using the concat function to duplicate a DataFrame, df2, in pandas
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8. To delete a row from the df DataFrame, we will now pass the index of the row we 
want to delete—in this case, the third row—to the drop function, as follows:

df.drop([3])

You will get the following output:

Figure 1.26: Using the drop function to delete a row

9. Similarly, let's delete the aged_viewers column from the DataFrame. We will pass 
the column name as the parameter to the drop function and specify the axis as 1:

df.drop(['aged_viewers'])

Your output will be as follows:

Figure 1.27: Dropping the aged_viewers column in the DataFrame

10. Note that, as the result of the drop function is also a DataFrame, we can chain 
another function on it too. So, we drop the cities field from df2 and remove the 
duplicates in it as well:

df2.drop('cities', axis = 1).drop_duplicates()
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The df2 DataFrame will now look as follows:

Figure 1.28: Dropping the cities field and then removing duplicates in df2

Congratulations! You've successfully performed some basic operations on a DataFrame. 
You now know how to add rows and columns to DataFrames and how to concatenate 
multiple DataFrames together in a big DataFrame.

In the next section, you will learn how to combine multiple data sources into the same 
DataFrame. When combining data sources, we need to make sure to include common 
columns from both sources but make sure that no duplication occurs. We would also 
need to make sure that, unlike the concat function, the combined DataFrame is smart 
about the index and does not duplicate rows that already exist. This feature is also 
covered in the next section.

Combining Data

Once the data is prepared from multiple sources in separate pandas DataFrames, we 
can use the pd.merge function to combine them into the same DataFrame based on 
a relevant key passed through the on parameter. It is possible that the joining key is 
named differently in the different DataFrames that are being joined. So, while calling 
pd.merge(df, df1), we can provide a left_on parameter to specify the column to be 
merged from df and a right_on parameter to specify the index in df1.
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pandas provides four ways of combining DataFrames through the how parameter. All 
values of these are different joins by themselves and are described as follows:

Figure 1.29: Table describing different joins

The following figure shows two sample DataFrames, df1 and df2, and the results of the 
various joins performed on these DataFrames:

Figure 1.30: Table showing two DataFrames and the outcomes of different joins on them
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For example, we can perform a right and outer join on the DataFrames of the previous 
exercise using the following code:

pd.merge(df, df1, how = 'right')

pd.merge(df, df1, how = 'outer')

The following will be the output of the preceding two joins:

Figure 1.31: Examples of the different types of merges in pandas
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Handling Missing Data

Once we have joined two datasets, it is easy to see what happens to an index present in 
one of the tables but not in the other. The other columns of that index get the np.nan 
value, which is pandas' way of telling us that data is missing in that column. Depending 
on where and how the values are going to be used, missing values can be treated 
differently. The following are various ways of treating missing values:

• We can get rid of missing values completely using df.dropna, as explained in the 
Adding and Removing Attributes and Observations section.

• We can also replace all the missing values at once using df.fillna(). The value 
we want to fill in will depend heavily on the context and the use case for the data. 
For example, we can replace all missing values with the mean or median of the 
data, or even some easy to filter values, such as –1 using df.fillna(df.mean()),df.
fillna(df.median), or df.fillna(-1), as shown here:

Figure 1.32: Using the df.fillna function
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• We can interpolate missing values using the interpolate function:

Figure 1.33: Using the interpolate function to predict category

Other than using in-built operations, we can also perform different operations on 
DataFrames by filtering out rows with missing values in the following ways:

• We can check for slices containing missing values using the pd.isnull() function, 
or those without it using the pd.isnotnull() function, respectively:

df.isnull()

You should get the following output:

Figure 1.34: Using the .isnull function
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• We can check whether individual elements are NA using the isna function:

df[['category']].isna

This will give you the following output:

Figure 1.35: Using the isna function

This describes missing values only in pandas. You might come across different types 
of missing values in your pandas DataFrame if it gets data from different sources, for 
example, None in databases. You'll have to filter them out separately, as described in 
previous sections, and proceed.

Exercise 4: Combining DataFrames and Handling Missing Values

The aim of this exercise is to get you used to combining different DataFrames and 
handling missing values in different contexts, as well as to revisit how to create 
DataFrames. The context is to get user information about users definitely watching a 
certain webcast on a website so that we can recognize patterns in their behavior:

1. Import the numpy and pandas modules, which we'll be using:

importnumpy as np
import pandas as pd

2. Create two empty DataFrames, df1 and df2:

df1 = pd.DataFrame()
df2 = pd.DataFrame()

3. We will now add dummy information about the viewers of the webcast in a column 
named viewers in df1, and the people using the website in a column named users 
in df2. Use the following code:

df1['viewers'] = ["Sushmita", "Aditya", "Bala", "Anurag"] 
df2['users'] = ["Aditya", "Anurag", "Bala", "Sushmita", "Apoorva"]
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4. We will also add a couple of additional columns to each DataFrame. The values 
for these can be added manually or sampled from a distribution, such as normal 
distribution through NumPy:

np.random.seed(1729)
df1 = df1.assign(views = np.random.normal(100, 100, 4))
df2 = df2.assign(cost = [20, np.nan, 15, 2, 7])

5. View the first few rows of both DataFrames, still using the head method:

df1.head()
df2.head()

You should get the following outputs for both df1 and df2:

Figure 1.36: Contents of df1 and df2

6. Do a left join of df1 with df2 and store the output in a DataFrame, df, because we 
only want the user stats in df2 of those users who are viewing the webcast in df1. 
Therefore, we also specify the joining key as "viewers" in df1 and "users" in df2:

df = df1.merge(df2, left_on="viewers", right_on="users", how="left")
df.head()
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Your output should now look as follows:

Figure 1.37: Using the merge and fillna functions

7. You'll observe some missing values (NaN) in the preceding output. We will handle 
these values in the DataFrame by replacing them with the mean values in that 
column. Use the following code:

df.fillna(df.mean())

Your output will now look as follows:

Figure 1.38: Imputing missing values with the mean through fillna

Congratulations! You have successfully wrangled with data in data pipelines and 
transformed attributes externally. But to handle the sales.xlsx file that we saw 
previously, this is still not enough. We need to apply functions and operations on the 
data inside the DataFrame too. Let's learn how to do that and more in the next section.

Applying Functions and Operations on DataFrames

By default, operations on all pandas objects are element-wise and return the same type 
of pandas objects. For instance, look at the following code:

df['viewers'] = df['adult_viewers']+df['aged_viewers']+df['young_viewers']

This will add a viewers column to the DataFrame with the value for each observation 
being equal to the sum of the values in the adult_viewers, aged_viewers, and young_
viewers columns.
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Similarly, the following code will multiply every numerical value in the viewers column 
of the DataFrame by 0.03 or whatever you want to keep as your target CTR (click-
through rate):

df['expected clicks'] = 0.03*df['viewers']

Hence, your DataFrame will look as follows once these operations are performed:

Figure 1.39: Operations on pandas DataFrames

Pandas also supports several out-of-the-box built-in functions on pandas objects. 
These are listed in the following table:

Figure 1.40: Built-in functions used in pandas

Note

Remember that pandas objects are Python objects too. Therefore, we can write 
our own custom functions to perform specific tasks on them.
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We can iterate through the rows and columns of pandas objects using itertuples or 
iteritems. Consider the following DataFrame, named df:

Figure 1.41: DataFrame df

The following methods can be performed on this DataFrame:

• itertuples: This method iterates over the rows of the DataFrame in the form of 
named tuples. By setting the index parameter to False, we can remove the index as 
the first element of the tuple and set a custom name for the yielded named tuples 
by setting it in the name parameter. The following screenshot illustrates this over 
the DataFrame shown in the preceding figure:

Figure 1.42: Testing itertuples
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• iterrows: This method iterates over the rows of the DataFrame in tuples of the 
type (label, content), where label is the index of the row and content is a pandas 
Series containing every item in the row. The following screenshot illustrates this:

Figure 1.43: Testing iterrows

• iteritems: This method iterates over the columns of the DataFrame in tuples of 
the type (label,content), where label is the name of the column and content is 
the content in the column in the form of a pandas Series. The following screenshot 
shows how this is performed:

Figure 1.44: Checking out iteritems
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To apply built-in or custom functions to pandas, we can make use of the map and apply 
functions. We can pass any built-in, NumPy, or custom functions as parameters to these 
functions, and they will be applied to all elements in the column:

• map: This returns an object of the same kind as that was passed to it. A dictionary 
can also be passed as input to it, as shown here:

Figure 1.45: Using the map function

• apply: This applies the function to the object passed and returns a DataFrame. 
It can easily take multiple columns as input. It also accepts the axis parameter, 
depending on how the function is to be applied, as shown:

Figure 1.46: Using the apply function

Other than working on just DataFrames and Series, functions can also be applied to 
pandas GroupBy objects. Let's see how that works.

Grouping Data

Suppose you want to apply a function differently on some rows of a DataFrame, 
depending on the values in a particular column in that row. You can slice the DataFrame 
on the key(s) you want to aggregate on and then apply your function to that group, 
store the values, and move on to the next group.
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pandas provides a much better way to do this, using the groupby function, where 
you can pass keys for groups as a parameter. The output of this function is a 
DataFrameGroupBy object that holds groups containing values of all the rows in that 
group. We can select the new column we would like to apply a function to, and pandas 
will automatically aggregate the outputs on the level of different values on its keys and 
return the final DataFrame with the functions applied to individual rows.

For example, the following will collect the rows that have the same number of aged_
viewers together, take their values in the expected clicks column, and add them 
together:

Figure 1.47: Using the groupby function on a Series

Instead, if we were to pass [['series']] to the GroupBy object, we would have gotten a 
DataFrame back, as shown:

Figure 1.48: Using the groupby function on a DataFrame
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Exercise 5: Applying Data Transformations

The aim of this exercise is to get you used to performing regular and groupby operations 
on DataFrames and applying functions to them. You will use the user_info.json file in 
the Lesson02 folder on GitHub, which contains information about six customers.

1. Import the pandas module that we'll be using:

import pandas as pd

2. Read the user_info.json file into a pandas DataFrame, user_info, and look at the 
first few rows of the DataFrame:

user_info = pd.read_json('user_info.json')
user_info.head()

You will get the following output:

Figure 1.49: Output of the head function on user_info
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3. Now, look at the attributes and the data inside them:

user_info.info()

You will get the following output:

Figure 1.50: Output of the info function on user_info

4. Let's make use of the map function to see how many friends each user in the data 
has. Use the following code:

user_info['friends'].map(lambda x: len(x))
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You will get the following output:

Figure 1.51: Using the map function on user_info

5. We use the apply function to get a grip on the data within each column 
individually and apply regular Python functions to it. Let's convert all the values 
in the tags column of the DataFrame to capital letters using the upper function for 
strings in Python, as follows:

user_info['tags'].apply(lambda x: [t.upper() for t in x])

You should get the following output:

Figure 1.52: Converting values in tags

6. Use the groupby function to get the different values obtained by a certain attribute. 
We can use the count function on each such mini pandas DataFrame generated. 
We'll do this first for the eye color:

user_info.groupby('eyeColor')['_id'].count()

Your output should now look as follows:

Figure 1.53: Checking distribution of eyeColor
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7. Similarly, let's look at the distribution of another variable, favoriteFruit, in the 
data too:

user_info.groupby('favoriteFruit')['_id'].count()

Figure 1.54: Seeing the distribution in use_info

We are now sufficiently prepared to handle any sort of problem we might face when 
trying to structure even unstructured data into a structured format. Let's do that in the 
activity here.

Activity 1: Addressing Data Spilling

We will now solve the problem that we encountered in Exercise 1. We start by loading 
sales.xlsx, which contains some historical sales data, recorded in MS Excel, about 
different customer purchases in stores in the past few years. Your current team is only 
interested in the following product types: Climbing Accessories, Cooking Gear, First 
Aid, Golf Accessories, Insect Repellents, and Sleeping Bags. You need to read the 
files into pandas DataFrames and prepare the output so that it can be added into your 
analytics pipeline. Follow the steps given here:

1. Open the Python console and import pandas and the copy module.

2. Load the data from sales.xlsx into a separate DataFrame, named sales, and look 
at the first few rows of the generated DataFrame. You will get the following output:

Figure 1.55: Output of the head function on sales.xlsx
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3. Analyze the datatype of the fields and get hold of prepared values.

4. Get the column names right. In this case, every new column starts with a capital 
case.

5. Look at the first column, if the value in the column matches the expected values, 
just correct the column name and move on to the next column.

6. Take the first column with values leaking into other columns and look at the 
distribution of its values. Add the values from the next column and go on to as 
many columns as required to get to the right values for that column.

7. Slice out the portion of the DataFrame that has the largest number of columns 
required to cover the value for the right column and structure the values for that 
column correctly in a new column with the right attribute name.

8. You can now drop all the columns from the slice that are no longer required once 
the field has the right values and move on to the next column.

9. Repeat 4–7 multiple times, until you have gotten a slice of the DataFrame 
completely structured with all the values correct and pointing to the intended 
column. Save this DataFrame slice. Your final structured DataFrame should appear 
as follows:

Figure 1.56: First few rows of the structured DataFrame

Note

The solution for this activity can be found on page 316.
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Summary
Data processing and wrangling is the initial, and a very important, part of the data 
science pipeline. It is generally helpful if people preparing data have some domain 
knowledge about the data, since that will help them stop at the right processing point 
and use their intuition to build the pipeline better and more quickly. Data processing 
also requires coming up with innovative solutions and hacks.

In this chapter, you learned how to structure large datasets by arranging them in a 
tabular form. Then, we got this tabular data into pandas and distributed it between the 
right columns. Once we were sure that our data was arranged correctly, we combined it 
with other data sources. We also got rid of duplicates and needless columns, and finally, 
dealt with missing data. After performing these steps, our data was made ready for 
analysis and could be put into a data science pipeline directly.

In the next chapter, we will deepen our understanding of pandas and talk about 
reshaping and analyzing DataFrames for better visualizations and summarizing data. We 
will also see how to directly solve generic business-critical problems efficiently.
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Learning Objectives

By the end of this chapter, you will be able to:

• Create summaries, aggregations, and descriptive statistics from your data

• Reshape pandas DataFrames to detect relationships in data

• Build pivot tables and perform comparative analysis and tests

• Create effective visualizations through Matplotlib and seaborn

This chapter explains how to derive various descriptive statistics and generate insights and 
visualizations from your data.

Data Exploration and 
Visualization

2
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Introduction
In the previous chapter, we saw how to transform data and attributes obtained from 
raw sources into expected attributes and values through pandas. After structuring data 
into a tabular form, with each field containing the expected (correct and clean) values, 
we can say that this data is prepared for further analysis, which involves utilizing the 
prepared data to solve business problems. To ensure the best outcomes for a project, 
we need to be clear about the scope of the data, the questions we can address with it, 
and what problems we can solve with it before we can make any useful inference from 
the data.

To do that, not only do we need to understand the kind of data we have, but also the 
way some attributes are related to other attributes, what attributes are useful for us, 
and how they vary in the data provided. Performing this analysis on data and exploring 
ways we can use it, is not a straightforward task. We have to perform several initial 
exploratory tests on our data. Then, we need to interpret their results and possibly 
create and analyze more statistics and visualizations before we make a statement about 
the scope or analysis of the dataset. In data science pipelines, this process is referred to 
as Exploratory Data Analysis.

In this chapter, we will go through techniques to explore and analyze data by means of 
solving some problems critical for businesses, such as identifying attributes useful for 
marketing, analyzing key performance indicators, performing comparative analyses, and 
generating insights and visualizations. We will use the pandas, Matplotlib, and seaborn 
libraries in Python to solve these problems.

Identifying the Right Attributes
Given a structured marketing dataset, the first thing you should do is to try and build 
intuition for the data and create insights. It is also possible to make a call on whether 
a certain attribute is required for the analysis or not. The insights generated should 
instinctively agree with the values and there should be no doubts about the quality 
of the data, its interpretation, or its application for solving the business problems we 
are interested in. If some values don't make intuitive sense, we must dig deeper into 
the data, remove outliers, and understand why the attribute has those values. This is 
important in order to avoid inaccurate model creation, building a model on the wrong 
data, or the inefficient use of resources.

Before we start with the model creation, we should summarize the attributes in 
our data and objectively compare them with our business expectations. To quantify 
business expectations, we generally have target metrics whose relationships we want 
to analyze with the attributes in our data. These metrics may depend on domain 
knowledge and business acumen and are known as Key Performance Indicators (KPIs).
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Assuming that the data is stored in pandas DataFrames, this analysis can be performed 
using pandas itself, as pandas supports many functions and collections useful for 
generating insights and summaries. Most of the time, the result of these operations are 
other pandas DataFrames or Series, so it is also possible to chain multiple functions on 
top of each other in one go. Some of the most commonly used functions are as follows:

• info(): This function returns the index, datatype, and memory information of the 
DataFrame.

• describe(): This function gives descriptive summary statistics for numerical 
columns in the DataFrame.

• columns: This function returns all of the column names of the DataFrame as an 
index.

• head(n): This function returns n values in the DataFrame from the top. n is equal to 
5 by default.

• tail(n): This function returns n values in the DataFrame from the bottom. n is 
equal to 5 by default.

• groupby(col)[cols].agg_func: This function collects rows with similar values to col 
and applies agg_func to cols.

Other than these functions, we also have functions meant for pandas Series. When 
applied to DataFrames, the functions are applied to every column of the DataFrame as 
an individual series:

• unique():This function returns the list of unique values in a Series.

• count():This function returns the total number of non-null and non-NA values.

• min():This function returns the minimum value in the Series.

• max():This function returns the maximum value in the Series.

• mean():This function returns the mean of all non-null and non-NA values in the 
Series.

• median():This function returns the median of all non-null and non-NA values in the 
Series.
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• mode():This function returns the most frequently occurring value in the Series.

• quantile(x): This function returns the value at the xth quantile in the Series 
(where, x<=1). x can be passed as an array of fractions to get values at multiple 
quantiles.

Note

The value_counts(dropna=False) function is also a commonly used function, 
which shows the unique values and counts of categorical values. It works only on 
pandas Series and cannot be applied to DataFrames.

Once we have identified the attributes that we are interested in analyzing, we can see 
how these attributes vary in the dataset individually. If the number of unique values 
in a field is small, we can consider them to be categorical and obtain some groups in 
our data based on the values of these attributes directly and understand some naive 
relationships between them. If the number of unique values of an attribute is large, we 
consider the data to be continuous and analyze it in a more subjective way through 
visualizations. 

Exercise 6: Exploring the Attributes in Sales Data

The sales of some products in your company in the past few years have been increasing 
and the company wants to build a marketing strategy for them. Read the sales.csv file 
provided within the Lesson02 folder on GitHub (this is the cleaned data we prepared 
in the last chapter) and identify the KPIs for this analysis. Also, generate some insights 
with the data by using the correct attributes for each analysis:

1. Import pandas into the console and read the sales.csv file into a pandas 
DataFrame named sales, as shown:

import pandas as pd
sales = pd.read_csv('sales.csv')
sales.head()
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Your output will look as follows:

Figure 2.1: The first five rows of sales.csv

2. Now look only at the columns and their contents using the following code to 
ascertain their relevance in further analysis:

sales.columns

This gives you the following output:

Figure 2.2: The columns in sales.csv

Also, use the info function:

sales.info()

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



54 | Data Exploration and Visualization

This gives you the following output:

Figure 2.3: Information about the sales DataFrame

3. Identify the categorical fields and their distribution using the unique() function, as 
shown:

First check the Year column:

sales['Year'].unique()

You will get the following output:

Figure 2.4: The number of years the data is spread over

Then check the Product line column:

sales['Product line'].unique()
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You will get the following output:

Figure 2.5: The different product lines the data covers

Then check the Product type column:

sales['Product type'].unique()

You will get the following output:

Figure 2.6: The different types of products the data covers

Check the Product column:

sales['Product'].unique()

You will get the following output:

Figure 2.7: Different products covered in the dataset
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Check the Order method type column:

sales['Order method type'].unique()

You will get the following output:

Figure 2.8: Different ways in which people making purchases have ordered

Finally, check the Retailer country column:

sales['Retailer country'].unique()

You will get the following output:

Figure 2.9: The countries in which products have been sold

4. Now that we have analyzed the categorical values, let's get a quick summary of the 
numerical fields, using the describe function to make sure that they are relevant 
for further analysis:

sales.describe()

This gives the following output:

Figure 2.10: Description of the numerical columns in sales.csv
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As all the values show considerable variation in the data, we will keep all of them 
for further analysis.

5. Now that we have shortlisted the categorical fields that we are interested in, let's 
analyze their spread in the data and see if we need to do any filtering. Do this first 
for the Year column:

sales['Year'].value_counts()

This gives the following output:

Figure 2.11: Frequency table of the Year column

Repeat this for the Product line column:

sales['Product line'].value_counts()

This gives the following output:

Figure 2.12: Frequency table of the Product line column

Then check for the Product type column:

sales['Product type'].value_counts()

This gives the following output:

Figure 2.13: Frequency table of the Product line column
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Check for the Order method type column:

sales['Order method type'].value_counts()

This gives the following output:

Figure 2.14: Frequency table of the Product line column

Finally, check for the Retailer country column:

sales['Retailer country'].value_counts()

You should get the following output:

Figure 2.15: Frequency table of the Product line column
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As all columns occur reasonably frequently, and there are no unexplained values in 
the data so far, we can proceed without filtering the data for now.

6. Now that we have understood the spread in the categorical fields, we should also 
dig deeper into the spread of the numerical fields in the data and check whether 
we need to filter some values. We will do this by checking the quantiles of each 
categorical field:

sales.quantile([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

This gives the following output:

Figure 2.16: Spread of the numerical columns in sales.csv

7. Let's use qualitative reasoning to create some quick insights for country-wide 
statistics now. We will first take the sum across different countries by selecting 
attributes that give an idea of overall values, such as revenue, product cost, 
quantity, gross profit, and so on, instead of unit values such as Unit cost or Unit 
sale price. Use the following code:

sales.groupby('Retailer country')['Revenue','Planned revenue','Product 
cost','Quantity','Gross profit'].sum()
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You should get the following output:

Figure 2.17: Total revenue, cost, quantities sold, and profit in each country in the past four years

From the preceding figure, we can infer that Denmark made the least sales and the 
US made the most sales in the past four years. Most countries generated revenue 
of around 20,000,000 USD and almost reached their planned revenue targets.
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8. Let's now take the mean across different countries by using attributes that give 
an idea of the individual value of the product, such as unit sale price, unit cost, 
quantity, and so on. Use the following code:

sales.groupby('Retailer country')['Revenue','Planned revenue','Product 
cost','Quantity','Unit cost','Unit price','Gross profit','Unit sale 
price'].mean()

You should get the following output:

Figure 2.18: The average revenue, cost, quantity, and so on for each country

From the preceding figure, you will observe that the US, China, the UK, Finland, 
Japan, and some other countries made the highest revenue on average. Also, the 
average cost of the product is about 43 USD across all countries.
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9. Let's look at what countries were affected the worst when sales dipped. Were 
there some countries for which sales never dipped? Use the following code to 
group data by Retailer country:

sales.dropna().groupby('Retailer country')['Revenue','Planned 
revenue','Product cost','Quantity','Unit cost','Unit price','Gross 
profit','Unit sale price'].min()

You should get the following output:

Figure 2.19: The lowest price, quantity, cost prices, and so on for each country

From the preceding figure, you can infer that almost every product has at some 
point made a loss in most countries. Brazil, Spain, and Canada are some good 
exceptions.
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10. Similarly, let's now generate statistics with respect to other categorical variables, 
such as Year, Product line, Product type, and Product. Use the following code for 
the Year variable:

sales.groupby('Year')['Revenue','Planned revenue','Product 
cost','Quantity','Unit cost','Unit price','Gross profit','Unit sale 
price'].sum()

This gives the following output:

Figure 2.20: Total revenue, cost, quantities, and so on sold every year

From the above figure, it appears that revenue, profits, and quantities have 
dipped in the year 2007. However, we have seen previously that more than 90% 
of the data is from before 2007, so we should not be alarmed by this. There is 
considerable progress every year here.

11. Use the following code for the Product line variable:

sales.groupby('Product line')['Revenue','Planned revenue','Product 
cost','Quantity','Unit cost','Unit price','Gross profit','Unit sale 
price'].sum()

You should get the following output:

Figure 2.21: Total revenue, cost, quantities, and so on, generated by each product division

The preceding figure indicates that the sale of Camping Equipment is the bread 
and butter of the company.
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12. Use the following code for the Product type variable:

sales.groupby('Product type')['Revenue','Planned revenue','Product 
cost','Quantity','Unit cost','Unit price','Gross profit','Unit sale 
price'].sum()

You should get the following output:

Figure 2.22: Total revenue, cost, quantities, and so on generated by each product type

You will observe that Sleeping Bags are a major source of revenue for the 
company because the unit cost of sleeping bags is the highest. Also, the number of 
Sleeping Bags sold is the second lowest across all types. 

13. Use the following code for the Product variable:

sales.groupby('Product')['Revenue','Planned revenue','Product 
cost','Quantity','Unit cost','Unit price','Gross profit','Unit sale 
price'].mean()

You should get the following output:

Figure 2.23: Average revenue, cost, quantities, and so on generated by each method of ordering
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Observe that most sales were generated through the internet (more than all the 
other sources combined).

14. Finally, you need to identify the KPIs. Looking at the previous insights and stats 
generated, it would make sense to target Revenue as one of the KPIs for further 
analysis.

Congratulations! You have successfully explored the attributes in a dataset and 
identified the KPIs for further analysis. In the next section, we will learn how to 
generate targeted insights from the prepared data.

Generating Targeted Insights
Once we have identified the KPIs for our analysis, we can proceed to make insights with 
respect to only those variables that affect the bottom line of the KPIs.

Selecting and Renaming Attributes

After we have explored our attributes, we might feel like the variation in the data for a 
certain attribute could be understood more clearly if it were focused on individually. 
As explained in detail in the previous chapter, we can select parts of data in pandas 
through the following methods:

• [cols]: This method selects the columns to be displayed.

• loc[label]: This method selects rows by label or Boolean condition.

• loc[row_labels, cols]: This method selects rows in row_labels and their values in 
the cols columns.

• iloc[location]: This method selects rows by integer location. It can be used to 
pass a list of row indices, slices, and so on.

For example, we can select Revenue, Quantity, and Gross Profit columns from the 
United States in the sales DataFrame, as follows:

sales.loc[sales['Retailer country']=='United States', ['Revenue', 'Quantity', 
'Gross profit']].head()
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This should get you the following output:

Figure 2.24: Sub-selecting observations and attributes in pandas

Sometimes, the insight we want to deliver might not be captured in the way we want 
even after selecting it. For example, the attribute might be named differently from what 
we have seen, making the analysis harder to interpret. It is possible to rename columns 
and indexes in pandas by using the rename function.

The rename function takes a dictionary as an input, which contains the current column 
name as a key and the desired renamed attribute name as value. It also takes the axis 
as a parameter, which denotes whether the index or the column has to be renamed. 
It takes the index as the default. The following code renames the Revenue column to 
Earnings:

sales.rename({'Revenue':'Earnings'}, axis = 'columns').head()

The DataFrame will now appear as follows:

Figure 2.25: Output after using the rename function on sales
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Transforming Values

Even after sub-selecting the right features in the DataFrame and renaming them, we 
can sometimes still get lost in unnecessary details such as floating-point precision, 
instead of looking at the bigger picture. To avoid that, we can transform numerical data 
to categorical data, and vice versa, in order to make the understanding clearer. 

For example, consider the Unit cost field in sales.csv and check the spread of data in 
that column:

sales['Unit cost'].quantile([0.0, 0.25,0.5,0.75,1])

On using the above code, we get the following output:

Figure 2.26: The default spread in columns across the Unit cost field

The astype() function provides an API to coerce a pandas DataFrame column to a 
certain type:

sales['Unit cost'] = sales['Unit cost'].astype('category')

sales.dtypes

The above snippet results in the following output:

Figure 2.27: Changing the datatype of a pandas column by coercion
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We can also change the actual values of the data with something else through a custom 
transformation, and again use the map and apply functions on the DataFrame to encode 
the label into a different type of data. For instance, we can write a custom function in 
Python to transform the numeric Unit cost attribute into a categorical column:

def cat_gen(x):

    if pd.isnull(x):

        return np.nan

    elif x<=2.76:

        return "cheap"

    elif 2.76<x<=9.0:

        return "medium"

    elif 9.0<x<=34.97:

        return "moderate"

    else:

        return "expensive"

sales['Cost category'] = sales['Unit cost'].map(cat_gen)

sales['Cost category'].value_counts(dropna = True)

This will give us the following output:

Figure 2.28: Converting numerical data to categorical data using custom transformations
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Exercise 7: Targeting Insights for Specific Use Cases

A newspaper company has given you their rates for putting up advertisements in cities 
P, Q, and R. You need to compare the advertisement rates across the cities and figure 
out the cost of displaying advertisements on every day of the week in all three cities, 
and the mean advertisement prices for each day in those three cities. Let's revisit the 
methods we used in the previous chapter and use it to solve this problem:

1. Read the newpaper_prices.csv CSV file and look at it:

df = pd.read_csv('newspaper_prices.csv', index_col = 'Day') 
df

You should get the following output:

Figure 2.29: The first few rows of newspaper_prices.csv

2. Apply the sum function on the DataFrame to get the sum across different 
observations:

df.sum()

You should get the following output:

Figure 2.30: The sum of values in each column
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You will observe that Q provides the highest number of views but is also the most 
expensive.

3. Now select the columns we want and apply the mean function to them:

df[['P Cost', 'Q Cost', 'R Cost']].mean(axis = 1)

This should give you the following output:

Figure 2.31: Applying a function on a different axis

As we have taken the mean across different cities, we have received the average cost 
for each day in different cities. We can infer that the average cost of newspapers on 
Fridays, Saturdays, and Sundays is more than on Mondays, Tuesdays, and Wednesdays.

Reshaping the Data

Other than just focusing on the relevant parts of the data, we can also extract a lot 
more information from a dataset by changing how the attributes and observations are 
arranged. These reshaped datasets represent different indices, fields, and so on for 
the same data, but by analyzing them, we can understand the relationships in our data 
clearly and we can easily see what kind of values occur together in the same location 
and how. Let's consider the data in CTA_comparison.csv in the Lesson02 folder, stored in 
a DataFrame cta as follows:

cta = pd.read_csv('CTA_comparison.csv')

cta
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The DataFrame should appear as follows:

Figure 2. 32: The entire data in CTA_comparison.csv

We can reshape the DataFrame by just changing the index of the DataFrame through 
the set_index function in pandas. For example, we can set the index of the CTA_
comparison.csv data to CTA Variant using the following code:

cta.set_index('CTA Variant')

The DataFrame will now appear as follows:

Figure 2.33: Changing the index with the help of set_index
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You can also reshape data by creating a hierarchy. This can be done in pandas easily, 
by passing multiple columns to the set_index function. For instance, we can set the CTA 
Variant and views as the index of the DataFrame using the set_index method as follows:

cta.set_index(['CTA Variant', 'views'])

The DataFrame will now appear as follows:

Figure 2.34: Hierarchical Data in pandas through set_index

The same hierarchy can also be created more clearly, by passing multiple columns to 
the groupby function:

cta_views = cta.groupby(['CTA Variant', 'views']).count()

cta_views

This gives the following output:

Figure 2.35: Grouping by multiple columns to generate hierarchies
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Using this hierarchy, we can easily have a look at groups that occur only in some 
scenarios and not in others. For instance, CTA Variant B only gets 800 views in all 3 
cases, whereas variants A and C get only these two kinds of views.

It is possible to reshape this dataset further too. We can switch the indices from rows 
to columns and vice versa. This basic reshape transformation is achieved in pandas by 
using the unstack and stack functions, explained here:

• unstack(level): This function moves the row index with the name or integral 
location level to the innermost column index. By default, it moves the innermost 
row:

h1 = cta_views.unstack(level = 'CTA Variant')
h1

This gives the following output:

Figure 2.36: Example of unstacking DataFrames

We can see that the row index has changed to only views while the column has got 
the additional CTA Variant attribute as an index along with the regular time and 
sales columns.

• stack(level): This function moves the column index with the name or integral 
location level to the innermost row index. By default, it moves the innermost 
column:

h1.stack(0)
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This gives the following output:

Figure 2.37: Example of stacking a DataFrame

Now the stack function has taken the other sales and time column values to the row 
index and only the CTA Variant feature has become the column index.

Exercise 8: Understanding Stacking and Unstacking

You are the owner of a website that randomly shows advertisements A or B to users 
each time a page is loaded. If an advertisement succeeds in getting a user to click on it, 
the converted field gets the value 1, otherwise it gets 0. The data for this is present in 
the conversion_rates.csv file in the Lesson02 folder, and you need to use pandas to find 
relationships, if any, between the variables in the dataset. Create a DataFrame, df, that 
can access the conversion ratio of advertisement A as df['A']['conversion_ratio'].

Your visualization code requires the number of advertisements viewed, converted, 
and the conversion_ratio to be in the row indices and both the variants to be in the 
columns. Create a DataFrame to work in that scenario:

1. Import pandas into the console and read the conversion_rates.csv file into a 
pandas DataFrame called data, as shown here:

import pandas as pd
data = pd.read_csv('conversion_rates.csv')
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2. Look at the first few rows of the DataFrame using the head method:

data.head()

You should get the following output:

Figure 2.38: The first few rows of conversion_rates.csv

3. Group the data and count the number of conversions, storing the result in a 
DataFrame named converted:

converted = data.groupby('group').sum()
converted

You will get the following output:

Figure 2.39: Count of converted displays

4. Group the data and count the number of times each advertisement was displayed. 
Store this in a DataFrame named viewed and rename the column name to viewed:

viewed = data.groupby('group').count().rename({'converted':'viewed'}, axis 
= 'columns')
viewed
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You will get the following output:

Figure 2.40: Count of number of views

5. Combine the converted and viewed datasets in a new DataFrame, named stats, as 
shown here:

stats = converted.merge(viewed, on = 'group')
stats

This gives the following output:

Figure 2.41: Combined dataset

6. Create a new column called conversion_ratio to get the ratio of converted ads to 
the number of times the ads were displayed:

stats['conversion_ratio'] = stats['converted_x']/stats['converted_y']
stats

This gives the following output:

Figure 2.42: Adding an additional column to stats
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7. Create a DataFrame where group A's conversion rate is accessed as df['A']
['conversion_rate']. Use the stack function for this operation:

df = stats.stack()
df

This gives the following output:

Figure 2.43: Understanding the different levels of your dataset

8. Check whether you're able to access the desired value using the following code:

df['A']['conversion_rate']

You should get a value close to 0.08737.

9. Reverse the rows with the columns in the stats DataFrame with the unstack() 
function twice:

stats.unstack().unstack()

This gives the following output:

Figure 2.44: Reversing rows with columns

Congratulations! You have reshaped the data in the desired manner. You can now bring 
any data to a format that you like. pandas also provides for a simpler way to reshape 
that allows making comparisons while analyzing data very easy. Let's have a look at it in 
the next section.
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Pivot Tables

Creating a pivot table is a special case of stacking a DataFrame. The pivot function, 
which is used to create a pivot table, takes three arguments and creates a new table, 
whose row and column indices are the unique values of the respective parameters.

For example, consider the same data DataFrame used in the previous exercise:

Figure 2.45: The first few rows of the dataset being considered

We can use the pivot function to change the columns to values in group and see if a 
certain index converted it or not, as follows:

data.pivot(columns = 'group', values='converted').head()

This gives the following output:

Figure 2.46: Data after being passed through the pivot command

In the preceding figure, note that the columns and indices have changed but the 
observations individually have not. We can see that the data that had either a 0 or 1 
value remains as is, but the groups that were not considered have their remaining 
values filled in as missing.
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There is also a function called pivot_table, which aggregates fields together using 
the function specified in the aggfunc parameter and creates outputs accordingly. It is 
considered to be an alternative to aggregations such as groupby functions.

For instance, let's apply the pivot_table function to the same DataFrame to aggregate 
data:

data.pivot_table(index='group', columns='converted', aggfunc=len)

This gives the following output:

Figure 2.47: Applying pivot_table to data

Note that the use of the len argument results in columns 0 and 1 that show how many 
times each of these values appeared in each group.

Remember that, unlike pivot, it is essential to pass the aggfunc function when using the 
pivot_table function.

Visualizing Data
An important aspect of exploring data is to be able to represent the data visually. When 
data is represented visually, the underlying numbers and distribution become very easy 
to understand and differences become easy to spot. 

Plots in Python are very similar to those in any other paradigm of traditional marketing 
analytics. We can directly make use of our previous understanding of plots and use 
them in Python. pandas supports inbuilt functions to visualize the data in them through 
the plot function. You can choose which ones are which via the kind parameter to the 
plot function. Some of the most commonly used ones, as used on sales.csv, are as 
follows:

• kde or density for density plots

• bar or barh for bar plots

• box for boxplot

• area for area plots

• scatter for scatter plots
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• hexbin for hexagonal bin plots

• pie for pie plots

You can specify which values to pass as the x and y axes by specifying the column 
names as x and y in the DataFrames.

Exercise 9: Visualizing Data With pandas

Using the sales DataFrame created from the previous exercise, we will create 
visualizations to explore the distribution of the Revenue KPI. We will look at how 
different order method types influence the revenue and how it varies compare to the 
planned revenue, quantity, and gross profit year on year.

1. Import the module that we will be needing, that is, pandas.

import pandas as pd

2. Load the sales.csv file into a DataFrame named sales and have a look at the first 
few rows, as follows:

sales = pd.read_csv("sales.csv")
sales.head()

You will get the following output:

Figure 2.48: Output of sales.head()

3. Now take the Revenue field and plot it's distribution with the kde parameter as 
follows:

sales['Revenue'].plot(kind = 'kde')
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You will get the following density plot:

Figure 2.49: Distribution of revenue in sales.csv

4. Next, group the Revenue by Order method type and make a barplot:

sales.groupby('Order method type').sum().plot(kind = 'bar', y = 'Revenue')

This gives the following output:

Figure 2.50: Revenue generated through each Order method type in sales.csv
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5. Let's now group the columns by year and create boxplots to get an idea on a 
relative scale:

sales.groupby('Year')['Revenue', 'Planned revenue', 'Quantity', 'Gross 
profit'].plot(kind= 'box')

You should get the following plots:

Figure 2.51: Boxplots for Revenue, Planned Revenue, Quantity, and Gross Profit for 2004 to 2007

Figure 2.52: Boxplots for Revenue, Planned Revenue, Quantity, and Gross Profit for 2005
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Figure 2.53: Boxplots for Revenue, Planned Revenue, Quantity, and Gross Profit for 2006 and 2007

Now the plots convey the message we want to convey in a suitable way, but we don't 
have a lot of control over the plots because we are using pandas to figure things out for 
us. There are other ways to plot the data which allow us to express the data with more 
freedom. Let's look at them in this section

Visualization through Seaborn

An important kind of plot that we missed before is the histogram. We can still pass 
the kind parameter as hist in the plot function, but instead of using default pandas 
to visualize it, another library, called seaborn, is heavily used in Python. It provides a 
high-level API to easily generate top-quality plots used in a lot of domains, including 
statistics.

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



84 | Data Exploration and Visualization

You can change the environment from regular pandas/Matplotlib to seaborn directly 
through the set function of seaborn. Seaborn also supports a distplot function, which 
plots the actual distribution of the pandas series passed to it, which means no longer 
worrying about binning and other issues. To generate histograms through seaborn, we 
can pass the kde parameter as False and get rid of the distribution line:

import seaborn as sns

sns.set()

sns.distplot(sales[Gross profit'].dropna(), kde = False)

This gives the following output:

Figure 2.54: Histogram for Gross Profit through Seaborn

However, the actual power of seaborn comes with using it for advanced features such as 
the PairPlot API.

Note

You can have a look at some of the things you can do directly with seaborn at 
https://elitedatascience.com/python-seaborn-tutorial.
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Visualization with Matplotlib

Python's default visualization library is Matplotlib. Originally developed to bring 
visualization capabilities from the MATLAB academic tool into open source Python, 
Matplotlib provides low-level additional features that can be added to plots made 
from any other visualization library, because all of them—the ones used in pandas and 
seaborn—are built on top of it.

To start using Matplotlib, we first import the matplotlib.pyplot object as plt. This plt 
object becomes the basis for generating figures in Matplotlib. Every time we want to 
change the plot we want to look at, we use classes defined on this plt object and modify 
them for more, and better, data analysis.

Note

You can have a look at some of the things you can do directly with Matplotlib at 
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html.

The following is an example Matplotlib figure that illustrates the different parts of a 
plot:

Figure 2.55: Breaking down parts of a Matplotlib plot
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Some of the functions we can call on this plt object for these options are as follows:

Figure 2.56: Functions that can be used on plt

Note

A tutorial for Matplotlib is available at https://realpython.com/python-matplotlib-
guide/.

Activity 2: Analyzing Advertisements

In this activity, we will wrap up our learning from the chapter and practice exploring 
the data, generating insights, and creating visualizations. Your company has curated its 
advertisement views through different mediums and the sales made on the same day in 
Advertising.csv. Read the file, have a look at the dataset, explore some of the features, 
analyze the relationships, and visualize some of the insights in the data to get a clearer 
understanding of it:

1. Open the Jupyter Notebook and load pandas and the visualization libraries that 
you will need.

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://realpython.com/python-matplotlib-guide/
https://realpython.com/python-matplotlib-guide/


Visualizing Data | 87

2. Load the data into a pandas DataFrame named ads and look at the first few rows. 
Your DataFrame should look as follows:

Figure 2.57: The first few rows of Advertising.csv

3. Understand the distribution of the dataset using the describe function and filter 
out any irrelevant data.

4. Have a closer look at the spread of the features using the quantile function and 
generate relevant insights. You will get the following output:

Figure 2.58: The deciles of ads
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5. Look at the histograms of individual features to understand the values better. You 
should get the following outputs:

Figure 2.59: Histogram of the TV feature

Figure 2.60: Histogram of the newspaper feature
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Figure 2.61: Histogram of the radio feature

Figure 2.62: Histogram of the sales feature
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Now identify the right attributes for analysis and the KPIs.

6. Create focused, more specific, insights pertaining to the KPIs and create 
visualizations to explain relationships in the data. Understand the scope of the 
data being used and set expectations for further analysis. 

Note

The solution for this activity can be found on page 329.

Summary
In this chapter, we have explored the way data is processed and have figured 
out intuitive details about it. We can now perform advanced analysis and create 
visualizations to make processing easy to understand. We can use the knowledge that 
we have gained to solve further problems, explore hidden relationships, and do further 
analysis easily. Let's look at some applications of this with problems we can solve in the 
next chapter.
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Learning Objectives

By the end of this chapter, you will be able to:

• Describe the advantages of using unsupervised learning techniques (clustering) over more 
traditional segmentation techniques

• Perform the preprocessing steps for preparing data for clustering

• Use k-means clustering to perform customer segmentation

• Determine the properties of groups created using clustering

This chapter covers various customer segmentation methods, deals with the concepts of 
similarity and data standardization, and explains k-means clustering.

Unsupervised 
Learning: Customer 

Segmentation

3

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



94 | Unsupervised Learning: Customer Segmentation

Introduction
In the previous chapter, we saw how to build plots using the built-in function of pandas, 
and learned how to estimate the mean, median, and other descriptive statistics about 
specific consumer or product groups. 

In this chapter, we will learn about clustering, a form of unsupervised learning 
technique, and then begin a discussion of how to calculate the similarity between two 
data points. Next, we will discuss how to standardize data so that multiple data features 
can be used without one overwhelming the others. We will also go through how 
similarity can be calculated by computing the distance between data points. Finally, we 
will discuss k-means clustering, how to perform it, and how to explore the resulting 
groups. 

Customer Segmentation Methods
Customer segmentation is the act of separating (segmenting) your target customers 
into different groups based on demographic or behavioral data so that marketing 
strategies can be tailored more specifically to each group. Being able to accurately 
segment a customer population is becoming increasingly important in today's digital 
world, where products and advertisements are created to target more and more 
specific subsets of the population. It is also an important part of allocating marketing 
resources properly because, by targeting specific customer groups, you can achieve 
higher return on investment for your marketing initiatives.

Every marketing group does some amount of customer segmentation. However, 
the methods they use to do this might not always be clear. These may be based on 
intuitions and hunches about certain demographic groups, or they might be the output 
of some marketing software, where the methods used are actually obscure. There 
are advantages and disadvantages of every possible method, and understanding them 
allows you to make use of the right tool for the job. In the following sections, we will 
discuss some of the most commonly used approaches for customer segmentation and 
also discuss their pros and cons.

Traditional Segmentation Methods

There are different methods for performing customer segmentation. Probably the 
most common general method is for a marketing analyst to sit down with the data they 
have about customers, whether it's demographic or behavioral, and to try to come up 
with rough groupings based on intuitions and arbitrary thresholds. An example of this 
would be deciding to segment customers into different income tiers, based on $10,000 
increments.
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These kinds of methods have the advantage of being simple and easy to understand. 
However, this becomes much more complex when you add additional variables. 
Importantly, as you increase the number of groups in the number of variables, it 
becomes hard to choose thresholds in a way such that you don't end up with groups 
with very few customers in them. For example, how many individuals would be there in 
the group "18- to 25-year-olds making $100,000+"?

This becomes more important when looking at the behavioral data of customers. 
Creating groups based on intuition can result in underlying patterns in the data being 
overlooked. For example, there may be segments of the population that respond well 
to very specific kinds of marketing offers. If the analyst performing the segmentation 
doesn't happen to know about this specific group and the types of ads they respond 
to, they may miss out on capturing them as a unique group. For instance, a marketing 
analyst who separates customers into those who respond to offers for expensive 
products and those who respond to offers for inexpensive products could miss a group 
of customers only interested in electronics, regardless of whether they are expensive or 
inexpensive. 

Unsupervised Learning (Clustering) for Customer Segmentation

Another method for performing customer segmentation is using unsupervised learning. 
Using unsupervised learning is often a very powerful technique as it tends to pick up on 
patterns in data that might otherwise be missed. It's perfect for customer segmentation 
because it finds data points that are most like each other and groups them together, 
which is exactly what good customer segmentation techniques should do. 

Clustering is a type of unsupervised machine learning that looks for groups or 
"clusters" in data without knowing them ahead of time. The following are some of the 
advantages and disadvantages of using clustering for customer segmentation.

Here are the advantages of clustering:

• Can find customer groups that are unexpected or unknown to the analyst

• Flexible and can be used for a wide range of data

• Reduces the need for deep expertise about connections between the 
demographics of customers and behaviors

• Quick to perform; scalable to very large datasets
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Here are the disadvantages of clustering:

• Customer groups created may not be easily interpretable.

• If data is not based on consumer behavior (such as products or services 
purchased), it may not be clear how to use the clusters that are found.

As you can see, one downside of clustering is that it may find groups that don't seem 
to make a lot of sense on the surface. Often this can be fixed by using a better suited 
clustering algorithm. Determining how to evaluate and fine-tune clustering algorithms 
will be the topic of our next chapter.

Similarity and Data Standardization
For a clustering algorithm to try to find groups of customers, they need some measure 
of what it means for a customer to be similar or different. In this section, we will learn 
how to think about how similar two data points are and how to standardize data to 
prepare it for clustering.

Determining Similarity

In order to use clustering for customer segmentation (to group customers together 
with other customers who have similar traits), you first have to decide what "similar" 
means, or in other words, you need to be very specific about defining what kind of 
customers are similar. The customer traits you use should be those that are most 
related to the kind of marketing campaigns you would like to do. 

Ideally, each feature you choose should have roughly equal importance in your mind in 
terms of how well it captures something important about the customer. For example, 
segmenting customers based on the flavor of toothpaste they tend to buy may not make 
sense if you want to design marketing strategies for selling cars.

Customer behavior, such as how they have responded to marketing campaigns in the 
past, is often the most relevant kind of data. However, in the absence of this, it's often 
useful to segment customers based on other traits, such as their income and age.
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Standardizing Data

To be able to group customers based on continuous variables, we first need to rescale 
these parameters such that the data is on similar scales. Take age and income, for 
instance. These are on very different scales. It's not uncommon to see incomes that are 
different by $10,000, but it would be very odd to see two people whose ages differed by 
10,000 years. Therefore, we need to be explicit about how big a change in one of these 
variables is about the same as changing the others in terms of customer similarity. 
For example, we might say that a difference of 10 years of age between two customers 
makes those two customers as different for our purposes as if they had an income 
disparity of $10,000. However, making these kinds of determinations manually for each 
variable would be difficult. This is the reason why we typically standardize the data, to 
put them all on a standard scale.

One way to standardize parameters for clustering is to calculate their z-score, which is 
done in two steps:

1. The first step is to subtract the mean of the data from each data point. This 
centers the data around 0, to make the data easier to look at and interpret, 
although this is not strictly required for clustering.

2. The second step is to divide the parameters by their standard deviation.

The standard deviation is a measure of how spread out our points are. It is calculated by 
comparing the average of the data to each data point. Data such as income, where the 
points can be spread out by many thousands, will have much larger standard deviations 
than data, such as age, where the differences between the data points tend to be much 
smaller. The following formula is used for calculating the standardized value of a data 
point:

Figure 3.1: The standardization equation

Here, zi corresponds to the ith standardized value, x represents all values, mean(x) is the 
mean value of all x values, and std(x) is the standard deviation of the x values.

In this example, by dividing all of our ages by the standard deviation of the ages, we 
transform the data such that the standard deviation is equal to 1. When we do the same 
thing with the income, the standard deviation of the income will also be equal to 1. 
Therefore, a difference of 1 between two customers on either of these measures would 
indicate a similar level of difference between them.
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The downside of performing this kind of transformation is that the data becomes harder 
to interpret. We all have an intuitive sense of what $10,000 or 10 years means, but it's 
harder to think of what one standard deviation's worth of income means. However, we 
do this to help the machine learning algorithm, as it doesn't have the same intuitive 
understanding of the data that we do.

Note 

Because standardization depends on both the mean and standard deviation of 
your data, the standardization is specific to your population's data. For example, if 
all of your customers are seniors, one year will account for a larger distance after 
standardization than if your customers included all age groups, since the standard 
deviation in age in your population would be much lower.

Exercise 10: Standardizing Age and Income Data of Customers

In this exercise, you will deal with data pertaining to the ages and incomes of customers 
and learn how to standardize this data using z-scoring:

1. First, you need to import the packages that you will be using, namely NumPy and 
pandas. NumPy is a widely used package for scientific computing, which we will 
use to create random data. pandas is a package that allows data to be stored and 
accessed using DataFrames, which are data structures that have rows and columns 
that make dealing with data much easier. Use the following code:

import numpy as np
import pandas as pd

2. Create some data to stand in as your age and income data. Here, we have created 
each with different scales to better simulate what income and age data might 
really look like:

np.random.seed(100)
df = pd.DataFrame()
df['income'] = np.random.normal(50000, scale=10000, size=100)
df['age'] = np.random.normal(40, scale=10, size=100)
df = df.astype(int)
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We first set the random state of NumPy, so that everyone will generate the same 
data. Then we create a DataFrame, df, to hold the data. We use the np.random.
normal function to create some data with a normal distribution on different scales. 
We generate 100 numbers for income and age, and then we store them in our 
DataFrame. We then convert to int so that we end up with whole numbers.

3. Use the head function to look at the first five rows of the data, as follows:

df.head()

The data should look like this:

Figure 3.2: The printed output of the first five rows of the data

4. We can calculate the standard deviation of both columns simultaneously using 
the std function, which will return the standard deviation for all columns in our 
DataFrame:

df.std()

You should see the following output:

Figure 3.3: The standard deviation of the two columns

5. Similarly, use the mean function to calculate the means of the two columns, as 
follows:

df.mean()
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You should get the following values for income and age:

Figure 3.4: The mean of the two columns

6. Next, you need to standardize the variables using their standard deviation and 
mean. Use the following snippet:

df['z_income'] = (df['income'] - df['income'].mean())/df['income'].std()
df['z_age'] = (df['age'] - df['age'].mean())/df['age'].std()

This will create two new columns, z_income and z_age, in our DataFrame, which 
contain the standardized values of income and age.

7. Use the head function on the DataFrame again to look at the original data and their 
standardized values:

df.head()

Your output should look as follows:

Figure 3.5: The first five rows of the DataFrame after the standardized columns have been created

Note

The standardized columns should have a mix of small positive and negative values. 
They represent the number of standard deviations the original data point was from 
the mean (with positive being above the mean and negative being below it).
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8. Similarly, use the std function on the DataFrame to look at the standard deviations:

df.std()

Note that the standard deviation of the standardized columns should have a value 
of 1, as you will observe in the screenshot here:

Figure 3.6: The standard deviations of each column in the DataFrame

9. Finally, use the mean function on the DataFrame to look at the mean of all columns:

df.mean()

The mean of the standardized values should have values very close to 0 (though 
not exactly 0 due to floating point precision), as shown here:

Figure 3.7: The mean values of each column in the DataFrame

Congratulations! You've successfully standardized age and income data of customers. If 
you are to use this data for clustering, you would use the z_income and z_age columns of 
the DataFrame.
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Calculating Distance

Once the data is standardized, we need to calculate the similarity between customers. 
Typically, this is done by calculating the distance between the customers in the 
feature space. In a two-dimensional scatterplot, the Euclidean distance between two 
customers is just the distance between their points, as you can see in the following plot: 

Figure 3.8: A plot showing the Euclidean distance between two points

In the preceding plot, the length of the red line is the Euclidean distance between the 
two points. The larger this distance, the less similar the customers are. This is easier to 
think about in two dimensions, but the math for calculating Euclidean distance applies 
just as well to multiple dimensions. 

For two data points, p and q, the distance between them is calculated as follows:

Figure 3.9: Equation for calculating the Euclidean distance between two points
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Here, p = (p1+p2+...pn), q = (q1+q2+...qn), and n is the number of features.

We can therefore find the distance between customers regardless of how many 
features/dimensions we want to use.

Note

This section describes finding the Euclidean distance between two points, which is 
the most common type of distance metric to use for clustering. Another common 
distance metric is the Manhattan distance.

Exercise 11: Calculating Distance Between Three Customers

In this exercise, you will calculate the distance between three customers to learn how 
distance is calculated as well as the importance of standardization. For this, you need to 
calculate the distance between data points, both before and after standardization. The 
following is the data regarding the customers:

Figure 3.10: Table showing incomes and ages of three customers

1. First, import the math package, as shown:

import math

2. Next, create a list of incomes and ages, corresponding to the ages and incomes of 
the three customers. Use the following values:

ages = [40, 40, 30]
incomes = [40000, 30000, 40000]

3.  Calculate the distance between the first and the second customer using the 
following snippet:

math.sqrt((ages[0] - ages[1])**2 + (incomes[0] - incomes[1])**2)
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The result should be 1000.

4.  Now calculate the distance between the first and third customer using the 
following snippet:

math.sqrt((ages[0] - ages[2])**2 + (incomes[0] - incomes[2])**2)

The result should be 10. 

Note that this distance is much smaller in comparison to that obtained in the 
previous step because the difference between these two customers comes from 
their ages, where the absolute difference is much smaller than the difference in 
incomes between the first two customers.

5. Now standardize the ages and incomes using the mean and standard deviation we 
found from the previous exercise (the mean and standard deviation for age is 40 
and 10, and for income it's 50,000 and 10,000, respectively). Use the snippet given 
here:

z_ages = [(age - 40)/10 for age in ages]
z_incomes = [(income - 50000)/10000 for income in incomes]

6. Calculate the distance between the standardized scores of the first and second 
customer: 

math.sqrt((z_ages[0] - z_ages[1])**2 + (z_incomes[0] - z_incomes[1])**2)

The result should be 1.

7. Also, calculate the distance between the standardized scores of the first and third 
customer.

math.sqrt((z_ages[0] - z_ages[2])**2 + (z_incomes[0] - z_incomes[2])**2)

The result should again be 1. 

As you can see, the distances are now equivalent, because the second customer's 
income is one standard deviation away from the first customer's while having the 
same age, and the third customer's age is one standard deviation away from the first 
customer's while having the same income.
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Activity 3: Loading, Standardizing, and Calculating Distance with a Dataset

For this activity, you have been provided with a dataset named customer_interactions.
csv (https://github.com/TrainingByPackt/Data-Science-for-Marketing-Analytics/
blob/master/Lesson03/customer_interactions.csv) that contains data regarding 
the amount spent by customers on your products and the number of times they have 
interacted with your business (for instance, by visiting your website). You've been 
asked to calculate how similar the first two customers in the dataset are to each other 
based on how frequently they interact with the business and their yearly spend on your 
business. Execute the following steps to complete this activity:

1. Load the data from the customer_interactions.csv file into a pandas DataFrame, 
and look at the first five rows of data. You should see the following values:

Figure 3.11: The first few rows of the data in the customer_interactions.csv file

2. Calculate the Euclidean distance between the first two data points in the 
DataFrame.

The output should be close to 437.07.

3. Calculate the standardized values of the variables and store them in new columns 
named z_spend and z_interactions. Your DataFrame should now look like this:

Figure 3.12: The first few rows of the data after new columns are created for the standardized variables
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4. Calculate the distance between the first two data points using the standardized 
values.

You should get a final value that is close to 1.47.

Note

The solution for this activity can be found on page 333.

k-means Clustering
k-means clustering is a very common unsupervised learning technique with a very wide 
range of applications. It is powerful because it is conceptually relatively simple, scales 
to very large datasets, and tends to work quite well in practice. In the following section, 
you will learn the conceptual foundations of k-means clustering, how to apply k-means 
clustering to data, and how to deal with high-dimensional data (that is, data with many 
different variables) in the context of clustering.

Understanding k-means Clustering

k-means clustering is an algorithm that tries to find the best way of grouping data 
points into k different groups, where k is a parameter given to the algorithm. For now, 
we will choose k arbitrarily. We will revisit how to choose k in practice in the next 
chapter. The algorithm then works iteratively to try to find the best grouping. There are 
two steps to this algorithm:

1. The algorithm begins by randomly selecting k points in space to be the centroids 
of the clusters. Each data point is then assigned to the centroid that it is closest to 
it.

2. The centroids are updated to be the mean of all of the data points assigned to 
them. The data points are then reassigned to the centroid closest to them.

Step two is repeated until none of the data points change the centroid they are assigned 
to after the centroid is updated.
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One point to note here is that this algorithm is not deterministic, that is, the outcome 
of the algorithm depends on the starting locations of the centroids. Therefore, it is 
not always guaranteed to find the best grouping. However, in practice it tends to find 
good groupings while still being computationally inexpensive even for large datasets. 
k-means clustering is fast and easily scalable, and is therefore the most common 
clustering algorithm used.

Note

In the next chapter, you will learn about how to evaluate how good your grouping 
is, and explore other alternative algorithms for clustering.

Exercise 12: k-means Clustering on Income/Age Data

In this exercise, you will first standardize the age and income data from the ageinc.csv 
dataset provided within the Lesson03 folder on the GitHub repository for this book, and 
perform k-means clustering using the scikit-learn package:

1. Open your Jupyter Notebook and import the pandas package:

import pandas as pd

2. Load the ageinc.csv dataset present within the Lesson03 folder:

ageinc_df = pd.read_csv('ageinc.csv')

3. Create the standardized value columns for the income and age values and store 
them in the z_income and z_age variables, using the following snippet:

ageinc_df['z_income'] = (ageinc_df['income'] - ageinc_df['income'].
mean())/ageinc_df['income'].std()
ageinc_df['z_age'] = (ageinc_df['age'] - ageinc_df['age'].mean())/ageinc_
df['age'].std()

4. Use Matplotlib to plot the data to get a sense of what it looks like. For this, 
you need to first import pyplot. To make sure the plot shows up in the Jupyter 
Notebook, we will tell the notebook to allow Matplotlib to plot inline. Note that 
this only has to be done once per notebook where we're plotting. Finally, we will 
use a scatterplot to plot the data:

import matplotlib.pyplot as plt
%matplotlib inline

plt.scatter(ageinc_df['income'], ageinc_df['age'])
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5. Label the axes as "Income" and "Age" and use the following code to display the 
figure:

plt.xlabel('Income')
plt.ylabel('Age')
plt.show()

The resulting figure should look like this:

Figure 3.13: A scatterplot of the age and income data

6. Now use the sklearn package, a package that has numerous machine learning 
algorithms, to perform k-means clustering, using the standardized variables. Use 
the following snippet to perform k-means clustering with four clusters:

from sklearn import cluster

model = cluster.KMeans(n_clusters=4, random_state=10)
model.fit(ageinc_df[['z_income','z_age']])

In the preceding snippet, we first imported the cluster module from the sklearn 
package. Then, we defined the model to be a k-means algorithm with specific 
parameters (four clusters; the random state just ensures that everyone gets the 
same answer since the k-means algorithm is not deterministic). The final line 
fits the model to our data. We specifically only fit it to our z_income and z_age 
columns, since we don't want to use the unstandardized variables for clustering.

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



k-means Clustering | 109

7. Next, we will create a column called cluster that contains the label of the cluster 
each data point belongs to, and use the head function to inspect the first few rows. 
Consider the following snippet:

ageinc_df['cluster'] = model.labels_
ageinc_df.head()

Your output will appear as follows:

Figure 3.14: The first few rows of the data with the clusters each data point is assigned to

8. Finally, plot the data points, color, and shape, coded by which cluster they belong 
to. Use the unstandardized data to do the plotting so the variables are easier to 
interpret—since we already obtained the clustering from the standardized scores, 
this is just for visualization purposes, and the absolute value of the variables isn't 
important. We'll define the markers and colors we want to use for each cluster 
and then use a loop to plot the data points in each cluster separately with their 
respective color and shape. We then change the labels of the axes and display the 
figure:

colors = ['r', 'b', 'k', 'g']
markers = ['^', 'o', 'd', 's']

for c in ageinc_df['cluster'].unique():
  d = ageinc_df[ageinc_df['cluster'] == c]
  plt.scatter(d['income'], d['age'], marker=markers[c], color=colors[c])

plt.xlabel('Income')
plt.ylabel('Age')
plt.show()
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The final plot you obtain should look as follows:

Figure 3.15: A plot of the data with the color/shape indicating which cluster each data point  
is assigned to

Congratulations! You've successfully performed k-means clustering using the scikit-
learn package. In this exercise, we dealt with a dataset that had only two dimensions. 
In the next section, we'll take a look at how to deal with datasets containing more 
dimensions.

High-Dimensional Data

It's common to have data that has more than just two dimensions. For example, if in our 
age and income data we also had yearly spend, we would have three dimensions. If we 
had some information about how these customers responded to advertised sales, or 
how many purchases they had made of our products, or how many people lived in their 
household, we could have many more dimensions.

When we have additional dimensions, it becomes more difficult to visualize our data. 
In the previous exercise, we only had two variables, and so we could easily visualize 
data points and the clusters formed. With higher dimensional data, however, different 
techniques need to be used. Dimensionality reduction techniques are commonly used 
for this. The idea of dimensionality reduction is that data that is multi-dimensional is 
reduced, usually to two dimensions, for visualization purposes, while trying to preserve 
the distance between the points.
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We will use principal component analysis (PCA) to perform dimensionality reduction. 
PCA is a method of transforming the data. It takes the original dimensions and creates 
new dimensions that capture the most variance in the data. In other words, it creates 
dimensions that contain the most amount of information about the data, so that when 
you take the first two principal components (dimensions), you are left with most of the 
information about the data, but reduced to only two dimensions:

Figure 3.16: How PCA works

Note

There are many other uses of PCA other than dimensionality reduction for 
visualization. You can read more about PCA here: https://towardsdatascience.com/
principal-component-analysis-intro-61f236064b38.

Exercise 13: Dealing with High-Dimensional Data

In this exercise, we will deal with a dataset (three_col.csv) that has three columns. We 
will standardize the data and perform k-means clustering in a way that will scale to data 
with many columns. To visualize the data, we will perform dimensionality reduction 
using PCA:

1. Open your Jupyter Notebook and import the pandas package:

import pandas as pd

2. Read in the three_col.csv dataset present within the Lesson03 folder and inspect 
the columns:

df = pd.read_csv('three_col.csv')
df.head()
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Figure 3.17: The first few rows of the data in the three_col.csv file

3. Standardize the three columns and save the names of the standardized columns 
in a list, zcols. Use the following loop to standardize all of the columns instead of 
doing them one at a time:

cols = df.columns
zcols = []
for col in cols:
  df['z_' + col] = (df[col] - df[col].mean())/df[col].std()
  zcols.append('z_' + col)

4. nspect the new columns using the head command, as follows:

df.head()

Figure 3.18: The first few rows of the data with the standardized columns

5. Perform k-means clustering on the standardized scores. For this, you will first 
need to import the cluster module from the sklearn package. Then, define a 
k-means clustering object (model, in the following snippet) with the random_state 
set to 10 and using four clusters. Finally, we will use the fit_predict function to fit 
our k-means model to the standardized columns in our data as well as to label the 
data:

from sklearn import cluster

model = cluster.KMeans(n_clusters=4, random_state=10)
df['cluster'] = model.fit_predict(df[zcols])
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6. Now we will perform PCA on our data. For this, you need to first import the 
decomposition module from sklearn, define a PCA object with n_components 
set to 2, use this PCA object to transform the standardized data, and store the 
transformed dimensions in pc1 and pc2:

from sklearn import decomposition

pca = decomposition.PCA(n_components=2)
df['pc1'], df['pc2'] = zip(*pca.fit_transform(df[zcols]))

7. Plot the clusters in the reduced dimensionality space, using the following loop to 
plot each cluster with its own shape and color:

import matplotlib.pyplot as plt
%matplotlib inline

colors = ['r', 'b', 'k', 'g']
markers = ['^', 'o', 'd', 's']

for c in df['cluster'].unique():
  d = df[df['cluster'] == c]
  plt.scatter(d['pc1'], d['pc2'], marker=markers[c], color=colors[c])

plt.show()

Figure 3.19: A plot of the data reduced to two dimensions denoting the various clusters

Note that the x and y axes here are principal components, and therefore are not 
easily interpretable. However, by visualizing the clusters, we can get a sense of 
how good the clusters are based on how much they overlap.

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



114 | Unsupervised Learning: Customer Segmentation

8. To quickly investigate what each cluster seems to be capturing, we can look at the 
means of each of the variables in each cluster. Use the following snippet:

for cluster in df['cluster'].unique():
  print("Cluster: " + str(cluster))
  for col in ['income', 'age', 'days_since_purchase']:
    print(col + ": {:.2f}".format(df.loc[df['cluster'] == cluster, col].
mean()))

Here is a tabular representation of the output (notice the difference in the means 
between the four clusters):

Figure 3.20: The means of the three columns

Note

This is just one example of how to investigate the different clusters. You can 
also look at the first few examples of data points in each to get a sense of the 
differences. In more complex cases, using various visualization techniques to 
probe more deeply into the different clusters may be useful.

Congratulations! You have successfully used PCA for dimensionality reduction. We 
can see that each cluster has different characteristics: cluster 0 represents customers 
with high incomes, low ages, and relatively fewer days since the last purchase; cluster 
1 represents low income, low age, and more days since the last purchase; cluster 2 
represents low income, high age, and fewer days since last purchase; and cluster 3 has 
high income, high age, and more days since last purchase.
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Activity 4: Using k-means Clustering on Customer Behavior Data

Imagine that you work for the marketing department of a company that sells different 
types of wine to customers. Your marketing team launched 32 initiatives over the past 
one year to increase the sales of wine (data for which is present in the offer_info.
csv file in the Lesson03 folder). Your team has also acquired data that tells you which 
customers have responded to which of the 32 marketing initiatives recently (this data is 
present within the customer_offers.csv file). Your marketing team now wants to begin 
targeting their initiatives more precisely, so they can provide offers customized to 
groups that tend to respond to similar offers. 

Note

Some knowledge of wine might be useful for drawing the inferences at the end of 
this activity. Feel free to Google the wine types to get an idea of what they are.

Your task is to use k-means clustering to discover a few groups of customers and 
explore what those groupings are and the types of offers that customers in those 
groups tend to respond to. Execute the following steps to complete this activity:

1. Read in the data in the customer_offers.csv file and set the customer_name column 
to the index.

2. Perform k-means clustering with three clusters and save the cluster that each data 
point is assigned to.

Note

We won't standardize the data this time, because all variables are binary. We will 
talk more about other variable types in the next chapter.
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3. Use PCA to visualize the clusters. Your plot will look as follows:

Figure 3.21: A plot of the data reduced to two dimensions denoting three clusters

4. Investigate how each cluster differs from the average in each of our features. In 
other words, find the difference between the proportion of customers in each 
cluster that responded to an offer and the proportion of customers overall that 
responded to an offer, for each of the offers. Plot these differences on a bar chart. 
The outputs should appear as follows:

Figure 3.22: Plot for cluster 0
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Figure 3.23: Plot for cluster 1

Figure 3.24: Plot for cluster 2
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5. Load the information about what the offers were from offer_info.csv. For each 
cluster, find the five offers where the data points in that cluster differ most from 
the mean, and print out the varietal of those offers. You should get the following 
values:

Figure 3.25: The five offers where the cluster differs most from the mean

Note

The solution for this activity can be found on page 334.

Summary
In this chapter, we explored the idea of using unsupervised machine learning to 
perform customer segmentation. We established how to think about similarity in the 
customer data feature space and also learned the importance of standardizing data 
if they are on very different scales. Finally, we learned about k-means clustering, a 
commonly used, fast, and easily scalable clustering algorithm. 

In this chapter, we used predefined values for the number of groups we asked the 
k-means algorithms to look for. In the next chapter, we will learn about how to choose 
the number of groups, how to evaluate your groupings, and additional methods for 
using machine learning to perform customer segmentation.
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Learning Objectives

By the end of this chapter, you will be able to:

• Tune hyperparameters (such as the number of clusters) of clustering algorithms using 
various methods

• Use the mean-shift, k-mode, and k-prototype clustering techniques

• Evaluate and fine-tune clustering

This chapter covers various clustering algorithms (apart from k-means) and explains how they 
can be evaluated.

Choosing the Best 
Segmentation 

Approach

4
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Introduction
In the previous chapter, we introduced the concept of clustering, and practiced it 
using k-means clustering. However, several issues remained unresolved, such as how 
to choose the number of clusters and how to evaluate a clustering technique once the 
clusters are created. This chapter aims to expand on the content of the previous one 
and fill in some of those gaps.

There are a number of different methods for approaching the problem of choosing 
the number of clusters when using k-means clustering, some relying on judgment 
and some using more technical quantitative measures. You can even use clustering 
techniques that don’t require you to explicitly state the number of clusters; however, 
these methods have their own tradeoffs and hyperparameters that need to be tuned. 
We’ll study these in this chapter.

We also have only dealt with data that is fairly easy for k-means to deal with: continuous 
variables or binary variables. In this chapter, we’ll explain how to deal with data 
containing categorical variables with many different possible values, using the k-mode 
and k-prototype clustering methods.

Finally, we’ll learn how to tell whether one method of clustering is better than another. 
For this purpose, we want to be able to tweak the hyperparameters of a modeling 
algorithm and be able to tell whether that led to a better or worse clustering, as well as 
compare the completely different types of algorithms to each other. Here, we will learn 
how to evaluate clustering.

Choosing the Number of Clusters
In the previous chapter, we just used a predefined number of clusters, but in the real 
world, we don’t always know what number of clusters to expect. There are different 
ways of trying to come up with the correct number of clusters. In this chapter, we 
will start with two. First, we will learn about simple visual inspection, which has the 
advantages of being easy and intuitive but relies heavily on individual judgement and 
subjectivity. We will then learn about the elbow method with sum of squared errors, 
which is partially quantitative but still relies on individual judgement and is more 
abstract than choosing based on visual inspection. Later in this chapter, we will also 
learn about using the silhouette score, which removes subjectivity from the judgment 
but is also quite abstract.
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As we learn about these different methods, there is one overriding principle you 
should keep in mind: the quantitative measures only tell you how well that number 
of clusters fits the data. It does not tell you how useful those clusters are. A general 
principle is that you shouldn’t use a clustering method if the resulting clusters are 
incomprehensible. Using fewer clusters and fewer variables can often lead to easier-
to-interpret clusters. In general, real-world data is quite messy and there are a lot of 
judgment calls to be made. Learning about these methods is important to be able to tell 
how good your clusters are and to make sure your methods are well founded, but keep 
in mind that they are only one factor. Often, the differences between using a different 
number of clusters will be rather small in terms of the quantitative differences, and at 
that point you should be prepared to use your judgment on what’s best.

Simple Visual Inspection

One method of choosing the number of clusters is to simply perform clustering with a 
few different numbers and visually inspect the results. You can usually tell by looking at 
data how well separated the different clusters are. When dealing with more than two 
dimensions, we learned in the previous chapter how to visualize the data.

Clusters are better when they are well separated, without too much overlap, and when 
they capture the most densely populated parts of the data space. Too few clusters will 
often lead to plots that look like a single cluster is spanning more than one densely 
packed space. On the other hand, too many clusters will often look like two are 
competing for a single densely packed space. In higher dimensions, this can become 
complicated, because two-dimensional representations of the high dimensional space 
are not perfect, so the more dimensions there are, the poorer the visualization is of how 
the data is actually clustered.

Choosing the number of clusters on the basis of visual inspection is often appealing 
because it is a decision based on looking at what’s happening with the data most 
directly. People are usually pretty good at looking at how much different clusters 
overlap and deciding whether a given number of clusters leads to too much overlap. 
This is not a quantitative method, however, leaving a lot to subjectivity and individual 
judgment, but for many simple problems, it’s a great way to decide how many clusters 
to use.
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Exercise 14: Choosing the Number of Clusters Based on Visual Inspection

In this exercise, you will apply k-means clustering to age and income data using 
different numbers of clusters (ranging from two to six), and use visual inspection to 
evaluate the results:

1. Import pandas and load the age and income data from the ageinc.csv dataset into 
a DataFrame named ageinc_df:

import pandas as pd
ageinc_df = pd.read_csv('ageinc.csv’)

2. Now import the matplotlib library and plot a scatterplot of the age and income 
fields using the following code:

import matplotlib.pyplot as plt
%matplotlib inline

plt.scatter(ageinc_df['income’], ageinc_df['age’])
plt.xlabel('Income’)
plt.ylabel('Age’)
plt.show()

Look carefully at the plot you obtain, which should look like the one shown here:

Figure 4.1: Scatterplot of age versus income
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You may already notice that the data looks clustered into four groups. This 
should become more explicit once you’ve performed and visualized the k-means 
clustering.

3. Standardize the data, as performed in previous exercises, and store the 
standardized values in z_income and z_age columns, as follows:

ageinc_df['z_income’] = (ageinc_df['income’] - ageinc_df['income’].
mean())/ageinc_df['income’].std()
ageinc_df['z_age’] = (ageinc_df['age’] - ageinc_df['age’].mean())/ageinc_
df['age’].std()

4. Now you can perform k-means clustering using the standardized data. First, 
import the cluster module from the sklearn package and define the colors and 
shapes that you’ll use for each cluster (since you’ll be visualizing six clusters in all, 
define at least six different colors and shapes), as follows: 

from sklearn import cluster

colors = ['r’, 'b’, 'k’, 'g’, 'm’, 'y’]
markers = ['^’, 'o’, 'd’, 's’, 'P’, 'X’]

5. Then, using a for loop, cluster the data using a different number of clusters, 
ranging from two to six, and visualize the resulting plots obtained in a subplot. Use 
a separate for loop to plot each cluster in each subplot, so we can use different 
shapes for each cluster. Use the following snippet:

plt.figure(figsize=(12,16))

for n in range(2,7):
  model = cluster.KMeans(n_clusters=n, random_state=10)
  ageinc_df['cluster’] = model.fit_predict(ageinc_df[['z_income’,’z_age’]])

  plt.subplot(3, 2, n-1)
  for c in ageinc_df['cluster’].unique():
    d = ageinc_df[ageinc_df['cluster’] == c]
    plt.scatter(d['income’], d['age’], marker=markers[c], color=colors[c])

plt.show()
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You should see the following plots when this is done:

Figure 4.2: (Clockwise from top left) Scatterplots of income and age data with cluster numbers 
progressing from two to six

By observing the resulting plots, we can see that with too few clusters, we end up with 
clusters spanning pretty sparse regions in between more densely packed regions. 
However, with too many, we end up with clusters that border each other but don’t seem 
separated by a region of sparseness. Therefore, four clusters seem to capture things 
very well.
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The Elbow Method with Sum of Squared Errors

Often, it’s difficult to tell by visualization alone how many clusters should be used for 
a particular problem. Different people may disagree about the number of clusters to 
use, and there may not be a clear answer. Furthermore, dimensionality-reduction 
techniques are not perfect—they attempt to take all the information in multiple 
dimensions and reduce it to only two. In some cases, this can work well, but as the 
number of dimensions increases, the data becomes more complex, and these visual 
methods quickly reach their limitations. When this happens, it’s not easy to determine 
through visual inspection what the right number of clusters to use is. In these harder 
cases, it’s often better to reach for a more quantitative measure. One such classic 
measure is to look for an elbow in a plot of the sum of squared errors.

The sum of squared errors is the sum of the "errors" (difference between a data point 
and the centroid of its assigned cluster) for all data points, squared. It can be calculated 
with the following equation:

Figure 4.3: Equation for calculating the sum of squared errors of data points in a dataset

Here, μk is the location of the centroid of cluster k, and each xi is a data point assigned 
to cluster k. As we increase k, we should expect the sum of squared errors to decrease 
since there are more centroids. When plotted together, however, there will often be an 
"elbow" in the plot, where the "gain" in terms of reduced errors seems to slow for each 
new cluster. Hence, the plot of the sum of squared errors versus number of clusters (k) 
will look as follows:

Figure 4.4: A plot of the sum of squared errors for different values of k, showing an "elbow" (inflection 
point) at k=4
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Exercise 15: Determining the Number of Clusters Using the Elbow Method

In this exercise, you need to determine the number of clusters (between 2 and 10) that 
is best to use for the age and income data using the elbow method with the sum of 
squared errors:

1. Import pandas and load the age and income data from the ageinc.csv dataset into 
a DataFrame named ageinc_df:

import pandas as pd
ageinc_df = pd.read_csv('ageinc.csv’)

2. Standardize the data, as performed in previous exercises, and store the 
standardized values in z_income and z_age columns, as follows:

ageinc_df['z_income’] = (ageinc_df['income’] - ageinc_df['income’].
mean())/ageinc_df['income’].std()
ageinc_df['z_age’] = (ageinc_df['age’] - ageinc_df['age’].mean())/ageinc_
df['age’].std()

3. You need to calculate the sum of squared errors for clusterings using 2 to 10 
clusters, but we will start by going through the process for a clustering with k=2. 
Import the cluster module from the sklearn package. Cluster the data using k=2 
and save the resulting labels in a variable called cluster_assignments and cluster 
centers in a variable called centers, as shown here:

from sklearn import cluster

model = cluster.KMeans(n_clusters=2, random_state=10)
X = ageinc_df[['z_income’,’z_age’]].as_matrix()
model.fit_predict(X)
cluster_assignments = model.labels_
centers = model.cluster_centers_ 

4. To perform the calculation for the sum of squared errors, import numpy. Calculate 
the difference between each data point and the center of its assigned cluster, 
square it, and use the built-in NumPy sum method to sum all of these squared 
errors together using the following code:

import numpy as np

print(np.sum((X - centers[cluster_assignments]) ** 2))

The result should be 1189.7476232504307.
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5. Now import matplotlib.pyplot for plotting. Loop through k=2 to k=10, calculate 
the squared error for each, and store the result as a list in a variable called ss:

import matplotlib.pyplot as plt
%matplotlib inline

ss = []
krange = list(range(2,11))
X = ageinc_df[['z_income’,’z_age’]].values
for n in krange:
  model = cluster.KMeans(n_clusters=n, random_state=10)
  model.fit_predict(X)
  cluster_assignments = model.labels_
  centers = model.cluster_centers_
  ss.append(np.sum((X - centers[cluster_assignments]) ** 2))

Finally, create a plot with k on the x-axis and the squared error on the y-axis, as 
shown here:

plt.plot(krange, ss)
plt.xlabel("$K$")
plt.ylabel("Sum of Squares")
plt.show()

The resulting plot should look as follows:

Figure 4.5: A plot of the sum of squared errors for different values of k, showing an "elbow" (inflection 
point) at k=4
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By observing the preceding plot, you will notice that there’s a clear elbow in the plot at 
k=4, so we take that as our best number for k. Prior to that, an additional cluster gives 
us big gains in reducing the sum of squared errors. Beyond that, we seem to be getting 
diminishing returns.

Activity 5: Determining Clusters for High-End Clothing Customer Data Using 

the Elbow Method with the Sum of Squared Errors

You are working at a company that sells high-end clothing. The company has collected 
data on customer age, income, their annual spend at the business, and the number 
of days since their last purchase. The company wants to start targeted marketing 
campaigns, but doesn’t know how many different types of customers they have. 
Therefore, it wants the customer population segmented based on the data gathered and 
wants to know how many customer clusters there are and what group each customer 
falls into. You need to achieve this objective with both visualization and the elbow 
method with the sum of squared errors. Execute the following steps to complete the 
activity:

1. Read in the data from four_cols.csv.

2. Inspect the data using the head function. The first five rows are shown here:

Figure 4.6: The first five rows of the four_cols data set

3. Standardize all columns.
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4. Plot the data, using dimensionality reduction (principal component analysis). The 
plot should look as follows:

Figure 4.7: Data visualized after being reduced to two dimensions
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5. Visualize clustering with two and seven clusters. You should get plots similar to 
the ones shown here:

Figure 4.8: The dimensionality-reduced data visualized with different numbers of clusters. Each 
different color/shape indicates a different cluster
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6. Create a plot of the sum of squared errors and look for an elbow. The plot should 
appear similar to this:

Figure 4.9: A plot showing the sum of squared errors for different numbers of clusters. Notice the 
"elbow" at k=5

Note

The solution for this activity can be found on page 336.

Different Methods of Clustering
k-means is a useful clustering algorithm because it is simple, widely applicable, and 
scales very well to large datasets. However, it is not the only clustering algorithm 
available. Each clustering algorithm has its own strengths and weaknesses, so it’s often 
worth having more than one in your toolkit. We’ll look at some of the other popular 
clustering algorithms in this section.
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Mean-Shift Clustering

Mean-shift clustering is an interesting algorithm in contrast to the k-means algorithm 
because unlike k-means, it does not require you to specify the number of clusters. 
Mean-shift clustering works by starting at each data point and shifting the data points 
toward the area of greatest density. When all of the data points have found their local 
density peak, the algorithm is complete. This tends to be computationally expensive, 
so this method does not scale well to large datasets (k-means clustering, on the other 
hand, scales very well). The following diagram illustrates this:

Figure 4.10: Illustration of the workings of the mean-shift algorithm

While not needing to choose the number of clusters sounds great, there is the difficult 
issue of choosing the bandwidth that the algorithm will use, or in other words, how far 
each data point will look when searching for a higher density area. A common method 
(which we will use shortly) for determining the best bandwidth is to estimate it based 
on the distances between nearby points, but this method requires one to choose a 
quantile that determines the proportion of points to look at. In practice, this ends up 
being a very similar problem to the problem of choosing a number of clusters where 
at some point you, the user, have to make a choice of what hyperparameter to use. 
Why, then, bother with mean-shift clustering? Because despite also needing an input 
hyperparameter, the mean-shift algorithm is different than k-means and therefore will 
simply fit certain datasets better than k-means. Later in this chapter, we will learn how 
to compare these methods.

Note

There are many clustering algorithms. To read about the ones implemented 
in sklearn, see here: https://scikit-learn.org/stable/modules/clustering.
html#overview-of-clustering-methods.
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Exercise 16: Performing Mean-Shift Clustering to Cluster Data

In this exercise, we will use mean-shift clustering to cluster the age and income data of 
customers from the ageinc.csv dataset:

1. Import pandas and load the age and income data from the ageinc.csv dataset into a 
DataFrame named ageinc_df:

import pandas as pd
ageinc_df = pd.read_csv('ageinc.csv’)

2. Standardize the data and store the standardized values in the z_income and z_age 
columns, as follows:

ageinc_df['z_income’] = (ageinc_df['income’] - ageinc_df['income’].
mean())/ageinc_df['income’].std()
ageinc_df['z_age’] = (ageinc_df['age’] - ageinc_df['age’].mean())/ageinc_
df['age’].std()

3. Now you need to perform mean-shift clustering on the standardized columns 
of the data. First, import the cluster module from the sklearn package, and also 
save the standardized columns to X. Now use the estimate_bandwidth function to 
estimate the best bandwidth to use, with a quantile parameter set to 0.1. Train the 
model with the estimated bandwidth, and set bin_seeding to True (this speeds up 
the algorithm). Finally, fit the model to the data, as follows:

from sklearn import cluster

X = ageinc_df[['z_income’,’z_age’]]
bandwidth = cluster.estimate_bandwidth(X, quantile=0.1)
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)

ms.fit(X)

4. Print the resulting number of clusters by finding the number of unique labels that 
mean-shift clustering has created, as follows:

ageinc_df['cluster’] = ms.labels_
print("Number of clusters: %d" % len(ageinc_df['cluster’].unique()))
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5. Plot the resulting clustering by importing matplotlib, defining the shapes and 
colors we will use for the plot and looping through to scatter plot each cluster 
(like we did for the previous exercise):

import matplotlib.pyplot as plt
%matplotlib inline

colors = ['r’, 'b’, 'k’, 'g’]
markers = ['^’, 'o’, 'd’, 's’]

for c in ageinc_df['cluster’].unique():
  d = ageinc_df[ageinc_df['cluster’] == c]
  plt.scatter(d['income’], d['age’], marker=markers[c], color=colors[c]) 

plt.show()

The resulting plot should look as follows:

Figure 4.11: The data clustered using mean-shift clustering. Each different color/shape indicates a 
different cluster

Congratulations! You’ve successfully used mean-shift clustering to cluster age and 
income data. In the next section, we’ll learn about other clustering algorithms.
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k-modes and k-prototypes Clustering

k-means clustering is great when you have numerical data. However, when you have 
categorical data (that is, data that can’t be converted into a numerical order, such 
as race, language, and country) with more than two categories, it becomes more 
complicated. In statistics, one common strategy for dealing with categorical data is 
to use dummy variables—the practice of creating a new variable for each category—
so that each of these dummy variables is a binary. When clustering, this can lead to 
complications, because if you have many different categories, you are adding many 
different dimensions for each categorical variable and the result will often not properly 
reflect the kinds of groupings you’re looking for.

Luckily, it turns out there are two related methods that make dealing with categorical 
data more natural. k-modes is a clustering algorithm that uses the mode of a cluster 
rather than the mean, but otherwise performs just like the k-means algorithm. Since 
the mode is defined as the most common value in a set, this makes it a poor choice 
for continuous variables, which typically only have one data point associated with a 
specific number, but it’s a great choice for categorical data (and in fact, works only with 
categorical data), where many data points will fall into the same categories.

k-prototypes clustering allows you to deal with cases where there is a mix of 
categorical and continuous variables. Instead of defining a centroid for each cluster 
like k-means or k-modes, k-prototypes clustering chooses a data point to be the 
"prototype," and uses that as if it is the centroid of the cluster, updating to a new data 
point closer to the center of all data points assigned to that cluster using the same 
process as k-means or k-modes.

Exercise 17: Clustering Data Using the k-prototypes Method

For this exercise, you have been provided with the age_education.csv dataset containing 
demographic data on the age and educational attainment of 1,000 customers. You need 
to create customer segmentations with this data by applying k-prototype clustering to 
data that has a mix of categorical (education) and continuous (age) variables:

1. Import pandas and read in the data in age_education.csv:

import pandas as pd

df = pd.read_csv('age_education.csv’)

2. Inspect the data using the head function:

df.head()
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The first five rows of the data will look as follows:

Figure 4.12: The first five columns of the age and education data

3. Standardize the age variable, since it is our only numeric variable, and store the 
values in the z_age column:

df['z_age’] = (df['age’] - df['age’].mean())/df['age’].std()

4. Import Kprototypes from the kmodes module. The kmodes module expects NumPy 
matrices rather than pandas DataFrames, so convert the standardized age and 
education columns as a matrix in the X variable by using the values function. 
Perform k-prototypes clustering using three clusters, specifying the education 
column (in column index 1) as categorical, and save the result of the clustering as 
a new column called cluster:

from kmodes.kprototypes import KPrototypes

X = df[['z_age’, 'education’]].values
kp = KPrototypes(n_clusters=3)
df['cluster’] = kp.fit_predict(X, categorical=[1])

Note

If all variables were categorical, we would use k-modes instead of k-prototypes 
clustering. The code would be the same, except all references to kprototypes 
would be changed to kmodes. We will use kmodes in the next activity.

5. Create dummy variables for our categorical variable using the pandas get_dummies 
function, and concatenate them onto our DataFrame so we can analyze the 
results:

df = pd.concat([df,pd.get_dummies(df['education’])],axis=1)
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6. Plot the proportions of each educational level in each cluster in a bar plot by 
looping through each cluster, filtering to the data points in the current cluster and 
storing the result in cluster_df, calculating the proportions using the pandas mean 
function, and finally plotting them using the matplotlib barh function:

import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=(8,12))

for i in range(3):
  cluster_df = df[df['cluster’] == i]
  means = cluster_df[['college’,’highschool’,’less_than_highschool’]].
mean()

  ax = plt.subplot(3, 1, i+1)
  plt.barh([1,2,3],means)
  ax.set_yticks([1,2,3])
  ax.set_yticklabels(['college’,’highschool’,’less_than_highschool’])
  ax.set_title('Cluster ' + str(i))
plt.show()
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Your resulting plot should look as follows:

Figure 4.13: The proportions of customers of different educational levels in each cluster

Note

We use this method of visualizing the education data instead of the usual 
scatterplots because the categorical data increases the dimensionality. If we used 
dimensionality reduction to visualize the data, we would not be able to visualize 
how the clusters capture the different education levels.

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Different Methods of Clustering | 141

Congratulations! You have successfully used k-prototypes clustering to segment people 
based on their age and educational attainment levels. You can see in the preceding 
plots that cluster 0 captures college-educated customers, cluster 1 captures those with 
a high-school education, and cluster 2 captures those with less than a high-school 
education.

Activity 6: Using Different Clustering Techniques on Customer Behavior Data

In this activity, you’ve been given data about a number of different marketing 
promotions that have been offered to customers. You also have data on which offers 
each customer responded to. Based on this information, you’re asked to cluster the 
customers. Using the customer offer data (in customer_offers.csv), try using different 
clustering techniques, and visualize the results using principal component analysis:

1. Read in the data from customer_offers.csv.

2. Use mean-shift clustering (with quantile = 0.1) to cluster the data.

3. Use k-modes clustering (with k = 4) to cluster the data.

4. Use k-means clustering (with k=4 and random_state=100) to cluster the data.
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5. Using dimensionality reduction (principal component analysis), visualize the 
resulting clustering of each method. The resulting plots should look as follows:

Figure 4.14: Clustering as a result of mean-shift, k-mode, and k-means clustering

Note

The solution for this activity can be found on page 338.
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Evaluating Clustering
Being able to perform clustering in different ways is only useful if you know how to 
evaluate different clustering methods and compare them in an objective way. Subjective 
methods, such as visual inspection, can always be used, but the silhouette score is a 
powerful objective method that can be used with data that is more difficult to visualize. 
We’ll learn more about this in the next section.

Silhouette Score

The silhouette score is a formal measure of how well a clustering fits the data. The 
higher the score, the better. Typically, the score is calculated for each data point 
separately, and the average is taken as a measure of how well the model fits the whole 
dataset altogether. 

There are two main components to the score. The first component measures how well 
the data point fits into the cluster that it is assigned to. This is defined as the average 
distance between it and all other members of that same cluster. The second component 
measures how well the data point fits into the next nearest cluster. It is calculated in the 
same way by measuring the average distance between the data point and all of the data 
points assigned to the next nearest cluster. The difference between these two numbers 
can be taken as a measure of how well the data point fits into the cluster it is assigned 
to as opposed to a different cluster. Therefore, when calculated for all data points, it’s a 
measure of how good each data point fits into the particular cluster it’s been assigned 
to.

More formally, given data point xi, where axi is the average distance between that 
data point and all other data points in the same cluster and bxi is the average distance 
between data point xi and the data points in the next nearest cluster, the silhouette 
score is defined as follows:

Figure 4.15: Equation for calculating the silhouette score for a data point

Note that since we divide by the maximum of axi and bxi, we end up with a number 
between −1 and 1. A negative score means that this data point is actually on average 
closer to the other cluster, whereas a high positive score means it’s a much better fit to 
the cluster it is assigned to. When we take the average score across all data points, we 
will therefore still get a number between −1 and 1, where the closer we are to one the 
better the fit.
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Note that the silhouette score is a general measure of how well a clustering fits the 
data, so it can be used to not only compare two different models of different types, but 
also choose hyperparameters, such as the number of clusters or choice of quantile for 
calculating bandwidth for mean-shift clustering.

Exercise 18: Calculating Silhouette Score to Pick the Best k for k-means and 

Comparing to the Mean-Shift Algorithm

In this exercise, we will perform k-means clustering using different numbers of clusters 
and use the silhouette score to determine the best number of clusters to use. We will 
also compare the scores obtained using the k-means and mean-shift algorithms:

1. Import pandas and read the data in four_cols.csv:

import pandas as pd
df = pd.read_csv('four_cols.csv’)

2. Standardize the data in each column by looping through each column, and store 
the results in new columns named with a z_ prefix. Use the following code:

cols = df.columns
zcols = []
for col in cols:
  df['z_’ + col] = (df[col] - df[col].mean())/df[col].std()
  zcols.append('z_’ + col)

3. To begin the clustering, import cluster and metrics from sklearn, and import 
matplotlib:

from sklearn import cluster
from sklearn import metrics
import matplotlib.pyplot as plt
%matplotlib inline

4. Start with k-means clustering. Create a list of the numbers we’ll use for k, 2 to 10, 
and store it in a variable called krange. Create an empty list called avg_silhouettes, 
which we will use to store the silhouette scores. Loop through the values in 
krange, perform k-means clustering for each value of k, and use the silhouette_
score function from metrics to calculate the silhouette score. Append the 
silhouette score to avg_silhouettes:

krange = list(range(2,11))
avg_silhouettes = []
for n in krange:
  model = cluster.KMeans(n_clusters=n, random_state=10)
  cluster_assignments = model.fit_predict(df[zcols])
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  silhouette_avg = metrics.silhouette_score(df[zcols], cluster_
assignments)
  avg_silhouettes.append(silhouette_avg)

5. Finally, plot the result by plotting krange against avg_silhouettes:

plt.plot(krange, avg_silhouettes)
plt.xlabel("$K$")
plt.ylabel("Average Silhouette Score")
plt.show()

Your plot will look as follows:

Figure 4.16: A plot of the average silhouette score obtained for each different value for k. k=5 has the 
best value

From the preceding plot, you can infer that k=5 has the best silhouette score.
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6. Perform k-means clustering with the best k found from the preceding plot and 
print its silhouette score using the following code:

model = cluster.KMeans(n_clusters=5, random_state=10)
model.fit_predict(X)

km_silhouette = metrics.silhouette_score(df[zcols], model.labels_)

print('k-means silhouette score: ' + str(km_silhouette)) 

The k-means silhouette score should be 0.47313271918107647.

7. Now perform mean-shift clustering with a quantile of 0.1 and print the silhouette 
score of the resulting clustering, as follows:

bandwidth = cluster.estimate_bandwidth(df[zcols], quantile=0.1)
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)

ms.fit(X)
ms_silhouette = metrics.silhouette_score(df[zcols], ms.labels_)

print('mean-shift silhouette score: ' + str(ms_silhouette)) 

The mean-shift silhouette score should be 0.47287372381945053.

Note that the mean-shift silhouette score is very close to the k-means score using the 
best value of k. This means both provide an equally good fit for this dataset.

Train and Test Split

A very common concern in machine learning is the problem of overfitting. Overfitting 
is when a machine learning model fits so well to the data that was used to create it, 
that it doesn’t generalize to new data. This problem is usually a larger concern with 
supervised learning, where there is a label with the correct result expected from the 
algorithm. However, it can also be a concern with clustering when you are trying to 
choose the best clustering technique or hyperparameters that fit the data. One issue 
is that you could try out so many different kinds of parameters and algorithms that 
the one that comes out on top is the best fit just because of some small peculiarity in 
training data that isn’t true of the data more generally.
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It’s therefore considered best practice to always evaluate your models using a held out 
portion of the data called the test set. Prior to doing any kind of clustering, the data is 
divided into the training set and the test set. The model is then fit using the training 
set, meaning that the centroids are defined based on running the k-means algorithm 
on that portion of the data. Then, the test data is assigned to clusters based on those 
centroids, and the model is evaluated based on how well that test data is fit. Since the 
model has not been trained using the test set, this is just like the model encountering 
new data, and you can see how well your model generalizes to this new data, which is 
what we really care about.

Exercise 19: Using a Train-Test Split to Evaluate Clustering Performance

In this exercise, we will separate the data from four_cols.csv into a training and test 
set. We will use the training set to fit our clustering algorithms, and then evaluate them 
on the test set:

1. Import pandas and read in the data from four_cols.csv:

import pandas as pd
df = pd.read_csv('four_cols.csv’)

2. Standardize the data in each column and save the results in new columns named 
with a z_ prefix:

cols = df.columns
zcols = []
for col in cols:
  df['z_’ + col] = (df[col] - df[col].mean())/df[col].std()
  zcols.append('z_’ + col)

3. Import model_selection from sklearn to use the train_test_split function to split 
the data into training and testing sets. Store the resulting DataFrames in X_train 
and X_test:

from sklearn import model_selection

X_train, X_test = model_selection.train_test_split(df[zcols], random_state 
= 100)

4. Inspect the training and test sets using the head function:

X_train.head()
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The first five instances of the training data will appear as follows:

Figure 4.17: The first five rows of the training data

Use the following code to inspect the test set:

X_test.head()

The first five instances of the test data will appear as follows:

Figure 4.18: The first five rows of the test data

5. Check the lengths of the two sets to see how the train_test_split function works:

print('Length of training set: ' + str(len(X_train)))
print('Length of test set: ' + str(len(X_test)))

You will observe that the length of training set is 750, and that of the test set is 
250.

Note 

By default, the train_test_split function produces splits where the test data is 
25% of the data and the training is 75%. This can be altered with the test_size 
parameter.
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6. Now to perform mean-shift clustering on the data, import cluster and metrics 
from sklearn. Use a quantile of 0.1 to estimate the bandwidth on the training 
data, create a mean-shift model, ms, with the resulting bandwidth, and use the fit 
function of the mean-shift model to fit on the training data:

from sklearn import cluster
from sklearn import metrics

bandwidth = cluster.estimate_bandwidth(X_train, quantile=0.1)
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)

ms.fit(X_train)

Note 

Notice that we have been using fit_predict previously, but here we are just using 
fit. We can call the fit and predict methods separately to fit using one set of 
data and then predict (in this case, get cluster labels) with different data.

7. Use the predict method of the mean-shift model to produce cluster labels for the 
test data and store the labels in an ms_labels variable. Calculate the silhouette 
score for the test set using the silhouette_score function on these labels, store 
the values in an ms_silhouette variable, and print them out:

ms_labels = ms.predict(X_test)

ms_silhouette = metrics.silhouette_score(X_test, ms_labels)
print('mean-shift silhouette score: ' + str(ms_silhouette))

You should get the mean-shift silhouette score as 0.4702247778303609. 

8. Now perform k-means clustering with five clusters, again using the training set 
to fit and the testing set to calculate the silhouette score. Print the score for the 
clustering as follows:

model = cluster.KMeans(n_clusters=5, random_state=10)
model.fit(X_train)

km_labels = model.predict(X_test)
km_silhouette = metrics.silhouette_score(X_test, km_labels)

print('k-means silhouette score: ' + str(km_silhouette))
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You should get the k-means silhouette score as 0.4710211103342539. 

Note

The silhouette scores of the two methods should be very close. This just means 
they’re performing pretty similarly, so there is no reason based on performance to 
strongly prefer one or the other.

9. Perform mean-shift clustering again, this time with quantile set to 0.01. Again, fit 
on the training data and calculate the silhouette score on the test data:

bandwidth = cluster.estimate_bandwidth(X_train, quantile=0.01)
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)

ms.fit(X_train)

ms_labels = ms.predict(X_test)

ms_silhouette = metrics.silhouette_score(X_test, ms_labels)
print('mean-shift (low quantile) silhouette score: ' + str(ms_silhouette))

You should get the mean-shift (low quantile) silhouette score as 
0.030474668518421098. This much lower silhouette score shows that the algorithm 
performs much better with a higher value for the quantile.

Activity 7: Evaluating Clustering on Customer Behavior Data

In this activity, we will build on Activity 2, where we clustered the customer_offers 
dataset. In the previous activity, we performed clustering using different methods, 
but this time we’ll use what we’ve learned about evaluating and comparing clustering 
methods to choose the best clustering method and hyperparameters for this data. 
Execute the following steps to complete this activity:

1. Import the data from customer_offers.csv.

2. Perform a train-test split using random_state = 100.
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3. Plot the silhouette scores for k-means clustering using k ranging from 2 to 10. 
Your plot should look as follows:

Figure 4.19: Average silhouette score for different values of k

Use the plot to determine a value of k to use for k-means clustering.

4. Now use the value of k with the highest silhouette score found in the previous step 
to perform k-means clustering on the test set with random_state=100, and print out 
the silhouette score.

The expected output for k-means silhouette score is 0.115298516478898. 

5. Perform mean-shift clustering and print out its silhouette score on the test set.

The expected output for mean-shift silhouette score is 0.07308587709358311.

6. Perform k-modes clustering and print out its silhouette score on the test set.

The expected output for k-mode silhouette score is 0.11750917239635501.

Note

The solution for this activity can be found on page 339.
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Summary
It’s important to not only be able to perform clustering, but also use several different 
types of clustering algorithms and evaluate the performance of each using multiple 
methods, so that the correct tool can be used for the job. In this chapter, we learned 
various methods for choosing the number of clusters, including judgment-based 
methods such as visual inspection of cluster overlap and elbow determination using the 
sum of squared errors, and objective methods such as evaluating the silhouette score. 
Each of these methods has strengths and weaknesses—the more abstract and quantified 
the measure is, the further removed we are from understanding why a particular 
clustering seems to be failing or succeeding. However, as we have seen, making 
judgments is often difficult, especially with complex data, and this is where quantifiable 
methods, in particular the silhouette score, tend to shine. In practice, sometimes one 
measure will not give a clear answer while another does; this is all the more reason to 
have multiple tools in your toolkit.

In addition to learning new methods for evaluating clustering, we also learned 
new methods for clustering, such as the mean-shift algorithm, and k-modes and 
k-prototypes algorithms. Finally, we learned one of the basic concepts of evaluating 
a model, which will be important as we move forward: using a test set. By separating 
data into training and testing sets, we are treating the test set as if it’s new data that we 
didn’t have at the time that we developed the model. This allows us to see how well our 
model does with this new data. As we move into examples of supervised learning, this 
concept becomes all the more important.

In the next chapter, we will learn about using regression, a type of supervised learning, 
for making predictions about continuous outcomes such as revenue.
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Learning Objectives

By the end of this chapter, you will be able to:

• Describe use cases for regression modeling

• Prepare transaction data for regression

• Engineer features for regression analysis

• Perform regression modeling and interpret the results

This chapter covers regression and explains how to transform data to use for regression analysis 
and interpret the results.

Predicting Customer 
Revenue Using Linear 

Regression

5
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Introduction
In the previous lesson, you learned about applying and assessing various unsupervised 
clustering techniques to segment data into groups. In this chapter, you will learn about 
regression, a supervised learning technique used to predict continuous outcomes. We 
will begin with an explanation of regression. Then, we will discuss feature engineering 
and data cleaning for regression. Finally, we will learn how to perform regression and 
interpret the results.

Understanding Regression
Machine learning deals with supervised and unsupervised problems. In unsupervised 
learning problems, there is no historical data that tells you the correct grouping for 
data. Therefore, these problems are dealt with by looking at hidden structures in the 
data and grouping that data based on those hidden structures. This is in contrast with 
supervised learning problems, wherein historical data that has the correct grouping is 
available.

Regression is a type of supervised learning. The objective of a regression model is to 
predict a continuous outcome based on data. This is as opposed to predicting which 
group a data point belongs to (called classification, which will be covered in Chapter 7, 
Predicting Customer Churn). Because regression is a supervised learning technique, the 
model built thus requires past data where the outcome is known, so that it can learn the 
patterns in the historical data and make predictions about the new data. The following 
figure illustrates three regression problems:

Figure 5.1: Regression problems

The first two plots in the preceding figure show linear regression, where the outcome 
(on the vertical axis) is related to the predictor (on the horizontal axis) in a simple linear 
way. The third plot shows a more complex, non-linear relationship, where a curved line 
is required to capture the relationship. In this chapter, we will look at linear regression. 
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We will look at non-linear relationships in the next chapter.

Regression has many different use cases, since many problems in marketing are related 
to predicting a continuous outcome, such as predicting how much a customer will 
spend in the next year to assess customer value, or predicting the number of sales of a 
store. However, before we can perform regression, we need to transform the data and 
create features that will be useful for predicting our outcome. We will learn how to do 
this in the next section.

Feature Engineering for Regression
Feature engineering is the process of taking data and transforming it for use in 
predictions. The idea is to create features that capture aspects of what's important 
to the outcome of interest. This process requires both data expertise and domain 
knowledge—you need to know what can be done with the data that you have, as well as 
knowledge of what might be predictive of the outcome you're interested in.

Once the features are created, they need to be assessed. This can be done by 
simply looking for relationships between the features and the outcome of interest. 
Alternatively, you can test how much a feature impacts the performance of a model, to 
decide whether to include it or not. We will first look at how to transform data to create 
features, and then how to clean the data of the resulting features to ensure models are 
trained on high-quality data.

Feature Creation

In order to perform a regression, we first need data to be in a format that allows it. In 
many cases, data is in the form of customer transactions. This needs to be transformed 
into features that can be used to perform a prediction. These features then become our 
predictors.

Features are transformed versions of the data that capture what we think is possibly 
predictive of our outcome of interest. If we are trying to predict the future value of a 
customer (that is, how much we expect a customer to spend on a company's product 
in the future), examples of useful features might include the number of purchases a 
customer has made previously, the amount they have spent, or the length of time since 
their last order. 
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We'll also need to be able to link these categories to our outcome of interest. For 
example, if we are trying to build a model that will allow us to predict a customer's 
spend for the next year using data for the current year, we will need two historical 
periods to build our model: one period where we already know the customer's spend, 
and another earlier period that we will use to calculate features. We can then build 
a model that uses the features from the earlier period to predict the outcome in the 
later period. This model will then be able to use features created using data we have at 
present to predict an outcome about a future period. The following figure illustrates the 
role of feature engineering in a machine learning workflow:

Figure 5.2: Role of feature engineering in a machine learning workflow

Data Cleaning

Generally, feature creation and data cleaning go hand in hand. As you create your 
features, you might notice problems with the data that need to be dealt with. The 
following are common problems you'll notice with data:

• Data could be missing. The easiest way to deal with missing data is to just remove 
those data points that are missing some data if it makes sense to do so. Otherwise, 
you can attempt to insert a value for a missing variable based on the average or 
median of the other data points.
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• Outliers could be present. Outliers are data points that lie far outside of the 
normal range of a variable, or in other words, far from the norm. A standard 
definition is that an outlier is any data point more than three standard deviations 
above the median. They are dangerous because they might not reflect normal 
behavior but can have a disproportionate effect on our model. Again, the easiest 
method of dealing with outliers is to simply remove them. The following figure 
illustrates an outlier:

Figure 5.3: A histogram showing an outlier value

Exercise 20: Creating Features for Transaction Data

In this exercise, we have some historical transaction data from 2010 and 2011. For each 
transaction, we have a customer identifier (CustomerID), the number of units purchased 
(Quantity), the date of the purchase (InvoiceDate), and the unit cost (UnitPrice), as well 
as some other information about the item purchased. We want to prepare this data for 
a regression of customer transaction data from 2010 against the spend for 2011. We 
will therefore create features from the data for the year 2010 and compute the target 
(the amount of money spent) for 2011. When we create this model, it should generalize 
to future years for which we don't have the result yet. So, we could use 2020 data to 
predict 2021 spending behavior in advance, unless the market or business has changed 
significantly since the time period the data used to fit the model relates to:

1. Import pandas and read the data from retail_transactions.csv to a DataFrame df:

import pandas as pd

df = pd.read_csv('retail_transactions.csv')
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2. Use the head function to view the data:

df.head()

The first five instances of your dataset should appear as follows:

Figure 5.4: The first five rows of the retail transactions data

3. Convert the InvoiceDate column to date format using the following code:

df['InvoiceDate'] = pd.to_datetime(df['InvoiceDate'])

4. Calculate the revenue for each row, by multiplying Quantity with UnitPrice:

df['revenue'] = df['UnitPrice']*df['Quantity']

5. You will observe that each invoice is spread over multiple rows, one for each type 
of product purchased. These can be combined such that data for each transaction 
is on a single row. To do so, we can perform a groupby operation on InvoiceNo. 
However, before that, we need to specify how to combine those rows that are 
grouped together. Use the following code: 

operations = {'revenue':'sum',
              'InvoiceDate':'first',
              'CustomerID':'first' 
             }
df = df.groupby('InvoiceNo').agg(operations)

In the preceding code snippet, we first specified the aggregation functions that we 
will use for each column, and then performed groupby and applied those functions. 
InvoiceDate and CustomerID will be the same for all rows for the same invoice, so 
we can just take the first entry for them. For revenue, we sum the revenue across 
all items for the same invoice to get the total revenue for that invoice. 
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6. Finally, use the head function to display the result:

df.head()

Your DataFrame should now appear as follows:

Figure 5.5: The first five rows of the data after aggregating by invoice number

7. Since we will be using the year to decide which rows are being used for prediction 
and which we are predicting, create a separate column named year for the year, as 
follows:

df['year'] = df['InvoiceDate'].apply(lambda x: x.year)

8. The dates of the transactions may also be an important source of features. The 
days since a customer's last transaction as of the end of the year, or how early 
in the year a customer had their first transaction, can tell us a bit about the 
customer's purchasing history, which could be important. Therefore, for each 
transaction, we'll calculate how many days difference there is between the last day 
of 2010 and the invoice date:

df['days_since'] = (pd.datetime(year=2010, month=12, day=31) - 
                    df['InvoiceDate']).apply(lambda x: x.days)
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9. Currently, we have the data grouped by invoice, but we really want it grouped by 
customer. We'll start by calculating all of our predictors. We will again define a set 
of aggregation functions for each of our variables and apply them using groupby. 
We'll calculate the sum of revenue. For days_since, we will calculate the maximum 
and minimum number of days (giving us features telling us how long this customer 
has been active in 2010, and how recently), as well as the number of unique values 
(giving us how many separate days this customer made a purchase on). Since these 
are for our predictors, we will only apply these functions to our data from 2010, 
and we'll store it in a variable, X, and use the head function to see the results:

operations = {'revenue':'sum',
              'days_since':['max','min','nunique'],
             }

X = df[df['year'] == 2010].groupby('CustomerID').agg(operations)

X.head()

You should see the following:

Figure 5.6: The first five rows of data after aggregating by customer ID

10. As you can see from the preceding figure, because we performed multiple types 
of aggregations on the days_since column, we ended up with multi-level column 
labels. To simplify this, we can reset the names of the columns to make them 
easier to reference later. Use the following code and print the results:

X.columns = [' '.join(col).strip() for col in X.columns.values]

X.head()
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Your columns should now appear as follows:

Figure 5.7: The first five rows of data

11. We'll calculate one more feature: the average spend per order. We can calculate 
this by dividing revenue sum by days_since nunique (this is really the average spend 
per day, not per order, but we're assuming that if two orders were put in on the 
same day, we can treat them as part of the same order for our purposes):

X['avg_order_cost'] = X['revenue sum']/X['days_since nunique']

12. Now that we have our predictors, we need the outcome that we'll be predicting, 
which is just the sum of revenue for 2011. We can calculate this with a simple 
groupby and store the values in the y variable, as follows:

y = df[df['year'] == 2011].groupby('CustomerID')['revenue'].sum()

13. Now we can put our predictors and outcomes into a single DataFrame, wrangled_
df, and rename the columns to have more intuitive names. Finally, look at the 
resulting DataFrame, using the head function:

wrangled_df = pd.concat([X,y], axis=1)
wrangled_df.columns = ['2010 revenue',
                       'days_since_first_purchase',
                       'days_since_last_purchase',
                       'number_of_purchases',
                       'avg_order_cost',
                       '2011 revenue']

wrangled_df.head()
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Your DataFrame will appear as follows:

Figure 5.8: The first five rows of the data after feature creation

14. Note that many of the values in our DataFrame are NaN. This is caused by 
customers who were active either only in 2010 or only in 2011, so there is no data 
for the other year. In a future chapter, we will work on predicting which of our 
customers will churn, but for now, we'll just drop all customers not active in both 
years. Note that this means that our model will predict the spend of customers in 
the next year assuming that they remain active customers. To drop the customers 
without values, drop rows where either of the revenue columns are null, as 
follows:

wrangled_df = wrangled_df[~wrangled_df['2010 revenue'].isnull()]
wrangled_df = wrangled_df[~wrangled_df['2011 revenue'].isnull()]

15. As a final data-cleaning step, it's often a good idea to get rid of outliers. A standard 
definition is that an outlier is any data point more than three standard deviations 
above the median, so we will use this to drop customers that are outliers in terms 
of 2010 or 2011 revenue:

wrangled_df = wrangled_df[wrangled_df['2011 revenue'] < ((wrangled_
df['2011 revenue'].median()) + wrangled_df['2011 revenue'].std()*3)]
wrangled_df = wrangled_df[wrangled_df['2010 revenue'] < ((wrangled_
df['2010 revenue'].median()) + wrangled_df['2010 revenue'].std()*3)] 

16. It's often a good idea, after you've done your data cleaning and feature 
engineering, to save the new data as a new file, so that, as you're developing your 
model, you don't need to run the data through the whole feature engineering and 
cleaning pipeline each time you want to rerun your code. We can do this using 
the to_csv function. We can also take a look at our final DataFrame using the head 
function:

wrangled_df.to_csv('wrangled_transactions.csv')

wrangled_df.head()
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Your DataFrame will now look as follows:

Figure 5.9: The final cleaned data

Assessing Features Using Visualizations and Correlations

Once we have our features of interest created, the next step is to assess those features, 
which can be done in the following sequence: 

1. First, we should do a sanity check of our features to make sure their values are 
what we would expect. We can plot a histogram of each feature to make sure the 
distribution of the feature is also what we would expect. This can often reveal 
unexpected problems with our data.

2. The next step is to examine the relationships between our features and the 
outcome of interest. This can be done in the following two ways:

Creating scatterplots: Often, the most effective means of assessing a relationship 
is to create a scatterplot that plots a feature against the outcome of interest and 
see whether there is any obvious relationship.
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Assessing correlations: Another quick and effective method for assessing a 
relationship is to see whether there is a correlation between the variables. 
Correlations are linear relationships between two variables. They can be positive 
(as one variable increases, the other increases) or negative (as one increases, the 
other decreases). Correlation can be calculated easily using statistical packages, 
resulting in a single number that can often reveal whether there is a strong 
relationship between two variables. The following figure illustrates the different 
correlations, from perfect positive to perfect negative correlation:

Figure 5.10: A visualization of the different correlations

Exercise 21: Examining Relationships between Predictors and Outcome

In this exercise, we will use the features we calculated in the previous exercise and 
see whether these variables have any relationships with our outcome of interest (sales 
revenue from customers in 2011):

1. Use pandas to import the data you saved at the end of the last exercise, using 
CustomerID as the index:

import pandas as pd

df = pd.read_csv('wrangled_transactions.csv', index_col='CustomerID')
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2. The seaborn library has a number of nice plotting features. Its pairplot function 
will plot the histograms and pair-wise scatterplots of all of our variables in 
one line, allowing us to examine both the distributions of our data and the 
relationships between the data points easily. Use the following code:

import seaborn as sns
%matplotlib inline

sns.pairplot(df)

You will get the following plot:

Figure 5.11: The seaborn pairplot of the entire dataset

In the preceding plot, the diagonal shows a histogram for each variable, whereas 
each row shows the scatterplot between one variable and each other variable. The 
bottom row of figures shows the scatterplots of the 2011 revenue (our outcome 
of interest) against each of our other variables. Because the datapoints are 
overlapping and there is a fair amount of variance, the relationships don't look 
very clear-cut in the visualizations.
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3. Therefore, we can use correlations to help us interpret relationships. The corr 
pandas function will generate correlations between all of the variables in a 
DataFrame:

df.corr()

Your output should appear as follows:

Figure 5.12: The correlations between each variable and each other variable in the dataset.

Again, we can look at the last row to see the relationships between our predictors 
and outcome of interest (2011 revenue). Positive numbers indicate a positive 
relationship—for instance, the higher the 2010 revenue from a customer, the 
greater the expected revenue from them in 2011 should be. Negative numbers 
mean the reverse—for example, the more days there have been since a customer's 
last purchase, the lower we would expect the 2011 revenue from them to be. Also, 
the higher the absolute number, the stronger the relationship.

Activity 8: Examining Relationships Between Storefront Locations and 

Features about Their Area

For this activity, you've been provided with data on a number of storefront locations 
of a company, and information about the surrounding area. This information includes 
the revenue of the storefront at each location, the age of the location in years, and 
information about the surrounding area (in a 20-mile radius), such as the number of 
competitors, the median income of the area, the number of members enrolled on the 
company's loyalty rewards program living in the area, and the population density of the 
area. You've been asked to explore this data and look for how these features are related 
to the revenue of the storefront in that location. Use correlations and visualizations to 
explore the data. Follow these steps to complete the activity:
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1. Load the data from location_rev.csv and take a look at the data. Your data should 
appear as follows:

Figure 5.13: The first five rows of the location revenue data

2. Use seaborn's pairplot function to visualize the data and its relationships. The 
plots should appear as shown here:

Figure 5.14: The seaborn pairplot of the entire dataset
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3. Finally, use correlations to investigate the relationship between the different 
variables and location revenue. Your DataFrame should appear as follows:

Figure 5.15: The correlations between each variable and each other variable in the dataset

Note

The solution for this activity can be found on page 341.

Performing and Interpreting Linear Regression
Linear regression is a type of regression model that uses linear relationships between 
predictors and the outcome to predict the outcome. Linear regression models can be 
thought of as a line running through the feature space that minimizes the distance 
between the line and the data points. This is best visualized when there is a single 
predictor (see Figure 5.14), where it is equivalent to drawing a line of best fit on a 
scatterplot between the two variables but can be generalized to many predictors:

Figure 5.16: A visualization of a linear regression line (red) fit to data (blue data points)
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The line is generated by trying to find the line that best minimizes the error (difference) 
between the line and the data points. We'll learn more about types of errors in the next 
chapter, where we'll learn to use them to evaluate models, but it's important to note 
that they are also used in the process of fitting the model.

One of the big benefits of linear regression is that it is a very simple model. The model 
can be described in a simple equation, as follows:

Y = a + b1X1 + b2X2 … biXi

Here, Y is the predicted value of the outcome variable, a is the intercept (where the line 
crosses the x-axis), each X is the value of a variable, and each b is the respective weight 
assigned to that variable.

Advantages: A big advantage of this simplicity is that it makes the model easy to 
interpret. By looking at the coefficients, we can easily see how much we would predict 
Y to change for each unit change in the predictor. For example, if we had a model 
predicting sales revenue from each customer for the next year and the coefficient for 
the number of purchases in the previous year predictor was 10, we can say that for each 
purchase in the previous year, we could expect the revenue from a customer to be $10 
higher.

Disadvantages: Linear regression models also have significant weaknesses that stem 
from their simplicity. They can only capture linear relationships, while relationships in 
the real world are often more complex. Linear models assume that, no matter how high 
the value of a predictor is, adding more to it will have the same effect as if the predictor 
was lower. In reality, this is often not the case. If a product appeals to customers in a 
middle-income range, we would expect that a boost in income for a customer with low 
income would increase sales to that customer, while a boost in income for a customer 
with high income could very well decrease sales to that customer. This would be a 
non-linear relationship:

Figure 5.17: Some examples of linear and non-linear relationships
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In addition to non-linear relationships, linear models are unable to capture interactions 
between variables easily. In statistics, an interaction is a situation in which, when two 
variables are combined, their effect is larger than (or less than) the sum of their effect 
alone. For example, it could be the case that while television advertisements and radio 
advertisements both have a positive effect on sales in an area, when both are done 
at once, the sum of their effect is less than the effect each would have alone due to 
saturating the market with ads. Linear models don't have a built-in way of dealing 
with these kinds of effects, since they assume a simple linear relationship between the 
predictors and the outcome.

This does not mean that linear models are completely unable to account for non-linear 
relationships or interactions. By performing transformations on predictors, a non-linear 
relationship can be turned into a linear one, and interaction terms can be created by 
multiplying two predictors together; they can then be added to the model. However, 
this can be difficult and time-consuming to do, and increases the complexity of the 
model, which makes it harder to interpret, thereby eliminating many of the benefits of 
using linear models to begin with.

Exercise 22: Building a Linear Model Predicting Customer Spend

In this exercise, we will build a linear model on customer spend using the features 
created in Exercise 20, Creating Features for Transaction Data:

1. Import pandas and read in the data from wrangled_transactions.csv with 
CustomerID as the index:

import pandas as pd
df = pd.read_csv('wrangled_transactions.csv', index_col='CustomerID')

2. Look at the correlations between the variables again using the corr function:

df.corr()

Your DataFrame will look as follows:

Figure 5.18: The correlations between each pair of variables
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Recall that there is only a weak relationship between days_since_first_purchase 
and 2011 revenue—we will therefore not include that predictor in our model.

3. Store the predictor columns and outcome columns in the X and y variables, 
respectively:

X = df[['2010 revenue',
       'days_since_last_purchase',
       'number_of_purchases',
       'avg_order_cost'
       ]]
y = df['2011 revenue']

4. Use sklearn to perform a train-test split on the data, so that we can assess the 
model on a dataset it was not trained on, as shown here:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 
100)

5. Import LinearRegression from sklearn, create a LinearRegression model, and fit it 
on the training data:

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train,y_train)

6. Examine the model coefficients by checking the coef_ property. Note that these 
are in the same order as our X columns: 2010 revenue, days_since_last_purchase, 
number_of_purchases, and avg_order_cost:

model.coef_

This should result in an array with the values 4.14, -1.66, 394.96, and -0.49.

7. Check the intercept term of the model by checking the intercept_ property:

model.intercept_

This should give a value of 538.74. From steps 6 and 7, we can arrive at the model's 
full equation:

2011 revenue = 538.74 + 4.14*(2010 revenue) – 1.66*(days_since_last_purchase) + 
394.96*(number_of_purchases) – 0.49*(avg_order_cost)
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8. We can now use the fitted model to make predictions about a customer outside 
of our dataset. Make a DataFrame that holds data for one customer, where 2010 
revenue is 1,000, the number of days since the last purchase is 20, the number 
of purchases is 2, and the average order cost is 500. Have the model make a 
prediction on this one customer's data:

single_customer = pd.DataFrame({
    '2010 revenue': [1000],
    'days_since_last_purchase': [20],
    'number_of_purchases': [2],
    'avg_order_cost': [500]
})

model.predict(single_customer)

The result should be an array with a single value of 5197.79217043, indicating the 
predicted 2011 revenue for a customer with this data.

9. We can plot the model's predictions on the test set against the true value. First, 
import matplotlib, and make a scatterplot of the model predictions on X_test 
against y_test. Limit the x and y axes to a maximum value of 10,000 so that we get 
a better view of where most of the data points lie. Finally, add a line with slope 1, 
which will serve as our reference—if all of the points lie on this line, it means we 
have a perfect relationship between our predictions and the true answer:

import matplotlib.pyplot as plt
%matplotlib inline

plt.scatter(model.predict(X_test),y_test)
plt.xlim(0,10000)
plt.ylim(0,10000)
plt.plot([0, 10000], [0, 10000], 'k-', color = 'r')
plt.xlabel('Model Predictions')
plt.ylabel('True Value')
plt.show()
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Your plot will look as follows:

Figure 5.19: The model predictions plotted against the true values

In the preceding plot, the red line indicates where points would lie if the 
prediction was the same as the true value. Since many of our points are quite 
far from the red line, this indicates that the model is not completely accurate. 
However, there does seem to be some relationship, with higher model predictions 
having higher true values.

10. To further examine the relationship, we can use correlation. From scipy, we 
can import the pearsonr function, which calculates the correlation between two 
arrays, just like pandas did for the whole of our DataFrame. We can use it to 
calculate the correlation between our model predictions and the true value as 
follows:

from scipy.stats.stats import pearsonr

pearsonr(model.predict(X_test),y_test)
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You should get two numbers returned: (0.69841798296908, 2.1789700999502437e-
28). The first number is the correlation, which is close to 0.7, indicating a strong 
relationship. The second number is the p-value, which indicates the probability 
that you would see a relationship this strong if the two sets of numbers were 
unrelated—the very low number here means that this relationship is unlikely to be 
due to chance.

Note

Note that R-squared is another common metric that is used to judge the fit of a 
model and is calculated by simply squaring the correlation between the model's 
prediction and the actual result. We will learn more about it in Chapter 6, Other 
Regression Techniques and Tools for Evaluating Regression Models.

Activity 9: Building a Regression Model to Predict Storefront Location 

Revenue

You have data on the revenue and area of a bunch of storefronts at various locations. 
You're asked to build a model that can (1) describe the relationship between revenue 
and factors related to the storefront's location, and (2) can predict the revenue of a 
store based on its location and age. Build a linear regression model to predict storefront 
location revenue based on information about the area the storefront is located in and 
explore the model coefficients:

1. Import the data from location_rev.csv and view the first few rows, which should 
look as follows:

Figure 5.20: The first five rows of the location revenue data
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2. Create a variable, X, with the predictors in it, and store the outcome (revenue) in a 
separate variable, y.

3. Split the data into a training and test set. Use random_state = 100.

4. Create a linear regression model and fit it on the training data.

5. Print out the model coefficients.

6. Print out the model intercept.

7. Produce a prediction for a location that has 3 competitors; a median income of 
30,000; 1,200 loyalty members; a population density of 2,000; and a location age of 
10. The result should be an array with a single value of 27573.21782447, indicating 
the predicted revenue for a customer with this data.

8. Plot the model's predictions versus the true values on the test data. Your plot 
should look as follows:

Figure 5.21: The model predictions plotted against the true value

9. Calculate the correlation between the model predictions and the true values of the 
test data.

The result should be (0.9061597827907563, 1.1552714895198058e-94).
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Summary
In this chapter, we learned about regression, a supervised learning technique used to 
predict continuous outcomes. We discussed what regression is, and how to approach 
feature engineering and data cleaning for regression. We also discussed how to perform 
linear regression, and how to interpret the results.

In the next chapter, we will explore how to evaluate regression models in more depth, 
and will also explore types of regression other than linear regression.
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Learning Objectives

By the end of this chapter, you will be able to:

• Calculate mean absolute error and root mean squared error, which are common 
measures of the accuracy of a regression model

• Use evaluation metrics or lasso regression to perform feature selection for linear models

• Use tree-based regression models (regression trees and random forest regression)

• Compare the accuracy of different regression models

This chapter covers other regression techniques such as lasso regression, and explains how to 
evaluate various regression models using common measures of accuracy.

Other Regression 
Techniques and Tools 

for Evaluation

6
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Introduction
In the previous chapter, we learned how to prepare data for regression modeling. We 
also learned how to apply linear regression to data and interpret the results.

In this chapter, we will build on this knowledge by learning how to evaluate a model. 
This will be used to choose which features to use for a model, as well as to compare 
different models. Then, we will learn about using lasso regression for feature selection. 
Finally, we will learn about tree-based regression methods, and why they sometimes 
outperform linear regression techniques.

Evaluating the Accuracy of a Regression Model
In order to evaluate regression models, we first need to define some metrics. The 
common metrics used to evaluate regression models rely on the concepts of residuals 
and errors, which are quantifications of how much a model mispredicts a particular 
data point. In the following sections, we will first learn about residuals and errors. We 
will then learn about two evaluation metrics, mean absolute error (MAE) and root 
mean squared error (RMSE), and how they are used to evaluate regression models.

Residuals and Errors

An important concept in understanding how to evaluate regression models is the 
residual. The residual refers to the difference between the value predicted by the 
model and the true value for a data point. It can be thought of as by how much your 
model missed a particular value. The following diagram illustrates this:

Figure 6.1: Estimating the residual
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The residual is taken to be an estimate of the error of a model, where the error is the 
difference between the true process underlying the data generation and the model. We 
can’t directly observe the error because we don’t know the true process, and therefore, 
we use the residual values as our best guess at the error. For this reason, error and 
residual are closely related and are often used interchangeably.

Mean Absolute Error

There are multiple ways to use residuals to evaluate a model. One way is to simply take 
the absolute value of all residuals and calculate the average. This is called the mean 
absolute error (MAE), and can intuitively be thought of as the average difference you 
should expect between your model’s predictions and the true value: 

Figure 6.2: Equation for calculating the MAE of a model

In the preceding equation, yj is the true value of the outcome variable for data point 
j, and ŷj is the prediction of the model for that data point. By subtracting these terms 
and taking the absolute value, we get the residual. n is the number of data points, and 
thus by summing over all data points and dividing by n, we get the mean of the absolute 
error.

Therefore, a value of zero would mean that your model predicts everything perfectly, 
and larger values mean a less accurate model. If we have multiple models, we can look 
at the MAE and prefer the model with the lower value.

Root Mean Squared Error

One issue with the MAE is that it accounts for all errors equally. For many real-world 
applications, small errors are okay and expected, whereas large errors could lead to 
larger issues. However, with MAE, two medium-sized errors could add up and outweigh 
one large error. This means that the MAE may prefer a model that is fairly accurate 
for most predictions but is occasionally extremely inaccurate over a model with more 
consistent errors over all predictions. For this reason, instead of using the absolute 
error, a common technique is to use the squared error. 
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By squaring the error term, large errors are weighted more heavily than small ones that 
add up to the same total amount of error. If we then try to optimize the mean squared 
error rather than the mean absolute error, we will end up with a preference for models 
with more consistent predictions, since those large errors are going to be penalized so 
heavily. The following figure illustrates how the squared error grows more quickly than 
the absolute error, as the size of the residual increases:

Figure 6.3: Squared error versus absolute error

One downside of this, however, is that the error term becomes harder to interpret. 
The MAE gives us an idea of how much we should expect the prediction to differ from 
the true value on average, while the mean squared error is more difficult to interpret. 
Therefore, it is common to take the route of the mean squared error, resulting in the 
root mean squared error (RMSE), as shown by the following equation:

Figure 6.4: Equation for calculating the RMSE of a model

Exercise 23: Evaluating Regression Models of Location Revenue Using MAE 

and RMSE

In this exercise, you will calculate both MAE and RMSE for models built using the 
storefront location revenue data used in Chapter 5. We will compare models built using 
all of the predictors to a model built excluding one of the predictors:
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1. Import pandas and use it to create a DataFrame from the data in location_rev.csv. 
Call this DataFrame df, and view the first five rows using the head function:

import pandas as pd

df = pd.read_csv('location_rev.csv’)
df.head()

You should see the following output:

Figure 6.5: The first five rows of the data in location_rev.csv

2. Import train_test_split from sklearn. Define the y variable as revenue, and X as 
num_competitors, median_income, num_loyalty_members, population_density, and 
location_age. Perform a train-test split on the data, using random_state=15, and 
save the results in X_train, X_test, y_train, and y_test, as shown:

from sklearn.model_selection import train_test_split

X = df[['num_competitors’,
        'median_income’,
        'num_loyalty_members’,
        'population_density’,
        'location_age’
        ]]

y = df['revenue’]

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 
15)
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3. Import LinearRegression from sklearn, and use it to fit a linear regression model 
to the training data:

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train,y_train)

4. Get the model’s predictions for the X_test data, and store the result in a variable 
called predictions:

predictions = model.predict(X_test)

5. Calculate the error by calculating the difference between predictions and y_test:

error = predictions - y_test

6. Use the error to calculate both the RMSE and the MAE, and print these values out. 
Use the following code:

rmse = (error**2).mean()**.5
mae = abs(error).mean()

print('RMSE: '+ str(rmse))
print('MAE: '+ str(mae))

You’ll receive the following output:

RMSE: 5133.736391468814

MAE: 4161.387875602789

7. Instead of calculating the RMSE and the MAE ourselves, we can import functions 
from sklearn to do it for us. Note that sklearn only contains a function to calculate 
the mean squared error, so we need to take the root of this value to get the RMSE. 
Use the following code:

from sklearn.metrics import mean_squared_error, mean_absolute_error
print('RMSE: ' + str(mean_squared_error(predictions, y_test)**0.5))
print('MAE: ' + str(mean_absolute_error(predictions, y_test)))

This should result in the same output as when we calculated these values 
ourselves (see step 6).
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8. Now, we’ll rebuild the model after dropping n_competitors from the predictors and 
evaluate the new model. Create X_train2 and X_test2 variables by dropping num_
competitors from X_train and X_test. Train a model using X_train2 and generate 
new predictions from this model using X_test2:

X_train2 = X_train.drop('num_competitors’, axis=1)
X_test2 = X_test.drop('num_competitors’, axis=1)

model.fit(X_train2, y_train)
predictions2 = model.predict(X_test2)

9. Calculate the RMSE and MAE for the new model’s predictions and print them out, 
as follows:

print('RMSE: ' + str(mean_squared_error(predictions2, y_test)**0.5))
print('MAE: ' + str(mean_absolute_error(predictions2, y_test)))

This should result in the following output:

RMSE: 5702.030002037039

MAE: 4544.416946418695

Note that both of these values are higher than the values we calculated for the previous 
model. This means that dropping num_competitors from our model increased the error 
in our model on the test set. In other words, our model was more accurate when it 
contained num_competitors. Thus, we can see how the MAE or the RMSE can be used to 
determine which features it is important to have in a model and those that have little 
impact on performance and can therefore be left out.

Activity 10: Testing Which Variables are Important for Predicting Responses to 

a Marketing Offer

You’ve been given some data about a company’s marketing campaign, which offered 
discounts for various products. You are interested in building a model to predict the 
number of responses to the offer, and have information about how much discount the 
offer included (offer_discount), how many customers the offer reached (offer_reach), 
and a value for the offer quality that the marketing team assigned to that offer (offer_
quality). You want to build a model that is accurate but does not contain unnecessary 
variables. Use the RMSE to evaluate how the model performs when all variables are 
included, and compare this to what happens when each variable is dropped from the 
model. Follow the steps given here:
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1. Import pandas, read in the data from offer_responses.csv, and use the head 
function to view the first five rows of the data. Your output should appear as 
follows:

Figure 6.6: The first five rows of the offer_responses data

2. Import train_test_split from sklearn and use it to split the data into a training 
and test set, using responses as the y variable and all others as the predictor (X) 
variables. Use random_state=10 for the train-test split.

3. Import LinearRegression and mean_squared_error from sklearn. Fit a model to the 
training data (using all of the predictors), get predictions from the model on the 
test data, and print out the calculated RMSE on the test data. The RMSE with all 
variables should be approximately 966.2461828577945.

4. Create X_train2 and X_test2 by dropping offer_quality from X_train and X_test. 
Train and evaluate the RMSE of a model using X_train2 and X_test2. The RMSE 
without offer_quality should be 965.5346123758474.

5. Perform the same sequence of steps from step 4, but this time dropping offer_
discount instead of offer_quality. The RMSE without offer_discount should be 
1231.6766556327284.

6. Perform the same sequence of steps but this time dropping offer_reach. The 
RMSE without offer_reach should be 1185.8456831644114.

Note

The solution for this activity can be found on page 344.
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Using Regularization for Feature Selection
In the previous section, we saw how an evaluation metric such as the RMSE can be 
used to decide whether a variable should be included in a model or not. However, this 
method can be cumbersome when there are many variables involved.

When a model contains extraneous variables (variables that are not related to the 
outcome of interest), it can become more difficult to interpret the model. It can also 
lead to overfitting, where the model may change drastically if you use a different subset 
of the data to train the model. Therefore, it is important to select only those features 
that are related to the outcome for training the model.

One common way to select which features will be used by a model is to use 
regularization. The idea of regularization is that the model will be asked not only to 
try to predict the training points as accurately as possible, but will have the additional 
constraint of trying to minimize the weight that it puts on each of the variables. With 
some forms of regularization, this leads to some variables being dropped entirely. 
Specifically, a type of model called lasso regression uses a form of regularization that 
encourages the model to drop variables that are not useful for production. Other 
than using regularization to find the coefficients for the model, it is just like ordinary 
linear regression, resulting in a model that can be written down as a simple equation. 
Therefore, this type of model is useful for feature selection for linear regression models.

Exercise 24: Using Lasso Regression for Feature Selection

For this exercise, you’ve been given data on the revenue of stores at different locations, 
and a series of 20 scores based on internal metrics. You aren’t told what the scores 
mean, but are asked to build a predictive model that uses as few of these as possible 
without sacrificing the ability to predict the location revenue:

1. Import pandas, read the data from 20scores.csv into a DataFrame called df, and 
display the first five rows of data using the head function:

import pandas as pd

df = pd.read_csv('20scores.csv’)
df.head()
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You should see the following output:

Figure 6.7: The first five rows of the 20scores.csv data

2. Import train_test_split and perform a train-test split on the data with random_
state=10, storing revenue in the y variable and all other features in the X variable, 
as shown:

from sklearn.model_selection import train_test_split

x_cols = df.columns[1:]
X = df[x_cols]

y = df['revenue’]

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 
10)

3. Import LinearRegression from sklearn and fit a linear regression model on the 
training data:

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train,y_train)

4. Look at the model’s coefficients, as follows:

model.coef_

You should get the following result:

array([ 3.10465458e+01,  1.35929333e+00, -1.71996170e+01, -4.26396854e+00,
       -4.56514104e+00,  2.71178012e+01,  1.12523398e+01, -9.62768549e+00,
        1.28097189e+01, -3.82102937e+01, -3.92691076e+00, -4.49267755e+00,
        9.12581579e+03,  2.81237962e+01,  1.26722148e+01,  1.99096955e+01,
       -1.73401880e+01,  3.77047162e+03, -7.57356369e+00,  
4.99844116e+03])

Note that all of these values are non-zero, so the model is using all variables.
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5. Now import Lasso from sklearn and fit a lasso regression to the training data 
(using random_state=10). Also make sure to normalize the data; this ensures that 
the data the model is fitting to is on the same scale, so the regularization treats all 
variables equally. This is not required with normal linear regression because there 
is no regularization involved:

from sklearn.linear_model import Lasso

lasso_model = Lasso(normalize=True, random_state=10)
lasso_model.fit(X_train,y_train)

6. Examine the coefficients of the lasso model using the following code:

lasso_model.coef_

This should produce the following output:

array([ 4.26184401e+00,  0.00000000e+00, -0.00000000e+00, -0.00000000e+00,
       -0.00000000e+00,  0.00000000e+00,  0.00000000e+00, -0.00000000e+00,
        0.00000000e+00, -1.28279999e+01, -0.00000000e+00, -0.00000000e+00,
        9.10035968e+03,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
       -0.00000000e+00,  3.74239596e+03, -0.00000000e+00,  
4.97252311e+03])

Note that many of these coefficients are now 0. The model has decided not to 
use these variables. If we knew what the variables were, we could examine which 
variables the model has chosen to use.

7. Import mean_squared_error from sklearn and use it to calculate the RMSE of the 
linear regression model on the test data:

from sklearn.metrics import mean_squared_error

predictions = model.predict(X_test)
print(mean_squared_error(predictions, y_test)**0.5)

The output should be 491.78833768572633.

8. Similarly, calculate the RMSE of the lasso model on the test data:

lasso_predictions = lasso_model.predict(X_test)
print(mean_squared_error(lasso_predictions, y_test)**0.5)

The output should be 488.60931274387747.
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You can observe that, although the lasso regression is not using most of the variables, 
its RMSE is very similar to the linear model that uses all of them. This shows that it 
has not lost any predictive power, even though it has greatly simplified the model by 
removing variables.

Activity 11: Using Lasso Regression to Choose Features for Predicting 

Customer Spend

You’ve been given a number of data elements about customers: how much they spent in 
the previous year (prev_year_spend), the number of days since their last purchase (days_
since_last_purchase), the number of days since their first purchase (days_since_first_
purchase), the total number of transactions (total_transactions), the customer’s age 
(age), the customer’s income (income), and a customer engagement score (engagement_
score), which is a score created based on customers’ engagement with previous 
marketing offers. You are asked to investigate which of these is related to the customer 
spend in the current year (cur_year_spend), and create a simple linear model to describe 
these relationships. Follow the steps given here:

1. Import pandas, use it to read the data in customer_spend.csv, and use the head 
function to view the first five rows of data. The output should appear as follows:

Figure 6.8: The first five rows of customer_spend.csv
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2. Use train_test_split from sklearn to split the data into training and test sets, 
with random_state=100 and cur_year_spend as the y variable:

3. Import Lasso from sklearn and fit a lasso model (with normalize=True and random_
state=10) to the training data.

4. Get the coefficients from the lasso model, and store the names of the features 
that have non-zero coefficients along with their coefficient values in the selected_
features and selected_coefs variables, respectively.

5. Print out the names of the features with non-zero coefficients and their associated 
coefficient values using the following code. The following is the expected output:

Figure 6.9: Expected coefficients of the features

Note

The solution for this activity can be found on page 346.
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Tree-Based Regression Models
Linear models are not the only type of regression models. Another powerful technique 
is to use regression trees. Regression trees are based on the idea of a decision tree. A 
decision tree is a bit like a flowchart, where at each step you ask whether a variable is 
greater than or less than some value. After flowing through several of these steps, you 
reach the end of the tree and receive an answer for what value the prediction should be. 
The following figure illustrates the workings of regression trees:

Figure 6.10: A regression tree (left) and how it parses the feature space into predictions

Decision trees are interesting because they can pick up on trends in data that linear 
regression might miss or capture poorly. Whereas linear models assume a simple 
linear relationship between predictors and an outcome, regression trees result in step 
functions, which can fit certain kinds of relationships more accurately.

One important hyperparameter for regression trees is the maximum depth of the tree. 
The more depth that a tree is allowed, the more complex a relationship it can model. 
While this may sound like a good thing, choosing too high a maximum depth can lead to 
a model that is highly overfitted to the data. In fact, the tendency to overfit is one of the 
biggest drawbacks of regression trees.
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Random Forests

To overcome the issue of overfitting, instead of training a single tree to find patterns 
in data, many trees are trained over random subsets of the data. The predictions of 
these trees are then averaged to produce a prediction. Combining trees together in 
this way is called a random forest. This technique has been found to overcome many of 
the weaknesses of regression trees. The following figure illustrates an ensemble of tree 
models, each of whose predictions are averaged to produce the ensemble’s predictions:

Figure 6.11: An ensemble of tree models

Random forests are based on the idea of creating an ensemble, which is where multiple 
models are combined together to produce a single prediction. This is a powerful 
technique that can often lead to very good outcomes. In the case of random forests, 
creating an ensemble of regression trees together in this way has been shown to not 
only decrease overfitting, but also produce very good predictions in a wide variety of 
scenarios. 

Because tree-based methods and linear regression are so drastically different in 
the way they fit to data, they often work well in different circumstances. When the 
relationships in data are linear (or close to it), linear models will tend to produce more 
accurate predictions, with the bonus of being easy to interpret. When relationships are 
more complex, tree-based methods may perform better. Testing each and choosing 
the best model for the job requires evaluating the models based on their predictive 
accuracy with a metric such as the RMSE.
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Exercise 25: Using Tree-Based Regression Models to Capture Non-Linear 

Trends

In this exercise, we’ll look at a very simple dataset where we have data on customers’ 
spend and their age. We want to figure out how spending habits change with age in our 
customers, and how well different models can capture this relationship:

1. Import pandas and use it to read in the data in age_spend.csv. Use the head function 
to view the first five rows of the data:

import pandas as pd

df = pd.read_csv('age_spend.csv’)
df.head()

Your output will appear as follows:

Figure 6.12: The first five rows of the age_spend data

2. Import train_test_split from sklearn and use it to perform a train-test split of 
the data, with random_state=10 and y being spend and X being age:

from sklearn.model_selection import train_test_split

X = df[['age’]]

y = df['spend’]

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 
10)
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3. Import DecisionTreeRegressor from sklearn and fit two decision trees to the 
training data, one with max_depth=2 and one with max_depth=5:

from sklearn.tree import DecisionTreeRegressor

max2_tree_model = DecisionTreeRegressor(max_depth=2)
max2_tree_model.fit(X_train,y_train)

max5_tree_model = DecisionTreeRegressor(max_depth=5)
max5_tree_model.fit(X_train,y_train)

4. Import LinearRegression from sklearn and fit a linear regression model to the 
training data, as shown:

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train,y_train)

5. Import mean_squared_error from sklearn. For the linear model and the two 
regression tree models, get predictions from the model for the test set and use 
these to calculate the RMSE. Use the following code:

from sklearn.metrics import mean_squared_error

linear_predictions = model.predict(X_test)
print('Linear model RMSE: ' + str(mean_squared_error(linear_predictions, 
y_test)**0.5))

max2_tree_predictions = max2_tree_model.predict(X_test)
print('Tree with max depth of 2 RMSE: ' + str(mean_squared_error(max2_
tree_predictions, y_test)**0.5))

max5_tree_predictions = max5_tree_model.predict(X_test)
print('tree with max depth of 5 RMSE: ' + str(mean_squared_error(max5_
tree_predictions, y_test)**0.5))

You should get the following RMSE values for the linear and decision tree models 
with max depths of 2 and 5, respectively: 159.07639273785358, 125.1920405443602, 
and 109.73376798374653.

Notice that the linear model has the largest error, the decision tree with a max 
depth of 2 does better, and the decision tree with a max depth of 5 has the lowest 
error of the 3.
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6. Import matplotlib. Create a variable called ages to store a DataFrame with a single 
column containing ages from 18 to 70, so that we can have our models give us their 
predictions for all of these ages:

import matplotlib.pyplot as plt
%matplotlib inline

ages = pd.DataFrame({'age’:range(18,70)})

7. Create a scatter plot with the test data and plot on top of it the predictions 
from the linear regression model for the range of ages. Plot with color=’r’ and 
linewidth=5 to make it easier to see:

plt.scatter(X_test.age.tolist(),y_test.tolist())
plt.plot(ages,model.predict(ages), color=’r’, linewidth=5)
plt.show()

The following plot shows the predictions of the linear regression model across the 
age range plotted on top of the actual data points:

Figure 6.13: The predictions of the linear regression model

We can see that the linear regression model just shows a flat line across ages; it 
is unable to capture the fact that people aged around 40 spend more, and people 
younger and older than 40 spend less.
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8. Create another scatter plot with the test data, this time plotting the predictions of 
the max2_tree model on top with color=’g’ and linewidth=5:

plt.scatter(X_test.age.tolist(),y_test.tolist())
plt.plot(ages,max2_tree_model.predict(ages), color=’g’,linewidth=5)
plt.show()

The following plot shows the predictions of the regression tree model with max_
depth of 2 across the age range plotted on top of the actual data points:

Figure 6.14: The predictions of the regression tree model with max_depth of 2

This model does a better job of capturing the relationship, though it does not 
capture the sharp decline in the oldest or youngest population.

9. Create another scatter plot with the test data, this time plotting the predictions of 
the max5_tree model on top with color=’k’ and linewidth=5:

plt.scatter(X_test.age.tolist(),y_test.tolist())
plt.plot(ages,max5_tree_model.predict(ages), color=’k’,linewidth=5)
plt.show()
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The following plot shows the predictions of the regression tree model with max_
depth of 5 across the age range plotted on top of the actual data points:

Figure 6.15: The predictions of the regression tree model with max_depth of 5

This model does an even better job of capturing the relationship, properly 
capturing a sharp decline in the oldest or youngest population.

10. Let’s now perform random forest regression on the same data. Import 
RandomForestRegressor from sklearn. Fit two random forest models with random_
state=10, one with max_depth=2 and the other with max_depth=5, and save these as 
max2_forest and max5_forest, respectively:

from sklearn.ensemble import RandomForestRegressor

max2_forest_model = RandomForestRegressor(max_depth=2, random_state=10)
max2_forest_model.fit(X_train,y_train)

max5_forest_model = RandomForestRegressor(max_depth=5, random_state=10)
max5_forest_model.fit(X_train,y_train)
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11. Calculate and print the RMSE for the two random forest models using the 
following code:

max2_forest_predictions = max2_forest_model.predict(X_test)
print('Max depth of 2 RMSE: ' + str(mean_squared_error(max2_forest_
predictions, y_test)**0.5))

max5_forest_predictions = max5_forest_model.predict(X_test)
print('Max depth of 5 RMSE: ' + str(mean_squared_error(maxt_forest_
predictions, y_test)**0.5))

The following RMSE values should be obtained for the random forest models with 
max depths of 2 and 5, respectively: 115.51279667457273 and 109.61188562057568.

Note that the random forest model with a max depth of 2 does better than the 
regression tree with a max depth of 2, and the model with a max depth of 5 does 
about as well as the regression tree with a depth of 5. Both do better than the 
linear regression model. 

12. Create another scatter plot with the test data, this time plotting the predictions of 
the max2_forest model on top with color=’c’ and linewidth=5:

plt.scatter(X_test.age.tolist(),y_test.tolist())
plt.plot(ages,max2_forest_model.predict(ages), color=’c’,linewidth=5)
plt.show()

The following plot shows the predictions of the random forest model with max_
depth of 2 across the age range plotted on top of the actual data points:

Figure 6.16: The predictions of the random forest model with max_depth of 2
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We can see that this model captures the data trend better than the decision tree, 
but still doesn’t quite capture the trend at the very high or low ends of our range.

13. Create another scatter plot with the test data, this time plotting the predictions of 
the max2_forest model on top with color=’m’ and linewidth=5:

plt.scatter(X_test.age.tolist(),y_test.tolist())
plt.plot(ages,max5_forest_model.predict(ages), color=’m’,linewidth=5)
plt.show()

The following plot shows the predictions of the random forest model with max_
depth of 5 across the age range plotted on top of the actual data points:

Figure 6.17: The predictions of the random forest model with max_depth of 5

Again, the model the greater max depth does an even better job of capturing 
the relationship, properly capturing the sharp decline in the oldest or youngest 
population.
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Activity 12: Building the Best Regression Model for Customer Spend Based on 

Demographic Data

You are given data on customers’ spend at your business and some basic demographic 
data about each customer (age, income, and years of education). You are asked to 
build the best predictive model possible that can predict, based on these demographic 
factors, how much a customer would spend at your business. Follow the steps given 
here:

1. Import pandas, read the data in spend_age_income_ed.csv into a DataFrame, and use 
the head function to view the first five rows of the data. The output should be as 
follows:

Figure 6.18: The first five rows of the spend_age_income_ed data

2. Perform a train-test split with random_state=10.

3. Fit a linear regression model to the training data.

4. Fit two regression tree models to the data, one with max_depth=2 and one with 
max_depth=5.
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5. Fit two random forest models to the data, one with max_depth=2, one with max_
depth=5, and random_state=10 for both.

6. Calculate and print out the RMSE on the test data for all five models.

The following table summarizes the expected output for all of the models:

Figure 6.19: Expected outputs for all 5 models

Note

The solution for this activity can be found on page 347.

Summary
In this chapter, we explored how to evaluate regression models. We learned about using 
residuals to calculate MAE and RMSE, and how to use these metrics to compare models. 
We also learned about lasso regression and how it can be used for feature selection. 
Finally, we learned about tree-based regression models, and looked at how they are able 
to fit to some of the non-linear relationships that linear regression is unable to handle.

In the next chapter, we will learn about classification models, the other primary type of 
supervised learning models.
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Learning Objectives

By the end of this chapter, you will be able to:

• Perform classification tasks using logistic regression

• Implement the most widely used data science pipeline (OSEMN)

• Perform data exploration to understand the relationship between the target and 
explanatory variables.

• Select the important features for building your churn model.

• Perform logistic regression as a baseline model to predict customer churn.

This chapter covers classification algorithms such as logistic regression and explains how to 
implement the OSEMN pipeline.

Supervised Learning: 
Predicting Customer 

Churn

7
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Introduction
Churn prediction is one of the most common use cases of machine learning. Churn 
can be anything—employee churn from a company, customer churn from a mobile 
subscription, and so on. Predicting customer churn is important for an organization 
because acquiring new customers is easy, but retaining them is more difficult. Similarly, 
high employee churn can also affect a company, since it spends a huge sum of money 
on grooming talent. Also, organizations that have high retention rates benefit from 
consistent growth, which can also lead to high referrals from existing customers.

Most of the use cases for churn prediction involve supervised classification tasks. We 
saw what supervised learning is in the previous chapters, and covered regression in 
detail. In this chapter, we will first begin by learning about classification problems, 
then we will implement logistic regression and understand the intuition behind the 
algorithm. Next, we will see how to organize data to build a churn model, followed 
by an exploration of the data to find some insights from it, and we'll cover some of 
the statistical inferences that can be drawn from the data. We will find out what the 
important features are for building our churn model, and finally, we'll apply logistic 
regression to predict customer churn.

Classification Problems
Classification problems are the most common type of machine learning problem. 
Classification tasks are different from regression tasks, in the sense that, in 
classification tasks, we predict a discrete class label, whereas in the case of regression, 
we predict continuous values. Another notable difference between classification 
problems and regression problems lies in the choice of performance metrics. With 
classification problems, accuracy is commonly chosen as a performance metric, while 
root mean square is quite common in the case of regression.

There are many important business use cases for classification problems where the 
dependent variable is not continuous, such as churn and fraud detection. In these cases, 
the response variable has only two values, that is, churn or not churn, and fraud or 
not fraud. For example, suppose we are studying whether a customer churns (y = 1) or 
doesn't churn (y = 0) after signing up for a mobile service contract. Then, the probability 
that a customer churns is indicated as p = P(Churn), and the possible explanatory 
variable x includes account age, current billing amount, and average days delinquent 
(that is, the average number of days a person misses making his or her payment). 
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The following figure illustrates how a supervised classification task works:

Figure 7.1: Workflow of a supervised classification task

As a supervisor, we provide the model with the variables (x,y), which lets the model 
calculate the parameter theta (θ). This parameter is learned from the training data and 
is also termed as a coefficient. x includes the explanatory variables and y is the target 
label that we provide to the model so that the model learns the parameters. Using this, 
the model produces a function h(θ), which maps input x to a prediction hθ(x).

Classification problems can generally be divided into two types:

• Binary classification: The target variable can have only two categorical values or 
classes. For example, given an image, classify whether it's a cat or not a cat.

• Multiclass classification: The target variable can have multiple classes. For 
example, given an image, classify whether it's a cat, dog, rabbit, or bird.

Understanding Logistic Regression
Logistic regression is one of the most widely used classification methods, and it works 
well when data is linearly separable. The objective of logistic regression is to squash the 
output of linear regression to classes 0 and 1.
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Revisiting Linear Regression

In the case of linear regression, our function would be as follows:

Figure 7.2: Equation of linear regression

Here, x refers to the input data, y is the target variable, and θ0 and θ1 are parameters 
that are learned from the training data.

Also, the cost function in case of linear regression, which is to be minimized is as 
follows:

Figure 7.3: Linear regression cost function

This works well for continuous data, but the problem arises when we have a target 
variable that is categorical, such as, 0 or 1. When we try to use linear regression to 
predict the target variable, we can get a value anywhere between −∞ to +∞, which is 
not what we need.

Logistic Regression

If a response variable has binary values, the assumptions of linear regression are not 
valid for the following reasons:

• The relationship between the independent variable and the predictor variable is 
not linear.

• The error terms are heteroscedastic.

• The error terms are not normally distributed.

If we proceed, considering these violations, the results would be as follows:

• The predicted probabilities could be greater than 1 or less than 0.

• The magnitude of the effects of independent variables may be underestimated.
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With logistic regression, we are interested in modeling the mean of the response 
variable, p, in terms of an explanatory variable, x, as a probabilistic model in terms of 
odd ratio. A simple logistic regression model formula is as follows:

Figure 7.4: Simple logistic regression model formula

With logistic regression, we still use the linear regression formula. However, we will 
be squashing the output of the linear function to a range of 0 and 1 using a sigmoid 
function. The sigmoid function is the inverse of the logit function:

Figure 7.5: Sigmoid function

Squash the output of the linear equation as follows:

Figure 7.6: Squashing output of linear equation using sigmoid

Here, we take the output of hθ(x) and give it to the g(z) function, which returns the 
squashed function to the range of 0 to 1.
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Exercise 26: Plotting the Sigmoid Function

In this exercise, we will plot a sigmoid function using values generated from −10 to +10. 
This exercise will tell us how a sigmoid function behaves and what it looks like. It gives 
the idea that, even though logistic regression uses a linear regression equation, which 
can give values between −10 to +10, a sigmoid function squashes the output to 0 and 1.

1. Import Matplotlib and NumPy libraries:

import matplotlib.pyplot as plt
import numpy as np

2. Define a function sigmoid(x) that constructs a sigmoid function as follows:

def sigmoid(x):
  return 1/(1+np.exp(-x))

3. Generate values ranging from −10 to +10 using the following code:

z=np.arange(-10,10,0.1)
z

You will get an output showing you the list of data points generated.

4. Now call the sigmoid function and plot it. Use the following code:

sig=sigmoid(z)
plt.plot(z,sig)
plt.yticks([0.0,0.5,1.0])
plt.grid(True)
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Your plot will look as follows:

Figure 7.7: Plot of sigmoid function

5. Let's also plot the values of z using a linear function 0+0.5*z, as follows:

plt.plot(z,0+0.5*z)
plt.grid(True)

This will give us the following plot:

Figure 7.8: Plot using a linear function
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From the preceding graph, it is evident that the sigmoid function squashes the values 
−10 to +10 to between 0 and 1, whereas the linear function is unable to do so.

Cost Function for Logistic Regression

The sigmoid function that we described previously contains a non-linear term. We must 
convert it into a linear term, else we would have a non-convex function that would be 
difficult to optimize. The cost function of logistic regression can be defined as follows, 
which is obtained using Maximum Likelihood Estimation:

Figure 7.9: Logistic regression cost function

It is easy for the algorithm to optimize the cost function when we have a linear term 
(see the left plot in the following figure), whereas it becomes difficult for the algorithm 
to optimize if our cost function is non-linear (see the right plot of the following figure). 

Figure 7.10: Difference between plots with linear and non-linear terms

After converting our cost function for logistic regression to a linear term, we finally get 
the following equation:

Figure 7.11: Optimized logistic regression cost function
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Here, θ is the parameter the model learns from the training data.

Note

The derivation of the cost function is out of the scope of this book, and we 
recommend students go through the derivation separately. 

Assumptions of Logistic Regression

The following are the assumptions of the logistic regression algorithm:

• Logistic regression does not assume a linear relationship between dependent and 
independent variables.

• The dependent variable must be binary (that is, have two categories).

• The independent variable need not have intervals, be normally distributed, linearly 
related, or have equal variance within each group.

• The categories must be mutually exclusive and exhaustive.

Exercise 27: Loading, Splitting, and Applying Linear and Logistic Regression to 

Data

For this exercise, you will be using the exam_score.csv dataset placed in the Lesson07 
folder on GitHub. The dataset comprises scores obtained by students in two subjects. 
It has also a column that has 0 and 1 values. 1 indicates that the student has passed the 
exam, whereas 0 indicates that student has not passed the exam. Your teacher has 
asked you to develop a machine learning model that can predict whether a student will 
pass (1) or fail (0). Apply linear and logistic regression to predict the output. You will 
also see why it's not a good idea to use linear regression for this kind of classification 
problem:

1. Import pandas, NumPy, sklearn, and Matplotlib:

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import linear_model
import matplotlib.pyplot as plt
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2. Read the data to a pandas DataFrame named data and look at the first few rows:

data= pd.read_csv(r'exam_score.csv',header=None)
data.head(5)

You will get the following output:

Figure 7.12: The first few rows of the data

3. Split the data into training and testing sets as follows:

X_train,X_test,y_train,y_test=train_test_split(data[[0,1]],data[[2]].
astype(int),test_size=0.3,random_state=1,stratify=data[[2]].astype(int))

4. Fit the model using linear regression:

linear = linear_model.LinearRegression()
linear.fit(X_train, y_train)

5. Predict on the test data:

linear.predict(X_test) 
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Your output will be as follows:

Figure 7.13: Output of the prediction on test data 
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6. Now check the actual target values using y_test[2]:

y_test[2].values.astype(int)

Your output will be as follows:

Figure 7.14: Output of actual target values

7. Plot the linear regression curve:

color = ['red', 'green']
y_color = [color[i] for i in y_train[2].values.astype(int)]
marker=['o','v']
y_marker = [marker[i] for i in y_train[2].values.astype(int)]

plt.figure(figsize=(6, 6))
for _m, c, _x, _y in zip(y_marker, y_color, X_train[0].values, X_train[1].
values):
    plt.scatter(_x,_y, c=c,marker=_m)

plt.plot((- linear.coef_[0][1] * np.array((min(X_train[1].values), max(X_
train[1].values))) - linear.intercept_[0]) / 
         linear.coef_[0][0], np.array((min(X_train[1].values), max(X_
train[1].values))))
plt.show()
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Your plot should look as follows:

Figure 7.15: Linear regression plot 
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From the plot you can observe that linear regression was unable to predict the 
values as 1 and 0. Therefore, the model is not able to distinguish the classes 
correctly.

8. Let's now try using logistic regression. Fit the model using logistic regression as 
follows:

logit = linear_model.LogisticRegression()
logit.fit(X_train, y_train[2].values.astype(int))

9. Predict on the test data:

logit.predict(X_test)

You should get the following output:

Figure 7.16: Prediction of output of test data using logistic regression

10. Check the actual target values with y_test[2]:

y_test[2].values.astype(int)

You should get the following output:

Figure 7.17: Original value of test data

11. Plot the logistic regression line:

color = ['red', 'green']
y_color = [color[i] for i in y_train[2].values.astype(int)]
marker=['o','v']
y_marker = [marker[i] for i in y_train[2].values.astype(int)]

plt.figure(figsize=(6, 6))
for _m, c, _x, _y in zip(y_marker, y_color, X_train[0].values, X_train[1].
values):
    plt.scatter(_x,_y, c=c,marker=_m)
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plt.plot((- logit.coef_[0][1] * np.array((min(X_train[1].values), max(X_
train[1].values))) - logit.intercept_[0]) / 
         logit.coef_[0][0], np.array((min(X_train[1].values), max(X_
train[1].values))))
plt.show()

Your plot should look as follows:

Figure 7.18: Logistic regression plot

From the plot you will observe that logistic regression was able to predict the 
values as 1 and 0. The graph shows that the model was able to classify most of the 
data points correctly, but some were misclassified. logit.predict_proba() can be 
used to predict probabilities instead of classes.

Creating a Data Science Pipeline
OSEMN is one of the most common data science pipelines used for approaching any 
kind of data science problem. It's pronounced awesome.

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



222 | Supervised Learning: Predicting Customer Churn

OSEMN stands for the following:

1. Obtaining the data, which can be from any source, structured, unstructured, or 
semi-structured.

2. Scrubbing the data, which is getting your hands dirty and cleaning the data, which 
can involve renaming columns and imputing missing values.

3. Exploring the data to find out the relationships between each of the variables. 
Searching for any correlation among the variables. Finding the relationship 
between the explanatory variables and the response variable.

4. Modeling the data, which can include prediction, forecasting, and clustering.

5. INterpreting the data, which is combining all the analyses and results to draw a 
conclusion.

Obtaining the Data

This step refers to collecting data. Data can be obtained from a single source or from 
multiple sources. In the real world, collecting data is not always easy since the data is 
often siloed. Data collection in a large organization is done by gathering data from both 
internal and external sources (such as social media).

Exercise 28: Obtaining the Data

You work at a multinational bank that is aiming to increase it's market share in 
Europe. Recently, it has been noticed that the number of customers using the banking 
services has declined, and the bank is worried that existing customers have stopped 
using them as their main bank. As a data scientist, you are tasked with finding out the 
reasons behind customer churn and to predict customer churn. The marketing team, 
in particular, is interested in your findings and want to better understand existing 
customer behavior and possibly predict customer churn. Your results will help the 
marketing team to use their budget wisely to target potential churners. To achieve 
this objective, in this exercise, you will import the banking data (Churn_Modelling.csv) 
provided by the bank and do some initial checks, such as seeing how many rows and 
columns are present.

Note

We will be using the same Jupyter Notebook for Exercises 28 to 34.
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1. Import pandas, NumPy, Matplotlib, and seaborn libraries:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

2. Read the data into a pandas DataFrame named data:

data= pd.read_csv('Churn_Modelling.csv')
data.head(5)

You should get the following output:

Figure 7.19: First few rows of the churn modelling data

3. Check the number of rows and columns in the dataset:

data.shape

The dataset has around 10,000 rows and 12 columns.

This completes the first step of our OSEMN pipeline. Let's now move on to the next 
step.

Scrubbing the Data

Scrubbing the data typically involves missing value imputation, data type conversion, 
standardization, and renaming columns. We will perform these steps in the next 
exercise.
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Exercise 29: Imputing Missing Values

After reading the banking data, our task in this exercise is to find any missing values and 
perform imputation on the missing values. Ensure that you continue using the same 
Notebook as that used in the preceding exercise:

1. Check for any missing values first using the following code:

data.isnull().values.any()

2. This will give you an output of True. So, let's explore the columns that have these 
missing values. Use the following code:

data.isnull().any()

You should get the following output:

Figure 7.20: Checking for missing values
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3. It seems that the columns Gender, Age, and EstimatedSalary have missing values. 
Use describe to explore the data in the Age and EstimatedSalary columns and then 
for the entire DataFrame as well. 

data[["EstimatedSalary","Age"]].describe()

Figure 7.21: Description statistics for column EstimatedSalary and Age
data.describe()

Figure 7.22: Description statistics

Note

Since Gender is a categorical variable with only two values, we have used only Age 
and EstimatedSalary for our describe function.
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4. From the descriptive statistics we can observe that the column HaCrCard column 
has a min value of 0 and a maximum value of 1. It seems that this variable is 
a categorical variable. We will learn how to change this kind of variable to 
categorical, but first, let's check the count of 0s and 1s using the following syntax:

data['HasCrCard'].value_counts()

You should get an output that shows the number of 1s as 7055 and the number of 
0s as 2945. This shows that approximately 70% of the customers have a credit card 
and 29% of them do not have a credit card. 

5. Use the following syntax to find out the total number of missing values:

data.isnull().sum()

Your output should indicate that the Gender, Age, and EstimatedSalary columns 
have 4, 6, and 4 missing values, respectively.

6. Find out the percentage of missing values using the following code:

round(data.isnull().sum()/len(data)*100,2)

Your output should indicate that the missing values constitute 4, 6, and 4 percent 
of the total values in the Gender, Age, and EstimatedSalary columns, respetively.

7. Check the datatypes of the missing columns:

data[["Gender","Age","EstimatedSalary"]].dtypes

Your output will be as follows:

Figure 7.23: Data type of columns which have missing values
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8. Now we need to impute the missing values. We can do that by dropping the rows 
that have missing values, filling in the missing values with a test statistic (such as 
mean, mode, or median), or predicting the missing values using a machine learning 
algorithm. For EstimatedSalary, we will fill in the missing values with the mean of 
the data in that column using the following code:

mean_value=data['EstimatedSalary'].mean()
data['EstimatedSalary']=data['EstimatedSalary'].fillna(mean_value)

Note

For estimated salary, since the column is a continuous column, we can use the 
mean of the values for the estimated salary to replace the missing values.

9. For Gender, use value_count() to see how many instances of each gender are 
present:

data['Gender'].value_counts()

Since there are more Males (5453) than Females (4543), we will use the following 
code to replace the missing values with the gender that occurs most frequently, 
that is, Male.

data['Gender']=data['Gender'].fillna(data['Gender'].value_counts().
idxmax())

10. For Age, use mode(), to get the mode of the data, which is 37, and then replaces the 
missing values with the mode of the values in the column using the following code. 

data['Age'].mode()
mode_value=data['Age'].mode()
data['Age']=data['Age'].fillna(mode_value[0])
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11. Check whether the missing values have been imputed:

data.isnull().any()

You should get the following output:

Figure 7.24: Check for missing values

In this exercise, we first used the describe() function to find out the descriptive stats 
of the data. Then, we learned how to find missing values, and performed missing value 
imputation for the EstimatedSalary, Gender, and Age columns.

Exercise 30: Renaming Columns and Changing the Data Type

Scrubbing data also involves renaming columns in the right format and can include 
removing any special characters and spaces in the column names, shifting the target 
variable either to the extreme left or right for better visibility, and checking whether the 
data types of the columns are correct. Our goal is to convert the columns into a more 
human-readable format. 
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Therefore, in this exercise, we will rename some of the columns, change the data types, 
and shift the customer ID column to a suitable position:

1. Rename the following columns and check that they have been appropriately 
renamed as follows:

data = data.rename(columns={
                        'CredRate': 'CreditScore',
                        'ActMem' : 'IsActiveMember',
                        'Prod Number': 'NumOfProducts',
                        'Exited':'Churn'
                        })
data.columns

You should get the following output:

Figure 7.25: Renamed columns

2. Move the churn column to the right and drop the CustomerId column using the 
following code:

data.drop(labels=['CustomerId'], axis=1,inplace = True) data.
drop(labels=['churn'], axis=1,inplace = True)
column_churn = data['Churn']
data.drop(labels=['Churn'], axis=1,inplace = True)
data.insert(len(data.columns), 'Churn', column_churn.values)

3. Change the datatype of the Geography, Gender, HasCrCard, Churn, and IsActiveMember 
columns to category as shown:

data["Geography"] = data["Geography"].astype('category')
data["Gender"] = data["Gender"].astype('category')
data["HasCrCard"] = data["HasCrCard"].astype('category')
data["Churn"] = data["Churn"].astype('category')
data["IsActiveMember"] = data["IsActiveMember"].astype('category')
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4. Now check whether the datatypes have been converted or not:

data.dtypes

You should get the following output:

Figure 7.26: Data type of the columns

In this exercise, we successfully renamed a few columns; converted the Geography, 
Gender, HasCrCard, Churn, and IsActiveMember columns to the category type; and shifted 
the customer ID column to the extreme right.

Exploring the Data

Data exploration is one of the most important steps before building a machine learning 
model. It's important to know the data well before applying any kind of machine 
learning algorithm. Typically, the data exploration step consists of the following steps: 
Statistical overview, Correlation, and Visualization. We will discuss these in the 
following sections.

Statistical Overview

This step typically involves inspecting the data using general descriptive statistics. In a 
statistical overview, we summarize the data using the central tendency and distribution 
of the data, and inspect the target variable using mean, count, and other functions 
studied in previous chapters.
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Correlation

The correlation coefficient measures the linear relationship between two variables. It's 
usually represented by r and varies from +1 to −1. We can interpret the correlation value 
as given in the following table:

Figure 7.27: Correlation coefficient

Note

When finding out the correlation coefficient, one of our assumption is linear 
relationship. However in reality, there may or may not be any linear relationship 
between two variables. Hence it is wise to plot your data and visually verify it.
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Exercise 31: Obtaining the Statistical Overview and Correlation Plot

In this exercise, we will find out the number of customers that churned using basic 
exploration techniques. The churn column has two attributes: 0 means that the 
customer did not churn and 1 implies that the customer churned. We will also plot the 
correlation matrix, which will give us a basic understanding of the relationship between 
the target variable and rest of the variables. Ensure that you continue from the previous 
Notebook:

1. Inspect the target variable to see how many of the customers have churned. Use 
the following code

data['churn'].value_counts(0)

The output will tell you that 7963 customers did not churn, whereas 2037 
customers churned.

2. Inspect the percentage of customers who left the bank using the following code:

data['churn'].value_counts(1)*100

This will again give us an output of 79.63 and 20.37 percent corresponding to the 
customers that did not churn and those that churned, respectively. Hence, you 
can infer that the proportion of customers that churned is 20.37% (2,037), and the 
proportion of those that did not churn is 79.63% (7,963).

3. Inspect the percentage of customers that have a credit card using the following 
code:

data['IsActiveMember'].value_counts(1)*100

You should get an output of 51.51 for the number of 1s and 48.49 for the number of 
0s, respectively, implying that 51% of the customers hold a credit card, whereas 
48% do not hold a credit card.
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4. Get a statistical overview of the data:

data.describe()

You should get the following output:

 

Figure 7.28: Statistical overview of the data

Inspect some of the statistics, such as mean and max in the above figure. These 
statistics help us answer questions such as the average age, salary, and number 
of products held by our customers, or the maximum and minimum number of 
products held by our customer base. These statistics would be useful for the 
marketing team and senior management.

5. Inspect the mean attributes of customers who churned compared to those who 
did not churn:

summary_churn = data.groupby('Churn')
summary_churn.mean()
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You should get the following output:

Figure 7.29: Mean attributes of the customer with respect to churn

From the preceding figure, you can infer that the average credit score of 
customers that churned is 645.35, and the average age of the customers that 
churned is 44.83 years. The average balance and the estimated salary of the 
customers that churned are 911,108.53 USD and 101,465.67 USD, respectively, which 
is greater than the values for customers that didn't churn.

6. Also, find the median attributes of the customers:

summary_churn.median()

You should get the following output:

Figure 7.30: Median attributes of the customer with respect to churn

Note that the median number of products bought by customers that churned is 1.
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7. Now use the seaborn library to plot the correlation plot using the following code:

corr = data.corr()
plt.figure(figsize=(15,8))
sns.heatmap(corr, 
            xticklabels=corr.columns.values,
            yticklabels=corr.columns.values,annot=True)
corr

The correlation statistics and plot provides us the correlation between our 
continuous features. It tell us how each of these variables are related to one 
another.

Figure 7.31: Correlation statistics of features
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Figure 7.32: Correlation plot of different features

From the correlation plot, it appears that there is a negative (-0.3%) relationship 
between the number of products purchased and the balance.

Note

A word of warning for interpreting the results of correlation. Correlation does not 
imply causation. Even if the matrix shows a relationship, do not assume that one 
variable caused the other. Both may be influenced by a third variable. 

Many other interesting observations can be obtained from this analysis. Students 
are encouraged to find out some more useful insights from the statistical overview. 
It is always good practice to perform an initial statistical review.

Visualizing the Data

The best way to perform data exploration is to visualize the data to find out how each 
of the variables are interacting with each other. As pointed out by Cleveland, "Data 
analysis without data visualization is no data analysis." In statistics, the use of graphical 
methods to reveal the distribution or/and statistics of a selected variable is popularly 
known as Exploratory Data Analysis (EDA).
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EDA was promoted by John Tukey to encourage statisticians to explore data, and 
possibly formulate hypotheses that could lead to new data collection and experiments. 
The following table tells us the different kinds of visualization that can be used for 
Univariate and Bivariate Data.

Figure 7.33: EDA graphs for univariate and bivariate data

Note

Because of the scope of the book, we will not be covering all the EDA techniques. 
Students are encouraged to explore them further.

Exercise 32: Performing Exploratory Data Analysis (EDA)

In this exercise, we will perform EDA, which includes univariate analysis and bivariate 
analysis on our Churn_Modelling.csv dataset. Continue with the same Notebook as used 
in the preceding exercises.

1. Let's begin with univariate analysis. Plot the distribution graph of the customers 
for the EstimatedSalary, Age, and Balance variables using the following code:

f, axes = plt.subplots(ncols=3, figsize=(15, 6))
sns.distplot(data.EstimatedSalary, kde=True, color="darkgreen", 
ax=axes[0]).set_title('EstimatedSalary')
axes[0].set_ylabel('No of Customers')

sns.distplot(data.Age, kde=True, color="darkblue", ax=axes[1]).set_
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title('Age')
axes[1].set_ylabel('No of Customers')
sns.distplot(data.Balance, kde=True, color="maroon", ax=axes[2]).set_
title('Balance')
axes[2].set_ylabel('No of Customers')

Your output should look as follows:

Figure 7.34: Univariate analysis

The following are the observations from the univariate analysis:

EstimatedSalary: The distribution of the estimated salary seems to be a plateau 
distribution.

Age: This has a normal distribution that is right skewed. Most customers lie in the 
range of 30-45 years of age.

Balance: This has a bimodal distribution. A considerable number of customers 
with a low balance are there, which seems to be an outlier.
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2. Now we'll move on to bivariate analysis. Inspect whether there is a difference in 
churn for gender using bivariate analysis. Use the following code:

plt.figure(figsize=(15,4))
p=sns.countplot(y="Gender", hue='Churn', data=data,palette="Set2")
legend = p.get_legend()
legend_txt = legend.texts
legend_txt[0].set_text("No Churn")
legend_txt[1].set_text("Churn")
p.set_title('Customer Churn Distribution by Gender')

Your output should look as follows:

Figure 7.35: Number of customer churned by gender

You will observe that comparatively, more female customers have churned. Also, 
the amount of churn for customers with 3-4 products is higher.

3. Plot Geography versus Churn:

plt.figure(figsize=(15,4))
p=sns.countplot(x='Geography', hue='Churn',data=data, palette="Set2")
legend = p.get_legend()
legend_txt = legend.texts
legend_txt[0].set_text("No Churn")
legend_txt[1].set_text("Churn")
p.set_title('Customer Geography Distribution')
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Your should get the following output:

Figure 7.36: Number of customer churned by geography

Note that the difference between number of customers that churned and those 
that did not churn is lesser for Germany and Spain is comparison with France. 
Germany has the highest number of customers compared to other countries. 

4. Plot NumOfProducts versus Churn:

plt.figure(figsize=(15,4))
p=sns.countplot(x='NumOfProducts', hue='Churn',data=data, palette="Set2")
legend = p.get_legend()
legend_txt = legend.texts
legend_txt[0].set_text("No Churn")
legend_txt[1].set_text("Churn")
p.set_title('Customer Distribution by Product')

Your should get the following output:

Figure 7.37: Number of customer churned by product
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5. Inspect Churn versus Age:

plt.figure(figsize=(15,4))
ax=sns.kdeplot(data.loc[(data['Churn'] == 0),'Age'] , color=sns.color_
palette("Set2")[0],shade=True,label='no churn')
ax=sns.kdeplot(data.loc[(data['Churn'] == 1),'Age'] , color=sns.color_
palette("Set2")[1],shade=True, label='churn')
ax.set(xlabel='Customer Age', ylabel='Frequency')
plt.title('Customer Age - churn vs no churn')

Your should get the following output:

Figure 7.38: Distribution of customer age (churn versus no churn)

Customers in the 35 to 45 age group seem to churn more. As the age of the 
customers increases, they usually churn more.

6. Plot Balance versus Churn:

plt.figure(figsize=(15,4))
ax=sns.kdeplot(data.loc[(data['Churn'] == 0),'Balance'] , color=sns.color_
palette("Set2")[0],shade=True,label='no churn')
ax=sns.kdeplot(data.loc[(data['Churn'] == 1),'Balance'] , color=sns.color_
palette("Set2")[1],shade=True, label='churn')
ax.set(xlabel='Customer Balance', ylabel='Frequency')
plt.title('Customer Balance - churn vs no churn')
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Your should get the following output:

Figure 7.39: Distribution of customer balance (churn versus no churn)

Customers with a negative-to-low balance churn less than customers with a 
balance between 75,000–150,000.

7. Plot CreditScore versus Churn:

plt.figure(figsize=(15,4))
ax=sns.kdeplot(data.loc[(data['Churn'] == 0),'CreditScore'] , color=sns.
color_palette("Set2")[0],shade=True,label='no churn')
ax=sns.kdeplot(data.loc[(data['Churn'] == 1),'CreditScore'] , color=sns.
color_palette("Set2")[1],shade=True, label='churn')
ax.set(xlabel='CreditScore', ylabel='Frequency')
plt.title('Customer CreditScore - churn vs no churn')

Your should get the following output:

Figure 7.40: Distribution of customer credit score (churn versus no churn)
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8. Plot Balance versus NumOfProducts by Churn:

plt.figure(figsize=(16,4))
p=sns.barplot(x='NumOfProducts',y='Balance',hue='Churn',data=data, 
palette="Set2")
p.legend(loc='upper right')
legend = p.get_legend()
legend_txt = legend.texts
legend_txt[0].set_text("No Churn")
legend_txt[1].set_text("Churn")
p.set_title('Number of Product VS Balance')

Your should get the following output:

Figure 7.41: Number of product versus balance by churn

From the above figure, it appears that as the number of products increases, the 
balance for churned customers remains very high.

Activity 13: Performing OSE of OSEMN

You are working as a data scientist for a large telecom company. Your company's head 
of marketing wants to know why customers are churning, and wants to prepare a 
plan to reduce customer churn. For this purpose, he has provided you with some data 
regarding the current bill amount of customers (Current Bill Amt), the average calls 
made by each customer (Avg Calls), average calls made by the customers during the 
weekdays (Avg Calls Weekdays), how long the account has been active (Account Age), 
and the average number of days the customer has defaulted on bill payment (Avg Days 
Delinquent). You are asked to find the reason behind customer churn. 
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Your task is to explore the data and find some insights that will help the marketing 
head to better strategize his marketing campaign for the next quarter. Use the OSE 
technique from OSEMN to carry out an initial exploration of the data. Follow these 
steps:

1. Import the necessary libraries.

2. Read the dataset using pandas read.csv and look at the first few rows of the 
dataset. You should get the following output:

Figure 7.42: First few rows of read.csv

3. Check the length and shape of the data. The length should be 4708 and the shape 
should be (4708, 15).

4. Rename all the columns in a readable format. Convert all the columns containing 
names with a space to _, for example, rename Target Code to Target_Code. Your 
column names should finally look as follows:

Figure 7.43: Column names after renaming

Note

You can use the following code for the replacement: data.columns=data.
columns.str.replace(' ','_')
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5. Check the descriptive statistics of the data and of the categorical variable. 

6. Change the data type of Target_Code, Condition_of_Current_Handset, and Current_
TechSupComplaints columns from continuous to categorical object type.

7. Check for any missing values.

Hint

Use count to replace missing values for categorical values and mean for 
continuous variables. Columns to be imputed are Complaint_Code and Condition_
of_Current_Handset.

8. Perform data exploration by initially exploring the customer Target_Churn variable. 
You should get the following summary:

Figure 7.44: Summary of Target_Churn

9. Find the correlation among different variables and explain the results. You should 
get the following plots:

Figure 7.45: Correlation statistics of the variables
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Figure 7.46: Correlation plot of different features

Hint

Correlation is only obtained for continuous variables, not categorical variables.

10. Perform univariate and bivariate analysis. 
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For univariate analysis, use the following columns: Avg_Calls_Weekdays, Avg_Calls, 
and Current_Bill_Amt. You should get the following plots:

Figure 7.47: Univariate Analysis

For Bivariate Analysis, you should get the following plots:

Plot of Complaint_Code vs Target_Churn:

Figure 7.48: Customer complaint code distribution by churn

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



248 | Supervised Learning: Predicting Customer Churn

Plot of Acct_Plan_Subtype versus Target_Churn: 

Figure 7.49: Customer account plan subtype distribution by churn

Plot of Current_TechSupComplaints versus Target_Churn:

Figure 7.50: Customer technical support complaints distribution by churn

Plot of Avg_Days_Delinquent versus Target_Code:

Figure 7.51: Distribution of average number of days delinquent by churn
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Plot of Account_Age versus Target_Code:

Figure 7.52: Distribution of account age by churn

Plot of Percent_Increase_MOM vs Target_Code.

Figure 7.53: Distribution of percentage increase month on month usage by churn/no churn

Note

The solution for this activity can be found on page 350.
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Modeling the Data
Modeling the data not only includes building your machine learning model but also 
selecting important features/columns that will go into your model. This section will be 
divided into two parts: Feature Selection and Model building.

Feature Selection

Before building our first machine learning model, we have to do some feature selection. 
Imagine a scenario where you have a large number of columns and you want to perform 
prediction. Not all the features will have an impact on your prediction model. Having 
irrelevant features can reduce the accuracy of your model, especially when using 
algorithms such as linear and logistic regression.

The benefits of feature selection are as follows:

• Reduces training time: Fewer columns mean less data, which in turn makes the 
algorithm run more quickly.

• Reduces overfitting: Removing irrelevant columns makes your algorithm less 
prone to noise, thereby reducing overfitting.

• Improves the accuracy: It improves the accuracy of your machine learning model.

Methods for selecting features are as follows:

• Univariate feature selection: This works by selecting the best feature based on 
the univariate statistical tests. It finds features that have the strongest relationship 
with the output variable.

• Recursive feature selection: This works by recursively removing features and 
building a machine learning model based on the features remaining. It then uses 
the model's accuracy to find the combination of features that contribute most to 
predicting the target.

• Principal component analysis: Principal component analysis is a variable 
reduction procedure. It uses linear algebra to transform the data into a 
compressed form.
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• Tree-based feature selection: Tree-based estimators such as random forest, 
bagging, and boosting can be used to compute feature importance, which in turn 
can be used to discard irrelevant features.

Note

A detailed explanation of the feature selection method will be covered in the next 
chapter.

Exercise 33: Performing Feature Selection

In this exercise, we will be performing feature selection using a tree-based selection 
method that performs well on classification tasks. Ensure that you use the same 
Notebook as the one used for the preceding exercise:

1. Import RandomForestClassifier and train_test_split from the sklearn library:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

2. Encode of the categorical variable using the following code:

data.dtypes
data["Geography"] = data["Geography"].astype('category').cat.codes
data["Gender"] = data["Gender"].astype('category').cat.codes

3. Split the data into training and testing sets as follows:

target = 'Churn'
X = data.drop('Churn', axis=1)
y=data[target]

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.15, 
random_state=123, stratify=y)
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4. Fit the model using the random forest classifier for feature selection. Use the 
following code:

forest=RandomForestClassifier(n_estimators=500,random_state=1)
forest.fit(X_train,y_train)

Note

The random forest classifier is used here for feature selection. It gives good results 
for classification-based problems.

5. Call the random forest feature_importances_ attribute to find the important 
features and store it in a variable named importances:

importances=forest.feature_importances_

6. Create a variable named features to store all the columns, except the target 
variable, Churn. Sort the important features present in the importances variable 
using the numpy argsort function:

features = data.drop(['Churn'],axis=1).columns
indices = np.argsort(importances)[::-1]

7. Plot the important features obtained from the random forest using Matplotlib's plt 
attribute:

plt.figure(figsize=(15,4))
plt.title("Feature importances using Random Forest")
plt.bar(range(X_train.shape[1]), importances[indices],
       color="r", align="center")
plt.xticks(range(X_train.shape[1]), features[indices], 
rotation='vertical',fontsize=15)
plt.xlim([-1, X_train.shape[1]])
plt.show()
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You should get the following plot:

Figure 7.54: Feature importance using random forest

From the preceding figure, you can see that the five most important features selected 
from tree-based feature selection are Age, EstimatedSalary, CreditScore, Balance, and 
NumOfProducts.

Model Building

The next step is the OSEMN pipeline is to build a model. This includes trying out 
different kinds of algorithms to build our prediction model.

Exercise 34: Building a Logistic Regression Model

As a data scientist, you were able to help both your senior management and the 
marketing team to explain the key variables affecting customer churn. Through EDA, 
your marketing team understood the key reasons for customer churn. With their 
expectations very high, they want you to predict customer churn so that they can focus 
on customers who might churn. 
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We will be using logistic regression as the base model for our churn prediction because 
of its easy interpretability.

1. We will import the statsmodel package and select only the top five features that 
we got from the previous exercise to fit our model. Use the following code:

import statsmodels.api as sm
top5_features = 
['Age','EstimatedSalary','CreditScore','Balance','NumOfProducts']
logReg = sm.Logit(y_train, X_train[top5_features])
logistic_regression = logReg.fit()

Note

statsmodels is a Python module that provides classes and functions for the 
estimation of many different statistical models, as well as for conducting statistical 
tests and statistical data exploration.

2. Once the model has been fitted, obtain the summary and our parameters:

logistic_regression.summary
logistic_regression.params

You will get the following output:

Figure 7.55: Coefficients for each of the features

3. Create a function to compute the coefficients:

coef = logistic_regression.params
def y (coef,Age,EstimatedSalary,CreditScore,Balance,NumOfProducts) : 
    return coef[0]*Age+ coef[1]*EstimatedSalary+coef[2]* 
CreditScore+coef[1]*Balance+coef[2]*NumOfProducts
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4. Calculate the chance of a customer churning by inputting the following values: 

Age: 50, EstimatedSalary: 100,000, CreditScore:600, Balance:100,000, 
NumOfProducts: 2

Use the following code

import numpy as np
y1 = y(coef, 50, 100000, 600,100000,2)
p = np.exp(y1) / (1+np.exp(y1))
p

Your output will be approximately 0.38, implying that a customer who is 50 yrs 
of Age, having an estimated salary of $100,000, a credit score of 600, balance of 
$100,000, and who has purchased 2 products would have a 38.23% likelihood of 
churning.

5. In the previous steps, we learnt how to use the statsmodel package. In this step, 
we will implement scikit-learn's logisticRegression to build our classifier and 
predict on the test data to find out the accuracy of our model:

from sklearn.linear_model import LogisticRegression

6. Fit the logistic regression model on the partitioned training data that was 
prepared previously.

clf = LogisticRegression(random_state=0, solver='lbfgs').fit(X_train[top5_
features], y_train)

7. Call the predict and predict_proba functions on the test data.

clf.predict(X_test[top5_features])
clf.predict_proba(X_test[top5_features])

You will get the following output:

Figure 7.56: Predicted probability of the test data with top 5 features
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8. Calculate the accuracy of the model by calling the score function.

clf.score(X_test[top5_features], y_test)

Your output will be 0.79.

Note

We used lbfgs as an optimization algorithm that approximates Broyden–Fletcher–
Goldfarb–Shanno algorithm and is recommended for a smaller dataset. More 
details can be found on the scikit-learn documentation: https://scikit-learn.org/
stable/modules/linear_model.html.

Congratulations! You have successfully implemented logistic regression using the 
statsmodel package. The coefficients of the regression model were obtained in step 
2, the logistic regression equation was created in step 3, and the probability for a 
customer to churn was calculated using the sigmoid function in step 4. Lastly, we 
used sklearn's logistic regression to predict our test data and scored an accuracy of 
79%, which implied that our model was able to accurately predict 79% of the test data 
correctly. We will study more about how to check the accuracy of a model in the next 
lessson.

Interpreting the Data

The last part of our analysis is interpreting our data, which is summarizing the insights 
that we have obtained from our analysis:

• The number of customers that churned is 20.37% (2,037) and that number that did 
not churn out is 79.63% (7,963).

• Overall, the average credit score of customer who churned is 645.35 and the 
average age of the customers who churned is 44.83 years.

• The average balance and the estimated salary of the customers who churned are 
911,108.53 and 101,465.67 respectively, which is greater than customers who didn't 
churn.

• The median number of products purchased by customers who churned is 1.

• Customer age and churn are 29% positively correlated.

• Balance and churn are 12% positively correlated.
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• Number of products and Balance are 30% negatively correlated.

• The difference between churn and non-churn customers in Germany and Spain is 
less than in France. 

• Comparatively, more female customers have churned. The amount of churn is 
greater for customers with 3-4 products.

• Customers within the 35-45 age group seem to churn more. As the age of 
customers increases, they usually churn more.

• The amount of churn is less with customers with a negative-to-low balance 
compared to customers having a balance of 75,000–150,000.

• The most important features selected from tree-based feature selection are Age, 
EstimatedSalary, CreditScore, Balance, and NumOfProducts.

Activity 14: Performing MN of OSEMN

You are working as a data scientist for a large telecoms company. Your company's 
head of marketing wants to know the reasons why customers are churning. He wants 
to prepare a plan to reduce customer churn and has given you the task of finding the 
reason behind customer churn. 

After you have reported your initial findings to the marketing team, they want you to 
build a machine learning model that can predict customer churn. With your results, 
the marketing team can send out discount coupons to customers who might otherwise 
churn. Use the MN technique from OSEMN to construct your model

Note

We will be using the results of our previous Notebook in this activity.

1. Import the necessary libraries.

2. Encode the Acct_Plan_Subtype and Complaint_Code columns using the.
astype('category').cat.codes command.

3. Split the data into training and testing sets.
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4. Perform feature selection using the random forest classifier. You should get the 
following output:

Figure 7.57: Feature importance using random forest

5. Select the top seven features and save them in a variable named top7_features. fit 
a

6. Fit a logistic regression using the statsmodel package.

7. Find out the probability that a customer will churn when the following data is 
used: Avg_Days_Delinquent: 40, Percent_Increase_MOM: 5, Avg_Calls_Weekdays: 
39000, Current_Bill_Amt: 12000, Avg_Calls: 9000, Complaint_Code: 0, and Account_
Age: 17

The given customer should have a 81.939% likelihood of churning.

Note

The solution for this activity can be found on page 356.
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Summary
Predicting customer churn is one of the most common use cases in marketing analytics. 
Churn prediction not only helps marketing teams to better strategize their marketing 
campaigns, but also helps organizations to focus their resources wisely.

In this chapter, we explored how to use the data science pipeline for any machine 
learning problem. We also learned the intuition behind using logistic regression and 
saw how it is different from linear regression.

We looked at the structure of the data by reading it using a pandas DataFrame. We then 
used data scrubbing techniques such as missing value imputation, renaming columns, 
and datatype manipulation to prepare our data for data exploration.

We implemented various data visualization techniques, such as univariate, bivariate, and 
a correlation plot, which enabled us to find useful insights from the data.

Feature selection is another important part of data modeling. We used a tree-based 
classifier to select important features for our machine learning model. Finally, we 
implemented logistic regression to find out the likelihood of customer churn.

In the next chapter, we will learn how to evaluate our model, how to tune our model, 
and how to apply other more powerful machine learning algorithms.
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Learning Objectives

By the end of this chapter, you will be able to:

• Use some of the most common classification algorithms from the scikit-learn machine 
learning library

• Describe the logic behind tree-based models

• Choose the performance metrics required for classification problems

• Optimize and evaluate the best classification algorithm for customer churn prediction

This chapter covers other classification algorithms such as support vector machines, decision 
trees, random forest, and explains how to evaluate them.

Fine-Tuning 
Classification 

Algorithms

8
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Introduction
In the previous chapter, you learned about the most common data science pipeline: 
OSEMN. You also learned how to pre-process, explore, model, and finally, interpret 
data. In this chapter, you will learn how to evaluate the performance of the various 
models and choose the most appropriate one. Choosing an appropriate machine 
learning model is an art that requires experience, and each algorithm has its own 
advantages and disadvantages. 

Picking the right performance metrics, optimizing, fine-tuning, and evaluating the 
model is an important part of building any supervised machine learning model. We will 
start by using the most common Python machine learning API, scikit-learn, to build our 
logistic regression model, then we will learn different classification algorithm, and the 
intuition behind them, and finally, we will learn how to optimize, evaluate, and choose 
the best model.

Support Vector Machines
When dealing with data that is linearly separable, the goal of the Support Vector 
Machine (SVM) learning algorithm is to find the boundary between classes so that 
there are fewer misclassification errors. However, the problem is that there could be 
several decision boundaries (B1, B2), as you can see in the following figure:

Figure 8.1: Multiple decision boundary
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As a result, the question arises as to which of the boundaries is better, and how to 
define better. The solution is to use margin as the optimization objective.

The objective of the SVM algorithm is to maximize the margin. The margin of a linear 
classifier is to increase the width of the boundary before hitting a data point. The 
algorithm first finds out the width of the hyperplane and then maximizes the margin. 
It chooses the decision boundary that has the maximum margin. So, for instance in the 
above figure, it chooses B1:

Note

In geometry, a hyperplane is a subspace whose dimension is one less than that of 
its ambient space. 

Figure 8.2: Decision boundary having different width/margin
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The following are the advantages and disadvantages of the SVM algorithm:

Advantages 

• SVMs are effective when dealing with high-dimensional data, where the number of 
dimensions is more than the number of training samples.

• SVMs are known for their use of the kernel function, making it a very versatile 
algorithm.

Note

Kernel methods owe their name to the use of kernel functions, which enable them 
to operate in a high-dimensional space. 

Disadvantages

• SVMs do not calculate probability directly, and instead use a five-fold cross 
validation to calculate probability

• With high-dimensional data, it is important to choose the kernel function and 
regularization term, which can make the process very slow.

Intuition Behind Maximum Margin

Figure 8.3: Geometrical interpretation of maximum margin
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The logic behind having a large margin in the case of an SVM is that they have a lower 
generalization error as compared to small margins, which can result in overfitted data.

Let's consider the positive and negative hyperplane as follows:

Figure 8.4: Positive and negative hyperplane equation

Subtracting the above two equations, we get the following:

Figure 8.5: Combined equation of two separating hyperplane

Normalizing the equation by the vector w, we get the following:

Figure 8.6: Normalized equation

We reduce the preceding equation as follows:

Figure 8.7: Equation for margin m

Now, the objective function is obtained by maximizing the margin within the constraint 
that the decision boundary should classify all the points correctly.

Figure 8.8: Equation for separating the data points on a hyperplane
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Linearly Inseparable Cases

With linearly inseparable cases, such as that illustrated in the following figure, we 
cannot use a hard-margin classifier. The solution is to introduce a new kind of classifier, 
known as a soft-margin classifier, using the slack variable ξ.

Figure 8.9: Linearly inseparable data pints

Note

Hard margin refers to the fitting of a model with zero errors; hence we cannot use 
a hard-margin classifier for the preceding figure. A soft margin, on the other hand, 
allows the fitting of a model with some error, as highlighted by the points circled in 
blue in the preceding figure.

A soft margin SVM works by:

1. Introducing the slack variable

2. Relaxing the constraints
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3. Penalizing the relaxation

Figure 8.10: Using slack variable ξ for linearly inseparable data

The linear constraints can be changed by adding the slack variable to our equation in 
figure 8.x as:

Figure 8.11: Linear constraints for maximizing margin with slack variable ξ

The objective function for linearly inseparable data points is obtained by minimizing 
the following:

Figure 8.12: Objective function to be minimized

Here C is the penalty cost parameter (regularization).
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Linearly Inseparable Cases Using Kernel

In the preceding example, we saw how we can use a soft margin SVM to classify our 
datasets using the slack variable. However, there can be scenarios where it is too hard 
to separate data. For example, in the following figure, it would be impossible to have a 
decision boundary using the slack variable and a linear hyperplane:

Figure 8.13: Linearly inseparable data points
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In this scenario, we can use the concept of a kernel, which creates a nonlinear 
combination of original features (x1,x2) to project to a higher-dimensional space via a 
mapping function, φ, to make it linearly separable:

Figure 8.14: Geometric interpretation and equation for projection from low to high dimension

The problem with this explicit feature mapping is that the dimensionality of the feature 
can be very high, which makes it hard to represent it explicitly in memory. This is 
mitigated using the kernel-trick. kernel-trick basically replaces the dot product xi

T xj 
with a kernel φ xi

Tφ(xj), which can be defined as follows:

Figure 8.15: Kernel function
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There are different types of kernel functions, namely:

Figure 8.16: Different kernel functions

A kernel can also be interpreted as a similarity function and lies between 0 (an exactly 
dissimilar sample) and 1 (an exactly similar sample).

In scikit-learn, the following kernel functions are available:

Figure 8.17: Different kernel functions implemented in scikit-learn

Exercise 35: Training an SVM Algorithm Over a Dataset

In this exercise, we will be using the Titanic dataset named train.csv placed in Lesson08 
folder on GitHub. This dataset contains passenger information such as age, sex, class, 
and so on, and tells us whether the passenger survived. Our objective is to use this 
information to find out whether a given passenger is likely to survive (0 means the 
passenger died and 1 means the passenger survived). We will use the SVM algorithm to 
build our model. 

1. Import pandas, NumPy, train_test_split, cross_val_score, and svm, from the 
sklearn library:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.model_selection import cross_val_score
import numpy as np
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2. Read the dataset into a DataFrame named titanic_data using pandas, as shown 
below, and look at the first few rows of the data:

titanic_data=pd.read_csv(r"train.csv")
titanic_data.head()

Your output will look as follows:

Figure 8.18: First few rows of titanic data

3. Check the data types, as follows: 

titanic_data.dtypes

You'll get the following output:

Figure 8.19: Data type of titanic data set
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4. Look for any missing values using the following code:

titanic_data.isnull().sum()

You should get the following output:

Figure 8.20: Checking for missing values

5. Convert the data in the sex and embarked columns to categorical type using the 
cat.codes function and look at the data types again. Use the following code:

titanic_data["Sex"] = titanic_data["Sex"].astype('category').cat.codes
titanic_data["Embarked"] = titanic_data["Embarked"].astype('category').
cat.codes
titanic_data.dtypes

Your output should now appear as follows:

Figure 8.21: Encoding column Sex and Embarked
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6. Perform missing value imputation on the Age and Cabin columns. Replace the 
missing values in the Age column with the mean and those in Cabin column with 0 
if no value is present and with 1 if some value is present. Use the following code:

mean_value=titanic_data['Age'].mean()
titanic_data['Age']=titanic_data['Age'].fillna(mean_value)
titanic_data[['Cabin']]=np.where(titanic_data[['Cabin']].isnull(), 0, 1)

7. Split the data into train and test sets and save them as X_train, X_test, y_train, 
and y_test as shown:

target = 'Survived'
X = titanic_data.drop(['PassengerId','Survived','Name','Ticket'],axis=1)
y=titanic_data[target]
X_train, X_test, y_train, y_test = train_test_split(X.values,y,test_
size=0.50,random_state=123, stratify=y)

8. Fit a linear svm with C=1:

Note

C is the penalty cost parameter for regularization. Please refer to the objective 
function for linearly inseparable data points in SVM algorithm.

clf_svm=svm.SVC(kernel='linear', C=1)
clf_svm.fit(X_train,y_train)

9. Predict on the test data:

clf_svm.predict(X_test)

10. Calculate the accuracy score using the following code:

clf_svm.score(X_test, y_test)

For the Titanic dataset, the SVM classifier will score an accuracy of around 76.6%. 
This implies it can predict 76.6% of the test data accurately.
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Decision Trees
Decision trees are mostly used for classification tasks. They are a non-parametric form 
of supervised learning method. Decision trees work on the concept of finding out the 
target variable by learning simple decision rules from data. They can be used for both 
classification and regression tasks. The following are the advantages and disadvantages 
of using decision tress for classification:

Advantages

• Decision trees are very simple to understand and can be visualized.

• They can handle both numeric and categorical data.

• The requirement for data cleaning in the case of decision trees is very low since it 
is able to handle missing data.

• It's a non-parametric machine learning algorithm that makes no assumption of 
space distribution and classifier structures.

• It's a white box model rather than a black box model like neural networks, and is 
able to explain the logic of split using Boolean values.

Disadvantages

• Decision trees tend to overfit data very easily, and pruning is required to prevent 
overfitting of the model.

• They are not suitable for imbalanced data, where we may have a decision tree that 
is biased. A decision tree would try to split the node based on the majority class 
and therefore doesn't generalize very well. The remedy is to balance your data 
before applying decision trees.

Exercise 36: Implementing a Decision Tree Algorithm Over a Dataset

In this exercise, we will use decision trees to build our model over the same Titanic 
dataset that we used in the previous exercise. 

Note

Ensure that you use the same Jupyter Notebook as the one used for the preceding 
exercise.
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1. Import tree, graphviz, stringIO, image, export_graphviz, and pydotplus:

import graphviz 
from sklearn import tree
from sklearn.externals.six import StringIO  
from IPython.display import Image  
from sklearn.tree import export_graphviz
import pydotplus 

2. Fit the decision tree classifier using the following code:

clf_tree = tree.DecisionTreeClassifier()
clf_tree = clf_tree.fit(X_train, y_train)

3. Plot the decision tree using a graph. In this plot, we will be using export_graphviz 
to visualize our decision tree. We will use the output of our decision tree classifier 
as our input clf. The target variable will be the class_names, that is Died or 
Survived. 

dot_data = StringIO()
export_graphviz(clf_tree, out_file=dot_data,  
                filled=True, rounded=True,
                class_names=['Died','Survived'],max_depth = 3,
                special_characters=True,feature_names=X.columns.values)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())  
Image(graph.create_png())
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The output of the above snippet will be a graphic visualization of the decision tree 
till a depth of 3.

Figure 8.22: Graphic visualization of the decision tree

4. Calculate the accuracy score using the following code:

clf.score(X_test, y_test)

You should get an output of 0.775, which implies that our decision tree classifier 
scores an accuracy of around 77.5%. Hence our classifier is able to predict 77.5% of 
the test data correctly.

Important Terminology of Decision Trees

A decision tree is so called because the predictive model can be represented in a tree-
like structure. A decision tree is read from the top down starting at the root node. Each 
internal node represents a split based on the values of one of the inputs. The inputs can 
appear in any number of splits throughout the tree. Cases move down the branch that 
contains its input value. A case moves left if the inequality is true and right otherwise. 
The terminal nodes of the tree are called leaves. The leaves represent the predicted 
target.
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Decision Tree Algorithm Formulation

Decision trees use multiple algorithms to split at the root node or sub-node. A decision 
tree goes through all of the features and picks the feature on which it can get the most 
homogeneous sub-nodes. For classification tasks, it decides the most homogeneous 
sub-nodes based on the information gained. This information can be calculated using 
either of these three algorithms:

• Gini Impurity

• Entropy

• Misclassification rate

In short, each of the nodes in a decision tree represents a feature, each of the branches 
represent a decision rule, and each of the leaves represent an outcome. It is a flow-like 
structure.

Information Gain

It gives details on how much "information" a feature will hold about the class. Features 
that are perfectly separable or partitioned will give us maximum information, while 
features that are not perfectly separable or partitioned will give us less information:

Figure 8.23: Information gain formula

Here, IG=Information gain, I=Impurity, f=Feature, Dp=Parent dataset, Dleft=Left child 
dataset, Dright=Right child dataset, Np=Total number of samples in the parent dataset, 
Nleft=Number of samples in the left child dataset, and Nright=Number of samples in the 
right child dataset.
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The impurity can be calculated using either of the following three criteria:

Gini Impurity

The Gini index can be defined as the criteria that would minimize the probability of 
misclassification.

Figure 8.24: Gini impurity

Where, k=number of classes and p(i│t)=proportion of samples that belong to class k for 
a particular node t.

For a two-class problem, we can simplify the preceding equation as:

Figure 8.25: Simplified Gini impurity formula for binary classification

Entropy

Entropy can be defined as the criteria that maximizes mutual information.

Figure 8.26: Entropy formula

Here, p(i│t)=proportion of samples that belong to class k for a particular node t. The 
entropy is 0 if all the samples belong to the same class, where as it is maximum if we 
have uniform class distribution.
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For a two class problem, we can simplify the preceding equation as:

Figure 8.27: Simplified equation

Misclassification error

This measures the misclassification error which can be defined as:

Figure 8.28: Misclassification formula

Gini impurity and entropy typically give the same results, and either one of them can be 
used to calculate the impurity. To prune the tree, we can use the misclassification error.

Example: Referring to the Titanic dataset, we want to divide the node to find out 
whether a person survived or died based on features such as Sex and Embarked. 

Figure 8.29: Visual representation of tree split
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Gini index impurity for embarked:

Figure 8.30: Information gain calculated using Gini impurity (Embarked)

Gini index impurity for gender: 

Figure 8.31: Information gain calculated using Gini impurity (Gender)

From the information gain calculated, the decision tree will split based on the gender/
sex feature, which is 0.33.

Note 

Similarly, information gain can be calculated using entropy and misclassification. 
Students are encouraged to try these two calculations on their own.
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Random Forest
The decision tree algorithm that we saw earlier faced the problem of overfitting. Since 
we fit only one tree on the training data, there is a high chance that the tree will overfit 
the data without proper pruning. The random forest algorithm reduces variance/
overfitting by averaging multiple decision trees, which individually suffer from high 
variance.

Random forest is an ensemble method of supervised machine learning. Ensemble 
methods combine predictions obtained from multiple base estimators/classifiers to 
improve the overall prediction/robustness. Ensemble methods are divided into the 
following two types:

• Bagging: The data is randomly divided into several subsets and the model is 
trained over each of these subsets. Several estimators are built independently 
from each other and then the predictions are averaged together, which ultimately 
helps to reduce variance (overfitting).

• Boosting: In the case of boosting, base estimators are built sequentially and each 
model built is very weak. The objective therefore is to build models in sequence, 
where the latter models try to reduce the error from the previous model and 
thereby reduce bias (underfitting).

The random forest algorithm works as follows:

1. A random bootstrap sample (a sample drawn with replacement) of size n is chosen 
from the training data.

2. Decision trees are grown on each instance of the bootstrap.

3. d features are chosen randomly without replacement.

4. Each node is split using the d features selected based on objective functions, 
which could be information gain.

5. Steps 1-4 are repeated k times.

6. Each of the predictions by multiple trees are aggregated and assigned a class label 
by majority vote.
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The following diagram illustrates how the random forest algorithm works:

Figure 8.32: Working of a random forest model

The following are the advantages and disadvantages of a random forest algorithm:

Advantages

• It does not suffer from overfitting, since we take the average of all the predictions

• It can be used to get feature importance

• It can be used for both regression and classification tasks

• It can be used for highly imbalanced datasets

• It is able to handle missing data

Disadvantages

• It suffers from bias, although it reduces variance

• It's mostly a black box model and is difficult to explain

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Random Forest | 283

Exercise 37: Implementing a Random Forest Model Over a Dataset

In this exercise, we will be using a random forest to build our model over the same 
Titanic dataset used previously. Ensure that you use the same Jupyter Notebook as the 
one used for the preceding exercise.

1. Import the random forest classifier:

from sklearn.ensemble import RandomForestClassifier

2. Fit the random forest classifier to the training data using the following code:

clf = RandomForestClassifier(n_estimators=20, max_depth=None,
     min_samples_split=7, random_state=0)
clf.fit(X_train,y_train)

3. Predict on the test data:

clf.predict(X_test)

4. Calculate the accuracy score:

clf.score(X_test, y_test)

You should get an output close to 0.79, which implies that the random forest 
classifier scores an accuracy of around 79.1%.

So far, we've implemented different classical algorithms such as SVM, decision tree, 
and random forest. We understood the mathematics behind this algorithm and the 
advantages and disadvantages of each of these algorithms. Let's now perform an activity 
to implement these in practice.

Activity 15: Implementing Different Classification Algorithms

In this activity, we will continue working with the telecom dataset (Telco_Churn_Data.
csv) that we used in the previous chapter and build different models over this dataset 
using the scikit-learn API. Your marketing team was impressed with the initial findings 
and they now want you to build a machine learning model that can predict customer 
churn. This model will be used by the marketing team to send out discount coupons to 
customers who may churn. In order to build the best prediction model, it is important 
to try different algorithms and come up with the best performing algorithm that the 
management can use. 
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In this activity, you will use the logistic regression, SVM, and random forest algorithms. 

Note

In Activity 14, we saved our 7 most important features to the variable top7_
features. We will use these features to build our machine learning model.

Follow the steps below:

1. Import the libraries for the logistic regression, decision tree, SVM, and random 
forest algorithms.

2. Fit individual models to clf_logistic, clf_svm, clf_decision, and clf_random 
variables.

Use the following parameters: For the logistic regression model, use random_
state=0, solver='lbfgs'; for the SVM, use kernel='linear', C=1; and for the 
random forest model, use n_estimators=20, max_depth=None, min_samples_split=7, 
random_state=0.

3. Use the score function to get the accuracy for each of the algorithms.

You should get the following accuracy scores for each of the models at the end of this 
activity:

Figure 8.33: Comparison of Different Algorithm Accuracy on Titanic Dataset

Note

The solution for this activity can be found on page 358.
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Preprocessing Data for Machine Learning Models
Preprocessing data before applying any machine learning model can improve the 
accuracy of the model to a large extent. Therefore, it is important to preprocess data 
before applying a machine learning algorithm. Preprocessing data consists of the 
following methods: Standardization, Scaling, and Normalization

Standardization

Most machine learning algorithms assume that all features are centered at zero and 
have variance in the same order. In the case of linear models such as logistic and linear 
regression, some of the parameters used in the objective function assume that all the 
features are centered around zero and have unit variance. If the values of a feature are 
much higher than some of the other features, then that feature might dominate the 
objective function and the estimator may not be able to learn from other features. In 
such cases, standardization can be used to rescale features such that they have a mean 
of 0 and variance of 1. The following formula is used for standardization. 

Figure 8.34: Standardization

Here, xi is the input data, µx is the mean, and σx is the standard deviation. 
Standardization is most useful for optimization algorithms such as gradient descent. 
The scikit-learn API has the StandardScalar utility class.

Exercise 38: Standardizing Data

For this exercise, we will use the bank churn prediction data that was used in Chapter 
7. In the previous chapter, we performed feature selection using random forest. 
The features selected for our bank churn prediction data are: Age, EstimatedSalary, 
CreditScore, Balance, and NumOfProducts.

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



286 | Fine-Tuning Classification Algorithms

In this exercise, our objective will be to standardize data after we have carried 
out feature selection. On exploring the previous chapter, it was clear that data is 
not standardized; therefore in this exercise, we will implement standard scalar to 
standardize the data to zero mean and unit variance. Ensure that you use the same 
Notebook as the one used for the preceding two exercises. 

1. Import the preprocessing library:

from sklearn import preprocessing

2. Take the features Age, EstimatedSalary, CreditScore, Balance, and NumOfProducts:

X_train[top5_features].head()

You will get the following output:

Figure 8.35: First few rows of top5_features

3. Fit the StandardScalar function on the X_train data using the following code:

scaler = preprocessing.StandardScaler().fit(X_train[top5_features])

4. Check the mean and scaled values. Use the following code to check the mean:

scaler.mean_

Figure 8.36: Mean values
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This prints the mean of the five columns. Now check the scaled values:

scaler.scale_

Figure 8.37: Scaled values

The above output shows the scaled values of the five columns.

Note

You can read more about the preceding two functions at https://scikit-learn.org/
stable/modules/generated/sklearn.preprocessing.StandardScaler.html.

5. Apply the transform function to the X_train data. This function performs 
standardization by centering and scaling the training data

X_train_scalar=scaler.transform(X_train[top5_features])

6. Next, apply the transform function to the X_test data and check the output:

X_test_scalar=scaler.transform(X_test[top5_features])
X_train_scalar

You will get the following output on checking the scalar transform data:

Figure 8.38: Scalar transformed data
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Scaling

Scaling is another method for preprocessing your data. Scaling your data cause the 
features to lie between a certain minimum and maximum value, mostly between zero 
and one. As a result, the maximum absolute value of each feature is scaled. Scaling 
can be effective for some of the machine learning algorithms that use the Euclidean 
distance such as the KNN (K-Nearest Neighbors) or k-means clustering:

Figure 8.39: Equation for scaling data

Here, xi is the input data, xmin is the minimum value of the feature, and xmax is the 
maximum value of the feature. In scikit-learn, we use MinMaxScaler or MaxAbsScaler.

Note

You can read more about the MinMaxScaler and MaxAbsScaler at https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html 
and https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
MaxAbsScaler.html.

Exercise 39: Scaling Data After Feature Selection

In this exercise, our objective is to scale data after feature selection. We will use the 
same bank churn prediction data to perform scaling. Ensure that you continue using 
the same Jupyter Notebook.

1. Fit the minmax scaler on the training data:

min_max = preprocessing.MinMaxScaler().fit(X_train[top5_features])

2. Check the min and scaled value:

min_max.min_
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You will get the following mean values.

Figure 8.40: Mean values

Now check the scaled values:

min_max.scale_

You will get the following scaled values.

Figure 8.41: Scaled values

3. Transform the train and test data using min_max:

X_train_min_max=min_max.transform(X_train[top5_features])
X_test_min_max=min_max.transform(X_test[top5_features])  

Normalization

In normalization, individual training samples are scaled to have a unit norm. (The norm 
of a vector is the size or length of the vector. Hence, each of the training samples' 
vector length will be scaled to 1.) This method is mostly used when we want to use a 
quadratic form such as the dot-product or any kernel to quantify sample similarity. It's 
mostly effective in clustering and text classification.

We use either the L1 norm or the L2 norm for normalization:

Figure 8.42: Normalization
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xi is the input training samples.

Note 

In scikit-learn, we use the Normalize and Normalizer utility classes. The 
difference between the two normalizations is out of the scope of this chapter.

Exercise 40: Performing Normalization on Data

In this exercise our objective will be to normalize data after feature selection. We will 
use the same bank churn prediction data for normalizing. Continue using the same 
Jupyter Notebook as the one used in the preceding exercise.

1. Fit the Normalizer() on the training data:

normalize = preprocessing.Normalizer().fit(X_train[top5_features]) 

2. Check the normalize function, that is, whether L1 or L2 Norm:

normalize

This will give you the following output, indicating an L2 norm:

Figure 8.43: Checking the normalize function

3. Transform the training and testing data using normalize:

X_train_normalize=normalize.transform(X_train[top5_features]) 
X_test_normalize=normalize.transform(X_test[top5_features])  

Model Evaluation
When we train our model, we usually split our data into a training and testing datasets. 
This is to ensure that the model doesn't overfit. Overfitting refers to a phenomena 
where a model performs very well on the training data, but fails to give good results on 
testing data, or in other words, the model fails to generalize.

In scikit learn, we have a function known as train_test_split that splits the data into 
training and testing sets randomly.
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When evaluating our model, we start by changing the parameters to improve the 
accuracy as per our test data. There is a high chance of leaking some of the information 
from the testing set to our training set if we optimize our parameters using only the 
testing set data. In order to avoid this, we can split data into three parts—training, 
testing, and validation sets. However, the disadvantage of this technique is that we will 
be further reducing our training dataset.

The solution is to use cross-validation. In this process, we do not need a separate 
validation dataset; we split dataset into training and testing data only. However, the 
training data is split into k smaller sets using a technique called k-fold CV, which can be 
explained using the following figure:

Figure 8.44: k-fold cross validation

The algorithm is as follows:

1. The entire training data is divided into k fold, in this case it's 10.

2. The model is trained on k-1 portions (blue blocks highlighted in the preceding 
figure)

3. Once the model is trained, the classifier is evaluated on the remaining 1 portion 
(red blocks highlighted in the preceding figure).

Steps 2 and 3 are repeated k times.

4. Once the classifier has carried out the evaluation, an overall average score is 
taken.
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This method doesn't work well if we have class imbalance, and therefore we use a 
method known as stratified K fold.

Note

In many real-world classification problems, classes are not equally distributed. One 
class may be highly represented, that is, 90%, while another class may consist of 
only 10% of the samples. We will cover how to deal with imbalanced datasets in the 
next chapter.

We use stratified K fold to deal with datasets where there is class imbalance. In datasets 
where there is class imbalance, during splitting, care must be taken to maintain class 
proportions. In the case of stratified K fold, it maintains class ratio in each portion.

Exercise 41: Implementing Stratified k-fold

In this exercise, we will fit the stratified k-fold function of scikit-learn to the bank churn 
prediction data and use the logistic regression classifier from the previous exercise to 
fit our k-fold data. Along with that, we will also implement the scikit-learn k-fold cross-
validation scorer function. Continue using the same Notebook as the one used for the 
preceding exercise:

1. Import StratifiedKFold from sklearn:

from sklearn.model_selection import StratifiedKFold

2. Fit the classifier on the training and testing data with n_splits=10, and random_
state=1:

skf = StratifiedKFold(n_splits=10,random_state=1).split(X_train[top5_
features].values,y_train.values)

3. Calculate the k-cross fold validation score:

results=[]
for i, (train,test) in enumerate(skf):
    clf.fit(X_train[top5_features].values[train],y_train.values[train])

fit_result=clf.score(X_train[top5_features].values[test],y_train.
values[test])
    results.append(fit_result)
    print('k-fold: %2d, Class Ratio: %s, Accuracy: %.4f' % (i,np.
bincount(y_train.values[train]),fit_result))
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4. Find out the accuracy:

print('accuracy for CV is:%.3f' % np.mean(results))

You will get an output showing the accuracy as 0.790.

5. Import the scikit-learn cross_val_score:

from sklearn.model_selection import cross_val_score

6. Fit the classifier and print the accuracy:

results_cross_val_score=cross_val_score(estimator=clf,X=X_train[top5_
features].values,y=y_train.values,cv=10,n_jobs=1)
print('accuracy for CV is:%.3f' % np.mean(results_cross_val_score))

You will get an output showing the accuracy as 0.790.

In this exercise, we implemented k-fold cross validation using two methods, one 
where we used a for loop and another where we used the cross_val_score function of 
sklearn. We used logistic regression as our base classifier present in the variable clf 
from Exercise 34, Chapter 7. From the cross validation our logistic regression gave an 
accuracy of around 79% overall.

Fine-Tuning of the Model

In the case of a machine learning model, there are two types of parameter tuning that 
can be performed. 

• The first one is the parameters that the model learns from itself, such as the 
coefficients in case of linear regression or the margin in case of SVM.

• The second one are parameters that must be optimized separately, and are known 
as hyperparameters, for example, the alpha value in case of lasso linear regression 
or the number of leaf nodes in case of decision trees. In the case of a machine 
learning model, there can be a number of hypermeters and hence it becomes 
difficult for someone to tune the model by adjusting each of the hyperparameters 
manually.
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There are two methods for performing hypermeter search operations in scikit-learn, 
which are described below:

Grid search: In the case of grid search, it uses brute force exhaustive search to permute 
all combinations of hyperparameters, which are provided to it as a list of values.

Randomized Grid Search: Randomized grid search is a faster alternative to grid search, 
which can be very slow due to the use of brute force. In this method, parameters are 
randomly chosen from a distribution that the user provides. Additionally, the user can 
provide a sampling iteration specified by n_iter, which is used as a computational 
budget.

Exercise 42: Fine-Tuning a Model

In this exercise, we will implement a grid search to find out the best parameters for an 
SVM on the bank churn prediction data. We will continue using the same Notebook as 
in our preceding exercise. 

1. Import SVM, GridSearchCV, and StratifiedKfold:

from sklearn import svm
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedKFold

2. Specify the parameters for grid search as follows:

parameters = [ {'kernel': ['linear'], 'C':[0.1, 1, 10]}, {'kernel': 
['rbf'], 'gamma':[0.5, 1, 2], 'C':[0.1, 1, 10]}]

3. Fit the grid search with StratifiedKFold having parameter as n_splits = 10:

clf = GridSearchCV(svm.SVC(), parameters, cv = StratifiedKFold(n_splits = 
10))
clf.fit(X_train[top5_features], y_train)

4. Print the best score and the best parameters:

print('best score train:', clf.best_score_)
print('best parameters train: ', clf.best_params_)
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You will get the following output:

Figure 8.45: Best score and parameters obtained from grid search

Note

Grid search takes a lot of time to find out the optimum parameters, and hence, the 
search parameters given should be wisely chosen.

From the exercise, we can conclude that the best parameters chosen from grid search 
were C:0.1, Gamma:0.5, and kernel:rbf

From the exercise, we saw how model tuning helps to achieve higher accuracy. Firstly, 
we implemented data preprocessing, which is the first step to improve the accuracy of 
the model. Later, we learned how cross-validation and grid search enable us to further 
tune the machine learning model and improve the accuracy.

Activity 16: Tuning and Optimizing the Model

The models you built in the previous activity produced good results, especially the 
random forest model, which produced an accuracy score of more than 80%. You now 
need to improve the accuracy of the random forest model and generalize it. Tuning 
the model using different pre-processing steps, cross validation, and grid search will 
improve the accuracy of the model. We will be using the same Jupyter notebook as the 
one used in the preceding activity. Follow these steps:

1. Store five out of seven features, that is, Avg_Calls_Weekdays, Current_Bill_Amt, Avg_
Calls, Account_Age, and Avg_Days_Delinquent in a variable top5_features. Store the 
other two features, Percent_Increase_MOM and Complaint_Code, in a variable top5_
features. These features have values in the range of −1 to 7, whereas the other five 
features have values in the range of 0 to 374457. Hence we can leave these features 
and standardize rest of the five features.

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



296 | Fine-Tuning Classification Algorithms

2. Use StandardScalar to standardize the five features.

3. Create a variable X_train_scalar_combined, combine the standardized five features 
with the two features (Percent_Increase_MOM and Complaint_Code), which were not 
standardized.

4. Apply the same scalar standardization to the test data (X_test_scalar_combined).

5. Fit the random forest model.

6. Score the random forest model. You should get a value close to 0.81.

7. Import the library for grid search and use the following parameters: 

parameters = [ {'min_samples_split': [4,5,7,9,10], 'n_
estimators':[10,20,30,40,50,100,150,160,200,250,300],'max_depth': 
[2,5,7,10]}]

8. Use grid search CV with stratified k-fold to find out the best parameters. Use 
StratifiedKFold(n_splits = 10) and RandomForestClassifier().

9. Print the best score and the best parameters. You should get the following values:

Figure 8.46: Best score and best parameters

10. Score the model using the test data. You should get a score close to 0.82. 

Combining the results of the accuracy score obtained in Activity 15 and Activity 16, here 
are the results for random forest:

Figure 8.47: Comparing the accuracy of random forest using different methods
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We can conclude that data pre-processing and model tuning methods can greatly 
improve model accuracy.

Note

The solution for this activity can be found on page 359.

Performance Metrics
In the case of classification algorithms, we use a confusion matrix, which gives us the 
performance of the learning algorithm. It is a square matrix that counts the number 
of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 
outcomes.

Figure 8.48: Confusion matrix

True positive: The number of cases that were observed and predicted as 1.

False negative: The number of cases that were observed as 1 but predicted as 0.

False positive: The number of cases that were observed as 0 but predicted as 1.

True negative: The number of cases that were observed as 1 but predicted as 0.
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Precision

It is the ability of a classifier to not label a sample that is negative as positive. The 
precision for an algorithm is calculated using the following formula:

Figure 8.49: Precision

This is useful in the case of email spam detection. In this scenario, we do not want any 
important emails to be detected as spam.

Recall

It refers to the ability of a classifier to correctly identify all the positive samples, that is, 
out of the total pool of positive (tp + fn) how many were correctly identified. This is also 
known as True Positive Rate (TPR) or sensitivity and is given by the following formula:

Figure 8.50: Recall

This is useful in scenarios where, for example, we want to detect whether a tumor 
is malignant or benign. In that scenario, we can use the recall score, since our main 
objective is to detect all the malignant cases. Even if the classifier picks up a case that is 
benign as malignant, the patient could get a second screening.

F1 Score

This is the harmonic mean of precision and recall. It is given by the following formula.

Figure 8.51: F1 Score

The F1 score can be useful when we want to have an optimal blend of precision and 
recall.
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Exercise 43: Evaluating the Performance Metrics for a Model

In the previous exercise, we used the scikit-learn score function to find out the model 
performance. However, it is not the right way to find out the accuracy or performance 
of a model. In this exercise, we will calculate the F1 score and the accuracy of our 
random forest model for the bank churn prediction dataset. Continue using the same 
Notebook as the one used in the preceding exercise. 

1. Import RandomForestClassifier, metrics, classification_report, confusion matrix, 
and accuracy_score:

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report,confusion_
matrix,accuracy_score
from sklearn import metrics

2. Fit the random forest classifier using the following code over the training data:

clf_random = RandomForestClassifier(n_estimators=20, max_depth=None,
    min_samples_split=7, random_state=0)
clf_random.fit(X_train[top5_features],y_train)

3. Predict on the test data the classifier:

y_pred=clf_random.predict(X_test[top5_features])

4. Print the classification report:

target_names = ['No Churn', 'Churn']
print(classification_report(y_test, y_pred, target_names=target_names))

Your output will look as follows:

Figure 8.52: Classification Report
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5. Fit the confusion matrix and save it into a pandas DataFrame named cm_df:

cm = confusion_matrix(y_test, y_pred)
cm_df = pd.DataFrame(cm,
                     index = ['No Churn','Churn'],
                     columns = ['No Churn','Churn'])

6. Plot the confusion matrix using the following code:

plt.figure(figsize=(8,6))
sns.heatmap(cm_df, annot=True,fmt='g',cmap='Blues')
plt.title(Random Forest \nAccuracy:{0:.3f}'.format(accuracy_score(y_test, 
y_pred)))
plt.ylabel('True Values')
plt.xlabel('Predicted Values')
plt.show()

You should get the following output:

Figure 8.53: Confusion Matrix
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From this exercise, we can conclude that our random forest model has an overall F1 
score of 0.82. However, the F1 score of the customers who have churned is less than 
50%.This is due to highly imbalanced data, as a result of which the model fails to 
generalize. You will learn how to make the model more robust and improve the F1 Score 
for imbalanced data in the next chapter.

ROC Curve

The ROC curve is a graphical method used to inspect the performance of binary 
classification models by shifting the decision threshold of the classifier. It is plotted 
based on TPR and FPR. We saw what TPR is in the last section. FPR is given by the 
following equation:

Figure 8.54: False positive rate (1−specificity)

This is equivalent to 1−specificity.

Specificity is defined as −ve Recall.

−ve Recall is the ability of a classifier to correctly find all the negative samples, that is, 
out of the total pool of negative (tn + fp) how many were correctly identified as negative. 
It is given by the following equation.

Figure 8.55: −ve Recall
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The following diagram illustrates how an ROC curve is plotted: 

Figure 8.56: ROC curve

The diagonal of the ROC curve represents random guessing. Classifiers that lie below 
the diagonal are considered to perform worse than random guessing. A perfect 
classifier would have its ROC curve at the top left corner, having a TPR of 1 and FPR of 0.

Exercise 44: Plotting the ROC Curve

In this exercise, we will plot the ROC curve for the random forest model from the 
previous exercise on the bank churn prediction data. Continue with the same Jupyter 
Notebook as the one used in the preceding exercise.

1. Import roc_curve,auc:

from sklearn.metrics import roc_curve,auc

2. Calculate the TPR, FPR, and threshold using the following code:

fpr, tpr, thresholds = roc_curve(y_test, y_pred, pos_label=1)
roc_auc = metrics.auc(fpr, tpr)
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3. Plot the ROC curve using the following code:

plt.figure()
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, label='%s AUC = %0.2f' % ('Random Forest', roc_auc))
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.ylabel('Sensitivity(True Positive Rate)')
plt.xlabel('1-Specificity(False Positive Rate)')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()

Your plot should appear as follows:

Figure 8.57: ROC curve
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From our exercise, it can be concluded that the model has an area under the curve 
of 0.67. Even though the F1 score of the model was calculated to be 0.82, from our 
classification report, the AUC score is much less. The FPR is closer to 0, however the 
TPR is closer 0.4. The AUC curve and the overall F1 score can be greatly improved 
by pre-processing the data and fine-tuning the model using techniques that we 
implemented in the previous exercise.

In the previous activity, we saw how using fine-tuning techniques greatly improved our 
model accuracy. In the next activity, we will find out the performance of our random 
forest model and compare the ROC curve of all the models.

Activity 17: Comparison of the Models

In our previous activity, we improved the accuracy score of our random forest model 
score to 0.82. However, we were not using the correct performance metrics. In this 
activity, we would find out the F1 score of our random forest model and also compare 
the ROC curve of different machine learning models created in Activity 15. Ensure that 
you use the same Jupyter Notebook as the one used in the preceding activity. Follow 
these steps:

1. Import the required libraries.

2. Fit the random forest classifier with the parameters obtained from grid search in 
the preceding activity. Use the variable clf_random_grid.

3. Predict on the standardized scalar test data X_test_scalar_combined.

4. Fit the classification report. You should get the following output:

Figure 8.58: Classification report
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5. Plot the confusion matrix. Your output should be as follows:

Figure 8.59: Confusion matrix

6. Import the library for auc and roc curve.

7. Use the classifiers that were created in Activity 15, that is, clf_logistic, clf_svm, 
clf_decision, and clf_random_grid. Create a dictionary of all these models.

8. Plot the ROC curve. The following for loop can be used as a hint:

for m in models:
    model = m['model'] 
    ------ FIT THE MODEL
    ------ PREDICT
    ------ FIND THE FPR, TPR AND THRESHOLD
    roc_auc =FIND THE AUC
    plt.plot(fpr, tpr, label='%s AUC = %0.2f' % (m['label'], roc_auc))
plt.plot([0, 1], [0, 1],'r--')
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plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.ylabel('Sensitivity(True Positive Rate)')
plt.xlabel('1-Specificity(False Positive Rate)')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()

You plot should look as follows:

Figure 8.60: ROC curve

Note

The solution for this activity can be found on page 360.
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Summary
In this chapter, you learnt how to perform classification using some of the most 
commonly used algorithms. You also understood the advantage and disadvantage of 
each algorithm. You also learned in depth how a tree-based model works.

You got to grips with why the pre-processing of data using techniques such as 
standardization is necessary, and implemented various fine-tuning techniques for 
optimizing a machine learning model. You were able to choose the right performance 
metrics for your classification problems and explored the concept behind the confusion 
matrix. You also learned how to compare different models and choose the best 
performing models. 

In the next chapter, you will learn about multi-classification problems and how to tackle 
imbalanced data.
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Learning Objectives

By the end of this chapter, you will be able to:

• Describe the logic behind multiclass classification problems

• Create a multiclass classification classifier

• Use different sampling techniques to solve the problem of imbalanced data

This chapter covers different types of multiclass classification problems and explains how to 
calculate performance metrics and deal with imbalanced data.

Modeling Customer 
Choice

9
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Introduction
In the previous chapters, you learned about common classification algorithms such 
as logistic regression, SVM, decision tree, and random forest. You also learned the 
advantages and disadvantages of each of these algorithms. You implemented these 
algorithms using the most popular machine learning API, scikit-learn, and fine-tuned, 
optimized, and evaluated different machine learning models.

In this chapter, you will start by exploring multiclass classification. Then, you will deep 
dive into the intuition behind multiclass classification problems and see how to tackle 
class-imbalanced data. Finally, you will create a multiclass classification classifier.

Understanding Multiclass Classification
The classification algorithms that we discussed earlier were mostly binary classifiers, 
where the target variable can have only two categorical values or classes. However, 
there can be scenarios where we have more than two classes to classify samples into. 
For instance, given data on customer transactions, the marketing team may be tasked 
with identifying the credit card product most suitable for a customer, such as cashback, 
air miles, gas station, or shopping.

Multiclass classification can be broadly divided into the following three categories:

1. Multiclass classification: Multiclass classification problems involve classifying 
instances or samples into one class out of multiple classes (more than two). Each 
sample is assigned only one label and cannot be assigned more than one label at 
a time. For example, an image can be classified as that of a cat, dog, or rabbit, and 
not more than one of them at the same time.

2. Multilabel classification: In the case of multilabel classification, each sample is 
assigned a set of target labels. For example, given some news articles, we may 
want to assign multiple labels to each of these articles to know what kind of topics 
they cover.

3. Multioutput Regression: In the case of multioutput regression, each sample is 
assigned several target variables with different properties. For instance, the target 
could be to predict the wind direction, humidity, and temperature.
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Classifiers in Multiclass Classification

Multiclass classification can be implemented by scikit-learn in the following two ways:

1. One-vs-all classifier: Here, one classifier is fitted against one class. For each of 
the classifiers, the class is then fitted against all the other classes, producing a 
real-valued decision confidence score, instead of class labels. From the decision 
confidence score, the maximum value is picked up to get the final class label. The 
advantage of one-vs-all is its interpretability and efficiency. The following figure 
illustrates how this classifier works:

Figure 9.1: Illustration of the workings of a one-vs-all classifier
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2. One-vs-one classifier: This constructs one classifier per pair of classes. The 
intuitive idea is to develop a binary classifier for each possible pair of classes, 
derive the decision boundary between these two classes, and build an ensemble. 
During prediction, the label is assigned by majority voting and in the event of a 
tie, the class with the highest aggregate classification confidence (obtained by 
summing the pair-wise confidence levels that were calculated earlier) is selected.

Exercise 45: Implementing a Multiclass Classification Algorithm on a Dataset

For this exercise, we will be using the wine dataset from UCI. The dataset comprises 
data on the quantities of 13 constituents of three different wine cultivars grown in 
the same region of Italy. Given the chemical composition, you need to classify which 
variety of wine each sample belongs to. The target variable for the wines consists of 
three classes, causing this to become a multiclass classification problem. You need 
to implement a multiclass classification algorithm to classify these three different 
varieties of wine and observe the difference between OneVsRestClassifier and 
OneVsOneClassifier:

1. Import the load_wine dataset from sklearn.datasets, the OneVsRestClassifier, 
OneVsOneClassifier, and LinearSVC. We will be using a linear SVC, which is good for 
multiclass classification:

from sklearn.datasets import load_wine
from sklearn.multiclass import OneVsRestClassifier,OneVsOneClassifier
from sklearn.svm import LinearSVC

Note

Linear SVC is similar to SVC with the kernel='linear' parameter but is 
implemented as liblinear rather than libsvm, so it has more flexibility in the 
choice of penalties and loss functions and should scale better to large numbers of 
samples.

2. Load the wine dataset to a variable named wine, and use wine.data and wine.target 
to load all the features and the target to variables X and y, respectively:

wine = load_wine()
X, y = wine.data, wine.target
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3. Fit and predict using the one-vs-all classifier. Use the following code:

OneVsRestClassifier(LinearSVC(random_state=0)).fit(X, y).predict(X)

You will receive the following array as output:

Figure 9.2: Output of the one-vs-all classifier

4. Fit and predict using the one-vs-one classifier. Use the following code:

OneVsOneClassifier(LinearSVC(random_state=0)).fit(X, y).predict(X)

You will receive the following array as output:

Figure 9.3: Output of the one-vs-one classifier

From the preceding outputs, you will observe that both the classifiers give the same 
results. The difference between both, however, is the computation time. The one-vs-
one classifier fits k * (k - 1) / 2 classifiers, resulting in a greater number of pairs, which 
leads to an increase in computation time.

Performance Metrics

The performance metrics in the case of multiclass classification would be the same as 
what we used for binary classification in the previous chapter, that is, precision, recall, 
and F1-score obtained using a confusion matrix.
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In the case of a multiclass classification problem, we average out the metrics to find out 
the micro-average or macro-average of the precision, recall, and F1 score in a k-class 
system, where k is the number of classes. Averaging is useful in the case of multiclass 
classification since we have multiple class labels:

• Micro-average: This weighs each instance or prediction equally. It aggregates 
the contributions of all classes to compute the average metric. If our dataset is 
not balanced and we want our classifiers to be biased toward the least frequent 
classes, then we use the micro-average. The micro-average for precision, recall, 
and F1 metrics is calculated by summing up the individual true positives (TPs), false 
positives (FPs), and false negatives (FNs) as follows:

Figure 9.4: Equation for calculating the micro-average of various performance metrics

• Macro-average: In the case of macro-averaging, all classes are equally weighted to 
evaluate the overall performance of a classifier with respect to the most frequent 
class labels. It computes the metric independently for each class and then takes 
the average (hence, treating all classes equally). If our dataset is not balanced and 
we want our classifiers to be biased toward the most frequent classes, then we use 
macro-average. The macro-average for the various performance metrics can be 
calculated as follows:

Figure 9.5: Equation for calculating the macro-average of various performance metrics
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Exercise 46: Evaluating Performance Using Multiclass Performance Metrics

In this exercise, we will evaluate the performance of our model using different metrics 
and observe the difference between the performance metrics:

1. Import the load_wine dataset, numpy, svm, train_test_split, precision_recall_
fscore_support, classification_report, confusion_matrix, and accuracy_score:

from sklearn.metrics import precision_recall_fscore_support
import numpy as np
from sklearn.datasets import load_wine
from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_
matrix,accuracy_score

2. Load the wine dataset and store it in a wine_data variable, as follows:

wine_data=load_wine()

3. Check the features and target:

wine_data['feature_names']
wine_data['target_names']

You will get the following output for the features:

Figure 9.6: Features of the wine_data
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You will get the following output for the target:

Figure 9.7: Target names of wine_data

4. Split the data into training and testing sets and store it in the X_train, X_test, y_
train, and y_test variables, as follows:

X_train, X_test, y_train, y_test = train_test_split(wine_
data['data'],wine_data['target'],test_size=0.20, random_state=123, 
stratify=wine_data['target'])

5. Store the SVM linear model in the model variable and fit the SVM classifier to the 
training set. Store the fitted model in the clf variable:

model = svm.SVC(kernel='linear')
clf = model.fit(X_train,y_train)

6. Use the predict function of the classifier to predict on the test data and store the 
results in y_pred:

y_pred=clf.predict(X_test)

7. Fit the macro-averaging and the micro-averaging using the precision_recall_
fscore_support function. The precision_recall_fscore_support function can 
directly calculate the metrics for micro- and macro-averages, as follows:

precision_recall_fscore_support(y_test, y_pred, average='macro')
precision_recall_fscore_support(y_test, y_pred, average='micro')

You will get approximately the following values as output for macro- and micro-
averages respectively: 0.974, 0.976, 0.974, None and 0.972, 0.972, 0.972, None. These 
values represent the precision, recall, F1 score, and support metrics, respectively.
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8. You can also calculate more detailed metrics statistics using the classification_
report function. Store the target names of the wine data in the target_names 
variable. Generate the classification report using the y_test and y_pred variables:

target_names = wine_data['target_names']
print(classification_report(y_test, y_pred,target_names=target_names))

Figure 9.8: Output of the classification_report function

From the preceding classification report, we can see that when using micro-averaging, 
since each of the classes are equally weighted, we get similar scores for precision, 
recall, and f1, whereas macro-averaging gives weightage to the most frequent class 
labels, resulting in different scores.
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Activity 18: Performing Multiclass Classification and Evaluating Performance

You have been provided with data on the annual spend amount of each of the 20,000 
customers of a major retail company. The marketing team of the company used 
different channels to sell their goods and has segregated customers based on the 
purchases made using different channels, which are as follows: 0-Retail, 1-Road Show, 
2-Social Media, and 3-Televison. As a data scientist, you are tasked with building a 
machine learning model that will be able to predict the most effective channel that 
can be used to target a customer based on the annual spend on the following seven 
products (features) sold by the company: fresh produce, milk, grocery, frozen products, 
detergents, paper, and delicatessen.

1. Import the required libraries.

2. Load the marketing data into a DataFrame named data using pandas and look at 
the first few rows of the DataFrame. It should appear as follows:

Figure 9.9: The first five rows of the data DataFrame

3. Check the shape and the missing values, and show the summary report of the data.

The shape should be (20000,7), and there should be no null values in the data. The 
summary of the data should be as follows:

Figure 9.10: Summary of the data

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Understanding Multiclass Classification | 319

4. Check the target variable, Channel, for the number of transactions for each of the 
channels. You should get the following output:

Figure 9.11: The number of transactions for each channel

5. Split the data into training and testing sets.

6. Fit a random forest classifier and store the model in a clf_random variable. Take the 
number of estimators as 20, the maximum depth as None, the number of samples 
as 7, and use random_state=0.

7. Predict on the test data and store the predictions in y_pred.

8. Find out the micro- and macro-average report using the precision_recall_fscore_
support function.

9. Print the classification report. It should look as follows:

Figure 9.12: Classification report for the Random Forest classifier
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10. Plot the confusion matrix. It will appear as follows:

Figure 9.13: Confusion matrix for the Random Forest classifier

Note

The solution for this activity can be found on page 362.

Class Imbalanced Data
Class imbalance is the most common problem that a data scientist can encounter. Most 
real-world classification tasks involve classifying data, where one class or multiple 
classes are over-represented. This is called class imbalance. Common examples where 
class-imbalanced data is encountered is in fraud detection, anti-money laundering, 
spam detection, and cancer detection.
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Exercise 47: Performing Classification on Imbalanced Data

For this exercise, we are going to use the mammography dataset from UCI. The dataset 
contains some attributes of patients, using which we need to build a model that can 
predict whether a patient will have cancer (that is, a malignant outcome, indicated by 
1) or not (that is, a benign outcome, indicated by −1). 70% of the dataset has benign 
outcomes; hence, it is a highly imbalanced dataset. In this exercise, we will observe how 
imbalanced data affects the performance of a model:

1. Import fetch_datasets, pandas, RandomForestClassifier, train_test_split, 
classification_report, confusion_matrix, accuracy_score, metrics, seaborn, and 
svm:

from imblearn.datasets import fetch_datasets
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_
matrix,accuracy_score
from sklearn import metrics
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import svm

2. Fetch the mammography dataset from fetch_datasets using the following code:

mammography=fetch_datasets()['mammography']

3. Check the number of benign and malignant cases:

pd.DataFrame(mammography['target'])[0].value_counts()

The number of benign cases should be 10,923 and the number of malignant cases 
should be 260.

4. Split the data into training and testing sets, as shown here:

X_train, X_test, y_train, y_test = train_test_
split(mammography['data'],mammography['target'],test_size=0.20, random_
state=123, stratify=mammography['target'])
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5. Check the number of benign and malignant cases in both the training and testing 
data:

pd.DataFrame(y_train)[0].value_counts()

In the training data, the number of benign cases will be 8,738 and the number of 
malignant cases will be 208. Similarly, check for the testing data:

pd.DataFrame(y_test)[0].value_counts()

In the testing data, the number of benign cases will be 2,185 and the number of 
malignant cases will be 52.

6. Now, fit a random forest classifier using the following code and save the model to 
a clf_random variable:

clf_random = RandomForestClassifier(n_estimators=20, max_depth=None,
    min_samples_split=7, random_state=0)
clf_random.fit(X_train,y_train)

7. Predict on the test data and save the predictions to y_pred:

y_pred=clf_random.predict(X_test)

8. Generate the classification report as shown here:

target_names = ['Benign', 'Malignant']
print(classification_report(y_test, y_pred,target_names=target_names))

Your output will appear as follows:

Figure 9.14: Output of the classification_report function
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9. Finally, plot the confusion matrix:

cm = confusion_matrix(y_test, y_pred) 
cm_df = pd.DataFrame(cm,
                     index = ['Benign', 'Malignant'], 
                     columns = ['Benign', 'Malignant'])
plt.figure(figsize=(8,6))
sns.heatmap(cm_df, annot=True,fmt='g',cmap='Blues')
plt.title('Random Forest \nAccuracy:{0:.3f}'.format(accuracy_score(y_test, 
y_pred)))
plt.ylabel('True Values')
plt.xlabel('Predicted Values')
plt.show()

Your output should appear as follows:

Figure 9.15: Confusion matrix for Random Forest classifier
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From the preceding confusion matrix, we can say that our model classified 27 cases 
out of 52 cases as Benign; however, they were actually Malignant. Similarly, the model 
classified 6 cases as Malignant, when the cases were actually Benign.

It's therefore clear that class imbalance influenced the machine learning model to be 
more biased toward the majority class, which is Benign. This is because the machine 
learning algorithm learns by implicitly optimizing predictions depending on the most 
abundant class in the dataset to minimize the cost function during training. As a 
result, the classifier failed to correctly predict the malignant cases, which can be very 
dangerous in cancer detection, although the accuracy of the model is 98%. If we see the 
recall score for malignant cases, then it's less than 50%.

Dealing with Class-Imbalanced Data

One way of dealing with the imbalanced dataset is to assign a penalty to every wrong 
prediction on the minority class. This can be done using the class_weight parameter 
available in scikit-learn.

Therefore, the code in step 6 of the preceding exercise can be changed as shown here:

clf_random = RandomForestClassifier(n_estimators=20, max_depth=None,

    min_samples_split=7, random_state=0,class_weight='balanced')

There are other strategies to deal with imbalanced data as well. Some of them are as 
follows:

• Random Undersampling: In the case of random undersampling, the majority class 
samples are randomly eliminated to maintain class balance. The advantage of 
using this method is that it reduces the number of training samples, and hence the 
training time decreases; however, it may lead to underfitted models.

• Random Oversampling: In the case of random oversampling, the minority class 
samples are replicated randomly to represent a higher representation of the 
minority class in the training sample. The advantage of using this method is that 
there is no information loss; however, it may lead to overfitting of the data.

• Synthetic Minority Oversampling Technique (SMOTE): This technique is used to 
mitigate the problems we faced in random oversampling. In this method, a subset 
of the minority class data is taken, and a similar replica of the data is created, 
which is added to the main datasets. The advantage of using this method is that 
it reduces overfitting of the data and does not lead to any loss of information. 
However, it is not very effective for high-dimensional data.
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Exercise 48: Visualizing Sampling Techniques

In this exercise, we will use the same mammography dataset from the previous exercise 
and see how each of the sampling strategies covered in the preceding section behaves. 
We will continue from our previous Jupyter Notebook, used in Exercise 47:

1. Import RandomOverSampler, RandomUnderSampler, SMOTE, counter, and NumPy library:

from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import SMOTE
from collections import Counter
import numpy as np

2. Create a make_meshgrid function. This function creates a rectangular grid out of 
an array of x and y values. The x and y values can be any of the two columns of 
the dataset that we want to plot. meshgrid is very useful to evaluate functions on a 
grid. Use the following code:

def make_meshgrid(x, y, h=.02):
    x_min, x_max = x.min() - 1, x.max() + 1
    y_min, y_max = y.min() - 1, y.max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_
max, h))
    return xx, yy

3. Create a plot_contours function for plotting the decision boundary and contours, 
respectively. This function will be used to plot the results of the classifier in terms 
of contours that it has predicted on the mesh grid that we built in the previous 
step. Use the following code:

def plot_contours(ax, clf, xx, yy, **params):
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    out = ax.contourf(xx, yy, Z, **params)
    return out
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4. We will take the first two columns from our mammography dataset and assign it to 
variable X and the target is assigned to variable Y, as follows:

X=mammography['data'][:,[0,1]]
y=mammography['target']

Note

You can use either of the two columns in the preceding snippet. Depending upon 
the columns used, the prediction results and contours may vary. For the best 
results, take the most important features or columns.

5. Check the number of samples present in the target variable for benign (−1) and 
malignant (1) cases:

print(sorted(Counter(y).items()))

Your output will show 10,923 benign cases and 260 malignant cases. Therefore, the 
target variable is highly imbalanced, as we saw previously as well.

6. We will use the same random forest classifier as we used in our previous exercise 
to fit our data. We will be using X and Y where we haven't used any sampling 
techniques on y to perform class imbalance. Fit an SVM model with an RBF 
kernel. We will start by fitting our original data, X and y, without using any kind of 
sampling techniques:

clf = clf_random.fit(X,y)

7. Use the make_meshgrid function that we created earlier to pass the first two 
column values (X0 and X1) of the dataset and assign it to xx and yy:

fig, ax = plt.subplots()
# title for the plots
title = (' Decision surface of Random Forest using Original Data ')
# Set-up grid for plotting.
X0, X1 = X[:, 0], X[:, 1]
xx, yy = make_meshgrid(X0, X1)
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8. Use the plot_contour function to pass the result of the subplot, the prediction 
from the classifier, and the meshgrid results (xx,yy) for plotting the prediction 
contours or the decision surface of the SVM classifier:

plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_ylabel('y')
ax.set_xlabel('x')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
plt.show()

You will get the following plot:

Figure 9.16: Plot of prediction contours using original data

Note

From this figure, we can see that only a few of the malignant cases are picked up 
by the classifier and many of the malignant cases are misclassified as Benign.
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9. Let's now perform undersampling. Call the RandomUnderSampler function and store 
it in the rus variable, as shown:

rus = RandomUnderSampler(random_state=0)

10. Use the fit_resample method of RandomUnderSampler to resample our data and 
target variable and store the results in X_resampled and y_resampled, respectively:

X_resampled, y_resampled = rus.fit_
resample(mammography['data'],mammography['target'])

11. Once we have performed under sampling, check the class distribution using the 
counter function on y_resampled and print the results:

print(sorted(Counter(y_resampled).items()))

Your output will now show 260 benign cases and 260 malignant cases, implying 
that the target variable has been undersampled.

12. Fit the random forest classifier on the undersampled data, X_resampled[:[0,1]] 
and y_resampled. Use the make_meshgrid function to generate the meshgrid, as 
follows:

X=X_resampled[:,[0,1]]
y=y_resampled

clf = clf_random.fit(X,y)

fig, ax = plt.subplots()
# title for the plots
title = ('Decision surface of Random Forest using Under Sample')
# Set-up grid for plotting.
X0, X1 = X[:, 0], X[:, 1]
xx, yy = make_meshgrid(X0, X1)

13. Then, plot the prediction contours using the plot_contours function, as shown:

plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_ylabel('y')
ax.set_xlabel('x')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
plt.show()
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Your plot should look as follows:

Figure 9.17: Plot of prediction contours using undersampling

From the preceding figure, we can see that many of the malignant cases are picked 
up by the classifier. However, we also have many less benign cases (260), which 
was originally 10,293. Due to the undersampling, our overall dataset has reduced.

14. Let's now perform oversampling. Call the RandomOverSampler function and store it 
in the ros variable, as shown:

ros = RandomOverSampler(random_state=0)

15. Use the fit_resample method of RandomOverSampler to resample our data and 
target variable and store the results in X_resampled and y_resampled, as follows:

X_resampled, y_resampled = ros.fit_
resample(mammography['data'],mammography['target'])

16. Once we have performed oversampling, check the class distribution using the 
counter function on y_resampled:

print(sorted(Counter(y_resampled).items()))

Your output will now show 10,923 benign and malignant cases, implying that the 
target variable has been oversampled.
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17. Fit the SVM classifier on the oversampled data, X_resampled[:[0,1]] and y_
resampled. Use make_meshgrid to generate the meshgrid, as follows: 

X=X_resampled[:,[0,1]]
y=y_resampled

clf = clf_random.fit(X,y)

fig, ax = plt.subplots()
# title for the plots
title = ('Decision surface of Random Forest using sample')
# Set-up grid for plotting.
X0, X1 = X[:, 0], X[:, 1]
xx, yy = make_meshgrid(X0, X1)

18. Plot the prediction contours using the plot_contours function:

plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_ylabel('y')
ax.set_xlabel('x')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
#ax.legend()
plt.show()
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The plot will look as follows:

Figure 9.18: Plot pf prediction contours using oversampling

From the preceding figure, you will observe that many of the malignant cases are 
picked up by the classifier. However, we have oversampled our malignant cases by 
replicating data points, which increased from 260 to 10,923, and this may lead to 
an overfitted model.

19. Finally, let's perform SMOTE. Use the fit_resample method of the SMOTE() function 
to resample the data and store it in a variable, x_resampled and y_resampled, as 
shown:

X_resampled, y_resampled = SMOTE().fit_
resample(mammography['data'],mammography['target'])

20. Once we have performed SMOTE, check the class distribution using the counter 
function on y_resampled:

print(sorted(Counter(y_resampled).items()))

Your output will now show 10,923 benign and malignant cases.
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21. Fit the random forest classifier on the data, X_resampled[:[0,1]] and y_resampled. 
Use the make_meshgrid function to generate the meshgrid, as follows:

X=X_resampled[:,[0,1]]
y=y_resampled

clf = clf_random.fit(X,y)

fig, ax = plt.subplots()
# title for the plots
title = ('Decision surface of Random Forest using SMOTE')
# Set-up grid for plotting.
X0, X1 = X[:, 0], X[:, 1]
xx, yy = make_meshgrid(X0, X1)

22. Plot the prediction contours using the plot_contours function:

plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_ylabel('y')
ax.set_xlabel('x')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
#ax.legend()
plt.show()

Your plot will appear as follows:

Figure 9.19: Plot of prediction contours using SMOTE
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From the preceding figure, we can see that some of the malignant cases are not picked 
up by the classifier. Although by using SMOTE, our malignant cases increased from 
260 to 10,923, unlike random oversampling, SMOTE doesn't simply duplicate the data; 
it generates a similar replica of the minority class and hence helps in generalizing the 
model.

Exercise 49: Fitting a Random Forest Classifier Using SMOTE and Building the 

Confusion Matrix

In Exercise 47, we noticed that our model was not able to generalize because of 
imbalanced data and our recall score was less than 50%. Out of 52 malignant cases, the 
model was able to pick only 25 cases correctly. In this exercise, we will build a model 
using SMOTE that will be able to correctly detect all the malignant cases and improve 
the recall score. 

Note

Use the same Jupyter Notebook as the one used for the preceding two exercises.

1. We will use SMOTE for sampling our X_train and y_train data to build our 
classifier:

X_resampled, y_resampled = SMOTE().fit_resample(X_train,y_train)

2. Fit the random forest classifier on the sampled data:

clf_random.fit(X_resampled,y_resampled)

3. Predict on the test data:

y_pred=clf_random.predict(X_test)

4. Generate the classification report, as follows:

target_names = ['Benign', 'Malignant']
print(classification_report(y_test, y_pred,target_names=target_names))
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Your output will be as follows:

Figure 9.20: Output of the classification_report function

5. Plot the confusion matrix using the following code:

cm = confusion_matrix(y_test, y_pred) 

cm_df = pd.DataFrame(cm,
                     index = ['Benign', 'Malignant'], 
                     columns = ['Benign', 'Malignant'])
plt.figure(figsize=(8,6))
sns.heatmap(cm_df, annot=True,fmt='g',cmap='Blues')
plt.title('Random Forest \nAccuracy:{0:.3f}'.format(accuracy_score(y_test, 
y_pred)))
plt.ylabel('True Values')
plt.xlabel('Predicted Values')
plt.show()
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It will appear as follows:

Figure 9.21: Confusion matrix

In the last two exercises, we implemented different techniques to deal with imbalanced 
datasets. However, it must be noted that there is no single method that can effectively 
deal with all imbalanced datasets. Each of these methods must be tried to find out 
the best possible method for a dataset. In Exercise 3, we saw that, without using class 
imbalance, our classifier was able to identify only 25 malignant cases, whereas using 
sampling techniques (SMOTE), the classifier identified 38 malignant cases. From the 
classification report, we can see that our recall score went up to 71% from 48%.
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Activity 19: Dealing with Imbalanced Data

For this activity, we will be using the bank.csv dataset present in the Lesson09 folder on 
GitHub. This dataset contains data related to the direct marketing campaigns (that were 
based on phone calls) of a Portuguese banking institution. Often, more than one contact 
for the same client was required, in order to access whether the product (bank term 
deposit) would be subscribed (yes) or not (no). The dataset contains some customer 
information (such as age, job, and so on) and campaign-related information (such as 
contact or communication type, day, month, and duration of the contact, and so on). 

For the next marketing campaign, your company wants to use this data and only 
contact potential customers who will subscribe to the term deposit, thereby reducing 
the effort needed to contact those customers who are not interested. For this, you need 
to create a model that will be able predict whether customers will subscribe to the term 
deposit (variable y). Follow the steps given here:

1. Import all the necessary libraries.

2. Read the dataset into a pandas DataFrame named bank and look at the first few 
rows of the data. Your output should be as follows:

Figure 9.22: The first few rows of bank data

3. Rename the y column as Target.

4. Replace the values no with 0 and yes with 1.
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5. Check the shape and missing values in the data. The shape should be (4334,17) and 
there should be no missing values.

6. Use the describe function to check the continuous and categorical values:

Figure 9.23: Output for continuous variables

Note

Specify (include=['O']) to get a summary of the categorical variables.

Figure 9.24: Output for categorical variables
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7. Check the count of the class labels present in the target variable. You should get 
the following output:

Figure 9.25: Count of class labels

8. Use the cat.codes function to encode the job, marital, default, housing, loan, 
contact, and poutcome columns. Since education and month are ordinal columns, 
convert them as follows:

bank['education'].replace({'primary': 0, 'secondary': 1,'tertiary':2})
bank['month'].replace(['jan', 'feb', 'mar','apr','may','jun','jul','aug','
sep','oct','nov','dec'], [1,2,3,4,5,6,7,8,9,10,11,12], inplace = True)

9. Check the bank data after the conversion. You will get the following output:

Figure 9.26: The first few rows of bank data after conversion

10. Split the data into training and testing sets using train_test_split.

11. Check the number of classes in y_train and y_test. You will get the output 
[(0,3256, (1, 427)] for y_train and [(0, 576), (1, 75)] for y_test.

12. Use the standard_scalar function to transform the X_train and X_test data. Assign 
it to the X_train_sc and X_test_sc variables.

13. Call the random forest classifier with parameters n_estimators=20, max_depth=None, 
min_samples_split=7, and random_state=0.

14. Fit the random forest model.
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15. Predict on the test data using the random forest model.

16. Get the classification report:

Figure 9.27: Classification report

17. Get the confusion matrix: 

Figure 9.28: Confusion matrix
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18. Use the smote() function on x_train and y_train. Assign it to the x_resampled and 
y_resampled variables, respectively.

19. Use standard_scalar to fit on x_resampled and x_test. Assign it to the X_train_sc_
resampled and X_test_sc variables.

20. Fit the random forest classifier on X_train_sc_resampled and y_resampled.

21. Predict on X_test_sc.

22. Generate the classification report. It should look as follows:

Figure 9.29: Classification report of the random forest classifier
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23. Plot the confusion matrix. It should appear as follows:

Figure 9.30: Confusion matrix of the random forest classifier

Note

The solution for this activity can be found on page 364.
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Summary
In this chapter, we understood the logic behind multiclass classification problems. We 
created a multiclass classifier to predict the most suitable channel to be used to target 
customers. Through different examples and exercises, we tackled imbalanced datasets. 
This chapter also gave us an idea of how using different sampling methods can be useful 
in tackling imbalanced data.

In this book, we have covered several topics that are fundamental to marketing 
analytics. Beginning with data manipulation and visualization in Python, we covered 
customer segmentation using unsupervised methods such as clustering, predicted 
customer spend, and developed ideas for both regression and classification problems 
using a variety of use cases. Finally, we evaluated and tuned different machine learning 
models and learned how to handle imbalanced datasets. Following these chapters, 
you should now be able to think like a data scientist and apply these skills to different 
marketing scenarios.

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



About

This section is included to assist the students to perform the activities in the book.  
It includes detailed steps that are to be performed by the students to achieve the objectives of 
the activities.

Appendix

>

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



346 | Appendix

Chapter 1: Data Preparation and Cleaning

Activity 1: Addressing Data Spilling

1. Import pandas and copy into the console, as follows:

import pandas as pd
import copy

2. Use the read_excel function to read the xlsx file and the head function to look at 
the first few rows:

sales = pd.read_excel("sales.xlsx")
sales.head()

3. Look at the data types of sales and see if they make more sense:

sales.dtypes

You should get the following output:

Figure 1.57: Looking at the datatype of sales.xlsx
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4. We can iterate through the DataFrame rows to understand how the data is in the 
first row and how it should be:

forlabel,content in sales.iteritems():
    print label, content[1]

This gives the following output:

Figure 1.58: Iterating through the first row

5. From the preceding output, you can infer that the data should actually contain 
column names starting with a capital letter. Add the following code to get an over-
view of what the data should actually look like:

d = {"Year": 2004, "Product line": "Camping Equipment", "Product 
type":"Cooking Gear", "Product":"TrailChef Water Bag", 
     "Order method type":"Telephone", "Retailer Country":"Canada", 
"Revenue":13444.68, "Planned revenue":14313.48, 
     "Product cost":6298.8, "Quantity":2172, "Unit cost":2.9, "Unit 
price":6.59, "Gross Profit":7145.88, "Unit sale price":6.19}
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You should get the following output:

Figure 1.59: Looking at how the data should be structured

6. The Year column seems to be in its right place, so we can start by creating the 
Product line column. Let's see how many values it has leaked into:

sales.groupby(['Product','line'])['Year'].count()

Your output will be as follows:

Figure 1.60: Seeing how values are distributed across the columns

7. We are not sure whether the spillage is only restricted to these two columns, so 
let's look at the next column too, to be sure:

sales.groupby(['Product','line', 'Product.1'])['Year'].count()
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Your output will be as follows:

Figure 1.61: Looking at data to get the number of columns required

8. Let's resolve the Product line column and see if we were able to do anything:

sales['Product line'] = sales.apply(lambda x: x['Product'] +''+ x['line'], 
axis = 1)
sales = sales.drop(['Product', 'line'], axis = 1)
sales.head()

The DataFrame should now look as follows:

Figure 1.62: Collecting data from multiple columns into the correct field
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9. Instead of directly changing the sales DataFrame, let's create a copy of it, called 
tmp, and make changes to it. Once we have finalized the filtering procedure, we 
don't want to lose the original DataFrame. Let's continue looking at the next 
column of interest, that is, Product type:

tmp = copy.deepcopy(sales)
tmp.groupby(['Product.1','type', 'Product.2'])['Year'].count()

This gives the following output:

Figure 1.63: Seeing variation in number of words required to represent product type

We can see that some fields are not the fields we are interested in. Let's limit our 
view to only those that we are interested in.
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10. As we are only interested in the Climbing Accessories, Cooking Gear, First Aid, 
Golf Accessories, Insect Repellents, and Sleeping Bags product types, so let's 
filter them out. Using a similar logic as before, we store these columns in a new 
DataFrame, tmp1:

tmp1 = copy.deepcopy(tmp[tmp['Product.1'].isin(['Climbing', 'Cooking', 
'First', 'Golf', 'Insect', 'Sleeping'])])
tmp1.head()

This gives the following output:

Figure 1.64: Filtering out the categories we need

Then perform the following groupby operations as well:

tmp1.groupby(['Product.1')['Year'].count()
tmp1.groupby(['Product.1', 'type', 'Product.2'])['Year'].count()
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This gives the following output:

Figure 1.65: Looking for the variation in the required product types categories

We can see that—because of our choice of fields—luckily, we only have to append 
two columns to get the attribute we need. 

11. Now that we know tmp1 requires only two words for Product type, we are done:

tmp1['Product type'] = tmp1['Product.1'] + ''+ tmp1['type']
tmp1 = tmp1.drop(['Product.1', 'type'], axis = 1)
tmp1.head()

This gives the following output:

Figure 1.66: Joining data with these required categories
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12. The next column we have to worry about is Product. Let's see how many columns 
we need for that:

tmp1.groupby(['Product.2', 'Order'])['Year'].count()

This gives the following output:

Figure 1.67: Looking at the variation in the product category

This column has some values that are one word and some that are more than that.

13. Let's create another variable, tmp2, for values containing more than one word: 

tmp2 = copy.deepcopy(tmp1[~tmp1['Order'].isin(['E-mail', 'Fax', 'Mail', 
'Sales', 'Special', 'Telephone', 'Web'])])
tmp2.head()
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This gives the following output:

Figure 1.68: Filtering out observations with values containing more than one word

14. We look at the variation in tmp2 and see that, while most of the columns have two 
words, some columns have more than two words:

tmp2.groupby(['Product.2','Order', 'method'])['Year'].count()

This gives the following output:

Figure 1.69: Distribution in the next few fields
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15. We keep on performing this procedure of repeatedly storing values that have more 
leakage into another variable, until we have exhausted all the columns and got a 
structured dataset by the last step:

tmp8 = copy.deepcopy(tmp7[tmp7['Product.3'].isin(['Kingdom', 'States'])])
tmp8.head()

This gives the following output:

Figure 1.70: Distribution after structuring the longest parts

After structuring the fields with the longest names for Products, Order method 
type, and Retailer country, we can see that there is no spillage in the columns 
containing numerical values. Let's handle the remaining cases directly.

16. We finish structuring the last part of the data directly and store the final struc-
tured data separately:

tmp8['Retail country'] = tmp8['revenue'] + '' + tmp8['Product.3']
tmp8 = tmp8.drop(['revenue', 'Product.3'], axis = 1)
tmp8["Revenue"] = tmp8['cost']
tmp8 = tmp8.drop(['cost'], axis = 1)
tmp8["Planned revenue"] = tmp8['Quantity'] 
tmp8 = tmp8.drop(['Quantity'], axis = 1)
tmp8["Product cost"] = tmp8['Unit'] 
tmp8 = tmp8.drop(['Unit'], axis = 1)
tmp8["Quantity"] = tmp8['cost.1'] 
tmp8 = tmp8.drop(['cost.1'], axis = 1)
tmp8["Unit cost"] = tmp8['Unit.1']
tmp8 = tmp8.drop(['Unit.1'], axis = 1)
tmp8["Unit price"] = tmp8['price']
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tmp8 = tmp8.drop(['price'], axis = 1)
tmp8["Gross profit"] = tmp8['Gross']
tmp8 = tmp8.drop(['Gross'], axis = 1)
tmp8["Unit sale price"] = tmp8['profit']
tmp8 = tmp8.drop(['profit', 'Unit.2', 'sale', 'price.1'], axis = 1)
tmp8.head()

This gives the following output:

Figure 1.71: Fully structuring the data for the longest data

We store the structured dataset separately as str1:

str1 = tmp8

17. Once we structure the last layer of the data completely like this, it is easier for us 
to structure the layer just before it, as we can use the knowledge of the previous 
layer and reduce structuring the current layer to a problem we have already solved 
before:

temp = copy.deepcopy(tmp7[~tmp7.index.isin(tmp8.index.values)])
temp.head()

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 1: Data Preparation and Cleaning | 357

You should get the following output:

Figure 1.72: Structuring data with the second longest data fields

18. Now, we keep on going backward and structure the entire dataset with the help of 
the correctly structured preceding layers:

temp1['Retailer country'] = temp1['method']
temp1 = temp1.drop(['method'], axis = 1)
\temp1["Planned revenue"] = temp1['Retailer'] 
temp1 = temp1.drop(['Retailer'], axis = 1)
temp1["Product cost"] = temp1['country'] 
temp1 = temp1.drop(['country'], axis = 1)
temp1["Unit cost"] = temp1['Planned'] 
temp1 = temp1.drop(['Planned'], axis = 1)
temp1["Unit price"] = temp1['revenue'] 
temp1 = temp1.drop(['revenue'], axis = 1)
temp1["Gross profit"] = temp1['Product.3']
temp1 = temp1.drop(['Product.3'], axis = 1)
temp1["Unit sale price"] = temp1['cost']
temp1 = temp1.drop(['cost'], axis = 1)
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temp1["Quantity"]  = temp1['Revenue']
temp1 = temp1.drop(['Revenue'], axis = 1)
temp1['Revenue'] = temp1['type.1']
temp1 = temp1.drop('type.1', axis = 1)
temp1 = temp1[['Year', 'Product line', 'Product type', 'Product', 'Order 
method type', 'Retailer country', 'Revenue', 
'Planned revenue', 'Product cost', 'Quantity', 'Unit cost', 'Unit price', 
'Gross profit', 'Unit sale price']]

temp1.head()

This gives the following output:

Figure 1.73: Iteratively going backward while stabilizing the longest fields

19. Finally, we just make sure to combine our data and we are done:

df = pd.concat([str1, str2, str3, str4, str5, str6, str7, str8, str9, 
str10, str11, str12, str13, str14, 
               str15, str16, str17, str18, str19, str20, str21, str22], 
sort = True)[['Year', 'Product line',
'Product type', 'Product', 'Order method type', 'Retailer country', 
'Revenue', 'Planned revenue',
'Product cost', 'Quantity', 'Unit cost', 'Unit price', 'Gross profit', 
'Unit sale price']]
df.groupby('Product type').count()
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This gives the following output:

Figure 1.74: Combining Data Sources 

Chapter 2: Data Exploration and Visualization

Activity 2: Analyzing Advertisements

1. Import pandas and seaborn using the following code:

import pandas as pd
import seaborn as sns
sns.set()

2. Read the Advertising.csv file and look at the first few rows:

ads = pd.read_csv("Advertising.csv", index_col = 'Date')
ads.head()

3. Look at the memory and other internal information about the DataFrame:

ads.info

This gives the following output:

Figure 2.63: The result of ads.info()
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4. As all the attributes are numeric, it is enough to understand the distribution of the 
data with describe():

ads.describe()

This gives the following output:

Figure 2.64: The result of ads.describe()

5. See how the values in the column are spread:

ads.quantile([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

As all values are within a reasonable range, we don't need to filter out any data and 
can directly proceed.

6. Look at the histograms of individual features and understand the values better:

sns.distplot(ads['TV'], kde = False)
sns.distplot(ads['newspaper'], kde = False)
sns.distplot(ads['radio'], kde = False)
sns.distplot(ads['sales'], kde = False)

Looking at the data, it is clear that we are interested in analyzing behaviors that 
drive an increase in sales. Therefore, sales is the KPI we need to look at.

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 2: Data Exploration and Visualization | 361

7. Understand the relationships between columns with this command:

sns.pairplot(ads)

This should give the following output:

Figure 2.65: Output of pairplot of the ads feature

You can derive the following insights from the data: Both TV and radio have a clear 
positive correlation with sales. The correlation with newspaper is not that direct, 
but as the distribution of newspapers is low, we can't make a claim about no or 
negative correlation.

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



362 | Appendix

8. You can also try to find unknown or hidden relationships in the data. Let's analyze 
the relationship between newspaper and sales:

ads[['newspaper', 'sales']].plot()

Figure 2.66: pandas plot of the relationship between newpaper and sales

There seems to be a trend in the sales values preceding the newspaper value. We can 
look at this relationship in detail in further analysis. Anyway, the data seems to be 
fully explored now. The data from 1st Jan 2018 to 19th July 2018 has TV and radio in 
direct correlation with sales, but the relationship between sales and newspaper can be 
explored further using different techniques.
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Chapter 3: Unsupervised Learning: Customer Segmentation

Activity 3: Loading, Standardizing, and Calculating Distance with a Dataset

1. Load the data from the customer_interactions.csv file into a pandas DataFrame 
and look at the first five rows of data:

import pandas as pd
df = pd.read_csv('customer_interactions.csv')
df.head()

2. Calculate the Euclidean distance between the first two data points in the Data-
Frame using the following code:

import math
math.sqrt((df.loc[0, 'spend'] - df.loc[1, 'spend'])**2 + (df.loc[0, 
'interactions'] - df.loc[1, 'interactions'])**2)

Note

There are other, more concise methods for calculating distance, including using the 
SciPy package. Since we are doing it here for pedagogical reasons, we have used 
the most explicit method.

3. Calculate the standardized values of the variables and store them in new columns 
named z_spend and z_interactions. Use df.head() to look at the first five rows of 
data:

df['z_spend'] = (df['spend'] - df['spend'].mean())/df['spend'].std()
df['z_interactions'] = (df['interactions'] - df['interactions'].mean())/
df['interactions'].std()
df.head()

4. Calculate the distance between the first two data points using the standardized 
values:

math.sqrt((df.loc[0, 'z_spend'] - df.loc[1, 'z_spend'])**2 + (df.loc[0, 
'z_interactions'] - df.loc[1, 'z_interactions'])**2)
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Activity 4: Using k-means Clustering on Customer Behavior Data

1. Read in the data in the customer_offers.csv file, and set the customer_name column 
to the index:

import pandas as pd

customer_offers = pd.read_csv('customer_offers.csv')
customer_offers = customer_offers.set_index('customer_name')

2. Perform k-means clustering with three clusters, and save the cluster each data 
point is assigned to:

from sklearn import cluster

model = cluster.KMeans(n_clusters=3, random_state=10)
cluster = model.fit_predict(customer_offers)
offer_cols = customer_offers.columns
customer_offers['cluster'] = cluster

3. Use PCA to visualize the clusters:

from sklearn import decomposition
import matplotlib.pyplot as plt
%matplotlib inline

pca = decomposition.PCA(n_components=2)
customer_offers['pc1'], customer_offers['pc2'] = zip(*pca.fit_
transform(customer_offers[offer_cols]))

colors = ['r', 'b', 'k', 'g']
markers = ['^', 'o', 'd', 's']

for c in customer_offers['cluster'].unique():
  d = customer_offers[customer_offers['cluster'] == c]
  plt.scatter(d['pc1'], d['pc2'], marker=markers[c], color=colors[c])

plt.show()
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4. For each cluster, investigate how they differ from the average in each of our 
features. In other words, find how much customers in each cluster differ from the 
average proportion of times they responded to an offer. Plot these differences in a 
bar chart:

total_proportions = customer_offers[offer_cols].mean()
for i in range(3):
  plt.figure(i)
  cluster_df = customer_offers[customer_offers['cluster'] == i]
  cluster_proportions = cluster_df[offer_cols].mean()

  diff = cluster_proportions - total_proportions
  plt.bar(range(1, 33), diff)

5. Load the information about what the offers were from offer_info.csv. For each 
cluster, find the five offers where the cluster differs most from the mean, and print 
out the varietal of those offers:

offer_info = pd.read_csv('offer_info.csv')
for i in range(3):
  cluster_df = customer_offers[customer_offers['cluster'] == i]
  cluster_proportions = cluster_df[offer_cols].mean()

  diff = cluster_proportions - total_proportions
  cluster_rep_offers = list(diff.sort_values(ascending=False).index.
astype(int)[0:5])
  print(offer_info.loc[offer_info['offer_id'].isin(cluster_rep_
offers),'varietal'])

From Figure 3.24 (which shows the top five offers for each cluster), you will notice that 
most of the wines in the first list are champagne, and the one that isn't is Prosecco, a 
type of sparkling wine closely related to champagne. Similarly, the last cluster contains 
mostly Pinot Noir, and one Malbec, which is a red wine similar to Pinot Noir. The 
second cluster might contain customers who care less about the specific type of wine, 
since it contains a white, a red, and three sparkling wines. This might indicate that the 
first group would be a good target in the future for offers involving champagne, and the 
second group might be a good target for offers involving red wines.
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Chapter 4: Choosing the Best Segmentation Approach

Activity 5: Determining Clusters for High-End Clothing Customer Data Using 

the Elbow Method with the Sum of Squared Errors

1. Read in the data from four_cols.csv:

import pandas as pd
df = pd.read_csv('four_cols.csv')

2. Inspect the data using the head function:

df.head()

3. Standardize all columns:

cols = df.columns
zcols = []
for col in cols:
  df['z_' + col] = (df[col] - df[col].mean())/df[col].std()
  zcols.append('z_' + col)

4. Plot the data, using dimensionality reduction (principal component analysis):

from sklearn import decomposition
import matplotlib.pyplot as plt
%matplotlib inline

pca = decomposition.PCA(n_components=2)
df['pc1'], df['pc2'] = zip(*pca.fit_transform(df[zcols]))

plt.scatter(df['pc1'], df['pc2'])
plt.show()

5. Visualize clustering with two and seven clusters:

from sklearn import cluster

colors = ['r', 'b', 'k', 'g', 'm', 'y', 'c']
markers = ['^', 'o', 'd', 's', 'P', 'X', 'v']

plt.figure(figsize=(12,16))
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for n in range(2,8):
  model = cluster.KMeans(n_clusters=n, random_state=10)
  df['cluster'] = model.fit_predict(df[zcols])

  plt.subplot(3, 2, n-1)
  for c in df['cluster'].unique():
    d = df[df['cluster'] == c]
    plt.scatter(d['pc1'], d['pc2'], marker=markers[c], color=colors[c])

plt.show()

6. Create a plot of the sum of squared errors and look for an elbow:

import numpy as np

ss = []
krange = list(range(2,11))
X = df[zcols].values
for n in krange:
  model = cluster.KMeans(n_clusters=n, random_state=10)
  model.fit_predict(X)
  cluster_assignments = model.labels_
  centers = model.cluster_centers_
  ss.append(np.sum((X - centers[cluster_assignments]) ** 2))

plt.plot(krange, ss)
plt.xlabel("$K$")
plt.ylabel("Sum of Squares")
plt.show()
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Activity 6: Using Different Clustering Techniques on Customer Behavior Data

1. Read in the data from customer_offers.csv:

import pandas as pd
df = pd.read_csv('customer_offers.csv').set_index('customer_name')

2. Use mean-shift clustering (with quantile = 0.1) to cluster the data:

from sklearn import cluster

X = df.as_matrix()
bandwidth = cluster.estimate_bandwidth(X, quantile=0.1, n_samples=500)
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)

df['ms_cluster'] = ms.fit_predict(X)

3. Use k-modes clustering (with k=4) to cluster the data:

from kmodes.kmodes import KModes

km = KModes(n_clusters=4)
df['kmode_cluster'] = km.fit_predict(X)

4. Use k-means clustering (with k=4 and random_state=100) to cluster the data:

model = cluster.KMeans(n_clusters=4, random_state=100)
df['kmean_cluster'] = model.fit_predict(X)

5. Using dimensionality reduction (principal component analysis), visualize the 
resulting clustering of each method:

from sklearn import decomposition
import matplotlib.pyplot as plt
%matplotlib inline

colors = ['r', 'b', 'k', 'g']
markers = ['^', 'o', 'd', 's']

pca = decomposition.PCA(n_components=2)
df['pc1'], df['pc2'] = zip(*pca.fit_transform(X))

plt.figure(figsize=(8,12))
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ax = plt.subplot(3, 1, 1)
for c in df['ms_cluster'].unique():
  d = df[df['ms_cluster'] == c]
  plt.scatter(d['pc1'], d['pc2'], marker=markers[c], color=colors[c])    
ax.set_title('mean-shift')
ax = plt.subplot(3, 1, 2)
for c in df['kmode_cluster'].unique():
  d = df[df['kmode_cluster'] == c]
  plt.scatter(d['pc1'], d['pc2'], marker=markers[c], color=colors[c]) 
ax.set_title('kmode')

ax = plt.subplot(3, 1, 3)
for c in df['kmean_cluster'].unique():
  d = df[df['kmean_cluster'] == c]
  plt.scatter(d['pc1'], d['pc2'], marker=markers[c], color=colors[c])    
ax.set_title('kmean')

plt.show()

Activity 7: Evaluating Clustering on Customer Behavior Data

1. Import the data from customer_offers.csv:

import pandas as pd
df = pd.read_csv('customer_offers.csv').set_index('customer_name')

2. Perform a train-test split using random_state = 100:

from sklearn import model_selection

X_train, X_test = model_selection.train_test_split(df, random_state = 100)

Note

This is a relatively small dataset, with only 100 data points, so it is pretty sensitive 
to how the data is split up. When datasets are small like this, it might make sense 
to use other cross-validation methods, which you can read about here: https://
scikit-learn.org/stable/modules/cross_validation.html.
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3. Plot the silhouette scores for k-means clustering using k ranging from 2 to 10:

from sklearn import cluster
from sklearn import metrics
import matplotlib.pyplot as plt
%matplotlib inline

krange = list(range(2,11))
avg_silhouettes = []
for n in krange:
  model = cluster.KMeans(n_clusters=n, random_state=100)
  model.fit(X_train)
  cluster_assignments = model.predict(X_test)
  silhouette_avg = metrics.silhouette_score(X_test, cluster_assignments)
  avg_silhouettes.append(silhouette_avg)

plt.plot(krange, avg_silhouettes)
plt.xlabel("$K$")
plt.ylabel("Average Silhouette Score")
plt.show()

From the plot, you will observe that the maximum silhouette score is obtained at 
k=3. 

4. Use the k found in the previous step, and print out the silhouette score on the test 
set:

model = cluster.KMeans(n_clusters=3, random_state=100)
model.fit(X_train)

km_labels = model.predict(X_test)
km_silhouette = metrics.silhouette_score(X_test, km_labels)

print('k-means silhouette score: ' + str(km_silhouette))
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5. Perform mean-shift clustering and print out its silhouette score on the test set:

bandwidth = cluster.estimate_bandwidth(X_train, quantile=0.1, n_
samples=500)
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)

ms.fit(X_train)

ms_labels = ms.predict(X_test)

ms_silhouette = metrics.silhouette_score(X_test, ms_labels)
print('mean-shift silhouette score: ' + str(ms_silhouette))

6. Perform k-modes clustering and print out its silhouette score on the test set:

from kmodes.kmodes import KModes

km = KModes(n_clusters=4)
km.fit(X_train)

kmode_labels = km.predict(X_test)

kmode_silhouette = metrics.silhouette_score(X_test, kmode_labels)

print('k-mode silhouette score: ' + str(kmode_silhouette))

Chapter 5: Predicting Customer Revenue Using Linear Regression

Activity 8: Examining Relationships between Storefront Locations and Fea-

tures about their Area

1. Load the data from location_rev.csv and then take a look at it:

import pandas as pd

df = pd.read_csv('location_rev.csv')
df.head()
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2. Use seaborn's pairplot function to visualize the data and its relationships:

import seaborn as sns
%matplotlib inline

sns.pairplot(df)

3. Use correlations to investigate the relationship between the different variables 
and the location revenue:

df.corr()

The resulting correlations should make sense. The more competitors in the area, 
the lower the revenue of a location, while the median income, loyalty members, and 
population density are all positively related. A location's age is also positively correlated 
with revenue, indicating that the longer a location is open, the better known it is and 
the more customers it attracts (or perhaps, only locations that do well last a long time).

Activity 9: Building a Regression Model to Predict Storefront Location 

Revenue

1. Import the data from location_rev.csv and view the first few rows:

import pandas as pd
df = pd.read_csv('location_rev.csv')
df.head()

2. Create a variable, X, with the predictors in it, and store the outcome (revenue) in a 
separate variable, y:

X = df[['num_competitors',
       'median_income',
       'num_loyalty_members',
       'population_density',
       'location_age'
       ]]
y = df['revenue']
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3. Split the data into training and test sets. Use random_state = 100:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 
100)

4. Create a linear regression model and fit it on the training data:

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train,y_train)

5. Print out the model coefficients:

model.coef_

6. Print out the model intercept:

model.intercept_

7. Produce a prediction for a location that has 3 competitors; a median income of 
30,000; 1,200 loyalty members; a population density of 2,000; and a location age of 
10:

single_location = pd.DataFrame({
    'num_competitors': [3],
    'median_income': [30000],
    'num_loyalty_members': [1200],
    'population_density': [2000],
    'location_age': [10]
})

model.predict(single_location)

8. Plot the model predictions versus the true values on the test data:

import matplotlib.pyplot as plt
%matplotlib inline

plt.scatter(model.predict(X_test),y_test)
plt.xlabel('Model Predictions')
plt.ylabel('True Value')
plt.plot([0, 100000], [0, 100000], 'k-', color = 'r')
plt.show()
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9. Calculate the correlation between the model predictions and the true values of the 
test data:

from scipy.stats.stats import pearsonr

pearsonr(model.predict(X_test),y_test)

The first number shows an extremely high correlation value (just over 0.9, where 1.0 
would be a perfect correlation). The second number shows an extremely small p-value, 
indicating that it's very unlikely that this correlation is due to chance. Taken together, 
this indicates that our model is working very well on the test data.

Chapter 6: Other Regression Techniques and Tools for Evaluation

Activity 10: Testing Which Variables are Important for Predicting Responses to 

a Marketing Offer

1. Import pandas, read in the data from offer_responses.csv, and use the head func-
tion to view the first five rows of the data:

import pandas as pd

df = pd.read_csv('offer_responses.csv')
df.head() 

2. Import train_test_split from sklearn and use it to split the data into a training 
and test set, using responses as the y variable and all others as the predictor (X) 
variables. Use random_state=10 for train_test_split:

from sklearn.model_selection import train_test_split

X = df[['offer_quality',
        'offer_discount',
        'offer_reach'
       ]]

y = df['responses']

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 
10)
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3. Import LinearRegression and mean_squared_error from sklearn. Fit a model to the 
training data (using all of the predictors), get predictions from the model on the 
test data, and print out the calculated RMSE on the test data:

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

model = LinearRegression()
model.fit(X_train,y_train)

predictions = model.predict(X_test)

print('RMSE with all variables: ' + str(mean_squared_error(predictions, 
y_test)**0.5))

4. Create X_train2 and X_test2 by dropping offer_quality from X_train and X_test. 
Train and evaluate the RMSE of the model using X_train2 and X_test2:

X_train2 = X_train.drop('offer_quality',axis=1)
X_test2 = X_test.drop('offer_quality',axis=1)

model = LinearRegression()
model.fit(X_train2,y_train)

predictions = model.predict(X_test2)

print('RMSE without offer quality: ' + str(mean_squared_error(predictions, 
y_test)**0.5))

5. Perform the same sequence of steps from step 4, but this time dropping offer_
discount instead of offer_quality:

X_train3 = X_train.drop('offer_discount',axis=1)
X_test3 = X_test.drop('offer_discount',axis=1)

model = LinearRegression()
model.fit(X_train3,y_train)

predictions = model.predict(X_test3)

print('RMSE without offer discount: ' + str(mean_squared_
error(predictions, y_test)**0.5))
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6. Perform the same sequence of steps, but this time dropping offer_reach:

X_train4 = X_train.drop('offer_reach',axis=1)
X_test4 = X_test.drop('offer_reach',axis=1)

model = LinearRegression()
model.fit(X_train4,y_train)

predictions = model.predict(X_test4)

print('RMSE without offer reach: ' + str(mean_squared_error(predictions, 
y_test)**0.5))

You should notice that the RMSE went up when offer_reach or offer_discount was 
removed from the model, but remained about the same when offer_quality was 
removed. This suggests that offer_quality isn't contributing to the accuracy of the 
model and could be safely removed to simplify the model.

Activity 11: Using Lasso Regression to Choose Features for Predicting Custom-

er Spend

1. Import pandas, use it to read the data in customer_spend.csv, and use the head 
function to view the first five rows of data:

import pandas as pd

df = pd.read_csv('customer_spend.csv')
df.head()

2. Use train_test_split from sklearn to split the data into training and test sets, 
with random_state=100 and cur_year_spend as the y variable:

from sklearn.model_selection import train_test_split

cols = df.columns[1:]
X = df[cols]

y = df['cur_year_spend']

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 
100)
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3. Import Lasso from sklearn and fit a lasso model (with normalize=True and random_
state=10) to the training data:

from sklearn.linear_model import Lasso

lasso_model = Lasso(normalize=True, random_state=10)
lasso_model.fit(X_train,y_train)

4. Get the coefficients from the lasso model, and store the names of the features 
that have non-zero coefficients along with their coefficient values in the selected_
features and selected_coefs variables, respectively:

coefs = lasso_model.coef_
selected_features = cols[coefs > 0]
selected_coefs = coefs[coefs > 0]

5. Print out the names of the features with non-zero coefficients and their associ-
ated coefficient values using the following code:

for coef, feature in zip(selected_coefs, selected_features):
    print(feature + ' coefficient: ' + str(coef))

From the output, we can see not only which variables are important, but also the effect 
that they have. For example, for each dollar a customer spent in the previous year, we 
can expect a customer to spend approximately $0.80 this year, everything else being 
equal.

Activity 12: Building the Best Regression Model for Customer Spend Based on 

Demographic Data

1. Import pandas, read the data in spend_age_income_ed.csv into a DataFrame, and 
use the head function to view the first five rows of the data:

import pandas as pd

df = pd.read_csv('spend_age_income_ed.csv')
df.head()
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2. Perform a train-test split, with random_state=10:

from sklearn.model_selection import train_test_split

X = df[['age','income','years_of_education']]
y = df['spend']

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 
10)

3. Fit a linear regression model to the training data:

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train,y_train)

4. Fit two regression tree models to the data, one with max_depth=2 and one with 
max_depth=5:

from sklearn.tree import DecisionTreeRegressor

max2_tree_model = DecisionTreeRegressor(max_depth=2)
max2_tree_model.fit(X_train,y_train)

max5_tree_model = DecisionTreeRegressor(max_depth=5)
max5_tree_model.fit(X_train,y_train)

5. Fit two random forest models to the data, one with max_depth=2, one with max_
depth=5, and random_state=10 for both:

from sklearn.ensemble import RandomForestRegressor

max2_forest_model = RandomForestRegressor(max_depth=2, random_state=10)
max2_forest_model.fit(X_train,y_train)

max5_forest_model = RandomForestRegressor(max_depth=5, random_state=10)
max5_forest_model.fit(X_train,y_train)
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6. Calculate and print out the RMSE on the test data for all five models:

from sklearn.metrics import mean_squared_error

linear_predictions = model.predict(X_test)
print('Linear model RMSE: ' + str(mean_squared_error(linear_predictions, 
y_test)**0.5))

max2_tree_predictions = max2_tree_model.predict(X_test)
print('Tree with max depth of 2 RMSE: ' + str(mean_squared_error(max2_
tree_predictions, y_test)**0.5))

max5_tree_predictions = max5_tree_model.predict(X_test)
print('Tree with max depth of 5 RMSE: ' + str(mean_squared_error(max5_
tree_predictions, y_test)**0.5))

max2_forest_predictions = max2_forest_model.predict(X_test)
print('Random Forest with max depth of 2 RMSE: ' + str(mean_squared_
error(max2_forest_predictions, y_test)**0.5))

max5_forest_predictions = max5_forest_model.predict(X_test)
print('Random Forest with max depth of 5 RMSE: ' + str(mean_squared_
error(max5_forest_predictions, y_test)**0.5))

We can see that, with this particular problem, a random forest with a max depth of 5 
does best out of the models we tried. In general, it's good to try a few different types of 
models and values for hyperparameters to make sure you get the model that captures 
the relationships in the data well.
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Chapter 7: Supervised Learning: Predicting Customer Churn

Activity 13: Performing OSE from OSEMN

1. Import the necessary libraries.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Read the dataset using pandas read.csv. and look at the first few rows of the 
DataFrame:

data= pd.read_csv(r'Telco_Churn_Data.csv')
data.head(5)

2. Check the length and shape of the data.

len(data)
data.shape

The length should be 4708 and the shape should be (4708, 15).

3. Check for any missing values present in the data set and use the info method to 
check missing values in each of the columns.

data.isnull().values.any()

This will return True, implying that missing values are present.

data.info()
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This gives the following output:

Figure 7.58: Output of data.info

4. Rename all the columns in a readable format. Convert all the columns names with 
a space to _, for example, rename Target Code to Target_Code.

data.columns=data.columns.str.replace(' ','_')
data.columns

5. Check the descriptive statistics of the data

data.describe()
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6. Check the descriptive statistics of Categorical variable

data.describe(include='object')

7. Change the data type of Target_Code, Condition_of_Current_Handset, and Current_
TechSupComplaints columns from continuous to categorical object type:

data['Target_Code']=data.Target_Code.astype('object')
data['Condition_of_Current_Handset']=data.Condition_of_Current_Handset.
astype('object')
data['Current_TechSupComplaints']=data.Current_TechSupComplaints.
astype('object')
data['Target_Code']=data.Target_Code.astype('int64')
data.describe(include='object')

This gives the following output:

Figure 7.59: Output of describe function for categorical variables

8. Check the percentage of missing values and then impute the values of both 
Complaint_Code and Condition_of_Current_Handset with the most occurring values:

round(data.isnull().sum()/len(data)*100,2)

Figure 7.60: Checking percentage of missing values
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data.Complaint_Code.value_counts()

Figure 7.61: Checking missing values in Complaint_Code
data.Condition_of_Current_Handset.value_counts()

Figure 7.62: Checking missing values in Condition_of_Current_Handset
data['Complaint_Code']=data['Complaint_Code'].fillna(value='Billing 
Problem')
data['Condition_of_Current_Handset']=data['Condition_of_Current_Handset'].
fillna(value=1)
data['Condition_of_Current_Handset']=data.Condition_of_Current_Handset.
astype('object')

9. Perform data exploration by initially exploring the customer Target_Churn variable:

data['Target_Churn'].value_counts(0)
data['Target_Churn'].value_counts(1)*100
summary_churn = data.groupby('Target_Churn')
summary_churn.mean()

10. Find the correlation among different variables:

corr = data.corr()
plt.figure(figsize=(15,8))
sns.heatmap(corr, 
            xticklabels=corr.columns.values,
            yticklabels=corr.columns.values,annot=True)
corr
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From the plots, you will observe that Avg_Calls_Weekdays and Avg_Calls are highly 
correlated, which makes sense since they represent the same thing—average calls. 
Current_Bill_Amt seems to be correlated with both variables, which is as expected, 
since the more you talk the higher your bill will be.

11. Perform univariate and bivariate analysis.

Here's the univariate analysis:

f, axes = plt.subplots(ncols=3, figsize=(15, 6))
sns.distplot(data.Avg_Calls_Weekdays, kde=True,  color="darkgreen", 
ax=axes[0]).set_title('Avg_Calls_Weekdays')
axes[0].set_ylabel('No of Customers')
sns.distplot(data.Avg_Calls, kde=True,color="darkblue", ax=axes[1]).set_
title('Avg_Calls')
axes[1].set_ylabel('No of Customers')
sns.distplot(data.Current_Bill_Amt, kde=True, color="maroon", ax=axes[2]).
set_title('Current_Bill_Amt')
axes[2].set_ylabel('No of Customers')

And here's the bivariate analysis:

Code for the plot of Complaint_Code versus Target_Churn, is given here:

plt.figure(figsize=(17,10))
p=sns.countplot(y="Complaint_Code", hue='Target_Churn', 
data=data,palette="Set2")
legend = p.get_legend()
legend_txt = legend.texts
legend_txt[0].set_text("No Churn")
legend_txt[1].set_text("Churn")
p.set_title('Customer Complaint Code Distribution')

From this plot, you'll observe that call quality and billing problems are the two 
main reasons for customer churn.

Cod for the plot of Acct_Plan_Subtype versus Target_Churn is given here:

plt.figure(figsize=(15,4))
p=sns.countplot(y="Acct_Plan_Subtype", hue='Target_Churn', 
data=data,palette="Set2")
legend = p.get_legend()
legend_txt = legend.texts
legend_txt[0].set_text("No Churn")
legend_txt[1].set_text("Churn")
p.set_title('Customer Acct_Plan_Subtype Distribution')
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Code for the plot of Current_TechSupComplaints versus Target_Churn is given here:

plt.figure(figsize=(15,4))
p=sns.countplot(y="Current_TechSupComplaints", hue='Target_Churn', 
data=data,palette="Set2")
legend = p.get_legend()
legend_txt = legend.texts
legend_txt[0].set_text("No Churn")
legend_txt[1].set_text("Churn")
p.set_title('Customer Current_TechSupComplaints Distribution')

Code for the plot of Avg_Days_Delinquent versus Target_Code is given here.

plt.figure(figsize=(15,4))
ax=sns.kdeplot(data.loc[(data['Target_Code'] == 0),'Avg_Days_Delinquent'] 
, color=sns.color_palette("Set2")[0],shade=True,label='no churn')
ax=sns.kdeplot(data.loc[(data['Target_Code'] == 1),'Avg_Days_Delinquent'] 
, color=sns.color_palette("Set2")[1],shade=True, label='churn')
ax.set(xlabel='Average No of Days Deliquent/Defaluted from paying', 
ylabel='Frequency')
plt.title('Average No of Days Deliquent/Defaluted from paying - churn vs 
no churn')

From this plot, you'll observe that if the average number of days delinquent is 
more than 16 days, customers start to churn.

Code for the plot of Account_Age versus Target_Code is given here:

plt.figure(figsize=(15,4))
ax=sns.kdeplot(data.loc[(data['Target_Code'] == 0),'Account_Age'] , 
color=sns.color_palette("Set2")[0],shade=True,label='no churn')
ax=sns.kdeplot(data.loc[(data['Target_Code'] == 1),'Account_Age'] , 
color=sns.color_palette("Set2")[1],shade=True, label='churn')
ax.set(xlabel='Account_Age', ylabel='Frequency')
plt.title('Account_Age - churn vs no churn')

From this plot, you'll observe that during the initial 15-20 days of opening an 
account, the amount of customer churn increases; however, after 20 days, the 
churn rate declines.
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Code for the plot of Percent_Increase_MOM vs Target_Code is given here:

plt.figure(figsize=(15,4))
ax=sns.kdeplot(data.loc[(data['Target_Code'] == 0),'Percent_Increase_MOM'] 
, color=sns.color_palette("Set2")[0],shade=True,label='no churn')
ax=sns.kdeplot(data.loc[(data['Target_Code'] == 1),'Percent_Increase_MOM'] 
, color=sns.color_palette("Set2")[1],shade=True, label='churn')
ax.set(xlabel='Percent_Increase_MOM', ylabel='Frequency')
plt.title('Percent_Increase_MOM- churn vs no churn')

From this plot, you will note that customers who have Percent_Increase_MOM within 
a range of −ve% to +ve% have a greater likelihood of churning.

Activity 14: Performing MN of OSEMN

1. Import the RandomForestClassifier, train_test_split, and numpy library:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import numpy as np

2. Encode the columns:

data["Acct_Plan_Subtype"] = data["Acct_Plan_Subtype"].astype('category').
cat.codes
data["Complaint_Code"] = data["Complaint_Code"].astype('ca
tegory').cat.codes
data[["Acct_Plan_Subtype","Complaint_Code"]].head()

3. Split the data into a training and testing set:

target = 'Target_Code'
X = data.drop(['Target_Code','Target_Churn'], axis=1)
y=data[target]
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.15, 
random_state=123, stratify=y)

4. Perform feature selection using the random forest classifier:

forest=RandomForestClassifier(n_estimators=500,random_state=1)
forest.fit(X_train,y_train)
importances=forest.feature_importances_
features = data.drop(['Target_Code','Target_Churn'],axis=1).columns
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indices = np.argsort(importances)[::-1]
plt.figure(figsize=(15,4))
plt.title("Feature importances using Random Forest")
plt.bar(range(X_train.shape[1]), importances[indices],
       color="r",  align="center")
plt.xticks(range(X_train.shape[1]), features[indices], 
rotation='vertical',fontsize=15)
plt.xlim([-1, X_train.shape[1]])
plt.show()

5. Import statsmodels:

import statsmodels.api as sm
top7_features = ['Avg_Days_Delinquent','Percent_Increase_MOM','Avg_Calls_
Weekdays','Current_Bill_Amt','Avg_Calls','Complaint_Code','Account_Age']
logReg = sm.Logit(y_train, X_train[top7_features])
logistic_regression = logReg.fit()

6. Find out the parameters:

logistic_regression.summary
logistic_regression.params

7. Create a function to compute the cost function:

coef = logistic_regression.params
def y (coef, Avg_Days_Delinquent,Percent_Increase_MOM,Avg_Calls_
Weekdays,Current_Bill_Amt,Avg_Calls,Complaint_Code,Account_Age) : 
    final_coef=coef[0]*Avg_Days_Delinquent+ coef[1]*Percent_Increase_
MOM+coef[2]*Avg_Calls_Weekdays+coef[3]*Current_Bill_Amt+ coef[4]*Avg_
Calls+coef[5]*Complaint_Code+coef[6]*Account_Age
    return final_coef

8. Input the given attributes of the customer to the function to obtain the output:

Avg_Days_Delinquent:40, Percent_Increase_MOM:5, Avg_Calls_Weekdays:39000, 
Current_Bill_Amt:12000, Avg_Calls:9000, Complaint_Code:0, Account_Age:17
y1 = y(coef, 40, 5, 39000,12000,9000,0,17)
p = np.exp(y1) / (1+np.exp(y1))
p
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Chapter 8: Fine-Tuning Classification Algorithms

Activity 15: Implementing Different Classification Algorithms

1. Import the logistic regression library:

from sklearn.linear_model import LogisticRegression

2. Fit the model:

clf_logistic = LogisticRegression(random_state=0, solver='lbfgs').fit(X_
train[top7_features], y_train)
clf_logistic

3. Score the model:

clf_logistic.score(X_test[top7_features], y_test)

4. Import the svm library:

from sklearn import svm

5. Fit the model:

clf_svm=svm.SVC(kernel='linear', C=1)
clf_svm.fit(X_train[top7_features],y_train)

6. Score the model:

clf_svm.score(X_test[top7_features], y_test)

7. Import the decision tree library:

from sklearn import tree

8. Fit the model:

clf_decision = tree.DecisionTreeClassifier()
clf_decision.fit(X_train[top7_features],y_train)

9. Score the model:

clf_decision.score(X_test[top7_features], y_test)

10. Import a random forest library:

from sklearn.ensemble import RandomForestClassifier
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11. Fit the model:

clf_random = RandomForestClassifier(n_estimators=20, max_
depth=None,     min_samples_split=7, random_state=0)
clf_random.fit(X_train[top7_features], y_train)

12. Score the model.

clf_random.score(X_test[top7_features], y_test)

From the results, you can conclude that the random forest has outperformed the rest of 
the algorithms, with the decision tree having the lowest accuracy. In a later section, you 
will learn why accuracy is not the correct way to find a model's performance.

Activity 16: Tuning and Optimizing the Model

1. Store five out of seven features, that is, Avg_Calls_Weekdays, Current_Bill_Amt, 
Avg_Calls, Account_Age, and Avg_Days_Delinquent in a variable top5_features. Store 
the other two features, Percent_Increase_MOM and Complaint_Code, in a variable 
top5_features.

from sklearn import preprocessing
## Features to transform
top5_features=['Avg_Calls_Weekdays', 'Current_Bill_Amt', 'Avg_Calls', 
'Account_Age','Avg_Days_Delinquent']
## Features Left
top2_features=['Percent_Increase_MOM','Complaint_Code']

2. Use StandardScalar to standardize the five features.

scaler = preprocessing.StandardScaler().fit(X_train[top5_features])
X_train_scalar=pd.DataFrame(scaler.transform(X_train[top5_
features]),columns = X_train[top5_features].columns)

3. Create a variable X_train_scalar_combined, combine the standardized five features 
with the two features (Percent_Increase_MOM and Complaint_Code), which were not 
standardized.

X_train_scalar_combined=pd.concat([X_train_scalar,  X_train[top2_
features].reset_index(drop=True)], axis=1, sort=False)

4. Apply the same scalar standardization to the test data (X_test_scalar_combined).

X_test_scalar_combined=pd.concat([X_test_scalar,  X_test[top2_features].
reset_index(drop=True)], axis=1, sort=False)

 EBSCOhost - printed on 2/9/2023 10:50 AM via . All use subject to https://www.ebsco.com/terms-of-use



390 | Appendix

5. Fit the random forest model.

clf_random.fit(X_train_scalar_combined, y_train)

6. Score the random forest model.

clf_random.score(X_test_scalar_combined, y_test)

7. Import the library for grid search and use the given parameters: 

from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedKFold
parameters = [ {'min_samples_split': [4,5,7,9,10], 'n_
estimators':[10,20,30,40,50,100,150,160,200,250,300],'max_depth': 
[2,5,7,10]}]

8. Use grid search CV with stratified k-fold to find out the best parameters. 

clf_random_grid = GridSearchCV(RandomForestClassifier(), parameters, cv = 
StratifiedKFold(n_splits = 10))
clf_random_grid.fit(X_train_scalar_combined, y_train)

9. Print the best score and best parameters.

print('best score train:', clf_random_grid.best_score_)
print('best parameters train: ', clf_random_grid.best_params_)

10. Score the model using the test data.

clf_random_grid.score(X_test_scalar_combined, y_test)

Activity 17: Comparison of the Models

1. Import the required libraries.

from sklearn.metrics import classification_report,confusion_
matrix,accuracy_score
from sklearn import metrics

2. Fit the random forest classifier with the parameters obtained from grid search.

clf_random_grid = RandomForestClassifier(n_estimators=100, max_depth=7,
     min_samples_split=10, random_state=0)
clf_random_grid.fit(X_train_scalar_combined, y_train)

3. Predict on the standardized scalar test data X_test_scalar_combined.

y_pred=clf_random_grid.predict(X_test_scalar_combined)
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4. Fit the classification report.

target_names = ['No Churn', 'Churn']
print(classification_report(y_test, y_pred, target_names=target_names))

5. Plot the confusion matrix.

cm = confusion_matrix(y_test, y_pred) 
cm_df = pd.DataFrame(cm,
                     index = ['No Churn','Churn'], 
                     columns = ['No Churn','Churn'])
plt.figure(figsize=(8,6))
sns.heatmap(cm_df, annot=True,fmt='g',cmap='Blues')
plt.title('Random Forest \nAccuracy:{0:.3f}'.format(accuracy_score(y_test, 
y_pred)))
plt.ylabel('True Values')
plt.xlabel('Predicted Values')
plt.show()

6. Import the library for auc and roc curve.

from sklearn.metrics import roc_curve,auc

7. Use the classifiers which were created in our previous activity, that is, clf_logis-
tic, clf_svm, clf_decision, and clf_random_grid. Create a dictionary of all these 
models.

models = [
{
    'label': 'Logistic Regression',
    'model': clf_logistic,
},
{
    'label': 'SVM',
    'model': clf_svm,
},
{
    'label': 'Decision Tree',
    'model': clf_decision,
},
{
    'label': 'Random Forest Grid Search',
    'model': clf_random_grid,
}
]
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8. Plot the ROC curve.

for m in models:
    model = m['model'] 
    model.fit(X_train_scalar_combined, y_train) 
    y_pred=model.predict(X_test_scalar_combined) 
    fpr, tpr, thresholds = roc_curve(y_test, y_pred, pos_label=1)
    roc_auc = metrics.auc(fpr, tpr)
    plt.plot(fpr, tpr, label='%s AUC = %0.2f' % (m['label'], roc_auc))
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.ylabel('Sensitivity(True Positive Rate)')
plt.xlabel('1-Specificity(False Positive Rate)')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()

Comparing the AUC result of different algorithms (logistic regression: 0.78; SVM: 0.79, 
decision tree: 0.77, and random forest: 0.82), we can conclude that random forest is the 
best performing model with the AUC score of 0.82 and can be chosen for the marketing 
team to predict customer churn.

Chapter 9: Modeling Customer Choice

Activity 18: Performing Multiclass Classification and Evaluating Performance

1. Import pandas, numpy, randomforestclassifier, train_test_split, classification_
report, confusion_matrix, accuracy_score, metrics, seaborn, matplotlib, and preci-
sion_recall_fscore_support:

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_
matrix,accuracy_score
from sklearn import metrics
from sklearn.metrics import precision_recall_fscore_support
import matplotlib.pyplot as plt
import seaborn as sns
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2. Load the marketing data using pandas:

data= pd.read_csv(r'MarketingData.csv')
data.head(5)

3. Check the shape, the missing values, and show the summary report of the data:

data.shape

The shape should be (20000,7). Check for missing values:

data.isnull().values.any()

This will return False as there are no null values in the data. See the summary 
report of the data using the describe function:

data.describe()

4. Check the target variable, Channel, for the number of transactions for each of the 
channels:

data['Channel'].value_counts()

5. Split the data into training and testing sets:

target = 'Channel'
X = data.drop(['Channel'],axis=1)
y=data[target]
X_train, X_test, y_train, y_test = train_test_split(X.values,y,test_
size=0.20, random_state=123, stratify=y)

6. Fit a random forest classifier and store the model in a clf_random variable:

clf_random = RandomForestClassifier(n_estimators=20, max_depth=None,
    min_samples_split=7, random_state=0)
clf_random.fit(X_train,y_train)

7. Predict on the test data and store the predictions in y_pred:

y_pred=clf_random.predict(X_test)

8. Find out the micro- and macro-average report:

precision_recall_fscore_support(y_test, y_pred, average='macro')
precision_recall_fscore_support(y_test, y_pred, average='micro')

You will get approximately the following values as output for macro- and micro-
averages respectively: 0.891, 0.891, 0.891, None and 0.891, 0.891, 0.891, None. 
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9. Print the classification report:

target_names = ["Retail","RoadShow","SocialMedia","Televison"]
print(classification_report(y_test, y_pred,target_names=target_names))

10. Plot the confusion matrix:

cm = confusion_matrix(y_test, y_pred)
cm_df = pd.DataFrame(cm,
                     index = target_names, 
                     columns = target_names)
plt.figure(figsize=(8,6))
sns.heatmap(cm_df, annot=True,fmt='g',cmap='Blues')
plt.title('Random Forest \nAccuracy:{0:.3f}'.format(accuracy_score(y_test, 
y_pred)))
plt.ylabel('True Values')
plt.xlabel('Predicted Values')
plt.show()

From this activity, we can conclude that our random forest model was able to predict 
the most effective channel for marketing using customers' annual spend data with an 
accuracy of 89%.

Activity 19: Dealing with Imbalanced Data

1. Import all the necessary libraries.

from sklearn.metrics import classification_report,confusion_
matrix,accuracy_score
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from imblearn.over_sampling import SMOTE
from sklearn.preprocessing import StandardScaler
from collections import Counter

2. Read the dataset into a pandas DataFrame named bank and look at the first few 
rows of the data:

bank = pd.read_csv('bank.csv', sep = ';')
bank.head()
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3. Rename the y column as Target:

bank = bank.rename(columns={
                        'y': 'Target'
                        })

4. Replace the no value with 0 and yes with 1:

bank['Target']=bank['Target'].replace({'no': 0, 'yes': 1})

5. Check the shape and missing values in the data:

bank.shape
bank.isnull().values.any()

6. Use the describe function to check the continuous and categorical values:

bank.describe()
bank.describe(include=['O'])

7. Check the count of the class labels present in the target variable:

bank['Target'].value_counts(0)

8. Use the cat.codes function to encode the job, marital, default, housing, loan, 
contact, and poutcome columns:

bank["job"] = bank["job"].astype('category').cat.codes
bank["marital"] = bank["marital"].astype('category').cat.codes
bank["default"] = bank["job"].astype('category').cat.codes
bank["housing"] = bank["marital"].astype('category').cat.codes
bank["loan"] = bank["loan"].astype('category').cat.codes
bank["contact"] = bank["contact"].astype('category').cat.codes
bank["poutcome"] = bank["poutcome"].astype('category').cat.codes

Since education and month are ordinal columns, convert them as follows:

bank['education']=bank['education'].replace({'primary': 0, 'secondary': 
1,'tertiary':2})
bank['month'].replace(['jan', 'feb', 'mar','apr','may','jun','jul','aug','
sep','oct','nov','dec'], [1,2,3,4,5,6,7,8,9,10,11,12], inplace  = True)
bank['education'].replace({'primary': 0, 'secondary': 1,'tertiary':2})
bank['month'].replace(['jan', 'feb', 'mar','apr','may','jun','jul','aug','
sep','oct','nov','dec'], [1,2,3,4,5,6,7,8,9,10,11,12], inplace  = True)
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9. Check the bank data after conversion:

bank.head()

10. Split the data into training and testing sets using train_test_split, as follows:

target = 'Target'
X = bank.drop(['Target'], axis=1)
y=bank[target]

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.15, 
random_state=123, stratify=y)

11. Check the number of classes in y_train and y_test:

print(sorted(Counter(y_train).items()))
print(sorted(Counter(y_test).items()))

12. Use the standard_scalar function to transform the X_train and X_test data. Assign 
it to the X_train_sc and X_test_sc variables: 

standard_scalar = StandardScaler()
X_train_sc = standard_scalar.fit_transform(X_train)
X_test_sc = standard_scalar.transform(X_test)

13. Call the random forest classifier with parameters n_estimators=20, max_depth=None, 
min_samples_split=7, and random_state=0:

clf_random = RandomForestClassifier(n_estimators=20, max_depth=None,
min_samples_split=7, random_state=0)

14. Fit the random forest model:

clf_random.fit(X_train_sc,y_train)

15. Predict on the test data using the random forest model:

y_pred=clf_random.predict(X_test_sc)

16. Get the classification report:

target_names = ['No', 'Yes']
print(classification_report(y_test, y_pred,target_names=target_names))
cm = confusion_matrix(y_test, y_pred) 
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17. Get the confusion matrix:

cm_df = pd.DataFrame(cm,
                     index = ['No', 'Yes'], 
                     columns = ['No', 'Yes'])
plt.figure(figsize=(8,6))
sns.heatmap(cm_df, annot=True,fmt='g',cmap='Blues')
plt.title('Random Forest \nAccuracy:{0:.3f}'.format(accuracy_score(y_test, 
y_pred)))
plt.ylabel('True Values')
plt.xlabel('Predicted Values')
plt.show()

18. Use the smote() function on x_train and y_train. Assign it to the x_resampled and 
y_resampled variables, respectively:

X_resampled, y_resampled = SMOTE().fit_resample(X_train,y_train)

19. Use standard_scalar to fit on x_resampled and x_test. Assign it to the X_train_sc_
resampled and X_test_sc variables:

standard_scalar = StandardScaler()
X_train_sc_resampled = standard_scalar.fit_transform(X_resampled)
X_test_sc = standard_scalar.transform(X_test)

20. Fit the random forest classifier on X_train_sc_resampled and y_resampled:

clf_random.fit(X_train_sc_resampled,y_resampled)

21. Predict on X_test_sc:

y_pred=clf_random.predict(X_test_sc)

22. Generate the classification report:

target_names = ['No', 'Yes']
print(classification_report(y_test, y_pred,target_names=target_names))
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23. Plot the confusion matrix:

cm = confusion_matrix(y_test, y_pred) 

cm_df = pd.DataFrame(cm,
                     index = ['No', 'Yes'], 
                     columns = ['No', 'Yes'])
plt.figure(figsize=(8,6))
sns.heatmap(cm_df, annot=True,fmt='g',cmap='Blues')
plt.title('Random Forest \nAccuracy:{0:.3f}'.format(accuracy_score(y_test, 
y_pred)))
plt.ylabel('True Values')
plt.xlabel('Predicted Values')
plt.show()

In this activity, our bank marketing data was highly imbalanced. We observed that, 
although without using a sampling technique our model accuracy is around 90%, 
the recall score and macro-average score was 32% (Yes - Term Deposit) and 65%, 
respectively. This implies that our model is not able to generalize, and most of the time 
it misses potential customers who would subscribe to the term deposit.

On the other hand, when we used SMOTE, our model accuracy was around 87%, but 
the recall score and macro-average score was 61% (Yes - Term Deposit) and 76%, 
respectively. This implies that our model can generalize and, more than 60% of the 
time, it detects potential customers who would subscribe to the term deposit.
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