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About

This section briefly introduces the authors, the what this book covers, the technical skills you'll 
need to get started, and the hardware and software requirements required to complete the 
activities and exercises.

Preface

>
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About the Book

Processing big data in real time is challenging due to scalability, information 
inconsistency, and fault tolerance. Big Data Analysis with Python teaches you how 
to use tools that can control this data avalanche for you. With this book, you'll learn 
practical techniques to aggregate data into useful dimensions for posterior analysis, 
extract statistical measurements, and transform datasets into features for other 
systems.

The book begins with an introduction to data manipulation in Python using pandas. 
You'll then get familiar with statistical analysis and plotting techniques. With multiple 
hands-on activities in store, you'll be able to analyze data that is distributed on several 
computers by using Dask. As you progress, you'll study how to aggregate data for plots 
when the entire data cannot be accommodated in memory. You'll also explore Hadoop 
(HDFS and YARN), which will help you tackle larger datasets. The book also covers Spark 
and explains how it interacts with other tools.

By the end of this book, you'll be able to bootstrap your own Python environment, 
process large files, and manipulate data to generate statistics, metrics, and graphs.

About the Authors

Ivan Marin is a systems architect and data scientist working at Daitan Group, a 
Campinas-based software company. He designs big data systems for large volumes of 
data and implements machine learning pipelines end to end using Python and Spark. He 
is also an active organizer of data science, machine learning, and Python in São Paulo, 
and has given Python for data science courses at university level.

Ankit Shukla is a data scientist working with World Wide Technology, a leading 
US-based technology solution provider, where he develops and deploys machine 
learning and artificial intelligence solutions to solve business problems and create 
actual dollar value for clients. He is also part of the company's R&D initiative, which is 
responsible for producing intellectual property, building capabilities in new areas, and 
publishing cutting-edge research in corporate white papers. Besides tinkering with AI/
ML models, he likes to read and is a big-time foodie.

Sarang VK is a lead data scientist at StraitsBridge Advisors, where his responsibilities 
include requirement gathering, solutioning, development, and productization of 
scalable machine learning, artificial intelligence, and analytical solutions using open 
source technologies. Alongside this, he supports pre-sales and competency.
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Learning Objectives

• Use Python to read and transform data into different formats

• Generate basic statistics and metrics using data on disk

• Work with computing tasks distributed over a cluster

• Convert data from various sources into storage or querying formats

• Prepare data for statistical analysis, visualization, and machine learning

• Present data in the form of effective visuals

Approach

Big Data Analysis with Python takes a hands-on approach to understanding how to 
use Python and Spark to process data and make something useful out of it. It contains 
multiple activities that use real-life business scenarios for you to practice and apply 
your new skills in a highly relevant context.

Audience

Big Data Analysis with Python is designed for Python developers, data analysts, and 
data scientists who want to get hands-on with methods to control data and transform 
it into impactful insights. Basic knowledge of statistical measurements and relational 
databases will help you to understand various concepts explained in this book.

Minimum Hardware Requirements

For the optimal student experience, we recommend the following hardware 
configuration:

Processor: Intel or AMD 4-core or better

Memory: 8 GB RAM

Storage: 20 GB available space

Software Requirements

You'll need the following software installed in advance.

Any of the following operating systems: 

• Windows 7 SP1 32/64-bit

• Windows 8.1 32/64-bit or Windows 10 32/64-bit

• Ubuntu 14.04 or later
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• macOS Sierra or later

• Browser: Google Chrome or Mozilla Firefox

• Jupyter lab

You'll also need the following software installed in advance:

• Python 3.5+

• Anaconda 4.3+

These Python libraries are included with the Anaconda installation:

• matplotlib 2.1.0+

• iPython 6.1.0+

• requests 2.18.4+

• NumPy 1.13.1+

• pandas 0.20.3+

• scikit-learn 0.19.0+

• seaborn 0.8.0+

• bokeh 0.12.10+

These Python libraries require manual installation:

• mlxtend

• version_information

• ipython-sql

• pdir2

• graphviz

Conventions

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To 
transform the data into the right data types, we can use conversion functions, such as 
to_datetime, to_numeric, and astype."
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A block of code is set as follows:

before the sort function:[23, 66, 12, 54, 98, 3]

after the sort function: [3, 12, 23, 54, 66, 98]

New terms and important words are shown in bold. Words that you see on the screen, 
for example, in menus or dialog boxes, appear in the text like this: "Pandas (https://
pandas.pydata.org) is a data manipulation and analysis library that's widely used in the 
data science community."

Installation and Setup

Installing Anaconda:

1. Visit https://www.anaconda.com/download/ in your browser.

2. Click on Windows, Mac, or Linux, depending on the OS you are working on.

3. Next, click on the Download option. Make sure you download the latest version.

4. Open the installer after download.

5. Follow the steps in the installer and that's it! Your Anaconda distribution is ready.

PySpark is available on PyPi. To install PySpark run the following command:

pip install pyspark --upgrade

Updating Jupyter and installing dependencies:

1. Search for Anaconda Prompt and open it.

2. Type the following commands to update Conda and Jupyter:

#Update conda
conda update conda

#Update Jupyter
conda update Jupyter

#install packages
conda install numpy
conda install pandas
conda install statsmodels
conda install matplotlib
conda install seaborn
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3. To open Jupyter Notebook from Anaconda Prompt, use the following command:

jupyter notebook
pip install -U scikit-learn

Installing the Code Bundle

Copy the code bundle for the class to the C:/Code folder.

Additional Resources

The code bundle for this book is also hosted on GitHub at: https://github.com/
TrainingByPackt/Big-Data-Analysis-with-Python.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!
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Learning Objectives

We will start our journey by understanding the power of Python to manipulate and visualize 
data, creating useful analysis.

By the end of this chapter, you will be able to:

• Use all components of the Python data science stack

• Manipulate data using pandas DataFrames

• Create simple plots using pandas and Matplotlib

In this chapter, we will learn how to use NumPy, Pandas, Matplotlib, IPython, Jupyter notebook. 
Later in the chapter, we will explore how the deployment of virtualenv, pyenv, works, soon 
after that we will plot basic visualization using Matplotlib and Seaborn libraries.

The Python Data 
Science Stack

1
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Introduction
The Python data science stack is an informal name for a set of libraries used together 
to tackle data science problems. There is no consensus on which libraries are part of 
this list; it usually depends on the data scientist and the problem to be solved. We will 
present the libraries most commonly used together and explain how they can be used.

In this chapter, we will learn how to manipulate tabular data with the Python data 
science stack. The Python data science stack is the first stepping stone to manipulate 
large datasets, although these libraries are not commonly used for big data themselves. 
The ideas and the methods that are used here will be very helpful when we get to large 
datasets.

Python Libraries and Packages
One of the main reasons Python is a powerful programming language is the libraries 
and packages that come with it. There are more than 130,000 packages on the Python 
Package Index (PyPI) and counting! Let's explore some of the libraries and packages 
that are part of the data science stack.

The components of the data science stack are as follows:

• NumPy: A numerical manipulation package

• pandas: A data manipulation and analysis library

• SciPy library: A collection of mathematical algorithms built on top of NumPy

• Matplotlib: A plotting and graph library

• IPython: An interactive Python shell

• Jupyter notebook: A web document application for interactive computing

The combination of these libraries forms a powerful tool set for handling data 
manipulation and analysis. We will go through each of the libraries, explore their 
functionalities, and show how they work together. Let's start with the interpreters.
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IPython: A Powerful Interactive Shell

The IPython shell (https://ipython.org/) is an interactive Python command interpreter 
that can handle several languages. It allows us to test ideas quickly rather than going 

through creating files and running them. Most Python installations have a bundled 
command interpreter, usually called the shell, where you can execute commands 
iteratively. Although it's handy, this standard Python shell is a bit cumbersome to use. 
IPython has more features:

• Input history that is available between sessions, so when you restart your shell, the 
previous commands that you typed can be reused.

• Using Tab completion for commands and variables, you can type the first letters of 
a Python command, function, or variable and IPython will autocomplete it.

• Magic commands that extend the functionality of the shell. Magic functions can 
enhance IPython functionality, such as adding a module that can reload imported 
modules after they are changed in the disk, without having to restart IPython.

• Syntax highlighting.

Exercise 1: Interacting with the Python Shell Using the IPython Commands

Getting started with the Python shell is simple. Let's follow these steps to interact with 
the IPython shell:

1. To start the Python shell, type the ipython command in the console:

> ipython
In [1]:

The IPython shell is now ready and waiting for further commands. First, let's do a 
simple exercise to solve a sorting problem with one of the basic sorting methods, 
called straight insertion.

2. In the IPython shell, copy-paste the following code:

import numpy as np

vec = np.random.randint(0, 100, size=5)
print(vec)
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Now, the output for the randomly generated numbers will be similar to the 
following:

[23, 66, 12, 54, 98, 3]

3. Use the following logic to print the elements of the vec array in ascending order:

for j in np.arange(1, vec.size):
    v = vec[j]
    i = j
    while i > 0 and vec[i-1] > v:
        vec[i] = vec[i-1]
        i = i - 1
    vec[i] = v

Use the print(vec) command to print the output on the console:

[3, 12, 23, 54, 66, 98]

4. Now modify the code. Instead of creating an array of 5 elements, change its 
parameters so it creates an array with 20 elements, using the up arrow to edit the 
pasted code. After changing the relevant section, use the down arrow to move to 
the end of the code and press Enter to execute it.

Notice the number on the left, indicating the instruction number. This number always 
increases. We attributed the value to a variable and executed an operation on that 
variable, getting the result interactively. We will use IPython in the following sections.

The Jupyter Notebook

The Jupyter notebook (https://jupyter.org/) started as part of IPython but was 
separated in version 4 and extended, and lives now as a separate project. The notebook 
concept is based on the extension of the interactive shell model, creating documents 
that can run code, show documentation, and present results such as graphs and images.
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Jupyter is a web application, so it runs in your web browser directly, without having to 
install separate software, and enabling it to be used across the internet. Jupyter can use 
IPython as a kernel for running Python, but it has support for more than 40 kernels that 
are contributed by the developer community.

Note

A kernel, in Jupyter parlance, is a computation engine that runs the code that is 
typed into a code cell in a notebook. For example, the IPython kernel executes 
Python code in a notebook. There are kernels for other languages, such as R and 
Julia.

It has become a de facto platform for performing operations related to data science 
from beginners to power users, and from small to large enterprises, and even academia. 
Its popularity has increased tremendously in the last few years. A Jupyter notebook 
contains both the input and the output of the code you run on it. It allows text, images, 
mathematical formulas, and more, and is an excellent platform for developing code and 

communicating results. Because of its web format, notebooks can be shared over the 
internet. It also supports the Markdown markup language and renders Markdown text 
as rich text, with formatting and other features supported.

As we've seen before, each notebook has a kernel. This kernel is the interpreter that 
will execute the code in the cells. The basic unit of a notebook is called a cell. A cell is a 
container for either code or text. We have two main types of cells:

• Code cell

• Markdown cell

A code cell accepts code to be executed in the kernel, displaying the output just 
below it. A Markdown cell accepts Markdown and will parse the text in Markdown to 
formatted text when the cell is executed.
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Let's run the following exercise to get hands-on experience in the Jupyter notebook.

The fundamental component of a notebook is a cell, which can accept code or text 
depending on the mode that is selected.

Let's start a notebook to demonstrate how to work with cells, which have two states:

• Edit mode

• Run mode

When in edit mode, the contents of the cell can be edited, while in run mode, the cell is 
ready to be executed, either by the kernel or by being parsed to formatted text. 

You can add a new cell by using the Insert menu option or using a keyboard shortcut, 
Ctrl + B. Cells can be converted between Markdown mode and code mode again using 
the menu or the Y shortcut key for a code cell and M for a Markdown cell.

To execute a cell, click on the Run option or use the Ctrl + Enter shortcut.

Exercise 2: Getting Started with the Jupyter Notebook

Let's execute the following steps to demonstrate how to start to execute simple 
programs in a Jupyter notebook.

Working with a Jupyter notebook for the first time can be a little confusing, but let's try 
to explore its interface and functionality. The reference notebook for this exercise is 
provided on GitHub.

Now, start a Jupyter notebook server and work on it by following these steps:

1. To start the Jupyter notebook server, run the following command on the console:

> jupyter notebook

2. After successfully running or installing Jupyter, open a browser window and 
navigate to http://localhost:8888 to access the notebook.
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3. You should see a notebook similar to the one shown in the following screenshot:

Figure 1.1: Jupyter notebook

4. After that, from the top-right corner, click on New and select Python 3 from the 
list.

5. A new notebook should appear. The first input cell that appears is a Code cell. The 
default cell type is Code. You can change it via the Cell Type option located under 
the Cell menu:

Figure 1.2: Options in the cell menu of Jupyter
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6. Now, in the newly generated Code cell, add the following arithmetic function in 
the first cell:

In []: x = 2
       print(x*2)
Out []: 4

7. Now, add a function that returns the arithmetic mean of two numbers, and then 
execute the cell:

In []: def mean(a,b):
       return (a+b)/2

8. Let's now use the mean function and call the function with two values, 10 and 20. 
Execute this cell. What happens? The function is called, and the answer is printed:

In []: mean(10,20)
Out[]: 15.0

9. We need to document this function. Now, create a new Markdown cell and edit the 
text in the Markdown cell, documenting what the function does:

Figure 1.3: Markdown in Jupyter

10. Then, include an image from the web. The idea is that the notebook is a document 
that should register all parts of analysis, so sometimes we need to include a 
diagram or graph from other sources to explain a point.

11. Now, finally, include the mathematical expression in LaTex in the same Markdown 
cell:

Figure 1.4: LaTex expression in Jupyter Markdown

As we will see in the rest of the book, the notebook is the cornerstone of our analysis 
process. The steps that we just followed illustrate the use of different kinds of cells and 
the different ways we can document our analysis.
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IPython or Jupyter?

Both IPython and Jupyter have a place in the analysis workflow. Usually, the IPython 
shell is used for quick interaction and more data-heavy work, such as debugging scripts 
or running asynchronous tasks. Jupyter notebooks, on the other hand, are great for 
presenting results and generating visual narratives with code, text, and figures. Most of 
the examples that we will show can be executed in both, except the graphical parts. 

IPython is capable of showing graphs, but usually, the inclusion of graphs is more 
natural in a notebook. We will usually use Jupyter notebooks in this book, but the 
instructions should also be applicable to IPython notebooks.

Activity 1: IPython and Jupyter

Let's demonstrate common Python development in IPython and Jupyter. We will import 
NumPy, define a function, and iterate the results:

1. Open the python_script_student.py file in a text editor, copy the contents to a 
notebook in IPython, and execute the operations.

2. Copy and paste the code from the Python script into a Jupyter notebook.

3. Now, update the values of the x and c constants. Then, change the definition of the 
function.

Note

The solution for this activity can be found on page 200.

We now know how to handle functions and change function definitions on the fly in 
the notebook. This is very helpful when we are exploring and discovering the right 
approach for some code or an analysis. The iterative approach allowed by the notebook 
can be very productive in prototyping and faster than writing code to a script and 
executing that script, checking the results, and changing the script again.
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NumPy

NumPy (http://www.numpy.org) is a package that came from the Python scientific 
computing community. NumPy is great for manipulating multidimensional arrays and 
applying linear algebra functions to those arrays. It also has tools to integrate C, C++, 
and Fortran code, increasing its performance capabilities even more. There are a large 
number of Python packages that use NumPy as their numerical engine, including 
pandas and scikit-learn. These packages are part of SciPy, an ecosystem for packages 
used in mathematics, science, and engineering.

To import the package, open the Jupyter notebook used in the previous activity and 
type the following command:

import numpy as np

The basic NumPy object is ndarray, a homogeneous multidimensional array, usually 
composed of numbers, but it can hold generic data. NumPy also includes several 
functions for array manipulation, linear algebra, matrix operations, statistics, and other 
areas. One of the ways that NumPy shines is in scientific computing, where matrix 
and linear algebra operations are common. Another strength of NumPy is its tools that 
integrate with C++ and FORTRAN code. NumPy is also heavily used by other Python 
libraries, such as pandas.

SciPy

SciPy (https://www.scipy.org) is an ecosystem of libraries for mathematics, science, 
and engineering. NumPy, SciPy, scikit-learn, and others are part of this ecosystem. It is 
also the name of a library that includes the core functionality for lots of scientific areas.

Matplotlib

Matplotlib (https://matplotlib.org) is a plotting library for Python for 2D graphs. It's 
capable of generating figures in a variety of hard-copy formats for interactive use. It can 
use native Python data types, NumPy arrays, and pandas DataFrames as data sources. 
Matplotlib supports several backend—the part that supports the output generation in 
interactive or file format. This allows Matplotlib to be multiplatform. This flexibility also 
allows Matplotlib to be extended with toolkits that generate other kinds of plots, such 
as geographical plots and 3D plots.
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The interactive interface for Matplotlib was inspired by the MATLAB plotting interface. 
It can be accessed via the matplotlib.pyplot module. The file output can write files 
directly to disk. Matplotlib can be used in scripts, in IPython or Jupyter environments, 
in web servers, and in other platforms. Matplotlib is sometimes considered low level 
because several lines of code are needed to generate a plot with more details. One 
of the tools that we will look at in this book that plots graphs, which are common in 
analysis, is the Seaborn library, one of the extensions that we mentioned before.

To import the interactive interface, use the following command in the Jupyter 
notebook:

import matplotlib.pyplot as plt

To have access to the plotting capabilities. We will show how to use Matplotlib in more 
detail in the next chapter.

Pandas

Pandas (https://pandas.pydata.org) is a data manipulation and analysis library that's 
widely used in the data science community. Pandas is designed to work with tabular or 
labeled data, similar to SQL tables and Excel files.

We will explore the operations that are possible with pandas in more detail. For 
now, it's important to learn about the two basic pandas data structures: the series, a 
unidimensional data structure; and the data science workhorse, the bi-dimensional 
DataFrame, a two-dimensional data structure that supports indexes. 

Data in DataFrames and series can be ordered or unordered, homogeneous, or 
heterogeneous. Other great pandas features are the ability to easily add or remove rows 
and columns, and operations that SQL users are more familiar with, such as GroupBy, 
joins, subsetting, and indexing columns. Pandas is also great at handling time series 
data, with easy and flexible datetime indexing and selection.

Let's import pandas into the Jupyter notebook from the previous activity with the 
following command:

import pandas as pd
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Using Pandas
We will demonstrate the main operations for data manipulation using pandas. This 
approach is used as a standard for other data manipulation tools, such as Spark, so it's 
helpful to learn how to manipulate data using pandas. It's common in a big data pipeline 
to convert part of the data or a data sample to a pandas DataFrame to apply a more 
complex transformation, to visualize the data, or to use more refined machine learning 
models with the scikit-learn library. Pandas is also fast for in-memory, single-machine 
operations. Although there is a memory overhead between the data size and the pandas 
DataFrame, it can be used to manipulate large volumes of data quickly.

We will learn how to apply the basic operations:

• Read data into a DataFrame

• Selection and filtering

• Apply a function to data

• GroupBy and aggregation

• Visualize data from DataFrames

Let's start by reading data into a pandas DataFrame.

Reading Data

Pandas accepts several data formats and ways to ingest data. Let's start with the more 
common way, reading a CSV file. Pandas has a function called read_csv, which can be 
used to read a CSV file, either locally or from a URL. Let's read some data from the 
Socrata Open Data initiative, a RadNet Laboratory Analysis from the U.S. Environmental 
Protection Agency (EPA), which lists the radioactive content collected by the EPA.

Exercise 3: Reading Data with Pandas

How can an analyst start data analysis without data? We need to learn how to get 
data from an internet source into our notebook so that we can start our analysis. Let's 
demonstrate how pandas can read CSV data from an internet source so we can analyze 
it:

1. Import pandas library.

import pandas as pd

2. Read the Automobile mileage dataset, available at this URL: https://github.com/
TrainingByPackt/Big-Data-Analysis-with-Python/blob/master/Lesson01/
imports-85.data. Convert it to csv.
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3. Use the column names to name the data, with the parameter names on the read_csv 
function.

Sample code : df = pd.read_csv("/path/to/imports-85.csv", names = columns)

4. Use the function read_csv from pandas and show the first rows calling the method 
head on the DataFrame:

import pandas as pd
df = pd.read_csv("imports-85.csv")
df.head()

The output is as follows:

Figure 1.5: Entries of the Automobile mileage dataset

Pandas can read more formats:

• JSON

• Excel

• HTML

• HDF5

• Parquet (with PyArrow)

• SQL databases

• Google Big Query

Try to read other formats from pandas, such as Excel sheets.
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Data Manipulation

By data manipulation we mean any selection, transformation, or aggregation that is 
applied over the data. Data manipulation can be done for several reasons:

• To select a subset of data for analysis

• To clean a dataset, removing invalid, erroneous, or missing values

• To group data into meaningful sets and apply aggregation functions

Pandas was designed to let the analyst do these transformations in an efficient way.

Selection and Filtering

Pandas DataFrames can be sliced similarly to Python lists. For example, to select a 
subset of the first 10 rows of the DataFrame, we can use the [0:10] notation. We can see 
in the following screenshot that the selection of the interval [1:3] that in the NumPy 
representation selects the rows 1 and 2.

Figure 1.6: Selection in a pandas DataFrame

In the following section, we'll explore the selection and filtering operation in depth.
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Selecting Rows Using Slicing

When performing data analysis, we usually want to see how data behaves differently 
under certain conditions, such as comparing a few columns, selecting only a few 
columns to help read the data, or even plotting. We may want to check specific values, 
such as the behavior of the rest of the data when one column has a specific value.

After selecting with slicing, we can use other methods, such as the head method, to 
select only a few rows from the beginning of the DataFrame. But how can we select 
some columns in a DataFrame?

To select a column, just use the name of the column. We will use the notebook. Let's 
select the cylinders column in our DataFrame using the following command:

df['State']

The output is as follows:

Figure 1.7: DataFrame showing the state

Another form of selection that can be done is filtering by a specific value in a column. 
For example, let's say that we want to select all rows that have the State column with 
the MN value. How can we do that? Try to use the Python equality operator and the 
DataFrame selection operation:

df[df.State == "MN"]

Figure 1.8: DataFrame showing the MN states 
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More than one filter can be applied at the same time. The OR, NOT, and AND logic 
operations can be used when combining more than one filter. For example, to select all 
rows that have State equal to AK and a Location of Nome, use the & operator:

df[(df.State == "AK") & (df.Location == "Nome")]

Figure 1.9: DataFrame showing State AK and Location Nome

Another powerful method is .loc. This method has two arguments, the row selection 
and the column selection, enabling fine-grained selection. An important caveat at 
this point is that, depending on the applied operation, the return type can be either a 
DataFrame or a series. The .loc method returns a series, as selecting only a column. 
This is expected, because each DataFrame column is a series. This is also important 
when more than one column should be selected. To do that, use two brackets instead of 
one, and use as many columns as you want to select.

Exercise 4: Data Selection and the .loc Method

As we saw before, selecting data, separating variables, and viewing columns and rows 
of interest is fundamental to the analysis process. Let's say we want to analyze the 
radiation from I-131 in the state of Minnesota:

1. Import the NumPy and pandas libraries using the following command in the 
Jupyter notebook:

import numpy as np
import pandas as pd
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2. Read the RadNet dataset from the EPA, available from the Socrata project at 
https://github.com/TrainingByPackt/Big-Data-Analysis-with-Python/blob/
master/Lesson01/RadNet_Laboratory_Analysis.csv:

url = "https://opendata.socrata.com/api/views/cf4r-dfwe/rows.
csv?accessType=DOWNLOAD"
df = pd.read_csv(url)

3. Start by selecting a column using the ['<name of the column>'] notation. Use the 
State column:

df['State'].head()

The output is as follows:

Figure 1.10: Data in the State column

4. Now filter the selected values in a column using the MN column name:

df[df.State == "MN"]

The output is as follows:

Figure 1.11: DataFrame showing States with MN
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5. Select more than one column per condition. Add the Sample Type column for 
filtering:

df[(df.State == 'CA') & (df['Sample Type'] == 'Drinking Water')]

The output is as follows:

Figure 1.12: DataFrame with State CA and Sample type as Drinking water

6. Next, select the MN state and the isotope I-131:

df[(df.State == "MN") ]["I-131"]

The output is as follows:

Figure 1.13: Data showing the DataFrame with State Minnesota and Isotope I-131

The radiation in the state of Minnesota with ID 555 is the highest.
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7. We can do the same more easily with the .loc method, filtering by state and 
selecting a column on the same .loc call:

df_rad.loc[df_rad.State == "MN", "I-131"]
df[['I-132']].head()

The output is as follows:

Figure 1.14: DataFrame with I-132

In this exercise, we learned how to filter and select values, either on columns or rows, 
using the NumPy slice notation or the .loc method. This can help when analyzing data, 
as we can check and manipulate only a subset of the data instead having to handle the 
entire dataset at the same time.

Note

The result of the .loc filter is a series and not a DataFrame. This depends on the 

operation and selection done on the DataFrame and not is caused only by .loc. 
Because the DataFrame can be understood as a 2D combination of series, the 
selection of one column will return a series. To make a selection and still return a 
DataFrame, use double brackets:

df[['I-132']].head()
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Applying a Function to a Column

Data is never clean. There are always cleaning tasks that have to be done before a 
dataset can be analyzed. One of the most common tasks in data cleaning is applying 
a function to a column, changing a value to a more adequate one. In our example 
dataset, when no concentration was measured, the non-detect value was inserted. As 
this column is a numerical one, analyzing it could become complicated. We can apply 
a transformation over a column, changing from non-detect to numpy.NaN, which makes 
manipulating numerical values more easy, filling with other values such as the mean, 
and so on.

To apply a function to more than one column, use the applymap method, with the same 
logic as the apply method. For example, another common operation is removing spaces 
from strings. Again, we can use the apply and applymap functions to fix the data. We 
can also apply a function to rows instead of to columns, using the axis parameter (0 for 
rows, 1 for columns).

Activity 2: Working with Data Problems

Before starting an analysis, we need to check for data problems, and when we find them 
(which is very common!), we have to correct the issues by transforming the DataFrame. 
One way to do that, for instance, is by applying a function to a column, or to the entire 
DataFrame. It's common for some numbers in a DataFrame, when it's read, to not be 
converted correctly to floating-point numbers. Let's fix this issue by applying functions:

1. Import pandas and numpy library.

2. Read the RadNet dataset from the U.S. Environmental Protection Agency.

3. Create a list with numeric columns for radionuclides in the RadNet dataset.

4. Use the apply method on one column, with a lambda function that compares the 
Non-detect string.

5. Replace the text values by NaN in one column with np.nan.

6. Use the same lambda comparison and use the applymap method on several 
columns at the same time, using the list created in the first step.

7. Create a list of the remaining columns that are not numeric.
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8. Remove any spaces from these columns.

9. Using the selection and filtering methods, verify that the names of the string 
columns don't have any more spaces.

Note

The solution for this activity can be found on page 200.

The spaces in column names can be extraneous and can make selection and filtering 
more complicated. Fixing the numeric types helps when statistics must be computed 
using the data. If there is a value that is not valid for a numeric column, such as a string 
in a numeric column, the statistical operations will not work. This scenario happens, for 
example, when there is an error in the data input process, where the operator types the 
information by hand and makes mistakes, or the storage file was converted from one 
format to another, leaving incorrect values in the columns.

Data Type Conversion
Another common operation in data cleanup is getting the data types right. This helps 
with detecting invalid values and applying the right operations. The main types stored 
in pandas are as follows:

• float (float64, float32)

• integer (int64, int32)

• datetime (datetime64[ns, tz])

• timedelta (timedelta[ns])

• bool

• object

• category

Types can be set on, read, or inferred by pandas. Usually, if pandas cannot detect what 
data type the column is, it assumes that is object that stores the data as strings.

To transform the data into the right data types, we can use conversion functions such 
as to_datetime, to_numeric, or astype. Category types, columns that can only assume a 
limited number of options, are encoded as the category type.
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Exercise 5: Exploring Data Types

Transform the data types in our example DataFrame to the correct types with the 
pandas astype function. Let's use the sample dataset from https://opendata.socrata.
com/:

1. Import the required libraries, as illustrated here:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

2. Read the data from the dataset as follows:

url = "https://opendata.socrata.com/api/views/cf4r-dfwe/rows.
csv?accessType=DOWNLOAD"
df = pd.read_csv(url)

3. Check the current data types using the dtypes function on the DataFrame:

df.dtypes

4. Use the to_datetime method to convert the dates from string format to datetime 
format:

df['Date Posted'] = pd.to_datetime(df['Date Posted'])
df['Date Collected'] = pd.to_datetime(df['Date Collected'])
columns = df.columns
id_cols = ['State', 'Location', "Date Posted", 'Date Collected', 'Sample 
Type', 'Unit']
columns = list(set(columns) - set(id_cols))
columns

The output is as follows:

['Co-60',
 'Cs-136',
 'I-131',
 'Te-129',
 'Ba-140',
 'Cs-137',
 'Cs-134',
 'I-133',
 'I-132',
 'Te-132',
 'Te-129m']
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5. Use Lambda function:

df['Cs-134'] = df['Cs-134'].apply(lambda x: np.nan if x == "Non-detect" 
else x)
df.loc[:, columns] = df.loc[:, columns].applymap(lambda x: np.nan if x == 
'Non-detect' else x)
df.loc[:, columns] = df.loc[:, columns].applymap(lambda x: np.nan if x == 
'ND' else x)

6. Apply the to_numeric method to the list of numeric columns created in the 
previous activity to convert the columns to the correct numeric types:

for col in columns:
    df[col] = pd.to_numeric(df[col])

7. Check the types of the columns again. They should be float64 for the numeric 
columns and datetime64[ns] for the date columns:

df.dypes

8. Use the astype method to transform the columns that are not numeric to the 
category type:

df['State'] = df['State'].astype('category')
df['Location'] = df['Location'].astype('category')
df['Unit'] = df['Unit'].astype('category')
df['Sample Type'] = df['Sample Type'].astype('category')

9. Check the types with the dtype function for the last time:

df.dtypes

The output is as follows:

Figure 1.15: DataFrame and its types
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Now our dataset looks fine, with all values correctly cast to the right types. But 
correcting the data is only part of the story. We want, as analysts, to understand the 
data from different perspectives. For example, we may want to know which state has 
the most contamination, or the radionuclide that is the least prevalent across cities. 
We may ask about the number of valid measurements present in the dataset. All these 
questions have in common transformations that involve grouping data together and 
aggregating several values. With pandas, this is accomplished with GroupBy. Let's see 
how we can use it by key and aggregate the data.

Aggregation and Grouping
After getting the dataset, our analyst may have to answer a few questions. For example, 
we know the value of the radionuclide concentration per city, but an analyst may be 
asked to answer: which state, on average, has the highest radionuclide concentration?

To answer the questions posed, we need to group the data somehow and calculate an 
aggregation on it. But before we go into grouping data, we have to prepare the dataset 
so that we can manipulate it in an efficient manner. Getting the right types in a pandas 
DataFrame can be a huge boost for performance and can be leveraged to enforce data 
consistency— it makes sure that numeric data really is numeric and allows us to execute 
operations that we want to use to get the answers.

GroupBy allows us to get a more general view of a feature, arranging data given a GroupBy 
key and an aggregation operation. In pandas, this operation is done with the GroupBy 
method, over a selected column, such as State. Note the aggregation operation after the 
GroupBy method. Some examples of the operations that can be applied are as follows:

• mean

• median

• std (standard deviation)

• mad (mean absolute deviation)

• sum

• count

• abs

Note

Several statistics, such as mean and standard deviation, only make sense with 
numeric data.
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After applying GroupBy, a specific column can be selected and the aggregation operation 
can be applied to it, or all the remaining columns can be aggregated by the same 
function. Like SQL, GroupBy can be applied to more than one column at a time, and more 
than one aggregation operation can be applied to selected columns, one operation per 
column.

The GroupBy command in Pandas has some options, such as as_index, which can 
override the standard of transforming grouping key's columns to indexes and leaving 
them as normal columns. This is helpful when a new index will be created after the 
GroupBy operation, for example.

Aggregation operations can be done over several columns and different statistical 
methods at the same time with the agg method, passing a dictionary with the name of 
the column as the key and a list of statistical operations as values.

Exercise 6: Aggregation and Grouping Data

Remember that we have to answer the question of which state has, on average, the 
highest radionuclide concentration. As there are several cities per state, we have to 
combine the values of all cities in one state and calculate the average. This is one of the 
applications of GroupBy: calculating the average values of one variable as per a grouping. 
We can answer the question using GroupBy:

1. Import the required libraries:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

2. Load the datasets from the https://opendata.socrata.com/:

df = pd.read_csv('RadNet_Laboratory_Analysis.csv')

3. Group the DataFrame using the State column.

df.groupby('State')

4. Select the radionuclide Cs-134 and calculate the average value per group:

df.groupby('State')['Cs-134'].head()

5. Do the same for all columns, grouping per state and applying directly the mean 
function:

df.groupby('State').mean().head()
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6. Now, group by more than one column, using a list of grouping columns.

7. Aggregate using several aggregation operations per column with the agg method. 
Use the State and Location columns:

df.groupby(['State', 'Location']).agg({'Cs-134':['mean', 'std'], 
'Te-129':['min', 'max']})

NumPy on Pandas

NumPy functions can be applied to DataFrames directly or through the apply 
and applymap methods. Other NumPy functions, such as np.where, also work with 
DataFrames.

Exporting Data from Pandas
After creating an intermediate or final dataset in pandas, we can export the values 
from the DataFrame to several other formats. The most common one is CSV, and the 
command to do so is df.to_csv('filename.csv'). Other formats, such as Parquet and 
JSON, are also supported. 

Note

Parquet is particularly interesting, and it is one of the big data formats that we will 
discuss later in the book.

Exercise 7: Exporting Data in Different Formats

After finishing our analysis, we may want to save our transformed dataset with all the 
corrections, so if we want to share this dataset or redo our analysis, we don't have to 
transform the dataset again. We can also include our analysis as part of a larger data 
pipeline or even use the prepared data in the analysis as input to a machine learning 
algorithm. We can accomplish data exporting our DataFrame to a file with the right 
format:

1. Import all the required libraries and read the data from the dataset using the 
following command:

import numpy as np
import pandas as pd

url = "https://opendata.socrata.com/api/views/cf4r-dfwe/rows.
csv?accessType=DOWNLOAD"
df = pd.read_csv(url)
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Redo all adjustments for the data types (date, numeric, and categorical) in the 
RadNet data. The type should be the same as in Exercise 6: Aggregation and 
Grouping Data.

2. Select the numeric columns and the categorical columns, creating a list for each of 
them:

columns = df.columns
id_cols = ['State', 'Location', "Date Posted", 'Date Collected', 'Sample 
Type', 'Unit']
columns = list(set(columns) - set(id_cols))
columns

The output is as follows:

Figure 1.16: List of columns

3. Apply the lambda function that replaces Non-detect with np.nan:

df['Cs-134'] = df['Cs-134'].apply(lambda x: np.nan if x == "Non-detect" 
else x)
df.loc[:, columns] = df.loc[:, columns].applymap(lambda x: np.nan if x == 
'Non-detect' else x)
df.loc[:, columns] = df.loc[:, columns].applymap(lambda x: np.nan if x == 
'ND' else x)
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4. Remove the spaces from the categorical columns:

df.loc[:, ['State', 'Location', 'Sample Type', 'Unit']] = df.loc[:, 
['State', 'Location', 'Sample Type', 'Unit']].applymap(lambda x: 
x.strip())

5. Transform the date columns to the datetime format:

df['Date Posted'] = pd.to_datetime(df['Date Posted'])
df['Date Collected'] = pd.to_datetime(df['Date Collected'])

6. Transform all numeric columns to the correct numeric format with the to_numeric 
method:

for col in columns:
    df[col] = pd.to_numeric(df[col])

7. Transform all categorical variables to the category type:

df['State'] = df['State'].astype('category')
df['Location'] = df['Location'].astype('category')
df['Unit'] = df['Unit'].astype('category')
df['Sample Type'] = df['Sample Type'].astype('category')

8. Export our transformed DataFrame, with the right values and columns, to the 
CSV format with the to_csv function. Exclude the index using index=False, 
use a semicolon as the separator sep=";", and encode the data as UTF-8 
encoding="utf-8":

df.to_csv('radiation_clean.csv', index=False, sep=';', encoding='utf-8')

9. Export the same DataFrame to the Parquet columnar and binary format with the 
to_parquet method:

df.to_parquet('radiation_clean.prq', index=False)

Note

Be careful when converting a datetime to a string!

Visualization with Pandas
Pandas can be thought as a data Swiss Army knife, and one thing that a data scientist 
always needs when analyzing data is to visualize that data. We will go into detail on the 
kinds of plot that we can apply in an analysis. For now, the idea is to show how to do 
quick and dirty plots directly from pandas.
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The plot function can be called directly from the DataFrame selection, allowing fast 
visualizations. A scatter plot can be created by using Matplotlib and passing data from 
the DataFrame to the plotting function. Now that we know the tools, let's focus on the 
pandas interface for data manipulation. This interface is so powerful that it is replicated 
by other projects that we will see in this course, such as Spark. We will explain the plot 
components and methods in more detail in the next chapter.

You will see how to create graphs that are useful for statistical analysis in the next 
chapter. Focus here on the mechanics of creating plots from pandas for quick 
visualizations.

Activity 3: Plotting Data with Pandas

To finish up our activity, let's redo all the previous steps and plot graphs with the 
results, as we would do in a preliminary analysis:

1. Use the RadNet DataFrame that we have been working with.

2. Fix all the data type problems, as we saw before.

3. Create a plot with a filter per Location, selecting the city of San Bernardino, and 
one radionuclide, with the x-axis as date and the y-axis as radionuclide I-131:

Figure 1.17: Plot of Location with I-131
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4. Create a scatter plot with the concentration of two related radionuclides, I-131 
and I-132:

Figure 1.18: Plot of I-131 and I-132

Note

The solution for this activity can be found on page 203.

We are getting a bit ahead of ourselves here with the plotting, so we don't need to 
worry about the details of the plot or how we attribute titles, labels, and so on. The 
important takeaway here is understanding that we can plot directly from the DataFrame 
for quick analysis and visualization.
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Summary
We have learned about the most common Python libraries used in data analysis and 
data science, which make up the Python data science stack. We learned how to ingest 
data, select it, filter it, and aggregate it. We saw how to export the results of our analysis 
and generate some quick graphs.

These are steps done in almost any data analysis. The ideas and operations 
demonstrated here can be applied to data manipulation with big data. Spark 
DataFrames were created with the pandas interface in mind, and several operations are 
performed in a very similar fashion in pandas and Spark, greatly simplifying the analysis 
process. Another great advantage of knowing your way around pandas is that Spark can 
convert its DataFrames to pandas DataFrames and back again, enabling analysts to work 
with the best tool for the job.

Before going into big data, we need to understand how to better visualize the results of 
our analysis. Our understanding of the data and its behavior can be greatly enhanced if 
we visualize it using the correct plots. We can draw inferences and see anomalies and 
patterns when we plot the data.

In the next chapter, we will learn how to choose the right graph for each kind of data 
and analysis, and how to plot it using Matplotlib and Seaborn.
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Learning Objectives

We will start our journey by understanding the power of Python to manipulate and visualize 
data, creating useful analysis.

By the end of this chapter, you will be able to:

• Use graphs for data analysis

• Create graphs of various types

• Change graph parameters such as color, title, and axis

• Export graphs for presentation, printing, and other uses

In this chapter, we will illustrate how the students can generate visualizations with Matplotlib 
and Seaborn.

Statistical 
Visualizations

2
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Introduction
In the last chapter, we learned that the libraries that are most commonly used for data 
science work with Python. Although they are not big data libraries per se, the libraries 
of the Python Data Science Stack (NumPy, Jupyter, IPython, Pandas, and Matplotlib) 
are important in big data analysis.

As we will demonstrate in this chapter, no analysis is complete without visualizations, 
even with big datasets, so knowing how to generate images and graphs from data in 
Python is relevant for our goal of big data analysis. In the subsequent chapters, we will 
demonstrate how to process large volumes of data and aggregate it to visualize it using 
Python tools.

There are several visualization libraries for Python, such as Plotly, Bokeh, and others. 
But one of the oldest, most flexible, and most used is Matplotlib. But before going 
through the details of creating a graph with Matplotlib, let's first understand what kinds 
of graphs are relevant for analysis.

Types of Graphs and When to Use Them
Every analysis, whether on small or large datasets, involves a descriptive statistics 
step, where the data is summarized and described by statistics such as mean, median, 
percentages, and correlation. This step is commonly the first step in the analysis 
workflow, allowing a preliminary understanding of the data and its general patterns and 
behaviors, providing grounds for the analyst to formulate hypotheses, and directing 
the next steps in the analysis. Graphs are powerful tools to aid in this step, enabling the 
analyst to visualize the data, create new views and concepts, and communicate them to 
a larger audience.

There is a vast amount of literature on statistics about visualizing information. The 
classic book, Envisioning Information, by Edward Tufte, demonstrates beautiful and 
useful examples of how to present information in graphical form. In another book, 
The Visual Display of Quantitative Information, Tufte enumerates a few qualities that a 
graph that will be used for analysis and transmitting information, including statistics, 
should have:

• Show the data

• Avoid distorting what the data has to say

• Make large datasets coherent

• Serve a reasonably clear purpose—description, exploration, tabulation, or 
decoration
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Graphs must reveal information. We should think about creating graphs with these 
principles in mind when creating an analysis.

A graph should also be able to stand out on its own, outside the analysis. Let's say that 
you are writing an analysis report that becomes extensive. Now, we need to create a 

summary of that extensive analysis. To make the analysis' points clear, a graph can be 
used to represent the data. This graph should be able to support the summary without 
the entire extensive analysis. To enable the graph to give more information and be able 
to stand out on its own in the summary, we have to add more information to it, such as 
a title and labels.

Exercise 8: Plotting an Analytical Function

In this exercise, we will create a basic plot using the Matplotlib libraries, where we will 
visualize a function of two variables, for example, y = f(x), where f(x) is x^2:

1. First, create a new Jupyter notebook and import all the required libraries:

%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

2. Now, let's generate a dataset and plot it using the following code:

x = np.linspace(-50, 50, 100)
y = np.power(x, 2)

3. Use the following command to create a basic graph with Matplotlib:

plt.plot(x, y)
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The output is as follows:

Figure 2.1: Basic plot of X and Y axis

4. Now, modify the data generation function from x^2 to x^3, keeping the same 
interval of [-50,50] and recreate the line plot:

y_hat = np.power(x, 3)
plt.plot(x, y_hat)

The output is as follows:

Figure 2.2: Basic plot of X and Y axis

 EBSCOhost - printed on 2/9/2023 10:53 AM via . All use subject to https://www.ebsco.com/terms-of-use



Components of a Graph | 37

As you can see, the shape of the function changed, as expected. The basic type of graph 
that we used was sufficient to see the change between the y and y_hat values. But some 
questions remain: we plotted only a mathematical function, but generally the data that 
we are collecting has dimensions, such as length, time, and mass. How can we add this 
information to the plot? How do we add a title? Let's explore this in the next section.

Components of a Graph
Each graph has a set of common components that can be adjusted. The names that 
Matplotlib uses for these components are demonstrated in the following graph:

Figure 2.3: Components of a graph

The components of a graph are as follows:

• Figure: The base of the graph, where all the other components are drawn.

• Axis: Contains the figure elements and sets the coordinate system.

• Title: The title gives the graph its name.

• X-axis label: The name of the x-axis, usually named with the units.
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• Y-axis label: The name of the y-axis, usually named with the units.

• Legend: A description of the data plotted in the graph, allowing you to identify the 
curves and points in the graph.

• Ticks and tick labels: They indicate the points of reference on a scale for the 
graph, where the values of the data are. The labels indicate the values themselves.

• Line plots: These are the lines that are plotted with the data.

• Markers: Markers are the pictograms that mark the point data.

• Spines: The lines that delimit the area of the graph where data is plotted.

Each of these components can be configured to adapt to the needs of the visualization 
task at hand. We will go through each type of graph and how to adapt the components 
as previously described.

Exercise 9: Creating a Graph

There are several ways to create a graph with Matplotlib. The first one is closely related 
to the MATLAB way of doing it, called Pyplot. Pyplot is an API that is a state-based 
interface for Matplotlib, meaning that it keeps the configurations and other parameters 
in the object itself. Pyplot is intended as a simple case.

Perform the following steps to create the graph of a sine function using the Matplotlib 
library:

1. Import all the required libraries, as we did in the previous exercise:

%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

A second API, called object-oriented API, is intended for more complex plots, 
allowing for more flexibility and configuration. The usual way to access this API is 
to create a figure and axes using the plt.subplots module.
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2. Now, to get a figure and an axis, use the following command:

fig, ax = plt.subplots()

Note

The figure is the top container for all other graph components. The axes set things 
such as the axis, the coordinate system, and contain the plot elements, such as 
lines, text, and many more.

3. To add a plot to a graph created using the object-oriented API, use the following 
command:

x = np.linspace(0,100,500)
y = np.sin(2*np.pi*x/100)
ax.plot(x, y)

The output is as follows:

Figure 2.4: Plot output using the object-oriented API

We are adding a line plot to the ax axis that belongs to the fig figure. Changes to the 
graph, such as label names, title, and so on, will be demonstrated later in this chapter. 
For now, let's look at how to create each kind of graph that we may use in an analysis.
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Exercise 10: Creating a Graph for a Mathematical Function

In Exercise 1: Plotting an Analytical Function, we created a graph for a mathematical 
function using the MATLAB-like interface, Pyplot. Now that we know how to use the 
Matplotlib object-oriented API, let's create a new graph using it. Analysts have a lot of 
flexibility in creating graphs, whatever the data source, when using the object-oriented 
API.

Let's create a plot using the object-oriented API with the NumPy sine function on the 
interval [0,100]:

1. Create the data points for the x-axis:

import numpy as np
x = np.linspace(0,100,200)
y = np.sin(x)

2. Create the API interface for Matplotlib:

%matplotlib inline
import matplotlib.pyplot as plt
fig, ax = plt.subplots()

3. Add the graph using the axis object, ax:

ax.plot(x, y)

The output is as follows:

Figure 2.5: Graph for a mathematical function
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Notice that we again created a linear interval of values between [0, 100] using the 
linspace function, with 200 points. We then applied the sine function over these values 
to create the y axis. This is a common approach when creating data intervals.

Seaborn
Seaborn (https://seaborn.pydata.org/) is part of the PyData family of tools and is a 
visualization library based on Matplotlib with the goal of creating statistical graphs 
more easily. It can operate directly on DataFrames and series, doing aggregations 
and mapping internally. Seaborn uses color palettes and styles to make visualizations 
consistent and more informative. It also has functions that can calculate some statistics, 

such as regression, estimation, and errors. Some specialized plots, such as violin plots 
and multi-facet plots, are also easy to create with Seaborn.

Which Tool Should Be Used?
Seaborn tries to make the creation of some common analysis graphs easier than using 
Matplotlib directly. Matplotlib can be considered more low-level than Seaborn, and 
although this makes it a bit more cumbersome and verbose, it gives analysts much more 
flexibility. Some graphs, which with Seaborn are created with one function call, would 
take several lines of code to achieve using Matplotlib.

There is no rule to determine whether an analyst should use only the pandas plotting 
interface, Matplotlib directly, or Seaborn. Analysts should keep in mind the visualization 
requirements and the level of configuration required to create the desired graph.

Pandas' plotting interface is easier to use but is more constrained and limited. Seaborn 
has several graph patterns ready to use, including common statistical graphs such as 
pair plots and boxplots, but requires that the data is formatted into a tidy format and 
is more opinionated on how the graphs should look. Matplotlib is the base for both 
cases and is more flexible than both, but it demands a lot more code to create the same 
visualizations as the two other options.

The rule of thumb that we use in this book is: how can I create the graph that I need 
with the least amount of code and without changing the data? With that in mind, we 
will use the three options, sometimes at the same time, to attain our visualization goals. 
Analysts should not be restricted to just one of the options. We encourage the use of 
any tool that creates a meaningful visualization.

Let's go through the most common kinds of graphs used in statistical analysis.
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Types of Graphs
The first type of graph that we will present is the line graph or line chart. A line 
graph displays data as a series of interconnected points on two axes (x and y), usually 
Cartesian, ordered commonly by the x-axis. Line charts are useful for demonstrating 
trends in data, such as in time series, for example.

A graph related to the line graph is the scatter plot. A scatter plot represents the data 
as points in Cartesian coordinates. Usually, two variables are demonstrated in this 
graph, although more information can be conveyed if the data is color-coded or size-
coded by category, for example. Scatter plots are useful for showing the relationship 
and possible correlation between variables.

Histograms are useful for representing the distribution of data. Unlike the two previous 
examples, histograms show only one variable, usually on the x-axis, while the y-axis 
shows the frequency of occurrence of the data. The process of creating a histogram is a 
bit more involved than the line graph and the scatter plot, so we will explain them in a 
bit more detail.

Boxplots can also be used for representing frequency distributions, but it can help to 
compare groups of data using some statistical measurements, such as mean, median, 
and standard deviation. Boxplots are used to visualize the data distribution and outliers.

Each graph type has its applications and choosing the right type is paramount in 
the success of an analysis. For example, line graphs could be used to show trends 
in economic growth in the last century, while a boxplot for that would be hard to 
create. Another common data analysis task identifies correlations between variables: 
understanding whether two variables show related behaviors. A scatter plot is the 
tool commonly used to visualize this. Histograms are useful for visualizing data point 
numbers in a bin or a range, such as the number of cars whose efficiency is between 10 
and 20 miles per gallon.

Line Graphs

Line graphs, as described in the previous section, connect the data points with a line. 
Line graphs are useful for demonstrating tendencies and trends. More than one line 
can be used on the same graph, for a comparison between the behavior of each line, 
although care must be taken so that the units on the graph are the same. They can also 
demonstrate the relationship between an independent and a dependent variable. A 
common case for this is time series.
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Time Series Plots

Time series plots, as the name suggests, graphs the behavior of the data with respect 
to time. Time series graphs are used frequently in financial areas and environmental 
sciences. For instance, a historical series of temperature anomalies are shown in the 
following graph:

Figure 2.6: Time series plot

Source

https://upload.wikimedia.org/wikipedia/commons/c/c1/2000_Year_Temperature_
Comparison.png

Usually, a time series graph has the time variable on the x-axis.
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Exercise 11: Creating Line Graphs Using Different Libraries

Let's compare the creation process between Matplotlib, Pandas, and Seaborn. We will 
create a Pandas DataFrame with random values and plot it using various methods:

1. Create a dataset with random values:

import numpy as np
X = np.arange(0,100)
Y = np.random.randint(0,200, size=X.shape[0])

2. Plot the data using the Matplotlib Pyplot interface:

%matplotlib inline
import matplotlib.pyplot as plt
plt.plot(X, Y)

3. Now, let's create a Pandas DataFrame with the created values:

import pandas as pd
df = pd.DataFrame({'x':X, 'y_col':Y})

4. Plot it using the Pyplot interface, but with the data argument:

plt.plot('x', 'y_col', data=df)

The output is as follows:

Figure 2.7: Line graphs using different libraries

5. With the same DataFrame, we can also plot directly from the Pandas DataFrame:

df.plot('x', 'y_col')
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The output is as follows:

Figure 2.8: Line graphs from the pandas DataFrame

6. What about Seaborn? Let's create the same line plot with Seaborn:

import seaborn as sns
sns.lineplot(X, Y)
sns.lineplot('x', 'y_col', data=df)

The output is as follows:

Figure 2.9: Line graphs from the Seaborn DataFrame

We can see that, in this case, the interface used by Matplotlib and Seaborn is quite 
similar.
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Pandas DataFrames and Grouped Data
As we learned in the previous chapter, when analyzing data and using Pandas to do 
so, we can use the plot functions from Pandas or use Matplotlib directly. Pandas uses 
Matplotlib under the hood, so the integration is great. Depending on the situation, we 
can either plot directly from pandas or create a figure and an axes with Matplotlib 
and pass it to pandas to plot. For example, when doing a GroupBy, we can separate the 
data into a GroupBy key. But how can we plot the results of GroupBy? We have a few 
approaches at our disposal. We can, for example, use pandas directly, if the DataFrame 
is already in the right format:

Note

The following code is a sample and will not get executed.

fig, ax = plt.subplots()

df = pd.read_csv('data/dow_jones_index.data')

df[df.stock.isin(['MSFT', 'GE', 'PG'])].groupby('stock')['volume'].
plot(ax=ax)

Or we can just plot each GroupBy key on the same plot:

fig, ax = plt.subplots()

df.groupby('stock').volume.plot(ax=ax)

For the following activity, we will use what we've learned in the previous chapter and 
read a CSV file from a URL and parse it. The dataset is the Auto-MPG dataset (https://
raw.githubusercontent.com/TrainingByPackt/Big-Data-Analysis-with-Python/master/
Lesson02/Dataset/auto-mpg.data).

Note

This dataset is a modified version of the dataset provided in the StatLib library. 
The original dataset is available in the auto-mpg.data-original file.

The data concerns city-cycle fuel consumption in miles per gallon, in terms of three 
multivalued discrete and five continuous attributes.
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Activity 4: Line Graphs with the Object-Oriented API and Pandas DataFrames

In this activity, we will create a time series line graph from the Auto-MPG dataset as a 

first example of plotting using pandas and the object-oriented API. This kind of graph is 
common in analysis and helps to answer questions such as "is the average horsepower 
increasing or decreasing with time?"

Now, follow these procedures to plot a graph of average horsepower per year using 
pandas and while using the object-oriented API:

1. Import the required libraries and packages into the Jupyter notebook.

2. Read the Auto-MPG dataset into the Spark object.

3. Provide the column names to simplify the dataset, as illustrated here:

column_names = ['mpg', 'cylinders', 'displacement', 'horsepower', 
'weight', 'acceleration', 'year', 'origin', 'name']

4. Now read the new dataset with column names and display it.

5. Convert the horsepower and year data types to float and integer.

6. Now plot the graph of average horsepower per year using pandas:

Figure 2.10: Line Graphs with the Object-Oriented API and Pandas DataFrame

Note

The solution for this activity can be found on page 205.
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Note that we are using the plot functions from pandas but passing the axis that we 
created directly with Matplotlib as an argument. As we saw in the previous chapter, this 
is not required, but it will allow you to configure the plot outside pandas and change 
its configurations later. This same behavior can be applied to the other kinds of graphs. 
Let's now work with scatter plots.

Scatter Plots

To understand the correlation between two variables, scatter plots are generally used 
because they allow the distribution of points to be seen. Creating a scatter plot with 
Matplotlib is similar to creating a line plot, but instead of using the plot method, we use 
the scatter method.

Let's look at an example using the Auto-MPG dataset (https://archive.ics.uci.edu/ml/
machine-learning-databases/auto-mpg/):

fig, ax = plt.subplots()

ax.scatter(x = df['horsepower'], y=df['weight'])

Figure 2.11: Scatter plot using Matplotlib library
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Note that we called the scatter method directly from the axis. In Matplotlib parlance, 
we added a scatter plot to the axis, ax, that belongs to the fig figure. We can also add 
more dimensions to the plot, such as the color and point size, easily with Seaborn:

import seaborn as sns

sns.scatterplot(data=df, x='horsepower', y='weight', hue='cylinders', 
size='mpg')

Figure 2.12: Scatter plot using Seaborn library

As we can see, scatter plots are quite helpful for understanding the relationship 
between two variables, or even more. We can infer, for example, that there is a positive 
correlation between horsepower and weight. We can also easily see an outlier with 

the scatter plot, which could be more complicated when working with other kinds of 
graphs. The same principles for grouped data and pandas DataFrames that we saw on 
the line graphs apply here for the scatter plot.

We can generate a scatter plot directly from pandas using the kind parameter:

df.plot(kind='scatter', x='horsepower', y='weight')

 EBSCOhost - printed on 2/9/2023 10:53 AM via . All use subject to https://www.ebsco.com/terms-of-use



50 | Statistical Visualizations

Create a figure and pass it to Pandas:

fig, ax = plt.subplots()

df.plot(kind='scatter', x='horsepower', y='weight', ax =ax)

Activity 5: Understanding Relationships of Variables Using Scatter Plots

To continue our data analysis and learn how to plot data, let's look at a situation where 
a scatter plot can help. For example, let's use a scatter plot to answer the following 
question:

Is there a relationship between horsepower and weight?

To answer this question, we need to create a scatter plot with the data from Auto-MPG:

1. Use the Auto-MPG dataset, already ingested.

Note

Please refer to the previous exercise for how to ingest the dataset.

2. Use the object-oriented API for Matplotlib:

%matplotlib inline
import matplotlib.pyplot as plt
fig, ax = plt.subplots()

3. Create a scatter plot using the scatter method:

ax.scatter(x = df['horsepower'], y=df['weight'])

Note

The solution for this activity can be found on page 208.

We can identify a roughly linear relationship between horsepower and weight, with 
some outliers with higher horsepower and lower weight. This is the kind of graph that 
would help an analyst interpret the data's behavior.
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Histograms

Histograms are a bit different from the graphs that we've seen so far, as they only try 
to visualize the distribution of one variable, instead of two or more. Histograms have 
the goal of visualizing the probability distribution of one variable, or in other words, 
counting the number of occurrences of certain values divided into fixed intervals, or 
bins. 

The bins are consecutive and adjacent but don't need to have the same size, although 
this is the most common arrangement.

The choice of the number of bins and bin size is more dependent on the data and the 
analysis goal than any fixed, general rule. The larger the number of bins, the smaller 
(narrower) the size of each bin, and vice versa. When data has a lot of noise or variation, 
for example, a small number of bins (with a large bin) will show the general outline of 
the data, reducing the impact of the noise in a first analysis. A larger number of bins is 
more useful when the data has a higher density.

Exercise 12: Creating a Histogram of Horsepower Distribution

As we strive to understand the data, we now want to see the horsepower distribution 
over all cars. Analysis questions with an adequate histogram are, for example: what is 
the most frequent value of a variable? Is the distribution centered or does it have a tail? 
Let's plot a histogram of the horsepower distribution:

1. Import the required libraries into the Jupyter notebook and read the dataset from 
the Auto-MPG dataset repository:

import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
auto-mpg.data"
df = pd.read_csv(url)

2. Provide the column names to simplify the dataset as illustrated here:

column_names = ['mpg', 'Cylinders', 'displacement', 'horsepower', 
'weight', 'acceleration', 'year', 'origin', 'name']
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3. Now read the new dataset with column names and display it:

df = pd.read_csv(url, names= column_names, delim_whitespace=True)
df.head()

The plot is as follows:

Figure 2.13: The auto-mpg dataset

4. Convert the horsepower and year data types to float and integer using the following 
command:

df.loc[df.horsepower == '?', 'horsepower'] = np.nan
df['horsepower'] = pd.to_numeric(df['horsepower'])
df['full_date'] = pd.to_datetime(df.year, format='%y')
df['year'] = df['full_date'].dt.year

5. Create a graph directly from the Pandas DataFrame using the plot function and 
kind='hist':

df.horsepower.plot(kind='hist')

Figure 2.14: Histogram plot
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6. Identify the horsepower concentration:

sns.distplot(df['weight'])

Figure 2.15: Histogram concentration plot

We can see in this graph that the value distribution is skewed to the left, with more cars 
with horsepower of between 50 and 100 than greater than 200, for example. This could 
be quite useful in understanding how some data varies in an analysis.
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Boxplots

Boxplots are also used to see variations in values, but now within each column. We want 
to see how values compare when grouped by another variable, for example. Because 
of their format, boxplots are sometimes called whisker plots or box and whisker plots 
because of the lines that extend vertically from the main box:

Figure 2.16: Boxplot

Source

https://en.wikipedia.org/wiki/File:Michelsonmorley-boxplot.svg

A boxplot uses quartiles (first and third) to create the boxes and whiskers. The line in 
the middle of the box is the second quartile – the median. The whiskers definition can 
vary, such as using one standard deviation above and below the mean of the data, but 
it's common to use 1.5 times the interquartile range (Q3 – Q1) from the edges of the 
box. Anything that passes these values, either above or below, is plotted as a dot and is 
usually considered an outlier.
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Exercise 13: Analyzing the Behavior of the Number of Cylinders and 

Horsepower Using a Boxplot

Sometimes we want not only to see the distribution of each variable, but also to see 
the variation of the variable of interest with respect to another attribute. We would like 
to know, for instance, how the horsepower varies given the number of cylinders. Let's 
create a boxplot with Seaborn, comparing the horsepower distribution to the number 
of cylinders:

1. Import the required libraries into the Jupyter notebook and read the dataset from 
the Auto-MPG dataset repository:

%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
auto-mpg.data"
df = pd.read_csv(url)

2. Provide the column names to simplify the dataset, as illustrated here:

column_names = ['mpg', 'Cylinders', 'displacement', 'horsepower', 
'weight', 'acceleration', 'year', 'origin', 'name']

3. Now read the new dataset with column names and display it:

df = pd.read_csv(url, names= column_names, delim_whitespace=True)
df.head()

 EBSCOhost - printed on 2/9/2023 10:53 AM via . All use subject to https://www.ebsco.com/terms-of-use



56 | Statistical Visualizations

The plot is as follows:

Figure 2.17: The auto-mpg dataset

4. Convert the data type of horsepower and year to float and integer using the 
following command:

df.loc[df.horsepower == '?', 'horsepower'] = np.nan
df['horsepower'] = pd.to_numeric(df['horsepower'])
df['full_date'] = pd.to_datetime(df.year, format='%y')
df['year'] = df['full_date'].dt.year

5. Create a boxplot using the Seaborn boxplot function:

sns.boxplot(data=df, x="cylinders", y="horsepower")

Figure 2.18: Boxplot using the Seaborn boxplot function
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6. Now, just for comparison purposes, create the same boxplot using pandas directly:

df.boxplot(column='horsepower', by='cylinders')

Figure 2.19: Boxplot using pandas

On the analysis side, we can see that the variation range from 3 cylinders is smaller than 
for 8 cylinders for horsepower. We can also see that 6 and 8 cylinders have outliers in 
the data. As for the plotting, the Seaborn function is more complete, showing different 
colors automatically for different numbers of cylinders, and including the name of the 
DataFrame columns as labels in the graph.

Changing Plot Design: Modifying Graph Components
So far, we've looked at the main graphs used in analyzing data, either directly or 
grouped, for comparison and trend visualization. But one thing that we can see is that 
the design of each graph is different from the others, and we don't have basic things 
such as a title and legends.

We've learned that a graph is composed of several components, such as a graph title, 
x and y labels, and so on. When using Seaborn, the graphs already have x and y labels, 
with the names of the columns. With Matplotlib, we don't have this. These changes are 
not only cosmetic.
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The understanding of a graph can be greatly improved when we adjust things such 
as line width, color, and point size too, besides labels and titles. A graph must be able 
to stand on its own, so title, legends, and units are paramount. How can we apply the 
concepts that we described previously to make good, informative graphs on Matplotlib 
and Seaborn?

The possible number of ways that plots can be configured is enormous. Matplotlib is 
powerful when it comes to configuration, but at the expense of simplicity. It can be 
cumbersome to change some basic parameters in a graph using Matplotlib and this is 
where Seaborn and other libraries can be of help. But in some cases, this is desirable, 
for instance in a custom graph, so having this capacity somewhere in the stack is 
necessary. We will focus on how to change a few basic plot parameters in this section.

Title and Label Configuration for Axis Objects

As we said before, the object-oriented API for Matplotlib is the one that provides 
greater flexibility. Let's explore how to configure the title and labels on axis objects in 
the following exercise.

Exercise 14: Configuring a Title and Labels for Axis Objects

Perform the following steps to configure a title and labels for the axis objects. We will 
continue from the previous exercise and follow these steps:

1. Set the title, the x-axis label, and the y-axis label by calling the set method:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.set(title="Graph title", xlabel="Label of x axis (units)", 
ylabel="Label of y axis (units)")
ax.plot()
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The plot is as follows:

Figure 2.20: Configuring a title and labels

2. The legends for the plot can be either passed externally, when using only 
Matplotlib, or can be set on the Pandas plot and plotted with the axes. Use the 
following command to plot the legends:

fig, ax = plt.subplots()
df.groupby('year')['horsepower'].mean().plot(ax=ax, label='horsepower')
ax.legend()

The plot is as follows:

Figure 2.21: Line graph with legends
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3. The alternative method for plotting the legends is as follows:

fig, ax = plt.subplots()
df.groupby('year')['horsepower'].mean().plot(ax=ax)
ax.legend(['horsepower'])

The plot is as follows:

Figure 2.22: Line graph with legends (alternate method)

Line Styles and Color

For line graphs, the color, the weight, markers, and the style of the lines can be 
configured with the ls, lw, marker, and color parameters:

df.groupby('year')['horsepower'].mean().plot(ls='-.', color='r', lw=3)
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Figure 2.23: Line graph with color and style

Figure Size

We can also configure the size of the figure. The figsize parameter can be passed to all 
plot functions as a tuple (x-axis, y-axis) with the size in inches:

df.plot(kind='scatter', x='weight', y='horsepower', figsize=(20,10))

Figure 2.24: Plot with bigger figure size
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Exercise 15: Working with Matplotlib Style Sheets

Matplotlib has some style sheets that define general rules for graphs, such as 
background color, ticks, graph colors, and palettes. Let's say that we want to change 
the style so our graph has better colors for printing. To accomplish that, follow these 
steps:

1. Let's first print the list of available styles using the following command:

import matplotlib.pyplot as plt
print(plt.style.available)

The output is as follows:

['bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 
'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-
dark-palette', 'seaborn-dark', 'seaborn-darkgrid', 'seaborn-deep', 
'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 
'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 
'seaborn-whitegrid', 'seaborn', 'Solarize_Light2', 'tableau-colorblind10', 
'_classic_test']

2. Now, let's create a scatter plot with the style as classic. Make sure you import the 
Matplotlib library first before proceeding:

%matplotlib inline

import numpy as np
import matplotlib.pyplot as plt
url = ('https://raw.githubusercontent.com/TrainingByPackt/Big-Data-
Analysis-with-Python/master/Lesson02/Dataset/auto-mpg.data')
df = pd.read_csv(url)
column_names = ['mpg', 'cylinders', 'displacement', 'horsepower', 
'weight', 'acceleration', 'year', 'origin', 'name']
df = pd.read_csv(url, names= column_names, delim_whitespace=True)

df.loc[df.horsepower == '?', 'horsepower'] = np.nan
df['horsepower'] = pd.to_numeric(df['horsepower'])
plt.style.use(['classic'])
df.plot(kind='scatter', x='weight', y='horsepower')
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The output is as follows:

Figure 2.25: Scatter plot with the style as classic

Note

To use a style sheet, use the following command:

plt.style.use('presentation')

One of the changes that Seaborn makes when it is imported is to add some styles 
to the list of available ones. Styles are also useful when creating images for different 
audiences, such as one for visualization in a notebook and another for printing or 
displaying in a presentation.
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Exporting Graphs
After generating our visualizations and configuring the details, we can export our 
graphs to a hard copy format, such as PNG, JPEG, or SVG. If we are using the interactive 
API in the notebook, we can just call the savefig function over the pyplot interface, and 
the last generated graph will be exported to the file:

df.plot(kind='scatter', x='weight', y='horsepower', figsize=(20,10))

plt.savefig('horsepower_weight_scatter.png')

Figure 2.26: Exporting the graphs

All plot configurations will be carried to the plot. To export a graph when using the 
object-oriented API, we can call savefig from the figure:

fig, ax = plt.subplots()

df.plot(kind='scatter', x='weight', y='horsepower', figsize=(20,10), ax=ax)

fig.savefig('horsepower_weight_scatter.jpg')
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Figure 2.27: Saving the graph

We can change some parameters for the saved image:

• dpi: Adjust the saved image resolution.

• facecolor: The face color of the figure.

• edgecolor: The edge color of the figure, around the graph.

• format: Usually PNG, PDF, PS, EPS, JPG, or SVG. Inferred from the filename 
extension.

Seaborn also uses the same underlying Matplotlib mechanism to save figures. Call the 
savefig method directly from a Seaborn graph:

sns_scatter = sns.scatterplot(data=df, x='horsepower', y='weight', 
hue='cylinders', size='mpg')

plt.savefig('scatter_fig.png', dpi=300)
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Figure 2.28: Plot using the savefig method

With these complementary options, the analyst has the capability of generating 
visualizations for different audiences, either in notebooks, on websites, or in print.

Activity 6: Exporting a Graph to a File on Disk

Saving our work to a file is a good way to enable sharing the results in different media. 
It also helps if we want to keep it for future reference. Let's create a graph and save it to 
disk:

1. Ingest the Auto-MPG dataset.

2. Create any kind of graph using the Matplotlib object-oriented API. For example, 
here's a histogram on weight:

%matplotlib inline
import matplotlib.pyplot
fig, ax = plt.subplots()
df.weight.plot(kind='hist', ax=ax)

3. Export this to a PNG file using the savefig function:

fig.savefig('weight_hist.png')

Note

The solution for this activity can be found on page 209.
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Activity 7: Complete Plot Design

To make our graphs stand alone, separated from analysis, we need to add more 
information to it, for other analysis or for other users be able to grasp the graph 
content and understand what's being represented. We will now combine all of what 
we've learned in this chapter to create a complete graph, including a title, labels, and 
legends, and adjust the plot size.

As an analyst, we want to understand whether the average miles per year increased or 
not, and we want to group by number of cylinders. For example, what is the behavior, in 
fuel consumption, of a car with three cylinders, over time? Is it higher or lower than a 
car with four cylinders?

Follow these steps to create our final graph:

1. Ingest the Auto-MPG dataset.

2. Perform the groupby operations on year and cylinders, and unset the option to use 
them as indexes.

3. Calculate the average miles per gallon over the grouping and set year as index.

4. Set year as the DataFrame index.

5. Create the figure and axes using the object-oriented API.

6. Perform the groupby operations on the df_g dataset by cylinders and plot the miles 
per gallon variable using the axes created with size (10,8).

7. Set the title, x label, and y label on the axes.

8. Include the legends in the plot.

9. Save the figure to disk as a PNG file.

Note

The solution for this activity can be found on page 211.
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We can infer from this graph that cars with four cylinders are more economical than 
cars with eight cylinders. We can also infer that all cars increased fuel efficiency during 
the studied period, with a decrease of four cylinders between 1980 and 1982.

Note

Notice that with the label axes and legend, the complicated transformation that 
was done using Pandas (group by and averaging, then setting the index) is easy to 
explain in the final result.

Summary
In this chapter, we have seen the importance of creating meaningful and interesting 
visualizations when analyzing data. A good data visualization can immensely help the 
analyst's job, representing data in a way that can reach larger audiences and explain 
concepts that could be hard to translate into words or to represent with tables.

A graph, to be effective as a data visualization tool, must show the data, avoid 
distortions, make understanding large datasets easy, and have a clear purpose, such 
as description or exploration. The main goal of a graph is to communicate data, so the 
analyst must keep that in mind when creating a graph. A useful graph is more desirable 
than a beautiful one.

We demonstrated some kinds of graphs commonly used in analysis: the line graph, the 
scatter plot, the histogram, and the boxplot. Each graph has its purpose and application, 
depending on the data and the goal. We have also shown how to create graphs directly 
from Matplotlib, from pandas, or a combination of both, with Matplotlib's APIs: Pyplot, 
the interactive API, and the object-oriented API. We finished this chapter with an 
explanation of the options for changing the appearance of a graph, from line styles 
to markers and colors, and how to save a graph to a hard copy format for printing or 
sharing.

There are plenty of ways to configure graphs that we didn't cover here. Visualization is 
a large field and the tools also have a large set of options.

In the next chapters, we will focus on data processing, including the manipulation of 
large-scale data with Hadoop and Spark. After going through the basics of both of those 
tools, we will return to the analysis process, which will include graphs in diverse forms.
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Learning Objectives

By the end of this chapter, you will be able to:

• Explain the HDFS and YARN Hadoop components 

• Perform file operations with HDFS

• Compare a pandas DataFrame with a Spark DataFrame

• Read files from a local filesystem and HDFS using Spark

• Write files in Parquet format using Spark

• Write partitioned files in Parquet for fast analysis

• Manipulate non-structured data with Spark

In this chapter, we will explore big data tools such as Hadoop and Spark.

Working with Big Data 
Frameworks

3
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Introduction
We saw in the previous chapters how to work with data using pandas and Matplotlib for 
visualization and the other tools in the Python data science stack. So far, the datasets 
that we have used have been relatively small and with a relatively simple structure. 
Real-life datasets can be orders of magnitude larger than can fit into the memory of a 
single machine, the time to process these datasets can be long, and the usual software 
tools may not be up to the task. This is the usual definition of what big data is: an 
amount of data that does not fit into memory or cannot be processed or analyzed in a 
reasonable amount of time by common software methods. What is big data for some 
may not be big data for others, and this definition can vary depending on who you ask.

Big Data is also associated with the 3 V’s (later extended to 4 V’s):

• Volume: Big data, as the name suggests, is usually associated with very large 
volumes of data. What is large depends on the context: for one system, gigabytes 
can be large, while for another, we have to go to petabytes of data.

• Variety: Usually, big data is associated with different data formats and types, 
such as text, video, and audio. Data can be structured, like relational tables, or 
unstructured, like text and video.

• Velocity: The speed at which data is generated and stored is faster than other 
systems and produced more continuously. Streaming data can be generated by 
platforms such as telecommunications operators or online stores, or even Twitter.

• Veracity: This was added later and tries to show that knowing the data that is 
being used and its meaning is important in any analysis work. We need to check 
whether the data corresponds with what we expect the data to be, that the 
transformation process didn’t change the data, and whether it reflects what was 
collected.

But one aspect that makes big data compelling is the analysis component: big data 
platforms are created to allow analysis and information extraction over these large 
datasets. This is where this chapter starts: we will learn how to manipulate, store, and 
analyze large datasets using two of the most common and versatile frameworks for big 
data: Hadoop and Spark.
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Hadoop
Apache Hadoop is a set of software components created for the parallel storage and 
computation of large volumes of data. The main idea at the time of its inception was to 
use commonly available computers in a distributed fashion, with high resiliency against 
failure and distributed computation. With its success, more high-end computers 
started to be used on Hadoop clusters, although commodity hardware is still a common 
use case.

By parallel storage, we mean any system that stores and retrieves stored data in a 
parallel fashion, using several nodes interconnected by a network.

Hadoop is composed of the following:

• Hadoop Common: the basic common Hadoop items 

• Hadoop YARN: a resource and job manager

• Hadoop MapReduce: a large-scale parallel processing engine

• Hadoop Distributed File System (HDFS): as the name suggests, HDFS is a file 
system that can be distributed over several machines, using local disks, to create a 
large storage pool:

Figure 3.1: Architecture of HDFS
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Another important component is YARN (Yet Another Resource Negotiator), a resource 
manager and job scheduler for Hadoop. It is responsible for managing jobs submitted 
to the Hadoop cluster, allocating memory and CPU based on the required and available 
resources.

Hadoop popularized a parallel computation model called MapReduce, a distributed 
computation paradigm first developed by Google. It’s possible to run a program using 
MapReduce in Hadoop directly. But since Hadoop’s creation, other parallel computation 
paradigms and frameworks have been developed (such as Spark), so MapReduce is 
not commonly used for data analysis. Before diving into Spark, let’s see how we can 
manipulate files on the HDFS.

Manipulating Data with the HDFS

The HDFS is a distributed file system with an important distinction: it was designed 
to run on thousands of computers that were not built specially for it—so-called 
commodity hardware. It doesn’t require any special networking gear or special disks, it 
can run on common hardware. Another idea that permeates HDFS is that it is resilient: 
hardware will always fail, so instead of trying to prevent failure, the HDFS works around 
this by being extremely fault-tolerant. It assumes that failures will occur considering its 
scale, so the HDFS implements fault detection for fast and automatic recovery. It is also 
portable, running in diverse platforms, and can hold single files with terabytes of data.

One of the big advantages from a user perspective is that the HDFS supports traditional 
hierarchical file structure organization (folders and files in a tree structure), so users 
can create folders inside folders and files inside folders on each level, simplifying its use 
and operation. Files and folders can be moved around, deleted, and renamed, so users 
do not need to know about data replication or NameNode/DataNode architecture to 
use the HDFS; it would look similar to a Linux filesystem. Before demonstrating how to 
access files, we need to explain a bit about the addresses used to access Hadoop data. 
For example, the URI for accessing files in HDFS has the following format:

hdfs://hadoopnamenode.domainname/path/to/file

Where namenode.domainname is the address configured in Hadoop. Hadoop user guide 
(https://exitcondition.com/install-hadoop-windows/) details a bit more on how to 
access different parts of the Hadoop system. Let’s look at a few examples to better 
understand how all this works.
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Exercise 16: Manipulating Files in the HDFS

An analyst just received a large dataset to analyze and it’s stored on an HDFS system. 
How would this analyst list, copy, rename, and move these files? Let’s assume that the 
analyst received a file with raw data, named new_data.csv:

1. Let’s start checking the current directories and files using the following command 
on the terminal if you are on Linux based system or command prompt if you are 
on Windows system:

hdfs dfs -ls /

2. We have a local file on disk, called new_data.csv, which we want to copy to the 
HDFS data folder:

hdfs dfs -put C:/Users/admin/Desktop/Lesson03/new_data.csv /

3. Notice that the last part of the command is the path inside HDFS. Now, create a 
folder in HDFS using the command mkdir:

hdfs dfs -mkdir /data

4. And move the file to a data folder in HDFS:

hdfs dfs -mv /data_file.csv /data

5. Change the name of the CSV file:

hdfs dfs -mv /data/new_data.csv /data/other_data.csv

6. Use the following command to check whether the file is present in the current 
location or not:

hadoop fs -ls /data

The output is as follows:

other_data.csv

Note

Commands after the HDFS part have the same name as commands in the Linux 
shell.
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Knowing how to manipulate files and directories with the HDFS is an important part of 
big data analysis, but usually, direct manipulation is done only on ingestion. To analyze 
data, HDFS is not directly used, and tools such as Spark are more powerful. Let’s see 
how to use Spark in sequence.

Spark
Spark (https://spark.apache.org) is a unified analytics engine for large-scale data 
processing. Spark started as a project by the University of California, Berkeley, in 2009, 
and moved to the Apache Software Foundation in 2013.

Spark was designed to tackle some problems with the Hadoop architecture when 
used for analysis, such as data streaming, SQL over files stored on HDFS and machine 
learning. It can distribute data over all computing nodes in a cluster in a way that 
decreases the latency of each computing step. Another Spark difference is its flexibility: 
there are interfaces for Java, Scala, SQL, R and Python, and libraries for different 
problems, such as MLlib for machine learning, GraphX for graph computation, and 
Spark Streaming, for streaming workloads.

Spark uses the worker abstraction, having a driver process that receives user input 
to start parallel executions, and worker processes that reside on the cluster nodes, 
executing tasks. It has a built-in cluster management tool and supports other tools, 
such as Hadoop YARN and Apache Mesos (and even Kubernetes), integrating into 
different environments and resource distribution scenarios.

Spark can also be very fast, because it first tries to distribute data over all nodes and 
keep it in memory instead of relying only on data on disk. It can handle datasets larger 
than the total available memory, shifting data between memory and disk, but making 
the process slower than if the entire dataset fitted in the total available memory of all 
nodes:

Figure 3.2: Working mechanism of Spark
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Other great advantages are that Spark has interfaces for a large variety of local and 
distributed storage systems, such as HDFS, Amazon S3, Cassandra, and others; can 
connect to RDBMS such as PostgreSQL and MySQL via JDBC or ODBC connectors; and 
can use the Hive Metastore to run SQL directly over a HDFS file. File formats such as 
CSV, Parquet, and ORC can also be read directly by Spark.

This flexibility can be a great help when working with big data sources, which can have 
varying formats.

Spark can be used either as an interactive shell with Scala, Python, and R, or as a job 
submission platform with the spark-submit command. The submit method is used to 
dispatch jobs to a Spark cluster coded in a script. The Spark shell interface for Python is 
called PySpark. It can be accessed directly from the terminal, where the Python version 
that is the default will be used; it can be accessed using the IPython shell or even inside 
a Jupyter notebook.

Spark SQL and Pandas DataFrames

The RDD, or Resilient Distributed Dataset, is the base abstraction that Spark uses to 
work with data. Starting on Spark version 2.0, the recommended API to manipulate data 
is the DataFrame API. The DataFrame API is built on top of the RDD API, although the 
RDD API can still be accessed.

Working with RDDs is considered low-level and all operations are available in the 
DataFrame API, but it doesn’t hurt learning a bit more about the RDD API.

The SQL module enables users to query the data in Spark using SQL queries, similar 
to common relational databases. The DataFrame API is part of the SQL module, which 
works with structured data. This interface for data helps to create extra optimizations, 
with the same execution engine being used, independently of the API or language used 
to express such computations.

The DataFrame API is similar to the Pandas DataFrame. In Spark, a DataFrame is a 
distributed collection of data, organized into columns, with each column having a name. 
With Spark 2.0, the DataFrame is a part of the more general Dataset API, but as this API 
is only available for the Java and Scala languages, we will discuss only the DataFrame API 
(called Untyped Dataset Operations in the documentation).
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The interface for Spark DataFrames is similar to the pandas interface, but there are 
important differences:

• The first difference is that Spark DataFrames are immutable: after being created, 
they cannot be altered.

• The second difference is that Spark has two different kinds of operations: 
transformations and actions.

Transformations are operations that are applied over the elements of a DataFrame 
and are queued to be executed later, not fetching data yet.

Only when an action is called is data fetched and all queued transformations are 
executed. This is called lazy evaluation.

Exercise 17: Performing DataFrame Operations in Spark

Let’s start using Spark to perform input/output and simple aggregation operations. 
The Spark interface, as we said before, was inspired by the pandas interface. What 
we learned in Chapter 2, Statistical Visualizations Using Matplotlib and Seaborn, can 
be applied here, making it easier to carry out more complex analysis faster, including 
aggregations, statistics, computation, and visualization on aggregated data later on. We 
want to read a CSV file, as we did before, to perform some analysis on it:

1. First, let’s use the following command on Jupyter notebook to create a Spark 
session:

from pyspark.sql import SparkSession
>>> spark = SparkSession \
    .builder \
    .appName(“Python Spark Session”) \
    .getOrCreate()

2. Now, let’s use the following command to read the data from the mydata.csv file:

df = spark.read.csv(‘/data/mydata.csv’, header=True)
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3. As we said before, Spark evaluation is lazy, so if we want to show what values are 
inside the DataFrame, we need to call the action, as illustrated here:

df.show()
+------+----+-------+
|  name| age| height|
+------+----+-------+
|  Jonh|  22|   1.80|
|Hughes|  34|   1.96|
|  Mary|  27|   1.56|
+------+----+-------+

Note

This is not necessary with pandas: printing the DataFrame would work directly.

Exercise 18: Accessing Data with Spark

After reading our DataFrame and showing its contents, we want to start manipulating 
the data so that we can do an analysis. We can access data using the same NumPy 
selection syntax, providing the column name as input. Note that the object that is 
returned is of type Column:

1. Let’s select one column from the DataFrame that we ingested in the previous 
exercise:

df[‘age’].Column[‘age’]

This is different from what we’ve seen with pandas. The method that selects values 
from columns in a Spark DataFrame is select. So, let’s see what happens when we 
use this method.

2. Using the same DataFrame again, use the select method to select the name 
column:

df.select(df[‘name’])DataFrame[age: string]
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3. Now, it changed from Column to DataFrame. Because of that, we can use the 
methods for DataFrames. Use the show method for showing the results from the 
select method for age:

df.select(df[‘age’]).show()
+---+
|age|
+---+
| 22|
| 34|
| 27|
+---+

4. Let’s select more than one column. We can use the names of the columns to do 
this:

df.select(df[‘age’], df[‘height’]).show()
+---+------+
|age|height|
+---+------+
| 22|  1.80|
| 34|  1.96|
| 27|  1.56|
+---+------+

This is extensible for other columns, selecting by name, with the same syntax. We will 
look at more complex operations, such as aggregations with GroupBy, in the next 
chapter.

Exercise 19: Reading Data from the Local Filesystem and the HDFS

As we saw before, to read files from the local disk, just give Spark the path to it. We can 
also read several other file formats, located in different storage systems. Spark can read 
files in the following formats:

• CSV

• JSON

• ORC

• Parquet

• Text
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And can read from the following storage systems:

• JDBC

• ODBC

• Hive

• S3

• HDFS

Based on a URL scheme, as an exercise, let’s read data from different places and 
formats:

1. Import the necessary libraries on the Jupyter notebook:

from pyspark.sql import SparkSession
spark = SparkSession \
    .builder \
    .appName(“Python Spark Session”) \
    .getOrCreate()

2. Let’s assume that we have to get some data from a JSON file, which is common 
for data collected from APIs on the web. To read a file directly from HDFS, use the 
following URL:

df = spark.read.json(‘hdfs://hadoopnamenode/data/myjsonfile.json’)

Note that, with this kind of URL, we have to provide the full address of the HDFS 
endpoint. We could also use only the simplified path, assuming that Spark was 
configured with the right options.

3. Now, read the data into the Spark object using the following command:

df = spark.read.json(‘hdfs://data/myjsonfile.json’)

4. So, we choose the format on the read method and the storage system on the 
access URL. The same method is used to access JDBC connections, but usually, we 
have to provide a user and a password to connect. Let’s see how to connect to a 
PostgreSQL database:

url = “jdbc:postgresql://posgreserver:5432/mydatabase”
properties = {“user”: “my_postgre_user”,  password: “mypassword”, 
“driver”: “org.postgresql.Driver”}
df = spark.read.jdbc(url, table = “mytable”, properties = properties)
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Exercise 20: Writing Data Back to the HDFS and PostgreSQL

As we saw with pandas, after performing some operations and transformations, let’s say 
that we want to write the results back to the local file system. This can be very useful 
when we finish an analysis and want to share the results with other teams, or we want 
to show our data and results using other tools:

1. We can use the write method directly on the HDFS from the DataFrame:

df.write.csv(‘results.csv’, header=True)

2. For the relational database, use the same URL and properties dictionary as 
illustrated here:

df = spark.write.jdbc(url, table = “mytable”, properties = properties)

This gives Spark great flexibility in manipulating large datasets and combining 
them for analysis.

Note

Spark can be used as an intermediate tool to transform data, including 
aggregations or fixing data issues, and saving in a different format for other 
applications.

Writing Parquet Files
The Parquet data format (https://parquet.apache.org/) is binary, columnar storage 
that can be used by different tools, including Hadoop and Spark. It was built to support 
compression, to enable higher performance and storage use. Its column-oriented 
design helps with data selection for performance, as only the data in the required 
columns are retrieved, instead of searching for the data and discarding values in rows 
that are not required, reducing the retrieval time for big data scenarios, where the 
data is distributed and on disk. Parquet files can also be read and written by external 
applications, with a C++ library, and even directly from pandas.

The Parquet library is currently being developed with the Arrow project (https://arrow.
apache.org/).

When considering more complex queries in Spark, storing the data in Parquet 
format can increase performance, especially when the queries need to search a 
massive dataset. Compression helps to decrease the data volume that needs to be 
communicated when an operation is being done in Spark, decreasing the network I/O. 
It also supports schemas and nested schemas, similar to JSON, and Spark can read the 
schema directly from the file. 
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The Parquet writer in Spark has several options, such as mode (append, overwrite, 
ignore or error, the default option) and compression, a parameter to choose the 
compression algorithm. The available algorithms are as follows:

• gzip

• lzo

• brottli

• lz4

• Snappy

• Uncompressed

The default algorithm is snappy.

Exercise 21: Writing Parquet Files

Let’s say that we received lots of CSV files and we need to do some analysis on them. 
We also need to reduce the data volume size. We can do that using Spark and Parquet. 

Before starting our analysis, let’s convert the CSV files to Parquet:

1. First, read the CSV files from the HDFS:

df = spark.read.csv(‘hdfs:/data/very_large_file.csv’, header=True)

2. Write the CSV files in the DataFrame back to the HDFS, but now in Parquet format:

df.write.parquet(‘hdfs:/data/data_file’, compression=”snappy”)

3. Now read the Parquet file to a new DataFrame:

df_pq = spark.read.parquet(“hdfs:/data/data_file”)

Note

The write.parquet method creates a folder named data_file with a file with a 
long name such as part-00000-1932c1b2-e776-48c8-9c96-2875bf76769b-c000.
snappy.parquet.
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Increasing Analysis Performance with Parquet and Partitions

An important concept that Parquet supports and that can also increase the 
performance of queries is partitioning. The idea behind partitioning is that data is split 
into divisions that can be accessed faster. The partition key is a column with the values 
used to split the dataset. Partitioning is useful when there are divisions in your data 
that are meaningful to work on separately. For example, if your data is based on time 
intervals, a partition column could be the year value. That way, when a query uses a 
filter value based on the year, only the data in the partition that matches the requested 
year is read, instead of the entire dataset.

Partitions can also be nested and are represented by a directory structure in Parquet. 
So, let’s say that we also want to partition by the column month. The folder structure of 
the Parquet dataset would be similar to the following:

hdfs -fs ls /data/data_file

year=2015

year=2016

year=2017

hdfs -fs ls /data/data_file/year=2017

month=01

month=02

month=03

month=04

month=05

Partitioning allows better performance when partitions are filtered, as only the data in 
the chosen partition will be read, increasing performance. To save partitioned files, the 
partitionBy option should be used, either in the parquet command or as the previous 
command chained to the write operation:

df.write.parquet(“hdfs:/data/data_file_partitioned”, partitionBy=[“year”, 
“month”])

The alternative method is:

df.write.partittionBy([“year”, “month”]).format(“parquet”).save(“hdfs:/data/
data_file_partitioned”)
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The latter format can be used with the previous operations. When reading partitioned 
data, Spark can infer the partition structure from the directory structure.

An analyst can considerably improve the performance of their queries if partitioning 
is used correctly. But partitioning can hinder performance if partition columns are not 
chosen correctly. For example, if there is only one year in the dataset, partitioning per 
year will not provide any benefits. If there is a column with too many distinct values, 
partitioning using this column could also create problems, creating too many partitions 
that would not improve speed and may even slow things down.

Exercise 22: Creating a Partitioned Dataset

We discovered in our preliminary analysis that the data has date columns, one for the 
year, one for the month, and one for the day. We will be aggregating this data to get the 
minimum, mean, and maximum values per year, per month, and per day. Let’s create a 
partitioned dataset saved in Parquet from our database:

1. Define a PostgreSQL connection:

url = “jdbc:postgresql://posgreserver:5432/timestamped_db”
properties = {“user”: “my_postgre_user”,  password: “mypassword”, 
“driver”: “org.postgresql.Driver”}

2. Read the data from PostgreSQL to a DataFrame, using the JDBC connector:

df = spark.read.jdbc(url, table = “sales”, properties = properties)

3. And let’s convert this into partitioned Parquet:

df.write.parquet(“hdfs:/data/data_file_partitioned”, partitionBy=[“year”, 
“month”, “day”], compression=”snappy”)

The use of Spark as an intermediary for different data sources, and considering its data 
processing and transformation capabilities, makes it an excellent tool for combining and 
analyzing data.

Handling Unstructured Data
Unstructured data usually refers to data that doesn’t have a fixed format. CSV files are 
structured, for example, and JSON files can also be considered structured, although not 
tabular. Computer logs, on the other hand, don’t have the same structure, as different 
programs and daemons will output messages without a common pattern. Images are 
also another example of unstructured data, like free text.
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We can leverage Spark’s flexibility for reading data to parse unstructured formats and 
extract the required information into a more structured format, allowing analysis. This 
step is usually called pre-processing or data wrangling.

Exercise 23: Parsing Text and Cleaning 

In this exercise, we will read a text file, split it into lines and remove the words the and a 
from the string given string:

1. Read the text file shake.txt (https://raw.githubusercontent.com/
TrainingByPackt/Big-Data-Analysis-with-Python/master/Lesson03/data/shake.
txt) into the Spark object using the text method:

from operator import add
rdd_df = spark.read.text(“/shake.txt”).rdd

2. Extract the lines from the text using the following command:

lines = rdd_df.map(lambda line: line[0])

3. This splits each line in the file as an entry in the list. To check the result, you can 
use the collect method, which gathers all data back to the driver process:

lines.collect()

4. Now, let’s count the number of lines, using the count method: 

lines.count()

Note

Be careful when using the collect method! If the DataFrame or RDD being 
collected is larger than the memory of the local driver, Spark will throw an error.

5. Now, let’s first split each line into words, breaking it by the space around it, and 
combining all elements, removing words in uppercase:

splits = lines.flatMap(lambda x: x.split(‘ ‘))
lower_splits = splits.map(lambda x: x.lower().strip())

6. Let’s also remove the words the and a, and punctuations like ‘.’, ‘,’ from the given 
string:

prep = [‘the’, ‘a’, ‘,’, ‘.’]
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7. Use the following command to remove the stop words from our token list:

tokens = lower_splits.filter(lambda x: x and x not in prep)

We can now process our token list and count the unique words. The idea is to 
generate a list of tuples, where the first element is the token and the second 
element is the count of that particular token.

8. Let’s map our token to a list: 

token_list = tokens.map(lambda x: [x, 1])

9. Use the reduceByKey operation, which will apply the operation to each of the lists:

count = token_list.reduceByKey(add).sortBy(lambda x: x[1], 
ascending=False)
count.collect()

The output is as follows:

Figure 3.3: Parsing Text and Cleaning

Note

Remember, collect()collects all data back to the driver node! Always check 
whether there is enough memory by using tools such as top and htop.
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Activity 8: Removing Stop Words from Text

In this activity, we will read a text file, split it into lines and remove the stopwords from 
the text:

1. Read the text file shake.txt as used in Exercise 8. 

2. Extract the lines from the text and create a list with each line. 

3. Split each line into words, breaking it by the space around it and remove words in 
uppercase.

4. Remove the stop words: ‘of’, ‘a’, ‘and’, ‘to’ from our token list.

5. Process the token list and count the unique words, generating list of tuples made 
up of the token and its count. 

6. Map our tokens to a list using the reduceByKey operation.

The output is as follows:

Figure 3.4: Removing Stop Words from Text

Note

The solution for this activity can be found on page 213.
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We get the list of tuples, where each tuple is a token and the count of the number of 
times that word appeared in the text. Notice that, before the final collect on count (an 
action), the operations that were transformations did not start running right away: we 
needed the action operation count to Spark start executing all the steps.

Other kinds of unstructured data can be parsed using the preceding example, and 
either operated on directly, such as in the preceding activity or transformed into a 
DataFrame later.

Summary
After a review of what big data is, we learned about some tools that were designed for 
the storage and processing of very large volumes of data. Hadoop is an entire ecosystem 
of frameworks and tools, such as HDFS, designed to store data in a distributed fashion 
in a huge number of commodity-computing nodes, and YARN, a resource and job 
manager. We saw how to manipulate data directly on the HDFS using the HDFS fs 
commands.

We also learned about Spark, a very powerful and flexible parallel processing framework 
that integrates well with Hadoop. Spark has different APIs, such as SQL, GraphX, and 
Streaming. We learned how Spark represents data in the DataFrame API and that its 
computation is similar to pandas’ methods. We also saw how to store data in an efficient 
manner using the Parquet file format, and how to improve performance when analyzing 
data using partitioning. To finish up, we saw how to handle unstructured data files, such 
as text.

In the next chapter, we will go more deeply into how to create a meaningful statistical 
analysis using more advanced techniques with Spark and how to use Jupyter notebooks 
with Spark.
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Learning Objectives

By the end of this chapter, you will be able to:

• Implement the basic Spark DataFrame API

• Read data and create Spark DataFrames from different data sources

• Manipulate and process data using different Spark DataFrame options

• Visualize data in Spark DataFrames using different plots

In this chapter, we will use the Spark as an analysis tool for big datasets.

Diving Deeper with 
Spark

4
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Introduction
The last chapter introduced us to one of the most popular distributed data processing 
platforms used to process big data—Spark.

In this chapter, we will learn more about how to work with Spark and Spark DataFrames 
using its Python API—PySpark. It gives us the capability to process petabyte-scale data, 
but also implements machine learning (ML) algorithms at petabyte scale in real time. 
This chapter will focus on the data processing part using Spark DataFrames in PySpark.

Note

We will be using the term DataFrame quite frequently during this chapter. This will 
explicitly refer to the Spark DataFrame, unless mentioned otherwise. Please do not 
confuse this with the pandas DataFrame.

Spark DataFrames are a distributed collection of data organized as named columns. 
They are inspired from R and Python DataFrames and have complex optimizations at 
the backend that make them fast, optimized, and scalable.

The DataFrame API was developed as part of Project Tungsten and is designed to 
improve the performance and scalability of Spark. It was first introduced with Spark 1.3.

Spark DataFrames are much easier to use and manipulate than their predecessor 
RDDs. They are immutable, like RDDs, and support lazy loading, which means no 
transformation is performed on the DataFrames unless an action is called. The 
execution plan for the DataFrames is prepared by Spark itself and hence is more 
optimized, making operations on DataFrames faster than those on RDDs.

Getting Started with Spark DataFrames
To get started with Spark DataFrames, we will have to create something called a 
SparkContext first. SparkContext configures the internal services under the hood and 
facilitates command execution from the Spark execution environment.

Note

We will be using Spark version 2.1.1, running on Python 3.7.1. Spark and Python 
are installed on a MacBook Pro, running macOS Mojave version 10.14.3, with a 2.7 
GHz Intel Core i5 processor and 8 GB 1867 MHz DDR3 RAM.
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The following code snippet is used to create SparkContext:

from pyspark import SparkContext

sc = SparkContext()

Note

In case you are working in the PySpark shell, you should skip this step, as the shell 
automatically creates the sc (SparkContext) variable when it is started. However, 
be sure to create the sc variable while creating a PySpark script or working with 
Jupyter Notebook, or your code will throw an error.

We also need to create an SQLContext before we can start working with DataFrames. 
SQLContext in Spark is a class that provides SQL-like functionality within Spark. We can 
create SQLContext using SparkContext:

from pyspark.sql import SQLContext

sqlc = SQLContext(sc)

There are three different ways of creating a DataFrame in Spark:

• We can programmatically specify the schema of the DataFrame and manually 
enter the data in it. However, since Spark is generally used to handle big data, this 
method is of little use, apart from creating data for small test/sample cases.

• Another method to create a DataFrame is from an existing RDD object in Spark. 
This is useful, because working on a DataFrame is way easier than working directly 
with RDDs.

• We can also read the data directly from a data source to create a Spark DataFrame. 
Spark supports a variety of external data sources, including CSV, JSON, parquet, 

RDBMS tables, and Hive tables.
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Exercise 24: Specifying the Schema of a DataFrame

In this exercise, we will create a small sample DataFrame by manually specifying the 
schema and entering data in Spark. Even though this method has little application 
in a practical scenario, it will be a good starting point in getting started with Spark 
DataFrames:

1. Importing the necessary files:

from pyspark import SparkContext
sc = SparkContext()
from pyspark.sql import SQLContext
sqlc = SQLContext(sc)

2. Import SQL utilities from the PySpark module and specify the schema of the 
sample DataFrame:

from pyspark.sql import *
na_schema = Row("Name","Age")

3. Create rows for the DataFrame as per the specified schema:

row1 = na_schema("Ankit", 23)
row2 = na_schema("Tyler", 26)
row3 = na_schema("Preity", 36)

4. Combine the rows together to create the DataFrame:

na_list = [row1, row2, row3]
df_na = sqlc.createDataFrame(na_list)
type(df_na)

5. Now, show the DataFrame using the following command:

df_na.show()

The output is as follows:

Figure 4.1: Sample PySpark DataFrame
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Exercise 25: Creating a DataFrame from an Existing RDD

In this exercise, we will create a small sample DataFrame from an existing RDD object in 
Spark:

1. Create an RDD object that we will convert into DataFrame:

data = [("Ankit",23),("Tyler",26),("Preity",36)]
data_rdd = sc.parallelize(data)
type(data_rdd)

2. Convert the RDD object into a DataFrame:

data_sd = sqlc.createDataFrame(data_rdd)

3. Now, show the DataFrame using the following command:

data_sd.show()

Figure 4.2: DataFrame converted from the RDD object

Exercise 25: Creating a DataFrame Using a CSV File

A variety of different data sources can be used to create a DataFrame. In this exercise, 
we will use the open source Iris dataset, which can be found under datasets in the 
scikit-learn library. The Iris dataset is a multivariate dataset containing 150 records, 
with 50 records for each of the 3 species of Iris flower (Iris Setosa, Iris Virginica, and Iris 
Versicolor).
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The dataset contains five attributes for each of the Iris species, namely, petal length, 
petal width, sepal length, sepal width, and species. We have stored this dataset in an 
external CSV file that we will read into Spark:

1. Download and install the PySpark CSV reader package from the Databricks 
website:

pyspark –packages com.databricks:spark-csv_2.10:1.4.0

2. Read the data from the CSV file into the Spark DataFrame:

df = sqlc.read.format('com.databricks.spark.csv').options(header='true', 
inferschema='true').load('iris.csv')
type(df)

3. Now, show the DataFrame using the following command:

df.show(4)

Figure 4.3: Iris DataFrame, first four rows

Note for the Instructor

Motivate the students to explore other data sources, such as tab-separated files, 
parquet files, and relational databases, as well.

Writing Output from Spark DataFrames
Spark gives us the ability to write the data stored in Spark DataFrames into a local 
pandas DataFrame, or write them into external structured file formats such as CSV. 
However, before converting a Spark DataFrame into a local pandas DataFrame, make 
sure that the data would fit in the local driver memory.

In the following exercise, we will explore how to convert the Spark DataFrame to a 
pandas DataFrame.
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Exercise 27: Converting a Spark DataFrame to a Pandas DataFrame

In this exercise, we will use the pre-created Spark DataFrame of the Iris dataset in the 
previous exercise, and convert it into a local pandas DataFrame. We will then store this 
DataFrame into a CSV file. Perform the following steps:

1. Convert the Spark DataFrame into a pandas DataFrame using the following 
command:

import pandas as pd
df.toPandas()

2. Now use the following command to write the pandas DataFrame to a CSV file:

df.toPandas().to_csv('iris.csv')

Note

Writing the contents of a Spark DataFrame to a CSV file requires a one-liner using 
the spark-csv package:

df.write.csv('iris.csv')

Exploring Spark DataFrames
One of the major advantages that the Spark DataFrames offer over the traditional RDDs 
is the ease of data use and exploration. The data is stored in a more structured tabular 
format in the DataFrames and hence is easier to make sense of. We can compute basic 
statistics such as the number of rows and columns, look at the schema, and compute 
summary statistics such as mean and standard deviation.
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Exercise 28: Displaying Basic DataFrame Statistics

In this exercise, we will show basic DataFrame statistics of the first few rows of the 
data, and summary statistics for all the numerical DataFrame columns and an individual 
DataFrame column:

1. Look at the DataFrame schema. The schema is displayed in a tree format on the 
console:

df.printSchema()

Figure 4.4: Iris DataFrame schema

2. Now, use the following command to print the column names of the Spark 
DataFrame:

df.schema.names

Figure 4.5: Iris column names

3. To retrieve the number of rows and columns present in the Spark DataFrame, use 
the following command:

## Counting the number of rows in DataFrame
df.count()#134

## Counting the number of columns in DataFrame
len(df.columns)#5

4. Let's fetch the first n rows of the data. We can do this by using the head() method. 
However, we use the show() method as it displays the data in a better format:

df.show(4)
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The output is as follows:

Figure 4.6: Iris DataFrame, first four rows

5. Now, compute the summary statistics, such as mean and standard deviation, for all 
the numerical columns in the DataFrame:

df.describe().show()

The output is as follows:

Figure 4.7: Iris DataFrame, summary statistics

6. To compute the summary statistics for an individual numerical column of a Spark 
DataFrame, use the following command:

df.describe('Sepalwidth').show()

The output is as follows:

Figure 4.8: Iris DataFrame, summary statistics of Sepalwidth column
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Activity 9: Getting Started with Spark DataFrames

In this activity, we will use the concepts learned in the previous sections and create a 
Spark DataFrame using all three methods. We will also compute DataFrame statistics, 
and finally, write the same data into a CSV file. Feel free to use any open source dataset 
for this activity:

1. Create a sample DataFrame by manually specifying the schema.

2. Create a sample DataFrame from an existing RDD.

3. Create a sample DataFrame by reading the data from a CSV file.

4. Print the first seven rows of the sample DataFrame read in step 3.

5. Print the schema of the sample DataFrame read in step 3.

6. Print the number of rows and columns in the sample DataFrame.

7. Print the summary statistics of the DataFrame and any 2 individual numerical 
columns.

8. Write the first 7 rows of the sample DataFrame to a CSV file using both methods 
mentioned in the exercises.

Note

The solution for this activity can be found on page 215.

Data Manipulation with Spark DataFrames
Data manipulation is a prerequisite for any data analysis. To draw meaningful insights 
from the data, we first need to understand, process, and massage the data. But this step 
becomes particularly hard with the increase in the size of data. Due to the scale of data, 
even simple operations such as filtering and sorting become complex coding problems. 
Spark DataFrames make data manipulation on big data a piece of cake.

Manipulating the data in Spark DataFrames is quite like working on regular pandas 
DataFrames. Most of the data manipulation operations on Spark DataFrames can be 
done using simple and intuitive one-liners. We will use the Spark DataFrame containing 
the Iris dataset that we created in previous exercises for these data manipulation 
exercises.
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Exercise 29: Selecting and Renaming Columns from the DataFrame

In this exercise, we will first rename the column using the withColumnRenamed method 
and then select and print the schema using the select method.

Perform the following steps:

1. Rename the columns of a Spark DataFrame using the withColumnRenamed() method:

df = df.withColumnRenamed('Sepal.Width','Sepalwidth')

Note

Spark does not recognize column names containing a period(.). Make sure to 
rename them using this method.

2. Select a single column or multiple columns from a Spark DataFrame using the 
select method:

df.select('Sepalwidth','Sepallength').show(4)

Figure 4.9: Iris DataFrame, Sepalwidth and Sepallength column
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Exercise 30: Adding and Removing a Column from the DataFrame

In this exercise, we will add a new column in the dataset using the withColumn method, 
and later, using the drop function, will remove it. Now, let's perform the following steps:

1. Add a new column in a Spark DataFrame using the withColumn method:

df = df.withColumn('Half_sepal_width', df['Sepalwidth']/2.0)

2. Use the following command to show the dataset with the newly added column:

df.show(4)

Figure 4.10: Introducing new column, Half_sepal_width

3. Now, to remove a column in a Spark DataFrame, use the drop method illustrated 
here:

df = df.drop('Half_sepal_width')

4. Let's show the dataset to verify that the column has been removed:

df.show(4)

Figure 4.11: Iris DataFrame after dropping the Half_sepal_width column
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Exercise 31: Displaying and Counting Distinct Values in a DataFrame

To display the distinct values in a DataFrame, we use the distinct().show() method. 
Similarly, to count the distinct values, we will be using the distinct().count() method. 
Perform the following procedures to print the distinct values with the total count:

1. Select the distinct values in any column of a Spark DataFrame using the distinct 
method, in conjunction with the select method:

df.select('Species').distinct().show()

Figure 4.12: Iris DataFrame, Species column

2. To count the distinct values in any column of a Spark DataFrame, use the count 
method, in conjunction with the distinct method:

df.select('Species').distinct().count()

Exercise 32: Removing Duplicate Rows and Filtering Rows of a DataFrame

In this exercise, we will learn how to remove the duplicate rows from the dataset, and 
later, perform filtering operations on the same column.

Perform these steps:

1. Remove the duplicate values from a DataFrame using the dropDuplicates() 
method:

df.select('Species').dropDuplicates().show()
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Figure 4.13: Iris DataFrame, Species column after removing duplicate column

2. Filter the rows from a DataFrame using one or multiple conditions. These multiple 
conditions can be passed together to the DataFrame using Boolean operators such 
as and (&), or |, similar to how we do it for pandas DataFrames:

# Filtering using a single condition
df.filter(df.Species == 'setosa').show(4)

Figure 4.14: Iris DataFrame after filtering with single conditions

3. Now, to filter the column using multiple conditions, use the following command:

df.filter((df.Sepallength > 5) & (df.Species == 'setosa')).show(4)

Figure 4.15: Iris DataFrame after filtering with multiple conditions
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Exercise 33: Ordering Rows in a DataFrame

In this exercise, we will explore how to sort the rows in a DataFrame in ascending and 
descending order. Let's perform these steps:

1. Sort the rows in a DataFrame, using one or multiple conditions, in ascending or 
descending order:

df.orderBy(df.Sepallength).show(5)

Figure 4.16: Filtered Iris DataFrame

2. To sort the rows in descending order, use the following command:

df.orderBy(df.Sepallength.desc()).show(5)

Figure 4.17: Iris DataFrame after sorting it in the descending order

 EBSCOhost - printed on 2/9/2023 10:53 AM via . All use subject to https://www.ebsco.com/terms-of-use



106 | Diving Deeper with Spark

Exercise 34: Aggregating Values in a DataFrame

We can group the values in a DataFrame by one or more variable, and calculate 
aggregated metrics such as mean, sum, count, and many more. In this exercise, we will 
calculate the mean sepal width for each of the flower species in the Iris dataset. We will 
also calculate the count of the rows for each species:

1. To calculate the mean sepal width for each species, use the following command:

df.groupby('Species').agg({'Sepalwidth' : 'mean'}).show()

Figure 4.18: Iris DataFrame, calculating mean sepal width

2. Now, let's calculate the number of rows for each species by using the following 
command:

df.groupby('Species').count().show()

Figure 4.19: Iris DataFrame, calculating number of rows for each species

Note

In the second code snippet, the count can also be used with the .agg function; 
however, the method we used is more popular.
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Activity 10: Data Manipulation with Spark DataFrames

In this activity, we will use the concepts learned in the previous sections to manipulate 
the data in the Spark DataFrame created using the Iris dataset. We will perform basic 
data manipulation steps to test our ability to work with data in a Spark DataFrame. Feel 
free to use any open source dataset for this activity. Make sure the dataset you use has 
both numerical and categorical variables:

1. Rename any five columns of the DataFrame. If the DataFrame has more than 
columns, rename all the columns.

2. Select two numeric and one categorical column from the DataFrame.

3. Count the number of distinct categories in the categorical variable.

4. Create two new columns in the DataFrame by summing up and multiplying 
together the two numerical columns.

5. Drop both the original numerical columns.

6. Sort the data by the categorical column.

7. Calculate the mean of the summation column for each distinct category in the 
categorical variable.

8. Filter the rows with values greater than the mean of all the mean values calculated 
in step 7.

9. De-duplicate the resultant DataFrame to make sure it has only unique records.

Note

The solution for this activity can be found on page 219.

Graphs in Spark
The ability to effectively visualize data is of paramount importance. Visual 
representations of data help the user develop a better understanding of data and 
uncover trends that might go unnoticed in text form. There are numerous types of plots 
available in Python, each with its own context.

 EBSCOhost - printed on 2/9/2023 10:53 AM via . All use subject to https://www.ebsco.com/terms-of-use



108 | Diving Deeper with Spark

We will be exploring some of these plots, including bar charts, density plots, boxplots, 
and linear plots for Spark DataFrames, using the widely used Python plotting packages 
of Matplotlib and Seaborn. The point to note here is that Spark deals with big data. So, 
make sure that your data size is reasonable enough (that is, it fits in your computer's 
RAM) before plotting it. This can be achieved by filtering, aggregating, or sampling the 
data before plotting it.

We are using the Iris dataset, which is small, hence we do not need to do any such 
pre-processing steps to reduce the data size.

Note for the Instructor

The user should install and load the Matplotlib and Seaborn packages beforehand, 
in the development environment, before getting started with the exercises in this 
section. If you are unfamiliar with installing and loading these packages, visit the 
official websites of Matplotlib and Seaborn.

Exercise 35: Creating a Bar Chart

In this exercise, we will try to plot the number of records available for each species 
using a bar chart. We will have to first aggregate the data and count the number of 
records for each species. We can then convert this aggregated data into a regular 
pandas DataFrame and use Matplotlib and Seaborn packages to create any kind of plots 
of it that we wish:

1. First, calculate the number of rows for each flower species and convert the result 
to a pandas DataFrame:

data = df.groupby('Species').count().toPandas()

2. Now, create a bar plot from the resulting pandas DataFrame:

import seaborn as sns
import matplotlib.pyplot as plt
sns.barplot( x = data['Species'], y = data['count'])
plt.xlabel('Species')
plt.ylabel('count')
plt.title('Number of rows per species')
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The plot is as follows:

Figure 4.20: Bar plot for Iris DataFrame after calculating the number of rows for each flower species

Exercise 36: Creating a Linear Model Plot

In this exercise, we will plot the data points of two different variables and fit a straight 
line on them. This is similar to fitting a linear model on two variables and can help 
identify correlations between the two variables:

1. Create a data object from the pandas DataFrame:

data = df.toPandas()
sns.lmplot(x = "Sepallength", y = "Sepalwidth", data = data)
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2. Plot the DataFrame using the following command:

plt.show()

Figure 4.21: Linear model plot for Iris DataFrame

Exercise 37: Creating a KDE Plot and a Boxplot

In this exercise, we will create a kernel density estimation (KDE) plot, followed by a 
boxplot. Follow these instructions:

1. First, plot a KDE plot that shows us the distribution of a variable. Make sure it 
gives us an idea of the skewness and the kurtosis of a variable:

import seaborn as sns
data = df.toPandas()
sns.kdeplot(data.Sepalwidth, shade = True)
plt.show()
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Figure 4.22: KDE plot for the Iris DataFrame

2. Now, plot the boxplots for the Iris dataset using the following command:

sns.boxplot(x = "Sepallength", y = "Sepalwidth", data = data)
plt.show()

Figure 4.23: Boxplot for the Iris DataFrame

Boxplots are a good way to look at the data distribution and locate outliers. They 
represent the distribution using the 1st quartile, the median, the 3rd quartile, and the 
interquartile range (25th to 75th percentile).
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Activity 11: Graphs in Spark

In this activity, we will use the plotting libraries of Python to visually explore our data 
using different kind of plots. For this activity, we are using the mtcars dataset from 
Kaggle (https://www.kaggle.com/ruiromanini/mtcars):

1. Import all the required packages and libraries in the Jupyter Notebook.

2. Read the data into Spark object from the mtcars dataset.

3. Visualize the discrete frequency distribution of any continuous numeric variable 
from your dataset using a histogram:

Figure 4.24: Histogram for the Iris DataFrame

4. Visualize the percentage share of the categories in the dataset using a pie chart:

Figure 4.25: Pie chart for the Iris DataFrame
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5. Plot the distribution of a continuous variable across the categories of a categorical 
variable using a boxplot:

Figure 4.26: Boxplot for the Iris DataFrame

6. Visualize the values of a continuous numeric variable using a line chart:

Figure 4.27: Line chart for the Iris DataFrame
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7. Plot the values of multiple continuous numeric variables on the same line chart:

Figure 4.28: Line chart for the Iris DataFrame plotting multiple continuous numeric variables

Note

The solution for this activity can be found on page 224.

Summary
In this chapter, we saw a basic introduction of Spark DataFrames and how they are 
better than RDDs. We explored different ways of creating Spark DataFrames and writing 
the contents of Spark DataFrames to regular pandas DataFrames and output files.

We tried out hands-on data exploration in PySpark by computing basic statistics and 
metrics for Spark DataFrames. We played around with the data in Spark DataFrames and 
performed data manipulation operations such as filtering, selection, and aggregation. 
We tried our hands at plotting the data to generate insightful visualizations.

Furthermore, we consolidated our understanding of various concepts by practicing 
hands-on exercises and activities.

In the next chapter, we will explore how to handle missing values and compute 
correlation between variables in PySpark.
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Learning Objectives

By the end of this chapter, you will be able to:

• Detect and handle missing values in data using PySpark

• Describe correlations between variables

• Compute correlations between two or more variables in PySpark

• Create a correlation matrix using PySpark

In this chapter, we will be using the Iris dataset to handle missing data and find correlations 
between data values.

Handling Missing 
Values and 

Correlation Analysis

5
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Introduction
In the previous chapter, we learned the basic concepts of Spark DataFrames and saw 
how to leverage them for big data analysis.

In this chapter, we will go a step further and learn about handling missing values in data 
and correlation analysis with Spark DataFrames—concepts that will help us with data 
preparation for machine learning and exploratory data analysis.

We will briefly cover these concepts to provide the reader with some context, but our 
focus is on their implementation with Spark DataFrames. We will use the same Iris 
dataset that we used in the previous chapter for the exercises in this chapter as well. 
But the Iris dataset has no missing values, so we have randomly removed two entries 
from the Sepallength column and one entry from the Petallength column from the 
original dataset. So, now we have a dataset with missing values, and we will learn how to 
handle these missing values using PySpark.

We will also look at the correlation between the variables in the Iris dataset by 
computing their correlation coefficients and correlation matrix.

Setting up the Jupyter Notebook
The following steps are required before getting started with the exercises:

1. Import all the required modules and packages in the Jupyter notebook:

import findspark
findspark.init()
import pyspark
import random

2. Now, use the following command to set up SparkContext:

from pyspark import SparkContext
sc = SparkContext()
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3. Similarly, use the following command to set up SQLContext in the Jupyter notebook:

from pyspark.sql import SQLContext
sqlc = SQLContext(sc)

Note

Make sure you have the PySpark CSV reader package from the Databricks website 
(https://databricks.com/) installed and ready before executing the next command. 
If not, then download it using the following command:

pyspark –packages com.databricks:spark-csv_2.10:1.4.0

4. Read the Iris dataset from the CSV file into a Spark DataFrame:

df = sqlc.read.format('com.databricks.spark.csv').options(header = 'true', 
inferschema = 'true').load('/Users/iris.csv')

The output of the preceding command is as follows:

df.show(5)

Figure 5.1: Iris DataFrame

Missing Values
The data entries with no value assigned to them are called missing values. In the real 
world, encountering missing values in data is common. Values may be missing for a 
wide variety of reasons, such as non-responsiveness of the system/responder, data 
corruption, and partial deletion.
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Some fields are more likely than other fields to contain missing values. For example, 
income data collected from surveys is likely to contain missing values, because of 
people not wanting to disclose their income.

Nevertheless, it is one of the major problems plaguing the data analytics world. 
Depending on the percentage of missing data, missing values may prove to be a 
significant challenge in data preparation and exploratory analysis. So, it's important to 
calculate the missing data percentage before getting started with data analysis.

In the following exercise, we will learn how to detect and calculate the number of 
missing value entries in PySpark DataFrames.

Exercise 38: Counting Missing Values in a DataFrame

In this exercise, we will learn how to count the missing values from the PySpark 
DataFrame column:

1. Use the following command to check whether the Spark DataFrame has missing 
values or not:

from pyspark.sql.functions import isnan, when, count, col
df.select([count(when(isnan(c) | col(c).isNull(),
                c)).alias(c) for c in df.columns]).show()

2. Now, we will count the missing values in the Sepallength column of the Iris dataset 
loaded in the PySpark DataFrame df object:

df.filter(col('Sepallength').isNull()).count()

The output is as follows:

2

Exercise 39: Counting Missing Values in All DataFrame Columns

In this exercise, we will count the missing values present in all the columns of a PySpark 
DataFrame:

1. First, import all the required modules, as illustrated here:

from pyspark.sql.functions import isnan, when, count, col

2. Now let's show the data using the following command:

df.select([count(when(isnan(i) | col(i).isNull(), i)).alias(i) for i in 
df.columns]).show()
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The output is as follows:

Figure 5.2: Iris DataFrame, counting missing values

The output shows we have 2 missing entries in the Seapllength column and 1 
missing entry in the Petallength column in the PySpark DataFrame.

3. A simple way is to just use the describe() function, which gives the count of 
non-missing values for each column, along with a bunch of other summary 
statistics. Let's execute the following command in the notebook:

df.describe().show(1)

Figure 5.3: Iris DataFrame, counting the missing values using different approach

As we can see, there are 148 non-missing values in the Sepallength column, indicating 
2 missing entries and 149 non-missing values in the Petallength column, indicating 1 
missing entry.

In the following section, we will explore how to find the missing values from the 
DataFrame.

Fetching Missing Value Records from the DataFrame

We can also filter out the records containing the missing value entries from the PySpark 
DataFrame using the following code:

df.where(col('Sepallength').isNull()).show()
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Figure 5.4: Iris DataFrame, fetching the missing value

The show function displays the first 20 records of a PySpark DataFrame. We only get two 
here as the Sepallength column only has two records with missing entries.

Handling Missing Values in Spark DataFrames
Missing value handling is one of the complex areas of data science. There are a variety 
of techniques that are used to handle missing values depending on the type of missing 
data and the business use case at hand. 

These methods range from simple logic-based methods to advanced statistical methods 
such as regression and KNN. However, irrespective of the method used to tackle the 
missing values, we will end up performing one of the following two operations on the 
missing value data:

• Removing the records with missing values from the data

• Imputing the missing value entries with some constant value

In this section, we will explore how to do both these operations with PySpark 
DataFrames.

Exercise 40: Removing Records with Missing Values from a DataFrame

In this exercise, we will remove the records containing missing value entries for the 
PySpark DataFrame. Let's perform the following steps:

1. To remove the missing values from a particular column, use the following 
command:

df.select('Sepallength').dropna().count()

The previous code will return 148 as the output as the two records containing 
missing entries for the Sepallength column have been removed from the PySpark 
DataFrame.
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2. To remove all the records containing any missing value entry for any column from 
the PySpark DataFrame, use the following command:

df.dropna().count()

The DataFrame had 3 records with missing values, as we saw in Exercise 2: Counting 
Missing Values in all DataFrame Columns—two records with missing entries for the 
Sepallength column and one with a missing entry for the Petallength column.

The previous code removes all three records, thereby returning 147 complete records in 
the PySpark DataFrame.

Exercise 41: Filling Missing Values with a Constant in a DataFrame Column

In this exercise, we will replace the missing value entries of the PySpark DataFrame 
column with a constant numeric value.

Our DataFrame has missing values in two columns—Sepallength and Petallength:

1. Now, let's replace the missing value entries in both these columns with a constant 
numeric value of 1:

y = df.select('Sepallength','Petallength').fillna(1)

2. Now, let's count the missing values in the new DataFrame, y, that we just created. 
The new DataFrame should have no missing values:

y.select([count(when(isnan(i) | col(i).isNull(), i)).alias(i) for i in 
y.columns]).show()

The output is as follows:

Figure 5.5: Iris DataFrame, finding the missing value

Sometimes, we want to replace all the missing values in the DataFrame with a 
single constant value.
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3. Use the following command to replace all the missing values in the PySpark 
DataFrame with a constant numeric value of 1:

z = df.fillna(1)

4. Now, let's count the missing values in the new DataFrame z that we just created. 
The new DataFrame should have no missing values:

z.select([count(when(isnan(k) | col(k).isNull(), k)).alias(k) for k in 
z.columns]).show()

The output is as follows:

Figure 5.6: Iris DataFrame, printing the missing value

Correlation
Correlation is a statistical measure of the level of association between two numerical 
variables. It gives us an idea of how closely two variables are related with each other. 
For example, age and income are quite closely related variables. It has been observed 
that the average income grows with age within a threshold. Thus, we can assume that 
age and income are positively correlated with each other.

Note

However, correlation does not establish a cause-effect relationship. A cause-
effect relationship means that one variable is causing a change in another variable.

The most common metric used to compute this association is the Pearson Product-
Moment Correlation, commonly known as Pearson correlation coefficient or simply as 
the correlation coefficient. It is named after its inventor, Karl Pearson.
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The Pearson correlation coefficient is computed by dividing the covariance of the two 
variables by the product of their standard deviations. The correlation value lies between 
-1 and +1 with values close to 1 or -1 signifying strong association and values close to 
0, signifying weak association. The sign (+, -) of the coefficient tells us whether the 
association is positive (both variables increase/decrease together) or negative (vice-
versa).

Note

Correlation only captures the linear association between variables. So, if the 
association is non-linear, the correlation coefficient won't capture it. Two 
disassociated variables will have a low or zero correlation coefficient, but variables 
with zero/low correlation values are not necessarily disassociated.

Correlation is of great importance in statistical analysis, as it helps explain the data and 
sometimes highlights predictive relationships between variables. In this section, we will 
learn how to compute correlation between variables and compute a correlation matrix 
in PySpark.

Exercise 42: Computing Correlation

In this exercise, we will compute the value of the Pearson correlation coefficient 
between two numerical variables and a correlation matrix for all the numerical columns 
of our PySpark DataFrame. The correlation matrix helps us visualize the correlation of 
all the numerical columns with each other:

1. Perform the following steps to calculate the correlation between two variables:

df.corr('Sepallength', 'Sepalwidth')

The previous code outputs the Pearson correlation coefficient of 
-0.1122503554120474 between the two variables mentioned.

2. Import the relevant modules, as illustrated here:

from pyspark.mllib.stat import Statistics
import pandas as pd

3. Remove any missing values from the data with the following command:

z = df.fillna(1)

4. To remove any non-numerical columns before computing the correlation matrix, 
use the following command:

a = z.drop('Species')
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5. Now, let's compute the correlation matrix with the help of the following command:

features = a.rdd.map(lambda row: row[0:])
correlation_matrix = Statistics.corr(features, method="pearson")

6. To convert the matrix into a pandas DataFrame for easy visualization, execute the 
following command:

correlation_df = pd.DataFrame(correlation_matrix)

7. Rename the indexes of the pandas DataFrame with the name of the columns from 
the original PySpark DataFrame:

correlation_df.index, correlation_df.columns = a.columns, a.columns

8. Now, visualize the pandas DataFrame with the following command:

correlation_df

Figure 5.7: Iris DataFrame, computing correlation

Activity 12: Missing Value Handling and Correlation Analysis with PySpark 

DataFrames

In this activity, we will detect and handle missing values in the Iris dataset. We will also 
compute the correlation matrix and verify the variables showing strong correlations by 
plotting them with each other and fitting a linear line on the plot:

1. Perform the initial procedure of importing packages and libraries in the Jupyter 
notebook.

2. Set up SparkContext and SQLContext.
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3. Read the data from the CSV file into a Spark object:

Figure 5.8: Iris DataFrame, reading data from the DataFrame

4. Fill in the missing values in the Sepallength column with its column mean.

5. Compute the correlation matrix for the dataset. Make sure to import the required 
modules.

6. Remove the String columns from the PySpark DataFrame and compute the 
correlation matrix in the Spark DataFrame.

7. Convert the correlation matrix into a pandas DataFrame:

Figure 5.9: Iris DataFrame, converting the correlation matrix into a pandas DataFrame

8. Load the required modules and plotting data to plot the variable pairs showing 
strong positive correlation and fit a linear line on them.
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This is the graph for x = "Sepallength", y = "Petalwidth":

Figure 5.10: Iris DataFrame, plotting graph as x = "Sepallength", y = "Petalwidth"

This is the graph for x = "Sepallength", y = "Petalwidth":

Figure 5.11: Iris DataFrame, plotting graph as x = "Sepallength", y = "Petalwidth"
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This is the graph for x = "Petallength", y = "Petalwidth":

Figure 5.12: Iris DataFrame, plotting graph as x = "Petallength", y = "Petalwidth"

Note

Alternatively, you can use any dataset for this activity.

The solution for this activity can be found on page 229.

Summary
In this chapter, we learned how to detect and handle the missing values in PySpark 
DataFrames. We looked at how to perform correlation and a metric to quantify the 
Pearson correlation coefficient. Later, we computed Pearson correlation coefficients for 
different numerical variable pairs and learned how to compute the correlation matrix 
for all the variables in the PySpark DataFrame.

In the next chapter, we will learn what problem definition is, and understand how 
to perform KPI generation. We will also use the data aggregation and data merge 
operations (learned about in previous chapters) and analyze data using graphs.
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Learning Objectives

By the end of this chapter, you will be able to:

• Implement the concept of reproducibility with Jupyter notebooks

• Perform data gathering in a reproducible way

• Implement suitable code practices and standards to keep analysis reproducible

• Avoid the duplication of work by using IPython scripts

In this chapter, we will learn what problem definition is and how to use the KPI analysis 
techniques to enable coherent and well rounded analysis from the data.

Exploratory Data 
Analysis

6
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Introduction
One of the most important stages, and the initial step of a data science project, is 
understanding and defining a business problem. However, this cannot be a mere 
reiteration of the existing problem as a statement or a written report. To investigate 
a business problem in detail and define its purview, we can either use the existing 
business metrics to explain the patterns related to it or quantify and analyze the 
historical data and generate new metrics. Such identified metrics are the Key 
Performance Indicators (KPIs) that measure the problem at hand and convey to 
business stakeholders the impact of a problem.

This chapter is all about understanding and defining a business problem, identifying key 
metrics related to it, and using these identified and generated KPIs through pandas and 
similar libraries for descriptive analytics. The chapter also covers how to plan a data 
science project through a structured approach and methodology, concluding with how 
to represent a problem using graphical and visualization techniques.

Defining a Business Problem
A business problem in data science is a long-term or short-term challenge faced by a 
business entity that can prevent business goals being achieved and act as a constraint 
for growth and sustainability that can otherwise be prevented through an efficient 
data-driven decision system. Some typical data science business problems are 
predicting the demand for consumer products in the coming week, optimizing logistic 
operations for third-party logistics (3PL), and identifying fraudulent transactions in 
insurance claims.

Data science and machine learning are not magical technologies that can solve these 
business problems by just ingesting data into pre-built algorithms. They are complex in 
terms of the approach and design needed to create end-to-end analytics projects.

When a business needs such solutions, you may end up in a situation that forms a 
requirement gap if a clear understanding of the final objective is not set in place. A 
strong foundation to this starts with defining the business problem quantitatively and 
then carrying out scoping and solutions in line with the requirements.

The following are a few examples of common data science use cases that will provide 
an intuitive idea about common business problems faced by the industry today that are 
solved through data science and analytics:

• Inaccurate demand/revenue/sales forecasts

• Poor customer conversion, churn, and retention

• Fraud and pricing in the lending industry and insurance

• Ineffective customer and vendor/distributor scoring
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• Ineffective recommendation systems for cross-sell/up-sell

• Unpredictable machine failures and maintenance

• Customer sentiment/emotion analysis through text data

• Non-automation of repetitive tasks that require unstructured data analytics

As we all know, in the last few years, industries have been changing tremendously, 
driven by the technology and innovation landscape. With the pace of evolving 
technology, successful businesses adapt to it, which leads to highly evolving and 
complex business challenges and problems. Understanding new business problems 
in such a dynamic environment is not a straightforward process. Though, case-by-
case, business problems may change, as well as the approaches to them. However, the 
approach can be generalized to a large extent.

The following pointers are a broad step-by-step approach for defining and concluding 
a business problem, and in the following section, a detailed description of each step is 
provided:

1. Problem identification

2. Requirement gathering

3. Data pipeline and workflow

4. Identifying measurable metrics

5. Documentation and presentation

Note

The target variable, or the study variable, which is used as the attribute/variable/
column in the dataset for studying the business problem, is also known as the 
dependent variable (DV), and all other attributes that are considered for the 
analysis are called independent variables (IVs).
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Problem Identification

Let's start with an example where an Asset Management Company (AMC) that has a 
strong hold on customer acquisition in their mutual funds domain, that is, targeting 
the right customers and onboarding them, is looking for higher customer retention to 
improve the average customer revenue and wallet share of their premium customers 
through data science-based solutions.

Here, the business problem is how to increase the revenue from the existing customers 
and increase their wallet share.

The problem statement is "How do we improve the average customer revenue and 
increase the wallet share of premium customers through customer retention analytics?" 
Summarizing the problem as stated will be the first step to defining a business problem.

Requirement Gathering

Once the problem is identified, have a point-by-point discourse with your client, which 
can include a subject matter expert (SME) or someone who is well-versed in the 
problem. 

Endeavor to comprehend the issue from their perspective and make inquiries about the 
issue from various points of view, understand the requirements, and conclude how you 
can define the problem from the existing historical data. 

Now and again, you will find that clients themselves can't comprehend the issue well. In 
such cases, you should work with your client to work out a definition of the issue that is 
satisfactory to both of you.

Data Pipeline and Workflow

After you have comprehended the issue in detail, the subsequent stage is to 
characterize and agree on quantifiable metrics for measuring the problem, that is, 
agreeing with the clients about the metrics to use for further analysis. In the long run, 
this will spare you a ton of issues.

These metrics can be identified with the existing system for tracking the performance 
of the business, or new metrics can be derived from historical data.
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When you study the metrics for tracking the problem, the data for identifying and 
quantifying the problem may come from multiple data sources, databases, legacy 
systems, real-time data, and so on. The data scientist involved with this has to closely 

work with the client's data management teams to extract and gather the required 
data and push it into analytical tools for further analysis. For this, there needs to be a 
strong pipeline for acquiring data. The acquired data is further analyzed to identify its 
important attributes and how they change over time in order to generate the KPIs. This 
is a crucial stage in client engagement and working in tandem with their teams goes a 
long way toward making the work easier.

Identifying Measurable Metrics

Once the required data is gathered through data pipelines, we can develop descriptive 
models to analyze historical data and generate insights into the business problem. 
Descriptive models/analytics is all about knowing what has happened in the past 
through time trend analysis and the density distribution of data analysis, among other 
things. For this, several attributes from the historical data need to be studied in order to 
gain insights into which of the data attributes are related to the current problem.

An example, as explained in the previous case, is an AMC that is looking for solutions to 
their specific business problem with customer retention. We'll look into identifying how 
we can generate KPIs to understand the problem with retention.

For this, historical data is mined to analyze the customer transaction patterns of 
previous investments and derive KPIs from them. A data scientist has to develop these 
KPIs based on their relevance and efficiency in explaining the variability of the problem, 
or in this case, the retention of customers.

Documentation and Presentation

The final step is documenting the identified KPIs, their significant trends, and how they 
can impact the business in the long run. In the previous case of customer retention, all 
these metrics—length of relationship, average transaction frequency, churn rate—can 
act as KPIs and be used to explain the problem quantitatively.

If we observe the trend in the churn rate, and let's say in this example, it has an 
increasing trend in the last few months, and if we graphically represent this, the client 
can easily understand the importance of having predictive churn analytics in place to 
identify the customer before they churn, and targeting stronger retention.
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The potential of having a retention system in place needs to be presented to the client 
for which the documentation and graphical representation of the KPIs need to be 
carried out. In the previous case, the identified KPIs, along with their change in pattern, 
need to be documented and presented to the client.

Translating a Business Problem into Measurable Metrics and 
Exploratory Data Analysis (EDA)
If a specific business problem comes to us, we need to identify the KPIs that define that 
business problem and study the data related to it. Beyond generating KPIs related to 
the problem, looking into the trends and quantifying the problem through Exploratory 
Data Analysis (EDA) methods will be the next step. 

The approach to explore KPIs is as follows: 

• Data gathering

• Analysis of data generation

• KPI visualization

• Feature importance 

Data Gathering

The data that is required for analyzing the problem is part of defining the business 
problem. However, the selection of attributes from the data will change according to 
the business problem. Consider the following examples:

• If it is a recommendation engine or churn analysis of customers, we need to look 
into historical purchases and Know Your Customer (KYC) data, among other data.

• If it is related to forecasting demand, we need to look into daily sales data.

It needs to be concluded that the required data can change from problem to problem.

Analysis of Data Generation

From the available data sources, the next step is to identify the metrics related to the 
defined problem. Apart from the preprocessing of data (refer to Chapter 1, The Python 
Data Science Stack, for details on data manipulation), at times, we need to manipulate 
the data to generate such metrics, or they can be directly available in the given data.
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For example, let's say we are looking at supervised analysis, such as a predictive 
maintenance problem (a problem where predictive analytics is used to predict the 
condition of in-service equipment or machinery before it fails), where sensor- or 
computer-generated log data is used. Although log data is unstructured, we can identify 
which of the log files explain the failures of machinery and which do not. Unstructured 
data is without columns or rows. For example, it can be in XML or a similar format. 
Computer-generated log data is an example. Such data needs to be converted into 
columns and rows or make them structured, or label them, that is, provide column 
names for the data by converting the data into rows and columns. 

Another example is identifying the churn of customers and predicting future customers 
who may churn in the coming periods, where we have transactional data on purchases 
with the features related to each purchase. Here, we need to manipulate the data and 
transform the current data in order to identify which customers have churned and 
which have not from all the purchase-related data.

To explain this better, in the raw data, there may be many rows of purchases for each 
customer, with the date of purchase, the units purchased, the price, and so on. All 
the purchases related to a customer need to be identified as a single row whether the 
customer has churned (churned means customers who discontinue using a product or 
service, also known as customer attrition) or not and with all the related information.

Here, we will be generating a KPI: Churned or Not Churned attributes for a customer, 
and similarly for all customers. The identified variable that defines the business 
problem is the target variable. A target variable is also known as the response variable 
or dependent variable. In Exercise XX, Generate the Feature Importance for the Target 
Variable and Carry Out EDA, in this chapter, it's captured and defined through the 
churn attribute.

KPI Visualization

To understand the trends and patterns in the KPIs, we need to represent them through 
interactive visualization techniques. We can use different methods, such as boxplot, 
time-trend graphs, density plots, scatter plots, pie charts, and heatmaps. We will learn 
more on this in Exercise XX, Generate the Feature Importance for the Target Variable and 
Carry Out EDA, in this chapter.
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Feature Importance

Once the target variable is identified, the other attributes in the data and their 
importance to it in explaining the variability of the target variable need to be studied. 
For this, we use association, variance, and correlation methods to establish relations 
with the target variable of other variables (explanatory or independent variables).

There are multiple feature-importance methods and algorithms that can be used 
depending on the type of variables in the study, such as Pearson Correlation, 
Chi-Square tests, and algorithms based on Gini variable importance, decision trees, and 
Boruta, among others.

Note

The target variable or the study variable, which is used as the attribute/
variable/column in the dataset for studying the business problem is also known as 
the dependent variable (DV), and all other attributes that are considered for 
the analysis are called independent variables (IVs).

In the following exercise, we will cover data gathering and analysis-data (data that is 
generated by merging or combining multiple data sources to get one dataset for the 
analysis) generation with KPI visualization, and then in the subsequent exercise, we will 
cover what feature importance is.

Exercise 43: Identify the Target Variable and Related KPIs from the Given Data 

for the Business Problem

Let's take the example of a subscription problem in the banking sector. We will use 
data that is from direct marketing campaigns by a Portuguese banking institution, 
where a customer either opens a term deposit (ref: https://www.canstar.com.au/
term-deposits/what-is-a-term-deposit/) or not after the campaign. The subscription 
problem is characterized or defined contrastingly by every organization. For the most 
part, the customers who will subscribe to a service (here, it is a term deposit) have 
higher conversion potential (that is, from lead to customer conversion) to a service or 
product. Thus, in this problem, subscription metrics, that is, the outcome of historical 
data, is considered as the target variable or KPI.
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We will use descriptive analytics to explore trends in the data. We will start by 
identifying and defining the target variable (here, subscribed or not subscribed) and the 
related KPIs:

1. Download the bank.csv data from the following online resources:

• https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

• https://archive.ics.uci.edu/ml/machine-learning-databases/00222/

2. Create a folder for the exercise (packt_exercises) and save the downloaded data 
there.

3. Start Jupyter notebook and import all the required libraries as illustrated. Now set 
the working directory using the os.chdir() function:

import numpy as np
import pandas as pd
import seaborn as sns
import time
import re
import os
import matplotlib.pyplot as plt
sns.set(style="ticks")

os.chdir("/Users/svk/Desktop/packt_exercises")

4. Use the following code to read the CSV and explore the dataset:

df = pd.read_csv('bank.csv', sep=';')
df.head(5)
print(df.shape)
df.head(5)
df.info()
df.describe()
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5. After executing the previous command, you will get output similar to the 
following:

Figure 6.1: Bank DataFrame

When studying the target variable (subscribed or not subscribed—y), it is 
important to look at the distribution of it. The type of target variable in this 
dataset is categorical, or of multiple classes. In this case, it's binary (Yes/No).

When the distribution is skewed to one class, the problem is known as an 
imbalance in the variable. We can study the proportion of the target variable using 
a bar plot. This gives us an idea about how many of each class there is (in this case, 
how many each of no and yes). The proportion of no is way higher than yes, which 
explains the imbalance in the data.

6. Let's execute the following commands to plot a bar plot for the given data:

count_number_susbc = df["y"].value_counts()
sns.barplot(count_number_susbc.index, count_number_susbc.values)

df['y'].value_counts()
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The output is as follows:

Figure 6.2: Bar plot

7. Now, we will take each variable and look at their distribution trends. The following 
histogram, which is provided as an example, is of the 'age' column (attribute) in 
the dataset. Histograms/density plots are a great way to explore numerical/float 
variables, similar to bar plots. They can be used for categorical data variables. 
Here, we will show two numerical variables, age and balance, as examples using a 
histogram, and two categorical variables, education and month, using bar plots:

# histogram for age (using matplotlib)
plt.hist(df['age'], color = 'grey', edgecolor = 'black',
         bins = int(180/5))

# histogram for age (using seaborn)
sns.distplot(df['age'], hist=True, kde=False, 
             bins=int(180/5), color = 'blue',
             hist_kws={'edgecolor':'black'})
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The histogram is as follows:

Figure 6.3: Histogram for age

8. To plot the histogram for the balance attribute in the dataset, use the following 
command:

# histogram for balance (using matplotlib)
plt.hist(df['balance'], color = 'grey', edgecolor = 'black',
         bins = int(180/5))

# histogram for balance (using seaborn)
sns.distplot(df['balance'], hist=True, kde=False, 
             bins=int(180/5), color = 'blue',
             hist_kws={'edgecolor':'black'})
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The histogram for balance is as follows:

Figure 6.4: Histogram for balance

9. Now, using the following code, plot a bar plot for the education attribute in the 
dataset:

# barplot for the variable 'education'
count_number_susbc = df["education"].value_counts()
sns.barplot(count_number_susbc.index, count_number_susbc.values)

df['education'].value_counts()
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The bar plot for the education attribute is as follows:

Figure 6.5: Bar plot for education

10. Use the following command to plot a bar plot for the month attribute of the dataset:

# barplot for the variable 'month'
count_number_susbc = df["month"].value_counts()
sns.barplot(count_number_susbc.index, count_number_susbc.values)

df['education'].value_counts()

The plotted graph is as follows:

Figure 6.6: Bar plot for month
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11. The next task is to generate a distribution for each class of the target variable 
to compare the distributions. Plot a histogram of the age attribute for the target 
variable (yes/no):

# generate separate list for each subscription type for age

x1 = list(df[df['y'] == 'yes']['age'])
x2 = list(df[df['y'] == 'no']['age'])

# assign colors for each subscription type 
colors = ['#E69F00', '#56B4E9']
names = ['yes', 'no']

# plot the histogram
plt.hist([x1, x2], bins = int(180/15), density=True,
         color = colors, label=names)

# plot formatting
plt.legend()
plt.xlabel('IV')
plt.ylabel('prob distr (IV) for yes and no')
plt.title('Histogram for Yes and No Events w.r.t. IV')

The bar plot of the month attribute target variable is as follows:

Figure 6.7: Bar plot of the month attribute for the target variable
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12. Now, using the following command, plot a bar plot for the target variable grouped 
by month:

df.groupby(["month", "y"]).size().unstack().plot(kind='bar', stacked=True, 
figsize=(20,10))

The plotted graph is as follows:

Figure 6.8: Histogram grouped by month

In this exercise, we looked into establishing KPIs and the target variable—data gathering 
and analysis-data (data that is generated by merging or combining multiple data 
sources to get one dataset for analysis) generation. The KPIs and target variable have 
been determined—KPI visualization. Now, in the next exercise, we will identify which 
of the variables are important in terms of explaining the variance of the target variable—
feature importance.

Exercise 44: Generate the Feature Importance of the Target Variable and 

Carry Out EDA

In the previous exercise, we looked into the trends of the attributes, identifying their 
distribution, and how we can use various plots and visualization methods to carry these 
out. Prior to tackling a modeling problem, whether it is a predictive or a classification 
problem (for example, from the previous marketing campaign data, how to predict 
future customers that will have the highest probability of converting), we have to 
pre-process the data and select the important features that will impact the subscription 
campaign output models. To do this, we have to see the association of the attributes to 
the outcome (the target variable), that is, how much variability of the target variable is 
explained by each variable.
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Associations between variables can be drawn using multiple methods; however, we have 
to consider the data type when choosing a method/algorithm. For example, if we are 
studying numerical variables (integers that are ordered, floats, and so on), we can use 
correlation analysis; if we are studying categorical variables with multiple classes, we 
can use Chi-Square methods. However, there are many algorithms that can handle both 
together and provide measurable outcomes to compare the importance of variables.

In this exercise, we will look at how various methods can be used to identify the 
importance of features:

1. Download the bank.csv file and read the data using the following command:

import numpy as np
import pandas as pd
import seaborn as sns
import time
import re
import os
import matplotlib.pyplot as plt
sns.set(style="ticks")

# set the working directory # in the example, the folder 
# 'packt_exercises' is in the desktop
os.chdir("/Users/svk/Desktop/packt_exercises")

# read the downloaded input data (marketing data)
df = pd.read_csv('bank.csv', sep=';')

2. Develop a correlation matrix using the following command to identify the 

correlation between the variables:

df['y'].replace(['yes','no'],[1,0],inplace=True)
df['default'].replace(['yes','no'],[1,0],inplace=True)
df['housing'].replace(['yes','no'],[1,0],inplace=True)
df['loan'].replace(['yes','no'],[1,0],inplace=True)
corr_df = df.corr()
sns.heatmap(corr_df, xticklabels=corr_df.columns.values, yticklabels=corr_
df.columns.values, annot = True, annot_kws={'size':12})
heat_map=plt.gcf(); heat_map.set_size_inches(10,5)
plt.xticks(fontsize=10); plt.yticks(fontsize=10); plt.show()

 EBSCOhost - printed on 2/9/2023 10:53 AM via . All use subject to https://www.ebsco.com/terms-of-use



148 | Exploratory Data Analysis

The plotted correlation matrix heatmap is as follows:

Figure 6.9: Correlation matrix

Note

Correlation analysis is carried out to analyze the relationships between 
numerical variables. Here, we converted the categorical target variable into binary 
values and looked into how it correlates with other variables.

The correlation coefficient values in the matrix can range from -1 to +1, where 
a value close to 0 signifies no relation, -1 signifies a relation where one variable 
reduces as the other increases (inverse), and +1 signifies that as one variable 
increases the other also increases (direct).

High correlation among independent variables (which are all variables except the 
target variable) can lead to multicollinearity among the variables, which can affect 
the predictive model accuracy.

Note

Make sure to install boruta if not installed already using the following command:

pip install boruta --upgrade
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3. Build a feature importance output based on Boruta (a wrapper algorithm around a 
random forest):

# import DecisionTreeClassifier from sklearn and 
# BorutaPy from boruta

import numpy as np
from sklearn.ensemble import RandomForestClassifier
from boruta import BorutaPy

# transform all categorical data types to integers (hot-encoding)
for col_name in df.columns:
    if(df[col_name].dtype == 'object'):
        df[col_name]= df[col_name].astype('category')
        df[col_name] = df[col_name].cat.codes

# generate separate dataframes for IVs and DV (target variable)
X = df.drop(['y'], axis=1).values
Y = df['y'].values

# build RandomForestClassifier, Boruta models and
# related parameter
rfc = RandomForestClassifier(n_estimators=200, n_jobs=4, class_
weight='balanced', max_depth=6)
boruta_selector = BorutaPy(rfc, n_estimators='auto', verbose=2)
n_train = len(X)

# fit Boruta algorithm
boruta_selector.fit(X, Y)
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The output is as follows:

Figure 6.10: Fit Boruta algorithm

4. Check the rank of features as follows:

feature_df = pd.DataFrame(df.drop(['y'], axis=1).columns.tolist(), 
columns=['features'])
feature_df['rank']=boruta_selector.ranking_
feature_df = feature_df.sort_values('rank', ascending=True).reset_
index(drop=True)
sns.barplot(x='rank',y='features',data=feature_df)
feature_df
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The output is as follows:

Figure 6.11: Boruta output

Structured Approach to the Data Science Project Life Cycle
Embarking on data science projects needs a robust methodology in planning the 
project, taking into consideration the potential scaling, maintenance, and team 
structure. We have learned how to define a business problem and quantify it 
with measurable parameters, so the next stage is a project plan that includes the 
development of the solution, to the deployment of a consumable business application. 

This topic puts together some of the best industry practices structurally with examples 
for data science project life cycle management. This approach is an idealized sequence 
of stages; however, in real applications, the order can change according to the type of 
solution that is required.

Typically, a data science project for a single model deployment takes around three 
months, but this can increase to six months, or even up to a year. Defining a process 
from data to deployment is the key to reducing the time to deployment.
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Data Science Project Life Cycle Phases

The stages of a data science project life cycle are as follows:

1. Understanding and defining the business problem

2. Data access and discovery

3. Data engineering and pre-processing

4. Modeling development and evaluation

Phase 1: Understanding and Defining the Business Problem

Every data science project starts with learning the business domain and framing the 
business problem. In most organizations, the application of advanced analytics and data 
science techniques is a fledgling discipline, and most of the data scientists involved will 
have a limited understanding of the business domains.

To understand the business problem and the domain, the key stakeholders and subject 
matter experts (SMEs) need to be identified. Then, the SMEs and the data scientists 
interact with each other to develop the initial hypothesis and identify the data sources 
required for the solution's development. This is the first phase of understanding a data 
science project.

Once we have a well-structured business problem and the required data is identified, 
along with the data sources, the next phase of data discovery can be initiated. The first 
phase is crucial in building a strong base for scoping and the solution approach.

Phase 2: Data Access and Discovery

This phase includes identifying the data sources and building data pipelines and data 
workflows in order to acquire the data. The nature of the solution and the dependent 
data can vary from one problem to another in terms of the structure, velocity, and 
volume.

At this stage, it's important to identify how to acquire the data from the data sources. 
This can be through direct connectors (libraries available on Python) using database 
access credentials, having APIs that provide access to the data, directly crawling data 
from web sources, or can even be data dumps provided in CSVs for initial prototype 
developments. Once a strong data pipeline and workflow for acquiring data is 
established, the data scientists can start exploring the data to prepare the analysis-data 
(data that is generated by merging or combining multiple data sources to get one 
dataset for analysis).
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Phase 3: Data Engineering and Pre-processing

The pre-processing of data means transforming raw data into a form that's consumable 
by a machine learning algorithm. It is essentially the manipulation of data into a 
structure that's suitable for further analysis or getting the data into a form that can be 
input data for modeling purposes. Often, the data required for analysis can reside in 
several tables, databases, or even external data sources. 

A data scientist needs to identify the required attributes from these data sources and 
merge the available data tables to get what is required for the analytics model. This is a 
tedious and time-consuming phase on which data scientists spend a considerable part 
of the development cycle.

The pre-processing of data includes activities such as outlier treatment, missing value 
imputation, scaling features, mapping the data to a Gaussian (or normal) distribution, 
encoding categorical data, and discretization, among others.

To develop robust machine learning models, it's important that data is pre-processed 
efficiently.

Note

Python has a few libraries that are used for data pre-processing. scikit-learn 
has many efficient built-in methods for pre-processing data. The scikit-learn 
documentation can be found at https://scikit-learn.org/stable/modules/
preprocessing.html.

Let's go through the following activity to understand how to carry out data engineering 
and pre-processing using one of the pre-processing techniques, such as Gaussian 
normalization. 
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Activity 13: Carry Out Mapping to Gaussian Distribution of Numeric Features 

from the Given Data

Various pre-processing techniques need to be carried out to prepare the data before 
pushing it into an algorithm.

Note

Explore this website to find various methods for pre-processing: https://scikit-
learn.org/stable/modules/preprocessing.html.

In this exercise, we will carry out data normalization, which is important for parametric 
models such as linear regression, logistic regression, and many others:

1. Use the bank.csv file and import all the required packages and libraries into the 
Jupyter notebook.

2. Now, determine the numeric data from the DataFrame. Categorize the data 
according to its type, such as categorical, numeric (float or integer), date, and so 
on. Let's carry out normalization on numeric data.

3. Carry out a normality test and identify the features that have a non-normal 
distribution.

4. Plot the probability density of the features to visually analyze the distribution of 
the features.

5. Prepare the power transformation model and carry out transformations on the 
identified features to convert them to normal distribution based on the box-cox or 
yeo-johnson method.

6. Apply the transformations on new data (evaluation data) with the same generated 
parameters for the features that were identified in the training data.

Note

Multiple variables' density plots are shown in the previous plot after the 
transformations are carried out. The distribution of the features in the plots is 
closer to a Gaussian distribution.

The solution for this activity can be found on page 236.
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Once the transformations are carried out, we analyze the normality of the features 
again to see the effect. You can see that after the transformations, some of the features 
can have the null hypothesis not rejected (that is, the distribution is still not Gaussian) 
with almost all features higher p values (refer to point 2 of this activity). Once the 
transformed data is generated, we bind it back to the numeric data.

Phase 4: Model Development

Once we have a cleaned and pre-processed data, it can be ingested into a machine 
learning algorithm for exploratory or predictive analysis, or for other applications. 
Although the approach to a problem may be designed, whether it's a classification, 
association, or a regression problem, for example, the specific algorithm that needs to 
considered for the data has to be identified. For example, if it's a classification problem, 
it could be a decision tree, a support vector machine, or a neural network with many 
layers. 

For modeling purposes, the data needs to be separated into testing and training data. 
The model is developed on the training data and its performance (accuracy/error) is 
evaluated on the testing data. With the algorithms selected, the related parameters with 
respect to it need to be tuned by the data scientist to develop a robust model.

Summary
In this chapter, we learned how to define a business problem from a data science 
perspective through a well-defined, structured approach. We started by understanding 
how to approach a business problem, how to gather the requirements from 
stakeholders and business experts, and how to define the business problem by 
developing an initial hypothesis.

Once the business problem was defined with data pipelines and workflows, we looked 
into understanding how to start the analysis on the gathered data in order to generate 
the KPIs and carry out descriptive analytics to identify the key trends and patterns in 
the historical data through various visualization techniques.

We also learned how a data science project life cycle is structured, from defining the 
business problem to various pre-processing techniques and model development. In the 
next chapter, we will be learning how to implement the concept of high reproducibility 
on a Jupyter notebook, and its importance in development.
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Learning Objectives

By the end of this chapter, you will be able to:

• Implement the concept of reproducibility with Jupyter notebooks

• Perform data gathering in a reproducible way

• Implement suitable code practices and standards to keep analysis reproducible

• Avoid the duplication of work with IPython scripts

In this chapter, we will discover how reproducibility plays a vital role in big data analysis.

Reproducibility in Big 
Data Analysis

7
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Introduction
In the previous chapter, we learned how to define a business problem from a data 
science perspective through a very structured approach, which included how to 
identify and understand business requirements, an approach to solutioning it, and how 
to build data pipelines and carry out analysis.

In this chapter, we will look at the reproducibility of computational work and research 
practices, which is a major challenge faced today across the industry, as well as by 
academics—especially in data science work, in which most of the data, complete 
datasets, and associated workflow cannot be accessed completely.

Today, most research and technical papers conclude with the approach used on the 
sample data, a brief mention of the methodology used, and a theoretical approach to a 
solution. Most of these works lack detailed calculations and step-by-step approaches. 
This is a very limited amount of knowledge for anyone reading it to be able to reproduce 
the same work that was carried out. This is the basic objective of reproducible coding, 
where ease of reproducing the code is key. 

There have been advancements in notebooks in general, which can include text 
elements for commenting in detail; this improves the reproduction process. This is 
where Jupyter as a notebook is gaining traction within the data science and research 
communities.

Jupyter was developed with the intention of being open source software with open 
standards and services for interactive computing across dozens of programming 
languages, including Python, Spark, and R.

Reproducibility with Jupyter Notebooks
Let's start by learning what it is meant by computational reproducibility. Research, 
solutions, prototypes, and even a simple algorithm that is developed is said to be 
reproducible if access is provided to the original source code that was used to develop 
the solution, and the data that was used to build any related software should be able 
to produce the same results. However, today, the scientific community is experiencing 
some challenges in reproducing work developed previously by peers. This is mainly due 
to the lack of documentation and difficulty in understanding process workflows.
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The impact of a lack of documentation can be seen at every level, right from 
understanding the approach to the code level. Jupyter is one of the best tools for 
improvising this process, for better reproducibility, and for the reuse of developed code. 
This includes not just understanding what each line or snippet of code does, but also 
understanding and visualizing data.

Note

Jon Claerbout, who is considered the father of reproducible computational 
research, in the early 1990s required his students to develop research work and 
create results that could be regenerated in a single click. He believed that work 
that was completed took effort and tim, and should be left as it was so that further 
work on it could be done by reusing the earlier work without any difficulties. On 
a macro level, an economy's growth is strongly determined by the amount of 
innovation. The reproducibility of earlier work or research contributes to overall 
innovation growth.

Now let's see how we can maintain effective computational reproducibility using the 
Jupyter notebook.

The following pointers are broad ways to achieve reproducibility using a Jupyter 
notebook in Python:

• Provide a detailed introduction to the business problem

• Document the approach and workflow

• Explain the data pipelines

• Explain the dependencies

• Use source code version control

• Modularize the process

In the following sections, let's explore and discuss the previously mentioned topics in a 
brief manner.

 EBSCOhost - printed on 2/9/2023 10:53 AM via . All use subject to https://www.ebsco.com/terms-of-use



160 | Reproducibility in Big Data Analysis

Introduction to the Business Problem

One of the key advantages of using the Jupyter notebook is that it includes textual 
content along with the code to create a workflow.

We must start with a good introduction to the business problem we have identified, 
and a summarization of it has to be documented in the Jupyter notebook to provide the 
gist of the problem. It has to include a problem statement, with the identified business 
problem from a data science perspective, concluding why we need to carry out this 
analysis, or what the objective of the process is.

Documenting the Approach and Workflows

In data science, there can be a lot of back and forth in computational work, such as, 
for instance, the explorations that are carried out, the kind of algorithms used, and the 
parameter changes to tune.

Once changes to the approach have been finalized, those changes need to be 
documented to avoid work being repeated. Documenting the approach and workflows 
helps to set up a process. Adding comments to code while developing is a must and this 
has to be a continuous practice rather than waiting until the end or the results to add 
comments. By the end of the process, you may have forgotten the details, and this could 
result in miscalculating the effort that goes into it. The advantages of maintaining the 
Jupyter notebook with good documentation are the following:

• Tracking the development effort

• Self-explanatory code with comments for each process

• A better understanding of the code workflow and the results of each step

• Avoiding back-and-forth work by making previous code snippets for specific tasks 
easy to find

• Avoiding duplicating work by understanding the repeated use of code

• Ease of knowledge transfer 

Explaining the Data Pipeline

The data for identifying and quantifying the problem can be generated from multiple 
data sources, databases, legacy systems, real-time data sources, and so on. The data 
scientist involved in this closely works with the data management teams of the client 
to extract and gather the required data and ingest it into the analytical tools for further 
analysis, and creates a strong data pipeline to acquire this data.
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It is important to document the data sources in detail (covered in the previous chapter) 
to maintain a data dictionary that explains the variables that are considered, why they 
are considered, what kind of data we have (structured or unstructured), and the type 
of data that we have; that is, whether we have a time-series, multivariate, or data that 
needs to be preprocessed and generated from raw sources such as image, text, speech, 
and so on.

Explain the Dependencies

Dependencies are the packages and libraries that are available in a tool. For instance, 
you may use OpenCV (https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_
tutorials.html), a library in Python for image-related modeling, or you may use an API 
such as TensorFlow for deep-learning modeling. Here's another example: if you use 
Matplotlib ( https://matplotlib.org/) for visualization in Python, Matplotlib can be a part 
of dependencies. On other hand, dependencies can include the hardware and software 
specifications that are required for an analysis. You can manage your dependencies 
explicitly from the beginning by employing a tool such as a Conda environment to list 
all relevant dependencies (covered in previous chapters on dependencies for pandas, 
NumPy, and so on), including their package/library versions.

Using Source Code Version Control

Version control is an important aspect when it comes to any kind of computational 
activity that involves code. When code is being developed, bugs or errors will arise. If 
previous versions of the code are available, we will then be able to pinpoint when the 
bug was identified, when it was resolved, and the amount of effort that went into it. This 
is possible through version control. At times, you may need to revert to older versions, 
because of scalability, performance, or for some other reasons. Using source code 
version control tools, you can always easily access previous versions of code.

Modularizing the Process

Avoiding duplicate code is an effective practice for managing repetitive tasks, for 
maintaining code, and for debugging. To carry this out efficiently, you must modularize 
the process.
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Let's understand this in detail. Say you carry out a set of data manipulation processes, 
where you develop the code to complete a task. Now, suppose you need to use the 
same code in a later section of the code; you need to do add, copy, or run the same 
steps again, which is a repetitive task. The input data and variable names can change. 
To handle this, you can write the earlier steps as a function for a dataset or on a variable 
and save all such functions as a separate module. You can call it a functions file (for 
example, functions.py, a Python file).

In the next section, we will look at this in more detail, particularly with respect to 
gathering and building an efficient data pipeline in a reproducible way.

Gathering Data in a Reproducible Way
Once the problem is defined, the first step in an analysis task is gathering data. Data can 
be extracted from multiple sources: databases, legacy systems, real-time data, external 
data, and so on. Data sources and the way data can be ingested into the model needs to 
be documented.

Let's understand how to use markdown and code block functionalities in the Jupyter 
notebook. Text can be added to Jupyter notebooks using markdown cells. These texts 
can be changed to bold or italic, like in any text editor. To change the cell type to 
markdown, you can use the Cell menu. We will look at the ways you can use various 
functionalities in markdown and code cells in Jupyter.

Functionalities in Markdown and Code Cells

• Markdown in Jupyter: To select the markdown option in Jupyter, click on 
Widgets and Markdown from the drop-down menu:

Figure 7.1: The markdown option in the Jupyter notebook
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• Heading in Jupyter: There are two types of headings in the Jupyter notebook. The 
syntax to add a heading is similar to the way it is in HTML, using <h1> and <h2> 
tags:

Figure 7.2: Heading levels in the Jupyter notebook

• Text in Jupyter: To add text just the way it is, we do not add any tags to it:

Figure 7.3: Using normal text in the Jupyter notebook

• Bold in Jupyter: To make text appear bold in the Jupyter notebook, add two stars 
(**) to the start and end of the text, for example, **Bold**:

Figure 7.4: Using bold text in the Jupyter notebook
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• Italic in Jupyter: To make text appear in italics in the Jupyter notebook, add one 
star (*) to the start and end of the text:

Figure 7.5: Using italicized text in the Jupyter notebook

• Code in Jupyter: To make text appear as code, select the Code option from the 
dropdown:

Figure 7.6: Code in the Jupyter notebook

Explaining the Business Problem in the Markdown

Provide a brief introduction to the business problem to understand the objective of the 
project. The business problem definition is a summarization of the problem statement 
and includes the way in which the problem can be resolved using a data science 
algorithm:

Figure 7.7: Snippet of the problem definition
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Providing a Detailed Introduction to the Data Source

The data source needs to be documented properly to understand the data license for 
reproducibility and for further work. A sample of how the data source can be added is 
as follows:

Figure 7.8: Data Source in Jupyter notebook

Explain the Data Attributes in the Markdown

A data dictionary needs to be maintained to understand the data on an attribute level. 
This can include defining the attribute with what type of data it is:

Figure 7.9: Detailed attributes in markdown
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To understand the data on an attribute level, we can use functions such as info and 
describe; however, pandas_profiling is a library that provides a lot of descriptive 
information in one function, from which we can extract the following information:

Figure 7.10: Profiling report

On the DataFrame level, that is, for the overall data, which includes all the columns and 
rows that are considered:

• Number of variables

• Number of observations

• Total missing (%)

• Total size in memory

• Average record size in memory

• Correlation matrix

• Sample data
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On the attribute level, which is for a specific column, the specifications are as follows:

• Distinct count

• Unique (%)

• Missing (%) 

• Missing (n) 

• Infinite (%)

• Infinite (n)

• Histogram for distribution

• Extreme values

Figure 7.11: Data profiling report on the attribute level

Exercise 45: Performing Data Reproducibility

The aim of this exercise is to learn how to develop code for high reproducibility in 
terms of data understanding. We will be using the UCI Bank and Marketing dataset 
taken from this link: https://raw.githubusercontent.com/TrainingByPackt/Big-Data-
Analysis-with-Python/master/Lesson07/Dataset/bank/bank.csv.
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Let's perform the following steps to achieve data reproducibility:

1. Add headings and mention the business problem in the notebook using markup:

Figure 7.12: Introduction and business problem

2. Import the required libraries into the Jupyter notebook:

import numpy as np
import pandas as pd
import time
import re
import os
import pandas_profiling

3. Now set the working directory, as illustrated in the following command:

os.chdir("/Users/svk/Desktop/packt_exercises")

4. Import and read the input dataset as df using pandas' read_csv function from the 
dataset:

df = pd.read_csv('bank.csv', sep=';')

5. Now view the first five rows of the dataset using the head function:

df.head(5)
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The output is as follows:

Figure 7.13: Data in the CSV file

6. Add the Data Dictionary and Data Understanding sections in the Jupyter 
notebook:

Figure 7.14: Data Dictionary

The Data Understanding section is as follows:

Figure 7.15: Data Understanding
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7. To understand the data specifications, use pandas profiling to generate the 
descriptive information:

pandas_profiling.ProfileReport(df)

The output is as follows:

Figure 7.16: Summary of the specifications with respect to data

Instructor Note:

This exercise identifies how a Jupyter notebook is created and includes how to 
develop a reproducible Jupyter notebook for a bank marketing problem. This 
must include a good introduction to the business problem, data, data types, data 
sources, and so on.

Code Practices and Standards
Writing code with a set of practices and standards is important for code reproducibility, 
as is explaining the workflow of the process descriptively in a step-wise manner. 

This is universally applicable across any coding tool that you may use, not just with 
Jupyter. Some coding practices and standards should be followed strictly and a few of 
these will be discussed in the next section.

 EBSCOhost - printed on 2/9/2023 10:53 AM via . All use subject to https://www.ebsco.com/terms-of-use



Code Practices and Standards | 171

Environment Documentation

For installation purposes, you should maintain a snippet of code to install the necessary 
packages and libraries. The following practices help with code reproducibility:

• Include the versions used for libraries/packages.

• Download the original version of packages/libraries used and call the packages 
internally for installation in a new setup.

• Effective implementation by running it in a script that automatically installs 
dependencies.

Writing Readable Code with Comments

Code commenting is an important aspect. Apart from the markdown option available on 
Jupyter, we must include comments for each code snippet. At times, we make changes 
in the code in a way that may not be used immediately but will be required for later 
steps. For instance, we can create an object that may not be used immediately for the 
next step but for later steps. This can confuse a new user in terms of understanding the 
flow. Commenting such specifics is crucial.

When we use a specific method, we must provide a reason for using that particular 
method. For example, let's say, for the transformation of data for normal distribution, 
you can use box-cox or yeo-johnson. If there are negative values, you may prefer 
yeo-johnson, as it can handle negative values. It needs to be commented as in the 
following example:

Figure 7.17: Comments with reasons

We should also follow a good practice for naming the objects that we create. For 
example, you can name raw data raw_data, and can do the same for model data, 
preprocessed data, analysis data, and so on. The same goes when creating objects such 
as models and methods, for example, we can call power transformations pt.
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Effective Segmentation of Workflows

When developing code, there are steps that you design to achieve end results. Each 
step can be part of a process. For instance, reading data, understanding data, carrying 
out various transformations, or building a model. Each of these steps, needs to be 
clearly separated for multiple reasons; firstly, code readability for how each stage is 
carried out and, secondly, how the result is generated at each stage.

For example, here, we are looking at two sets of activities. One where the loop 
is generated to identify the columns that need to be normalized, and the second 
generating the columns that do not need to be normalized using the previous output:

Figure 7.18: Effective segmentation of workflows
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Workflow Documentation

When products and solutions are developed, they are mostly developed, monitored, 
deployed, and tested in a sandbox environment. To ensure a smooth deployment 
process in a new environment, we must provide sufficient support documents 
for technical, as well as non-technical, users. Workflow documentation includes 
requirements and design documents, product documentation, methodology 
documentation, installation guides, software user manuals, hardware and software 
requirements, troubleshooting management, and test documents. These are mostly 
required for a product or a solution development. We cannot just hand over a bunch of 
code to a client/user and ask them to get it running. Workflow documentation helps 
during the deployment and integration stages in a client/user environment, which is 
highly important for code reproducibility.

At a high level, data science project documentation can be divided into two segments:

• Product documentation

• Methodology documentation

Product documentation provides information on how each functionality is used in the 
UI/UX and the application of it. Product documentation can be further segmented into:

• Installation guides

• Software design and user manual

• Test documents

• Troubleshooting management

Methodology documentation provides information on the algorithms that are used, the 
methods, the solution approach, and so on.

Exercise 46: Missing Value Preprocessing with High Reproducibility

The aim of this exercise is to learn how to develop code for high reproducibility 
in terms of missing value treatment preprocessing. We will be using the UCI Bank 
and Marketing dataset taken from this link: https://raw.githubusercontent.com/
TrainingByPackt/Big-Data-Analysis-with-Python/master/Lesson07/Dataset/bank/
bank.csv.
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Perform the following steps to find the missing value preprocessing reproducibility:

1. Import the required libraries and packages in the Jupyter notebook, as illustrated 
here:

import numpy as np
import pandas as pd
import collections
import random

2. Set the working directory of your choice as illustrated here:

os.chdir("/Users/svk/Desktop/packt_exercises")

3. Import the dataset from back.csv to the Spark object using the read_csv function, 
as illustrated here:

df = pd.read_csv('bank.csv', sep=';')

4. Now, view the first five rows of the dataset using the head function:

df.head(5)

The output is as follows:

Figure 7.19: Bank dataset

As the dataset has no missing values, we have to introduce some into the dataset.

5. First, set the loop parameters, as illustrated here:

replaced = collections.defaultdict(set)
ix = [(row, col) for row in range(df.shape[0]) for col in range(df.
shape[1])]
random.shuffle(ix)
to_replace = int(round(.1*len(ix)))
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6. Create a for loop for generating missing values:

for row, col in ix:
    if len(replaced[row]) < df.shape[1] - 1:
        df.iloc[row, col] = np.nan
        to_replace -= 1
        replaced[row].add(col)
        if to_replace == 0:
            break

7. Use the following command to identify the missing values in the data by looking 
into each column's missing values:

print(df.isna().sum())

The output is as follows:

Figure 7.20: Find the missing values
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8. Define the range of Interquartile Ranges (IQRs) and apply them to the dataset to 
identify the outliers:

num = df._get_numeric_data()
Q1 = num.quantile(0.25)
Q3 = num.quantile(0.75)
IQR = Q3 - Q1
print(num < (Q1 - 1.5 * IQR))
print(num > (Q3 + 1.5 * IQR))

The output is as follows:

Figure 7.21: Identifying outliers

Avoiding Repetition
We all know that the duplication or repetition of code is not a good practice. It becomes 
difficult to handle bugs, and the length of code increases. Different versions of the same 
code can lead to difficulty after a point, in terms of understanding which version is 
correct. For debugging, a change in one position needs to be reflected across the code. 
To avoid bad practices and write and maintain high-level code, let's learn about some 
best practices in the following sections.
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Using Functions and Loops for Optimizing Code

A function confines a task which requires a set of steps that from a single of multiple 
inputs to single or multiple outputs and loops are used for repetitive tasks on the same 
block of code for a different set of sample or subsetted data. Functions can be written 
for a single variable, multiple variables, a DataFrame, or a multiple set of parameter 
inputs. 

For example, let's say you need to carry out some kind of transformation for only 
numeric variables in a DataFrame or matrix. A function can be written for a single 
variable and it can be applied to all numeric columns, or it can be written for a 
DataFrame, where the function identifies the set of numeric variables and applies them 
to generate the output. Once a function is written, it can be applied any future similar 
application in the proceeding code. This reduces duplicate work.

The following are the challenges that need to be considered when writing a function:

• Internal parameter changes: There can be changes in the input parameter from 
one task to another. This is a common challenge. To handle this, you can mention 
the dynamic variables or objects in the function inputs when defining the inputs 
for a function.

• Variations in the calculation process for a future task: Write a function with 
internal functions that will not require many changes if any variations need to be 
captured. This way, rewriting the function for a new kind of task will be easy.

• Avoiding loops in functions: If a process needs to be carried out across many 
subsets of the data by row, functions can be directly applied in each loop. This 
way, your function will be not be constrained by repetitive blocks of code on the 
same data.

• Handing changes in data type changes: The return object in a function can be 
different for different tasks. Depending on the task, the return object can be 
converted to other data classes or data types as required. However, input data 
classes or data types can change from task to task. To handle this, you need to 
clearly provide comments to understand the inputs for a function.

• Writing optimized functions: Arrays are efficient when it comes to repetitive 
tasks such as loops or functions. In Python, using NumPy arrays generates very 
efficient data processing for most arithmetic operations.
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Developing Libraries/Packages for Code/Algorithm Reuse

Packages or libraries encapsulate a collection of modules. They are highly dependable 
for code reproducibility and the modules that are generated. There are thousands of 
packages/libraries that are generated daily by developers and researchers around the 
globe. You can follow the package developing instructions from the Python project 
packaging guide for developing a new package (https://packaging.python.org/
tutorials/packaging-projects/). This tutorial will provide you with information on how 
to upload and distribute your package publicly as well as for internal use.

Activity 14: Carry normalisation of data

The aim of this activity is to apply various preprocessing techniques that were learned 
in previous exercises and to develop a model using preprocessed data.

Now let's perform the following steps:

1. Import the required libraries and read the data from the bank.csv file.

2. Import the dataset and read the CSV file into the Spark object.

Check the normality of the data—the following step is to identify the normality of 
data.

3. Segment the data numerically and categorically and perform distribution 
transformation on the numeric data.

4. Create a for loop that loops through each column to carry out a normality test to 
detect the normal distribution of data.

5. Create a power transformer. A power transformer will transform the data from 
a non-normal distribution to a normal distribution. The model developed will be 
used to transform the previously identified columns, which are non-normal.

6. Apply the created power transformer model to the non-normal data.

7. To develop a model, first split the data into training and testing for cross-
validation, train the model, then predict the model in test data for cross-
validation. Finally, generate a confusion matrix for cross-validation.

Note

The solution of this activity can be found on page 240.
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Summary
In this chapter, we have learned how to maintain code reproducibility from a data 
science perspective through structured standards and practices to avoid duplicate work 
using the Jupyter notebook.

We started by gaining an understanding of what reproducibility is and how it impacts 
research and data science work. We looked into areas where we can improve code 
reproducibility, particularly looking at how we can maintain effective coding standards 
in terms of data reproducibility. Following that, we looked at important coding 
standards and practices to avoid duplicate work using the effective management of 
code through the segmentation of workflows, by developing functions for all key tasks, 
and how we can generalize coding to create libraries and packages from a reusability 
standpoint. 

In the next chapter, we will learn how to use all the functionalities we have learned 
about so far to generate a full analysis report. We will also learn how to use various 
PySpark functionalities for SQL operations and how to develop various visualization 
plots.
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Learning Objectives

By the end of this chapter, you will be able to:

• Read data from different sources in Spark

• Perform SQL operations on a Spark DataFrame

• Generate statistical measurements in a consistent way

• Generate graphs and plots using Plotly

• Compile an analysis report incorporating all the previous steps and data

In this chapter, we will read the data using Spark, aggregating it, and extract the statistical 
measurements. We will also use the Pandas to generate graphs from aggregated data and form 
an analysis report.

Creating a Full 
Analysis Report

8
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Introduction
If you have been part of the data industry for a while, you will understand the challenge 
of working with different data sources, analyzing them, and presenting them in 
consumable business reports. When using Spark on Python, you may have to read data 
from various sources, such as flat files, REST APIs in JSON format, and so on. 

In the real world, getting data in the right format is always a challenge and several SQL 
operations are required to gather data. Thus, it is mandatory for any data scientist to 
know how to handle different file formats and different sources, and to carry out basic 
SQL operations and present them in a consumable format. 

This chapter provides common methods for reading different types of data, carrying 
out SQL operations on it, doing descriptive statistical analysis, and generating a full 
analysis report. We will start with understanding how to read different kinds of data 
into PySpark and will then generate various analyses and plots on it.

Reading Data in Spark from Different Data Sources
One of the advantages of Spark is the ability to read data from various data sources. 
However, this is not consistent and keeps changing with each Spark version. This 
section of the chapter will explain how to read files in CSV and JSON.

Exercise 47: Reading Data from a CSV File Using the PySpark Object

To read CSV data, you have to write the spark.read.csv("the file name with .csv") 
function. Here, we are reading the bank data that was used in the earlier chapters.

Note

The sep function is used here.

We have to ensure that the right sep function is used based on how the data is 
separated in the source data.

 EBSCOhost - printed on 2/9/2023 10:53 AM via . All use subject to https://www.ebsco.com/terms-of-use



Reading Data in Spark from Different Data Sources | 183

Now let's perform the following steps to read the data from the bank.csv file:

1. First, let's import the required packages into the Jupyter notebook:

import os
import pandas as pd
import numpy as np
import collections
from sklearn.base import TransformerMixin
import random
import pandas_profiling

2. Next, import all the required libraries, as illustrated:

import seaborn as sns
import time
import re
import os
import matplotlib.pyplot as plt

Now, use the tick themes, which will make our dataset more visible and provide higher 
contrast:

sns.set(style="ticks")

1. Now, change the working directory using the following command:

os.chdir("/Users/svk/Desktop/packt_exercises")

2. Let's import the libraries required for Spark to build the Spark session:

from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('ml-bank').getOrCreate()

3. Now, let's read the CSV data after creating the df_csv Spark object using the 
following command:

df_csv = spark.read.csv('bank.csv', sep=';', header = True, inferSchema = 
True)

4. Print the schema using the following command:

df_csv.printSchema()
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The output is as follows:

Figure 8.1: Bank schema

Reading JSON Data Using the PySpark Object

To read JSON data, you have to write the read.json("the file name with .json") 
function after setting the SQL context:

Figure 8.2: Reading JSON file in PySpark

SQL Operations on a Spark DataFrame
A DataFrame in Spark is a distributed collection of rows and columns. It is the same as 
a table in a relational database or an Excel sheet. A Spark RDD/DataFrame is efficient 
at processing large amounts of data and has the ability to handle petabytes of data, 
whether structured or unstructured. 
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Spark optimizes queries on data by organizing the DataFrame into columns, which 
helps Spark understand the schema. Some of the most frequently used SQL operations 
include subsetting the data, merging the data, filtering, selecting specific columns, 
dropping columns, dropping all null values, and adding new columns, among others.

Exercise 48: Reading Data in PySpark and Carrying Out SQL Operations

For summary statistics of data, we can use the spark_df.describe().show() function, 
which will provide information on count, mean, standard deviation, max, and min for all 
the columns in the DataFrame. 

For example, in the dataset that we have considered—the bank marketing dataset 
(https://raw.githubusercontent.com/TrainingByPackt/Big-Data-Analysis-with-
Python/master/Lesson08/bank.csv)—the summary statistics data can be obtained as 
follows:

1. After creating a new Jupyter notebook, import all the required packages, as 
illustrated here:

import os
import pandas as pd
import numpy as np

2. Now, change the working directory using the following command:

os.chdir("/Users/svk/Desktop/packt_exercises")

3. Import all the libraries required for Spark to build the Spark session:

from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('ml-bank').getOrCreate()

4. Create and read the data from the CSV file using the Spark object, as illustrated:

spark_df = spark.read.csv('bank.csv', sep=';', header = True, inferSchema 
= True)

5. Now let's print the first five rows from the Spark object using the following 
command:

spark_df.head(5)
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The output is as follows:

Figure 8.3: Bank data of first five rows (Unstructured)

6. The previous output is unstructured. Let's first identify the data types to proceed 
to get the structured data. Use the following command to print the datatype of 
each column:

spark_df.printSchema()

The output is as follows:

Figure 8.4: Bank datatypes (Structured)

7. Now let's calculate the total number of rows and columns with names to get a 
clear idea of the data we have:

spark_df.count()
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The output is as follows:

4521
len(spark_df.columns), spark_df.columns

The output is as follows:

Figure 8.5: Total number of rows and columns names

8. Print the summary statistics for the DataFrame using the following command:

spark_df.describe().show()

The output is as follows:

Figure 8.6: Summary statistics of numerical columns
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To select multiple columns from a DataFrame, we can use the spark_df.select('col1', 
'col2', 'col3') function. For example, let's select the first five rows from the balance 
and y columns using the following command:

spark_df.select('balance','y').show(5)

The output is as follows:

Figure 8.7: Data of the balance and y columns

9. To identify the relation between two variables in terms of their frequency of levels, 
crosstab can be used. To derive crosstab between two columns, we can use the 
spark_df.crosstab('col1', col2) function. Crosstab is carried out between two 
categorical variables and not between numerical variables:

spark_df.crosstab('y', 'marital').show()

Figure 8.8: Pair wise frequency of categorical columns

10. Now, let's add a new column to the dataset:

# sample sets
sample1 = spark_df.sample(False, 0.2, 42)
sample2 = spark_df.sample(False, 0.2, 43)

# train set
train = spark_df.sample(False, 0.8, 44)
train.withColumn('balance_new', train.balance /2.0).
select('balance','balance_new').show(5)
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The output is as follows:

Figure 8.9: Data of newly added column

11. Drop the newly created column using the following command:

train.drop('balance_new)

Exercise 49: Creating and Merging Two DataFrames

In this exercise, we will extract and use the bank marketing data (https://archive.ics.
uci.edu/ml/datasets/bank+marketing) from the UCI Machine Learning Repository. The 
objective is to carry out merge operations on a Spark DataFrame using PySpark.

The data is related to the direct marketing campaigns of a Portuguese banking 
institution. The marketing campaigns were based on phone calls. Often, more than one 
contact for the same client was required, in order to access whether the product (bank 
term deposit) would be (yes) or would not be (no) subscribed.

Now, let's create two DataFrames from the current bank marketing data and merge 
them on the basis of a primary key:

1. First, let's import the required header files in the Jupyter notebook:

import os
import pandas as pd
import numpy as np
import pyspark

2. Now, change the working directory using the following command:

os.chdir("/Users/svk/Desktop/packt_exercises")
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3. Import all the libraries required for Spark to build the Spark session:

from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('ml-bank').getOrCreate()

4. Read the data from the CSV files into a Spark object using the following command:

spark_df = spark.read.csv('bank.csv', sep=';', header = True, inferSchema 
= True)

5. Print the first five rows from the Spark object:

spark_df.head(5)

The output is as follows:

Figure 8.10: Bank data of first five rows (Unstructured)

6. Now, to merge the two DataFrames using the primary key (ID), first, we will have 
to split it into two DataFrames.

7. First, add a new DataFrame with an ID column:

from pyspark.sql.functions import monotonically_increasing_id
train_with_id = spark_df.withColumn("ID", monotonically_increasing_id())

8. Then, create another column, ID2:

train_with_id = train_with_id.withColumn('ID2', train_with_id.ID)

9. Split the DataFrame using the following command:

train_with_id1 = train_with_id.drop('balance', "ID2")
train_with_id2 = train_with_id.select('balance', "ID2")

10. Now, change the ID column names of train_with_id2:

train_with_id2 = train_with_id2.withColumnRenamed("ID2", "ID")

11. Merge train_with_id1 and train_with_id2 using the following command:

train_merged = train_with_id1.join(train_with_id2, on=['ID'], how='left_
outer')
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Exercise 50: Subsetting the DataFrame

In this exercise, we will extract and use the bank marketing data (https://archive.ics.
uci.edu/ml/datasets/bank+marketing) from the UCI Machine Learning Repository. 
The objective is to carry out filter/subsetting operations on the Spark DataFrame using 
PySpark.

Let's subset the DataFrame where the balance is greater than 0 in the bank marketing 
data:

1. First, let's import the required header files in the Jupyter notebook:

import os
import pandas as pd
import numpy as np
import pyspark

2. Now, change the working directory using the following command:

os.chdir("/Users/svk/Desktop/packt_exercises")

3. Import all the libraries required for Spark to build the Spark session:

from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('ml-bank').getOrCreate()

4. Now, read the CSV data as a Spark object using the following command:

spark_df = spark.read.csv('bank.csv', sep=';', header = True, inferSchema 
= True)

5. Let's run SQL queries to subset and filter the DataFrame:

train_subsetted = spark_df.filter(spark_df.balance > 0.0)
pd.DataFrame(train_subsetted.head(5))

The output is as follows:

Figure 8.11: Filtered DataFrame
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Generating Statistical Measurements
Python is a general-purpose language with statistical modules. A lot of statistical 
analysis, such as carrying out descriptive analysis, which includes identifying the 
distribution of data for numeric variables, generating a correlation matrix, the 
frequency of levels in categorical variables with identifying mode and so on, can be 
carried out in Python. The following is an example of correlation:

Figure 8.12: Segment numeric data and correlation matrix output
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Identifying the distribution of data and normalizing it is important for parametric 
models such as linear regression and support vector machines. These algorithms 
assume the data to be normally distributed. If data is not normally distributed, it can 
lead to bias in the data. In the following example, we will identify the distribution of 
data through a normality test and then apply a transformation using the yeo-johnson 
method to normalize the data:

Figure 8.13: Identifying the distribution of the data—Normality test

The identified variables are then normalized using yeo-johnson or the box-cox method.
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Generating the importance of features is important in a data science project where 
predictive techniques are used. This broadly falls under statistical analysis as various 
statistical techniques are used to identify the important variables. One of the methods 
that's used here is Boruta, which is a wrap-around RandomForest algorithm for variable 
importance analysis. For this, we will be using the BorutaPy package:

Figure 8.14: Feature importance

Activity 15: Generating Visualization Using Plotly

In this activity, we will extract and use the bank marketing data from the UCI Machine 
Learning Repository. The objective is to generate visualizations using Plotly in Python.

Note

Plotly's Python graphing library makes interactive, publication-quality graphs.
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Perform the following steps to generate the visualization using Plotly:

1. Import the required libraries and packages into the Jupyter notebook.

2. Import the libraries required for Plotly to visualize the data visualization:

import plotly.graph_objs as go
from plotly.plotly import iplot
import plotly as py

3. Read the data from the bank.csv file into the Spark DataFrame.

4. Check the Plotly version that you are running on your system. Make sure you are 
running the updated version. Use the pip install plotly --upgrade command and 
then run the following code:

from plotly import __version__
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, 
iplot

print(__version__) # requires version >= 1.9.0

The output is as follows:

3.7.1

5. Now import the required libraries to plot the graphs using Plotly:

import plotly.plotly as py
import plotly.graph_objs as go
from plotly.plotly import iplot
init_notebook_mode(connected=True)

6. Set the Plotly credentials in the following command, as illustrated here:

plotly.tools.set_credentials_file(username='Your_Username', api_key='Your_
API_Key')

Note

To generate an API key for Plotly, sign up for an account and navigate to https://
plot.ly/settings#/. Click on the API Keys option and then click on the Regenerate 
Key option.
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7. Now, plot each of the following graphs using Plotly:

Bar graph:

Figure 8.15: Bar graph of bank data

Scatter plot:

Figure 8.16: Scatter plot of bank data

Boxplot:

Figure 8.17: Boxplot of bank data

Note

The solution for this activity can be found on page 248.
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Summary
In this chapter, we learned how to import data from various sources into a Spark 
environment as a Spark DataFrame. In addition, we learned how to carry out various 
SQL operations on that DataFrame, and how to generate various statistical measures, 
such as correlation analysis, identifying the distribution of data, building a feature 
importance model, and so on. We also looked into how to generate effective graphs 
using Plotly offline, where you can generate various plots to develop an analysis report.

This book has hopefully offered a stimulating journey through big data. We started with 
Python and  covered several libraries that are part of the Python data science stack: 
NumPy and Pandas, We also looked at home we can use Jupyter notebooks. We then 
saw how to create informative data visualizations, with some guiding principles on what 
is a good graph, and used Matplotlib and Seaborn to materialize the figures. Then we 
made a start with the Big Data tools - Hadoop and Spark, thereby understanding the 
principles and the basic operations. 

We have seen how we can use DataFrames in Spark to manipulate data, and have about 
utilize concepts such as correlation and dimensionality reduction to better understand 
our data. The book has also covered  reproducibility, so that the analysis created can be 
supported and better replicated when needed, and we finished our journey with a final 
report. We hope that the subjects covered, and the practical examples in this book will 
help you in all areas of your own data journey.
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Chapter 01: The Python Data Science Stack

Activity 1: IPython and Jupyter

1. Open the python_script_student.py file in a text editor, copy the contents to a 
notebook in IPython, and execute the operations.

2. Copy and paste the code from the Python script into a Jupyter notebook:

import numpy as np

def square_plus(x, c):
    return np.power(x, 2) + c

3. Now, update the values of the x and c variables. Then, change the definition of the 
function:

x = 10
c = 100

result = square_plus(x, c)
print(result)

The output is as follows:

200

Activity 2: Working with Data Problems

1. Import pandas and NumPy library:

import pandas as pd
import numpy as np

2. Read the RadNet dataset from the U.S. Environmental Protection Agency, available 
from the Socrata project:

url = "https://opendata.socrata.com/api/views/cf4r-dfwe/rows.
csv?accessType=DOWNLOAD"
df = pd.read_csv(url)

3. Create a list with numeric columns for radionuclides in the RadNet dataset:

columns = df.columns
id_cols = ['State', 'Location', "Date Posted", 'Date Collected', 'Sample 
Type', 'Unit']
columns = list(set(columns) - set(id_cols))
columns
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4. Use the apply method on one column, with a lambda function that compares the 
Non-detect string:

df['Cs-134'] = df['Cs-134'].apply(lambda x: np.nan if x == "Non-detect" 
else x)
df.head()

The output is as follows:

Figure 1.19: DataFrame after applying the lambda function

5. Replace the text values with NaN in one column with np.nan:

df.loc[:, columns] = df.loc[:, columns].applymap(lambda x: np.nan if x == 
'Non-detect' else x)
df.loc[:, columns] = df.loc[:, columns].applymap(lambda x: np.nan if x == 
'ND' else x)

6. Use the same lambda comparison and use the applymap method on several 
columns at the same time, using the list created in the first step:

df.loc[:, ['State', 'Location', 'Sample Type', 'Unit']] = df.loc[:, 
['State', 'Location', 'Sample Type', 'Unit']].applymap(lambda x: 
x.strip())

7. Create a list of the remaining columns that are not numeric:

df.dtypes
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The output is as follows:

Figure 1.20: List of columns and their type

8. Convert the DataFrame objects into floats using the to_numeric function:

df['Date Posted'] = pd.to_datetime(df['Date Posted'])
df['Date Collected'] = pd.to_datetime(df['Date Collected'])
for col in columns:
    df[col] = pd.to_numeric(df[col])
df.dtypes

The output is as follows:

Figure 1.21: List of columns and their type
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9. Using the selection and filtering methods, verify that the names of the string 
columns don't have any spaces:

df['Date Posted'] = pd.to_datetime(df['Date Posted'])
df['Date Collected'] = pd.to_datetime(df['Date Collected'])
for col in columns:
    df[col] = pd.to_numeric(df[col])
df.dtypes

The output is as follows:

Figure 1.22: DataFrame after applying the selection and filtering method

Activity 3: Plotting Data with Pandas

1. Use the RadNet DataFrame that we have been working with.

2. Fix all the data type problems, as we saw before.

3. Create a plot with a filter per Location, selecting the city of San Bernardino, and 
one radionuclide, with the x-axis set to the date and the y-axis with radionuclide 
I-131:

df.loc[df.Location == 'San Bernardino'].plot(x='Date Collected', y='I-
131')
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The output is as follows:

Figure 1.23: Plot of Date collected vs I-131

4. Create a scatter plot with the concentration of two related radionuclides, I-131 
and I-132:

fig, ax = plt.subplots()
ax.scatter(x=df['I-131'], y=df['I-132'])
_ = ax.set(
    xlabel='I-131',
    ylabel='I-132',
    title='Comparison between concentrations of I-131 and I-132'
)
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The output is as follows:

Figure 1.24: Plot of concentration of I-131 and I-132

Chapter 02: Statistical Visualizations Using Matplotlib and  
Seaborn

Activity 4: Line Graphs with the Object-Oriented API and Pandas DataFrames

1. Import the required libraries in the Jupyter notebook and read the dataset from 
the Auto-MPG dataset repository:

%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt 
import numpy as np
import pandas as pd

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
auto-mpg.data"
df = pd.read_csv(url)
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2. Provide the column names to simplify the dataset, as illustrated here:

column_names = ['mpg', 'cylinders', 'displacement', 'horsepower', 
'weight', 'acceleration', 'year', 'origin', 'name']

3. Now read the new dataset with column names and display it:

df = pd.read_csv(url, names= column_names, delim_whitespace=True)
df.head()

The plot is as follows:

Figure 2.29: The auto-mpg DataFrame

4. Convert the horsepower and year data types to float and integer using the following 
command:

df.loc[df.horsepower == '?', 'horsepower'] = np.nan
df['horsepower'] = pd.to_numeric(df['horsepower'])
df['full_date'] = pd.to_datetime(df.year, format='%y')
df['year'] = df['full_date'].dt.year

5. Let's display the data types:

df.dtypes
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The output is as follows:

Figure 2.30: The data types

6. Now plot the average horsepower per year using the following command:

df.groupby('year')['horsepower'].mean().plot()

The output is as follows:

Figure 2.31: Line plot
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Activity 5: Understanding Relationships of Variables Using Scatter Plots

1. Import the required libraries into the Jupyter notebook and read the dataset from 
the Auto-MPG dataset repository:

%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
auto-mpg.data"
df = pd.read_csv(url)

2. Provide the column names to simplify the dataset as illustrated here:

column_names = ['mpg', 'cylinders', 'displacement', 'horsepower', 
'weight', 'acceleration', 'year', 'origin', 'name']

3. Now read the new dataset with column names and display it:

df = pd.read_csv(url, names= column_names, delim_whitespace=True)
df.head()

The plot is as follows:

Figure 2.32: Auto-mpg DataFrame

4. Now plot the scatter plot using the scatter method:

fig, ax = plt.subplots()
ax.scatter(x = df['horsepower'], y=df['weight'])

 EBSCOhost - printed on 2/9/2023 10:53 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 02: Statistical Visualizations Using Matplotlib and Seaborn  | 209

The output will be as follows:

Figure 2.33: Scatter plot using the scatter method

Activity 6: Exporting a Graph to a File on Disk

1. Import the required libraries in the Jupyter notebook and read the dataset from 
the Auto-MPG dataset repository:

%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
auto-mpg.data"
df = pd.read_csv(url)

2. Provide the column names to simplify the dataset, as illustrated here:

column_names = ['mpg', 'cylinders', 'displacement', 'horsepower', 
'weight', 'acceleration', 'year', 'origin', 'name']
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3. Now read the new dataset with column names and display it:

df = pd.read_csv(url, names= column_names, delim_whitespace=True)

4. Create a bar plot using the following command:

fig, ax = plt.subplots()
df.weight.plot(kind='hist', ax=ax)

The output is as follows:

Figure 2.34: Bar plot

5. Export it to a PNG file using the savefig function:

fig.savefig('weight_hist.png')
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Activity 7: Complete Plot Design

1. Import the required libraries in the Jupyter notebook and read the dataset from 
the Auto-MPG dataset repository:

%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
auto-mpg.data"
df = pd.read_csv(url)

2. Provide the column names to simplify the dataset, as illustrated here:

column_names = ['mpg', 'cylinders', 'displacement', 'horsepower', 
'weight', 'acceleration', 'year', 'origin', 'name']

3. Now read the new dataset with column names and display it:

df = pd.read_csv(url, names= column_names, delim_whitespace=True)

4. Perform GroupBy on year and cylinders, and unset the option to use them as 
indexes:

df_g = df.groupby(['year', 'cylinders'], as_index=False)

5. Calculate the average miles per gallon over the grouping and set year as index:

df_g = df_g.mpg.mean()

6. Set year as the DataFrame index:

df_g = df_g.set_index(df_g.year)

7. Create the figure and axes using the object-oriented API:

import matplotlib.pyplot as plt
fig, axes = plt.subplots()

8. Group the df_g dataset by cylinders and plot the miles per gallon variable using 
the axes created with size (10,8):

df = df.convert_objects(convert_numeric=True)
df_g = df.groupby(['year', 'cylinders'], as_index=False).horsepower.mean()
df_g = df_g.set_index(df_g.year)
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9. Set the title, x label, and y label on the axes:

fig, axes = plt.subplots()
df_g.groupby('cylinders').horsepower.plot(axes=axes, figsize=(12,10))
_ = axes.set(
    title="Average car power per year",
    xlabel="Year",
    ylabel="Power (horsepower)"
    
)

The output is as follows:

Figure 2.35: Line plot for average car power per year (without legends)
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10. Include legends, as follows:

axes.legend(title='Cylinders', fancybox=True)

Figure 2.36: Line plot for average car power per year (with legends)

11. Save the figure to disk as a PNG file:

fig.savefig('mpg_cylinder_year.png')

Chapter 03: Working with Big Data Frameworks

Activity 8: Parsing Text

1. Read the text files into the Spark object using the text method:

rdd_df = spark.read.text("/localdata/myfile.txt").rdd

To parse the file that we are reading, we will use lambda functions and Spark 
operations such as map, flatMap, and reduceByKey. flatmap applies a function to 
all elements of an RDD, flattens the results, and returns the transformed RDD. 
reduceByKey merges the values based on the given key, combining the values. With 
these functions, we can count the number of lines and words in the text.
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2. Extract the lines from the text using the following command:

lines = rdd_df.map(lambda line: line[0])

3. This splits each line in the file as an entry in the list. To check the result, you can 
use the collect method, which gathers all data back to the driver process:

lines.collect()

4. Now, let's count the number of lines, using the count method:

lines.count()

Note

Be careful when using the collect method! If the DataFrame or RDD being collect-
ed is larger than the memory of the local driver, Spark will throw an error.

5. Now, let's first split each line into words, breaking it by the space around it, and 
combining all elements, removing words in uppercase:

splits = lines.flatMap(lambda x: x.split(' '))
lower_splits = splits.map(lambda x: x.lower())

6. Let's also remove the stop words. We could use a more consistent stop words list 
from NLTK, but for now, we will row our own:

stop_words = ['of', 'a', 'and', 'to']

7. Use the following command to remove the stop words from our token list:

tokens = lower_splits.filter(lambda x: x and x not in stop_words)

We can now process our token list and count the unique words. The idea is to 
generate a list of tuples, where the first element is the token and the second 
element is the count of that particular token.

8. First, let's map our token to a list:

token_list = tokens.map(lambda x: [x, 1])

9. Use the reduceByKey operation, which will apply the operation to each of the lists:

count = token_list.reduceByKey(add).sortBy(lambda x: x[1], 
ascending=False)
count.collect()

Remember, collect all data back to the driver node! Always check whether there is 
enough memory by using tools such as top and htop.
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Chapter 04: Diving Deeper with Spark

Activity 9: Getting Started with Spark DataFrames

If you are using Google Collab to run the Jupyter notebook, add these lines to ensure 
you have set the environment:

!apt-get install openjdk-8-jdk-headless -qq > /dev/null
!wget -q http://www-us.apache.org/dist/spark/spark-2.4.0/spark-2.4.0-bin-
hadoop2.7.tgz
!tar xf spark-2.4.0-bin-hadoop2.7.tgz
!pip install -q findspark
import os
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK_HOME"] = "/content/spark-2.4.2-bin-hadoop2.7"

Install findspark if not installed using the following command:
pip install -q findspark

1. To create a sample DataFrame by manually specifying the schema, importing find-
spark module to connect Jupyter with Spark:

import findspark
findspark.init()
import pyspark
import os

2. Create the SparkContext and SQLContext using the following command:

sc = pyspark.SparkContext()
from pyspark.sql import SQLContext
sqlc = SQLContext(sc)

from pyspark.sql import *
na_schema = Row("Name","Subject","Marks")
row1 = na_schema("Ankit", "Science",95)
row2 = na_schema("Ankit", "Maths", 86)
row3 = na_schema("Preity", "Maths", 92)
na_list = [row1, row2, row3]
df_na = sqlc.createDataFrame(na_list)
type(df_na)

The output is as follows:

pyspark.sql.dataframe.DataFrame
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3. Check the DataFrame using the following command:

df_na.show()

The output is as follows:

Figure 4.29: Sample DataFrame

4. Create a sample DataFrame from an existing RDD. First creating RDD as illustrated 
here:

data = [("Ankit","Science",95),("Preity","Maths",86),("Ankit","Maths",86)]
data_rdd = sc.parallelize(data)
type(data_rdd)

The output is as follows:

pyspark.rdd.RDD

5. Converting RDD to DataFrame using the following command:

data_df = sqlc.createDataFrame(data_rdd)
data_df.show()

The output is as follows:

Figure 4.30: RDD to DataFrame
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6. Create a sample DataFrame by reading the data from a CSV file:

df = sqlc.read.format('com.databricks.spark.csv').options(header='true', 
inferschema='true').load('mtcars.csv')
type(df)

The output is as follows:

pyspark.sql.dataframe.DataFrame

7. Print first seven rows of the DataFrame:

df.show(7)

The output is as follows:

Figure 4.31: First seven rows of the DataFrame

8. Print the schema of the DataFrame:

df.printSchema()
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9. The output is as follows:

Figure 4.32: Schema of the DataFrame

10. Print the number of columns and rows in DataFrame:

print('number of rows:'+ str(df.count()))
print('number of columns:'+ str(len(df.columns)))

The output is as follows:

number of rows:32
number of columns:11

11. Print the summary statistics of DataFrame and any two individual columns:

df.describe().show()

The output is as follows:

Figure 4.33: Summary statistics of DataFrame

Print the summary of any two columns:

df.describe(['mpg','cyl']).show()
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The output is as follows:

Figure 4.34: Summary statistics of mpg and cyl columns

12. Write first seen rows of the sample DataFrame in a CSV file:

df_p = df.toPandas()
df_p.head(7).to_csv("mtcars_head.csv")

Activity 10: Data Manipulation with Spark DataFrames

1. Install the packages as illustrated here:

!apt-get install openjdk-8-jdk-headless -qq > /dev/null
!wget -q http://www-us.apache.org/dist/spark/spark-2.4.0/spark-2.4.0-bin-
hadoop2.7.tgz
!tar xf spark-2.4.0-bin-hadoop2.7.tgz
!pip install -q findspark
import os
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK_HOME"] = "/content/spark-2.4.0-bin-hadoop2.7"

2. Then, import the findspark module to connect the Jupyter with Spark use the 
following command:

import findspark
findspark.init()
import pyspark
import os
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3. Now, create the SparkContext and SQLContext as illustrated here:

sc = pyspark.SparkContext()
from pyspark.sql import SQLContext
sqlc = SQLContext(sc)

4. Create a DataFrame in Spark as illustrated here:

df = sqlc.read.format('com.databricks.spark.csv').options(header='true', 
inferschema='true').load('mtcars.csv')
df.show(4)

The output is as follows:

Figure 4.35: DataFrame in Spark

5. Rename any five columns of DataFrame using the following command:

data = df
new_names = ['mpg_new', 'cyl_new', 'disp_new', 'hp_new', 'drat_new']
for i,z in zip(data.columns[0:5],new_names):
    data = data.withColumnRenamed(str(i),str(z))
    
data.columns
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The output is as follows:

Figure 4.36: Columns of DataFrame

6. Select any two numeric and one categorical column from the DataFrame:

data = df.select(['cyl','mpg','hp'])
data.show(5)

The output is as follows:

Figure 4.37: Two numeric and one categorical column from the DataFrame
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7. Count the number of distinct categories in the categorical variable:

data.select('cyl').distinct().count() #3

8. Create two new columns in DataFrame by summing up and multiplying together 
the two numerical columns:

data = data.withColumn('colsum',(df['mpg'] + df['hp']))
data = data.withColumn('colproduct',(df['mpg'] * df['hp']))
data.show(5)

The output is as follows:

Figure 4.38: New columns in DataFrame

9. Drop both the original numerical columns:

data = data.drop('mpg','hp')
data.show(5)

Figure 4.39: New columns in DataFrame after dropping
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10. Sort the data by categorical column:

data = data.orderBy(data.cyl)
data.show(5)

The output is as follows:

Figure 4.40: Sort data by categorical columns

11. Calculate the mean of the summation column for each distinct category in the 
categorical variable:

data.groupby('cyl').agg({'colsum':'mean'}).show()

The output is as follows:

Figure 4.41: Mean of the summation column
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12. Filter the rows with values greater than the mean of all the mean values calculated in 
the previous step:

data.count()#15
cyl_avg = data.groupby('cyl').agg({'colsum':'mean'})
avg = cyl_avg.agg({'avg(colsum)':'mean'}).toPandas().iloc[0,0]
data = data.filter(data.colsum > avg)
data.count()
data.show(5)

The output is as follows:

Figure 4.42: Mean of all the mean values calculated of the summation column

13. De-duplicate the resultant DataFrame to make sure it has all unique records:

data = data.dropDuplicates()
data.count()

The output is 15.

Activity 11: Graphs in Spark

1. Import the required Python libraries in the Jupyter Notebook:

import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
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2. Read and show the data from the CSV file using the following command:

df = pd.read_csv('mtcars.csv')
df.head()

The output is as follows:

Figure 4.43: Auto-mpg DataFrame

3. Visualize the discrete frequency distribution of any continuous numeric variable 
from your dataset using a histogram:

plt.hist(df['mpg'], bins=20)
plt.ylabel('Frequency')
plt.xlabel('Values')
plt.title('Frequency distribution of mpg')
plt.show()
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The output is as follows:

Figure 4.44: Discrete frequency distribution histogram

4. Visualize the percentage share of the categories in the dataset using a pie chart:

## Calculate count of records for each gear
data = pd.DataFrame([[3,4,5],df['gear'].value_counts().tolist()]).T
data.columns = ['gear','gear_counts']

## Visualising percentage contribution of each gear in data using pie 
chart
plt.pie(data.gear_counts, labels=data.gear, startangle=90, 
autopct='%.1f%%')
plt.title('Percentage contribution of each gear')
plt.show()
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The output is as follows:

Figure 4.45: Percentage share of the categories using pie chart

5. Plot the distribution of a continuous variable across the categories of a categorical 
variable using a boxplot:

sns.boxplot(x = 'gear', y = 'disp', data = df)
plt.show()

The output is as follows:

Figure 4.46: Distribution of a continuous using boxplot
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6. Visualize the values of a continuous numeric variable using a line chart:

data = df[['hp']]
data.plot(linestyle='-')
plt.title('Line Chart for hp')
plt.ylabel('Values')
plt.xlabel('Row number')
plt.show()

The output is as follows:

Figure 4.47: Continuous numeric variable using a line chart

7. Plot the values of multiple continuous numeric variables on the same line chart:

data = df[['hp','disp', 'mpg']]
data.plot(linestyle='-')
plt.title('Line Chart for hp, disp & mpg')
plt.ylabel('Values')
plt.xlabel('Row number')
plt.show()
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The output is as follows:

Figure 4.48: Multiple continuous numeric variables

Chapter 05: Missing Value Handling and Correlation Analysis in 
Spark

Activity 12: Missing Value Handling and Correlation Analysis with PySpark 

DataFrames

1. Import the required libraries and modules in the Jupyter notebook, as illustrated 
here:

import findspark
findspark.init()
import pyspark
import random

2. Set up the SparkContext with the help of the following command in the Jupyter 
notebook:

sc = pyspark.SparkContext(appName = "chapter5")
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3. Similarly, set up the SQLContext in the notebook:

from pyspark.sql import SQLContext
sqlc = SQLContext(sc)

4. Now, read the CSV data into a Spark object using the following command:

df = sqlc.read.format('com.databricks.spark.csv').options(header = 'true', 
inferschema = 'true').load('iris.csv')
df.show(5)

The output is as follows:

Figure 5.14: Iris DataFrame, reading the CSV data into a Spark object

5. Fill in the missing values in the Sepallength column with the column's mean.

6. First, calculate the mean of the Sepallength column using the following command:

from pyspark.sql.functions import mean
avg_sl = df.select(mean('Sepallength')).toPandas()['avg(Sepallength)']

7. Now, impute the missing values in the Sepallength column with the column's 
mean, as illustrated here:

y = df
y = y.na.fill(float(avg_sl),['Sepallength'])
y.describe().show(1)

 EBSCOhost - printed on 2/9/2023 10:53 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 05: Missing Value Handling and Correlation Analysis in Spark | 231

The output is as follows:

Figure 5.15: Iris DataFrame

8. Compute the correlation matrix for the dataset. Make sure to import the required 
modules, as shown here:

from pyspark.mllib.stat import Statistics
import pandas as pd

9. Now, fill the missing values in the DataFrame before computing the correlation:

z = y.fillna(1)

10. Next, remove the String columns from the PySpark DataFrame, as illustrated here:

a = z.drop('Species') 
features = a.rdd.map(lambda row: row[0:])

11. Now, compute the correlation matrix in Spark:

correlation_matrix = Statistics.corr(features, method="pearson")

12. Next, convert the correlation matrix into a pandas DataFrame using the following 
command:

correlation_df = pd.DataFrame(correlation_matrix)
correlation_df.index, correlation_df.columns = a.columns, a.columns
correlation_df
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The output is as follows:

Figure 5.16: Convert the correlation matrix into a pandas DataFrame

13. Plot the variable pairs showing strong positive correlation and fit a linear line on 
them.

14. First, load the data from the Spark DataFrame into a pandas DataFrame:

import pandas as pd
dat = y.toPandas()
type(dat)

The output is as follows:

pandas.core.frame.DataFrame

15. Next, load the required modules and plotting data using the following commands:

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.lmplot(x = "Sepallength", y = "Petallength", data = dat)
plt.show()
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The output is as follows:

Figure 5.17: Seaborn plot for x = "Sepallength", y = "Petallength"

16. Plot the graph so that x equals Sepallength, and y equals Petalwidth:

import seaborn as sns
sns.lmplot(x = "Sepallength", y = "Petalwidth", data = dat)
plt.show()
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The output is as follows:

Figure 5.18: Seaborn plot for x = "Sepallength", y = "Petalwidth"

17. Plot the graph so that x equals Petalwidth and y equals Petalwidth:

sns.lmplot(x = "Petallength", y = "Petalwidth", data = dat)
plt.show()
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The output is as follows:

Figure 5.19: Seaborn plot for x = "Petallength", y = "Petalwidth"
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Chapter 6: Business Process Definition and Exploratory Data  
Analysis

Activity 13: Carry Out Mapping to Gaussian Distribution of Numeric Features 

from the Given Data

1. Download the bank.csv. Now, use the following commands to read the data from it:

import numpy as np
import pandas as pd
import seaborn as sns
import time
import re
import os
import matplotlib.pyplot as plt
sns.set(style="ticks")

# import libraries required for preprocessing
import sklearn as sk
from scipy import stats
from sklearn import preprocessing

# set the working directory to the following
os.chdir("/Users/svk/Desktop/packt_exercises")

# read the downloaded input data (marketing data)
df = pd.read_csv('bank.csv', sep=';')

2. Identify the numeric data from the DataFrame. The data can be categorized 
according to its type, such as categorical, numeric (float, integer), date, and so on. 
We identify numeric data here because we can only carry out normalization on 
numeric data:

numeric_df = df._get_numeric_data()
numeric_df.head()
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The output is as follows:

Figure 6.12: DataFrame

3. Carry out a normality test and identify the features that have a non-normal distri-
bution:

numeric_df_array = np.array(numeric_df) # converting to numpy arrays for 
more efficient computation

loop_c = -1
col_for_normalization = list()

for column in numeric_df_array.T:
    loop_c+=1
    x = column
    k2, p = stats.normaltest(x) 
    alpha = 0.001
    print("p = {:g}".format(p))
        
    # rules for printing the normality output
    if p < alpha:
        test_result = "non_normal_distr"
        col_for_normalization.append((loop_c)) # applicable if yeo-johnson 
is used
        
        #if min(x) > 0: # applicable if box-cox is used
            #col_for_normalization.append((loop_c)) # applicable if 
box-cox is used
        print("The null hypothesis can be rejected: non-normal 
distribution")
        
    else:

 EBSCOhost - printed on 2/9/2023 10:53 AM via . All use subject to https://www.ebsco.com/terms-of-use



238 | Appendix

        test_result = "normal_distr"
        print("The null hypothesis cannot be rejected: normal 
distribution")

The output is as follows:

Figure 6.13: Normality test and identify the features

Note

The normality test conducted here is based on D'Agostino and Pearson's test 
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html), 
which combines skew and kurtosis to identify how close the distribution of the 
features is to a Gaussian distribution. In this test, if the p-value is less than the set 
alpha value, then the null hypothesis is rejected, and the feature does not have 
a normal distribution. Here, we look into each column using a loop function and 
identify the distribution of each feature.

4. Plot the probability density of the features to visually analyze their distribution:

columns_to_normalize = numeric_df[numeric_df.columns[col_for_
normalization]]
names_col = list(columns_to_normalize)

# density plots of the features to check the normality
columns_to_normalize.plot.kde(bw_method=3)
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The density plot of the features to check the normality is as follows:

Figure 6.14: Plot of features

Note

Multiple variables' density plots are shown in the previous graph. The distribution 
of the features in the graph can be seen with a high positive kurtosis, which is not a 
normal distribution.

5. Prepare the power transformation model and carry out transformations on the 
identified features to convert them to normal distribution based on the box-cox or 
yeo-johnson method:

pt = preprocessing.PowerTransformer(method='yeo-johnson', 
standardize=True, copy=True)
normalized_columns = pt.fit_transform(columns_to_normalize)
normalized_columns = pd.DataFrame(normalized_columns, columns=names_col)

In the previous commands, we prepare the power transformation model and apply 
it to the data of selected features.
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6. Plot the probability density of the features again after the transformations to 
visually analyze the distribution of the features:

normalized_columns.plot.kde(bw_method=3)

The output is as follows:

Figure 6.15: Plot of features

Chapter 07: Reproducibility in Big Data Analysis

Activity 14: Test normality of data attributes (columns) and carry out Gaussi-

an normalization of non-normally distributed attributes

1. Import the required libraries and packages in the Jupyter notebook:

import numpy as np
import pandas as pd
import seaborn as sns
import time
import re
import os
import matplotlib.pyplot as plt
sns.set(style="ticks")
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2. Now, import the libraries required for preprocessing:

import sklearn as sk
from scipy import stats
from sklearn import preprocessing

3. Set the working directory using the following command:

os.chdir("/Users/svk/Desktop/packt_exercises")

4. Now, import the dataset into the Spark object:

df = pd.read_csv('bank.csv', sep=';')

5. Identify the target variable in the data:

DV = 'y'
df[DV]= df[DV].astype('category')
df[DV] = df[DV].cat.codes

6. Generate training and testing data using the following command:

msk = np.random.rand(len(df)) < 0.8
train = df[msk]
test = df[~msk]

7. Create the Y and X data, as illustrated here:

# selecting the target variable (dependent variable) as y
y_train = train[DV]

8. Drop the DV or y using the drop command:

train = train.drop(columns=[DV])
train.head()

The output is as follows:

Figure 7.22: Bank dataset
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9. Segment the data numerically and categorically and perform distribution transfor-
mation on the numeric data:

numeric_df = train._get_numeric_data()

Perform data preprocessing on the data.

10. Now, create a loop to identify the columns with a non-normal distribution using 
the following command (converting to NumPy arrays for more efficient computa-
tion):

numeric_df_array = np.array(numeric_df)
loop_c = -1
col_for_normalization = list()

for column in numeric_df_array.T:
    loop_c+=1
    x = column
    k2, p = stats.normaltest(x) 
    alpha = 0.001
    print("p = {:g}".format(p))
        
    # rules for printing the normality output
    if p < alpha:
        test_result = "non_normal_distr"
        col_for_normalization.append((loop_c)) # applicable if yeo-johnson 
is used
        
        #if min(x) > 0: # applicable if box-cox is used
            #col_for_normalization.append((loop_c)) # applicable if 
box-cox is used
        print("The null hypothesis can be rejected: non-normal 
distribution")
        
    else:
        test_result = "normal_distr"
        print("The null hypothesis cannot be rejected: normal 
distribution")
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The output is as follows:

Figure 7.23: Identifying the columns with a non-linear distribution

11. Create a PowerTransformer based transformation (box-cox):

pt = preprocessing.PowerTransformer(method='yeo-johnson', 
standardize=True, copy=True)

Note

box-cox can handle only positive values.

12. Apply the power transformation model on the data. Select the columns to normal-
ize:

columns_to_normalize = numeric_df[numeric_df.columns[col_for_
normalization]]
names_col = list(columns_to_normalize)

13. Create a density plot to check the normality:

columns_to_normalize.plot.kde(bw_method=3)
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The output is as follows:

Figure 7.24: Density plot to check the normality

14. Now, transform the columns to a normal distribution using the following 
command:

normalized_columns = pt.fit_transform(columns_to_normalize)
normalized_columns = pd.DataFrame(normalized_columns, columns=names_col)

15. Again, create a density plot to check the normality:

normalized_columns.plot.kde(bw_method=3)
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The output is as follows:

Figure 7.25: Another density plot to check the normality

16. Use a loop to identify the columns with non-normal distribution on the trans-
formed data:

numeric_df_array = np.array(normalized_columns) 
loop_c = -1

for column in numeric_df_array.T:
    loop_c+=1
    x = column
    k2, p = stats.normaltest(x) 
    alpha = 0.001
    print("p = {:g}".format(p))
        
    # rules for printing the normality output
    if p < alpha:
        test_result = "non_normal_distr"
        print("The null hypothesis can be rejected: non-normal 
distribution")
        
    else:
        test_result = "normal_distr"
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        print("The null hypothesis cannot be rejected: normal 
distribution")

The output is as follows:

Figure 7.26: Power transformation model to data
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17. Bind the normalized and non-normalized columns. Select the columns not to 
normalize:

columns_to_notnormalize = numeric_df
columns_to_notnormalize.drop(columns_to_notnormalize.columns[col_for_
normalization], axis=1, inplace=True)

18. Use the following command to bind both the non-normalized and normalized 
columns:

numeric_df_normalized = pd.concat([columns_to_notnormalize.reset_
index(drop=True), normalized_columns], axis=1)
numeric_df_normalized

Figure 7.27: Non-normalized and normalized columns
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Chapter 08: Creating a Full Analysis Report

Activity 15: Generating Visualization Using Plotly

1. Import all the required libraries and packages into the Jupyter notebook. Make 
sure to read the data from bank.csv into the Spark DataFrame.

2. Import the libraries for Plotly, as illustrated here:

import plotly.graph_objs as go
from plotly.plotly import iplot
import plotly as py

3. Now, for visualization in Plotly, we need to initiate an offline session. Use the 
following command (requires version >= 1.9.0):

from plotly import __version__
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, 
iplot
print(__version__)

4. Now Plotly is initiated offline. Use the following command to start a Plotly note-
book:

import plotly.plotly as py
import plotly.graph_objs as go

init_notebook_mode(connected=True)

After starting the Plotly notebook, we can use Plotly to generate many types 
of graphs, such as a bar graph, a boxplot, or a scatter plot, and convert the 
entire output into a user interface or an app that is supported by Python's Flask 
framework.

5. Now, plot each graph using Plotly:

Bar graph:

df = pd.read_csv('bank.csv', sep=';')
data = [go.Bar(x=df.y,
            y=df.balance)]

py.iplot(data)
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The bar graph is as follows:

Figure 8.18: Bar graph

Scatter plot:

py.iplot([go.Histogram2dContour(x=df.balance, y=df.age, 
contours=dict(coloring='heatmap')),
       go.Scatter(x=df.balance, y=df.age, mode='markers', 
marker=dict(color='red', size=8, opacity=0.3))], show_link=False)

The scatter plot is as follows:

Figure 8.19: Scatter plot

Boxplot:

plot1 = go.Box(
    y=df.age,
    name = 'age of the customers',
    marker = dict(
        color = 'rgb(12, 12, 140)',
    )
)
py.iplot([plot1])
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The boxplot is as follows:

Figure 8.20: Boxplot
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All major keywords used in this book are captured alphabetically in this section. Each one is 
accompanied by the page number of where they appear.
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B
backend: 10, 92
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barplot: 108, 140, 

143-144, 150
boolean: 104
borutapy: 149, 194
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110-111, 113, 137, 196
brottli: 83

C
campaign: 138, 146
cartesian: 42
cassandra: 77
chi-square: 138, 147
coherent: 34, 131
configured: 38, 58, 

60, 74, 81
connector: 85
consensus: 2
console: 3-4, 6, 98
context: 72, 107, 118, 184

coordinate: 37, 39
copy-paste: 3
crosstab: 188

D
database: 81-82, 

85, 152, 184
databricks: 96, 119
datanode: 74
datatype: 186
datetime: 11, 21-23, 

28, 52, 56
debugging: 9, 161, 176
domain: 134, 152
dtypes: 22-23

E
encode: 28
encoding: 28, 153
endpoint: 81
enumerates: 34

F
facecolor: 65
figsize: 61, 64, 146
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floats: 147
fontsize: 147
framework: 89

G
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github: 6, 12, 17
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grayscale: 62
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106, 108, 146

H
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82, 89, 197
hands-on: 6, 114
heatmap: 147-148
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66, 68, 112, 141-143, 
145-146, 167

I
immutable: 78, 92
ingest: 12, 31, 50, 

66-67, 160
insert: 6
integer: 21, 47, 52, 56, 154
intuitive: 100, 132
ipython: 1-5, 9, 11, 

34, 77, 131, 157
isnull: 120-121, 123-124
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issues: 20, 82, 134
italic: 162, 164
italicized: 164
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iterate: 9
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K
kaggle: 112
kdeplot: 110
kernel: 5-6, 110
kubernetes: 76
kurtosis: 110
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localhost: 6

M
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162, 164-165, 171
master: 12, 17, 46, 62, 

86, 167, 173, 185
metastore: 77
ml-bank: 183, 185, 190-191
mojave: 92
mtcars: 112
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myjsonfile: 81
mypassword: 81, 85
mytable: 81-82

N
namenode: 74
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ndarray: 10

O
opencv: 161
opendata: 17, 22, 25-26
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P
parquet: 13, 26, 28, 71, 77, 

80, 82-85, 89, 93, 96
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petalwidth: 128-129
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pinpoint: 161
plotly: 34, 181, 194-197
plotlyjs: 195
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postgre: 81, 85
postgresql: 77, 81-82, 85
profiling: 166-168, 170, 183
pyarrow: 13
pydata: 11, 41
pyplot: 11, 22, 25, 35, 

38, 40, 44, 50-51, 55, 
58, 62, 64, 66, 68, 
108, 139, 147, 183

pyspark: 77-78, 81, 92-94, 
96, 114, 117-127, 129, 
179, 182-185, 189-191

R
regression: 41, 122, 

154-155, 193
resolved: 161, 164

S
sandbox: 173
savefig: 64-66
scalable: 92
scatter: 29-30, 42, 48-50, 

61-65, 68, 137, 196
schema: 82, 93-94, 97-98, 

100-101, 183-185

seaborn: 1, 11, 22, 25, 
31, 33, 41, 44-45, 49, 
51, 55-58, 62-63, 
65, 78, 108, 110, 139, 
141-142, 147, 183, 197

semicolon: 28
sensor-: 137
sentiment: 133
sepalwidth: 99, 101-102, 

106, 109-111, 125
setosa: 95, 104
sklearn: 149, 183
snappy: 83, 85
snippet: 93, 106, 

159, 164, 171
socrata: 12, 17, 22, 25-26
sortby: 87
spark-csv: 96-97, 119
sqlcontext: 93-94, 119, 126
statistics: 10, 21, 24, 34, 

41, 78, 97-100, 114, 
121, 125-126, 185, 187

statlib: 46
stopwords: 88
subset: 14, 19, 191

T
tables: 11, 68, 72, 93, 153
tabular: 2, 11, 85, 97
tabulation: 34
tensorflow: 161

U
up-sell: 133
username: 195
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113-114, 117-127, 129, 140, 
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vendor: 132
verbose: 41, 149
violin: 41
virginica: 95
virtualenv: 1

W
wallet: 134
whitespace: 52, 55, 62
workflow: 9, 34, 133-134, 

152, 158-160, 170, 173
wrapper: 149

X
x-axis: 29, 37, 40, 

42-43, 58, 61
xlabel: 58, 108, 145
xticks: 147

Y
y-axis: 29, 38, 42, 58, 61
ylabel: 58, 108, 145
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