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vii

We know that geometry is all around us. Yet many people haven’t had the op-
portunity to appreciate amazing geometric relationships and their beauty. The 
high school curriculum in the United States typically designates one year for 
the study of geometry providing an analog of the work of a mathematician, 
who builds up a field of study beginning with accepted knowledge—axioms 
and postulates—and then progresses to proving theorems in a logical order. 
However, this concentration on the proof of theorems bypasses many unusual 
relationships. This book attempts to present these geometric wonders without 
the “distraction” of proofs.

The modern understanding of geometry in the English language began 
largely in the 18th century when the Scottish mathematician Robert Simson 
published an English version of a large portion of Euclid’s elements. Through-
out the 19th century, the information was further refined by the French 
mathematician Adrien-Marie Legendre (1752–1833). Geometry’s first import 
into the United States was by the American mathematician Charles Davies 
(1798–1876), who wrote the standard textbook for a course that began with 
definitions, axioms, and postulates, which led to theorems. This was originally 
a college-level course, and in the 20th century it began to be introduced typi-
cally in the 10th grade of high school. Most people’s recollection is of prov-
ing theorems, which eventually builds up a body of knowledge in the way a 
mathematician approaches a study of mathematics.

There is clearly beauty in developing a body of knowledge where one 
step depends on the previous steps. However, very often this does not allow for 
students to truly appreciate the amazing relationships that permeate the subject 
of plane geometry. Under totally unexpected situations, you can find three or 
more lines concurrent (lines containing a common point) or three or more 
points concurrent (points on the same straight line). Or, if you know that any 

Introduction
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viii   Introduction

three noncollinear points determine a unique circle, under what circumstances 
will four or more points lie on the same circle? These are just some of the 
surprising elements of geometry that have often gone unnoticed. I hope to 
rectify this oversight in this book.

Besides these unexpected characteristics, many aspects of geometry have 
been—perhaps inadvertently—neglected the way the subject matter has been 
presented. Naturally, when dealing with linear figures, the triangle dominates. 
However, the quadrilateral (a four-sided figure) also deserves consideration, 
which will be introduced at the appropriate time. To whet your appetite, 
consider drawing an ugly quadrilateral, where no sides are parallel or the 
same length. If you draw another quadrilateral by consecutively joining the 
midpoints of the awkward-looking quadrilateral you have drawn, you will 
always end up with a parallelogram (as shown in Figure 0.1). This is clearly not 
expected, but it is true! There is much more that can be done with this and 
many other such geometric novelties, as you will see in our journey through 
geometry.

Figure 0.1. Parallelogram formed by joining the midpoints of the quadrilateral.

Much of geometry is not only a function of a lot of interesting discov-
eries but also the result of brilliant work by famous mathematicians over the 
centuries. This book will explore some of their findings in the context of the 
geometric relationships that evolved from their work.

There is also beauty in geometry. The golden rectangle is an example. In 
this book this figure will be presented in such a way that it can be appreciated 
both aesthetically and mathematically. Naturally, the golden rectangle perme-
ates many other branches of mathematics, so we will touch on just a few of 
these to highlight its importance.

Geometry can also be entertaining, as when we look at the mistakes that 
can be made in it—errors that often go completely unnoticed until an absurd 
result evolves. Then we become concerned and look to rectify what might 
have been wrongly worked or assumed.

In this book, we will begin our journey through geometry to admire its 
wonders by considering concurrency of lines. We are interested here primarily 
in the relationships that exist, so the flow of the book will not be disturbed 
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Introduction   ix

with proofs. As mentioned earlier, high school geometry courses consist largely 
of developing a logical system within geometry, which highlights proofs more 
than the results that are proved. This book, in contrast, will look at those results 
and admire the amazing relationships that exist. This will be the modus operandi 
throughout. Lots of references will be provided at the end of the book. These 
will enable readers to access proofs of many of the concepts that are presented 
without proof. The goal here is to allow you, the reader, to appreciate geometry 
and not be distracted by proving each of the findings presented.

As you encounter these truly unexpected and rather interesting 
relationships, you may be tempted to dig into your geometric toolbox and 
attempt to prove them. Or you might do a geometric construction with 
an unmarked straight edge and a pair of compasses. Today, however, we can 
convince ourselves that a relationship truly holds by using various dynamic 
geometry software products such as Geometer’s Sketchpad (www.keycurriculum.
com/) or Geogebra; the latter can be obtained without cost at www.geogebra.
org/?lang=en. In short, demonstrating the many unexpected relationships 
that appear throughout the book by using one of these software products can 
be almost as convincing as a proper logical proof. Frankly, you should expect 
to regularly exclaim, “WOW, what an amazing result!” while investigating 
the marvels shown in this book. We invite you now to join us on this rather 
unusual approach to appreciating geometry’s power and beauty, unencumbered 
by proofs.

 EBSCOhost - printed on 2/10/2023 4:17 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.keycurriculum.com/
http://www.keycurriculum.com/
http://www.geogebra.org/?lang=en
http://www.geogebra.org/?lang=en


This page is intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



1

1

Concurrent Lines

As one of the basic elements in geometry, lines deserve investigation. We 
know that any two nonparallel lines eventually will intersect. But when a 
third line shares a point of intersection with two other lines, we have three 
concurrent lines, which share a common point. This relationship becomes 
more interesting when more than three lines share a common point. We 
begin with various concurrent lines that are a part of the basic triangle 
relationships. Then, after we establish these rather common concurrencies, 
we will extend our knowledge of concurrency to other geometric figures. 
At that point, we expect to provide the reader with ideas that should elicit 
surprise and amazement. Let’s begin by considering the three altitudes of a 
triangle, lines from the vertices of a triangle that are perpendicular to the 
opposite sides.

THE ALTITUDES OF A TRIANGLE

Perhaps the most common concurrency is that generated by the three altitudes 
of a triangle. Generally, we take this fact for granted. However, it is a good 
example with which to begin our consideration of concurrent lines. In Figures 
1.1, 1.2, and 1.3 we show the three basic types of triangles: an acute triangle, 
where no angle exceeds 90°; a right triangle; and an obtuse triangle, where one 
angle is greater than 90°. Each of these triangles also has the three altitudes AD, 
BE, and CF intersecting at point H. This point of intersection, often referred to 
as the point of concurrency, is called the orthocenter of the triangle and is located 
inside an acute triangle, outside an obtuse triangle, and at the right-angle 
vertex of a right triangle, as shown in Figures 1.1 through 1.3.
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2   Chapter 1

We can gather much more information from this altitude relationship. 
The point of concurrency is particularly interesting in that it divides the alti-
tudes into lengths that yield equal products. Although this relationship holds 
true for all three situations pictured in Figures 1.1, 1.2, and 1.3, it is probably 
easiest to see for the acute triangle, where AH·HD BH·HE CH·HF= = .

Unfortunately, this relationship is rarely shown to high school classes, 
although it easily could be presented when discussing similar triangles. Also not 
shared in high school geometry is another relationship that further enhances 
knowledge about the three altitudes of a triangle. The triangles shown in 
Figures 1.1, 1.2, and 1.3 demonstrate a relationship involving the alternate 
segments determined by the feet of the altitudes (the points at which the 
altitudes intersect the opposite sides):BD CE AF CD AE BF2 2 2 2 2 2+ + = + + .

Altitudes do not stand alone in their relationship to other triangle parts. 
For example, in Figure 1.4, we begin with a triangle and one of its altitudes, 

Figure 1.2. 

Figure 1.3. 

Figure 1.1. 
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Concurrent Lines   3

Figure 1.4. 

say, AE. Then we draw the radius of the circumcircle (the circle containing the 
three vertices of the triangle) to vertex A. Unexpectedly, when we draw the 
angle bisector of angle A of triangle ABC, we find that this bisector also bisects 
the angle we just created, angle IAE; or, put another way, EAD IAD∠ = ∠ . 
This relationship, one of many that unfortunately are not shown to high school 
classes, foreshadows the well-hidden relationships that we will examine going 
forward.

Figure 1.5. 

Another example of how an altitude of a triangle can lead to an 
angle bisector is shown in Figure 1.5, where we see triangle ABC with 
altitude AD. Two random lines are drawn from points B and C that 
intersect at a point E on the altitude and meet sides AC and AB of the 
triangle at points P and Q, respectively. This makes the altitude AD bisect 
angle PDQ, so that ADQ ADP.∠ = ∠  This example demonstrates how the 
altitude can relate to an angle bisector—which in this case is the altitude 
itself!
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4   Chapter 1

CONSIDERING OTHER CONCURRENCIES

Concurrencies sometimes occur in the strangest ways. Consider, for example, 
triangle ABC, shown in Figure 1.6. Here, side BC is extended to point P, 
which can be placed anywhere along the extended side. We then draw a 
random line from P to intersect sides AC and AB of triangle ABC at points 
D and F, respectively. When we draw DE parallel to AB, and FE parallel to AC, 
lines EF, DE, and BC all contain point E, or are concurrent at point E. Recall 
that we could select point P anywhere on the extension of BC, which is what 
makes this example so unusual.

Figure 1.6. 

Figure 1.7. 

Many other relationships involve the altitudes of a triangle. For example, 
if any altitude is extended to the circumcircle of the original triangle, the 
side of the triangle (BC) bisects the line segment from the orthocenter to 
the point of intersection with the circumcircle. In Figure 1.7, referring to 
altitude AD, note that point D is the midpoint of HG, or put another way, 

 HD GD= .
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Concurrent Lines   5

If we extend another altitude, as shown in Figure 1.8, we now have two 
altitudes that meet the circumcircle at points G and J. Rather unexpectedly, 
this determines two equal arcs, JC and GC, on the circle; or, put another way, 
point C bisects arc JCG. This is true for any inscribed triangle that has two 
altitudes protruding toward the circumcircle. That’s what makes this relation-
ship so interesting.

Figure 1.8. 

Suppose we now extend the remaining altitude, CF, to intersect the circle 
at point K. When we connect the three points of contact of the altitudes, J, K, 
and G, with the circumcircle, the result is not only a triangle similar to the one 
formed by the feet of the altitudes (called an orthic triangle) but also a situation 
in which the corresponding sides of these two similar triangles are parallel. This 
is shown in Figure 1.9.

Particularly surprising in Figure 1.9, since this is an acute triangle, is that 
the altitudes of triangle ABC bisect the angles of the orthic triangle. In other 
words, altitude AD bisects angle EDF, altitude DE bisects angle FED, and 
altitude CF bisects angle DFE.

The positioning of the orthic triangle is also intriguing. When radii of 
the circumcircle of a triangle are drawn to a vertex of the triangle, they are 
perpendicular to each of the sides of the orthic triangle. This is shown in 
Figure 1.10 where for triangle ABC, the radii of circumcircle O are drawn to 
each of the three vertices, A, B, and C, and the radii are perpendicular to the 
sides of the orthic triangle, DEF. Such simple yet unexpected relationships go 
far to enhance the beauty of geometry.

 EBSCOhost - printed on 2/10/2023 4:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



6   Chapter 1

A triangle is said to be inscribed in a second triangle, if each of its vertices 
is on a side of the larger triangle. In Figure 1.11, triangle DEF is inscribed 
in triangle ABC. For this acute triangle ABC, however, we have constructed 
triangle DEF so that each of its vertices is on the foot of one of the larger 
triangle’s altitudes. We can inscribe a second triangle in triangle ABC, as shown 
in Figure 1.11. The smallest perimeter of all the possible inscribed triangles 
of the original acute triangle ABC is that of triangle DEF formed with  
its vertices at the feet of the altitudes. That is, the perimeter of triangle DEF 
is less than that of triangle XYZ or any other triangle formed by three points 
on the sides of the original triangle. Recall from an earlier example that each 
of the altitudes of the original triangle ABC, namely AD, DE, and CF, bisects 
an angle of the orthic triangle.

Figure 1.10. 

Figure 1.11. 

Figure 1.9. 
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Concurrent Lines   7

A slight digression here might be of interest. For any point within an 
equilateral triangle, such as point P in triangle ABC (Figure 1.12), we find that 
the sum of the perpendicular distances from P to each of the three sides of the 
equilateral triangle is the same as that for any other point, say Q, selected within 
the triangle. The distance sum is always equal to the length of the altitude of 
the equilateral triangle. Therefore, referring to Figure 1.12, we can summarize 
this relationship as follows: PK PH PD QJ QG QF AE+ + = + + = .

Figure 1.12. 

A peculiar relationship evolves when a semicircle is drawn on one side 
of an equilateral triangle, as shown in Figure 1.13. Here we have triangle 
ABC with semicircle ABDC drawn on side AC. Points E and F are the 
trisection points of line segment BC. We then draw line AE to meet the 
semicircle at G, and line AF to meet the semicircle at J. Quite surprisingly, 
the semicircle is also trisected by these three lines, so that BG, GJ, and CJ 
are equal arcs.

To see how inclusive the orthocenter is with the remainder of the tri-
angle, consider the midpoint of two of the altitudes and one of the sides. 
This is shown in Figure 1.14, where N is the midpoint of altitude CF, M is a 
midpoint of altitude BE, and K is the midpoint of side BC. It is well known 
that any three noncollinear points determine a unique circle. However, get-
ting other points on that circle is no mean feat. Interestingly, no matter what 
the shape of the original triangle ABC is, the orthocenter will also lie on the 
circle determined by the three noncollinear points M, N, and K, as shown in 
Figure 1.14. We will consider many more concyclic points (points that lie on 
a common circle) later on.
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8   Chapter 1

The point of intersection of the altitudes, or the orthocenter, of a triangle 
has many special properties. One of these is rather curious. We know that 
any three noncollinear points determine a unique circle. Figure 1.15 shows a 
circle containing the orthocenter and two vertices of the triangle. This circle, 
containing points B, H, and C, turns out to be congruent to the circumcircle, 
containing points A, B, and C, of the triangle. This same relationship can be 
seen for the other two circles (shown) that contain the orthocenter and a dif-
ferent pair of vertices of triangle ABC; that is, all four circles shown in this 
figure are equal in size.

Figure 1.13. Figure 1.14. 

Figure 1.15. 

 EBSCOhost - printed on 2/10/2023 4:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Concurrent Lines   9

Many other relationships can be found regarding the altitudes of a triangle 
and its circumcircle. One is that the distance from the circumcenter to a side 
of the triangle is half the distance from the orthocenter to the opposite vertex. 
We see this in Figure 1.16, where the distance between the circumcenter O 
and the side AC is measured by the perpendicular distance OG. With simple 
measurement we find that BH OG2= .

Figure 1.16. 

THE CONCURRENCY OF THE MEDIANS OF A TRIANGLE

We have seen how the altitudes of a triangle are divided by their point 
of concurrency, where the product of the segments of each altitude is the 
same for all the altitudes. The medians of a triangle also are concurrent at a 
point, yet this point trisects each of the medians. In Figure 1.17 the three 
medians AD, BE, and CF meet at point G, their point of concurrency, which  

trisects each of the medians, so that GD AD,GE BE, GF CE
1
3

1
3

and
1
3

= = = . 

This point of concurrency is called the centroid of the triangle, since it is 
the triangle’s center of gravity. This means that if you wish to balance a 
cardboard triangle, the point at which that triangle will balance perfectly is 
the centroid.

Furthermore, with the medians drawn as in Figure 1.17, the triangle ABC 
is then partitioned into six smaller triangles of equal area.
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10   Chapter 1

Concurrency of lines sometimes appears when we least expect it. One 
such case is a line parallel to one side of a triangle, at any distance away from 
that side. The points of intersection of the lines joining two vertices of the tri-
angle to the side-intersection points of the parallel line will always be concur-
rent with the median from a third vertex. This is shown in Figure 1.18, where 
PQ is parallel to side BC of triangle ABC. Quite surprisingly, lines PC and QB 
will always be concurrent with the median AM.

Figure 1.17. 

Figure 1.18. 

Were we to pass line PQ, which is parallel to side BC of triangle ABC, 
through the midpoint, N, of AM, we would find that AM bisects PQ; that is, 
the intersection, N, of AM and PQ is the midpoint of segment PQ, which we 
can see in Figure 1.19. Notice that when two lines, such as AM and PQ, bisect 
each other, they form the diagonals of a parallelogram, AQMP.
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Figure 1.19. 

Figure 1.20. 

CEVA’S THEOREM

One of the most useful, yet often neglected, theorems involving concurrency 
of lines of a triangle was published in 1678 by the Italian mathematician 
Giovanni Ceva (1648–1734) in his work De lineis rectis. An earlier proof 
of this theorem had been done by the Arab mathematician Al-Mu’taman 
ibn Hūd in the eleventh century. Nevertheless, we still credit it to Ceva, as 
he is believed to have developed it without any knowledge of its previous 
discovery. The theorem states that the three line segments connecting the 
vertices of a triangle to the opposite sides are concurrent, if and only if, the 
products of the alternate segments along the sides are equal. In Figure 1.20,  
AF·BD·CE FB·DC·EA= , if and only if, the three line segments AD, 
BE, and CF are concurrent. Using Ceva’s theorem, it is trivial to prove 
that the medians of a triangle are concurrent, since the two products of 
alternate segments are clearly identical. Ceva’s theorem is extremely useful in 
establishing concurrency of lines joining vertices to the opposite sides of a 
triangle, as we shall see going forward.

 EBSCOhost - printed on 2/10/2023 4:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



12   Chapter 1

THE CONCURRENCY OF THE ANGLE BISECTORS  
OF A TRIANGLE

Yet another concurrency that should be introduced in high school geometry 
is that of the angle bisectors of a triangle. Figure 1.21 shows the concur-
rency of the angle bisectors, AD, BE, and CF, meeting at their point of 
concurrency, I. This point is called the incenter, as it is the center of the circle 
inscribed in the triangle, which is the circle tangent to each of the three 
sides of the triangle.

Figure 1.21. 

Figure 1.22. 

Ceva’s theorem is quite useful for proving concurrency when applied to 
the three angle bisectors of a triangle. Ceva’s theorem would also prove that the 
interior angle bisector of a triangle is concurrent with the two exterior angle 
bisectors of the other two angles, as shown in Figure 1.22. Here the interior 
angle bisector AL, when extended, meets the two exterior angle bisectors, KB 
and NC, at point P. The ambitious reader may want to prove this concurrency 
using Ceva’s theorem. However, here we merely appreciate the fact that fasci-
nating relationships such as this one exist in plane geometry.
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Another example of a concurrence using both the inscribed and the 
circumscribed circles of a triangle is shown in Figure 1.24. Here, we have 
triangle ABC, and the bisector of angle BAC is line AD. At point D we erect 
a perpendicular to side BC, which meets the diameter of the circumcircle at 
point P. Quite unexpectedly, when we draw the perpendicular bisector of AD, 
it is concurrent with the other two lines at point P.

Figure 1.23. 

Figure 1.24. 

The angle bisector of a triangle yields many unusual concurrencies. We 
will show one here as an example, but others will be revealed going forward. 
In Figure 1.23, AD is the bisector of angle BAC, and points M and N are the 
points of tangency of the inscribed circle to sides AC and BC of the triangle. 
The intersection of MN and AD is point P, and interestingly enough, when we 
draw the perpendicular line from point B to AD, it falls precisely at point P.

DISCOVERING CONCURRENCIES IN TRIANGLES

Here, we show how geometric relationships can evolve from a group of 
midpoints in a general triangle. Consider triangle ABC (Figure 1.25) with 
three concurrent lines, AL, BM, and CN, drawn from each of the vertices 
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14   Chapter 1

to each of the sides, where the midpoints of each of these three lines are 
P, Q, and R, respectively. The midpoints of the three sides of the triangle 
are D, E, and F.

Figure 1.25. 

Figure 1.26. 

We then create triangle DEF (Figure 1.26). Its sides are parallel to those 
of the original triangle ABC, since, when you join the midpoints of two 
sides of a triangle, the line segment formed is half the length of, and parallel 
to, the third side. But now we return to our search for another set of three 
concurrent lines.

Suppose that we join the midpoints of the sides of the original triangle 
ABC with the three midpoints of AL, BM, and CN, namely, P, Q, and R, 
respectively. We, unexpectedly, get another set of concurrencies, namely, lines 
PD, QE, and RF, which all contain point S, as shown in Figure 1.27.

Figure 1.27. 
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Concurrencies can generate other concurrencies, as we have just seen. Yet, 
there is probably no limit to finding other such relationships. We simply select 
any point P in triangle ABC and connect it to each of the vertices, as shown 
in Figure 1.28. This gives us three concurrent line segments, AP, BP, and CP. 
We now draw the angle bisectors of each of the angles at vertex P. This gives 
us PF as the bisector of angle APB, PE as the bisector of angle APC, and PD 
as the bisector of angle BPC, where points D, E, and F are each on the sides 
of triangle ABC. When we draw lines AD, BE, and CF, we find that they are 
concurrent.

Figure 1.28. 

We can also randomly select some concurrent lines in a triangle, such as 
those shown in Figure 1.29, where a random point P is chosen inside triangle 
ABC. We then locate the midpoints M, K, and N of the sides of triangle ABC, 
namely, AB, BC, and CA, respectively. When we draw lines KL, NJ, and MG 
parallel to AP, BP, and CP through points K, N, and M, respectively, we find 
that they are concurrent at point Q. Remember that point P was randomly 
chosen, so the lines are concurrent at point Q regardless of where point P is 
placed in triangle ABC.

Figure 1.29. 
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16   Chapter 1

Sometimes we can create a point of concurrency that has further 
surprising significance. Consider triangle ABC in Figure 1.31, where we trisect 
BC at points D and E. This enables us to trisect the triangle itself, so that 
triangles ABD, ADE, and AEC all have the same area. This is easy to see, since 
the bases are equal and the altitude from A to line BC is the same for all three 
triangles. We would like to find a concurrency that would give us another way 
to partition this triangle into three equal areas. This can be done as follows: We 
construct line DF to be parallel to AB, and line EJ to be parallel to AC. The 
point at which EJ intersects DF, which we call P, will allow us to partition the 

Figure 1.30. 

Sometimes a concurrency can generate a second concurrency. Here we 
show a rather unusual arrangement of related concurrencies. We begin with 
triangle ABC, as shown in Figure 1.30. We then draw any three concurrent 
lines in the triangle, as we have done here with AP, BP, and CP. We now con-
struct triangle DEF in such a way that each side of the triangle is perpendicular 
to one of the concurrent lines of the original triangle ABC. Figure 1.30 shows 
that DE is perpendicular to AP, DF is perpendicular to BP, and EF is perpen-
dicular to CP. We then draw lines from the vertices of triangle DEF in such a 
way that each is perpendicular to one of the sides of triangle ABC. Here we 
see that DK is perpendicular to AB, EL is perpendicular to AC, and FM is per-
pendicular to BC. Unexpectedly, when these three lines are extended, we find 
that DQ, EQ, and FQ are concurrent at point Q. This concurrency, although it 
took us a bit of time to find, further demonstrates the kind of unusual patterns 
discoverable in geometry.
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In our examination of concurrencies of lines, we now introduce circles 
that are related to triangles. These include inscribed and circumscribed circles 
as well as circles that intersect the triangle’s sides at six different points.

Let’s begin by considering concurrencies that evolve from a triangle 
with its inscribed circle. We noted earlier that the center is determined by 
the concurrency of the three angle bisectors of the triangle. We show this 
in Figure 1.32, where the angle bisectors are AD, BE, and CF, which are 
concurrent at point I. Once we have inscribed the circle, we are prepared to 
construct another set of three concurrent lines. These lines join the triangle’s 
vertices with the points of tangency, T, U, and V, of the inscribed circle with 
the opposite vertices, AT, BU, and CV, which are concurrent at point K. This 
is called the Gergonne point after its discoverer, the French mathematician 
Joseph-Diaz Gergonne (1771–1859).

Figure 1.31. 

triangle into three equal areas, namely APB, APC, and BPC. We encountered 
a similar situation earlier (Figure 1.17), when we noted that the medians of 
a triangle partition the triangle into six equal-area triangles. Consequently, 
when these triangles are taken in pairs, the original triangle would be seen as 
partitioned into three equal-area triangles.

Figure 1.32. 
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The inscribed circle of a triangle can provide us several other surprising 
concurrencies. Some of these may seem contrived; however, we will consider 
two more concurrencies that we hope will motivate the reader to search for 
more such relationships.

In Figure 1.33, we draw the diameters of the inscribed circle emanating 
from its three points of tangency, T, U, and V, to meet the inscribed circle at 
points M, N, and Q, respectively. We then connect each of the triangle’s ver-
tices with these points to get AM, BN, and CQ. When these latter lines are 
extended, they are rather unexpectedly concurrent at point P. What makes 
this relationship special is that it is not well-known and it is applicable to all 
triangles.

Figure 1.33. 

Suppose we now do an analogous construction. We first draw any 
three concurrent lines (at point R). This time, however, they do not contain 
the center of the inscribed circle, and they emanate from the three points 
of tangency (T, U, and V ) and intersect the other side of the circle at 
points W, Y, and Z, as shown in Figure 1.34. Connecting each of the newly 
established points W, Y, and Z to the nearest vertices, we find, once again, 
another concurrency; namely, that AW, BY, and CZ, when extended, meet 
at point P.

Sometimes, what appears to be a somewhat convoluted diagram can 
lead to a quite unexpected concurrency. Consider triangle ABC, shown 
in Figure 1.35, where the altitudes AY, BZ, and CX meet at point Q, the 
orthocenter. We can easily locate the center of the circumscribed circle by 
taking the perpendicular bisectors of any two sides of the triangle, which 

 EBSCOhost - printed on 2/10/2023 4:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Concurrent Lines   19

Note also, the orthocenter in this configuration, since it gives us an added 
wonder, namely, the collinearity of points Q, O, and P. Therefore, this figure shows 
not only a concurrency but also a collinearity. This foreshadows the next chapter.

In our search for another concurrency, we first locate in Figure 1.36 
the midpoints of the segments that connect the orthocenter with each of the 
vertices; that is, the midpoints of the segments AQ, BQ, and CQ are G, H, and 
K. We then connect these midpoints with those of the three sides of the triangle, 
namely D, E, and F. Once again, we find unexpectedly that GD, HE, and FK are 
concurrent and, in addition, they are the same length! This is quite an amazing 
relationship that goes completely unnoticed in high school geometry.

Figure 1.34. 

Figure 1.35. 

gives us point P. We then locate the midpoints of AP, BP, and CP as points 
G, H, and K. Unexpectedly, we find that line segments GD, HE, and FK are 
concurrent at point O.
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There is no limit to the various concurrencies that can be found within 
a triangle. For this example, we consider two triangles that share the same 
inscribed circle. These are shown in Figure 1.37, where triangles ABC and 
DEF share the inscribed circle with center I.

Figure 1.36. 

Figure 1.37. 

Figure 1.38. 

However, there is one additional stipulation. The triangles are so situated 
that the lines joining their opposing vertices, AF, BE, and DC, are concurrent 
at point P, as shown in Figure 1.38.

Unexpectedly, when this happens, the lines TJ, UK, and VL joining their 
opposing points of tangency are also concurrent, as shown in Figure 1.39. One 
more unexpected feature is that these additional lines are concurrent at the very 
same point, point P, as the previous three lines. This is truly unusual!
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Figure 1.39. 

Sometimes, segment lengths can determine concurrency. One such example 
is triangle ABC, shown in Figure 1.40, where point P is placed on side BC so 
that AB BP AC CP+ = + . Similarly, although not clearly demonstrated in 
the diagram, point Q is placed on side AC so that BC CQ AB AQ+ = + .  
Furthermore, point R is placed on side AB so that BC BR AC AR+ = + . 
When all of these conditions are properly met, we find, curiously enough, that 
AP, BQ, and CR are concurrent at point P.

Figure 1.40. 

It is always intriguing when one concurrency leads unexpectedly 
to another that seems completely unrelated. We see within triangle ABC 
(Figure 1.41) three randomly drawn lines, AL, BM, and CN, concurrent at 
point P. They allow us to draw the resulting triangle, MNL. We then locate 
the midpoints, S, Q, and R, of the sides of triangle MNL, MN, ML, and NL, 
respectively. Quite surprisingly, lines AS, BR, and CQ (each extended) also 
turn out to be concurrent, at point X.

There is an interesting variation of the previous example. Instead of using 
the midpoints of the sides of triangle MNL, we simply select other points, S, R, 
and Q, on the sides of triangle MNL so that LS, MR, and NQ are concurrent at 
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point T, as shown in Figure 1.42. This makes lines AS, BR, and CQ concurrent 
as well at point K. Remember, this depends on triangle MNL maintaining the 
concurrency at point P.

CIRCLES AND TRIANGLES

Our next relationship provides us some truly amazing geometry. Consider a 
circle intersecting a random triangle at six points, as shown in Figure 1.43. This 
is not just a random circle intersecting the triangle at six points, however, but 
rather one where lines AD, BF, and CE are concurrent at point P. (When you 
try to construct this, begin with the three concurrent lines and then construct 
a circle containing the three points of intersection with the sides.)

Figure 1.43. 

Figure 1.41. Figure 1.42. 

When this happens, amazingly, the vertex connections to the other three 
points of intersection of triangle ABC and the circle, D′, E′ and F ′, determine 
another three lines, AD′, BF ′ and CE′, which turn out to be concurrent at 
point R, as shown in Figure 1.44.
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Analogously, we now select a point P in triangle ABC, as shown in  
Figure 1.45. From point P we draw perpendiculars, PD, PE, and PF, to each 
of the three sides of the triangle. We know that any three noncollinear points 
determine a unique circle, so we then draw the circle determined by points 
D, E, and F.

Figure 1.44. 

Figure 1.45. 

Note that the circle also intersects the triangle at three additional points, 
K, L, and M, as shown in Figure 1.46. We then draw the perpendiculars to the 
sides of triangle ABC at each of the points K, L, and M. As you can see, these 
perpendiculars are concurrent. Remember, we began with a randomly selected 
point P, then allowed the circle formed by the perpendiculars to determine 
another three points that seem to be unrelated to the first three points. But, lo 
and behold, those new three points similarly determine a point of concurrency 
of perpendiculars.
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TANGENT CIRCLES

We have introduced a circle that is neither inscribed in nor circumscribed 
about a triangle. Now let’s do the reverse and consider a circle circumscribed 
about a triangle and a circle inscribed in the same triangle. This will lead us to 
some truly unexpected concurrencies. In Figure 1.47, the circle with center O 
is inscribed in the triangle and tangent to the sides at points T, U, and V. The 
circle with center I is circumscribed about triangle ABC, with the perpen-
dicular bisectors of the sides (which determine the center of the circumscribed 
circle) meeting the circle at points K, L, and J.

The last determined points, K, L, and J, when joined to the points of  
tangency (T, U, and V ) on the inscribed circle, provide us with three concurrent  
lines, as shown in Figure 1.48.

Figure 1.46. 

Figure 1.47. 
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Figure 1.48. 

As you might notice, points P, O, and I in Figure 1.49 appear to be  
collinear; that is, all three points lie on the same line. This, in fact, is true, as 
we can show. Take time to marvel over these concurrencies and collinearities, 
as they are often overlooked aspects of geometry that make it fascinating. We 
will consider collinear points in the next chapter. But since points P, O, and I  
are so obviously lined up, we have taken the liberty of mentioning them in 
advance.

Figure 1.49. 

We now extend our concept of inscribed circles beyond triangles to 
consider circles that are tangent to the circumscribed circle of a triangle and 
to a side of the triangle. Figure 1.50 shows such a configuration. The easiest 
way to construct this is to draw the perpendicular bisectors of the sides  
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A surprising concurrency is obtained by joining each of the common 
points of tangency of the pairs of circles with the opposite vertex of the 
triangle. This is shown in Figure 1.51, where lines AK, BL, and CJ are 
concurrent at point P. Remember, we began with a randomly drawn triangle, 
which is what makes this result so spectacular.

Figure 1.50. 

Figure 1.51. 

(which, of course, are concurrent at the center of the circumscribed circle) and 
then determine the midpoints between the two points of tangency. Once you 
have these midpoints, you have the center of the circles as well as their radii, 
allowing for construction of the three circles.

 EBSCOhost - printed on 2/10/2023 4:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Concurrent Lines   27

If we now construct three inscribed circles in each of the triangles, as 
shown in Figure 1.53, we can establish another concurrency by connecting 
the centers of each of the circles with the remote vertex of the center tri-
angle. We then have the concurrent lines QD, ER, and FS meeting at point P,  
another example of unexpected concurrency that demonstrates geometry’s 
beauty.

Figure 1.52. 

Figure 1.53. 

As we approach our next unexpected concurrency, we must first recog-
nize that when we join the midpoints of the three sides of a triangle (as shown 
in Figure 1.52), the triangle is divided into four congruent triangles. Further-
more, if you look at this figure carefully, you will see three parallelograms, 
AEFD, DFEC, and BFED, as well.

This configuration also allows us to determine yet another concurrency 
by drawing lines from the vertices of the large triangle ABC through the center  
of the nearest small circle, as shown in Figure 1.54. Here you can see that lines 
AQ, BP, and CS meet at point P.

Figure 1.54. 
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This time we will work in the exterior of a triangle as well as the 
interior. The centers of the circles, P, Q, and O, are tangent to the exten-
sions of the sides of triangle ABC. Such circles are called escribed circles, 
while the circle inside the triangle is called the inscribed circle. The points 
of tangency of the circles with each of the three sides are clearly marked 
in Figure 1.56. Circle P is tangent to the three sides at points H, F, and 
G. The circle with center Q is tangent to the three sides of the triangle at 
points R, E, and N. And the circle with center O is tangent to the three 
sides of the triangle at points J, D, and M. This configuration gives us lots 
of concurrent lines:

AD, BE, and CF are concurrent at point X.
PC, AO, and QB are concurrent at point Y.

We also have a number of collinear points, such as P, A, and Q; P, B, and O; 
and Q, C, and O.

A motivated reader may want to  search for other collinearities or concur-
rencies in this very rich diagram.

Next, we consider three circles of different sizes, which are not linked 
to each other except by tangent lines shared by the circles two a time, as 
shown in Figure 1.57. When we connect the three points of intersection, 
R, T, and S, of the common tangent lines with the centers of the circles 
opposite them, we again find a surprising concurrency. Note that the 
circles were placed randomly. This makes this concurrency all the more 
amazing!

Figure 1.55. 

We can take this a step further by considering points J, K, and L, at which 
lines AQ, BR, and CS intersect the nearest side of the inside triangle DEF, as 
shown in Figure 1.55. Surprisingly, the lines joining the vertices of the inside 
triangle DEF and the points, J, K, and L meet at point P. Once again, in one 
configuration we have found several concurrencies. An ambitious reader may 
look for further concurrencies.
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Figure 1.56. 

SPECIAL TRIANGLES PLACED ON SIDES OF A GENERAL TRIANGLE

A famous relationship involves placement of equilateral triangles on the three sides 
of a randomly drawn triangle. Napoleon Bonaparte (1769–1821), who was enam-
ored with mathematics, is believed to have discovered this relationship. As shown in 
Figure 1.58, the lines drawn from each vertex of the original triangle to the remote 
vertex of the equilateral triangle on the opposite side are concurrent. Note that 
triangle ABC could be any shape, and this relationship will still hold. Furthermore, 
these three concurrent line segments are equal in length: AE BD CF= = .

Figure 1.57. 

Figure 1.58. 
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Figure 1.59. 

Figure 1.60. 

Moreover, the centers of the three equilateral triangles on the sides of 
triangle ABC, when joined by line segments, form another equilateral tri-
angle, as shown in Figure 1.59. This configuration is often called Napoleon’s 
triangle.

There is still more to be discovered in this Napoleon’s triangle. The 
circumcircles of each of the equilateral triangles are concurrent at point O,  
the point of concurrency of the original three lines. This is shown in  
Figure 1.60.

We continue to find more beauty in this noteworthy geometric con-
figuration. The point O is called the equiangular point of triangle ABC, since 

AOB BOC COA∠ = ∠ = ∠ , as shown in Figure 1.61.
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Figure 1.61. 

Figure 1.62. 

There is one final surprising equilateral triangle in this Napoleon’s tri-
angle. All we need to do is to create a parallelogram beginning with segments 
AD and DC, which gives us the parallelogram ADCK. Lo and behold, we 
obtain AKF as another equilateral triangle, as shown in Figure 1.62.

Now that we have had equilateral triangles and circles on each side of a 
triangle, we construct in a very unusual way a triangle that can be placed on 
each of the three sides of a given triangle. We will do this by using a process 
called reflection, in which we reflect triangle ABC through line AC to create 
triangle ADC, as shown in Figure 1.63. The technique for doing this is to draw 
a line from point B perpendicular to AC at point G, then mark off a length 
equal to BG on the extension of BG and call it point D. We then have triangle 
ADC as the reflection of triangle ABC in the line AC.

We now employ this technique two more times. This will yield reflec-
tion of triangle ABC through the line AB, giving us triangle ABE. The third 
time, the triangle ABC will be reflected in side BC, creating the triangle FBC, 
shown in Figure 1.64.
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Now that we have three triangles, each of which is congruent to the 
original triangle ABC, we will construct their circumcircles, as shown in  
Figure 1.65. Unexpectedly, the three circles are concurrent. In other words, 
they share a common intersection point, P.

Figure 1.65. 

Figure 1.63. Figure 1.64. 

Now if that isn’t enough, we can find still another concurrency point, 
this time, once again, with concurrent lines. In Figure 1.66, the three concur-
rent lines emerge by joining the center of each circle with the remote vertex 
of the original triangle ABC. We then observe that lines AS, BQ, and CR are 
concurrent at point O.

Suppose we now return to our Napoleon’s triangle and use our 
newly developed skill of reflecting a triangle in a side of another triangle.  
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Figure 1.67. 

In Figure 1.67, we reflect each of the equilateral triangles in the side on 
which they are drawn. Note that the reflected triangles (dashed lines) 
brought with them their center point, which when combined with seg-
ments created another equilateral triangle. When we combine the reflected 
center points of the reflected triangles in Figure 1.67, we once again get 
an equilateral triangle, P ′R′Q′.

Figure 1.66. 

CONCURRENT CIRCLES

Another interesting set of three concurrent circles can be constructed from the 
triangle partitioned into four congruent triangles by joining the midpoints of 
the sides of the outside triangle, which we considered earlier in Figure 1.52. 
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To further add to the wonder of these three concurrent circles, when 
we draw lines from each of the large triangle’s vertices to the centers of the 
three circles, we find that these lines also are concurrent. Amazingly enough, 
they are concurrent at the very same point as the three circles. We show this 
in Figure 1.69.

Figure 1.68. 

Figure 1.69. 

When we draw the circumcircles of the three “outside” triangles, they meet at 
point P, as shown in Figure 1.68.

The configuration shown in Figure 1.69 can be generalized by taking 
any point on each side of triangle ABC and constructing three circles, 
using the vertices as a third point to determine the circles, as shown in 
Figure 1.70. Notice that the three circles contain a common point, P. This 
point, known as the Miquel point of a triangle, is named after the French 
mathematician Auguste Miquel (1816–1851), who first discovered this 
wonderful relationship.
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There are some other interesting features about the Miquel point. For 
example, when line segments are drawn from the Miquel point to the other 
circle intersection points, which are on the sides of the original triangle, the 
angles formed with those sides are equal, as shown in Figure 1.71. There you 
can see that AEP CDP BEP∠ = ∠ = ∠ . A special appreciation of this relation-
ship results when we recall that we began with any triangle, which provides a 
generalization beyond this one illustration.

Figure 1.70. 

Figure 1.71. 

Note that for some triangles, such as obtuse triangles, the point of 
concurrency, P, of the three circles could be outside the triangle, as shown in 
Figure 1.72. Yet, the properties we have seen for the acute triangle hold for the 
obtuse triangle as well.

Further, if we join the center points of the three circles in the Miquel 
configuration, we amazingly get a triangle that is similar to the original one. 
That is, in Figure 1.73, triangle ABC is similar to triangle RSQ, since the three 
corresponding angles are equal, as marked. Of course, this also holds true for 
the obtuse triangle illustration shown in Figure 1.73.
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We can take this Miquel configuration a step further. Consider any second  
triangle, where each vertex is on one of the Miquel circles and each side 
contains one of the three Miquel points. Such a triangle is similar to the original 
triangle. We have one such configuration in Figure 1.74, where we begin with 
triangle ABC and then construct triangle GHK so that one vertex is on each of 
the three circles, and each side contains one of the Miquel points E, D, and F.  
When we do this, we have constructed, surprisingly, a triangle (GHK) that is 
similar to the original triangle (ABC).

Figure 1.73. 

Figure 1.74. 

Figure 1.72. 

Miquel’s theorem is remarkable in that the three points on the sides of 
the original triangle can also be on the extensions of two sides of the given 
triangle, as shown in Figure 1.75. In comparison to the configuration shown in 
Figure 1.70, points F and E are not on the internal segments of the triangle’s 
sides but rather on their extensions. We then follow the Miquel procedure of 
drawing the three circles, as we have previously done, and notice that they also 
are concurrent at point P. Of course, all the aforementioned properties will 
once again hold true. At this point you may wonder if there any limitations to 
the Miquel theorem. Keep reading!
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Figure 1.75. 

Figure 1.76. 

We can even apply Miquel’s theorem and concurrent circles to a quadri-
lateral. If we extend the sides of a quadrilateral until the opposite sides meet—
assuming they are not parallel—the resulting configuration is called a complete 
quadrilateral. At the same time, we will have formed four triangles, and for each 
of these we will apply the Miquel circles. Amazingly, we find that all the circles 
we draw share one common point of concurrency, P. In Figure 1.76, focus on 
the four triangles ∆ABC, ∆ADE, ∆BFE, and ∆CDF and notice that the four 
circumcircles meet at point P.

We shouldn’t think that three circles cannot create a concurrency 
without a triangle. As shown in Figure 1.77, we have three randomly drawn 
circles, each of which is tangent to the larger circle internally, and we mark 
the points of intersection of the circles as D, E, G, and F. When we join the 
centers of the circles with a remote intersection of the other two circles, we 
find that they are concurrent at point P. That is, DQ, ER, and FS are the three 
concurrent lines.
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A RECTANGLE CONCURRENCE

Let us now leave circles for a while and concentrate on rectilinear figures. 
Here, a rather simple construction leads to a most unexpected concurrency. 
We begin with any rectangle ABCD, as shown in Figure 1.78. We then 
draw a line parallel to the horizontal lines cutting the vertical lines at points 
E and J. We do the same thing with a vertical line cutting the horizontal 
lines at points F and K. Now comes the most unexpected result: We draw 
the diagonal of rectangle ADJE. Then we draw the diagonal of rectangle 
FDCK. When we draw the diagonal of rectangle ERKB and extend it, we 
find that all three of these diagonals are concurrent at point P. Since this 
can be done for any shape rectangle with any parallel lines, we show in  
Figures 1.78, 1.79, and 1.80 a few rectangles of different shapes that all yield 
the same result.

Figure 1.78. Figure 1.79. 

Figure 1.77. 
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QUADRILATERALS ON THE SIDES OF A TRIANGLE

Another equally surprising concurrency occurs when we take any random tri-
angle (in this case triangle ABC, shown in Figure 1.81) and draw squares on two 
of its sides, as we have done on sides AB and AC. We then draw a perpendicular 
from a remote vertex of one of the squares to the furthest side of triangle ABC, 
as we have done with DK perpendicular to BC. We then do the same thing 
with the other square to get FL perpendicular to AB so that these two perpen-
diculars meet at point P. Most unexpectedly, when we draw the altitude from 
B to AC of triangle ABC, it turns out to be concurrent with the previous two 
perpendiculars.

Figure 1.80. 

Figure 1.81. 
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Suppose we now make triangle ABC a right triangle with the right angle 
at vertex B. Once again, we will join remote vertices of the triangle and square 
twice, as shown in Figure 1.83 by line segments DC and AF. Surprisingly, they 
intersect the altitude from B to the hypotenuse AC at point P. Again we have 
three concurrent lines—rather unexpectedly.

This time we construct a square on each side of triangle DEF so that the 
external sides of these three squares, when extended, form triangle ABC, as 
shown in Figure 1.84. When we draw the (extended) lines AD, BE, and CF, 
we find that they are concurrent at point P.

Figure 1.82. 

We can extend this initial diagram by adding a congruent square on 
each of the two existing squares, as shown in Figure 1.82. By joining a remote 
vertex of the square and triangle twice, we find that they are concurrent with 
the triangle’s altitude from the vertex where the squares meet. In other words, 
the two lines TC and FA are concurrent with the altitude BG of triangle 
ABC.
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While placing squares on the sides of a triangle we can discover a number 
of other concurrencies. In Figure 1.85, we begin with any randomly drawn acute 
triangle ABC. We can easily locate the center of each of the squares by getting 
the intersection of its diagonals. When we join the center of a square with the 
remote vertex of the triangle, we find that those three lines, AS, BQ, and CR, 
are concurrent. Bear in mind, as with many of the other examples shown here, 
that these concurrencies are independent of the shape of the original triangle. 
That is part of the beauty of geometry we are trying to demonstrate.

Figure 1.83. Figure 1.84. 

Figure 1.85. 

When seeking further concurrencies, we can try some rather inventive 
ways to find them. Figure 1.86 shows a most unusual arrangement of four lines 
that have a common point of intersection. Two of the lines, AF and CE, join 
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triangle vertices with remote vertices on squares on opposite sides of triangle 
ABC. The third line, DG, joins the two remote vertices of the squares thus far 
involved. The fourth line also shares a common point of intersection, P, and 
this line, BQ, joins a third vertex of the triangle with the center of the square 
on the opposite side. This would be a more difficult concurrency to discover 
on one’s own, which might be reason to admire it even more.

Figure 1.86. 

Figure 1.87. 

Sometimes we can find concurrencies with part of a configuration, as 
shown in Figure 1.87, where we ignore square BCGF and work with the other 
two remaining squares. Here we find that lines EJ, BK, and DC are concur-
rent at point P. We could just as easily have ignored one of the other squares 
and repeated this procedure with the remaining two squares. Therein lies the 
beauty of the situation!
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Another concurrency that can be found in this configuration is shown in 
Figure 1.89. Here, lines EC and JB are concurrent with the perpendicular line 
from vertex A to side FG.

Figure 1.88. 

We can discover several more concurrencies in this configuration, where 
a square is placed on each side of a randomly drawn triangle. Figure 1.88 
shows an unusual situation rather than a concurrency. When we draw the line 
of centers, RQ, and then compare it to the line joining the common vertex 
of these two squares to the center of the third square, we find that these two 
lines are not only perpendicular but also the same length; that is, RQ AS⊥  
and RQ AS= . Once again, the beauty lies in the fact that this can be done 
for any triangle.

Figure 1.89. 
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Now, we enhance the diagram shown in Figure 1.89 by constructing 
parallelograms between each of the squares, so that we have the following 
parallelograms: AKXD, CJZG, and BFWE. Once again, we locate the centers 
of each of these parallelograms by drawing the diagonals. When we connect 
these centers to the centers of the remote squares by drawing lines NQ, MS, 
and RT, again, to our amazement, the lines are concurrent at point P. This is 
shown in Figure 1.90.

Figure 1.90. 

We can establish still another concurrency from the previous diagram 
(Figure 1.90). This time we connect the center of each square with the remote 
vertex of the opposite parallelogram. In other words, segments XS, WQ, and 
ZR are now also concurrent at point P, which is shown in Figure 1.91.

Yet another concurrency can be established in this configuration (Figure 1.92).  
We can join midpoints U, V, and Y of the remote sides of the squares, ED, 
KJ, and FG respectively, with the opposite remote vertex of each of the 
 parallelograms so that lines UZ, XY, and VW are concurrent.

There are even more concurrencies that we can identify in this configu-
ration. This time we connect the midpoints of the sides of the triangle to the 
center point of the opposite parallelograms. In Figure 1.93, we show that lines 
ML, HT, and NI are concurrent at point P.

While we are still on this configuration, let’s draw an altitude from each 
vertex of the original triangle to each of the parallelograms’ diagonals. This  
results in another concurrency. When NB, TC, and MA are extended, they 
meet at point P, as shown in Figure 1.94.
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Figure 1.91. Figure 1.92. 

Figure 1.93. Figure 1.94. 

We find yet more concurrent lines by taking the perpendicular bisector of 
each of the diagonals of the parallelograms, as shown in Figure 1.95, where M, N, 
and T are midpoints. We then have the following concurrency: HM, IT, and LN.

Besides the various concurrencies that exist in this configuration, there 
are also equalities to be found. We offer one here and leave the others for the 
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reader to discover. In Figure 1.96, we notice that AW AZ= . Good luck in 
your search for the other equalities!

Figure 1.95. 

Figure 1.96. 

MORE PLACEMENTS OF SQUARES

We now explore placement of squares onto a randomly drawn quadrilateral, 
TLUV, shown in Figure 1.97. First, we will join the center points of opposite  
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squares so that we have lines YZ and XW meeting at point P. Curiously 
enough, when we join the midpoints of the four lines joining the squares—J the  
midpoint of AH, K the midpoint of GF, N the midpoint of DE, and M  
the midpoint of BC—we find that lines MK and NJ also meet at point P. In 
effect we have four lines, which are all concurrent at point P.

Figure 1.97. 

Figure 1.98. 

Having placed squares on triangles and then on a quadrilateral, we now 
place squares on a point, as shown in Figure 1.98. The three squares are shown 
with the sole consideration that they all share the common point P. We then 
join vertices of adjacent squares with the three line segments AK, GF, and CD. 
As shown in Figure 1.98, we join the midpoints of those three lines with the 
opposite square’s center. Amazingly, these three lines, YM, XQ, and NZ, are 
always concurrent (at point R) regardless of the size of the squares and their 
placement as long as they share a common vertex with the others. This is surely 
an example to be cherished!
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To show that the placement of the two squares will not affect the concur-
rency, we offer Figure 1.100. Here the squares have changed size and position, 
and still, the concurrency remains intact.

Figure 1.99. 

Figure 1.100. 

We can even find concurrencies where two squares share a common 
vertex point, P. In Figure 1.99, we notice two randomly placed squares of 
different sizes that share the common vertex A. When we draw the lines 
BE, CF, and DG, we notice that they are concurrent at point P. As with 
many of our other examples, placement of the two squares will not affect 
the concurrency.
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Figure 1.101. 

There are also configurations where analogous polygons are em-
bedded on the sides of a triangle. Consider, for example, Figure 1.101, 
where we begin with triangle ABC and select any point P. We then 
join P to the three vertices and create parallelograms, as shown in the  
figure. When we connect each vertex of the original triangle to the re-
mote vertex of the parallelogram embracing the opposite side, we find 
that lines AF, BE, and CD are concurrent at point R. For the ambitious 
reader we offer a small enhancement to this already amazing concurrency: 
AF BE CD AB BC AC ( AP BP CP )2 2 2 2 2 2 2 2 2( )+ + = + = + = = .

We can also find surprising concurrencies in two regular pentagons placed 
in any way we choose, except that they share one common vertex. In Figure 1.102,  
that common vertex is point X. When we join the corresponding vertices of 
the two pentagons with lines AE, BF, CG, and DH, as shown in Figure 1.102, 
we find that these four lines are concurrent at point P, which could be any-
where, depending on the relative sizes and placement of the pentagons.

Figure 1.102. 
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We can extend this scheme further by repeating it for hexagons in 
place of the pentagons we previously used and still find a concurrency. In 
Figure 1.103 we have two hexagons that share a common vertex N, yet 
are located randomly and are of different sizes. When we join the points 
consecutively, we find that the five lines AF, BG, CH, DJ, and EK are 
concurrent at point P.

Figure 1.103. 

Figure 1.104. 

BACK TO TRIANGLE PLACEMENTS

In our pursuit of further concurrencies, let us consider the configuration shown 
in Figure 1.104. Here we place square DEFG inside triangle ABC in such a 
way that two sides of the square are parallel to altitude AH. Once again, we 
find an unexpected concurrency when we draw lines BFJ and CGK, which are 
concurrent with altitude AH at point P. Again, the beauty lies in the fact that 
it is the placement, not the size, of the triangle and the square that is important.

Here is a rather unusual arrangement for those accustomed to working 
with related triangles. Consider two noncongruent triangles placed one inside 
the other, with the corresponding sides parallel, as shown in Figure 1.105. Here, 
the sides of triangle ABC are parallel to the corresponding sides of triangle DEF.  
We can clearly see that the lines joining the corresponding vertices are concur-
rent at point P.
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Another way of placing triangles within other triangles is where two 
 triangles are placed in such a way that lines from each vertex of the larger 
t riangle are perpendicular to the nearer side of the inside triangle. Again, it 
turns out that these lines are concurrent.

This configuration is shown in Figure 1.106, where each of the vertices of 
triangle DEF are on the sides of triangle ABC, and the lines from vertices A, B, and 
C are each perpendicular to sides DF, DE, and EF at points H, G, and J, respec-
tively. These three perpendicular lines, AH, BG, and CJ, are concurrent at point R.

If this isn’t impressive enough, we can take it one step further and show 
another concurrency for this configuration. When we erect perpendiculars at 
points D, E, and F to each of the sides of triangle ABC, they will be concur-
rent at point P (Figure 1.106).

Figure 1.105. 

Figure 1.106. 

Our next example shows how two triangles inscribed in the same circle have 
a relationship through their angle bisectors and altitudes. Figure 1.107 shows tri-
angle ABC and its circumcircle O. We then draw the angle bisectors of each of the 
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angles of triangle ABC to meet the circumcircle at points D, E, and F. It turns out 
that the point of intersection, I, of the angle bisectors also serves as the orthocenter 
of triangle DEF. In other words, point I is also the point of intersection of altitudes 
DX, EY, and FZ of triangle DEF. Therefore, we can say that the two triangles are 
related by sharing lines that are respectively angle bisectors and altitudes.

Figure 1.107. 

Figure 1.108. 

Although the next configuration is complex, it again reveals concurrency 
in a way you might least expect. We begin with triangle ABC and its inscribed 
circle O, as shown in Figure 1.108. We then randomly select any diameter of 
circle O, and from each vertex of triangle ABC we draw a perpendicular inter-
secting the diameter at points D, E, and F. From these three points, D, E, and 
F, we then draw another set of perpendiculars to each of the three sides of the 
triangle, BC, AC, and AB, respectively, intersecting the sides of the triangle at 
points P, Q, and R. Unexpectedly, we find that EQ, FR, and DP are concurrent 
at point X. This configuration, once again, points out the beauty of geometry, 
which sometimes can be achieved through less attractive beginnings.
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Our next discovery of concurrency likewise is complicated. We begin with 
triangle ABC, which is shown in Figure 1.109, and select any point somewhere 
inside the triangle. We then draw a line l containing point P and have it intersect 
the sides of the triangle at points X, Y, and Z. We now let extended lines AP, 
BP, and CP intersect the circumcircle of triangle ABC at points R, S, and T 
respectively. Unexpectedly, lines RX, SZ, and TY are concurrent at point Q. 
This elaborate configuration shows how one concurrency creates another that 
appears to be completely unrelated and where we would least expect it.

Figure 1.109. 

Figure 1.110. 

POLYGON CONCURRENCIES

Let us now focus on some polygon concurrencies. In Figure 1.110 we see a 
hexagon circumscribed about the circle. If this were a regular hexagon, the 
diagonals would certainly be concurrent. But here we have a randomly drawn 
nonregular hexagon with the sole condition that it is circumscribed about 
a circle—meaning that the circle is tangent to each of the six sides of the 
hexagon. Unexpectedly, in this case, we once again find that the diagonals are 
concurrent at point P.
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This unusual relationship was discovered in 1806 by a 21-year-old French 
student, Charles Julian Brianchon (1783–1864), who later became a professor 
of mathematics. Furthermore, it holds true not only for a circle but also for an 
ellipse. That is, if we had a hexagon circumscribed around an ellipse, the same 
thing would be true: the diagonals joining opposite vertices would be concur-
rent, as shown in Figure 1.111.

Figure 1.111. 

Figure 1.112. 

While we’re still on the topic of polygons, let’s consider a nonregular 
pentagon circumscribed about a circle, as shown in Figure 1.112. Here, two 
diagonals, AD and BE, intersect at point P. Then the line joining vertex C to 
the point of tangency F on the opposite side of the pentagon will be concur-
rent with the other two lines at point P. There is a very subtle relationship 
between this situation and that of the hexagon. We leave its discovery to the 
ambitious reader.

A lot more concurrencies can be found on polygons. For entertain-
ment and as a challenge to the motivated reader we begin by considering an 
18-sided regular polygon (i.e., a polygon that has equal sides and equal angles), 
as shown in Figure 1.113. A host of surprising concurrencies appear in the 
next few figures, which will further allow us to appreciate them. We describe 
some of these examples here and leave the others for the reader to discover. 
Beginning with Figure 1.113, five lines can be symmetric about the diagonal 
AK, which are all concurrent at point P.
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In Figure 1.114 we consider an 18-sided regular polygon with four 
diagonals symmetric around the center diagonal AK, once again concurrent 
at point P.

Figure 1.113. 

Figure 1.114. 

Figures 1.115 to Figure 1.118 show several other concurrencies that can 
be found in the 18-sided regular polygon.

Before we challenge the reader to find these other concurrencies, we 
describe one more. In it we have five lines, shown in Figure 1.118, that are 
concurrent at point P. Notice that a certain symmetry exists among the line 
segments in the examples that we provided.
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Figure 1.118. 

Figure 1.115. Figure 1.116. 

Figure 1.117. 

We are now finished with the concept of concurrency of lines. We move 
on to the analogue: the collinearity of three or more points, which are points 
on a straight line.
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Collinearity

Concurrency of lines and collinearity of points are analogs and in some cases 
closely related. One of the better known relationships between these two concepts 
was demonstrated by French mathematician Gerard Desargues (1591–1661). This 
relationship relates concurrency to collinearity, and vice versa.

DESARGUES’ THEOREM AND BEYOND

We begin by placing two triangles in such a way that the lines connecting the 
corresponding vertices will be concurrent. According to Desargues’ theorem, 
once this is achieved the pairs of corresponding sides will then meet in three col-
linear points. In Figure 2.1 the corresponding vertices are A

1
 and A

2
, B

1
 and B

2
, 

and C
1
 and C

2
. When we connect these vertices with lines we notice that A

1
A

2
, 

B
1
B

2
, and C

1
C

2
 meet at point P. When we extend the corresponding sides, C

1
B

1
 

and C
2
B

2
 meet at point A′, A

1
B

1
 and A

2
B

2
 meet at point C ′, and A

1
C

1
 and A

2
C

2
 

meet at point B ′. We find that these three points, A′, B′, and C ′, are collinear.

Figure 2.1. 
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Here we can see how collinearity and concurrency relate. To further 
strengthen this point, we could have pursued this configuration conversely by 
placing the two original triangles in such a way that the corresponding sides 
connected through their extensions meet in three collinear points. Then the 
lines joining the corresponding vertices would be concurrent.

This amazing relationship that Desargues offered the world of 
mathematics allows us to appreciate other unexpected relationships—in 
this case involving concurrency and collinearity. We will consider one of 
these in Figure 2.2, where the points of tangency of the inscribed circle in 
triangle ABC are M, N, and L. When we connect the corresponding vertices 
of triangles ABC and LMN, recalling the Gergonne point (see page 17) 
enables us to realize that line segments AL, BM, and CN are concurrent. This 
relationship can be easily established by Ceva’s theorem, noting that two 
tangent segments from an external point to the same circle are equal (that 
is, AM = AN, BN = BL, and CM = CL). Thanks to Desargues’ theorem, we 
see that the line extensions of the corresponding sides of the two triangles, 
ABC and MNL, meet at three collinear points, P, Q, and R, as shown in 
Figure 2.2, where MN and CB meet at point P, LM and BA meet at point 
R, and LN and CB meet at point Q.

Figure 2.2. 

By this line of reasoning, we can apply an apparently analogous situa-
tion, shown in Figure 2.3, since we have already established that the altitudes 
of a triangle are concurrent. As in the previous example, the lines joining the 
vertices of triangles ABC and LMN are concurrent. Once again invoking  
Desargues’ theorem, we find that the line extensions of the corresponding sides 
meet at three collinear points (P, Q, and R): MN and CB at point P, LM and 
BA at point R, and LN and CB at point Q.

Now that we have some experience with Desargues’ theorem, we em-
bark toward a truly unexpected result that we can justify very nicely by 
applying it. As shown in Figure 2.4, we select points E, F, G, and H on the 
sides of parallelogram ABCD so that lines GH, AC, and EF are concurrent 
at point P. Unexpectedly, when we draw lines HE, DB, and GF, they too are 
concurrent at point Q.
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Figure 2.3. Figure 2.4. 

Figure 2.5. 

This surprising result is even better appreciated when we see how simply 
it is justified by Desargues’ theorem. To do that, consider triangles DHG and 
BEF (highlighted in Figure 2.5). Our original setup had these two triangles 
placed so that their corresponding sides met at the collinear points A, C, and P.  
By Desargues’ theorem this tells us that the lines joining the corresponding 
vertices HE, DB, and GF are concurrent at point Q. We might consider this a 
surprising application of Desargues’ theorem!

UNEXPECTED SURPRISES FROM SIMSON’S THEOREM

As shown in the previous example, concurrency of lines is analogous to collin-
earity of points (more than two points that lie on the same straight line). When 
considering collinear points involving triangles, Simson’s theorem comes into play.

We should appropriately credit the originator of this theorem, since it 
touches upon one of the great injustices in the history of mathematics. This 
theorem was originally published by English mathematician William Wallace  
(1768–1843) in Thomas Leybourn’s Mathematical Repository (1799–1800). 
Through careless misquotes, the theorem has been attributed to Scottish  
mathematician Robert Simson (1687–1768), whose edition of Euclid’s Elements 
was long the basis for the study of geometry in the English-speaking world and, 
more specifically, greatly influenced American high school geometry courses.

 EBSCOhost - printed on 2/10/2023 4:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



60   Chapter 2

Simson’s theorem states that the feet of the perpendiculars drawn from 
any point on the circumscribed circle of a triangle to the sides of the triangle 
are collinear. This is shown in Figure 2.6, where P is any point on the circum-
scribed circle of triangle ABC. We then draw PY  perpendicular toAC  at Y, 
PZ perpendicular toAB at Z, and PX perpendicular to BC  at X. According to 
Simson’s theorem, points X, Y, and Z are collinear. The line that contains these 
points is usually referred to as the Simson line.

Figure 2.6. 

A curious phenomenon occurs when we construct the Simson line from 
the intersection point on the circumscribed circle and the extension of one 
of the triangle’s altitudes. This Simson line is parallel to the tangent line at the 
vertex from which this altitude emanates. Figure 2.7 shows an example. When 
altitude BD (emanating from point B) of triangle ABC meets the circum-
scribed circle at point P, then the Simson line of triangle ABC with respect to 
P is parallel to the line tangent to the circle at B.

Another interesting property of the Simson line is that it bisects the line 
that joins the orthocenter with the generator point of the Simson line. We can 
see this in Figure 2.8, where point P is used to construct the Simson line, XZY, 
of triangle ABC. Line PH, joining the orthocenter, H, of the triangle with 
point P, is bisected by the Simson line at point M, or PM = HM.

Another curiosity here is that if two Simson lines are constructed for 
the same triangle by two distinct points on the circumscribed circle, the angle 
formed by the Simson lines is half the measure of the arc the two points in-
tercept on the circle. In Figure 2.9, Simson lines YZX and UVW intersect to 
form angle MTN, which is half the measure of arc PQ.
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Figure 2.7. 

Figure 2.8. 

Often, as we have seen so far, three circles can share a common point of 
intersection. With the support of Simson’s theorem, however, we can justify the 
amazing relationship that four circles share a common intersection point, as shown 
in Figure 2.10. Here four lines, AB, BC, EC, and ED, have created four triangles, 

Figure 2.9. 
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Figure 2.10. 

Figure 2.11. 

ABC, FBD, EFA, and EDC. The circumcircles for these triangles all contain a 
common point, P. The dashed lines in the figure show the ambitious reader how 
Simson’s theorem helps us guarantee the concurrency of the four circles.

Consider three Simson lines drawn for the same triangle, shown in  
Figure 2.11. The Simson lines of triangle ABC—using points P, Q, and R—
form triangle NST. When we compare triangle NST to PQR, the triangle 
created by the three points on the circumcircle generating the Simson lines, 
we find that triangle PQR is similar to triangle NST. This is quite an amazing 
leap for Simson lines.
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Another concurrency develops after we draw the three altitudes, AD, BE, 
and CF, of triangle ABC, as shown in Figure 2.12. Connecting the feet of the 
altitudes generates three collinear points, P, Q, and R. We see this when we 
draw FE to intersect BC at point P, CA to intersect FD at point Q, and BA 
to intersect DE at point R.

Figure 2.12. 

EVEN POLYGONS CAN GENERATE COLLINEARITY

The next few examples consider polygon configurations that lead to collinear-
ity of points. The collinearity here is sometimes well camouflaged. But that is 
all part of the beauty of geometry, which will be further supported through 
polygonal examples. We begin with a hexagon, as shown in Figure 2.13.

Figure 2.13. 

Suppose we consider the vertices, AB′, CA′, and BC ′ (Figure 2.13),  
located alternately on two lines (see Figure 2.14). Then suppose we draw the 
lines that were previously the opposite sides of the hexagon:

AB′ and A′B; and note their point of intersection C ′′
BC′ and B′C; and note their point of intersection A′′
AC′ and A′C; and note their point of intersection B′′
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We find that the three points of intersection, A′′, B ′′, and C ′′, of these pairs of 
opposite sides are collinear. This surprising result was first published in about 
300 CE by Pappus of Alexandria in his Mathematical Collection.

Figure 2.14. 

A curious relationship occurs in a hexagon that has no opposite sides 
parallel and is inscribed in a circle. When the opposite sides are extended until 
they meet, the three points of intersection will all lie on the same line (are 
collinear).

This is shown in Figure 2.15, where opposite sides AF and DC meet at 
point N, EF and BC meet at point M, and ED and AB meet at point L. Like 
the previous hexagonal relationship, this one was discovered by a soon-to-be 
famous French mathematician, Blaise Pascal (1623–1662), who published it at 
age 16. Also similar to the previous case, this relationship holds true not only 
for circles but also for ellipses, as shown in Figure 2.16.

We now perform a rather unusual procedure. Recall from Figure 2.13 the 
opposite sides of the hexagon: AF is opposite CD, AF is opposite CD, and AF 
is opposite CD. We now place these points randomly on a circle, as shown in 
Figure 2.17, and we notice the following:

AF and CD intersect at point N
BC and FE intersect at point M
AB and ED intersect at point L

Looking at the opposite sides as we did before, we see that, assuming they are 
not parallel, they are able to intersect. Once again, to our surprise (and awe), 
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the result is three collinear points. We show this in the carefully constructed 
version of Figure 2.17, where points N, L, and M are, in fact, collinear.

Collinearity sometimes occurs in surprising and somewhat artificial ways. 
One such example is shown in Figure 2.18. Here, we see triangle ABC and 
the midpoints of its sides marked with points M, N, and L. We now choose 
a random point, P, somewhere inside triangle ABC. From the vertices of the  
triangle we draw lines through point P that intersect the opposite sides at points 
D, E, and F. Up to this point we have not done anything terribly unusual.  
Now, however, we do something that will lead to our collinearity, and it may 
look somewhat artificial—but it’s correct! We will join each of the midpoints, 
M, N, and L, with each of the previously determined endpoints, F, D, and E, 
respectively. That produces lines FM, ND, and EL, which meet the (extended) 
respective third sides, AC, AB, and CB, at points X, Y, and Z, respectively. 
And, as we notice in Figure 2.18, these three points are collinear. Although 
the construction of this configuration was simple, albeit unusual, it led to an 
unexpected collinearity.

Figure 2.16. 

Figure 2.17. 

Figure 2.15. 
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MORE UNEXPECTED COLLINEARITIES

We now embark on a somewhat simpler illustration of collinearity in geometry.  
Once again, we begin with triangle ABC and its circumcircle O. We then draw 
the tangents to the circumcircle at each of the three vertices of the triangle. It 
turns out that these tangents meet the opposite sides at three collinear points 
J, K, and L. But as shown in Figure 2.19, the sides of the triangle in each case 
needed to be extended to meet the tangent lines.

Figure 2.18. 

Figure 2.19. 

Circles also can produce collinear points, as shown in the following  
example. We begin with circle O (Figure 2.20) and simply draw chords AB, AC,  
and AD emanating from one randomly selected point, A, on the circle.  
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Next, we construct new circles using each of these chords as the diameters. 
We then identify the three points of intersection of each pair of circles; circles 
P and Q meet at point X, circles P and R meet at point Y, and circles Q and 
R meet at point Z. A simple visual inspection shows that these three points of 
intersection, X, Y, and Z, are collinear. So we see that collinearity is not limited 
to straight-line figures. To convince yourself that this is true, you might choose 
to draw it using dynamic geometry.

Figure 2.20. 

It is particularly interesting that the bisectors of the exterior angles of a 
nonisosceles triangle meet the opposite sides of the triangle in three collinear 
points. Consider triangle ABC shown in Figure 2.21, where the bisectors of 
the three exterior angles are AN, BL, and CM. It is then clear that the three 
points of intersection, L, M, and N, of these exterior-angle bisectors with the 
extended sides of the triangle are collinear.

Figure 2.21. 

We can take this another step further by considering the angle bisectors of 
both the interior and exterior angle bisectors of two angles of a triangle. Once 
we draw these four angle bisectors, we go to the third vertex of the triangle 
and from there draw the perpendiculars to each of them. When we do this, lo 
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and behold, we once again have collinearity of four points. This is shown in 
Figure 2.22, where we have the interior angle bisectors BJ and CH of angles 
ABC and ACB, respectively. These angles of triangle ABC have exterior angle 
bisectors BU and CW. From the third vertex, A, of triangle ABC, we draw the 
four perpendiculars meeting each of the angle bisectors at points K, L, N, and 
M, which, as you can see, are collinear. As with most of what we show, this is 
true for all triangles, where we have four distinctive points.

Figure 2.22. 
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Circles and Concyclic Points

To this point in our journey through the unusual and unexpected relationships 
that we can admire in geometry we have concentrated on concurrent lines as 
well as concurrent circles; that is, circles that share a common point, analogous 
to concurrent lines. We now focus on points that lie on the same circle. Any 
three noncollinear points will always lie on the same unique circle. Therefore, 
when we speak of concyclic points, we speak of more than three points that 
lie on the same circle.

Determining a circle in a rather unusual way once again demonstrates 
the amazing relationships in geometry. One such example begins with a rect-
angle, where the width is one-third as long as the length. In Figure 3.1 we 
show a rectangle where AD = AM = MN = NB. We then draw line segment 
MC meeting diagonal DB at point P. This simple arrangement leaves us with 
four points, C, B, N, and P, all lying on the same circle. Having four concyclic 
points is already noteworthy. And it is a simple way for us to begin our journey 
through discovering more than three points lying on the same circle.

Figure 3.1. 

Sometimes concyclic points turn up in quite unusual circumstances. 
Consider the nest of squares shown in Figure 3.2. This configuration begins 
with square ABCD, then EG and FH are drawn perpendicular to each other 
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at point O, which is the intersection of the diagonals of square ABCD. It then 
turns out that EFGH also is a square, and when the intersection points of the 
sides of this square are joined with the diagonals of square ABCD, we get 
another square, MLKN. The fact that FO = EO, and ∠ = ∠ = 45FAC EAC ,  
allows us to conclude that points A, E, O, and F are concyclic by using the 
converse—that equal inscribed angles intercept equal arcs on a circle, which in 
turn generate equal chords.

Figure 3.2. 

Figure 3.3. 

When additional points lie on the same circle, it can be even more note-
worthy. Swiss mathematician Leonhard Euler in 1765 first showed that there 
are six points that lie on the same circle. He found that the midpoints of the 
sides and the feet of the altitudes of a triangle must lie on the same circle. This 
is shown in Figure 3.3, where the midpoints of the sides of triangle ABC are 
points D, E, and F, and the feet of the altitudes are X, Y, and Z, all lying on 
the same circle with center O.
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There is still more to admire in this configuration. In Figure 3.5 we draw 
the line, HP, joining the orthocenter and the center of the circumscribed circle 
of triangle ABC. It turns out the center O of the nine-point circle is the mid-
point of HP, where P is the center of the circumscribed circle of triangle ABC.

Figure 3.4. 

In 1820, two French mathematicians and technical experts in Napoleon’s  
army, Charles-Julian Brianchon (1783–1864) and Jean-Victor Poncelet  
(1788–1867), discovered three additional points that lie on the very same circle. 
These three points are the midpoints of the segments joining the orthocenter 
(the point of intersection of the altitudes) and the feet of the altitudes. Figure 3.4 
shows these as points K, L, and M so that HK = BK, HL = LH, and HM = CM. 
This constitutes the famous nine-point circle, also often referred to as the Feuerbach 
circle. This configuration is named after Karl Wilhelm Feuerbach (1800–1834) 
who in 1822 published a paper that included this relationship and others as well.

Figure 3.5. 

When we draw the three medians of triangle ABC, we locate the cen-
troid, G (the center of gravity of the triangle), which just happens to lie on line 
HP. But it also is at a trisection point of HP, so that HG = 2PG, as shown in 
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Many other relationships can be found in this configuration; for example, 
the radius of the nine-point circle of triangle ABC is one-half that of the 

circumcircle of triangle ABC. In Figure 3.7 we can see that = 1
2

MO BD .  

Furthermore, an ambitious reader might want to verify through geometric 
constructions that all triangles inscribed in a given circle and having a common 
orthocenter also have the same nine-point circle. There are also other points 
of interest on the Euler line, such as the Exeter point, discovered by students at 
Phillips Exeter Academy in 1986. The Exeter point can be found by extending 

Figure 3.6. 

Figure 3.7. 

Figure 3.6. This unique line, which exists in all triangles except an equilateral 
triangle, where all points would mesh in one, is called the Euler line and con-
tains four important points: the center of the circumscribed circle, the ortho-
center, the centroid, and the center of the nine-point circle.
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We know that any three noncollinear points determine a unique circle. 
How surprising it is to find that, surrounding our nine-point circle, are two 
congruent circles determined as follows: one circle is the circumcircle of the 
original triangle—triangle ABC in Figure 3.9. The second circle is the one con-
taining two vertices of triangle ABC and the orthocenter, H. That means four 
congruent circles could be drawn from this configuration. For clarity, however, 
we show only the circle containing vertices B and C and the orthocenter, H.

In Figure 3.10 we show the four equal circles mentioned above, where we 
did not want to complicate the original diagram. We can use the pedal triangle 

Figure 3.8. 

the medians of the triangle to meet the circumcircle of triangle ABC at points 
Q, R, and S. Triangle TRL is formed by the tangents to the circumcircle of 
triangle ABC. Appropriately joining the points Q, R, and S to the vertices of 
triangle TRL, the Exeter point will be determined. (We leave the diagram to 
the reader.)

Geometric figures sometimes can be challenging to fully comprehend. 
Take, for example, Figure 3.8, where we have shaded three triangles, namely, tri-
angles AHC, AHB, and BHC. These three triangles along with the large triangle 
ABC create what is called an orthocentric system. In this system, the four points 
used—A, B, C, and H—are each the orthocenter of the triangle formed by the 
other three points. The surprising result is that these four triangles all share the 
same nine-point circle. This may not be too easy to visualize at first. Since we 
already know the nine-point circle for the original triangle ABC, let’s identify 
the nine points for one of the other triangles, for example, AHC. First we have 
the midpoints, K, M, and D, of its sides. Now we can locate the feet, X, Y, and Z, 
of the three altitudes. The midpoints of the segments (AH, BH, and CH) joining 
the vertices with the orthocenter (A) are points K, L, and M. All of these nine 
points lie on the same nine-point circle. Triangle XYZ, which is formed by the 
feet of the altitudes of triangle ABC, is called the pedal triangle of the original 
triangle ABC. We will be using the pedal triangle going forward.
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to create a concurrency. In Figure 3.11, XYZ is the pedal triangle of ABC, 
since it is formed by joining the feet of the altitudes of triangle ABC. Next, 
we draw lines from each vertex perpendicular to the nearest side of the pedal 
triangle. Notice that these three lines are concurrent at point P.

Another curiosity in this configuration is that the area of triangle 
ABC is equal to the product of the radius of the circumscribed circle 
and half the perimeter of the pedal triangle. It turns out that P is also 
the center of the circumscribed circle. Therefore, BP is a radius and so: 

1
2

∆ = 



 + +Area ABC ( BP ) ( XY YZ ZX ) .

Figure 3.9. 

Figure 3.10. 
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Figure 3.11. Figure 3.12. 

Other interesting relationships can be found in this rich configuration 
generated originally through the discovery of the nine-point circle. For 
example, for any triangle, the line joining the orthocenter with the midpoint 
of one of the sides meets the endpoint of the diameter of the circumcircle, 
which emanates from the vertex, which is opposite the side from which the 
previously mentioned midpoint was selected. In Figure 3.12, we can see this 
unexpected concurrence by drawing the line segment joining orthocenter 
H and midpoint D of side BC, and then drawing the diameter, APR, of the 
circumcircle containing vertex A. These two lines meet on the circumcircle 
at pedal point, R. This can certainly be applied to each of the three sides 
of the triangle. It is curious that this intersection point is always on the 
circumcircle!

Still more can be found in the nine-point circle. The following seemingly 
contrived example should demonstrate that there are always more novelties to 
be found within a geometric configuration. Figure 3.13 shows once again the 
nine-point circle of triangle ABC, with the orthocenter designated by O.  After 
constructing the bisector of angle BAC, which intersects side BC at point T, 
we erect a perpendicular from O to AT and designate it as point R. What we 
now notice is an unexpected collinearity, where points R, P, and D all lie in 
the same line.

We close our discussion with a rather amazing relationship that the nine-
point circle shares with the other circles of a triangle. Consider three circles 
that are tangent to the three sides of the triangle and lie outside the triangle; 
that is, circles that are tangent to two extended sides and a third side of the 
triangle. These are called excircles (or escribed circles) of a triangle. The fourth 
circle that we will consider here is the inscribed circle of the triangle. The  
relationship here is that the nine-point circle of the triangle is tangent to each 
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of these four circles. This is shown in Figure 3.14, where circles P, Q, and R are 
the escribed circles of triangle ABC and circle I is the inscribed circle. Notice 
that the bold-line circle in Figure 3.14, which is the nine-point circle, is tan-
gent to each of the other four circles. This is also frequently referred to as the 
Feuerbach theorem. It is, of course, true for all triangles as usual!

Figure 3.14. 

Figure 3.13. 
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On Quadrilaterals

One surprising relationship referring to quadrilaterals is very simply stated and 
easily proved. In the spirit of this book, however, we merely present it for its 
beauty and show how it helps us better understand geometric relationships. 
(We have already encountered it in the introduction of the book.) We begin 
with any “ugly” quadrilateral, preferably one that has no special properties, and 
locate the midpoints of its sides. Connecting these midpoints in sequence will 
always present us with a parallelogram. We show several of these awkward-
shaped quadrilaterals generating such parallelograms in Figure 4.1. Some might 
be special parallelograms, such as squares, rectangles, and rhombuses, and others 
just general parallelograms.

Figure 4.1. 

After seeing this amazing phenomenon in geometry, you might ask what 
must be true about the original quadrilateral in order for the resulting paral-
lelogram to be a square, a rectangle, or a rhombus?
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To answer this question and to satisfy the reader’s curiosity, we will make 
an exception to our usual method of presentation and give the reason why 
these parallelograms are formed. Figure 4.2 shows a quadrilateral, ABDC, 
where the midpoints of the sides are noted by points E, F, H, and G. We first 
focus on triangle ABC. Recall that when a line is drawn joining the midpoints 
of two sides of a triangle, it is one-half the length of and parallel to the third 
side. Therefore, EF is parallel to BC. Similarly, with triangle BCD we have GH 
parallel to BC and one-half of its length. Therefore, EF and GH are equal and 
parallel, which determines a parallelogram. Now let’s take this a step further. 
Since the diagonals of quadrilateral ABDC are perpendicular, the sides of par-
allelogram EFGH also are perpendicular. This provides us with a parallelogram 
that is a rectangle.

Figure 4.2. 

If the diagonals are perpendicular and equal in length, as shown in 
Figure 4.3, the sides of the rectangle also are of equal length. The figure that 
results when the midpoints of the sides are joined is a square.

Continuing with this line of reasoning, suppose the diagonals are  
of the same length as those in Figure 4.4, where AD = BC. Then the 
lines joining the midpoints, each of which is one-half the length of a 
diagonal, must all be the same length. This results in a parallelogram that 
is a rhombus.
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Note also that the perimeter of each parallelogram formed by joining 
the midpoints consecutively of a quadrilateral will always equal the sum of the 
lengths of the two diagonals. In addition, the area of the parallelogram formed 
by joining the midpoints of any quadrilateral is one-half the area of the original  
quadrilateral. These are truly geometric findings that should be appreciated.

Just to take this a step further, a parallelogram can also be formed by join-
ing the midpoints of the diagonals with the midpoints of one pair of opposite 
sides of a quadrilateral. This is shown in Figure 4.5.

Figure 4.3. Figure 4.4. 

Figure 4.5. 

Sometimes a rather strange way of creating a common geometric figure 
demonstrates the hidden beauty of geometry. Our next example shows how 
a rectangle can appear from very unexpected constructions. We begin with 
the cyclic quadrilateral ABCD inscribed in circle O, shown in Figure 4.6. 
We then construct the bisectors of the angles of the quadrilateral to meet the 
circumcircle at points D, E, F, and G. Unexpectedly, a rectangle appears as 
quadrilateral EFGH.
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A truly remarkable coincidence occurs when bisectors of opposite angles 
of a general quadrilateral intersect each other on a point on one of the diago-
nals. Unexpectedly, the bisectors of the other pair of opposite angles also meet, 
but on the other diagonal. This is illustrated in Figure 4.7, where the bisectors 
of angles B and D meet at point Q, which is on diagonal AC. When we draw 
the bisectors of angles A and C, we find that they meet at point P, which is on 
the other diagonal, BD. This is another example of the beautiful consistency of 
geometry that is often overlooked.

Figure 4.6. 

Figure 4.7. 

Quadrilaterals continue to provide some quite unusual curiosities. Take, 
for example, quadrilateral ABCD as shown in Figure 4.8, where diagonal 
BD divides the quadrilateral into two equal-area triangles, ABD and CBD.  
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When that is the case, we will always find a diagonal BD that divides diagonal 
AC into two equal parts, namely, AP = PC.

Figure 4.8. 

Still working with a general quadrilateral, we find an unexpected rela-
tionship that can evolve when we construct the four bisectors of the angles 
of the quadrilateral. In Figure 4.9, we have drawn the bisectors, AE, BG, 
CG, and DE, of angles A, B, C, and D, respectively. You know that any three 
noncollinear points always determine a unique circle; however, it is not 
particularly common for four points to lie on the same circle. Yet, with this 
configuration the points of intersection, E, F, G, and J, of the adjacent angle 
bisectors all lie on the same circle, resulting in a cyclic quadrilateral EFGJ. This 
is quite noteworthy!

Figure 4.9. 

There is one relationship of particular interest in the configuration 
shown in Figure 4.9. If the original quadrilateral ABCD is a parallelogram, 
then the resulting quadrilateral EFGJ will be a rectangle, as shown in 
Figure 4.10.
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Taking this one step further, if the original quadrilateral ABCD is a 
rectangle, then the resulting figure formed by the four angle bisectors of the 
rectangle will be a square. We can see this in Figure 4.11, where EFGJ is a square.

Figure 4.10. 

Figure 4.11. 

Figure 4.12. 

This could be generalized to any cyclic quadrilateral. Suppose we take 
the angle bisectors and find their points of intersection on the circumcircle. 
Lo and behold, a rectangle is formed, and again the intersection points of the 
adjacent angle bisectors are concyclic. We show this in Figure 4.12, where 
the angle bisectors of quadrilateral ABCD determine the cyclic quadrilateral 
PQRS. When those bisectors meet the circumcircle of quadrilateral ABCD, 
those intersection points form rectangle HEFG.
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We can take this a step further. When the diagonals of a cyclic quadrilat-
eral are perpendicular, the resulting quadrilateral formed by the angle bisectors 
creates a square. This is shown in Figure 4.13, where diagonals AC and BD are 
perpendicular, and the points at which the bisectors of the angles of quadrilat-
eral ABCD meet the circle create square HEFG.

Figure 4.13. 

Although we have dealt with general quadrilaterals, there is an extended 
version called a complete quadrilateral, which is formed by extending opposite sides 
to meet (assuming opposite sides are not parallel). This is shown in Figure 4.14, 
where ABCDEAF is a complete quadrilateral. A complete quadrilateral has three 
diagonals, AD, CF, and BE. The striking part about these diagonals is that their 
midpoints, M, N, and K, respectively, will always end up being collinear, as shown 
in Figure 4.14. Quite amazing!

Figure 4.14. 

In this particular situation, we have the original simple quadrilateral 
FBCE inscribed in a circle, as shown in Figure 4.15. Yet by extending the  
opposite sides and considering their points of intersection, we will have a  
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complete quadrilateral. When we draw the bisectors of the opposite angles, 
BAC and BDF, the result is truly unexpected. The points of intersections with 
the opposite sides determine a rhombus, GHJK.

Figure 4.15. 

Figure 4.16. 

An interesting feature of a cyclic quadrilateral, such as the one shown 
in Figure 4.16, is that the perpendicular bisectors of the sides of each of the 
four triangles, ABC, CDA, BCD, and BAD, are concurrent at the center 
of the circumcircle of the cyclic quadrilateral ABCD. Put another way, the 
perpendicular bisectors of each of the sides and the diagonals of the cyclic 
quadrilateral will all be concurrent at the center of the circumcircle.

Occasionally rather unusual geometric configurations lead to determin-
ing four points on one circle. One such arrangement is shown in Figure 4.17, 
where we begin with triangle ABC and line PQ parallel to side BC. We then  
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construct a circle tangent to side AC and intersecting side AB at points P and R.  
Unexpectedly, we find that points Q, R, B, and C all lie on the same circle.

Figure 4.17. 

Let us now consider a randomly drawn cyclic quadrilateral, where we 
construct a line from the midpoint of each side of the quadrilateral and per-
pendicular to the opposite side. In Figure 4.18, perpendiculars are drawn from 
the midpoints E, F, G, and H of sides AD, AB, BC, and CD, respectively, and 
perpendicular to the opposite sides of the quadrilateral. Quite unexpectedly, 
these four lines are all concurrent at point P.

Figure 4.18. 
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Once again, point P, the intersection of the segments joining the mid-
points of one side and perpendicular to the opposite side of a cyclic quad-
rilateral, plays an unexpected role. In Figure 4.20, when we extend a pair of 
opposite sides of the cyclic quadrilateral—in this case, sides AD and BC—they 
meet at point X. We then consider the line EG joining the midpoints of the 
same pair of opposite sides, which we extended. Unexpectedly, when we draw 
the perpendicular from point X to line EG, it contains a point, P, and thereby 
joins in the concurrency.

Figure 4.19. 

Figure 4.20. 

Point P in Figure 4.18 has another coincidental property. In Figure 4.19, 
we once again have a cyclic quadrilateral and point P determined, but this 
time we draw the diagonals of quadrilateral ABCD and also locate the 
midpoints, M and N, of those diagonals. In triangle KMN, where K is the 
intersection of the two diagonals, we find that point P is also the orthocenter 
of triangle KMN.
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This time let’s consider a special cyclic quadrilateral that has 
perpendicular diagonals as shown in Figure 4.21, where AC is perpendicular 
to BD. The unexpected result here is that, if we draw a line from the 
midpoint of one side of the quadrilateral and perpendicular to the opposite 
side, this line is concurrent with the two perpendicular diagonals of the 
cyclic quadrilateral. In Figure 4.21, line EF joins the midpoint of DC, is 
perpendicular to AB, and turns out to be concurrent with the two diagonals, 
AC and BD, at point P.

Conversely, we can say that if a cyclic quadrilateral has perpendicular 
diagonals, then the perpendicular to one side of the quadrilateral from 
the point of intersection of the diagonals bisects the opposite side of the 
quadrilateral.

Figure 4.21. 

Another unusual relationship evolves when considering cyclic quadrilat-
erals with perpendicular diagonals. If we draw a perpendicular from the center 
of the circle to one side of the quadrilateral, the length of the segment is half 
that of the opposite side of the quadrilateral. In Figure 4.22, ON is perpen-

dicular to side CD. It then turns out that 
1
2

ON AB= . Of course, this line 

could have been drawn from the center of the circle to any of the sides of the 
quadrilateral, and that perpendicular segment would be half the length of the 
opposite side. Think about it; quite astonishing!

A cyclic quadrilateral leads us to more unexpected relationships. Let’s 
once again consider cyclic quadrilateral ABCD, shown in Figure 4.23. This 
time we draw the diameter of the circumscribed circle from point A to meet 
the opposite side of the circle at point N. It turns out that point N enables us 
to conclude that BN = CD.
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Midpoints of lines sometimes can produce unexpected results. For example,  
if we join the midpoints of the two diagonals of any cyclic quadrilateral, we 
find that this line is concurrent with the two lines joining the midpoints of 
the opposite sides of the quadrilateral. This is shown in Figure 4.24, where the 
midpoints of the two diagonals are points M and N, and the midpoints of the 
sides are E, F, G, and H. Point P is the intersection of the two lines joining 
the midpoints of the opposite sides, EG and FH, and it is also the midpoint of 
line MN. This situation can be seen as a concurrency of the three lines, EG, 
FH, and MN, or as a collinearity of points M, P, and N. There is still one more 
thing to marvel about in this configuration: point P is the midpoint of MN. 
The beauty of this arrangement lies in the fact that it is true for any cyclic 
quadrilateral.

Figure 4.23. 

Figure 4.24. 

Figure 4.22. 
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When we combine two quadrilaterals, lots of interesting relationships can result. 
Figure 4.25 shows a cyclic quadrilateral ABCD inscribed in circle O. At each of 
the vertices of quadrilateral ABCD, a tangent to the circumcircle is drawn, creating 
quadrilateral HKLJ, which is circumscribed about circle O. The first amazing thing 
we find here is that the diagonals of the two quadrilaterals are all concurrent at 
point P. We also find a collinearity when we look at the complete quadrangle 
ABCD, where points F, G, and E are collinear. An ambitious reader can find other 
concurrencies and collinearities in this rather rich geometric configuration.

Figure 4.25. 

One of the more famous relationships of cyclic quadrilaterals is a theorem 
attributed to Claudius Ptolemaeus of Alexandria (commonly referred to as 
Ptolemy). In his work, the Almagest, Ptolemy stated the following: the product 
of the lengths of the diagonals of a cyclic quadrilateral equals the sum of the 
products of the lengths of the pairs of opposite sides. Applying this theorem to 
Figure 4.26 yields:

AC·BD AB·DC AD·BC.= +

Figure 4.26. 
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This leads to some rather unusual length relationships. For example, sup-
pose a parallelogram is intersected by a circle that contains one vertex and in-
tersects two of its adjacent sides, which is shown in Figure 4.27. Here circle O 
passes through the vertex A of parallelogram ABCD and intersects two sides and 
the diagonal at points P, Q, and R. When this is the case, the following strange 
relationship results:

AQ·AC AP·AB AR·AD.= +

Figure 4.27. 

Ptolemy’s theorem provides some rather interesting relationships among 
the lengths of lines joining a point on the circumcircle of a regular polygon 
to each of the polygon’s vertices. Here is a summary of the relationship of the 
first few regular polygons.

First, equilateral triangle ABC is inscribed in a circle with point P on the 
circle, as shown in Figure 4.28. The following is then true: PA = PB + PC.

Figure 4.28. 
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Figure 4.29. 

The next regular polygon is a square, and in Figure 4.29 we show square 
ABCD with point P on the circumcircle. The following relationship results: 
PD
PA

PA PC
PB PD

= +
+

.

Next is a regular pentagon, ABCDE, shown in Figure 4.30, with point P 
on the circumcircle. Here, Ptolemy’s theorem provides us with the following:

PA PD PB PC PE.+ = + +

Figure 4.30. 
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Finally, we have the regular hexagon ABCDEF, pictured in Figure 4.31, 
and once again point P is on the circumcircle. This results in the following 
relationship:

PE PF PA PB PC PD.+ = + + +

Figure 4.31. 
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On Circles

We have considerably immersed ourselves with circles to this point. But there 
are other beautiful relationships that exist primarily among circles—apart from 
those we have already discussed. One such relationship is based on the arbelos, 
pictured in Figure 5.1. Here the darker area bounded by three semicircles 
is mounted on one line, and the sum of the diameters of the two smaller  
semicircles is equal to the diameter of the larger semicircle.

Figure 5.1. 

There are lots of amazing features in this configuration, as shown in 
Figure 5.2. Here, GC is a common tangent to the two smaller semicircles, and 
SR is tangent to both smaller semicircles. The following are a few of these 
curiosities to appreciate—you may want to search for others!

= +Arc Arc ArcAGB ASC CRB

There are two sets of collinear points: A, S, and G, as well as B, R, and G.
Lines SR and CG bisect each other at point P.
Points G, R, C, and S are concyclic with the center of the circle at point P.
The area of the arbelos is equal to the area of the circle with center P.

 EBSCOhost - printed on 2/10/2023 4:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



94   Chapter 5

Other curiosities are to be found in this arbelos configuration. For example,  
if we draw segments RC and SC, we unexpectedly end up with a rectangle, 
RCSG, as shown in Figure 5.3.

Figure 5.2. 

Figure 5.3. 

Figure 5.4. 

We extend our appreciation of the arbelos even further by considering a 
circle tangent to each of the three semicircles, as shown in Figure 5.4. Many more 
such configurations exist, including other circles tangent to those in Figure 5.4.

There are almost always more fascinating things to find in any geometric  
configuration. Let’s once again consider the arbelos. This time we draw a  
complete large circle and locate the midpoint of the semicircle, M, below the  
arbelos. We then create the odd-looking quadrilateral SMRC, shown in Figure 5.5.  
It can be demonstrated that the area of this odd-looking quadrilateral is equal 
to the sum of the squares of the radii of the two smaller semicircles. In equation 
form we would write this as follows: AreaSMRC r r= +

1
2

2
2 .
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Other analogous structures can provide geometric insights. For example, 
Figure 5.6 shows a configuration of two small equal semicircles and two larger 
semicircles encasing a region. Particularly fascinating here is that the area 
bounded by these four semicircles is equal to that of the large circle (shown in 
Figure 5.7) whose diameter is shown as the distance between the two larger 
semicircles, AB.

Figure 5.5. 

Figure 5.6. Figure 5.7. 

Several variations of this arrangement can be used for further entertain-
ment and discoveries. Consider the configuration shown in Figure 5.8, where 
the sum of the diameters of the two smaller semicircles is equal to the diameter 
of the large semicircle. We draw a tangent from point A to the smaller semi-
circle at point T. Circle O is then drawn with AT as its diameter. The area of 
circle O turns out to be equal to that of the two smaller semicircles!
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Countless area comparisons and calculations can be performed with 
semicircles. Figure 5.9 shows one more such example, where the area mapped 
out by the bold curved lines (four semicircles) is equal to that of the complete 
circle shown with dashed lines. We can say that the area of ABFCDE is equal 
to that of the circle with center at O.

Figure 5.8. 

Figure 5.9. 

These semicircle-generated figures lead to some interesting collinearities. 
Figure 5.10 shows a configuration of three semicircles centered at M, C, and D.  
When we draw a circular arc centered at A and tangent at point E to the 
circle centered at C, we find that points E, C, and A are collinear. When we 
draw a circle centered at A and tangent at point F to the semicircle centered 
at point D, we find a concurrence with points D, F, and A.

Most of the geometric figures presented always have additional features. 
For example, from Figure 5.10 we can very easily create a regular pentagon, 
as shown in Figure 5.11. Here we use the intersection points of the last two 
circular arcs with the large circle to determine four of the vertices of the regular 
pentagon.
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Perhaps one of the best recalled relationships in geometry is the 
Pythagorean theorem. It states that the sum of the squares of the legs of a right 
triangle is equal to the square of the hypotenuse. Restating this theorem by 
changing the word “of” to “on” gives it a geometric interpretation. Taking this 
a step further, we don’t need squares on the hypotenuse and on the legs, but 
any similar figures would also suffice. For example, the sum of the areas of the 
semicircles on the legs of a right triangle is equal to the area of the semicircle 
on the hypotenuse. Thus, for Figure 5.12 we can say that the areas of the 
semicircles are related as follows: Area P = Area Q + Area R.

Figure 5.10. Figure 5.11. 

Figure 5.12. 

Suppose we now flip semicircle P over the rest of the figure (using AB 
as its axis). We would get the configuration shown in Figure 5.13. Let us now 
focus on the lunes, L Land

1 2
, formed by the two semicircles.
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The resulting diagram after we flip the semicircle will look like that in  
Figure 5.14. Earlier, in Figure 5.12, we established that Area P = Area Q + Area R.  
In Figure 5.14 that same relationship can be written as follows:

Area J Area J AreaT AreaL Area J AreaL Area J+ + = + + +
1 2 1 1 2 2

If we subtract Area J Area J+
1 2

 from both sides, we get an astonishing result:

1 2
AreaT AreaL AreaL= +

That is, we have a rectilinear figure (the triangle) equal to some nonrectilinear 
figures (the lunes). This is quite unusual, since the measures of circular figures 
seem to always involve π, while rectilinear (or straight-line) figures do not.

Figure 5.13. 

Figure 5.14. 
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An analogous situation can be gotten by extending the above scenario 
to that of a square, as shown in Figure 5.15. Here the sum of the areas of 
the four lunes is equal to the area of the square. In equation form we have:  
Area ABCD = Area L

1
 + Area L

2
 + Area L

3
 + Area L

4
.

Figure 5.15. 

Most of the results presented so far have been known for many cen-
turies. The next “wonder,” however, was first published in 1974 by John 
Evelyn, G. B. Money-Coutts, and J. A. Tyrrell in The Seven Circles Theorem 
and Other New Theorems (London: Stacey International, 1974). This implies 
that reasonably simple unknown results in elementary geometry are still out 
there, waiting to be discovered by some diligent researchers. Figure 5.16 
shows a large circle, with six more circles packed inside the large circle. 
Each of these is tangent to the large circle at points P

1
, P

2
, P

3
, P

4
, P

5
, and P

6
, 

respectively, and any two successive circles among these also are tangent to 
each other. In other words, the circles through P

1
 and P

2
 touch in a point, 

as do those through P
2
 and P

3
, P

3
 and P

4
, P

4
 and P

5
, P

5
 and P

6
, as well as P

6
 

and P
1
. If all of these pairs of circles are tangent, it follows that lines P

1
P

4
, 

P
2
P

5
, and P

3
P

6
 pass through a common point, Q. This is true under quite 

general circumstances.
We now go from the seven circles theorem to the famous five circles 

theorem. Figure 5.17 shows a central circle with five circles intersecting each 
other placed sequentially around it. When we consecutively connect the  
internal intersection points, we form a pentagram whose vertices lie on each 
of the five circles.

The ambitious reader may want to study other multiple circle theorems, 
which are readily available. Here we merely whet the reader’s appetite to do 
further research.
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Circles also can generate some concurrency, as shown in Figure 5.18. 
Here we have three circles whose centers are not collinear, and which intersect 
in pairs. We will join the pairs of intersection points and the tangents to each 
of the circles, noticing how they are all concurrent and of equal length. Put 
another way, when we first located point P, the intersection of KL and MN, 
we found that the tangents from P to each of the circles are the same length, 
that is, PT = PR = PS. (We chose only one tangent to each of the other three 
circles, since the other three tangents would clearly be the same length.)

Figure 5.16. 

Figure 5.17. 

Figure 5.18. 
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Admiring Other Geometric Phenomena

Our next journey through geometry will present a variety of unstructured 
curiosities spanning a plethora of ideas. We begin rather gently by introducing 
some simple constructions and then delve into some beautiful and unexpected 
geometric relationships.

We start by showing how easy isosceles triangles are to construct. We take the 
given equal side lengths and make them the radius of the circle. Then we choose 
the desired measure for the vertex angle and draw the other radius at that angle 
measure. Figure 6.1 shows one such simple construction resulting in triangle ABC.

Figure 6.1. 

Other rather unusual constructions result in an isosceles triangle. Consider  
isosceles triangle ABC, shown in Figure 6.2. We can select any point P 
along BC and erect a perpendicular line that would intersect the other two  
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sides (extended) at points D and E. Unexpectedly, triangle ADE will always be 
an isosceles triangle, with AE = AD.

Figure 6.2. 

Sometimes locating points on the circumcircle of a triangle can be sur-
prising. Let’s consider triangle ABC with altitudes AX, BY, and CZ, which  
determine the orthocenter P, as shown in Figure 6.3. We then choose any 
point D on side BC and draw a circle with center D and radius DP. When 
altitude AX is extended to meet this circle at point E, we find that point A is 
also on the circumcircle of the original triangle ABC. How curious it is for 
two circles to meet at a point determined independently of the circles—further 
evidence of the beauty of geometry.

Speaking of strange configurations that lead to unexpected results, let’s 
consider triangle ABC shown in Figure 6.4, where AD is the bisector of angle 
BAC. Through point B we construct a line parallel to the angle bisector AD, 
which meets line CA extended at point H. When we construct the circumcircle 
of triangle ABC and the circle determined by points C, D, and H, we find that 
the two circles intersect line AD extended at points N and E, which just happen  
to be two points equidistant from point A, or put another way: AN = AE.  
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Here, we have another example of how mathematics produces an equality 
when it is least expected.

Sometimes just drawing a few circles also leads us to some equal line 
segments. Consider right triangle ABC, shown in Figure 6.5, where we draw 
a circle on each side of the right triangle, such that each of the sides is the di-
ameter of the respective three circles. We then simply draw any line from point 
A to cut each of the three circles at points F, H, and G. Quite unexpectedly, 
we find that AH = FG. What makes this so remarkable is that it is true for any 
right triangle!

Figure 6.3. Figure 6.4. 

Figure 6.5. 
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Other geometric configurations also lead to parallel lines rather simply. 
We begin with triangle ABC, shown in Figure 6.6, with median AM. We draw 
two lines, each from one of the other two vertices of the triangle, so that they 
intersect the median, AM, as well as the opposite sides AB and AC at points D 
and E, respectively. The result is that line DE is parallel to BC.

Figure 6.6. 

Figure 6.7. 

Constructing a right angle is normally a rather simple procedure. Some-
times, however, we might want to draw a line parallel to the base of a triangle 
and at the same time create a right angle with the vertex at any given point on 
the base. This may seem a bit contrived, but it does once again demonstrate the 
hidden beauty in geometry. We begin with triangle ABC, shown in Figure 6.7. 
We seek the precise place at which line FG can be drawn parallel to the base, 
BC, so that the two points, F and G, at which it intersects the remaining two 
sides of the triangle will enable us to construct the right angle whose vertex 
is on point P on side BC.
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We begin the construction by locating the midpoint, M, of side BC and 
drawing a circle with center M and radius MC. We then draw line AP to in-
tersect the circle at point D. This allows us to draw line DM; whereupon we 
then draw a line containing point P and parallel to DM, intersecting line AM at 
point E. This allows us to construct a line through point E and parallel to BC, 
intersecting sides AB and AC of triangle ABC at points F and G, respectively. 
By drawing lines FP and GP, we will have created the right angle FPG at the 
predetermined point P on line BC, which was our initial goal. This is a rather 
difficult construction for a seemingly easy task, but it once again demonstrates 
geometry’s power.

Sometimes, we seek to find the longest line that can be drawn within 
a given configuration such as that shown in Figure 6.8. Here, we have two 
semicircles of which the radius of one is the diameter of the other, and where 
we seek to find the longest line that would be perpendicular to the com-
mon radius/diameter line with its endpoints on each of the semicircles. The  
diagram shows that C is the midpoint of diameter AB, and D is the midpoint 
of diameter BC. Point G, at which CD is trisected, so that CG = 2DG, turns 
out to be the point at which EF is the longest perpendicular with endpoints 
on the two semicircles.

Figure 6.8. 

We now embark on a rather strange path to construct a rhombus beginning 
with a random quadrilateral, yet with equal diagonals, as shown in Figure 6.9.  
First, we draw on each side of the original quadrilateral ABCD a circle with 
the side of the quadrilateral as its diameter.

Next, we just draw the four common chords, ANL, BFL, DKJ, CEJ, of 
each pair of circles. We will then have created rhombus SJRL (Figure 6.10).  
A strange and unexpected result!

Constructing an equilateral triangle using straightedge and compasses 
(or a dynamic geometry program such as GeoGebra or Geometer’s Sketchpad) 
is a rather simple process. We merely choose the length of the side of the  
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to-be-constructed equilateral triangle, as shown in Figure 6.11, and construct 
the circle with B as center and radius BC and then the circle with C as center 
and radius BC. The point at which the two circles intersect will be point A, 
resulting in an equilateral triangle, ABC.

Figure 6.9. Figure 6.10. 

Figure 6.11. 

Another surprisingly simple construction for an equilateral triangle 
begins with an isosceles triangle whose vertex angle is 120°. All we need to 
do is to locate the trisection points along the base of the isosceles triangle and 
connect them to the vertex, and we have an equilateral triangle. We show this 
in Figure 6.12, where BAC∠ = 120  and points D and E are the trisection 
points of the base, BC. The resulting triangle ADE is equilateral.

It would be interesting to see how to construct an equilateral triangle 
equal in area to that of a given triangle, although this is not often done. The 
process may look complicated, but just follow along and you will see how it 
makes sense.
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We begin with the given triangle ABC, shown in Figure 6.13, for which 
we would like to construct an equilateral triangle with an equal area. We 
begin by constructing an equilateral triangle (something we have reviewed 
earlier) using BC as a side, thus creating equilateral triangle DBC. Next, 
through point A, we draw a line parallel to BC that intersects line DB at 
point E. At point E, we erect a perpendicular to line DB. After locating the 
midpoint of DB and creating a semicircle on diameter DB, we will call the 
point of intersection with the perpendicular we just created, point F. We draw 
a circular arc with center B and radius BF, meeting DB at point G. Through 
point G, we construct a parallel line to DC. This then gives us the required 
equilateral triangle BGH, which is equal in area to triangle ABC. Although a 
bit complicated, the mission is completed!

Figure 6.12. 

Figure 6.13. 

In 1900, American mathematician Frank Morley (1860–1937) published 
a remarkable geometric relationship that can be applied to any shape triangle. 
It simply states that the angle trisectors of any triangle can determine an 
equilateral triangle. Figures 6.14, 6.15, 6.16, and 6.17 shows various triangles of 
different shapes, and in each case we have the trisectors of its angles. We mark 
the intersections of adjacent trisectors as points D, E, and F. In each case, the 
triangle formed by these three points is always an equilateral triangle. This is 
truly a remarkable theorem, which reminds us of our discoveries in Chapter 1 
on concurrency, as you will see when we explore this wonderful finding.
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When we connect the vertices of the original triangle ABC with 
corresponding vertices of the equilateral triangle, DEF, formed by the trisectors, 
we find that they are concurrent. And so in Figure 6.18 we once again have a 
concurrency, thereby demonstrating the beauty and consistency in geometry.

Figure 6.14. Figure 6.15. 

Figure 6.16. Figure 6.17. 

Figure 6.18. 

One rather unusual arrangement leads to an unexpected equality.  
Suppose we have two triangles, ABC and PBC (Figure 6.19), whose only 
relationship is that they share the same base, BC, and their third vertex lies on 
a line parallel to BC (that is, AP is parallel to BC). We now choose any line 
parallel to BC and extend the sides of the two triangles to meet that parallel 
line at points D, E, F, and G. Regardless of the shapes of the two triangles 
and how far below the triangle the third parallel line is, you always have  
DE = FG. Amazing but true!
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If we consider a parallelogram with a point, P, anywhere in its interior, 
we can establish a very interesting area relationship. In Figure 6.20, point P 
is placed within parallelogram ABCD. From P we draw lines to each of the 
four vertices of the parallelogram. It turns out that Area∆APB = Area∆DPC + 
Area∆APC + Area∆BPD. What makes this so special is that the point P, which 
we selected to be anywhere within the parallelogram, and the two diagonals we 
use to form the triangles produced this truly unexpected result.

Figure 6.19. 

Figure 6.20. 

Parallelograms often lend themselves to some unexpected properties. 
Take, for example, parallelogram ABCD shown in Figure 6.21, where any 
two parallel lines, AF and EC, are selected within the parallelogram, and 
where points F and E are located on sides DC and AB, respectively. From 
point F we draw a line parallel to diagonal AC meeting side AD at point P.  
When we draw line segment PE, we find that it is parallel to the other 
diagonal BD. Remember, points F and E could have been anywhere along 
the sides of the parallelogram as long as they generated the two parallel lines 
AF and CE.

Figure 6.21. 
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All that is needed is to draw one line, PC, as we have done in Figure 6.23. 
We then notice that triangle BPC is one-half the area of parallelogram ABCD, 
since it shares base BC and has the same altitude from P to base BC. Analo-
gously, triangle BPC is also one-half the area of parallelogram BEFP, since it 
shares base BP and has the same altitude from base BP as has parallelogram 
BEFP. Therefore, since triangle BPC is one-half the area of each of the paral-
lelograms, the parallelograms must be equal in area.

Figure 6.22. 

Figure 6.23. 

And speaking of parallelograms, here is a simple-looking question that has 
stumped lots of people: What is the relationship between the two parallelo-
grams, ABCD and BEFP, shown in Figure 6.22, where point P is on AD and 
point C is on EF ? The two parallelograms share a common vertex point, B.  
In the attempt to find a solution, various lines are drawn and the ease of get-
ting the answer is lost. Don’t look ahead! Try to answer the question without 
looking further ahead.

Here is further evidence that parallel lines can evolve when they are least 
expected. In Figure 6.24 we begin with triangle ABC and mark the midpoints 
of its sides at points D, E, and F. We select any point on EF and call it point G. 
We then draw a line from A through G to meet DE at point H. Oddly enough, 
lines GC and BH end up being parallel.
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Sometimes a very complicated-looking figure ends up unexpectedly 
yielding line segments of equal length. That is the case in Figure 6.26, where 
right triangle ABC is inscribed in circle O, and D is any point on arc AC. 
From point D a perpendicular is drawn to diameter CB, meeting it at point 
E and intersecting AC at point F. Lastly, a perpendicular is drawn to AC at 

Figure 6.24. 

Figure 6.25. 

Here we create two equal angles in a situation where they would 
least be expected to arise. In Figure 6.25, right triangle ABC, with a right 
angle at vertex A and the altitude from A, intersects the hypotenuse BC 
at point D. From point D perpendiculars are drawn to the other two sides 
of the triangle, meeting them at points M and N. We end up creating 
equal angles BMC and BNC by drawing lines MC and NB. It is surpris-
ing how equal angles can emerge in any right triangle that follows this 
procedure.
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point F and intersecting the circle determined by diameter AC at point G. 
The result of all these constructions is that three equal line segments, GC, 
DC, and JC, appear.

Figure 6.26. 
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The Golden Rectangle

For centuries, artists and architects have identified what they believed to be 
the ideal rectangle. This rectangle, often referred to as the golden rectangle, has 
also proved to be the most pleasing to the eye. The golden rectangle has the 

following ratio of length and width: φ = =
+

w
l

l
w l

. This is known as the golden 

ratio, symbolized by the letter φ. (See A. S. Posamentier and I. Lehmann, The 
Glorious Golden Ratio [Amherst, New York: Prometheus Books, 2012].)

The desirability of this rectangle has been borne out by numerous psy-
chological experiments. For example, Gustav Theodor Fechner (1801–1887), 
a German experimental psychologist, inspired by German philosopher Adolf 
Zeising’s (1820–1876) book Der goldene Schnitt (The Golden Section),1 began 
to investigate whether the golden rectangle had a special psychological aesthetic 
appeal in Neue Lehre von den Proportionen des menschlichen Körpers (New Theories 
about the Proportions of the Human Body)2. His findings were published in 
1876 in Zur experimentalen Ästhetik (On Experimental Aesthetics)3. Fechner made 
thousands of measurements of commonly seen rectangles, such as playing cards, 
writing pads, books, windows, and other objects. He found that most had a ratio 
of length to width that was close to φ. He also tested people’s preferences and 
found that most people preferred the shape of the golden rectangle.

In his research Fechner asked 228 men and 119 women which rectangle 
was aesthetically the most pleasing. Looking at the rectangles shown in Figure 
7.1, which would you choose as the most pleasing to look at?

We can easily eliminate rectangle 1:1, as a square is considered by the 
general public not to be representative of a rectangle. It is, after all, a square! 

1 Published posthumously in 1884 by the Leopoldinisch Carolinische Akademie, Halle, Germany.
2 Published in 1854 by R. Weigel, Leipzig.
3 Published by Breitkopf & Härtel, Leipzig.
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Rectangle 2:5 (the other extreme) is uncomfortable to look at since it requires 
the eye to scan it horizontally. Rectangle 21:34, on the other hand, can be ap-
preciated at a single glance. Fechner’s findings seem to bear this out. The results 
that Fechner reported are shown in Table 7.1.

Fechner’s experiment has been repeated with variations in methodology 
many times, and his results have been further supported. For example, in 1917 
Edward Lee Thorndike (1874–1949), the American psychologist and educator, 
carried out similar experiments, with analogous results. In general, the rectan-
gle with the ratio of 21:34 was most preferred. These two numbers are part of 
a Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …, where the ratio 
of consecutive numbers approaches the golden ratio (see A. S. Posamentier and 
I. Lehmann, The Fabulous Fibonacci Numbers [Amherst, New York: Prometheus 

Books, 2007]). Thus, φ= ≈21
34

0.61764705882352941 , and hence, it creates the 

Table 7.1.  Gustav Fechner’s survey results

Ratio of sides of rectangle
Percent response for best 

rectangle
Percent response for worst 

rectangle

1:1 = 1.00000 3.0 27.8
5:6 = .83333 .02 19.7
4:5 = .80000 2.0 9.4
3:4 = .75000 2.5 2.5

20:29 = .68966 7.7 1.2
2:3 = .66667 20.6 0.4

21:34 = .61765 35.0 0.0
13:23 = .56522 20.0 0.8

1:2 = .50000 7.5 2.5
2:5 = .40000 1.5 35.7

100.00 100.00

Figure 7.1. 
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golden rectangle, where the length, l, and the width, w, are in the following 

proportion: φ=
+

=w
l

l
w l

. (See Figure 7.2.)

By multiplying means and extremes of this proportion we get + =2 2w wl l

or + − = 02 2w wl l . If we let l = 1, then + − =1 02w w . Using the quadratic 

formula, we get = − ±1 5
2

w . Because we have lengths, we use only the 

positive value. Therefore, 
φ

= − + = − =1 5
2

5 1
2

1
w  and φ = +5 1

2
.

Let’s see how this rectangle may be constructed using the traditional 
Euclidean tools (an unmarked straightedge and compasses) or a computer 
program such as Geometer’s Sketchpad or GeoGebra. With a width of 1 unit, our 

objective is to get the length to be 
+1 5
2

 so that the ratio of the length to 
the width will be φ .

One of the simpler ways to construct this golden rectangle is to begin with 
a square, ABEF, shown in Figure 7.3, where M is the midpoint of AF. Then with 

Figure 7.2. 

Figure 7.3. 
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radius ME and center M, draw a circle to intersect line AF at D. The perpen-
dicular at D intersects line BE at C. We now have ABCD, a golden rectangle.

Let us continue with golden rectangle ABCD, where a square is con-
structed internally (as shown in Figure 7.4). If AF = 1 and AD = φ, then 

φ
φ

= − =1
1

FD . We can establish that rectangle CDFE has dimensions 

φ
= =1

and 1FD CD . If we inspect the ratio of length to width of rectangle 

CDFE, we get 

φ

φ= =1
1

EF
FD

 . It is, therefore, also a golden rectangle.

Figure 7.4. 

Figure 7.5. 

We continue this process by constructing an internal square in the newly 
formed golden rectangle. In golden rectangle CDFE, square DFGH is con-

structed as shown in Figure 7.5. We find that 
φ φ

= − =1
1 1

2
CH , so the ratio of 

the length to the width of rectangle CHGE is 
φ

φ

φ=

1

1
2

 (after multiplying both 
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numerator and denominator by φ 2 ). This, therefore, establishes that rectangle 
CHGE also is a golden rectangle.

Continuing this process, we construct square CHKJ in golden  

rectangle CHGE. We know that φ
φ

φ
φ

− = − =1
1 therefore, 1

1
,  and 

φ φ
φ
φ

φ
φ φ

= − = − = =1 1 1
1

1
2 2 2 3

EJ . We now inspect the ratio of the dimensions of  

rectangle EJKG. This time, the length-to-width ratio is 
φ

φ

φ=

1

1

2

3

. Once again, 

we have a new golden rectangle, which is rectangle EJKG. By continuing this 
procedure, we get golden rectangles GKML, NMKR, MNST, and so on. Sup-
pose we now draw the following quarter circles:

center E, radius EB
center G, radius GF
center K, radius KH
center M, radius MJ
center N, radius NL
center S, radius SR
etc.

The drawing, as shown in Figure 7.6, winds up being an approximation 
of a logarithmic spiral. The symmetric parts of this complex-looking figure are 
the squares. Suppose we locate the center of each of these squares. If we draw 
arcs through each of these points, we see that the centers of these squares lie 
in another approximation of a logarithmic spiral. This configuration is shown 
in Figure 7.7.

Figure 7.6. Figure 7.7. 
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The spiral in Figure 7.8 seems to converge (i.e., end) at a point in rect-
angle ABCD. This point is at the intersection, P, of AC and ED, which we 
can better see in Figure 7.8. Consider once again golden rectangle ABCD. 
Earlier we established that square ABEF determined another golden rectangle, 
CEFD. In Figure 7.8, we see that rectangles ABCD and CEFD are reciprocal 
rectangles. Furthermore, we see that reciprocal rectangles have corresponding 
diagonals that are perpendicular.

Figure 7.8. 

Figure 7.9. 

In the same way as before, we can establish that rectangles CEFD and 
CEGH are reciprocal rectangles. Their diagonals, ED and CG, are perpendicu-
lar at P. This may be extended to each pair of consecutive golden rectangles 
shown in Figure 7.9. Clearly P ought to be the limiting point of the spiral.

We can use this relationship of the diagonals to construct consecutive 
golden rectangles. We could simply construct a perpendicular from D to AC 
in golden rectangle ABCD, and from its intersection E with BC construct a 
perpendicular to AD to complete the second golden rectangle. This process 
can be repeated indefinitely.
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THE DIAGONALS OF THE GOLDEN RECTANGLE

We have done quite a bit with the golden rectangle, yet there never seems to be 
a limit to what you can do. For example, the golden rectangle— whose length 
and width are in the golden ratio—provides us a neat way to find the point 
along the diagonal that cuts it into the golden ratio. It is the unique properties 
of this special rectangle that enable us to do this so easily.

Consider the golden rectangle ABCD, whose sides = =andAB a BC b ,  

so that φ=a
b

. As shown in Figure 7.10, two semicircles are drawn on sides AB 

and BC to intersect at point S. If we now draw line segments SA, SB, and 
SC, we find that angles ASB and BSC are right angles (since they are each 
inscribed in a semicircle). Therefore, AC is a straight line, namely the diagonal. 
We now have the unexpected result that point S divides the diagonal in the 
golden ratio.

Figure 7.10. 

The golden ratio can be created in practically endless ways. Consider 
the semicircle with the three congruent circles inscribed so that the tangency 
points are as shown in Figure 7.11.

Figure 7.11. 
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We seek to find the ratio of the radius of the large semicircle to that 
of one of the smaller circles. In Figure 7.12, = 2AB R  and =AM R . Each 
of the congruent small circles has a radius r. Consider right triangle CEM 
with legs r and 2r, where the hypotenuse then has length 5r . We now 
have = = = + =5 and therefore, 5 1ME r KE r, MK r( ) R. Put another way, 

φ= + =5 1 2
R
r

. In this seemingly unrelated configuration of three congru-

ent circles inscribed in a semicircle, we find the ratio of their radii is related to 
the golden ratio.

Figure 7.12. 

THE GOLDEN TRIANGLE

We have thoroughly investigated the famous golden rectangle. Now we are 
ready to consider the golden ratio as it pertains to the golden triangle. As 
you would expect, the golden triangle, much like the golden rectangle, has 
Fibonacci numbers embedded within it, so it too consequently exhibits the 
golden ratio. Let’s consider a triangle that contains the golden ratio. We begin 
by placing an isosceles triangle into another similar isosceles triangle, rather 
like we embedded our similar golden rectangles earlier. To do this, we draw the 
configuration shown in Figure 7.13. The sum of the angles of triangle ABC is 

+ + + = = °2 5 180a a a a a , and = °36a .
This clearly leads us to a triangle with the angle measurements shown in 

Figure 7.14. Simple calculations show us that the ratio φ= =side
base

1
x

 in triangle 
ABC.

We therefore call this a golden triangle. One easy way to construct a golden 
triangle is to first construct the golden section (done earlier in this chapter). Then 
draw a circle O with the longer segment of the golden section as radius OB, as 
shown in Figure 7.15. Then draw a circle, A, with the smaller segment AB of the 
golden ratio as the radius, centered at any point on the larger circle. The intersec-
tion point of the two circles, as shown in Figure 7.15, determines a golden triangle.
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By taking consecutively the following angle bisectors, BD, CE, DF, EG, 
and FH, of a base angle of each newly formed 36°, 72°, 72° triangle, we get a 
series of golden triangles (see Figure 7.16). These golden triangles (36°, 72°, 72°) 
are triangles: ABC, BCD, CDE, DEF, EFG, and FGH. Obviously, had space 
permitted we could have continued to draw angle bisectors and thereby generate 
more golden triangles. Our inspection of the golden triangle will be analogous 
to that of the golden rectangle.

Figure 7.13. Figure 7.14. 

Figure 7.15. 
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Let us begin by having HG = 1 (Figure 7.16). Since the ratio side
base  of a 

golden triangle is φ, we find the following:

For golden triangle FGH: 
φ φ= =
1

or
1 1

GF
HG

,
GF

, and GF = φ.

Similarly, for golden triangle EFG: 
φ=
1

FE
GF

, but GF = φ, so FE = φ 2.

In golden triangle DEF: 
φ=
1

ED
FE

, but FE = φ 2, therefore ED = φ 3.

Again, for triangle CDE: 
φ=
1

DC
ED

, but ED = φ 3, therefore DC = φ 4.

For triangle BCD: 
φ=
1

CB
DC

, but DC = φ 4, therefore CB = φ 5.

Finally, for triangle ABC: 
φ=
1

BA
CB

, but CB = φ 5, therefore BA = φ 6.

So, we see that the golden ratio is embedded throughout the figure.
As we did with the golden rectangle, we can generate an approximation 

of a logarithmic spiral by drawing arcs to join the vertex angle vertices of 

Figure 7.16. Figure 7.17. 
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consecutive golden triangles (see Figure 7.17). We draw the circular arcs as fol-
lows: begin with circular arc AB centered at point D; then draw circular arcs 
BC centered at point E, CD centered at point F, DE centered at point G, EF 
centered at point H, and FG centered at point J. And so the spiral is created.

Many other truly fascinating relationships emanate from the golden ratio. 
Now that you have been exposed to the golden triangle, we next turn to the 
regular pentagon and regular pentagram (the five-pointed star) for more ap-
plications, since these are essentially composed of many golden triangles. You 
will then see that the golden ratio abounds throughout these shapes.

THE PENTAGON AND THE PENTAGRAM

A beautiful geometric shape, the regular pentagram, which was the symbol of 
the Pythagoreans, sums up much of the golden ratio in one configuration. The 
golden triangle is embedded many times in this shape (see Figures 7.18 and 
7.19). According to Pythagoras, all geometric shapes can be described in terms 
of integers. So he was greatly disappointmented when one of his followers, 
Hippasus of Metapontum (ca. 450 BCE), showed that the ratio of the regular 
pentagon’s diagonal to its side length could not be expressed as a fraction with 
integers. In other words, this ratio is not rational! This characteristic carried 
over to the Pythagoreans’ symbol, the pentagram. The secret society was a bit 
troubled by this anomaly—which today can be seen as the beginning of our 
concept of irrational numbers (i.e., numbers that cannot be expressed as a ratio 
of two whole numbers, hence the name irrational). In the regular pentagon, the 
ratio of the diagonal to the side is irrational. But which irrational number did 
Hippasus find? You guessed it! It was the golden ratio, φ .

Figure 7.18. Figure 7.19. 
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To show that this length relationship is irrational, we use the fact that, 
in a regular pentagon, every diagonal is parallel to the sides it does not in-
tersect. In triangles AED and BTC have parallel sides, so they are similar to 
each other.

Figure 7.20. 

Therefore =AD
AE

BC
BT

. But BT = BD – TD = BD – AE. In the regular 

pentagon, therefore, the following ratio holds: =
−

diagonal
side

side
diagonal side

.

In equation form we can write this as =
−

d
s

s
d s

 or =
−

1

1

d
s d

s

 (with d as 

the length of the diagonal, and s the length of the side).

If we now let =x
d
s
 we get the equation =

−
1

1
x

x
. This equation can be 

converted to the quadratic equation x2 – x – 1 = 0, of which 
d
s
 is a positive 

root, which just happens to be the irrational number φ = +5 1
2

 . (Remember: 

5  is irrational!)
This is what we claimed at the outset: the ratio of the diagonal to 

the side of a regular pentagon is irrational. As the irrational number π = 
3.1415926535897932384… is inseparably connected with the circle, so too 
the irrational number φ  = 1.6180339887498948482… is connected insepara-
bly with the regular pentagon!
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The regular pentagon is a fascinating figure with lots of useful properties. 
We now present some for you to appreciate and ponder over. You might look 
for other such properties. In Figure 7.21 the regular pentagon ABCDE has the 
following properties:

1. The size of every interior angle is 108°:∠EAB = ∠ABC =∠BCD = 
∠CDE =∠DEA = 108°
• ∠BEA =∠CAB =∠DBC =∠ECD =∠ADE = 36°,
• ∠PEB =∠QAC =∠RBD =∠SCE =∠TDA= 36°,
• ∠CDA =∠DEB =∠EAC =∠ABD =∠BCE = 72°.

2. Triangles ∆DAC, ∆EBD, ∆ACE, ∆BDA, ∆CEA, ∆BEA, ∆CAB, 
∆DBC, ∆ECD, ∆ADE,∆PEB, ∆QAC, ∆RBD, ∆SCE, and ∆TDA are 
all isosceles.

3. Triangles ∆DAC and ∆QCD are similar (as are many others, as shown 
in Figure 7.21).

4. All diagonals of the pentagon are of the same length.
5. Every side of the pentagon is parallel to the diagonal “facing” it.
6. Common ratios are embedded in the figure, such as the following: 

=AD
DC

CQ
QD

.

7. The intersection point of two diagonals partitions both diagonals in 
the golden section.

8. PQRST is a regular pentagon.

Figure 7.21 shows how the pentagon and the pentagram relate to one 
another and practically infinitely approach a point.

Figure 7.21. 
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CONSTRUCTING A REGULAR HEXAGON

We begin constructing a hexagon by drawing a circle. Then, from any point on 
the circle, we draw a circle of equal radius. We then continue that process, each 
time placing the center at the point where the previous circle intersects the 
original circle. You will always end up at the starting point, and you will have 
constructed a regular hexagon. A lot of the beautiful symmetry in Figure 7.22 
is left to the reader to discover.

Figure 7.22. 

CONSTRUCTING A REGULAR PENTAGON

The construction of a regular pentagon is more complicated than that for most 
other regular polygons. Were we to try to construct a regular pentagon in a 
way similar to that for other polygons, we would find ourselves in a dilemma. 
Consider the following curious situation.

Perhaps the most important artist that Germany has contributed to 
western culture is Albrecht Dürer (1471–1528). One largely forgotten work 
of his, which he produced in 1525, is a geometric construction (using only 
straightedge and compasses) of a regular pentagon. He knew that it was only 
an approximation of a regular pentagon, but it is extremely close to perfect, 
so much so that its inaccuracy is not visually detectable. Dürer offered this 
construction to the mathematical community as an easy alternative method to 
draw a regular pentagon despite the fact that the resulting shape was off by about 
half a degree (see C. J. Scriba and P. Schreiber, 5000 Jahre Geometrie: Geschichte, 
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Kulturen, Menschen [Berlin, Germany: Springer, 2000], 259, 289–290). Although 
its deviation from a perfect regular pentagon is minuscule, the discrepancy 
cannot be ignored. Until recently, engineering books still presented Dürer’s 
method for constructing a regular pentagon. We shall show it here, despite its 
flaws, since it is instructive and was seriously used for many years.

We begin with a segment, AB (Figure 7.23). Five circles of radius AB are 
constructed as follows:

1. Circles with centers at A and B are drawn and intersect at Q and N.
2. Draw a circle with center Q to intersect circles A and B at points  

R and S, respectively.
3. QN intersects circle Q at P.
4. SP and RP intersect circles A and B at points E and C, respectively.
5. Draw circles with centers at E and C, with radius AB to intersect at D.

Polygon ABCDE is (approximately) a regular pentagon.
Although the pentagon looks regular, the measure of angle ABC is 

about =22
60

11
30

of a degree too large. For ABCDE to be a regular pentagon, 

each angle would have to be °108 . We will show the curious reader here that 
∠ ≈ °108 3661202ABC . .

In rhombus ABQR, shown in Figure 7.24, 60 and∠ = °ARQ BR
3= AB , since BR is actually twice the length of an altitude of equilateral 

triangle ARQ. Since triangle PRQ is an isosceles right triangle, ∠ = °45PRQ
and ∠ = °15BRC .

Figure 7.23. Figure 7.24. 
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We shall apply the law of sines to ∆∆BCR : 
∠

=
∠sin sin

BR
BCR

BC
BRC

.  

That is, 
∠

=
°

3
sin sin15

AB
BCR

AB
 or ∠ = °sin 3sin15BCR . Therefore, ∠ ≈BCR

26 63387984. .
In tr iangle ∠ = ° − ∠ − ∠ ≈ − ° −180 180 15BCR, RBC BRC BCR

° ≈ °26 63387984 138.3661202. .
Thus, since ∠ = ° ∠ = ∠ − ∠ ≈ °30 138 661202ABR , ABC RBC ABR .

− ° ≈ °30 108 3661202. , and not °108  as it should be in order for the shape to 
be a regular pentagon. Furthermore, consider the results of Dürer’s construc-
tion: ∠ABC = ∠BAE ≈ 108.37°, ∠BCD = ∠AED ≈ 107.94°, and ∠EDC ≈ 
107.38°.

One way to construct a proper regular pentagon would be to first con-
struct a golden triangle and then simply mark off its base length along a given 
circle, as shown in Figure 7.25.

Figure 7.25. 
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Geometric Mistakes

Up to this point we have experienced some of the beauty and amazing  
relationships that geometry offers us. Now it might be instructive to see how 
geometry can also be deceiving. Some geometric pictures are grossly mislead-
ing, and others are logically wrong. In this chapter we will entertain ourselves 
with these deceptions.

Depictions of geometric figures can be deceiving in a number of ways. 
For example, we can make mistakes in our optical perceptions. Geometry is 
often referred to as the visual part of mathematics, and we tend to believe 
many things as we see them. Consequently, geometric diagrams still play an 
important role in determining geometric properties and proving geometric 
relationships. The importance of geometric diagrams should not be minimized; 
however, they should be carefully analyzed, as we will see throughout this 
chapter. Although geometric proofs can be done without seeing a diagram, 
picturing the geometric figures can be very helpful. But they can still be de-
ceiving. (For examples of mistakes in mathematics, see A. S. Posamentier and  
I. Lehmann, Magnificent Mistakes in Mathematics [Amherst, New York:  Prometheus 
Books, 2013].)

As mentioned above, we can easily make mistakes in our visual assessment 
of a geometric figure. We now present some of these optical mistakes, as study-
ing them can help make you more discriminating with visual presentations. 
We will first show some of these erroneous visual assessments. Then we will 
show how logical mistakes can be compounded and overlooked. So, follow 
along as we explore some of the counterintuitive characteristics that can lead 
to geometric mistakes!
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OPTICAL MISTAKES

We begin by comparing the two segments in Figure 8.1. The one on the right 
side looks longer. In Figure 8.2 the bottom segment looks longer. In reality, the 
segments have the same length.

Figure 8.1. Figure 8.2. 

Figure 8.3. Figure 8.4. 

In Figure 8.3, the crosshatched segment appears longer than the clear one. 
In the right side of Figure 8.4, the narrower and vertical stick appears to be 
longer than the other two, even though to the left they are shown to be the 
same length.

A further optical illusion can be seen in Figure 8.5, where AB appears to 
be longer than BC. This is not true, since AB = BC.

Figure 8.5. 

In Figure 8.6 the vertical segment clearly appears longer, but it isn’t. The 
curve lengths and curvature of the diagrams in Figure 8.7 look quite dissimilar. 
Yet, the curves are congruent!
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The square between the two semicircles in Figure 8.8 looks bigger than 
that to the left, but the two squares are the same size. In Figure 8.9 the square 
within the large black square looks smaller than that to the right; but, again, 
that is an optical illusion, since they are the same size.

Figure 8.6. Figure 8.7. 

Figure 8.8. Figure 8.9. 

The senses are again fooled in Figure 8.10. Here the larger circle inscribed 
in the square (on the left) appears to be smaller than the circle circumscribed 
about the square (on the right). Again, the circles are the same size!

Figure 8.10. 
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Figures 8.11, 8.12, and 8.13 show how relative placement can affect the 
appearance of a geometric diagram. In Figure 8.11 the center square appears 
to be the largest of the group, but it isn’t. In Figure 8.12 the black center circle 
on the left appears to be smaller than the black center circle on the right, and 
again it is not.

Figure 8.11. Figure 8.12. 

Figure 8.13. 

In Figure 8.13, the center sector on the left appears to be smaller than the 
center sector on the right. In all of these cases the two figures that appear not 
to be the same size are, in fact, the same size!

Throughout this book we have avoided proving the beautiful relation-
ships that geometry has to offer. Now, however, we will revert to “proofs” to 
show how geometry can also be entertaining when it claims through faulty 
arguments that the absurd is true. The trick is to find where the error resides. 
Let the reader now take on the challenge!

HOW CAN A RIGHT ANGLE EQUAL AN OBTUSE ANGLE?

This geometric mistake points out a few properties that must hold and cannot 
be ignored. Furthermore, it shines a spotlight on a rarely recognized concept: 
the reflex angle. Follow along as we proceed to “prove” that a right angle can be 
equal to an obtuse angle (an angle that is greater than 90°).
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We begin with a rectangle ABCD, where FA = BA, R is the midpoint 
of BC, and N is the midpoint of CF (Figure 8.14). We will now “prove” that 
right angle CDA is equal to obtuse angle FAD.

Figure 8.14. 

To set up the “proof” we first draw RL perpendicular to CB, and draw 
MN perpendicular to CF. Then RL and MN intersect at point O. If they did 
not intersect, then RL and MN would be parallel. This would mean that CB is 
parallel to or coincides with CF, which is impossible. To complete the diagram 
for our “proof,” we draw line segments DO, CO, FO, and AO.

We are now ready to embark on the “proof.” Since RO is the 
 perpendicular bisector of CB and AD, we know that DO = AO. Similarly, since 
NO is the perpendicular bisector of CF, we get CO = FO. Furthermore, since 
FA = BA, and BA = CD, we can conclude that FA = CD. This enables us to 
 establish ≅∆ ∆CDO FAO  (SSS), so that ODC OAF∠ = ∠ . We continue with 
OD = OA, which makes triangle AOD isosceles and the base angles ODA and 
OAD equal. Now, ODC ODA OAF OAD∠ − ∠ = ∠ − ∠  or CDA FAD∠ = ∠ .  
This says that a right angle is equal to an obtuse angle. There must be some 
mistake!

Clearly, there is nothing wrong with this “proof.” However, if you use a 
ruler and compasses to reconstruct the diagram, it will look like Figure 8.15.

Figure 8.15. 
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As you see, the mistake here rests with a reflex angle—one that is often 
not considered. For rectangle ABCD, the perpendicular bisector of AD will 
also be the perpendicular bisector of BC. Therefore, OC = OB, OC = OF, and 
OB = OF. Since both points A and O are equidistant from the endpoints of 
BF, line AO must be the perpendicular bisector of BF. This is where the fault 
lies; we must consider the reflex angle of angle BAO. Although the triangles are 
congruent, our ability to subtract the specific angles no longer exists. Thus, the 
difficulty with this “proof” lies in its dependence upon an incorrectly drawn 
diagram.

A MISTAKEN “PROOF” THAT EVERY ANGLE IS A RIGHT ANGLE

We begin this demonstration with quadrilateral ABCD, where AB = CD and 
right angle ∠BAD = δ (see Figure 8.16). We will allow ∠ADC = δ′ to be of 
random measure but show that it is actually a right angle. By showing this, we 
will have proved that any random angle is a right angle.

Figure 8.16. 

We then construct m, the perpendicular bisector of AD, and m′, the per-
pendicular bisector of BC. These perpendicular bisectors intersect at point O. 
The point O is then equidistant from points A and D, as well as from points 
B and C. Therefore, OA = OD and OB = OC. We can then conclude that 

OAB ODC∆ ≅ ∆ , and it follows that ∠BAO = ∠ODC = α.
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Since triangle OAD is isosceles, it follows that ∠DAO = ∠ODA = β. 
Therefore, δ = ∠BAD = ∠BAO – ∠DAO = α – β, and δ′ = ∠ADC = ∠ODC –  
∠ODA = α – β.

It then follows that δ = δ′. However, this result is silly. There must be a 
mistake somewhere. Let’s revisit the original diagram.

In fact, the diagram presented in Figure 8.16 tricked us since it was inten-
tionally false. The key error is the point where the two perpendicular bisectors 
meet, which must be further beyond the quadrilateral than what was indicated. 
The correct diagram would look like that shown in Figure 8.17.  We then have 
δ = α – β, however, δ′ = 360° – α – β. This destroys the mistaken “proof.” The  
ancient Greeks would likely have had difficulty determining the error, as the 
concept of “betweenness” was not addressed until the twentieth century. In 
other words, where does a point lie, between or not between other given 
points? We will encounter this issue again later.

Figure 8.17. 

ANOTHER MISTAKEN “PROOF” SHOWING THAT TWO 
RANDOMLY DRAWN LINES IN A PLANE ARE ALWAYS PARALLEL

We begin this demonstration with the two randomly drawn lines l
1
 and l

2
. We 

then construct two parallel lines, AD and BC, that intersect our two given lines, 
l
1
 and l

2
. We complete our required diagram by drawing EF parallel to AD. The 

line EF intersects BD and AC in points G and H, respectively (see Figure 8.18).

The triangles AEH and ABC are similar, as are the triangles HCF and 

ACD. We therefore can establish the following proportions: EH
BC

= AH
AC

 and  
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HF
AD

= HC
AC

. When we add the two proportions we get the following:  

EH
BC

+ HF
AD

= AH
AC

+ HC
AC

= AH HC
AC
+ = AC

AC
= 1, which is to say that  

EH
BC

+
EH
BC

= 1.

Analogously, we can establish the similarity between triangles BGE and BDA 

as well as a similarity between triangles BDC and GDF and then get the following 

result: EG
AD

+ GF
BC

= 1. Since the last two equations are equal to 1, we get

EH
BC

+ HF
AD

= EG
AD

+ GF
BC

, or HF
AD

– EG
AD

= GF
BC

– EH
BC

. Therefore, 

HF EG
AD
− = GF EH

BC
− .

From the diagram we find that HF – EG = (EF – EH) – (EF – GF) =  
GF – EH. This tells us that the numerators of the two equal fractions are equal. 
Consequently, the denominators must also be equal. Therefore, AD = BC. 
Since we began with AD parallel to BC, the quadrilateral ABCD must be a 
parallelogram, and therefore, AB is parallel to CD, or l

1
 is parallel to l

2
. Thus, 

we seem to have proved that two randomly drawn lines in the same plane are 
actually parallel. Clearly, this is absurd, so a mistake must have been made in 
this demonstration.

Figure 8.18. 
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Let’s take another look at what we have just done. From Figure 8.18 you 
can clearly see that HF – EG = (HG + GF ) – (EH + HG) = GF – EH. 

From the parallel lines in the diagram the following proportions follow 

immediately: EH
BC

= AE
AB

= AH
AC

= DF
DC

= GF
BC

.

Since BC ≠ 0, we then have EH = GF. Therefore, GF – EH = 0, and  

HF – EG must also equal 0. From the earlier equation, HF EG
AD
− = GF EH

BC
− .  

By substitution we have the following:

AD
0 =

BC
0 .

This essentially tells us that we had no reason to state that AD = BC, since 
AD and BC can essentially take on any values to make this equation true. This 
explains where the mistake was made.

IS “PROVING” THAT A SCALENE TRIANGLE IS ISOSCELES—OR 
THAT ALL TRIANGLES ARE ISOSCELES—A MISTAKE?

Mistakes in geometry—also sometimes called fallacies—tend to come from 
faulty diagrams that result from a lack of definition. Yet, as we know, in an-
cient times some geometers discussed their geometric findings or relationships 
without a diagram. For example, as we indicated earlier, in Euclid’s work the 
concept of “betweenness” was not considered. When this concept is omitted, 
we can prove that any triangle is isosceles—that is, that a triangle with three 
sides of different lengths actually has two sides that are equal. This sounds a bit 
strange. But we can demonstrate this “proof” and have the reader attempt to 
discover where the mistake lies before we expose it.

We shall begin by drawing a scalene triangle (i.e., a triangle with no two 
sides of equal length) and then “prove” it is isosceles (i.e., a triangle with two 
sides of equal length). Consider a scalene triangle, ABC, where we then draw 
the bisector of angle C and the perpendicular bisector of AB. From their point 
of intersection, G, we draw perpendiculars to AC and CB, meeting them at 
points D and F, respectively.

There are now four possibilities that match the above description for 
various scalene triangles: in Figure 8.19, where CG and GE meet inside the 
triangle at point G; in Figure 8.20, where CG and GE meet on side AB (that 
is, points E and G coincide); in Figure 8.21, where CG and GE meet outside 
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Figure 8.19. Figure 8.20. 

Figure 8.21. Figure 8.22. 

the triangle (in G), but perpendiculars GD and GF intersect segments AC 
and CB (at points D and F, respectively); and in Figure 8.22, where CG 
and GE meet outside the triangle, but perpendiculars GD and GF intersect 
the extensions of sides AC and CB outside the triangle (at points D and F 
respectively).
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The “proof” of the mistake (or fallacy) can be done with any of the above 
figures. Follow along and see if the mistake shows itself without reading further. 
We begin with a scalene triangle, ABC. We will now “prove” that AC BC=  
(or that triangle ABC is isosceles).

As we have an angle bisector, we have ACG BCG∠ ≅ ∠ . We also have 
two right angles such that CDG CFG∠ ≅ ∠ . This enables us to conclude that 

≅∆ ∆CDG CFG  (SAA). Therefore, DG FG= and CD CF= . Since a point 
on the perpendicular bisector (EG) of a line segment is equidistant from the 
endpoints of the line segment, AG BG= . Also, ADG∠ and BFG∠ are right 
angles. We then have ≅∆ ∆DAG FBG  (since they have hypotenuse and leg 
congruent). Therefore DA FB= . It then follows that AC BC= (by addition 
in Figures 8.19, 8.20, and 8.21; and by subtraction in Figure 8.22).

At this point you may feel quite disturbed. You may wonder where the 
error lies that permitted this mistake to occur. You could challenge the correct-
ness of the figures. Well, by rigorous construction you will find a subtle error 
in the figures. We will now divulge the mistake and show how it leads us to a 
better and more precise way of referring to geometric concepts.

First we can show that point G must be outside the triangle. Then, when 
perpendiculars meet the sides of the triangle, one of them will meet a side 
between the vertices, while the other will not. We can “blame” this mistake 
on Euclid’s lack of the concept of betweenness. However, the beauty of this 
particular mistake lies in its proof of this betweenness issue, which establishes 
the mistake.

Figure 8.23. 
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Begin by considering the circumcircle of triangle ABC (Figure 8.23). The 
bisector of angle ACB must contain the midpoint, M, of arc AB (since angles 
ACM and BCM are congruent inscribed angles). The perpendicular bisec-
tor of AB must bisect arc AB and therefore must pass through M. Thus, the 
bisector of angle ACB and the perpendicular bisector of AB intersect on the 
circumscribed circle, which is outside the triangle at M (or G). This eliminates 
the possibilities we used in Figures 8.19 and 8.20.

Now consider the inscribed quadrilateral ACBG. Since the  opposite 
angles of an inscribed (or cyclic) quadrilateral are supplementary, 

CAG CBG ∠ + ∠ = 180 . If angles CAG and CBG were right angles, then 
CG would be a diameter and triangle ABC would be isosceles. Therefore, 
since triangle ABC is scalene, angles CAG and CBG are not right angles. In 
this case one must be acute and the other obtuse. Suppose angle CBG is acute 
and angle CAG is obtuse. Then in triangle CBG the altitude on CB must  
be inside the triangle, while in obtuse triangle CAG, the altitude on AC must 
be outside the triangle. The fact that one and only one of the perpendiculars 
intersects a side of the triangle between the vertices destroys the fallacious 
“proof.” This demonstration hinges on the definition of betweenness, a con-
cept not available to Euclid.

A MISTAKEN PROOF THAT A TRIANGLE CAN HAVE TWO RIGHT 
ANGLES

The next geometric mistake is one that can truly upset an unsuspecting person. 
With two intersecting circles of any size, we draw the diameters from one of 
their points of intersection and then connect the other ends of the diameters, 
as shown in Figure 8.24.

Figure 8.24. 

In Figure 8.24, the endpoints of diameters AP and BP are connected by 
line AB, which intersects circle O at point D and circle O ′ at point C. Here, 
we find that ADP∠  is inscribed in semicircle PNA, and BCP∠ is inscribed in 
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semicircle PNB, thus making them both right angles. We then have a dilemma: 
triangle CPD has two right angles! This is impossible. Therefore, there must be 
a mistake somewhere in our work.

Omission of the concept of betweenness could lead us to this dilemma. 
When this figure is drawn correctly, we find that angle CPD must equal 0, 
since a triangle cannot have more than 180°. That would make triangle CPD 
nonexistent. Figure 8.25 shows the correct drawing of this situation.

Figure 8.25. 

In Figure 8.25 we can easily show that ′ ≅ ′∆ ∆POO NOO , and then 
POO NOO∠ ′ ≅ ∠ ′. Because PON A ANO∠ = ∠ + ∠  and ∠ANO = ∠NOO ′  

(alternate-interior angles) we have POO A∠ ′ = ∠ , and then AN is parallel to 
OO ′. The same argument can be made for circle O′ to get BN parallel to OO ′. 
Since line segments AN and BN are both parallel to OO′ , they must in fact 
be one line, ANB. This proves that the diagram in Figure 8.25 is correct and 
the diagram in Figure 8.24 is not.

EVERY EXTERIOR ANGLE OF A TRIANGLE IS EQUAL TO ONE 
OF ITS REMOTE INTERIOR ANGLES

We begin with triangle ABC, shown in Figure 8.26, and we would like to 
demonstrate that angles δ and α are equal.

We now refer to Figure 8.27, where we have quadrilateral APQC so 
constructed that ∠CAP + ∠CQP = α + ε = 180°.

We then construct a circle through three points C, P, and Q. Point B is 
where line AP intersects the circle a second time. Drawing BC creates a cyclic 
quadrilateral (i.e., one that can be inscribed in a circle), BPQC, where the fol-
lowing is true: ∠CQP + ∠CBP = ε + δ = ∠BCQ + ∠BPQ = 180°.
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However, at the outset we had drawn ∠CAP + ∠CQP = α + ε = 180°, 
so we can now conclude that ∠CAP = ∠CBP, which is to say that α = δ. 
Something must be wrong. Where does the mistake lie?

If quadrilateral APQC has the property that ∠CAP + ∠CQP = α + ε = 180°  
and that vertices C, P, and Q lie on the same circle, then quadrilateral APQC 
must also be cyclic, which implies that point A must also lie on the circle. This 
implies that points A and B must be identical. In that case, triangle ABC cannot 
exist. Thus, the mistake here has been revealed.

ANY POINT IN THE INTERIOR OF A CIRCLE IS ALSO ON THE 
CIRCLE

Let’s consider the conflicting statement that any point in the interior of a circle 
is also on the circle. It sounds ridiculous, but we can provide a “proof” of this 
statement. There must be a mistake, or else we are in a logical dilemma.

We shall begin our “proof” with a circle, O, whose radius is r (see Figure 8.28).  
We will then let A be any point in the interior of the circle distinct from O, and 
“prove” that point A is actually on the circle.

We will set up our diagram as follows: let B be on the extension 
of OA through A such that OA ⋅ OB = OD2 = r2. (Clearly OB is greater  
than r, since OA is less than r.) The perpendicular bisector of AB meets 
the circle at points D and G, where R is the midpoint of AB. We 
now have OA OR RA= −  and OB OR RB OR RA.= + = +  Therefore, 
r OA OB (OR RA)(OR RA)= ⋅ = − +2 , or r OR RA= −2 2 2 . However, by ap-
plying the Pythagorean theorem to triangle ORD, we get OR r DR= −2 2 2 ,  

Figure 8.26. Figure 8.27. 

 EBSCOhost - printed on 2/10/2023 4:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Geometric Mistakes   143

and applying it once again to triangle ADR gives us RA AD DR= −2 2 2.  
Therefore, since r OR RA= −2 2 2, we get r ( r DR ) ( AD DR )= − − −2 2 2 2 2 ,  
which reduces to r r AD= −2 2 2. This would imply that AD = 02 ; put another 
way, that A coincides with D and thus lies on the circle. That is to say, point A 
inside the circle has been proved to be on the circle. There must be a mistake 
somewhere!

The fallacy in this proof lies in the fact that we drew an auxiliary line 
DRG with two conditions—that it is the perpendicular bisector of AB and that 
it intersects the circle. Actually, all points on the perpendicular bisector of AB 
lie in the exterior of the circle, and therefore, cannot intersect the circle. Follow 
along with the algebraic process:

r OA OB= ⋅2

r OA(OA AB )= +2

r OA OA AB= + ⋅2 2

The “proof” assumes that OA
AB

r+ <
2

.

 By multiplying both sides of the inequality by 2 we get: 2 ⋅ OA + AB < 2r.
 By squaring both sides of the inequality we have: 4 ⋅ OA2 + 4 ⋅ OA ⋅ AB +  
AB2 < 4r2.

By substituting four times equation (I), which is r OA OA AB= + ⋅4 4 42 2 ,  
into equation (II) we get r AB r+ <4 42 2 2, or AB < 02 , which is impossible. 
The mistake here warns us not to allow points to take on more properties than 
are possible. That is, when drawing auxiliary lines, we must make sure that they 
use one condition only.

Figure 8.28. 
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HOW CAN 64 = 65?

We now have a mathematics mistake that was popularized by Charles 
 Lutwidge Dodgson (1832–1898), who, under the pen name of Lewis Carroll, 
wrote The Adventures of Alice in Wonderland. In Figure 8.29, we notice that the 
square on the left side has an area of 8 × 8 = 64 and is partitioned into two 
congruent trapezoids and two congruent right triangles. Yet, when these four 
parts are placed into a different configuration (as shown on the right side of 
Figure 8.29), we get a rectangle whose area is 5 × 13 = 65. How can 64 = 65? 
There must be a mistake somewhere.

Figure 8.29. 

Figure 8.30. 

When we correctly construct the rectangle formed by the four parts of 
the square, we find an extra parallelogram in the drawing—shown, exaggerated 
in size, in Figure 8.30.

This parallelogram (shaded) results from the fact that angles α and β are 
not equal. Yet, this is not easily noticeable at a glance in the original diagram! 
Perhaps, the easiest way to show this is to refer to the familiar tangent func-

tion. In triangle ABC, tan α =
5
2

= 2.5, while tan β =
8
3

≈ 2.667. In order for 

line segment ACE to be a straight line—preventing a parallelogram from be-
ing formed—angles α βand would have to be equal. With different tangent 
values this is not the case! Thus, the mistake—one easily overlooked—has 
been exposed. (More such examples can be found in A. S. Posamentier and I. 
Lehmann, The [Fabulous] Fibonacci Numbers [Amherst, NY: Prometheus Books, 
2007], 140–143.)
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MISLEADING LIMITS

The concept of a limit is not to be taken lightly, since it is a very sophisticated 
one that can be easily misinterpreted. The issues surrounding the concept 
sometimes are quite subtle, and misunderstanding of limits can lead to some 
curious situations (or humorous ones, depending on your viewpoint). This 
point is nicely exhibited with the following two illustrations. Don’t be too up-
set by the conclusion that you will be led to reach. Remember, this is merely 
for entertainment. Consider the illustrations separately and then notice their 
connection.

It is easy to see that the sum of the lengths of the bold segments (the 
“stairs”) is equal to a + b, since the sum of the vertical bold lines equals the 
length OP = a, and the sum of the horizontal bold lines equals OQ = b (see 
Figure 8.31).

Figure 8.31. 

The sum of the bold segments (“stairs”), found by adding all the hori-
zontal and vertical segments, is a + b. If the number of stairs increases, the sum 
is still a + b. The dilemma arises when we continue to increase the stairs to a 
“limit” so that they get smaller and smaller. This makes the set of stairs appear 
to be a straight line, in this case the hypotenuse, PQ, of triangle POQ. It would 
then appear that PQ has length a + b. Yet we know from the Pythagorean 

theorem that PQ = a b+2 2  and not a + b. So what’s wrong?
Nothing is wrong! While the set consisting of the stairs does indeed get 

closer and closer to the straight line segment PQ, it does not, therefore, follow 
that the sum of the bold (horizontal and vertical) lengths approaches the length 
of PQ, contrary to our intuition. There is no contradiction here, only a failure 
on the part of our intuition.
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Another way to “explain” this dilemma is to argue the following. As the 
“stairs” get smaller, they increase in number. In the most extreme situation, we 
have stairs of 0 length in each dimension, used an infinite number of times. 
This then leads to considering 0 ⋅ ∞, which is meaningless! In truth, no matter 
how small the stairs get, the sum of two adjacent perpendiculars that form one 
of the small right triangles will never be equal to their hypotenuse. They will 
just be small right triangles. This may be a bit difficult to see, but that is one of 
the dangers of working with infinity.

Just as an aside, the set of natural numbers, {1, 2, 3, 4, …}, seems to be 
a larger set than the set of positive even numbers, {2, 4, 6, 8, …}, because all 
the positive odd numbers are missing from the second set. Yet, since they are 
infinite sets, they are equal in size! We reason as follows: for every number in 
the set of natural numbers there is a “partner” member of the set of positive 
even numbers; hence they are equal in size. Counterintuitive? Yes, but that is 
what happens when we consider the concept of infinity.

Infinity appears to be playing games with us. The problem, however, is 
that with infinity we can no longer talk about the equality of sets the way we 
do when we have finite sets. The same is true with the staircase in our original 
problem. We can draw a finite number of steps, yet we cannot draw an infinite 
number of steps. Therein lies the problem.

A similar situation arises with the following example. In Figure 8.32 the 
smaller semicircles extend from one end of the large semicircle’s diameter to 
the other.

Figure 8.32. 

It is easy to show that the sum of the arc lengths of the smaller semicircles 
is equal to the arc length of the larger semicircle; that is, the sum of the smaller 
semicircles

=
aπ

2
+

bπ
2

+
cπ

2
+

dπ
2

+
eπ

2
= . a b c d e

π ( )+ + + +
2

= .AB
π
2

, which is the 

arc length of the larger semicircle. This may not appear to be true, but it is! 
As a matter of fact, as we increase the number of smaller semicircles (where, 
of course, they get smaller) their sum appears to be approaching the length 
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of segment AB, that is, .AB
π
2

 = AB. Taking this a step further, if we let  

AB = 1, then we have π = 2, which we know is a mistake!
Again, the set consisting of the semicircles does indeed appear to approach 

the length of the straight-line segment AB. It does not follow, however, that 
the sum of the semicircles approaches the length of the limit, in this case AB.

This “apparent limit sum” is absurd, since the shortest distance between points 
A and B is the length of segment AB, not the semicircle arc AB (which equals the 
sum of the smaller semicircles). This important concept may best be explained us-
ing these motivating illustrations, so that future misinterpretations can be avoided.

OFT-MISTAKEN ATTEMPTS AT COMMON GEOMETRIC TRICKS

What is the least number of straight lines you would need to draw to connect 
the six points in Figure 8.33 without lifting your pencil off the paper?

Figure 8.33. 

A typical response to this question is five lines, usually drawn in one of 
the ways shown in Figure 8.34. But is this the least number of straight lines that 
can be used to connect these six points?

Figure 8.34. 

As you might have expected, the answer is no. Fewer than five lines can 
be used to connect the six points. The mistake rests in the fact that we thought 
each line segment had to terminate at one of the points. As you can see from 
Figure 8.35. we were able to connect the dots with four straight lines.
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Eliminating the restriction of having each line segment end at one of the 
given points allows us to get an even better solution: the three line segments 
shown in Figure 8.36.

Figure 8.35. 

Figure 8.36. 

Figure 8.37. 

Our earlier mistakes should now be instructive for the next situation. This 
time we are given nine dots, as shown in Figure 8.37, and are asked to connect 
them with four straight lines without lifting the pencil off the paper.
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Two, connect the 25 dots shown in Figure 8.41 using only eight straight 
lines, without lifting the pencil off the paper, and returning to the initial point. 
Using nine lines would not be so difficult; using eight lines, however, is quite 
challenging. A solution is provided in Figure 8.42.

Figure 8.38. 

Having learned from our earlier experiences, we should be able to arrive 
at the solution offered in Figure 8.38.

Now that the reader will no longer make the mistake often made with the 
first of these dot-connecting problems, we offer two challenges. One, connect 
the 12 dots shown in Figure 8.39 with as few as five straight lines, without 
lifting the pencil off the paper, and returning to the initial point. The solution 
is shown in Figure 8.40.

Figure 8.39. Figure 8.40. 
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We have now seen a wide variety of geometric mistakes. Many of these 
give us a much stronger view of geometric principles. Those seen as “para-
doxes” also allow us to see the kind of misinterpretations often encountered 
without notice. In sum, through exploration of geometric mistakes, our under-
standing of and appreciation for geometry are hugely enhanced.

Figure 8.42. Figure 8.41. 
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