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Foreword

We arrived at Buckles Bay, Macquarie Island on MV Nella Dan in
December 1963. We clambered down the ship’s side on a rope ladder
into an amphibious vehicle and were driven ashore. As the vehicle
ground its way up the steep pebble beach, I recall being not overly
impressed by my new surroundings. Four ton elephant seals clashed
their chests in mock battle and needed to be persuaded to get out of
the way of our vehicle. Despite the brisk, cold wind whipping through
the tussock grass, the place stank to high heaven. The smell came
from the piles of rotting bull kelp strewn along the beaches. This was
going to be my home for the next 12 months. It neither looked nor
smelled hospitable.

The southern aurora (Aurora Australis) is most active at the lat-
itude of Macquarie Island, which lies 1200 km SE of Tasmania, Aus-
tralia. There is a band of activity known as the Auroral Oval which
encircles the South Magnetic Pole located at the edge of Antarctica
south of Tasmania. I had taken a job with the Australian Antarctic
Division as Auroral Physicist. This entailed operating various semi-
automatic instruments which measured various aspects of the aurora.
Long nights of visual observation were no longer part of the job de-
scription. There was an “all-sky-camera” which took a ten second
exposure of the whole sky once per minute during the hours of dark-
ness, a spectrophotometer which measured auroral colours and an in-
strument called a “riometer” which measured radio wave absorption,
which occurred when the aurora was active.

All of this high-tech equipment was new. I was one of the first
of a new breed of auroral physicists being sent south. First we had
to build the auroral lab, then install the new gear, and then keep it
operational. The prefabricated lab was erected behind a small hill to
shield the instruments from stray light from the base.

vii
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viii Foreword

I spent the whole year in a frantic attempt to keep it all working.
The station experienced frequent power failures due to contaminated
diesel fuel, and these led, in turn, to failures in the lab DC power
supply which supplied all the instruments. Solid-state electronics was
very new back then. I had barely even seen a transistor before I
arrived. Eventually I redesigned the lab power supply to make it
sufficiently robust to handle the power failures and brown outs. I also
developed about 5 km of all-sky-camera film. It was a hectic year
but I coped and in the end stayed on an extra three months to show
the new guy the ropes. I had no time to do any research. I was a
maintenance technician.

But this wild and windy place had got into my blood. In some
way, I grew up there.

It teemed with wildlife. Several species of penguin, fur seals and
elephant seals, skuas, giant petrels and other sea birds were all to be
found near the main base at Buckles Bay at the northern end of the
island. The wandering albatross nested on the coastal plain and could
be approached without their attempting flight. They are the world’s
largest flying bird – so large that they only become airborne with
difficulty. The beautiful, light-mantled sooty albatross nested among
the giant grass tussocks which covered the steep slopes. Occasionally,
on the plateau among cushion plants and rocks, a feral cat would be
glimpsed from afar. They seemed larger than domestic cats and were
generally ginger in colour.

On the coastal plains of grass and feather-bed bog were rabbits
and wekas, introduced as a food source by sealers in the 19th century.
The Stewart Island weka is a flightless rail similar to the kiwi. They
are amusing little creatures, like fluffy, chestnut bantams. They occu-
pied small territories with fiercely contested, but invisible, boundary
lines. On the beaches and around the base, numerous fat elephant
seals were moulting, mating or fighting, depending on the time of the
year. It was like living in a big zoo.

The riometer is really a radio telescope with a very wide beam
antenna pointing upwards and operating at the lowest frequency at
which the ionosphere is nearly transparent. It receives radio noise
from the Milky Way as it passes overhead, giving a smooth curve on
the paper charts. During times of auroral activity, radio waves are
absorbed and big dips appear in the daily curve. It was a reliable
and sensitive instrument and, unlike optical methods, operated well
in daylight and on cloudy nights. I became interested in the fine
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structure in the riometer absorption records. It was very tantalizing;
certain rough or “noisy” patches seemed to correspond to the X-ray
“microbursts” which had recently been observed by means of high
altitude balloons launched from the island. The trouble was, the ri-
ometer did not have enough resolution to isolate the individual pulses;
what was needed was a faster riometer.

In late 1966 I returned to Macquarie Island with the world’s first
operational “fast-response riometer” designed using a state-of-the-art,
low-noise radio receiver developed at the University of Tasmania’s
Physics Department. It had 50 times the resolution of a conventional
riometer. This was my PhD project. Over the next three months I
recorded the first observations of cosmic noise absorption pulsations.
They had an unexpected sawtooth shape. Their slower decay was
a measure of electron-ion recombination in the D-region. I returned
home in March 1967 and published my discovery in a Letter to Na-
ture. Later I was able to show that other auroral-zone phenomena,
Pi1 micropulsations, were also asymmetrical and caused by the same
mechanism.

This was all, of course, entirely useless; the purest of pure re-
search. There were no practical reasons for studying the ionosphere
following the advent of communication satellites. No-one today has
the slightest interest in cosmic noise absorption pulsations nor in Pi1
micropulsations apart from a few researchers in closely related fields.
This may change if there is a nuclear war and the issue of EMP (elec-
tromagnetic pulse) becomes important.

I learned a lot. I learned how important it is to have instruments
that work properly and are properly calibrated. I learned that auroral
physics is not about plugging a computer into the sky and pressing
the ON button. Science is about interacting with the real world;
you have to manipulate things in order to understand them, and you
have to understand them in order to manipulate them. That is how
understanding, the end-product of science, is built up. The idea that
you can sit indoors at a computer terminal and determine how the
real world must work is nonsense.

I remember what my supervisor, Prof G.R.A. (Bill) Ellis, told me
before I went south with my gear. He had said:

When you first use an instrument with much higher resolution
than before, not only do you see the same things bigger, you see new
things.

This is what happened to Galileo. When he first looked at the
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planet Jupiter in 1610, he not only saw a sphere on a larger scale, he
saw four of Jupiter’s moons as well. This was the first observation
of the satellites of another planet. It strongly supported the new
heliocentric theory and ultimately led to the development of modern
astronomy and physics.

When I operated my fast riometer for the first time, I too saw
new things; I saw sawtooth pulsations with a decay time related to
the electron density 80 km above the earth.

That is what scientific research is about; it is about exploring the
Universe, about broadening understanding, about seeing new things.
It formalizes the natural human tendency to explore. It involves a
sense of wonder. But we also have another, conflicting tendency which
inhibits our understanding; we have a tendency to kowtow to authority
and to suppress ideas which threaten that authority. We live in social
hierarchies based on shared dogma. Science can be subverted by such
dogma.

The famous story of King Canute commanding the waves is told
by chronicler Henry of Huntingdon, who lived within 60 years of the
death of Canute (1035 AD). When at the summit of his power, Canute
ordered a seat to be placed for him on the sea-shore when the tide was
coming in. Then, before a large group of his flattering courtiers, he
spoke to the rising sea, saying,“Thou, too, art subject to my command,
for the land on which I am seated is mine, and no one has ever resisted
my commands with impunity. I command you, then, o waters, not
to flow over my land, nor presume to wet the feet and the robe of
your lord.” The tide, however, continued to rise as usual, dashing
over his feet and legs without respect to his royal person. Then the
King leaped backwards, saying: “Let all men know how empty and
worthless is the power of kings, for there is none worthy of the name,
but He whom heaven, earth, and sea obey by eternal laws.”

Canute was the most powerful monarch ever to rule England. He
was, at once, King of England, Denmark, Norway and Scotland. He
was a Viking, a Christian and an educated man. He performed an
experiment by which he demonstrated to his superstitious courtiers
the objective reality of natural laws and the limitations of human
agency. To him the idea that a human being could override God’s
“eternal laws” was blasphemy. The belief in the existence of laws
of nature is a consequence of monotheism. It led ultimately to the
scientific revolution which accompanied the Renaissance.

For the first time in a millennium, scholars now question the ex-
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istence of natural laws. Evidently Canute was wrong and science is
merely a social construct. From now on, global temperature will be
controlled politically, by decree. The Scientific Method is to be aban-
doned, it seems.

This book is intended as a robust refutation of this fashionable
tendency. It is written in praise of the Scientific Method as a means
of comprehending and manipulating the natural world.

In Part I, Popper’s description of the Scientific Method is used to
address and rectify a persistent myth: the myth of the continuum, the
rationalist belief in the universal applicability of differential calculus
to fluid processes.

In so doing, emphasis is placed on time series rather than con-
tinuous functions, and a methodology for dealing with time series is
developed, Discrete Time Spectral Analysis; this is discussed in Part
II. It allows rigorous methods of statistical inference to be applied to
time series and to the time series of global average temperature in
particular. Most of this mathematical development could be heavy
going for the non-specialist and can be skipped; it is the implications
which are important (page 85).

In Part III, we abandon mathematical rationalism and adopt an
empirical approach, in order to speculate about a variety of natural
processes such as the recurrence of Ice Age Terminations, the growth
of wind-seas, the effect of subaqueous volcanism on ocean circulation
and the dynamics of the Earth’s interior.

If a movie were to be made of the workings of the Universe and
then shown backwards, the only Law of Physics that would not be
obeyed is the Second Law of Thermodynamics. It is the only Law in
which the direction of time is important. In the reversed movie, the
motions of the planets in their orbits would look much the same. Plan-
etary motions are determined solely by Newton’s differential equations
and do not involve the Second Law. On the other hand, a breaking
wave would look very wrong indeed when viewed backwards in time.
Waves never “unbreak”. Breaking waves involve the Second Law and
cannot be adequately described by differential equations. That is what
this book is about.

 EBSCOhost - printed on 2/13/2023 8:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 8:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



Part I

The Myth of the
Continuum

 EBSCOhost - printed on 2/13/2023 8:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 8:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 1

The Scientific Method

The Scientific Method

The fundamental things we know about the physical world are ei-
ther hard-wired into our brains or we found them out by experience.
Watch toddlers playing with kitchen utensils. They manipulate ob-
jects, they experiment. They find out by experience that big things
don’t fit inside small things. As we grow up, the results of those early
experiments are automatically understood but the actual experiments
have been forgotten. The same applies to all learned behaviour about
cause and effect, about the nature of flowing water and the danger
of fire. As we go through life, we continue to find out about the
world around us by experiencing it, by living in it, by manipulating
it, by carrying out millions of informal “experiments”, few of which
we remember except for one or two epiphanies.

However, as humans we also have the gift of language so that our
knowledge of the world is far broader than our personal experience.
The vast majority of things people know about the world are learned
from other people. Humans have a strong desire to learn through
communication: firstly from our parents, then from our teachers, then
from our playground friends and peers. In addition, we learn from var-
ious media: books, television, social media, and so on. Nevertheless,
“facts” are often communicated and remembered as summary prin-
ciples, tendencies, or trends rather than as observed details, which
would be far too numerous to remember.

But there is a problem. It is a very big problem.
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4 Chapter 1

Beliefs about the world, the most general and important ones,
are also political banners which both unite and divide people. It is
human nature to bond with those who share a belief and to reject those
who do not as alien, as foreign, as other. At best we regard people
whose beliefs conflict with our own as unsound, eccentric or downright
crazy. If we are told, by those in authority, that such-and-such is the
truth, then to publicly air doubts can be seen as a mad or traitorous
act. No doubt this socially unifying tendency of belief once served an
evolutionary purpose in uniting believers against a common enemy –
“survival of the loyal”. At this level, a belief becomes a religion or an
ideology.

Such unifying beliefs are usually concerned with politics and value
judgements: “Henry Tudor is the rightful King of England”, “Com-
munism is evil”, “There should be an equal number of women and men
on company boards” and so on. However that is not always the case.
For example, the belief that the Earth is the centre of the Universe
is value free, but in 1633 Galileo was forced to recant under threat
of torture when he proposed otherwise. At that time the Christian
Church in Europe was the absolute authority on the legitimacy of a
belief; validity or otherwise was determined solely by the authority
of the Church which, in turn, regarded the word of the Bible as the
ultimate arbiter, subject to its own interpretation of course.

Francis Bacon, a contemporary of Shakespeare, was the foremost
exponent of the Scientific Method of the early modern era. A great
legacy of Bacon was the description, in his Novum Organum (1620),
of “Idols of the Mind”: beliefs which commonly obstruct the path to
correct scientific reasoning. These are:

1. Idols of the Tribe:The human understanding is of its own nature
prone to suppose the existence of more order and regularity in
the world than it finds ... The human understanding when it
has once adopted an opinion draws all things else to support
and agree with it.

2. Idols of the Cave: The Idols of the Cave are the idols of the
individual man. ... men look for sciences in their own lesser
worlds, and not in the greater or common world.

3. Idols of the Marketplace: names of things which do not exist and
names of things which exist, but yet confused and ill-defined, and
hastily and irregularly derived from realities.
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Chapter 1 5

4. Idols of the Theatre: ... in the plays of this philosophical theatre
you may observe the same thing which is found in the theatre of
the poets, that stories invented for the stage are more compact
and elegant, and more as one would wish them to be, than true
stories out of history. Idols which have immigrated into men’s
minds from the various dogmas of philosophies.

In modern language these are equivalent to:

1. To a man with a hammer, every problem is a nail.

2. I’ve made up my mind. Don’t confuse me with facts.

3. How many devils can sit on the head of a pin?

4. Never spoil a good story for the sake of the truth.

In the ensuing centuries, natural philosophers – scientists – have
striven to purge science of these conceptual errors. Some are still
there, embedded in the fabric of sciences such as Fluid Dynamics and
the environmental sciences.

In fluid dynamics, an Idol of the Tribe is the widespread belief
in the universal applicability of differential calculus in describing the
behaviour of fluids. According to fluid dynamicists, every fluid is a
continuum and so is continuous and differentiable almost everywhere.
This despite the overwhelming evidence in support of the atomic the-
ory from nuclear physics, and in support of the granularity of action
space from Quantum Mechanics.

The mystique of Chaos Theory now dominates some fields despite
this granularity. Mathematical Chaos is a an Idol of the Market-
place whereby a thing may exist (chaos) but is “yet confused and
ill-defined and hastily and irregularly derived from realities”. Mathe-
matical Chaos bears no resemblance to reality nor to the χαoζ of the
Greeks. It is a fashionable buzzword intended to mislead us into be-
lieving that the pathological behaviour of differential equations some-
how provides a profound insight into the nature of the physical world.
By its very existence, Chaos Theory misdirects attention from stochas-
tic methods which provide a more fruitful approach.

By the 16th century, the invention of the printing press meant that
ideas could be disseminated widely and rapidly. This was the Church’s
problem with Martin Luther. A century later, other inventions such
as the telescope enabled people to discover the nature of reality for
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6 Chapter 1

themselves, and what they saw often contradicted Church authority.
This was the Church’s problem with Galileo. Furthermore, Europe
was in a state of religious ferment as Christianity fragmented into
various splinter groups.

A handful of thinkers in England found a way out of this mess. It
was to draw a strong distinction between science and religion and to
separate religion from the secular aspects of human inquiry. In 1663,
the “The Royal Society of London for Improving Natural Knowledge”
was founded. Its motto, “Nullius in verba”, broadly translates as
“take nobody’s word for it”. Thinkers like Newton and Priestley were
often intensely religious people, but they were careful to keep their
religion separate from their scientific work.1

This separation of modes of thought is an aspect of civilization.
The great sagas of the past, such as the Iliad, pre-dated writing and
were part of an oral tradition. They were written as poetry to be
more easily remembered. As such they were a mixture of poetry, reli-
gion, history and technology. Parts of the Finnish saga, the Kalevala,
appear to have been a handbook for finding and refining bog iron.
Another confluence of myth, poetry and technology is perhaps the
legend of King Arthur and the sword Excalibur. It may well have
been an Iron Age myth about making weapons from iron meteorites.
“He drew the sword out of the stone”; red hot iron is “drawn” by
beating it with a hammer because the melting point of iron is too
high for primitive furnaces.

How can we know about the world?
We can continue to experiment and to see for ourselves as we

did as children, but it is a very impractical solution and beyond the
reach of even the best-resourced individual. The recent observation
of gravitational waves by LIGO cost one third of a billion dollars and
involved hundreds of scientists and technicians.

We are inevitably forced to accept the beliefs of other individuals
or groups of people who have done the experiments themselves. We
have to take their word for it. But how are we to know that these
beliefs are based, ultimately, on experiment and observation and are
not the expression of some tribally unifying ideology to which humans
are so prone?
1Priestley was first to isolate an interesting gas which he called “dephlogisticated
air”. It was later renamed “Oxygen” by Lavoisier. Priestley emigrated to Amer-
ica, was a personal friend of Jefferson and, like him, passionately believed in the
separation of church and state.
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We do not know. We have to trust them. There is no other way.
The people we must trust are the scientists. It is their task to draw

conclusions from observations uninfluenced by their personal ideolo-
gies in the tradition of Newton and Priestley and the 17th century
Royal Society. The stock-in-trade of scientists is understanding. Un-
derstanding is their product. As with music, once a new idea has been
seen or heard or understood, it is impossible to go back and un-hear
it or un-understand it. This makes it difficult to adequately reward
creative scientists and for them to protect their work. Musicians have
copyright; scientists have peer-reviewed papers. As with music, much
that is published may turn out to be dross, but that which is not
can last indefinitely. As a civilized society we pride ourselves on our
symphony orchestras. Our scientific institutions should have a similar
role.

Our trust need not be absolute. We can, to some extent, assess
for ourselves whether a particular piece of research is cutting-edge or
fairly ordinary or even suspect, but in order to do so, we too must
put ideology aside. We too must be conscientious and do our home-
work. We can judge to some extent by the way the expert talks about
what they have done. It is similar to talking to one’s doctor or motor
mechanic: we may not understand the detail, but we can judge the
validity of their insights by their general demeanour, by whether the
things they say measure up to what we do already know, and, ulti-
mately, by whether they actually work. If we find out that our G.P. is
a closet naturopath, we may start to have doubts about what he/she
is telling us. Likewise, if we discover that a scientist is a passionate
Green, we may have doubts about his/her prognoses on species num-
bers or climate change unless he/she has made some obvious effort to
guard against his/her ideological predilections.

There are two major streams in European thought: Rationalism
and Empiricism. In the case of the former, the power of human reason
is assumed to be so great that, starting with a few general principles
that are obvious to everyone, it is possible to sit at a desk in a closed
room and by reason alone deduce the nature of the Universe and
all its workings. The Ancient Greeks were Rationalists who believed
that their geometry was an exploration of the properties of space. The
great modern Rationalist, Immanuel Kant, talked about the synthetic
a priori postulate, a statement about the real world that we somehow
just know to be true. Examples are cause and effect (i.e. every effect
must have a cause which precedes it) and the axioms of geometry.
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8 Chapter 1

Empiricists on the other hand believe that all knowledge is based
on experience derived from the senses. In order to understand the
world, we must observe it, and observation is paramount. It is a
fundamental part of the scientific method that all hypotheses and
theories must, ultimately, be tested against observation.

Once again, the big breakthrough came in the 17th and 18th cen-
turies with the Empiricist philosophers, Locke, Berkeley and Hume.
With it came the Enlightenment and the rise of the Scientific Method
put into practice by early scientists such as Newton, Halley, Galileo,
Hooke and Boyle. These people did not completely abandon Rational-
ism but tempered it with empirical observation. Many people think
that physicists such as Newton and Einstein produced their great uni-
fying theories out of thin air without recourse to observation, but that
is not the case. Newton experimented extensively with pendulums and
Einstein recognized the need for observation in verifying his theories
of relativity. For Einstein, time is that thing which is measured with
clocks, and space is that thing which is measured with measuring
rods.

When I was a student, a post-apocalyptic science fiction novel
was very popular. It was Earth Abides by George R. Stewart. As I
recall, the protagonist helps his people as they descend into savagery
by teaching them how to make and use the bow and arrow, so saving
them thousands of years of technical evolution. The idea has stayed
with me. In a similar situation I would attempt to teach them the
Scientific Method for similar reasons.

This interaction between ideas and observations is complex. Young
research scientists spend many years learning the skills of their trade.
There is no simple formula, no button to press: you have to learn
how to do it under the tutelage of skilled practitioners, much like a
musician.

The Scientific Method set out by Bacon in the early 17th century
was further refined by Newton and others and set out by Popper
(1962) in the form of his Seven Principles:

1. It is easy to obtain confirmations, or verifications, for nearly
every theory if we look for confirmations.

2. Confirmations should count only if they are the result of risky
predictions; that is to say, if, unenlightened by the theory in
question, we should have expected an event which was incom-
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patible with the theory, an event which would have refuted the
theory.

3. Every “good” scientific theory is a prohibition: it forbids certain
things to happen. The more a theory forbids, the better it is.

4. A theory which is not refutable by any conceivable event is non-
scientific. Irrefutability is not a virtue of a theory (as people
often think) but a vice.

5. Every genuine test of a theory is an attempt to falsify it, or
to refute it. Testability is falsifiability; but there are degrees
of testability: some theories are more testable, more exposed to
refutation, than others; they take, as it were, greater risks.

6. Confirming evidence should not count except when it is the re-
sult of a genuine test of the theory; and this means that it can
be presented as a serious but unsuccessful attempt to falsify the
theory.

7. Some genuinely testable theories, when found to be false, are
still upheld by their admirers for example by introducing ad hoc
some auxiliary assumption, or by reinterpreting the theory ad
hoc in such a way that it escapes refutation. Such a procedure is
always possible, but it rescues the theory from refutation only at
the price of destroying, or at least lowering, its scientific status.

These principles are descriptive not prescriptive and pre-date Pop-
per by three centuries. Popper was not stating how Science ought to
be done but how it actually is done. Most working scientists would
recognize these ideas and would support their application in their own
research field. Popper describes how Science frees itself from Bacon’s
Idols.

The remarkable advances in science and technology witnessed in
the modern era are largely the result of the meticulous application
of the Scientific Method. When a theory is tested against observa-
tion and fails the test, new insights into the underlying reality are
gained, whereas clinging tenaciously to a “correct” theory can only
lead to a sterile absolutism. This is the fundamental difference be-
tween Physics and Applied Mathematics. It is also the fundamental
difference between science and superstition.
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In recent times some aspects of Physics itself appear to have aban-
doned the Scientific Method as described by Popper. An example is
superstring theory of Theoretical Physics:

The possible existence of, say, 10500 consistent different vacuum
states for superstring theory probably destroys the hope of using
the theory to predict anything. If one picks among this large set
just those states whose properties agree with present experimental
observations, it is likely there still will be such a large number of
these that one can get just about whatever value one wants for the
results of any new observation.2

According to Popper then, superstring theory, the most advanced
(and glamorous) form of contemporary theoretical physics, is not even
science. It is incapable of making risky predictions about the real
world and so is evidently a form of pure mathematics, and not science
at all.

There is another so-called “science” which has abandoned the em-
pirical and lost touch with reality. That is Fluid Dynamics or at least
those aspects of Fluid Dynamics which have ignored observation in
favour of a mathematical ideal.

2Woit (2006) p122.
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Numbers and Entropy

Numbers

God made the natural numbers. Everything else is Man’s handi-
work.1

Leopold Kronecker

All the mathematical sciences are founded on relations between phys-
ical laws and laws of numbers, so that the aim of exact science is to
reduce the problems of nature to the determination of quantities by
operations with numbers.

James C. Maxwell

I believe that mathematical reality lies outside us, that our function
is to discover and observe it, and that theorems which we prove, and
which we describe grandiloquently as our “creations” are simply the
notes of our observations.

G.H.Hardy

There are different sorts of numbers. Sometimes numbers are just
codes, like telephone numbers, but mostly numbers represent quanti-
ties, i.e. things in the real world such as the number of potatoes in a
shopping bag or the radius of the earth. Some numbers, like π and e,
1Die ganzen Zahlen hat der liebe Gott gemacht; alles andere ist Menschenwerk.
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come out of mathematics itself as if the mathematical world has its
own objective reality as Hardy’s quote above suggests.

In fact numbers have evolved. It started with the natural numbers.
The natural number “5” is the property of any set of objects that can
be put into one to one correspondence with the fingers of my right
hand. Add a new member to this set and it then has the number
property “6” which is called the “successor” of “5”. Every natural
number has a successor, but there is a natural number that is not a
successor to anything. It is called “1”.

Later on the number zero was invented. Zero started out as a
place-holder when the Arabic system replaced the Roman numer-
als. Arithmetic operations such as multiplication became a lot eas-
ier. Then came negative numbers, which were a boon to accountants.
Having negative money meant that you owed money. The negative
numbers, zero and the natural numbers are called “integers”.

Then came fractions. You have 2 acres of land to split equally
between 3 sons so they each get 2/3 of an acre. These are called
rational numbers. A rational number is an “ordered pair” of integers,
(p,q), which is usually written as p/q or p÷ q or N p

q where N is also
an integer. There are rules for manipulating rational numbers which
we called “doing fractions” in primary school.

Then around 300 BCE came the first scientific catastrophe which
we will call “The Rational Number Catastrophe”, commonly known as
“Euclid’s proof that the square root of two is not a rational number”.

The proof is easy to follow, even for a non-mathematician. It
works by showing that the assumption that there is a rational number
(i.e. a fraction) whose square is 2 leads to a contradiction. It goes as
follows: Suppose

p

q
=
√

2 (2.1)

where p and q are integers with no common factor, i.e. p/q is in its
simplest form. Then

p2

q2 = 2 (2.2)

Therefore
p2 = 2q2 (2.3)

so that p2 is an even number. If p2 is an even number, then p must
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also be an even number, i.e.

p= 2a (2.4)

where a is an integer. Then

4a2 = p2 = 2q2 (2.5)

and so
2a2 = q2 (2.6)

Therefore q2 is even which implies that q itself must also be even.
Therefore both p and q are even numbers which contradicts our orig-
inal assumption.

More than two millennia later, the square-root-of-two-problem is
still with us.

√
2 was termed “irrational”. Other numbers such as π

and e were even worse; they are not only irrational, they are “tran-
scendental”.

From the point of view of mathematics, the problem of irrational
numbers was solved in the late 19th century by Dedekind, Wieirstrasse
and others who devised the “real numbers”. This was done using the
concept of limits. Think of the set of all rational numbers which are
less than

√
2. The upper limit of this set is called the “supremum”.

Now think of the set of all rational numbers which are greater than√
2. The lower limit of this set is called the “infimum”. It can be

shown that the supremum and infimum are the same number. That
number is the definition of the real number,

√
2. Real numbers make

mathematics self-consistent.
From a physics point of view, however, this is fairyland. The

mathematicians have defined a set of numbers which scientists are
unable to use to perform calculations. Real numbers are not com-
putable. Real numbers are useless for dealing with the real world. All
the calculations done by scientists involve rational numbers not real
numbers. Computers use rational numbers like p/q, where q = 264.

Real numbers are not real. What happened was that mathematics
became more and more refined and elegant until it ceased to be useful.
As Einstein once said, “Elegance is for tailors”. Belief in the relevance
of real numbers to the natural world is an Idol of the Tribe.
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Entropy

Contrary to popular belief, James Watt did not invent the steam
engine. The Newcommen steam engine had been around for seventy
years. It was used for pumping water out of mines to prevent them
flooding. The Newcommen engine used steam to force a piston along
a cylinder. The hard part was getting the piston back to its original
position. This had involved cooling the piston itself with water before
reheating it again for the “power stroke”. As a result more heat was
used to reheat the cylinder than was converted into mechanical energy.
Watt’s invention allowed the steam to be cooled outside the cylinder
in a separate apparatus called a condenser. The condenser sucked
the steam out of the cylinder leaving the cylinder hot and ready for
the next stroke. There was a huge increase in efficiency of steam
engines; much less fuel was required to pump the same amount of
water. Imagine a Cornish tin miner having to import from Wales, all
the coal to drive his pumps. To him, a more efficient engine meant
lower costs.

Following this breakthrough there were numerous incremental im-
provements, such as converting reciprocal motion to rotary motion
to drive lathes, presses and the like. Steam engines enabled mass-
production and so revolutionized manufacturing. Stevenson’s loco-
motive in 1829 revolutionized transport as well.

Fuel costs money, and enormous effort went into attempts to im-
prove efficiency. Clearly heat was a form of energy (the First Law of
Thermodynamics). People asked why couldn’t all the available heat
be converted to mechanical energy?

In 1850, the German physicist Rudolf Clausius published a paper
in which he proposed the Second Law of Thermodynamics:

It is impossible to construct a device which operates in a cycle and
produces no other effect than the transfer of heat from a cooler body
to a hotter body.

which is equivalent to:
It is impossible to construct a device which operates in a cycle and

produces no other effect than the transfer of heat from a single body
in order to produce work.

At this time an important thought experiment was developed to
help gain an understanding of the implications of the Second Law. It
is called the Carnot Cycle and comprises a piston in a cylinder oper-
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ating between two heat reservoirs, rather like a steam engine, except
that the cylinder contains an ideal gas rather than steam. The heat
reservoirs have absolute temperatures TH and TC and heat is passed
between the cylinder and the reservoirs in a four phase cycle. It is
done very slowly or “reversibly” so that the gas is always in equilib-
rium and friction can be ignored. It turns out that the efficiency, η,
is given by

η = 1− TC
TH

(2.7)

i.e. efficiency depends solely on the ratio of the absolute temperatures
of the reservoirs and it is always less than one. Furthermore it can be
shown that this is the best case. There is no other heat engine that
can convert heat to work more efficiently than the Carnot Cycle. It
is the perfect heat engine.

The work, W , done by the Carnot Cycle is succinctly described
by the equation:

W = (TH −TC)(SB−SA) (2.8)

where SB and SA are the initial and final entropy of the two reservoirs.
The change in entropy of a reservoir, ∆S, is defined by

∆S =
∫ B

A

dQ

T
(2.9)

where a quantity of heat, dQ, is transferred to the reservoir at absolute
temperature, T .

This equation (2.9) is the thermodynamic definition of entropy or,
at least, of entropy change. It is a macroscopic, observable quantity
which is measurable using thermometers, calorimeters and the like.

But what does it mean at a molecular level? Heat is the total
kinetic energy of molecules in a gas, temperature is related to the
average kinetic energy of the gas molecules while pressure is the sum
of forces per unit area when molecules collide with the boundaries of
the container.

But what is entropy?
There have been a number of definitions, starting with Boltz-

mann’s famous:
SB = kB ln(W ) (2.10)

where SB is the entropy and kB is Boltzmann’s constant and ln() is
the natural logarithm.
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Boltzmann’s paradigm was an ideal gas of N identical particles,
of which N1, N2, etc. are the numbers of particles in various micro-
scopic conditions of position and momentum. Using the formula for
permutations

W = N !
N1!×N2!×·· · (2.11)

where ! denotes factorial,2 W is the number of microstates associated
with a particular observed macrostate. Although more difficult to un-
derstand than Einstein’s famous E = mc2, Boltzmann’s entropy for-
mula is equally profound. It is engraved on his tombstone in Vienna.
It is the first formula in physics to relate a measurable, supposedly
continuous, physical quantity to probability.

An easy way to understand macrostates and microstates is to
consider the “entropy” of a deck of cards.

State 1
Suppose the top 26 cards are all red and the bottom 26 cards are

all black. These represent two microstates, M1 and M2, say. The
number of possible permutations of both M1 and M2 are 26× 25×
...× 2× 1, i.e. factorial 26 (written 26!). Likewise the number of
permutations of the whole deck is 52! so that (2.11) becomes

W = 52!
26!×26! (2.12)

for this particular case. Substituting in (2.10) and assuming kB = 1
for cards gives SB = 0.042.

State 2
Now suppose the top 13 cards are hearts and the bottom 39 are

the other three suits so that W becomes

W = 52!
13!×39! (2.13)

Now SB = 0.065. The entropy is greater because this is a less orderly
arrangement of the cards.

A transition from State 1 to State 2 results in an entropy increase
of ∆SB = .065− .042 = .023.

Suppose we use two decks of cards so that W for State 1 is given
by

W = 104!
52!×52! (2.14)

2e.g. 6!=6 X 5 X 4 X 3 X 2 X 1 = 720
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and for State 2 by
W = 104!

26!×78! (2.15)

This time the entropy change is ∆SB = .024− .016 = .008. i.e. less
than the value of .023 in the single deck case.

This example indicates that entropy change depends on the num-
ber of entities being shuffled – it depends on the granularity of the
system under investigation. It depends on the total number of grains
in the system. It does not work for a continuum.

There are other statistical definitions of entropy, such as those of
Gibbs and (in a different context) Shannon:3

SB =−kB
∑
i

pi ln(pi) (2.16)

If we made a movie of the Universe and showed it backwards, all
the laws of physics would still be true except for the Second Law of
Thermodynamics. This is the only Law in which time has a direction.
It says something about the nature of time itself; time cannot go
backwards, entropy can only increase with time.

The three entropy equations, (2.8), (2.9) and (2.10), indicate that
thermodynamic systems are coarse-grained. They are coarse grained
because of quantum physics. Not only is matter itself coarse-grained
according to the atomic theory, but dynamical systems for which a
Hamiltonian exists must also be coarse-grained or quantized in “action
space”4.

The Second Law of Thermodynamics is perhaps the most pro-
found of all the Laws of Physics; it arose from a desire to make mining
more profitable. The Second Law leads to the concept of entropy. En-
tropy is a measure of how energy is ordered in a stochastic, granular
system. It has no meaning in a deterministic continuous system. The
idea that deterministic equations relating continuous physical quanti-
ties can provide a comprehensive picture of physical reality is an Idol
of the Tribe. It is false because such a model cannot account for the
Second Law of Thermodynamics.

3The two definitions, (2.10) and (2.16), are not as different as they may first
appear because of an approximation for the logarithm of a factorial known as
Stirling’s Theorem.

4Action is a physical quantity which has the units of energy×time or
momentum×length.
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Two Catastrophes

At first pass the world appears deterministic. Every event has a cause
which is itself an event which must also have a cause, and so on. So go
the first and second arguments for the existence of God (by St Thomas
Aquinas, 1225–1274 AD). However, the more deeply physicists looks
into the natural world, the more it appears to be random. At a
subatomic level, there are the random events of radioactive decay and
of wave and particle interactions. At human scales, phenomena such
wave breaking, vortex shedding and fluid turbulence have a random
or “stochastic” character.1

In the introduction to his 1814 Essai philosophique sur les proba-
bilités, Pierre-Simon Laplace had this to say:

We may regard the present state of the universe as the effect of its
past and the cause of its future. An intellect which at a certain
moment would know all forces that set nature in motion, and all
positions of all items of which nature is composed, if this intellect
were also vast enough to submit these data to analysis, it would
embrace in a single formula the movements of the greatest bodies
of the universe and those of the tiniest atom; for such an intellect
nothing would be uncertain and the future just like the past would
be present before its eyes.2

1Random and stochastic mean the same thing
2Nous devons donc envisager l’état présent de l’universe comme l’effet de son état
antérieur, et comme la cause de celui qui va suivre. Une intelligence qui pour
un instant donné connaîtrait toutes les forces dont la nature est animée et la
situation respective des êtres qui la composent, si d’ailleurs elle était assez vaste
pour soumettre ces données à l’analyse, embrasserait dans la même formule les
mouvements des plus grands corps de l’universe et ceux du plus léger atome;
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This is a statement of absolute determinism. It is not something
to be learned about the universe by observation, and it can never
be disproved. It is not a scientific theory. It can perhaps best be
regarded as a secular substitute for an omniscient God with perfect
foreknowledge. To record the position of even a single particle would
require knowledge of a quantity with an infinite number of decimal
places, a real number. Computations with such numbers would take
an infinite amount of computer time. Instead we have to use rational
numbers and live with the imprecision brought about by round-off er-
rors. Despite these difficulties there are many who work in the physical
sciences who still, deep down, agree with Laplace, particularly those
who deal with systems of partial differential equations which are, by
their nature, deterministic. As Einstein supposedly said: I, at any
rate, am convinced that [God] does not throw dice.3 It is hard to com-
prehend how someone who won a Nobel Prize for his contribution to
Quantum Mechanics could have made such a statement. Perhaps it
has been taken out of context or otherwise misunderstood.

The calculus was devised by Newton and Liebniz to deal with
the motions of solid bodies – planets, satellites and artillery shells
– at which it proved to be brilliantly successful. Halley’s accurate
prediction of the return of the eponymous comet was an early example.

Stochastic variables are often expressed as functions of past states
rather than as functions of time. They include an additional, random
component. As a consequence, when we use a stochastic model to pre-
dict further and further into the future, the predictions become less
and less reliable because randomness accumulates from one predicted
state to the next. This leads to the idea of a prediction horizon de-
scribed by Koutsoyiannis (2010). For example, meteorological models
that predict the weather have a prediction horizon of about a week.

The mid-19th century was the heyday of determinism in the ap-
plication of Newton’s differential calculus to the physical world. Here
we examine two cases where this Newtonian determinism broke down:
Maxwell’s electromagnetic field equations and the Navier–Stokes equa-
tions of fluid dynamics. These sets of partial differential equations are
written out in full in Appendix 16. In the former case, the purely de-
terministic description had clearly failed by the turn of the century
whereas in the second case, this inadequacy was glossed over, and a

rien ne serait incertain pour elle, et l’avenir comme le passé serait présent a ses
yeux.

3Jedenfalls bin ich überzeugt, daßder nicht würfelt.
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deterministic description is still in use today.

The Ultraviolet Catastrophe

At the beginning of the 20th century, two revolutions occurred in
physics. One was Relativity, the other, Quantum Mechanics. Without
doubt it was the second which has had the greater impact, both on
technology and on the way we think about the natural world.

By the mid-19th Century, Maxwell had summarized Faraday’s
electrical experiments with two elegant equations, (A.6) and (A.7),
which described electromagnetism. Maxwell’s Equations are partial
differential equations and as such are deterministic.

At the time it was thought that these equations described the
behaviour of an underlying aether. Their form led to the possibility
of the existence of waves which would be carried by the aether in much
the same way that solids, liquids and gases carry sound waves. The
measured properties of the aether, its permittivity and permeability,
were then used to determine the aether wave velocity in much the
same way that density and elasticity are used to compute the velocity
of sound. When this was done, the aether wave velocity turned out
to be very close to the measured velocity of light. Light was clearly
electromagnetic.

The whole Universe was considered to be bathed in aether, and at-
tempts were made to find out how fast the Earth was moving through
this aether pond. Michelson and Morley found that wherever the
Earth was located in its orbit around the Sun, its velocity through
the aether was always zero. This experiment was the basis of Rela-
tivity. The Relativity theory could well be called “the non-existence
of aether theory”. The theory of aether was replaced with a theory of
fields. Maxwell’s equations remained formally the same and became
known as the electromagnetic field equations.

Now came new questions: why does a hot object emit light, and
why does the spectrum4 of this light have a particular shape depend-
ing on the temperature? In simple terms, why does an object such as
an iron bar change colour as its temperature increases? The problem
was attacked by assuming the hot object is a cavity containing elec-
tromagnetic waves. This was called a “black body” because colour
4The concept of spectrum is dealt with more fully in Part II.
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from reflected light is ignored. The electromagnetic waves bounce
around inside the cavity interacting with molecules at random and
bouncing off the walls. Think of sound waves bouncing back and
forth in a woodwind instrument – a fundamental frequency is gener-
ated, together with numerous harmonics which give the instrument
its particular timbre. In a similar manner, electromagnetic waves are
assumed to bounce around inside the black body. Instead of particu-
lar harmonics or modes being determined by the shape of the cavity,
the total energy is partitioned equally among all the modes. This is
because energy is transferred from mode to mode internally by wave-
molecule interactions rather than reflections from the walls. These
assumptions lead to the Rayleigh–Jeans formula for Bλ, the spectral
radiance of black-body radiation:

Bλ(T ) = 2ckBT
λ4

where c is the velocity of light, T is the absolute temperature, λ is the
wavelength and kB is Boltzmann’s constant.

The formula is a direct consequence of Maxwell’s Equations. It
works very well at long wavelengths, i.e. when λ is large. However it
breaks down at short wavelengths. It is obviously wrong because it
tends to infinity as λ tends to zero. There would have to be an infinite
amount of energy radiated at zero wavelength! In fact, it already goes
badly wrong even in the ultra-violet part of the spectrum.

This is the ultraviolet catastrophe: Maxwells’s equations cannot
predict the distribution of radiated black-body energy with wave-
length in the ultraviolet and beyond.

In November 1900, German physicist Max Planck postulated that
electromagnetic energy could be emitted only in quantized form, in
other words, the energy could only be a multiple of an elementary
unit:

E = hν = hc/λ

where h is Planck’s constant and ν is the frequency of the radiation.
Physicists now call these quanta photons, and a photon of frequency ν
will have its own specific and unique energy. The total energy at that
frequency is then equal to hν multiplied by the number of photons
at that frequency. This restricts the amount of energy distributed to
shorter wavelengths and leads to Planck’s Law:

Bλ(T ) = 2ckBT
λ4

1
ehc/(λkBT )−1
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Planck’s Law describes black-body radiation very well indeed.
Later Einstein and Bose postulated that Planck’s quanta were real

physical particles that we now call photons, not just a mathematical
fiction. They modified statistical mechanics in the style of Boltzmann
to an ensemble of photons. Einstein’s photon had an energy pro-
portional to its frequency, and this also explained the photoelectric
effect. For this work Einstein was awarded the Nobel Prize in Physics
in 1921.

The unsung hero in all of this was Boltzmann. Planck used Boltz-
mann’s statistical interpretation of the second law of thermodynamics
as a way of gaining a more fundamental understanding of the prin-
ciples behind his radiation law. Thus Maxwell’s deterministic equa-
tions break down at high frequencies and are replaced by Planck’s
Law which is based on Boltzmann’s probabilistic world-view.

Boltzmann’s kinetic theory of gases presupposed the reality of
atoms and molecules, but almost all German philosophers and many
scientists disbelieved their existence. Furthermore, many defenders of
“pure thermodynamics” were trying hard to refute the kinetic theory
of gases and statistical mechanics because of Boltzmann’s assumptions
about atoms and molecules and especially his statistical interpretation
of the second law of thermodynamics. He had a long-running dispute
with the editor of the preeminent German physics journal of his day,
who refused to let Boltzmann refer to atoms and molecules as any-
thing other than convenient theoretical constructs. Only a couple of
years after Boltzmann’s death, Einstein’s theoretical description of
molecular diffusion and subsequent experiments confirmed the values
of Avogadro’s number and Boltzmann’s constant, and convinced the
world that atoms really do exist. There are few, if any, scientists
today who would doubt this.

The Fluid Dynamic Catastrophe

Today the physics of the very large (Cosmology) and of the very small
(Particle Physics) are well established. Strangely the physics of the
mesoscale covering the interval from laboratory to planetary scales is
less well understood. This is the scale in which fluids predominate.
Fluid dynamics is the field of applied mathematicians who harbour a
deep suspicion of statistical inference and the experimental method.
They proceed according to a sort of mathematical rationalism, an
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axiomatic approach whereby the fundamentals are given, a priori,
and all that is required is mathematical rigour in dealing with the
partial differential equations describing “ideal” fluids.

In the mid 19th century, the equations embodying Newton’s laws
of mechanics were adapted to deal with fluids as well as solid objects.
Out of this came the Navier–Stokes equations (Navier, 1831, Stokes,
1845), which embody Newton’s Laws and the conservation of mass in
the form of differential equations. These equations are based on the
assumption that the fluid, at the scale of interest, is a continuum –
in other words, it is not made up of discrete particles but rather is a
continuous substance. Another necessary assumption is that all the
fields of interest like pressure, flow velocity, density, and temperature
are differentiable, i.e. smooth at every scale.

These assumptions, although necessary for the derivation, have
some unfortunate consequences, viz.:

1. The Navier–Stokes equations are in direct conflict with atomic
theory and so cannot account for the Brownian motion,

2. The Navier–Stokes equations do not predict turbulence.

3. The Navier–Stokes equations do not allow entropy to increase.

The first people to come to grips with turbulence were Taylor
(1935) and Kolmogorov (1941). In sharp contrast to the deterministic
approach of Navier–Stokes, both Taylor and Kolmogorov treated the
problem as a stochastic one, which, using dimensional arguments, led
to Kolmogorov’s spectrum of the turbulent energy in the inertial range
of scales where viscosity is unimportant:

E(k) = Cε
2
3 k−

5
3

where C is a constant, ε is the rate of energy dissipation and k(= 1/λ)
is the wavenumber.

Like Planck’s formula for electromagnetic black-body radiation,
Kolomogorov’s spectrum is based on probabilistic assumptions. It
appears then that both electromagnetism and fluid dynamics depend
on two different theories: a deterministic theory, which applies only
to low energy densities and a stochastic theory, which applies high
energy densities.

Just as Maxwell’s Equations work very well indeed at low frequen-
cies for non-ionizing radiation, the Navier–Stokes equations work very
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well indeed for low Reynolds Number, streamline flows in which there
is no turbulence. It is only at high energy densities and shorter time
scales that both systems of equations break down. In neither case do
these deterministic equations make provision for increases in entropy
as described by Boltzmann’s equation, (2.10).

In 2000 the Clay Mathematics Institute of Cambridge, Mass.,
U.S., designated the Navier–Stokes equations a “Millennium Prob-
lem”, one of seven mathematical problems selected for a special award
worth $1 million. Unfortunately the Navier–Stokes Millennium Prob-
lem is couched in terminology that precludes anyone other than a
mathematician from claiming the prize. The problem with these equa-
tions is not mathematical; it has more to do with the fact that they
do not describe real fluids.

The Navier–Stokes equations may work well for streamline flow
at laboratory scales, but they break down badly at environmental
scales where sub-grid-scale turbulence becomes a major issue. In these
circumstances they cannot be solved explicitly and we must resort to
finite difference methods, i.e. the Navier–Stokes equations must be
dragooned into iterative form in order to be useful. This is done using
Taylor’s Theorem, viz.: for each partial derivative, y′(a) = ∂y

∂z |a in
(A.10), (A.11) and (A.12), we use the following type of approximations
for the various partial derivatives:

∂y

∂z

∣∣∣
a
≈ y(a+ ∆z)−y(a)

∆z (3.1)

Various difference schemes are used, each with its own advantages
and drawbacks, but all are based on the assumption that derivatives
such as ∂y∂z actually do exist, in other words, that the fluid under con-
sideration is a continuum, i.e. that it is continuous and differentiable
everywhere. By definition

dy

dz
= lim

∆z→0

∆y
∆z (3.2)

which requires that ∆y→ 0 as ∆z → 0 in order for the ratio to re-
main finite. Given that fluids are granular rather than continuous and
differentiable, this assumption is unwarranted.

It might be argued that this is nitpicking and that (3.1) is good
enough for practical purposes. However, problems arise with finite
difference models under numerical conditions which closely resemble
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those giving rise to turbulent phenomena in the real world. Because
of the deterministic character of both the Navier–Stokes equations
and their finite difference approximations, it is not possible for the
stochastic character of such turbulence to be properly represented.
Instead, numerical instability ensues and the model “blows up”, i.e.
some variables increase in magnitude so rapidly that the computer
word length is exceeded within a few time steps and an error condition
is raised.

In order to avoid such instabilities, various fudges are introduced.
These include:

1. arbitrarily smoothing the bathymetry or topography at the bound-
aries of the model so that there are no cliffs or spikes where
vortex generation would occur in the real world, and

2. arbitrarily increasing frictional parameters such as the viscosity,
η, in (A.9).

In order to satisfy #2, new parameters are introduced into (A.9)
to remove mechanical energy from potential instabilities while making
the model appear truly “physical”. One such new parameter is the
“eddy viscosity” which, in numerical models, is often set an order of
magnitude higher than observed values. There is some justification for
including eddy viscosity because it is related to the apparent viscous
drag which comes about when turbulent eddies cross the boundary
between neighbouring flows. In the real world, eddy viscosity is only
important where eddies are found, i.e. where there is turbulence. In
numerical models it is assigned a high value throughout the model in
order to keep things stable.

In short, numerical models based on the Navier–Stokes equations
only work if the tendency of moving fluids to become turbulent is arti-
ficially suppressed. As a result, deterministic numerical models based
on these equations are not accurate emulations of physical reality.
They rapidly part company with the system they purport to emulate.
Because of excessively high viscosity values needed for stability, they
are often over-damped and so underestimate the spatial and temporal
variability of the real world.

As an example, look at the variances of sea surface temperature
(SST) predicted by the HadCM3 model and based on the Navier–
Stokes equations. These are shown in Figure 3.1. SST variances
derived from the HadSST2 data set are shown Figure 3.2 for compar-
ison. Over most of the ocean, the observed variances are noticeably
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Figure 3.1: Sea Surface Temperature variances from the HadCM3
Climate Model.

Figure 3.2: Sea Surface Temperature variances from the HadSST2
data set. (Variances along the Equatorial Pacific are artificially low
for data processing reasons.)
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greater than model output even to the naked eye. This was tested sta-
tistically by testing the ratio of observed and model variances using
Fisher’s F-test. The null hypothesis that model output only differed
from the observations by chance can be rejected at a very high level
of significance.

Furthermore, model output is different in character from the ob-
servations; it looks as if it has been generated by a machine. The big
warm-core eddies which spin off the Cape of Good Hope and Cape
Horn were not captured at all.

The continuum - an Idol of the Tribe

The problem with Maxwell’s equations and the Navier–Stokes equa-
tions is that they are Newtonian – they are partial differential equa-
tions and, as such, deterministic and continuous. They do not allow
for the granularity and stochastic behaviour of the systems they pur-
port to describe. This is particularly true of the Navier–Stokes equa-
tions which do not even accommodate the atomic theory of Democri-
tus but apply instead to some mythical “continuum” which has never
been observed. Neither do they accommodate the granularity of action
space, which is why they cannot deal with turbulence. A turbulent
region of a fluid is a region which is less ordered than streamline flow,
i.e. where the entropy density is higher than that of streamline flow.
Turbulent phenomena in fluids such as Kolmogorov spectra and the
Law of the Wall were not derived from the Navier–Stokes equations
but from dimensional arguments and stochastic assumptions.

This is the fluid dynamic catastrophe. The Navier–Stokes equa-
tions cannot predict the distribution of turbulent energy with wave
number. Newton’s differential calculus does not work for fluids. Stochas-
tic methods and iterative models are more appropriate for dealing with
fluid phenomena.

The belief that every fluid is a continuum, describable by the
Navier–Stokes equations, is an Idol of the Tribe. It is perhaps the most
well-established, most widespread and most destructive of Bacon’s
Idols in contemporary science. It has held back fluid dynamics for
more than a century. Almost all of the apparent gains in this field
in its application to hydraulics, aeronautics and marine science have
been the result of painstaking empirical observations involving wave
tanks, wind tunnels and marine hydrography.
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When the limitations of Laplacian Determinism are recognised
and the mythical nature of the continuum acknowledged, it may be-
come possible, once again, to develop meso-scale physics empirically.
Clearly much of the real world is not continuous, differentiable and
deterministic as the mathematicians would have us suppose. A real
quantity is not a “real number”, which is a mathematical ideal and un-
manageable in practice. Rather the real world is granular and stochas-
tic. It requires a calculus which accommodates this fact and empha-
sises stochastic time series over deterministic continuous functions.
The spectral analysis of time series comprises such a calculus and is
discussed in Part II. In Part III some hypotheses and speculations
based on this approach are proposed. It is an approach freed from the
strictures of Newtonian Rationalism and more compatible with the
established methods of empirical science and statistical inference.

Part II which follows is intended for the specialist. The lay reader
should skip to Implications (page 85).
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Part II

The Spectral Analysis of
Time Series
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Chapter 4

Spectral Analysis

This Part is intended for the specialist. The lay reader should skip to
Implications (page 85).

The term spectrum refers to the distribution of energy or power
with frequency or wavelength. It began when Newton passed a beam
of white light through a glass prism and saw how it split into its com-
ponent colours. This happened because different colours have different
velocities in glass and so were refracted at different angles. The rain-
bow effect produced was termed the spectrum after the Latin word
for ghost. The splitting of light into its component parts became a
very powerful technique, particularly in astronomy where the spectral
character of an object is pretty much the only information available.

As every blacksmith or potter knows, the temperature of a hot
object can be judged by its colour. As an object is heated it first be-
comes dull red, then bright red, then orange, then yellow then white,
the colour of the Sun’s surface. Apart from temperature, the spec-
trum can also reveal great detail about the chemical composition of
the object, but that need not concern us here. The “Quantum Revo-
lution” which overturned classical physics a century ago started with
the consideration of the spectra of hot objects as discussed in the
previous chapter.

Clearly the break-down of energy into components associated with
different scales is of major interest in the analysis of a physical system
because it provides insights into underlying physical processes. In the
analogue world, various gadgets such as prisms, diffraction gratings
and electronic circuitry are used to perform this task. In this digital
age, numerical methods are appropriate.
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Scientific measurements of real world quantities do not commonly
come singly or in small groups but in very large data sets which may
contain, quite literally, millions of values. This is particularly so since
the advent of electronic storage methods. One particularly common
form that data takes is the time series, which a sequence of measure-
ments taken at equal intervals of time or averaged over equal intervals
of time. An example would be the Weather Bureau’s three hourly
readings of the temperature at a particular location.

Drawing conclusions from time series is more complicated than
one might expect. Most people like to think they have an intuitive
grasp of time series, particularly with regard to the weather: “It was
much hotter when I was a kid” and so on. Often these intuitions are
quite wrong even when made by supposedly skilled observers. What
is needed is a formal discipline for dealing with time series in the
Popperian manner. Such a discipline evolved from signal processing
theory and Econometrics.

The spectrum is an essential concept in dealing with time series.
Rather than the power spectrum of the analogue world it is the vari-
ance spectrum which is used. Variance, the mean square of a set of
numbers, is the digital analogue of power or energy. Hence it is the
variance spectrum which must be calculated or estimated. Like the
power spectrum, it can be a powerful tool for revealing underlying
physical processes. The method is known as spectral analysis.

Spectral analysis co-evolved with the rapid development of digital
computers in a number of different disciplines. As a consequence, some
myths and misconceptions crept in and have become established as
Baconian Idols – for example, the belief that the periodogram is not
a consistent statistical estimator and must always be smoothed by
“windowing” in order to be useful.

Here we develop a rigorous approach to the spectral analysis of
time series, one which accommodates conventional methods of statis-
tical inference.
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Statistical Inference

Popper’s principles listed in Chapter 1 are well served by methods of
statistical inference developed by Fisher (1934) and others in the early
part of the 20th century. These methods formalize and quantify the
idea of falsifiability by introducing the concept of the Null Hypothesis,
that is, an hypothesis which has been set up to be deliberately falsified
using the methods of mathematical statistics. This technique is known
as hypothesis testing.

Here is a very simple example:

• Experiment: A man tosses a coin 4 times and gets Heads every time.
Is there something strange going on, such as a biased coin being
tossed?

• Null Hypothesis: There is nothing strange going on; it is just due to
chance

• Assumed distribution: Probability of heads=0.5, probability of
tails=0.5.

• Calculation: Probability of outcome (4 successive heads) under Null
Hypothesis (“It’s just chance”) = 0.54 = 1/16 = .0625 = 6.25%.

• Conclusion: There is 1 chance in 16 or a probability of six percent
that this could happen by chance so perhaps it did. We cannot reject
the Null Hypothesis.

Now consider a second example involving ten tosses rather than
four:
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• Experiment: A man tosses a coin 10 times and gets Heads every
time. Is there something strange going on, such as a biased coin being
tossed?

• Null Hypothesis: There is nothing strange going on; it is just due to
chance

• Assumed distribution: Probability of heads=0.5, probability of
tails=0.5.

• Calculation: Probability of outcome (10 successive heads) under the
Null Hypothesis = 0.510 = 1/1024 = .00975 which is less than one
percent.

• Conclusion: There is less than 1 chance in a 100 that this could
happen by chance so it looks like something strange is going on and
that the assumed distribution is wrong. We can reject the Null
Hypothesis.

As with all statistical tests, the devil is in the detail. This must
be the only set of 10 tosses. Obviously if we keep on tossing the coin
thousands of times until, sooner or later we do get 10 Heads in a row,
then we would have biased our sample to favour our conclusion, and
the conclusion would not be valid. Selecting data to fit the hypothesis
being tested in this way is termed “cherry picking”. We have to trust
the experimenters not to cherry-pick.

Note how well Fisher’s hypothesis-testing methodology fits Pop-
per’s Principles. We don’t actually prove that the coin is biased; we
cannot even be sure that the coin is biased – we may be dealing with
sleight of hand. We can only say that something highly unlikely has
happened which is worthy of further investigation. The only differ-
ence between these examples and a real scientific experiment lies in
the simplicity of the assumed distribution.

In these examples we make two important assumptions. We as-
sume

1. that the outcome of a normal coin toss is random in that we
cannot predict the outcome with certainty, and

2. that successive coin tosses are independent, i.e. that the proba-
bility of a coin toss being a Head is 0.5 whatever the outcomes
of the preceding tosses may have been.
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More precisely, the null hypothesis was that the coin tossing was
an independent, random process from a binomial distribution with
equal probabilities.

These were examples of statistical inference using “frequentist”
statistics and hypothesis testing as a practical example of Popper’s
ideas. Other statistical methods include “Bayesian” statistics, which
have more to do with optimizing strategies when applying established
theories to real world problems.

In discussing these ideas, we must distinguish between a sample
and the population or ensemble from which it is drawn. The terms
population and ensemble designate the same thing: the former comes
from the biological sciences, the latter from signal processing.

An ensemble is a set of parallel universes, each with identical
statistical properties but differing in random detail. Think of an
electronic gadget, a “noise generator”, sitting on a laboratory bench
making a hissing noise. Now imagine thousands of identical gadgets
sitting side by side all making a hissing noise. The hissing noises may
all sound the same, but if you make graphs of them with an oscillo-
scope or a chart recorder, the graphs would all be different; it is only
statistical properties that we hear.

The average output of all the electronic gadgets at a given time
is called the “ensemble”, the “expectation” average or “the average
across the ensemble”. Generally we are not dealing with electronic
gadgets nor are we dealing with multiple universes, but we still retain
the concept of the ensemble average; it is a useful idea. If xt is the
value of the time series at time t then its ensemble average is written
E(xt). Note that the ensemble average has the subscript t indicating
that it depends on time. We often assume that all ensemble averages
of a particular quantity are the same whatever the time, i.e. that

E(x1) = E(x2) = · · ·= constant (5.1)

If ensemble averages all satisfy this assumption, the time series is
termed stationary. That is the definition of stationary. Stationarity
is an assumption. It is not possible to prove that a time series is
stationary, but hypothesis testing can be used to prove that it is not.

In reality we must deal with a sample time series. Generally there
is only one time series, the sample time series, x1,x2,x3...xN , and
there is only one type of sample average that can be calculated, the
time average. This is written < x > or x̄, which is the sum of all the
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values of the time series divided by the total number of values, i.e.
(x1 +x2 +x3 + ...+xN )/N .

For a stationary time series, time averages become closer and
closer to ensemble averages as the number of quantities averaged (the
“sample size”) gets larger. Although intuitively obvious, this is by
no means trivial. It is known as the Ergodic Theorem. It forms the
basis of statistical inference about time series. Excepting for artifi-
cially generated time series, we can never know the values of ensemble
quantities; we can only estimate them from the data. For example,
the sample mean is an estimate of the ensemble mean because of the
Ergodic Theorem, i.e. <x> is an estimator of E(x). Much of statisti-
cal theory is concerned with knowing how “good” such an estimate is.
When the t-test is used to place 95% confidence limits on a value, we
are implying that there is only 1 chance in 20 that the null hypothesis
is false, the null hypothesis being that the ensemble mean lies inside
the range of the confidence limits.

When estimating ensemble values from sample quantities, there
are two important concepts to be considered. They are whether the
estimate is biased and whether the estimate is consistent. An estimate
is biased when its expectation value differs from the ensemble value it
is supposed to estimate. A consistent estimate is one which converges
as the sample size gets larger. This is true if and only if the variance
of the estimate tends to zero as the sample size increases.

For notational simplicity only simple averages have been discussed
above, and now we shall assume E(xt)≡ 0. The same arguments apply
to averages of combinations of values. Of particular importance is the
product of values which are separated in time by a fixed amount, i.e.
E(xtxt−L) where L is the lag in time between two values of the time
series. Its ensemble average, ΦL, is known as the covariance at lag L.
When L= 0 it is called the variance.

The covariance function, Φ, completely summarizes the important
statistical properties of a stationary time series. It is a “population
parameter”, i.e. it is a property of the ensemble. Like the ensemble
mean, it can be estimated from the sample data, but placing confi-
dence limits on it is more complicated.

The covariance function does not display well. Covariance func-
tions from entirely different processes can look remarkably similar.
Fortunately there is a way around this. The Fourier Transform of
the covariance function S(f) displays very well indeed. It shows how
variance is distributed with frequency. It has visible features such as
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peaks, troughs and power law slopes which correspond to underly-
ing physical processes such as blurring, resonance and integration. It
is called the variance density spectral estimate, the variance density
spectrum, sometimes the power spectrum but usually just the spec-
trum.

Like the covariance function, the ensemble spectrum comprises
a set of population parameters which are estimated from the data.
There are various methods for estimating spectra which are discussed
further below.

Variance density spectra defined in this way are the numerical
analogues of the energy density spectra of physics, such as black body
radiation spectra or turbulent energy wavenumber spectra mentioned
above. Like them, it is crucially dependent on underlying physical
processes and so is a powerful analytical tool for exploring such pro-
cesses.

The Periodogram

The squared modulus of the Fourier Transform of the time series is
the simplest, most straightforward method of estimating its spectrum.
This estimate is called the periodogram and is defined by equations
(7.1) and (7.5).

Periodogram spectra tend to be noisy compared with other meth-
ods of spectral estimation. In the 1950s, when digital computers first
started to be used for the spectral analysis of time series, it was widely
believed that this was because the periodogram was not a consistent
estimator of the ensemble variance density, see, for example, Hannan
(1960). This is a fallacy. The length, N , of a sample time series is
not the sample size. The sample size is 1, and each ordinate has an
F -distribution with 2 and N −1 degrees of freedom. In this context,
the length, N , is the dimension and not the sample size in a statistical
sense. A proof that the periodogram is a consistent estimator for a
well-behaved (ARMA) process is given in Chapter 7.

This widespread misconception has led to a variety of methods
for smoothing or ‘windowing’ the data, such as the ‘Hanning Window’
and so on, as in Blackman and Tukey (1958), for example. These may
sometimes be convenient for display purposes but are unnecessary
and frequently misleading. The noisiness of the periodogram spectral
estimate can be attributed to the small number of degrees of freedom,
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namely 2, associated with each ordinate; the N degrees of freedom
of the sample time series are spread out among N/2 spectral values.
Despite this noisiness, useful features of the periodogram can still be
identified.

A narrow, statistically significant peak at frequency f0 in the pe-
riodogram indicates cyclic behaviour in the underlying time series at
that frequency. This in turn implies that a deterministic cycle is
present in the data, perhaps of astronomical origin. A broad peak in
the spectral estimate implies resonant, stochastic behaviour. A flat
or ‘white’ spectrum implies that the time series is unselfcorrelated.
So et al. (1999) have shown that the unwindowed, unsmoothed peri-
odogram is the most sensitive method of detecting sinusoids in noisy
time series.

Widespread features of time series of physical quantities are power
law spectra which are a consequence of natural processes such as in-
tegration, i.e.

S =Afν (5.2)

where S is the variance density at frequency f and A and ν are con-
stants. For this reason it is convenient to plot log(S) against log(f)
when displaying spectra. Thus (1) becomes

log(S) = ν log(f) + log(A) (5.3)

so that power law relationships appear as straight lines when spectra
are plotted using logarithmic scales. Log-log spectra have the ad-
ditional advantage of conveniently displaying behaviour over a wide
range of scales and diminishing the apparent noisiness of the peri-
odogram. Temperature time series often have a power law spectrum
with ν =−2 because temperature is commonly dependent on the in-
tegration of heat or other forms of energy as discussed in Chapter 9.

Of interest is the spectrum obtained by (5.2) when ν = 0 and
Ŝ =const. In this event, by analogy with light, the spectrum is termed
‘white’. It corresponds to a population covariance function which has
a positive value at zero lag and is zero elsewhere, i.e. the time series is
unselfcorrelated. While this can never be demonstrated conclusively
in practice for any particular time series, it is a powerful null hypoth-
esis. If the sample time series is assumed unselfcorrelated then it can
be shown that the spectral ordinates are independent of each other
and, furthermore, that each ordinate divided by the spectral mean,
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∑
Ŝ/N , has an F -distribution with 2 and N −1 degrees of freedom.

This allows confidence limits to be placed on spectral ordinates so
that spectral peaks can be tested for significance. Figure 11.2b is an
example. This topic is discussed in more detail in Chapter 7.

The null hypothesis, that the given time series is the outcome of a
white noise process with zero mean, can be rejected when either one
or more peaks exceed the confidence level or when the slope is signifi-
cantly less than zero. There may be other situations in which the null
hypothesis can be rejected, e.g. the presence of band-limited noise.
The periodogram is a powerful tool for dealing with the behaviour of
a time series in the frequency domain. There is no requirement that
the data be windowed or filtered in any way. In fact such window-
ing methods preclude the use of the periodogram as a well-defined
statistic.

Maximum Entropy Spectra

The idea of maximizing entropy in order to improve the resolution
of an image or spectrum first arose in radio astronomy (Gull and
Daniell, 1978). This Maximum Entropy Method (MEM) was rapidly
adopted in time series analysis as a more sophisticated method of
reducing the inherent noisiness of spectral estimates present in the
periodogram of short time series, see, for example, Reid (1979) and
references therein. At the time computers were very slow and various
tricks were used to speed up calculations. In spectral analysis, one
such trick was to compute the sample covariance of the time series out
to some maximum lag, N , and then to take the Fourier Transform of
this truncated covariance estimate as the spectral estimate.

The resulting spectral estimate has rather low frequency resolu-
tion because truncation in the time domain resulted in convolution in
the frequency domain. The new Maximum Entropy Method (MEM)
improved spectral resolution considerably, or, at least, it appeared to.

MEM assumes that the sample time series {xt, t= 1, ...,N} is the
realization of a random vector XXX; the p+ 1 ensemble variances and
covariances, E(XiXj) i, j≤ p, are fixed; and that the other covariances
at higher lags are simply unknown and undetermined. The Gibbs
entropy given by (2.16) is generalized to the continuous H-function of

 EBSCOhost - printed on 2/13/2023 8:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



42 Chapter 5

the probability density distribution of the ensemble.

H =−
∮
f(XXX) ln(f(XXX))dddXXX (5.4)

This is then maximized under the constraint that the N +1 ensemble
covariances are fixed at their sample values∮

XXXXXXT f(XXX)dddXXX = [< xixj >] (5.5)

and ∮
f(XXX)dddXXX−1 = 0 (5.6)

where (assuming zero mean) [< xixj >] is the matrix of sample co-
variances.

The details of the derivation need not concern us here, but it turns
out that:

1. the resulting joint distribution is Gaussian and

2. it is an autoregressive process of order p.

MEM spectral analysis was very popular for a while because it
gives spectacularly sharp spectral peaks in contrast to the degraded
resolution of other spectral estimators. However there are some prob-
lems with it.

The number of peaks in the spectral estimate depends on the or-
der chosen for the analysis; there are usually about p/2 spectral peaks.
This means that choosing the order, p, appropriately is crucial. For
this purpose, a parameter known as the Akaike Information Crite-
rion (AIC) is used (Akaike, 1970). The AIC estimates of the relative
quality of a statistical model for a given set of data and so provides
a means for model selection. The AIC does not provide a test of a
model in the sense of testing a null hypothesis. It tells us nothing
about the absolute quality of a model, only the quality relative to
other models.

But the worst aspect of MEM must surely be the false sense of
achievement it gives the researcher. MEM spectra have razor sharp
peaks with elegantly sloped skirts; they look precise. A researcher en-
amoured of this method would be well advised to generate a synthetic
time series, i.e. a sequence of random numbers of the same length as
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his/her data, subject it to MEM analysis with the same maximum lag
and then compare the results. It is commonly the case that the MEM
spectrum of the random numbers looks equally as convincing as that
of the data.

These problems arise from the fact that MEM is a purely au-
toregressive process; it is an all-pole model. In cases where a moving
average component is present, the assumption that the variance and
first p covariances are the only constraints on the data are incorrect;
for example, for a pure moving average (MA) process of order q, the
covariances from q+ 1 to infinity are all zero. Experience shows that
MA components are frequently present in real world data. They are
often a consequence of the convolution or “blurring” of data due to
the inevitable imperfections of the measurement technique.

The ARMA Spectrum

The Autoregressive Moving Average or ARMA model for spectral esti-
mation specified by equation (6.13) is discussed in the following chap-
ters. It is the best model for spectral estimation. It is the most general
linear model of a stochastic time series.

The ARMA model has two advantages over other spectral tech-
niques:

1. The drift parameter estimate, ĉ, can be used to test whether
there is a significant linear trend in the time series.

2. For given order, (p,q), the model itself can be tested for signifi-
cance.

When the time series exhibits a trend, i.e. when ĉ 6= 0 in (6.13), the
process is non-stationary and the ensemble spectrum has a singularity
at the origin. Such situations are dealt with either by using an ARIMA
(“Autoregressive Integrated Moving Average”) model, by forming a
new time series of first differences or by removing the trend from the
data by the usual methods of ordinary least squares linear regression.

As discussed above, the covariance function, Φ, as defined by
(7.14), encapsulates the important statistical properties of a station-
ary time series. The sequence {εt} in (6.13) is assumed to be “white”
(i.e. unselfcorrelated) in order that the two sequences of coefficients,
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{a1, ...,ap} and {b1, ..., bq} be estimated from the data. The sequence,
{εt}, can be found by iteratively substituting the coefficient estimates
{â1, ..., âp} and {b̂1, ..., b̂q} and the original data back into (6.13), when
{εt} becomes known as the “sequence of residuals”.

If the estimation has not been effective, for example because p and
q were chosen to be too small, then the sequence of residuals will be
self-correlated, i.e. be non-white. Intuitively speaking, information
remains behind in the residuals. As it happens there are powerful
statistical tests for assessing whether such a sequence of residuals is
indeed white. The Ljung–Box Test (Ljung and Box, 1978) is one such
test.

Most statistical packages return the sequence of residuals when
fitting an ARMA model. These can then be input into the pack-
age’s Ljung–Box procedure. This returns the Ljung–Box Q-parameter
which has a χ2-distribution. Hence a probabilty, α, can be found for
the Q-parameter as a function of lag. Should this probability lie be-
low some given threshold at some lag, say α < 0.05, then the null
hypothesis that the residuals are unselfcorrelated can be rejected.

This is a powerful test of a model, far more powerful than the
Akaike Information Criterion mentioned aboved. In practice it is a
simple matter to run the ARMA model-fitting procedure with differ-
ent values of p and q until a fit which satisfies the Ljung–Box test is
found. In practice either a number of pairs of values (p,q) are found or
none at all. If the former, then the smallest values should be chosen.

The process of finding an ARMA model is similar to factorizing
an algebraic expression by inspection: sometimes factors can be found
and sometimes not. Indeed it may well be that a linear algebraic
solution may be found for factorizing the sample covariance matrix.
Sometimes no ARMAmodel can be found that fits a given sample time
series even though it appears stationary. For example, this happens
when the sample is a strongly non-linear function of an underlying
ARMA process, but there may well be other reasons.
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Iterative Processes

The famous Fibonacci series is perhaps the simplest example of an
iterative, deterministic process. It goes:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

i.e. each term is the sum of the preceding two terms. Mathematically

xt = xt−1 +xt−2 (6.1)

It is very interesting. It grows exponentially, and the ratio of suc-
cessive terms converges to the Golden Ratio beloved of the Ancient
Greeks.

It can be generalized:

xt = a1xt−1 +a2xt−2 (6.2)

so that (6.1) is just the special case when a1 = a2 = 1.
Consider what happens if we make a1 = 1.183 and a2 =−1. Start-

ing with (1,1) as before, the sequence goes

1.00, 1.00, 0.18, -0.78, -1.11, -0.53, 0.48, 1.10, 0.82, -0.13, -0.98, -1.02,
-0.23, 0.75, 1.12, 0.57, -0.44, -1.09, -0.854, 0.08 ...

This time it doesn’t go to infinity; it is cyclic.
The gross behaviour of the generated sequence can be strongly

dependent on the values of the coefficients a1 and a2. The figure
shows the 300-long sequences which resulted from three numerical
experiments. In each case the second coefficient was set at a2 =−0.98,
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Three sequences of the form (6.2) showing the effect of
changing the first coefficient by a small amount.

and the first coefficient varies slightly from run to run, i.e. a1 =
1.975,1.978 and 1.981. In the first two cases (top two panels), the
sequences are damped sinusoids with slightly different frequencies, but
in the third case (bottom panel), the sequence increases exponentially
like the original (1,1) Fibonacci sequence. A very small change in one
coefficient has led to a massive change in the generated sequence.

It turns out that the behaviour of the sequence depends on the
characteristic equation. Equation (6.2) can be written using a “shift
operator”, Z:

xt = a1Zxt+a2Z
2xt (6.3)

i.e.
(a2Z

2 +a1Z−1)xt = 0 (6.4)
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where, by definition, Zxt = xt−1. The characteristic equation has the
same form as (6.4) in which the shift operator, Z, becomes a complex
number, z:

a2z
2 +a1z−1 = 0 (6.5)

which has roots z1,2 =
−a1±

√
a2

1+4a2
2a2

When (6.5) has complex roots, i.e. when a2
1 + 4a2 < 0, the gen-

erated series is cyclic; otherwise it is exponential. This explains the
radical difference between the sequences depicted in the two lower
panels of the figure. The characteristic equation (6.5) has two roots,
z1 and z2 where

z1 +z2 = a1 (6.6)

and
z1z2 =−1 (6.7)

When the parabola described by the LHS of 6.5 does not cross
the zero axis, then z1 and z2 are complex and z2 = z∗1 . When it does
cross the zero axis, z1 and z2 are both real.

Equation (6.2) can be generalized to any finite order, p, viz.:

xt =
p∑
i=1

aixt−i (6.8)

where {ai, i= 1, ...,p} are fixed coefficients.
The shift operator equation is

(
p∑
i=1

aiZ
i−1)xt = 0 (6.9)

and the characteristic equation is

p∑
i=1

aiz
i−1 = 0 (6.10)

The expression on the LHS of (6.10) is known as the z-transform of
the model.
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Iterative stochastic processes – ARMA

Equation (6.8) can be generalized still further to

xt =
p∑
i=1

aixt−i+ εt (6.11)

where {εt} is a sequence of random numbers with zero mean. They
are assumed to be independent, which implies that they are unselfcor-
related. They are commonly assumed to be Gaussian and identically
distributed, but that is not essential.
{εt} is known as the innovation.
As before, (6.11) can be used to generate sequences iteratively

using a random number generator to provide {εt}. There is, however,
a major difference. For the same set of starting conditions, every
sequence generated by (6.8) will be the same whereas every sequence
generated by (6.11) will be different. Equation (6.11) describes a
stochastic process.

An important feature of (6.11) is that it is also a regression equa-
tion, i.e.

Xt =
p∑
i=1

aixt−i+ εt (6.12)

where at time τ , where t− 1 < τ < t, Xt and εt are random vari-
ables, and the xt−i are past fixed sample values. This is the standard
regression model with the p coefficients {ai} being the regression co-
efficients. It means that, given a sequence {xt} and assuming a given
order, p, the values of the coefficients can be estimated from the data.
For this reason, (6.11) is referred to as an autoregression or AR model
since the sequence is regressed on itself, i.e. on its own past values.

The most general linear model of a stationary, stochastic process is
the Autoregressive Moving Average process or ARMA process/model.
The output of an ARMA(p,q) process at time t is defined as:

ξt = c+ εt+
p∑
i=1

aixt−i+
q∑
j=1

bjεt−j (6.13)

where ξt is the random variable output by the process, the xt−i are
past realizations of ξt, {ai, i = 1, ...,p} are known as the autoregres-
sion coefficients, the {bj , j = 1, ..., q} are known as the moving average
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coefficients , {εt} is the zero mean, unselfcorrelated innovation, and c
is a constant known as the drift term because, when non-zero, it rep-
resents an underlying drift in the series values over time. The ordered
pair (p,q) is known as the order of the process.

Given (p,q), estimates of the p+ q+ 1 parameters â1, â2, ... âp,
b̂1, b̂2, ... ,b̂q and ĉ can be made from the data. In fact they are
estimated from the variance/covariance function of the sample time
series. How this is done need not concern us here; suitable pack-
ages for ARMA estimation are available in high-level programming
languages such as R, Matlab and Python. ARMA functions in such
packages not only return parameter estimates but also complete time
series of the residuals, i.e. the time series {εt} obtained when the pa-
rameter estimates, {âi}, {b̂j} and ĉ, and the sample time series {xt}
are substituted in (6.13). Useful statistics of {εt} such as its variance
σ2
ε are also returned.

In the definition (6.13) above, the predicted value of the process,
ξt, is a random variable. The innovation, εt, is also a random vari-
able. Consequently the coefficient estimates â1 etc. are realizations
of random variables with known distributions. Hence confidence lim-
its can be placed on these estimates. This is particularly important
with regard to the drift term, ĉ. All real time series exhibit an appar-
ent long-term trend, either positive or negative. At issue is whether
such apparent trends are statistically significant, i.e. whether ĉ is sig-
nificantly different from zero and the trend cannot be attributed to
chance alone.

In this way, with an ARMAmodel, the drift in a sample time series
can be tested for significance using accepted methods of statistical
inference. While it can never be proven that there is no drift in a
population, at least we can show when there is such a drift and at what
level of significance. When the drift is so small as to be insignificant,
then Occam’s Razor allows us to treat the drift as if it were zero.
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Discrete Time Spectral Analysis

Introduction
A thorough description of Fourier Transforms and Spectral Analysis is
given by Bracewell (1986). Hamilton (1994) offers an equally thorough
description of time series methods.

In the present development, the variance density spectrum is de-
fined as the ensemble average of the periodogram. The periodogram of
the sample is thus a statistic. For an ARMA process, it is a consistent
estimator of the ensemble variance density spectrum.

In this way, some key theorems are reproduced without recourse
to continuous functions. In practice any real time series occupies a
range of time scales, <∆t,N∆t >, where ∆t is the sampling interval
and N is the number of terms in the series. The behaviour of the
underlying continuous process, should there be one, at time scales
shorter than the sampling period, ∆t, is of no concern. If there is
evidence of aliasing such as, for example, a concentration of variance
at the high-frequency end of the spectrum, then it is the responsibility
of the researcher to change the sampling regime to something more
suitable. Likewise the length, N , and span, N∆t, of the time series
are assumed to be finite. These assumptions allow key results to be
developed while avoiding the pitfalls of spectral methods based on
deterministic, continuous functions of infinite extent.

The Periodogram
We start with a finite sequence of real numbers, {xt, t= 0, ...,N −1},
which is assumed to comprise samples of a varying physical quantity
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Name Symbol Domain Sample or Random Variable
t.s. value xn time sample
t.s. value yn time sample
F.T of x Xj frequency sample
F.T of y Yj frequency sample
estimate P̂k frequency sample

t.s. variable ξn time random variable
F.T. of ξ Ξj frequency random variable
estimator Πk frequency random variable

Table 7.1: Symbol conventions

separated by equal intervals of time or covering equal intervals of time,
i.e. a ‘time series’. We are concerned with {Xk,k = 0, ...,N −1}, the
discrete Fourier transform (DFT) of the time series {xn} given by

Xk =
N−1∑
t=0

xt.e
−2πikt/N , k = 0,1...N −1 (7.1)

where i=
√
−1. In general, the Xk are complex numbers and, because

the xt are real
X−k =XN−k =X∗k (7.2)

where X∗k is the complex conjugate of Xk. Because of the cyclical
character of the DFT, Xj can be defined for arbitrary k since for any
integer m

Xk+mN =Xk (7.3)

The underlying concept of spectral analysis is encapsulated by
Parseval’s theorem which, for the finite, discrete case under discussion
here, can be expressed as:

N−1∑
t=0

x2
t = 1

N

N−1∑
k=0
|Xk |2 . (7.4)

We define a new sequence, the periodogram, {P̂k}, where

P̂k = 2 |Xk |2 /N , k = 1,2...N/2−1 (7.5)

and, if N is even,
P̂N/2 =|XN/2 |2 /N.
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After substituting from (7.2), (7.4) becomes

s2 = 1
N

N−1∑
n=0

x2
n =

N/2∑
k=1

P̂k. (7.6)

since P̂0 = 0.
For notational convenience (and commonly in practice), the data

sequence {xn} has zero mean, and so s2 is the sample variance. Equa-
tion (7.6) can be regarded as a conservation law which describes vari-
ance density as a function of frequency, P̂k being that component of
the variance associated with the frequency k∆f = k/N∆t. Note that
P̂k has the same units as s2; to make it a variance density, it must
be divided by ∆f . In the following development, we assume ∆t = 1
without loss of generality.

The ensemble periodogram is given by the equivalent equation to
(7.5), viz.:

Πk = 2 | Ξk |2 /N , k = 1,2...N/2−1 (7.7)

and, for even N,
ΠN/2 =| ΞN/2 |2 /N.

where

Ξk =
N−1∑
t=0

ξt.e
−2πikt/N , k = 0,1...N/2 (7.8)

The Variance Density Spectrum
The variance density spectrum Sk is defined as the ensemble average
of the periodogram, viz.:

Sk = E(Πk) for k = 0,1, ...N/2 (7.9)

Note that, while this development is discrete in time, it is not, neces-
sarily, discrete in frequency. The discrete frequency forms of (7.1) and
(7.8) could equally well have been written as continuous functions of
frequency, f , viz.:

X(f) =
N−1∑
t=0

xt.e
−2πift/fs , 0< f < fs (7.10)
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and, for the ensemble:

Ξ(f) =
N−1∑
t=0

ξt.e
−2πift/fs , 0< f < fs (7.11)

where fs = 1/∆t, ∆t being the sampling interval, usually defined to
be one. This allows a variance density spectrum, S(f), to be specified
as a continuous function of frequency. This is sometimes desirable for
display purposes whereas the discrete frequency forms are more easily
calculated using the Fast Fourier Transform.

The covariance function
From (7.7), (7.8) and (7.9) and using |Ξk|2 = ΞkΞ∗k:

Sk = 1
N

E

[(
N−1∑
m=0

ξm.e
−2πikm/N

)(
N−1∑
n=0

ξn.e
2πikn/N

)]
(7.12)

Thus

Sk = 1
N

N−1∑
m=0

N−1∑
n=0

E(ξmξn)e−2πik(m−n)/N (7.13)

For a wide-sense stationary process, the ensemble covariance function
is defined by

Φ(m−n) = E(ξmξn) = Φ(n−m) (7.14)
and (7.13) becomes

Sk = 1
N

N∑
L=−N

(N −|L|)Φ(L)e−2πikL/N (7.15)

so that S is the DFT of the function (N−|L|)Φ(L)/N on the domain
−N ≤ L≤N .

Note that, as defined here, the variance density spectrum is the
Fourier Transform not of the covariance function, as is commonly
assumed, but of the covariance function multiplied by the triangle
function. This comes about because of the finite length of the time
series. Consequently the variance spectrum of any finite time series
has, in effect, been convoluted with the Fourier Transform of the tri-
angle function, i.e. with the sinc2 function. This is important when
sinusoids are involved as discussed further below.
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When the time series is unselfcorrelated, i.e. when

E(ξmξn) = Φ(m−n) = σ2δmn (7.16)

where σ2 is the variance of ξn and δmn is the Kronecker delta, i.e.
δnn = 0 and δmn = 0 when m 6= n, then

Sk = 1
N

Φ(0) = σ2

N
= const. (7.17)

and the time series is said to be “white” by analogy with the energy
spectrum of visible light.

The periodogram of a white time series
The given time series, {xn}, can be considered one realization of an
ensemble of random sequences, {ξn}. Likewise {Xk}, the DFT of
{xn}, is the corresponding realization of the random sequence {Ξk},
the DFT of {ξn}; and the computed periodogram, {Pk}, is the real-
ization of the ensemble periodogram, {Πk}.

As a null hypothesis we assume that the time series has zero mean
and is unselfcorrelated. Thus

E(ξn) = 0 (7.18)

and
E(ξmξn) = σ2δmn (7.19)

The random variable Ξk defined by (7.8) can be written in terms of
its real and imaginary components, viz.:

Ξk = <k+=ki (7.20)

i.e.
| Ξ2

k |2= ΞkΞ∗k = <2 +=2 (7.21)

where

<k =
N−1∑
n=1

ξn cos(2πkn/N) (7.22)

and

=k =
N−1∑
n=1

ξn sin(2πkn/N) (7.23)
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For large N , by the central limit theorem, both <k and =k must be
close to Gaussian whatever the distribution of the ξn may be. They
are also unselfcorrelated, uncorrelated with each other and have zero
mean. The variance of <k is given by

E(<2
k) = σ2

N∑
m=1

N∑
n=1

δmn cos(2πkm/N)cos(2πkn/N) (7.24)

= σ2

2

[
N +

N∑
n=1

cos(4πkn/N)
]

(7.25)

= σ2

2

[
N + 1

2

N∑
n=1

(zn+z∗n)
]

(7.26)

= σ2

2

[
N + 1

2

(
z(1−zN )

1−z + z∗(1−z∗N )
1−z∗

)]
(7.27)

where z = e4πik/N so that

zN = z∗N = 1 (7.28)

and
E(<2

k) = σ2N

2 (7.29)

Similarly

E(=2
k) = σ2N

2 (7.30)

It follows that the rescaled random variables
√

2
Nσ2<k and

√
2

Nσ2=k
are both normal(0,1). Hence, from (7.7) the random variable

NΠk
σ2 = 2 | Ξk |2

Nσ2 = 2<2

Nσ2 + 2=2

Nσ2 (7.31)

has a χ2-distribution with two degrees of freedom, and so the scaled
spectral estimate of an unselfcorrelated time series, NP̂k/σ2, has a
χ2-distribution with two degrees of freedom.

In practice we do not know σ2 in (7.31), which is a population
parameter. We only know its estimate σ̂2, where

σ̂2 = 1
N −1

N∑
k=1

x2
k (7.32)
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since < xk >= 0. Assuming that the {xk} are the realization of a
sequence of unselfcorrelated random variables {ξk} which are normally
distributed (0,σ), then

σ̂2

σ2 = 1
N −1

N∑
k=1

x2
k

σ2 (7.33)

has a χ2-distribution with N−1 degrees of freedom. Hence the quan-
tity

NP̂k
σ̂2 = NΠk

σ2

/
σ̂2

σ2 (7.34)

is the realization of a random variable which is the ratio of two random
variables having χ2-distributions with 2 and N−1 degrees of freedom,
respectively.

If X2
1 and X2

2 are independent random variables following chi-
square distributions with ν1 and ν2 degrees of freedom respectively
then the distribution F = X2

1/ν1
X2

2/ν2
is said to follow the variance ratio or

F -distribution with ν1 and ν2 degrees of freedom (see: Abramowitz
and Stegun (1965), section 26.6.2). Inserting degrees of freedom of
2 and N − 1 into (7.34) gives an F statistic for each value of the
periodogram, viz.:

Fk = N(N −1)P̂k
2σ̂2 = NΠk

2σ2

/
σ̂2

(N −1)σ2 (7.35)

and so Fk has an F -distribution with 2 and N−1 degrees of freedom.
The p-values for the F -distribution are provided in most statistical

software packages. These can be used to test each ordinate of the
periodogram for whiteness using the Fk statistic defined by (7.35).
In practice the F -distribution with these degrees of freedom is barely
distinguishable from the χ2-distribution with 2 degrees of freedom for
N > 100.

Averaged white periodograms
The resolution of periodograms may be improved by averaging a num-
ber of them (Bartlett, 1948). In order that sample statistics be calcu-
lable, it is essential that the periodograms come from time series that
are of the same length and were generated by the same processes or
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by identical processes and that they be independent. In the present
case of time series which are assumed unselfcorrelated under a null
hypothesis, it is sufficient that they not overlap in time.

The kth ordinate of the mean of the periodograms of M , N -long
time series with ensemble variance σ2 is given by

¯̂
Pk = 1

M

M∑
m=1

Pmk for k = 1 · · ·N/2 (7.36)

Multiplying both sides by N/σ2 gives

N
¯̂
Pk
σ2 = 1

M

M∑
m=1

NPmk
σ2 for k = 1 · · ·N/2 (7.37)

Since each of the terms in the sum has a χ2-distribution with 2 degrees
of freedom, then the sum itself must have a χ2-distribution with 2M
degrees of freedom. Hence

Var
(
N

¯̂
Pk
σ2

)
= 1
M2Var

(
M∑
m=1

NPmk
σ2

)
= 2
M

(7.38)

Hence Var
(
N

¯̂
Pk
σ2

)
→ 0 as M →∞, and Pk of a white time series is a

consistent estimator of Sk as defined by (7.9).

Fourier Transform of a Convolution
Measurements are often contaminated or blurred by the physical char-
acteristics of the measuring device. Thermometers have thermal mass
and so do not respond instantaneously to temperature changes. Lenses
are never perfect and all photographic images are blurred to some de-
gree. Prior to measurement, physical quantities may themselves be
blurred by diffusion and mixing. Numerically such blurring is ex-
pressed as convolution.

Consider an “output” time series {yt, t = 0, ...,N − q− 1} formed
by convolving an “input” time series {xt, t= 0, ..,N−1} with a “filter”
function, {βj , j = 0, ..., q}, i.e.

yt =
q∑
j=0

βjxt−j (7.39)
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Let Yk, Xk and Bk be the Fourier Transforms of {yt}, {xt} and {βj},
respectively; then from (7.1),

N−1∑
t=0

yte
−2πikt/N =

N−1∑
t=0

 q∑
j=0

βjxt−j

e−2πikt/N

=
q∑
j=0

βj

[
N−1∑
t=0

xt−je
−2πik(t−j)/N

]
e−2πikj/N

=
q∑
j=0

βj

 N−1∑
t−j=0

xt−je
−2πik(t−j)/N

e−2πikj/N

=
q∑
j=0

βjXke
−2πikj/N

=

 q∑
j=0

βje
−2πikj/N

Xk
i.e.

Yk =BkXk (7.40)
and so the Fourier Transform of convoluted functions is the product
of the Fourier Transforms of those functions. The change from t to
t− j in the sum is allowable because the kernel, e−2πikt/N , is cyclic
over the domain of the dummy variable.

Periodogram of an ARMA process
For notational convenience we assume the sampling interval, ∆t, to
be 1 time unit and the periodogram frequency resolution, 1/N∆t, to
be 1/N frequency units.

An ARMA(p,q) process is defined by

yt = xt+
p∑
i=1

aiyt−i+
q∑
j=1

bjxt−j (7.41)

where {xt} is an unselfcorrelated sequence. Equation (7.41) can be
written

yt−
p∑
i=1

aiyt−i = xt+
q∑
j=1

bjxt−j (7.42)
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We define two new vectors γ and β where

γ0 = 1 and γi =−ai for i > 0 (7.43)

and
β0 = 1 and βj = bj for j > 1 (7.44)

Hence
p∑
i=0

γiyt−i =
q∑
j=0

βjxt−j for t= 1 · · ·N (7.45)

For the ensemble
p∑
i=0

γiυt−i =
q∑
j=0

βjξt−j for t= 1 · · ·N (7.46)

where xt and yt are assumed to be realizations of random variable
sequences ξt and υt respectively. Taking the (continuous) Fourier
Transform of both sides of (7.45) and using (7.40) gives

Y (f)Γ(f) =X(f)B(f) (7.47)

where Y (f), Γ(f), X(f) and B(f) are the Fourier Transforms of yt,
γt, xt and βt, respectively. Rearranging, taking the squared modulus
of both sides and replacing f with integer value k gives

|Yk|2 = |Xk|2
∣∣∣∣BkΓk

∣∣∣∣2 (7.48)

By analogy with (7.5), let Qk be the periodogram of the ARMA time
series, {yk}, so that (7.48) becomes

Qk = Pk

∣∣∣∣BkΓk

∣∣∣∣2 (7.49)

Now let M independent periodograms, Qmk , be averaged, i.e.

¯̂
Qk = 1

M

M∑
m=1

Qmk for k = 1 · · ·N/2 (7.50)

Then from (7.49),
¯̂
Qk = ¯̂

Pk

∣∣∣∣BkΓk

∣∣∣∣2 (7.51)
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where Γk and Bk are functions of population parameters such as ai
and bj , and so are independent of M .

By (7.38), the variance of ¯̂
Pk converges as M →∞. Therefore, by

(7.49), ¯̂
Qk, the variance of the periodogram of the ARMA time series,

{yk}, also converges as M →∞.
Hence the periodogram of an ARMA time series is a consistent

estimator of its ensemble spectrum.

The spectral estimate of an ARMA process
From (7.49),

E(Qk) = E(Pk)
∣∣∣∣BkΓk

∣∣∣∣2 (7.52)

Hence, using (7.9) and (7.17), the variance density spectrum, Sk, of
an ARMA time series is given by

Sk = σ2

N

∣∣∣∣BkΓk

∣∣∣∣2 (7.53)

and the spectral estimate, Ŝk, by

Ŝk = σ̂2

N

∣∣∣∣∣ B̂kΓ̂k

∣∣∣∣∣
2

(7.54)

where σ̂2 is the variance of the residuals. B̂k and Γ̂k are given by

Γ̂k = 1−
p∑
j=1

âiz
j (7.55)

and

B̂k = 1 +
q∑
j=1

b̂jz
j (7.56)

where z = e−2πik/N , and {âi} and {b̂j} are estimated from the data.

The periodogram of a sinusoid
The periodogram of a sinusoid exhibits a narrow peak. The peak
is not a δ-function for a time series of finite length as discussed in
reference to (7.15).
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Consider a time series {cj , j = 0, ...,N−1}, defined explicitly by a
cosine function with arbitrary frequency, f0, and phase, φ:

cj =Acos(2πjf0/N +φ) = xj +yj (7.57)

where
xj =Ae2πijf0/N+φi)/2 (7.58)

and
yj =Ae−2πijf0/N+φi)/2 (7.59)

Substituting xj into (7.10) gives

X(f) = A

2N

N−1∑
j=0

e−2πij(f−f0)/N)+φi (7.60)

After multiplying both sides by e−2πi(k−f0)/N

X(f)e−2πi(f−f0)/N = A

2N

N−1∑
j=0

e−2πi(j+1)(f−f0)/N+φi (7.61)

Subtracting (7.61) from (7.60) and transposing gives

X(f) =
Aeφi

[
1−e2πi(f−f0)]

2N
[
1−e2πi(f−f0)/N

] (7.62)

=
Aeπi(k−f0)+φi[e−πi(k−f0)−eπi(k−f0)]

2Neπi(k−f0)/N
[
e−πi(k−f0)/N −eπi(k−f0)/N

] (7.63)

i.e.
Xk = Aeπi(f−f0)+φi sin{−π(f −f0)}

2Neπi(f−f0)/N sin{−π(f −f0)/N}
(7.64)

Likewise, {Y (f)}, the DFT of {yj} is given by

Y (f) = Aeπi(f+f0)+φi sin{−π(f +f0)}
2Neπi(f+f0)/N sin{−π(f +f0)/N}

(7.65)

where, from (7.57) the squared modulus of the DFT of {cj} is given
by

| C(f) |2=X(f)X(f)∗+X(f)Y (f)∗+X(f)∗Y (f) +X(f)∗Y (f)∗
(7.66)
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From (7.64) and (7.65),

X(f)X(f)∗ = A2 sin2{π(f −f0)}
4N2 sin2{π(f −f0)/N}

(7.67)

X(f)Y (f)∗ = A2e2πif0+2φi sin{π(f +f0)}sin{π(f −f0)}
4N2e2πif0/N sin{π(f +f0)/N}sin{π(f −f0)/N}

(7.68)

X(f)∗Y (f) = A2e−2πif0−2φi sin{π(f +f0)}sin{π(f −f0)}
4N2e−2πif0/N sin{π(f +f0)/N}sin{π(f −f0)/N}

(7.69)
and

Y (f)Y (f)∗ = A2 sin2{π(f +f0)}
4N2 sin2{π(f +f0)/N}

(7.70)

Adding the cross-modulation terms gives an error term E(f),

E(f) =X(f)Y (f)∗+X(f)∗Y (f) (7.71)

Thus

E(f) = A2 cos{2π(1−1/N)f0 + 2φ}sin{π(f +f0)}sin{π(f −f0)}
2N2 sin{π(f +f0)/N}sin{π(f −f0)/N}

(7.72)
Substituting (7.2) in (7.65) gives

Y (f)Y (f)∗ =X(f)X(f)∗ (7.73)

and the periodogram of a cosine function of arbitrary frequency and
phase becomes:

Q(f) = A2 sin2{π(f −f0)}
2N2 sin2{π(f −f0)/N}

+E(f) (7.74)

Note that the error term, E(f), is dependent on the phase, φ. Its
absolute value |E(f)| has a maximum value of 0.025A2 when f0 ≈ 1
and k = 1 and is bounded above by | 1.5A2/2N sin(2πf/N) |.

When N is large, (7.74) becomes

Q(f)≈ A2 sin2{π(f −f0)}
2{π(f −f0)}2 (7.75)

i.e. the sinc2 function. The discrete frequency periodogram is

Qk ≈
A2 sin2{π(k−f0)}

2{π(k−f0)}2 (7.76)
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The Spectrum of a Random Walk
Many environmental time series are comprised of temperature mea-
surements or depend in some way on temperature, particularly proxy
time series such as isotope ratios in ocean sediment and ice. Tempera-
tures are, in turn, dependent on the transport of heat and other forms
of energy by turbulent stochastic processes (Hasselmann, 1976). The
relationship between temperature and heat flux is given by Fourier’s
heat equation:

ρC
∂T

∂t
=−K0

∂T

∂x
+Q(x,t) (7.77)

where ρ and C are the density and specific heat of the body being
heated, T is its temperature, t is the time, x is a spatial variable with
the units of length, K is the conductivity and Q is the flux of heat
or other form of energy. In general terms and in discrete form, (7.77)
becomes

ρC
∆T
∆t =−K∆T

∆x +Q (7.78)

As previously we choose a time scale for which ∆t= 1 gives

ρC(Tt−Tt−1) =− K

∆x (Tt−1−Tres) +Q (7.79)

where Tres is the temperature of some relatively stable reservoir to
and from which heat is being transferred. This becomes

Tt = qt+a1Tt−1 (7.80)

where
qt =Q+ K

ρC∆xTres (7.81)

and

a1 = 1− K

ρC∆x (7.82)

= 1−α (7.83)

where 0≤ α << 1.
At sufficiently large time scales, ∆t, qt can be assumed to have

zero mean and to be unselfcorrelated, in which case (7.80) describes an
ARMA(1,0) process for temperature with variance density spectrum
given by:

S(f) =
σ2
q

N |1−a1z|2
(7.84)
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where σ2
q is the variance of the qt white noise heating/cooling process,

z = e−2πif/N (7.85)

and N is the length of the time series of temperature values. This
is a single-pole model; there is a single pole (i.e. singularity) in the
z-plane. It is on the real axis outside the unit circle at z1 = 1/a1.

Setting the discrete time angular frequency, ω as ω = 2πf/N ,
(7.84) can be rewritten

S(f) =
σ2
q

N(1−2a1 cosω+a2
1)

=
σ2
q

N((1−2a1 +a2
1) + 2(a1− cosω))

=
σ2
q

N((1−a1)2 + 4a1 sin2 ω
2 )

Hence for small values of f , ω << 1, sinω = ω and (7.84) becomes

S(f) =
σ2
q

N(α2 +a1ω2) ≈
σ2
q

N(α2 +ω2) (7.86)

When ω > α , S(f) is inversely related to ω2 and so inversely related
to f2.

When α= 0 there is a singularity at S(f) = 0, and the time series
is said to be a random walk. Since the variance of a random walk
increases with time, (7.14) does not hold, the time series is not sta-
tionary and a variance density spectrum cannot be defined. However,
when α is small but non-zero, the time series is stationary, and a vari-
ance density spectrum can be defined. Such a time series is called a
centrally biased random walk in statistics and low-pass filtered noise
or red noise in signal processing. We will use the term red noise.
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Chapter 8

Spurious Regression

Introduction

In statistics, regression is the process of fitting a straight line to a
collection of points on a graph. The sample correlation coefficient, r,
is a measure of “goodness of fit”, i.e. of how well the fitted line fits
the data points. When the line fits perfectly then r=±1. The sign of
r indicates the slope of the regression line; a negative value indicates
the line slopes downwards, i.e. that the values tend to decrease with
increases in the independent variable.

If a system is deterministic then its variables are all single-valued
functions of time. Experimental observations of dynamical variables
are commonly displayed as functions of time and a regression line
fitted to the observations to display the trend or rate of change with
time. This is commonplace, something most researchers learned in
school.

However, there can be serious problems with this methodology
when the system under investigation is stochastic. Nelson and Kang
(1984) demonstrated that, for certain stochastic processes such as a
random walk, the use of time as the explanatory variable can lead
to the appearance of a trend even though none was present in the
original data. An observed trend obtained by regressing a physical
quantity on time may or may not be real, depending on the deter-
ministic or stochastic nature of the system under investigation. A
similarly misleading effect is observed when two random walk time
series are compared. This was noted nearly a century ago by the
then President of the Royal Statistical Society, George Udny Yule and
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termed “Nonsense-Correlation” by him (Yule, 1926). More recently
Granger and Newbold (1974) have described it as Spurious Regres-
sion. Although not widely known outside the field of Econometrics,
the implications of these papers cannot be overestimated. They are
little known in the physical sciences.

It is widely assumed that this effect is solely a consequence of the
time series being a random walk and so non-stationary, but that is
not the case. Here we show that the effect is the result of a high
concentration of variance at the low frequency end of the spectrum,
i.e. at periods which are long compared with the length of the sample
time series, such as the red noise time series described in the pre-
vious section. Such time series are common in nature, particularly
temperature time series.

Time as the independent variable
A useful feature of the ARMA approach is that it provides means for
generating synthetic time series with specific statistical properties. A
random walk time series can be considered an ARMA(1,0) process
with unit autoregression coefficient, i.e. the process whose realization
is {yt} given by

yt = a1yt−1 +xt (8.1)
where a1 = 1 and xt is unselfcorrelated.

Of interest is the case for which a1 6= 1 but lies close to 1. Let

a1 = 1−α (8.2)

where 0≤ α≤ 1. Variance spectra for four such time series are shown
in Figure 8.1.

A numerical experiment was performed in which a realization of
a 2000-long synthetic time series was generated using equation (8.1)
with α = .003. It is shown graphically in the upper diagram of Fig-
ure 8.2. In the diagram, the time series has been subdivided into 20
non-overlapping intervals, each of length 100. In each interval the re-
gression against elapsed time was found. The regression lines for each
interval are plotted in the upper diagram, and the values of the cor-
relation coefficient for each interval are plotted in the lower diagram.
It can be seen that most of the regression lines fit the data very well
indeed and that there is a wide range of correlation coefficient values
ranging from close to -1 to close to +1 resulting from the long “period”
of the quasi-cyclic behaviour of the time series.
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Figure 8.1: Spectra of four synthetic time series for various values of
α
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Figure 8.2: Synthetic time series of an ARMA(1,0) process with
α= .003. The time series was subdivided into twenty, 100-long, non-
overlapping intervals. In each interval the correlation between value
and elapsed time was evaluated. The corresponding correlation coef-
ficients are plotted in the lower diagram.
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Figure 8.3: Probability distributions of the sample correlation coeffi-
cient, r, for the four time series whose spectra are shown in Figure 8.1.

In fact there can be no true correlations or regressions because the
time series is purely the outcome of equation (8.1). These apparent
correlations and regression fits are entirely spurious. Likewise neither
is there any periodic or cyclic behaviour. The time series displayed in
Figure 8.2 can properly be described as red noise.

It should also be noted that the process described by (8.1) is sta-
tionary: all of its statistical properties are independent of the time, t.
Clearly the spurious correlations and spurious regressions observed
in this case are not the outcome of the non-stationarity of the pro-
cess. Tests for stationarity are irrelevant in assessing the validity or
otherwise of the regression of a time series against the elapsed time.

What is relevant is the variance density at periods longer than
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the sample time series under investigation. The reciprocal of the time
series length (.01) is shown as the vertical dashed line in Figure 8.1.
Intuitively we “know” about the variance spectrum to the right of
this line from the data sample. There is no way to tell much about
what is happening to the left of the line because this involves periods
greater than the length of the data sample. By using stationarity
tests such as Dickey–Fuller, we are trying to assess what is happening
at infinitesimal frequencies, i.e. at infinite periods. Common sense
would suggest that this is not possible.

How then is spectral shape related to spurious correlation? A
further numerical experiment was performed in which the process de-
scribed by equation (8.1) was used to generate 100,000 time series
realizations, each 100 time units long, and the values correlated with
time in each case. Histograms showing the resulting frequency distri-
butions, f , of the correlation coefficient, r, are plotted in Figure 8.3.
In each case the histogram has been normalized by the bin width so
that the area under the curve is one, i.e. they are probability distri-
butions.

In Figure 8.3 the distributions for α= 0 (i.e. a true random walk)
and α= .003 are almost identical. They are bimodal with peaks near
|r| = 0.9, indicating that in these cases a high absolute value of the
correlation coefficient is the most likely outcome when a red noise
sample time series is regressed on elapsed time. For α= .01 the curve
is broadened compared with α = 0, indicating that high correlations
are possible. For α = 0 the time series is white and the displayed
histogram is approximately Gaussian as expected. It is the Pearson
r-distribution.

Correlations between time series
The above discussion concerns the spurious correlation of red noise
sample time series on elapsed time. Spurious correlation also occurs
when two red noise time series samples are compared. This is demon-
strated by Figure 8.4. There is a similar broad scatter of correlation
coefficients indicating that spurious correlation occurs in this situ-
ation as well. Indeed, it was this aspect of spurious correlation or
nonsense-correlation that was first noted by Yule (1926).
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Figure 8.4: Two synthetic time series of ARMA(1,0) processes with
α = .003. The 2000-long interval was subdivided into twenty, 100-
long, non-overlapping intervals shown by the vertical dashed lines. In
each interval the correlation between the two time series samples was
evaluated. The corresponding correlation coefficients are plotted in
the lower diagram.
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Chapter 9

Spurious Regression and Climate

This chapter reproduces the author’s paper in Energy and Environ-
ment, (Reid, 2017).

Introduction

In recent times much has been made of the apparent rising trend in
global average temperature commonly attributed to increased green-
house gas concentrations in the atmosphere. At issue is whether this
trend is a real, deterministic trend or whether the observed variations
are merely the outcome of a random process.

Hasselmann (1976) proposed a stochastic model of climate vari-
ability wherein slow changes in climate are explained as the integral
response to continuous random excitation by short period ‘weather’
disturbances. Thus intrinsic quantities such as temperature are the
outcome of the integration by natural processes of quasi-random, ex-
trinsic quantities such as heat. As a consequence, such measurements
can be regarded as the outcome of a stochastic process and can be ex-
pected to exhibit a power law spectrum with negative exponent due
to such integrating effects. The best known and simplest example of
such a process is the ‘random walk’ obtained when white noise is in-
tegrated or summed. It has a power law spectrum with an index of
−2 as described by (7.86).

Here we examine the HadCRUT4 data set of 166 annual values
of global average temperature from 1850 to 2015 inclusive (Morice
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et al., 2012).1 There are a number of such global temperature data
sets available, e.g. those from GISS, NOAA and BEST. Statistically
they are almost identical. HadCRUT4 was chosen because it was the
longest of these.

The data were analyzed using

1. a deterministic model in which each temperature value is re-
garded as a deterministic function of elapsed time plus a mea-
surement error, and

2. a stochastic model whereby each temperature value is regarded
as a function of preceding values plus an innovation.

The deterministic model

A deterministic model typically comprises a linear function of one or
more functions of the explanatory variable plus a random element. In
this case the explanatory variable is time. The parameters are esti-
mated by minimizing the sum of squares of the differences between an
estimate and the true values of the sample, the residuals. This is the
ordinary least squares (OLS) method. It is based on the assumption
that a deterministic relationship with the explanatory variable does
exist and that the random elements at different times have zero mean
and are independent of one another.

The HadCRUT4 time series values were fitted with a straight line
by the OLS method of linear regression, i.e. the model

yt = a0 +a1t+ ξt (9.1)

was fitted to the data and is shown as the straight line in Figure 9.1(a)
The fitting of a function by OLS regression requires that the se-

quence of residuals {ξt} in (9.1) or {ξ′t} in (9.1) be unselfcorrelated.
Clearly that is not the case for (9.1) where a sinusoidal function or
‘multidecadal oscillation’ would remain after removal of the linear
trend. For this reason a sinusoid of arbitrary phase was included in
the model of equation (9.2):
1Downloaded from http://www.metoffice.gov.uk/hadobs/hadcrut4/data/
current/time_series/ on 12/4/16.
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Figure 9.1: The deterministic model: (a) The HadCRUT time series.
The straight solid line shows the linear trend of temperature vs. time.
The dashed line shows the multiple regression fit of a linear trend plus
a sinusoid. (b) Residuals from the time series of the linear trend plus
sinusoid. (c) The autocorrelation function of the residuals, φ and the
p-value of Ljung–Box Q-statistic (thick line). The p-value is zero at
all lags.
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coef std err t P>|t| 95.0% Conf. Int.
â0 -0.0149 0.010 -1.508 0.134 <-0.035, 0.005>
â1 0.0050 0.000 24.394 0.000 <0.005, 0.005>
â2 0.1210 0.014 8.841 0.000 <0.094, 0.148>
â3 0.0791 0.014 5.569 0.000 <0.051, 0.107>

Table 9.1: Coefficient estimates for the deterministic model of equa-
tion (9.2). Standard error, t-value, p-value and 95% confidence inter-
vals are shown for each.

Test Q-statistic at lag probability
Ljung–Box min 92.665 3 0
Ljung–Box max 232.052 39 0

Table 9.2: Testing the residuals of regression model of equation (9.2)
for self-correlation. Minimum and maximum values of the Ljung–Box
test statistics and their corresponding probabilities for a maximum
lag of 40.

yt = a0 +a1t+a2 cos(ωt) +a3 sin(ωt) + ξ′t (9.2)

The angular frequency, ω, was chosen by trial and error and corre-
sponded to a period of 70 years. The estimates â0, â1, â2 and â3 of
the model parameters a0, a1, a2 and a3 are shown in Table 9.1.

The sequence of residuals, {ξ′t}, is shown in Figure 9.1b and its
autocorrelation function (ACF)2 in Figure 9.1c. Even to the naked
eye there appears to be a systematic positive tendency in the ACF out
to lag 30. There is a statistical test which can be used to determine
whether the non-zero values of the ACF at non-zero lags are significant
or just due to chance. It is the Ljung–Box test (Ljung and Box, 1978).
The results obtained when fitting equation (9.2) to the HadCRUT4
data are shown in Table 9.2.

The probabilities listed in Table 9.2 are so small that we can reject
the null hypothesis that the non-zero ACF values are purely random.
Equation (9.2) is not a good fit to the data. It can be rejected at a
very high level of significance.

2The ACF is the covariance function normalized by dividing it by the variance
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coef std err z P>|z| 95.0% Conf. Int.
â1 0.9955 0.006 176.629 0.000 <0.984, 1.007>
b̂1 -0.4068 0.074 -5.490 0.000 <-0.552, -0.262>
b̂2 -0.2276 0.067 -3.379 0.001 <-0.360, -0.096>
ĉ 0.0736 0.351 0.210 0.834 <-0.615, 0.762>

Table 9.3: Coefficient estimates for the stochastic model of equation
(9.3). Standard error, z-value, p-value and confidence limits are shown
for each.

The stochastic model

An ARMA(1,2) model was fitted to the HadCRUT4 time series using
the Python statistical package: statsmodels.tsa.arima-model.ARMA.
The package’s css-mle option was selected whereby the conditional
sum of squares likelihood was maximized and its values used as start-
ing values for the computation of the exact likelihood via a Kalman
filter.

The fitted model was thus

yt = a1yt−1 + εt+ b1εt−1 + b2εt−2 + c (9.3)

where a1, b1, b2 and c were parameters to be fitted, and the {εt} were
independent, identically distributed random variables with zero mean.
The orders, p= 1 and q = 2, were found by trial and error, i.e. as the
smallest values which resulted in unselfcorrelated residuals.

Note that the parameter c is similar to the coefficient a1 in (9.1)
and (9.2). Setting a1 = 1 and the other coefficients in (9.3) to zero for
the moment gives

yt = yt−n+nc (9.4)

so that yt becomes a deterministic linear function of the elapsed time,
n∆t. For this reason c is known as the ‘drift term’. It is a deterministic
element in an otherwise stochastic model.

The estimates â1, b̂1, b̂2 and ĉ of the model parameters a1, b1, b2
and c are shown in Table 9.3.

The most important feature of Table 9.3 is the small value and
large confidence interval of the drift term estimate, ĉ. It is not signifi-
cantly different from zero. Unlike the deterministic model, stochastic
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Figure 9.2: The stochastic method: (a) The HadCRUT time series.
(b) Residuals from fitting an ARMA(1,2) model, (c) The autocor-
relation function of the residuals, φ and the p-value of Ljung–Box
Q-statistic (thick line).
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Test statistic at lag probability
Ljung–Box min 3.093 3 0.079
Ljung–Box max 39.843 39 0.345

Table 9.4: Testing the residuals of the ARMA(1,2) model for self-
correlation. Minimum and maximum values of the Ljung–Box test
statistics and their corresponding probabilities for a maximum lag of
40.

modelling indicates that there is no significant drift in the HadCRUT4
time series of global average temperature.

The sequence of residuals, {εt}, is shown in Figure 9.2b and its
autocorrelation function in Figure 9.2c. The ACF values at non-zero
lags appear to be randomly distributed on either side of zero. As
before, the Ljung–Box test was used to see if the null hypothesis that
the residuals are unselfcorrelated can be rejected. The results are
shown in Table 9.4.

None of the probabilities listed in Table 9.4 lie below the critical
value of 0.05 and so there is no reason to reject the null hypothesis
that the non-zero values of the ACF are due entirely to chance. The
ARMA(1,2) model is a very good fit to the HadCRUT4 time series.

The Frequency Domain

Figure 9.3 shows the ARMA(1,2) spectral estimate of the HadCRUT4
time series plotted using logarithmic scales (thick dashed line). Also
shown is the periodogram of the sample (thin line). The autoregressive
coefficient, â1, in Table 9.3 is very close to one. In the nomenclature
of the previous chapter, α= 1− â1 = .0045 – a small value indicating
that the time series is red noise. This then is the reason for the f−2

trend at low frequencies (dashed line) and for the apparent regression
with elapsed time shown by the Deterministic Model above. The
HadCRUT4 time series of global average temperature is red noise,
and the apparent regression is spurious.

As a consequence of the above-discussed whiteness tests confirm-
ing the absence of self-correlation of the residuals, this spectral es-
timate is optimal. There can be no peak, trough or trend in the
spectrum other than those depicted in Figure 9.2 because this would
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Figure 9.3: The variance density spectral estimate, Ŝf , vs. frequency,
f , of the ARMA(1,2) model fitted to the HadCRUT time series (thick
dashed line). The thin line shows the periodogram of the time series.
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require further poles and/or zeros in the z-plane which are not in-
cluded in the ARMA model. Such extra poles or zeros, if unaccounted
for, would inevitably lead to self-correlation of the sequence of resid-
uals which would then have failed the Ljung–Box test; the 70-year
“multidecadal oscillation” of equation (9.2) is therefore also spurious.

The Python code used to generate Figure 9.2 and Figure 9.3,
arma.py, can be found in the Appendix.
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Implications

A rigorous, stochastic, discrete time theory of spectral analysis has
been developed without making any assumptions about continuity
and differentiability. The estimation of the variance density spectrum
of a time series only applies to a range of time and frequency scales
defined by the sampling period and the span of the sample itself.
In this way it is possible to gain insights into underlying processes
such as integration and convolution and to detect the significance of
sinusoidal components by the accepted hypothesis testing methods of
frequentist statistics. In particular the validity of a particular model
can itself be assessed by testing the whiteness of the residuals using
the Ljung-Box test.

It has been demonstrated (equation 7.38) that the periodogram
of a sample which is the outcome of an ARMA process is a consistent
estimator of the ensemble spectrum of the process. This contradicts
the widespread assumption that the periodogram is not a consistent
estimator and renders traditional methods of windowing unnecessary.
In fact any such windowing is likely to subvert whiteness testing of
the residuals and should be avoided.

The pitfalls of spurious regression against time and the spurious
correlation of sequences with one another have been shown to be due
to the concentration of variance at the low frequency end of the spec-
trum rather than to the non-stationarity of the sample, i.e. to the
“redness” of the spectrum. Yule’s “nonsense-correlations” are a prop-
erty of red noise.

The process which gives rise to red noise is widely found in en-
gineering and in nature. In electronics it occurs when noise is fed
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through an integrator as with the bass control of an audio amplifier.
In the natural world it occurs when matter or energy is stored, e.g.
when water from random rainfall events is stored in a lake, dam or
river catchment. Most importantly, it occurs for temperature when-
ever heat is stored according to Fourier’s equation (7.77) with a spec-
trum given by equation (7.84). Statistically it is a particular sort of
Markov process termed a “centrally biased random walk”.

The small increase in global average temperature over the last 166
years is not a trend and it is not likely to continue. It is red noise.
So-called “multidecadal oscillations” are also red noise. Any corre-
lation between global average temperature and other environmental
quantities is likely to be spurious.
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Chapter 11

The Ice Ages

Introduction

The final chapters, while not concerned with spectral analysis as such,
demonstrate how abandoning the deterministic, “clockwork” mind-set
of Newtonian calculus leads to a fruitful description of environmental
phenomena as the outcome of stochastic processes. Some speculations
about ocean and mantle dynamics based on this approach are given.

This chapter shows how a model with both stochastic and deter-
ministic components leads to a mechanism which accounts for rapid
ice-age terminations.

The idea that the Earth was once much colder than at present
has been debated by scientists since the early 18th century. In 1824,
Danish-Norwegian geologist, Jens Esmark, appears to have been the
first to propose that the Earth had undergone climatic changes and
that these were caused by changes in the Earth’s orbit. Serbian astro-
physicist, Milutin Milankovitch, was the first to “put the numbers in”
to Esmark’s theory (Milankovitch, 1941), and these orbital variations
are now known as “Milankovitch Cycles”. In more recent times, Hays
et al. (1976) used oxygen isotope ratios in ocean sediment cores to
show that Esmark, Milankovitch (and many others) were correct in
this proposal. Hays et al. conclude:

1. Three indices of global climate have been monitored in the past
450,000 years in Southern Hemisphere ocean-floor sediments.

2. Over the frequency range 10−4 to 10−5 cycles per year, climatic
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variance of these records is concentrated in three spectral peaks
at periods of 23,000, 42,000 and approximately 100,000 years.
These peaks correspond to the dominant periods of the earth’s
solar orbit, and contain respectively about 10, 25 and 50 percent
of the climatic variance.

3. The 42,000-year climatic component has the same period varia-
tions in the obliquity of the earth’s axis and retains a constant
phase relationship with it.

4. The 23,000-year portion of the variance displays the same peri-
ods (about 23,000 and 19,000 years) as the quasi-periodic pre-
cession index.

5. The dominant, 100,000-year climatic component has has an av-
erage period close to, and is in phase with, orbital eccentricity.
Unlike the correlations between climate and the higher frequency
orbital variations (which can be explained on the assumption
that the climate system responds linearly to orbital forcing), an
explanation of the correlation between climate and eccentricity
probably requires and assumption of non-linearity.

6. It is concluded that changes in the earth’s orbital geometry are
the fundamental cause of the succession of Quaternary ice ages.

7. A model of future climate based on the observed orbital-climate
relationships, but ignoring anthropogenic effects, predicts that
the long-term trend over the next several thousand years is to-
ward Northern Hemisphere glaciation.

Since that paper was published, there have been numerous incre-
mental improvements in pinning down the time scales of ocean sedi-
ment sequences. Most importantly isotope ratios in ice cores, which
act as proxies for global temperature, have become available from
Greenland and the Antarctic ice cap. These not only tally with the
ocean sediment time series but, with one or two exceptions, support
the above conclusions.

The 100,000-year spectral peak contains half the variance and
certainly dominates graphs of the spectra unless they are plotted on
logarithmic scales. Hays et al. were well aware that variations in
the eccentricity of the earth’s orbit were not sufficient to give rise
to such a comparatively strong peak, which is why they appealed to
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an unknown non-linear mechanism to account for it. Their use of
“approximately” indicates that they were also well aware that visual
inspection of their data in the time domain reveals no 100,000-year
cycle. Interstadials (i.e. interglacials) are separated by 80,000 years
or 120,000 years, multiples of the obliquity period. Others have noted
these discrepancies, e.g. Maslin and Ridgwell (2005).

Here we show that this peak is not statistically significant. Its
large size is due solely to the integrating effect of Fourier’s heat equa-
tion (7.77), which results in a power law temperature spectrum with
an index of -2 as described by (7.86).

It is also not the case that higher frequency variations “can be
explained on the assumption that the climate system responds linearly
to orbital forcing”: the rapidity of ice age terminations compared
with ice age onsets implies that some non-linear mechanism must be
involved. Elsewhere in their paper, Hays et al. recognise this but still
have difficulty accounting for the 100,000-year peak.

Orbital Parameters

Temperatures, T , derived from EPICA Dome C ice cores (Jouzel et al.,
2007) covering the period from 490 kyr to the present were examined.
For spectral analysis purposes it was desirable that time series be
created comprising a sequence of values sampled at equal intervals
of time. However, as a result of ice flow behaviour, more recent ice
core strata from near the surface are sampled much more densely in
time than are deeper, older strata. Time series were constructed by
partitioning the data into sampling intervals of equal length. Values
lying within each sampling interval were then averaged and the mean
assigned to the mid-time of that sampling interval. The time inter-
val was chosen as 1 kyr with 491 samples spanning the period from
490 kyr BP to the present.

The Python code used to generate Figure 11.1 and Figure 11.2,
OPspectra.py, OPlist.py and DailyInsolation.py, can be found in the
Appendix.

Figure 11.1a shows 1 kyr averages of EPICA Dome C Ice Core
Deuterium temperature estimates due to Jouzel et al. (2007). Fig-
ure 11.1b shows the first differences of the sequence shown in Fig-
ure 11.1a, ∆T . Its mean, m, and ±2σ levels are shown as dashed
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Figure 11.1: a 1 kyr averaged temperatures, T , derived from EPICA
Dome C ice cores. b First differences, ∆T , showing mean, m and
upper and lower 2σ values (dashed lines). e Calculated eccentricity
of the earth’s orbit. o calculated obliquity of the earth in its orbit. p
Calculated precession angle of the earth in its orbit. Vertical lines in
e, o and p show the times at which ∆T exceeds m+ 2σ.
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lines. The temperature differences exceed the upper 2σ level during
terminations when the temperature is rapidly increasing.

Also shown are the secular variations in the Earth’s orbital pa-
rameters derived from the data and the MATLAB programs originally
due to Berger (1979) and Berger and Loutre (1991) and later used by
Huybers (2006) and Huybers and Eisenman (2006). The vertical lines
in these three figures represent the time at which the temperature dif-
ferences of Figure 11.1b were more than 2σ above the mean, i.e. the
times of terminations as defined here. On four out of five occasions
in Figure 11.1o, terminations occurred at times of increasing obliq-
uity, but the one near 250 kyr BP did not. On the other hand, in
Figure 11.1p the three most recent terminations occurred at times of
increasing precession, but the earliest two did not.

Figure 11.2 shows spectra in the form of periodograms of the five
time series shown in Figure 11.1 with vertical scales displaced arbi-
trarily for ease of comparison.

Both the obliquity and precession spectra have multiple peaks. In
this way they resemble the spectra of amplitude modulated (AM) and
frequency modulated (FM) radio signals. Radio engineers refer to the
largest peak as the “carrier” and the other peaks as “side-bands”.

The spectrum of ∆T in Figure 11.2 is almost flat implying that
the time series is unselfcorrelated. If we take as null hypothesis the
hypothesis that the population time series of ∆T is indeed unselfcor-
related as discussed above then confidence limits can be placed on
each ordinate value. The horizontal dashed lines in Figure 11.2 are
the upper and lower 99.9% confidence limits for the ∆T spectrum
computed using (7.35).

It can be seen that the carrier peaks in the obliquity and preces-
sion spectra give rise to significant peaks in the ∆T spectrum at the
99.9% level. Peaks corresponding to the side-bands are not present.
The statistical significance of the obliquity and precession peaks im-
plies that the temperature time series does indeed have deterministic
sinusoidal components: it is not purely stochastic. On the other hand,
the so-called “eccentricity peak” near (f) = 10−2 is not significant and
can be regarded as noise, as can other peaks in the ∆T spectrum at
higher frequencies.
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Figure 11.2: Periodogram spectra of the five time series depicted in
Figure 11.1: a 1 kyr averaged temperatures, T , b First differences,
∆T , e eccentricity, o obliquity, p precession. Vertical dashed lines
show the frequencies of the major peaks in the orbital parameter spec-
tra at .00922, .0246 and .044 kyr−1 respectively. Horizontal dashed
lines show the upper and lower 99.9% confidence limits of the ∆T
spectrum.
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A mechanism for rapid terminations

Huybers (2006) has pointed out that while the intensity of summer
insolation is primarily controlled by the .044 kyr−1 precession fre-
quency, early Pleistocene glacial cycles occurred at the .0246 kyr−1

obliquity frequency because glaciers are sensitive to insolation inte-
grated over the duration of the summer. Nevertheless this cannot be
the whole story because, as can be seen in Figure 11.1, Termination
III (∼250 kyr BP) occurred at a time of declining NH obliquity but
increasing precession. Huybers pointed out that ice sheet ablation
is only indirectly related to insolation via air temperature and will
not occur when air temperature is below the freezing point of water.
For this reason he proposed that insolation only be realistically con-
sidered as forcing at a given latitude when it exceeded a threshold
sufficient to raise the air temperature above 0◦C. Huybers proposed
a threshold of 275 W/m2 at 65◦N. Introducing this threshold had the
effect of bringing the precession cycle back into play so that ice sheet
ablation was no longer dependent on the obliquity cycle alone. This
led to an improved fit between glacial cycles and the Earth’s orbital
parameters.

However, this does not account for the remarkable rapidity of the
terminations: ice sheets that took more than 40,000 years to form
collapsed within 4,000 years or so as can be seen in Figures 11.1a
and 11.1b. Quasi-sinusoidal orbital components, while related to tem-
perature to some degree in both phase (Figure 11.1) and frequency,
(Figure 11.2) gave rise to the saw-tooth temperature variations of Fig-
ure 11.1a. This requires some sort of positive feedback and a mech-
anism for storing heat or enthalpy from one summer to the next.
Ablation by solar radiation and raised air temperatures alone does
not provide such a mechanism. Furthermore, there is a need to ac-
count for the fact that terminations did not occur on every occasion
when conditions were suitable. There is a random element: increased
insolation only seems to increase the probability of ice sheet collapse
rather than act as a fully deterministic cause.

Water is an atypical liquid in having its maximum density at 4.0◦C
– well above its freezing point. This implies that a body of water be-
tween 0◦C and 4.0◦C will behave much like a solar pond in that the
upward convection of heat is suppressed. In solar ponds this condi-
tion is set up and maintained by adding salt to maintain the density
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gradient, but in melt ponds it happens naturally. In solar ponds in-
coming solar radiation heats most of the top 2 m. There is a surface
‘mixed layer’ due to wind induced turbulence, and below 2 m heat is
preserved. The density gradient suppresses convection, and conduc-
tion is negligibly small – ∼1 W/m2 compared with ∼100 W/m2 from
incoming radiation. In calm conditions the water heated to 4.0◦C by
radiation might be expected to sink to the bottom of the pond due to
‘inverse convection’. To first order this will commence spontaneously
when the Rayleigh number exceeds a critical value of 1700 for which
the length scale is ∼5 metres. In summer, wind induced turbulence
will predominate, and the melt lake will be well mixed to the bottom
because density variations will be too small to induce stratification.
In winter, a surface cover of ice will form rapidly allowing turbulence
to die out and the water to become stratified. At depth the water will
remain liquid because its latent heat cannot escape.

On sea ice, the warmed water finally thaws through to the base of
the ice and mixes with the ocean beneath so that melt ponds on sea
ice only last for a single season. In a melt pond over land, however,
radiatively heated water will mix down and melt the ice beneath it
until bedrock is reached. From then on extra heat will ablate the
edges of the pond, and the pond will become larger. Each summer
more heat will be added, and the pond will grow in area in proportion
to the solar radiation absorbed which is proportional, in turn, to the
pond’s current area. Small melt ponds will thus grow exponentially
until they join up to form lakes and, conceivably, lakes of continental
scale. Ultimately a final ice dam will be broken and the lake’s contents
will pour into the ocean carrying the remaining ice with it and leaving
bare earth behind.

This is the ideal case. It may not always happen like this. Firstly
ponds of sufficient depth must form: ponds that are too shallow will
lose all their heat by conduction during the winter. In steep terrain,
underwater rivers or ‘moulins’ can form and drain a pond so that any
stored heat finishes up in the ocean, so breaking the positive feedback
cycle. There is a random component in whether melt ponds will start
in the first place, whether any will deepen sufficiently to retain their
heat through the first few winters and whether any will develop to be
large enough for their collapse to have global consequences.

Here then is a mechanism which accounts for rapid ice age termi-
nations:
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• It accounts for storage from summer to summer,

• It has a positive feedback component whereby the area of a melt
pond increases exponentially, i.e. at a rate proportional to its
current area, and

• There is random component controlling whether sufficient melt
ponds will form in the first place.

Water surface absorption

Another feature of melt ponds which makes them relevant to ice sheet
collapse is their low albedo compared with surrounding ice and snow,
see, for example, Flocco et al. (2016).

When light from a point source shines on a reflective surface at
the boundary of two transparent media, part is reflected and part
refracted according to Snell’s Law, viz.:

n1sin(θ1) = n2sin(θ2) (11.1)

where θ1 and θ2 are the angles of incidence and refraction respectively.
The amplitude of the transmitted rays depend solely on the re-

fractive indices of the two media, n1 and n2. The Fresnel reflection
coefficient for p-polarized and s-polarized light, r12p and r12s, are
given by

r12p = tan(θ1−θ2)
tan(θ1 +θ2) (11.2)

r12s = sin(θ1−θ2)
sin(θ1 +θ2) (11.3)

The fraction of incident power reflected, R, is given by

R= r2
12p+ r2

12s (11.4)

This is, in effect, the albedo of a water surface. For most solar ele-
vation angles it will be less than for the surrounding ice and snow.
The fraction of the radiance transmitted and ultimately absorbed is
A= 1−R. The solar irradiance per unit horizontal area is A(h).sin(h)
(where h = π/2− θ1 is the solar elevation angle). This can be inte-
grated over time to give the water surface absorbed insolation. A more
rigorous discussion of this topic is given by Malinka et al. (2017).
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Figure 11.3: a Time series of 1 kyr averaged temperatures. b Annual
insolation at 65◦ N with threshold τ = 275W/m2 (Huybers, 2006). c
Annual water surface absorbed insolation at 65◦ N with threshold,
τ = 470W/m2. Vertical bars show times when ∆T exceeded m+2σ.
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The MATLAB programs of Huybers and Eisenman (2006) for cal-
culating daily and yearly insolation were modified to calculate daily
water surface absorption of solar radiation by multiplying the irra-
diance at a given time and latitude by the function A(h) prior to
integrating. Their algorithm for rejecting those days in which the to-
tal daily insolation fell below a particular threshold, τ , was retained.
The quantity calculated in this way is the water surface absorbed inso-
lation, which was summed over the year to give annual water surface
absorbed insolation (AWSAI) in units of J.m−2.

Time series of AWSAI were computed for a number of high north-
ern latitudes and threshold values, τ . These AWSAI time series were
not very different from the corresponding insolation time series of
Huybers for the same latitudes and thresholds; evidently the shape of
the A(h) curve is not particularly important. However, the resulting
time series were strongly dependent on the value of the threshold, τ ,
chosen. Huybers chose a value of 270W/m2 below which air temper-
ature would be below the freezing point of water and no ablation of
ice could be expected. The threshold value chosen here, 470W/m2, is
almost double that. This higher threshold is justified by the fact that
precipitation must be in the form of rain so that ponds can form on
the ice in the first place and then not freeze overnight in the summer.

Figure 11.3c shows the time series for an optimum combination
of latitude (65◦N) and threshold (τ = 470W/m2). Time series of 1
kyr averaged temperatures and Huybers (2006) insolation time series
are also shown for comparison in Figure 11.3a and Figure 11.3b, re-
spectively. As before, vertical dashed lines indicate times when ∆T
exceded m+ 2σ.

Visual examination of Figure 11.3 shows that AWSAI is generally
a better fit to the temperature time series than is insolation alone,
particularly near the problematic interstadial at ∼250 kyr BP.

More detailed plots of temperature for 60 kyr during and following
each of the last five Ice Age Terminations are shown in Figure 11.4.
The temperatures plotted are the raw data from the EPICA Dome
C ice cores. Rescaled plots of AWSAI are also shown as a series of
lobes when the AWSAI was above the 470 W/m2 threshold (dashed
curves).

These plots show some interesting features, viz.:

1. Termination temperature peaks were 1 to 3 kyr wide and fol-
lowed by a plateau in temperature such as the Holocene.
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2. In each case the temperature peaked near the time of maximum
AWSAI of the Termination Lobe.

3. Following Terminations I to IV, in each case temperature began
to fall more rapidly after the end of the Termination Lobe.

4. Following Terminations I to IV, in each case temperature fell by
about 5◦C between the end of the Termination Lobe and the
beginning of the subsequent lobe.

Melt ponds and ice sheet dynamics

The first part of this chapter is based on a paper submitted to a
peer-reviewed journal. The paper was rejected on the advice of the
Associate Editor who reasoned as follows:

1. Less than half of melt ponds in Greenland store water between
seasons with the remainder emptying by either vertical or lateral
drainage (Selmes et al., 2013).

2. Melt ponds on grounded ice do not form randomly. Their lo-
cation and size is controlled by the topographic depressions in
which they form. These depressions, in turn, are controlled
by the topography of the underlying bedrock (Echelmeyer et al.,
1991).

3. Since ice flows, any ice which has been subject to enhanced ab-
lation due to the presence of the melt-pond is advected down-
stream. On Greenland, the ice on which a lake sits is renewed
approximately every 10 years. This, together with (2) means
that it is impossible for exponential lake growth to occur through
enhanced ablation on grounded ice.

This view, that the ice sheet dynamics of present day Greenland
provides a suitable model for the behaviour of the Ice Sheets during
the last five Terminations, is not justified; they are very different
scenarios. In present day Greenland, large outlet glaciers, which are
restricted tongues of the ice sheet, move through bordering valleys
around the periphery of Greenland to calve off into the ocean. The
best known of these outlet glaciers is the Jakobshavn Glacier discussed

 EBSCOhost - printed on 2/13/2023 8:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 11 101

Figure 11.4: Epica Dome C Ice Core Deuterium temperature esti-
mates (solid line) and annual water surface absorbed insolation at
65◦ N (dashed line) for the intervals including and following the five
last Ice Age Terminations (V , IV , III, II and I).
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by Echelmeyer et al., which, at its terminus, flows at speeds of 7000
m/yr. A comprehensive study of ice streams by Margold et al. (2015)
has shown that flow speeds over most of the area of the Laurentide
Ice Sheet were close to zero at the time of the Last Glacial Maximum
(Margold et al., Figure 2). Given the accepted dynamics of ice flow,
these regions must have been almost flat and horizontal in contrast to
the steep Greenland ice flows.

Furthermore, the present day is a time of decreasing solar declina-
tion and water surface absorption. In contrast, Terminations occurred
at times of increasing solar declination when old, static, horizontal
ice was increasingly exposed to solar radiation, so allowing new melt
ponds to form when rain fell during the summer months.

Conclusions

The catastrophic collapse of ice sheet melt lakes appears to have first
been proposed by Bretz (1923) who attributed the scouring of the
Scablands of Washington State to the draining of Lake Missoula in
western Montana. Since then many other topographic features have
been seen to be associated with such dramatic collapses, see, for ex-
ample, Patton et al. (2017).

That melt ponds and melt lakes play a major role in amplifying
the effects of increased Northern Hemisphere insolation has hitherto
gone unnoticed. These catastrophic climate disruptions are surely the
most important feature of the Late Pleistocene and, in a sense, define
it.

The succession of Ice Ages and Interglacials, of Stadials and Inter-
stadials, is a deterministically forced stochastic process, very much like
present-day weather but at longer time scales. There is little evidence
of other deterministic cycles forcing climate between the annual cycle
and the precession cycle, i.e. between one year and 23,000 years in
period: a span of four orders of magnitude. Supposed “multidecadal
cycles” are nothing more than red noise.

According to Figure 11.4, under this model, on a time scale of
millennia, the next Ice Age has already commenced. The present
“Holocene” lobe of AWSAI comes to an end in 1200 years time, and
the subsequent lobe commences 5000 years after that. Based on pre-
vious interglacials, we can speculate that global average temperature
is likely to be 5◦C cooler in 6000 years time.
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Software

The Python programs used to generate the diagrams found in this
chapter, OPspectra.py, OPlist.py and DailyInsolation.py, are listed in
the Appendix.
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Ocean Waves

On Christmas Eve 2001, 400 angry people and their vehicles were
left stranded on the wharf at Georgetown, Tasmania. They had been
waiting to board the ferry to Melbourne, Victoria on the other side of
Bass Straight, a six hour voyage on the new wave-piercing catamaran,
Devilcat, designed and built in Tasmania, and, at the time, one of the
world’s fastest and most economical vehicular ferries. Devilcat had
arrived from Victoria and discharged its passengers and cargo but
could not make the return trip.

Why not? There were no mechanical or personnel problems, and
the sea was “like a millpond” according to one eye-witness who had
just arrived on the vessel.

According to Australian Marine Safety Authority (AMSA) regu-
lations, the ferry was not permitted to sail if the Significant Wave
Height1 in Bass Strait was greater than two metres. Since there was
no wave measuring equipment deployed in Bass Strait at the time,
the Significant Wave Height was calculated by means of a numerical
wave model from meterorological wind velocities. The world wave
model in question was run by NOAA, the US National Oceanic and
Atmospheric Administration in Boulder, Colorado. According to the
NOAA model, the Significant Wave Height in Bass Strait on 24 De-
cember 2001 was greater than the AMSA threshold value of two metres
and so Devilcat was not allowed to sail. Direct observations by several
hundred passengers and crew were irrelevant. They were not qualified
observers. A computer on the other side of the world knew better.
1The Significant Wave Height is defined by Hs = 4σz , where σz is the standard
deviation of sea surface height.
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Not long after this, unsurprisingly, the Devilcat service went out of
business. The vessel was sold to Bay Ferries of Canada and operated
on the Bay of Fundy for many years.

The numerical prediction of ocean waves has always been prob-
lematic. This is largely because there is not a good theory of wave
generation. The propagation of swells is well understood and can be
described with great precision, but the development of wind-sea is not
quite so straightforward.2

Pierson and Moskowitz revisited

In a classic case of the theoretical tail wagging the observational dog,
the breakthrough came with Pierson and Moskowitz (1964) in a paper
entitled “A proposed spectral form for fully developed wind seas based
on the similarity theory of S. A. Kitaigorodskii”. This paper became
the sine qua non of all future discussion of ocean wave spectra. It in-
terpreted the observations of wave spectra at a variety of wind speeds
made by Moskowitz (1964) in the light of a new theory of waves pro-
posed by the Russian mathematician who made the assumption that
the variance density spectrum of a wind-generated sea is a function
of only four variables, viz.:

S(f) = F (f,g,U+,X) (12.1)

where f is the frequency, g is the acceleration due to gravity, U+
is the Charnock–Ellison friction velocity (of the wind) and X is the
fetch. Pierson and Moskowitz used the concept of a fully developed
sea to eliminate the dependence on fetch, X, from their equations to
derive a dimensionless spectrum, S′(f), as a function of dimensionless
frequency, f ′, viz.:

S′(f) = S(f)g3

U5 (12.2)

f ′ = Uf

g
(12.3)

where U is the measured wind velocity. Moskowitz’s observed spectra
are replotted in dimensionless form in Figure 12.1.
2Swell describes waves propagated from distant storms in which white-capping
has ceased. Wind-sea describes shorter wavelength waves being generated by
wind and accompanied by white-capping.
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Figure 12.1: Mean dimensionless spectra at wind speeds of 20, 25, 30,
35 and 40 knots, listed by Moskowitz (1964)
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Certainly Moskowitz’s spectra proved to be remarkably similar
when displayed in this way. Pierson and Moskowitz fitted a curve of
the form

F (f ′) = ABe−B/f

f5 (12.4)

and this, the Pierson and Moskowitz spectrum, became the accepted
canonical form with some minor additions and modifications from
time to time.

Some issues

There are, however, some issues with the Pierson and Moskowitz spec-
trum and its variations. Chief among them is the assumption made in
(12.4) that variance density in the high frequency tail of the spectrum
is inversely proportional to the fifth power of the frequency, i.e. that
it is a power law spectrum with an index of -5. As they state in their
1964 paper:

There is increasing theoretical support for the appearance of f ′5 in
the denominator. The original theory of Phillips (1958) suggests
that the waves, if high and if having a spectrum with f ′4.5 or f ′4 in
the denominator would break and dissipate energy. The analysis of
Kitaigorodskii supports this.

As illustrated by equation (5.3), a convenient method of finding power
law trends in spectra empirically is simply to plot them using logarith-
mic axes. The spectra of Figure 12.1 are replotted in Figure 12.2. A
strong power law trend is clearly evident in the range −0.8< logf ′ <
−0.5.

But the index is not -5. The index is -3.
For more than fifty years, fluid dynamicists have continued to

believe that wind-seas exhibit a fifth power spectrum when, in fact, the
very data on which this theory is based clearly exhibits an inverse cube
spectrum. Once again theory trumps experiment in Fluid Dynamics.

There are other issues. Kitaigorodskii’s scale free wave spectra
are based on the idea of “similarity” whereby, like fractals, waves
are assumed to look the same at every scale. This is true of some
waves, for example swells when there is no white-capping. But white-
capping is an ever-present phenomenon in the case of wind-seas and
white-capping does in fact vary according to scale. For large waves,
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Figure 12.2: The mean dimensionless spectra of Figure 12.1 replotted
on logarithmic scales

white-capping looks very different from that of small waves because
of the spume that is formed. Individual bubbles can be seen in the
spume from small waves, but spume at the scale of larger waves looks
more like a white continuous fluid. This is well known to cinematog-
raphers attempting to film storms at sea using model ships in wave
tanks. The larger (and more expensive) the model, the more realistic
is the shoot. At smaller scales molecular forces such as surface ten-
sion become important and alter the appearance of the spume in a
way that is obvious to a cinema audience.
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In 1991 I presented a paper (Reid, 1992) to the IUTAM Sympo-
sium on Breaking Waves held in Sydney, Australia.3 I related details
of an experiment I had carried out using the wave tank at the Aus-
tralian Maritime College in Launceston, Tasmania. The experiment
demonstrated unequivocally that when waves of different frequencies
interact to cause white-capping, energy and momentum are lost only
from the higher frequency wave. As this process continues, it leads to
the frequency down-shifting of the spectral peak commonly observed
in wind-seas in the open ocean. Furthermore, it leads to similar spec-
tra to those observed in the open ocean.

Although this experiment was performed in a wave tank in the ab-
sence of wind, it illustrated quite clearly how wind waves grow. This
can be observed with the naked eye in an enclosed body of water such
as a pond or reservoir. At first the wind generates ripples with a wave-
length of about 15 cm. The whole of the pond is covered in ripples of
similar amplitude and wavelength. As the wind increases, some rip-
ples start to break. Once this happens the downwind ripples become
larger and longer in wavelength than the upwind ripples. Frequency
down-shifting occurs, but it does not occur until after white-capping
has commenced. Wave-breaking is fundamental to the growth of a
“wind sea” even on a pond.

The paper was not well received and was indignantly refuted by
a leading wave modeller, who was given special permission by the
Chair to take the platform following my presentation. He argued that
my conclusion, that frequency down-shifting occurs because of wave
breaking, could not possibly be true. If it were, it would mean that
decades of work on ocean wave modelling had been wasted. To many
of those present, this was clearly unthinkable.

Conclusion

Similarity theory rests on an assumption of continuity and the ab-
sence of wave breaking. As Phillips pointed out in the above quote,
waves having a spectrum with a power law index of -4.5 or more will
“break and dissipate energy”. That is precisely the point. That is
what happens in a wind-sea. Waves regularly break and dissipate the

3Downloadable from https://apps.dtic.mil/dtic/tr/fulltext/u2/a264196.
pdf.
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energy that they have gained from the wind. Wave dynamicists are
in denial about the role of wave-breaking in the formation of ocean
wave spectra.

Wave breaking involves changes in entropy and so cannot be han-
dled by the continuous equations of fluid dynamics. Its role in the
development of wind-seas is therefore ignored.

This is the Fluid Catastrophe in action.
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Volcanoes under the ocean

Ocean currents are driven by tides, by wind and by variations in water
density caused by variations in salinity and temperature, the thermo-
haline circulation. Their paths are also controlled by the Earth’s
rotation in the same way that winds in the atmosphere rotate about
low pressure systems. These circular current paths are called gyres.

The Gulf Stream, the Kurashio (Japan) and the Aghulas (South
Africa) are well known ocean currents. The flow of ocean currents
are measured in Sverdrups, one Sverdrup (Sv) being a million cubic
meters of water passing a fixed point in one second. The flow of the
Amazon is about 0.5 Sv. The biggest ocean current, the Antarctic
Circumpolar Current has a flow of 100 Sv where it runs through Drake
Passage between South America and Antarctica. The flow of the ACC
is equal to that of two hundred Amazons.

Ocean currents often determine local climate. Deserts, such as the
Atacama Desert of Peru, tend to be flanked by cold currents. Offshore
currents flowing towards the equator are generally colder and give rise
to less evaporation and less precipitation, whereas warm, pole-ward
currents lead to enhanced evaporation and higher rainfall. On the
other hand, pole-ward currents are generally poor in life-supporting
nutrients compared with equator-ward currents. The Labrador cur-
rent flows between Greenland and Canada and carries nutrient south-
ward to nourish the cod fishery of the Grand Banks of the North
Western Atlantic.

It is commonly assumed by oceanographers that world ocean cur-
rents have remained fundamentally unchanged since the last ice-age
termination 11,000 years ago. Historical and archaeological evidence
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indicates that this was not the case.

Greenland and Easter Island

Isotope analysis of bone samples from a Greenland Viking colony from
the late 10th to mid 15th century show that their diet changed dra-
matically over this time. At the time of Eric the Red around 1000
AD they ate predominantly terrestrial food, but by the end of the set-
tlement period around 1450 AD their diet comprised predominantly
marine food (Arneborg et al., 1999). This may reflect changing cli-
matic conditions with the onset of the Little Ice Age. It could also
indicate that fewer fish were available in the early years of settlement.
Both phenomena are attributable to changes in the circulation of the
North Atlantic.

A similar puzzle concerns the consumption of porpoise by the
inhabitants of Easter Island. According to Jared Diamond in his book
Collapse (Diamond, 2005):

Comparison of early garbage deposits with late prehis-
toric ones or conditions on modern Easter Island reveals
big changes in . . . initially bountiful food sources. Por-
poises and deep ocean fish like tuna, virtually disappeared
from the islander’s diet.

According to J. Loret in Loret (2003):

Throughout Polynesia archaeologists have found that
90 percent of middens consist of fish or shellfish. On
Easter Island however, from the period of 900–1300 A.D.
one third of the bones were of porpoises. Yet nowhere in
Polynesia do the bones of porpoises account for more than
one percent. These marine mammals had to be hunted far
offshore indicating that their craft had to be sufficiently
seaworthy and constructed from large trees.

Both authors are reaffirming the accepted narrative that Easter
Islanders destroyed their own livelihood by cutting down all the big
trees, from which they constructed their canoes.
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Maps of the present-day distribution of the four major species of
porpoise indicate that there are no porpoise within thousands of kilo-
metres of Easter Island. It seems unlikely that early Easter Islanders
could have travelled so far to hunt these animals; there must have been
porpoise closer to the island. Today the ocean around Easter Island
is very poor in nutrients. There is no marine ecosystem sufficiently
large to support a top predator such as porpoise; there is insufficient
nutrient available to generate such an ecosystem.

Once again this implies that ocean circulation between 900 and
1300 AD differed from that of the present day. These events both
preceded a time of warm weather in Europe known as the Mediaeval
Warm Period (MWP) and suggest that changes in ocean circulation
accompanied and perhaps even caused the MWP.

Finally, consider the Maya, a civilisation which flourished on the
Yucatan peninsula of present day Mexico from about 400 to 900 AD.
Oxygen isotope ratios and sulphur abundances in lake sediments from
Yucatan suggest that the cause of the Mayan Collapse was sustained
drought.

The Mayan drought immediately preceded the MWP.

Subaqueous volcanism

But what caused these changes? A promising candidate is subaqueous
volcanism.

Subaqueous volcanism refers to volcanic activity beneath the sur-
face of the ocean, as distinct from sub-aerial volcanism, which refers
to volcanic activity on land. It is believed that subaqueous volcan-
ism accounts for eighty five percent of all volcanic activity, sub-aerial
fifteen percent (White et al., 2003) so that volcanic activity is five
times more common under the sea than on land. The rapid formation
of steam when water flash-boils on contact with hot magma is the
reason for the explosive power of sub-aerial volcanoes. On the other
hand, the large pressure at the bottom of the ocean prevents water
from boiling and forming steam. As a consequence ocean floor volca-
noes are much less likely to be explosive than are those on land: five
percent compared with eighty percent.

Instead, although some subaqueous volcanos are explosive, they
mostly take the form of hydrothermal vents (HTVs). These were first
discovered in 1977. Also known as “black smokers”, they are found
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on mid-ocean ridges and above volcanic hotspots at depths of two
to three kilometres. They are formed when seawater penetrates the
ocean floor and comes into contact with hot magma. The heated
water then exits through vents as black plumes which rise 100 m or
so above the ocean floor. The vents are often surrounded by strange
life forms – life forms which utilise the free energy of the chemicals in
the plume and are not dependent on sunlight and photosynthesis.

Instead of boiling, the circulating seawater becomes “supercriti-
cal” when it is heated above 374◦C at high pressure. Supercritical
water is neither a true liquid nor a true gas and contains nascent oxy-
gen and hydrogen ions. It is a hot oxidising acid and highly corrosive.
It is so corrosive that it tears rocks apart chemically. As a result, HTV
plumes contain heavy metals and hydrogen sulphide, which recombine
as the plume cools and precipitate onto the ocean floor as metal sul-
phides. These precipitated metal sulphides make very rich ores. The
Mount Isa ore body is comprised of sea floor sulphides created in this
way. Some mining companies such as Nautilus Minerals are mining
HTV sulphides directly from the ocean floor.

Known HTVs release 17 terawatts of power into the ocean as heat
– about the same as global human usage of energy (Elderfield and
Schultz, 1996). Each year they pump into the ocean

• 500 tonnes of arsenic,

• 1500 tonnes of lead,

• 50,000 tonnes of copper,

• 140,000 tonnes of zinc

and many other metals (Tivey, 2015). They have been doing this for
hundreds of millions of years. These metals are rapidly precipitated
as sulphides, which explains why their concentrations have not built
up in sea water. In fact, HTVs may have the net effect of actually
cleansing sea water of dissolved metals by this sulphide precipitation
reaction.

These quantities dwarf any human contribution to oceanic pol-
lution by heavy metals. In addition, Uranium and its radioactive
daughter elements are also released copiously by HTVs, so much so
that the life forms surrounding the vents are often themselves radioac-
tive.
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Figure 13.1: WOCE oceanographic section P06 showing two 3He
plumes at 2000m depth at latitude 32◦S in the South Pacific. The
plume on the left with a maximum at 178◦W is close to the Ker-
madec Ridge north of NZ. The plume on the right with maximum
at 111◦W is close to the East Pacific Rise near Easter Island (27◦S,
109◦W) (From the WOCE Pacific Ocean Atlas).

Helium-3

Natural Helium occurs as two isotopes, Helium-4 (4He) and Helium-3
(3He). Typically, Helium-4 is more abundant in Earth’s crust, whereas
Helium-3 is more abundant in the mantle below. When water is heated
by mantle magma within hydrothermal vents, the helium that diffuses
into the water has the characteristics of mantle Helium, i.e. it has a
higher 3He/4He ratio than Helium that comes from the crust. Fur-
thermore, it has been found that this ratio (displayed as δ3He) varies
in proportion to the heat added to the ocean and therefore provides
a useful trace of hydrothermal heating of the deep ocean.

Figure 13.1 shows the WOCE1 oceanographic section of the South
Pacific at latitude 32◦S from 154◦E to 72◦W. There are two large
plumes of 3He extending laterally for thousands of kilometres from
1500m to 3000m in depth. In each case the 3He concentrations are
highest at the westernmost end implying that the source is at the
1World Ocean Circulation Experiment
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westernmost end. The western plume has the volcanically active Ker-
madec Ridge as its source, and the other plume has the East Pacific
Rise near Easter Island. There are similar plumes in the North Pacific.

The plume volumes and concentrations can be used to estimate
the total heat added to the Pacific Ocean from hydrothermal sources
and the thermal expansion of the ocean which results. The tempera-
ture inside the plumes is about one degree warmer because of the hy-
drothermal contribution. As a result, because of thermal expansion,
the sea level of the world’s oceans is about half a metre greater than it
otherwise would have been. These figures indicate that hydrothermal
heating most likely makes some contribution to global mean sea level
variations, but more detailed modelling is not possible without fur-
ther information concerning the vertical diffusion rates of both heat
and 3He. More detailed knowledge of the variance spectrum of the
thermal contribution is also needed.

All that can be said is that Figure 13.1 does not fit the traditional
“conveyor belt” paradigm of steady-state abyssal ocean circulation
and supports the notion that hydrothermal heating may be sufficiently
large to contribute to the ocean’s thermohaline circulation.

Megaplumes

Volcanism on land is intermittent, random and explosive. Although
subaqueous volcanism is less likely to be explosive, there is no reason
to assume that it is not similarly intermittent and random. Major
sub-aerial volcanic events of the magnitude of Krakatoa are once-in-
a-century events. It is likely then that subaqueous events of similar
energy to Krakatoa occur four or five times per century.

Detailed examination of HTVs is expensive. It requires the deploy-
ment of remotely operated vehicles from specially equipped research
vessels. Only a small fraction of the 50,000 km of mid-ocean ridges
has been explored, and even then sites of interest are only visited oc-
casionally. The long term variability of HTV fields remains almost a
closed book. In the absence of observations, the best we can do is to
assume that subaqueous volcanism varies over time in a similar way
to sub-aerial volcanism. We can expect that, from time to time, sub-
aqueous volcanic events will occur which gives rise to plumes much
larger than those routinely observed. In fact remnants of such plumes,
called “megaplumes”, have been observed as anomalous chemical sig-
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natures high in the water column. Small patches of high sea surface
temperature indicative of megaplumes have been recorded by satel-
lites.

There is an aspect of megaplume formation which has hitherto
been ignored. HTV plumes, which typically have an exit tempera-
ture of 360◦C, are rapidly cooled by the entrainment of surrounding
sea water until they lose buoyancy and spread horizontally much like
chimney smoke on a frosty night. However plume dynamics indicates
that for a large plume the temperature of the plume interior could
remain sufficiently elevated for the water to boil, as the hydrostatic
pressure decreases with decreasing depth. Indeed one HTV field, the
Lucky Strike field near the Azores, is sufficiently shallow at 1700 m
depth for effluent to be close to boiling point as it exits the vents.

Once boiling commences, plume dynamics alters radically. The
formation of steam bubbles greatly increases the buoyancy of the
plume causing vertical acceleration of the effluent stream leading to
increased further boiling, and so on. In effect, the plume becomes a
geyser.

Using buoyancy calculations alone and neglecting heat losses, one
litre of vent effluent at 360◦C, when it boils in a megaplume, will
create sufficient buoyancy to lift 30 tonnes of cold sea water to the
surface. A sufficiently powerful HTV field can conceivably generate
enough buoyancy to turn an entire ocean basin upside down.

The most powerful HTV field so far discovered is the TAG field on
the Mid-Atlantic Ridge. The power output of the TAG field is around
6 GW. It lies at 26◦N, the same latitude as the Yucatan Peninsula,
one-time home of the Mayan Civilisation. We can speculate that
the TAG Field is the remnant of a major subaqueous event with a
megaplume large enough to trigger an Atlantic Meridional Overturn-
ing event . The overturning brought large volumes of cool deep ocean
water into the tropical mixed layer so cooling the sea surface. leading
to decreased ocean evaporation and drought in Yucatan.

The Maya were proceeded by the Olmecs. The Olmec civilization
came to an abrupt end around 400 BC, perhaps for the same reason.
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Upwelling

Seventy percent of the Earth’s surface is ocean and ninety percent of
the ocean is “desert”; it sustains very little life. Most of the top 50
to 100 metres, the mixed layer , contains very little nutrient, particu-
larly the deep ocean well away from land. Most of the nutrient and
hence most of the plankton and other living organisms are found on
continental shelves where nutrient is continually replenished by river
run-off from the land. In many parts of the deep ocean, nutrients such
as nitrate, phosphorus and silicate are in plentiful supply at depths
of 1000 m or so but support no life there because essential sunlight
cannot penetrate to this depth. This is true of the South Atlantic
and North Pacific, for example. In some places deep ocean water is
forced to the surface. When this deep water contains sufficient nu-
trient, plankton blooms and marine ecosystems form. Fifty percent
of the world’s commercial ocean fish come from such nutrient-rich
upwellings.

Ocean upwellings are caused by the deflection of ocean currents
by ridges, seamounts and coastlines. However, a megaplume from
an HTV field can have a similar effect. Easter Island lies close to
the southern edge of the North Pacific nutrient mass and also on the
North Pacific Rise, the world’s fastest spreading mid-ocean ridge and
one of the most active. Perhaps a megaplume from an HTV field on
the East Pacific Rise once supported a mid-ocean marine ecosystem
during the period in which Easter Islanders dined on porpoise.

Carbon dioxide

In The Voyage of the Beagle, Darwin opens his chapter of on the
Galapagos Islands with the following remark:

Considering that these islands are placed directly un-
der the equator, the climate is far from being excessively
hot ... this seems chiefly caused by the singularly low tem-
perature of the surrounding water, brought here by the
great southern Polar current.

In fact three ocean currents converge near the Galapagos, the cur-
rent to which Darwin referred, now known as the Humboldt Current,
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its Northern Hemisphere mirror image, the California Current and
the Cromwell Current also known as the Equatorial Counter Current.
The first two currents cause deep, nutrient-rich, cold water to come
to the surface with the result that the waters around the Galapagos
are relatively cool and well-endowed with marine life. The presence of
iron in the upwelled water suggests that HTVs above the Galapagos’
volcanic hot-spot contribute to this upwelling.

The last-named current, the Cromwell Current, while poor in nu-
trients, is rich in dissolved inorganic carbon. As a result, when this
current comes to the surface near the Galapagos, excess carbon dioxide
is released into the atmosphere . A simple calculation shows that three
gigatonnes (i.e 3 Pg = 3 petagrams) of carbon dioxide are out-gassed
per year by this current alone, equal to about half the calculated hu-
man contribution per annum.

The degree of out-gassing of CO2 by ocean upwellings depends
on the nutrient concentration and the final temperature achieved by
the initially cold, upwelled water. Like most gases, CO2 is much
more soluble in cold water than in warm water. In more nutrient-
rich temperate and polar regions, upwelling generally leads to the
net absorption of CO2 from the atmosphere due to photosynthesis
by phytoplankton. The atmospheric carbon taken up by the biomass
is ultimately returned to the deep ocean in the form of faecal and
skeletal material.

The concentration of CO2 in the atmosphere has been monitored
continuously since 1958 when Charles Keeling established a monitor-
ing station on Mauna Loa in Hawaii. Since that time a number of
other, similar stations have been established. All such stations show
a steady increase in atmospheric CO2 from year to year once seasonal
variations are excluded. It is widely believed that this is due to hu-
man activities such as the combustion of fossil fuels and that emissions
from natural sources such as the ocean and volcanoes play a relatively
minor role. Increases in global average surface temperature observed
during the 20th century have been attributed to this increase because,
as a triatomic molecule, CO2 is a strong absorber of infra-red radi-
ation. A number of complex computer models predict the degree of
global warming according to various atmospheric CO2 scenarios.

The most relevant aspect of the impact of CO2 on the atmosphere
is the length of time for which it remains in the atmosphere. Over the
previous half century an experiment has been under way which illumi-
nates the relationship between CO2 stored in the atmosphere and its
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Figure 13.2: Atmospheric 14C, New Zealand and Austria. The New
Zealand curve is representative for the Southern Hemisphere; the Aus-
trian curve is representative for the Northern Hemisphere. Atmo-
spheric nuclear weapons tests almost doubled the concentration of
14C in the Northern Hemisphere. The Partial Test Ban Treaty is
the abbreviated name of the 1963 treaty banning atmospheric testing
which formally went into effect on 10 October 1963. (Diagram due to
Hakonomono.)
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interchange with other potential reservoirs. That experiment involved
the injection of a pulse of radioactive carbon, 14C, into the atmo-
sphere as an unintended consequence of the nuclear weapons testing
that took place in the 1950s and 60s. The circumstances were entirely
serendipitous, but it would be difficult to design a better experiment
with which to investigate the carbon cycle as it pertains to the at-
mosphere. The observed decay in atmospheric concentrations of 14C
which followed the cessation of the tests is known as the bomb-test
curve.

The bomb-test curve is shown in Figure 13.2. The following fea-
tures are immediately evident:

1. Atmospheric 14C exhibits exponential decay

2. The exponential decay has a single time constant of 14 years
giving a residence half-time of 10 years

3. After 50 years the curve has returned to its pre-bomb-test back-
ground value.

The bomb-test curve is a direct observation of the impulse-response
of the atmospheric reservoir to a perturbation in its CO2 content. The
above listed facts lead to the following conclusions:

1. The exponential decay implies that the removal of atmospheric
CO2 from the atmosphere is dominated by a first order differen-
tial equation, a diffusion equation, whereby the rate of diffusion
from the atmosphere reservoir is proportional to the concentra-
tion.

2. The single time constant implies that the CO2 diffuses into a
single reservoir (or multiple reservoirs with similar time con-
stants).

3. The asymptotic approach to a new equilibrium which is indistin-
guishable from the pre-bomb background value implies that the
second reservoir into which the atmospheric 14CO2 has diffused
must be very much larger than the atmospheric reservoir itself.

These facts and deductions form the basis for a simple linear model
of ocean–atmosphere CO2 exchange. We assume that there are re-
gions of the ocean surface where atmospheric CO2 diffuses into the
deep ocean, which constitutes the second reservoir, and that there
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are other regions of the ocean surface where CO2 out-gasses from the
ocean into the atmosphere. This out-gassing occurs, not by a diffu-
sion process, but by pumping. Deep ocean CO2 at 4◦C is brought
into the surface mixed layer by cold, upwelling ocean currents. As
the upwelled seawater from beneath the thermocline is warmed by
sunlight, it becomes supersaturated with CO2, which then comes out
of solution. This happens because, like most gases, the solubility of
CO2 is inversely related to temperature.

The simplest mathematical description is the following first order
differential equation:

dK
dt + K

τ
= a(t) +p(t) (13.1)

where K = K(t) is the atmospheric concentration of CO2 at time t
(the “Keeling curve”), τ is the diffusion time constant estimated from
the bomb-test curve, a(t) is the production rate of anthropogenic CO2
and p(t) is the rate at which CO2 is being pumped out of the ocean.
Three out of four of the terms in equation (13.1) can be measured or
calculated. Only p(t) is not known, and it can be calculated from the
other three terms, viz.:

p(t) = dK
dt + K

τ
−a(t) (13.2)

i.e. the rate at which CO2 is being pumped into the atmosphere by
upwelling, p(t), is equal to the rate of increase of the Keeling curve,
dK/dt, plus the rate of loss by diffusion back into the ocean, K/τ ,
less the anthropogenic component, a(t).

The solution is shown in Figure 13.3. The rapid rate of diffusion
loss, due to a surprisingly small value of τ , means that the rate of
diffusion into the ocean dominates the process. Since concentration
in the atmosphere is not diminished as a result, this implies, in turn,
that atmospheric CO2 is replenished by a comparably high rate of
pumping, p(t), of approximately 50 Pg/year in 2010, so dwarfing the
anthropogenic production rate, a(t), of 10 Pg/year.

Utilising the bomb-test curve as a measure of the impulse response
function of the atmospheric CO2 reservoir, and assuming this reservoir
is replenished by pumping rather than diffusion, leads to the conclu-
sions that the residence time of CO2 in the atmosphere is 10 years
and that less than twenty percent of the observed recent increase in
atmospheric CO2 concentration is anthropogenic in origin.
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Figure 13.3: Solution of equation (13.2) for p(t), the rate at which
CO2 is pumped from the ocean (dot-dash). Also shown are K/τ , the
atmosphere to ocean diffusion rate, (dots), a(t), the anthropogenic
production rate, (dashes), and dK/dt, the measured rate of increase
of atmospheric CO2 concentration, (solid).
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There is a vast amount of CO2 stored in the ocean: 38,000 Pg
compared with 380 Pg generated by human activity since the begin-
ning of the industrial revolution. It is doubtful whether humankind’s
modest one percent contribution has made very much difference.
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Liquid-in-solid Convection

A model is proposed in which upward-moving, liquid-in-solid convec-
tion cells are the primary mechanism by which the Earth’s interior is
cooled. Convection cells form in the liquid core when heat from ra-
dioactive sources is convected outward. Each cell penetrates the man-
tle by melting the rock above it due to the extra heat transported by
the cell. In this way each convection cell propagates upwards through
the otherwise solid mantle as the convected heat melts rock above the
cell and solidifies magma below it. Because the cells are initiated in
the core spontaneously and at random, the model accounts for the
observed random nature of many geophysical phenomena. A labora-
tory experiment is proposed whereby a low melting point solid such as
wax is subjected to a high temperature gradient in order to promote
liquid-in-solid convection and so emulate aspects of mantle dynamics.

Introduction

Spectral analysis of observational data by Pelletier (2002) indicates
that the geomagnetic field has a power law variance spectrum with
no sharp peaks that would indicate deterministic, periodic behaviour.
The observed random occurrence of geomagnetic reversals is described
by such a power law spectrum. A more profound implication is that
processes which dominate the Earth’s interior are primarily random
or stochastic, i.e. governed by the laws of probability. Geothermal
processes are evidently not steady-state and cannot be accounted for
by deterministic models.
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Conventionally the mantle is assumed to be sufficiently plastic
to allow convection but sufficiently rigid to support seismic S-waves;
see, for example Turcotte and Oxburgh (1972) and Richter (1984) and
references therein. The problem is that such plastic mantle convection
is very slow, with turnover times of the order of 1×109 years, whereas
Pelletier’s spectrum follows its power law locus to periods shorter than
1000 years.

It might be argued that geomagnetism is generated entirely in
the core – for example, the deterministic model of Glatzmaier and
Roberts (1995). This implies a spectrum which is independent of
mantle dynamics. Even so questions concerning the random nature of
geomagnetism and the relatively short time scales of mantle processes
remain unresolved.

A simple, one dimensional model in which conduction is the only
form of heat transport predicts a fluid core with a size and temperature
far in excess of those deduced from observation. For instance assuming
uniform radiogenic heating, Hr = 1.4×10−8 W m−3 (Pollack et al.,
1993), and uniform conductivity (κ = 1.0 W.m−1K−1) (Tang et al.,
2014) gives a core temperature of 27,000◦C and a core radius of 6100
km. In the present epoch the liquid core radius is observed to be only
3500 km, and so conduction alone cannot account for the observed
structure of the Earth’s interior. It follows that some mechanism of
heat transport other than conduction and visco-plastic turnover must
play a major role in cooling the Earth.

Liquid-in-solid convection

We propose an alternative, as depicted in idealized form in Figure 14.1.
In Figure 14.1, convection cells form in the liquid outer core. Rayleigh–
Bernard convection is a stochastic process. It occurs when a body of
liquid lies in a vertical temperature gradient at length scales suffi-
ciently large for the critical Rayleigh number to be exceeded. As a
consequence of the formation of these cells, regions of the lower man-
tle, M, which are directly above each Rayleigh–Bernard convection
cells will attain a higher temperature than surrounding regions be-
cause of the extra heat transported by the cell. These regions then
melt allowing the cell to penetrate the mantle. Ultimately the cell be-
comes completely enclosed by the solid mantle as the mantle solidifies
behind it in region S. This happens because the increased heat trans-
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Figure 14.1: A conceptualization of liquid-in-solid convection cells
formed in the lower mantle from Rayleigh–Bernard convection cells
in the core. M: regions of melting due to increasing temperature. S:
regions of solidification due to cooling and increasing pressure. Note
that this diagram is highly idealized and does not represent numerical
model output. The approximate dynamical viscosities, η, are also
shown.
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Table 14.1: Values of the Rayleigh Number, Ra, as a function of length
scale and viscosity.

L km η =1 Pa.s η =1×1011 Pa.s

0.001 10×10−3 10×10−14

0.010 10×101 10×10−10

0.100 10×105 10×10−6

1.000 10×109 10×10−2

10.000 10×1013 10×102

100.000 10×1017 10×106

1000.000 10×1021 10×1010

port promoted by the cell causes the mantle below it to be cooled.

This process will be designated LISC, for “liquid-in-solid convec-
tion”. Rayleigh number calculations indicate that such LISC cells
are feasible. Their existence or otherwise depends on whether the
Rayleigh number, Ra, for such a cell exceeds the critical Rayleigh
number, Rac. This in turn depends largely on their scale size, viscos-
ity and other parameters and is given by

Ra = ρα(Tbottom−Ttop)gL3Cp
ηk

(14.1)

where ρ is the density, α is the coefficient of thermal expansion, T is
the temperature, L is the length scale, Cp is the heat capacity, η is
the viscosity, and k is the thermal conductivity. This can be written

Ra = ρα∆TgL4Cp
ηk

(14.2)

where ∆T is the temperature gradient.
One of the factors in (2), the viscosity, η, is not well known. Esti-

mates of its value in the lower mantle vary from 1 to 1×1011 Pa.s. A
similar variation is found in near-surface magmas depending on their
composition. Despite this, meaningful values of Ra can be found
because it is such a strong function of L in (2). Table 1 shows some
values at different length scales for both low and high viscosity values.

Convection can only occur when Ra exceeds the critical Rayleigh
Number, Rac. A nominal value for the latter is 1707, but it varies
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slightly according to the geometry. Hence, according to Table 1, the
length scale above which LISC is possible lies somewhere between 300
m and 30 km depending on the assumed viscosity.

Each cell melts the solid mantle above it because of the extra
heat being convected outward from the hot core. In this way each
convection cell propagates upwards through the otherwise solid mantle
at speeds determined by the solution of the Stefan problem1 for a
liquid-solid boundary. The upward-moving, LISC cells formed in this
way are proposed as the primary mechanism by which the interior of
the Earth is cooled.

The LISC cells shown in Figure 1 are highly idealised. In reality
LISC cells are unlikely to be neat ellipsoids. The solution of the
Stefan problem for a moving phase transition within a non-uniform
medium will be difficult or intractable, but intuitively it seems likely
that rising cells will follow paths where the melting point is lower or
the solid is hotter and avoid places where it is cooler. Thus strings of
ascending LISC cells can be expected to form wherein each cell follows
the path of a preceding cell. Such a string of LISC cells could well be
described as a “plume” when it is in the mantle. An individual LISC
cell becomes a “diaper” when it interacts with the crust.

Some implications of a random model

The initial generation of convection cells is a random process. It is
impossible to predict when or where a new cell will start up or how
big it will be because turbulent convection itself is a random process.
All physical quantities associated with LISC will therefore also have a
random component and have power law spectra. These include ascent
speed, volume, magnetic field and temperature.

In this model of the Earth’s interior, specific heat, thermal conduc-
tivity, radiogenic heating and density are all assumed to be constant.
Despite this simplicity, complex behaviour occurs as a consequence
of convection. Rayleigh–Bernard convection cells form spontaneously
and at random in the outer liquid core as heat builds up from radioac-
tive sources. The model assumes that the primary distinction between
mantle and core is due to phase alone: one is solid, the other liquid.

1The Stefan problem is the mathematical description of a phase boundary which
moves with time.
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(This does preclude compositional differences. The concentration of
heavier elements such as iron can be expected to be greater nearer the
centre of the Earth.)

• LISC cells will have a large range of scales, ranging from the
Rayleigh scale to scales comparable to the dimensions of the
core itself, from volcanic eruptions to Large Igneous Provinces.

• The total volume of the Earth is the sum of the volumes of the
core, the solid mantle and all the LISC cells in the mantle. It
must also be a quantity which varies over time in a random
manner according to the proportion of molten material in the
core and mantle.

• Hence sometimes the earth expands and at other times it con-
tracts. When the Earth is expanding, new crust forms at mid-
ocean ridges (Fig. 5)

• When the Earth contracts, the crust is forced to crumple and
mountain building occurs. Such cooling and crumpling would
result from, and be modified by, extensive diapirism.

• Sea floor spreading occurs when the Earth expands – recent
magnetic stripes average 6 km across indicating a total expan-
sion of ∼36 km in the Earth’s circumference, i.e. roughly 0.1
percent variation in circumference during each expansion phase.

• The geomagnetic field is the sum of the self-exciting magneto-
hydrodynamic (MHD) dynamo fields of all of the LISC and
Rayleigh–Bernard convection cells in the mantle and core re-
spectively. It is therefore a random quantity which varies over
time in a random manner.

• Glatzmaier and Roberts (1995) account for isolated field re-
versals but not the variance spectrum of the geomagnetic field
observed by Pelletier. Their deterministic model could be up-
graded to include random forcing as described here.
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A wax block experiment

Numerical modeling is deterministic and so cannot fully emulate the
random aspects of convection. However, modelling of individual LISC
cells under various viscosity and temperature gradient scenarios could
provide important insights. In particular, local solutions of the Ste-
fan Problem under physical conditions pertaining in the mantle could
be used to provide realistic parametrizations for use in larger scale
models.

However, the reality of liquid-in-solid convection should first be
verified at laboratory scale. This can be done, for example, by sub-
jecting a block of wax to a vertical temperature gradient. Such an
experiment could provide great insight into plume formation and di-
aperism.

Once again, the relevant parameter is the Rayleigh Number. For,
say, a ∼ 1 m3 block of paraffin wax on an electric hot plate at, say,
100 deg C, cooled at the top with iced water, and assuming g = 9.8
m.s−2,k= 0.25 W.m−1K−1,Cp = 2500 JK−1.kg−1,α= .0007 K−1,ρ=
900 kg.m−2η = 3.0 Pa.s,∆T = 100.0 K,R = 1707, substituting into
(14.2) and solving for x gives a critical Rayleigh scale of x ≈ .01 m.
Thus molten LISC cells should form at scales of 1 cm or more in solid
wax under these conditions.

An interesting aspect of this experiment is whether permanent
liquid layers would form both at the base and just below the cold top
crust, so corresponding to the core and lithosphere of the Earth. If
so, the interaction of ascending LISC cells with the lithosphere and
crust layers might emulate some of the effects of diaperism discussed
by Carey (1999).
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Earthquakes and the South Atlantic
Anomaly

For an interval of 18 months in 1967 and 1968 a swarm of submarine
earthquakes occurred in the South Atlantic with locations that were
remarkably collinear. To the north-east of the Mid-Atlantic Ridge,
the line of earthquakes followed the chain of volcanic activity known
as the Cameroon Line. On the south-western side, the ocean floor is
relatively featureless. The line showed no discernible kink or deviation
where it crossed the Mid-Atlantic Ridge. At the time of the earth-
quakes, the South Atlantic Magnetic Anomaly had begun expanding
rapidly towards the south-east, crossing the line of the earthquakes,
and it seems likely that the two phenomena were associated. It is dif-
ficult to account for these empirical observations under conventional
theories of crust or mantle dynamics.

Introduction

The ready availability of high quality data sets on-line, together with
improvements in programming languages means that significant fea-
tures can come to light which may have been missed when the data
were first acquired. This is largely due to better graphical display
techniques. The human eye is very good at spotting patterns in data
when it is displayed in graphical form. In the 1960s graphical dis-
play was difficult and time consuming; nowadays it is almost effort-
less. The pattern of collinear earthquakes discussed here was noticed
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only recently, by accident when downloading data for entirely different
purposes. That it had gone unnoticed until then can be attributed to
these factors.

The Data

Earthquake data were downloaded from the IRISWilber 3 global data-
set (available online at http://ds.iris.edu/wilber3/find_event,
accessed 10/18/2017). Earthquake locations were mapped using the
Python programming language and its basemap software package.
Submarine earthquakes of magnitude ≥ 4.0 which occurred between
January 1960 and October 2017 were mapped initially. Despite the
large number of earthquakes (∼ 400,000), a diagonal line of earth-
quakes across the South Atlantic could be clearly seen. Further inves-
tigation revealed that most of these occurred between 31/1/1967 and
15/9/1968. For greater clarity only earthquakes occurring in 1967 and
1968 are shown in Figure 15.1. In this figure, the collinear swarm of
earthquakes forms a diagonal line from near Tierra del Fuego (37◦S,
35◦E) to the African coast near Cameroon (3◦N, 8◦W). The earth-
quakes were highly collinear, even more collinear than those occurring
along the Mid-Atlantic Ridge (MAR) which can also be seen in the
diagram. A depth of 33 km was recorded for all 62 earthquakes, and
their magnitudes ranged from 4.2 to 5.9. The line of earthquakes did
not fit a great circle, and their successive occurrence along the line
appeared to be sporadic and random, i.e. they did not start at one
end and progress regularly from east to west or vice versa. Plots of
the locations of all submarine earthquakes with magnitude ≥ 4.0 for
the whole Earth were generated for each year from 1960 to 2017 and
examined carefully. No similar event could be discerned.

The collinearity of the earthquakes is truly remarkable; nothing
similar has been observed before. This suggests that they were not
real and perhaps due to an artefact of the recording network. They
were all recorded in the early years of the modern seismic network
and were all reported at the same depth of 33 km. This is certainly
disconcerting. However depth resolution at the time was poor, most
similar submarine earthquakes being recorded at depths of either 10
km or 33 km.

The strongest evidence for the reality of the collinear swarm is
that the north-eastern end of the line corresponds to the well-known
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Figure 15.1: The dots show the locations of all submarine earthquakes
with magnitude greater than or equal to 4.0 which occurred in the
displayed area during 1967 and 1968.

Cameroon Line of volcanic activity. In effect the swarm represents
an extension of the Cameroon Line beyond the Mid-Atlantic Ridge
(MAR). If the collinear swarm were indeed an artefact, this would be
a remarkable coincidence.

Association with the South Atlantic Anomaly

The reality of the collinear swarm would be more convincing if it were
associated with some other geodynamic phenomenon. One such phe-
nomenon is the South Atlantic Anomaly (SAA), a region of the Earth’s
surface where the geomagnetic field intensity is anomalously low. The
relation of the collinear swarm to the expanding SAA is depicted
graphically in Figure 15.2. The total geomagnetic field strength, F ,
at the earth’s surface derived from the igrf12 spherical harmonic ex-
pansion of the geomagnetic field (Thébault et al., 2015) is shown in
Figure 15.2. The line of the 1967/68 collinear earthquake swarm is
also shown. It is a quadratic fit to the 62 collinear earthquakes de-
picted in Figure 15.1.

The intensity anomaly and the area of the SAA both increased
considerably during the 20th century. It also become more elongated
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Figure 15.2: Maps of the geomagnetic field strength, F , at sea level
computed using igrf12 for the years 1900, 1940, 1967 and 2015. This
region of lower field strength is the South Atlantic Anomaly. The
quadratic line of best fit to the 1967/68 collinear earthquake swarm
is also shown in each map.
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in a south-easterly direction. The elongation process commenced
around the time of the collinear swarm in 1967.

Evidence of LISC in the Mantle?

A remarkable feature of the collinear swarm is that the line intersects
the MAR with no discernible kink or discontinuity. Such a disconti-
nuity might be expected because the MAR is spreading at an average
rate of 2.5 cm/year and the age of the Cameroon Line is 65 million
years (Fitton and Dunlop, 1985). If the line was a pre-existing feature
of the South Atlantic crust, a break of the order of 1600 km should be
evident. In reality no discontinuity is resolved and so, if one exists, it
must be less than about one degree of latitude (100 km). This implies
that either the extension of the Cameroon Line beyond the MAR is a
new feature of the crust (i.e. less than 4 million years old) or it is not
a feature of the crust at all but a feature of the upper mantle. The
association with the south-eastward expansion of the South Atlantic
Anomaly suggests the latter.

A recent paper by Bendick and Bilham (2017) showed that earth-
quakes of magnitude ≥ 7.0 occur synchronously when appropriately
parametrized, i.e. earthquakes with similar properties occur at similar
times even though only loosely coupled spatially. One such property
was the “renewal interval” calculated “using a semi-empirical relation
between event magnitude and mean slip divided by the product of the
local tectonic loading rate determined from the REVEL global plate
motion model and a local value for seismic coupling”. The present
group of earthquakes do not lie on any known plate boundary and
have magnitudes much less than 7.0. As such they lie outside the do-
main of interest of that paper. The paper also suggests that stresses
in the crust related to decreased rotation rate are the ultimate cause
of such earthquake clusters. In the present case, the year 1967 was
a time of increasing length-of-day and increasing M≥ 7.0 earthquake
activity, which peaked 3 to 5 years later. Since then length-of-day
has not exceeded its 1967 value, and such a prime cause cannot be
completely ruled out. On the other hand, the recorded depth of 33
km and the association with the recent rapid elongation of the South
Atlantic Anomaly imply a Mantle origin.

We can speculate that both phenomena are the result of a large
LISC cell rising in the Mantle below the South Atlantic. Accordingly
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the South Atlantic Anomaly is due to the magneto-hydrodynamic
(MHD) field of the LISC cell, and the collinear earthquakes are due
to new stresses induced in the Crust as the cell rises in the Mantle.
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Conclusions

Implications for “Climate Change”

1. There is no significant trend in global average temperature. The
apparent trend is due to spurious regression (Chapters 8 and 9).

2. The apparent correlation between global average temperature
and atmospheric CO2 concentration is also spurious. (Chap-
ter 8)

3. Items 1 and 2 are both a consequence of global average tem-
perature being a centrally biased random walk with a red-noise
variance spectrum. (Chapter 7)

4. The bomb-test curve shows that about 80 percent of recent in-
creases in atmospheric CO2 concentration are due to ocean up-
welling and only 20 percent are due to human activity. The
ratio of the total contribution of anthropogenic CO2 to the to-
tal in the ocean-atmosphere system since the beginning of the
Industrial Revolution is only 1 percent. This would have no
measurable effect. (Chapter 12)

5. Predictions of temperature increases based on numerical cou-
pled ocean-atmosphere general circulation models (i.e. climate
models) are meaningless because such deterministic models can-
not account for turbulence, which is stochastic. Because of this,
they include unrealistically large values of parameters such as

143
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eddy viscosity in order to remain stable and so can never faith-
fully emulate reality. (Chapter 3, Figures 3.1 and 3.2)

6. Climate modellers ignore the effect of subaqueous volcanic ac-
tivity on ocean circulation despite that fact that 85 percent of
volcanic activity occurs beneath the ocean and that heating from
a major oceanic eruption would dwarf all other ocean processes.
This aspect of ocean circulation and climate has not simply been
forgotten; it is conscientiously avoided. It is the elephant in the
room. (Chapter 13)

7. Based on the above we can conclude that, at multidecadal time
scales, unexplained variations in global temperature and in global
mean sea level may be attributed to subaqueous volcanism and
are unrelated to human activity.

A return to Empiricism

Over the last four centuries the Newtonian description of the physical
world in terms of differential equations has been brilliantly successful.
It began with precise and accurate descriptions of the motion of the
planets and their satellites and found further application in the design
of the machinery which became the basis of industrial civilization. At
first General Relativity appeared to undermine Newton’s ideas, but
in effect it amounted to only a minor refinement of the Newtonian
system.

A more profound threat to the Newtonian hegemony was the
quantum theory which followed the “Ultraviolet Catastrophe”: the
realization that some physical quantities are granular and require a
radically different approach. At about the same time, the Second
Law of Thermodynamics was proposed leading to the concept of en-
tropy which describes how matter and energy are ordered and which
requires the Universe be granular rather than continuous.

Newton’s ideas were successful when applied to the dynamics of
planetary motions because friction and turbulence are negligibly small
at planetary scales. Planetary motions are, to all intents and purposes,
deterministic and amenable to a description in terms of differential
calculus. Machinery is intentionally designed to minimise friction and
turbulence and to be amenable to a deterministic description. This
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even applies to semi-conductor design where so called “race condi-
tions” are eliminated in order to preclude any possibility of stochastic
behaviour in electronic components.

But it is not true of fluids. Stochastic behaviour in the form of
turbulence clearly plays a major role in the dynamics of fluids. The
Navier–Stokes equations, which describe fluids in purely Newtonian
terms, fail in high Reynolds Number regimes where turbulence is gen-
erated. This is the “Fluid Catastrophe”. In effect the Quantum Revo-
lution bypassed Fluid Dynamics, whose practitioners still cling to the
19th century idea of the continuum.

The belief that any real fluid can only be dealt with as a determin-
istic, Newtonian continuum has had a stifling effect on development.
Fluid Dynamics has become the province of Applied Mathematicians
who are skilled in the manipulation of partial differential equations
but in very little else. They are not trained to perform experiments.
They do not have an empirical, “Popperian” outlook. They are math-
ematical Rationalists who only pay lip service to the scientific method.
They are not really scientists at all but they they think they are.

Fluid dynamicists might argue that there is no alternative, that
only a Newtonian approach to fluids will work. The way to break
the stranglehold of determinism is to regard the mathematical ex-
pressions of physical laws, such as the Navier–Stokes equations, not
as immutable, deterministic Laws but, rather, as constraints. The
future state of a fluid is then predicted as that state which maximises
the entropy within constraints determined by conservation of mass,
momentum and energy. Because of our imperfect knowledge of the
initial boundary conditions and the existence of bifurcation points
in the evolving trajectory of the system, future states can never be
known with certainty but, rather, a most likely state is predicted and
its variance estimated. Russian physicists and mathematicians such
as Kolmogorov, Monin, Obukhov and Kitaigorodskii laid the ground-
work for this approach, but their work has been overshadowed by
the advent of the digital computer which favoured fully deterministic
numerical models. These now dominate the discipline. The current
fad for running “ensembles” of deterministic models with randomized
boundary conditions is naive and simplistic. Internally such models
are kept stable only by means of unrealistic parameter values and
smoothed topography and bathymetry. Garbage in, garbage out.

Science is not a collection of given “truths” like religion; it is a
work in progress. This applies as much to Fluid Dynamics as to any
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other branch of science. What is needed is for Fluid Dynamics to
become, once again, the empirical science that flowered in the 19th
century. The wax block experiment described in Chapter 14 would
empirically test the validity and relevance of the liquid-in-solid con-
vection mechanism proposed here. If successful, new insights into
Mantle dynamics would be gained. The wave-wave interaction algo-
rithms, presently used in numerical wave models, were initially bor-
rowed, second-hand, from Quantum Mechanics. This accounts for
the poor performance of these models. What is needed are empirical
studies of those wave-wave interactions which really do occur among
gravity waves on a fluid surface and which involve entropy increases
due to wave-breaking. Initially such studies could be carried out with
the wave tanks and hydraulic basins presently used by naval archi-
tects. This would open a new field similar to the field of sub-atomic
particle interactions which followed the development of the cyclotron.
These experiments are not expensive; they are within the reach of a
small university department.

It is time for Fluid Dynamics to recognize its “catastrophe”, to put
its house in order and to become an empirical science once again. Until
that happens, its predictions of future states of the Earth’s atmosphere
must be taken with a large grain of salt.

This book has challenged contemporary Fluid Dynamics. It has
examined the myth, the Baconian Idol, on which it is based: that a
fluid is a continuum which can be fully described by the determin-
istic equations of differential calculus. This idea is at odds with the
stochastic assumption underlying statistical inference and with the
post-quantum conception of entropy. It is a relic of a bygone era
when the natural world was regarded as a perfect machine. Once the
world was Paley’s timepiece, created and wound up by God at the
Creation and left ticking steadily for us to examine and to marvel
at. Perhaps this was appropriate in the early 19th Century but there
has since been a vast increase in the range of phenomena accessible
to science. Wherever we look we see a Universe that is chaotic and
unpredictable; more like stock market than timepiece.

Furthermore it is not the pristine perfection of a Laplacian uni-
verse that matters, but rather its imperfections. Without occasional,
random imperfections in nucleic acids, life could never have become
more complex than the virus. Turbulence is everywhere, in cumulus
clouds, in breaking waves, in the sound of a clarinet and yet it is
inaccessible to the elegant equations of 19th century physics. By pre-
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supposing an underlying perfection, we blind ourselves to the amazing
realities of the world around us. Only by experiment and observation
can we truly see.
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Maxwell’s Equations

The behaviour of electric and magnetic fields, EEE and BBB, in free space
are described by Maxwell’s Equations:

∂Ex
∂x

+ ∂Ey
∂y

+ ∂Ez
∂z

= ρ

ε0
(A.1)

∂Bz
∂y
−
∂By
∂z
− 1
µ0ε0

∂Ex
∂t

= µ0Jx (A.2)

∂Bx
∂x
− ∂Bz

∂x
− 1
µ0ε0

∂Ey
∂t

= µ0Jy (A.3)

∂By
∂y
− ∂Bx

∂y
− 1
µ0ε0

∂Ez
∂t

= µ0Jz (A.4)

where EEE = (Ex,Ey,Ez), BBB= (Bx,By,Bz), ρ is the electric charge den-
sity, JJJ = (Jx,Jy,Jz) is the current density and ε0 and µ0 are measur-
able physical quantities known as the permittivity and permeability
of free space, respectively. It turns out that

µ0ε0 = c2 (A.5)

where c is the velocity of light.
Using vector operators and (A.5), these reduce to the two equa-

tions:
∇·EEE = ρ

ε0
(A.6)

∇×BBB− 1
c2
∂EEE

∂t
= µ0JJJ (A.7)
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The first equation, (A.6), is the inverse square law for the elec-
tric field strength and the second, (A.7), is the electromagnetic wave
equation.

The Navier–Stokes Equations

The behaviour of a fluid continuum is described by the Navier–Stokes
equations:

∂ρ

∂t
+∇· (ρu) = 0 (A.8)

ρ

(
∂u
∂t

+u ·∇u
)

=−∇P +η∇2u (A.9)

where η is the viscosity, u is the velocity of the fluid parcel, P is the
pressure and ρ is the fluid density.

Written out in full, (A.9) becomes:

ρ

(
∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
+w

∂u

∂z

)
=−∂P

∂x
+η

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
(A.10)

ρ

(
∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
+w

∂v

∂z

)
=−∂P

∂y
+η

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
(A.11)

ρ

(
∂w

∂t
+u

∂w

∂x
+v

∂w

∂y
+w

∂w

∂z

)
=−∂P

∂z
+η

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
(A.12)
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arma.py

""" arma.py fits an ARMA(p,q) model to the time series specified
by the input function. Values of p and q are optimized by
trial and error by minimizing the residual variance or the
Ljung--Box pmin value. These are appended to a ‘Summary’
output file.
Spectra and time domain graphs are saved in ‘spectrum’
and ‘resid’ folders.
Periodograms are saved in numerical form in a
‘periodogram’ folder.
Statistics are saved in a ‘stats’ folder.
These four subfolders must be created before running arma.py.
A text file ‘Summary’ is created and appended after each run.
Call: python arma.py p q where (p,q) is the order.

"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
from scipy.fftpack import fft
from scipy import stats
import statsmodels.tsa.stattools as sts
import statsmodels.tsa.arima_model as sta
import sys

def gat():
#
# read in temperature data
#
Ns = 166
f = open(’HadCRUT.4.4.0.0.annual_ns_avg.txt’, ’r’)
title = ’HadCRUT’
x = np.zeros(Ns,float)
y = np.zeros(Ns,float)
dy = np.zeros(Ns,float)
i = 0
for line in f:

myline = line.split()
x[i] = float(myline[0])
y[i] = float(myline[1])
i+=1

f.close()
dt = 1.
ylabel=r’Temp ($^\circ$C)’
xlabel=’year’
title = ’HadCRUT4 - Global Average Temperature’
"""
fig=plt.figure(num=99,figsize=(6.4,3.2))
plt.plot(x,y,color=’k’,linewidth=1)
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plt.hlines(0,x[0],x[-1],colors=’k’,linestyles=’dashed’)
plt.title(title)
plt.ylabel(ylabel)
plt.savefig(’rawdata’)
plt.show()
"""
return x,y,Ns,dt,xlabel,ylabel,title

if len(sys.argv)<>3:
print ’Wrong number of arguments:’
print ’Should be: arma.py p q’
quit()

p = int(sys.argv[1])
q = int(sys.argv[2])
outputcode=’{0:1d}{1:1d}’.format(p,q)
ab = [0 for i in range(p+q)]
print "ab = ",ab

x,y,Ns,dt,xlabel,ylabel,title = gat()

df = 1./(Ns*dt)
fs = 1./dt #sampling frequency
Nf = 0.5/dt #Nyquist frequency
xbar = np.mean(x)
ybar = np.mean(y)
y = y-ybar
yvar = np.var(y)

print title
print ’Ns: {0:4d}, dt:{1:4.0f}, Log(Nf):{2:6.2f}’\
.format(Ns,dt,np.log(Nf)/np.log(10.))
#
#
#
#
fig=plt.figure(num=1,figsize=(6.4,6.4))
gs = gridspec.GridSpec(1, 1, height_ratios=[1])
#
# prepare log-log periodogram
#
Y = fft(y)
X = np.linspace(0,Nf,Ns/2+1)
Y2 = 2*(np.abs(Y[:Ns/2+1])/Ns)**2
XX = X[1:]
Pgm = Y2[1:]/df
Pgm[Ns/2-1]=0.5*Pgm[Ns/2-1]
lX = np.log(XX)/np.log(10.)
lP = np.log(Pgm)/np.log(10.)

ax=plt.subplot(gs[0])
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plt.plot(lX,lP,linewidth=’1’,color=’k’,label=’Periodogram’)
plt.xlabel(r’Log($f/yr^{-1}$)’,fontsize=16)
plt.ylabel(r’Log($\hat{S_f}$)’,fontsize=16)
#
# Compute ARMA coefficients using statsmodels
#
model2 = sta.ARMA(y,(p,q))
results2 = model2.fit(start_params=ab, trend=’nc’, disp = False)
#
resultspq=’stats/results{0:s}’.format(outputcode)
f=open(resultspq,’w’)
f.write(str(results2.summary(0.05)))
f.close()
#
epsvar = results2.sigma2
#
# save parameters
#
paramspq =’stats/{0:s}’.format(outputcode)
f = open(paramspq,’w’)
for num in results2.arparams: f.write(’{0:f} ’.format(num))
for num in results2.maparams: f.write(’{0:f} ’.format(num))
f.close()
print results2.params
#
# plot ARMA population spectrum, S, with confidence limits.
#
import cmath
Np = 1000
lf = np.zeros(Np,float)
S = np.zeros(Np,float)
i = 0
deltaf = Nf/Np
integral = 0.
dof = 2
lNf=np.log(Nf)/np.log(10) #log(Nyquist frequency)
lfarray = np.linspace(-4,lNf, num=Np)
for lf in lfarray:

f=10.**lf
phi = 2*np.pi*f/fs
z = complex(np.cos(phi),np.sin(phi))
den = 1.
for ip in range(p):

den-=results2.arparams[ip]*z**(ip+1)
num = 1.
for iq in range(q):

num+=results2.maparams[iq]*z**(iq+1)
S[i] = 2*dt*epsvar*(abs(num/den))**2
integral += S[i]*deltaf
i+=1
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print’yvar, integral = ’,yvar, integral
lS = np.log(S)/np.log(10.)
print lfarray.shape,S.shape
plt.plot(lfarray,lS,linewidth=2,color=’w’)
plt.plot(lfarray,lS,linewidth=2,color=’w’,linestyle = ’-’)
plt.plot(lfarray,lS,linewidth=2,color=’k’,\
linestyle = ’--’,label=’ARMA’)
#
# plot power law locus
#
pllx=np.zeros(2,float)
plly=np.zeros(2,float)
pllx[0]=-2.2
plly[0]= -0.1
pllx[1]=-1.7
plly[1]=-1.1
plt.plot(pllx,plly,color=’k’,linestyle=’-.’,label=r’$f^{-2}$ locus’)
#
# Save spectral details
#
periodogrampq=’periodograms/{0:s}’.format(outputcode)
f = open(periodogrampq,’w’)
f.write(’ log f log P f T log S\n’)
for i in range(XX.size):

phi = 2*np.pi*XX[i]/fs
z = complex(np.cos(phi),np.sin(phi))
den = 1.
for ip in range(p):

den-=results2.arparams[ip]*z**(ip+1)
num = 1.
for iq in range(q):

num+=results2.maparams[iq]*z**(iq+1)
S[i] = 2*dt*epsvar*(abs(num/den))**2
lS[i] = np.log(S[i])/np.log(10.)
f.write(’{0:8.3f} {1:8.3f} {2:8.5f} {3:8.4f} {4:8.4f}\n’\

.format(lX[i],lP[i],XX[i],1/XX[i],lS[i]))
f.close()
#
#
plt.legend(loc=’lower left’)
plt.xlim(-3,0)
plt.xticks([-3,-2,-1,0])
plt.ylim(-5,2)
plt.yticks([-4,-2,0,2])
plt.savefig(’spectrum/{0:s}’.format(outputcode))
plt.show()
#.....................................................
#
# residuals
#
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fig=plt.figure(num=2,figsize=(6.4,9.6))
gs = gridspec.GridSpec(3, 1, height_ratios=[1,1,1])
#
#
#
ax=plt.subplot(gs[0])
plt.plot(x,y,color=’k’,linewidth=1)
plt.hlines(0,x[0],x[-1],colors=’k’,linestyles=’dashed’)
plt.title(title)
plt.ylabel(ylabel)
ax.annotate(’a’,xy=(.95,.1),xycoords=’axes fraction’, \
xytext=(.95,.1), textcoords=’axes fraction’,weight=’bold’)
#
# find ARMA residuals.
#
ax = plt.subplot(gs[1])
eps = results2.resid
plt.plot(x[1:],eps[1:],color=’k’)
plt.hlines(0,x[0],x[-1],colors=’k’,linestyles=’dashed’)
string = r’$\epsilon$’
ax.annotate(string,xy=(-.12,.48),xycoords=’axes fraction’, \
xytext=(-.12,.48), textcoords=’axes fraction’,weight=’bold’,\
fontsize=’20’)
ax.annotate(’b’,xy=(.95,.1),xycoords=’axes fraction’, \
xytext=(.95,.1), textcoords=’axes fraction’,weight=’bold’)
#
# get acf of residuals
#
nlags = 40
ax=plt.subplot(gs[2])
epsacf,lbvalue,pvalue = sts.acf(eps, unbiased=False, \
nlags=nlags, qstat=True)
iepsacf = range(len(epsacf))
plt.plot(iepsacf,epsacf,linewidth=’1’,color=’k’)
plt.hlines(0,0,len(epsacf),linestyles="--")
plt.hlines(0.05,0,len(epsacf),linestyles=":")
plt.xlabel("Lag")
ax.annotate(’c’,xy=(.95,.1),xycoords=’axes fraction’,\
xytext=(.95,.1), textcoords=’axes fraction’,weight=’bold’)
#
string = r’$\phi$’
ax.annotate(string,xy=(-.12,.48),xycoords=’axes fraction’, \
xytext=(-.12,.48), textcoords=’axes fraction’,weight=’bold’,\
fontsize=’20’)
#
# Ljung--Box
#
truep = np.zeros(nlags,float)
pmin= 1.1
pmax = -1
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lagmin=0
ip = range(nlags)
aip = np.array(ip)
for lag in range(p+q,nlags):

Q = lbvalue[lag]
tpl=1-stats.chi2.cdf(Q,lag-(p+q))
if tpl<pmin:

pmin=tpl
Qpmin=Q
lagmin=lag

if tpl>pmax:
pmax=tpl
lagmax=lag

truep[lag] = tpl
plt.plot(aip[p+q:],truep[p+q:], color=’k’, linewidth=’2’)
print ’pmin = {0:5.3f} at lag {1:5d}’.format(pmin,lagmin)
print ’pmax = {0:5.3f} at lag {1:5d}’.format(pmax,lagmax)
plt.savefig(’resid/{0:s}’.format(outputcode))
plt.show()
#
# Create Summary file if none exists and append
#
if True:

Smmry = ’Summary’
Exists=True
try:

f = open(Smmry,’r’)
except IOError:

Exists = False
else:

f.close()
if not Exists:

f = open(Smmry,’w’)
f.write(’{0}{1}’.format(title,’\n\n’))
header1 = ’ Ljung--Box\n’
f.write(header1)
header2 = ’ pq resid var Q pmin\n’
f.write(header2)
f.close()

f = open(Smmry,’a’)
f.write(’ {0:s} {1:13.3e}{2:10.4f}{3:10.4f}\n’\
.format(outputcode,epsvar,Qpmin,pmin))
f.close()

print
print
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OPspectra.py

""" OPspectra.py - reads temperature, eccentricity, epsilon and
omega for the last 490 kyear listed in OP491 prepared by
opList.py. Plots time series and spectra of T, dT, ecc,
epsilon and omega.
Shows times when dT exceeds 2 standard deviations from the mean.
Shows 99.9 percent confidence limits for dT spectrum.

"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
from scipy.fftpack import fft, ifft
from scipy import stats
#
ipfile=’OP491’
Ns = len(open(ipfile).readlines())-1
print ’Ns = ’,Ns
f = open(ipfile, ’r’)

kyear = np.zeros(Ns,float)
kym = np.zeros(Ns-1,float)
T = np.zeros(Ns,float)
dT = np.zeros(Ns-1,float)
ecc = np.zeros(Ns,float)
epsilon = np.zeros(Ns,float)
omega = np.zeros(Ns,float)
i = 0
j = 0
for line in f:

if i>0:
myline = line.split()
kyear[j] = -float(myline[0])
T[j] = float(myline[1])
ecc[j] = float(myline[2])
epsilon[j] = float(myline[3])
omega[j] = float(myline[4])
j+=1

i+=1
f.close()
prec=np.sin(omega)

for i in range(Ns-1):
dT[i]=T[i]-T[i+1]
kym[i]=.5*(kyear[i]+kyear[i+1])

#
figname=ipfile
#
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#
fig=plt.figure(num=1,figsize=(6.4,9.6))
gs = gridspec.GridSpec(5, 1, height_ratios=[1,1,1,1,1])
#
ax=plt.subplot(gs[0])
plt.plot(kyear,T,color=’k’)
#plt.title(figname)
plt.ylim(-10.0,4.0)
plt.yticks([-8,-4,0,4])
plt.xlim(-500,0)
plt.xticks([])
plt.hlines(0,-499,0,linestyle=’--’)
ax.annotate(’a’,xy=(.95,.1),xycoords=’axes fraction’,\
xytext=(.92,.8), textcoords=’axes fraction’)

ax=plt.subplot(gs[1])
plt.plot(kym,dT,color=’k’)
plt.xlim(-500,0)
plt.xticks([])
plt.ylim(-3,3)
plt.yticks([-3,0,3])
mean=np.mean(dT)
std=np.std(dT)
plt.hlines(mean+2*std,-499,0,linestyle=’--’)
plt.hlines(mean,-499,0,linestyle=’--’)
plt.hlines(mean-2*std,-499,0,linestyle=’--’)
ax.annotate(’b’,xy=(.95,.1),xycoords=’axes fraction’,\
xytext=(.92,.8), textcoords=’axes fraction’)

ax=plt.subplot(gs[2])
plt.plot(kyear,ecc,color=’k’)
plt.ylim(0,.05)
plt.xlim(-500,0)
plt.xticks([])
plt.yticks([0,.05])
for i in range(Ns-2):

if dT[i]>mean+2*std:
plt.vlines(kym[i],0,.05)

ax.annotate(’e’,xy=(.95,.1),xycoords=’axes fraction’,\
xytext=(.92,.8), textcoords=’axes fraction’)

ax=plt.subplot(gs[3])
plt.plot(kyear,epsilon,color=’k’)
plt.xlim(-500,0)
plt.xticks([])
plt.ylim(.38,.43)
plt.yticks([.38,.43])
for i in range(Ns-2):

if dT[i]>mean+2*std:
plt.vlines(kym[i],.38,.43)
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ax.annotate(’o’,xy=(.95,.1),xycoords=’axes fraction’,\
xytext=(.92,.8), textcoords=’axes fraction’)

ax=plt.subplot(gs[4])
plt.plot(kyear,prec,color=’k’)
plt.ylim(-1,1)
plt.xlim(-500,0)
plt.xlabel(’kyr BP’)
plt.yticks([-1,0,1])
plt.hlines(0,-499,0,linestyle=’--’)
for i in range(Ns-2):

if dT[i]>mean+2*std:
plt.vlines(kym[i],-1,1)

ax.annotate(’p’,xy=(.95,.1),xycoords=’axes fraction’,\
xytext=(.9,.8), textcoords=’axes fraction’)

plt.savefig(figname)
plt.show()
#
# Normalize all time series to zero mean and unit variance
#
T=(T-np.mean(T))/np.std(T)
dT=(dT-np.mean(dT))/np.std(dT)
#
figname="OPspectra"
f=open(’OPPgrams’,’w’)
fig=plt.figure(num=1,figsize=(6.4,8.0))
gs = gridspec.GridSpec(1, 1, height_ratios=[1])
ax=plt.subplot(gs[0])
#
X = np.linspace(0,0.5,(Ns)/2)
XX = X[1:]
lX = np.log(XX)/np.log(10.)
#
Y = fft(T)
S = np.abs(Y[0:(Ns)/2])**2
SS = S[1:]
lS = np.log(SS)/np.log(10.)
plt.plot(lX,lS,color=’k’)
ax.annotate(’a’,xy=(.95,.1),xycoords=’axes fraction’,\
xytext=(.25,.95), textcoords=’axes fraction’)
f.write(’\n a log f log P P f T \n’)
for i in range(31):

f.write(\
’{0:2d} {1:8.3f} {2:8.3f} {3:8.0f} {4:8.5f} {5:8.4f}\n’.\
format(i,lX[i],lS[i],SS[i],XX[i],1/XX[i]))

#
Y = fft(dT)
S = np.abs(Y[0:(Ns)/2])**2
SS = S[1:]
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lS = np.log(SS)/np.log(10.)
plt.plot(lX,lS-4,color=’k’)
#
# Prepare confidence limits using F-test
#
Sbar=np.mean(S)
lSbar=np.log(Sbar)/np.log(10.)
dfn = 2
dfd = Ns-1
cl001 = np.log(Sbar*stats.f.ppf(.001,dfn,dfd))/np.log(10.)
cl999 = np.log(Sbar*stats.f.ppf(.999,dfn,dfd))/np.log(10.)
plt.hlines(cl999-4,-3.,0.,color=’k’,linestyle=’--’)
plt.hlines(cl001-4,-3.,0.,color=’k’,linestyle=’--’)
ax.annotate(’b’,xy=(.7,.1),xycoords=’axes fraction’,\
xytext=(.25,.68), textcoords=’axes fraction’)
f.write(’\n b log f log P P f T \n’)
for i in range(31):

f.write(\
’{0:2d} {1:8.3f} {2:8.3f} {3:8.0f} {4:8.5f} {5:8.4f}\n’.\
format(i,lX[i],lS[i],SS[i],XX[i],1/XX[i]))

#
Y = fft(ecc)
S = np.abs(Y[0:(Ns)/2])**2
SS = S[1:]
lS = np.log(SS)/np.log(10.)
plt.plot(lX,lS-3.5,color=’k’)
ax.annotate(’e’,xy=(.95,.1),xycoords=’axes fraction’,\
xytext=(.25,.6), textcoords=’axes fraction’)
f.write(’\n c log f log P P f T \n’)
for i in range(31):

f.write(\
’{0:2d} {1:8.3f} {2:8.3f} {3:8.0f} {4:8.5f} {5:8.4f}\n’.\
format(i,lX[i],lS[i],SS[i]*10000,XX[i],1/XX[i]))

#
Y = fft(epsilon)
S = np.abs(Y[0:(Ns)/2])**2
SS = S[1:]
lS = np.log(SS)/np.log(10.)
plt.plot(lX,lS-7.1,color=’k’)
ax.annotate(’o’,xy=(.95,.1),xycoords=’axes fraction’,\
xytext=(.25,.31), textcoords=’axes fraction’)
f.write(’\n d log f log P P f T \n’)
for i in range(31):

f.write(\
’{0:2d} {1:8.3f} {2:8.3f} {3:8.0f} {4:8.5f} {5:8.4f}\n’.\
format(i,lX[i],lS[i],SS[i]*10000,XX[i],1/XX[i]))

#
Y = fft(prec)
S = np.abs(Y[0:(Ns)/2])**2
SS = S[1:]
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lS = np.log(SS)/np.log(10.)
plt.plot(lX,lS-15,color=’k’)
ax.annotate(’p’,xy=(.95,.1),xycoords=’axes fraction’,\
xytext=(.25,.1), textcoords=’axes fraction’)
f.write(’\n e log f log P P f T \n’)
for i in range(31):

f.write(\
’{0:2d} {1:8.3f} {2:8.3f} {3:8.0f} {4:8.5f} {5:8.4f}\n’.\
format(i,lX[i],lS[i],SS[i]*1000,XX[i],1/XX[i]))

#
f.close()
plt.ylim(-16,5)
plt.yticks([-16,-15,-14,-13,-12,-11,-10,-9,-8,-7,-6,-5,-4,\
-3,-2,-1,0,1,2,3,4,5])
plt.grid()
plt.xlabel("Log(frequency/kyears)")
plt.ylabel("Log(Variance Density)")
#
# Plot key frequencies.
#
keyf=np.array([.00922,.0246,.044])
lkeyf=np.log(keyf)/np.log(10.)
for lkeyf1 in lkeyf:

plt.vlines(lkeyf1,-16,5,color=’k’, linestyle=’--’)
#
plt.savefig(figname)
plt.show()
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OPlist.py

""" OPlist - writes list of orbital parameters vs kyear
"""
import numpy as np
import scipy.io as spio
import matplotlib.pyplot as plt
from matplotlib import gridspec
import DailyInsolation as DI
#
#
#
# DomeCdeuterium
#
# read in raw data
#
Nr = 5159
f = open(’DomeCdeuterium.txt’, ’r’)
title = ’EPICA Dome C Deuterium’
rx = np.zeros(Nr,float)
ry = np.zeros(Nr,float)
i = 1
j = 0
for line in f:

if i>104:
myline = line.split()
#print myline, len(myline)
if len(myline)>4:

rx[j] = float(myline[2])/1000.
ry[j] = float(myline[4])
if rx[j]>490:

break
j+=1

i+=1
f.close()
#
# prepare time series
#
tmin = 0
#tmax=5
tmax = 491.
#Ns = 5
Ns = 491
dt = (tmax-tmin)/Ns
df = 1/(Ns*dt)
fN= 0.5/dt #Nyquist frequency
x = np.zeros(Ns,float)
y = np.zeros(Ns,float)
Nempty = 0
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for j in range(Ns):
x[j] = tmin+j*dt
t1 = tmin+j*dt-dt/2
t2 = tmin+j*dt+dt/2
nj = 0
sj = 0
for i in range(Nr):

if t1<rx[i] and rx[i]<=t2:
nj+=1
sj+=ry[i]

if nj>0:
y[j]=sj/nj

else:
if j>0:

y[j]=y[j-1]
Nempty += 1

else:
y[0]=ry[0]

print "no data in <",t1,",",t2,">"
print Nempty, " empty intervals."
#print x
#
#
#
kyear=-x.copy()
ecc,epsilon,omega=DI.orbital_parameters(-kyear)
opfile=’OP{0:03d}’.format(Ns)
f=open(opfile,’w’)
header=’kyr T ecc epsilon omega\n’
f.write(header)
for iy,kyear1 in enumerate(kyear):

string=’{0:3.0f} {1:10.6f} {2:10.6f} {3:10.6f} {4:12.6f}\n’\
.format(-kyear1,y[iy],ecc[iy],epsilon[iy],omega[iy])

f.write(string)
f.close()
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DailyInsolation.py

""" DailyInsolation.py - Functions for computing Daily Insolation

References:
Berger A. and Loutre M.F. (1991). Insolation values for the
climate of the last 10 million years.
Quaternary Science Reviews, 10(4), 297-317.
Berger A. (1978). Long-term variations of daily insolation and
Quaternary climatic changes.
Journal of Atmospheric Science, 35(12), 2362-2367.

Authors:
MATLAB

Ian Eisenman and Peter Huybers, Harvard University, August 2006
eisenman@fas.harvard.edu
This file is available online at
http://deas.harvard.edu/~eisenman/downloads

PYTHON
John Reid
johnsinclairreid@gmail.com

"""
import numpy as np
import scipy.io as spio

def daily_insolation(*args):
kyear=args[0]
lat=args[1]
day=args[2]
n1=1. #refractive index of air
n2=1.333 #refractive index of Water
tiny=1.4e-45
[ecc,epsilon,omega]=orbital_parameters(-kyear)
obliquity=epsilon*180/np.pi
long_perh=omega*180/np.pi
lat=lat*np.pi/180 # latitude
delta_lambda_m=(day-80)*2*np.pi/365.2422
beta=(1-ecc**2)**(1/2)
lambda_m0=-2*((1/2*ecc+1/8*ecc**3)*(1+beta)*np.sin(-omega)\
-1/4*ecc**2*(1/2+beta)*np.sin(-2*omega)\
+1/8*ecc**3*(1/3+beta)*(np.sin(-3*omega)))
lambda_m=lambda_m0+delta_lambda_m
lambda1=lambda_m+(2*ecc-1/4*ecc**3)*np.sin(lambda_m-omega)
lambda1+=(5/4)*ecc**2*np.sin(2*(lambda_m-omega))
lambda1+=(13/12)*ecc**3*np.sin(3*(lambda_m-omega))
So=1365
# solar constant (W/m**2)
delta=np.arcsin(np.sin(epsilon)*np.sin(lambda1))
# declination of the sun

 EBSCOhost - printed on 2/13/2023 8:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



Appendices 167

cnst=So/np.pi*(1+ecc*np.cos(lambda1-omega))**2/(1-ecc**2)**2
Ho=np.empty_like(delta)
Fsum=np.empty_like(delta)
Asum=np.empty_like(delta)
for index,delta1 in np.ndenumerate(delta):

if(abs(lat)>=np.pi/2-abs(delta1)) and (lat*delta1>0):
Ho[index]=np.pi

elif(abs(lat)>=np.pi/2-abs(delta1)) \
and (lat*delta1 <= 0):

Ho[index]=0
else:

Ho[index]=np.arccos(-np.tan(lat)\
*np.tan(delta1)) \
#hour angle at sunrise/set

num=20
dh=Ho[index]/num
Fsum[index]=0
Asum[index]=0
for h in np.linspace(0,Ho[index],num):

sinh=(np.sin(lat)*np.sin(delta1)\
+ np.cos(lat)*np.cos(delta1)*np.cos(h))*dh

Fsum[index]+=sinh
theta1 = np.pi/2-h
theta2 = np.arcsin(n1*np.sin(theta1)/n2)
plus=theta1+theta2
if abs(plus)<tiny:

plus=tiny
minus=theta1-theta2
if abs(minus)<tiny:

minus=tiny
r12p=np.tan(minus)/np.tan(plus)
r12s=np.sin(minus)/np.sin(plus)
FracReflected=0.5*(r12p**2+r12s**2)
FracAbsorbed = 1.0-FracReflected
Asum[index]+=sinh*FracAbsorbed

Fsw=cnst*(Ho*np.sin(lat)*np.sin(delta) \
+ np.cos(lat)*np.cos(delta)*np.sin(Ho))
Ftest=cnst*Fsum
WSAbs=cnst*Asum
return Fsw, ecc, obliquity, long_perh, Ftest, WSAbs

def orbital_parameters(year):
tmax=5001 # max years before present
mat = spio.loadmat(’orbital_parameter_data.mat’\
,squeeze_me=True)
m=np.array(mat[’m’])
kyear0=m[:tmax,0]
# kyears before present for data (kyear0>=0)
ecc0=m[:tmax,1] # eccentricity
# add 180 degrees to omega
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#(see lambda definition, Berger 1978 Appendix)
omega0=m[:tmax,2]+180
# longitude of perihelion (precession angle)
omega0=np.unwrap(omega0*np.pi/180)*180/np.pi\

# remove discontinuities (360 degree jumps)
epsilon0=m[:tmax,3] # obliquity angle
iyear=year.astype(int)
frac=year-iyear
ecc=ecc0[iyear]+frac*(ecc0[iyear+1]-ecc0[iyear])
omega=(omega0[iyear]+frac*(omega0[iyear+1]\
-omega0[iyear]))*np.pi/180
epsilon=(epsilon0[iyear]+frac*(epsilon0[iyear+1]\
-epsilon0[iyear]))*np.pi/180
return ecc,epsilon,omega
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mandala.py

#! /usr/bin/env python
""" mandala.py

John Reid 2004

Press Escape to exit.
"""
import numpy as np
import time
import threading
import pygame
from pygame.locals import *

stopEvent=threading.Event()
swidth=950
sheight=1250
sw2=swidth/2
sh2=sheight/2
a = np.zeros((sheight,swidth,3),np.uint8)
b = np.zeros((sheight,swidth,3),np.uint8)

pygame.init()
windowSurface = pygame.display.set_mode((sheight,swidth),FULLSCREEN)

sinceblack=0
blackcount=9
sincecircle=0
circlecount=4
pygame.mouse.set_visible(False)
while not stopEvent.isSet():

ran=np.random.rand(5)
rw2=np.int(ran[0]*sw2)
rh2=np.int(ran[1]*sh2)
if sinceblack>1:

R=ran[2]*255
G=ran[3]*255
B=ran[4]*255

else:
R=0
G=0
B=0

if sincecircle==circlecount:
sincecircle=0
for i in range(swidth):

x = i-sw2
for j in range(sheight):

y = j-sh2
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if x*x+y*y<0.9*rh2*rh2:
b[j,i,0]=R
b[j,i,1]=G
b[j,i,2]=B

else:
for i in range(sw2-rw2,sw2+rw2):

for j in range(sh2-rh2,sh2+rh2):
b[j,i,0]=R
b[j,i,1]=G
b[j,i,2]=B

a=np.bitwise_xor(a,b)
pygame.surfarray.blit_array(windowSurface, a)
b=np.bitwise_xor(b,b)
pygame.display.flip()
time.sleep(2)
sinceblack+=1
sincecircle+=1
if sinceblack>=blackcount:

sinceblack=0
# time.sleep(2)

a=np.right_shift(a,[1])
for event in pygame.event.get():

if event.type == pygame.KEYDOWN:
if event.key == pygame.K_ESCAPE:

pygame.mouse.set_visible(True)
quit()
break
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ACF, 80
action, 17
aether, 21
AIC, 42
Akaike Information Criterion, 42,
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anthropogenic CO2, 122
Applied Mathematicians, 141
Applied Mathematics, 9
ARIMA, 43
ARMA, 43, 48, 49
ARMA spectral estimate, 61
Atlantic Meridional Overturning,

117
aurora, iii
autocorrelation function, 80
autoregessive moving average, 43
autoregression, 48
autoregressive process, 43
auxiliary assumptions, 9
averaged white periodograms, 57
AWSAI, 96

Bacon’s Idols, 9
Bacon, Francis, 4, 8
Bayesian statistics, 37
blurring, 58
boiling HTV plumes, 117

Boltzmann, 15, 23
Boltzmann entropy, 15
bomb test curve, 120, 121

Cameroon Line, 133
carbon dioxide, 118
Carnot Cycle, 14
catastrophic collapse, 100
centrally biased random walk, 65,

85
Chaos Theory, 5
characteristic equation, 46
cherry picking, 36
Chi-squared distribution, 56
Clausius, 14
CO2 absorption, 119
CO2 model, 122
CO2 outgassing, 119
coarse-grained, 17
coefficient estimates, 49
collinear earthquakes, 134
computable numbers, 13
consistent estimate, 38, 61
continuum, 24, 25, 28, 141
conveyor belt ocean, 116
convolution, 58
core, 131
correlation coefficient, 67
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cosmic noise absorption pulsations,
v, vi

covariance function, 38, 39, 54
Cromwell Current, 119

Dedekind, 13
determinism, 19
deterministic, 140
deterministic model, 78
Devilcat, 101
diaper, 129
Dickey–Fuller, 72
direction of time, 17
discrete time spectral analysis, 51
drift coefficient, 49
drift term, 81

Earth Abides, 8
earthquake swarm, 133, 135
Easter Island, 112, 113
eccentricity peak, 88, 91
eddy viscosity, 26
Einstein, 8, 23
Einstein and determinism, 20
electromagnetic field equations, 21
EMP, v
Empiricism, 7
ensemble, 37
ensemble average, 37
entropy, 13, 15, 141
entropy formula, 16, 17
EPICA ice core data, 89
Euclid’s proof, 12
Excalibur, 6

F-distribution, 41, 57
F-test, 28, 57
Faraday, 21
fast response riometer, v
Fibonacci, 45
finite difference approximation, 25

First Law, 14
Fluid Catastrophe, 23, 28, 141,

142
Fluid Dynamics, 5, 10
Fourier Transform, 39
Fourier’s heat equation, 64, 88
frequentist statistics, 37

Galileo, v, 4
General Relativity, 140
geomagnetic spectrum, 125
geometry, 7
Gibbs, 17
global average temperature, 77, 78
granularity, 5, 17, 29
greenhouse effect, 77
Greenland, 99, 112

HadCRUT, 78
Halley, 20
Hardy, 11
Hasselmann, 64
heavy metal pollution, 114
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