
C
o
p
y
r
i
g
h
t

2
0
1
9
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 8:01 AM via
AN: 2116427 ; Alvaro Morena Alberola, Gonzalo Molina Gallego, Unai Garay Maestre.; Artificial Vision and Language Processing for Robotics : Create End-to-end
Systems That Can Power Robots with Artificial Vision and Deep Learning Techniques
Account: ns335141

Álvaro Morena Alberola

Gonzalo Molina Gallego

Unai Garay Maestre

Create end-to-end systems that can power robots
with artificial vision and deep learning techniques

Artificial Vision and
Language Processing
for Robotics

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Artificial Vision and Language Processing for Robotics

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Álvaro Morena Alberola, Gonzalo Molina Gallego, and Unai Garay Maestre

Technical Reviewer: Rutuja Yerunkar

Managing Editor: Adrian Cardoza

Acquisitions Editor: Kunal Sawant

Production Editor: Samita Warang

Editorial Board: David Barnes, Ewan Buckingham, Jonathan Wray, Simon Cox,
Manasa Kumar, Alex Mazonowicz, Douglas Paterson, Dominic Pereira, Shiny Poojary,
Erol Staveley, Ankita Thakur, and Mohita Vyas

First Published: April 2019

Production Reference: 1270419

ISBN: 978-1-83855-226-8

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

Preface i

Fundamentals of Robotics 15

Introduction .. 16

History of Robotics .. 16

Artificial Intelligence .. 18

Natural Language Processing ... 19

Computer Vision .. 19

Types of Robots .. 20

Industrial Robots .. 20

Service Robots .. 20

Hardware and Software of Robots .. 21

Robot Positioning ... 24

Exercise 1: Computing a Robot’s Position ... 28

How to Work with Robots ... 30

Exercise 2: Computing the Distance Traveled by a Wheel with Python 30

Exercise 3: Computing Final Position with Python .. 32

Activity 1: Robot Positioning Using Odometry with Python 33

Summary ... 34

Introduction to Computer Vision 37

Introduction .. 38

Basic Algorithms in Computer Vision .. 38

Image Terminology .. 38

OpenCV .. 40

Basic Image Processing Algorithms .. 40

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Thresholding ... 40

Exercise 4: Applying Various Thresholds to an Image 43

Morphological Transformations .. 49

Exercise 5: Applying the Various Morphological Transformations
to an Image ... 51

Blurring (Smoothing) ... 55

Exercise 6: Applying the Various Blurring Methods to an Image 56

Exercise 7: Loading an Image and Applying the Learned Methods 58

Introduction to Machine Learning ... 63

Decision Trees and Boosting Algorithms ... 63

Bagging: ... 64

Boosting .. 66

Exercise 8: Predicting Numbers Using the Decision Tree,
Random Forest, and AdaBoost Algorithms .. 67

Artificial Neural Networks (ANNs) ... 74

Exercise 9: Building Your First Neural Network ... 79

Activity 2: Classify 10 Types of Clothes from the
Fashion-MNIST Database .. 83

Summary ... 85

Fundamentals of Natural Language Processing 87

Introduction .. 88

Natural Language Processing ... 89

Parts of NLP .. 90

Levels of NLP .. 92

NLP in Python ... 93

Natural Language Toolkit (NLTK) ... 93

Exercise 10: Introduction to NLTK ... 94

spaCy ... 98

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exercise 11: Introduction to spaCy ... 100

Topic Modeling ... 104

Term Frequency – Inverse Document Frequency (TF-IDF) 104

Latent Semantic Analysis (LSA) ... 105

Exercise 12: Topic Modeling in Python ... 106

Activity 3: Process a Corpus ... 110

Language Modeling ... 111

Introduction to Language Models .. 111

The Bigram Model ... 112

N-gram Model .. 112

Calculating Probabilities .. 113

Exercise 13: Create a Bigram Model ... 116

Summary ... 119

Neural Networks with NLP 121

Introduction .. 122

Recurrent Neural Networks ... 124

Introduction to Recurrent Neural Networks (RNN) 124

Inside Recurrent Neural Networks ... 125

RNN architectures .. 127

Long-Dependency Problem ... 128

Exercise 14: Predict House Prices with an RNN .. 129

Long Short-Term Memory ... 133

Exercise 15: Predict the Next Solution of a Mathematical Function 134

Neural Language Models .. 141

Introduction to Neural Language Models .. 141

RNN Language Model ... 144

Exercise 16: Encoding a Small Corpus .. 145

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Input Dimensions of RNNs ... 150

Activity 4: Predict the Next Character in a Sequence 153

Summary ... 155

Convolutional Neural Networks for Computer Vision 157

Introduction .. 158

Fundamentals of CNNs ... 158

Building Your First CNN .. 164

Exercise 17: Building a CNN ... 166

Improving Your Model - Data Augmentation ... 171

Exercise 18: Improving Models Using Data Augmentation 173

Activity 5: Making Use of Data Augmentation to Classify correctly
Images of Flowers ... 184

State-of-the-Art Models - Transfer Learning .. 187

Exercise 19: Classifying €5 and €20 Bills Using Transfer Learning
with Very Little Data ... 190

Summary ... 197

Robot Operating System (ROS) 199

Introduction .. 200

ROS Concepts ... 200

ROS Commands .. 202

Installation and Configuration ... 203

Catkin Workspaces and Packages ... 204

Publishers and Subscribers .. 205

Exercise 20: Publishing and Subscribing .. 206

Exercise 21: Publishers and Subscribers .. 209

Simulators ... 214

Exercise 22: The Turtlebot configuration ... 215

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exercise 23: Simulators and Sensors .. 217

Activity 6: Simulators and Sensors ... 219

Summary ... 220

Build a Text-Based Dialogue System (Chatbot) 223

Introduction .. 224

Word Representation in Vector Space .. 225

Word Embeddings ... 225

Cosine Similarity ... 226

Word2Vec ... 226

Problems with Word2Vec ... 228

Gensim ... 228

Exercise 24: Creation of a Word Embedding ... 229

Global Vectors (GloVe) .. 232

Exercise 25: Using a Pretrained GloVe to See the Distribution
of Words in a Plane ... 235

Dialogue Systems ... 241

Tools for Developing Chatbots .. 241

Types of Conversational Agents .. 242

Classification by Input-Output Data Type .. 242

Classification by System Knowledge .. 243

Creation of a Text-Based Dialogue System .. 243

Exercise 26: Create Your First Conversational Agent 246

Activity 7: Create a Conversational Agent to Control a Robot 253

Summary ... 255

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Object Recognition to Guide a Robot Using CNNs 259

Introduction .. 260

Multiple Object Recognition and Detection ... 260

Exercise 24: Building Your First Multiple Object Detection
and Recognition Algorithm .. 262

ImageAI .. 267

Multiple Object Recognition and Detection in Video 270

Activity 8: Multiple Object Detection and Recognition in Video 274

Summary ... 275

Computer Vision for Robotics 277

Introduction .. 278

Darknet ... 278

Basic Installation of Darknet ... 279

YOLO .. 279

First Steps in Image Classification with YOLO ... 281

YOLO on a Webcam .. 286

Exercise 28: Programming with YOLO .. 287

ROS Integration ... 291

Exercise 29: ROS and YOLO Integration ... 292

Activity 9: A Robotic Security Guard ... 296

Summary ... 297

Appendix 299

Index 337

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

About

This section briefly introduces the author, the coverage of this book, the technical skills you'll
need to get started, and the hardware and software requirements required to complete all of
the included activities and exercises.

Preface

>

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

ii | Preface

About the Book
Artificial Vision and Language Processing for Robotics begins by discussing the theory
behind robots. You’ll compare different methods used to work with robots and explore
computer vision, its algorithms, and limits. You’ll then learn how to control the robot
with natural language processing commands. As you make your way through this book,
you’ll study Word2Vec and GloVe embedding techniques, non-numeric data, as well as
recurrent neural networks (RNNs) and their advanced models. You’ll create a simple
Word2Vec model with Keras, build a convolutional neural network (CNN), and improve
it with data augmentation and transfer learning. You’ll walk through ROS and build a
conversational agent to manage your robot. You’ll also integrate your agent with ROS
and convert an image to text and text to speech. You’ll learn how to build an object
recognition system with the help of a video clip.

By the end of this book, you’ll have the skills you need to build a functional application
that can integrate with ROS to extract useful information from your environment.

About the Authors

Álvaro Morena Alberola is a computer engineer and loves robotics and artificial
intelligence. Currently, he is working as a software developer. He is extremely
interested in the core part of AI, which is based on artificial vision. Álvaro likes working
with new technologies and learning how to use advanced tools. He perceives robotics
as a way of easing human lives; a way of helping people perform tasks that they cannot
do on their own.

Gonzalo Molina Gallego is a computer science graduate and specializes in artificial
intelligence and natural language processing. He has experience of working on text-
based dialog systems, creating conversational agents, and advising good methodologies.
Currently, he is researching new techniques on hybrid-domain conversational systems.
Gonzalo thinks that conversational user interfaces are the future.

Unai Garay Maestre is a computer science graduate and specializes in the field of
artificial intelligence and computer vision. He successfully contributed to the CIARP
conference of 2018 with a paper that takes a new approach to data augmentation using
variational autoencoders. He also works as a machine learning developer using deep
neural networks applied to images.

Objectives

• Explore ROS and build a basic robotic system

• Identify conversation intents with NLP techniques

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the Book | iii

• Learn and use word embedding with Word2Vec and GloVe

• Use deep learning to implement artificial intelligence (AI) and object recognition

• Develop a simple object recognition system using CNNs

• Integrate AI with ROS to enable your robot to recognize objects

Audience

Artificial Vision and Language Processing for Robotics is for robotics engineers who
want to learn how to integrate computer vision and deep learning techniques to create
complete robotic systems. It will be beneficial if you have a working knowledge of
Python and a background in deep learning. Knowledge of ROS is a plus.

Approach

Artificial Vision and Language Processing for Robotics takes a practical approach to
equip you with tools for creating systems that integrate computer vision and NLP
to control a robot. The book is divided into three parts: NLP, computer vision, and
robotics. It introduces advanced topics after a detailed introduction to the basics. It
also contains multiple activities for you to practice and apply your new skills in a highly
relevant context.

Minimum Hardware Requirements

For the optimal student experience, we recommend the following hardware
configuration:

• Processor: 2GHz dual core processor or better

• Memory: 8 GB RAM

• Storage: 5 GB available hard disk space

• A good internet connection

To train neural networks, we recommend using Google Colab. But if you want to train
these networks with your computer, you will need:

• NVIDIA GPU

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

iv | Preface

Software Requirements

We don’t recommend using Ubuntu 16.04 for this book because of compatibility
issues with ROS Kinetic. But if you want to use Ubuntu 18.04, there is a version that
is ROS supported, named Melodic. During the project, you will need to install several
libraries to complete all of the exercises, such as NLTK (<= 3.4), spaCy (<=2.0.18), gensim
(<=3.7.0), NumPy (<=1.15.4), sklearn (<=0.20.1), Matplotlib (<=3.0.2), OpenCV (<=4.0.0.21),
Keras (<=2.2.4), and Tensorflow (<=1.5, >=2.0). The installation process for each library is
explained in the exercises.

To use YOLO in your Ubuntu system, you will need to install the NVIDIA drivers of your
GPU and the NVIDIA CUDA toolkit.

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "With
the TfidfVectorizer method, we can convert the collection of documents in our corpus
to a matrix of TF-IDF features"

A block of code is set as follows:

vectorizer = TfidfVectorizer()

X = vectorizer.fit_transform(corpus)

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Morphological
analysis: Focused on the words of a sentence and analyzing its morphemes"

Installation and Setup

Before you start this book, you need to install the following software. You will find the
steps to install these here:

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the Book | v

Installing Git LFS

In order to download all the resources from the GitHub of this book and be able to use
images to train your neural network model, you will need to install Git LFS (Git Large
File Storage). It replaces large files such as audio samples, videos, datasets, and graphics
with text pointers inside Git.

If you have not cloned the repository:

1. Install Git LFS

2. Clone the Git repository

3. From the repository folder, execute gitlfs pull

4. Done

If the repository is already cloned:

1. Install Git LFS

2. From the repository folder, execute: gitlfs pull

3. Done

Installing Git LFS: https://github.com/git-lfs/git-lfs/wiki/Installation

[Recommended] Google Colaboratory

If you have the option, use Google Colaboratory. It is a free Jupyter notebook
environment that requires no setup and runs entirely in the cloud. You can also take
advantage of running it on a GPU.

The steps for using it are as follows:

1. Upload the entire GitHub to your Google Drive account, so you can use the files
that are stored in the repository. Make sure you have made use of Git LFS first to
load all the files.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/git-lfs/git-lfs/wiki/Installation

vi | Preface

2. Go to the folder where you want to open a new Google Colab Notebook, click New
> More > Colaboratory. Now, you have a Google Colab Notebook opened and saved
in the corresponding folder, and you are ready to use Python, Keras, or any other
library that is already installed.

3. If you want to install a specific library, you can do so using the “pip” package
installation or any other command-line installation and adding “!” at the beginning.
For instance, “!pip install sklearn”, which would install scikit-learn.

4. If you want to be able to load files from your Google Drive, you need to execute
these two lines of code in a Google Colab cell:

from google.colab import drive
drive.mount(‘drive’)

5. Then, open the link that appears in the output and log in with the Google account
that you used to create the Google Colab Notebook.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the Book | vii

6. You can now navigate to where the files were uploaded using ls to list the files in
the current directory and cd to navigate to a specific folder:

7. Now, the Google Colab Notebook is capable of loading any file and performing any
task, just like a Jupyter notebook opened in that folder would do.

Installing ROS Kinetic

These are the steps you must follow to install the framework in your Ubuntu system:

1. Prepare Ubuntu for accepting the ROS software:

sudosh -c ‘echo “deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc)
main” > /etc/apt/sources.list.d/ros-latest.list’

2. Configure the download keys:

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-
key 421C365BD9FF1F717815A3895523BAEEB01FA116

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

viii | Preface

3. Ensure that the system is updated:

sudo apt-get update

4. Install the full framework to not miss functionalities:

sudo apt-get install ros-kinetic-desktop-full

5. Initialize and update rosdep:

sudo rosdep init
rosdep update

6. Add environment variables to the bashrc file if you want to avoid declaring them
each time you work with ROS:

echo “source /opt/ros/kinetic/setup.bash” >> ~/.bashrcsource ~/.bashrc

Note

It might be appropriate to reboot your computer after this process for the system
to implement the new configuration.

7. Check that the framework is correctly working by starting it:

roscore

Configuring TurtleBot

Note

It may happen that TurtleBot is not compatible with your ROS distribution (we are
using Kinetic Kame), but don’t worry, there are lots of robots that you can simulate
in Gazebo. You can look up different robots and try to use them with your ROS
distribution.

This is the configuration process for TurtleBot:

1. Install its dependencies:

sudo apt-get install ros-kinetic-turtlebotros-kinetic-turtlebot-apps
ros-kinetic-turtlebot-interactions ros-kinetic-turtlebot-simulator
ros-kinetic-kobuki-ftdiros-kinetic-ar-track-alvar-msgs

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the Book | ix

2. Download the TurtleBot simulator package in your catkin workspace:

cd ~/catkin_ws/src
git clone https://github.com/turtlebot/turtlebot_simulator

3. After that, you should be able to use TurtleBot with Gazebo.

If you get an error trying to visualize TurtleBot in Gazebo, download the
turtlebot_simulator folder from our GitHub and replace it.

Start ROS services:

roscore

Launch TurtleBot World:

cd ~/catkin_ws
catkin_make
sourcedevel/setup.bash
roslaunchturtlebot_gazeboturtlebot_world.launch

Basic Installation of Darknet

Follow these steps for installing Darknet:

1. Download the framework:

git clone https://github.com/pjreddie/darknet

2. Switch to the downloaded folder and run the compilation command:

cd darknet
make

You should see an output like the following if the compilation process was
correctly completed:

The Darknet compilation output

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

x | Preface

Advanced Installation of Darknet

This is the installation process that you must complete in order to achieve the chapter
objectives. It will allow you to use GPU computation to detect and recognize objects
in real time. Before performing this installation, you must have some dependencies
installed on your Ubuntu system, such as:

• NVIDIA drivers: Drivers that will allow your system to correctly work with your
GPU. As you may know, it must be an NVIDIA model.

• CUDA: This is an NVIDIA toolkit that provides a development environment for
building applications that need GPU usage.

• OpenCV: This is a free artificial vision library, which is very useful for working with
images.

Note

It is important to consider that all these dependencies are available in several ver-
sions. You must find the version of each tool that is compatible with your specific
GPU and system.

Once your system is ready, you can perform the advanced installation:

1. Download the framework if you didn’t do the basic installation:

git clone https://github.com/pjreddie/darknet

2. Modify the Makefile first lines to enable OpenCV and CUDA. It should be as
follows:

GPU=1
CUDNN=0
OPENCV=1
OPENMP=0
DEBUG=0

3. Save Makefile changes, switch to darknet directory and run the compilation
command:

cd darknet
make

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the Book | xi

Now, you should see an output similar to this one:

The Darknet compilation with CUDA and OpenCV

Installing YOLO

Before performing this installation, you must have some dependencies installed on your
Ubuntu system, as mentioned in the advanced installation of Darknet.

Note

It is important to take into account that all these dependencies are available in sev-
eral versions. You must find the version of each tool that is compatible with your
specific GPU and system.

Once your system is ready, you can perform the advanced installation:

1. Download the framework:

git clone https://github.com/pjreddie/darknet

2. Modify the Makefile first lines to enable OpenCV and CUDA. It should be as
follows:

GPU=1
CUDNN=0
OPENCV=1
OPENMP=0
DEBUG=0

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

xii | Preface

3. Save Makefile changes, switch to the darknet directory, and run the compilation
command:

cd darknet
Make

Additional Resources

The code bundle for this book is also hosted on GitHub at: https://github.com/
PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Links to documentation:

ROS Kinetic - http://wiki.ros.org/kinetic/Installation

Git Large File Storage - https://git-lfs.github.com/

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics
https://github.com/PacktPublishing/
http://wiki.ros.org/kinetic/Installation
https://git-lfs.github.com/

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Objectives

By the end of this chapter, you will be able to:

• Describe important events in the history of robotics

• Explain the importance of using artificial intelligence, artificial vision and natural language
processing

• Classify a robot depending on its goal or function

• Identify the parts of a robot

• Estimate a robot’s position using odometry

This chapter covers the brief history of robotics, classifies different types of robots and its
hardware, and explains a way to find a robot's position using odometry.

Fundamentals of
Robotics

1

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

16 | Fundamentals of Robotics

Introduction
The robotics sector represents the present and the future of humanity. Currently,
there are robots in the industrial sector, in research laboratories, in universities, and
even in our homes. The discipline of robotics is continually evolving, which is one of
the reasons it is worth studying. Every robot needs someone to program it. Even those
based on AI and self-learning need to be given initial goals. Malfunctioning robots need
technicians and constant maintenance, and AI-based systems need constant data inputs
and monitoring to be effective.

In this book, you will learn and practice lots of interesting techniques, focusing on
artificial computer vision, natural language processing, and working with robots and
simulators. This will give you a solid basis in some cutting-edge areas of robotics.

History of Robotics
Robotics stemmed from the need to create intelligent machines to perform tasks that
were difficult for humans. But it wasn’t called “robotics” at first. The term “robot” was
coined by a Czech writer, Karel Čapek, in his work R.U.R. (Rossum’s Universal Robots).
It is derived from the Czech word robota, which means servitude and is related to
forced labor.

Čapek’s work became known worldwide, and the term “robot” did too, so much so that
this term was later used by the famous teacher and writer Isaac Asimov in his work; he
termed robotics as the science that studies robots and their features.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

History of Robotics | 17

Here you can see a timeline of the important events that have shaped the history of
robotics:

Figure 1.1: History of robotics

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

18 | Fundamentals of Robotics

Figure 1.2: History of robotics continued

Figures 1.1 and 1.2 give a useful timeline of the beginnings and evolution of robotics.

Artificial Intelligence
AI refers to a set of algorithms developed with the objective of giving a machine the
same capabilities as that of a human. It allows a robot to take its own decisions, interact
with people, and recognize objects. This kind of intelligence is present not just in
robots, but also in plenty of other applications and systems (even though people may be
unaware of it).

There are many real-world products already using this kind of technology. Here’s a list
of some of them to show you the kind of interesting applications you can build:

• Siri: This is a voice assistant created by Apple, and is included in their phones and
tablets. Siri is very useful as it is connected to the internet, allowing it to look up
data instantly, send messages, check the weather, and do much more.

• Netflix: Netflix is an online film and TV service. It runs on a very accurate
recommendation system that is developed using AI that recommends films to
users based on their viewing history. For example, if a user usually watches
romantic movies, the system will recommend romantic series and movies.

• Spotify: Spotify is an online music service similar to Netflix. It uses a
recommendation system to make accurate song suggestions to users. To do so, it
considers songs that the user has previously heard and the kind of music added to
the user’s library.

• Tesla's self-driving cars: These cars are built using AI that can detect obstacles,
people, and even traffic signals to ensure the passengers have a secure ride.

• Pacman: Like almost any other video game, Pacman’s enemies are programmed
using AI. They use a specific technique that constantly computes the collision
distance, taking into account wall boundaries, and they try to trap Pacman. As it
is a very simple game, the algorithm is not very complex, but it is a good example
that highlights the importance of AI in entertainment.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Artificial Intelligence | 19

Natural Language Processing

Natural Language Processing (NLP) is a specialized field in AI that involves studying the
different ways of enabling communication between humans and machines. It is the only
technique that can make robots understand and reproduce human language.

If a user uses an application that is supposed to be capable of communicating, the user
then expects the application to have a human-like conversation. If the humanoid robot
uses badly formed phrases or does not give answers related to the questions, the user’s
experience wouldn’t be good and the robot wouldn’t be an attractive buy. This is why it
is very important to understand and make good use of NLP in robotics.

Let’s have a look at some real-world applications that use NLP:

• Siri: Apple’s voice assistant, Siri, uses NLP to understand what the user says and
gives back a meaningful response.

• Cortana: This is another voice assistant that was created by Microsoft and is
included in the Windows 10 operating system. It works in a similar way to Siri.

• Bixby: Bixby is a part of Samsung that is integrated in the newest Samsung phones,
and its user experience is similar to using Siri or Cortana.

Note

You may be asking which one of these three is the best; however, it depends on
each user’s likes and dislikes.

• Phone operators: Nowadays, calls to customer services are commonly answered
by answering machines. Most of these machines are phone operators that work
by receiving a keyword input. Most modern operators are developed using NLP in
order to have more realistic conversations with clients over the phone.

• Google Home: Google’s virtual home assistant uses NLP to respond to users’
questions and to perform given tasks.

Computer Vision

Computer vision is a commonly used technique in robotics that can use different
cameras to simulate the biomechanical three-dimensional movement of the human eye.
It can be defined as a set of methods used to acquire, analyze, and process images and
transform them into information that can be valuable for a computer. This means that
the information gathered is transformed into numerical data, so that the computer can
work with it. This will be covered in the chapters ahead.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

20 | Fundamentals of Robotics

Here’s a list of some real-world examples that use computer vision:

• Autonomous cars: Autonomous cars use computer vision to obtain traffic
and environment information and to decide what to do on the basis of this
information. For example, the car would stop if it captures a crossing pedestrian in
its camera.

• Phone camera applications: Many phone-based camera applications include
effects that modify a picture taken using the camera. For example, Instagram
allows the user to use filters in real time that modify the image by mapping the
user’s face to the filter.

• Tennis Hawk-Eye: This is a computer-based vision system used in tennis to track
the trajectory of the ball and display its most likely path on the court. It is used to
check whether the ball has bounced within the court’s boundaries.

Types of Robots

When talking about AI and NLP, it is important to take a look at real-world robots,
because these robots can give you a fair idea of the development and improvement of
existing models. But first, let’s talk about the different kinds of robots that we can find.
Generally, they can be classified as industrial-based robots and service-based robots,
which we will discuss in the following sections.

Industrial Robots

Industrial robots are used in manufacturing processes and don’t usually have a human
form. In general, they pretty much look like other machines. This is because they are
built with the aim of executing a specific industrial task.

Service Robots

Service robots work, either partially or entirely, in an autonomous manner, and perform
useful tasks for humans. These robots can also be further divided into two groups:

• Personal robots: These are commonly used in menial house-cleaning tasks, or in
the entertainment industry. This is the kind of machine that people always imagine
when discussing robots, and they are often imagined to have human-like features.

• Field robots: These are robots in charge of military and exploratory tasks. They
are built with resistant materials because they must withstand harsh sunlight and
other external weather agents.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Artificial Intelligence | 21

Here you can see some examples of real-world personal robots:

• Sophia: This is a humanoid robot created by Hanson Robotics. It was designed to
live with humans and to learn from them.

• Roomba: This is a cleaning robot made by iRobot. It consists of a wheelie circular
base that moves around the house while computing the most efficient way to
cover the entire area.

• Pepper: Pepper is a social robot designed by SoftBank Robotics. Although it has
human form, it doesn’t move in a bipedal way. It also has a wheelie base that
provides good mobility.

Hardware and Software of Robots

Just like any other computer system, a robot is composed of hardware and software.
The kind of software and hardware the robot has will depend on its purpose and the
developers designing it. However, there are a few types of hardware components that
are more commonly used in several robots. We will be covering these in this chapter.

First of all, let’s look at the three kinds of components that every robot has:

• Control system: The control system is the central component of the robot, which
is connected to all other components that are to be controlled. It is usually a
microcontroller or a microprocessor, the power of which depends on the robot.

• Actuators: Actuators are a part of the robot that allows it to make changes in the
external environment, such as a motor for moving the whole robot or a part of the
robot, or a speaker that allows the robot to emit sounds.

• Sensors: These components are in charge of obtaining information so that the
robot can use it to have the desired output. This information can be related to the
robot’s internal status or to its external circumstances. Based on this, the sensors
are divided into the following types:

• Internal sensors: Most of these are used for the measuring position of the robot,
so you will usually find them inside the body of these robots. Here are a few
internal sensors that can be used by a robot:

Optointerrupters: These are sensors that can detect any object that crosses the
inner groove of the sensor.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

22 | Fundamentals of Robotics

Encoders: An encoder is a sensor that can transform slight movements into an
electric signal. This signal is later used by a control system to perform several
actions. An example is encoders that are used in elevators to notify the control
system when the elevator has reached the correct floor. It is possible to know
the amount of power given by an encoder by counting the times it turns on its
own axis. It is a translating movement that is converted into a certain amount of
energy.

Beacons and GPS systems: Beacons and GPS systems are sensors that are used to
estimate the positions of objects. GPS systems can successfully perform this task
thanks to the information they get from satellites.

• External sensors: These are used to obtain data from the robot’s surroundings.
They include nearness, contact, light, color, reflection, and infrared sensors.

The following diagram gives a graphical representation of the internal structure of
a robot:

Figure 1.3: Schema of robot parts

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Artificial Intelligence | 23

To get a better understanding of the preceding schema, we are going to see how
each component would work in a simulated situation. Imagine a robot that has
been ordered to go from point A to point B:

Figure 1.4: Robot starting to move from point A

The robot is using a GPS, which is an internal sensor, to constantly check its
own position and to check whether it has arrived at the target point. The GPS
computes the coordinates and sends them to the control system, which will
process them. If the robot hasn’t got to point B, the control system tells the
actuators to keep going. This situation is represented in the following diagram:

Figure 1.5: Robot in the process of completing the path from A to B

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

24 | Fundamentals of Robotics

On the other hand, if the coordinates sent to the control system by the GPS match
the point B, the control system will order the actuators to finish the process, and
then the robot won’t move:

Figure 1.6: End of the path! The robot arrives at point B

Robot Positioning
By using one of the internal sensors mentioned in the preceding section, we can
calculate the position of a robot after a certain amount of displacement. This kind of
calculation is called odometry and can be performed with the help of the encoders and
the information they provide. When discussing this technique, it’s important to keep in
mind the main advantage and disadvantage:

• Advantage: It can be used to compute the robot’s position without external
sensors, which would result in a robot’s design being much cheaper.

• Disadvantage: The final position calculation is not completely accurate because it
depends on the state of the ground and wheels.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robot Positioning | 25

Now, let’s see how to perform this kind of calculation step by step. Supposing we have a
robot that moves on two wheels, we would proceed as follows:

1. First, we should compute the distance completed by the wheels, which is done
by using the information extracted from the engine’s encoders. In a two-wheeled
robot, a simple schema could be like this:

Figure 1.7: Schema of a two-wheeled robot’s movement

The distance traveled by the left wheel is the dotted line in Figure 1.6 tagged with
DL, and DR represents the right wheel.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

26 | Fundamentals of Robotics

2. To calculate the linear displacement of the center point of the wheel’s axis, we will
need the information calculated in the first step. Using the same simple schema,
Dc would be the distance:

Note

If you were working with multi-axial wheels, you should study how the axes are
distributed first and then compute the distance traveled by each axis.

Figure 1.8: Schema of a two-wheeled robot’s movement (2)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robot Positioning | 27

3. To calculate the robot’s rotation angle, we will need the final calculation obtained
in the first step. The angle named α is the one we are referring to:

Figure 1.9: Schema of a two-wheeled robot’s movement (3)

As shown in the diagram, α would be 90º in this case, which means that the robot
has rotated a specific number of degrees.

4. Once you’ve obtained all the information, it is possible to perform a set of
calculations (which will be covered in the next section) to obtain the coordinates
of the final position.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

28 | Fundamentals of Robotics

Exercise 1: Computing a Robot’s Position

In this exercise, we are using the previous process to compute the position of a
two-wheeled robot after it has moved for a certain amount of time. First, let’s consider
the following data:

• Wheel diameter = 10 cm

• Robot base length = 80 cm

• Encoder counts per lap = 76

• Left encoder counts per 5 seconds = 600

• Right encoder counts per 5 seconds = 900

• Initial position = (0, 0, 0)

• Moving time = 5 seconds

Note

Encoder counts per lap is the measurement unit that we use to compute the
amount of energy generated by an encoder after one lap on its axis. For example,
in the information provided above we have the left encoder, which completes 600
counts in 5 seconds. We also know that an encoder needs 76 counts to complete
a lap. So, we can deduce that, in 5 seconds, the encoder will complete 7 laps
(600/76). This way, if we would know the energy generated by 1 lap, we know the
energy generated in 5 seconds.

For the initial position, the first and second numbers refer to the X and Y coordinates,
and the last number refers to the rotation angle of the robot. This data is a bit relative,
as you have to imagine where the axes begin.

Now, let’s follow these steps:

1. Let’s compute the completed distance of each wheel. We first compute the
number of counts that each encoder performs during the time it moves. This can
be easily computed by dividing the total movement by the given encoder time and
multiplying it by the number of counts of each encoder:

(Moving time / Encoder time) * Left encoder counts:

(5 / 5) * 600 = 600 counts

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robot Positioning | 29

(Moving time / Encoder time) * Right encoder counts:

(5 / 5) * 900 = 900 counts

Once this has been calculated, we can use this data to obtain the total distance. As
wheels are circular, we can compute each wheel’s completed distance as follows:

[2πr / Encoder counts per lap] * Total left encoder counts:

(10π/76) * 600 = 248.02 cm

[2πr / Encoder counts per lap] * Total right encoder counts:

(10π/76) * 900 = 372.03 cm

2. Now compute the linear displacement of the center point of the wheels’ axis. This
can be done with a simple calculation:

(Left wheel distance + Right wheel distance) / 2:

(248.02 + 372.03) / 2 = 310.03 cm

3. Compute the robot’s rotation angle. To do this, you can calculate the difference
between the distance completed by each wheel and divide it by the base length:

(Right wheel distance – Left wheel distance) / Base length:

(372.03 - 248.02) / 80 = 1.55 radians

4. Finally, we can compute the final position by calculating each component
separately. These are the equations to use to obtain each component:

Final x position = initial x position + (wheels’ axis displacement * rotation angle
cosine):

0 + (310.03 * cos (1.55)) = 6.45

Final y position = initial y position + (wheels’ axis displacement * rotation angle
cosine):

0 + (310.03 * sin (1.55)) = 309.96

Final robot rotation = initial robot rotation + robot rotation angle:

0 + 1.55= 1.55

So, after this process, we can conclude that the robot has moved from (0, 0, 0) to (6.45,
309.96, 1.55).

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

30 | Fundamentals of Robotics

How to Work with Robots

Like any other software development, the process of implementing applications and
programs for robots can be done many different ways.

In the upcoming chapters, we will use frameworks and technologies that make it
possible to abstract a specific problem and develop a solution that is easily adaptable to
all kinds of robots and devices. In this book, we will be using Robot Operating System
(ROS) for this purpose.

Another issue to consider before we start working with robots is the programming
language to use. You surely know and have used some languages, but which one is the
most appropriate? The real answer to this question is that there is no specific language;
it always depends on the problem at hand. But during our book, and due to the kinds
of activities that we will work on, we are going to use Python, which, as you may know,
is an interpreted, high-level, general-purpose programming language that is used in AI
and robotics.

By using Python, as with other languages, you can develop any functionality you
want your robot to have. For example, you could give your robot the simple behavior
of greeting when it detects a person. You could also program a more complex
functionality, for example, to dance when it “hears” music.

Now we are going to go through some exercises and activities that will introduce you to
Python for robotics, if you haven’t used it before.

Exercise 2: Computing the Distance Traveled by a Wheel with Python

In this exercise, we are going to implement a simple Python function for computing the
distance covered by a wheel using the same process that we performed in Exercise 1,
Computing a Robot’s Position. These are the steps to be followed:

1. Import the required resources. In this case, we are going to use the number π:

from math import pi

2. Create the function with the parameters. To compute this distance, we will need
the following:

Wheel diameter in centimeters

Encoder counts per lap

Number of seconds used to measure encoders’ counts

Wheel encoder counts during the given number of seconds

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robot Positioning | 31

Total time of movement

This is the function definition:

def wheel_distance(diameter, encoder, encoder_time, wheel, movement_time):

3. Begin with the implementation of the function. First, compute the distance
measured by the encoder:

time = movement_time / encoder_time
wheel_encoder = wheel * time

4. Transform the obtained distance from above to the one we expect, which would
be the distance traveled by the wheel:

wheel_distance = (wheel_encoder * diameter * pi) / encoder

5. Return the final value:

return wheel_distance

6. You can finally check whether the function is correctly implemented by passing
values to it and make the corresponding calculation manual:

wheel_distance(10, 76, 5, 400, 5)

This function call should return 165.34698176788385.

The output in your notebook should look like this:

Figure 1.10: Final distance covered by the wheel

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

32 | Fundamentals of Robotics

Exercise 3: Computing Final Position with Python

In this exercise, we use Python to compute the final position of a robot, given its initial
position, its distance completed by the axis, and its rotation angle. You can do it by
following this process:

1. Import the sine and cosine functions:

from math import cos, sin

2. Define the function with the required parameters:

The robot’s initial position (coordinates)

The completed distance by the robot’s central axis

The angle variation from its initial point:

def final_position(initial_pos, wheel_axis, angle):

Set a function by coding the formulas used in Exercise 1: Computing a Robot’s
Position.

They can be coded like this:

final_x = initial_pos[0] + (wheel_axis * cos(angle))
final_y = initial_pos[1] + (wheel_axis * sin(angle))
final_angle = initial_pos[2] + angle

Note

As you may guess by observing this implementation, the initial position has been
implemented using a tuple, where the first element matches the “X”, the second
with the “Y”, and the last with the initial angle.

Return the final value by creating a new tuple with the results:

return(final_x, final_y, final_angle)

3. Again, you can test the function by calling it with all the arguments and computing
the result by hand:

final_position((0,0,0), 125, 1)

The preceding code returns the following result:

(67.53778823351747, 105.18387310098706, 1)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robot Positioning | 33

Here, you can see the whole implementation and an example of a function call:

Figure 1.11: Final position of the robot computed

Activity 1: Robot Positioning Using Odometry with Python

You are creating a system that detects the position of a robot after moving for a certain
amount of time. Develop a Python function that gives you the final position of a robot
after receiving the following data:

• Wheels diameter in centimeters = 10 cm

• Robot base length = 80 cm

• Encoders counts per lap = 76

• Number of seconds used to measure encoders’ counts = 600

• Left and right encoder counts during the given number of seconds = 900

• Initial position = (0, 0, 0)

• Movement duration in seconds = 5 seconds

Note

The functions implemented in the previous exercises can help you to complete the
activity. There are a few steps that you can use to proceed ahead with this activity.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

34 | Fundamentals of Robotics

Following these steps will help you to complete the exercises:

1. First, you need to compute the distance completed by each wheel.

2. To move on, you need to calculate the distance completed by the axis.

3. Now compute the robot’s rotation angle.

4. Then calculate the final position of the robot.

The output would look like this:

Fig 1.11: Final position of a robot computed with the activity’s Python function

NOTE:

The solution for this activity can be found on page 300.

Summary
In this chapter, you have been introduced to the world of robotics. You have learned
about advanced techniques, such as NLP and computer vision, combined with robotics.
In this chapter, you have also worked with Python, which you will use in the chapters
ahead.

In addition, you have made use of odometry to compute a robot’s position without
external sensors. As you can see, it is not hard to compute a robot’s position if the data
required is available. Notice that although odometry is a good technique, in future
chapters we will use other methods, which will allow us to work with sensors, and that
may be more accurate in terms of results.

In the following chapter, we will look at computer vision and work on more practical
topics. For example, you will be introduced to machine learning, decision trees, and
artificial neural networks, with the goal of applying them to computer vision. You will
use them all during the rest of the book, and you will surely get the chance to use them
for personal or professional purposes.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Objectives

By the end of this chapter, you will be able to:

• Explain the impact of artificial intelligence and computer vision

• Deploy some of the basic computer vision algorithms

• Develop some of the basic machine learning algorithms

• Construct your first neural network

This chapter covers an introduction to computer vision followed by a few important basic
computer vision and machine learning algorithms.

Introduction to
Computer Vision

2

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

38 | Introduction to Computer Vision

Introduction
Artificial Intelligence (AI) is changing everything. It tries to mimic human intelligence
in order to achieve different tasks.

The section of AI that deals with images is called computer vision. Computer vision is
an interdisciplinary scientific field that tries to mimic human eyes. It not only makes
sense out of the pixels that are extracted from an image, but also gains a higher level
of understanding from that specific image by performing automated tasks and using
algorithms.

Some of these algorithms are better at object recognition, recognizing faces, classifying
images, editing images, and even generating images.

This chapter will begin with an introduction to computer vision, starting with some
of the most basic algorithms and an exercise to put them into practice. Later, an
introduction to machine learning will be given, starting from the most basic algorithms
to neural networks, involving several exercises to strengthen the knowledge acquired.

Basic Algorithms in Computer Vision
In this topic, we will be addressing how images are formed. We will introduce a library
that is very useful for performing computer vision tasks and we will learn about the
workings of some of these tasks and algorithms and how to code them.

Image Terminology

To understand computer vision, we first need to know how images work and how a
computer interprets them.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Algorithms in Computer Vision | 39

A computer understands an image as a set of numbers grouped together. To be more
specific, the image is seen as a two-dimensional array, a matrix that contains values
from 0 to 255 (0 being for black and 255 for white in grayscale images) representing the
values of the pixels of an image (pixel values), as shown in the following example:

Figure 2.1: Image representation without and with pixel values

In the image on the left-hand side, the number 3 is shown in a low resolution. On the
right-hand side, the same image is shown along with the value of every pixel. As this
value rises, a brighter color is shown, and if the value decreases, the color gets darker.

This particular image is in grayscale, which means it is only a two-dimensional array of
values from 0 to 255, but what about colored images? Colored images (or red/green/
blue (RGB) images) have three layers of two-dimensional arrays stacked together. Every
layer represents one color each and putting them all together forms a colored image.

The preceding image has 14x14 pixels in its matrix. In grayscale, it is represented
as 14x14x1, as it only has one matrix, and one channel. For the RGB format, the
representation is 14x14x3 as it has 3 channels. From this, all that computers need to
understand is that the images come from these pixels.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

40 | Introduction to Computer Vision

OpenCV

OpenCV is an open source computer vision library that has C++, Python, and Java
interfaces and supports Windows, Linux, macOS, iOS, and Android.

For all the algorithms mentioned in this chapter, we will be using OpenCV. OpenCV
helps us perform these algorithms using Python. If you want to practice one of these
algorithms, we recommend using Google Colab. You will need to install Python 3.5
or above, OpenCV, and NumPy to carry on with this chapter. To display them on our
screens, we will use Matplotlib. Both of these are great libraries for AI.

Basic Image Processing Algorithms

In order for a computer to understand an image, the image has to be processed first.
There are many algorithms that can be used to process images and the output depends
on the task at hand.

Some of the most basic algorithms are:

• Thresholding

• Morphological transformations

• Blurring

Thresholding

Thresholding is commonly used to simplify how an image is visualized by both the
computer and the user in order to make analysis easier. It is based on a value that the
user sets and every pixel is converted to white or black depending on whether the
value of every pixel is higher or lower than the set value. If the image is in grayscale, the
output image will be white and black, but if you choose to keep the RGB format for your
image, the threshold will be applied for every channel, which means it will still output a
colored image.

There are different methods for thresholding, and these are some of the most used
ones:

1. Simple Thresholding: If the pixel value is lower than the threshold set by the user,
this pixel will be assigned a 0 value (black), or 255 (white). There are also different
styles of thresholding within simple thresholding:

Threshold binary

Threshold binary inverted

Truncate

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Algorithms in Computer Vision | 41

Threshold to zero

Threshold to zero inverted

The different types of thresholds are shown in figure 2.2

Figure 2.2: Different types of thresholds

Threshold binary inverted works like binary but the pixels that were black
are white and vice versa. Global thresholding is another name given to binary
thresholding under simple thresholding.

Truncate shows the exact value of the threshold if the pixel is above the threshold
and the pixel value.

Threshold to zero outputs the pixel value (which is the actual value of the pixel) if
the pixel value is above the threshold value, otherwise it will output a black image,
whereas threshold to zero inverted does the exact opposite.

Note

The threshold value can be modified depending on the image or what the user
wants to achieve.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

42 | Introduction to Computer Vision

2. Adaptive Thresholding: Simple thresholding uses a global value as the threshold.
If the image has different lighting conditions in some parts, the algorithm does
not perform that well. In such cases, adaptive thresholding automatically guesses
different threshold values for different regions within the image, giving us a better
overall result with varying lighting conditions.

There are two types of adaptive thresholding:

Adaptive mean thresholding

Adaptive Gaussian thresholding

The difference between the adaptive thresholding and simple thresholding is
shown in figure 2.3

Figure 2.3: Difference between adaptive thresholding and simple thresholding

In adaptive mean thresholding, the threshold value is the mean of the
neighborhood area, while in adaptive Gaussian thresholding, the threshold value
is the weighted sum of the neighborhood values where weights are a Gaussian
window.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Algorithms in Computer Vision | 43

3. Otsu's Binarization: In global thresholding, we used an arbitrary value to assign
a threshold value. Consider a bimodal image (an image where the pixels are
distributed over two dominant regions). How would you choose the correct value?
Otsu's binarization automatically calculates a threshold value from the image
histogram for a bimodal image. An image histogram is a type of histogram that
acts as a graphical representation of the tonal distribution in a digital image:

Figure 2.4: Otsu's thresholding

Exercise 4: Applying Various Thresholds to an Image

NOTE

As we are training artificial neural networks on Google Colab, we should use the
GPU that Google Colab provides us. In order to do that, we would have to go to
runtime > Change runtime type > Hardware accelerator: GPU > Save.

All the exercises and activities will be primarily developed in Google Colab. It is
recommended to keep a separate folder for different assignments, unless advised
not to.

The Dataset folder is available on GitHub in the Lesson02 | Activity02 folder.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Histogram
https://en.wikipedia.org/wiki/Graphical_representation
https://en.wikipedia.org/wiki/Lightness_(color)
https://en.wikipedia.org/wiki/Digital_image

44 | Introduction to Computer Vision

In this exercise, we will be loading an image of a subway, to which we will apply
thresholding:

1. Open up your Google Colab interface.

2. Create a folder for the book, download the Dataset folder from GitHub, and upload
it in the folder.

3. Import the drive and mount it as follows:

from google.colab import drive
drive.mount('/content/drive')

Note

Every time you use a new collaborator, mount the drive to the desired folder.

Once you have mounted your drive for the first time, you will have to enter the
authorization code that you would get by clicking on the URL given by Google and
pressing the Enter key on your keyboard:

Figure 2.5: Image displaying the Google Colab authorization step

4. Now that you have mounted the drive, you need to set the path of the directory:

cd /content/drive/My Drive/C13550/Lesson02/Exercise04/

Note

The path mentioned in step 5 may change as per your folder setup on Google
Drive. The path will always begin with cd /content/drive/My Drive/.

The Dataset folder must be present in the path you are setting up.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Algorithms in Computer Vision | 45

5. Now you need to import the corresponding dependencies: OpenCV cv2 and
Matplotlib:

import cv2
from matplotlib import pyplot as plt

6. Now type the code to load the subway.jpg image, which we are going to process in
grayscale using OpenCV and show using Matplotlib:

Note

The subway.jpg image can be found on GitHub in the Lesson02 | Exercise04
folder.

img = cv2.imread('subway.jpg',0)
plt.imshow(img,cmap='gray')
plt.xticks([]),plt.yticks([])
plt.show()

Figure 2.6: Result of plotting the loaded subway image

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

46 | Introduction to Computer Vision

7. Let's apply simple thresholding by using OpenCV methods.

The method for doing so in OpenCV is called cv2.threshold and it takes three
parameters: image (grayscale), threshold value (used to classify the pixel values),
and maxVal, which represents the value to be given if the pixel value is more than
(sometimes less than) the threshold value:

_,thresh1 = cv2.threshold(img,107,255,cv2.THRESH_BINARY)
_,thresh2 = cv2.threshold(img,107,255,cv2.THRESH_BINARY_INV)
_,thresh3 = cv2.threshold(img,107,255,cv2.THRESH_TRUNC)
_,thresh4 = cv2.threshold(img,107,255,cv2.THRESH_TOZERO)
_,thresh5 = cv2.threshold(img,107,255,cv2.THRESH_TOZERO_INV)

titles = ['Original Image','BINARY', 'BINARY_INV',
'TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in range(6):
 plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
 plt.title(titles[i])
 plt.xticks([]),plt.yticks([])
plt.show()

Figure 2.7: Simple thresholding using OpenCV

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Algorithms in Computer Vision | 47

8. We are going to do the same with adaptive thresholding.

The method for doing so is cv2.adaptiveThreshold and it has three special input
parameters and only one output argument. Adaptive method, block size (the
size of the neighborhood area), and C (a constant that is subtracted from the
mean or weighted mean calculated) are the inputs, whereas you only obtain the
thresholded image as the output. This is unlike global thresholding, where there
are two outputs:

th2=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_
BINARY,71,7)
th3=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.
THRESH_BINARY,71,7)

titles = ['Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [th2, th3]
for i in range(2):
 plt.subplot(1,2,i+1),plt.imshow(images[i],'gray')
 plt.title(titles[i])
 plt.xticks([]),plt.yticks([])

plt.show()

Figure 2.8: Adaptive thresholding using OpenCV

9. Finally, let's put Otsu's binarization into practice.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

48 | Introduction to Computer Vision

10. The method is the same as for simple thresholding, cv2.threshold, but with an
extra flag, cv2.THRESH_OTU:

ret2,th=cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

titles = ['Otsu\'s Thresholding']
images = [th]
for i in range(1):
 plt.subplot(1,1,i+1),plt.imshow(images[i],'gray')
 plt.title(titles[i])
 plt.xticks([]),plt.yticks([])

plt.show()

Figure 2.9: Otsu's binarization using OpenCV

Now you are able to apply different thresholding transformations to any image.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Algorithms in Computer Vision | 49

Morphological Transformations

A morphological transformation consists of a set of simple image operations based on
an image shape, and they are usually used on binary images. They are commonly used
to differentiate text from the background or any other shapes. They need two inputs,
one being the original image, and the other is called the structuring element or kernel,
which decides the nature of the operation. The kernel is usually a matrix that slides
through the image, multiplying its values by the values of the pixels of the image. Two
basic morphological operators are erosion and dilation. Their variant forms are opening
and closing. The one that should be used depends on the task at hand:

• Erosion: When given a binary image, it shrinks the thickness by one pixel both on
the interior and the exterior of the image, which is represented by white pixels.
This method can be applied several times. It can be used for different reasons,
depending on what you want to achieve, but normally it is used with dilation
(which is explained in figure 2.10) in order to get rid of holes or noise. An example
of erosion is shown here with the same digit, 3:

Figure 2.10: Example of erosion

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

50 | Introduction to Computer Vision

• Dilation: This method does the opposite of erosion. It increases the thickness of
the object in a binary image by one pixel both on the interior and the exterior.
It can also be applied to an image several times. This method can be used for
different reasons, depending on what you want to achieve, but normally it is
implemented along with erosion in order to get rid of holes in an image or noise.
An example of dilation is shown here (we have implemented dilation on the image
several times):

Figure 2.11: Example of dilation

• Opening: This method performs erosion first, followed by dilation, and it is usually
used for removing noise from an image.

• Closing: This algorithm does the opposite of opening, as it performs dilation first
before erosion. It is usually used for removing holes within an object:

Figure 2.12: Examples of opening and closing

As you can see, the opening method removes random noise from the image and the
closing method works perfectly in fixing the small random holes within the image. In
order to get rid of the holes of the output image from the opening method, a closing
method could be applied.

There are more binary operations, but these are the basic ones.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Algorithms in Computer Vision | 51

Exercise 5: Applying the Various Morphological Transformations to an Image

In this exercise, we will be loading an image of a number, on which we will apply the
morphological transformations that we have just learned about:

1. Open up your Google Colab interface.

2. Set the path of the directory:

cd /content/drive/My Drive/C13550/Lesson02/Exercise05/

Note

The path mentioned in step 2 may change, as per your folder setup on Google
Drive.

3. Import the OpenCV, Matplotlib, and NumPy libraries. NumPy here is the
fundamental package for scientific computing with Python and will help us create
the kernels applied:

import cv2
import numpy as np
from matplotlib import pyplot as plt

4. Now type the code to load the Dataset/three.png image, which we are going to
process in grayscale using OpenCV and show using Matplotlib:

Note

The three.png image can be found on GitHub in the Lesson02 | Exercise05 folder.

img = cv2.imread('Dataset/three.png',0)
plt.imshow(img,cmap='gray')
plt.xticks([]),plt.yticks([])
plt.savefig('ex2_1.jpg', bbox_inches='tight')
plt.show()

Figure 2.13: Result of plotting the loaded image

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

52 | Introduction to Computer Vision

5. Let's apply erosion by using OpenCV methods.

The method used here is cv2.erode, and it takes three parameters: the image, a
kernel that slides through the image, and the number of iterations, which is the
number of times that it is executed:

kernel = np.ones((2,2),np.uint8)
erosion = cv2.erode(img,kernel,iterations = 1)
plt.imshow(erosion,cmap='gray')
plt.xticks([]),plt.yticks([])
plt.savefig('ex2_2.jpg', bbox_inches='tight')
plt.show()

Figure 2.14: Output of the erosion method using OpenCV

As we can see, the thickness of the figure has decreased.

6. We are going to do the same with dilation.

The method used here is cv2.dilate, and it takes three parameters: the image, the
kernel, and the number of iterations:

kernel = np.ones((2,2),np.uint8)
dilation = cv2.dilate(img,kernel,iterations = 1)
plt.imshow(dilation,cmap='gray')
plt.xticks([]),plt.yticks([])
plt.savefig('ex2_3.jpg', bbox_inches='tight')
plt.show()

Figure 2.15: Output of the dilation method using OpenCV

As we can see, the thickness of the figure has increased.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Algorithms in Computer Vision | 53

7. Finally, let's put opening and closing into practice.

The method used here is cv2.morphologyEx, and it takes three parameters: the
image, the method applied, and the kernel:

import random
random.seed(42)
def sp_noise(image,prob):
 '''
 Add salt and pepper noise to image
 prob: Probability of the noise
 '''
 output = np.zeros(image.shape,np.uint8)
 thres = 1 - prob
 for i in range(image.shape[0]):
 for j in range(image.shape[1]):
 rdn = random.random()
 if rdn < prob:
 output[i][j] = 0
 elif rdn > thres:
 output[i][j] = 255
 else:
 output[i][j] = image[i][j]
 return output

def sp_noise_on_figure(image,prob):
 '''
 Add salt and pepper noise to image
 prob: Probability of the noise
 '''
 output = np.zeros(image.shape,np.uint8)
 thres = 1 - prob
 for i in range(image.shape[0]):
 for j in range(image.shape[1]):
 rdn = random.random()
 if rdn < prob:
 if image[i][j] > 100:
 output[i][j] = 0
 else:
 output[i][j] = image[i][j]
 return output

kernel = np.ones((2,2),np.uint8)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

54 | Introduction to Computer Vision

Create thicker figure to work with
dilation = cv2.dilate(img, kernel, iterations = 1)
Create noisy image
noise_img = sp_noise(dilation,0.05)
Create image with noise in the figure
noise_img_on_image = sp_noise_on_figure(dilation,0.15)
Apply Opening to image with normal noise
opening = cv2.morphologyEx(noise_img, cv2.MORPH_OPEN, kernel)
Apply Closing to image with noise in the figure
closing = cv2.morphologyEx(noise_img_on_image, cv2.MORPH_CLOSE, kernel)

images = [noise_img,opening,noise_img_on_image,closing]
for i in range(4):
 plt.subplot(1,4,i+1),plt.imshow(images[i],'gray')
 plt.xticks([]),plt.yticks([])
plt.savefig('ex2_4.jpg', bbox_inches='tight')
plt.show()

Figure 2.16: Output of the opening method (left) and closing method (right) using OpenCV

Note

The entire code file can be found on GitHub in the Lesson02 | Exercise05 folder.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Algorithms in Computer Vision | 55

Blurring (Smoothing)

Image blurring performs convolution over an image with a filter kernel, which in
simpler terms is multiplying a matrix of specific values on every part of the image, in
order to smooth it. It is useful for removing noise and edges:

• Averaging: In this method, we consider a box filter or kernel that takes the average
of the pixels within the area of the kernel, replacing the central element by using
convolution over the entire image.

• Gaussian Blurring: The kernel applied here is Gaussian, instead of the box filter. It
is used for removing Gaussian noise in a particular image.

• Median Blurring: Similar to averaging, but this one replaces the central element
with the median value of the pixels of the kernel. It actually has a very good effect
on salt-and-pepper noise (that is, visible black or white spots in an image).

In Figure 2.17, we have applied the aforementioned methods:

Figure 2.17: Result of comparing different blurring methods

There are many more algorithms that could be applied, but these are the most
important ones.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

56 | Introduction to Computer Vision

Exercise 6: Applying the Various Blurring Methods to an Image

In this exercise, we will be loading an image of a subway, to which we will apply the
blurring method:

1. Open up your Google Colab interface.

2. Set the path of the directory:

cd /content/drive/My Drive/C13550/Lesson02/Exercise06/

Note

The path mentioned in step 2 may be different according to your folder setup on
Google Drive.

3. Import the OpenCV, Matplotlib, and NumPy libraries:

import cv2
from matplotlib import pyplot as plt
import numpy as np

4. Type the code to load the Dataset/subway.png image that we are going to process
in grayscale using OpenCV and show it using Matplotlib:

Note

The subway.png image can be found on GitHub in the Lesson02 | Exercise06
folder.

img = cv2.imread('Dataset/subway.jpg')
#Method to convert the image to RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.savefig('ex3_1.jpg', bbox_inches='tight')
plt.xticks([]),plt.yticks([])
plt.show()

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Algorithms in Computer Vision | 57

Figure 2.18: Result of plotting the loaded subway image in RGB

5. Let's apply all the blurring methods:

The methods applied are cv2.blur, cv2.GaussianBlur, and cv2.medianBlur. All
of them take an image as the first parameter. The first method takes only one
argument, that is, the kernel. The second method takes the kernel and the
standard deviation (sigmaX and sigmaY), and if both are given as zeros, they are
calculated from the kernel size. The method mentioned last only takes one more
argument, which is the kernel size:

blur = cv2.blur(img,(51,51)) # Apply normal Blurring
blurG = cv2.GaussianBlur(img,(51,51),0) # Gaussian Blurring
median = cv2.medianBlur(img,51) # Median Blurring

titles = ['Original Image','Averaging', 'Gaussian Blurring', 'Median
Blurring']
images = [img, blur, blurG, median]

for i in range(4):
 plt.subplot(2,2,i+1),plt.imshow(images[i])
 plt.title(titles[i])
 plt.xticks([]),plt.yticks([])
plt.savefig('ex3_2.jpg', bbox_inches='tight')
plt.show()

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

58 | Introduction to Computer Vision

Figure 2.19: Blurring methods with OpenCV

Now you know how to apply several blurring techniques to any image.

Exercise 7: Loading an Image and Applying the Learned Methods

In this exercise, we will be loading an image of a number and we will apply the methods
that we have learned so far.

Note

The entire code is available on GitHub in the Lesson02 | Exercise07-09 folder.

1. Open up a new Google Colab interface, and mount your drive as mentioned in
Exercise 4, Applying the Various Thresholds to an Image, of this chapter.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Algorithms in Computer Vision | 59

2. Set the path of the directory:

cd /content/drive/My Drive/C13550/Lesson02/Exercise07/

Note

The path mentioned in step 2 may be different according to your folder setup on
Google Drive.

3. Import the corresponding dependencies: NumPy, OpenCV, and Matplotlib:

import numpy as np #Numpy
import cv2 #OpenCV
from matplotlib import pyplot as plt #Matplotlib
count = 0

4. Type the code to load the Dataset/number.jpg image, which we are going to
process in grayscale using OpenCV and show using Matplotlib:

Note

The number.jpg image can be found on GitHub in the Lesson02 | Exercise07-09 |
Dataset folder.

img = cv2.imread('Dataset/number.jpg',0)
plt.imshow(img,cmap='gray')
plt.xticks([]),plt.yticks([])
plt.show()

Figure 2.20: Result of loading the image with the number

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

60 | Introduction to Computer Vision

5. If you want to recognize those digits using machine learning or any other
algorithm, you need to simplify the visualization of them. Using thresholding
seems to be the first logical step to proceed with this exercise. We have learned
some thresholding methods, but the most commonly used one is Otsu's
binarization, as it automatically calculates the threshold value without the user
providing the details manually.

Apply Otsu's binarization to the grayscale image and show it using Matplotlib:

_,th1=cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU

th1 = (255-th1)
This step changes the black with white and vice versa in order to have
white figures
plt.imshow(th1,cmap='gray')
plt.xticks([]),plt.yticks([])
plt.show()

Figure 2.21: Using Otsu's binarization thresholding on the image

6. In order to get rid of the lines in the background, we need to do some
morphological transformations. First, start by applying the closing method:

open1 = cv2.morphologyEx(th1, cv2.MORPH_OPEN, np.ones((4, 4),np.uint8))
plt.imshow(open1,cmap='gray')
plt.xticks([]),plt.yticks([])
plt.show()

Figure 2.22: Applying the closing method

Note

The lines in the background have been removed completely. Now a number
prediction will be much easier.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Algorithms in Computer Vision | 61

7. In order to fill the holes that are visible in these digits, we need to apply the
opening method. Apply the opening method to the preceding image:

close1 = cv2.morphologyEx(open1, cv2.MORPH_CLOSE, np.ones((8, 8),
np.uint8))
plt.imshow(close1,cmap='gray')
plt.xticks([]),plt.yticks([])
plt.show()

Figure 2.23: Applying the opening method

8. There are still leftovers and imperfections around the digits. In order to remove
these, a closing method with a bigger kernel would be the best choice. Now apply
the corresponding method:

open2 = cv2.morphologyEx(close1, cv2.MORPH_OPEN,np.ones((7,12),np.uint8))
plt.imshow(open2,cmap='gray')
plt.xticks([]),plt.yticks([])
plt.show()

Figure 2.24: Applying the closing method with a kernel of a bigger size

Depending on the classifier that you use to predict the digits or the conditions of
the given image, some other algorithms would be applied.

9. If you want to predict the numbers, you will need to predict them one by one.
Thus, you should divide the numbers into smaller numbers.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

62 | Introduction to Computer Vision

Thankfully, OpenCV has a method to do this, and it's called cv2.findContours. In
order to find contours, we need to invert blacks into whites. This piece of code is
larger, but it is only required if you want to predict character by character:

_, contours, _ = cv2.findContours(open2, cv2.RETR_EXTERNAL, cv2.CHAIN_
APPROX_SIMPLE) #Find contours
cntsSorted = sorted(contours, key=lambda x: cv2.contourArea(x),
reverse=True) #Sort the contours
cntsLength = len(cntsSorted)
images = []

for idx in range(cntsLength): #Iterate over the contours
 x, y, w, h = cv2.boundingRect(contour_no) #Get its position and size
 ... # Rest of the code in Github
 images.append([x,sample_no]) #Add the image to the list of images
and the X position

images = sorted(images, key=lambda x: x[0]) #Sort the list of images using
the X position
{…}

Note

The entire code with added comments is available on GitHub in the Lesson02 |
Exercise07-09 folder.

Figure 2.25: Extracted digits as the output

In the first part of the code, we are finding the contours of the image (the curve joining
all the continuous points along the boundary and of the same color or intensity) to find
every digit, which we then sort depending on the area of each contour (each digit).

After this, we loop over the contours, cropping the original image with the given
contours, ending up with every number in a different image.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning | 63

After this, we need to have all the images with the same shape, so we adapt the image
to a given shape using NumPy and append the image to a list of images along with the X
position.

Finally, we sort the list of images using the X position (from left to right, so they remain
in order) and plot the results. We also save every single digit as an image so that we can
use every digit separately afterward for any task we want.

Congratulations! You have successfully processed an image with text in it, obtained the
text, and extracted every single character, and now the magic of machine learning can
begin.

Introduction to Machine Learning
Machine learning (ML) is the science of making computers learn from data without
stating any rules. ML is mostly based on models that are trained with a lot of data, such
as images of digits or features of different objects, with their corresponding labels,
such as the number of those digits or the type of the object. This is called supervised
learning. There are other types of learning, such as unsupervised learning and
reinforcement learning, but we will be focusing on supervised learning. The main
difference between supervised learning and unsupervised learning is that the model
learns clusters from the data (depending on how many clusters you specify), which are
translated into classes. Reinforcement learning, on the other hand, is concerned with
how software agents should take action in an environment in order to increase a reward
that is given to the agent, which will be positive if the agent is performing the right
actions and negative otherwise.

In this part of the chapter, we will gain an understanding of machine learning and check
a variety of models and algorithms, going from the most basic models to explaining
artificial neural networks.

Decision Trees and Boosting Algorithms

In this section, we will be explaining decision trees and boosting algorithms as some of
the most basic machine learning algorithms.

Bagging (decision trees and random forests) and boosting (AdaBoost) will be explained
in this topic.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

64 | Introduction to Computer Vision

Bagging:

Decision trees are perhaps the most basic machine learning algorithms, and are used
for classification and regression, but on a basic level, they are used for teaching and
performing tests.

In a decision tree, every node represents an attribute of the data that is being trained
on (whether something is true or false), where every branch (line between nodes)
represents a decision (if something is true, go this way; otherwise, the other way) and
every leaf represents a final outcome (if all conditions are fulfilled, it's a sunflower or a
daisy).

We are now going to use the Iris dataset. This dataset considers sepal width and length,
along with petal width and length, in order to classify Iris flowers as setosa, versicolour,
or virginica.

Note

The Iris dataset can be downloaded from scikit-learn using Python:

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html

Scikit-learn is a library that provides useful tools for data mining and data analysis.

The following flowchart shows the learning representation of a decision tree trained
on this dataset. X represents features from the dataset, X0 being sepal length, X1 being
sepal width, X2 being petal length, and X3 petal width. The 'value' tag is how many
samples of each category fall into each node. We can see that, in the first step, the
decision tree already distinguishes setosa from the other two by only considering the
X2 feature, petal length:

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html

Introduction to Machine Learning | 65

Figure 2.26: Graph of a decision tree for the Iris dataset

Decision trees can be implemented in Python using only a couple of lines thanks to
scikit-learn:

from sklearn.tree import DecisionTreeClassifier

dtree=DecisionTreeClassifier()

dtree.fit(x,y)

x and y are the features and the labels of the training set, respectively.

x, apart from being only columns of data representing those lengths and widths, could
also be every pixel of the image. In machine learning, when the input data is images,
every pixel is treated as a feature.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

66 | Introduction to Computer Vision

Decision trees are trained for one specific task or dataset and cannot be transferred to
another similar problem. Nevertheless, several decision trees can be combined in order
to create bigger models and learn how to generalize. These are called random forests.

The name forest refers to an ensemble of many decision tree algorithms, following the
bagging method, which states that the combination of several algorithms achieves the
best result overall. The appearance of the word "random" refers to the randomness of
the algorithm when selecting the features to take into account to split a node.

Thanks again to scikit-learn, we can implement the random forest algorithm with only a
couple of lines, fairly similar to the previous lines:

from sklearn.ensemble import RandomForestClassifier

rndForest=RandomForestClassifier(n_estimators=10)

rndForest.fit(x,y)

n_estimators stands for the number of underlying decision trees. If you test the results
with this method, the results will improve for sure.

There are other methods that follow the boosting methodology as well. Boosting
consists of algorithms called weak learners that are put together into a weighted
sum and generate a strong learner, which gives an output. These weak learners are
trained sequentially, meaning each one of them tries to solve the mistakes made by its
predecessor.

There are many algorithms that use this approach. The most famous ones are AdaBoost,
gradient boosting, and XGBoost. We are only going to look at AdaBoost as it is the most
well known and easy to understand.

Boosting

AdaBoost puts together weak learners in order to form a strong learner. The name
AdaBoost stands for adaptive boosting, which means that this strategy would weigh
differently at each point in time. Those examples that are incorrectly classified in a
single iteration, get a higher weight than the next iteration, and vice versa.

The code for this method is as follows:

from sklearn.ensemble import AdaBoostClassifier

adaboost=AdaBoostClassifier(n_estimators=100)

adaboost.fit(x_train, y_train)

n_estimators is the maximum number of estimators once boosting is completed.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning | 67

This method is initialized with a decision tree underneath; thus, the performance
might not be as good as the random forest. But in order to make a better classifier, the
random forest algorithm should be used instead:

AdaBoostClassifier(RandomForestClassifier(n_jobs=-1,n_estimators=500,max_
features='auto'),n_estimators=100)

Exercise 8: Predicting Numbers Using the Decision Tree, Random Forest, and

AdaBoost Algorithms

In this exercise, we are going to use the digits obtained from the last exercise and the
models that we have learned in this topic to correctly predict every number. To do that,
we are going to extract several digits from some samples inside the Dataset/numbers
folder, along with the MNIST dataset to have enough data, so the models learn properly.
The MNIST dataset is a compound of handwritten digits, which go from 0 to 9 with a
shape of 28 x 28 x 3, and it is mostly used for researchers to test their methods or to
play around with. Nevertheless, it can help to predict some numbers even though they
are not of the same kind. You can check out this dataset at http://yann.lecun.com/
exdb/mnist/.

As the installation of Keras requires TensorFlow, we propose to use Google Colab, which
is just like a Jupyter notebook but with the difference that your system is not being
used. Instead, a remote virtual machine is used and everything for machine learning and
Python is already installed.

Let's begin the exercise:

Note

We will be continuing the code from Exercise 7, here in the same notebook.

1. Head to the interface on Google Colab, where you executed the code for Exercise
7, Loading an Image and Applying the Learned Methods.

2. Import the libraries:

import numpy as np
import random
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils import shuffle
from matplotlib import pyplot as plt
import cv2

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

68 | Introduction to Computer Vision

import os
import re
random.seed(42)

Note

We are setting the seed of the random method to 42, which is for reproducibility:
all random steps have the same randomness and always give the same output. It
could be set to any number that does not vary.

3. Now we are going to import the MNIST dataset:

from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

In the last line of the code, we are loading the data in x_train, which is the training
set (60,000 examples of digits), y_train, which are the labels of those digits,
x_test, which is the testing set, and y_test, which are the corresponding labels.
These are in NumPy format.

4. Let's show some of those digits using Matplotlib:

for idx in range(5):
 rnd_index = random.randint(0, 59999)
 plt.subplot(1,5,idx+1),plt.imshow(x_train[idx],'gray')
 plt.xticks([]),plt.yticks([])
plt.show()

Figure 2.27: MNIST dataset

Note

These digits do not look like the ones that we extracted in the previous exercise. In
order to make the models properly predict the digits from the image processed in
the first exercise, we will need to add some of those digits to this dataset.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning | 69

Here's the process for adding new digits that look like the ones we want to predict:

Add a Dataset folder with subfolders numbered from 0 to 9 (already done).

Get the code from the previous exercise.

Use the code to extract all the digits from the images that are stored in 'Dataset/
numbers/' (already done).

Paste the generated digits to the corresponding folders with the name that
corresponds to the digit generated (already done).

Add those images to the original dataset (step 5 in this exercise).

5. To add those images to your training set, these two methods should be declared:

def list_files(directory, ext=None):
 return [os.path.join(directory, f) for f in os.listdir(directory)
 if os.path.isfile(os.path.join(directory, f)) and (ext==None
or re.match('([\w_-]+\.(?:' + ext + '))', f))]
 # ---
def load_images(path,label):
 X = []
 Y = []
 label = str(label)
 for fname in list_files(path, ext='jpg'):
 img = cv2.imread(fname,0)
 img = cv2.resize(img, (28, 28))
 X.append(img)
 Y.append(label)

 if maximum != -1 :
 X = X[:maximum]
 Y = Y[:maximum]

 X = np.asarray(X)
 Y = np.asarray(Y)
 return X, Y

The first method, list_files(), lists all the files within a folder with the specified
extension, which in this case is jpg.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

70 | Introduction to Computer Vision

In the main method, load_images(), we are loading the images from those folders,
which are from the digit folder, with its corresponding label. If the maximum is
different to –1, we establish a limit to the quantity that is loaded for every digit. We
do this because there should be similar samples for every digit. Finally, we convert
the lists to NumPy arrays.

6. Now we need to add these arrays to the training set so that our models can learn
how to recognize the extracted digits:

print(x_train.shape)
print(x_test.shape)
X, Y = load_images('Dataset/%d'%(0),0,9)
for digit in range(1,10):
 X_aux, Y_aux = load_images('Dataset/%d'%(digit),digit,9)
 print(X_aux.shape)
 X = np.concatenate((X, X_aux), axis=0)
 Y = np.concatenate((Y, Y_aux), axis=0)

After adding those digits using the method declared in the preceding code, we
concatenate those arrays to the sets created before the for loop mentioned:

from sklearn.model_selection import train_test_split
x_tr, x_te, y_tr, y_te = train_test_split(X, Y, test_size=0.2)

After this, the train_test_split method from sklearn is used in order to separate
those digits – 20% for testing and the rest for training:

x_train = np.concatenate((x_train, x_tr), axis=0)
y_train = np.concatenate((y_train, y_tr), axis=0)
x_test = np.concatenate((x_test, x_te), axis=0)
y_test = np.concatenate((y_test, y_te), axis=0)

print(x_train.shape)
print(x_test.shape)

Once done, we concatenate those to the original training and testing sets. We
have printed the shape of x_train and x_test before and after so those extra 60
digits can be seen. It goes from shape (60,000, 28, and 28) and (10,000, 28, and 28)
to shape (60,072, 28, and 28) and (10,018, 28, and 28).

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning | 71

7. For the models imported from sklearn that we are going to use in this exercise, we
need to format the arrays to the shape (n samples and array), and now we have (n
samples, array_height, and array_width):

x_train = x_train.reshape(x_train.shape[0],x_train.shape[1]*x_train.
shape[2])
x_test = x_test.reshape(x_test.shape[0],x_test.shape[1]*x_test.shape[2])
print(x_train.shape)
print(x_test.shape)

We multiply the height and the width of the array in order to get the total length
of the array, but only in one dimension: (28*28) = (784).

8. Now we are ready to feed the data into the models. We will start training a
decision tree:

print ("Applying Decision Tree...")
dtc = DecisionTreeClassifier()
dtc.fit(x_train, y_train)

In order to see how well this model performs, metric accuracy is used. This
represents the number of samples from x_test that have been predicted, which we
have already imported from the metrics module and from sklearn. Now we will be
using accuracy_score() from that module to calculate the accuracy of the model.
We need to predict the results from x_test using the predict() function from the
model and see whether the output matches the y_test labels:

y_pred = dtc.predict(x_test)
accuracy = metrics.accuracy_score(y_test, y_pred)
print(accuracy*100)

After that, the accuracy is calculated and printed. The resulting accuracy
percentage is 87.92%, which is not a bad result for a decision tree. It can be
improved though.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

72 | Introduction to Computer Vision

9. Let's try the random forest algorithm:

print ("Applying RandomForest...")
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(x_train, y_train)

Following the same methodology to calculate the accuracy, the accuracy obtained
is 94.75%, which is way better and could be classified as a good model.

10. Now, we will try AdaBoost initialized with random forest:

print ("Applying Adaboost...")
adaboost = AdaBoostClassifier(rfc,n_estimators=10)
adaboost.fit(x_train, y_train)

The accuracy obtained using AdaBoost is 95.67%. This algorithm takes much more
time than the previous ones but gets better results.

11. We are now going to apply random forest to the digits that were obtained in
the last exercise. We apply this algorithm because it takes much less time than
AdaBoost and gives better results. Before checking the following code, you need
to run the code from the exercise one for the image stored in the Dataset/number.
jpg folder, which is the one used in the first exercise, and for the other two images
that are extracted for testing in the Dataset/testing/ folder. Once you have done
that, you should have five images of digits in your directory for every image, ready
to be loaded. Here's the code:

for number in range(5):
 imgLoaded = cv2.imread('number%d.jpg'%(number),0)
 img = cv2.resize(imgLoaded, (28, 28))
 img = img.flatten()
 img = img.reshape(1,-1)
 plt.subplot(1,5,number+1),
 plt.imshow(imgLoaded,'gray')
 plt.title(rfc.predict(img)[0])
 plt.xticks([]),plt.yticks([])
plt.show()

Figure 2.28: Random forest prediction for the digits 1, 6, 2, 1, and 6

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning | 73

Here, we are applying the predict() function of the random forest model, passing
every image to it. Random forest seems to perform pretty well, as it has predicted
all of the numbers correctly. Let's try another number that has not been used
(there is a folder with some images for testing inside the Dataset folder):

Figure 2.29: Random forest prediction for the digits 1, 5, 8, 3, and 4

It is still performing well with the rest of the digits. Let's try another number:

Figure 2.30: Random forest prediction for the digits 1, 9, 4, 7, and 9

With the number 7, it seems to be having problems. It is probably because we have
not introduced enough samples, and due to the simplicity of the model.

Note

The entire code for this exercise is available on GitHub in the Lesson02 |
Exercise07-09 folder.

Now, in the next topic, we are going to explore the world of artificial neural networks,
which are far more capable of achieving these tasks.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

74 | Introduction to Computer Vision

Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) are information processing systems that are
modeled on and inspired by the human brain, which they try to mimic by learning
how to recognize patterns in data. They accomplish tasks by having a well structured
architecture. This architecture is composed of several small processing units called
neurons, which are interconnected in order to solve major problems.

ANNs learn by having enough examples in the dataset that they are processing, and
enough examples means thousands of examples, or even millions. The amount of data
here can be a disadvantage, since if you do not have this data, you will have to create it
yourself, and that means that you will probably need a lot of money to gather sufficient
data.

Another disadvantage of these algorithms is that they need to be trained on specific
hardware and software. They are well trained on high-performance GPUs, which are
expensive. You can still do certain things using a GPU that does not cost that much, but
the data will take much longer to be trained. You also need to have specific software,
such as TensorFlow, Keras, PyTorch, or Fast.AI. For this book, we will be using
TensorFlow and Keras, which runs on top of TensorFlow.

These algorithms work by taking all of the data as input, in which the first layer of
neurons acts as the input. After that, every entry is passed to the next layer of neurons,
where these are multiplied by some value and processed by an activation function,
which makes "decisions" and passes those values to the next layer. The layers in the
middle of the network are called hidden layers. This process keeps going until the
last layer, where the output is given. When introducing the MNIST images as input
to the neural network, the end of the network should have 10 neurons, each neuron
representing each digit, and if the neural network guesses that an image is a specific
digit, then the corresponding neuron will be activated. The ANN checks whether it
has succeeded for the decision, and if not, it performs a correction process called
backpropagation, where every pass of the network is checked and corrected, adjusting
the weights of the neurons. In Figure 2.31, backpropagation is shown:

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning | 75

Figure 2.31: Backpropagation process

Here is a graphical representation of an ANN:

Figure 2.32: ANN architecture

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

76 | Introduction to Computer Vision

In the preceding diagram, we can see the neurons, which is where all the processing
occurs, and the connections between them, which are the weights of the network.

We are going to gain an understanding of how to create one of these neural networks,
but first, we need to take a look at the data that we have.

In the previous exercise, we had the shapes (60,072 and 784) and (10,018 and 784) as
integer types, and 0 to 255 as pixel values, for training and testing, respectively. ANNs
perform better and faster with normalized data, but what is that?

Having normalized data means converting that 0-255 range of values to a range of
0-1. The values must be adapted to fit between 0 and 1, which means they will be float
numbers, because there is no other way to fit a higher range of numbers into a shorter
range So, first we need to convert the data to a float and then normalize it. Here's the
code for doing so:

x_train = (x_train.astype(np.float32))/255.0 #Converts to float and then
normalize

x_test = (x_test.astype(np.float32))/255.0 #Same for the test set

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)

x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

For the labels, we also need to change the format to one-hot encoding.

In order to do that, we need to use a function from Keras, from its utils package (the
name has changed to np_utils), called to_categorical(), which transforms the number
of the digit of every label to one-hot encoding. Here's the code:

y_train = np_utils.to_categorical(y_train, 10)

y_test = np_utils.to_categorical(y_test, 10)

If we print the first label of y_train, 5, and then we print the first value of y_train after
the conversion, it will output [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]. This format puts a 1 in the sixth
place of an array of 10 positions (because there are 10 numbers) for the number 5 (in the
sixth place because the first one is for the 0, and not for the 1). Now we are ready to go
ahead with the architecture of the neural network.

For a basic neural network, dense layers (or fully connected layers) are employed.
These neural networks are also called fully connected neural networks. These contain
a series of neurons that represent the neurons of the human brain. They need an
activation function to be specified. An activation function is a function that takes the
input and calculates a weighted sum of it, adding a bias and deciding whether it should
be activated or not (outputs 1 and 0, respectively).

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning | 77

The two most used activation functions are sigmoid and ReLU, but ReLU has
demonstrated better performance overall. They are represented on the following chart:

Figure 2.33: The sigmoid and ReLU functions

The sigmoid and ReLU functions calculate the weighted sum and add the bias. They
then output a value depending on the value of that calculation. The sigmoid function
will give different values depending on the value of the calculation, from 0 to 1. But
ReLU will give 0 for negative values or return the value of the calculation for positive
values.

Toward the end of a neural network, normally the softmax activation function takes
place, which will output a non-probabilistic number for every class, which is higher for
the class that has the highest chance of corresponding to the input image. There are
other activation functions, but this one is the best for the output of a network for multi-
classification problems.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

78 | Introduction to Computer Vision

In Keras, a neural network could be coded as follows:

model = Sequential()

model.add(Dense(16, input_shape=input_shape))

model.add(Activation('relu'))

model.add(Dense(8))

model.add(Activation('relu'))

model.add(Flatten())

model.add(Dense(10, activation="softmax"))

The model is created as Sequential() as the layers are created sequentially. First, we
add a dense layer with 16 neurons and the shape of the input is passed so that the
neural network knows the shape of the input. After which, the ReLU activation function
is applied. We use this function because it generally gives good results. We stack
another layer with eight neurons and the same activation function.

At the end, we use the Flatten function to convert the array to one dimension and
then the last dense layer is stacked, where the number of classes should represent the
number of neurons (in this case, there would be 10 classes for the MNIST dataset). The
softmax function is applied in order to get the results as a one-hot encoder, as we have
mentioned before.

Now we have to compile the model. In order to do that, we use the compile method as
follows:

model.compile(loss='categorical_crossentropy', optimizer=Adadelta(),
metrics=['accuracy'])

We pass the loss function, which is used to calculate the error for the backpropagation
process. For this problem, we will be using categorial cross-entropy as the loss
function, as this is a categorical problem. The optimizer used is Adadelta, which
performs very well in most situations. We establish accuracy as the main metric to be
considered in the model.

We are going to use what is called a callback in Keras. These are called in every epoch
during training. We will be using the Checkpoint function in order to save our model
with the best validation result on every epoch:

ckpt = ModelCheckpoint('model.h5', save_best_only=True,monitor='val_loss',
mode='min', save_weights_only=False)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning | 79

The function to train this model is called fit() and is implemented as follows:

model.fit(x_train, y_train, batch_size=64, epochs=10, verbose=1, validation_
data=(x_test, y_test),callbacks=[ckpt])

We pass the training set with its labels, and we establish a batch size of 64 (these are the
images that are passed on every step of every epoch), out of which we choose to have 10
training epochs (on every epoch the data is processed). The validation set is also passed
in order to see how the model performs on unseen data, and at the end, we set the
callback that we created before.

All these parameters have to be adjusted according to the problem that we are facing.
In order to put all of this into practice, we are going to perform an exercise – the same
exercise that we did with decision trees, but with neural networks.

Exercise 9: Building Your First Neural Network

Note

We will be continuing the code from Exercise 8 here.

The entire code for this exercise can be found on GitHub in the Lesson02 |
Exercise07-09 folder.

1. Head to the interface on Google Colab where you executed the code for Exercise
8, Predicting Numbers Using the Decision Tree, Random Forest, and AdaBoost
Algorithms.

2. Now import the packages from the Keras library:

from keras.callbacks import ModelCheckpoint
from keras.layers import Dense, Flatten, Activation, BatchNormalization,
Dropout
from keras.models import Sequential
from keras.optimizers import Adadelta
from keras import utils as np_utils

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

80 | Introduction to Computer Vision

3. We normalize the data as we explained in this part of the chapter. We also declare
the input_shape instance that will be passed to the neural network, and we print it:

x_train = (x_train.astype(np.float32))/255.0
x_test = (x_test.astype(np.float32))/255.0
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
y_train = np_utils.to_categorical(y_train, 10)
y_test = np_utils.to_categorical(y_test, 10)
input_shape = x_train.shape[1:]
print(input_shape)
print(x_train.shape)

The output is as follows:

Figure 2.34: Data output when passed for normalization using neural networks

4. Now we are going to declare the model. The model that we built before was never
going to perform well enough on this problem, so we have created a deeper model
with more neurons and with a couple of new methods:

def DenseNN(input_shape):
 model = Sequential()

 model.add(Dense(512, input_shape=input_shape))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.2))

 model.add(Dense(512))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.2))

 model.add(Dense(256))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.2))

 model.add(Flatten())

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning | 81

 model.add(Dense(256))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.2))

 model.add(Dense(10, activation="softmax"))

We have added a BatchNormalization() method, which helps the network converge
faster and may give better results overall.

We have also added the Dropout() method, which helps the network to avoid
overfitting (the accuracy of the training set is much higher than the accuracy of
the validation set). It does that by disconnecting some neurons during training
(0.2 -> 20% of neurons), which allows better generalization of the problem (better
classification of unseen data).

Furthermore, the number of neurons has increased drastically. Also, the number
of layers has increased. The more layers and neurons are added, the deeper the
understanding is and more complex features are learned.

5. Now we compile the model using categorical cross-entropy, as there are several
classes, and we use Adadelta, which is great overall for these kinds of tasks. Also,
we use accuracy as the main metric:

model.compile(loss='categorical_crossentropy', optimizer=Adadelta(),
metrics=['accuracy'])

6. Let's create the Checkpoint callback, where the model will be stored in the Models
folder with the name model.h5. We will be using validation loss as the main method
to be tracked and the model will be saved in its entirety:

ckpt = ModelCheckpoint('Models/model.h5', save_best_
only=True,monitor='val_loss', mode='min', save_weights_only=False)

7. Start to train the network with the fit() function, just like we explained before.
We use 64 as the batch size, 10 epochs (which is enough as every epoch is going to
last a very long time and between epochs it will not improve that much), and we
will introduce the Checkpoint callback:

model.fit(x_train, y_train,
 batch_size=64,
 epochs=10,
 verbose=1,
 validation_data=(x_test, y_test),
 callbacks=[ckpt])

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

82 | Introduction to Computer Vision

This is going to take a while.

The output should look like this:

Figure 2.35: Neural network output

The final accuracy of the model corresponds to the last val_acc, which is 97.83%.
This is a better result than we got using AdaBoost or random forest.

8. Now let's make some predictions:

for number in range(5):
 imgLoaded = cv2.imread('number%d.jpg'%(number),0)
 img = cv2.resize(imgLoaded, (28, 28))
 img = (img.astype(np.float32))/255.0
 img = img.reshape(1, 28, 28, 1)
 plt.subplot(1,5,number+1),plt.imshow(imgLoaded,'gray')
 plt.title(np.argmax(model.predict(img)[0]))
 plt.xticks([]),plt.yticks([])
plt.show()

The code looks similar to the code used in the last exercise but has some minor
differences. One is that, as we changed the input format, we have to change
the format of the input image too (float and normalize). The other is that the
prediction is in one-hot encoding, so we use the argmax() NumPy function in
order to get the position of the maximum value of the one-hot output vector,
which would be the predicted digit.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning | 83

Let's see the output of the last number that we tried using random forest:

Figure 2.36: Prediction of numbers using neural networks

The output has been successful – even the 7 that the random forest model
struggled with.

Note

The entire code can be found on GitHub in the Lesson02 | Exercise07-09 folder.

If you try the other numbers, it will classify them all very well – it has learned how to.

Congratulations! You have built your first neural network and you have applied it to a
real-world problem! Now you are ready to go through the activity for this chapter.

Activity 2: Classify 10 Types of Clothes from the Fashion-MNIST Database

Now you are going to face a similar problem to the previous one but with types of
clothes. This database is very similar to the original MNIST. It has 60,000 images –
28x28 in grayscale – for training and 10,000 for testing. You will have to follow the steps
mentioned in the first exercise as this activity is not focused on the real world. You will
have to put into practice the abilities learned in the last exercise by building a neural
network on your own. For this, you will have to open a Google Colab notebook. The
following steps will guide you in the right direction:

1. Load the dataset from Keras:

from keras.datasets import fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

Note

The data is preprocessed like MNIST, so the next steps should be similar to Exercise
5, Applying the Various Morphological Transformations to an Image.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

84 | Introduction to Computer Vision

2. Import random and set the seed to 42. Import matplotlib and plot five random
samples of the dataset, just as we did in the last exercise.

3. Now normalize the data and reshape it to fit properly into the neural network and
convert the labels to one-hot encoder.

4. Start to build the architecture of the neural network by using dense layers. You
have to build it inside a method that will return the model.

Note

We recommend starting off by building a very small, easy architecture and
improving it by testing it with the given dataset.

5. Compile the model with the appropriate parameters and start training the neural
network.

6. Once trained, we should make some predictions in order to test the model. We
have uploaded some images into the same testing folder inside the Dataset folder
of the last exercise. Make predictions using those images, just as we did in the last
exercise.

Note

You have to consider that the images that were fed into the neural network had a
black background and the clothes were white, so you should make corresponding
adjustments to make the image look like those. If needed, you should invert
white as black and vice versa. NumPy has a method that does that: image =
np.invert(image).

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary | 85

7. Check the results:

Figure 2.37: The output of the prediction is the index of the position in this list

Note

The solution for this activity is available on page 302.

Summary
Computer vision is a big field within AI. By understanding this field, you can achieve
results such as extracting information from an image or generating images that look
just like they do in real life, for example. This chapter has covered image preprocessing
for feature extraction using the OpenCV library, which allows easy training and
prediction for machine learning models. Some basic machine learning models have
also been covered, such as decision trees and boosting algorithms. These served as
an introduction to machine learning and were mostly used to play around. Finally,
neural networks were introduced and coded using Keras and TensorFlow as a backend.
Normalization was explained and put into practice, along with dense layers, though
convolutional layers are known to work better with images than dense layers do, and
they will be explained later in the book.

Concepts for avoiding overfitting were also covered, and toward the end, we used the
model to make predictions and put it into practice using real-world images.

In the next chapter, the fundamentals of natural language processing (NLP) will be
introduced, along with the most widely used techniques for extracting information from
a corpus in order to create basic models for language prediction.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Objectives

By the end of this chapter, you will be able to:

• Classify different areas of natural language processing

• Analyze basic natural language processing libraries in Python

• Predict the topics in a set of texts

• Develop a simple language model

This chapter covers different fundamentals and areas of natural language processing, along with
its libraries in Python.

Fundamentals of
Natural Language

Processing

3

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

88 | Fundamentals of Natural Language Processing

Introduction
Natural Language Processing (NLP) is an area of Artificial Intelligence (AI) with the
goal of enabling computers to understand and manipulate human language in order
to perform useful tasks. Within this area, there are two sections: Natural Language
Understanding (NLU) and Natural Language Generation (NLG).

In recent years, AI has changed the way machines interact with humans. AI helps people
solve complex equations by performing tasks such as recommending a movie according
to your tastes (recommender systems). Thanks to the high performance of GPUs and
the huge amount of data available, it's possible to create intelligent systems that are
capable of learning and behaving like humans.

There are many libraries that aim to help with the creation of these systems. In
this chapter, we will review the most famous Python libraries to extract and clean
information from raw text. You may consider this task complex, but a complete
understanding and interpretation of the language is a difficult task in itself. For
example, the sentence "Cristiano Ronaldo scores three goals" would be hard for a
machine to understand because it would not know who Cristiano Ronaldo is or what is
meant by the number of goals.

One of the most popular topics in NLP is Question Answering (QA). This discipline also
consists of Information Retrieval (IR). These systems construct answers by querying a
database for knowledge or information, but they are capable of extracting answers from
a collection of natural language documents. That is how a search engine such as Google
works.

In the industry today, NLP is becoming more and more popular. The latest NLP trends
are online advertisement matching, sentiment analysis, automated translation, and
chatbots.

Conversational agents, popularly known as chatbots, are the next challenge for NLP.
They can hold real conversation and many companies use them to get feedback about
their products or to create a new advertising campaign, by analyzing the behavior
and opinions of clients through the chatbot. Virtual assistants are a great example of
NLP and they have already been introduced to the market. The most famous are Siri,
Amazon's Alexa, and Google Home. In this book, we will create a chatbot to control a
virtual robot that is able to understand what we want the robot to do.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction | 89

Natural Language Processing

As mentioned before, NLP is an AI field that takes care of understanding and processing
human language. NLP is located at the intersection between AI, computer science, and
linguistics. The main aim of this area is to make computers understand statements or
words written in human languages:

Figure 3.1: Representation of NLP within AI, linguistics, and computer science

Linguistic science focuses on the study of human language, trying to characterize and
explain the different approaches of language.

A language can be defined as a set of rules and a set of symbols. Symbols are combined
and used to broadcast information and are structured by rules. Human language is
special. We cannot simply picture it as naturally formed symbols and rules; depending
on the context, the meaning of words can change.

NLP is becoming more popular and can solve many difficult problems. The amount
of text data available is very large, and it is impossible for a human to process all that
data. In Wikipedia, the average number of new articles per day is 547, and in total, there
are more than 5,000,000 articles. As you can imagine, a human cannot read all that
information.

There are three challenges faced by NLP. The first challenge is collecting all the data,
the second is classifying it, and the final one is extracting the relevant information.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

90 | Fundamentals of Natural Language Processing

NLP solves many tedious tasks, such as spam detection in emails, part-of-speech
(POS) tagging, and named entity recognition. With deep learning, NLP can also solve
voice-to-text problems. Although NLP shows a lot of power, there are some cases such
as working without having a good solution from the dialog between a human and a
machine, QA systems summarization and machine translation.

Parts of NLP

As mentioned before, NLP can be divided into two groups: NLU and NLG.

Natural Language Understanding

This section of NLP relates to the understanding and analysis of human language.
It focusses on the comprehension of text data, and processing it to extract relevant
information. NLU provides direct human-computer interaction and performs tasks
related to the comprehension of language.

NLU covers the hardest of AI challenges, and that is the interpretation of text. The main
challenge of NLU is understanding dialog.

Note

 NLP uses a set of methods for generating, processing, and understanding
language. NLU uses functions to understand the meaning of a text.

Previously, a conversation was represented as a tree, but this approach cannot cover
many dialog cases. To cover more cases, more trees would be required, one for each
context of the conversation, leading to the repeating of many sentences:

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction | 91

Figure 3.2: Representation of a dialogue using trees

This approach is outdated and inefficient because is based on fixed rules; it's essentially
an if-else structure. But now, NLU has contributed another approach. A conversation
can be represented as a Venn diagram where each set is a context of the conversation:

Figure 3.3: Representation of a conversation using a Venn diagram

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

92 | Fundamentals of Natural Language Processing

As you can see in the previous figures, the NLU approach improves the structure of
understanding a conversation, because it is not a fixed structure that contains if-else
conditions. The main goal of NLU is to interpret the meaning of human language and
deal with the contexts of a conversation, solving ambiguities and managing data.

Natural Language Generation

NLG is the process of producing phrases, sentences, and paragraphs with meaning and
structure. It is an area of NLP that does not deal with understanding text.

To generate natural language, NLG methods need relevant data.

NLG has three components:

• Generator: Responsible for including the text within an intent to have it related
with the context of the situation

• Components and levels of representations: Gives structure to the generated text

• Application: Saves relevant data from the conversation to follow a logical thread

Generated text must be in a human-readable format. The advantages of NLG are that
you can make your data accessible and you can create summaries of reports rapidly.

Levels of NLP

Human language has different levels of representation. Each representation level is
more complex than the previous level. As we ascend through the levels, it gets more
difficult to understand the language.

The two first levels depend on the data type (audio or text), in which we have the
following:

• Phonological analysis: If the data is speech, first, we need to analyze the audio to
have sentences.

• OCR/tokenization: If we have text, we need to recognize the characters and form
words using computer vision (OCR). If not, we will need to tokenize the text (that
is, split the sentence into units of text).

Note

The OCR process is the identification of characters in an image. Once it generates
words, they are processed as raw text.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

NLP in Python | 93

• Morphological analysis: Focused on the words of a sentence and analyzing its
morphemes.

• Syntactic analysis: This level focuses on the grammatical structure of a sentence.
That means understanding different parts of a sentence, such as the subject or the
predicate.

• Semantic representation: A program does not understand a single word; it can
know the meaning of a word by knowing how the word is used in a sentence. For
example, "cat" and "dog" could mean the same for an algorithm because they can
be used in the same way. Understanding sentences in this way is called word-level
meaning.

• Discourse processing: Analyzing and identifying connected sentences in a text
and their relationships. By doing this, an algorithm could understand what the
topic of the text is.

NLP shows great potential in today's industry, but there are some exceptions. Using
deep learning concepts, we can work with some of these exceptions to get better
results. Some of these problems will be reviewed in Chapter 4, Neural Networks with
NLP. The advantage of text processing techniques and the improvement of recurrent
neural networks are the reasons why NLP is becoming increasingly important.

NLP in Python
Python has become very popular in recent years, by combining the power of general-
purpose programming languages with the use of specific domain languages, such as
MATLAB and R (designed for mathematics and statistics). It has different libraries for
data loading, visualization, NLP, image processing, statistics, and more. Python has the
most powerful libraries for text processing and machine learning algorithms.

Natural Language Toolkit (NLTK)

NLTK is the most common kit of tools for working with human language data in Python.
It includes a set of libraries and programs for processing natural language and statistics.
NLTK is commonly used as a learning tool and for carrying out research.

This library provides interfaces and methods for over 50 corpora and lexical
resources. NLTK is capable of classifying text and performing other functions, such as
tokenization, stemming (extracting the stem of a word), tagging (identifying the tag of a
word, such as person, city…), and parsing (syntax analysis).

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

94 | Fundamentals of Natural Language Processing

Exercise 10: Introduction to NLTK

In this exercise, we will review the most basic concepts about the NLTK library. As we
said before, this library is one of the most widely used tools for NLP. It can be used
to analyze and study text, disregarding useless information. These techniques can be
applied to any text data, for example, to extract the most important keywords from a
set of tweets or to analyze an article in a newspaper:

Note

All the exercises in this chapter will be executed in Google Colab.

1. Open up your Google Colab interface.

2. Create a folder for the book.

3. Here, we are going to process a sentence with basic methods of the NLTK library.
First of all, let's import the necessary methods (stopwords, word_tokenize, and
sent_tokenize):

from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.tokenize import sent_tokenize
import nltk
nltk.download('punkt')

4. Now we create a sentence and apply the methods:

example_sentence = "This course is great. I'm going to learn deep
learning; Artificial Intelligence is amazing and I love robotics..."

sent_tokenize(example_sentence) # Divide the text into sentences

Figure 3.4: Sentence divided into a sub-sentence

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

NLP in Python | 95

word_tokenize(example_sentence)

Figure 3.5: Tokenizing a sentence into words

Note

Sent_tokenize returns a list of different sentences. One of the disadvantages of
NLTK is that sent_tokenize does not analyze the semantic structure of the whole
text; it just splits the text by the dots.

5. With the sentence tokenized sentence by words, let's subtract the stop words. The
stop words are a set of words without relevant information about the text. Before
using stopwords, we will need to download it:

nltk.download('stopwords')

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

96 | Fundamentals of Natural Language Processing

6. Now, we set the language of our stopwords as English:

stop_words = set(stopwords.words("english"))
print(stop_words)

The output is as follows:

Figure 3.6: Stopwords set as English

7. Process the sentence, deleting stopwords:

print(word_tokenize(example_sentence))
print([w for w in word_tokenize(example_sentence.lower()) if w not in
stop_words])

The output is as follows:

Figure 3.7: Sentence without stop words

8. We can now modify the set of stopwords and check the output:

stop_words = stop_words - set(('this', 'i', 'and'))
print([w for w in word_tokenize(example_sentence.lower()) if w not in
stop_words])

Figure 3.8: Setting stop words

9. Stemmers remove morphological affixes from words. Let's define a stemmer and
process our sentence. Porter stemmer is an algorithm for performing this task:

from nltk.stem.porter import * # importing a stemmer
stemmer = PorterStemmer() # importing a stemmer
print([stemmer.stem(w) for w in word_tokenize(example_sentence)])

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

NLP in Python | 97

The output is as follows:

Figure 3.9: Setting stop words

10. Finally, let's classify each word by its type. To do this, we will use a POS tagger:

nltk.download('averaged_perceptron_tagger')
t = nltk.pos_tag(word_tokenize(example_sentence)) #words with each tag
t

The output is as follows:

Figure 3.10: POS tagger

Note

The averaged perceptron tagger is an algorithm trained to predict the category of a
word.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

98 | Fundamentals of Natural Language Processing

As you may have noticed in this exercise, NLTK can easily process a sentence. Also,
it can analyze a huge set of text documents without any problem. It supports many
languages and the tokenization process is faster than that for similar libraries, and it has
many methods for each NLP problem.

spaCy

spaCy is another library for NLP in Python. It does look similar to NLTK, but you will see
some differences in the way it works.

spaCy was developed by Matt Honnibal and is designed for data scientists to clean
and normalize text easily. It's the quickest library in terms of preparing text data for
a machine learning model. It includes built-in word vectors and some methods for
comparing the similarity between two or more texts (these methods are trained with
neural networks).

Its API is easy to use and more intuitive than NLTK. Often, in NLP, spaCy is compared to
NumPy. It provides methods and functions for performing tokenization, lemmatization,
POS tagging, NER, dependency parsing, sentence and document similarity, text
classification, and more.

As well as having linguistic features, it also has statistical models. This means you
can predict some linguistic annotations, such as whether a word is a verb or a noun.
Depending on the language you want to make predictions in, you will need to change a
module. Within this section are Word2Vec models, which we will discuss in Chapter 4,
Neural Networks with NLP.

spaCy has many advantages, as we said before, but there are some cons too; for
instance, it supports only 8 languages (NLTK supports 17 languages), the tokenization
process is slow (and this time-consuming process could be critical on a long corpus),
and overall, it is not flexible (that is, it just provides API methods without the possibility
of modifying any parameters).

Before starting with the exercise, let's review the architecture of spaCy. The most
important data structures of spaCy are the Doc and the Vocab.

The Doc structure is the text you are loading; it is not a string. It is composed of a
sequence of tokens and their annotations. The Vocab structure is a set of lookup
tables, but what are lookup tables and why is the structure important? Well, a lookup
table in computation is an array indexing an operation that replaces a runtime. spaCy
centralizes information that is available across documents. This means that it is more
efficient, as this saves memory. Without these structures, the computational speed of
spaCy would be slower.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

NLP in Python | 99

However, the structure of Doc is different to Vocab because Doc is a container of data.
A Doc object owns the data and is composed of a sequence of tokens or spans. There
are also a few lexemes, which are related to the Vocab structure because they do not
have context (unlike the token container).

Note

A lexeme is a unit of lexical meaning without having inflectional endings. The area
of study for this is morphological analysis.

The figure 3.11 shows us the spaCy architecture.

Figure 3.11: spaCy architecture

Depending on the language model you are loading, you will have a different pipeline and
a different Vocab.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

100 | Fundamentals of Natural Language Processing

Exercise 11: Introduction to spaCy

In this exercise, we will do the same transformations that we performed in Exercise 10,
Introduction to NLTK, and to the same sentence as in that exercise but with the spaCy
API. This exercise will help you to understand and learn about the differences between
these libraries:

1. Open up your Google Colab interface.

2. Create a folder for the book.

3. Then, import the package to use all its features:

import spacy

4. Now we are going to initialize our nlp object. This object is a part of the spaCy
methods. By executing this line of code, we are loading the model inside the
parenthesis:

import en_core_web_sm
nlp = spacy.load('en')

5. Let's take the same sentence as in Exercise 10, Introduction to NLTK, and create the
Doc container:

example_sentence = "This course is great. I'm going to learn deep
learning; Artificial Intelligence is amazing and I love robotics..."
doc1 = nlp(example_sentence)

6. Now, print doc1, its format, the 5th and 11th token, and a span between the 5th and
the 11th token. You will see this:

print("Doc structure: {}".format(doc1))
print("Type of doc1:{}".format(type(doc1)))
print("5th and 10th Token of the Doc: {}, {}".format(doc1[5], doc1[11]))
print("Span between the 5th token and the 10th: {}".format(doc1[5:11]))

The output is as follows:

Figure 3.12: Output of a spaCy document

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

NLP in Python | 101

7. As we saw in Figure 3.5, documents are composed of tokens and spans. First, we
are going to see the spans of doc1, and then its tokens.

Print the spans:

for s in doc1.sents:
 print(s)

The output is as follows:

Figure 3.13: Printing the spans of doc1

Print the tokens:

for i in doc1:
 print(i)

The output is as follows:

Figure 3.14: Printing the tokens of doc1

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

102 | Fundamentals of Natural Language Processing

8. Once we have the document divided into tokens, the stop words can be removed.

First, we need to import them:

from spacy.lang.en.stop_words import STOP_WORDS
print("Some stopwords of spaCy: {}".format(list(STOP_WORDS)[:10]))
type(STOP_WORDS)

The output is as follows:

Figure 3.15: 10 stop words in spaCy

But the token container has the is_stop attribute:

for i in doc1[0:5]:
 print("Token: {} | Stop word: {}".format(i, i.is_stop)

The output is as follows:

Figure 3.16: The is_stop attribute of tokens

9. To add new stop words, we must modify the vocab container:

nlp.vocab["This"].is_stop = True
doc1[0].is_stop

The output here would be as follows:

True

10. To perform speech tagging, we initialize the token container:

for i in doc1[0:5]:
 print("Token: {} | Tag: {}".format(i.text, i.pos_))

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

NLP in Python | 103

The output is as follows:

Figure 3.17: The .pos_ attribute of tokens

11. The document container has the ents attribute, with the entity of the tokens. To
have more entities in our document, let's declare a new one:

doc2 = nlp("I live in Madrid and I am working in Google from 10th of
December.")
for i in doc2.ents:
 print("Word: {} | Entity: {}".format(i.text, i.label_))

The output is as follows:

Figure 3.18: The .label_ attribute of tokens

Note

As you can see in this exercise, spaCy is much easier to use than NLTK, but NLTK
provides more methods to perform different operations on text. spaCy is perfect
for production. That means, in the least amount of time, you can perform basic
processes on text.

The exercise has ended! You can now pre-process a text using NLTK or spaCy.
Depending on the task you want to perform, you will be able to choose one of these
libraries to clean your data.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

104 | Fundamentals of Natural Language Processing

Topic Modeling
Within NLU, which is a part of NLP, one of the many tasks that can be performed is
extracting the meaning of a sentence, a paragraph, or a whole document. One approach
to understanding a document is through its topics. For example, if a set of documents
is from a newspaper, the topics might be politics or sports. With topic modeling
techniques, we can obtain a bunch of words representing various topics. Depending
on your set of documents, you will then have different topics represented by different
words. The goal of these techniques is to know the different types of documents in your
corpus.

Term Frequency – Inverse Document Frequency (TF-IDF)

TF-IDF is a commonly used NLP model for extracting the most important words from
a document. To perform this classification, the algorithm will assign a weight to each
word. The idea of this method is to ignore words without relevance to the meaning of a
global concept, (which means the overall topic of a text), so those terms will be down-
weighted (which means that they will be ignored). Down-weighing them will allow us to
find the keywords of that document (the words with the greatest weights).

Mathematically, the algorithm to find the weight of a term in a document is as follows:

Figure 3.19: TF-IDF formula

• Wi,j: Weight of the term, i, in the document, j

• tf,j: Number of occurrences of i in j

• df,j: Number of documents containing i

• N: Total number of documents

The result is the number of times a term appears in that document, multiplied by the
log of the total number of documents, divided by the number of documents that contain
the term.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Topic Modeling | 105

Latent Semantic Analysis (LSA)

LSA is one of the foundational techniques of topic modeling. It analyzes the relationship
between a set of documents and their terms, and produces a set of concepts related to
them.

LSA is a step ahead when compared to TF-IDF. In a large set of documents, the TF-IDF
matrix has very noisy information and many redundant dimensions, so the LSA
algorithm performs dimensionality reduction.

This reduction is performed with Singular Value Decomposition (SVD). SVD factorizes a
matrix, M, into the product of three separate matrices:

Figure 3.20: Singular Value Decomposition

• A: This is the input data matrix.

• m: This is the number of documents.

• n: This is the number of terms.

• U: Left singular vectors. Our document-topic matrix.

• S: Singular values. Represents the strength of each concept. This is a diagonal
matrix.

• V: Right singular vectors. Represents terms' vectors in terms of topics.

Note

This method is more efficient on a large set of documents, but there are better
algorithms to perform this task such as LDA or PLSA.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

106 | Fundamentals of Natural Language Processing

Exercise 12: Topic Modeling in Python

In this exercise, TF-IDF and LSA will be coded in Python using a specific library. By the
end of this exercise, you will be able to perform these techniques to extract the weights
of a term in a document:

1. Open up your Google Colab interface.

2. Create a folder for the book.

3. To generate the TF-IDF matrix, we could code the formula in Figure 3.19, but we
are going to use one of the most famous libraries for machine learning algorithms
in Python, scikit-learn:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD

4. The corpus we are going to use for this exercise will be simple, with just four
sentences:

corpus = [
 'My cat is white',
 'I am the major of this city',
 'I love eating toasted cheese',
 'The lazy cat is sleeping',
]

5. With the TfidfVectorizer method, we can convert the collection of documents in
our corpus to a matrix of TF-IDF features:

vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(corpus)

6. The get_feature_names() method shows the extracted features.

Note

To understand the TfidfVectorizer function better, visit the Scikit Learn
documentation - https://bit.ly/2S6lwWP

vectorizer.get_feature_names()

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://bit.ly/2S6lwWP

Topic Modeling | 107

The output is as follows:

Figure 3.21: Feature names of the corpus

7. X is a sparse matrix. To see its content, we can use the todense() function:

X.todense()

The output is as follows:

Figure 3.22: TF-IDF matrix of the corpus

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

108 | Fundamentals of Natural Language Processing

8. Now let's perform dimensionality reduction with LSA. The TruncatedSVD method
uses SVD to transform the input matrix. In this exercise, we'll use n_components=10.
From now on, you have to use n_components=100 (it has better results in larger
corpuses):

lsa = TruncatedSVD(n_components=10,algorithm='randomized',n_
iter=10,random_state=0)
lsa.fit_transform(X)

The output is as follows:

Figure 23: Dimensionality reduction with LSA

9. attribute .components_ shows the weight of each vectorizer.get_feature_
names(). Notice that the LSA matrix has a range of 4x16, we have 4 documents in
our corpus (concepts), and the vectorizer has 16 features (terms):

lsa.components_

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Topic Modeling | 109

The output is as follows:

Figure 3.24: The desired TF-IDF matrix output

The exercise has ended successfully! This was a preparatory exercise for Activity 3,
Process a Corpus. Do check the seventh step of the exercise – it will give you the key to
complete the activity ahead. I encourage you to read the scikit-learn documentation
and learn how to see the potential of these two methods. Now you know how to
create the TF-IDF matrix. This matrix could be huge, so to manage the data better, the
LSA algorithm performs dimensionality reduction on the weight of each term in the
document.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

110 | Fundamentals of Natural Language Processing

Activity 3: Process a Corpus

In this activity, we will process a really small corpus to clean the data and extract the
keywords and concepts using LSA.

Imagine this scenario: the newspaper vendor in your town has published a competition.
It consists of predicting the category of an article. This newspaper does not have a
structural database, which means it has only raw data. They provide a small set of
documents, and they need to know whether the article is political, scientific, or sports-
related:

Note

You can choose between spaCy and the NLTK library to do the activity. Both
solutions will be valid if the keywords are related at the end of the LSA algorithm.

1. Load the corpus documents and store them in a list.

Note

The corpus documents can be found on GitHub, https://github.com/
PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/tree/
master/Lesson03/Activity03/dataset

2. Pre-process the text with spaCy or NLTK.

3. Apply the LSA algorithm.

4. Show the first five keywords related to each concept:

Keywords: moon, apollo, earth, space, nasa

Keywords: yard, touchdown, cowboys, prescott, left

Keywords: facebook, privacy, tech, consumer, data

Note

The output keywords probably will not be the same as yours. If your keywords are
not related then check the solution.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Lesson03/Activity03/dataset
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Lesson03/Activity03/dataset
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Lesson03/Activity03/dataset

Language Modeling | 111

The output is as follows:

Figure 3.25: Output example of the most relevant words in a concept (f1)

Note

The solution for this activity is available on page 306.

Language Modeling
So far, we have reviewed the most basic techniques for pre-processing text data. Now
we are going to dive deep into the structure of natural language – language models. We
can consider this topic an introduction to machine learning in NLP.

Introduction to Language Models

A statistical Language Model (LM) is the probability distribution of a sequence of words,
which means, to assign a probability to a particular sentence. For example, LMs could
be used to calculate the probability of an upcoming word in a sentence. This involves
making some assumptions about the structure of the LM and how it will be formed. An
LM is never totally correct with its output, but using one is often necessary.

LMs are used in many more NLP tasks. For example, in machine translation, it is
important to know what sentence precedes the next. LMs are also used for speech
recognition, to avoid ambiguity, for spelling corrections, and for summarization.

Let's see how an LM is mathematically represented:

• P(W) = P(w1, w2,w3,w4,…wn)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

112 | Fundamentals of Natural Language Processing

P(W) is our LM and wi are the words included in W, and as we mentioned before, we
can use it to compute the probability of an upcoming word in this way:

• P(w5|w1,w2,w3,w4)

This (w1, w2, w3, w4) states what the probability of w5 (the upcoming word) could be in
a given sequence of words.

Looking at this example, P (w5|w1, w2, w3, w4), we can assume this:

• P(actual word | previous words)

Depending on the number of previous words we are looking at to obtain the probability
of the actual word, there are different models we can use. So, now we are going to
introduce some important concepts regarding such models.

The Bigram Model

The bigram model is a sequence of two consecutive words. For example, in the sentence
"My cat is white," there are these bigrams:

My cat

Cat is

Is white

Mathematically, a bigram has this form:

• Bigram model: P(wi|wi-1)

N-gram Model

If we change the length of the previous word, we obtain the N-gram model. It works just
like the bigram model but considers more words than the previous set.

Using the previous example of "My cat is white," this is what we can obtain:

• Trigram

My cat is

Cat is white

• 4-gram

• My cat is white

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Language Modeling | 113

N-Gram Problem

At this point, you could think the n-gram model is more accurate than the bigram
model because the n-gram model has access to additional "previous knowledge."
However, n-gram models are limited to a certain extent, because of long-distance
dependencies. An example would be, "After thinking about it a lot, I bought a television,"
which we compute as:

• P(television| after thinking about it a lot, I bought a)

The sentence "After thinking about it a lot, I bought a television" is probably the only
sequence of words with this structure in our corpus. If we change the word "television"
for another word, for example "computer," the sentence "After thinking about it a lot, I
bought a computer" is also valid, but in our model, the following would be the case:

• P(computer| after thinking about it a lot, I bought a) = 0

This sentence is valid, but our model is not accurate, so we need to be careful with the
use of n-gram models.

Calculating Probabilities

Unigram Probability

The unigram is the simplest case for calculating probabilities. It counts the number of
times a word appears in a set of documents. Here is the formula for this:

Figure 3.27: Unigram probability estimation

• c(wi) is the number of times

• wi appears in the whole corpus. The size of the corpus is just how many tokens are
in it.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

114 | Fundamentals of Natural Language Processing

Bigram Probability

To estimate bigram probability, we are going to use maximum likelihood estimation:

Figure 3.27: Bigram probability estimation

To understand this formula better, let's look at an example.

Imagine our corpus is composed of these three sentences:

My name is Charles.

Charles is my name.

My dog plays with the ball.

The size of the corpus is 14 words, and now we are going to estimate the probability of
the sequence "my name":

Figure 3.28: Example of bigram estimation

The Chain Rule

Now we know the concepts of bigrams and n-grams, we need to know how we can
obtain those probabilities.

If you have basic statistics knowledge, you might think the best option is to apply the
chain rule and join each probability. For example, in the sentence "My cat is white," the
probability is as follows:

• P(my cat is white) = p(white|my cat is) p(is|my cat) p(cat|my) p(my)

It seems to be possible with this sentence, but if we had a much longer sentence, long-
distance dependency problems would appear and the result of the n-gram model could
be incorrect.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Language Modeling | 115

Smoothing

So far, we have a probabilistic model, and if we want to estimate the parameters of our
model, we can use the maximum likelihood of estimation.

One of the big problems of LMs is insufficient data. Our data is limited, so there will be
many unknown events. What does this mean? It means we'll end up with an LM that
gives a probability of 0 to unseen words.

To solve this problem, we are going to use a smoothing method. With this smoothing
method, every probability estimation result will be greater than zero. The method we
are going to use is add-one smoothing:

Figure 3.29: Add-one smoothing in bigram estimation

V is the number of distinct tokens in our corpus.

Note

There are more smoothing methods with better performance; this is the most
basic method.

Markov Assumption

Markov assumption is very useful for estimating the probabilities of a long sentence.
With this method, we can solve the problem of long-distance dependencies. Markov
assumption simplifies the chain rule to estimate long sequences of words. Each
estimation only depends on the previous step:

Figure 3.30: Markov assumption

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

116 | Fundamentals of Natural Language Processing

We can also have a second-order Markov assumption, which depends on two previous
terms, but we are going to use first-order Markov assumption:

Figure 3.31: Example of Markov

If we apply this to the whole sentence, we get this:

Figure 3.32: Example of Markov for a whole sentence

Decomposing the sequence of words in the aforementioned way will output the
probabilities more accurately.

Exercise 13: Create a Bigram Model

In this exercise, we are going to create a simple LM with unigrams and bigrams. Also,
we will compare the results of creating the LM both without add-one smoothing and
with it. One application of the n-gram is, for example, in keyboard apps. They can
predict your next word. That prediction could be done with a bigram model:

1. Open up your Google Colab interface.

2. Create a folder for the book.

3. Declare a small, easy training corpus:

import numpy as np
corpus = [
 'My cat is white',
 'I am the major of this city',
 'I love eating toasted cheese',
 'The lazy cat is sleeping',
]

4. Import the required libraries and load the model:

import spacy
import en_core_web_sm
from spacy.lang.en.stop_words import STOP_WORDS
nlp = en_core_web_sm.load()

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Language Modeling | 117

5. Tokenize it with spaCy. To be faster in doing the smoothing and the bigrams, we
are going to create three lists:

Tokens: All tokens of the corpus

Tokens_doc: List of lists with the tokens of each corpus

Distinc_tokens: All tokens removing duplicates:

tokens = []
tokens_doc = []
distinc_tokens = []

Let's create a first loop to iterate over the sentences in our corpus. The doc
variable will contain a sequence of the sentences' tokens:

for c in corpus:
 doc = nlp(c)
 tokens_aux = []

Now we are going to create a second loop to iterate through the tokens to push
them into the corresponding list. The t variable will be each token of the sentence:

 for t in doc:
 tokens_aux.append(t.text)
 if t.text not in tokens:
 distinc_tokens.append(t.text) # without duplicates
 tokens.append(t.text)
 tokens_doc.append(tokens_aux)
 tokens_aux = []
 print(tokens)
 print(distinc_tokens)
 print(tokens_doc)

6. Create the unigram model and test it:

def unigram_model(word):
 return tokens.count(word)/len(tokens)
unigram_model("cat")

Result = 0.1388888888888889

7. Add the smoothing and test it with the same word:

def unigram_model_smoothing(word):
 return (tokens.count(word) + 1)/(len(tokens) + len(distinc_tokens))
unigram_model_smoothing("cat")

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

118 | Fundamentals of Natural Language Processing

Result = 0.1111111111111111

Note

The problem with this smoothing method is that every unseen word has the same
probability.

8. Create the bigram model:

def bigram_model(word1, word2):
 hit = 0

9. We need to iterate through all of the tokens in the documents to try to find the
number of times that word1 and word2 appear together:

 for d in tokens_doc:
 for t,i in zip(d, range(len(d))): # i is the length of d
 if i <= len(d)-2:
 if word1 == d[i] and word2 == d[i+1]:
 hit += 1
 print("Hits: ",hit)
 return hit/tokens.count(word1)
bigram_model("I","am")

The output is as follows:

Figure 3.33: Output showing the times word1 and word2 appear together in the document

10. Add the smoothing to the bigram model:

def bigram_model_smoothing(word1, word2):
 hit = 0
 for d in tokens_doc:
 for t,i in zip(d, range(len(d))):
 if i <= len(d)-2:
 if word1 == d[i] and word2 == d[i+1]:
 hit += 1
 return (hit+1)/(tokens.count(word1)+len(distinc_tokens))
bigram_model("I","am")

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary | 119

The output is as follows:

Figure 3.34: Output after adding smoothing to the model

Congratulations! You have completed the last exercise of this chapter. In the next
chapter, you will see that this LM approach is a fundamental deep NLP approach. You
can now take a huge corpus and create your own LM.

Note

Applying the Markov assumption, the final probability will round the 0. I
recommend using log() and adding each component. Also, check the precision bits
of your code (float16 < float32 < float64).

Summary
NLP is becoming more and more important in AI. Industries analyze huge quantities of
raw text data, which is unstructured. To understand this data, we use many libraries to
process it. NLP is divided into two groups of methods and functions: NLG to generate
natural language, and NLU to understand it.

Firstly, it is important to clean text data, since there will be a lot of useless, irrelevant
information. Once the data is ready to be processed, through a mathematical algorithm
such as TF-IDF or LSA, a huge set of documents can be understood. Libraries such as
NLTK and spaCy are useful for doing this task. They provide methods to remove the
noise in data. A document can be represented as a matrix. First, TF-IDF can give a
global representation of a document, but when a corpus is big, the better option is to
perform dimensionality reduction with LSA and SVD. scikit-learn provides algorithms
for processing documents, but if documents are not pre-processed, the result will not
be accurate. Finally, the use of language models could be necessary, but they need to
be formed of a valid training set of documents. If the set of documents is good, the
language model should be able to generate language.

In the next chapter, we will introduce Recurrent Neural Networks (RNNs). We will be
looking at some advanced models of these RNNs and will accordingly be one step ahead
in building our robot.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Objectives

By the end of this chapter, you will be able to:

• Explain what a Recurrent Neural Network is

• Design and build a Recurrent Neural Network

• Evaluate non-numeric data

• Evaluate the different state-of-the-art language models with RNNs

• Predict a value with a temporal sequence of data

This chapter covers various aspects of RNNs. it deals with explaining, designing, and building the
various RNN models.

Neural Networks
with NLP

4

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

122 | Neural Networks with NLP

Introduction
As mentioned in the previous chapter, Natural Language Processing (NLP) is an area of
Artificial Intelligence (AI) that covers how computers can understand and manipulate
human language in order to perform useful tasks. Now, with the growth of deep
learning techniques, deep NLP has become a new area of research.

So, what is deep NLP? It is a combination of NLP techniques and deep learning. The
result of the combination of these techniques are advances in the following areas:

• Linguistics: Speech to text

• Tools: POS tagging, entity recognition, and sentence parsing

• Applications: Sentiment analysis, question answering, dialogue agents, and
machine translation

One of the most important approaches of deep NLP is the representation of words and
sentences. Words can be represented as a vector located in a plane full of other words.
Depending on the similarity of each word to another word, its distance in the plane
would be accordingly set as greater or smaller.

Figure 4.1: Representation of words in multiple dimensions

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction | 123

The previous figure shows an example of word embedding. Word embedding is a
collection of techniques and methods that map words and sentences from a corpus
into vectors or real numbers. It generates a representation of each word in terms of
the context in which a word appears. Then, word embedding can find the similarities
between words. For example, the nearest words to dog are as follows:

1. Dogs

2. Cat

3. Cow

4. Rat

5. Bird

There are different ways to generate embeddings, such as Word2Vec, which will be
covered in Chapter 7, Build a Conversational Agent to Manage the Robot.

This is not the only big change deep learning brings to NLP on a morphological level.
With deep learning, a word can be represented as a combination of vectors.

Each morpheme is a vector, and a word is the result of combining several morpheme
vectors.

This technique of combining vectors is also used on a semantic level, but for the
creation of words and for the creation of a sentence. Each phrase is formed by a
combination of many word vectors, so a sentence can be represented as one vector.

Another improvement is in parsing sentences. This task is hard because it is ambiguous.
Neural networks can accurately determine the grammatical structure of a sentence.

In full application terms, the areas are as follows:

• Sentiment analysis: Traditionally, this consists of a bag of words labeled
with positive or negative sentiments. Then, combining these words returns
the sentiment of the whole sentence. Now, using deep learning and word
representation models, the results are better.

• Question answering: To find the answer to a question, vector representations can
match a document, a paragraph, or a sentence with an input question.

• Dialogue agents: With neural language models, a model can understand a query
and create a response.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

124 | Neural Networks with NLP

• Machine translation: Machine translation is one of the hardest tasks in NLP. A lot
of approaches and models have been tried. Traditional models are very large and
complex, but deep learning neural machine translation has solved that problem.
Sentences are encoded with vectors, and the output is decoded.

The vector representation of words is fundamental to deep NLP. Creating a plane,
many tasks can be completed. Before analyzing deep NLP techniques, we are going to
review what a recurrent neural network (RNN) is, what its applications are within deep
learning, and how to create our first RNN.

Our future conversational agent will detect the intention of a conversation and respond
with a predefined answer. But with a good dataset of conversations, we could create
a Recurrent Neural Network to train a language model (LM) capable of generating a
response to a given topic in a conversation. This task can be performed by other neural
network architectures, such as seq2seq models.

Recurrent Neural Networks
In this section, we are going to review Recurrent Neural Networks (RNNs). This topic
will first look at the theory of RNNs. It will review many architectures within this model
and help you to work out which model to use to solve a certain problem, and it will also
look at several types of RNN and their pros and cons. Also, we will look at how to create
a simple RNN, train it, and make predictions.

Introduction to Recurrent Neural Networks (RNN)

Human behavior shows a variety of serially ordered action sequences. A human is
capable of learning dynamic paths based on a set of previous actions or sequences.
This means that people do not start learning from scratch; we have some previous
knowledge, which helps us. For example you could not understand a word if you did not
understand the previous word in a sentence!

Traditionally, neural networks cannot solve these types of problem because they cannot
learn previous information. But what happens with problems that cannot be solved with
just current information?

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Recurrent Neural Networks | 125

In 1986, Michael I. Jordan proposed a model that deals with the classical problem of
temporal organization. This model is capable of learning the trajectories of a dynamic
object by studying its previous movements. Jordan created the first RNN.

Figure 4.2: Example of non-previous information versus temporal sequences

In the previous figure, the image on the left shows us that, without any information,
we cannot know what the next action of the black point will be, but if we suppose its
previous movements are recorded as the red line on the right-hand side of the graph
we can predict what its next action will be.

Inside Recurrent Neural Networks

So far, we have seen that RNNs are different to neural networks (NNs). RNN neurons are
like normal neurons, but with loops within them, allowing them to store a time state.
Storing the state of a certain moment in time, they can make predictions based on
previous state of time.

Figure 4.3: Traditional neuron

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

126 | Neural Networks with NLP

The preceding figure shows a traditional neuron, used in an NN. Xn are the inputs of the
neuron, and after the activation function, it generates a response. The schema of an
RNN neuron is different:

Figure 4.4: Recurrent neuron

The loop in the previous figure allows the neuron to store the time state. hn is the
output of the input, Xn, and the previous state. The neuron changes and evolves over
time.

If the input of the neuron is a sequence, an unrolled RNN would be like this:

Figure 4.5: Unrolled recurrent neuron

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Recurrent Neural Networks | 127

The chain-like schema in figure 4.5 shows that RNNs are closely related to sequences
and lists. So, we have as many neurons as inputs, and each neuron passes its state to
the next.

RNN architectures

Depending on the quantity of inputs and outputs in the RNN, there are many
architectures with different numbers of neurons. Each architecture is specialized for a
certain task. So far, there are many types of network:

Figure 4.6: Structures of RNNs

The previous figure shows the various classifications of RNNs. Earlier in this book, we
reviewed the one-to-one architecture. In this chapter, we will learn about the many-to-
one architecture.

• One-to-one: Classification or regression tasks from one input (image
classification).

• One-to-many: Image captioning tasks. These are hard tasks in deep learning. For
example, a model that passes an image as an input could describe the elements
that are in the picture.

• Many-to-one: Temporal series, sentiment analysis… every task with just one
output but based in a sequence of different inputs.

• Many-to-many: Machine automated translation systems.

• Synchronized many-to-many: Video classification.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

128 | Neural Networks with NLP

Long-Dependency Problem

In some tasks, it is only necessary to use the most recent information to predict the
next step of a model. With a temporal series, it is necessary to check older elements to
learn or predict the next element or word in a sentence. For example, take a look at this
sentence:

• The clouds are in the sky.

Now imagine this sentence:

• The clouds are in the [?]

You would assume that the required word would be sky, and you know this because of
the previous information:

• The clouds are in the

But there are other tasks in which the model would need previous information to obtain
a better prediction. For example, have a look at this sentence:

• I was born in Italy, but when I was 3, I moved to France… that's the reason why I
speak [?]

To predict the word, the model needs to take the information from the beginning of
the sentence, and that could be a problem. This is a problem with RNNs: when the
distance to the information is large, it is more difficult to learn. This problem is called
the vanishing gradient.

The vanishing gradient problem

Information travels through time in an RNN so that information from previous steps
is used as input in the next step. At each step, the model calculates the cost function,
so each time, the model may obtain an error measure. While propagating the error
calculated through the network, and trying to minimize that error when updating the
weights, the result of that operation is a number closer to zero (if you multiply two
small numbers, the result is a smaller number). This means the gradient of the model
becomes less and less with each multiplication. The problem here is that the network
will not train properly. A solution to this problem with RNNs is to use Long Short-Term
Memory (LSTM).

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Recurrent Neural Networks | 129

Exercise 14: Predict House Prices with an RNN

We are going to create our first RNN using Keras. This exercise is not a time-series
problem. We are going to use a regression dataset to introduce RNNs.

We can use several methods included in the Keras library as a model or a type of layer:

• Keras models: These let us use the different available models in Keras. We are
going to use the Sequential model.

• Keras layers: We can add different types of layers to our neural network. In this
exercise, we are going to use LSTM and a Dense layer. A dense layer is a regular
layer of neurons in a neural network. Each neuron receives input from all the
neurons in the previous layer, but they are densely connected.

The main objective of this exercise is to predict the value of a house in Boston, so our
dataset will contain information on each house, such as the total area of the property or
the number of rooms:

1. Import the dataset of Boston house prices from sklearn and take a look at the
data:

from sklearn.datasets import load_boston
boston = load_boston()
boston.data

Figure 4.7: Boston house prices data

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

130 | Neural Networks with NLP

2. You can see the data has high values, so the best thing to do is to normalize the
data. With the MinMaxScaler function of sklearn, we are going to transform our
data into values between 0 and 1:

from sklearn.preprocessing import MinMaxScaler
import numpy as np

scaler = MinMaxScaler()
x = scaler.fit_transform(boston.data)

aux = boston.target.reshape(boston.target.shape[0], 1)
y = scaler.fit_transform(aux)

3. Divide the data into train and test sets. A good percentage for the test set is 20%
of the data:

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
shuffle=False)
print('Shape of x_train {}'.format(x_train.shape))
print('Shape of y_train {}'.format(y_train.shape))
print('Shape of x_test {}'.format(x_test.shape))
print('Shape of y_test {}'.format(y_test.shape))

Figure 4.8: Shape of the train and test data

4. Import the Keras libraries and set a seed to initialize the weights:

import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense
tf.set_random_seed(1)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Recurrent Neural Networks | 131

5. Create a simple model. The dense layer is just a set of neurons. The last dense
layer has only one neuron to return the output:

model = Sequential()

model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam')

6. Train the network:

history = model.fit(x_train, y_train, batch_size=32, epochs=5, verbose=2)

Figure 4.9: Training the network

7. Compute the error of the model:

error = model.evaluate(x_test, y_test)
print('MSE: {:.5f}'.format(error))

Figure 4.10: Computing the error of the model

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

132 | Neural Networks with NLP

8. Plot the predictions:

import matplotlib.pyplot as plt

prediction = model.predict(x_test)
print('Prediction shape: {}'.format(prediction.shape))

plt.plot(range(len(x_test)), prediction.reshape(prediction.shape[0]),
'--r')
plt.plot(range(len(y_test)), y_test)
plt.show()

Figure 4.11: Predictions of our model

Now you have an RNN for a regression problem! You can try to modify the parameters,
add more layers, or change the number of neurons to see what happens. In the next
exercise, we will solve time-series problems with LSTM layers.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Long Short-Term Memory | 133

Long Short-Term Memory
LSTM is a type of RNN that's designed to solve the long-dependency problem. It can
remember values for long or short time periods. The principal way it differs from
traditional RNNs is that they include a cell or a loop to store the memory internally.

This type of neural network was created in 1997 by Hochreiter and Schmidhuber. This is
the basic schema of an LSTM neuron:

Figure 4.12: LSTM neuron structure

As you can see in the previous figure, the schema of an LSTM neuron is complex. It has
three types of gate:

• Input gate: Allows us to control the input values to update the state of the memory
cell.

• Forget gate: Allows us to erase the content of the memory cell.

• Output gate: Allows us to control the returned values of the input and cell memory
content.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

134 | Neural Networks with NLP

An LSTM model in Keras has a three-dimensional input:

• Sample: Is the amount of data you have (quantity of sequences).

• Time step: Is the memory of your network. In other words, it stores previous
information in order to make better predictions.

• Features: Is the number of features in every time step. For example, if you are
processing pictures, the features are the number of pixels.

Note

This complex design causes another type of network to be formed. This new type
of neural network is a Gated Recurrent Unit (GRU), and it solves the vanishing
gradient problem.

Exercise 15: Predict the Next Solution of a Mathematical Function

In this exercise, we are going to build an LSTM to predict the values of a sine function.
In this exercise, you will learn how to train and predict a model with Keras, using the
LSTM model. Also, this exercise will cover data generation and how to split data into
training samples and test samples:

1. With Keras, we can create an RNN using the Sequential class, and we can create an
LSTM to add new recurrent neurons. Import the Keras libraries for LSTM models,
NumPy for setting up the data, and matplotlib to print the graphs:

import tensorflow as tf
from keras.models import Sequential
from keras.layers import LSTM, Dense
import numpy as np
import matplotlib.pyplot as plt

2. Create the dataset to train and evaluate the model. We are going to generate an
array of 1,000 values as a result of the sine function:

serie = 1000
x_aux = [] #Natural numbers until serie
x_aux = np.arange(serie)
serie = (np.sin(2 * np.pi * 4 * x_aux / serie) + 1) / 2

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Long Short-Term Memory | 135

3. To see if the data is good, let's plot it:

plt.plot(x_aux, serie)
plt.show()

Figure 4.13: Output with the plotted data

4. As this chapter explains, RNN works with sequences of data, so we need to split
our data into sequences. In our case, the maximum length of the sequences will be
5. This is necessary because the RNNs need sequences as input.

This model will be many-to-one because the input is a sequence and the output
is just a value. To see why we are going to create an RNN using the many-to-one
structure, we just need to know the dimensions of our input and output data:

#Prepare input data
maxlen = 5
seq = []
res = []
for i in range(0, len(serie) - maxlen):
 seq.append(serie[i:maxlen+i])
 res.append(serie[maxlen+i])
print(seq[:5])
print(res[:5])

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

136 | Neural Networks with NLP

5. Prepare the data to introduce it to the LSTM model. Pay attention to the shape
of the x and y variables. RNNs need a three-dimensional vector as input and a
two-dimensional vector as output. That's why we will reshape the variables:

x = np.array(seq)
y = np.array(res)
x = x.reshape(x.shape[0], x.shape[1], 1)
y = y.reshape(y.shape[0], 1)
print('Shape of x {}'.format(x.shape))
print('Shape of y {}'.format(y.shape))

Figure 4.14: Reshaping the variables

Note

The input dimension of an LSTM is 3.

6. Split the data into train and test sets:

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
shuffle=False)
print('Shape of x_train {}'.format(x_train.shape))
print('Shape of y_train {}'.format(y_train.shape))
print('Shape of x_test {}'.format(x_test.shape))
print('Shape of y_test {}'.format(y_test.shape))

Figure 4.15: Splitting data into train and test sets

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Long Short-Term Memory | 137

7. Build a simple model with one LSTM unit and one dense layer with one neuron
and linear activation. The dense layer is just a regular layer of neurons receiving
the input from the previous layer and generating many neurons as output. Because
of that, our dense layer has only one neuron because we need a scalar value as the
output:

tf.set_random_seed(1)
model = Sequential()
model.add(LSTM(1, input_shape=(maxlen, 1)))
model.add(Dense(1, activation='linear'))
model.compile(loss='mse', optimizer='rmsprop')

8. Train the model for 5 epochs (one epoch is when the entire dataset is processed by
the neural network) and a batch size of 32 and evaluate it:

history = model.fit(x_train, y_train, batch_size=32, epochs=5, verbose=2)
error = model.evaluate(x_test, y_test)
print('MSE: {:.5f}'.format(error))

Figure 4.16: Training with 5 epochs with a batch size of 32

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

138 | Neural Networks with NLP

9. Plot the test predictions to see if it works well:

prediction = model.predict(x_test)
print('Prediction shape: {}'.format(prediction.shape))
plt.plot(range(len(x_test)), prediction.reshape(prediction.shape[0]),
'--r')
plt.plot(range(len(y_test)), y_test)
plt.show()

Figure 4.17: Plotting the predicted shape

10. Let's improve our model. Create a new one with four units in the LSTM layer and
one dense layer with one neuron, but with the sigmoid activation:

model2 = Sequential()
model2.add(LSTM(4,input_shape=(maxlen,1)))
model2.add(Dense(1, activation='sigmoid'))
model2.compile(loss='mse', optimizer='rmsprop')

11. Train and evaluate it for 25 epochs and with a batch size of 8:

history = model2.fit(x_train, y_train,
 batch_size=8,
 epochs=25,
 verbose=1)
error = model2.evaluate(x_test, y_test)
print('MSE: {:.5f}'.format(error))

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Long Short-Term Memory | 139

Figure 4.18: Training for 25 epochs with a batch size of 8

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

140 | Neural Networks with NLP

12. Plot the predictions of the model:

predict_2 = model2.predict(x_test)
predict_2 = predict_2.reshape(predict_2.shape[0])
print(x_test.shape)
plt.plot(range(len(x_test)),predict_2, '--r')
plt.plot(range(len(y_test)), y_test)
plt.show()

Figure 4.19: Predictions of our neural network

You can now compare the plots of each model, and we can see that the second model
is better. With this exercise, you have learned the basics of LSTM, how to train and
evaluate the model you have created, and also how to determine whether it is good or
not.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Language Models | 141

Neural Language Models
Chapter 3, Fundamentals of Natural Language Processing introduced us to statistical
language models (LMs), which are the probability distribution for a sequence of words.
We know LMs can be used to predict the next word in a sentence, or to compute the
probability distribution of the next word.

Figure 4.20: LM formula to compute the probability distribution of an upcoming word

The sequence of words is x1 , x2 … and the next word is xt+1. wj is a word in the
vocabulary. V is the vocabulary and j is a position of a word in that vocabulary. wj is the
word located in position j within V.

You use LMs every day. The keyboards on cell phones use this technology to predict the
next word of a sentence, and search engines such as Google use it to predict what you
want to search in their search for engine.

We talked about the n-gram model and bigrams counting the words in a corpus, but
that solution has some limitations, such as long dependencies. Deep NLP and neural
LMs will help to get around these limitations.

Introduction to Neural Language Models

Neural LMs follow the same structure as statistical LMs. They aim to predict the next
word in a sentence, but in a different way. A neural LM is motivated by an RNN because
of the use of sequences as inputs.

Exercise 15, Predict the Next Solution of a Mathematical Function predicts the next
result of the sine function from a sequence of five previous steps. In this case, instead
of sequences of sine function results, the data is words, and the model will predict the
next word.

These neural LMs emerged from the necessity to improve the statistical approach.
Newer models can work around some of the limitations and problems of traditional
LMs.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

142 | Neural Networks with NLP

Problems of statistical LMs

In the previous chapter, we reviewed LMs and the concepts of N-grams, bigrams, and
the Markov model. These methods are executed by counting occurrences in the text.
That's why these methods are called statistical LMs.

The main problem with LMs is data limitation. What can we do if the probability
distribution of the sentence we want to compute does not exist in the data? A partial
solution here is the smoothing method, but that is insufficient.

Another solution is to use the Markov Assumption (each probability only depends on
the previous step, simplifying the Chain Rule) to simplify the sentence, but that will not
give a good prediction. What this means is, we could simplify our model using 3-grams.

A solution to this problem is to increase the size of the corpus, but the corpus will end
up being to large. These limitations in n-gram models are called sparsity problems.

Window-Based Neural Model

A first approximation of this new model was the use of a sliding window to compute
the probabilities of the next word. The concept of this solution comes from window
classification.

In terms of words, it is hard to understand the meaning of a single word without any
context. There are many problems if that word is not in a sentence or in a paragraph,
for example, ambiguity between two similar words or auto-antonyms. Auto-antonyms
are words with multiple meanings. The word handicap, depending on its context, can
mean an advantage (for example, in sport) or a disadvantage (sometimes offensive, a
physical problem).

Window classification classifies a word in the context (created by the window) of its
neighboring words. The approach of a sliding window can be used to generate an LM.
Here is a graphical example:

Figure 4.21: Window-based neural LM

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Language Models | 143

In the previous figure, there is an example of how a window-based neural model works.
The window size is 5 (word1 to word5). It creates a vector joining the embedding vector
of each word, and computes this in a hidden layer:

Figure 4.22: Hidden layer formula

And finally, to predict a word, the model returns a value that can be used to classify the
probability of the word:

Figure 4.23: Softmax function

Then, the word with the highest value will be the predicted word.

Note

We are not going to go deeper into these terms because we will use an LSTM to
create the LM.

The benefits of this approach over the traditional one are as follows:

• Less computational work. Window-based neural models need less computational
resources because they don't need to iterate through the corpus computing
probabilities.

• It avoids the problem of changing the dimension of the N-gram to find a good
probability distribution.

• The generated text will have more sense in terms of meaning because this
approach solves the sparsity problem.

But there are some problems:

• Window limitations: The size of the window cannot be large, so the meaning of
some words could be wrong.

• Each window has its own weight value, so it can cause ambiguity.

• If the window grows in size, the model grows too.

Analyzing the problems with the window model, an RNN can improve its performance.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

144 | Neural Networks with NLP

RNN Language Model

An RNN is able to compute the probabilities of an upcoming word in a sequence of
previous steps. The core idea of this approach is to apply the same weights repeatedly
throughout the process of training.

There are some advantages of using an RNN LM over a window-based model:

• This architecture can process any length sentence; it does not have a fixed size,
unlike the window-based approach.

• The model is the same for every input size. It will not grow if the input is larger.

• Depending on the NN architecture, it can use information from the previous steps
and from the steps ahead.

• The weights are shared across the timesteps.

So far, we have talked about different ways to improve the statistical LM and the pros
and cons of each one. Before developing an RNN LM, we need to know how to introduce
a sentence as input in the NN.

One-hot encoding

Neural networks and machine learning are about numbers. As we have seen throughout
this book, input elements are numbers and outputs are codified labels. But if a neural
network has a sentence or a set of characters as input, how can it transform this into
numerical values?

One-hot encoding is a numerical representation of discrete variables. It assumes a
feature vector with the same size for different values within a discrete set of variables.
This means that if there is a corpus of size 10, each word will be codified as a vector of
length 10. So, each dimension corresponds to a unique element of the set.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Language Models | 145

Figure 4.24: RNN pre-processing data flow

The previous figure shows how one-hot encoding works. It is important to understand
the shapes of each vector because the neural network needs to understand what input
data we have and what output we want to obtain. Next, Exercise 16, Encoding a small
Corpus will help you examine the fundamentals of one-hot encoding in more detail.

Exercise 16: Encoding a Small Corpus

In this exercise, we are going to learn how to encode a set of words using one-hot
encoding. It is the most basic encoding method, and it gives us a representation of
discrete variables.

This exercise will cover different ways of performing this task. One way is to manually
perform encoding, while another way is to use libraries. After finishing the exercise, we
will obtain a vector representation of each word, ready to use as the input for a neural
network:

1. Define a corpus. This corpus is the same one that we used in Chapter 3,
Fundamentals of Natural Language Processing:

corpus = [
 'My cat is white',
 'I am the major of this city',
 'I love eating toasted cheese',
 'The lazy cat is sleeping',
]

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

146 | Neural Networks with NLP

2. Tokenize it using spaCy. We are not going to use the stop-words (erasing useless
words, such as articles) method because we have a small corpus. We want all the
tokens:

import spacy
import en_core_web_sm
nlp = en_core_web_sm.load()

corpus_tokens = []
for c in corpus:
 doc = nlp(c)
 tokens = []
 for t in doc:
 tokens.append(t.text)
 corpus_tokens.append(tokens)
corpus_tokens

3. Create a list with every unique token in the corpus:

processed_corpus = [t for sentence in corpus_tokens for t in sentence]
processed_corpus = set(processed_corpus)
processed_corpus

Figure 4.25: List with each unique token in the corpus

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Language Models | 147

4. Create a dictionary with each word in the corpus as the key and a unique number
as the value. This dictionary will look like {word:value}, and this value will have the
index of 1 in the one-hot encoded vector:

word2int = dict([(tok, pos) for pos, tok in enumerate(processed_corpus)])
word2int

Figure 4.26: Each word as a key and a unique number as a value

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

148 | Neural Networks with NLP

5. Encode a sentence. This way of performing encoding is manual. There are some
libraries, such as sklearn, that provide automatic encoding methods:

Import numpy as np
sentence = 'My cat is lazy'
tokenized_sentence = sentence.split()
encoded_sentence = np.zeros([len(tokenized_sentence),len(processed_
corpus)])
encoded_sentence
for i,c in enumerate(sentence.split()):
 encoded_sentence[i][word2int[c]] = 1
encoded_sentence

Figure 4.27: Manual one-hot encoded vectors.
print("Shape of the encoded sentence:", encoded_sentence.shape)

6. Import the sklearn methods. sklearn first encodes each unique token in the
corpus with LabelEncoder, and then uses OneHotEncoder to create the vectors:

from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
Declare the LabelEncoder() class.
le = LabelEncoder()
Encode the corpus with this class.
labeled_corpus = le.fit_transform(list(processed_corpus))
labeled_corpus

Figure 4.28: Vectors created with OneHotEncoder

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Language Models | 149

7. Now, take the same sentence that we encoded before and apply the LabelEncoder
transform method we created:

sentence = 'My cat is lazy'
tokenized_sentence = sentence.split()
integer_encoded = le.transform(tokenized_sentence)
integer_encoded

Figure 4.29: LabelEncoder transform applied

8. We can decode LabelEncoder in the initial sentence:

le.inverse_transform(integer_encoded)

Figure 4.30: Decoded LabelEncoder

9. Declare OneHotEncoder with sparse=False (if you do not specify this, it will return a
sparse matrix):

onehot_encoder = OneHotEncoder(sparse=False)

10. To encode our sentence with the label encoder that we have created, we need to
reshape our labeled corpus to fit it into the onehot_encoder method:

labeled_corpus = labeled_corpus.reshape(len(labeled_corpus), 1)
onehot_encoded = onehot_encoder.fit(labeled_corpus)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

150 | Neural Networks with NLP

11. Finally, we can transform our sentence (encoded with LabelEncoder) into a
one-hot vector. The results of this way of encoding and manual encoding will not
be the same, but they will have the same shape:

sentence_encoded = onehot_encoded.transform(integer_encoded.
reshape(len(integer_encoded), 1))
print(sentence_encoded)

Figure 4.31: One-hot encoded vectors using Sklearn methods

Note

This exercise is really important. If you do not understand the shapes of the
matrices, it will be very hard to understand the inputs of RNNs.

Good job! You have finished Exercise 16. Now you can encode discrete variables into
vectors. This is part of pre-processing data to train and evaluate a neural network.
Next, we have the activity of the chapter, the objective of which is to create an LM using
RNNs and one-hot encoding.

Note

For larger corpuses, one-hot encoding is not very useful because it would create
huge vectors for the words. Instead, it is normal to use an embedding vector. This
concept will be covered later in this chapter.

The Input Dimensions of RNNs

Before getting started with the RNN activity, you may not understand input dimensions.
In this section, we will focus on understanding the shape of the n-dimensional arrays,
and how we can add a new dimension or erase one.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Language Models | 151

Sequence data format

We've mentioned the many-to-one architecture, where each sample consists of a fixed
sequence and a label. That label corresponds with the upcoming value in the sequence.
It is something like this:

Figure 4.32: Format of sequence data

In this example, we have two sequences in matrix X, and the two output labels in Y. So,
the shapes are as follows:

X = (2, 4)

Y = (2)

But if you tried to insert this data into an RNN, it wouldn't work because it does not
have the correct dimensions.

RNN data format

To implement an RNN with temporal sequences in Keras, the model will need an input
vector with three dimensions and, as output, one vector with two dimensions.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

152 | Neural Networks with NLP

So, for the X matrix, we will have the following:

• Number of samples

• Sequence length

• Value length

Figure 4.33: RNN data format

The shapes here are as follows:

X = (2, 4, 1)

Y = (2, 1)

One-hot format

With one-hot encoding, we have the same dimensions as input, but the value
length changes. In the preceding figure, we can see the values ([1], [2], …) with
one-dimensionality. But with one-hot encoding, these values will change to vectors, so
the shape would be as follows:

Figure 4.34: One-hot format

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Language Models | 153

X = (2, 4, 3)

Y = (2, 3)

To perform all these changes to the dimensions, the reshape method from the NumPy
library will be used.

Note

With this knowledge of dimensions, you can start the activity, and remember, the
input dimension of an LSTM is three and the output dimension is two. So, if you
create two LSTM layers continuously, how can you add the third dimension to the
output of the first layer? Change the return state to True.

Activity 4: Predict the Next Character in a Sequence

In this activity, we will predict the upcoming character in a long sequence. The activity
has to be performed using one-hot encoding to create the input and output vectors.
The architecture of the model will be an LSTM, as we saw in Exercise 14, Predict Houses
Prices with an RNN.

Scenario: You work in a global company as the security manager. One morning, you
notice a hacker has discovered and changed all the passwords for the company's
databases. You and your team of engineers start trying to decode the hacker's
passwords to enter the system and fix everything. After analyzing all the new
passwords, you see a common structure.

You only need to decode one more character in the password, but you don't know what
the character is and you only have one more opportunity to get the correct password.

Then, you decide to create a program that analyzes long sequences of data and the five
characters of the password you already know. With this information, it can predict the
last character of the password.

The first five characters of the password are: tyuio. What will the last character be?

Note

You have to use one-hot encoding and LSTM. You will train your model with one-
hot encoded vectors.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

154 | Neural Networks with NLP

1. This is the sequence of data: qwertyuiopasdfghjklñzxcvbnm

Note

This sequence is repeated 100 times, so do this: sequence =
'qwertyuiopasdfghjklñzxcvbnm' * 100.

2. Divide the data into sequences of five characters and prepare the output data.

3. Encode the input and the output sequences as one-hot encoded vectors.

4. Set the train and test data.

5. Design the model.

Note

The output has many zeroes, so it is hard to achieve an exact result. Use the
LeakyRelu activation function with an alpha of 0.01, and when you do the
prediction, round off the value of that vector.

6. Train and evaluate it.

7. Create a function that, when given five characters, predicts the next one in order
to work out the last character of the password.

Note

The solution for this activity can be found on page 308.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary | 155

Summary
AI and deep learning are making huge advances in terms of images and artificial vision
thanks to convolutional networks. But RNNs also have a lot of power.

In this chapter, we reviewed how a neural network would can to predict the values
of a sine function using temporal sequences. If you change the training data, this
architecture can learn about stock movements for each distribution. Also, there are
many architectures for RNNs, each of which is optimized for a certain task. But RNNs
have a problem with vanishing gradients. A solution to this problem is a new model,
called LSTM, which changes the structure of a neuron to memorize timesteps.

Focusing on linguistics, statistical LMs have many problems related with computational
load and distribution probabilities. To solve the sparsity problem, the size of the n-gram
model was lowered to 4 or 3 grams, but that was an insufficient number of steps back
to predict an upcoming word. If we use this approach, the sparsity problem appears.
A neural LM with a fixed window size can prevent the sparsity problem, but there are
still problems with the limited size of the window and the weights. With RNNs, these
problems do not arise, and depending on the architecture, it can obtain better results,
looking many steps back and forward. But deep learning is about vectors and numbers.
When you want to predict words, you need to encode the data to train the model. There
are various different methods, such as the one-hot encoder or the label encoder. You
can now generate text from a trained corpus and an RNN.

In the next chapter, we will talk about Convolutional Neural Networks (CNNs). We will
review the fundamental techniques and architectures of CNNs, and also look at more
complex implementations, such as transfer learning.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Objectives

By the end of this chapter, you will be able to:

• Explain how convolutional neural networks work

• Construct a convolutional neural network

• Improve the constructed model by using data augmentation

• Use state-of-the-art models by implementing transfer learning

In this chapter, we will learn how to use probability distributions as a form of unsupervised
learning.

Convolutional
Neural Networks for

Computer Vision

5

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

158 | Convolutional Neural Networks for Computer Vision

Introduction
In the previous chapter, we learned about how a neural network can be trained to
predict values and how a recurrent neural network (RNN), based on its architecture,
can prove to be useful in many scenarios. In this chapter, we will discuss and observe
how convolutional neural networks (CNNs) work in a similar way to dense neural
networks (also called fully-connected neural networks, as mentioned in Chapter 2,
Introduction to Computer Vision).

CNNs have neurons with weights and biases that are updated during training time.
CNNs are mainly used for image processing. Images are interpreted as pixels and the
network outputs the class it thinks the image belongs to, along with loss functions that
state the errors with every classification and every output.

These types of networks make an assumption that the input is an image or works like
an image, allowing them to work more efficiently (CNNs are faster and better than deep
neural networks). In the following sections, you will learn more about CNNs.

Fundamentals of CNNs
In this topic, we will see how CNNs work and explain the process of convolving an
image.

We know that images are made up of pixels, and if the image is in RGB, for example, it
will have three channels where each letter/color (Red-Green-Blue) has its own channel
with a set of pixels of the same size. Fully-connected neural networks do not represent
this depth in an image in every layer. Instead, they have a single dimension to represent
this depth, which is not enough. Furthermore, they connect every single neuron of one
layer to every single neuron of the next layer, and so on. This in turn results in lower
performance, meaning you would have to train a network for longer and would still not
get good results.

CNNs are a category of neural networks that has ended up being very effective for
tasks such as classification and image recognition. Although, they also work very well
for sound and text data. CNNs consist of an input, hidden layers, and an output layer,
just like normal neural networks. The input and hidden layers are commonly formed
by convolutional layers, pooling layers (layers that reduce the spatial size of the
input), and fully-connected layers (fully-connected layers are explained in Chapter
2, Introduction to Computer Vision). Convolutional layers and pooling layers will be
explained later on in this chapter.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fundamentals of CNNs | 159

CNNs give depth to every layer, starting from the original depth of the image to deeper
hidden layers as well. The following figure shows how a CNN works and what one looks
like:

Figure 5.1: Representation of a CNN

In the preceding figure, the CNN takes an input image of 224 x 224 x 3, which by
convolutional processes is transformed into the next layer, which compresses the size
but has more depth to it (we will explain how these processes work later on). These
operations continue over and over until the graphical representation is flattened and
these dense layers are used to end up with the corresponding classes of the dataset as
output.

Convolutional Layers: Convolutional layers consist of a set of filters of fixed size
(typically a small size), which are matrices with certain values/weights, that are applied
all over the input (an image, for example), by computing the scalar product between
the filters and the input, which is called convolution. Each of these filters produces a
two-dimensional activation map, which is stacked along the depth of the input. These
activation maps look for features in the input and will determine how well the network
learns. The more filters you have, the deeper the layer is, thus, the more your network
learns, but the slower it gets at training time. For instance, in a particular image say, you
would like to have 3 filters in the first layer, 96 filters in the next layer, 256 in the next,
and so on. Note that, at the beginning of the network, there are usually fewer filters
than at the end or in the middle of the network. This is because the middle and the end
of the network have more potential features to extract, thus we need more filters, of a
smaller size, toward the end of the network. This is because the deeper we advance into
the network, the more we look at little details within an image, therefore we want to
extract more features from those details to get a good understanding of the image.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

160 | Convolutional Neural Networks for Computer Vision

The sizes of the filters of convolutional layers often go from 2x2 to 7x7, for example,
depending on whether you are at the beginning of the network (higher sizes) or toward
the end (smaller sizes).

In Figure 5.1, we can see convolution being applied using filters (in light blue) and the
output would be a single value that goes to the next step/layer.

After performing convolution, and before another convolution is applied, a max pooling
(pooling layer) layer is normally applied in order to reduce the size of the input so that
the network can get a deeper understanding of the image. Nevertheless, lately, there
is a tendency to avoid max pooling and instead encourage strides, which are naturally
applied when performing convolution, so we are going to explain image reduction by
naturally applying convolution.

Strides: This is the length, defined in pixels, for the steps of the filter being applied over
the entire image. If a stride of one is selected, the filter will be applied, but one pixel at a
time. Similarly, if a stride of two is selected, then the filter will be applied two pixels at a
time, the output size is smaller than the input, and so on.

Let's look at an example. Firstly, Figure 5.2 will be used as the filter to convolve the
image, which is a 2x2 matrix:

Figure 5.2: Convolution filter

And the following could be the image (matrix) we are convolving:

Figure 5.3: Image to convolve

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fundamentals of CNNs | 161

Of course, this is not a real image, but for the sake of simplicity, we are taking a matrix
of 4x4 with random values to demonstrate how convolution works.

Now, if we want to apply convolution with stride equal to 1, this would be the process,
graphically:

Figure 5.4: Convolution process Stride=1

The preceding Figure shows a 2x2 filter being applied to the input image, pixel by pixel.
The process goes from left to right and from top to bottom.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

162 | Convolutional Neural Networks for Computer Vision

The filter multiplies every value of every position in its matrix to every value of every
position of the zone (matrix) where it's being applied. For instance, in the first part of
the process, the filter is being applied to the first 2x2 part of the image [1 2; 5 6] and the
filter we have is [2 1; -1 2], so it would be 1*2 + 2*1 + 5*(-1) + 6*2 = 11.

The resulting image, after applying the filter matrix, would be as shown here:

Figure 5.5: Convolution result Stride=1

As you can see, the resulting image is now one dimension smaller. This is because there
is another parameter, called padding, which is set to "valid" by default, which means
that the convolution will be applied normally; that is, applying the convolution makes
the image one pixel thinner by nature. If it is set to "same," the image will be surrounded
by one line of pixels with a value equal to zero, thus the output matrix will have the
same size as the input matrix.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fundamentals of CNNs | 163

Now, we are going to apply a stride of 2, to reduce the size by 2 (just like a max pooling
layer of 2x2 would do). Remember that we are using a padding equal to "valid."

The process would have fewer steps, just like in the following figure:

Figure 5.6: Convolution process Stride=2

And the output image/matrix would look like this:

Figure 5.7: Convolution result Stride=2

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

164 | Convolutional Neural Networks for Computer Vision

The resulting image would be an image of 2x2 pixels. This is due to the natural process
of convolution with stride equal to 2.

These filters, which are applied on every convolutional layer, have weights that the
neural network adjusts so that the outputs of those filters help the neural network
learn valuable features. These weights, as explained, are updated by the process of
backpropagation. As a reminder, backpropagation is the process where the network's
loss (or the amount of errors) of the predictions made versus the expected results in a
training step of the network is calculated, updating all the weights of the neurons of the
network that have contributed to that error so that they do not make the same mistake
again.

Building Your First CNN

Note

For this chapter, we are going to still use Keras on top of TensorFlow as the
backend, as mentioned in Chapter 2, Introduction to Computer Vision of this book.
Also, we will still use Google Colab to train our network.

Keras is a very good library for implementing convolutional layers, as it abstracts the
user so that layers do not have to be implemented by hand.

In Chapter 2, Introduction to Computer Vision, we imported the Dense, Dropout,
and BatchNormalization layers by using the keras.layers package, and to declare
convolutional layers of two dimensions, we are going to use the same package:

from keras.layers import Conv2D

The Conv2D module is just like the other modules: you have to declare a sequential
model, which was explained in Chapter 2, Introduction to Computer Vision of this book,
and we also add Conv2D:

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), padding='same', strides=(2,2),
input_shape=input_shape))

For the first layer, the input shape has to be specified, but after that, it is no longer
needed.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your First CNN | 165

The first parameter that must be specified is the number of filters that the network is
going to learn in that layer. As mentioned before, in the earlier layers, we will filter few
layers which will be learned, rather than the layers deeper in the network.

The second parameter that must be specified is the kernel size, which is the size of
the filter applied to the input data. Usually, a kernel of size 3x3 is set, or even 2x2, but
sometimes when the image is large, a bigger kernel size is set.

The third parameter is padding, which is set to "valid" by default, but it needs to be
set to "same," as we want to preserve the size of the input in order to understand the
behavior of down-sampling the input.

The fourth parameter is strides, which, by default, is set to (1, 1). We will be setting it to
(2, 2), since there are two numbers here and it has to be set for both the x and y axes.

After the first layer, we will apply the same methodology as was mentioned in Chapter 2,
Introduction to Computer Vision:

model.add(BatchNormalization())

model.add(Activation('relu'))

model.add(Dropout(0.2))

As a reminder, the BatchNormalization layer is used to normalize the inputs of each
layer, which helps the network converge faster and may give better results overall.

The Activation layer is where the activation function is applied, and an activation
function is a function that takes the input and calculates a weighted sum of it,
adding a bias and deciding whether it should be activated or not (outputting 1 and 0,
respectively).

The Dropout layer helps the network avoid overfitting, which is when the accuracy of
the training set is much higher than the accuracy of the validation set, by switching off
a percentage of neurons.

We could apply more sets of layers like this, varying the parameters, depending on the
size of the problem to solve.

The last layers remain the same as those of dense neural networks, depending on the
problem.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

166 | Convolutional Neural Networks for Computer Vision

Exercise 17: Building a CNN

Note

This exercise uses the same packages and libraries as Chapter 2, Introduction to
Computer Vision. These libraries are Keras, Numpy, OpenCV, and Matplotlib.

In this exercise, we are going to take the same problem as Chapter 2, Activity 2, Classify
10 Types of Clothes of the Fashion-MNIST Database.

Remember that, in that activity, the neural network that was built was not capable of
generalizing well enough to classify the unseen data that we passed to it.

As a reminder, this problem is a classification problem, where the model has to classify
10 types of clothes correctly:

1. Open up your Google Colab interface.

2. Create a folder for the book and download the Datasets folder from GitHub and
upload it in the folder in your drive.

3. Import drive and mount it as follows:

from google.colab import drive
drive.mount('/content/drive')

Note

Every time you use a new collaborator, mount the drive to the desired folder.

4. Once you have mounted your drive for the first time, you will have to enter the
authorization code mentioned by clicking on the URL given by Google and press
the Enter key on your keyboard:

Figure 5.8: Mounting on Google Collab

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your First CNN | 167

5. Now that you have mounted the drive, you need to set the path of the directory:

cd /content/drive/My Drive/C13550/Lesson05/

Note

The path mentioned in step 5 may change as per your folder setup on Google
Drive. The path will always begin with cd /content/drive/My Drive/.

6. First, let's import the data from Keras and initialize the random seed to 42 for
reproducibility:

from keras.datasets import fashion_mnist
(x_train, y_train), (x_test, y_test) =fashion_mnist.load_data()
import random
random.seed(42)

7. We import NumPy in order to pre-process the data and Keras utils to one-hot
encode the labels:

import numpy as np
from keras import utils as np_utils
x_train = (x_train.astype(np.float32))/255.0
x_test = (x_test.astype(np.float32))/255.0
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
y_train = np_utils.to_categorical(y_train, 10)
y_test = np_utils.to_categorical(y_test, 10)
input_shape = x_train.shape[1:]

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

168 | Convolutional Neural Networks for Computer Vision

8. We declare the Sequential function to make a sequential model in Keras, the
callbacks, and, of course, the layers:

from keras.models import Sequential
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.layers import Input, Dense, Dropout, Flatten
from keras.layers import Conv2D, Activation, BatchNormalization

Note

We have imported a callback called EarlyStopping. What this callback does is
stop the training after a number of epochs, where the metric that you choose
(for example, validation accuracy) has dropped. You can set that number with the
number of epochs that you want.

9. Now, we are going to build our first CNN. First, let's declare the model as
Sequential and add the first Conv2D:

def CNN(input_shape):
 model = Sequential()
 model.add(Conv2D(32, kernel_size=(3, 3), padding='same',
strides=(2,2), input_shape=input_shape))

We add 32 filters as is the first layer, and a filter size of 3x3. Padding is set to "same"
and the strides are set to 2 to naturally reduce the dimensionality of the Conv2D
module.

10. We follow this layer by adding Activation and BatchNormalization layers:

 model.add(Activation('relu'))
 model.add(BatchNormalization())

11. We are going to add another three layers with the same characteristics as before,
applying dropout and jumping to another block:

 model.add(Conv2D(32, kernel_size=(3, 3), padding='same',
strides=(2,2)))
 model.add(Activation('relu'))
 model.add(BatchNormalization())

12. Now, we apply dropout of 20%, which turns off 20% of the neurons in the
network:

 model.add(Dropout(0.2))

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your First CNN | 169

13. We are going to do the same procedure one more time but with 64 filters:

 model.add(Conv2D(64, kernel_size=(3, 3), padding='same',
strides=(2,2)))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Conv2D(64, kernel_size=(3, 3), padding='same',
strides=(2,2)))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.2))

14. For the end of the network, we apply the Flatten layer to make the output
of the last layer one-dimensional. We apply a Dense layer with 512 neurons.
Where the logistics of the network occur, we apply the Activation layer and the
BatchNormalization layer, before applying a Dropout of 50%:

 model.add(Flatten())
 model.add(Dense(512))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.5))

15. And, finally, we declare the last layer as a dense layer with 10 neurons, which is
the number of classes of the dataset, and a Softmax activation function, which
establishes which class the image is more likely to be, and we return the model:

 model.add(Dense(10, activation="softmax"))
 return model

16. Let's declare the model along with the callbacks and compile it:

model = CNN(input_shape)

model.compile(loss='categorical_crossentropy', optimizer='Adadelta',
metrics=['accuracy'])

ckpt = ModelCheckpoint('Models/model.h5', save_best_
only=True,monitor='val_loss', mode='min', save_weights_only=False)
earlyStopping = EarlyStopping(monitor='val_loss', patience=5,
verbose=0,mode='min')

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

170 | Convolutional Neural Networks for Computer Vision

For compiling, we are using the same optimizer. For declaring the checkpoint,
we are using the same parameters. For declaring EarlyStopping, we are using the
validation loss as the main metric and we set a patience of five epochs.

17. Let the training begin!

model.fit(x_train, y_train, batch_size=128, epochs=100, verbose=1,
validation_data=(x_test, y_test), callbacks=[ckpt,earlyStopping])

We set the batch size to 128 because there are enough images and because
this way, it will take less time to train. The number of epochs is set to 100, as
EarlyStopping will take care of stopping the training.

The accuracy obtained is better than in the exercise in Chapter 2, Introduction to
Computer Vision – we have obtained an accuracy of 92.72%.

Take a look at the following output:

Figure 5.9: val_acc shown as 0.9240, which is 92.72%

Note

The entire code for this exercise is available on GitHub: https://github.com/
PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/
master/Lesson05/Exercise17/Exercise17.ipynb.

18. Let's try with the same examples that we tried in Activity 2, Classify 10 Types of
Clothes of the Fashion-MNIST Database of Chapter 2, which is located in Dataset/
testing/:

import cv2

images = ['ankle-boot.jpg', 'bag.jpg', 'trousers.jpg', 't-shirt.jpg']

for number in range(len(images)):
 imgLoaded = cv2.imread('Dataset/testing/%s'%(images[number]),0)
 img = cv2.resize(imgLoaded, (28, 28))
 img = np.invert(img)
 img = (img.astype(np.float32))/255.0
 img = img.reshape(1, 28, 28, 1)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson05/Exercise17/Exercise17.ipynb
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson05/Exercise17/Exercise17.ipynb
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson05/Exercise17/Exercise17.ipynb

Improving Your Model - Data Augmentation | 171

 plt.subplot(1,5,number+1),plt.imshow(imgLoaded,'gray')
 plt.title(np.argmax(model.predict(img)[0]))
 plt.xticks([]),plt.yticks([])
plt.show()

Here's the output:

Figure 5.10: Prediction of clothes using CNNs

As a reminder, here is the table with the number of corresponding clothes:

Figure 5.11: The table with the number of corresponding clothes

We can see that the model has predicted all the pictures well, so we can state that the
model is far better than one with only dense layers.

Improving Your Model - Data Augmentation
There are situations, at times, where you would not be able to improve the accuracy of
your model by building a better model. Sometimes, the problem is not the model but
the data. One of the most important things to consider when working with machine
learning is that the data you work with has to be good enough for a potential model to
generalize that data.

Data can represent real-life things, but it can also include incorrect data that may
perform badly. This can happen when you have incomplete data or data that does not
represent the classes well. For those cases, data augmentation has become one of the
most popular approaches.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

172 | Convolutional Neural Networks for Computer Vision

Data augmentation actually increases the number of samples of the original dataset.
For computer vision, this could mean increasing the number of images in a dataset.
There are several data augmentation techniques, and you may want to use a specific
technique, depending on the dataset. Some of these techniques are mentioned here:

• Rotation: The user sets the degree of rotation for images in the dataset.

• Flip: To flip the images horizontally or vertically.

• Crop: Crop a section from the images randomly.

• Change color: Change or vary the color of the images.

• Add Noise: To add noise to images.

Applying these or other techniques, you end up generating new images that vary from
the original ones.

In order to implement this in code, Keras has a module called ImageDataGenerator,
where you declare transformations that you want to apply to your dataset. You can
import that module using this line of code:

from keras.preprocessing.image import ImageDataGenerator

In order to declare the variable that is going to apply all those changes to your dataset,
you have to declare it as in the following code snippet:

datagen = ImageDataGenerator(

 rotation_range=20,

 zoom_range = 0.2,

 width_shift_range=0.1,

 height_shift_range=0.1,

 horizontal_flip=True

)

Note

You can see what attributes you can pass to ImageDataGenerator by looking at this
documentation from Keras: https: //keras.io/preprocessing/image/.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https: //keras.io/preprocessing/image/

Improving Your Model - Data Augmentation | 173

After declaring datagen, you have to compute some calculations for feature-wise
normalization by using the following:

datagen.fit(x_train)

Here, x_train is your training set.

In order to train the model using data augmentation, the following code should be used:

model.fit_generator(datagen.flow(x_train, y_train,

 batch_size=batch_size),

 epochs=epochs,

 validation_data=(x_test, y_test),

 callbacks=callbacks,

 steps_per_epoch=len(x_train) // batch_size)

Datagen.flow() is used so that data augmentation can be applied. As Keras does not
know when to stop applying data augmentation in the given data, Steps_per_epoch is the
parameter that sets that limit, which should be the length of the training set divided by
the batch size.

Now we are going to jump right into the second exercise of this chapter to observe the
output. Data augmentation promises better results and better accuracy. Let's find out
whether that is true or not.

Exercise 18: Improving Models Using Data Augmentation

In this exercise, we are going to use the The Oxford - III Pet dataset, which is RGB
images, of varying sizes and several classes, of different cat/dog breeds. In this case,
we will separate the dataset into two classes: cats and dogs, for simplicity. There are
1,000 images for each class, which is not much, but it will increment the effect of data
augmentation. This dataset is stored in the Dataset/dogs-cats/ folder, added on GitHub.

We will build a CNN and train it with and without data augmentation, and we will
compare the results:

Note

For this exercise, we are going to open another Google Colab notebook.

The entire code for this exercise can be found on GitHub: https://github.com/
PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/
master/Lesson05/Exercise18/Exercise18.ipynb.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson05/Exercise18/Exercise18.ipynb
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson05/Exercise18/Exercise18.ipynb
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson05/Exercise18/Exercise18.ipynb

174 | Convolutional Neural Networks for Computer Vision

1. Open up your Google Colab interface.

2. Create a folder for the book and download the Datasets folder from GitHub and
upload it in the folder in your drive.

3. Import drive and mount it as follows:

from google.colab import drive
drive.mount('/content/drive')

Note

Every time you use a new collaborator, mount the drive to the desired folder.

4. Once you have mounted your drive for the first time, you have to enter the
authorization code mentioned by clicking on the URL given by Google.

5. Now that you have mounted the drive, you need to set the path of the directory:

cd /content/drive/My Drive/C13550/Lesson5/Dataset

Note

The path mentioned in step 5 may change as per your folder setup on Google
Drive. The path will always begin with cd /content/drive/My Drive/.

6. First, let's use these two methods, which we have already used before, to load the
data from disk:

import re, os, cv2
import numpy as np
rows,cols = 128,128

//{…}##the detailed code can be found on Github##

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Improving Your Model - Data Augmentation | 175

def list_files(directory, ext=None):

//{…}##the detailed code can be found on Github##

def load_images(path,label):
//{…}
 for fname in list_files(path, ext='jpg'):
 img = cv2.imread(fname)
 img = cv2.resize(img, (rows, cols))
//{…}##the detailed code can be found on Github##

Note

The size of the image is specified as 128x128. This size is larger than the sizes used
before, because we need more detail in these images, as the classes are more
difficult to differentiate and the subjects are presented in varying positions, which
makes the work even more difficult.

7. We load the corresponding images of dogs and cats as X for the images and y for
the labels, and we print the shape of those:

X, y = load_images('Dataset/dogs-cats/dogs',0)
X_aux, y_aux = load_images('Dataset/dogs-cats/cats',1)
X = np.concatenate((X, X_aux), axis=0)
y = np.concatenate((y, y_aux), axis=0)
print(X.shape)
print(y.shape)

Figure 5.12: Dogs-cats data shape

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

176 | Convolutional Neural Networks for Computer Vision

8. Now we will import random, set the seed, and show some samples of the data:

import random
random.seed(42)
from matplotlib import pyplot as plt

for idx in range(5):
 rnd_index = random.randint(0, X.shape[0]-1)
 plt.subplot(1,5,idx+1)
 plt.imshow(cv2.cvtColor(X[rnd_index],cv2.COLOR_BGR2RGB))
 plt.xticks([]),plt.yticks([])
plt.show()

Figure 5.13: Image samples of the Oxford Pet dataset

9. To pre-process the data, we are going to use the same procedure as in Exercise 17:
Building a CNN:

from keras import utils as np_utils
X = (X.astype(np.float32))/255.0
X = X.reshape(X.shape[0], rows, cols, 3)
y = np_utils.to_categorical(y, 2)
input_shape = X.shape[1:]

10. Now, we separate X and y into x_train and y_train for the training set, and x_test
and y_test for the testing set, and we print the shapes:

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Improving Your Model - Data Augmentation | 177

Figure 5.14: Training and testing set shapes

11. We import the corresponding data to build, compile, and train the model:

from keras.models import Sequential
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.layers import Input, Dense, Dropout, Flatten
from keras.layers import Conv2D, Activation, BatchNormalization

12. Let's build the model:

def CNN(input_shape):
 model = Sequential()

 model.add(Conv2D(16, kernel_size=(5, 5), padding='same',
strides=(2,2), input_shape=input_shape))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Conv2D(16, kernel_size=(3, 3), padding='same',
strides=(2,2)))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.2))

//{…}##the detailed code can be found on Github##

 model.add(Conv2D(128, kernel_size=(2, 2), padding='same',
strides=(2,2)))
 model.add(Activation('relu'))

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

178 | Convolutional Neural Networks for Computer Vision

 model.add(BatchNormalization())
 model.add(Dropout(0.2))

 model.add(Flatten())
 model.add(Dense(512))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.5))

 model.add(Dense(2, activation="softmax"))

 return model

The model goes from 16 filters in the very first layer to 128 filters at the end,
doubling the size in every 2 layers.

Because this problem is harder (we have bigger images with 3 channels and
128x128 images), we have made the model deeper, adding another couple of layers
with 16 filters at the beginning (the first layer having a kernel size of 5x5, which is
better in the very first stages) and another couple of layers with 128 filters at the
end of the model.

13. Now, let's compile the model:

model = CNN(input_shape)

model.compile(loss='categorical_crossentropy', optimizer='Adadelta',
metrics=['accuracy'])

ckpt = ModelCheckpoint('Models/model_dogs-cats.h5', save_best_
only=True,monitor='val_loss', mode='min', save_weights_only=False)

earlyStopping = EarlyStopping(monitor='val_loss', patience=15,
verbose=0,mode='min')

We have set the patience to 15 epochs for the EarlyStopping callback because it
takes more epochs for the model to converge to the sweet spot, and the validation
loss can vary a lot until then.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Improving Your Model - Data Augmentation | 179

14. Then, we train the model:

model.fit(x_train, y_train,
 batch_size=8,
 epochs=100,
 verbose=1,
 validation_data=(x_test, y_test),
 callbacks=[ckpt,earlyStopping])

The batch size is also low as we do not have much data, but it could be increased
to 16 easily.

15. Then, evaluate the model:

from sklearn import metrics
model.load_weights('Models/model_dogs-cats.h5')
y_pred = model.predict(x_test, batch_size=8, verbose=0)
y_pred = np.argmax(y_pred, axis=1)
y_test_aux = y_test.copy()
y_test_pred = list()
for i in y_test_aux:
 y_test_pred.append(np.argmax(i))

print (y_pred)

Evaluate the prediction
accuracy = metrics.accuracy_score(y_test_pred, y_pred)
precision, recall, f1, support = metrics.precision_recall_fscore_
support(y_test_pred, y_pred, average=None)
print('\nFinal results...')
print(metrics.classification_report(y_test_pred, y_pred))
print('Acc : %.4f' % accuracy)
print('Precision: %.4f' % np.average(precision))
print('Recall : %.4f' % np.average(recall))
print('F1 : %.4f' % np.average(f1))
print('Support :', np.sum(support))

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

180 | Convolutional Neural Networks for Computer Vision

You should see the following output:

Figure 5.15: Output showing the accuracy of the model

As you can see from the preceding figure, the accuracy achieved in this dataset
with this model is 67.25%.

16. We are going to apply data augmentation to this process. We have to import
ImageDataGenerator from Keras and declare it with transformations that we are
going to make:

from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
 rotation_range=15,
 width_shift_range=0.2,
 height_shift_range=0.2,
 horizontal_flip=True,
 zoom_range=0.3
)

The following transformations have been applied:

We have set a rotation range of 15 degrees because dogs and cats within images
can be positioned in slightly different ways (feel free to tweak this parameter).

We have set the width shift range and height shift range to 0.2 to shift the image
horizontally and vertically, as an animal could be anywhere within the image (also
tweakable).

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Improving Your Model - Data Augmentation | 181

We have set the horizontal flip property to True because these animals can be
flipped in the dataset (horizontally; with vertical flipping, it is much more difficult
to find an animal).

Finally, we set zoom range to 0.3 to make random zooms on the images as the
dogs and cats may be farther in the image or closer.

17. We fit the datagen instance declared with the training data in order to compute
quantities for feature-wise normalization and declare and compile the model again
to make sure we are not using the previous one:

datagen.fit(x_train)

model = CNN(input_shape)

model.compile(loss='categorical_crossentropy', optimizer='Adadelta',
metrics=['accuracy'])

ckpt = ModelCheckpoint('Models/model_dogs-cats.h5', save_best_
only=True,monitor='val_loss', mode='min', save_weights_only=False)

18. Finally, we train the model with the fit_generator method of the model and the
flow() method of the datagen instance generated:

model.fit_generator(
 datagen.flow(x_train, y_train, batch_size=8),
 epochs=100,
 verbose=1,
 validation_data=(x_test, y_test),
 callbacks=[ckpt,earlyStopping],
 steps_per_epoch=len(x_train) // 8,
 workers=4)

We set the steps_per_epoch parameter equal to the length of the training set
divided by the batch size (8).

We also set the number of workers to 4 to take advantage of the 4 cores of the
processor:

from sklearn import metrics
Make a prediction
print ("Making predictions...")
model.load_weights('Models/model_dogs-cats.h5')
#y_pred = model.predict(x_test)
y_pred = model.predict(x_test, batch_size=8, verbose=0)
y_pred = np.argmax(y_pred, axis=1)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

182 | Convolutional Neural Networks for Computer Vision

y_test_aux = y_test.copy()
y_test_pred = list()
for i in y_test_aux:
 y_test_pred.append(np.argmax(i))

print (y_pred)

Evaluate the prediction
accuracy = metrics.accuracy_score(y_test_pred, y_pred)
precision, recall, f1, support = metrics.precision_recall_fscore_
support(y_test_pred, y_pred, average=None)
print('\nFinal results...')
print(metrics.classification_report(y_test_pred, y_pred))
print('Acc : %.4f' % accuracy)
print('Precision: %.4f' % np.average(precision))
print('Recall : %.4f' % np.average(recall))
print('F1 : %.4f' % np.average(f1))
print('Support :', np.sum(support))

You should see the following output:

Figure 5.16: Output showing the accuracy of the model

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Improving Your Model - Data Augmentation | 183

As you can see from the preceding figure, with data augmentation, we achieve an
accuracy of 81%, which is far better.

19. If we want to load the model that we just trained (dogs versus cats), the following
code achieves that:

from keras.models import load_model
model = load_model('Models/model_dogs-cats.h5')

20. Let's try the model with unseen data. The data can be found in the Dataset/
testing folder and the code from Exercise 17, Building a CNN will be used (but with
different names for the samples):

images = ['dog1.jpg', 'dog2.jpg', 'cat1.jpg', 'cat2.jpg']

for number in range(len(images)):
 imgLoaded = cv2.imread('testing/%s'%(images[number]))
 img = cv2.resize(imgLoaded, (rows, cols))
 img = (img.astype(np.float32))/255.0
 img = img.reshape(1, rows, cols, 3)

In these lines of code, we are loading an image, resizing it to the expected size (128
x 128), normalizing the image – as we did with the training set – and reshaping it to
(1, 128, 128, 3) to fit as input in the neural network.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

184 | Convolutional Neural Networks for Computer Vision

We continue the for loop:

 plt.subplot(1,5,number+1),plt.imshow(cv2.cvtColor(imgLoad ed,cv2.COLOR_
BGR2RGB))
 plt.title(np.argmax(model.predict(img)[0]))
 plt.xticks([]),plt.yticks([])
fig = plt.gcf()
plt.show()

Figure 5.17: Prediction of the Oxford Pet dataset with unseen data using CNNs
and data augmentation

We can see that the model has made all the predictions well. Note that not all the
breeds are stored in the dataset, so not all the cats and dogs will be predicted properly.
Adding more types of breeds would be necessary in order to achieve that.

Activity 5: Making Use of Data Augmentation to Classify correctly Images of

Flowers

In this activity, you are going to put into practice what you have learned. We are going
to use a different dataset, where the images are bigger (150x150). There are 5 classes
in this dataset: daisy, dandelion, rose, sunflower, and tulip. There are, in total, 4,323
images, which is fewer when compared to the previous exercises we performed. The
classes do not have the same number of images either, but do not worry about that. The
images are RGB, so there will be three channels. We have stored them in NumPy arrays
of each class, so we will provide a way to load them properly.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Improving Your Model - Data Augmentation | 185

The following steps will guide you through this:

1. Load the dataset by using this code, as the data is stored in NumPy format:

import numpy as np
classes = ['daisy','dandelion','rose','sunflower','tulip']
X = np.load("Dataset/flowers/%s_x.npy"%(classes[0]))
y = np.load("Dataset/flowers/%s_y.npy"%(classes[0]))
print(X.shape)
for flower in classes[1:]:
 X_aux = np.load("Dataset/flowers/%s_x.npy"%(flower))
 y_aux = np.load("Dataset/flowers/%s_y.npy"%(flower))
 print(X_aux.shape)
 X = np.concatenate((X, X_aux), axis=0)
 y = np.concatenate((y, y_aux), axis=0)
print(X.shape)
print(y.shape)

2. Show some samples from the dataset by importing random and matplotlib, using a
random index to access the X set.

Note

The NumPy arrays were stored in BGR format (OpenCV format), so in order to
show the images properly, you will need to use the following code to change the
format to RGB (only to show the image): image=cv2.cvtColor(image,cv2.COLOR_
BGR2RGB).

You will need to import cv2.

3. Normalize the X set and set the labels to categorical (the y set).

4. Split the sets into a training and testing set.

5. Build a CNN.

Note

As we have bigger images, you should consider adding more layers, thus reducing
the image size, and the first layer should contain a bigger kernel (the kernel should
be an odd number when it is bigger than 3).

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

186 | Convolutional Neural Networks for Computer Vision

6. Declare ImageDataGenerator from Keras with the changes that you think will suit
the variance of the dataset.

7. Train the model. You can either choose an EarlyStopping policy or set a high
number of epochs and wait or stop it whenever you want. If you declare the
Checkpoint callback, it will always save only the best validation loss model (if that
is the metric you are using).

8. Evaluate the model using this code:

from sklearn import metrics
y_pred = model.predict(x_test, batch_size=batch_size, verbose=0)
y_pred = np.argmax(y_pred, axis=1)
y_test_aux = y_test.copy()
y_test_pred = list()
for i in y_test_aux:
 y_test_pred.append(np.argmax(i))
accuracy = metrics.accuracy_score(y_test_pred, y_pred)
print(accuracy)

Note

This will print the accuracy of the model. Note that batch_size is the batch size you
have set for your training sets and for x_test and y_test, which are your testing
sets.

You can use this code in order to evaluate any model, but first you need to load the
model. If you want to load the entire model from a .h5 file, you will have to use this
code:

from keras.models import load_model
model = load_model('model.h5')

9. Try the model with unseen data. In the Dataset/testing/ folder, you will find five
images of flowers that you can load to try it out. Remember that the classes are in
this order:

classes=['daisy','dandelion','rose','sunflower','tulip']

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

State-of-the-Art Models - Transfer Learning | 187

So, the result should look like this:

Figure 5.18: Prediction of roses using CNNs

Note

The solution for this activity can be found on page 313.

State-of-the-Art Models - Transfer Learning
Humans do not learn each and every task that they want to achieve from scratch; they
usually take previous knowledge as a base in order to learn tasks much faster.

When training neural networks, there are some tasks that are extremely expensive to
train for every individual, such as having hundreds of thousands of images for training
and having to distinguish between two or more similar objects, ending up having a cost
of days to achieve good performance, for example. These neural networks are trained
to achieve this expensive task, and because neural networks are capable of saving that
knowledge, then other models can take advantage of those weights to retrain specific
models for similar tasks.

Transfer learning does just that – it transfers the knowledge of a pretrained model to
your model, so you can take advantage of that knowledge.

So, for example, if you want to make a classifier that is capable of identifying five objects
but that task seems too expensive to train (it takes knowledge and time), you can take
advantage of a pretrained model (usually trained on the famous ImageNet dataset)
and retrain the model adapted to your problem. The ImageNet dataset is a large visual
database designed for use in visual object recognition research and has more than
14 million images with more than 20,000 categories, which is very expensive for an
individual to train.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

188 | Convolutional Neural Networks for Computer Vision

Technically, you load the model with the weights of the dataset where it was trained,
and if you want to achieve a different problem, you only have to change the last layer of
the model. If the model is trained on ImageNet, it could have, 1000 classes but you only
have 5 classes, so you would change the last layer to a dense layer with only 5 neurons.
You could add more layers before the last one, though.

The layers of the model that you have imported (the base model) can be frozen so their
weights do not reflect on the training time. Depending on this, there are two types of
transfer learning:

• Traditional: Freeze all the layers of the base model

• Fine-tuning: Freeze only a part of the base model, typically the first layers

In Keras, we can import famous pretrained models such as Resnet50 and VGG16. You
can import a pretrained model with or without weights (in Keras, there are only weights
for ImageNet), which includes the top of the model or not. The input shape can only be
only specified if the top is not included and with a minimum size of 32.

With the following lines of code, you would import the Resnet50 model without the top,
with the imagenet weights and with a shape of 150x150x3:

from keras.applications import resnet50

model = resnet50.ResNet50(include_top=False, weights='imagenet', input_
shape=(150,150,3))

If you have included the top of the model because you want to use the last dense layers
of the model (let's say your problem is similar to ImageNet but with different classes),
then you should write this code:

from keras.models import Model

from keras.layers import Dense

model.layers.pop()

model.outputs = [model.layers[-1].output]

model.layers[-1].outbound_nodes = []

x=Dense(5, activation='softmax')(model.output)

model=Model(model.input,x)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

State-of-the-Art Models - Transfer Learning | 189

This code gets rid of the classification layer (the last dense layer) and prepares the
model so that you can add your own last layer. Of course, you could add more layers at
the end before adding your classification layer.

If you have not added the top of the model, then you should add your own top with this
code:

from keras.models import Model

from keras.layers import Dense, GlobalAveragePooling2D

x=base_model.output

x=GlobalAveragePooling2D()(x)

x=Dense(512,activation='relu')(x) #dense layer 2

x=Dropout(0.3)(x)

x=Dense(512,activation='relu')(x) #dense layer 3

x=Dropout(0.3)(x)

preds=Dense(5,activation='softmax')(x) #final layer with softmax activation

model=Model(inputs=base_model.input,outputs=preds)

Here, GlobalAveragePooling2D is like a type of max pooling.

With these kinds of models, you should preprocess the data just as you did with the
data that trained those models (if you are using the weights). Keras has a preprocess_
input method that does that for every model. For example, for ResNet50, it would be
like this:

from keras.applications.resnet50 import preprocess_input

You pass your array of images to that function and then you will have your data ready
for training.

The learning rate in a model is how fast it should convert the model to a local
minimum. Usually, you do not have to worry about this but if you are retraining a neural
network, this is a parameter that you have to tweak. When you are retraining a neural
network, you should decrease the value of this parameter so that the neural network
does not unlearn what it has already learned. This parameter is tweaked when declaring
the optimizer. You can avoid tweaking this parameter, although the model may end up
not ever converging or overfitting.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

190 | Convolutional Neural Networks for Computer Vision

With this kind of approach, you could train your network with very little data and get
good results overall, because you take advantage of the weights of the model.

You can combine transfer learning with data augmentation as well.

Exercise 19: Classifying €5 and €20 Bills Using Transfer Learning with Very

Little Data

This problem is about differentiating €5 bills from €20 bills with very little data.
We have 30 images for every class, which is much less than we have had in previous
exercises. We are going to load the data, declare the pretrained model, then declare
the changes on the data with data augmentation and train the model. After that, we will
check how well the model performs with unseen data:

1. Open up your Google Colab interface.

Note

You would need to mount the Dataset folder on your drive and set the path
accordingly.

2. Declare functions to load the data:

import re, os, cv2
import numpy as np

def list_files(directory, ext=None):
//{…}
##the detailed code can be found on Github##

def load_images(path,label):
//{…}
##the detailed code can be found on Github##

 for fname in list_files(path, ext='jpg'):
 img = cv2.imread(fname)
 img = cv2.resize(img, (224, 224))
//{…}
##the detailed code can be found on Github##

Note that the data is resized to 224x224.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

State-of-the-Art Models - Transfer Learning | 191

3. The data is stored in Dataset/money/, where you have both classes in subfolders. In
order to load the data, you have to write the following code:

X, y = load_images('Dataset/money/20',0)
X_aux, y_aux = load_images('Dataset/money/5',1)
X = np.concatenate((X, X_aux), axis=0)
y = np.concatenate((y, y_aux), axis=0)
print(X.shape)
print(y.shape)

The label for the €20 bill is 0 and it's 1 for the €5 bill.

4. Let's show the data:

import random
random.seed(42)
from matplotlib import pyplot as plt

for idx in range(5):
 rnd_index = random.randint(0, 59)
 plt.subplot(1,5,idx+1),plt.imshow(cv2.cvtColor(X[rnd_index],cv2.COLOR_
BGR2RGB))
 plt.xticks([]),plt.yticks([])
plt.savefig("money_samples.jpg", bbox_inches='tight')
plt.show()

Figure 5.19: Samples of bills

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

192 | Convolutional Neural Networks for Computer Vision

5. Now we are going to declare the pretrained model:

from keras.applications.mobilenet import MobileNet, preprocess_input
from keras.layers import Input, GlobalAveragePooling2D, Dense, Dropout
from keras.models import Model

input_tensor = Input(shape=(224, 224, 3))

base_model = MobileNet(input_tensor=input_
tensor,weights='imagenet',include_top=False)

x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(512,activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(2, activation='softmax')(x)

model = Model(base_model.input, x)

In this case, we are loading the MobileNet model with the weights of imagenet.
We are not including the top so we should build our own top. The input shape is
224x224x3.

We have built the top of the model by taking the output of the last layer of
MobileNet (which is not the classification layer) and start building on top of that.
We have added GlobalAveragePooling2D for image reduction, a dense layer that
we can train for our specific problem, a Dropout layer to avoid overfitting, and the
classifier layer at the end.

The dense layer at the end has two neurons, as we have only two classes, and it
has the Softmax activation function. For binary classification, the Sigmoid function
can also be used, but it changes the entire process as you should not make the
labels categorical and the predictions look different.

Afterward, we create the model that we are going to train with the input of
MobileNet as input and the classification dense layer as output.

6. We are going to do fine-tuning. In order to do that, we have to freeze some of the
input layers and keep the rest of the trainable data, unchanged:

for layer in model.layers[:20]:
 layer.trainable=False
for layer in model.layers[20:]:
 layer.trainable=True

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

State-of-the-Art Models - Transfer Learning | 193

7. Let's compile the model with the Adadelta optimizer:

import keras
model.compile(loss='categorical_crossentropy',optimizer=keras.optimizers.
Adadelta(), metrics=['accuracy'])

8. Now we will use the preprocess_input method that we imported previously
to preprocess the X set for MobileNet, and then we convert label y to one-hot
encoding:

from keras import utils as np_utils
X = preprocess_input(X)
#X = (X.astype(np.float32))/255.0
y = np_utils.to_categorical(y)

9. We use the train_test_split method to split the data into a training set and
testing set:

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)

10. We are going to apply data augmentation to our dataset:

from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
 rotation_range=90,
 width_shift_range = 0.2,
 height_shift_range = 0.2,
 horizontal_flip=True,
 vertical_flip=True,
 zoom_range=0.4)
train_datagen.fit(x_train)

As a bill can be at different angles, we choose to make a rotation range of 90º. The
other parameters seem reasonable for this task.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

194 | Convolutional Neural Networks for Computer Vision

11. Let's declare a checkpoint to save the model when the validation loss decreases
and train the model:

from keras.callbacks import ModelCheckpoint
ckpt = ModelCheckpoint('Models/model_money.h5', save_best_only=True,
monitor='val_loss', mode='min', save_weights_only=False)
model.fit_generator(train_datagen.flow(x_train, y_train,
 batch_size=4),
 epochs=50,
 validation_data=(x_test, y_test),
 callbacks=[ckpt],
 steps_per_epoch=len(x_train) // 4,
 workers=4)

We have set the batch size to 4 because we have only a few samples of data and we
do not want to pass all the samples to the neural network at once, but in batches.
We are not using the EarlyStopping callback because the loss goes up and down
due to the lack of data and the use of Adadelta with a high learning rate.

12. Check the results:

Figure 5.20: Showing the desired output

In the preceding figure, we can see that, in the 7th epoch, we already achieve
100% accuracy with low loss. This is due to the lack of data on the validation set,
because with only 12 samples you cannot tell whether the model is performing
well against unseen data.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

State-of-the-Art Models - Transfer Learning | 195

13. Let's run the code to calculate the accuracy of this model:

y_pred = model.predict(x_test, batch_size=4, verbose=0)
y_pred = np.argmax(y_pred, axis=1)
y_test_aux = y_test.copy()
y_test_pred = list()
for i in y_test_aux:
 y_test_pred.append(np.argmax(i))

accuracy = metrics.accuracy_score(y_test_pred, y_pred)
print('Acc: %.4f' % accuracy)

The output is as follows:

Figure 5.21: Accuracy achieved of 100%

14. Let's try this model with new data. There are test images in the Dataset/testing
folder. We have added four examples of bills to check whether the model predicts
them well:

Note

Remember that we set the label of €20 to 0 and 1 for €5.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

196 | Convolutional Neural Networks for Computer Vision

images = ['20.jpg','20_1.jpg','5.jpg','5_1.jpg']
model.load_weights('Models/model_money.h5')

for number in range(len(images)):
 imgLoaded = cv2.imread('Dataset/testing/%s'%(images[number]))
 img = cv2.resize(imgLoaded, (224, 224))
 #cv2.imwrite('test.jpg',img)
 img = (img.astype(np.float32))/255.0
 img = img.reshape(1, 224, 224, 3)
 plt.subplot(1,5,number+1),plt.imshow(cv2.cvtColor(imgLoaded,cv2.COLOR_
BGR2RGB))
 plt.title('20' if np.argmax(model.predict(img)[0]) == 0 else '5')
 plt.xticks([]),plt.yticks([])
plt.show()

In this code, we have loaded the unseen examples as well, and we have clubbed the
output image, which looks like this:

Figure 5.22: Prediction of bills

The model has predicted all the images precisely!

Congratulations! Now you are able to train a model with your own dataset when you
have little data, thanks to transfer learning.

Note

The complete code for this exercise is uploaded on GitHub: https://github.com/
PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/
master/Lesson05/Exercise19/Exercise19.ipynb.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary | 197

Summary
CNNs have shown much better performance than fully-connected neural networks
when dealing with images. In addition, CNNs are also capable of accomplishing good
results with text and sound data.

CNNs have been explained in depth, as have how convolutions work and all the
parameters that come along with them. Afterward, all this theory was put into practice
with an exercise.

Data augmentation is a technique for overcoming a lack of data or a lack of variation in
a dataset by applying simple transformations to the original data in order to generate
new images. This technique has been explained and also put into practice with an
exercise and an activity, where you were able to experiment with the knowledge you
acquired.

Transfer learning is a technique used when there is a lack of data or the problem is
so complex that it would take too long to train on a normal neural network. Also, this
technique does not need much of an understanding of neural networks at all, as the
model is already implemented. It can also be used with data augmentation.

Transfer learning was also covered and put into practice with an exercise where the
amount of data was very small.

Learning how to build CNNs is very useful for recognizing objects or environments in
computer vision. When a robot is using its vision sensors to recognize an environment,
normally, CNNs are employed and data augmentation is used to improve the CNNs
performance. In Chapter 8, Object Recognition to Guide the Robot Using CNNs, the CNN
concepts you have learned about will be applied to a real-world application, and you
will be able to recognize an environment using deep learning.

Before applying these techniques to recognize the environment, first you need to learn
how to manage a robot that will be able to recognize an environment. In Chapter 6,
Robot Operating System (ROS), you will learn how to manage a robot using a simulator
by taking advantage of software called ROS.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Objectives

By the end of this chapter, you will be able to:

• Explain Robot Operating System (ROS) essentials and basic concepts

• Create Robot Operating System packages and work with them

• Operate a virtual robot with information obtained from sensors

• Develop and implement working programs for robots

This chapter focuses on ROS and the different ways to work with its packages. You'll also learn
how to operate a virtual robot based on the information received from its sensors using ROS.

Robot Operating
System (ROS)

6

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

200 | Robot Operating System (ROS)

Introduction
Developing software for robots is not as easy as developing any other type of software.
To build robots, you need methods and functions that enable you to access sensor
information, control robot parts, and connect with the robot. These methods and
functions are present in ROS, making it easier to build a virtual robot.

ROS is a framework that is compatible with Ubuntu (Linux) for writing robot software.
It is a set of libraries and tools through which it is possible to build and create various
robotic behaviors. One of the most interesting features about this framework is that
the developed code can be adapted for any other robot. ROS also gives you a chance
to work on several machines simultaneously; for instance, if you want to use a robot to
collect apples, you can use a computer to obtain the camera information of the apple
and process it, another machine to launch the movement that commands the robot,
and finally the robot will pick up the apple. By following this workflow, computers won't
perform too many computational tasks, and the execution turns out to be more fluid.

ROS is the most widely used tool for robotics, both for researchers and companies. It
is becoming a standard for robotics tasks. Furthermore, ROS is constantly evolving to
solve new problems and is adapting to different technologies. All these facts make it a
good topic for studying and practicing.

ROS Concepts
As mentioned earlier, working with ROS is not easy the first time round. But just like
any other software, you need to know how ROS works and how to perform certain tasks
using it. In order to do that and before installing or working with the framework, it is
important to understand its basic concepts. The key ideas behind ROS' functions that
will help you understand its internal processes are mentioned here:

• Node: An ROS node is a process in charge of performing tasks and calculations.
They can be combined with each other using topics or other more complex tools.

• Topic: Topics can be defined as information channels between nodes that work in
a unidirectional way. This is considered a unidirectional workflow because nodes
can subscribe to topics, but a topic would not know which nodes are subscribed to
it.

• Master: The ROS master is a service that provides a name and registration to the
remaining nodes. Its main function is to enable individual nodes so that they can
locate each other and establish peer-to-peer communication.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

ROS Concepts | 201

• Package: Packages are the core of ROS organization. Within these packages,
you can find nodes, libraries, datasets, or useful components to build a robotics
application.

• Stack: An ROS stack is a set of nodes that, all together, provide some functionality.
It can be useful for dividing tasks between nodes when the functionality to
develop is too complex.

Apart from the aforementioned concepts, there are many other concepts that can be
useful when using ROS, but understanding these basic ones will let you implement
powerful programs for robots. Let's look at a simple example in order to learn how they
would be used in a real situation:

Figure 6.1: A schema of a real example system using ROS

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

202 | Robot Operating System (ROS)

The situation here consists of a robot changing its direction when detecting a close
obstacle. This is how it works step by step:

1. The ROS master is enabled. This means the ROS system has been started and can
have any node run.

2. The proximity node starts and extracts information from the laser sensor. It
advertises the master to publish this obtained information. If there's no problem
and the information has the expected type, the master will allow the node to
publish through a topic.

3. Once the master allows the node to publish, the information is passed to a topic
and published. In this case, the proximity node publishes the information in the
laser topic.

4. The movement node asks the master to subscribe to a laser topic. When
subscribed, it will obtain the published information and work with it to decide the
next action for the robot to perform.

To sum up, both nodes can share information using the master service, which notifies
both nodes about each other's existence.

ROS Commands
ROS doesn't have a graphical user interface to work with it; every action must be
performed on the command line as it is compatible with Ubuntu. However, before
getting your hands on the ROS, you need to learn about its most common commands.
Here's a short list of them and their functionality:

• roscore: This is the first command to be run when working with ROS. It enables
the framework and provides support to any ROS program or operation. It should
be launched in order to allow node communication.

• roscd: This command switches to a stack or package directory without entering a
physical path.

• rosnode: These commands manage nodes and obtain information about them.
Here, you can see the most used rosnode commands:

• rosnode list: This command prints the information of active nodes.

• rosnode info <node_name>: This informs the user about the entered node.

• rosnode kill <node_name>: The function of this command is to stop a node
process.

• rosrun: Using this command, you can run any application on your system without
switching to its directory.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installation and Configuration | 203

• rostopic: This command allows you to manage and check topic information. There
are several other types for this command:

• rostopic list: This type prints the information of active topics.

• rostopic info <topic_name>: This shows information about a concrete topic.

• rostopic pub <topic_name> [data...]: The function of this command is to publish
the given data to the entered topic.

• rqt_graph: This is a very useful command that can be used to graphically observe
active nodes and topics that are being published or subscribed to.

Installation and Configuration
The first thing to consider before installing ROS is the installed Ubuntu version. There
are several ROS versions that you will have to choose from depending on your operating
system version. In this case, we are explaining the installation of ROS Kinetic Kame,
which is compatible with Ubuntu 16.04 LTS (Xenial Xerus).

Note

If this is not your Ubuntu version, you can head to the ROS website,
http://www.ros.org/, and look for the corresponding distribution.

As happens with almost every other tool, it is recommended to always install the latest
version, because it may have solved errors or new functionalities; but, as mentioned
before, don't worry if you're working with an older version.

Note

To get detailed steps on how to install ROS, refer to the preface on page vi.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.ros.org/

204 | Robot Operating System (ROS)

Catkin Workspaces and Packages
This is the last step before coding your first application and program for robots. You
have to set up your working environment. To do this, you are going to learn what catkin
workspaces and packages are and how to work with them.

A catkin workspace is a ROS directory where catkin packages can be created, compiled,
and run. A catkin package is a container for creating ROS nodes and applications.
Each of these packages work as a single project that can contain multiple nodes. It is
important to know that the ROS code inside catkin packages can only be Python or C++.

Now, let's see how to create the catkin workspace:

Note

Execute these commands in the same terminal window.

1. Create a standard folder containing a subfolder named "src." You can choose any
location on your system:

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws

2. Switch to the new catkin_ws directory and run the catkin compilation command
to initialize the new workspace:

catkin_make

This command must be executed every time you want to compile your workspace
when making changes in any package.

By following these simple steps, you will have your catkin workspace ready to work
with. But, when working on it, you should always remember to enter this command
first:

source devel/setup.bash

This lets ROS know that there can be ROS executables in the created catkin workspace.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Publishers and Subscribers | 205

If you have successfully completed the preceding process, you can now create your
catkin packages and work on them. Create a package with the steps mentioned here:

1. Go into the "src" folder of your catkin workspace:

cd ~/catkin_ws/src

2. Use this command to create a package:

catkin_create_pkg <package_name> [dependencies]

The dependencies are a set of libraries or tools that the package needs to function
correctly. For example, in a simple package where you only use Python code, the
command will be as follows:

catkin_create_pkg my_python_pkg rospy

Publishers and Subscribers
When explaining basic ROS concepts, we discussed a few nodes used for publishing
data and some others used for subscribing to that data. Knowing this, it is not hard to
imagine that nodes can be classified into two groups, depending on the kind of action
they perform. They can be publishers or subscribers. Why do you think it is important
to distinguish between these two types of nodes?

As mentioned earlier, publishers are nodes that provide information to other nodes.
They usually work with sensors to check the environment status and convert it into
valuable outputs for subscribers that can receive this information.

On the other hand, subscribers usually get an understandable input and process it.
They then decide which action will be launched depending on the obtained result.

As this is a rarely used type of programming, it will be interesting to follow some
examples of how these nodes really work, before starting to use them with robots and
simulators. So, let's go through some exercises that will help you understand nodes.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

206 | Robot Operating System (ROS)

Exercise 20: Publishing and Subscribing

In this example, we will write a simple publisher and subscriber in Python using the
following steps:

1. Open a new terminal and enter the roscore command to start the ROS service:

roscore

2. Create a new package in your catkin workspace that contains the solution to this
exercise. This package will depend on rospy and std_msgs, so you must create it as
follows:

catkin_create_pkg exercise20 rospy std_msgs

Note

std_msgs is a package that provides support to ROS primitive data types. You can
find more information about it, including the concrete types of managed data,
here: http://wiki.ros.org/std_msgs.

3. Switch to the package directory and create a new folder, which will contain
publisher and subscriber files, for example:

cd ~/catkin_ws/src/exercise20
mkdir –p scripts

4. Go into the new folder and create a corresponding Python file for each node:

cd scripts
touch publisher.py
touch subscriber.py

5. Provide the executable permission to both files:

chmod +x publisher.py
chmod +x subscriber.py

6. Begin with the publisher implementation:

Initialize the Python environment and import the necessary libraries.

Note

This code needs to be added in a publisher.py file.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://wiki.ros.org/std_msgs

Publishers and Subscribers | 207

#!/usr/bin/env python
import rospy
from std_msgs.msg import String

Create a function to publish the message.

def publisher():

Declare a publisher that publishes a String message into a new topic, no matter its
name.

 pub =rospy.Publisher('publisher_topic', String, queue_size=1)

Note

As the ROS publishing process is asynchronous, a queue is created containing
published messages. For ROS to register the amount of messages a queue can
store, the size value of this queue must be established each time a publisher is
created. In this case, we pick a size of 1 because we are going to publish the same
message all the time.

Initialize the node with the init_node method. It is a good practice to set the
anonymous flag to true when initializing a node. This is how naming conflicts can
be avoided:

 rospy.init_node('publisher', anonymous=True)

Use the created publisher variable to publish any desired String. For instance:

 pub.publish("Sending message")

Finally, detect the program entry and call the created function:

if __name__ == '__main__':
 publisher()

7. Continue with the subscriber implementation:

Initialize Python and import libraries as you did for your publisher.

Note

This code needs to be added in the subscriber.py file.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

208 | Robot Operating System (ROS)

#!/usr/bin/env python
import rospy
from std_msgs.msg import String

Create a function to subscribe to the topic:

def subscriber():

Initialize the node in the same way as you did before:

 rospy.init_node('subscriber', anonymous=True)

Subscribe to publisher_topic using this function:

 rospy.Subscriber('publisher_topic', String, callback)

Note

The third parameter of the Subscriber call is a callback function, which means
that it is a function not called by the user. The function pointer is passed to other
components, the subscriber in this case, which will call the function when it seems
appropriate. To sum up, the callback function will be launched every time the
subscriber gets a message.

Use the spin() function to allow the subscriber to run a callback method. This
function generates a loop for the program, which does not end the program:

 rospy.spin()

Implement the callback function to print a message when it receives any data. For
this first exercise, let's kill the subscriber node when receiving the first message
from the publisher. This can be done with the signal_shutdown method, which is
integrated in rospy and only needs the shutdown reason as a parameter:

def callback(data):
 if(data != None):
 print("Message received")
 rospy.signal_shutdown("Message received")

Call the created function from the main execution thread:

 if __name__ == '__main__':
 subscriber()

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Publishers and Subscribers | 209

8. Test the functioning of the created nodes. You can do this as described here:

Open a new terminal and switch to your workspace. Then, run the following
command so that ROS checks it for executable files:

source devel/setup.bash

Run the subscriber node. If the implementation is correct, it should remain under
execution until you run your publisher:

rosrun exercise20 subscriber.py

Open a new terminal and enter the command again.

Run the publisher node:

rosrun exercise20 publisher.py

If the nodes are well implemented, the subscriber execution ends after executing
the publisher node. The output must be the message printed in the callback, in
this case: Message received.

Note

There is no need to compile the workspace in order to run your package nodes
because they are written in Python. If they were coded in C++, you would have to
build a package after every change in code.

Exercise 21: Publishers and Subscribers

This exercise is similar to the previous one but is complex. The publisher created
before could only send one message per execution. Now, we are going to implement a
publisher that won't stop sending data until we terminate it.

The goal of this exercise is to create a number-finding system following these rules:

• The publisher node must publish random numbers into a topic until it is stopped
by the user.

• The subscriber node decides a number to look for and searches for it in the
received message list. Here, there are two possibilities:

If the number is found before 1000 tries, a positive message will be printed and the
number of tries it took to achieve it too.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

210 | Robot Operating System (ROS)

If the number is not found in 1000 tries, a negative message will be printed telling
the user that it was not possible to find the number.

So, this can be done in the following way:

1. As mentioned earlier, begin by creating the package and files:

cd ~/catkin_ws/src
catkin_create_pkg exercise21 rospy std_msgs
cd exercise21
mkdir scripts
cd scripts
touch generator.py
touch finder.py
chmod +x generator.py finder.py

2. Begin with the publisher implementation.

Import the necessary libraries. These libraries are the same as in the preface, but
this time, you must change the String import for Int32, as the node is going to
work with numbers. You should also import a random library to generate numbers.

Note

This code needs to be added in the generator.py file.

#!/usr/bin/env python
import rospy
from std_msgs.msg import Int32
import random

3. Create the number generator function:

def generate():

4. Declare the publisher and initialize the node as you did in the previous exercise.
Note that, this time, the data type is different and the queue size is set to 10, which
means that it will be possible to have 10 published numbers. When the eleventh
number is published, the first will be dropped from the queue:

 pub = rospy.Publisher('numbers_topic', Int32, queue_size=10)
 rospy.init_node('generator', anonymous=True)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Publishers and Subscribers | 211

5. Configure the rate at which the program loop will iterate. We are setting a rate of
10 (Hz), which is not a very high rate and that will allow us to check the generated
numbers:

 rate = rospy.Rate(10)

6. Implement the loop where the numbers will be generated and published. It has to
iterate until the user stops it, so you can use the is_shutdown() function. Use the
sleep function on the declared rate so it can take effect:

 while not rospy.is_shutdown():
 num = random.randint(1,101)
 pub.publish(num)
 rate.sleep()

7. Call the created function from the node entry. Use a try directive so that the user
shutdown doesn't produce an error:

if __name__ == '__main__':
 try:
 generate()
 except rospy.ROSInterruptException:
 pass

8. Continue with the subscriber implementation:

Import the necessary libraries.

Note

This code needs to be added in the finder.py file.

#!/usr/bin/env python
import rospy
from std_msgs.msg import Int32

9. Create a class with two attributes: one for establishing the value of the number to
find and the other one for counting the number of tries:

class Finder:
 searched_number = 50
 generated_numbers = 0

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

212 | Robot Operating System (ROS)

10. Implement the callback function. The logic of the finder has to be coded in this
function. There are lots of ways to do this but this is a frequently used one:

 def callback(self, data):
 if data.data == self.searched_number:
 print(str(data.data) + ": YES")
 self.generated_numbers += 1
 print("The searched number has been found after " + str(self.
generated_numbers) + " tries")
 rospy.signal_shutdown("Number found")
 elifself.generated_numbers>= 1000:
print("It wasn't possible to find the searched number")
 rospy.signal_shutdown("Number not found")
else:
 print(str(data.data) + ": NO")
 self.generated_numbers += 1

As you can see, it is a simple function that looks for the number and adds one to
the counter for each failed try. If the number is found, it prints a positive message.
If the counter reaches 1000, the search is aborted and a negative message is
shown.

11. Create the function for subscribing. Remember that, this time, the published data
type is Int32:

 def finder(self):
 rospy.init_node('finder', anonymous=True)
 rospy.Subscriber('numbers_topic', Int32, self.callback)
 rospy.spin()

12. Finally, from the node entry, create a Finder class instance and call the finder
method:

if __name__ == '__main__':
 find = Finder()
 find.finder()

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Publishers and Subscribers | 213

13. Test whether the performed implementation is correct.

Open a new terminal and run roscore.

Open another terminal and execute the subscriber node:

cd ~/catkin_ws
source devel/setup.bash
rosrun exercise21 finder.py

14. In another terminal, run the publisher node so that numbers are generated and
the callback function starts working:

cd ~/catkin_ws
source devel/setup.bash
rosrun exercise21 generator.py

15. If the searched number, 50 in this case, is found, the output should be similar to
this one:

Figure 6.2: Execution example where the number is found

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

214 | Robot Operating System (ROS)

16. Change the searched number to a value higher than 100 when the number is not
found. You should obtain an output as follows:

Figure 6.3: Execution example where the number is not found

It will be interesting to use the rqt_graph command when both nodes are being
executed; this way, you can see the structure you just created graphically. So, open
a new terminal and enter the command. The output should be something like this:

Figure 6.4: Output

Simulators
Simulators are very good tools for developing and testing robotics software. They make
robotics affordable for everyone. Imagine that you are working on a robotics project,
where you constantly have to test functionality improvements with your robot. It
would require connecting the robot for each test, charging it many times, and moving
it with you. All of this can be avoided with a simulator, which can be launched in your
computer at any time; it can even simulate the nodes and topics generated by the robot.
Do you know any simulator for working with robots?

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simulators | 215

We are going to use Gazebo, a simulator included in the ROS full installation. In fact, if
you chose this option while installing it, you can write "gazebo" in a terminal and it will
launch the simulator. The Gazebo interface is shown in Figure 6.4:

Figure 6.5: The Gazebo start point

The next step is to install and set up the robot that we are going to simulate. In this
case, we will use a Turtlebot, a wheelie robot that is equipped with sensors such as
cameras and lasers. Turtlebot may not be compatible with your ROS distribution
(we are using Kinetic Kame); but don't worry, there are lots of robots that you can
simulate in Gazebo. You can look up different robots and try to use them with your ROS
distribution.

Exercise 22: The Turtlebot configuration

In this exercise, we are going to go through some things you will need to do before
using Turtlebot:

1. Install its dependencies:

sudo apt-get installros-kinetic-turtlebotros-kinetic-turtlebot-apps
ros-kinetic-turtlebot-interactions ros-kinetic-turtlebot-simulator
ros-kinetic-kobuki-ftdiros-kinetic-ar-track-alvar-msgs

2. Download the Turtlebot simulator package in your catkin workspace.

Note

If Git is not installed in your local system, use this command to install git: sudo apt
install git

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

216 | Robot Operating System (ROS)

cd ~/catkin_ws/src
git clone https://github.com/PacktPublishing/Artificial-Vision-and-
Language-Processing-for-Robotics/blob/master/Lesson06/turtlebot_simulator.
zip

3. After that, you should be able to use Turtlebot with Gazebo.

Start ROS services:

roscore

Launch Turtlebot World:

cd ~/catkin_ws
source devel/setup.bash
roslaunch turtlebot_gazebo turtlebot_world.launch

4. Now, you should see the same Gazebo world as before, but with a set of objects,
including Turtlebot, at the center, as mentioned in figure 6.5:

Figure 6.6: The Turtlebot simulation using Gazebo

Once the simulation is correctly running, let's do another exercise for learning
how to obtain information from sensors and work with it.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson06/turtlebot_simulator.zip
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson06/turtlebot_simulator.zip
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson06/turtlebot_simulator.zip

Simulators | 217

Exercise 23: Simulators and Sensors

In this exercise, we'll create a ROS node that subscribes to the Turtlebot camera to
obtain corresponding images. Follow these steps:

1. Create a package with the necessary dependencies and files:

cd ~/catkin_ws/src
catkin_create_pkg exercise22 rospy sensor_msgs
cd exercise22
mkdir scripts
cd scripts
touch exercise22.py
chmod +x exercise22.py

2. Implement the node.

Import the necessary libraries. For this exercise, we are going to use OpenCV to
work with the images obtained from the camera:

#!/usr/bin/env python
import rospy
from sensor_msgs.msg import Image
import cv2
from cv_bridge import CvBridge

Create a class and declare an attribute of type CvBridge, which will be used later to
change the image type to cv2:

class ObtainImage:
 bridge = CvBridge()

Code the callback function, where you will have to obtain the image and convert it
to the cv2 format:

 def callback(self, data):
 cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
 cv2.imshow('Image',cv_image)
 cv2.waitKey(0)
 rospy.signal_shutdown("Finishing")

Note

We use the waitKey() function so that the image remains on the screen. It will
disappear when the user presses any key.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

218 | Robot Operating System (ROS)

3. Define and implement the subscriber function. Remember that, now, the required
data has an Image type:

 def obtain(self):
 rospy.Subscriber('/camera/rgb/image_raw', Image, self.
callback)
 rospy.init_node('image_obtainer', anonymous=True)
 rospy.spin()

Note

If you don't know the name of the topic to which you want to subscribe, you can
always enter the rostopic list command and check the available nodes. You
should see a list like the following:

Figure 6.7: Output of the rostopic list command

4. Call the subscriber function from the program entry:

if __name__ == '__main__':
 obt = ObtainImage()
 obt.obtain()

5. Check that the node works fine. To do that, you should run roscore command,
Gazebo with Turtlebot, and created the node in different terminals. Note that you
may also run the source devel/setup.bash source if you didn't do so earlier:

roscore
roslaunch turtlebot_gazebo turtlebot_world.launch
rosrun exercise22 exercise22.py

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simulators | 219

The result should be something like this:

Figure 6.8: The execution example of the exercise node

Activity 6: Simulators and Sensors

Consider the following scenario: you are working for a robotics company that has
recently acquired a new client, a security surveillance company. So, you are asked to
implement a surveillance system for a robot that guards the store at night. The client
wants the robot to stay in the middle of the store and to look around constantly.

You have to simulate the system and you have been asked to use Turtlebot and Gazebo.

1. Implement a node that subscribes to the camera and shows all the images it
receives.

2. Implement a node for the robot to turn itself on.

Note

To do that, you will have to publish the /mobile_base/commands/velocity topic,
which works with Twist messages. Twist is a type of message included in the
geometry_msgs library, so you will have to add this as a dependency. To make the
robot rotate on itself, create an instance of Twist and modify its angular.z value.
Then, publish it.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

220 | Robot Operating System (ROS)

3. Now, run both nodes at the same time.

At the end of this activity, you will get an output similar to this:

Figure 6.9: The rotating output that shows the images in the virtual environment

Note

The solution for this activity can be found on page 318.

Summary
In this chapter, you learned how to work with ROS, from its installation and
configuration to the implementation of nodes. You also worked with simulators and
its sensors, obtaining information from them and making the acquired information
valuable for solving problems. All the exercises and activities covered in the chapter will
be useful for you in the following chapters.

In the next chapter, you will work with natural language processing (NPL) and learn how
to build a chatbot. If you build a good one, it could be a very interesting tool to add to a
robot. You could even use ROS to develop it.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Objectives

By the end of this chapter, you will be able to:

• Define the terms GloVe, Word2Vec and Embeddings

• Develop your own Word2Vec

• Select tools to create conversational agents

• Predict the intent of a conversation

• Create a conversational agent

This chapter covers an introduction to terms such as GloVe, Word2Vec, and embeddings and
tools that will help you create a conversational agent.

Build a Text-Based
Dialogue System

(Chatbot)

7

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

224 | Build a Text-Based Dialogue System (Chatbot)

Introduction
One of the latest trends in deep NLP is the creation of conversational agents, also
knowns as chatbots. A chatbot is a text-based dialogue system that understands human
language and can hold a real conversation with people. Many companies use these
systems to interact with its customers to obtain information and feedback, for example,
opinions on a new product launch.

Chatbots are used as assistants, for example, Siri, Alexa, and Google Home. These can
give us real-time information about the weather or traffic.

At this point, the question is how can bots understand us? In the previous chapters,
we have reviewed language models and how they work. However, the most important
thing in language models (LMs) is the position of a word in a sentence. Each word has a
certain probability of appearing in a sentence, depending on the words already in that
sentence. But the probability distribution approach is not a good fit for this task. In this
case, we need to understand the meaning, not predict the next word, after which, the
model will understand the meaning of a word in a given corpus.

A word in itself doesn't make sense unless it is placed within a context or in a corpus. It
is important to understand the meaning of a sentence and this dictated by its structure
(that is, the position of the words in it). The model will then predict the meaning
of words by looking at which words are near to it. But firstly, how is it possible to
represent this mathematically?

In Chapter 4, Neural Networks with NLP, we looked at representing a word using a
one-hot encoded vector, which is a vector with 1s and 0s. However, this representation
does not provide us with the actual meaning of a word. Let's take a look at an example:

• Dog  [1,0,0,0,0,0]

• Cat  [0,0,0,0,1,0]

A dog and a cat are animals, but their representation in 1s and 0s does not give us any
information about the meaning of those words.

But what would happen if these vectors gave us a similarity between two words based
on their meaning? Two words with a similar meaning would be placed near to each
other in a plane, as opposed to two words without any such relation. For example, the
name of a country and its capital are related.

Having this approach, a set of sentences can be related to a conversational intention or
a specific topic (also known as intent, this term will be used throughout this chapter).
Using this system, we would be able to maintain a sensible conversational dialogue with
a human.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Word Representation in Vector Space | 225

The intent of a conversation is the topic of the dialogue. For example, if you were
talking about a match between Real Madrid and Barcelona, the intent of the
conversation would be football.

Later in this chapter, we will review the fundamental concepts of the representation of
a word as a vector, and how to create such vectors and use them to recognize the intent
of a conversation.

Word Representation in Vector Space
This section will cover the different architectures for computing a continuous vector
representation of words from a corpus. These representations will depend on the
similarity of words, in terms of meaning. Also, there will be an introduction to a new
Python library (Gensim) to do this task.

Word Embeddings

Word embeddings are a collection of techniques and methods to map words
and sentences from a corpus and output them as vectors or real numbers. Word
embeddings generate a representation of each word in terms of the context in which
the word appears. The main task of word embeddings is to perform a dimension
reduction from a space with one dimension per word to a continuous vector space.

To better understand what that means, let's have a look at an example. Imagine we have
two similar sentences, such as these:

• I am good.

• I am great.

Now, encoding these sentences as one-hot vectors, we have something like this:

• I  [1,0,0,0]

• Am  [0,1,0,0]

• Good  [0,0,1,0]

• Great  [0,0,0,1]

We know the previous two sentences are similar (in terms of their meaning), because
"great" and "good" have a similar meaning. But how could we measure the similarity of
these two words? We have two vectors representing the words, so let's compute the
cosine similarity.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

226 | Build a Text-Based Dialogue System (Chatbot)

Cosine Similarity

Cosine similarity measures the similarity between two vectors. As the name suggests,
this method will state the cosine of the angle between two sentences. Its formula is as
follows:

Figure 7.1: Formula for cosine similarity

Figure 7.1 shows the formula for cosine similarity. A and B are the vectors. Following the
previous example, if we compute the similarity between "good" and "great", the result is
0. This is because one-hot encoded vectors are independent and there is no projection
along the same dimension (that means there is only a single 1 in a dimension, and the
rest are 0s).

Figure 7.2 explains this concept:

Figure 7.2: Dimension without projection

Word embeddings solve this problem. There are many techniques to represent word
embeddings. But all these techniques are in unsupervised learning algorithms. One of
the most famous methods is the Word2Vec model, which is going to be explained next.

Word2Vec

The main goal of Word2Vec is to produce word embeddings. It processes a corpus
and then assigns a vector to each unique word in the corpus. This vector, however,
does not work like the one-hot vector method. For example, if we have a corpus with
10,000 words, we would have 10,000 dimensions in our one-hot encoded vectors, but
Word2Vec can perform dimension reduction, typically of several hundred dimensions.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Word Representation in Vector Space | 227

The core idea of Word2Vec is that a word's meaning is represented by the words that
are frequently near to it. When a word appears in a sentence, its context is formed by
the set of words it has nearby. This set of words are within a fixed-size window:

Figure 7.3: Context words of wx

Figure 7.3 shows an example of the context words for wx.

The concept of Word2Vec was created by Tomas Mikolov in 2013. He proposed a
framework for learning word vectors. The method works by iterating through a corpus,
taking a set of words with a central word (in Figure 7.3, it is wx) and context words (in
figure 7.3, the words shown inside the black rectangular box). The vectors of these
words keep updating until the corpus ends.

There are two methods for performing Word2Vec:

• Skip-Gram model: In this model, the input is the word placed in the center and
thereafter it predicts the context of words.

• CBOW model: The input of this model are the vectors of the context words, and
the output is the central word.

Figure 7.4: CBOW and skip-gram model representation

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

228 | Build a Text-Based Dialogue System (Chatbot)

Both of these models output good results, but the skip-gram model works well with a
small amount of data. We will not go into these models in more depth to generate our
Word2Vec, but we will be using the Gensim library, which is explained in this chapter.

Problems with Word2Vec

Word2Vec has many advantages for representing words within a vector space. It
improves the performance of the task and can capture complex word meanings. But it is
not perfect, and does present some problems:

• Inefficiently using statistics: It captures co-occurrences of words one at a time.
The problem here is that words that do not occur together within a trained corpus
tend to get closer in the plane (this can cause ambiguity) because there's no way to
represent their relationships.

• The need to modify the parameters of the model, that is, if the corpus size
changes. Doing this, the model will be trained again, and this consumes a lot of
time.

Before diving deep in how to solve these problems with Word2Vec, we are going to
introduce Gensim, a library for creating Word2Vec models.

Gensim

Gensim is a Python library that provides different NLP methods. It is not like NLTK or
spaCy; those libraries are focused on the pre-processing and analysis of data. Gensim
provides us with methods to process raw text (which is unstructured).

These are the advantages of Gensim:

• Gensim can be used with a huge corpus. It has memory independence, which
means the corpus will not need to be stored in the RAM of your computer. Also, it
has memory sharing to store the trained models.

• It can provide efficient vector space algorithms, such as Word2Vec, Doc2Vec, LSI,
LSA, and so on.

• Its API is easy to learn.

These are the disadvantages of Gensim:

• It does not provide methods to pre-process text, and it has to be used with NLTK
or spaCy to obtain a full NLP pipeline.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Word Representation in Vector Space | 229

Exercise 24: Creation of a Word Embedding

In this exercise, we are going to create our word embedding using a small corpus and
use Gensim. Once our model is trained, we will print it on a two-dimensional graph to
check the distribution of the words.

Gensim provides the possibility to change some parameters to perform training well on
our data. Some useful parameters are as follows:

• Num_features: Represents the dimensionality of the vectors (more dimensions
equals more accuracy, but is more computationally expensive). In our case, we are
going to set this parameter to 2 (vectors of 2 dimensions).

• Window_size: Represents the size of the fixed window to contain the context of
words. In our case, the corpus is small, so the size here is set to 1.

• Min_word_count: The minimum set word count threshold.

• Workers: The threads of your computer running in parallel. In our case, one worker
will be good for the size of our corpus.

Let's begin with the exercise:

1. Import the libraries. We are going to use the Gensim model, Word2Vec:

import nltk
import gensim.models.word2vec as w2v
import sklearn.manifold
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

2. Define a small random corpus:

corpus = ['king is a happy man',
 'queen is a funny woman',
 'queen is an old woman',
 'king is an old man',
 'boy is a young man',
 'girl is a young woman',
 'prince is a young king',
 'princess is a young queen',
 'man is happy,
 'woman is funny,
 'prince is a boy will be king',
 'princess is a girl will be queen']

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

230 | Build a Text-Based Dialogue System (Chatbot)

3. Now we will tokenize each sentence with spaCy. The concept of spaCy was covered
in Chapter 3, Fundamentals of Natural Language Processing:

import spacy
import en_core_web_sm
nlp = en_core_web_sm.load()
def corpus_tokenizer(corpus):
 sentences = []
 for c in corpus:
 doc = nlp(c)
 tokens = []
 for t in doc:
 if t.is_stop == False:
 tokens.append(t.text)
 sentences.append(tokens)
 return sentences

sentences = corpus_tokenizer(corpus)
sentences

4. Now let's define a few variables to create the Word2vec model:

num_features=2
window_size=1
workers=1
min_word_count=1

5. Create the model using the Word2Vec method with a seed of 0 (this seed is just
a value to initialize the weights of the model; using the same seed to obtain the
same results is recommended):

model = w2v.Word2Vec(size=num_features, window=window_
size,workers=workers,min_count=min_word_count,seed=0)

6. Now we will build the vocabulary from our corpus. First, we need to have a
vocabulary to train our model:

model.build_vocab(sentences)

7. Train the model. The parameters here are the sentences of the corpus: total words
and epochs. In this case, 1 epoch will be good:

model.train(sentences,total_words=model.corpus_count,epochs=1)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Word Representation in Vector Space | 231

8. Now, we can see how the model works when computing the similarity of two
words:

model.wv['king']
model.wv.similarity('boy', 'prince')

Figure 7.5: The computed result stating the similarity of two words

9. Now, to print the model, define a variable with the words of our corpus and an
array with the vector of each word:

vocab = list(model.wv.vocab)
X = model.wv[vocab]

10. Create a DataFrame with this data using pandas:

df = pd.DataFrame(X, index=vocab, columns=['x', 'y'])
df

Figure 7.6: Coordinates of our vectors

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

232 | Build a Text-Based Dialogue System (Chatbot)

11. Create a figure with the location of each word in a plane:

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

for word, pos in df.iterrows():
 ax.annotate(word, pos)

ax.scatter(df['x'], df['y'])
plt.show()

Figure 7.7: Location of items in our Word2Vec model

As you can see in figure 7.7, words can be represented in two dimensions. If you have
a smaller corpus, to find out the similarity of two words in terms of meaning, you just
need to measure the distances of those two words.

Now you know how to train your own Word2Vec model!

Global Vectors (GloVe)

Global Vectors is a model for word representation. It works just like the Word2Vec
model but adds some new features in order to be much more efficient.

Before beginning with this model, it will be beneficial to think of other ways to create a
word vector.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Word Representation in Vector Space | 233

The statistics of word occurrences in a corpus is the first source of information we can
find to use in unsupervised algorithms, so it is possible to capture the co-occurrence
counts directly. To obtain this information, we do not need a processed method; just
having the text data will be enough.

Creating a co-occurrence matrix, X, along with a fixed-size window, we can obtain a
new representation of words. For example, imagine this corpus:

• I am Charles.

• I am amazing.

• I love apples.

A window-based co-occurrence matrix is as follows:

Figure 7.8: A window-based co-occurrence matrix

The co-occurrence matrix is easy to understand, counting how many times a word
appears next to another word in the corpus.

For example, in the first row, with the word "I", the word "am" has the value 2, because
there are 2 occurrences of "I am."

This representation improves the one-hot encoding and can capture semantic and
syntactic information, but it does have certain problems, such as the size of the model,
the sparsity of the vocabulary, and the model is less robust overall.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

234 | Build a Text-Based Dialogue System (Chatbot)

But in this case, these problems can be solved by reducing the dimension of the matrix
using SVD (which was explained in Chapter 3, Fundamentals of Natural Language
Processing) with the following formula:

• A = USVT

The results of doing this are good and the representation of the words do make sense,
but this would still be problematic with a large corpus.

The GloVe approach solves the problem of Word2Vec models in the following ways:

• The overall time taken to train the model is reduced if the corpus has a change in
it.

• Statistics are used efficiently. It behaves better with words that do not appear
many times in the corpus. This was a problem with Word2Vec, that is, unusual
words have similar vectors.

GloVe combines the preceding two approaches to achieve fast training. It is scalable to
a huge corpus and can achieve better performance with small vectors.

Note

This model was created by Stanford University and is an open source project.
You can find more documentation at https://github.com/PacktPublishing/
Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Lesson07/
Exercise25-26/utils.

In the next exercise, you will learn how to work with GloVe.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Lesson07/Exercise25-26/utils
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Lesson07/Exercise25-26/utils
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Lesson07/Exercise25-26/utils

Word Representation in Vector Space | 235

Exercise 25: Using a Pretrained GloVe to See the Distribution of Words in a

Plane

In this exercise, you will learn how to use GloVe and how to plot a region of a model. We
will use the Gensim library once again:

Note

To obtain the model, you will need to download the file from the utils folder on
GitHub (which is the 50-dimensional model):

https://github.com/TrainingByPackt/Artificial-Vision-and-Language-Processing-for-
Robotics/tree/master/Chapter%207/utils

1. Open up your Google Colab interface.

2. Create a folder for the book, download the utils folder from GitHub, and upload it
to the folder.

3. Import drive and mount it as follows:

from google.colab import drive
drive.mount('/content/drive')

4. Once you have mounted your drive for the first time, you will have to enter the
authorization code by clicking on the URL mentioned by Google and pressing the
Enter key on your keyboard:

Figure 7.9: Image displaying the Google Colab authorization step

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/TrainingByPackt/Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Chapter%207/utils
https://github.com/TrainingByPackt/Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Chapter%207/utils

236 | Build a Text-Based Dialogue System (Chatbot)

5. Now that you have mounted the drive, you need to set the path of the directory:

cd /content/drive/My Drive/C13550/Lesson07/Exercise25/

Note

The path mentioned in step 5 may change as per your folder setup on Google
Drive. However, the path will always begin with cd /content/drive/My Drive/.

The utils folder must be present in the path you are setting up.

6. Import the libraries:

from gensim.scripts.glove2word2vec import glove2word2vec
from gensim.models import KeyedVectors
import numpy as np
import pandas as pd

7. Use the glove2word2vec function provided by Gensim to create the word2vec model:

glove_input_file = 'utils/glove.6B.50d.txt'
word2vec_output_file = 'utils/glove.6B.50d.txt.word2vec'
glove2word2vec(glove_input_file, word2vec_output_file)

Note

The glove.6B.50d.txt file in this case has been placed within the utils folder. If
you choose to place it elsewhere, the path will change accordingly.

8. Initialize the model using the file generated by the glove2word2vec function:

filename = 'utils/glove.6B.50d.txt.word2vec'
model = KeyedVectors.load_word2vec_format(filename, binary=False)

9. With GloVe, you can measure the similarity of a pair of words. Check whether the
model works by computing the similarity between two words and printing a word
vector:

model.similarity('woman', 'queen')

Figure 7.10: Similarity of woman and queen

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Word Representation in Vector Space | 237

10. In Exercise 24, Creation of a Word Embedding, we created our own vectors, but
here, vectors are already created. To see the representation vector of a word, we
just have to do the following:

model['woman']

Figure 7.11: "Woman" vector representation (50 dimensions)

11. We can also see the words most similar to other words. As you can see in steps 4
and 5, GloVe have many functionalities related to word representation:

model.similar_by_word(woman)

Figure 7.12: Words most similar to woman

12. Now we are going to use Singular Value Decomposition (SVD) to visualize high-
dimensional data to plot the words most similar to woman. Import the necessary
libraries:

from sklearn.decomposition import TruncatedSVD
import pandas as pd
import matplotlib.pyplot as plt

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

238 | Build a Text-Based Dialogue System (Chatbot)

13. Initialize an array of 50 dimensions and append the vector of woman. To perform
this dimensional reduction, we are going to create a matrix, and its rows will be
the vector of each word:

close_words=model.similar_by_word('woman')

arr = np.empty((0,50), dtype='f')
labels = ['woman']
#Array with the vectors of the closest words
arr = np.append(arr, np.array([model['woman']]), axis=0)
print("Matrix with the word 'woman':\n", arr)

Figure 7.13: Matrix values with the word "woman"

14. Now, we have the word dog in the matrix and we need to append every vector of
the similar words. Add the rest of the vectors to the matrix:

for w in close_words:
 w_vector = model[w[0]]
 labels.append(w[0])
 arr = np.append(arr, np.array([w_vector]), axis=0)
arr

This matrix is something like this:

Figure 7.14: Matrix with the most similar vectors of the "woman" vector

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Word Representation in Vector Space | 239

15. Once we have all the vectors in the matrix, let's initialize the TSNE method. It is a
function of Sklearn;

svd = TruncatedSVD(n_components=2, n_iter=7, random_state=42)
svdvals = svd.fit_transform(arr)

16. Transform the matrix into vectors of two dimensions and create a DataFrame with
pandas to store them:

df = pd.DataFrame(svdvals, index=labels, columns=['x', 'y'])
df

Figure 7.15: Coordinates of our vectors in two dimensions

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

240 | Build a Text-Based Dialogue System (Chatbot)

17. Create a plot to see the words in a plane:

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

for word, pos in df.iterrows():
 ax.annotate(word, pos)

ax.scatter(df['x'], df['y'])
plt.show()

Figure 7.16: Distribution of the words most similar to woman

Here, we reduced the dimensionality of the vectors to get the output in a
two-dimensional graph. Here, we can see the similarity relationship between the words.

You have finished exercise 25! You can now choose between using your own word2vec
model or a GloVe model.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dialogue Systems | 241

Dialogue Systems
As we mentioned before, chatbots are becoming more and more popular. They can
help humans 24/7, answering questions or just holding a conversation. Dialogue
systems can understand topics, give reasonable answers, and detect sentiments in a
conversation (such as positive, neutral, or negative sentiment) with a human. The main
goal of these systems is to hold a natural dialogue by imitating a human. This capability
to behave or think like a human is one of the most important factors in ensuring a
good user experience in the conversation. The Loebner Prize is a chatbot contest in
which chatbots are tested using many different sentences and questions, and the most
human-like system wins. One of the most popular conversational agents is the Mitsuku
chatbot (https://www.pandorabots.com/mitsuku/).

Chatbots are commonly used as a text service to give information to users. For example,
one of the most popular conversational agents in Spain is Lola, which can give you your
zodiac information (https://1millionbot.com/chatbot-lola/). You just need to send a
message and wait a few seconds to receive the data. But in 2011, Apple developed Siri,
a virtual assistant that understands speech, and now, we have Amazon's Alexa and
Google Assistant too. Depending on the input type of a system, they can be classified
into two groups: spoken dialogue systems and text-based dialogue systems, which are
explained later in the chapter.

This is not the only way to classify conversational agents. Depending on the type of
knowledge they have, they can be divided into goal-oriented and open-domain. We will
also review these classifications later in this chapter.

Actually, there are many tools for creating your own chatbot in a few minutes. But in
this chapter, you will learn how to create the required system knowledge from scratch.

Tools for Developing Chatbots

Chatbots help a lot of many upcoming companies. But to create a chatbot, do you need
to have knowledge of deep NLP? Well, thanks to these tools, a person without any NLP
knowledge can create a chatbot in a matter of hours:

• Dialogflow: This easily creates a natural-language conversation. Dialogflow is a
Google-owned developer that provides voice and conversational interfaces. This
system uses Google's machine learning expertise to find the appropriate intents in
a dialogue with a user and is deployed on Google Cloud Platform. It supports more
than 14 languages and multiple platforms.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.pandorabots.com/mitsuku/
https://1millionbot.com/chatbot-lola/

242 | Build a Text-Based Dialogue System (Chatbot)

• IBM Watson: Watson Assistant provides a user-friendly interface to create
conversational agents. It works just like Dialogflow but it is deployed on IBM Cloud
and it's backed by IBM Watson knowledge. Watson also provides several tools to
analyze data generated by conversations.

• LUIS: Language Understanding (LUIS) is a Microsoft machine learning-based
service for building natural-language apps. This bot framework is hosted on the
Azure cloud and uses Microsoft knowledge.

The aforementioned tools are a complex NLP system. In this chapter, we are going to
look at a basic method for identifying the intent of a message using a pretrained GloVe.
The latest chatbot trends are voice assistants. These tools allow you to implement a
chatbot controlled by voice. There are many ways to classify a conversational agent.

Types of Conversational Agents

Conversational agents can be classified into several groups, depending on the type of
input-output data and their knowledge limits. When a company orders the creation of
a chatbot, the first step is to analyze what its communication channel (text or voice)
will be and what the topics of the conversation will be (limited knowledge or without
restriction).

Now, we are going to explain many types of groups and the features of each one.

Classification by Input-Output Data Type

A voice-controlled virtual assistant is not like a basic chatbot, which we use text to
communicate with. Depending on the input-output type, we can divide them into two
groups:

• Spoken Dialogue System (SDS): These models are designed to be voice-controlled,
without chat interfaces or keyboards, but with a microphone and speakers.
These systems are harder to work with than a normal chatbot because they are
composed of different modules:

Figure 7.17: Structure of an SDS model

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dialogue Systems | 243

• Figure 7.17 shows the modules of an SDS. An SDS has a higher error probability,
because speech-to-text systems need to transform the voice of a human into text,
and this can fail. Once speech is converted into text, the conversational agent
identifies the intent of the conversation and returns a response. Before the agent
returns a response, the answer is converted to voice.

• Text-Based Dialogue System: In contrast with an SDS, text-based dialogue
systems are based on a chat interface, where the user interacts with the chatbot
using a keyboard and a screen. In this chapter, we will be creating a text-based
dialogue chatbot.

Classification by System Knowledge

If the chatbot is able to successfully respond to every kind of message using its
knowledge or if it is limited to a set of specific questions, these conversational agents
can be divided as follows:

• Closed-Domain or Goal-Oriented (GO): The model has been trained to identify a
set of intents. The chatbot will only understand sentences related to these topics.
If the conversational agent does not identify the intent (intent was explained in the
introduction to this chapter), it will return a predefined sentence.

• Open-Domain: Not all chatbots have a set of defined intents. If the system can
answer every type of sentence using NLG techniques and other data sources, it is
classified as an open-domain model. The architecture of these systems is harder
to build than a GO model.

• There is a third class of conversational agent, based on its knowledge, that is,
the Hybrid Domain. It is a combination of the models mentioned previously,
therefore, depending on the sentence, the chatbot will have a predefined response
(associated intent with many responses) or not.

Creation of a Text-Based Dialogue System

So far, we already know the different classes of a conversational agent and how they can
pick or generate a response. There are many other ways to build a conversational agent,
and NLP provides many different approaches to achieve this objective. For example,
seq2seq (sequence-to-sequence) models are able to find an answer when given a
question. Also, deep language models can generate responses based on a corpus, that is,
if a chatbot has a conversational corpus, it can follow a conversation.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

244 | Build a Text-Based Dialogue System (Chatbot)

In this chapter, we are going to build a chatbot using Stanford's GloVe. In Exercise
26, Create Your First Conversational Agent, you will find a brief introduction to the
technique we are going to use, and in the activity, we will create a conversational agent
to control a robot.

Scope definition and Intent Creation

Our conversational agent will be a text-based dialogue system and goal-oriented.
Therefore, we will interact with our chatbot using the keyboard and it will only
understand sentences related to intents created by us.

Before starting with the intent creation, we need to know what the main goal of our
chatbot is (maintain a general dialogue, control a device, and obtain information) and
what different types of sentences the users may ask.

Once we have analyzed the possible conversations of our chatbot, we can create the
intents. Each intent will be a text file with several training sentences. These training
sentences are possible interactions of a user with our chatbot. It is really important to
define these sentences well because the chatbot could match the wrong intent if there
are two similar sentences with different intents.

Note

A good previous analysis of the possible conversations of our chatbot will
make intent definition easier. It is obvious the chatbot will not understand all
the sentences a user may say, but it must be able to recognize the meaning of
sentences related to our intents.

The system will also have a file with the same name as the intent file, but instead of
containing the training sentences, it will have responses related to the intent:

Figure 7.18: Folder structure of the system

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dialogue Systems | 245

In figure 7.18, we can see the structure of our chatbot. The extension of the intents and
responses files are .txt, but you can also save them as .json.

GloVe for Intent Detection

At the beginning of this chapter, the fundamentals of word embeddings, word to
vectors, and global vectors were reviewed. GloVe represents each word with a real-
valued vector, and these vectors can be used as features in a variety of applications. But
for this case – building a conversational agent – we are going to use complete sentences
to train our chatbot, not just words.

The chatbot needs to understand that an entire sentence is represented by a set of
words as a vector. This representation of a sequence as a vector is called seq2vec.
Internally, the conversational agent will compare the user's sentence with each intent
training phrase to find the most similar meaning.

At this point, there are vectors representing sequences, and these sequences are in a
file related to an intent. If the same process mentioned previously is used to join all the
sequence vectors into one, we will have a representation of the intent. The main idea
is to not just represent a sentence; it is to represent a whole document in a vector, and
this is called Doc2vec. With this approach, when the user interacts with the chatbot, it
will find the intent of that user phrase.

The final structure of our system will look as shown in figure 7.19:

Figure 7.19: Final folder structure

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

246 | Build a Text-Based Dialogue System (Chatbot)

The file named main.py will contain the different methods to analyze the input sentence
using the GloVe model located in /data, creating the document vectors to perform the
match between the user's sentence and the intent:

Figure 7.20: Doc2Vec transformation

Figure 7.20 shows the process of transforming a set of sentences in a vector,
representing a document. In the example, the A.txt file is an intent with three
sentences. Each sentence has three words, so each sentence has three vectors.
Combining the vectors, we obtain a representation of each set of words, after which, we
get the document vector.

The approach of converting sentences into vectors allows a comparison of a sequence
of vectors within a document vector without any problem. When the user interacts
with the chatbot, the user phrase will be transformed as seq2vec and then it will be
compared with each document vector to find the most similar one.

Exercise 26: Create Your First Conversational Agent

Note

Perform exercise 26 in the same folder that you performed exercise 25 in.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dialogue Systems | 247

In this exercise, you will create a chatbot to understand basic conversation. This
exercise will cover the intent and response definition, the transformation of words into
a vector, representing a document, and matching the user's sentence with the intent.

Before starting the exercise, please take a look at the folder structure in Google Colab,
as shown in figure 7.21:

Figure 7.21: Structure of Exercise 26

The Exercise26.ipynb file is the main.py file that we came across before, and within the
utils folder, you will find the folder structure presented as mentioned in the previous
exercise:

Figure 7.22: Structure of Exercise 26 (2)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

248 | Build a Text-Based Dialogue System (Chatbot)

The folder responses have the files with the phrases that the chatbot can output when
the user interacts with it. Training is where intents are defined within sentences.
To obtain the vectors of each word, we are going to use Stanford's GloVe with five
dimensions:

1. First, we need to define the intents and the responses for each intent. This is an
introduction exercise, so let's define three intents: welcome, how-are-you, and
farewell, and create some related sentences (separated by commas).

"Welcome" training sentences: Hi friend, Hello, Hi, Welcome.

"Farewell" training sentences: Bye, Goodbye, See you, Farewell, Have a good day.

"How are you" training sentences: How are you? What is going on? Are you okay?

2. Once we have the intents created, we will need the responses. Create three files
with the same name as the intent files and add responses.

"Welcome" responses: Hello! Hi.

"How are you?" responses: I'm good! Very good my friend :)

"Farewell" responses: See you! Goodbye!

3. Import drive and mount it as follows:

from google.colab import drive
drive.mount('/content/drive')

4. Once you have mounted your drive for the first time, you will have to enter the
authorization code by clicking on the URL mentioned by Google and pressing the
Enter key on your keyboard:

Figure 7.23: The Google Colab authorization step

5. Now that you have mounted the drive, you need to set the path of the directory:

/content/drive/My Drive/C13550/Lesson07/Exercise25-26

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dialogue Systems | 249

6. Import the necessary libraries:

from gensim.scripts.glove2word2vec import glove2word2vec
from gensim.models import KeyedVectors
import numpy as np
from os import listdir

7. With spaCy, we are going to tokenize the sentences and erase the punctuation
marks. Now, create a function that tokenizes every sentence of a document. In
this exercise, we will create the Doc2vec from the word vectors by combining all
these vectors into one. That is why we are going to tokenize the whole document,
returning an array with all the tokens. It is good practice to erase the stopwords
too, but in this exercise it is not necessary. The input of this function is an array of
sentences:

import spacy
import en_core_web_sm
nlp = en_core_web_sm.load()

return a list of tokens without punctuation marks
def pre_processing(sentences):
 tokens = []
 for s in sentences:
 doc = nlp(s)
 for t in doc:
 if t.is_punct == False:
 tokens.append(t.lower_)
 return tokens

8. Load the GloVe model:

filename = 'utils/glove.6B.50d.txt.word2vec'
model = KeyedVectors.load_word2vec_format(filename, binary=False)

9. Create two lists with the names of the intent files and the response files:

intent_route = 'utils/training/'
response_route = 'utils/responses/'

intents = listdir(intent_route)
responses = listdir(response_route)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

250 | Build a Text-Based Dialogue System (Chatbot)

10. Create a function that returns a vector of 100 dimensions representing a
document. The input of this function will be a list with the tokens of a document.
We need to initialize an empty vector with 100 dimensions. What this function
will perform is adding every vector word and then dividing it by the length of the
tokenized document:

def doc_vector(tokens):
 feature_vec = np.zeros((50,), dtype="float32")
 for t in tokens:
 feature_vec = np.add(feature_vec, model[t])
 return np.array([np.divide(feature_vec,len(tokens))])

11. Now, we are ready to read each intent file (located in the training folder),
tokenizing them, and creating an array with every document vector:

doc_vectors = np.empty((0,50), dtype='f')
for i in intents:
 with open(intent_route + i) as f:
 sentences = f.readlines()
 sentences = [x.strip() for x in sentences]
 sentences = pre_processing(sentences)
 # adding the document vector to the array doc_vectors
 doc_vectors=np.append(doc_vectors,doc_vector(sentences),axis=0)
print("Vector representation of each document:\n",doc_vectors)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dialogue Systems | 251

Figure 7.24: Documents represented as vectors

12. With a function of sklearn called cosine_similarity, create a function that finds
the most similar intent, comparing a sentence vector with each document vector:

from sklearn.metrics.pairwise import cosine_similarity
def select_intent(sent_vector, doc_vector):
 index = -1
 similarity = -1 #cosine_similarity is in the range of -1 to 1
 for idx,v in zip(range(len(doc_vector)),doc_vector):
 v = v.reshape(1,-1)
 sent_vector = sent_vector.reshape(1,-1)
 aux = cosine_similarity(sent_vector, v).reshape(1,)
 if aux[0] > similarity:
 index = idx
 similarity = aux
 return index

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

252 | Build a Text-Based Dialogue System (Chatbot)

13. Let's test our chatbot. Tokenize the input of the user and use the last function
(select_intent) to obtain the related intent:

user_sentence = "How are you"

user_sentence = pre_processing([user_sentence])
user_vector = doc_vector(user_sentence).reshape(50,)
intent = intents[select_intent(user_vector, doc_vectors)]
intent

Figure 7.25: Predicted document intent

14. Create a function that gives a response to the user:

def send_response(intent_name):
 with open(response_route + intent_name) as f:
 sentences = f.readlines()
 sentences = [x.strip() for x in sentences]
 return sentences[np.random.randint(low=0, high=len(sentences)-1)]
send_response(intent)

15. Check for the output with the test sentence:

send_response(intent)

The output will look like this:

Figure 7.26: Response of intent how_are_you

16. Check whether the system works with many test sentences.

You have completed exercise 26! You are ready to build a conversational agent to
control our virtual robot. As you saw in exercise 26 (step 2), you need a good definition
of intents. If you try to add the same sentence in two different intents, the system could
fail.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dialogue Systems | 253

Activity 7: Create a Conversational Agent to Control a Robot

In this activity, we will create a chatbot with many intents. To perform this activity, we
will use Stanford's GloVe, as in Exercise 26, Create Your First Conversational Agent. We
will learn how to create a program that waits for a user sentence, and when the user
interacts with the chatbot, it will return a response.

Scenario: You work in a company developing a security system. This security system
will be a robot equipped with a camera to see the environment and wheels to move
forward or backward. This robot will be controlled via text, so you can type orders and
the robot will perform different actions.

1. The robot can perform the following actions:

Move forward.

Move backward.

Rotations:

45º to the right.

45º to the left.

2. Identify what the robot can see. This activity is performed in the same way as in
Exercise 26, Create Your First Conversational Agent. To avoid rewriting code, the
chatbot_intro.py file has four basic methods:

Pre_processing: To tokenize sentences

Doc_vector: To create document vectors

Select_intent: To find the most similar intent introduced in a sentence

Send_response: To send a sentence located in the response folder

Knowing these methods, the core work is done, so the most important thing is the
design of the intents.

3. We need to develop four different activities, but the rotation activity has two
different types. We are going to define five intents, one per action (two for
rotation). You can use these sentences, but you are free to add more training
sentences or more actions:

Backward:

Move back

Going backward

Backward

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

254 | Build a Text-Based Dialogue System (Chatbot)

Go back

Moving backward

Environment:

What can you see?

Environment information

Take a picture

Tell me what you are seeing?

What do you have in front of you?

Forward:

Advance

Move forward

Go to the front

Start moving

Forward

Left:

Turn to the left

Go left

Look to the left

Turn left

Left

Right:

Turn to the right

Go right

Look to the right

Turn right

Right

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary | 255

You can find the files in the activity/training folder:

Figure 7.27: Training sentence files

Note

The solution for this activity is available on page 323.

Summary
Conversational agents, also knowns as chatbots, are text-based dialogue systems that
understand human language in order to hold a "real" conversation with people. To
achieve a good understanding of what a human is saying, chatbots need to classify
dialogue into intents, that is, a set of sentences representing a meaning. Conversational
agents can be classified into several groups, depending on the type of input-output
data and knowledge limits. This representation of meaning is not easy. To have sound
knowledge supporting a chatbot, a huge corpus is needed. Finding the best way to
represent a word is a challenge, and one-hot encoding is useless. The main problem
with one-hot encoding is the size of the encoded vectors. If we have a corpus of 88,000
words, then the vectors will have a size of 88,000, and without any relationship between
the words. This is where the concept of word embeddings enters the picture.

Word embeddings are a collection of techniques and methods to map words and
sentences from a corpus into vectors or real numbers. Word embeddings generate
a representation of each word in terms of the context in which a word appears. To
generate word embeddings, we can use Word2Vec. Word2Vec processes a corpus and
assigns a vector to each unique word in the corpus, and it can perform dimension
reduction, typically of several hundred dimensions.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

256 | Build a Text-Based Dialogue System (Chatbot)

The core idea of Word2Vec is that a word's meaning is given by the words that are
frequently found near to it. When a word appears in a sentence, its context is formed
by the set of words it has nearby. Word2Vec can be implemented using two types of
algorithm: skip-gram and CBOW. The idea of Word2Vec is to represent words which is
useful, but in terms of efficiency, it has problems. GloVe combines Word2Vec and the
statistical information of a corpus. GloVe joins these two approaches to achieve fast
training, scalable to huge corpora, and achieve better performance with small vectors.
With GloVe, we are capable of giving knowledge to our chatbot, combined with training
sentences defining our set of intents.

Chapter 8, Object Recognition to Guide the Robot Using CNNs, will introduce you to
object recognition using different pretrained models. Furthermore, it will look at the
latest trend in computer vision – the recognition of objects using boxes identifying
what is in every part of a picture.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Objectives

By the end of this chapter, you will be able to:

• Explain how object recognition works

• Build a network capable of recognizing objects

• Build an object recognition system

This chapter covers how object recognition works by building a network that would be capable
of recognizing objects based on a video.

Object Recognition to
Guide a Robot Using

CNNs

8

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

260 | Object Recognition to Guide a Robot Using CNNs

Introduction
Object recognition is an area of computer vision where a robot is capable of detecting
objects in an environment using a camera or sensor that is capable of extracting images
of the robot's surroundings. From these images, software detects an object within every
image and then recognizes the type of object. Machines are capable of recognizing
objects from an image or a video captured by the robot's sensors. This allows the robot
to be aware of their environment.

If a robot can recognize its environment and obtain this information using object
recognition, it will be able to perform more complex tasks, such as grabbing objects or
moving around in an environment. In Chapter 9, Computer Vision for Robotics, we will
look at a robot performing these tasks in a virtual environment.

The task to be performed here is to detect specific objects within an image and
recognize those objects. This type of computer vision problem is a bit different from the
ones that we have looked at earlier in this book. In order to recognize a specific object,
we have seen that labeling those objects and training a convolutional neural network,
which was covered in Chapter 5, Convolutional Neural Networks for Computer Vision,
which would work fine, but what about detecting these objects in the first place?

Previously, we learned that objects we want to recognize have to be labeled with the
corresponding class they belong to. Hence, in order to detect those objects within an
image, a rectangle-shaped bounding box has to be drawn around them so that their
location in the image is properly located. The neural network will then predict the
bounding boxes and the label of those objects.

Labeling objects with bounding boxes is a tedious, tough task, so we are not going
to show the process for labeling the images in a dataset with bounding boxes, or
the process for training a neural network to recognize and detect those objects.
Nevertheless, there is a library called labelImg, which you can access in this GitHub
repository: https://github.com/tzutalin/labelImg. This allows you to create bounding
boxes for every object within an image. Once you have the bounding boxes created,
which in terms of data are known as coordinates, you can train a neural network to
predict the bounding boxes and the corresponding label for every object within an
image.

In this chapter, we will be using state-of-the-art methods of the YOLO network, which
are ready to use and will save you from having to build your own algorithm.

Multiple Object Recognition and Detection
Multiple object recognition and detection involves detecting and recognizing several
objects within an image. This task involves labeling every single object with a bounding
box and then recognizing the type of that object.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/tzutalin/labelImg

Multiple Object Recognition and Detection | 261

Because of this, there are many available pre-trained models that detect a lot of
objects. The neural network called YOLO is one of the best models for this specific
task and works in real time. YOLO will be explained in depth in the next chapter for the
development of the simulator for the robot.

For this chapter, the YOLO network that we want to use is trained to recognize and
detect 80 different classes. These classes are:

person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic
light, fire hydrant, stop_sign, parking meter, bench, bird, cat, dog, horse,
sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag,
tie, suitcase, frisbee, skis, snowboard, sports ball, kite, baseball bat,
baseball glove, skateboard, surfboard, tennis racket, bottle, wine glass, cup,
fork, knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot,
hot dog, pizza, donut, cake, chair, couch, potted plant, bed, dining table,
toilet, tv, laptop, mouse, remote, keyboard, cell phone, microwave, oven,
toaster, sink, refrigerator, book, clock, vase, scissors, teddy bear, hair dryer,
toothbrush.

In Figure 8.1, you can see a sample of a street where people, cars, and buses have been
detected using YOLO:

Figure 8.1: YOLO detection sample

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

262 | Object Recognition to Guide a Robot Using CNNs

In this topic, we are going to build a multiple object recognition and detection system
for static images.

First, we are going to do so using an OpenCV module called DNN (Deep Neural
Network), which involves a few lines of code. Later on, we will use a library called
ImageAI, which does the same but with less than 10 lines of code and will allow you to
choose the specific objects you want to detect and recognize.

In order to implement YOLO with OpenCV, you will need to import the image using
OpenCV, just like we covered in other chapters of this book.

Exercise 24: Building Your First Multiple Object Detection and Recognition

Algorithm

Note

We are going to use a Google Colab notebook as this task does not involve training
an algorithm, but rather using one.

In this exercise, we are going to implement a multiple object detection and recognition
system using YOLO and OpenCV. We are going to code a detector and a recognizer
system that takes an image as input and detects and recognizes objects within that
image, then outputs the image with those detections drawn:

1. Open up your Google Colab interface.

2. Import the following libraries:

import cv2
import numpy as np
import matplotlib.pyplot as plt

3. To input an image to this network, we need to use the blobFromImage method:

Note

This image can be found on GitHub: Dataset/obj_det/sample.jpg.

https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-
Robotics/tree/master/Lesson08/Dataset/obj_det

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Lesson08/Dataset/obj_det
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Lesson08/Dataset/obj_det

Multiple Object Recognition and Detection | 263

image = cv2.imread('Dataset/obj_det/image6.jpg')

Width = image.shape[1]
Height = image.shape[0]
scale = 0.00392

We need to load the classes of the dataset, which for YOLO are stored in Models/
yolov3.txt, which you can find in Chapter 8/Models on GitHub. We read the classes
like this:

read class names from text file
classes = None
with open("Models/yolov3.txt", 'r') as f:
 classes = [line.strip() for line in f.readlines()]

4. Generate different colors for different classes:

COLORS = np.random.uniform(0, 255, size=(len(classes), 3))

5. Read the pre-trained model and the config file:

net = cv2.dnn.readNet('Models/yolov3.weights', 'Models/yolov3.cfg')

6. Create an input blob:

blob = cv2.dnn.blobFromImage(image.copy(), scale, (416,416), (0,0,0),
True, crop=False)

7. Set the input blob for the network:

net.setInput(blob)

In order to declare the network, we use the readNet method from the DNN
module, and we load Models/yolov3.weights, which is the weights of the network,
and Models/yolov3.cfg, which is the architecture of the model:

Note

The method, class, weight, and architecture files can be found on GitHub in the
Lesson08/Models/ folder.

Now that we have set this up, the only thing that is left in order to recognize and
detect all the objects within an image is to run and execute the code, which is
explained next.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

264 | Object Recognition to Guide a Robot Using CNNs

8. In order to get the output layers of the network, we declare the method
mentioned in the following code and then run the interface to obtain the array of
output layers, which contains several detections:

function to get the output layer names in the architecture
def get_output_layers(net):

 layer_names = net.getLayerNames()

 output_layers = [layer_names[i[0] - 1] for i in net.
getUnconnectedOutLayers()]

 return output_layers

9. Create a function to draw a bounding box around the detected object with the
class name:

def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):

 label = str(classes[class_id])

 color = COLORS[class_id]

 cv2.rectangle(img, (x,y), (x_plus_w,y_plus_h), color, 2)

 cv2.putText(img, label + " " + str(confidence), (x-10,y-10), cv2.FONT_
HERSHEY_SIMPLEX, 0.5, color, 2)

10. Execute the code:

run inference through the network
and gather predictions from output layers
outs = net.forward(get_output_layers(net))

Note

'outs' is an array of predictions. Later on in the exercise, we will see that we have
to loop this array in order to get the bounding boxes and the confidences of each
detection, along with the type of class.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Multiple Object Recognition and Detection | 265

Object detection algorithms often detect one object several times and that is
a problem. This problem can be solved by using non-max suppression, which
deletes the bounding boxes for every object with less confidence (the probability
of the object being in the predicted class), after which the only bounding boxes
that will remain are the ones with the highest confidence. After detecting the
bounding boxes and the confidences, and declaring the corresponding thresholds,
this algorithm can be run as follows:

11. This step is one of the most important ones. Here, we are going to gather the
confidence from every detection of every output layer (every object detected), the
class ID, and the bounding boxes, but we'll ignore detections with a confidence of
less than 50%:

apply non-max suppression
class_ids = []
confidences = []
boxes = []
conf_threshold = 0.5
nms_threshold = 0.4
indexes = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_
threshold)

12. For each detection from each output layer, get the confidence, the class ID, and
bounding box params, and ignore weak detections (confidence < 0.5):

for out in outs:
 for detection in out:
 scores = detection[5:]
 class_id = np.argmax(scores)
 confidence = scores[class_id]
 if confidence > 0.5:
 center_x = int(detection[0] * Width)
 center_y = int(detection[1] * Height)
 w = int(detection[2] * Width)
 h = int(detection[3] * Height)
 x = center_x - w / 2
 y = center_y - h / 2
 class_ids.append(class_id)
 confidences.append(float(confidence))
 boxes.append([x, y, w, h])

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

266 | Object Recognition to Guide a Robot Using CNNs

13. We loop over the list of indexes and use the method that we declared for printing
to print every bounding box, every label, and every confidence on the input image:

for i in indexes:
 i = i[0]
 box = boxes[i]
 x = box[0]
 y = box[1]
 w = box[2]
 h = box[3]

 draw_bounding_box(image, class_ids[i], round(confidences[i],2),
round(x), round(y), round(x+w), round(y+h))

14. Finally, we show and save the resulting image. OpenCV has a method for showing
it also; there is no need to use Matplotlib:

display output image
plt.axis("off")
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

save output image to disk
cv2.imwrite("object-detection6.jpg", image)

The output is as follows:

Figure 8.2: YOLO detection sample

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Multiple Object Recognition and Detection | 267

Finally, we have to draw the bounding boxes, its classes, and the confidence.

15. Now let's try some other examples using the steps mentioned previously. You can
find the images in the Dataset/obj-det/ folder. The outputs will be as shown in
Figure 8.3:

Figure 8.3: YOLO detection sample

ImageAI

There is another way to achieve this easily. You could use the ImageAI library, which is
capable of performing object detection and recognition with a few lines of code.

The link to the GitHub repository for this library can be found here:

https://github.com/OlafenwaMoses/ImageAI

In order to install this library, you can do so by using pip with the following command:

pip install https://github.com/OlafenwaMoses/ImageAI/releases/download/2.0.2/
imageai-2.0.2-py3-none-any.whl

To use this library, we need to import one class:

from imageai.Detection import ObjectDetection

We import the ObjectDetection class, which will work as a neural network.

Afterward, we declare the object of the class that is going to make the predictions:

detector = ObjectDetection()

The model that we are going to use has to be declared. For this library, we only get to
use three models: RetinaNet, YOLOV3, and TinyYOLOV3. YOLOV3 is the same model we
used before and has moderate performance and accuracy with a moderate detection
time.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI/releases/download/2.0.2/imageai-2.0.2-py3-none-any.whl
https://github.com/OlafenwaMoses/ImageAI/releases/download/2.0.2/imageai-2.0.2-py3-none-any.whl

268 | Object Recognition to Guide a Robot Using CNNs

As for RetinaNet, it has higher performance and accuracy but a longer detection time.

TinyYOLOV3 is optimized for speed and has moderate performance and accuracy but
a much faster detection time. This model will be used in the next topic because of its
speed.

You only have to change a couple of lines of code in order to get to work with any of
these models. For YOLOV3, these lines are needed:

detector.setModelTypeAsYOLOv3()

detector.setModelPath("Models/yolo.h5")

detector.loadModel()

The .h5 file contains the weights and the architecture for the YOLOV3 neural network.

To run the inference and get the corresponding detections, only a line of code is
needed:

detections = detector.detectObjectsFromImage(input_image="Dataset/obj_det/
sample.jpg", output_image_path="samplenew.jpg")

What this line does is take an image as input and detect the bounding boxes of the
objects in the image and their classes. It outputs a new image drawn with those
detections, as well as a list of the detected objects.

Let's see how it detects the sample.jpg image that we used in the last exercise:

Figure 8.4: ImageAI YOLOV3 image detection

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Multiple Object Recognition and Detection | 269

ImageAI also allows you to customize which objects you want to recognize. By default, it
is also capable of detecting the same classes as YOLO, which is built using OpenCV, that
is the 80 classes.

You can customize it to only detect the objects that you want by passing an object as a
parameter called CustomObjects, where you specify which objects you want the model to
detect. Also, the method from the detector for recognizing those objects changes from
detectObjectsFromImage() to detectCustomObjectsFromImage(). It is used like this:

custom_objects = detector.CustomObjects(car=True)

detections = detector.detectCustomObjectsFromImage(custom_objects=custom_
objects, input_image="Dataset/obj_det/sample.jpg", output_image_
path="samplenew.jpg")

Figure 8.5: ImageAI YOLOV3 custom image detection

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

270 | Object Recognition to Guide a Robot Using CNNs

Multiple Object Recognition and Detection in Video
Multiple object recognition and detection in static images sounds amazing, but what
about detecting and recognizing objects in a video?

You can download any video from the internet and try to detect and recognize all the
objects that show up in the video.

The process to follow would be to get every frame of the video and for every frame,
detect the corresponding objects and their labels.

Declare the corresponding libraries first:

from imageai.Detection import VideoObjectDetection

from matplotlib import pyplot as plt

The imageai library contains an object that allows the user to apply object detection and
recognition to the video:

video_detector = VideoObjectDetection()

We need VideoObjectDetection so that we can detect objects in video. Moreover,
Matplotlib is needed to show the detection process for every frame:

Figure 8.6: ImageAI one-frame object detection process

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Multiple Object Recognition and Detection in Video | 271

Now we will first need to load the model. You can decide what model to load, depending
on the speed you need the video to be processed at, with the precision required.
YOLOV3 is in the middle, between RetinaNet and TinyYOLOV3, RetinaNet being the
most precise but the slowest and TinyYOLOV3 the least precise but the fastest. We are
going to stick to the YOLOV3 model but feel free to use the other two. The declaration
after declaring the video object detection is the same as in the last topic:

video_detector.setModelTypeAsYOLOv3()

video_detector.setModelPath("Models/yolo.h5")

video_detector.loadModel()

Before running the video detector, we need to declare a function that will be applied
to every frame processed. This function does not perform the detection algorithm, but
it handles the detection process for every frame. And why do we have to handle the
output of every frame after the object detection process? That is because we want to
show the detection process frame by frame using Matplotlib..

Before declaring that method, we need to declare the colors that the objects will be
printed on:

color_index = {'bus': 'red', 'handbag': 'steelblue', 'giraffe': 'orange',
'spoon': 'gray', 'cup': 'yellow', 'chair': 'green', 'elephant': 'pink',
'truck': 'indigo', 'motorcycle': 'azure', 'refrigerator': 'gold', 'keyboard':
'violet', 'cow': 'magenta', 'mouse': 'crimson', 'sports ball': 'raspberry',
'horse': 'maroon', 'cat': 'orchid', 'boat': 'slateblue', 'hot dog': 'navy',
'apple': 'cobalt', 'parking meter': 'aliceblue', 'sandwich': 'skyblue',
'skis': 'deepskyblue', 'microwave': 'peacock', 'knife': 'cadetblue',
'baseball bat': 'cyan', 'oven': 'lightcyan', 'carrot': 'coldgrey',
'scissors': 'seagreen', 'sheep': 'deepgreen', 'toothbrush': 'cobaltgreen',
'fire hydrant': 'limegreen', 'remote': 'forestgreen', 'bicycle': 'olivedrab',
'toilet': 'ivory', 'tv': 'khaki', 'skateboard': 'palegoldenrod', 'train':
'cornsilk', 'zebra': 'wheat', 'tie': 'burlywood', 'orange': 'melon', 'bird':
'bisque', 'dining table': 'chocolate', 'hair drier': 'sandybrown', 'cell
phone': 'sienna', 'sink': 'coral', 'bench': 'salmon', 'bottle': 'brown',
'car': 'silver', 'bowl': 'maroon', 'tennis racket': 'palevilotered',
'airplane': 'lavenderblush', 'pizza': 'hotpink', 'umbrella': 'deeppink',
'bear': 'plum', 'fork': 'purple', 'laptop': 'indigo', 'vase': 'mediumpurple',
'baseball glove': 'slateblue', 'traffic light': 'mediumblue', 'bed': 'navy',
'broccoli': 'royalblue', 'backpack': 'slategray', 'snowboard': 'skyblue',
'kite': 'cadetblue', 'teddy bear': 'peacock', 'clock': 'lightcyan', 'wine
glass': 'teal', 'frisbee': 'aquamarine', 'donut': 'mincream', 'suitcase':
'seagreen', 'dog': 'springgreen', 'banana': 'emeraldgreen', 'person':
'honeydew', 'surfboard': 'palegreen', 'cake': 'sapgreen', 'book':

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

272 | Object Recognition to Guide a Robot Using CNNs

'lawngreen', 'potted plant': 'greenyellow', 'toaster': 'ivory', 'stop sign':
'beige', 'couch': 'khaki'}

Now we are going to declare the method applied to every frame:

def forFrame(frame_number, output_array, output_count, returned_frame):

 plt.clf()

 this_colors = []

 labels = []

 sizes = []

 counter = 0

First, as shown, the function is declared and the number of the frame, the array of
detections, the number of occurrences of every object detected, and the frame are
passed to it. Also, we declare the corresponding variables that we are going to use to
print all the detections on every frame:

 for eachItem in output_count:

 counter += 1

 labels.append(eachItem + " = " + str(output_count[eachItem]))

 sizes.append(output_count[eachItem])

 this_colors.append(color_index[eachItem])

In this loop, the objects and their corresponding occurrences are stored. The colors
that represent every object are also stored:

 plt.subplot(1, 2, 1)

 plt.title("Frame : " + str(frame_number))

 plt.axis("off")

 plt.imshow(returned_frame, interpolation="none")

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Multiple Object Recognition and Detection in Video | 273

 plt.subplot(1, 2, 2)

 plt.title("Analysis: " + str(frame_number))

 plt.pie(sizes, labels=labels, colors=this_colors, shadow=True,
startangle=140, autopct="%1.1f%%")

 plt.pause(0.01)

In this last piece of code, two plots are printed for every frame: one showing the image
with the corresponding detections and the other with a chart containing the number of
occurrences of every object detected and its percentage of the total of occurrences.

This output is shown in Figure 8.6.

In the last cell, in order to execute the video detector, we write this couple of lines of
code:

plt.show()

video_detector.detectObjectsFromVideo(input_file_path="path_to_video.
mp4", output_file_path="output-video" , frames_per_second=20, per_frame_
function=forFrame, minimum_percentage_probability=30, return_detected_
frame=True, log_progress=True)

The first line initializes the Matplotlib plot.

The second line starts the video detection. The arguments passed to the function are as
follows:

• input_file_path: The input video path

• output_file_path: The output video path

• frames_per_second: Frames per second of the output video

• per_frame_function: The callback function after every process of detecting objects
within a frame

• minimum_percentage_probability: The minimum probability value threshold, where
only detections with the highest confidence are considered

• return_detected_frame: If set to True, the callback function receives the frame as a
parameter

• log_progress: If set to True, the process is logged in the console

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

274 | Object Recognition to Guide a Robot Using CNNs

Activity 8: Multiple Object Detection and Recognition in Video

In this activity, we are going to process a video frame by frame, detecting all possible
objects within every frame and saving the output video to disk:

Note

The video we will be using for this activity is uploaded on GitHub, in the Dataset/
videos/street.mp4 folder:

Url : https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-
for-Robotics/blob/master/Lesson08/Dataset/videos/street.mp4

1. Open a Google Colab notebook, mount the disk, and navigate to where chapter 8
is located.

2. Install the library in the notebook, as it is not preinstalled, by using this command:

!pip3 install https://github.com/OlafenwaMoses/ImageAI/releases/
download/2.0.2/imageai-2.0.2-py3-none-any.whl

3. Import the necessary libraries for the development of this activity and set
matplotlib.

4. Declare the model that you are going to use for detecting and recognizing objects.

Note

You can find that information here:
https://github.com/OlafenwaMoses/ImageAI/blob/master/imageai/Detection/
VIDEO.md

Also note that all models are stored in the Models folder.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson08/Dataset/videos/street.mp4
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson08/Dataset/videos/street.mp4
https://github.com/OlafenwaMoses/ImageAI/blob/master/imageai/Detection/VIDEO.md
https://github.com/OlafenwaMoses/ImageAI/blob/master/imageai/Detection/VIDEO.md

Summary | 275

5. Declare the callback method that is going to be called after every frame is
processed.

6. Run Matplotlib and the video detection processes on the street.mp4 video that is
inside the Dataset/videos/ folder. You can also try out the park.mp4 video, which is
in the same directory.

Note

The solution for this activity is available on page 326.

Summary
Object recognition and detection is capable of identifying several objects within an
image, to draw bounding boxes around those objects and predict the types of object
they are.

The process of labeling the bounding boxes and their labels has been explained, but not
in depth, due to the huge process required. Instead, we used state-of-the-art models to
recognize and detect those objects.

YOLOV3 was the main model used in this chapter. OpenCV was used to explain how to
run an object detection pipeline using its DNN module. ImageAI, an alternative library
for object detection and recognition, has shown its potential for writing an object
detection pipeline with a few lines and easy object customization.

Finally, the ImageAI object detection pipeline was put into practice by using a video,
where every frame obtained from the video was passed through that pipeline to detect
and identify objects from those frames and show them using Matplotlib.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Objectives

By the end of this chapter, you will be able to:

• Evaluate objects using artificial vision

• Combine external frameworks with ROS

• Use a robot to interact with objects

• Create a robot to understand natural language

• Develop your own end-to-end robotics applications

In this chapter, you'll learn how to work with Darknet and YOLO. You'll also evaluate objects
using AI and integrate YOLO and ROS to enable your virtual robot to predict objects in the virtual
environment.

Computer Vision
for Robotics

9

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

278 | Computer Vision for Robotics

Introduction
In previous chapters, you came across many technologies and techniques that may be
new to you. You have learned many concepts and techniques that help solve real-world
problems. Now, you are going to use all the acquired skills to complete this last chapter
and build your own end-to-end robotics application.

In this chapter, you'll use a deep learning framework, Darknet, to build robots that
recognize objects in real time. This framework will be integrated with ROS so that the
final application can be applied to any robot. Furthermore, it's important to say that
object recognition can be used for building different kinds of robotics applications.

The end-to-end applications you are going to build will not only have academic value
but will also be useful for real-world problems and live situations. You will even be able
to adapt how the application functions depending on circumstances. This will give you
a lot of opportunities to solve real-world problems when working with robots.

Darknet
Darknet is an open source neural network framework, which has been written in C and
CUDA. It is very fast, as it allows GPU as well as CPU computation. It was developed by
Joseph Redmon, a computer scientist focused on artificial vision.

Although we are not going to study all of the functionalities in this chapter, Darknet
includes a lot of interesting applications. As we mentioned earlier, we are going to use
YOLO, but the following is a list of other Darknet functionalities:

• ImageNet Classification: This is an image classifier, which uses known models
such as AlexNet, ResNet, and ResNeXt. After classifying some ImageNet images
with all these models, a comparison between them is performed. They are based
on time, accuracy, weights etc..

• RNN's: Recurrent neural networks are used for generating and managing natural
language. They use an architecture called a vanilla RNN with three recurrent
modules, which achieves good results in tasks such as speech recognition and
natural language processing.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

YOLO | 279

• Tiny Darknet: Consists of another image classifier, but this time, the generated
model is much lighter. This network obtains similar results to Darknet, but the
model weight is only 4 MB.

Note

Apart from the preceding, Darknet has some other applications as well. You can
get more information about the framework by heading to its website: https://
pjreddie.com/darknet/.

Basic Installation of Darknet

The Darknet basic installation won't let you use the entire YOLO power, but it will be
enough to check how it works and make your first few object detection predictions. It
won't let you use GPU computation to make real-time predictions. For more complex
tasks, go to the next section.

Note

For detailed steps regarding the basic and advanced installation of Darknet, refer
to the preface, page vii.

YOLO
YOLO is a real-time object detection system based on deep learning and is included in
the Darknet framework. Its name comes from the acronym You Only Look Once, which
references to how fast YOLO can work.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pjreddie.com/darknet/
https://pjreddie.com/darknet/

280 | Computer Vision for Robotics

On the website (https://pjreddie.com/darknet/yolo/), the author has added an image
where this system is compared to others with the same purpose:

Figure 9.1: A comparison of object detection systems

In the preceding graphic, the y axis represents the mAP (mean Average Precision), and
the x axis represents the time in milliseconds. So, you can see that YOLO achieves a
higher mAP in lesser time than the other systems.

It is also important to understand how YOLO works. It uses a neural network, which is
applied to the entire image and splits it into different parts, predicting the bounding
boxes. These bounding boxes are similar to rectangles marking off certain objects,
which will be identified later in the process. YOLO is fast, because it is able to make
predictions with only an evaluation of the neural network, while other recognition
systems need several evaluations.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pjreddie.com/darknet/yolo/

YOLO | 281

The mentioned network has 53 convolutional layers, alternating 3x3 and 1x1 layers.
Here's an image of the architecture extracted from a YOLO author's paper (https://
pjreddie.com/media/files/papers/YOLOv3.pdf):

Figure 9.2: The YOLO architecture

First Steps in Image Classification with YOLO

In this section, we are going to make our first predictions with YOLO. You are required
to complete the basic installation. Let's start recognizing objects in a single image:

1. We are going to use a pretrained model in order to avoid the training process, so
the first step is to download the network weights in the Darknet directory:

cd <darknet_path>
wget https://pjreddie.com/media/files/yolov3.weights

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://pjreddie.com/media/files/papers/YOLOv3.pdf

282 | Computer Vision for Robotics

2. After that, we are going to make predictions with YOLO. In this first example, we
are trying to recognize a single object, a dog. This is the sample image we are
using:

Figure 9.3: Sample image to predict

Save this image as a .jpg file in the Darknet directory and run YOLO on it:

./darknet detect cfg/yolov3.cfg yolov3.weights dog.jpg

When the execution is finished, you should see an output like the following:

Figure 9.4: The predicted output

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

YOLO | 283

As you can see, YOLO detects that there's a dog in the image with 100% accuracy.
It also generates a new file named predictions.jpg, where it is possible to see the
location of the dog in the image. You can open it from the Darknet directory:

Figure 9.5: Recognized objects in the image

Another possibility when using YOLO is to make predictions for several images
with a single execution. To do this, you must enter the same command as before,
but this time do not enter the image path:

./darknet detect cfg/yolov3.cfg yolov3.weights

In this case, you will see the following output:

Figure 9.6: The prediction command output

As you can see, it is asking you to enter an image. You could enter, for instance,
the same image as before by typing dog.jpg. You'll then be asked to enter another
image path. This way, you can make predictions for all the images you want. This
could be an example:

Figure 9.7: The output after image prediction

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

284 | Computer Vision for Robotics

If you do so, you will obtain this image:

Figure 9.8: Image prediction

There's one more interesting command to know when working with YOLO. It can be
used to modify the detection threshold.

Note

The detection threshold is an accuracy limit to consider if a prediction is incorrect.
For example, if you set your threshold to 0.75, objects detected with a lower
accuracy won't be considered as a correct prediction.

By default, YOLO includes an object in its output when it is predicted with an accuracy
of 0.25 or higher. You can change the threshold value using the last flag of the following
command:

./darknet detect cfg/yolov3.cfg yolov3.weights dog2.jpg -thresh 0.5

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

YOLO | 285

As you may suppose, the preceding command sets the threshold to 0.5. Let's look at a
practical example of this. Follow these steps to test the functioning of the threshold
modification:

1. Make predictions for images until you find one where an object is predicted with
less than 100% accuracy. We are going to use this as an example, where the dog is
recognized with 60% accuracy:

Figure 9.9: Example image with less than 100% accuracy

2. Now, use the predict command modifying the detection threshold. As the dog is
detected with 60% accuracy, if we change the threshold to 70%, no object should
be detected:

./darknet detect cfg/yolov3.cfg yolov3.weights dog2.jpg -thresh 0.7

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

286 | Computer Vision for Robotics

3. If we check the predictions file, we can confirm that the dog was not detected.
Hence, you can see how threshold plays an important role in recognition as well:

Figure 9.10: The final prediction with the modified threshold

YOLO on a Webcam

Once you have made your first predictions with YOLO, it's time to try a more
interesting feature of this system. You're going to detect your own real objects by
connecting YOLO to your personal webcam. To do this, you must complete the
advanced installation because it needs a GPU and OpenCV:

1. Make sure your webcam is connected and can be detected by your system.

2. Enter the following command in the Darknet directory:

./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

YOLO | 287

3. Try to recognize an object in your environment; for example, we have detected the
books on our shelves:

Figure 9.11: Books recognized using a webcam

Exercise 28: Programming with YOLO

In this exercise, we are going to see how to make predictions with YOLO using Python.
We will create a dataset and check how many images containing a certain object are
present in the dataset. To build the dataset, check the following images:

Figure 9.12: Images contained in the dataset

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

288 | Computer Vision for Robotics

As you can see, it is a very simple dataset containing animals and landscape images. The
Python program you are going to implement will have to obtain the number of images
in which dogs appear.

We will begin by cloning Darknet files from GitHub:

git clone https://github.com/pjreddie/darknet
cd darknet
make

1. Create a new folder named dataset in the Darknet directory.

2. Place these images or others of your choice inside the new folder.

Note

The images can be found in the Chapter 9/exercise28/dataset/ folder on GitHub

URL: https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-
for-Robotics/tree/master/Lesson09/Exercise28/dataset

3. Create a Python file, excercise1.py, and start the implementation.

Import Python itself and the required libraries:

#!usr/bin/env python
import sys, os

4. Tell the system where to find the Darknet framework and then import it. If you
have created a file inside the Darknet directory, you can do this as follows:

Note

The path set here needs to be the path where you have placed your Darknet
directory.

sys.path.append(os.path.join(os.getcwd(),'python/'))
import darknet as dn

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Lesson09/Exercise28/dataset
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/tree/master/Lesson09/Exercise28/dataset

YOLO | 289

5. Tell Darknet which GPU to use for the program execution:

Note

In Ubuntu, you can obtain an ordered list of your GPUs using the nvidia-smi
command. When obtained, check the index of the GPU you want to use and type
it into your Python program. If you only have one GPU, you will have to choose the
number 0.

dn.set_gpu(0)

6. Configure the network you are going to use for making your predictions. In this
case, we are using the same configuration as before:

net = dn.load_net("cfg/yolov3.cfg", "yolov3.weights", 0)
meta = dn.load_meta("cfg/coco.data")

Note

Pay attention to the paths entered here; they may change if your Python file is not
inside Darknet's folder.

7. Declare the variables to count the total number of images and the number of
images containing dogs:

dog_images = 0
number_of_images = 0

8. Implement a loop for iterating over the files in the dataset:

for file in os.listdir("dataset/"):

9. Use Darknet's detect method to recognize the objects of each image:

 filename = "dataset/" + file
 r = dn.detect(net, meta, filename)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

290 | Computer Vision for Robotics

10. Iterate over the recognized objects and check whether any of them are dogs. If
they are, add one to the dog images counter and stop checking the rest of the
objects. Add one to the total counter too:

Note

YOLO returns its predictions as a list of arrays, where each of these arrays
represents an object. The data they provide is distributed in the following way:
- Position 0: Object name
- Position 1: Accuracy
- Position 2: Array with the object coordinates in the image

 for obj in r:
 if obj[0] == "dog":
 dog_images += 1
 break
 number_of_images += 1

11. Finally, print the obtained results. For example:

print("There are " + str(dog_images) + "/" + str(number_of_images) + "
images containing dogs")

Note

To execute the code successfully, you need to make changes to the darknet.py file,
as follows:

Head to the darknet.py file and modify the line lib = CDLL("<your path>/datrknet/
libdarknet.so", RTLD_GLOBAL).

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

YOLO | 291

cd ..
 wget https://pjreddie.com/media/files/yolov3.weights
python exercise28.py

Note

Here the cd .. command switches to the directory where your file is located and
downloads the weights and run the script.

For example cd <your_script_location>

You can test whether it works as expected by running the script. If you used the
proposed dataset, the output should be as follows:

Figure 9.13: Exercise 28 final output

ROS Integration

Now, you have already learned how to use YOLO in a common Python program. It's time
to see how to integrate it with Robot Operating System (ROS) so that you can use it in
real robotics problems. You can combine it with any robot camera to allow the robot to
detect and recognize objects, achieving the goal of artificial vision. After the completion
of the following exercise, you will be able to do it by yourself.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

292 | Computer Vision for Robotics

Exercise 29: ROS and YOLO Integration

This exercise consists of a new ROS node implementation that uses YOLO to recognize
objects. We will test it using TurtleBot, the ROS simulator we used in Chapter 6, Robot
Operating System (ROS), but it will be easily adaptable for any robot with a camera.
These are the steps that must be followed:

1. Create a new package in your catkin workspace to contain the integration node.
Do it with this command to include the correct dependencies:

cd ~/catkin_ws/
source devel/setup.bash
roscore
cd src
catkin_create_pkg exercise29 rospy cv_bridge geometry_msgs image_transport
sensor_msgs std_msgs

2. Switch to the package folder and create a new scripts directory. Then, create the
Python file and make it executable:

cd exercise29
mkdir scripts
cd scripts
touch exercise29.py
chmod +x exercise29.py

3. Begin with the implementation.

Import the libraries you will use for node implementation. You will need sys and os
to import Darknet from its path, OpenCV to process images, and Image from sensor_
msgs to publish them:

import sys
import os
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image

Tell the system where to find Darknet:

sys.path.append(os.path.join(os.getcwd(), '/home/alvaro/Escritorio/tfg/
darknet/python/'))

Note

The above mentioned path may change as per the directories placed in your
computer.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

YOLO | 293

Now, import the framework:

import darknet as dn

Create the class where the node logic will be coded and its constructor:

class Exercise29():
 def __init__(self):

Code the constructor:

Now, we will initialize the node:

 rospy.init_node('Exercise29', anonymous=True)

Create a bridge object:

 self.bridge = CvBridge()

Subscribe to the camera topic:

 self.image_sub = rospy.Subscriber("camera/rgb/image_raw", Image,
self.imageCallback)

Create the variable to store the obtained images:

 self.imageToProcess = None

Define the corresponding paths for YOLO configuration:

 cfgPath = "/home/alvaro/Escritorio/tfg/darknet/cfg/yolov3.cfg"
 weightsPath = "/home/alvaro/Escritorio/tfg/darknet/yolov3.weights"
 dataPath = "/home/alvaro/Escritorio/tfg/darknet/cfg/coco2.data"

Note

The above mentioned path may change as per the directories placed in your
computer.

Create YOLO variables for making predictions:

 self.net = dn.load_net(cfgPath, weightsPath, 0)
 self.meta = dn.load_meta(dataPath)

Define the name that will be used for storing the images:

 self.fileName = 'predict.jpg'

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

294 | Computer Vision for Robotics

Implement the callback function to obtain the images with the OpenCV format:

 def imageCallback(self, data):
 self.imageToProcess = self.bridge.imgmsg_to_cv2(data, "bgr8")

Create a function for making predictions over the obtained images. The node must
keep making predictions until the user stops the execution. This will be done by
storing the image to the disk and making predictions over it using the detection
function. Finally, the results will be constantly printed:

 def run(self):
 while not rospy.core.is_shutdown():
 if(self.imageToProcess is not None):
 cv2.imwrite(self.fileName, self.imageToProcess)
 r = dn.detect(self.net, self.meta, self.fileName)
 print r

Implement the main program entry. Here, you will have to initialize Darknet, make
an instance of the created class, and call its main method:

if __name__ == '__main__':
 dn.set_gpu(0)
 node = Exercise29()
 try:
 node.run()
 except rospy.ROSInterruptException:
 pass

4. Test whether the node works as it should.

Open a terminal and start ROS:

cd ../../
cd ..
source devel/setup.bash
roscore

Open another terminal and run Gazebo with TurtleBot:

cd ~/catkin_ws
source devel/setup.bash
roslaunch turtlebot_gazebo turtlebot_world.launch

Insert YOLO recognizable objects and make TurtleBot look at them. You can insert
new objects by clicking on the insert button located in the upper-left corner. You
could insert, for example, a bowl:

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

YOLO | 295

Figure 9.14: Inserted bowl in Gazebo

5. Open a new terminal and run the created node:

cd ~/catkin_ws
source devel/setup.bash
rosrun exercise29 exercise29.py

If you used a bowl, check that you get an output like the one that follows:

Figure 9.15: Object predicted by the node

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

296 | Computer Vision for Robotics

Activity 9: A Robotic Security Guard

Let's suppose a scenario similar to the one in the Chapter 6, Activity 6, Simulator and
Sensors activity: You are working for a robotics company that has recently got a new
client, a shopping center. The client wants your company to provide some robots for
the shopping center at night to avoid robbery. These robots must consider any person a
thief and alert the client if they detect one.

Use Gazebo to give the desired functionality to TurtleBot or any other simulator. You
should follow these steps:

1. Create a catkin package for storing the required nodes.

2. Now, implement the first node. It should obtain the images from the robot camera
and run YOLO on them.

3. Next, it should publish the list of detected objects in string format.

4. Implement the second node. It should subscribe to the topic where the detected
objects are being published and obtain them. Finally, it should check whether a
person is one of these objects and print an alert message if it is.

5. Run both nodes simultaneously.

Note

Although it's not the main goal of this activity, it would be interesting to combine
the execution of these nodes with another one to move the robot (you can use the
one implemented in Chapter 6, Robot Operating System (ROS)).

The solution of this activity can be found on page 330.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary | 297

Summary
We have now achieved the objective of this book and built an end-to-end application
for a robot. This has only been an example application; however, you could use the
techniques that you learned during this book to build other applications for robotics.
In this chapter, you also learned how to install and work with Darknet and YOLO. You
worked through evaluating objects using AI and integrating YOLO and ROS to enable
your virtual robot to predict objects.

You have learned how to control the robot with natural language processing commands,
along with studying various models in this book, such as Word2Vec, GloVe embedding
techniques, and non-numeric data. After this, you worked with ROS and built a
conversational agent to manage your virtual robot. You developed the skills needed
to build a functional application that could integrate with ROS to extract useful
information about your environment. You worked with tools that are not only useful for
robotics; you can use artificial vision and language processing as well.

We end this book by encouraging you to start your own robotics projects and practicing
with the technologies you most enjoyed during the book. You can now compare
different methods used to work with robots and explore computer vision, algorithms,
and limits. Always remember that a robot is a machine that can possess the behavior
you want it to.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

About

This section is included to assist the students to perform the activities in the book.
It includes detailed steps that are to be performed by the students to achieve the objectives of
the activities.

Appendix

>

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

300 | Appendix

Chapter 1: Fundamentals of Robotics

Activity 1: Robot Positioning Using Odometry with Python

Solution

from math import pi

def wheel_distance(diameter, encoder, encoder_time, wheel, movement_time):

 time = movement_time / encoder_time

 wheel_encoder = wheel * time

 wheel_distance = (wheel_encoder * diameter * pi) / encoder

 return wheel_distance

from math import cos,sin

def final_position(initial_pos,wheel_axis,angle):

 final_x=initial_pos[0]+(wheel_axis*cos(angle))

 final_y=initial_pos[1]+(wheel_axis*sin(angle))

 final_angle=initial_pos[2]+angle

 return(final_x,final_y,final_angle)

def position(diameter,base,encoder,encoder_time,left,right,initial_
pos,movement_time):

#First step: Wheels completed distance

 left_wheel=wheel_distance(diameter,encoder,encoder_time,left,movement_
time)

 right_wheel=wheel_distance(diameter,encoder,encoder_time,right,movement_
time)

#Second step: Wheel's central axis completed distance

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1: Fundamentals of Robotics | 301

 wheel_axis=(left_wheel+right_wheel)/2

#Third step: Robot's rotation angle

 angle=(right_wheel-left_wheel)/base

#Final step: Final position calculus

 final_pos=final_position(initial_pos,wheel_axis,angle)

 returnfinal_pos

position(10,80,76,5,600,900,(0,0,0),5)

Note:

For further observations, you can change the wheels' diameter to 15 cm and check
the difference in the output. Similarly, you can change other input values and
check the difference in the output.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

302 | Appendix

Chapter 2: Introduction to Computer Vision

Activity 2: Classify 10 Types of Clothes from the Fashion-MNIST Data

Solution

1. Open up your Google Colab interface.

2. Create a folder for the book, download the Dataset folder from GitHub, and upload
it into the folder.

3. Import the drive and mount it as follows:

from google.colab import drive
drive.mount('/content/drive')

Once you have mounted your drive for the first time, you will have to enter the
authorization code mentioned by clicking on the URL given by Google and pressing the
Enter key on your keyboard:

Figure 2.38: Image displaying the Google Colab authorization step

4. Now that you have mounted the drive, you need to set the path of the directory:

cd /content/drive/My Drive/C13550/Lesson02/Activity02/

5. Load the dataset and show five samples:

from keras.datasets import fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

The output is as follows:

Figure 2.39: Loading datasets with five samples

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2: Introduction to Computer Vision | 303

import random
from sklearn import metrics
from sklearn.utils import shuffle
random.seed(42)
from matplotlib import pyplot as plt
for idx in range(5):
 rnd_index = random.randint(0, 59999)
 plt.subplot(1,5,idx+1),plt.imshow(x_train[idx],'gray')
 plt.xticks([]),plt.yticks([])
plt.show()

Figure 2.40: Samples of images from the Fashion-MNIST dataset

6. Preprocess the data:

import numpy as np
from keras import utils as np_utils
x_train = (x_train.astype(np.float32))/255.0
x_test = (x_test.astype(np.float32))/255.0
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
y_train = np_utils.to_categorical(y_train, 10)
y_test = np_utils.to_categorical(y_test, 10)
input_shape = x_train.shape[1:]

7. Build the architecture of the neural network using Dense layers:

from keras.callbacks import EarlyStopping, ModelCheckpoint,
ReduceLROnPlateau
from keras.layers import Input, Dense, Dropout, Flatten
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Conv2D, MaxPooling2D, Activation,
BatchNormalization

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

304 | Appendix

from keras.models import Sequential, Model
from keras.optimizers import Adam, Adadelta
def DenseNN(inputh_shape):

 model = Sequential()
 model.add(Dense(128, input_shape=input_shape))
 model.add(BatchNormalization())
 model.add(Activation('relu'))
 model.add(Dropout(0.2))

 model.add(Dense(128))
 model.add(BatchNormalization())
 model.add(Activation('relu'))
 model.add(Dropout(0.2))

 model.add(Dense(64))
 model.add(BatchNormalization())
 model.add(Activation('relu'))
 model.add(Dropout(0.2))

 model.add(Flatten())
 model.add(Dense(64))
 model.add(BatchNormalization())
 model.add(Activation('relu'))
 model.add(Dropout(0.2))

 model.add(Dense(10, activation="softmax"))

 return model
model = DenseNN(input_shape)

Note:

The entire code file for this activity can be found on GitHub in the Lesson02 | Activ-
ity02 folder.

8. Compile and train the model:

optimizer = Adadelta()
model.compile(loss='categorical_crossentropy', optimizer=optimizer,
metrics=['accuracy'])
ckpt = ModelCheckpoint('model.h5', save_best_only=True,monitor='val_loss',

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2: Introduction to Computer Vision | 305

mode='min', save_weights_only=False)
model.fit(x_train, y_train, batch_size=128, epochs=20, verbose=1,
validation_data=(x_test, y_test), callbacks=[ckpt])

The accuracy obtained is 88.72%. This problem is harder to solve, so that's why we
have achieved less accuracy than in the last exercise.

9. Make the predictions:

import cv2
images = ['ankle-boot.jpg', 'bag.jpg', 'trousers.jpg', 't-shirt.jpg']
for number in range(len(images)):
 imgLoaded = cv2.imread('Dataset/testing/%s'%(images[number]),0)
 img = cv2.resize(imgLoaded, (28, 28))
 img = np.invert(img)
cv2.imwrite('test.jpg',img)
 img = (img.astype(np.float32))/255.0
 img = img.reshape(1, 28, 28, 1)
 plt.subplot(1,5,number+1),plt.imshow(imgLoaded,'gray')
 plt.title(np.argmax(model.predict(img)[0]))
 plt.xticks([]),plt.yticks([])
plt.show()

Output will look like this:

Figure 2.41: Prediction for clothes using Neural Networks

It has classified the bag and the t-shirt correctly, but it has failed to classify the
boots and the trousers. These samples are very different from the ones that it was
trained for.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

306 | Appendix

Chapter 3: Fundamentals of Natural Language Processing

Activity 3: Process a Corpus

Solution

1. Import the sklearn TfidfVectorizer and TruncatedSVD methods:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD

2. Load the corpus:

docs = []
ndocs = ["doc1", "doc2", "doc3"]
for n in ndocs:
 aux = open("dataset/"+ n +".txt", "r", encoding="utf8")
 docs.append(aux.read())

3. With spaCy, let's add some new stop words, tokenize the corpus, and remove the
stop words. The new corpus without these words will be stored in a new variable:

import spacy
import en_core_web_sm
from spacy.lang.en.stop_words import STOP_WORDS
nlp = en_core_web_sm.load()
nlp.vocab["\n\n"].is_stop = True
nlp.vocab["\n"].is_stop = True
nlp.vocab["the"].is_stop = True
nlp.vocab["The"].is_stop = True
newD = []
for d, i in zip(docs, range(len(docs))):
 doc = nlp(d)
 tokens = [token.text for token in doc if not token.is_stop and not
token.is_punct]
 newD.append(' '.join(tokens))

4. Create the TF-IDF matrix. I'm going to add some parameters to improve the
results:

vectorizer = TfidfVectorizer(use_idf=True,
 ngram_range=(1,2),
 smooth_idf=True,
 max_df=0.5)
X = vectorizer.fit_transform(newD)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3: Fundamentals of Natural Language Processing | 307

5. Perform the LSA algorithm:

lsa = TruncatedSVD(n_components=100,algorithm='randomized',n_
iter=10,random_state=0)
lsa.fit_transform(X)

6. With pandas, we are shown a sorted DataFrame with the weights of the terms of
each concept and the name of each feature:

import pandas as pd
import numpy as np
dic1 = {"Terms": terms, "Components": lsa.components_[0]}
dic2 = {"Terms": terms, "Components": lsa.components_[1]}
dic3 = {"Terms": terms, "Components": lsa.components_[2]}
f1 = pd.DataFrame(dic1)
f2 = pd.DataFrame(dic2)
f3 = pd.DataFrame(dic3)
f1.sort_values(by=['Components'], ascending=False)
f2.sort_values(by=['Components'], ascending=False)
f3.sort_values(by=['Components'], ascending=False)

The output is as follows:

Figure 3.26: Output example of the most relevant words in a concept (f1)

Note:

Do not worry if the keywords are not the same as yours, if the keywords represent
a concept, it is a valid result.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

308 | Appendix

Chapter 4: Neural Networks with NLP

Activity 4: Predict the Next Character in a Sequence

Solution

1. Import the libraries we need to solve the activity:

import tensorflow as tf
from keras.models import Sequential
from keras.layers import LSTM, Dense, Activation, LeakyReLU
import numpy as np

2. Define the sequence of characters and multiply it by 100:

char_seq = 'qwertyuiopasdfghjklñzxcvbnm' * 100
char_seq = list(char_seq)

3. Create a char2id dictionary to relate every character with an integer:

char2id = dict([(char, idx) for idx, char in enumerate(set(char_seq))])

4. Divide the sentence of characters into time series. The maximum length of time
series will be five, so we will have vectors of five characters. Also, we are going to
create the upcoming vector. The y_labels variable is the size of our vocabulary. We
will use this variable later:

maxlen = 5
sequences = []
next_char = []

for i in range(0,len(char_seq)-maxlen):
 sequences.append(char_seq[i:i+maxlen])
 next_char.append(char_seq[i+maxlen])

y_labels = len(char2id)
print("5 first sequences: {}".format(sequences[:5]))
print("5 first next characters: {}".format(next_char[:5]))
print("Total sequences: {}".format(len(sequences)))
print("Total output labels: {}".format(y_labels))

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4: Neural Networks with NLP | 309

5. So far, we have the sequences variable, which is an array of arrays, with the time
series of characters. char is an array with the upcoming character. Now, we need
to encode these vectors, so let's define a method to encode an array of characters
using the information of char2id:

def one_hot_encoder(seq, ids):
 encoded_seq = np.zeros([len(seq),len(ids)])
 for i,s in enumerate(seq):
 encoded_seq[i][ids[s]] = 1
 return encoded_seq

6. Encode the variables into one-hot vectors. The shape of this is x = (2695,5,27) and
y = (2695,27):

x = np.array([one_hot_encoder(item, char2id) for item in sequences])
y = np.array(one_hot_encoder(next_char, char2id))
x = x.astype(np.int32)
y = y.astype(np.int32)

print("Shape of x: {}".format(x.shape))
print("Shape of y: {}".format(y.shape))

Figure 4.35: Variables encoded into OneHotVectors

7. Split the data into train and test sets. To do this, we are going to use the train_
test_split method of sklearn:

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
shuffle=False)
print('x_train shape: {}'.format(x_train.shape))
print('y_train shape: {}'.format(y_train.shape))
print('x_test shape: {}'.format(x_test.shape))
print('y_test shape: {}'.format(y_test.shape))

Figure 4.36: Splitting the data into train and test sets

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

310 | Appendix

8. With the data ready to be inserted in the neural network, create a Sequential
model with two layers:

First layer: LSTM with eight neurons (the activation is tanh). input_shape is the
maximum length of the sequences and the size of the vocabulary. So, because of
the shape of our data, we do not need to reshape anything.

Second layer: Dense with 27 neurons. This is how we successfully complete the
activity. Using a LeakyRelu activation will give you a good score. But why? Our
output has many zeroes, so the network could fail and just return a vector of
zeroes. Using LeakyRelu prevents this problem:

model = Sequential()
model.add(LSTM(8,input_shape=(maxlen,y_labels)))
model.add(Dense(y_labels))
model.add(LeakyReLU(alpha=.01))

model.compile(loss='mse', optimizer='rmsprop')

9. Train the model. The batch_size we use is 32, and we have 25 epochs:

history = model.fit(x_train, y_train, batch_size=32, epochs=25, verbose=1)

Figure 4.37: Training with a batch_size of 32 and 25 epochs

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4: Neural Networks with NLP | 311

10. Compute the error of your model.

print('MSE: {:.5f}'.format(model.evaluate(x_test, y_test)))

Figure 4.38: Error shown in the model

11. Predict the test data and see the average percentage of hits. With this model, you
will obtain an average of more than 90%:

prediction = model.predict(x_test)

errors = 0
for pr, res in zip(prediction, y_test):
 if not np.array_equal(np.around(pr),res):
 errors+=1

print("Errors: {}".format(errors))
print("Hits: {}".format(len(prediction) - errors))
print("Hit average: {}".format((len(prediction) - errors)/
len(prediction)))

Figure 4.39: Predicting the test data

12. To end this activity, we need to create a function that accepts a sequence of
characters and returns the next predicted value. To decode the prediction of the
model, we first code a decode method. This method just search in the prediction
the higher value and take the key character in the char2id dictionary.

def decode(vec):
 val = np.argmax(vec)
 return list(char2id.keys())[list(char2id.values()).index(val)]

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

312 | Appendix

13. Create a method to predict the next character in a given sentence:

def pred_seq(seq):
 seq = list(seq)
 x = one_hot_encoder(seq,char2id)
 x = np.expand_dims(x, axis=0)
 prediction = model.predict(x, verbose=0)
 return decode(list(prediction[0]))

14. Finally, introduce the sequence 'tyuio' to predict the upcoming character. It will
return 'p':

pred_seq('tyuio')

Figure 4.40: Final output with the predicted sequence

Congratulations! You have finished the activity. You can predict a value outputting a
temporal sequence. This is also very important in finances, that is, when predicting
future prices or stock movements.

You can change the data and predict what you want. If you add a linguistic corpus, you
will generate text from your own RNN language model. So, our future conversational
agent could generate poems or news text.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5: Convolutional Neural Networks for Computer Vision | 313

Chapter 5: Convolutional Neural Networks for Computer Vision

Activity 5: Making Use of Data Augmentation to Classify correctly Images of

Flowers

Solution

1. Open your Google Colab interface.

Note:

You will need to mount your drive using the Dataset folder, and accordingly set the
path to continue ahead.

import numpyasnp
classes=['daisy','dandelion','rose','sunflower','tulip']
X=np.load("Dataset/flowers/%s_x.npy"%(classes[0]))
y=np.load("Dataset/flowers/%s_y.npy"%(classes[0]))
print(X.shape)
forflowerinclasses[1:]:
 X_aux=np.load("Dataset/flowers/%s_x.npy"%(flower))
 y_aux=np.load("Dataset/flowers/%s_y.npy"%(flower))
 print(X_aux.shape)
 X=np.concatenate((X,X_aux),axis=0)
 y=np.concatenate((y,y_aux),axis=0)

print(X.shape)
print(y.shape)

2. To output some samples from the dataset:

import random
random.seed(42)
from matplotlib import pyplot as plt
import cv2

for idx in range(5):
 rnd_index = random.randint(0, 4000)
 plt.subplot(1,5,idx+1),plt.imshow(cv2.cvtColor(X[rnd_index],cv2.COLOR_
BGR2RGB))
 plt.xticks([]),plt.yticks([])
 plt.savefig("flowers_samples.jpg", bbox_inches='tight')
plt.show()

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

314 | Appendix

The output is as follows:

Figure 5.23: Samples from the dataset

3. Now, we will normalize and perform one-hot encoding:

from keras import utils as np_utils
X = (X.astype(np.float32))/255.0
y = np_utils.to_categorical(y, len(classes))
print(X.shape)
print(y.shape)

4. Splitting the training and testing set:

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
input_shape = x_train.shape[1:]
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
print(input_shape)

5. Import libraries and build the CNN:

from keras.models import Sequential
from keras.callbacks import ModelCheckpoint
from keras.layers import Input, Dense, Dropout, Flatten
from keras.layers import Conv2D, Activation, BatchNormalization
def CNN(input_shape):
 model = Sequential()

 model.add(Conv2D(32, kernel_size=(5, 5), padding='same',
strides=(2,2), input_shape=input_shape))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.2))

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5: Convolutional Neural Networks for Computer Vision | 315

 model.add(Conv2D(64, kernel_size=(3, 3), padding='same',
strides=(2,2)))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.2))

 model.add(Conv2D(128, kernel_size=(3, 3), padding='same',
strides=(2,2)))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.2))

 model.add(Conv2D(256, kernel_size=(3, 3), padding='same',
strides=(2,2)))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.2))

 model.add(Flatten())
 model.add(Dense(512))
 model.add(Activation('relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.5))
 model.add(Dense(5, activation = "softmax"))

 return model

6. Declare ImageDataGenerator:

from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
 rotation_range=10,
 zoom_range = 0.2,
 width_shift_range=0.2,
 height_shift_range=0.2,
 shear_range=0.1,
 horizontal_flip=True
)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

316 | Appendix

7. We will now train the model:

datagen.fit(x_train)

model = CNN(input_shape)

model.compile(loss='categorical_crossentropy', optimizer='Adadelta',
metrics=['accuracy'])

ckpt = ModelCheckpoint('Models/model_flowers.h5', save_best_
only=True,monitor='val_loss', mode='min', save_weights_only=False)

//{…}##the detailed code can be found on Github##

model.fit_generator(datagen.flow(x_train, y_train,
 batch_size=32),
 epochs=200,
 validation_data=(x_test, y_test),
 callbacks=[ckpt],
 steps_per_epoch=len(x_train) // 32,
 workers=4)

8. After which, we will evaluate the model:

from sklearn import metrics
model.load_weights('Models/model_flowers.h5')
y_pred = model.predict(x_test, batch_size=32, verbose=0)
y_pred = np.argmax(y_pred, axis=1)
y_test_aux = y_test.copy()
y_test_pred = list()
for i in y_test_aux:
 y_test_pred.append(np.argmax(i))

//{…}
##the detailed code can be found on Github##

print (y_pred)

Evaluate the prediction
accuracy = metrics.accuracy_score(y_test_pred, y_pred)
print('Acc: %.4f' % accuracy)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5: Convolutional Neural Networks for Computer Vision | 317

9. The accuracy achieved is 91.68%.

10. Try the model with unseen data:

classes = ['daisy','dandelion','rose','sunflower','tulip']
images = ['sunflower.jpg','daisy.jpg','rose.jpg','dandelion.jpg','tulip
.jpg']
model.load_weights('Models/model_flowers.h5')

for number in range(len(images)):
 imgLoaded = cv2.imread('Dataset/testing/%s'%(images[number]))
 img = cv2.resize(imgLoaded, (150, 150))
 img = (img.astype(np.float32))/255.0
 img = img.reshape(1, 150, 150, 3)
 plt.subplot(1,5,number+1),plt.imshow(cv2.cvtColor(imgLoaded,cv2.COLOR_
BGR2RGB))
 plt.title(np.argmax(model.predict(img)[0]))
 plt.xticks([]),plt.yticks([])
plt.show()

Output will look like this:

Figure 5.24: Prediction of roses result from Activity05

Note:

The detailed code for this activity can be found on GitHub - https://github.com/
PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/mas-
ter/Lesson05/Activity05/Activity05.ipynb

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson05/Activity05/Activity05.ipynb
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson05/Activity05/Activity05.ipynb
https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson05/Activity05/Activity05.ipynb

318 | Appendix

Chapter 6: Robot Operating System (ROS)

Activity 6: Simulators and Sensor

Solution

1. We start by creating the packages and files:

cd ~/catkin_ws/src
catkin_create_pkg activity1 rospy sensor_msgs
cd activity1
mkdir scripts
cd scripts
touch observer.py
touch movement.py
chmod +x observer.py
chmod +x movement.py

2. This is the implementation of the image obtainer node:

Note:

Add the aforementioned code to the observer.py file.

#!/usr/bin/env python
import rospy
from sensor_msgs.msg import Image
import cv2
from cv_bridge import CvBridge

class Observer:
 bridge = CvBridge()
 counter = 0

 def callback(self, data):
 if self.counter == 20:
 cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
 cv2.imshow('Image',cv_image)
 cv2.waitKey(1000)
 cv2.destroyAllWindows()
 self.counter = 0

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6: Robot Operating System (ROS) | 319

 else:
 self.counter += 1

 def observe(self):
 rospy.Subscriber('/camera/rgb/image_raw', Image, self.callback)
 rospy.init_node('observer', anonymous=True)
 rospy.spin()

if __name__ == '__main__':
 obs = Observer()
 obs.observe()

As you can see, this node is very similar to the one in Exercise 21, Publishers and
Subscribers. The only differences are:

3. A counter is used for showing only one image of twenty received.

We enter 1000 (ms) as the Key() parameter so that each image is shown for a
second.

This is the implementation of the movement node:

#!/usr/bin/env python
import rospy
from geometry_msgs.msg import Twist

def move():
 pub = rospy.Publisher('/mobile_base/commands/velocity', Twist, queue_
size=1)
 rospy.init_node('movement', anonymous=True)
 move = Twist()
 move.angular.z = 0.5
 rate = rospy.Rate(10)
 while not rospy.is_shutdown():
 pub.publish(move)
 rate.sleep()

if __name__ == '__main__':
 try:
 move()
 except rospy.ROSInterruptException:
 pass

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

320 | Appendix

4. To execute the file, we will execute the code mentioned here.

Note:

Add this code to observer the .py file.

cd ~/catkin_ws
source devel/setup.bash
roscore
roslaunch turtlebot_gazebo turtlebot_world.launch
rosrun activity1 observer.py
rosrun activity1 movement.py

5. Run both nodes and check the system functioning. You should see the robot
turning on itself while images of what it sees are shown. This is a sequence of the
execution:

The output will look like this:

Figure 6.10: The first sequence of the execution of activity nodes

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6: Robot Operating System (ROS) | 321

Figure 6.11: The second sequence of the execution of activity nodes

Figure 6.12: The third sequence of the execution of activity nodes

Note:

The output will look similar but not exactly look as the one mentioned in figures
6.10, 6.11, and 6.12.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

322 | Appendix

Congratulations! You have completed the activity and at the end, you will have an
output which is like figures 6.8, 6.9, and 6.10. By completing this activity successfully,
you have been able to implement and work with nodes that let you subscribe to a
camera which will show images in the virtual environment. You also learned to rotate a
robot on itself that lets you view these images.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7: Build a Text-Based Dialogue System (Chatbot) | 323

Chapter 7: Build a Text-Based Dialogue System (Chatbot)

Activity 7: Create a Conversational Agent to Control a Robot

Solution

1. Open up your Google Colab interface.

2. Create a folder for the book and download the utils, responses, and training
folder from Github and upload it in the folder.

3. Import drive and mount it as follows:

from google.colab import drive
drive.mount('/content/drive')

Note

Every time you use a new collaborator, mount the drive to the desired folder.

4. Once you have mounted your drive for the first time, you will need to enter the
authorization code mentioned by clicking on the URL mentioned by Google and
press the Enter key on your keyboard:

Figure 7.28: Image displaying the Google Colab authorization step

5. Now that you have mounted the drive, you need to set the path of the directory.

cd /content/drive/My Drive/C13550/Lesson07/Activity01

Note:

The path mentioned in step 5 may change as per your folder setup on Google
Drive. The path will always begin with cd /content/drive/My Drive/

6. Import the chatbot_intro file:

from chatbot_intro import *

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

324 | Appendix

7. Define the GloVe model:

filename = '../utils/glove.6B.50d.txt.word2vec'
model = KeyedVectors.load_word2vec_format(filename, binary=False)

8. List the responses and training sentences files:

intent_route = 'training/'
response_route = 'responses/'
intents = listdir(intent_route)
responses = listdir(response_route)

print("Documents: ", intents)

Figure 7.29: A list of intent documents

9. Create document vectors:

doc_vectors = np.empty((0,50), dtype='f')
for i in intents:
 with open(intent_route + i) as f:
 sentences = f.readlines()
 sentences = [x.strip() for x in sentences]
 sentences = pre_processing(sentences)
doc_vectors= np.append(doc_vectors,doc_vector(sentences,model),axis=0)

print("Shape of doc_vectors:",doc_vectors.shape)
print(" Vector representation of backward.txt:\n",doc_vectors)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7: Build a Text-Based Dialogue System (Chatbot) | 325

7.30: Shape of doc_vectors

10. Predict the intent:

user_sentence = "Look to the right"

user_sentence = pre_processing([user_sentence])
user_vector = doc_vector(user_sentence,model).reshape(100,)
intent = intents[select_intent(user_vector, doc_vectors)]
intent

7.31: Predicted intent

Congratulations! You finished the activity. You can add more intents if you want to and
train the GloVe model to achieve better results. By creating a function with all the code,
you programmed and developing a movement node in ROS, you can order your robot to
make movements and turn around.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

326 | Appendix

Chapter 8: Object Recognition to Guide a Robot Using CNNs

Activity 8: Multiple Object Detection and Recognition in Video

Solution

1. Mount the drive:

from google.colab import drive
drive.mount('/content/drive')

cd /content/drive/My Drive/C13550/Lesson08/

2. Install the libraries:

pip3 install https://github.com/OlafenwaMoses/ImageAI/releases/
download/2.0.2/imageai-2.0.2-py3-none-any.whl

3. Import the libraries:

from imageai.Detection import VideoObjectDetection
from matplotlib import pyplot as plt

4. Declare the model:

video_detector = VideoObjectDetection()
video_detector.setModelTypeAsYOLOv3()
video_detector.setModelPath("Models/yolo.h5")
video_detector.loadModel()

5. Declare the callback method:

color_index = {'bus': 'red', 'handbag': 'steelblue', 'giraffe': 'orange',
'spoon': 'gray', 'cup': 'yellow', 'chair': 'green', 'elephant': 'pink',
'truck': 'indigo', 'motorcycle': 'azure', 'refrigerator': 'gold',
'keyboard': 'violet', 'cow': 'magenta', 'mouse': 'crimson', 'sports ball':
'raspberry', 'horse': 'maroon', 'cat': 'orchid', 'boat': 'slateblue',
'hot dog': 'navy', 'apple': 'cobalt', 'parking meter': 'aliceblue',
'sandwich': 'skyblue', 'skis': 'deepskyblue', 'microwave': 'peacock',
'knife': 'cadetblue', 'baseball bat': 'cyan', 'oven': 'lightcyan',
'carrot': 'coldgrey', 'scissors': 'seagreen', 'sheep': 'deepgreen',
'toothbrush': 'cobaltgreen', 'fire hydrant': 'limegreen', 'remote':
'forestgreen', 'bicycle': 'olivedrab', 'toilet': 'ivory', 'tv': 'khaki',
'skateboard': 'palegoldenrod', 'train': 'cornsilk', 'zebra': 'wheat',
'tie': 'burlywood', 'orange': 'melon', 'bird': 'bisque', 'dining table':
'chocolate', 'hair drier': 'sandybrown', 'cell phone': 'sienna', 'sink':
'coral', 'bench': 'salmon', 'bottle': 'brown', 'car': 'silver', 'bowl':

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8: Object Recognition to Guide a Robot Using CNNs | 327

'maroon', 'tennis racket': 'palevilotered', 'airplane': 'lavenderblush',
'pizza': 'hotpink', 'umbrella': 'deeppink', 'bear': 'plum', 'fork':
'purple', 'laptop': 'indigo', 'vase': 'mediumpurple', 'baseball glove':
'slateblue', 'traffic light': 'mediumblue', 'bed': 'navy', 'broccoli':
'royalblue', 'backpack': 'slategray', 'snowboard': 'skyblue', 'kite':
'cadetblue', 'teddy bear': 'peacock', 'clock': 'lightcyan', 'wine glass':
'teal', 'frisbee': 'aquamarine', 'donut': 'mincream', 'suitcase':
'seagreen', 'dog': 'springgreen', 'banana': 'emeraldgreen', 'person':
'honeydew', 'surfboard': 'palegreen', 'cake': 'sapgreen', 'book':
'lawngreen', 'potted plant': 'greenyellow', 'toaster': 'ivory', 'stop
sign': 'beige', 'couch': 'khaki'}

def forFrame(frame_number, output_array, output_count, returned_frame):

 plt.clf()

 this_colors = []
 labels = []
 sizes = []

 counter = 0

 for eachItem in output_count:
 counter += 1
 labels.append(eachItem + " = " + str(output_count[eachItem]))
 sizes.append(output_count[eachItem])
 this_colors.append(color_index[eachItem])

 plt.subplot(1, 2, 1)
 plt.title("Frame : " + str(frame_number))
 plt.axis("off")
 plt.imshow(returned_frame, interpolation="none")

 plt.subplot(1, 2, 2)
 plt.title("Analysis: " + str(frame_number))
 plt.pie(sizes, labels=labels, colors=this_colors, shadow=True,
startangle=140, autopct="%1.1f%%")

 plt.pause(0.01)

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

328 | Appendix

6. Run Matplotlib and the video detection process:

plt.show()

video_detector.detectObjectsFromVideo(input_file_path="Dataset/videos/
street.mp4", output_file_path="output-video" , frames_per_second=20,
per_frame_function=forFrame, minimum_percentage_probability=30, return_
detected_frame=True, log_progress=True)

The output will be as shown in the following frames:

Figure 8.7: ImageAI video object detection output

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8: Object Recognition to Guide a Robot Using CNNs | 329

As you can see, the model detects objects more or less properly. Now you can see the
output video in your chapter 8 root directory with all the object detections in it.

Note:

There is an additional video added in the Dataset/videos folder – park.mp4. You
can use the steps just mentioned and recognize objects in this video as well.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

330 | Appendix

Chapter 9: Computer Vision for Robotics

Activity 9: A Robotic Security Guard

Solution

1. Create a new package in your catkin workspace to contain the integration node.
Do it with this command to include the correct dependencies:

cd ~/catkin_ws/
source devel/setup.bash
roscore
cd src
catkin_create_pkg activity1 rospy cv_bridge geometry_msgs image_transport
sensor_msgs std_msgs

2. Switch to the package folder and create a new scripts directory. Then, create the
Python file and make it executable:

cd activity1
mkdir scripts
cd scripts
touch activity.py
touch activity_sub.py
chmod +x activity.py
chmod +x activity_sub.py

3. This is the implementation of the first node:

Libraries importation:

#!/usr/bin/env python
import rospy
import cv2
import sys
import os
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image
from std_msgs.msg import String

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9: Computer Vision for Robotics | 331

sys.path.append(os.path.join(os.getcwd(), '/home/alvaro/Escritorio/tfg/
darknet/python/'))

import darknet as dn

Note

The above mentioned path may change as per the directories placed in your com-
puter.

Class definition:

class Activity():
 def __init__(self):

Node, subscriber, and network initialization:

 rospy.init_node('Activity', anonymous=True)
 self.bridge = CvBridge()
 self.image_sub = rospy.Subscriber("camera/rgb/image_raw", Image,
self.imageCallback)
 self.pub = rospy.Publisher('yolo_topic', String, queue_size=10)
 self.imageToProcess = None
 cfgPath = "/home/alvaro/Escritorio/tfg/darknet/cfg/yolov3.cfg"
 weightsPath = "/home/alvaro/Escritorio/tfg/darknet/yolov3.weights"
 dataPath = "/home/alvaro/Escritorio/tfg/darknet/cfg/coco2.data"
 self.net = dn.load_net(cfgPath, weightsPath, 0)
 self.meta = dn.load_meta(dataPath)
 self.fileName = 'predict.jpg'
 self.rate = rospy.Rate(10)

Note

The above mentioned path may change as per the directories placed in your com-
puter.

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

332 | Appendix

Function image callback. It obtains images from the robot camera:

 def imageCallback(self, data):
 self.imageToProcess = self.bridge.imgmsg_to_cv2(data, "bgr8")

Main function of the node:

 def run(self):
 print("The robot is recognizing objects")

 while not rospy.core.is_shutdown():

 if(self.imageToProcess is not None):
 cv2.imwrite(self.fileName, self.imageToProcess)

Method for making predictions on images:

 r = dn.detect(self.net, self.meta, self.fileName)

 objects = ""

 for obj in r:
 objects += obj[0] + " "

Publish the predictions:

 self.pub.publish(objects)
 self.rate.sleep()

Program entry:

if __name__ == '__main__':
 dn.set_gpu(0)
 node = Activity()
 try:
 node.run()
 except rospy.ROSInterruptException:
 pass

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9: Computer Vision for Robotics | 333

4. This is the implementation of the second node:

Libraries importation:

#!/usr/bin/env python
import rospy
from std_msgs.msg import String

Class definition:

class ActivitySub():

 yolo_data = ""

 def __init__(self):

Node initialization and subscriber definition:

 rospy.init_node('ThiefDetector', anonymous=True)
 rospy.Subscriber("yolo_topic", String, self.callback)

The callback function for obtaining published data:

 def callback(self, data):
 self.yolo_data = data

 def run(self):
 while True:

Start the alarm if a person is detected in the data:

 if "person" in str(self.yolo_data):
 print("ALERT: THIEF DETECTED")
 break

Program entry:

if __name__ == '__main__':
 node = ActivitySub()
 try:
 node.run()
 except rospy.ROSInterruptException:
 pass

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

334 | Appendix

5. Now, you need to set the destination to the scripts folder:

cd ../../
cd ..
cd src/activity1/scripts/

6. Execute the movement.py file:

touch movement.py
chmod +x movement.py
cd ~/catkin_ws
source devel/setup.bash
roslaunch turtlebot_gazebo turtlebot_world.launch

7. Open a new terminal and execute the command to get the output:

cd ~/catkin_ws
source devel/setup.bash
rosrun activity1 activity.py

cd ~/catkin_ws
source devel/setup.bash
rosrun activity1 activity_sub.py

cd ~/catkin_ws
source devel/setup.bash
rosrun activity1 movement.py

8. Run both nodes at the same time. This is an execution example:

Gazebo situation:

Figure 9.16: Example situation for the activity

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9: Computer Vision for Robotics | 335

First node output:

Figure 9.17: First activity node output

Second node output:

Figure 9.18: Second activity node output

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

Index

>

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

A
actuators: 21, 23-24
adaboost: 63, 66-67,

72, 79, 82
adadelta: 78-79, 81, 169,

178, 181, 193-194
android:40
angular:219
annotate: 232, 240
anonymous: 207-208,

210, 212, 218, 293
append: 62-63, 69, 117,

135, 146, 179, 182, 186,
195, 230, 238, 249-250,
265, 272, 288, 292

argmax: 82, 171, 179,
181-182, 184, 186,
195-196, 265

argument: 47, 57
arrays: 39, 70-71, 150,

184-185, 290
arrived:23
arrives:24
assumption: 115-116,

119, 142, 158
astype: 76, 80, 82, 167,

170, 176, 183, 193, 196
attention: 136, 289
attractive:19
attribute: 64, 102-103,

108, 217
author: 280-281
automated: 38, 88, 127
automatic:148
autonomous:20
autopct:273

B
backed:242
backend: 85, 164

background: 49, 60, 84
backpack: 261, 271
backward: 253-254
bagging: 63-64, 66
banana: 261, 271
barcelona:225
baseball: 261, 271
basics:140
batches:194
beacons:22
beneficial:232
benefits:143
bicycle: 261, 271
bigger: 61, 66, 165,

178, 184-185
bigram: 112-116, 118
bigrams: 112, 114,

116-117, 141-142
bimodal:43
binary: 40-41, 46-50,

60, 192, 236, 249
bipedal:21
bisque:271
blacks:62
blurring: 40, 55-58
boosting: 63, 66, 85
boston: 129-130
bottle: 261, 271
bottom:161
bought:113
bounced:20
boundaries: 18, 20
boundary:62
bounding: 260,

264-268, 275, 280
branch:64
breeds: 173, 184
bridge: 217, 292-294
brighter:39
brings:123
broadcast:89
broccoli: 261, 271

building: 79, 83-84,
119, 121, 164, 166, 171,
176, 183, 192, 242,
245, 259, 262, 278

built-in:98
burlywood:271
button:294

C
cadetblue:271
category: 64, 97, 110, 158
catkin: 204-206, 210, 213,

215-217, 292, 294-296
center: 26, 29, 216,

227, 265, 296
central: 21, 32, 55, 227
certain: 22, 24, 28, 33,

74, 113, 124-125, 127,
155, 159, 200, 224,
233, 280, 287

cfgpath:293
classes: 63, 78, 81, 159, 169,

171, 173, 175, 184-186,
188, 191-192, 243, 261,
263-264, 267-269

compound:67
compresses:159
considered: 78,

200, 273, 284
considers: 18, 64, 112
consist: 158-159
consists: 21, 49, 66,

88, 110, 123, 151,
202, 279, 292

console:273
contour:62
contours:62
contrast:243
converge: 81, 165, 178
converging:189
conversion:76

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

converts:76
convolve:160
convolving: 158, 160
cornsilk:271
corpora: 93, 256
corpus: 85, 94, 98, 104,

106-110, 113-117, 119,
123, 141-149, 155,
224-234, 243, 255-256

D
dandelion: 184-186
darker:39
darknet: 277-286,

288-290, 292-294, 297
database: 83, 88, 110,

166, 170, 187
databases:153
dataframe: 231, 239
datagen: 172-173,

180-181, 193-194
datapath:293
dataset: 43-44, 51, 56, 59,

64-70, 72-74, 78, 83-84,
110, 124, 129, 134, 137,
159, 169-170, 172-176,
180-181, 183-188,
190-191, 193, 195-197,
260, 262-263, 267-269,
274-275, 287-289, 291

datasets: 64, 68, 83, 129,
166-167, 174, 201

datrknet:290
detector: 262, 267-271,

273, 286
detects: 30, 33, 260,

262, 268, 283
dilate: 52, 54
dilation: 49-50, 52, 54
dogs-cats: 173, 175,

178-179, 181, 183

E
encode: 145, 148-150,

154-155, 167
encoded: 124, 147-150,

153-154, 224, 226, 255
enumerate: 147-148
epochs: 79, 81, 131, 137-139,

168, 170, 173, 178-179,
181, 186, 194, 230

erasing:146
erosion: 49-50, 52
external: 20-22, 24,

34, 62, 277
extract: 67, 69, 88, 90,

94, 106, 110, 159, 297
extracted: 25, 38, 62-63,

68, 70, 72, 106, 281

F
facebook:110
fashion: 83, 167
faster: 76, 81, 98, 117,

158, 165, 187, 268
fastest:271
filename: 236, 249,

289, 293-294
flatten: 72, 78-80,

168-169, 177-178
flattened:159
flexible:98
flowchart:64

G
gaussian: 42, 47, 55, 57
gazebo: 215-216,

218-219, 294-296
gensim: 225, 228-229,

235-236, 249
geometry: 219, 292

getcwd: 288, 292
github: 43-45, 51, 54,

56, 58-59, 62, 73,
79, 83, 110, 166, 170,
173-175, 177, 190, 196,
216, 234-235, 260,
262-263, 267, 274, 288

global: 41-43, 47, 104, 119,
153, 232, 245, 290

google: 19, 40, 43-44,
51, 56, 58-59, 67, 79,
83, 88, 94, 100, 103,
106, 116, 141, 164,
166-167, 173-174, 190,
224, 235-236, 241,
247-248, 262, 274

graphic:280
graphical: 22, 43, 75,

142, 159, 202
graphs:134
grayscale: 39-40, 45-46,

51, 56, 59-60, 83

H
hacker:153
hardware: 15, 21, 43, 74
humanoid: 19, 21
hundreds:187

I
identified:280
identifies:243
identify: 15, 243, 253, 275
if-else: 91-92
ignore: 104, 265
ignored:104
imageai: 262, 267-270,

274-275
imageai-: 267, 274
imagenet: 187-188,

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

192, 278
imgload:184
imgloaded: 72, 82,

170-171, 183, 196
imgmsg: 217, 294
imitating:241
impact:37
implement: 30, 66, 151,

172, 199, 201, 208-209,
211-212, 217-219, 242,
262, 288-289, 294, 296

imread: 45, 51, 56, 59,
69, 72, 82, 170, 175,
183, 190, 196, 263

imshow: 45-48, 51-52,
54, 56-57, 59-61, 68,
72, 82, 171, 176, 184,
191, 196, 217, 266, 272

imwrite: 196, 266, 294
increment:173
indexes: 265-266
indexing:98
indigo:271
instagram:20
install: 40, 203, 215,

267, 274, 297
installed: 67, 203, 215
installing: 200, 203, 215
instance: 80, 98, 159,

162, 181, 200, 207,
212, 219, 283, 294

instantly:18
instead: 55, 67, 141, 150,

158, 160, 244, 275
integer: 76, 149-150
integrate: 277, 291, 297
integrated: 19, 208, 278
intensity:62
intent: 92, 223-225,

242-253

J
jumping:168
jupyter:67

K
kernel: 49, 52-55, 57,

61, 164-165, 168-169,
177-178, 185

kernels:51
kinetic: 203, 215
knowing: 93, 205, 253
knowledge: 38, 88,

113-114, 124, 153, 187,
197, 241-243, 255-256

knowns: 224, 255

L
labeled: 123, 148-149, 260
labelimg:260
labeling: 260, 275
labels: 63, 65, 68, 71, 76,

79, 84, 144, 151, 167,
175, 185, 192, 238-239,
270, 272-273, 275

lookup:98
lowered:155

M
machine: 18, 20, 34, 37-38,

60, 63-65, 67, 85, 88,
90, 93, 98, 106, 111,
122, 124, 127, 144, 171,
200, 241-242, 297

machines: 16, 19-20,
88, 200, 260

madrid: 103, 225
magenta:271
matlab:93

matplotlib: 40, 45, 51,
56, 59-60, 67-68, 84,
132, 134, 166, 176, 185,
191, 229, 237, 262, 266,
270-271, 273-275

matrices: 105, 150, 159
metric: 71, 78, 81,

168, 170, 186
metrics: 67, 71, 78, 81,

169, 178-179, 181-182,
186, 193, 195, 251

mitsuku:241
mobilenet: 192-193
mobility:21
modeled:74
modified: 41, 286
modify: 20, 96, 102, 132,

219, 228, 284, 290
modifying: 98, 285
module: 71, 98, 164, 168,

172, 262-263, 275
modules: 64, 164,

242-243, 278
moment:125
monitor: 78, 81, 169,

178, 181, 194
monitoring:16
morpheme:123
morphemes:93
motivated:141
motorcycle: 261, 271
mounted: 44, 166-167,

174, 235-236, 248
multiple: 122, 142, 204,

241, 260, 262, 270, 274

N
navigate:274
negative: 63, 77, 123,

210, 212, 241
network: 37, 74, 76-84,

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

121, 124, 127-129, 131,
133-134, 137, 140,
144-145, 150, 155,
157-160, 164-166,
168-169, 183, 189-190,
194, 197, 259-264,
267-268, 278-281, 289

neuron: 74, 125-127,
129, 131, 133,
137-138, 155, 158

neurons: 74, 76, 78, 80-81,
125, 127, 129, 131-132,
134, 137, 158, 164-165,
168-169, 188, 192

neutral:241
newspaper: 94, 104, 110
nfinal: 179, 182
n-gram: 112-114, 116,

141-143, 155
n-grams: 114, 142
nmsboxes:265
non-max:265
nvidia-smi:289

O
odometry: 15, 24, 33-34
offensive:142
olivedrab:271
one-frame:270
onehot: 149-150
one-hot: 76, 78, 82,

84, 144-145, 147-148,
150, 152-155, 167, 193,
224-226, 233, 255

one-to-one:127
online: 18, 88
opencv: 40, 45-48, 51-52,

54, 56, 58-59, 62, 85,
166, 185, 217, 262, 266,
269, 275, 286, 292, 294

opening: 49-50, 53-54, 61

opinions: 88, 224
opposed:224
opposite: 41, 50
optimized: 155, 268
optimizer: 78, 81, 131,

137-138, 169-170,
178, 181, 189, 193

optimizers: 79, 193
option: 114, 119, 215
orange: 261, 271
orchid:271
outbound:188
oxford: 173, 176, 184

P
pacman:18
padding: 162-165,

168-169, 177
pairwise:251
palegreen:271
pandas: 229, 231,

236-237, 239
parallel:229
parameter: 57, 162, 165,

173, 180-181, 189,
208, 229, 269, 273

parameters: 30, 32,
46-47, 52-53, 79, 84,
98, 115, 132, 165, 170,
193, 197, 228-230

params:265
parking: 261, 271
parsing: 93, 98, 122-123
partial:142
partially:20
particular: 39, 55, 111, 159
passengers:18
passes: 74, 127
passing: 31, 73, 269
password: 153-154
passwords:153

patterns:74
peacock:271
pedestrian:20
pepper: 21, 53
percentage: 71,

130, 165, 273
perceptron:97
permission:206
person: 30, 93, 241,

261, 271, 296
personal: 20-21, 34, 286
phones: 18-19, 141
phrase: 123, 245-246
phrases: 19, 92, 248
physical: 142, 202
pipeline: 99, 228, 275
pixels: 38-39, 41, 43,

49, 55, 134, 158,
160, 162, 164

pjreddie: 279-281, 288, 291
placed: 224, 227, 236,

288, 292-293
platform:241
predicate:93
probably: 73-74, 110, 113
proximity:202
publisher: 206-210, 213
purpose: 21, 30, 280
purposes:34
puttext:264
putting:39
pyplot: 45, 51, 56, 59,

67, 132, 134, 176, 191,
229, 237, 262, 270

python: 30, 32-34,
40, 51, 64-65, 67,
87-88, 93, 98, 106,
204-211, 217, 225, 228,
287-289, 291-292

pytorch:74

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

Q
quantities: 119, 181
quantity: 70, 127, 134
querying:88

R
racket: 261, 271
radians:29
randint: 68, 176,

191, 211, 252
rapidly:92
raspberry:271
rather: 165, 262
reached:22
reaches:212
readlines: 250, 252, 263
readnet:263
realistic:19
real-life:171
really: 110, 150, 205, 244
real-time: 224, 279
real-world: 18-21,

83, 85, 197, 278
report: 179, 182
reports:92
repository: 260, 267
reproduce:19
require:214
requires:67
research: 16, 93, 122, 187
reshaping: 136, 183
resistant:20
resize: 69, 72, 82, 170,

175, 183, 190, 196
resized:190
resizing:183
resnet: 188-189, 278
resnext:278
resolution:39
resources: 30, 93, 143

respond: 19, 124, 243
response: 19, 123-124, 126,

243, 247, 249, 252-253
responses: 243-245,

248-249
retinanet: 267-268, 271
retrain:187
retraining:189
retrieval:88
rewriting:253
rmsprop: 137-138
rndforest:66
robbery:296
robota:16
robotic: 200, 296
robotics: 15-19, 21, 30,

34, 94, 100, 200-201,
214, 219, 260, 277-278,
291, 296-297

robots: 15-16, 18-21, 30,
199-201, 204-205,
214-215, 278, 296-297

robust:233
romantic:18
roscore: 202, 206, 213,

216, 218, 292, 294
roslaunch: 216, 218, 294
rosnode:202
rosrun: 202, 209,

213, 218, 295
rossum:16
rostopic: 203, 218

S
sample: 62, 134, 151,

261-262, 266-269, 282
samplenew: 268-269
samsung:19
sandwich: 261, 271
sandybrown:271
sapgreen:271

satellites:22
savefig: 51-52, 54,

56-57, 191
scalable: 234, 256
scalar: 137, 159
scaler:130
scatter: 232, 240
scenario: 110, 153,

219, 253, 296
scenarios:158
schema: 22-23, 25-27,

126-127, 133, 201
scikit:106
scores: 88, 265
scratch: 124, 187, 241
screen: 217, 243
screens:40
script:291
scripts: 206, 210, 217,

236, 249, 292
seagreen:271
search: 88, 141, 212
searched: 211-214
searches:209
security: 153, 219, 253, 296
semantic: 93, 95,

105, 123, 233
sending: 207, 209
sensible:224
sensor: 21-23, 200,

202, 217, 260, 292
sensors: 21-22, 24, 34,

197, 199, 205, 215-217,
219-220, 260, 296

sentiment: 88,
122-123, 127, 241

sentiments: 123, 241
separate: 43, 70,

105, 173, 176
separated:248
separately: 29, 63
serially:124

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

series: 18, 76, 127-128
served:85
service: 18, 20, 200,

202, 206, 241-242
services: 19, 216
servitude:16
setinput:263
setosa:64
setting: 44, 68, 96-97,

134, 165, 211, 236
seventh:109
shadow:273
shaped:17
shapes: 49, 76, 145,

150-152, 176-177
shared:144
sharing:228
shelves:287
shopping:296
shorter:76
short-term: 128, 133
showing: 118, 180, 182,

194, 266, 273
shrinks:49
shuffle: 67, 130, 136
shutdown: 208,

211-212, 217, 294
sienna:271
sigmax:57
sigmay:57
sigmoid: 77, 138, 192
signal: 22, 208, 212, 217
signals:18
simulate: 19, 214-215, 219
simulated:23
simulator: 197, 214-216,

261, 292, 296
simulators: 16, 205,

214, 217, 219-220
single: 63, 66, 93, 142,

158, 160, 204, 226,
260, 281-283

singular: 105, 237
situation: 23, 92, 201-202
situations: 78, 171, 278
skateboard: 261, 271
skills: 278, 297
skip-gram: 227-228, 256
sklearn: 64-67, 70-71,

106, 129-130, 136, 148,
150, 176, 179, 181, 186,
193, 229, 237, 239, 251

skyblue:271
slateblue:271
slategray:271
sleeping: 106, 116, 145
slides: 49, 52
sliding:142
slight:22
slightly:180
slower: 98, 159
slowest:271
smooth:55
smoothing: 55, 115-119, 142
snippet:172
softbank:21
softmax: 77-78, 81, 143,

169, 178, 188-189, 192
solved: 124, 203, 234, 265
solves: 90, 134, 143, 234
solving: 92, 220
speakers:242
splitting:136
spoken: 241-242
stemming:93
stopped:209
stopping:170
stopwords: 94-96,

102, 249
stop-words:146
studying: 16, 19,

125, 200, 297
styles:40
subfolder:204

subfolders: 69, 191
subject:93
subjects:175
subplot: 46-48, 54, 57, 68,

72, 82, 171, 176, 184, 191,
196, 232, 240, 272-273

subscribe: 200, 202,
208, 218, 293, 296

subtracted:47
subway: 44-45, 56-57
sunflower: 64, 184-186
sunlight:20
supervised:63
surfboard: 261, 271
surrounded:162
svdvals:239
switch: 204, 206, 209, 292
switches: 202, 291
switching: 165, 202
symbols:89
syntactic: 93, 233

T
tables:98
tablets:18
tennis: 20, 261, 271
tensor:192
tensorflow: 67, 74,

85, 130, 134, 164
termed:16
terminal: 204, 206, 209,

213-215, 294-295
terminals:218
thread: 92, 208
threads:229
thresh: 46-48, 60
threshold: 40-43, 46,

48, 60, 229, 265,
273, 284-286

thresholds: 41, 43, 58, 265
todense:107

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

together: 39, 66,
118, 201, 228

tokenize: 92, 94-97, 117,
146, 230, 249, 252-253

tokenized: 95,
148-149, 250

tokenizer:230
tokenizes:249
tokenizing: 95, 250
tokens: 98-99, 101-103,

113, 115, 117-118, 146,
230, 249-250

toolkit:93
tozero:46
trigram:112
truncate: 40-41
turtlebot: 215-219,

292, 294, 296

U
ubuntu: 200,

202-203, 289
unrolled:126
unseen: 79, 81, 115,

118, 166, 183-184,
186, 190, 194, 196

unusual:234
update:133
updated: 158, 164
updating: 128, 164, 227
upload: 44, 166, 174, 235
uploaded: 84, 196, 274

V
vanishing: 128, 134, 155
variable: 117, 172,

207, 231, 293
variables: 136, 144-145,

150, 230, 272, 289, 293
variance:186

variant:49
variation: 32, 197
videos: 274-275
virginica:64
virtual: 19, 67, 88,

199-200, 220, 241-242,
252, 260, 277, 297

visible: 55, 61
vision: 15-16, 19-20, 34,

37-38, 40, 85, 92, 155,
157-158, 164-166, 170,
172, 197, 256, 260,
277-278, 291, 297

visual:187
visualize:237
visualized:40
vocabulary: 141, 230, 233

W
webcam: 286-287
wheelie: 21, 215
wheels: 24-26, 29, 33, 253
worked: 34, 220, 297
worker:229
workers: 181, 194, 229-230
workflow:200

X
xenial:203
xgboost:66
xticks: 45-48, 51-52, 54,

56-57, 59-61, 68, 72, 82,
171, 176, 184, 191, 196

Y
yticks: 45-48, 51-52, 54,

56-57, 59-61, 68, 72, 82,
171, 176, 184, 191, 196

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:01 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Table of Contents
	Preface
	Fundamentals of Robotics
	Introduction
	History of Robotics
	Artificial Intelligence
	Natural Language Processing
	Computer Vision
	Types of Robots
	Industrial Robots
	Service Robots
	Hardware and Software of Robots

	Robot Positioning
	Exercise 1: Computing a Robot’s Position
	How to Work with Robots
	Exercise 2: Computing the Distance Traveled by a Wheel with Python
	Exercise 3: Computing Final Position with Python
	Activity 1: Robot Positioning Using Odometry with Python

	Summary

	Introduction to Computer Vision
	Introduction
	Basic Algorithms in Computer Vision
	Image Terminology
	OpenCV
	Basic Image Processing Algorithms
	Thresholding
	Exercise 4: Applying Various Thresholds to an Image
	Morphological Transformations
	Exercise 5: Applying the Various Morphological Transformations to an Image
	Blurring (Smoothing)
	Exercise 6: Applying the Various Blurring Methods to an Image
	Exercise 7: Loading an Image and Applying the Learned Methods

	Introduction to Machine Learning
	Decision Trees and Boosting Algorithms
	Bagging:
	Boosting
	Exercise 8: Predicting Numbers Using the Decision Tree, Random Forest, and AdaBoost Algorithms
	Artificial Neural Networks (ANNs)
	Exercise 9: Building Your First Neural Network
	Activity 2: Classify 10 Types of Clothes from the Fashion-MNIST Database

	Summary

	Fundamentals of Natural Language Processing
	Introduction
	Natural Language Processing
	Parts of NLP
	Levels of NLP

	NLP in Python
	Natural Language Toolkit (NLTK)
	Exercise 10: Introduction to NLTK
	spaCy
	Exercise 11: Introduction to spaCy

	Topic Modeling
	Term Frequency – Inverse Document Frequency (TF-IDF)
	Latent Semantic Analysis (LSA)
	Exercise 12: Topic Modeling in Python
	Activity 3: Process a Corpus

	Language Modeling
	Introduction to Language Models
	The Bigram Model
	N-gram Model
	Calculating Probabilities
	Exercise 13: Create a Bigram Model

	Summary

	Neural Networks with NLP
	Introduction
	Recurrent Neural Networks
	Introduction to Recurrent Neural Networks (RNN)
	Inside Recurrent Neural Networks
	RNN architectures
	Long-Dependency Problem
	Exercise 14: Predict House Prices with an RNN

	Long Short-Term Memory
	Exercise 15: Predict the Next Solution of a Mathematical Function

	Neural Language Models
	Introduction to Neural Language Models
	RNN Language Model
	Exercise 16: Encoding a Small Corpus
	The Input Dimensions of RNNs
	Activity 4: Predict the Next Character in a Sequence

	Summary

	Convolutional Neural Networks for Computer Vision
	Introduction
	Fundamentals of CNNs
	Building Your First CNN
	Exercise 17: Building a CNN

	Improving Your Model - Data Augmentation
	Exercise 18: Improving Models Using Data Augmentation
	Activity 5: Making Use of Data Augmentation to Classify correctly Images of Flowers

	State-of-the-Art Models - Transfer Learning
	Exercise 19: Classifying €5 and €20 Bills Using Transfer Learning with Very Little Data

	Summary

	Robot Operating System (ROS)
	Introduction
	ROS Concepts
	ROS Commands
	Installation and Configuration
	Catkin Workspaces and Packages
	Publishers and Subscribers
	Exercise 20: Publishing and Subscribing
	Exercise 21: Publishers and Subscribers

	Simulators
	Exercise 22: The Turtlebot configuration
	Exercise 23: Simulators and Sensors
	Activity 6: Simulators and Sensors

	Summary

	Build a Text-Based Dialogue System (Chatbot)
	Introduction
	Word Representation in Vector Space
	Word Embeddings
	Cosine Similarity
	Word2Vec
	Problems with Word2Vec
	Gensim
	Exercise 24: Creation of a Word Embedding
	Global Vectors (GloVe)
	Exercise 25: Using a Pretrained GloVe to See the Distribution of Words in a Plane

	Dialogue Systems
	Tools for Developing Chatbots
	Types of Conversational Agents
	Classification by Input-Output Data Type
	Classification by System Knowledge
	Creation of a Text-Based Dialogue System
	Exercise 26: Create Your First Conversational Agent
	Activity 7: Create a Conversational Agent to Control a Robot

	Summary

	Object Recognition to Guide a Robot Using CNNs
	Introduction
	Multiple Object Recognition and Detection
	Exercise 24: Building Your First Multiple Object Detection and Recognition Algorithm
	ImageAI

	Multiple Object Recognition and Detection in Video
	Activity 8: Multiple Object Detection and Recognition in Video

	Summary

	Computer Vision for Robotics
	Introduction
	Darknet
	Basic Installation of Darknet

	YOLO
	First Steps in Image Classification with YOLO
	YOLO on a Webcam
	Exercise 28: Programming with YOLO
	ROS Integration
	Exercise 29: ROS and YOLO Integration
	Activity 9: A Robotic Security Guard

	Summary

	Appendix
	Index
	_gjdgxs
	_GoBack
	_gjdgxs
	_MON_1607155065
	_30j0zll
	_1fob9te
	_3znysh7
	_2et92p0
	_tyjcwt
	_3dy6vkm
	_1t3h5sf
	_2s8eyo1
	_17dp8vu
	_26in1rg
	_lnxbz9
	_35nkun2
	_1ksv4uv
	_44sinio
	_GoBack
	_GoBack
	_gjdgxs
	_MON_1607155065
	_30j0zll
	_3znysh7
	_2et92p0
	_tyjcwt
	_3dy6vkm
	_1t3h5sf
	_4d34og8
	_2s8eyo1
	_17dp8vu
	_26in1rg
	_lnxbz9
	_35nkun2
	_1ksv4uv
	_GoBack
	OLE_LINK1
	OLE_LINK6
	OLE_LINK8
	OLE_LINK2
	OLE_LINK5
	_GoBack
	_Hlk13431
	_GoBack
	OLE_LINK1
	OLE_LINK6
	OLE_LINK8
	OLE_LINK2
	OLE_LINK5
	_Hlk7087008
	_GoBack

