
C
o
p
y
r
i
g
h
t

2
0
1
9
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 7:52 AM via
AN: 2117000 ; Rajesh Gupta.; Hands-On Data Analysis with Scala : Perform Data Collection, Processing, Manipulation, and Visualization with Scala
Account: ns335141

Hands-On Data Analysis with
Scala

Perform data collection, processing, manipulation, and
visualization with Scala

Rajesh Gupta

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Hands-On Data Analysis with Scala
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Acquisition Editor: Yogesh Deokar
Content Development Editor: Unnati Guha
Technical Editor: Sayli Nikalje
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jisha Chirayil
Production Coordinator: Jisha Chirayil

First published: April 2019

Production reference: 1020519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-611-4

www.packtpub.com

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com

I dedicate this book to Shalini, Krish, and my beloved parents.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Rajesh Gupta, is a hands-on big data tech lead and enterprise architect with extensive
experience in the full life cycle of enterprise grade software development. He has
successfully architected, developed, and deployed highly scalable data solutions using
Spark, Scala, and the Hadoop technology stack for several US-based enterprises. A
passionate, hands-on technologist, Rajesh has master's degrees in mathematics and
computer science from BITS, Pilani (India).

About the reviewer
Manoj Kumar, is an experienced consultant with more than 16 years of versatile experience
across a variety of environments, including exposure to implementing process
improvement and operation optimization in typical manufacturing environments and
production industries using advanced predictive and prescriptive analytics, such as
machine learning, deep learning, symbolic dynamics, neural dynamics, circuit mechanisms,
and the Markov Decision Process.

His domain experiences are in transportation and supply chain management, processes and
manufacturing, mining and energy, retail, CPG, healthcare, marketing, and F&A.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Section 1: Scala and Data Analysis Life Cycle
Chapter 1: Scala Overview 7

Getting started with Scala 8
Running Scala code online 8

Scastie 9
ScalaFiddle 10

Installing Scala on your computer 10
Installing command-line tools 11
Installing IDE 14

Overview of object-oriented and functional programming 20
Object-oriented programming using Scala 21
Functional programming using Scala 26

Scala case classes and the collection API 31
Scala case classes 31
Scala collection API 35

Array 35
List 38
Map 43

Overview of Scala libraries for data analysis 45
Apache Spark 46
Breeze 46
Breeze-viz 47
DeepLearning 47
Epic 47
Saddle 47
Scalalab 47
Smile 48
Vegas 48

Summary 48

Chapter 2: Data Analysis Life Cycle 49
Data journey 50
Sourcing data 51

Data formats 52
XML 52
JSON 54
CSV 56

Understanding data 58

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Using statistical methods for data exploration 59
Using Scala 59
Other Scala tools 63

Using data visualization for data exploration 68
Using the vegas-viz library for data visualization 69
Other libraries for data visualization 71

Using ML to learn from data 71
Setting up Smile 72
Running Smile 74

Creating a data pipeline 77
Summary 77

Chapter 3: Data Ingestion 78
Data extraction 78

Pull-oriented data extraction 79
Push-oriented data delivery 84

Data staging 87
Why is the staging important? 88

Cleaning and normalizing 89
Enriching 97
Organizing and storing 102
Summary 104

Chapter 4: Data Exploration and Visualization 105
Sampling data 105

Selecting the sample 106
Selecting samples using Saddle 108

Performing ad hoc analysis 113
Finding a relationship between data elements 118
Visualizing data 120

Vegas viz for data visualization 120
Spark Notebook for data visualization 124

Downloading and installing Spark Notebook 124
Creating a Spark Notebook with simple visuals 127
More charts with Spark Notebook 131

Box plot 132
Histogram 133
Bubble chart 135

Summary 136

Chapter 5: Applying Statistics and Hypothesis Testing 137
Basics of statistics 138

Summary level statistics 138
Correlation statistics 143

Vector level statistics 146
Random data generation 149

Pseudorandom numbers 150

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Random numbers with normal distribution 152
Random numbers with Poisson distribution 154

Hypothesis testing 155
Summary 156

Section 2: Section 2: Advanced Data Analysis and Machine
Learning
Chapter 6: Introduction to Spark for Distributed Data Analysis 158

Spark setup and overview 160
Spark core concepts 166

Spark Datasets and DataFrames 174
Sourcing data using Spark 182

Parquet file format 182
Avro file format 183
Spark JDBC integration 184

Using Spark to explore data 184
Summary 186

Chapter 7: Traditional Machine Learning for Data Analysis 187
ML overview 188

Characteristics of ML 189
Categories or types of ML 189

Decision trees 189
Implementing decision trees 190

Decision tree algorithms 191
Implementing decision tree algorithms in our example 191
Evaluating the results 195

Using our model with a decision tree 196
Random forest 197

Random forest algorithms 197
Ridge and lasso regression 203

Characteristics of ridge regression 203
Characteristics of lasso regression 203

k-means cluster analysis 206
Natural language processing for data analysis 208
Algorithm selections 209
Summary 210

Section 3: Section 3: Real-Time Data Analysis and Scalability
Chapter 8: Near Real-Time Data Analysis Using Streaming 212

Overview of streaming 212
Spark Streaming overview 216

Word count using pure Scala 217
Word count using Scala and Spark 219

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Word count using Scala and Spark Streaming 220
Deep dive into the Spark Streaming solution 228

Streaming a k-means clustering algorithm using Spark 232
Streaming linear regression using Spark 238
Summary 242

Chapter 9: Working with Data at Scale 243
Working with data at scale 244
Cost considerations 262

Data storage 262
Data governance 266

Reliability considerations 267
Input data errors 268
Processing failures 270

Summary 271

Another Book You May Enjoy 272

Index 274

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
Efficient business decisions with an accurate understanding of business data help to deliver
better performance across products and services. This book will help you to leverage the
popular Scala libraries and tools to perform core data analysis tasks with ease.

The book begins with a quick overview of the building blocks of a standard data analysis
process. You will learn how to perform basic tasks such as the extraction, staging,
validation, cleaning, and shaping of datasets. You will later deep dive into the data
exploration and visualization areas of the data analysis life cycle. You will make use of
popular Scala libraries such as Saddle, Breeze, and Vegas to process your datasets. You will
learn statistical methods for deriving meaningful insights from data. You will also learn
how to create applications for Apache Spark 2.x on complex data analysis, in real time. You
will discover traditional machine learning (ML) techniques for doing data analysis.

By the end of this book, you will be capable of handling large sets of structured and
unstructured data, performing exploratory analysis, and building efficient Scala
applications to discover and deliver insights.

Who this book is for
If you are a data scientist or a data analyst who wants to learn how to perform data analysis
using Scala, this book is for you. All you need is knowledge of the basic fundamentals of
Scala programming.

What this book covers
Chapter 1, Scala Overview, gives you a quick run through Scala and its features. It will
prepare you for upcoming chapters.

Chapter 2, Data Analysis Life Cycle, turns the focus exclusively to data analysis and its
typical life cycle. It provides an overview of the steps involved in the data analysis life
cycle.

Chapter 3, Data Ingestion, deep-dives into the data ingestion aspects of the data life cycle. It
covers extraction, staging, validation, cleaning, and shaping data tasks. It highlights how to
deal with the variety aspect of data, that is, how to handle data from different sources in
different formats.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

Chapter 4, Data Exploration and Visualization, deep-dives into the data exploration and
visualization parts of the life cycle. It familiarizes the reader with techniques for
discovering inherent properties associated with data using statistical as well as visual
methods.

Chapter 5, Applying Statistics and Hypothesis Testing, provides an overview of the statistical
methods used in data analysis and covers techniques for deriving meaningful insights from
data.

Chapter 6, Intro to Spark for Distributed Data Analysis, covers the transition to doing data
analysis on distributed systems and doing it at scale. It provides a good introduction to
Spark, a Scala-based distributed framework for data processing. It will guide you through
Spark setup on your computer and introduce key features using practical examples.

Chapter 7, Traditional Machine Learning for Data Analysis, covers topics such as decision
trees, random forests, lasso regression, and k-means cluster analysis. It also covers the role
of NLP in effectively analyzing certain types of data.

Chapter 8, Near Real-Time Data Analysis Using Streaming, introduces the concept of stream-
oriented processing and compares it to traditional batch-oriented processing. It also
illustrates how streaming can be used to perform near real-time data analysis. This chapter
deep-dives into Spark Streaming and will guide you on implementing clustering and a
classifier leveraging Spark Streaming APIs.

Chapter 9, Working with Data at Scale, is dedicated to processing data at scale. It looks at
data analysis from multiple dimensions, such as cost, reliability, and performance. It
provides guidance on some of the best reliability and performance practices. It provides a
complete picture of how a practical real-world data analysis life cycle works and will help
you to put this into practice in a production environment.

To get the most out of this book
You should be familiar with the fundamentals of the Scala programming
language
You should have a passion for analyzing data and extracting insight from of it
You should have basic familiarity with statistical methods and machine learning
algorithms

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Hands-On-Data-Analysis-with-Scala. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​9781789346114_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Create a package called handson.example by expanding
to src/main/scala and right-clicking on this folder."

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Data-Analysis-with-Scala
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346114_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

scala> def factorial(n: Int): Long = if (n <= 1) 1 else n * factorial(n-1)
factorial: (n: Int)Int

scala> factorial(5)
res0: Long = 120

Any command-line input or output is written as follows:

$ brew install sbt@1

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on Create New Project, and then click on Scala and select the sbt console."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com/submit-errata

Preface

[5]

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Scala and Data

Analysis Life Cycle
In this section, you will gain an insight into what data is, how it is prepared and processed,
and how it is analyzed and stored. This section will also get you introduced to the Scala
framework and how we use Scala with data. You will learn some basic commands in Scala.
You will also understand what a data pipeline is and the tasks involved in this pipeline.

This section will contain the following chapters:

Chapter 1, Scala Overview
Chapter 2, Data Analysis Life Cycle
Chapter 3, Data Ingestion
Chapter 4, Data Exploration and Visualization
Chapter 5, Applying Statistics and Hypothesis Testing

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

1
Scala Overview

Scala is a popular general-purpose, high-level programming language that typically runs
on the Java Virtual Machine (JVM). JVM is a time-tested platform that has proven itself in
terms of stability and performance. A large number of very powerful libraries and
frameworks have been built using Java. For instance, in the context of data analysis, there
are many Java libraries available to handle different data formats, such as XML, JSON,
Avro, and so on. Scala's interoperability with such well-tested libraries helps increase a
Scala programmer's productivity greatly.

When it comes to data analysis and processing, it is often the case that there is an
abundance of data transformation tasks that need to be performed. Some examples of such
tasks are mapping from one representation to another, filtering irrelevant data, and joining
one set of data with another set. Trying to solve such problems using the object-oriented
paradigm often means that we have to write a significant amount of boilerplate code even
to perform a fairly simple task. Oftentimes, solving data problems requires thinking in
terms of input and transformations that are to be applied to this input. Scala's functional
programming model provides a set of features that facilitate writing code that is concise
and expressive. Spark is a popular distributed data analytics engine that has almost entirely
been written in Scala. In fact, there is a strong resemblance between the Scala collection API
and the Spark API.

Most of the Java libraries can be used with relative ease from Scala code. One can easily mix
object-oriented and functional styles of programming in the same Scala code base. This
ability provides a very simple pathway to a great deal of productivity. Some of the major
benefits of using Scala are as follows:

Most Java libraries and frameworks can be reused from Scala. Scala code is
compiled into Java byte code and runs on JVM. This makes it seamless to use
Java code that has already been written from a Scala program. In fact, it is not
uncommon to have a mix of both Java and Scala codes within a single project.
Scala's functional constructs can be used to write code that is simple, concise, and
expressive.
We can still use object-oriented features where they are a better fit.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[8]

There are many useful data libraries and frameworks that are built using Scala. These are
summarized later in this chapter. Apache Spark needs a special mention. Apache Spark has
become a de facto standard for performing distributed data analysis at scale. Since Spark is
almost entirely written in Scala, its integration with Scala is the most complete, even though
it has support for Java, Python, and R as well. Spark's API has been heavily influenced by
Scala's collection API. It also leverages Scala's case class features in its dataset API and
significantly helps in reducing the writing of boilerplate code that is otherwise necessary
for Java.

The following topics will be covered in this chapter:

Installing and getting started with Scala
Object-oriented and functional programming overview
Scala case classes and the collection API
Overview of Scala libraries for data analysis

Getting started with Scala
At the time of writing, Scala Version 2.12.8 (https:/ ​/​www. ​scala- ​lang. ​org/ ​) is the most
recent version of the language. We have the option of running Scala code online using our
browser or installing and running it on our machine. Running it online is good for getting
started with Scala as a first step; however, you will need to install it on your computer to
learn the language's in-depth features and make use of it for data analysis.

Running Scala code online
There are some great resources available online to run code in your web browser. These are
good for trying out small snippets of Scala code and gaining a better understanding of how
Scala works. Some of these online resources allow you to share your code with someone
else by generating a static URL that is typically valid for a few months. This feature could
be useful for quick code review or collaboration with someone on the internet.

Let's look at two such online resources:

Scastie
ScalaFiddle

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/

Scala Overview Chapter 1

[9]

Scastie
Scastie (https:/​/ ​scastie. ​scala- ​lang. ​org) is a great online resource for trying out small
Scala code snippets. All that is needed is a web browser and access to the internet.

The main screen is divided into two parts: the top part consists of a program and its output
and the bottom part is the output from the backend server that compiles and runs the code.
You can modify the code and run it any number of times by using the Run option, as
shown in the following screenshot:

When run in the browser, this simple example displays what is going on in each step. In
our example, the Scala expression produced Hello, World!, which is of the
java.lang.String type. The expression is of the following pattern:

List of strings joined together by a comma with an exclamation mark suffix.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://scastie.scala-lang.org
https://scastie.scala-lang.org
https://scastie.scala-lang.org
https://scastie.scala-lang.org
https://scastie.scala-lang.org
https://scastie.scala-lang.org
https://scastie.scala-lang.org
https://scastie.scala-lang.org
https://scastie.scala-lang.org
https://scastie.scala-lang.org
https://scastie.scala-lang.org

Scala Overview Chapter 1

[10]

ScalaFiddle
ScalaFiddle (https:/ ​/​scalafiddle. ​io/ ​) is another good online resource for running Scala
code. This is a good resource for sharing your code with someone else by generating a URL
after you save; however, it does require the user to be logged in to a GitHub account. The
ScalaFiddle homepage is shown in the following screenshot:

Installing Scala on your computer
An excellent resource for Scala installation on your computer is the Scala official page
at https:/​/​www.​scala- ​lang. ​org/ ​download/ ​. It mentions how important it is to make sure
that Java JDK 8 is installed on your machine. This can be checked by running the following
command:

$ java -version

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://scalafiddle.io/
https://scalafiddle.io/
https://scalafiddle.io/
https://scalafiddle.io/
https://scalafiddle.io/
https://scalafiddle.io/
https://scalafiddle.io/
https://scalafiddle.io/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/

Scala Overview Chapter 1

[11]

If it is missing or if you have an older version of JDK, please follow the instructions on Java
SE downloads
from https://www.oracle.com/technetwork/java/javase/downloads/index.html for
your OS. Open JDK (http:/ ​/ ​openjdk. ​java.​net/ ​install/ ​) is another resource for installing
JDK.

Please note that a higher version of Java might work fine as well;
however, the examples provided in this book have only been tested on
Java 8.

A successfully installed JDK 8 should output something similar to the following code:

$ java -version
java version "1.8.0_181"
Java(TM) SE Runtime Environment (build 1.8.0_181-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.181-b13, mixed mode)

$ javac -version
javac 1.8.0_181

Installing command-line tools
The Scala Build Tool (SBT) is a command-line tool that is very popular for building Scala
projects. It also provides a Scala console that can be used for exploring Scala language
features and its API.

The following are the SBT installation instructions for macOS using the Homebrew tool.
The SBT installation will vary from one OS to the other. For more details on SBT, please
refer to the official SBT page at https:/ ​/ ​www. ​scala- ​sbt. ​org/ ​index. ​html:

Install Homebrew first, if it is not already installed:1.

$ /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"
Install homebrew if not already installed

Install sbt using Homebrew, as follows:2.

$ brew install sbt@1

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html
https://www.scala-sbt.org/index.html

Scala Overview Chapter 1

[12]

To verify that SBT and Scala are installed correctly on your machine, go through the
following steps:

Run the sbt command and then run the console command inside sbt to get1.
access to the Scala console, as follows:

$ sbt
[info] Loading project definition from /Users/handsonscala/project
[info] Set current project to handsonscala (in build
 file:/Users/handsonscala/)
[info] sbt server started at
local:///Users/handsonscala/.sbt/1.0/server/b6ef035291e7ae427145
/sock

sbt:handsonscala> console
[info] Starting scala interpreter...
Welcome to Scala 2.12.6 (Java HotSpot(TM) 64-Bit Server VM, Java
1.8.0_181).
Type in expressions for evaluation. Or try :help.

scala>

Run :quit to exit the Scala console. To exit sbt, run the exit command:2.

scala> :quit

[success] Total time: 6 s, completed Sep 16, 2018 11:29:24 AM
sbt:handsonscala> exit
[info] shutting down server
$

Explore Scala from SBT by performing some of the popular Scala List operations. To do
this, go through the following steps:

Start sbt and get access to the Scala console, as follows:1.

$ sbt
[info] Loading project definition from /Users/handonscala/project
[info] Set current project to handsonscala (in build
file:/Users/handsonscala/)
[info] sbt server started at
local:///Users/handsonscala/.sbt/1.0/server/b6ef035291e7ae427145/so
ck
sbt:> console
[info] Starting scala interpreter...
Welcome to Scala 2.12.6 (Java HotSpot(TM) 64-Bit Server VM, Java
1.8.0_181).

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[13]

Type in expressions for evaluation. Or try :help.

scala>

Create a Scala List of US states using the following code:2.

scala> val someStates = List("NJ", "CA", "IN", "MA", "NY", "AZ",
 "PA")
someStates: List[String] = List(NJ, CA, IN, MA, NY, AZ, PA)

Examine the size of the List as follows:3.

scala> someStates.size
res0: Int = 7

Sort the List in ascending order as follows:4.

scala> someStates.sorted
res1: List[String] = List(AZ, CA, IN, MA, NJ, NY, PA)

Reverse the List as follows:5.

scala> someStates.reverse
res2: List[String] = List(PA, AZ, NY, MA, IN, CA, NJ)

Join the elements of the list using a comma (,) as a separator, as shown in the6.
following code:

scala> someStates.mkString(",")
res3: String = NJ,CA,IN,MA,NY,AZ,PA

Perform sort and join operations as a chain, as shown in the following code:7.

scala> someStates.sorted.mkString(",")
res4: String = AZ,CA,IN,MA,NJ,NY,PA

Finally, exit the Scala console and quit sbt once you are done exploring, as8.
shown in the following code:

scala> :quit

[success] Total time: 17 s, completed Sep 16, 2018 11:22:41 AM
sbt:someuser> exit
[info] shutting down server

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[14]

Scala's List is a powerful data structure, and we will be looking at this and several other
commonly used Scala data structures more detail in the later chapters. Scala List provides
a comprehensive and intuitive API that makes it very easy to work with lists. We
previously explored how to construct a Scala List and got an idea of some of the
commonly used List APIs. The primary objective of this exercise was to make sure that the
Scala command-line tools were set up and working correctly on the local computer.

Installing IDE
There are several integrated development environment (IDE) tools that have support for
Scala. JetBrains IntelliJ IDEA Community Edition is a great choice and has excellent Scala
support.

Download and install JetBrains IntelliJ IDEA Community Edition (https:/ ​/ ​www.
jetbrains.​com/​idea/ ​download/ ​) for your OS. Once the installation is complete, please
follow these steps:

Start IntelliJ IDEA Community Edition and accept all default suggested settings.1.
It is always possible to back and change settings at any later point in time. Once
this is done, you will see a screen similar to the following screenshot:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/

Scala Overview Chapter 1

[15]

Select Configure from the preceding screen (highlighted by red color arrow) and2.
then select Plugins from the drop-down list. You will see a screen similar to the
following screenshot:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[16]

Install the Scala plugin by clicking Install from the screen aforementioned3.
(highlighted by red color arrow). This action will download the Scala plugin and
install it. Once this is completed, you will see a screen similar to the following
screenshot:

Now restart your IDE by selecting Restart IDE (highlighted by red color arrow).4.
This will restart your IDE and make it ready for developing Scala code. Now you
are ready to start using the IDE for writing Scala code.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[17]

Now let us create a sample Scala/SBT project called HandsOnScala by following the
instructions
at https://docs.scala-lang.org/getting-started-intellij-track/building-a-scala-
project-with-intellij-and-sbt.html.

The following steps show how to create a new Scala-based SBT project:

Click on Create New Project as shown in the following screenshot:1.

Select on Scala and then click Next to move onto next step, as shown in the2.
following screenshot:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.scala-lang.org/getting-started-intellij-track/building-a-scala-project-with-intellij-and-sbt.html
https://docs.scala-lang.org/getting-started-intellij-track/building-a-scala-project-with-intellij-and-sbt.html

Scala Overview Chapter 1

[18]

Make sure to select sbt as highlighted in the following screenshot:3.

Specify a suitable name for your project. You also have the option of specifying4.
the location where the project files will be stored on the local computer. By
default, a folder in the home directory is selected as the project location. Please
also note that you can select the following additional version details:

JDK version
SBT version
Scala version

In most cases, you can use the default versions, as shown in the following
screenshot, press Finish button to continue:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[19]

Add Scala Framework Support to the project (if it has not already been5.
selected), as shown in the following screenshot. This is very important because,
without Scala Framework Support, the IDE will not treat this project as a Scala
project and will prevent any Scala-related work in the IDE:

Just like in Java, the Scala source code is organized into packages. Create a6.
package called handson.example by expanding to src/main/scala and right-
clicking on the folder shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[20]

Now you are ready to start writing Scala source code and can run it on your IDE.7.
Create and run your first Scala worksheet called HandsOnScratchPad, as shown
in the following screenshot:

Scala worksheets are great tools for exploring and understanding Scala APIs. You can
conveniently see the code and its associated evaluation side by side.

With the preceding IDE set up and running, you are now ready to work on any Scala
project using the IntelliJ IDE. You also have the option of conveniently exploring small code
snippets of Scala using the Scala worksheet feature of the IDE. This IDE also comes with a
debugger and many more features that help improve a developer's productivity.

Overview of object-oriented and functional
programming
Scala supports object-oriented and functional styles of programming. Both of these
programming paradigms have been proven to help model and solve real-world problems.
In this section, we will explore both of these styles of programming using Scala.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[21]

Object-oriented programming using Scala
In the object-oriented paradigm, you think in terms of objects and classes. A class can be
thought of as a template that acts as a basis for creating objects of that type. For example, a
Vehicle class can represent real-world automobiles with the following attributes:

vin (a unique vehicle identification number)
manufacturer

model

modelYear

finalAssemblyCountry

A concrete instance of Vehicle, representing a real-world vehicle, could be:

vin: WAUZZZ8K6AA123456
manufacturer: Audi
model: A4
modelYear: 2009
finalAssemblyCountry: Germany

Let's put these attributes in action in Scala.

Go to the Scala/SBT console and write the following lines of code:

Define Vehicle Scala class as per the preceding specifications:1.

scala> class Vehicle(vin: String, manufacturer: String, model:
 String,
 modelYear: Int, finalAssemblyCountry: String)
defined class Vehicle

Create an instance of Vehicle class:2.

scala> val theAuto = new Vehicle("WAUZZZ8K6AA123456", "Audi", "A4",
 2009, "Germany")
theAuto: Vehicle = Vehicle@7c6c2822

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[22]

Following is the IntelliJ Scala worksheet:

The object-oriented approach puts data and behavior together. The following are core
tenets of object-oriented programming:

Encapsulation: It provides a mechanism to shield implementation details and
internal properties
Abstraction: It provides constructs such as classes and objects to model real-
world problems
Inheritance: It provides constructs to reuse implementation and behavior using
subclassing
Polymorphism: It facilitates mechanisms for an object to react to a message based
on its actual type

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[23]

Let's look at encapsulation and abstraction in Scala Read-Evaluate-Print-Loop
(REPL). We'll use Scala's construct class to define a template for a real-world Vehicle, as
shown in the following code:

Let us define Vehicle class, this is an example of abstraction because we are1.
taking real-world complex entities and defining a simple model to represent
them. When internals of implementations is hidden then it is an example of
encapsulation. Publicly visible methods define behavior:

scala> class Vehicle(vin: String, manufacturer: String, model:
String, modelYear: Int, finalAssemblyCountry: String) { // class is
an example of abstraction
 | private val createTs = System.currentTimeMillis() // example
of encapsulation (hiding internals)
 | def start(): Unit = { println("Starting...") } // behavior
 | def stop(): Unit = { println("Stopping...") } // behavior
 | }
defined class Vehicle

Now let create an instance of Vehicle. This is also an abstraction because2.
Vehicle class is a template representing a simplified model of real-world
vehicles. An instance of Vehicle represents a very specific vehicle but it is still a
model:

scala> val theAuto = new Vehicle("WAUZZZ8K6AA123456", "Audi", "A4",
 2009, "Germany") // object creation is an example of
abstraction
theAuto: Vehicle = Vehicle@2688b2be

Perform start behavior on the object:3.

scala> theAuto.start()
Starting...

Perform stop behavior on the object:4.

scala> theAuto.stop()
Stopping...

To reiterate the main points aforementioned, the ability to define a class is an example of
abstraction. Inside the class, we have an attribute called createTs (creation timestamp).
The scope of this attribute is private and this attribute cannot be accessed from outside the
class. The ability to hide internal details is an example of encapsulation.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[24]

Now let's look at inheritance and polymorphism in Scala REPL. We'll define a new class
called SportsUtilityVehicle by extending the Vehicle class, as shown in the following
code:

Define SportsUtilityVehicle class that provides an extension to Vehicle1.
class:

scala> class SportsUtilityVehicle(vin: String, manufacturer:
String, model: String, modelYear: Int, finalAssemblyCountry:
String, fourWheelDrive: Boolean) extends Vehicle(vin, manufacturer,
model, modelYear, finalAssemblyCountry) { // inheritance example
 | def enableFourWheelDrive(): Unit = { if (fourWheelDrive)
println("Enabling 4 wheel drive") }
 | override def start(): Unit = {
 | enableFourWheelDrive()
 | println("Starting SUV...")
 | }
 | }
defined class SportsUtilityVehicle

Create an instance of SUV object but assign to Vehicle type object, this is2.
permissible because every SUV object is also a Vehicle:

scala> val anotherAuto: Vehicle = new
SportsUtilityVehicle("WAUZZZ8K6A654321", "Audi", "Q7", 2019,
 "Germany", true)
anotherAuto: Vehicle = SportsUtilityVehicle@3c2406dd

Perform start behavior on the object, on doing so the object exhibits the behavior3.
of an SUV class. This is the polymorphism property facilitated by the object-
oriented paradigm:

scala> anotherAuto.start() // polymorphism example
Enabling 4 wheel drive
Starting SUV...

Inheritance is a powerful construct that allows us to reuse code. We created an instance of
SportsUtilityVehicle and assigned it to a type of vehicle. When we invoke the
start method on this object, the runtime system automatically determines the actual type
of object and calls the start method defined in SportsUtilityVehicle. This is an
example of polymorphism, where we can treat objects as base types; however, at runtime,
the appropriate behavior is applied depending upon the true type of the object.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[25]

The following is a UML diagram with a more formal representation of the inheritance
relationship:

 It captures the following important properties:

The Vehicle is a super-class or base-class
SportsUtilityVehicle is a sub-class that extends the Vehicle base-class
This relationship can be envisioned as a parent-child relationship

This diagram shows that Vehicle is a base class and the SportsUtilityVehicle subclass
extends this base class. The subclass adds its own additional attributes and behavior. One
way to look at inheritance is as a generalization-specialization construct. The base class
represents a generalized set of attributes and behavior. The derived class or subclass adds
its specialization by either altering some of the base class behaviors or adding its own.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[26]

The following is a screenshot of the same example in IDE:

IDEs such IntelliJ help us to visualize many of the properties of classes and objects in a
user-friendly way. A good IDE certainly acts as a great productivity tool. In the preceding
example, the IDE screen is divided into the following three parts:

Structure: Structural properties of classes and objects, such as methods and
attributes
Source code: Source code in the context
Runtime: Output from the execution of the program

Functional programming using Scala
In the functional programming paradigm, functions become the primary tool for modeling
solutions to a problem. In the simplest form, we can think of a function as something that
accepts one or more input and produces an output.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[27]

To illustrate this concept, let's define a function in Scala that accepts two sets of integer
input and returns the sum of two integers plus one, as shown in the following code:

scala> val addAndInc = (a: Int, b: Int) => a + b + 1
addAndInc: (Int, Int) => Int = <function2>

scala> addAndInc(5, 10)
res0: Int = 16

In the preceding example, we have created an anonymous function that takes two sets of
integer input and returns an integer output. This function increments the sum of two input
numbers and returns the result. There is another way of defining a function in Scala as a
named method. Let's look at that in the Scala REPL:

scala> def addAndIncMethod(a: Int, b: Int) = a + b + 1
addAndIncMethod: (a: Int, b: Int)Int

scala> addAndIncMethod(5, 10)
res1: Int = 16

scala> val methodAsFunc = addAndIncMethod
<console>:12: error: missing argument list for method addAndIncMethod
Unapplied methods are only converted to functions when a function type is
expected.
You can make this conversion explicit by writing `addAndIncMethod _` or
`addAndIncMethod(_,_)` instead of `addAndIncMethod`.
 val methodAsFunc = addAndIncMethod

In the preceding example, we have defined a method that is bound to a name. The usage of
the anonymous function and the named method is identical; however, there are some
subtle differences between the two, as shown in the following list:

The signature of the anonymous function is (Int, Int) => Int and the
signature of the named method is (a: Int, b: Int)Int
When we try to assign a method to a variable, we get an error

A method can be easily converted into an anonymous function in Scala by doing the
following:

scala> val methodAsFunc = addAndIncMethod _ // turns method into function
methodAsFunc: (Int, Int) => Int = <function2>

scala> methodAsFunc(5, 10)
res2: Int = 16

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[28]

As can be seen, after conversion, the signature changes to (Int, Int) => Int.

Anonymous functions and named methods are both useful in the context of Scala
programming. In the previous section on Scala's object-oriented programming, we defined
a scala class with some methods. These were all named methods, and would not be of
much value from an object-oriented point of view if these were anonymous methods.

The object-oriented approach puts data and behavior together. Objects have mutable states
that are manipulated by methods operating on those objects. From a purely functional
approach, inputs are never mutated and new outputs are created when a function is
applied to these inputs. There is a strong emphasis on immutability in the functional
paradigm. Immutability has strong advantages when it comes to the reasoning behind the
behavior of a program. You do not have to be concerned about the accidental corruption of
a shared state as there are no shared states in the pure functional paradigm.

Functions can be defined within a function. Let's look at the following concrete example
using Scala REPL to see why this is useful:

scala> def factorial(n: Int): Long = if (n <= 1) 1 else n * factorial(n-1)
factorial: (n: Int)Int

scala> factorial(5)
res0: Long = 120

The preceding code is an example of the factorial function, and it uses recursion to
compute this value. We know that classic recursion requires a stack size proportional to the
number of iterations. Scala provides tail recursion optimization to address this problem,
and we can make use of an inner function to optimize this problem. In the following code,
we'll define a function inside a function:

scala> import scala.annotation.tailrec
import scala.annotation.tailrec

scala> def optimizedFactorial(n: Int): Long = {
 | @tailrec
 | def factorialAcc(acc: Long, i: Int): Long = {
 | if (i <= 1) acc else factorialAcc(acc * i, i -1)
 | }
 | factorialAcc(1, n)
 | }
optimizedFactorial: (n: Int)Long

scala> optimizedFactorial(5)
res1: Long = 120

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[29]

We can call the factorialAcc function an inner function and the main function,
optimizedFactorial, an outer function. The outer function preserves the same interface
as the factorial function defined earlier. The inner function uses an accumulator design
pattern that allows tail recursion optimization to work. In each iteration, the results are
accumulated into an accumulator variable that is not dependent on the iteration variable.

Recursion is a very useful programming construct and tail recursion is a special type of
recursion that can be optimized at compile time. Let us first try to understand what
recursion really is and what type of recursion is considered tail recursive. In simple terms,
any function that calls or invokes itself one or more times is considered recursive. Our
factorial examples in both forms are recursive. Let us look at the execution of the first
version for a value of 5:

factorial(5)
5 * factorial(4)
5 * 4 * factorial(3)
5 * 4 * 3 * factorial(2)
5 * 4 * 3 * 2 * factorial(1)
5 * 4 * 3 * 2 * 1
120

For the second version:

optimizedFactorial(5)
factorialAcc(1, 5)
factorialAcc(1*5, 4)
factorialAcc(1*5*4, 3)
factorialAcc(1*5*4*3, 2)
factorialAcc(1*5*4*3*2, 1)
1*5*4*3*2
120

The most important difference between the two versions is in the last return statement of
the function:

// output of next invocation must be multiplied to current number, so //
the state (current number) has to preserved on stack frame
n * factorial(n-1)

// function being called already knows the current state being passed // as
the first argument so it does not need preserved on stack frame
factorialAcc(acc * i, i -1)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[30]

Recursive functions become expensive due to the usage of stack frames proportional to the
number times a function invokes itself. Just imagine running factorial for a large number, it
would easily cause stack overflow to occur fairly quickly. Tail recursion property of a
recursive algorithm allows us to perform some optimizations to reduce the stack usage as if
it was an iterative algorithm.

The following is a screenshot of the preceding recursion examples in IntelliJ IDE. The IDE
helps us clearly see which functions or methods are purely Recursive and which ones
are Tail Recursive:

Please note the specific symbols next to factorial and optimizedFactorial. The two
symbols are different, and if you hover over them, you can see the full description, listed as
follows:

Method factorial is recursive
Method factorial is tail recursive

Let's use the following code to see whether we are able to apply tail recursion optimization
to the original factorial function in Scala REPL:

scala> @tailrec
 | def factorial(n: Int): Long = if (n <= 1) 1 else n * factorial(n-1)
<console>:14: error: could not optimize @tailrec annotated method

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[31]

factorial: it contains a recursive call not in tail position
 def factorial(n: Int): Long = if (n <= 1) 1 else n * factorial(n-1)

As you can see from the error message, tail recursion optimization cannot be applied in this
case. The Scala compiler is able to perform the tail recursion optimization of a recursive
function when it follows certain constraints. The details of this are not within the scope of
this book; however, this is a very important and useful feature provided by Scala. As we
saw in the preceding code, by using an inner function and an accumulator design pattern,
we are able to successfully achieve this optimization. As a result of this optimization, the
stack usage requirements for the recursive function become equivalent to that of the
iterative function.

Functional programming treats functions as first-class citizens. In fact, Scala's collection API
heavily makes use of this feature. Functions can be defined within a function and these can
be passed as parameters.

From a data analysis and processing perspective, functional programming provides a
framework for massively parallel processing solutions. If the input data is immutable,
transformations can be applied to the input any number of times and will always result in
the same output.

Next, we will look at Scala's case classes and the collection API, which provide some major
advantages in data analysis.

Scala case classes and the collection API
Scala case classes and its collection API play a significant role in data analysis using Scala.
This section will give you insight into these topics and an understanding of their relevance
in the context of data analysis.

During the data analysis process, we will frequently encounter data that consists of a
collection of records. These records often need to be transformed, cleaned, or filtered.

Scala case classes
Scala case classes provide a convenient mechanism to work with objects that hold values.
Let's look at an example in Scala REPL. The case class defined in the following code will be
used in other example codes in this chapter:

scala> case class Person(fname: String, lname: String, age: Int)
defined class Person

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[32]

scala> val jon = Person("Jon", "Doe", 21)
jon: Person = Person(Jon,Doe,21)

In the preceding example, we have defined a Scala case class called Person with three
attributes, namely fname, lname, and age. We created an instance, jon, of the Person class
without using the new keyword. Also, note that the jon object's attributes are printed out
in a easy-to-use form. There are several such convenient features associated with Scala case
classes that are extremely beneficial for programmers in general, particularly someone who
deals with data.

Let's look at another convenient feature of Scala case classes, namely the copy object. We'll
copy a Scala case class object by updating only the fname attribute using the following
code:

scala> case class Person(fname: String, lname: String, age: Int)
defined class Person

scala> val jon = Person("Jon", "Doe", 21)
jon: Person = Person(Jon,Doe,21)

scala> val jonNew = jon.copy(fname="John")
jonNew: Person = Person(John,Doe,21)

This feature comes in really handy during data processing when we work with a template
representation and generate specific instances from a template by updating a subset of
attributes.

Another great feature of case classes is pattern matching, which helps in writing flexible
code that is easier to work with. Let's look at an example of pattern matching in Scala REPL,
as shown in the following code:

scala> def isJon(p: Person) = {
 | p match {
 | case Person("Jon", _, _) => {println("I am Jon"); true}
 | case Person(n,_,_) => {println(s"I am not Jon but I am ${n}");
false}
 | case _ => {println("I am not Jon but I am something other than
Person"); false}
 | }
 | }
isJon: (p: Person)Boolean

scala> val jon = Person("Jon", "Doe", 25)
jon: Person = Person(Jon,Doe,25)

scala> isJon(jon)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[33]

I am Jon
res13: Boolean = true

scala> val bob = Person("Bob", "Crew", 27)
bob: Person = Person(Bob,Crew,27)

scala> isJon(bob)
I am not Jon but I am Bob
res14: Boolean = false

scala> isJon(null)
I am not Jon but I am something other than Person
res16: Boolean = false

We can explore the same example in the IDE, as shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[34]

Using the IDE, we can clearly see the properties of the case class. Another great option is
to use the Scala worksheet feature in IDE to explore this example, as shown in the following
screenshot:

The preceding screenshot shows a fairly simple example of pattern matching using Scala
case classes that illustrates the simplicity and power of this feature. In the data analysis
world, pattern matching has been found to be extremely useful in solving certain categories
of problems. Scala provides an intuitive, elegant, and simple way to take advantage of
pattern matching.

Let's look at the preceding example in a bit more detail, looking at the following lines:

Line #4: case Person("Jon", _, _) means any person whose first name is
Jon

Line #7: case Person(n, _, _) means any person with the first name is
extracted into variable n
Line #10: case _ means anything that does not match line #4 and line #7

With classic pattern matching, it is generally necessary for you to write a significant amount
of boilerplate code with if-then-else types of constructs. Scala and its case classes
provide a concise and expressive way to solve this problem.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[35]

Scala collection API
Scala has a comprehensive API for working conveniently with collections. A good
understanding of some of the APIs is essential for making effective use of Scala in data
analysis.

Although a full review of the Scala collection API is not part of the scope of this book, three
key data structures will be covered in this section: the array, list, and map. The emphasis
here is on their direct relevance to data analysis. For complete details, please refer to the
official Scala resource at https:/ ​/​www. ​scala- ​lang. ​org/ ​api/ ​current/ ​scala/ ​collection/
index.​html.

It is also important to consider the performance characteristics of a Scala collection API and
use this information in making appropriate data structure selections for the problem being
solved. Refer to https:/ ​/ ​docs. ​scala- ​lang. ​org/ ​overviews/ ​collections/ ​performance-
characteristics.​html for more information.

Array
The array provides fast and constant time performance for the random access (index-based
access) of a collection. Arrays can be thought of as a data structures that are backed by an
array of bytes that are contiguously laid out in the computer's memory. This means that
individual elements of an array are placed one after the other in memory. With a layout like
this, there is an implicit connection between the elements and the physical position of the
elements in the memory, determining which one is first, next, and so on. For example, the
position of the tenth element in an array can be determined by adding the sizes of the first
nine elements.

The following is an example run execution in Scala REPL to demonstrate the Scala array
and some of its functionality:

scala> val persons = Array(Person("Jon", "Doe", 21), Person("Alice",
"Smith", 20), Person("Bob", "Crew", 27)) // construct a Array of Person
objects
persons: Array[Person] = Array(Person(Jon,Doe,21), Person(Alice,Smith,20),
Person(Bob,Crew,27))

scala> val personHead = persons.head // first person in the collection
personHead: Person = Person(Jon,Doe,21)

scala> val personAtTwo = persons(2) // person at index 2 (this is same as
apply operation)
personAtTwo: Person = Person(Bob,Crew,27)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html

Scala Overview Chapter 1

[36]

scala> val personsTail = persons.tail // collection without the first
person
personsTail: Array[Person] = Array(Person(Alice,Smith,20),
Person(Bob,Crew,27))

scala> val personsByAge = persons.sortBy(p => p.age) // sort persons by age
personsByAge: Array[Person] = Array(Person(Alice,Smith,20),
Person(Jon,Doe,21), Person(Bob,Crew,27))

scala> val personsByFname = persons.sortBy(p => p.fname) // sort persons by
first name
personsByFname: Array[Person] = Array(Person(Alice,Smith,20),
Person(Bob,Crew,27), Person(Jon,Doe,21))

scala> val (below25, above25) = persons.partition(p => p.age <= 25) //
split persons by age
below25: Array[Person] = Array(Person(Jon,Doe,21), Person(Alice,Smith,20))
above25: Array[Person] = Array(Person(Bob,Crew,27))

scala> val updatePersons = persons.updated(0, Person("Jon", "Doe", 20)) //
update first element
updatePersons: Array[Person] = Array(Person(Jon,Doe,20),
Person(Alice,Smith,20), Person(Bob,Crew,27))

The following is a summary of the array operations and their associated performance
characteristics:

Array
operation Purpose Performance

head
Get the element at the
head O(1) constant time

tail
Get elements other than
the head

O(n) linear time, proportional to the number of
elements in the collection

apply
Get the element at a
specified index O(1) constant time

update
Replace the element at the
specified index O(1) constant time

prepend
Add a new element at the
head Not supported for an array

append
Add a new element at the
end Not supported for an array

insert
Insert a new element at the
specified index Not supported for an array

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[37]

As can be seen in the preceding table, the apply operation for getting the element at a
specified index is a fast constant-time operation for an array. Along similar lines,
the update operation for replacing an element at the specified index is also a fast constant-
time operation. On the other hand, the tail operation for getting elements other than the
head is a slow linear time operation. In fact, the prepend, append, and insert operations
are not even supported for an array. This might seem a limiting factor at first, but Scala has
an ArrayBuffer class for building an array, and that should be used if such operations are
necessary.

In data analysis, we typically create a dataset initially and use it over and over again during
different phases of the analysis. This implies that the dataset construction is generally a
one-time step, and the construction is then used multiple times. This is precisely why a
builder such as ArrayBuffer is separated from the array: because each serves a different
purpose. The ArrayBuffer is designed to help in the construction of the array with
support for the commonly desired build operations. Let's look at the ArrayBuffer
functionality using Scala REPL, as shown in the following code:

scala> import scala.collection.mutable.ArrayBuffer
import scala.collection.mutable.ArrayBuffer

scala> val personsBuf = ArrayBuffer[Person]() // create ArrayBuffer of
Person
personsBuf: scala.collection.mutable.ArrayBuffer[Person] = ArrayBuffer()
scala> personsBuf.append(Person("Jon", "Doe", 21)) // append a Person
object at the end
scala> personsBuf.prepend(Person("Alice", "Smith", 20)) // prepend a Person
object at head
scala> personsBuf.insert(1, Person("Bob", "Crew", 27)) // insert a Person
object at index 1
scala> val persons = personsBuf.toArray // materialize into an Array of
Person
persons: Array[Person] = Array(Person(Alice,Smith,20), Person(Bob,Crew,27),
Person(Jon,Doe,21))
scala> val personRemoved = personsBuf.remove(1) // remove Person object at
index 1
personRemoved: Person = Person(Bob,Crew,27)

scala> val personsUpdated = personsBuf.toArray // materialize into an Array
of Person
personsUpdated: Array[Person] = Array(Person(Alice,Smith,20),
Person(Jon,Doe,21))

As can be seen in the preceding code, ArrayBuffer provides a comprehensive set of
functionalities to construct a collection and provides a convenient mechanism to materialize
it into an array once construction is complete.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[38]

List
A List provides fast and constant time performance for head and tail operations in a
collection. We can visualize a List as a collection of elements that are connected by some
kind of link. Let's look at the Scala List functionality using Scala REPL, as shown in the
following code:

scala> val persons = List(Person("Jon", "Doe", 21), Person("Alice",
"Smith", 20), Person("Bob", "Crew", 27)) // construct a List of Person
objects
persons: List[Person] = List(Person(Jon,Doe,21), Person(Alice,Smith,20),
Person(Bob,Crew,27))

scala> val personHead = persons.head // first person in the collection
personHead: Person = Person(Jon,Doe,21)

scala> val personAtTwo = persons(2) // person at index 2 (this is same as
apply operation)
personAtTwo: Person = Person(Bob,Crew,27)

scala> val personsTail = persons.tail // collection without the first
person
personsTail: List[Person] = List(Person(Alice,Smith,20),
Person(Bob,Crew,27))

scala> val personsByAge = persons.sortBy(p => p.age) // sort persons by age
personsByAge: List[Person] = List(Person(Alice,Smith,20),
Person(Jon,Doe,21), Person(Bob,Crew,27))

scala> val personsByFname = persons.sortBy(p => p.fname) // sort persons by
first name
personsByFname: List[Person] = List(Person(Alice,Smith,20),
Person(Bob,Crew,27), Person(Jon,Doe,21))

scala> val (below25, above25) = persons.partition(p => p.age <= 25) //
split persons by age
below25: List[Person] = List(Person(Jon,Doe,21), Person(Alice,Smith,20))
above25: List[Person] = List(Person(Bob,Crew,27))

scala> val updatePersons = persons.updated(0, Person("Jon", "Doe", 20)) //
update first element
updatePersons: List[Person] = List(Person(Jon,Doe,20),
Person(Alice,Smith,20), Person(Bob,Crew,27))

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[39]

The following is a summary of the List operations and their associated performance
characteristics:

List
operation Purpose Performance

head Get the element at the head O(1) constant time

tail
Get elements other than the
head O(1) constant time

apply
Get the element at the
specified index

O(n) linear time, proportional to the number of
elements in the collection

update
Replace the element at the
specified index

O(n) linear time, proportional to the number of
elements in the collection

prepend
Add a new element at the
head O(1) constant time

append
Add a new element at the
end

O(n) linear time, proportional to the number of
elements in the collection

insert
Insert a new element at the
specified index Not supported for list

As can be seen in the preceding table, the List enables very fast head, tail, and prepend
operations. For the array type described earlier, we saw that tail was an expensive linear
time operation. The apply operation for getting an element at the specified index is a linear
time operation. This is because the desired element can only be located by traversing the
links, starting from the head. This explains why an update is a slow operation for the List.

In a real-world scenario, constant time performance is the desired behavior and we want to
avoid linear time performance, particularly for large datasets. Performance is an important
factor in determining the most suitable data structure for the problem being solved. If
constant time performance is not practical, we generally look for data structures and
algorithms that provide Log Time performance O(log n): time proportional to the logarithm of
the collection size. Note that there are many algorithms, such as sorting, with best
performance times of O(n log n). When dealing with large datasets, a good understanding
of the performance characteristics of the data structures and algorithms that are used goes a
long way in solving problems effectively and efficiently.

Similar considerations hold true for memory usage, even though larger amounts of RAM
are now becoming available at a cheaper price. This is because the growth in the size of
data being produced is much higher than the drop in prices of RAM.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[40]

Let's now look at ListBuffer, which can be used for constructing a list more efficiently.
This will be very useful, given that the append operation has significant performance
overheads. As mentioned earlier, datasets are generally constructed once but are used
multiple times during data analysis processes. Let's look at the following code:

scala> import scala.collection.mutable.ListBuffer
import scala.collection.mutable.ListBuffer

scala> val personsBuf = ListBuffer[Person]() // create ListBuffer of Person
personsBuf: scala.collection.mutable.ListBuffer[Person] = ListBuffer()

scala> personsBuf.append(Person("Jon", "Doe", 21)) // append a Person
object at end

scala> personsBuf.prepend(Person("Alice", "Smith", 20)) // prepend a Person
object at head

scala> personsBuf.insert(1, Person("Bob", "Crew", 27)) // insert a Person
object at index 1

scala> val persons = personsBuf.toList // materialize into a List of Person
persons: List[Person] = List(Person(Alice,Smith,20), Person(Bob,Crew,27),
Person(Jon,Doe,21))

scala> val personRemoved = personsBuf.remove(1) // remove Person object at
index 1
personRemoved: Person = Person(Bob,Crew,27)

scala> val personsUpdated = personsBuf.toList // materialize into a List of
Person
personsUpdated: List[Person] = List(Person(Alice,Smith,20),
Person(Jon,Doe,21))

If we compare ArrayBuffer and ListBuffer, we can see that they both offer similar
APIs. Their primary use is for constructing an array and list respectively, providing good
performance characteristics.

The decision of choosing between array and list is dependent on how the dataset will be
used. The following are some useful tips:

An array should generally be the first choice because of its storage efficiency.
Array operations are somewhat limited compared to list operations, and the
usage pattern becomes the determining factor.
If a tail operation is necessary, a list is the obvious choice. In fact, there are
many recursive algorithms that make extensive use of this feature. Using an
array instead of a list will result in a significant performance penalty.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[41]

If apply or update operations are desired, then an array is certainly a better
choice.
If the prepend operation is needed or if a limited use of append is required, then
a list is the only choice because an array does not support the prepend or
append operations.

As you can see, there are many factors at play when it comes to selecting the appropriate
data structure. This is often the case in any software design decision where there are
conflicting needs and you need to decide how to make trade-offs. For example, you might
decide in favor of using a list even though none of the non-array features of a list are
required based on current usage patterns. This could be because of the list's fast tail
operation, which could be beneficial for the recursive algorithms in future usage patterns.

Recursive algorithms play a central role in functional programming. In fact, Scala supports
tail-recursion optimization out of the box, which facilitates practical usage of recursive
algorithms with large datasets. With classic recursion, a significant amount of stack space is
required, making it impractical to use on large datasets. With tail-recursion optimization,
the Scala compiler eliminates the stack growth under the hood. Let's look at a classic
recursion and tail-recursion example:

scala> import annotation.tailrec
import annotation.tailrec

scala> @tailrec def classicFactorial(n: Int): Int = { require(n > 0); if (n
== 1) n else n * classicFactorial(n-1) } // this should fail
<console>:14: error: could not optimize @tailrec annotated method
classicFactorial: it contains a recursive call not in tail position
 @tailrec def classicFactorial(n: Int): Int = { require(n > 0); if (n
== 1) n else n * classicFactorial(n-1) }

scala> def classicFactorial(n: Int): Int = { require(n > 0, "n must be non-
zero and positive"); if (n == 1) n else n * classicFactorial(n-1) } // this
should work
classicFactorial: (n: Int)Int

scala> val classicResult = classicFactorial(5)
classicResult: Int = 120
scala> def tailRecFactorial(n: Int): Int = {
 | require(n > 0, "n must be non-zero and positive")
 | @tailrec def factorial(acc: Int, m: Int): Int = if (m == 1) acc else
factorial(acc * m, m-1) // this should work as this recursive algorithm
meets tail recursion requirements
 | factorial(1, n)
 | }
tailRecFactorial: (n: Int)Int

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[42]

scala> val tailRecResult = tailRecFactorial(5)
tailRecResult: Int = 120

The preceding examples provides insight into recursive functions, and in particular
demonstrates a tail-recursion variant. Let's look at the following example of a tail-recursion
algorithm using List:

scala> val persons = List(Person("Jon", "Doe", 21), Person("Alice",
"Smith", 20), Person("Bob", "Crew", 27))
persons: List[Person] = List(Person(Jon,Doe,21), Person(Alice,Smith,20),
Person(Bob,Crew,27))

scala> @tailrec def minAgePerson(acc: Option[Person], lst: List[Person]):
Option[Person] = {
 | if (lst.isEmpty) acc
 | else if (acc.isEmpty) minAgePerson(Some(lst.head), lst.tail)
 | else if (acc.get.age <= lst.head.age) minAgePerson(acc, lst.tail)
 | else minAgePerson(Some(lst.head), lst.tail)
 | }
minAgePerson: (acc: Option[Person], lst: List[Person])Option[Person]

scala> val youngest = minAgePerson(None, persons) // Person with minimum
age
youngest: Option[Person] = Some(Person(Alice,Smith,20))

scala> val youngestEmpty = minAgePerson(None, Nil) // Nil == List(), an
empty list
youngestEmpty: Option[Person] = None

The preceding code is a very simple example of finding a Person with the minimum age
from a list of Person objects. This simple example, however, illustrates the following
important and powerful points regarding Scala:

It is fairly straightforward to write a tail-recursive algorithm using a list in Scala
that accumulates information. This algorithm can traverse the entire list without
incurring the overhead of stack growth in a classic recursion.
Scala's option construct provides a convenient way of representing the presence
or absence of an object.
List's head and tail operations come in handy in writing such recursive
algorithms, and provide the desired constant time performance for both these
operations.
The code is concise and works even on the empty list.
Using the accumulator is a commonly used pattern in turning a classic recursion
algorithm into a tail-recursion algorithm.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[43]

Map
A Map provides a mapping from a key to the associated value. Lookups into a Map based
on a key have a generally constant time of O(1). A Map is an important data structure that
has many applications in the real world.

Let's look at some simple Map usage using Scala REPL:

scala> val countryToCurrency = Map(("US" -> "USD"), ("DE" -> "EUR"), ("FR"
-> "EUR"), ("IN" -> "INR")) // Mapping from country code to currency code
countryToCurrency: scala.collection.immutable.Map[String,String] = Map(US
-> USD, DE -> EUR, FR -> EUR, IN -> INR)

scala> countryToCurrency.keys // country codes
res4: Iterable[String] = Set(US, DE, FR, IN)

scala> countryToCurrency.values // currency codes
res5: Iterable[String] = MapLike.DefaultValuesIterable(USD, EUR, EUR, INR)

scala> countryToCurrency("US") // lookup currency code for US
res6: String = USD

In Scala, there are many different types of map, each with its own set of characteristics. We
will cover the following three:

Map type Description lookup add remove min

HashMap Backed by a hash table Near
constant time

Near constant
time

Near
constant time Linear

TreeMap
Backed by a sorted
tree Log n Log n Log n Log n

LinkedHashMap
Insert order is
preserved Linear Constant time Linear Linear

The following are some general considerations to bear in mind regarding the performance
of each of these Map types:

HashMap is the best choice in most cases, particularly for lookup-centric use
cases. HashMap does not preserve key insertion order or sort keys.
TreeMap is suitable for use cases where keys need to be sorted.
LinkedHashMap is most suited when the key insertion order needs to be
preserved.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[44]

Let's explore some of these map types in Scala REPL using the following code:

Import HashMap, TreeMap, and LinkedHashMap from Scala's1.
collection.mutable package. Each represents Map type but with a slightly
different flavor:

scala> import collection.mutable.{HashMap,TreeMap,LinkedHashMap}
import collection.mutable.{HashMap, TreeMap, LinkedHashMap}

Create a HashMap that maps a number to its English word equivalent. Notice that2.
the order of keys is not preserved. The number 8 was at position 8 in our
constructor however in the object created it is at the first position:

scala> val numHashMap = HashMap((1->"one"), (2->"two"),
(3->"three"), (4->"four"), (5->"five"), (6->"six"), (7->"seven"),
(8->"eight"), (9->"nine")) // keys can be in any order
numHashMap: scala.collection.mutable.HashMap[Int,String] = Map(8 ->
eight, 2 -> two, 5 -> five, 4 -> four, 7 -> seven, 1 -> one, 9 ->
nine, 3 -> three, 6 -> six)

Add a new entry of 0. This got added at the very end however this is just a3.
coincidence, it could have been anywhere:

// add new mapping, keys can be any order
scala> numHashMap += (0->"zero")
res5: numHashMap.type = Map(8 -> eight, 2 -> two, 5 -> five, 4 ->
four, 7 -> seven, 1 -> one, 9 -> nine, 3 -> three, 6 -> six, 0 ->
zero)

Create a TreeMap similar to HashMap. Note that the order of keys is preserved. In4.
fact, this is due to keys automatically being sorted by TreeMap. Our object
construction had provided the keys in ascending order:

// keys must be sorted
scala> val numTreeMap = TreeMap((1->"one"), (2->"two"),
(3->"three"), (4->"four"), (5->"five"), (6->"six"), (7->"seven"),
(8->"eight"), (9->"nine"))
numTreeMap: scala.collection.mutable.TreeMap[Int,String] =
TreeMap(1 -> one, 2 -> two, 3 -> three, 4 -> four, 5 -> five, 6 ->
six, 7 -> seven, 8 -> eight, 9 -> nine)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[45]

Add a new entry to TreeMap with key as 0. This gets added to the beginning5.
because of key sorting in a TreeMap:

// add a new mapping, keys must get sorted
scala> numTreeMap += (0->"zero")
res6: numTreeMap.type = TreeMap(0 -> zero, 1 -> one, 2 -> two, 3 ->
three, 4 -> four, 5 -> five, 6 -> six, 7 -> seven, 8 -> eight, 9 ->
nine)

Create a LinkedHashMap similar to HashMap and TreeMap. Note that keys6.
appear exactly as it was specified in the constructor:

// order must be preserved
scala> val numLinkedHMap = LinkedHashMap((1->"one"), (2->"two"),
(3->"three"), (4->"four"), (5->"five"), (6->"six"), (7->"seven"),
(8->"eight"), (9->"nine"))
numLinkedHMap: scala.collection.mutable.LinkedHashMap[Int,String] =
Map(1 -> one, 2 -> two, 3 -> three, 4 -> four, 5 -> five, 6 -> six,
7 -> seven, 8 -> eight, 9 -> nine)

Add new entry to LinkedHashMap with key as 0. This gets added at the very end7.
because LinkedHashMap preserves the order of key insertion:

// this must be the last element
scala> numLinkedHMap += (0->"zero")
res17: numLinkedHMap.type = Map(1 -> one, 2 -> two, 3 -> three, 4
-> four, 5 -> five, 6 -> six, 7 -> seven, 8 -> eight, 9 -> nine, 0
-> zero)

Scala offers a good number of choices in terms of Map implementation. You can choose the
best option based on the usage pattern. Similar to the design choices between arrays and
lists, at times there are trade-offs that need to be considered in deciding the best Map
implementation.

Overview of Scala libraries for data analysis
There are a great number of Scala libraries and frameworks that simplify data analysis
tasks. There is a lot of innovation happening regarding the simplification of data analysis-
related tasks, from simple tasks such as data cleaning, to more advanced tasks such as deep
learning. The following sections focus on the most popular data-centric libraries and
frameworks that have seamless Scala integration.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scala Overview Chapter 1

[46]

Apache Spark
Apache Spark (https:/ ​/​spark. ​apache. ​org/ ​) is a unified analytics engine for large-scale
data processing. Spark provides APIs for batch as well as stream data processing in a
distributed computing environment. Spark's API can be broadly divided into the following
five categories:

Core: RDD
SQL structured: DataFrames and Datasets
Streaming: Structured streaming and DStreams
MLlib: Machine learning
GraphX: Graph processing

Apache Spark is a very active open source project. New features are added and
performance improvements made on a regular basis. Typically, there is a new minor release
of Apache Spark every three months with significant performance and feature
improvements. At the time of writing, 2.4.0 is the most recent version of Spark.

The following is Spark core's SBT dependency:

scalaVersion := "2.11.12"

libraryDependencies += "org.apache.spark" %% "spark-sql" % "2.4.1"

Spark version 2.4.0 has introduced support for Scala version 2.12; however, we will be
using Scala version 2.11 for exploring Spark's feature sets. Spark will be covered in more
detail in the subsequent chapters.

Breeze
Breeze (see http:/ ​/​www. ​scalanlp. ​org/ ​, https:/ ​/​github. ​com/ ​scalanlp/ ​breeze/ ​wiki/
Quickstart and https:/ ​/ ​github. ​com/ ​scalanlp/ ​breeze for more details) provides a set of
libraries containing support for linear algebra, numerical computing, and optimization.

Breeze aims to be a generic, clean, and powerful numerical processing library without
sacrificing performance. Breeze is part of the ScalaNLP umbrella project.

For Breeze's SBT dependency, refer to https:/ ​/​github. ​com/ ​scalanlp/ ​breeze.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze

Scala Overview Chapter 1

[47]

Breeze-viz
Breeze-viz (see https:/ ​/​github. ​com/ ​scalanlp/ ​breeze/ ​wiki/ ​Quickstart and https:/ ​/
github.​com/​scalanlp/ ​breeze/ ​tree/ ​master/ ​viz for more details) is a visualization library
backed by Breeze and JFreeChart.

For its SBT dependency, refer to https:/ ​/ ​github. ​com/ ​scalanlp/ ​breeze.

DeepLearning
The DeepLearning.scala toolkit (https:/ ​/​deeplearning. ​thoughtworks. ​school/ ​) is a
deep learning toolkit for Scala. This library is provided by ThoughtWorks. The library aims
to create neural networks using object-oriented as well as functional programming
constructs of Scala.

Epic
Epic (http:/​/​www. ​scalanlp. ​org/ ​ and https:/ ​/ ​github. ​com/ ​dlwh/ ​epic) is a high-
performance statistical parser and structured prediction library. Similar to Breeze, Epic is
also part of the ScalaNLP umbrella project.

Saddle
Saddle (https:/​/​saddle. ​github. ​io/ ​) is a high-performance data-manipulation library
with support for array-backed data structures. This library aims to provide R and Python
pandas-like feature sets for working with structured data. For more details on using this
library, please refer to the documentation at https:/ ​/​saddle. ​github. ​io/​doc/ ​index. ​html.

Scalalab
Scalalab (https:/​/ ​github. ​com/ ​sterglee/ ​scalalab) is a MATLAB-like scientific computing
library. This library aims to provide an efficient scientific programming environment for
JVM. The library strives to optimize performance and uses native C/C++ code for numerical
computations.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/wiki/Quickstart
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze/tree/master/viz
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze
https://deeplearning.thoughtworks.school/
https://deeplearning.thoughtworks.school/
https://deeplearning.thoughtworks.school/
https://deeplearning.thoughtworks.school/
https://deeplearning.thoughtworks.school/
https://deeplearning.thoughtworks.school/
https://deeplearning.thoughtworks.school/
https://deeplearning.thoughtworks.school/
https://deeplearning.thoughtworks.school/
https://deeplearning.thoughtworks.school/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
http://www.scalanlp.org/
https://github.com/dlwh/epic
https://github.com/dlwh/epic
https://github.com/dlwh/epic
https://github.com/dlwh/epic
https://github.com/dlwh/epic
https://github.com/dlwh/epic
https://github.com/dlwh/epic
https://github.com/dlwh/epic
https://github.com/dlwh/epic
https://github.com/dlwh/epic
https://github.com/dlwh/epic
https://saddle.github.io/
https://saddle.github.io/
https://saddle.github.io/
https://saddle.github.io/
https://saddle.github.io/
https://saddle.github.io/
https://saddle.github.io/
https://saddle.github.io/
https://saddle.github.io/
https://saddle.github.io/
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://saddle.github.io/doc/index.html
https://github.com/sterglee/scalalab
https://github.com/sterglee/scalalab
https://github.com/sterglee/scalalab
https://github.com/sterglee/scalalab
https://github.com/sterglee/scalalab
https://github.com/sterglee/scalalab
https://github.com/sterglee/scalalab
https://github.com/sterglee/scalalab
https://github.com/sterglee/scalalab
https://github.com/sterglee/scalalab
https://github.com/sterglee/scalalab

Scala Overview Chapter 1

[48]

Smile
Smile (https:/​/​haifengl. ​github. ​io/ ​smile/ ​) is a fast and comprehensive machine
learning (ML) system. It aims to provide ML capabilities, keeping speed and ease of use in
mind. At the same time, it strives to provide a fairly comprehensive set of toolkits for ML.

Vegas
Vegas (https:/​/​www. ​vegas- ​viz. ​org/ ​) is a declarative statistical visualization library. This
library aims to be a Matplotlib-like library for Scala and Spark. One of the nice things about
this library is that it can be easily integrated with Apache Spark. In addition to Apache
Spark, it also supports integration with the Apache Flink framework. Apache Flink is
another popular open source platform that is optimized for stream-oriented workloads.

Summary
This chapter provided a high-level overview of the Scala programming language. We
looked at some of the object-oriented and functional programming aspects of Scala using
applied examples. This chapter touched upon the array, list, and map functionalities of the
Scala collection API. These data structures have numerous uses in the data analysis life
cycle. The chapter also provided the necessary information to set up and install the Scala
tools that are essential for understanding and applying the topics covered in subsequent
chapters. Finally, a quick overview of the data-centric Scala libraries was provided. We will
be making use of these libraries in the next few chapters to solve specific data life cycle
problems.

In the next chapter, we will look at the data analysis life cycle and associated tasks.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://haifengl.github.io/smile/
https://haifengl.github.io/smile/
https://haifengl.github.io/smile/
https://haifengl.github.io/smile/
https://haifengl.github.io/smile/
https://haifengl.github.io/smile/
https://haifengl.github.io/smile/
https://haifengl.github.io/smile/
https://haifengl.github.io/smile/
https://haifengl.github.io/smile/
https://haifengl.github.io/smile/
https://haifengl.github.io/smile/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/

2
Data Analysis Life Cycle

Data is ubiquitous, and is increasingly playing a significant role in every aspect of our lives,
from helping us to make informed decisions to building intelligent systems.

Data is created when a computer system captures and records some kind of observation or
activity; this is true of any example of data being electronically recorded, from something as
simple as an Internet of Things (IoT) device recording temperature at a given point in time
at a specific location to something more complex, such as a human being completing an
online purchase. In this context, we can think of data as a raw material consisting of
information of value.

This raw data in itself could be extremely useful. Interesting insights can be obtained by
processing this data and combining it with other types of data. Data processing helps turn
this information into insights that can guide us in making decisions. To illustrate this with a
simple example, consider the end-of-day stock price of a publicly traded US company. By
observing it for a sufficiently long period, you can see some interesting patterns in stock
price changes occurring over time. Similarly, you can observe the performance of the
broader S&P 500 index during the same period and compare the performance of the two.
Say that an investor was considering whether to invest in stocks of this company or wait
until a later time. This decision will involve making use of other types of information, such
as an individual's risk tolerance, financial market conditions, and so on.

In the real world, systems that generate data are not perfect. There will be times when the
data will have missing elements. Duplicate data is also a common occurrence. In essence,
before the actual data analysis work can be started, the raw data must be collected, cleaned,
and organized so that it is suitable for further analysis.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[50]

The following are the topics that we will be covering in this chapter:

Data journey
Sourcing data
Understanding data
Using machine learning to learn from data
Creating a data pipeline

Data journey
Let's look at the journey of data from its creation to its usage:

Raw data creation: The observation, event, action, and manual entry are the key
elements that contribute to data creation. This data is typically persisted as a raw
data source for future usage. The persistent storage could be flat files, a database,
a Kafka topic, AWS Kinesis Data Streams (KDS), or any other suitable storage.
Raw data extraction: Raw data extraction is the act of receiving or fetching raw
data from a source. In an enterprise, raw data sources are internal as well as
external. Some examples of commonly used external sources are currency
exchange rates, stock prices, and weather data. A company's transactional data is
an example of internal data.
Raw data ingestion: Raw data ingestion refers to the act of storing raw data in an
organized form to support orderly data extraction and consumption. Often, this
step also involves converting data into a machine-friendly form. For example, if
the raw source data is a log message, it could be beneficial to extract the relevant
pieces of data from it and save it as structured information for further
consumption.
Data cleaning and validation: Data cleaning and validation involves sanitizing
data to clean up errors and remove noise. This step could also involve validating
the integrity of the data received. This step is particularly crucial for big data-like
sources, where a small fraction of data errors is expected. Enterprise-wide
appropriate data policies concerning data errors and mitigation are necessary to
deal with this scenario.
Data enrichment: Data enrichment involves adding related information by
looking up values using standardization services—for example, determining the
associated value of a ZIP code plus four, given a US street address.
Combining datasets: Datasets can be joined based on their relationship to each
other—for example, joining a customer's purchases with their billing and
shipping address at the time of purchase.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[51]

Analyzing: When we analyze the data, we look for patterns to discover the
relationship—for example, looking at the price of crude oil versus economic
activity during the same period.
Visualization: During visualization, we use visual tools to understand patterns
and relationships—for example, using graphs to compare crude oil prices and
economic activity side by side and varying the period of time that is analyzed.
Building hypothesis: Representing the pattern/relationship of the data and the
factors and variables involved is crucial in establishing a hypothesis—for
example, establishing a hypothesis that an uptick in economic activity results in
an increase in the price of crude oil.
Testing hypothesis: Testing the hypothesis means confirming the validity of an
established hypothesis—for example, testing the increase in crude oil prices
hypothesis against a larger dataset of crude oil prices and economic activity.
Pipeline creation: The creation of a pipeline involves putting the related tasks
together to create a pipeline of work. This is a concrete realization of one or more
of the steps outlined previously to create an end-to-end solution.

The data journey outlined in the preceding list is not necessarily sequential and linear in
nature. There is general feedback and a refinement of the process that keeps on taking place
until you are ready for a pipeline creation. In today's data-driven world, machine learning
(ML) plays a significant role in going through some of these steps, such hypothesis building
and testing. Next, we will look at an example of data analysis involving a life cycle task,
focusing on the following broad categories:

Sourcing data
Understanding data
Using ML to learn from data
Creating a data pipeline

Sourcing data
Data sourcing is one of the most preliminary steps in the life cycle of data. It includes
activities such as data acquisition, cleaning, and organization. The following is a list of the
specific activities that it involves:

Raw data delivery—push model versus pull (extract) model
Handling a variety of data formats (CSV, JSON, XML)
Detecting errors in the data that is delivered
Removing bad data

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[52]

Data enrichment—filling the gaps in the data
Combining data with other datasets
Defining a data model
Transforming the raw data model into the defined model
Storing the data

Data formats
By its very nature, there is a wide variety of raw data. There are a variety of systems
generating raw data for a variety of purposes. The format of data also varies in each of
these cases. To perform meaningful data analysis, we need to deal with these various
formats and variables effectively. In this section, we will begin by looking at the three most
prevalent data formats: XML, JSON, and CSV.

XML
Extensible Markup Language (XML) is a simple and popular data format that is
commonly used for exchanging data between the enterprise system (https:/ ​/​www. ​w3.​org/
XML/​). Scala has excellent support for processing XML data using the scala-xml library.

Let's start by adding dependencies to the scala-xml library to build.sbt, as shown in
the following code:

libraryDependencies ++= Seq(
 "org.scala-lang.modules" %% "scala-xml" % "1.1.0" // Scala XML library
)

Let's explore some of the features of how this library works, as shown in the following
code:

Import Elem from scala.xml package:1.

scala> import scala.xml.Elem
import scala.xml.Elem

Define a Person case class:2.

scala> case class Person(id: String, fname: String, lname: String,
age: Option[Int] = None) // class for holding Person object
defined class Person

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/

Data Analysis Life Cycle Chapter 2

[53]

Create an XML message:3.

scala> val personXml: Elem = <person
id="123"><fname>John</fname><lname>Doe</lname><age>21</age></person
> // sample XML data
personXml: scala.xml.Elem = <person
id="123"><fname>John</fname><lname>Doe</lname><age>21</age></person
>

Extract the id XML attribute from XML message:4.

scala> val id = personXml \@ "id" // extract XML attribute
id: String = 123

Extract fname XML element from XML message:5.

scala> val fname = personXml \ "fname" // XML element extraction
fname: scala.xml.NodeSeq = NodeSeq(<fname>John</fname>)

Extract lname XML element from XML message:6.

scala> val lname = personXml \ "lname"
lname: scala.xml.NodeSeq = NodeSeq(<lname>Doe</lname>)

Extract age XML element from XML message:7.

scala> val age = personXml \ "age"
age: scala.xml.NodeSeq = NodeSeq(<age>21</age>)

Now construct Person object from extracted values:8.

scala> val person = Person(id, fname.text, lname.text,
Some(age.text.toInt)) // to extract value from element, we need to
use text
person: Person = Person(123,John,Doe,Some(21))

As you can see, the scala-xml library makes it really convenient to parse XML data.
Creating XML is equally straightforward, as illustrated in the following code:

scala> import scala.xml.Elem
import scala.xml.Elem

scala> case class Person(id: String, fname: Strig, lname: String, age:
Option[Int] = None)
defined class Person

scala> def toXml(p: Person): Elem = { <person
id={p.id}><fname>{p.fname}</fname><lname>{p.lname}</lname><age>{p.age.getOr

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[54]

Else(-1)}</age></person> }
toXml: (p: Person)scala.xml.Elem

scala> val person = Person("123", "John", "Doe", Some(21))
person: Person = Person(123,John,Doe,Some(21))

scala> toXml(person)
res0: scala.xml.Elem = <person
id="123"><fname>John</fname><lname>Doe</lname><age>21</age></person>

Spark has excellent support for processing XML data files using the spark-xml library
(https:/​/​github.​com/ ​databricks/ ​spark- ​xml). We will be covering this in upcoming
chapters on Spark and distributed processing. In addition, Java's native and add-on
libraries have excellent support for XML processing, which can also be used with Scala
code seamlessly.

JSON
JavaScript Object Notation (JSON) http:/ ​/​json. ​org/ ​ is an extremely popular data
format. One of the greatest advantages of this format is its simplicity and programming-
language neutrality.

We will use the Scala json4s (http:/ ​/​json4s. ​org/ ​) library to work with JSON data. We
will be using a native library that is the same or similar to the Scala Lift library.

Let's set up build.sbt with the following dependency and restart SBT using the following
code:

libraryDependencies ++= Seq(
 "org.json4s" %% "json4s-native" % "3.6.1" // Scala Lift JSON Library
)

In the Scala REPL console, explore the library using Scala REPL, as shown in the following
code:

scala> import org.json4s._
import org.json4s._

scala> import org.json4s.native.JsonMethods._
import org.json4s.native.JsonMethods._

scala> implicit val formats = DefaultFormats
formats: org.json4s.DefaultFormats.type =
org.json4s.DefaultFormats$@59db09a7

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json4s.org/
http://json4s.org/
http://json4s.org/
http://json4s.org/
http://json4s.org/
http://json4s.org/
http://json4s.org/
http://json4s.org/

Data Analysis Life Cycle Chapter 2

[55]

scala> case class Person(id: String, fname: String, lname: String, age:
Int)
defined class Person

scala> val personStr = """{
 | "id": "123",
 | "fname": "John",
 | "lname": "Doe",
 | "age": 21
 | }"""
personStr: String =
{
 "id": "123",
 "fname": "John",
 "lname": "Doe",
 "age": 21
}

scala> val json = parse(personStr) // parses JSON string to JValue
json: org.json4s.JValue = JObject(List((id,JString(123)),
(fname,JString(John)), (lname,JString(Doe)), (age,JInt(21))))

scala> val person = json.extract[Person] // convert to Person object
person: Person = Person(123,John,Doe,21)

As you can see in the preceding code, parsing JSON is fairly straightforward using this
library. Another great feature of the library is that a parsed JSON object can be easily
extracted into a Scala case class object.

Creating JSON is equally straightforward, as shown in the following code:

scala> import org.json4s.native.JsonMethods._
import org.json4s.native.JsonMethods._

scala> import org.json4s.JsonDSL._
import org.json4s.JsonDSL._

scala> val json = ("id" -> "123") ~ ("fname" -> "John") ~ ("lname" ->
"Doe") ~ ("age" -> 21) // build JSON object
json: org.json4s.JsonAST.JObject = JObject(List((id,JString(123)),
(fname,JString(John)), (lname,JString(Doe)), (age,JInt(21))))

scala> compact(render(json)) // create compact JSON string
res0: String = {"id":"123","fname":"John","lname":"Doe","age":21}

Spark has excellent built-in support for processing JSON data files. We will be covering this
in upcoming chapters on Spark and distributed processing. There are also several excellent
Java libraries supporting JSON processing that can be easily integrated into Scala code.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[56]

CSV
Comma-separated values (CSV) is another very popular data format. Although at first the
format appears to be very simple, there are a significant number of edge cases where fairly
sophisticated parsing is needed to parse CSV data. There are excellent libraries written in
Java and many other languages that have been created to parse and generate CSV data.

We will be looking at how to handle CSV parsing using the Apache commons CSV Java
library. This example will also demonstrate how easily Java libraries can be used with Scala
code.

First, let's set up our build.sbt with the appropriate dependency using the following
code:

libraryDependencies ++= Seq(
 "org.apache.commons" % "commons-csv" % "1.6" // Apache Commons CSV Java
Library
)

Rerun SBT and explore the following code in Scala code. In this example, we are using a
dataset that is available as part of the US government's Open Data initiative. This dataset is
related to the 2010 census data of the City of Los Angeles in California:

scala> import java.io.{BufferedReader, InputStreamReader}
import java.io.{BufferedReader, InputStreamReader}

scala> import java.util.function.Consumer
import java.util.function.Consumer

scala> import org.apache.commons.csv.{CSVFormat, CSVRecord}
import org.apache.commons.csv.{CSVFormat, CSVRecord}

scala> import scala.collection.mutable.ListBuffer
import scala.collection.mutable.ListBuffer

scala> case class CensusData(zipCode: String, totalPopulation: Int,
medianAge: Double,
 | totalMales: Int, totalFemales: Int, totalHouseholds: Int,
averageHouseholdSize: Double)
defined class CensusData

scala> class DataConsumer extends Consumer[CSVRecord] {
 | val buf = ListBuffer[CensusData]()
 | override def accept(t: CSVRecord): Unit = {
 | buf += CensusData(t.get(0), t.get(1).toInt, t.get(2).toDouble,
 | t.get(3).toInt, t.get(4).toInt, t.get(5).toInt, t.get(6).toDouble)
 | }

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[57]

 | }
defined class DataConsumer

scala> val reader = new BufferedReader(
 | new InputStreamReader(
 | new
java.net.URL("https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessTy
pe=DOWNLOAD").openStream()
 |)
 |)
reader: java.io.BufferedReader = java.io.BufferedReader@4c83902

scala> val csvParser =
CSVFormat.RFC4180.withFirstRecordAsHeader().parse(reader)
csvParser: org.apache.commons.csv.CSVParser =
org.apache.commons.csv.CSVParser@543b331c

scala> val dataConsumer = new DataConsumer
dataConsumer: DataConsumer = DataConsumer@3254eeb8

scala> csvParser.forEach(dataConsumer)

scala> val allRecords = dataConsumer.buf.toList
allRecords: List[CensusData] = List(CensusData(91371,1,73.5,0,1,1,1.0),
CensusData(90001,57110,26.6,28468,28642,12971,4.4),
CensusData(90002,51223,25.5,24876,26347,11731,4.36),
CensusData(90003,66266,26.3,32631,33635,15642,4.22),
CensusData(90004,62180,34.8,31302,30878,22547,2.73),
CensusData(90005,37681,33.9,19299,18382,15044,2.5),
CensusData(90006,59185,32.4,30254,28931,18617,3.13),
CensusData(90007,40920,24.0,20915,20005,11944,3.0),
CensusData(90008,32327,39.7,14477,17850,13841,2.33),
CensusData(90010,3800,37.8,1874,1926,2014,1.87),
CensusData(90011,103892,26.2,52794,51098,22168,4.67),
CensusData(90012,31103,36.3,19493,11610,10327,2.12),
CensusData(90013,11772,44.6,7629,4143,6416,1.26),
CensusData(90014,7005,44.8,4471,2534,4109,1.34), CensusData(90015,18986,...

scala> allRecords.take(3).foreach(println) // Output first 3 records
CensusData(91371,1,73.5,0,1,1,1.0)
CensusData(90001,57110,26.6,28468,28642,12971,4.4)
CensusData(90002,51223,25.5,24876,26347,11731,4.36)

As can be seen in the preceding code, we are able to get CSV data from the URL and then
parse it into the Scala case class. Generating CSV data is even more straightforward.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[58]

Let's go ahead and generate some CSV data using the following code:

scala> import org.apache.commons.csv.{CSVFormat, CSVPrinter}
import org.apache.commons.csv.{CSVFormat, CSVPrinter}

scala> val csvPrinter = new CSVPrinter(System.out,
CSVFormat.RFC4180.withHeader("fname", "lname", "age"))
fname,lname,age
csvPrinter: org.apache.commons.csv.CSVPrinter =
org.apache.commons.csv.CSVPrinter@7ff05a74

scala> csvPrinter.printRecord("Jon", "Doe", "21")
Jon,Doe,21

scala> csvPrinter.printRecord("James", "Bond", "39")
James,Bond,39

scala> csvPrinter.flush()

Spark has excellent built-in support for processing CSV data files. We will be covering this
in upcoming chapters on Spark and distributed processing.

Understanding data
Data generally tells a story. However, this is not obvious just from looking at the data. To
understand data, we need to be able to ask certain questions and get answers from the data.
Asking the right questions in itself requires a great deal of domain knowledge and
experience. Once the questions are framed, getting the answers from the data is the next
crucial task. Data exploration is an iterative journey because getting answers to questions
generally leads to more questions, and then one has to answer these new questions using
data.

We will look at the following two important techniques for understanding and exploring
data:

Statistical methods: Looking at the properties of data at an aggregate level
Visual methods: Looking at the properties of data using visual methods

In fact, in many real scenarios, both of these methods are used in conjunction with each
other to explore data in an effective manner.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[59]

Using statistical methods for data exploration
In this section, we will explore data by looking at some aggregate-level information about
the dataset. In a large enough dataset, looking at every individual record and trying to get
insight could be a fairly time-consuming process. Statistical methods can help to speed up
this process because we can leverage machines for fast and efficient computation
aggregates.

We will first use pure Scala code to explore and get an insight into the data. Next, we will
look at some Scala libraries that simplify this task even further.

Using Scala
Let's explore the same dataset from the US government's Open Data initiative that we used
for our CSV example. Let's make sure that the sbt dependency is defined as follows:

libraryDependencies ++= Seq(
 "org.apache.commons" % "commons-csv" % "1.6" // Apache Commons CSV
 Java Library
)

Launch your SBT and start the Scala console. For the sake of clarity, all of the steps for
processing the CSV have been repeated.

Import the required libraries using the following code:

scala> import java.io.{BufferedReader, InputStreamReader}
import java.io.{BufferedReader, InputStreamReader}

scala> import java.util.function.Consumer
import java.util.function.Consumer

scala> import org.apache.commons.csv.{CSVFormat, CSVRecord}
import org.apache.commons.csv.{CSVFormat, CSVRecord}

scala> import scala.collection.mutable.ListBuffer
import scala.collection.mutable.ListBuffer

Let's move ahead and write our main code, as follows:

scala> case class CensusData(zipCode: String, totalPopulation: Int,
medianAge: Double,
 | totalMales: Int, totalFemales: Int, totalHouseholds: Int,
averageHouseholdSize: Double)
defined class CensusData

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[60]

scala> class DataConsumer extends Consumer[CSVRecord] {
 | val buf = ListBuffer[CensusData]()
 | override def accept(t: CSVRecord): Unit = {
 | buf += CensusData(t.get(0), t.get(1).toInt, t.get(2).toDouble,
 | t.get(3).toInt, t.get(4).toInt, t.get(5).toInt, t.get(6).toDouble)
 | }
 | }
defined class DataConsumer

scala> val reader = new BufferedReader(
 | new InputStreamReader(
 | new
java.net.URL("https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessTy
pe=DOWNLOAD").openStream()
 |)
 |)
reader: java.io.BufferedReader = java.io.BufferedReader@572caa8b

scala> val csvParser =
CSVFormat.RFC4180.withFirstRecordAsHeader().parse(reader)
csvParser: org.apache.commons.csv.CSVParser =
org.apache.commons.csv.CSVParser@19405f70

scala> val dataConsumer = new DataConsumer
dataConsumer: DataConsumer = DataConsumer@20d9ee6f

scala> csvParser.forEach(dataConsumer)

scala> val allRecords = dataConsumer.buf.toList
allRecords: List[CensusData] = List(CensusData(91371,1,73.5,0,1,1,1.0),
CensusData(90001,57110,26.6,28468,28642,12971,4.4),
CensusData(90002,51223,25.5,24876,26347,11731,4.36),
CensusData(90003,66266,26.3,32631,33635,15642,4.22),
CensusData(90004,62180,34.8,31302,30878,22547,2.73),
CensusData(90005,37681,33.9,19299,18382,15044,2.5),
CensusData(90006,59185,32.4,30254,28931,18617,3.13),
CensusData(90007,40920,24.0,20915,20005,11944,3.0),
CensusData(90008,32327,39.7,14477,17850,13841,2.33),
CensusData(90010,3800,37.8,1874,1926,2014,1.87),
CensusData(90011,103892,26.2,52794,51098,22168,4.67),
CensusData(90012,31103,36.3,19493,11610,10327,2.12),
CensusData(90013,11772,44.6,7629,4143,6416,1.26),
CensusData(90014,7005,44.8,4471,2534,4109,1.34), CensusData(90015,18986,...

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[61]

Record the analysis using the following code:

scala> // Records Analysis

scala> allRecords.size // total records
res1: Int = 319

scala> allRecords.distinct.size // distinct records
res2: Int = 319

scala> allRecords.take(3) // 3 records from dataset
res3: List[CensusData] = List(CensusData(91371,1,73.5,0,1,1,1.0),
CensusData(90001,57110,26.6,28468,28642,12971,4.4),
CensusData(90002,51223,25.5,24876,26347,11731,4.36))

scala> // Zip Code Analysis

scala> allRecords.map(_.zipCode).distinct.size // distinct zipCode
res4: Int = 319

scala> allRecords.map(_.zipCode).min // minimum zipCode
res5: String = 90001

scala> allRecords.map(_.zipCode).max
res6: String = 93591

scala> val averageZip = allRecords.map(_.zipCode).aggregate(0)((a, b) => a
+ b.toInt, (x, y) => x + y) / allRecords.size
averageZip: Int = 91000

scala> allRecords.map(_.zipCode.toInt).sum /allRecords.size // another way
to compute the same
res7: Int = 91000

Perform the total population analysis using the following code:

scala> // Total Population Analysis

scala> allRecords.map(_.totalPopulation).sum
res8: Int = 10603988

scala> val averagePop = allRecords.map(_.totalPopulation).sum /
allRecords.size
averagePop: Int = 33241

scala> allRecords.sortBy(_.totalPopulation).head // record with lowest
Population
res9: CensusData = CensusData(90079,0,0.0,0,0,0,0.0)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[62]

scala> allRecords.sortBy(-_.totalPopulation).head // record with highest
Population
res10: CensusData = CensusData(90650,105549,32.5,52364,53185,27130,3.83)

scala> // Aggregate total numbers using a single aggregate method

scala> val (totalPopulation, totalMales, totalFemales, totalHouseholds) =
allRecords.aggregate((0, 0, 0, 0))((a, b) => (a._1 + b.totalPopulation,
a._2 + b.totalMales, a._3 + b.totalFemales, a._4 + b.totalHouseholds),
(x,y) => (x._1 + y._1, x._2 + y._2, x._3 + y._3, x._4 + y._4))
totalPopulation: Int = 10603988
totalMales: Int = 5228909
totalFemales: Int = 5375079
totalHouseholds: Int = 3497698

As can be seen in the preceding code, the Scala collection API comes in handy when
performing data analysis. Also, note the aggregate method of the API; it is a generalized
way to create an aggregated value over a collection. Let's look at some more ways to create
aggregate values in Scala, as shown in the following code:

scala> // Aggregate using foldLeft

scala> allRecords.map(_.totalPopulation).foldLeft(0)(_+_)
res11: Int = 10603988

scala> allRecords.map(_.totalMales).foldLeft(0)(_+_)
res12: Int = 5228909

scala> allRecords.map(_.totalFemales).foldLeft(0)(_+_)
res13: Int = 5375079

scala> allRecords.map(_.totalHouseholds).foldLeft(0)(_+_)
res14: Int = 3497698

scala> // Aggregate using foldRight

scala> allRecords.map(_.totalPopulation).foldRight(0)(_+_)
res15: Int = 10603988

scala> allRecords.map(_.totalMales).foldRight(0)(_+_)
res16: Int = 5228909

scala> allRecords.map(_.totalFemales).foldRight(0)(_+_)
res17: Int = 5375079

scala> allRecords.map(_.totalHouseholds).foldRight(0)(_+_)
res18: Int = 3497698

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[63]

scala> // Aggregate using reduce

scala> allRecords.map(_.totalPopulation).reduce(_+_)
res19: Int = 10603988

scala> allRecords.map(_.totalMales).reduce(_+_)
res20: Int = 5228909

scala> allRecords.map(_.totalFemales).reduce(_+_)
res21: Int = 5375079

scala> allRecords.map(_.totalHouseholds).reduce(_+_)
res22: Int = 3497698

Note that we are getting the same results using the foldLeft,
foldRight, and reduce methods.

Other Scala tools
Spark is a very popular distributed data-processing engine. It has built-in support for
exploring data in many different formats. We will look at Spark functionality in subsequent
chapters. Let's look at another Scala library called Saddle (http:/ ​/​saddle. ​github. ​io/​) and
see how we can leverage this library to work with data.

This library is not yet available for Scala 2.12, so we will be using Scala 2.11.12 to explore
this library. Configure your sbt build.sbt file as follows:

scalaVersion := "2.11.12"

libraryDependencies ++= Seq(
 "org.scala-saddle" %% "saddle-core" % "1.3.4"
)

For this exploration using Saddle, we will continue to use the dataset that we used in our
earlier exercise. In your sbt console, try the following:

scala> import java.io.{BufferedReader, InputStreamReader}
import java.io.{BufferedReader, InputStreamReader}

scala> import org.saddle.io._
import org.saddle.io._

scala> class SaddleCsvSource(url: String) extends CsvSource {
 | val reader = new BufferedReader(new InputStreamReader(new

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://saddle.github.io/
http://saddle.github.io/
http://saddle.github.io/
http://saddle.github.io/
http://saddle.github.io/
http://saddle.github.io/
http://saddle.github.io/
http://saddle.github.io/
http://saddle.github.io/
http://saddle.github.io/

Data Analysis Life Cycle Chapter 2

[64]

java.net.URL(url).openStream()))
 | override def readLine: String = {
 | reader.readLine()
 | }
 | }
defined class SaddleCsvSource

scala> val file = new
SaddleCsvSource("https://data.lacity.org/api/views/nxs9-385f/rows.csv?acces
sType=DOWNLOAD")
file: SaddleCsvSource = SaddleCsvSource@6437b766

scala> val frame = CsvParser.parse(file)
frame: org.saddle.Frame[Int,Int,String] =
[320 x 7]
 0 1 2 3 4 5 6
-------- ---------------- ---------- ----------- ------------- --------
 0 -> Zip Code Total Population Median Age Total Males Total Females Total
Households Average Household Size
 1 -> 91371 1 73.5 0 1 1 1
 2 -> 90001 57110 26.6 28468 28642 12971 4.4
 3 -> 90002 51223 25.5 24876 26347 11731 4.36
 4 -> 90003 66266 26.3 32631 33635 1564...
scala> frame.print() // prints 10 records from the frame
[320 x 7]
 0 1 2 3 4 5 6
-------- ---------------- ---------- ----------- ------------- --------
 0 -> Zip Code Total Population Median Age Total Males Total Females Total
Households Average Household Size
 1 -> 91371 1 73.5 0 1 1 1
 2 -> 90001 57110 26.6 28468 28642 12971 4.4
 3 -> 90002 51223 25.5 24876 26347 11731 4.36
 4 -> 90003 66266 26.3 32631 33635 15642 4.22
...
315 -> 93552 38158 28.4 18711 19447 9690 3.93
316 -> 93553 2138 43.3 1121 1017 816 2.62
317 -> 93560 18910 32.4 9491 9419 6469 2.92
318 -> 93563 388 44.5 263 125 103 2.53
319 -> 93591 7285 30.9 3653 3632 1982 3.67

If you are familiar with R or Python's pandas library, you will find a great deal of similarity
between Saddle's API and these APIs. The frame object that we constructed previously lets
us work with the data at a higher level of abstraction using Saddle's API. Let's further
explore Saddle's frame API, as shown in the following code:

scala> val df = frame.withColIndex(0) // first row is the CSV header
df: org.saddle.Frame[Int,String,String] = [319 x 7]
 Zip Code Total Population Median Age Total Males Total Females Total

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[65]

Households Average Household Size
-------- ---------------- ---------- ----------- ------------- --------
 1 -> 91371 1 73.5 0 1 1 1
 2 -> 90001 57110 26.6 28468 28642 12971 4.4
 3 -> 90002 51223 25.5 24876 26347 11731 4.36
 4 -> 90003 66266 26.3 32631 33635 15642 4.22
 5 -> 90004 62180 34.8 31302 30878 2254...
scala> df.col("Zip Code") // we can access each column by name
res1: org.saddle.Frame[Int,String,String] =
[319 x 1]
 Zip Code

 1 -> 91371
 2 -> 90001
 3 -> 90002
 4 -> 90003
 5 -> 90004
...
315 -> 93552
316 -> 93553
317 -> 93560
318 -> 93563
319 -> 93591

scala> df.col("Zip Code").min // should fail
<console>:17: error: No implicit view available from org.saddle.Series[_,
String] => org.saddle.stats.VecStats[String].
 df.col("Zip Code").min // should fail
 ^

scala> df.col("Zip Code").mapValues(CsvParser.parseInt).min // convert from
string to integer
res3: org.saddle.Series[String,Int] =
[1 x 1]
Zip Code -> 90001

The preceding example demonstrates how to work with a frame that consists of rows and
columns. It also shows you how to extract a specific column using the qualified name and
compute some simple stats, such as min.

Next, let's look at how to get the same information using Saddle. Here, we'll try obtaining
the ZIP codes using the following code:

scala> df.col("Zip Code").mapValues(CsvParser.parseInt).min
res4: org.saddle.Series[String,Int] =
[1 x 1]
Zip Code -> 90001

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[66]

scala> df.col("Zip Code").mapValues(CsvParser.parseInt).max
res5: org.saddle.Series[String,Int] =
[1 x 1]
Zip Code -> 93591

scala> df.col("Zip Code").mapValues(CsvParser.parseInt).mean
res6: org.saddle.Series[String,Double] =
[1 x 1]
Zip Code -> 91000.6740

Next, let's obtain the total population using the following code:

scala> df.col("Total Population").mapValues(CsvParser.parseInt).min
res7: org.saddle.Series[String,Int] =
[1 x 1]
Total Population -> 0

scala> df.col("Total Population").mapValues(CsvParser.parseInt).max
res8: org.saddle.Series[String,Int] =
[1 x 1]
Total Population -> 105549

scala> df.col("Total Population").mapValues(CsvParser.parseInt).sum
res9: org.saddle.Series[String,Int] =
[1 x 1]
Total Population -> 10603988

Next, let's find the total number of males using the following code:

scala> df.col("Total Males").mapValues(CsvParser.parseInt).min
res10: org.saddle.Series[String,Int] =
[1 x 1]
Total Males -> 0

scala> df.col("Total Males").mapValues(CsvParser.parseInt).max
res11: org.saddle.Series[String,Int] =
[1 x 1]
Total Males -> 52794

scala> df.col("Total Males").mapValues(CsvParser.parseInt).sum
res12: org.saddle.Series[String,Int] =
[1 x 1]
Total Males -> 5228909

Next, let's find the total number of females using the following code:

scala> df.col("Total Females").mapValues(CsvParser.parseInt).min
res13: org.saddle.Series[String,Int] =
[1 x 1]

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[67]

Total Females -> 0

scala> df.col("Total Females").mapValues(CsvParser.parseInt).max
res14: org.saddle.Series[String,Int] =
[1 x 1]
Total Females -> 53185

scala> df.col("Total Females").mapValues(CsvParser.parseInt).sum
res15: org.saddle.Series[String,Int] =
[1 x 1]
Total Females -> 5375079

Now let's find the total number of households using the following code:

scala> df.col("Total Households").mapValues(CsvParser.parseInt).min
res16: org.saddle.Series[String,Int] =
[1 x 1]
Total Households -> 0

scala> df.col("Total Households").mapValues(CsvParser.parseInt).max
res17: org.saddle.Series[String,Int] =
[1 x 1]
Total Households -> 31087

scala> df.col("Total Households").mapValues(CsvParser.parseInt).sum
res18: org.saddle.Series[String,Int] =
[1 x 1]
Total Households -> 3497698

Saddle's Scala library has a lot more to offer in terms of computing useful statistical
information and working with data. Let's implement some other methods supported by
Saddle using the following code:

scala> df.numRows
res19: Int = 319

scala> df.numCols
res20: Int = 7

scala> df.col("Total Households").mapValues(CsvParser.parseInt).mean
res21: org.saddle.Series[String,Double] =
[1 x 1]
Total Households -> 10964.5705

scala> df.col("Total Households").mapValues(CsvParser.parseInt).median
res22: org.saddle.Series[String,Double] =
[1 x 1]
Total Households -> 10968.0000

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[68]

scala> df.col("Total Households").mapValues(CsvParser.parseInt).stdev
res23: org.saddle.Series[String,Double] =
[1 x 1]
Total Households -> 6270.6464

Let's see a list of the total number of households, as shown in the following code:

// convert to Scala List
scala> df.col("Total
 Households").mapValues(CsvParser.parseInt).toSeq.map(_._3).toList

res24: List[Int] = List(1, 12971, 11731, 15642, 22547, 15044, 18617, 11944,
13841, 2014, 22168, 10327, 6416, 4109, 7420, 16145, 9338, 15493, 23344,
16514, 1561, 17023, 10727, 17903, 21228, 24956, 21929, 14964, 13883, 11156,
12765, 12924, 25592, 12814, 18646, 15869, 11928, 11436, 3317, 9513, 19892,
16075, 25144, 15224, 28534, 16168, 11821, 16657, 3371, 15658, 892, 9596,
6892, 9155, 13260, 10968, 14476, 23985, 1510, 12326, 13364, 0, 4, 3615, 0,
31, 0, 2949, 2, 24104, 8669, 3706, 5567, 12741, 11630, 7520, 12883, 6605,
7632, 13617, 12687, 7085, 15830, 3427, 8880, 31087, 9550, 18419, 10429,
14669, 0, 7174, 14038, 6554, 9212, 9479, 15618, 16910, 16009, 23278, 2612,
14261, 12654, 6575, 11895, 10684, 7290, 6634, 5933, 4188, 5301, 13970,
10089, 14376, 14610, 5717, 17183, 11580, 14244, 0, 11027, ...

As we can see from the preceding examples, Saddle's API has a lot to offer in terms of
conveniently exploring and working with data.

Please note that while Saddle works well in a single Java Virtual Machine
(JVM), it is not designed for data processing in a distributed environment.

Spark is better for working with data in a distributed environment and for processing data
at a large scale. We will look at Spark in subsequent chapters.

Using data visualization for data exploration
Using the data visualization methodology, we can get an insight into the data by looking at
the visual representation of the data. We will be looking at a fairly popular Scala library to
do some simple exploration in Scala.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[69]

Using the vegas-viz library for data visualization
We will explore some sample dates using the vegas-viz (https:/ ​/ ​www.​vegas- ​viz.​org/ ​)
Scala library for data visualization. This is a powerful Scala library that integrates very well
with Spark. We will work with Spark in subsequent chapters.

To explore this library in sbt, we will first set up the build.sbt file using the following
code. At the time of writing, vegas-viz and Spark are only supported for Scala 2.11.x, so
we will use Scala version 2.11.12 for our exploration:

// We will use Scala 2.11.x because many of Scala libraries such as
// Spark, vegas-viz are not yet supported for Scala 2.12.x
scalaVersion := "2.11.12"

libraryDependencies ++= Seq(
 "org.vegas-viz" %% "vegas" % "0.3.11" // Vegas Visualization Library
)

After creating the aforementioned build.sbt, run SBT. Once inside SBT, run the following
console command to start Scala REPL:

scala> val plot = Vegas("Currency Exchange Rates").
 | withData(
 | Seq(
 | Map("Currency Code" -> "USD", "Exchange Rate" -> 1.00),
 | Map("Currency Code" -> "EUR", "Exchange Rate" -> 0.86),
 | Map("Currency Code" -> "GBP", "Exchange Rate" -> 0.76),
 | Map("Currency Code" -> "CHF", "Exchange Rate" -> 0.99),
 | Map("Currency Code" -> "CAD", "Exchange Rate" -> 1.29),
 | Map("Currency Code" -> "AUD", "Exchange Rate" -> 1.41),
 | Map("Currency Code" -> "HKD", "Exchange Rate" -> 7.83)
 |)
 |).
 | encodeX("Currency Code", Nom).
 | encodeY("Exchange Rate", Quant).
 | mark(Point)

Done. Now, let's plot the following:

plot: vegas.DSL.ExtendedUnitSpecBuilder =
ExtendedUnitSpecBuilder(ExtendedUnitSpec(None,None,Point,Some(Encoding(None
,None,Some(PositionChannelDef(None,None,None,Some(Currency
Code),Some(Nominal),None,None,None,None,None)),Some(PositionChannelDef(None
,None,None,Some(Exchange
Rate),Some(Quantitative),None,None,None,None,None)),None,None,None,None,Non
e,None,None,None,None,None,None)),None,Some(Currency Exchange
Rates),Some(Data(None,None,Some(List(Values(Map(Currency Code -> USD,

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/
https://www.vegas-viz.org/

Data Analysis Life Cycle Chapter 2

[70]

Exchange Rate -> 1.0)), Values(Map(Currency Code -> EUR, Exchange Rate ->
0.86)), Values(Map(Currency Code -> GBP, Exchange Rate -> 0.76)),
Values(Map(Currency Code -> CHF, Exchange Rate -> 0.99)),
Values(Map(Currency Code -> CAD, Exchange Rate -> 1.29)),
Values(Map(Currency Code -> AUD, Exchange Rate -> 1.41)), ...
scala> plot.show

This will produce the following scatter plot of Currency Code versus Exchange Rate (USD):

Change the plot mark to Bar to output the bar chart using the following code:

val plot = Vegas("Currency Exchange Rates").
...
 mark(Bar) // for bar chart

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[71]

This produces the following bar chart:

As we can see, by using the vegas-viz Scala library, we can easily perform data
visualization using a simple set of APIs.

Other libraries for data visualization
There are several other libraries that support data visualization, but what makes the
vegas-viz library an important player is that it has excellent integration with Spark. Spark
has no built-in support for data visualization, and the vegas-viz library fills in this gap
very nicely.

One tool that you should definitely look at is Jupyter Notebook (http:/ ​/ ​jupyter. ​org/ ​),
which aims to provide an integrated environment for performing sophisticated data
analysis, and has excellent support for visual libraries.

Using ML to learn from data
ML is the process of discovering patterns in data without explicitly programming the logic.
In this section, we will look at how ML can be performed using Scala. This is a very vast
topic in itself, so we will only look at this from an applied usage point of view.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/

Data Analysis Life Cycle Chapter 2

[72]

Smile (https:/​/​haifengl. ​github. ​io/ ​smile/ ​index. ​html) is a popular Scala library that
helps with ML-related tasks. There are many other Scala ML libraries that are extremely
popular, such as Spark MLlib; however, these libraries are more suitable for distributed
processing environments. We will look at these in subsequent chapters.

Setting up Smile
There are multiple ways to set up Smile on your machine. Refer to Smile Quick Start
at https:/​/​haifengl. ​github. ​io/ ​smile/ ​quickstart. ​html for more information. The
easiest and fastest way to get started is to download the binaries from https:/ ​/​github.
com/​haifengl/​smile/ ​releases.

The following is a set of commands that are used to perform the Smile setup:

$ curl -L -o smile-1.5.1.zip
https://github.com/haifengl/smile/releases/download/v1.5.1/smile-1.5.1.zip
download and save in zip file
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 605 0 605 0 0 1729 0 --:--:-- --:--:-- --:--:-- 1733
100 165M 100 165M 0 0 11.2M 0 0:00:14 0:00:14 --:--:-- 12.2M

$ unzip smile-1.5.1.zip # unzip file
Archive: smile-1.5.1.zip
 inflating: smile-1.5.1/smile_config.txt
 inflating: smile-1.5.1/bin/init.scala
 inflating: smile-1.5.1/bin/libblas3.dll
...
 inflating: smile-1.5.1/lib/com.github.javaparser.javaparser-
core-3.2.5.jar
 inflating: smile-1.5.1/lib/com.github.scopt.scopt_2.12-3.5.0.jar
 inflating: smile-1.5.1/bin/smile
 inflating: smile-1.5.1/bin/smile.bat

$ cd smile-1.5.1 # Smile is setup in this directory

$ ls -1 # List the contents
bin
conf
data
doc
examples
lib
smile_config.txt

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/index.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://haifengl.github.io/smile/quickstart.html
https://github.com/haifengl/smile/releases
https://github.com/haifengl/smile/releases
https://github.com/haifengl/smile/releases
https://github.com/haifengl/smile/releases
https://github.com/haifengl/smile/releases
https://github.com/haifengl/smile/releases
https://github.com/haifengl/smile/releases
https://github.com/haifengl/smile/releases
https://github.com/haifengl/smile/releases
https://github.com/haifengl/smile/releases
https://github.com/haifengl/smile/releases
https://github.com/haifengl/smile/releases

Data Analysis Life Cycle Chapter 2

[73]

$ ls -l bin/smile # This is the Smile start up script
-rwxr-xr-x 1 uid gid 12980 Feb 25 2018 bin/smile

Once the setup is complete, let's confirm that it is working properly using the following
code. Note that there is a JVM memory parameter that might have to be adjusted
depending upon the size of the dataset that is being worked on:

$./bin/smile -J-Xmx2048M # 2048M (2 GB) of memory to JVM
Compiling (synthetic)/ammonite/predef/interpBridge.sc
Compiling (synthetic)/ammonite/predef/replBridge.sc
Compiling (synthetic)/ammonite/predef/DefaultPredef.sc
Compiling (synthetic)/ammonite/predef/CodePredef.sc

 ..::''''::..
 .;'' ``;.
 :: :: :: ::
 ,;' .;: () ..: :: :: :: ::
 ::. ..:,:;.,:;. . :: .::::. :: .:' :: :: `:. ::
 '''::, :: :: :: `:: :: ;: .:: :: : : ::
 ,:'; ::; :: :: :: :: :: ::,::''. :: `:. .:' ::
 `:,,,,;;' ,;; ,;;, ;;, ,;;, ,;;, `:,,,,:' `;..``::::''..;'
 ``::,,,,::''

 Welcome to Smile Shell; enter 'help<RETURN>' for the list of commands.
 Type "exit<RETURN>" to leave the Smile Shell
 Version 1.5.1, Scala 2.12.4, SBT 1.1.0, Built at 2018-02-26
 02:31:25.456
===

Let's see what things can be done using the Smile shell, as shown in the following code:

smile> help

 General:
 help -- print this summary
 :help -- print Scala shell command summary
 :quit -- exit the shell
 demo -- show demo window
 benchmark -- benchmark tests

 I/O:
 read -- Reads an object/model back from a file created by write command.
...
 Classification:
 knn -- K-nearest neighbor classifier.
 logit -- Logistic regression.
...
 Regression:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[74]

 ols -- Ordinary least square.
 ridge -- Ridge regression.
 lasso -- Least absolute shrinkage and selection operator.
...
 Graphics:
 plot -- Scatter plot.
 line -- Scatter plot which connects points by straight lines.
 boxplot -- Boxplots can be useful to display differences between
populations.
...

As can be seen from the help message, Smile supports a wide range of classification and
regression ML algorithms. Another nice feature of Smile is that it also has support for data
visualization.

Running Smile
To explore Smile, we will run some of the examples that are included with the Smile code
base.

The following is an example of applying a random forest algorithm to the data:

smile> val data = read.arff("data/weka/iris.arff", 4)
data: AttributeDataset = iris
 class sepallength sepalwidth petallength petalwidth
[1] Iris-setosa 5.1000 3.5000 1.4000 0.2000
[2] Iris-setosa 4.9000 3.0000 1.4000 0.2000
[3] Iris-setosa 4.7000 3.2000 1.3000 0.2000
[4] Iris-setosa 4.6000 3.1000 1.5000 0.2000
[5] Iris-setosa 5.0000 3.6000 1.4000 0.2000
[6] Iris-setosa 5.4000 3.9000 1.7000 0.4000
[7] Iris-setosa 4.6000 3.4000 1.4000 0.3000
[8] Iris-setosa 5.0000 3.4000 1.5000 0.2000
[9] Iris-setosa 4.4000 2.9000 1.4000 0.2000
[10] Iris-setosa 4.9000 3.1000 1.5000 0.1000
140 more rows...

smile> val (x, y) = data.unzipInt
x: Array[Array[Double]] = Array(
 Array(5.1, 3.5, 1.4, 0.2),
 Array(4.9, 3.0, 1.4, 0.2),
 Array(4.7, 3.2, 1.3, 0.2),
 Array(4.6, 3.1, 1.5, 0.2),
...
smile> val rf = randomForest(x, y)
[Thread-209] INFO smile.classification.RandomForest - Random forest tree

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[75]

OOB size: 59, accuracy: 89.83%
[Thread-210] INFO smile.classification.RandomForest - Random forest tree
OOB size: 52, accuracy: 88.46%
[Thread-213] INFO smile.classification.RandomForest - Random forest tree
OOB size: 50, accuracy: 100.00%
...
[Thread-210] INFO smile.classification.RandomForest - Random forest tree
OOB size: 56, accuracy: 100.00%
[main] INFO smile.util.package$ - runtime: 97.07988 ms
rf: RandomForest = smile.classification.RandomForest@a4df251

smile> println(s"OOB error = ${rf.error}")
OOB error = 0.04666666666666667

smile> rf.predict(x(0))
res4: Int = 0

Let's explore the data using Smile's visualization features, as shown in the following code:

smile> val iris = read.arff("data/weka/iris.arff", 4)
iris: AttributeDataset = iris
 class sepallength sepalwidth petallength petalwidth
[1] Iris-setosa 5.1000 3.5000 1.4000 0.2000
[2] Iris-setosa 4.9000 3.0000 1.4000 0.2000
[3] Iris-setosa 4.7000 3.2000 1.3000 0.2000
[4] Iris-setosa 4.6000 3.1000 1.5000 0.2000
[5] Iris-setosa 5.0000 3.6000 1.4000 0.2000
[6] Iris-setosa 5.4000 3.9000 1.7000 0.4000
[7] Iris-setosa 4.6000 3.4000 1.4000 0.3000
[8] Iris-setosa 5.0000 3.4000 1.5000 0.2000
[9] Iris-setosa 4.4000 2.9000 1.4000 0.2000
[10] Iris-setosa 4.9000 3.1000 1.5000 0.1000
140 more rows...

smile> plot(iris, '*', Array(Color.RED, Color.BLUE, Color.CYAN)) // plot
all the attribute pairs
res1: javax.swing.JFrame =
javax.swing.JFrame[frame0,780,191,1000x1000,invalid,layout=java.awt.BorderL
ayout,title=iris,resizable,normal,defaultCloseOperation=DISPOSE_ON_CLOSE,ro
otPane=javax.swing.JRootPane[,0,22,1000x978,invalid,layout=javax.swing.JRoo
tPane$RootLayout,alignmentX=0.0,alignmentY=0.0,border=,flags=16777673,maxim
umSize=,minimumSize=,preferredSize=],rootPaneCheckingEnabled=true]

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[76]

We will then see the following output window:

As we can see, the Smile Scala library has a lot to offer in terms of ML data visualization.
This could be a tool of choice if the data volumes are not very large. As mentioned earlier,
Spark and Vegas would be better for processing and visualizing large datasets.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Analysis Life Cycle Chapter 2

[77]

Creating a data pipeline
We have so far looked at data analysis life cycle tasks in isolation. In the real world, these
tasks need to be connected together to create a cohesive solution. Data pipelines are about
creating end-to-end, data-oriented solutions.

Spark supports ML pipelines (https:/ ​/ ​spark. ​apache. ​org/ ​docs/ ​2.​3. ​0/​ml- ​pipeline.
html). We will look at Spark and how to use Spark's ML pipeline functionality in
subsequent chapters.

Jupyter Notebooks (http:/ ​/​jupyter. ​org/ ​) is another great option for creating an
integrated data pipeline. Papermill (https:/ ​/​github. ​com/ ​nteract/ ​papermill) is an open
source project that helps parameterize and run Jupyter Notebooks. We will explore some of
these options in subsequent chapters.

Summary
In this chapter, we looked at the journey of data and the data analysis life cycle at a
broad level. Using hands-on examples, we looked at how to perform some of the tasks
using mainly Scala and some Java libraries.

In the next chapter, we will look at data ingestion and associated tasks.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
https://spark.apache.org/docs/2.3.0/ml-pipeline.html
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill

3
Data Ingestion

In this chapter, we will look into the data ingestion aspects of the data life cycle. Data
ingestion is a very broad term; however, we will concentrate on some of the most important
aspects of it. Data is generally considered to be ingested when it is ready for usage in
enterprise systems. In reality, a significant amount of effort is required to perform data
ingestion effectively and efficiently.

Data ingestion typically involves the following key tasks, which are also the topics that will
be covered in this chapter:

Data extraction
Data staging
Data cleaning
Data normalization
Data enrichment
Data organization and storage

At times, there are more tasks involved as part of data ingestion. There are also situations
where some of these tasks might not be necessary and two or more could be combined into
a single task.

Data extraction
Data extraction or delivery is the act of making raw data available to an enterprise system
for usage. This raw data could be originating from a system outside of the enterprise or
could have been created by an internal system. There are two ways in which data can be
delivered:

Pull: Data is fetched by the data consumer from the source system
Push: The data producer delivers the data to the consumer

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[79]

Both of these mechanisms are used extensively in enterprises for exchanging data. The
majority of legacy systems and applications use a pull-based approach for data delivery;
however, with the growing need of near real-time availability of data, there is a shift
toward push-based data delivery.

Let's look at both of these mechanisms in more detail.

Pull-oriented data extraction
In pull oriented data extraction, the consumer fetches the data from the producer. Some of
the commonly used pull mechanisms are as follows:

FTP/SFTP: The producer makes the data available on a File Transfer Protocol
(FTP) server, and the consumer fetches this data from the FTP server using the
FTP protocol. The Secure File Transfer Protocol (SFTP) variant uses Secure
Sockets Layer (SSL)/Transport Layer Security (TLS) to encrypt data in transit.
JDBC/ODBC: The producer makes the data available on a Relational Database
Management System (RDMS)-like system and the consumer queries this data
using JDBC/ODBC interface. The Java Database Connectivity (JDBC) interface is
generally used by JVM-based consumer applications, while Open Database
Connectivity (ODBC) is used by most others.

Please note that there are interfaces other than JDBC/ODBC available for
querying legacy database systems.

HTTP/HTTPS: The producer makes the data available using HTTP methods
such as GET/POST. The HTTPS variant uses SSL/TLS to encrypt data in transit.
Web services: The producer supports web service APIs to provide access to data.

This diagram illustrates how a Data Consumer pulls data from the Data Producer:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[80]

Let's look at a simple and concrete example of pull-based data extraction:

Import the BufferedReader class from Java's java.io package. This class1.
provides an efficient mechanism for reading text data by buffering the data. The
details of the BufferedReader class can be found at https:/ ​/​docs. ​oracle. ​com/
javase/​8/ ​docs/ ​api/ ​java/ ​io/ ​BufferedReader. ​html:

scala> import java.io.BufferedReader
import java.io.BufferedReader

Import the InputStreamReader class from Java's java.io package. This class2.
provides a bridge from the byte stream to the character stream. The details of
the InputStreamReader class can be found at https:/ ​/​docs. ​oracle. ​com/
javase/​8/ ​docs/ ​api/ ​?​java/ ​io/ ​InputStreamReader. ​html:

scala> import java.io.InputStreamReader
import java.io.InputStreamReader

Import URL class from Java's java.net package. The URL class represents a3.
uniform resource locator reference to a resource on the internet. More details
about the URL class can be found at https:/ ​/​docs. ​oracle. ​com/ ​javase/ ​8/​docs/
api/​java/ ​net/ ​URL. ​html:

scala> import java.net.URL
import java.net.URL

Import the Consumer interface from Java's java.util.function package. This4.
interface represents an operation that accepts a single input argument and does
not return a result. The details of the Consumer interface can be found at https:/
/​docs.​oracle. ​com/ ​javase/ ​8/ ​docs/​api/ ​java/ ​util/ ​function/ ​Consumer. ​html:

scala> import java.util.function.Consumer
import java.util.function.Consumer

Import ListBuffer from Scala's scala.collection.mutable package.5.
ListBuffer is a buffered implementation backed by a list. It is to be noted that
Scala's List is an immutable structure that, once created, cannot be changed.
The ListBuffer class provides a convenient mechanism to append items to a
buffer and turn it into a List object once the appends are completed. The
specifications of Scala's ListBuffer can be found at https:/ ​/​www. ​scala- ​lang.
org/​api/ ​current/ ​scala/ ​collection/ ​mutable/ ​ListBuffer. ​html:

scala> import scala.collection.mutable.ListBuffer
import scala.collection.mutable.ListBuffer

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/?java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.
https://www.scala-lang.org/api/current/scala/collection/mutable/ListBuffer.html.

Data Ingestion Chapter 3

[81]

Define a Scala class called DataConsumer:6.
This class extends Consumer, accepting String as input.
The class constructor initializes a ListBuffer of String and
overrides the accept method from Consumer.
The accept method appends the incoming string to the buffer:

scala> class DataConsumer extends Consumer[String] {
 | val buf = ListBuffer[String]() // initialize list
 buffer
 | override def accept(t: String): Unit = { // override
 //accept method of Consumer
 | buf += t // appends incoming string to list buffer
 | }
 | }
defined class DataConsumer

Create a new instance of BufferedReader, that reads from an7.
InputStreamReader pulling data from https:/ ​/​data. ​lacity. ​org/​api/ ​views/
nxs9-​385f/ ​rows. ​csv? ​accessType= ​DOWNLOAD. This involves multiple steps in the
following order:

First, we create an instance of java.net.URL to represent the input
network resource. The details of the java.net.URL class can be found
at https:/ ​/​docs. ​oracle. ​com/ ​javase/ ​8/ ​docs/ ​api/​java/ ​net/ ​URL.
html.
Next, invoke the openStream method on URL instance to get it as an
input byte stream. The openStream method returns a
Java java.io.InputStream instance. This stream represents an input
stream of bytes. The details of Java's InputStream class can be found
at https:/ ​/​docs. ​oracle. ​com/ ​javase/ ​8/ ​docs/ ​api/​java/ ​io/
InputStream. ​html.
Next, instantiate InputStreamReader by wrapping the input byte
stream to convert it to a character stream.
Finally, instantiate BufferedReader by
wrapping InputStreamReader. This gives us a reader object that can
be used for efficiently reading text data line-by-line.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html

Data Ingestion Chapter 3

[82]

The pattern being used here for instantiating the reader is known as a decorator design
pattern. Each class is adding additional functionality to the class it is wrapping:

InputStreamReader turns a byte-oriented InputStream to a character-oriented
input stream.
BufferedReader turns a character-oriented input stream to an input stream that
handles data buffering and provides an efficient mechanism with which to read
text data.

The following is a complete code for instantiating the BufferedReader:

scala> val reader = new BufferedReader(
 | new InputStreamReader(
 | new URL("https://data.lacity.org/api/views/nxs9-
 385f/rows.csv?accessType=DOWNLOAD").openStream()
 |)
 |)
reader: java.io.BufferedReader = java.io.BufferedReader@558ab02f

Create a new instance of DataConsumer:8.

scala> val dataConsumer = new DataConsumer
dataConsumer: DataConsumer = DataConsumer@4616af54

For each line in the BufferedReader, pass it through the accept method of9.
DataConsumer. This will cause all of the lines to be collected inside the
ListBuffer of dataConsumer:

Calling the lines method on the reader object returns all of the lines in
the stream as an instance of java.util.Stream. The details of this
can be found at https:/ ​/​docs. ​oracle. ​com/​javase/ ​8/​docs/ ​api/ ​java/
util/ ​stream/ ​Stream. ​html.
The forEach construct of java.util.Stream provides a convenient
way to apply the same operation to each element of the stream. In our
case, each element is a line and we are collecting a ListBuffer object
for each line:

scala> reader.lines().forEach(dataConsumer)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Data Ingestion Chapter 3

[83]

It is to be noted that the forEach construct used here is Java-specific. Scala has something
similar, called foreach, which works quite differently from Java's forEach construct. In a
similar situation, with Scala, foreach, we could have simply used the following:

reader.lines().foreach(i => buf += i) // buf is ListBuffer

Since we are using Java's InputStream family of classes here, we are forced to use the
forEach construct of Java. Scala does not have equivalents of the Java Stream API.

Print out the first five elements of the DataConsumer class contained10.
in ListBuffer:

The DataConsumer class's buf is a ListBuffer object. The toList
method of ListBuffer returns a new List object consisting of all the
elements in the buffer.
Take a convenient method of List to get the first specified number of
elements as another List.
The foreach construct of List provides a mechanism to perform an
action on each element. We are printing the element here:

scala> dataConsumer.buf.toList.take(5).foreach(println)
Zip Code,Total Population,Median Age,Total Males,Total
Females,Total Households,Average Household Size
91371,1,73.5,0,1,1,1
90001,57110,26.6,28468,28642,12971,4.4
90002,51223,25.5,24876,26347,11731,4.36
90003,66266,26.3,32631,33635,15642,4.22

In this example, the data producer has stored the data that can be extracted using an HTTP
request. The data consumer has to explicitly issue the HTTP request in order to extract this
data. This is a classic example of pull-based data extraction.

Please note that the URL is using HTTPS, and this implies that data will
be SSL/TLS encrypted in transit.

Using encryption for data in transit is very important to ensure that it does not get
tampered with and accessed by someone, as in a man-in-the-middle security attack. On the
same note, SFTP should always be preferred over FTP if a file transfer is to be used for
exchanging data.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[84]

Push-oriented data delivery
Push-oriented data delivery reverses the data flow that was happening in a pull-oriented
approach. In this case, the producer delivers that data to the consumer. Some of the
most commonly used push mechanisms are as follows:

REST: The consumer implements REST-based services that are invoked by the
producer to publish new data, update existing data, or delete records.
Web services: The consumer implements web services that are invoked by the
producer in a fashion similar to the REST-based mechanism.
Pub-Sub: The producer publishes the data to a generalized pub-sub framework,
such as Kafka/message queue. The consumer subscribes to these messages and
gets notified on arrival of new messages.
FTP/SFTP: The FTP/SFTP mechanism is similar to a pull-oriented approach,
however, the roles are reversed. In this case, the producer pushes the data to the
consumer using the FTP/SFTP protocol. Many legacy systems used to deliver
data using this mechanism.

This diagram illustrates how a Data Producer pushes data to Data Consumer:

Let's look at a simple and concrete example of push-based data delivery. We will follow the
REST API example provided by Play Framework (https:/ ​/​github. ​com/ ​playframework/
play-​scala-​rest- ​api- ​example). Play Framework is a powerful tool for building Scala and
Java web applications. The documentation of this framework can be found at https:/ ​/​www.
playframework.​com/ ​:

Clone the play-scala-rest-api-example repository (https:/ ​/ ​github. ​com/1.
playframework/ ​play- ​scala- ​rest- ​api- ​example) from GitHub. This needs to be
cloned, because this project needs to be compiled. Run the clone command in a
Terminal:

clone from github
$ git clone
https://github.com/playframework/play-scala-rest-api-example
Cloning into 'play-scala-rest-api-example'...
...
Resolving deltas: 100% (385/385), done.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://www.playframework.com/
https://www.playframework.com/
https://www.playframework.com/
https://www.playframework.com/
https://www.playframework.com/
https://www.playframework.com/
https://www.playframework.com/
https://www.playframework.com/
https://www.playframework.com/
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example
https://github.com/playframework/play-scala-rest-api-example

Data Ingestion Chapter 3

[85]

Change to the play example directory in the Terminal:2.

$ cd play-scala-rest-api-example

Run sbt by typing the following command in the Terminal:3.

$ sbt run
[info] Loading settings for project global-plugins from idea.sbt
...
...
--- (Running the application, auto-reloading is enabled) ---

[info] p.c.s.AkkaHttpServer - Listening for HTTP on
/0:0:0:0:0:0:0:0:9000

(Server started, use Enter to stop and go back to the console...)

HTTP REST services are now running at http://localhost:9000/. Let this server keep
running in a Terminal while we explore further.

The REST end-point is http://localhost:9000/v1/posts. You can open this4.
link in a web browser or run the following curl command to check the service:

$ curl curl http://localhost:9000/v1/posts
[
 {
 "id": "1",
 "link": "/v1/posts/1",
 "title": "title 1",
 "body": "blog post 1"
 },
 {
 "id": "2",
 "link": "/v1/posts/2",
 "title": "title 2",
 "body": "blog post 2"
 },
 {
 "id": "3",
 "link": "/v1/posts/3",
 "title": "title 3",
 "body": "blog post 3"
 },
 {
 "id": "4",
 "link": "/v1/posts/4",
 "title": "title 4",
 "body": "blog post 4"

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[86]

 },
 {
 "id": "5",
 "link": "/v1/posts/5",
 "title": "title 5",
 "body": "blog post 5"
 }

The REST server created five sample blog post entries. Each blog post entry has the
following attributes:

id

link

title

body

We can now POST some data to this REST server using the following curl5.
command. We will now add the following new blog post entry:

id = 999
link = /v1/posts/999
title = mytitle
body = mybody

$ curl -d "title=mytitle&amp;body=mybody" -X POST
http://localhost:9000/v1/posts
{"id":"999","link":"/v1/posts/999","title":"mytitle","body":"mybody
"}

On the Terminal REST server, you should be seeing messages like these:6.

[trace] v.p.PostActionBuilder - invokeBlock:
 [trace] v.p.PostController - process:
 [trace] v.p.PostRepositoryImpl - create: data =
 PostData(999,mytitle,mybody)

In this example, we have pushed the data to the REST server using the curl command. The
REST server, in this case, is the data consumer, and the curl command is the data
producer.

One of the biggest benefits of push-oriented data delivery is that data is available to the
consumer of the data in near real time. This is important, as there are several categories of
data whose value rapidly diminishes with time and is generally of little value if not acted
upon almost immediately.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[87]

Data staging
Once the data is extracted or delivered, it is generally staged into temporary storage for
further processing. It is generally a good idea to keep data extraction/delivery storage
separate from staging storage, although there are instances where this won't be necessary.

The staging area cleanly separates the following two aspects of the data ingestion process:

Data that has been extracted or delivered
New data that has to be processed

Once the data is staged completely, when we reach the further processing steps, such as
cleaning, we do not have to be concerned about new data arriving. We can think of staged
data as something that, once created, never changes and is immutable. This means that, to
an already staged piece of data, no more data can be added, deleted, or modified. This is a
very important data property that is necessary for reliable data processing in general. Any
processor working on the staged data can safely assume that staged data will remain
constant during the processing period.

Here, in this diagram, you can see the overall flow of data between the three key players:

Data receiving area
Data staging area
Data processing

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[88]

This is what is actually happening:

Data is received or extracted into a Data Receiving Area. This could be as a
result of pull-oriented data extraction or push-oriented data receipt.
A set of data from the receiving area is moved into the Data Staging Area. This
set of data in the staging area is immutable.
Data processing takes place on the immutable dataset in the staging area. The
data processing takes place only on the staged data.

Why is the staging important?
To answer this question, we have to understand a few realities on the ground. In an ideal
world, the entire data processing works from end to end without any failures; however, in
the real world, failures are quite common at different stages of processing. We need to
account for these errors and develop a strategy for recovering from failures gracefully. In a
large-scale data processing environment, we also want to recover from a safe and
deterministic checkpoint so that the data processing that has already been done
successfully can be reused, without repeating it. A staging area provides the unit of work
that could be reliably used to achieve this goal.

We have three key participants here:

Staged-dataset-n
Data processor
Database

Let's look at a simple example to illustrate this concept:

At a high level, the following is the flow:

Data Processor reads the data from Staged-dataset-n
Data Processor performs some transformations on the input data
Data Processor writes the transformed data to the Database

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[89]

So, the question is, how does staging help in this process? Let's assume that the data being
written to the database is being tagged with the name Staged-dataset-n. Let's say that, in
the middle of this data processing, the database server suddenly goes down. This will result
in the data processor failing. When the database server comes back online, it has partial
data from Staged-dataset-n. To recover from this failure, the following simple strategy
could be followed:

Delete all of the data in the database associated with Staged-dataset-n1.
Rerun the Data Processor with Staged-dataset-n2.
Repeat this until Staged-dataset-n is successfully processed3.

This is a somewhat simple strategy to deal with unexpected failures during data
processing; however, this illustrates a few important properties:

This strategy is deterministic, because Staged-dataset-n is immutable. When the
processing of this dataset fully completes, it will produce results consistent with
the database.
Staged-dataset-n is the unit of work, and the size of this unit of work can be
controlled by the staging process. From the data processor's perspective, it has
successfully processed this unit of work.

Cleaning and normalizing
Staged data is considered to be immutable. Immutability in this context implies that staged
data, once created, never changes. Now, the data cleaning and normalizing process can
start. This step could also involve determining the degree of errors in the data received. In
particular, it is expected that big data will have a certain amount of errors.

Raw data coming from external sources comes in a variety of formats. These formats are
generally designed for data delivery and are not suitable for use by systems consuming
data. It is also very common for some of the information to be clubbed together as part of
data delivery; however, the consumer of the data needs to have more fine-grained access to
the information.

An example of this is the address part of the data. The data producer might provide a free-
form address. The contained information, such as street name and city name, might also not
be consistent across the dataset. On the other hand, it might be more desirable for the data
consumer to have a high degree of confidence in the consistency of different components of
the address, such as street name, city name, and ZIP code.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[90]

To perform data cleaning, it is often necessary to convert received data into an intermediate
normal form first. The intermediate normal form is not necessarily the same as the final
normal form, and is typically designed for efficient processing.

Let's consider a simple example of data related to persons in three different formats,
namely XML, JSON, and CSV:

// XML
<person>
 <fname>Jon</fname>
 <lname>Doe</lname>
 <phone>123-456-7890</phone>
 <zip>12345</zip>
 <state>NY</state>
</person>

// JSON
{
 "person": {
 "fname": "Jon",
 "lname": "Doe",
 "phone": "123-456-7890",
 "zip": "12345",
 "state": "NY"
 }
}

// CSV
Jon,Doe,123-456-7890,12345,NY

Let's assume that there are several external data providers that provide this data; however,
each provider chooses from one of the three formats. As a consumer of this data, you have
to deal with all of these three formats depending upon the format of data provided by the
producer. When data is being staged, it would make sense to create staged datasets that
have one uniform data format.

The following could be the data processing flow:

The staged dataset is one of three formats: XML, JSON, or CSV
There is an intermediate step to determine the format of the staged dataset
An appropriate data normalizer is selected based on the actual data format
The staged dataset is normalized using the selected data normalizer
The normalized data is processed by the data processor

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[91]

Please note that, in this context, the normal form is still an intermediate
form that must be able to capture all of the elements of incoming data,
irrespective of the incoming data format (XML, JSON, or CSV).

The following diagram illustrates how all of this works together:

This is a very good example of a clear separation of concerns. The two concerns we are
dealing with here are the following:

Data coming in a variety of formats
Processing of data

The processing of data does not depend upon the format of the data. It is dependent on the
contents and associated meaning of that data. The normal form representation of data
captures all of the elements of data without any loss of information. This provides greater
flexibility when new data formats need to be supported. All that needs to be implemented
are the following:

A way to determine the new data format
A converter that converts the new data format to normal form

The core processing remains unchanged because it is dependent upon the normal form
only.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[92]

Let's explore this concept using a simple hands-on example using the Scala Build
Tool (SBT). Create a build.sbt class with the following info:

libraryDependencies ++= Seq(
// Scala XML library
 "org.scala-lang.modules" %% "scala-xml" % "1.1.0",
// Scala Lift JSON Library
 "org.json4s" %% "json4s-native" % "3.6.1"
)

We are using two Scala libraries here:

Scala XML: A powerful Scala library for processing the XML data format. The
details of this project can found at https:/ ​/​github. ​com/​scala/ ​scala- ​xml.
Scala Lift JSON: A powerful Scala library for processing the JSON data format.
The details of this project can be found at https:/ ​/​github. ​com/ ​lift/ ​framework/
tree/​master/ ​core/ ​json.

We will explore how we can normalize XML, JSON, and CSV. For simplicity, we will be
parsing CSV data using Scala's built-in split method of String:

Now, run SBT and start a Scala console. In the console explore, convert data in1.
different formats to a normal form. We are using a Scala case class to represent a
normal form.
Import Elem from Scala's scala.xml package:2.

scala> import scala.xml.Elem
import scala.xml.Elem

Import the following, and set implicit, which is needed for working with the3.
JSON format:

scala> import org.json4s._
import org.json4s._

scala> import org.json4s.native.JsonMethods._
import org.json4s.native.JsonMethods._

scala> implicit val formats = DefaultFormats
formats: org.json4s.DefaultFormats.type =
 org.json4s.DefaultFormats$@6f13a14e

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json

Data Ingestion Chapter 3

[93]

Define a Scala case class called Person that will follow five attributes:4.
fname: First name
lname: Last name
phone: Phone number
zip: The ZIP code for where the person lives
state: The state where the person lives

scala> case class Person(fname: String, lname: String, phone:
 String,
 zip: String, state: String)
defined class Person

Create a JSON string that consists of the person's information, with all five5.
attributes defined:

scala> // JSON

scala> val jsonStr = """
 | {
 | "fname": "Jon",
 | "lname": "Doe",
 | "phone": "123-456-7890",
 | "zip": "12345",
 | "state": "NY"
 | }
 | """
jsonStr: String =
"
{
 "fname": "Jon",
 "lname": "Doe",
 "phone": "123-456-7890",
 "zip": "12345",
 "state": "NY"
}
"

Parse a JSON string into a JSON object first:6.

scala> val json = parse(jsonStr)
json: org.json4s.JValue = JObject(List((fname,JString(Jon)),
 (lname,JString(Doe)), (phone,JString(123-456-7890)),
 (zip,JString(12345)), (state,JString(NY))))

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[94]

Normalize the JSON object into Person:7.

scala> val normJson = json.extract[Person]
normJson: Person = Person(Jon,Doe,123-456-7890,12345,NY)

Create a Scala XML object:8.

scala> // XML

scala> val xml = <person>
 | <fname>Jon</fname>
 | <lname>Doe</lname>
 | <phone>123-456-7890</phone>
 | <zip>12345</zip>
 | <state>NY</state>
 | </person>
xml: scala.xml.Elem =
<person>
 <fname>Jon</fname>
 <lname>Doe</lname>
 <phone>123-456-7890</phone>
 <zip>12345</zip>
 <state>NY</state>
</person>

Please note that Scala automatically recognizes XML syntax and creates a
scala.xml.Elem object.

Normalize the XML object into Person:9.

scala> val normXml = Person(xml \ "fname" text, xml \ "lname" text,
xml \ "phone" text, xml \ "zip" text, xml \ "state" text)

warning: there were 5 feature warnings; re-run with -feature for
details

normXml: Person = Person(Jon,Doe,123-456-7890,12345,NY)

Please note that Scala provides a convenient syntax to extract elements
and attributes from a Scala XML Elem object. Here, https:/ ​/​github. ​com/
scala/ ​scala- ​xml/ ​wiki/ ​Getting- ​started is a good reference with which
to become familiar with various features of Scala's XML capabilities.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started
https://github.com/scala/scala-xml/wiki/Getting-started

Data Ingestion Chapter 3

[95]

Create a CSV object:10.

scala> // CSV (for simplicity, we use split method of String to
parse CSV)

scala> val csvStr = "Jon,Doe,123-456-7890,12345,NY"
csvStr: String = Jon,Doe,123-456-7890,12345,NY

Split the CSV object using the comma as a delimiter:11.

scala> val csvCols = csvStr.split(",")
csvCols: Array[String] = Array(Jon, Doe, 123-456-7890, 12345, NY)

Normalize CSV to Person:12.

scala> val normCsv = Person(csvCols(0), csvCols(1), csvCols(2),
 csvCols(3), csvCols(4))
normCsv: Person = Person(Jon,Doe,123-456-7890,12345,NY)

Ensure that all three forms are the same:13.

scala> // Let us make sure that all three normal objects are same

scala> normXml == normJson
res0: Boolean = true

scala> normXml == normCsv
res1: Boolean = true

scala> normJson == normCsv
res2: Boolean = true

As can be seen, the normal form used previously is able to represent the data, arriving in
different formats, into a single consistent structure. The remaining processing can rely on
this form and can be completely agnostic toward what ever form the data came in.

In the preceding example, we assumed that the incoming data is perfectly clean; however,
real-world data often requires some cleaning before it can be used. Let's assume that all of
the data elements in Person cannot have leading or trailing spaces, and state must be
capitalized. To perform this kind of data cleaning, we could do something like this:

Extend the functionality of the consumer case by adding a method called1.
cleanCopy. This method returns a new Person instance with trimmed fname,
lname, phone, zip, state, and state converted to upper case:

scala> case class Person(fname: String, lname: String, phone:
String, zip: String, state: String) {

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[96]

 | def cleanCopy(): Person = {
 | this.copy(fname.trim, lname.trim, phone.trim, zip.trim,
 state.trim.toUpperCase)
 | }
 | }

defined class Person

Create a CSV record that is not cleaned:2.

scala> val uncleanCsvStr = " Jon , Doe , 123-456-7890 , 12345 , ny
"
 uncleanCsvStr: String = " Jon , Doe , 123-456-7890 , 12345 , ny
"

Split the CSV record with a comma as the delimiter:3.

scala> val uncleanCsvCols = uncleanCsvStr.split(",")
uncleanCsvCols: Array[String] = Array(" Jon ", " Doe ", " 123-456-
 7890 ", " 12345 ", " ny ")

Create an unclean normalized Person object:4.

scala> val uncleanNormCsv = Person(uncleanCsvCols(0),
uncleanCsvCols(1), uncleanCsvCols(2), uncleanCsvCols(3),
uncleanCsvCols(4))
uncleanNormCsv: Person = Person(Jon , Doe , 123-456-7890 , 12345 ,
ny)

Create a clean, normalized Person object from an unclean one:5.

scala> val cleanNormCsv = uncleanNormCsv.cleanCopy
cleanNormCsv: Person = Person(Jon,Doe,123-456-7890,12345,NY)

Let's revisit the Person case class and the cleanCopy extension that was made
earlier. Inside our Person case class, we defined a new method that returns a cleaned copy
of the Person object. Scala case classes provide a method called copy, which can be used to
create a copy of the same object, but optionally modifies a subset of attributes as needed. In
our case, we have modified all of the attributes of the original. We could have constructed a
new Person object instead of using copy:

Person(fname.trim, lname.trim, phone.trim, zip.trim,
 state.trim.toUpperCase)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[97]

The following Person case class implements the same functionality as the earlier one:

case class Person(fname: String, lname: String, phone: String, zip: String,
state: String) {
 def cleanCopy(): Person = {
 Person(fname.trim, lname.trim, phone.trim, zip.trim,
state.trim.toUpperCase)
 }
}

The preceding example is quite simple, but illustrates that simple data cleaning can be
performed with ease using built-in Scala features, and Scala case classes really come in
handy when working with normal forms of data.

Enriching
Data enrichment is the act of adding more information to raw data. Some examples of the
enrichments are as follows:

Adding missing values
Adding lookup values
Joining with other datasets
Filtering
Aggregating

Continuing on the same example of using Person, let's say that the state element is
optional. Given the zip information, we should be able to derive the value of state. In this
specific case, we are performing the following two enrichments:

Looking up or deriving the value of state based on the zip value
Adding missing state value

Let's define a simple Scala function to map a US zip code to state. Please refer to
Wikipedia (https:/ ​/ ​en. ​wikipedia. ​org/ ​wiki/ ​List_ ​of_​ZIP_ ​code_ ​prefixes) for more info
on US ZIP codes:

Define a Scala case class called Person with a method called cleanCopy to1.
provide a clean copy of the object:

scala> case class Person(fname: String, lname: String, phone:
String, zip: String, state: String) {
 | def cleanCopy(): Person = {

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_code_prefixes

Data Ingestion Chapter 3

[98]

 | this.copy(fname.trim, lname.trim, phone.trim, zip.trim,
state.trim.toUpperCase)
 | }
 | }

defined class Person

Define a function called getState that finds a US state when given a US ZIP2.
code:

Input: zip
Output: state

Please note that this only a partial implementation of this function:

scala> def getState(zip: String): String = { // Partial implementation for
simplicity
 | val zipPerfix = zip.substring(0, 3)
 | zipPerfix match {
 | case "006"|"007"|"009" => "PR" // PR is Puerto Rico
 | case "008" => "VI" // VI is Virgin Islands
 | case n if (n.toInt >= 10 &amp;&amp; n.toInt <= 27) => "MA" //
010 to 027 is MA
 | case "028" | "029" => "RI"
 | case n if (n.toInt >= 100 &amp;&amp; n.toInt <= 149) => "NY"
// 010 to 027 is MA
 | case _ => "N/A"
 | }
 | }
getState: (zip: String)String

Define a function called populateStateIfNecessary that populates the state3.
attribute of Person, if it is not already populated. It makes use of getState
function to find state based on the ZIP code:

Input: Person
Output: Person

scala> def populateStateIfNecessary(p: Person): Person = {
 | if (p.state == null || p.state.isEmpty)
 | p.copy(state=getState(p.zip))
 | else
 | p
 | }
populateStateIfNecessary: (p: Person)Person

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[99]

Please note that preceding function returns the same Person object of the state attribute if
already populated. If it is not populated, it creates a copy of the Person object, sets the
state attribute, of copy to the state derived using the ZIP code, and then returns this
copy of the Person object.

Here is an important tip: creating unnecessary objects should be avoided
as far as possible. This is because these objects occupy memory space in
JVM's heap space. Another side effect of this could be that there are
frequent Java Garbage Collection (GC) activities happening in JVM,
which lead to degradation in the overall performance of the application.

Create an unclean CSV record with the missing state information:4.

scala> val uncleanCsvStr = " Jon , Doe , 123-456-7890 , 12345 , "
// missing state
uncleanCsvStr: String = " Jon , Doe , 123-456-7890 , 12345 , "

Split the unclean CSV record by using the comma as the delimiter:5.

scala> val uncleanCsvCols = uncleanCsvStr.split(",")
uncleanCsvCols: Array[String] = Array(" Jon ", " Doe ", "
123-456-7890 ", " 12345 ", " ")

Create an unclean normal object from the unclean CSV record:6.

scala> val uncleanNormCsv = Person(uncleanCsvCols(0),
uncleanCsvCols(1), uncleanCsvCols(2), uncleanCsvCols(3),
uncleanCsvCols(4))
uncleanNormCsv: Person = Person(Jon , Doe , 123-456-7890 , 12345 ,
)

Clean the unclean normal record:7.

scala> val cleanNormCsv = uncleanNormCsv.cleanCopy
cleanNormCsv: Person = Person(Jon,Doe,123-456-7890,12345,)

Enrich the normal record:8.

scala> val enriched = populateStateIfNecessary(cleanNormCsv)
enriched: Person = Person(Jon,Doe,123-456-7890,12345,NY)

The preceding example illustrates how to enrich data. We can also think of the
aforementioned example, similar to value lookup, which can be implemented as a dataset
join operation with a lookup dataset. In this case, the lookup data has a mapping from ZIP
code to state. Every single ZIP value needs to be mapped to the state for this to work.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[100]

There are times when incoming data has more data than the data consumer is interested in.

We can filter out the unnecessary data and only keep that data we are interested in:

Create input data that has a mix of useful, as well as some unnecessary, records:1.

scala> val originalPersons = List(
 | Person("Jon","Doe","123-456-7890","12345","NY"),
 | Person("James","Smith","555-456-7890","00600","PR"),
 | Person("Don","Duck","777-456-7890","00800","VI"),
 | Person("Doug","Miller","444-456-7890","02800","RI"),
 | Person("Van","Peter","333-456-7890","02700","MA")
 |)
originalPersons: List[Person] =
List(Person(Jon,Doe,123-456-7890,12345,NY),
Person(James,Smith,555-456-7890,00600,PR),
Person(Don,Duck,777-456-7890,00800,VI),
Person(Doug,Miller,444-456-7890,02800,RI),
Person(Van,Peter,333-456-7890,02700,MA))

Define the exclusion states:2.

scala> val exclusionStates = Set("PR", "VI") // we want to exclude
these states
exclusionStates: scala.collection.immutable.Set[String] = Set(PR,
VI)

Filter out the records belonging to exclusion states:3.

scala> val filteredPersons = originalPersons.filterNot(p =>
exclusionStates.contains(p.state))
filteredPersons: List[Person] =
List(Person(Jon,Doe,123-456-7890,12345,NY),
Person(Doug,Miller,444-456-7890,02800,RI),
Person(Van,Peter,333-456-7890,02700,MA))

In the preceding example, we wanted to exclude data from certain states, since that is not
relevant to our data analysis. The technique demonstrated appears fairly simple because of
powerful constructs provided by the Scala programming language. The
filterNot method of the Scala collection API removes any element from the collection
that satisfies the condition being tested.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[101]

Alternatively, we could have used the filter API, which is inverse of the filterNot API.
Let's see this in action:

Create a list of mixed records:1.

scala> val originalPersons = List(
 | Person("Jon","Doe","123-456-7890","12345","NY"),
 | Person("James","Smith","555-456-7890","00600","PR"),
 | Person("Don","Duck","777-456-7890","00800","VI"),
 | Person("Doug","Miller","444-456-7890","02800","RI"),
 | Person("Van","Peter","333-456-7890","02700","MA")
 |)
originalPersons: List[Person] =
List(Person(Jon,Doe,123-456-7890,12345,NY),
Person(James,Smith,555-456-7890,00600,PR),
Person(Don,Duck,777-456-7890,00800,VI),
Person(Doug,Miller,444-456-7890,02800,RI),
Person(Van,Peter,333-456-7890,02700,MA))

Define exclusion states:2.

scala> val exclusionStates = Set("PR", "VI") // we want to exclude
these states
exclusionStates: scala.collection.immutable.Set[String] = Set(PR,
VI)

Use the filterNot API first to remove unwanted records:3.

scala> val filteredPersons1 = originalPersons.filterNot(p =>
exclusionStates.contains(p.state))
filteredPersons1: List[Person] =
List(Person(Jon,Doe,123-456-7890,12345,NY),
Person(Doug,Miller,444-456-7890,02800,RI),
Person(Van,Peter,333-456-7890,02700,MA))

Use the filter API next to remove unwanted records:4.

scala> val filteredPersons2 = originalPersons.filter(p =>
!exclusionStates.contains(p.state))
filteredPersons2: List[Person] =
List(Person(Jon,Doe,123-456-7890,12345,NY),
Person(Doug,Miller,444-456-7890,02800,RI),
Person(Van,Peter,333-456-7890,02700,MA))

Compare the two results:5.

scala> filteredPersons1 == filteredPersons2
res2: Boolean = true

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[102]

You can see that we can produce identical outcomes using the filter and filterNot
APIs by just inverting the test conditions.

Please note that, in the real-world applications, you would notice that the
filter API is used significantly more than the filterNot. It is generally
a matter of personal preference at times; however, code readability should
be the primary criteria in making an appropriate choice between the two.

Organizing and storing
Once all of the processing related to data is completed, it is organized and stored in such a
way that consumers of data can begin using the data. This act is equivalent to publishing
data and making it available for usage.

Data usage generally drives how data is organized and stored. Time series data is generally
organized by time dimensions. For example, we could organize data coming from Internet
of Things (IoT) devices in the following hierarchy:

Year
Month
Day
Hour
Minute

In this context, year, month, day, hour, and minute are the functions of the event
occurrence time. For example, if the occurrence time is 2018-10-31 15:30:45 UTC, then it will
have the following values:

Year = 2018
Month = 10
Day = 31
Hour = 15
Minute = 30

Another way to organize the data could be by using the device type, or even a mix of both
time dimensions and device type. In the context of big data, it is often the case that multiple
storage strategies are devised to store multiple copies of the same data, but different storage
structures are used to support use cases where a single structure is unable to support all of
the use cases efficiently and effectively.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[103]

A significant number of factors need to be considered when it comes to data organization
and storage. The data model plays the most central role when the end user's perspective is
taken into consideration. It also needs to be considered how the security and retention
policies around this data will be handled. All of these factors contribute to determining the
appropriate strategy for managing this data. We essentially have three distinct forces at
work:

The raw data
The processed and organized data
The data users

The following is a diagram that illustrates the interaction between these players at a high
level:

The preceding diagram illustrates the data's journey from raw to organized and its usage
interactions by end users of the data. This highlights the fact that processed and organized
data should be able to answer end users' questions effectively and efficiently. This should
be the primary focus for determination of storage and organizational structure of the
processed data.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Ingestion Chapter 3

[104]

It is not necessary that the end user is a human being. The data user could even be another
computer process. A significant effort is generally devoted to coming up with an
appropriate data model to support a variety of end users. In the big data world, it is also
quite common to have multiple data models for the same dataset to support fairly diverse
use cases.

Summary
In this chapter, we looked at some of the key tasks associated with aspects with data
ingestion. In particular, we looked at data staging and dealing with various data formats.
We also got an understanding of data cleaning and enrichment. We also looked at how to
organize and store data so that it can be used for data analysis. The end user's or
consumer's perspective is very important when it comes to defining an appropriate data
model, and all of the important use cases must be taken into consideration. At times, there
is a need to create multiple data models to support use cases that have completely different
needs.

In the next chapter, we will look at exploring and visualizing data.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Data Exploration and

Visualization
Data exploration is about trying to gain an understanding of patterns and relationships
hidden inside the data. Data visualization helps tremendously in this process. In fact, visual
methods are frequently used to explain and communicate these patterns and relationships
to an interested audience. It needs to be noted that data exploratory analysis and data
explanatory analysis are two different things. Data explanatory analysis can only start after
data exploratory analysis is completed. Our focus here is primarily data exploratory
analysis and we want to discover and learn about the structure of data. Visual tools play a
more dominant role in explanatory data analysis; however, these also play an equally
important role during data exploration.

The following are the topics that we will be covering in this chapter:

Sampling data
Performing ad hoc analysis
Finding a relationship between data elements
Visualizing data

Sampling data
To explore large datasets, it is generally useful to work with a smaller sample of data first.
For example, from a dataset consisting of 100 million records, we could take a sample of
1,000 records and start exploring some important properties of this data. Exploring the
entire dataset would be ideal; however, the time required to do so would increase
manifold.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[106]

Selecting the sample
For working with samples, it is important that sample selection is done carefully and biases
are not introduced unnecessarily. Randomness plays a very important role in this.

Let's look at how we can make use of the Scala collection API to select sample data from a
dataset:

Create a list of 1000 numbers using Scala's Range API. We generate a sequence1.
of 1,000 number from 0 to 1000 (1,000 is excluded) first and turn it into a Scala
List:

scala> val data = Range(0, 1000).toList
data: List[Int] = List(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,
125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150,
151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,...

Use the Scala list's take method, select the first three elements of the2.
aforementioned-generated List. This will provide another List with three
elements:

scala> val first3 = data.take(3)
first3: List[Int] = List(0, 1, 2)

We generated a list of 1,000 integers from 0 to 999 and selected the first three integers from
this. The previous steps would always produce the same result each time.

This implies that if the dataset remains constant, then the selected values would always be
the same and our sample has implicit bias. Let's see how we can select random values:

Import the Random class from Scala's util package:1.

scala> import scala.util.Random
import scala.util.Random

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[107]

Perform a random shuffle operation on the previously generated data, using2.
Scala's random utility class's shuffle method. This produces another list with
the same content as the original one; however, the position of the numbers in the
new list is randomized and different from the original list:

scala> val randomizedData = Random.shuffle(data)
randomizedData: List[Int] = List(725, 225, 231, 280, 518, 818, 395,
519, 13, 648, 292, 826, 520, 885, 114, 403, 277, 218, 707, 864,
798, 575, 942, 685, 627, 95, 512, 753, 763, 923, 209, 633, 631,
743, 327, 0, 946, 147, 838, 78, 777, 473, 521, 501, 86, 590, 748,
956, 105, 963, 483, 334, 109, 5, 285, 910, 791, 102, 398, 240, 447,
493, 351, 297, 399, 365, 466, 612, 298, 529, 762, 680, 975, 253,
535, 902, 373, 36, 356, 596, 679, 717, 976, 543, 180, 894, 500,
624, 405, 754, 881, 916, 213, 768, 305, 740, 263, 422, 771, 623,
121, 989, 486, 574, 196, 987, 968, 73, 943, 662, 393, 438, 834,
714, 746, 364, 260, 139, 906, 944, 793, 485, 647, 66, 418, 909,
787, 377, 94, 25, 84, 888, 657, 23, 776, 402, 649, 472, 915, 496,
140, 155, 772, 319, 752, 964, 354, 11, 431, 413, 982, 621, 835,
468, 785, 463, ...

Select the first three elements from the randomized list, using the take method:3.

scala> val random3 = randomizedData.take(3)
random3: List[Int] = List(725, 225, 231)

Repeat step 2 to produce another randomized list. This randomized list is4.
expected to be quite different compared to the original list and previously
generated list:

scala> val randomizedDataNext = scala.util.Random.shuffle(data)
randomizedDataNext: List[Int] = List(955, 128, 857, 129, 901, 265,
535, 879, 998, 373, 601, 816, 297, 648, 624, 27, 119, 195, 868,
357, 859, 986, 569, 660, 167, 885, 416, 199, 848, 406, 751, 593,
156, 673, 333, 403, 628, 122, 775, 390, 926, 360, 513, 953, 820,
947, 867, 295, 113, 639, 897, 856, 717, 426, 865, 988, 407, 814,
110, 762, 852, 842, 940, 102, 61, 298, 815, 197, 233, 515, 318,
401, 180, 781, 262, 157, 492, 376, 747, 688, 186, 824, 961, 659,
269, 618, 819, 623, 866, 46, 557, 511, 176, 840, 800, 679, 481,
704, 551, 66, 54, 977, 732, 700, 813, 264, 625, 171, 347, 990, 290,
43, 742, 418, 836, 92, 979, 938, 369, 111, 779, 3, 613, 117, 379,
8, 764, 356, 573, 921, 893, 822, 351, 279, 164, 507, 930, 514, 805,
245, 714, 121, 694, 223, 652, 526, 755, 692, 260, 476, 105, 404,
289, 869, 5...

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[108]

Select the first three elements from the new randomized List using the take5.
method:

scala> val random3Next = randomizedDataNext.take(3)
random3Next: List[Int] = List(955, 128, 857)

In this code example, we are to able to get three random values by using the
scala.util.Random.shuffle function. Although the preceding example illustrated the
data randomization technique, it is not very efficient in terms of performance and it won't
scale as the datasets get larger and larger. It does, however, illustrate a simple way to get
random samples using Scala's built-in APIs. We will look at how to efficiently get random
samples from large datasets in subsequent chapters.

The details of Scala's random utility can be found at https:/ ​/ ​www.​scala- ​lang. ​org/​api/ ​2.
12.​8/​scala/​util/ ​Random$. ​html. Some of the commonly used APIs are shown in the
following table:

Method name Purpose
nextInt Provides the next pseudo-random uniformly distributed integer
nextLong Provides the next pseudo-random uniformly distributed long

nextDouble
Provides the next pseudo-random uniformly distributed double
between 0.0 and 2.0

nextBytes
Fills the user-supplied array of bytes with the next set of pseudo-
random uniformly distributed bytes

nextGaussion
Provides the next pseudo-random Gaussian distributed double
value with a mean of 0.0 and a standard deviation of 1.0

nextPrintableChar
Provides the next pseudo-random uniformly distributed printable
character from the ASCII character set

shuffle
Requires a collection as input and provides a new collection whose
element positions are randomized

Selecting samples using Saddle
Let's look at a similar exercise using the Scala Saddle library. We will be using the CSV data
from https:/​/​data. ​lacity. ​org/ ​api/ ​views/ ​nxs9- ​385f/ ​rows. ​csv?​accessType= ​DOWNLOAD.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://www.scala-lang.org/api/2.12.8/scala/util/Random%24.html
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD

Data Exploration and Visualization Chapter 4

[109]

This dataset was introduced in earlier chapters. Let's follow these steps to use Saddle:

First, we need to define our build.sbt, as follows, to include the Saddle library1.
dependencies. Remember to save build.sbt as a file in your current directory:

scalaVersion := "2.11.12"

libraryDependencies ++= Seq(
 "org.scala-saddle" %% "saddle-core" % "1.3.4" // Saddle Dataframe
like Library
)

Start SBT in your Terminal from the same directory where build.sbt is located2.
and start a Scala console:

$ sbt

Import BufferedReader and InputStreamReader from the java.io package:3.

scala> import java.io.{BufferedReader, InputStreamReader}
import java.io.{BufferedReader, InputStreamReader}

Import the saddle package:4.

scala> import org.saddle.io._
import org.saddle.io._

Define a Scala class called SaddleCsvSource that takes a URL string as an input5.
argument to the constructor and extends CsvSource. The constructor establishes
a connection to the provided URL and creates a BufferedReader object that can
be used to read data from the URL, line by line:

scala> class SaddleCsvSource(url: String) extends CsvSource {
 | val reader = new BufferedReader(new InputStreamReader(new
java.net.URL(url).openStream()))
 | override def readLine: String = {
 | reader.readLine()
 | }
 | }
defined class SaddleCsvSource

We have overridden the readLine method of the parent CsvSource class. The overridden
method reads a line of data from the URL. This method automatically gets repeated when
the parse method is invoked on CsvSource.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[110]

Create a new instance of SaddleCsvSource by supplying https:/ ​/ ​data.6.
lacity.​org/ ​api/ ​views/ ​nxs9- ​385f/​rows. ​csv? ​accessType= ​DOWNLOAD as the URL.
This is our source data that is in CSV format and we want to parse this data using
Saddle's CSV parser:

scala> val file = new
SaddleCsvSource("https://data.lacity.org/api/views/nxs9-385f/rows.c
sv?accessType=DOWNLOAD")
file: SaddleCsvSource = SaddleCsvSource@3f0055eb

Parse the aforementioned object using the CsvParser instance parse, API. This7.
provides Saddle's Frame object that is used for further exploration:

scala> val frameOrig = CsvParser.parse(file)
frameOrig: org.saddle.Frame[Int,Int,String] =
[320 x 7]
 0 1 2 3 4 5 6
 -------- ---------------- ---------- ----------- -----------
-- ---------------- ----------------------
 0 -> Zip Code Total Population Median Age Total Males Total
Females Total Households Average Household Size
 1 -> 91371 1 73.5 0 1 1 1
 2 -> 90001 57110 26.6 28468 28642 12971 4.4
 3 -> 90002 51223 25.5 24876 26347 11731 4.36
 4 -> 90003 66266 26.3 32631 33635 ...
scala>

Get the header:8.

scala> val head = frameOrig.rowSlice(0,1).rowAt(0)
head: org.saddle.Series[Int,String] =
[7 x 1]
0 -> Zip Code
1 -> Total Population
2 -> Median Age
3 -> Total Males
4 -> Total Females
5 -> Total Households
6 -> Average Household Size
scala>

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD

Data Exploration and Visualization Chapter 4

[111]

Remove the header row and attach the header back as column names:9.

scala> val frame = frameOrig.rowSlice(1,
frameOrig.numRows).mapColIndex(i => head.at(i).get)
frame: org.saddle.Frame[Int,String,String] =
[319 x 7]
 Zip Code Total Population Median Age Total Males Total
Females Total Households Average Household Size
 -------- ---------------- ---------- ----------- -----------
-- ---------------- ----------------------
 1 -> 91371 1 73.5 0 1 1 1
 2 -> 90001 57110 26.6 28468 28642 12971 4.4
 3 -> 90002 51223 25.5 24876 26347 11731 4.36
 4 -> 90003 66266 26.3 32631 33635 15642 4.22
 5 -> 90004 62180 34.8 31302 30878 2...

Get the first three records from Saddle's Frame:10.

scala> frame.head(3)
res1: org.saddle.Frame[Int,String,String] =
[3 x 7]
 Zip Code Total Population Median Age Total Males Total Females
Total Households Average Household Size
 -------- ---------------- ---------- ----------- -------------
---------------- ----------------------
1 -> 91371 1 73.5 0 1 1 1
2 -> 90001 57110 26.6 28468 28642 12971 4.4
3 -> 90002 51223 25.5 24876 26347 11731 4.36
scala>

Get a random sample of 2% of the dataset by using Frame's rfilter API. Note11.
the usage of Scala's random utility's nextDouble method. This method provides
a uniformly distributed pseudo-random double between 0.0 and 1.0. This implies
that roughly only 2% of the time the following condition will hold true if called
repeatedly:

scala.utilRandom() < 0.02

The rfilter, when combined with this mechanism, provides us with roughly 2% of the
sample data:

scala> val sample = frame.rfilter(_ => scala.util.Random.nextDouble() <
0.02)
sample: org.saddle.Frame[Int,String,String] =
[6 x 7]
 Zip Code Total Population Median Age Total Males Total Females Total
Households Average Household Size
-------- ---------------- ---------- ----------- ------------- --------

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[112]

 7 -> 90006 59185 32.4 30254 28931 18617 3.13
 80 -> 90241 42399 33.9 20466 21933 13617 3.09
126 -> 90606 32396 33.5 15936 16460 8633 3.72
156 -> 90802 39347 34.7 20387 18960 19853 1.93
259 -> 91722 34409 34 16859 17550 10...

We are now able to get a sample of data conveniently using the APIs provided by the
Saddle library.

Please note the abstraction being used in this context is a rame that consists of rows and
columns. It is to be noted that every run of a sample would produce a different result. For
example:

scala> val sample = frame.rfilter(_ => scala.util.Random.nextDouble() <
0.02)
sample: org.saddle.Frame[Int,String,String] =
[10 x 7]
 Zip Code Total Population Median Age Total Males Total Females Total
Households Average Household Size
 -------- ---------------- ---------- ----------- ------------- -----
----------- ----------------------
 17 -> 90017 23768 29.4 12818 10950 9338 2.53
 18 -> 90018 49310 33.2 23770 25540 15493 3.12
 54 -> 90062 32821 31.8 15720 17101 9155 3.55
 90 -> 90262 69745 27.8 33919 35826 14669 4.57
101 -> 90290 6368 45 3180 3188 2612 2.44
131 -> 90638 49012 37.9 23520 25492 14821 3.11
188 -> 91108 13361 45.4 6410 6951 4415 3.01
273 -> 91755 27496 43.4 13271 14225 8760 3.12
281 -> 91773 33119 42.5 15737 17382 11941 2.73
311 -> 93543 13033 32.9 6695 6338 3560 3.66

Although the samples are small, these, however, provide an important insight into some of
the properties of the data, such as typical median age and average household size. We
performed the following activities in our analysis:

We started with a data resource on the internet, located at https:/ ​/​data.1.
lacity.​org/ ​api/ ​views/ ​nxs9- ​385f/​rows. ​csv? ​accessType= ​DOWNLOAD. This
resource is in CSV format.
Using a combination of Java's and Saddle's APIs, we were able to read this2.
dataset.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD
https://data.lacity.org/api/views/nxs9-385f/rows.csv?accessType=DOWNLOAD

Data Exploration and Visualization Chapter 4

[113]

Saddle's API allowed us to parse the CSV data and convert this into a structured3.
format of Saddle's frame.
Saddle's frame allowed us to see the source data in a tabular form, consisting of4.
rows and columns.
We conveniently got a sample, but a randomized set of rows from the frame, by5.
using the rfilter API and combining it with Scala's random utility's
nextDouble API.

Performing ad hoc analysis
We can use ad hoc analysis to learn about important properties of the data. Some of the
issues that can be easily solved with the data are:

Statistical properties, such as mean, median, the range for numerical data
Distinct values for numerical as well as non-numerical data
The frequency of data occurrence

We can ask these questions on a sample of data or an entire dataset. With a distributed
framework, such as Spark, it is quite easy and convenient to get answers to these questions.
In fact, many of these frameworks have a simple API to support this. Ad hoc analysis can
also be performed on the very raw data itself. In this case, some of the data transformations
are applied as part of the process. The main purpose of the ad hoc analysis is to gain a
quick understanding of some of the properties of the data.

We will use Spark to perform some hands-on ad hoc analysis. Let's create an IntelliJ project
with the following Spark dependencies added to build.sbt:

scalaVersion := "2.11.12"

libraryDependencies ++= Seq(
 "org.apache.spark" %% "spark-sql" % "2.4.0", // Spark Core Library
 "org.scalatest" %% "scalatest" % "3.0.5" % "test" // Scala test library
)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[114]

This is what it will look like:

Now, create a simple main Scala object to explore the same dataset that we explored in the
previous section:

Import SparkSession from Spark's sql package. This is needed for setting up a1.
Spark Session programmatically:

import org.apache.spark.sql.SparkSession

Import SparkFiles from Spark's spark package. This is needed for reading2.
data from the internet resource located at https:/ ​/​data. ​lacity. ​org/ ​api/ ​views/
nxs9-​385f/ ​rows. ​csv:

import org.apache.spark.SparkFiles

Define a Scala object called SparkExample, which will act an entry point into3.
this program:

object SparkExample {
...
}

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv

Data Exploration and Visualization Chapter 4

[115]

With the SparkExample object, define a method called getSparkSession. This4.
creates a new Spark session running in local mode and uses the builder pattern to
create or get a Spark session. The advantage of using the builder pattern is that
the session being created can be customized to serve very specialized needs:

def getSparkSession(): SparkSession = {
 val spark =
SparkSession.builder().master("local").getOrCreate()
 spark.sparkContext.setLogLevel("ERROR")
 spark
 }

Finally, define the main method that facilitates the program to be executed with5.
input arguments supplied as parameters. There are multiple actions taking place
inside this method:

The Spark session is established by calling the getSparkSession1.
method of the object.
The internet resource located at https:/ ​/​data. ​lacity. ​org/ ​api/2.
views/ ​nxs9- ​385f/ ​rows.​csv is being added to the SparkContext
object of spark, the Spark session.
A new Spark DataFrame is being created by fetching the internet3.
resource and treating it as CSV data with a header row. Also, the
schema of the target DataFrame is determined by inferring the
contents of CSV.
We print the schema of the DataFrame created.4.
We show a few rows from the DataFrame.5.
Stop the Spark Session on completion of the program.6.

 def main(args: Array[String]): Unit = {
 val spark = getSparkSession()
spark.sparkContext.addFile("https://data.lacity.org/api/views/n
xs9-385f/rows.csv")
 val df = spark.read.option("header",
true).option("inferSchema",
true).csv(SparkFiles.get("rows.csv"))
 df.printSchema()
 df.show()
 spark.stop()
 }

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv
https://data.lacity.org/api/views/nxs9-385f/rows.csv

Data Exploration and Visualization Chapter 4

[116]

Let's put all of this together as a single program. The complete code is outlined as follows:

import org.apache.spark.sql.SparkSession
import org.apache.spark.SparkFiles

object SparkExample {
 def getSparkSession(): SparkSession = {
 val spark = SparkSession.builder().master("local").getOrCreate()
 spark.sparkContext.setLogLevel("ERROR")
 spark
 }
 def main(args: Array[String]): Unit = {
 val spark = getSparkSession()
spark.sparkContext.addFile("https://data.lacity.org/api/views/nxs9-385f/row
s.csv")
 val df = spark.read.option("header", true).option("inferSchema",
true).csv(SparkFiles.get("rows.csv"))
 df.printSchema()
 df.show()
 spark.stop()
 }
}

When you run the preceding example in IntelliJ, it produces quite a bit of log information.
It should output some logs like these:

Pay attention to the schema Information. Note that the data types of the columns
are inferred from the source data. Without the schema inference, the types of all
the columns would have been string type:

root
 |-- Zip Code: integer (nullable = true)
 |-- Total Population: integer (nullable = true)
 |-- Median Age: double (nullable = true)
 |-- Total Males: integer (nullable = true)
 |-- Total Females: integer (nullable = true)
 |-- Total Households: integer (nullable = true)
 |-- Average Household Size: double (nullable = true)

The output from the show method could look something like this. By default,
the show method of the DataFrame display is 20 rows:

+--------+----------------+----------+-----------+-------------+---
-
|Zip Code|Total Population|Median Age|Total Males|Total
Females|Total Households|Average Household Size|
+--------+----------------+----------+-----------+-------------+---

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[117]

-
91371	1	73.5	0	1	1	1.0
90001	57110	26.6	28468	28642	12971	4.4
90002	51223	25.5	24876	26347	11731	4.36
90003	66266	26.3	32631	33635	15642	4.22
90004	62180	34.8	31302	30878	22547	2.73
90005	37681	33.9	19299	18382	15044	2.5
90006	59185	32.4	30254	28931	18617	3.13
90007	40920	24.0	20915	20005	11944	3.0
90008	32327	39.7	14477	17850	13841	2.33
90010	3800	37.8	1874	1926	2014	1.87
90011	103892	26.2	52794	51098	22168	4.67
90012	31103	36.3	19493	11610	10327	2.12
90013	11772	44.6	7629	4143	6416	1.26
90014	7005	44.8	4471	2534	4109	1.34
90015	18986	31.3	9833	9153	7420	2.45
90016	47596	33.9	22778	24818	16145	2.93
90017	23768	29.4	12818	10950	9338	2.53
90018	49310	33.2	23770	25540	15493	3.12
90019	64458	35.8	31442	33016	23344	2.7
90020	38967	34.6	19381	19586	16514	2.35
+--------+----------------+----------+-----------+-------------+---
-
only showing top 20 rows

Hence, we were able to do a quick ad hoc analysis on this information to understand some
of the properties of the data and examine a few sample records. The only assumption we
made about the data is that its format is CSV and the first record is a header record. Using
Spark, we are also able to infer the schema of the underlying data with appropriate data
types.

Spark has a comprehensive API for ad hoc analysis. For example, to get random samples,
we could do the following to get a 5% sample of rows from the entire DataFrame:

df.sample(0.05).show() // 5% random sample

+--------+----------------+----------+-----------+-------------+-------
|Zip Code|Total Population|Median Age|Total Males|Total Females|Total
Households|Average Household Size|
+--------+----------------+----------+-----------+-------------+-------
90002	51223	25.5	24876	26347	11731	4.36
90039	28514	38.8	14383	14131	11436	2.47
90073	539	56.9	506	33	4	1.25
90201	101279	27.8	50658	50621	24104	4.16
90263	1612	19.7	665	947	0	0.0
90703	49399	43.9	23785	25614	15604	3.16
90822	117	63.9	109	8	2	4.5

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[118]

| 91042| 27585| 40.7| 13734| 13851| 9987| 2.74|
| 91214| 30356| 42.5| 14642| 15714| 10551| 2.87|
+--------+----------------+----------+-----------+-------------+-------

We are running Spark here in local mode; however, the true power of Spark comes from its
ability to run in the distributed mode and work on large-scale datasets. We will
explore distributed features of Spark in the upcoming chapters.

Finding a relationship between data
elements
Once we have a decent understanding of the data and some of its main properties, the next
step is to find a concrete relationship between data elements. We can use some of the well-
established statistical techniques to understand the distribution of data.

Let's continue with our Spark example from the previous section by comparing Total
Population to Total Households. We can expect the two numbers to be strongly
correlated:

println("Covariance: " + df.stat.cov("Total Population", "Total
Households"))
println("Correlation: " + df.stat.corr("Total Population", "Total
Households"))

The output from this would be something like this:

Covariance: 1.2338126298368526E8
Correlation: 0.9090567549637986

As expected, we see the correlation coefficient value closer to 1, indicating a strong
correlation between the two variables. The covariance also has a positive value, indicating
an increase in one variable would result in the increase of the other variable, and a similar
decrease would have the reverse effect.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[119]

We can also look at the data in terms of n-tiles. The following code creates 100 tiles ordered
by the Total Population column:

Create a temporary view on top of the Spark DataFrame created in the preceding1.
example. Name this temporary view tmp_data:

df.createOrReplaceTempView("tmp_data")

Run the Spark SQL on the previously created tmp_data view, which uses the2.
window function, ntile, which does the following:

Orders the data by total population
Divides the data into 100 tiles by creating almost equally-sized tiles by
starting from the top of the ordered data and going down
Selects all columns from the view and additionally computed tile value
as the tier

Show the contents of the DataFrame output:3.

spark.sql("select *, ntile(100) over(order by `Total Population`)
tier from tmp_data").show()

On running the preceding code, the sample output would look something like this:

+--------+----------------+----------+-----------+-------------+-------
|Zip Code|Total Population|Median Age|Total Males|Total Females|Total
Households|Average Household Size|tier|
+--------+----------------+----------+-----------+-------------+-------
90079	0	0.0	0	0	0	0.0	1
90090	0	0.0	0	0	0	0.0	1
90506	0	0.0	0	0	0	0.0	1
90747	0	0.0	0	0	0	0.0	1
90831	0	0.0	0	0	0	0.0	2
91608	0	0.0	0	0	0	0.0	2
91371	1	73.5	0	1	1	1.0	2
90095	3	52.5	2	1	2	1.5	2
90071	15	45.5	13	2	0	0.0	3
90822	117	63.9	109	8	2	4.5	3
91046	156	74.0	51	105	114	1.37	3
91210	328	33.9	162	166	178	1.84	3
93563	388	44.5	263	125	103	2.53	4
91759	476	47.2	239	237	216	2.2	4
90073	539	56.9	506	33	4	1.25	4
93544	1259	52.4	689	570	569	2.2	4
91008	1391	54.6	614	777	562	2.39	5
90263	1612	19.7	665	947	0	0.0	5
93243	1699	40.9	884	815	623	2.73	5
93040	2031	29.3	1052	979	522	3.89	5

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[120]

+--------+----------------+----------+-----------+-------------+------+
only showing top 20 rows

Note the value of the tier column. It starts from 1 and repeats it for a few
rows. It moves on to 2 and repeats it for few rows. At the very end of the
output DataFrame, the tier value is going to be 100.

This analysis could be used to cluster zip code by population density. For example, instead
of this, we could decide to create only three tiles with low, medium, and high population
density. The purpose of the example is to illustrate that Spark provides a comprehensive
API set that could be leveraged to establish a relationship between data elements.

Visualizing data
Graphs and charts are used to gain a better understanding of the data relationship. We will
use the following to explore data visually:

Combination of Spark and Vegas viz
Spark Notebook

Vegas viz for data visualization
Vegas viz is a MatPlotLib-like library for Scala and Spark. The documentation for this
library can be found at https:/ ​/ ​github. ​com/ ​vegas- ​viz/ ​Vegas. Spark does not contain any
built-in support for data visualization. Vegas viz provides a convenient mechanism to add
visualization to a Spark program written in Scala.

In order to use this library with Spark, let's add the following dependencies to build.sbt:

libraryDependencies ++= Seq(
 "org.apache.spark" %% "spark-sql" % "2.4.0", // Spark Core Library
 "org.vegas-viz" %% "vegas-spark" % "0.3.11", // Vegas Viz Library
 "org.scalatest" %% "scalatest" % "3.0.5" % "test" // Scala test library
)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/vegas-viz/Vegas
https://github.com/vegas-viz/Vegas
https://github.com/vegas-viz/Vegas
https://github.com/vegas-viz/Vegas
https://github.com/vegas-viz/Vegas
https://github.com/vegas-viz/Vegas
https://github.com/vegas-viz/Vegas
https://github.com/vegas-viz/Vegas
https://github.com/vegas-viz/Vegas
https://github.com/vegas-viz/Vegas
https://github.com/vegas-viz/Vegas
https://github.com/vegas-viz/Vegas
https://github.com/vegas-viz/Vegas

Data Exploration and Visualization Chapter 4

[121]

Continuing with the example from the previous section, let's say we want to see, visually,
the most populated ZIP (90th percentile).

Let's create a Scala program to do so:

Import SparkFiles from the spark package and SparkSession from1.
the spark.sql package. SparkFiles is needed for accessing the CSV file
located on the internet. SparkSession is needed for creating a Spark session
with a program:

import org.apache.spark.SparkFiles
import org.apache.spark.sql.SparkSession

Import Vegas viz packages needed for visualization using Spark:2.

import vegas._
import vegas.sparkExt._

Create a Scala object for an entry point into the program:3.

object SparkExample {
...
}

Define a method that creates a local Spark session:4.

 def getSparkSession(): SparkSession = {
 val spark =
SparkSession.builder().master("local").getOrCreate()
 spark.sparkContext.setLogLevel("ERROR")
 spark
 }

Define the main method that is the entry point for this program:5.

 def main(args: Array[String]): Unit = {
...
 }

Implement the main method using the following steps:6.
Create a Spark session.1.
Add the internet source file to the Spark context.2.
Read the contents of the internet source CSV file as a Spark DataFrame,3.
by inferring the first line as the header and inferring the schema from
the contents of the CSV.
Create a temporary view on the DataFrame.4.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[122]

Run the Spark SQL on the temporary view by using the ntile5.
window function.
Filter out the tiers that are 90 or above.6.
Use the Vegas library's API to create a plot of the filtered DataFrame7.
using the Zip Code column as the x axis and the Total Population
column as the y axis. The x axis data is a discrete number, whereas the
y axis data is quantity. Mark the plot as a bar chart.
Show the plot on a screen.8.
Stop the SPark session.9.

We implement the preceding steps using the following code:

 val spark = getSparkSession()
spark.sparkContext.addFile("https://data.lacity.org/api/views/nxs9-385f/row
s.csv")
 val df = spark.read.option("header", true).option("inferSchema",
true).csv(SparkFiles.get("rows.csv"))
 df.createOrReplaceTempView("tmp_data")
 val dfWithTier = spark.sql("select *, ntile(100) over(order by `Total
Population`) tier from tmp_data")
 val dfTier90Plus = dfWithTier.where("tier >= 90")
 val plot = Vegas().withDataFrame(dfTier90Plus).encodeX("Zip Code",
Nom).
 encodeY("Total Population", Quant).
 mark(Bar)
 plot.show
 spark.stop()

We can put all of this together and we have a single Spark program that can be executed:

import org.apache.spark.SparkFiles
import org.apache.spark.sql.SparkSession
import vegas._
import vegas.sparkExt._

object SparkExample {
 def getSparkSession(): SparkSession = {
 val spark = SparkSession.builder().master("local").getOrCreate()
 spark.sparkContext.setLogLevel("ERROR")
 spark
 }
 def main(args: Array[String]): Unit = {
 val spark = getSparkSession()
spark.sparkContext.addFile("https://data.lacity.org/api/views/nxs9-385f/row
s.csv")
 val df = spark.read.option("header", true).option("inferSchema",

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[123]

true).csv(SparkFiles.get("rows.csv"))
 df.createOrReplaceTempView("tmp_data")
 val dfWithTier = spark.sql("select *, ntile(100) over(order by `Total
Population`) tier from tmp_data")
 val dfTier90Plus = dfWithTier.where("tier >= 90")
 val plot = Vegas().withDataFrame(dfTier90Plus).encodeX("Zip Code",
Nom).
 encodeY("Total Population", Quant).
 mark(Bar)
 plot.show
 spark.stop()
 }
}

Running the preceding code will produce the following screenshot:

In the aforementioned example, we visually looked at zip codes with the total population in
the 90th percentile. Visual methods provide intuition about properties of the data. We can
easily conclude that densely populated zip code mostly have similar total populations with
an approximate population size of 80 K.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[124]

Spark Notebook for data visualization
Spark Notebook (http:/ ​/​spark- ​notebook. ​io/ ​) is an open source notebook that provides a
web-based interface to perform interactive data analysis. This tool lets a user combine Scala
code, SQL queries, Markup, and JavaScript in a collaborative manner to explore, analyze,
and learn from data. We will primarily be using this tool for data visualization; however,
this can also be used for many other purposes. There are several open source notebook
solutions that are available today. However, what is unique are the following features of
the tool:

Scala based
Excellent integration with Spark
Support for multiple Spark sessions that are isolated from each other
Comprehensive support for data visualization

Downloading and installing Spark Notebook
There are multiple ways to run Spark Notebook. However, the most preferred way to run it
is by installing it locally on your computer. As of this writing, the most recently supported
Spark version is 2.2.0. This is sufficient for us to explore the power of Spark Notebook to
visualize data in different forms.

The following are the download and setup instructions for macOS. This should work in a
very similar fashion for Linux OS and Windows OS:

Download the ZIP file: http:/ ​/ ​spark- ​notebook. ​io/ ​dl/​zip/ ​0.​8. ​3/​2. ​11/​2. ​2.​2/1.
2.​7.​3/ ​true/ ​true. We are downloading Spark Notebook version 0.8.3, built with
Scala 2.11 and Spark 2.2.2. The following is a screenshot from the download
website (http:/ ​/ ​spark- ​notebook. ​io/ ​) that you can refer to:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/dl/zip/0.8.3/2.11/2.2.2/2.7.3/true/true
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/
http://spark-notebook.io/

Data Exploration and Visualization Chapter 4

[125]

 Unzip the downloaded ZIP file in a suitable location on your computer:2.

$ unzip spark-notebook-0.8.3-scala-2.11.8-spark-2.2.2-hadoop-2.7.3-
with-hive.zip

At this point, you should have a directory called spark-notebook-0.8.3-3.
scala-2.11.8-spark-2.2.2-hadoop-2.7.3-with-hive. This directory
contains the Spark Notebook installation. Change to the binary directory, where
the start script is located:

$ cd spark-notebook-0.8.3-scala-2.11.8-spark-2.2.2-hadoop-2.7.3-
with-hive/bin

Start the Spark Notebook server, using the following command:4.

$ bash spark-notebook

This will start the Spark Notebook server and you will see the output on your5.
Terminal, similar to the following one:

Play server process ID is 3744
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in

[jar:file:/Users/rajeshgupta/Downloads/spark-notebook-0.8.3-
scala-2.11.8-spark-2.2.2-hadoop-2.7.3-with-
hive/lib/ch.qos.logback.logback-
classic-1.1.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF4J: Found binding in
[jar:file:/Users/rajeshgupta/Downloads/spark-notebook-0.8.3-
scala-2.11.8-spark-2.2.2-hadoop-2.7.3-with-
hive/lib/org.slf4j.slf4j-
log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an
explanation.
SLF4J: Actual binding is of type
[ch.qos.logback.classic.util.ContextSelectorStaticBinder]
[info] play - Application started (Prod)
[info] play - Listening for HTTP on /0:0:0:0:0:0:0:0:9000

The final line indicates that the server can be accessed from the browser on HTTP
port 9000. Let this server keep running.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[126]

Verify that Spark Notebook is running correctly by visiting the landing page6.
from your web browser by going to http:/ ​/​localhost:900/ ​. You should see a
screenshot similar to the one that follows:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[127]

Creating a Spark Notebook with simple visuals
To begin with, we will start by creating a Spark Notebook with some simple visuals:

From the landing page shown previously, select New | Scala [2.11.8] Spark1.
[2.2.2] Hadoop [2.7.3] {Hive } to create a Spark Notebook. Select an appropriate
name for the notebook. The following screenshot shows the different prompts:

 The output should be similar to the following one on your Terminal:

...
[info] application - Creating notebook at /
[info] application - save at path /HandsScalaOnNotebook.snb with message
None
[info] application - listNotebooks at path /
[debug] application - content: /HandsScalaOnNotebook.snb
...

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[128]

You should see that HandsOnScalaNotebook will appear on the left-hand side2.
of the screen under the Files tab. Select this notebook:

The output should be similar to the following one on your Terminal:

...
[info] application - getNotebook at path HandsScalaOnNotebook.snb
[info] application - Loading notebook at path HandsScalaOnNotebook.snb
[info] application - Calling action
[info] application - Starting kernel/session because nothing for None and
Some(HandsScalaOnNotebook.snb)
[info] application - Loading notebook at path HandsScalaOnNotebook.snb
...

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[129]

At this point, your Spark Notebook is running. The following screenshot shows3.
how it would look in the browser with the screen divided into two areas:

Code and Output Area
Variables and Errors Area

Let's create our first plot, which is a simple bar chart, by performing the4.
following steps:

Define a Scala case class as follows in this first cell on the notebook,1.
and then press SHIFT + ENTER to execute this cell:

case class Person(name: String, age: Int)

Create a CustomPlotlyChart instance with a sequence of Person2.
objects as input, the type of plot as a bar chart, the name attribute of
Person as the x axis, and the age attribute of Person as the y axis.
Press SHIFT + ENTER to execute this cell:

CustomPlotlyChart(
 Seq(Person("James Bond", 50), Person("Jon Doe", 25),
Person("Mickey Mouse", 18), Person("Foo", 33)),
 dataOptions="{type: 'bar'}",
 dataSources="{x: 'name', y: 'age'}")

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[130]

On the execution of the preceding code, the Spark Notebook's screen should look5.
similar to the following screenshot, with a bar chart plotted:

As illustrated previously, using the CustomPlotlyChart class of the Spark Notebook
library, we are able to create a bar chart with just a single line of code. Here is the complete
code:

case class Person(name: String, age: Int)

CustomPlotlyChart(
 Seq(Person("James Bond", 50), Person("Jon Doe", 25), Person("Mickey
Mouse", 18), Person("Foo", 33)),
 dataOptions="{type: 'bar'}",
 dataSources="{x: 'name', y: 'age'}")

In the preceding example, we used a Scala-provided sequence of persons as the data input.
We could have instead used a Spark DataFrame as the data input and would have gotten
the same chart:

case class Person(name: String, age: Int)

val persons = Seq(Person("James Bond", 50), Person("Jon Doe", 25),

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[131]

Person("Mickey Mouse", 18), Person("Foo", 33)).toDF

CustomPlotlyChart(
 persons,
 dataOptions="{type: 'bar'}",
 dataSources="{x: 'name', y: 'age'}")

The following is a screenshot of Spark Notebook with the aforementioned code executed:

This clearly illustrates that we can use Scala sequences and the Spark DataFrame as data
input to the CustomPlotlyChart class of the Spark Notebook library. This offers a great
deal of flexibility when using this library with data visualization.

Next, we will look at how to create more types of charts using Spark Notebook.

More charts with Spark Notebook
In this section, we will look at more examples of charts using Spark Notebook. The bar
chart is certainly very commonly used for data visualization but there are several other
types of charts that provide different insights into the data.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[132]

Box plot
The box plot is a classic and standardized way of displaying the distribution of data based
on the following properties of a dataset:

Minimum value
First quartile
Median value
Third quartile
Maximum value

To get a good understanding of the box plot, please refer to https:/ ​/​www. ​khanacademy.
org/​math/​statistics- ​probability/ ​summarizing- ​quantitative- ​data/ ​box-​whisker-
plots/​a/​box-​plot- ​review.

Let's explore this with an example:

Create three separate Spark DataFrames with 20 random numbers in the range of1.
0 to 100. Label each creation of the DataFrame as a unique experiment:

val df1 = sparkSession.range(20).map(n =>
(scala.util.Random.nextInt(100), "Experiment 1")).toDF("num",
"experiment")

val df2 = sparkSession.range(20).map(n =>
(scala.util.Random.nextInt(100), "Experiment 2")).toDF("num",
"experiment")

val df3 = sparkSession.range(20).map(n =>
(scala.util.Random.nextInt(100), "Experiment 3")).toDF("num",
"experiment")

Create a combined DataFrame by taking the union of all three DataFrames:2.

val df = df1.union(df2).union(df3)

Use the box plot to display the properties of each of the three experiments:3.

CustomPlotlyChart(df, dataOptions="{type: 'box', splitBy:
'experiment'}", dataSources="{y: 'num'}")

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review

Data Exploration and Visualization Chapter 4

[133]

You can run this code in Spark Notebook by executing each of the three steps as an
individual cell (using the SHIFT + ENTER key combinations) and you will get an output
that is similar to the following screenshot:

We can see that each of the three experiments has a slightly different distribution of data.
This is expected because we are generating pseudorandom numbers with a uniform
distribution property. The first experiment produced 20 random number from 0 to 100. The
second experiment produced another 20 numbers from 0 to 100. Assuming uniform
distribution, the second experiment's numbers would be different from the first one.
Similarly, the third experiment's numbers will be different from that of the first and second,
again due to the uniform distribution property.

Histogram
A histogram is a representation of the distribution of numerical data. The data is assumed
to be continuous and grouped into a certain number of bins. The height of each bin
determines the number of occurrences within the established range of the bin.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[134]

Let's explore the histogram plot with an example:

Create a Spark DataFrame consisting of 1,000 random numbers with Gaussian1.
distribution properties:

val df = sparkSession.range(1000).map(n => (n,
scala.util.Random.nextGaussian())).toDF("num", "value")

Plot histogram of random values with Gaussian distribution properties:2.

CustomPlotlyChart(df, dataOptions="{type: 'histogram', opacity:
0.7}", dataSources="{x: 'value'}")

Running the aforementioned code in Spark Notebook results in the following screenshot:

We can easily change the axis from the x axis to the y axis by doing the following:

CustomPlotlyChart(df, dataOptions="{type: 'histogram', opacity: 0.7}",
dataSources="{y: 'value'}")

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[135]

On running this code, the histogram would look like the following screenshot:

This is the same data, now with the inverted axis. Depending upon the use case, either one
can be used. However, the first representation that uses the x axis is more common in
practice.

Bubble chart
Bubble charts are generally used to represent the impacts of outcomes by representing them
as different sized bubbles. The bigger the size of the bubble, the greater the impact.

Let's explore this kind of chart with a simple example:

Create a Spark DataFrame consisting of three records with different impacts:1.

val df = Seq((1, 10, 30, "blue"), (2, 11, 60, "green"), (3, 12, 90,
"red")).toDF("x", "y", "impact", "color")

Create a bubble chart:2.

CustomPlotlyChart(df, layout="{title: 'Impact', showlegend: false,
height: 600, width: 600}",

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Exploration and Visualization Chapter 4

[136]

dataOptions="{mode: 'markers'}",dataSources="{x: 'x', y: 'y',
marker: {size: 'impact', color: 'color'}}")

When this code is run in Spark Notebook, we will see an output similar to the following
screenshot:

Bubble charts find a significant usage when we use data to communicate a story and want
to make it interesting for the target audience who might not be familiar with in-depth
details of the underlying data.

Summary
This chapter primarily focused on data exploration and visualization techniques to
understand and establish a relationship between data elements. We also learned how to
work with samples of data and apply randomness appropriately to select unbiased
samples. Understanding properties and the relationship of data are very important because
it helps in streamlining the data processing and simplifies the subsequent life cycles of the
data.

In the next chapter, we will deep dive into statistical techniques and hypothesis testing.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Applying Statistics and

Hypothesis Testing
This chapter provides an overview of statistical methods used in data analysis and covers
techniques for deriving meaningful insights from data. We will first look at some basic
statistical techniques used to gain a better understanding of data before moving on to more
advanced methods that are used to compute statistics on vectorized data instead of simple
scalar data.

This chapter also covers the various techniques for generating random numbers. Random
numbers play a significant part in data analysis because they help us work with sample
data in much smaller datasets. A good random sample selection ensures that smaller
datasets can act as a good representative of the much bigger dataset.

We will also gain an understanding of hypothesis testing and look at some Scala tools
readily available to make this task easier.

The following are the topics that we will be covering in this chapter:

Basics of statistics
Vector level statistics
Random data generation
Hypothesis testing

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[138]

Basics of statistics
This section introduces the basics of using applied examples.

Summary level statistics
Summary level statistics provide us with such information as minimum, maximum, and
mean values of data.

The following is an example in Spark that looks at summarizing numbers from 1 to 100:

Start a Spark shell in your Terminal:1.

$ spark-shell

Import Random from Scala's util package:2.

scala> import scala.util.Random
import scala.util.Random

Generate integers from 1 to 100 (included) and use the shuffle method of3.
Scala's Random utility class to randomize their positions:

scala> val nums = Random.shuffle(1 to 100) // 100 numbers
randomized
nums: scala.collection.immutable.IndexedSeq[Int] = Vector(70, 63,
9, 80, 12, 49, 65, 95, 51, 66, 90, 53, 82, 97, 13, 30, 92, 69, 3,
7, 11, 72, 37, 16, 48, 75, 100, 88, 78, 38, 91, 35, 26, 56, 58, 47,
59, 71, 15, 57, 21, 1, 94, 27, 18, 8, 61, 44, 96, 2, 32, 62, 67,
24, 93, 40, 36, 99, 68, 17, 4, 77, 28, 25, 73, 42, 45, 39, 98, 43,
20, 41, 34, 33, 86, 84, 64, 31, 87, 29, 10, 81, 55, 52, 76, 89, 23,
54, 83, 22, 14, 79, 6, 74, 85, 5, 19, 50, 60, 46)

Use Spark's implicit feature to convert the preceding numbers into a Spark4.
DataFrame:

scala> val df = nums.toDF()
df: org.apache.spark.sql.DataFrame = [value: int]

Display the summary from the Spark DataFrame:5.

scala> df.summary().show()
+-------+------------------+
|summary| value|
+-------+------------------+
| count| 100|

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[139]

mean	50.5
stddev	29.011491975882016
min	1
25%	25
50%	50
75%	75
max	100
+-------+------------------+

This example is somewhat trivial, as we are working with 100 numbers from 1 to 100.
However, it illustrates the power of statistics. In this example, the order of numbers is
intentionally randomized to illustrate percentiles, which will be discussed in more detail
later.

When we are working with data whose properties are unknown or changing over time,
summary level statistics could prove to be a powerful tool to gain insights into data
properties in an expeditious manner. Most of these stats can be computed relatively
quickly, even on fairly large datasets.

Some additional statistics displayed in the previous example are:

Mean (average value)
Standard deviation
Percentiles (25%, 50%, and 75%)

Computing percentiles is relatively more expensive because it requires data to be sorted.

We can also use Scala collection APIs to get some of this info:

Count the numbers:1.

scala> val count = nums.size
count: Int = 100

Compute the mean value of the numbers:2.

scala> val mean = nums.sum.toDouble / count
mean: Double = 50.5

Compute the minimum value of the numbers:3.

scala> val min = nums.min
min: Int = 1

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[140]

Compute the maximum value of the numbers:4.

scala> val max = nums.max
max: Int = 100

Sort the numbers in ascending order. This is needed to compute percentiles in the5.
next steps:

scala> val numsSorted = nums.sorted // sorting is needed for
computing percentiles
numsSorted: scala.collection.immutable.IndexedSeq[Int] = Vector(1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100)

Compute the 25 percentile:6.

scala> val percent25 = numsSorted(count/4-1)
percent25: Int = 25

Compute the 50 percentile:7.

scala> val percent50 = numsSorted(count/2-1)
percent50: Int = 50

Finally, compute the 75 percentile:8.

scala> val percent75 = numsSorted((3*count/4)-1)
percent75: Int = 75

Let's look at how percentiles are calculated in the preceding example. The first step is to
sort the data. Once the data is sorted, we can visualize the percentiles, as shown in the
following screenshot:

The value at the 25% mark is the 25 percentile
At the 50% mark, it is the 50 percentile
At the 75% mark, it is the 75 percentile

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[141]

The value at the 50% mark is also known as the median value.

Percentiles help us in understanding data skews to a fairly good degree. Sorting is
generally a fairly expensive operation with most sort algorithms requiring O(n log n)
compute times. This is why computing exact median and percentile values for fairly large
datasets is generally a slow process. For many practical purposes, an approximate mean is
generally sufficient and there are many frameworks that are able to compute this value
efficiently and quickly.

We can certainly compute other statistical properties, such as standard deviation using
plain Scala code. However, Scala frameworks, such as Saddle, Breeze, Scalalab, and Spark,
have built-in support to easily compute values. With a framework such as Spark, the true
power comes from computing these values at scale in a distributed computing
environment.

Let's look at another way to gather statistics using Spark's built-in Statistics API:

Try the following in your spark-shell:1.

$ spark-shell

Import Vectors from Spark MLLib's linalg package:2.

scala> import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.Vectors

Import the Statistics class from Spark MLLib's stat package:3.

scala> import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.mllib.stat.Statistics

Create a Spark RDD of vectors of size five RDD:4.

scala> val data = sc.parallelize(
 | Seq(
 | Vectors.dense(1.0, 0.0, 0.0, 1.0, 100.0),
 | Vectors.dense(2.0, 1.0, 10.0, 10.0, 200.0),
 | Vectors.dense(3.0, 2.0, 20.0, 100.0, 300.0),
 | Vectors.dense(4.0, 3.0, 30.0, 1000.0, 400.0),
 | Vectors.dense(5.0, 4.0, 40.0, 10000.0, 500.0),
 | Vectors.dense(6.0, 5.0, 50.0, 100000.0, 600.0),
 | Vectors.dense(7.0, 6.0, 60.0, 1000000.0, 700.0),
 | Vectors.dense(8.0, 7.0, 70.0, 10000000.0, 800.0),
 | Vectors.dense(9.0, 8.0, 80.0, 100000000.0, 900.0),
 | Vectors.dense(9.9, 9.0, 90.0, 1000000000.0, 1000.0)
 |)
 |)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[142]

data:
org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] =
 ParallelCollectionRDD[0] at parallelize at <console>:26

Compute the column summary statistics on Spark RDD, that we created5.
previously:

// Compute column summary statistics
scala> val summary = Statistics.colStats(data)
summary: org.apache.spark.mllib.stat.MultivariateStatisticalSummary
= org.apache.spark.mllib.stat.MultivariateOnlineSummarizer@7b13ae73

Get the number of records:6.

scala> summary.count // number of records
res0: Long = 10

Get the mean value for each column:7.

scala> summary.mean // mean value for each column
res1: org.apache.spark.mllib.linalg.Vector =
[5.489999999999999,4.5,45.0,1.111111111E8,550.0]

Get the column-wise minimum:8.

scala> summary.min // column-wise min
res2: org.apache.spark.mllib.linalg.Vector =
[1.0,0.0,0.0,1.0,100.0]

Get the column-wise maximum:9.

scala> summary.max // column-wise max
res3: org.apache.spark.mllib.linalg.Vector =
[9.9,9.0,90.0,1.0E9,1000.0]

Get the column-wise norm L1:10.

scala> summary.normL1 // column-wise norm L1
res4: org.apache.spark.mllib.linalg.Vector =
[54.9,45.0,450.0,1.111111111E9,5500.0]

Get the column-wise L2, aka the Euclidean norm :11.

scala> summary.normL2 // column-wise Euclidean magnitude
res5: org.apache.spark.mllib.linalg.Vector =
[19.570641277178424,16.881943016134134,168.81943016134133,1.0050378
15259212E9,1962.1416870348583]

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[143]

Get the column-wise variance:12.

scala> summary.variance // column-wise variance
res6: org.apache.spark.mllib.linalg.Vector =
[9.067666666666666,9.166666666666666,916.6666666666666,9.8516024444
69384E16,91666.66666666667]

Get the column-wise count of the number of non-zeros:13.

scala> summary.numNonzeros // column-wise count of non-zero values
res7: org.apache.spark.mllib.linalg.Vector =
[10.0,9.0,9.0,10.0,10.0]

In the preceding example, we created an RDD consisting of 10 records and five columns
with all numerical values. As can be seen, the Statistics API of Spark is another
convenient way to compute statistics. The Statistics API has a few other useful
functionalities, but we will look at the correlation computation API in particular.

Correlation statistics
In the previous section, we have been looking at each column or variable from the RDD in
isolation. Statistical values, such as mean, median, min, or max, for each column are
completely independent of any other column in the dataset. In this section, we will look at a
correlation where we want to measure how strongly two columns or variables are related
to each other.

We will be using Spark's Statistics API to compute the correlation. Try the following in
spark-shell:

Start a Spark shell in your Terminal:1.

$ spark-shell
...

Import the Vectors class from Spark MLLib's linalg package:2.

scala> import org.apache.spark.mllib.linalg.Vectors
 import org.apache.spark.mllib.linalg.Vectors

Import the Statistics class from Spark MLLib's stat package:3.

scala> import org.apache.spark.mllib.stat.Statistics
 import org.apache.spark.mllib.stat.Statistics

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[144]

Create a Spark RDD of vectors with three elements each:4.

scala> val data = sc.parallelize(
 | Seq(
 | Vectors.dense(0.0, 1.0, 100.0),
 | Vectors.dense(10.0, 10.0, 200.0),
 | Vectors.dense(20.0, 100.0, 300.0),
 | Vectors.dense(30.0, 1000.0, 400.0),
 | Vectors.dense(40.0, 10000.0, 500.0),
 | Vectors.dense(50.0, 100000.0, 600.0),
 | Vectors.dense(60.0, 1000000.0, 700.0),
 | Vectors.dense(70.0, 10000000.0, 800.0),
 | Vectors.dense(80.0, 100000000.0, 900.0),
 | Vectors.dense(90.0, 1000000000.0, 1000.0)
 |)
 |)
 data:
org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] =
ParallelCollectionRDD[0] at parallelize at <console>:26

Compute the pair-wise column correlation using the Statistics .corr method:5.

scala> val correlation = Statistics.corr(data) // Compute
correlation
correlation: org.apache.spark.mllib.linalg.Matrix =
1.0 0.5701779377812776 1.0
0.5701779377812776 1.0 0.5701779377812777
1.0 0.5701779377812777 1.0

In the preceding example, we have a dataset consisting of 10 rows and three columns. We
are trying to compute the correlation between these three columns in a pair-wise fashion.
We can visually see that column one and column three have a strong correlation, whereas
column two does not strongly correlate to either column one or column three.

In the preceding example, we used Pearson's correlation method. This method results in a
value between +1 and -1. A value closer to +1 indicates a strong positive correlation
between the pair, closer to 0 indicates no correlation, and closer to -1 indicates a strong
negative correlation. In fact, we use the following simple linear relationship between
column one and column three that has Pearson's correlation values of 1:

y = 10x + 100

In this case, x represents column one and y represents column three.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[145]

Now let's look at a negative correlation example by changing column one values to all
negative values:

Start a Spark shell in your Terminal:1.

$ spark-shell

Import the Vectors class from Spark MLLib's linalg package:2.

scala> import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.Vectors

Import the Statistics class from Spark MLLib's stat package:3.

scala> import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.mllib.stat.Statistics

Create a Spark RDD consisting of vectors with three elements each:4.

scala> val data = spark.sparkContext.parallelize(
 | Seq(
 | Vectors.dense(0.0, 1.0, 100.0),
 | Vectors.dense(-10.0, 10.0, 200.0),
 | Vectors.dense(-20.0, 100.0, 300.0),
 | Vectors.dense(-30.0, 1000.0, 400.0),
 | Vectors.dense(-40.0, 10000.0, 500.0),
 | Vectors.dense(-50.0, 100000.0, 600.0),
 | Vectors.dense(-60.0, 1000000.0, 700.0),
 | Vectors.dense(-70.0, 10000000.0, 800.0),
 | Vectors.dense(-80.0, 100000000.0, 900.0),
 | Vectors.dense(-90.0, 1000000000.0, 1000.0)
 |)
 |)
 data:
org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] =
ParallelCollectionRDD[0] at parallelize at <console>:25

Compute a pair-wise column correlation using the Statistics .corr method:5.

scala> Statistics.corr(data)
 res0: org.apache.spark.mllib.linalg.Matrix =
 1.0 -0.5701779377812776 -1.0
 -0.5701779377812776 1.0 0.5701779377812777
 -1.0 0.5701779377812777 1.0

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[146]

As can be seen, the correlation value between column one and column three has changed to
-1 and this can be represented using the following linear relationship:

y = -10x + 100

Correlation statistics provide a powerful mechanism with which to observe how strongly
two variables are related to each other.

Vector level statistics
In the previous section, we looked at statistics for columns containing a single numeric
value. It is often the case that, for machine learning (ML), a more common way to
represent data is as vectors of multiple numeric values. A vector is a generalized structure
that consists of one or more elements of the same data type. For example, the following is
an example of a vector of three elements of type double:

[2.0,3.0,5.0]
[4.0,6.0,7.0]

Computing statistics in the classic way won't work for vectors. It is also quite common to
have weights associated with these vectors. There are times when the weights have to
considered as well while computing statistics on such a data type.

Spark MLLib's Summarizer (https:/ ​/ ​spark.​apache. ​org/ ​docs/ ​latest/ ​api/ ​java/ ​org/
apache/​spark/​ml/ ​stat/ ​Summarizer. ​html) provides several convenient methods to
compute stats on vector-based data. Let's explore this in a Spark shell:

Import the necessary classes from the Spark ml package:1.

scala> import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.linalg.{Vector, Vectors}
scala> import org.apache.spark.ml.stat.Summarizer
import org.apache.spark.ml.stat.Summarizer

Create a Spark DataFrame, consisting of three feature vectors and the weight:2.

scala> val df = Seq(
| (Vectors.dense(1.0, 2.0, 3.0), 9.0),
| (Vectors.dense(4.0, 5.0, 6.0), 5.0),
| (Vectors.dense(7.0, 8.0, 9.0), 1.0),
| (Vectors.dense(0.0, 1.0, 2.0), 7.0)
|).toDF("features", "weight")
df: org.apache.spark.sql.DataFrame = [features: vector, weight:
double]

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html

Applying Statistics and Hypothesis Testing Chapter 5

[147]

Display the contents of the Spark DataFrame:3.

scala> df.show(truncate=false)
+-------------+------+
|features |weight|
+-------------+------+
[1.0,2.0,3.0]	9.0
[4.0,5.0,6.0]	5.0
[7.0,8.0,9.0]	1.0
[0.0,1.0,2.0]	7.0
+-------------+------+

Use SummaryBuilder (https:/ ​/​spark. ​apache. ​org/ ​docs/ ​latest/ ​api/​java/4.
org/​apache/ ​spark/ ​ml/ ​stat/ ​Summarizer. ​html) to build min, max, mean, and
variance metrics, using features and weight columns. Summarizer's metrics
return a SummaryBuilder object that provides summary statistics about a given
column:

scala> val summarizer = Summarizer.metrics("min", "max", "mean",
 "variance").summary($"features", $"weight")
summarizer: org.apache.spark.sql.Column =
aggregate_metrics(features, weight)

Apply summarizer on the source DataFrame to create a Summary DataFrame:5.

scala> val summaryDF = df.select(summarizer.as("summary"))
summaryDF: org.apache.spark.sql.DataFrame = [summary: struct<min:
vector, max: vector ... 2 more fields>]

Display the contents of the Summary DataFrame:6.

scala> summaryDF.show(truncate=false)
+--
+
|summary
|
+--
+
|[[0.0,1.0,2.0], [7.0,8.0,9.0],
[1.6363636363636362,2.6363636363636362,3.636363636363636],
[5.304878048780488,5.304878048780488,5.304878048780487]]|
+--
+

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html

Applying Statistics and Hypothesis Testing Chapter 5

[148]

Extract the mean and variance with weight from the Summary DataFrame:7.

scala> val (min1, max1, meanWithWeight1, varianceWithWeight1) =
summaryDF.select("summary.min", "summary.max", "summary.mean",
"summary.variance").as[(Vector, Vector, Vector, Vector)].first()
min1: org.apache.spark.ml.linalg.Vector = [0.0,1.0,2.0]
max1: org.apache.spark.ml.linalg.Vector = [7.0,8.0,9.0]
meanWithWeight1: org.apache.spark.ml.linalg.Vector =
[1.6363636363636362,2.6363636363636362,3.636363636363636]
varianceWithWeight1: org.apache.spark.ml.linalg.Vector =
[5.304878048780488,5.304878048780488,5.304878048780487]

Compute the mean and variance with weight using another approach:8.

scala> val (min2, max2, meanWithWeight2, varianceWithWeight2) =
df.select(Summarizer.min($"features"), Summarizer.max($"features"),
Summarizer.mean($"features", $"weight"),
Summarizer.variance($"features", $"weight")).as[(Vector, Vector,
Vector, Vector)].first()
min2: org.apache.spark.ml.linalg.Vector = [0.0,1.0,2.0]
max2: org.apache.spark.ml.linalg.Vector = [7.0,8.0,9.0]
meanWithWeight2: org.apache.spark.ml.linalg.Vector =
[1.6363636363636362,2.6363636363636362,3.636363636363636]
varianceWithWeight2: org.apache.spark.ml.linalg.Vector =
[5.304878048780488,5.304878048780488,5.304878048780487]

Compute a simple mean and variance without weight:9.

scala> val (min, max, mean, variance) =
df.select(Summarizer.min($"features"), Summarizer.max($"features"),
Summarizer.mean($"features"),
Summarizer.variance($"features")).as[(Vector, Vector, Vector,
Vector)].first()
min: org.apache.spark.ml.linalg.Vector = [0.0,1.0,2.0]
max: org.apache.spark.ml.linalg.Vector = [7.0,8.0,9.0]
mean: org.apache.spark.ml.linalg.Vector = [3.0,4.0,5.0]
variance: org.apache.spark.ml.linalg.Vector = [10.0,10.0,10.0]

In the preceding example, we computed the min, max, mean, and variance of vectorized
data with and without weight. As can be seen, the results are quite different for mean and
variance values when weights are used.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[149]

Spark MLLib's Summarizer tool (https:/ ​/​spark. ​apache. ​org/ ​docs/ ​latest/ ​api/ ​java/
org/​apache/​spark/ ​ml/ ​stat/ ​Summarizer. ​html) provides both variants of the statistical
function, one without weights and the other one with weights:

Function name Computation
count The count of all vectors seen
max A vector that contains the maximum for each coefficient
mean A vector that contains the coefficient-wise mean
min A vector that contains the minimum for each coefficient
normL1 The L1 norm of each coefficient (sum of the absolute values)
normL2 The L2, aka Euclidean norm, for each coefficient
numNonZeros A vector with the number of non-zeros for each coefficient
variance A vector that contains the coefficient-wise variance

The metrics method is more generalized and accepts one or more of the following
arguments as a string (case-sensitive):

count: The count of all vectors seen
max: The maximum for each coefficient
mean: A vector that contains the coefficient-wise mean
min: The minimum for each coefficient
normL1: The L1 norm of each coefficient (sum of the absolute values)
normL2: L2, aka the Euclidean norm, for each coefficient
numNonzeros: A vector with the number of non-zeros for each coefficient
variance: A vector that contains the coefficient-wise variance

Summarizer tools offer a choice between metrics and individual methods. Either can be
used based on personal preference.

Random data generation
Random data generation is useful for several purposes and plays a significant role in
performance testing. This technique is also useful for generating synthetic data that can be
used for various simulation experiment purposes. In fact, it is randomness that facilitates an
unbiased sample selection from a large dataset.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/stat/Summarizer.html

Applying Statistics and Hypothesis Testing Chapter 5

[150]

We will look at random data generation with some specific properties:

Pseudorandom with no specific distribution
Normal distribution
Poisson distribution

Pseudorandom numbers
Scala provides built-in support to generate pseudorandom numbers using the
scala.util.Random class. Let's explore some features of this class using Scala REPL:

Import the Random class from the scala.util package:1.

scala> import scala.util.Random
import scala.util.Random

Generate 10 random numbers:2.

scala> Range(0, 10).map(i => Random.nextDouble())
res0: scala.collection.immutable.IndexedSeq[Double] =
Vector(0.5538242600417229, 0.5267086862614716, 0.4812270209045445,
0.008044846025885621, 0.48136489192085685, 0.1714965492674987,
0.9854714710135378, 0.2758151704280012, 0.23205567318485132,
0.42791101504509277)

In the preceding example, we generated 10 random double values using the nextDouble
API, which provides uniformly distributed pseudorandom numbers between 0 and 1.

The scala.util.Random class has several methods to provides random values of different
types:

Generate a random integer:1.

scala> Random.nextInt() // Random Integer
res1: Int = -116922537

Generate a random number with a Gaussian distribution property:2.

scala> Random.nextGaussian() // Random Gaussian (normally)
distributed with a mean of 0.0 and standard deviation of 1.0
res2: Double = -1.1399390663617412

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[151]

Generate a random Boolean value:3.

scala> Random.nextBoolean() // Random true or false
res3: Boolean = true

Generate a random printable character:4.

scala> Random.nextPrintableChar() // Random Char
res4: Char = i

Generate a random string with 10 characters:5.

scala> Random.nextString(10) // Random String of size 10

res5: String =

As can be seen, the Scala Random API is quite rich and handy for working with random
numbers. If you already have some data for which you want to randomize the order, there
is a shuffle API you can use to perform precisely that operation. Let's explore some features
of shuffle using Scala REPL:

Randomize the position of numbers 0 to 9:1.

scala> Random.shuffle(Range(0,10).toList) // Randomize numbers 0 to
9
res7: List[Int] = List(2, 5, 4, 9, 8, 6, 3, 1, 7, 0)

Randomize the positions of elements in a list of strings:2.

// Randomize list of currencies
scala> Random.shuffle(List("USD", "INR", "EUR", "DKR", "CAD",
"AUD"))
res9: List[String] = List(AUD, INR, EUR, DKR, CAD, USD)

Randomize the position of elements in a list consisting of mixed types:3.

// Randomize a list of mixed data types
scala> Random.shuffle(List(0, "Jon", 2, "Doe"))
res10: List[Any] = List(2, Jon, 0, Doe)

The shuffle method provides a convenient way of randomizing the order of elements in
an existing collection.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[152]

Random numbers with normal distribution
In a Gaussian or normal distribution, the data follows a bell-shaped curve. A normally
distributed random is quite useful in statistical analysis because a lot of real-world data
exhibits this property.

Let's first re-explore scala.util.Random to generate a series of normally distributed
random numbers:

Import the Random class from the scala.util package:1.

scala> import scala.util.Random
import scala.util.Random

Generate 20 random numbers with a Gaussian distribution property:2.

scala> val num20 = Range(0, 20).map(i => Random.nextGaussian()) //
Random Gaussian (normally) distributed with a mean of 0.0 and
standard deviation of 1.0
num20: scala.collection.immutable.IndexedSeq[Double] =
Vector(0.20633575917837435, 0.7856945092974417, 1.2432023260888005,
-0.26028288029552493, -1.1672076588249276, -1.1057648961382314,
-0.0024377048350471293, 0.18768703356333027, -0.25773643701036303,
0.6731493330185354, -0.5045811414092171, -1.9258127364625324,
-1.5583448873537717, 0.13111785798881095, 0.16927327531581107,
0.6311168720217485, 0.3120733937326494, -1.0091494950203739,
1.500548733195163, 0.5424493305037464)

Compute the mean of the random numbers generated previously:3.

scala> val mean = num20.sum/num20.size // Recompute mean
mean: Double = -0.07043347067227887

In the preceding example, we created a collection of 20 random numbers with Gaussian
distribution properties and recomputed the mean value. The mean value is closer to 0.0;
however, it is not exactly 0.

Let's explore another way to generate normally distributed random numbers. This time, we
will be using Spark for this purpose. The following is an example of generating random
numbers with normal distribution in Spark:

Start a Spark shell in a Terminal:1.

$ spark-shell

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[153]

Import RandomRDD from Spark MLLib's random package:2.

scala> import org.apache.spark.mllib.random.RandomRDDs._
import org.apache.spark.mllib.random.RandomRDDs._

Create an RDD of 20 random numbers using normalRDD from the RandomRDD3.
class imported previously:

scala> val norm20 = normalRDD(sc, 20)
norm20: org.apache.spark.rdd.RDD[Double] = RandomRDD[0] at RDD at
RandomRDD.scala:42

Collect the RDD data into a Spark driver:4.

scala> val data = norm20.collect
data: Array[Double] = Array(0.9002432879145585, 1.2017829268140054,
0.22138020379583687, 0.162056540782974, 0.08797635729660246,
0.7485504161725681, -1.4444317942193088, -1.2053105014796643,
1.4366170997899934, -1.1217899878597575, -0.5402419965639337,
-0.39353597754494823, 1.2389234612716393, 0.48195007284822516,
-1.5520071929920085, -0.8154961830848371, 0.7595546221214476,
-0.6509633621290518, -0.020977133758767988, 0.4244958376997622)

Compute the mean value using plain Scala code (without using Spark):5.

scala> val mean = data.sum/data.size // Recompute mean
mean: Double = -0.004061165156233221

Use RDD's stats method to compute statistics, such as count, mean, stdev,6.
min, and max:

scala> norm20.stats
res2: org.apache.spark.util.StatCounter = (count: 20, mean:
-0.004061, stdev: 0.900782, max: 1.436617, min: -1.552007)

In the preceding example, we created a normally distributed collection with 20 random
values using Spark. We recomputed the mean and observed that its value is a lot closer to
0.0 compared to the earlier method. The biggest benefit of using a framework such as Spark
is that it provides higher-level APIs that are very suitable for data analysis. Yet another
benefit of Spark is its support for distributed computing at a large scale.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[154]

Random numbers with Poisson distribution
Poisson distributions are useful for modeling the occurrence frequency of events within
time intervals. Similar to normally distributed data, Poisson distributed data is found quite
a lot in real-world scenarios.

The following is an example of generating random numbers with Poisson distribution in
Spark:

Start a Spark shell in a Terminal:1.

$ spark-shell

Import RandomRDD from Spark's MLLib's random package:2.

scala> import org.apache.spark.mllib.random.RandomRDDs._
import org.apache.spark.mllib.random.RandomRDDs._

Set the desired mean value to 1.0:3.

scala> val mean = 1.0 // desired mean
mean: Double = 1.0

Create an RDD of 20 random numbers with a Poisson distribution property:4.

scala> val poi20 = poissonRDD(sc, mean, 20) // 20 values
poi20: org.apache.spark.rdd.RDD[Double] = RandomRDD[0] at RDD at
RandomRDD.scala:42

Insert the RDD created previously into the Spark driver:5.

scala> poi20.collect
res0: Array[Double] = Array(0.0, 0.0, 1.0, 0.0, 3.0, 0.0, 0.0, 0.0,
0.0, 2.0, 1.0, 0.0, 3.0, 1.0, 1.0, 0.0, 3.0, 1.0, 2.0, 0.0)

Compute the mean of the numbers using regular Scala code:6.

scala> val actualMean = data.sum/data.size
actualMean: Double = 0.9

Compute RDD stats:7.

scala> poi20.stats
res1: org.apache.spark.util.StatCounter = (count: 20, mean:
0.900000, stdev: 1.090871, max: 3.000000, min: 0.000000)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[155]

In the preceding example, we are easily able to create a random dataset with Poisson
distribution properties. The actual mean value of 0.9 is close to the desired mean value of
1.0. The advantage of using a framework such as Spark is that it provides a higher-level
abstraction that eases random data generation with such properties and, because of its
distributed nature, Spark also provides the scale necessary to deal with large datasets.

Hypothesis testing
Hypothesis testing is a statistical tool that is used for the following purposes:

Determining whether a result or model is statistically significant or not
Ensuring that a result or model did not occur by chance

A statistical hypothesis is used to establish a relationship between data using a sample set
of observations. We can call this relationship a result or a model. The goal of hypothesis
testing is to eliminate cases where a result occurs by chance. A null hypothesis, on the other
hand, establishes that the relationship is not statistically significant.

We typically start with a sample set of observations that consists of values associated with
more than one variable. In the Basics of statistics section, we looked at properties of a single
variable in isolation, except for Pearson's correlation methodology, where we measured the
linear relationship between two variables. The reliability of this relationship is, however,
dependent on the number of observations used to derive this value. We perform a
hypothesis test to confirm the significance of this correlation to determine whether the
relationship in the sample data is representative of the relationship in the population data.

Let's look at an example in Spark using Pearson's chi-squared tests for goodness of fit. We
will be using Pearson's method:

Start a Spark shell in a Terminal:1.

$ spark-shell

Import the necessary classes from Spark's MLLib package:2.

scala> import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.linalg._

scala> import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.regression.LabeledPoint

scala> import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.mllib.stat.Statistics

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Statistics and Hypothesis Testing Chapter 5

[156]

scala> import org.apache.spark.mllib.stat.test.ChiSqTestResult
import org.apache.spark.mllib.stat.test.ChiSqTestResult

scala> import org.apache.spark.rdd.RDD
import org.apache.spark.rdd.RDD

Create a sample observation of vectors:3.

scala> val observations = Vectors.dense(0.9, 0.8, 0.7, 0.6, 0.5,
0.4, 0.3, 0.2, 0.1)
observations: org.apache.spark.mllib.linalg.Vector =
[0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1]

Run the chi-square test on the data:4.

scala> Statistics.chiSqTest(observations)
res0: org.apache.spark.mllib.stat.test.ChiSqTestResult =
Chi squared test summary:
method: pearson
degrees of freedom = 8
statistic = 1.2000000000000002
pValue = 0.996641931146752
No presumption against null hypothesis: observed follows the same
distribution as expected..

Summary
Statistics play an important role in the data analysis life cycle. This chapter provided an
overview of basic statistics. We also learned how to extend basic statistical techniques and
use them on data that is represented as vectors. In the vector bases stats, we got some
insights into how weights could significantly alter statistical outcomes. We also learned
various techniques for random data generation, and, finally, we took a high-level view of
how to perform hypothesis testing.

In the next chapter, we will focus on Spark, a distributed data analysis and processing
framework.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Section 2: Advanced Data

Analysis and Machine Learning
In this section, you will do data analysis on distributed data, and get introduced to Spark, a
Scala-based distributed framework. This section will cover some interesting machine
learning (ML) concepts such as decision trees, random forests, lasso regression, and k-
means clustering.

This section will contain the following chapters:

Chapter 6, Introduction to Spark for Distributed Data Analysis
Chapter 7, Traditional Machine Learning for Data Analysis

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Introduction to Spark for

Distributed Data Analysis
In the previous chapters, we looked at various aspects of the data analysis life cycle using
Scala and some of the associated Scala libraries for data analysis. These libraries work well
on a single machine; however, most of the real-world data is generally too big to fit into a
single machine and requires distributed data processing on multiple machines. It is
certainly possible to write distributed data processing code using Scala, but the complexity
of handling failures rises significantly in a distributed environment. Fortunately, there are
some robust and proven open source solutions that are available to facilitate distributed
data processing on a large scale. One such open source solution is Apache Spark.

Apache Spark (https:/ ​/​spark. ​apache. ​org/ ​) is a unified analytics engine that supports
robust and reliable distributed data processing. It is certainly possible to use Spark on a
single machine, and we have already used Spark this way for some of our examples in
previous chapters. Using Spark this way is considered a local mode of operation and has its
own usefulness in many ways, as we will see later in the chapter. In this chapter, we will
explore some features of Spark that make it a truly powerful platform for large-scale
distributed data processing. This chapter will provide the transition to performing data
analysis on distributed systems and doing it at scale. It will provide a good introduction to
Spark, a Scala-based distributed framework for data processing. It will guide the user
through setting up Spark on their computer and introduce key Spark features using
practical examples.

Apache Spark (https:/ ​/​spark. ​apache. ​org/ ​) aims to be a unified analytics engine for
large-scale data processing. As we know, there are different kinds of tasks that need to be
performed in the data life cycle. One option is to have a separate solution that specializes in
specific tasks. Apache Spark takes a different approach by providing a unified engine that
has support for the most important data life cycle tasks—for example, data exploration can
be easily performed on Spark by pulling data from various sources. At the same time,
machine learning (ML) tasks can also be performed on the same engine with ease.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/

Introduction to Spark for Distributed Data Analysis Chapter 6

[159]

Data pipelines can also be run on Spark for performing a simple task, such as data
extraction to more sophisticated stream-oriented processing. The biggest benefit of this
unified engine is that multiple stakeholders of the data life cycle use a single platform,
which helps in the acceleration of data-oriented solutions development and deployment.
Another great benefit of Spark is its API support for multiple programming languages. This
certainly helps in lowering the barrier for the adoption of this technology in an enterprise. It
has support for the following languages:

Scala and Java: Java Virtual Machine (JVM) languages that are an excellent
choice for building robust data pipelines
Python: Excellent for ad hoc analysis
R: An alternative to Python for ad hoc analysis

Spark provides APIs for batch as well as stream data processing in a distributed computing
environment. Spark's APIs could be broadly divided into the following five categories:

Core: Resilient distributed datasets (RDD)
SQL: DataFrames, dataset API
Streaming: Structured Streaming and Discretized Stream (DStream)
MLlib: ML
GraphX: Graph processing

Apache Spark is a very active open source project. New features and performance
improvements are made on a regular basis. Typically, there is a new release of Apache
Spark every three months. At the time of this writing, 2.4.0 is the most recent release of
Spark.

The following is Spark Core's Scala build tool (SBT) dependency:

scalaVersion := "2.11.8"

libraryDependencies += "org.apache.spark" %% "spark-sql" % "2.4.0"

Spark Version 2.4.0 has introduced support for Scala Version 2.12; however, we will be
using Scala Version 2.11 for exploring Spark's feature sets. Spark will be covered in more
detail in the subsequent sections.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[160]

Spark setup and overview
Let's begin with the Spark setup on our local machine. Please refer to the Apache Spark
official site (https:/ ​/ ​spark. ​apache. ​org/ ​downloads. ​html) for details on downloading and
installing Spark. At the time of this writing, Spark Version 2.4.0 is the latest version, so we
will download and install this version. The following is a screenshot the Spark download
web page:

Please note the following pieces of information when selecting an appropriate download
image:

Spark release: Choose the latest stable release (2.4.0 at the time of this writing).
Package type: Choose the Pre-built for Apache Hadoop 2.7 and later option.
Download link: Clicking on this link will take you to the Apache Download
Mirrors site. Select the site most suitable for you. Generally, the suggested mirror
site works for most cases.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html

Introduction to Spark for Distributed Data Analysis Chapter 6

[161]

The following is another screenshot of the Apache Download Mirrors site with the Apache
Spark image:

The downloadable image is a .tar file that is .gzip compressed. You can download the
image by clicking the link in your browser. This should save the image in a Download
directory. The name and location of the Download directory will generally vary from one
OS to another. In the case of macOS, it is located in a subdirectory called Downloads
located under the user's home directory.

Now, extract the Spark binaries by untaring the image file as follows. This is a macOS-
specific example of extracting binaries:

$ tar -zxvf ~/Downloads/spark-2.4.0-bin-hadoop2.7.tgz
...
x spark-2.4.0-bin-hadoop2.7/README.md
x spark-2.4.0-bin-hadoop2.7/LICENSE

Alternatively, you could use the curl command to download the image as illustrated in
the following code:

$ curl -o spark-2.4.0-bin-hadoop2.7.tgz
http://mirror.cogentco.com/pub/apache/spark/spark-2.4.0/spark-2.4.0-bin-had

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[162]

oop2.7.tgz
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 217M 100 217M 0 0 14.1M 0 0:00:15 0:00:15 --:--:-- 14.2M

The preceding method uses the curl command to download the image and save it to the
file named spark-2.4.0-bin-hadoop2.7.tgz. Next, you need to untar this file to extract
the Spark binaries, as follows:

$ tar -zxvf spark-2.4.0-bin-hadoop2.7.tgz
...
x spark-2.4.0-bin-hadoop2.7/README.md
x spark-2.4.0-bin-hadoop2.7/LICENSE

At this point, there should be a directory called spark-2.4.0-bin-hadoop2.7 created in
your current directory. You can move this directory to any location of your choice.

Now, let's make sure that our Spark is set up correctly. Try the following set of commands
in your shell to launch the Spark shell:

$ spark-2.4.0-bin-hadoop2.7/bin/spark-shell
2019-01-27 17:58:01 WARN NativeCodeLoader:62 - Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use
setLogLevel(newLevel).
Spark context Web UI available at http://192.168.1.31:4040
Spark context available as 'sc' (master = local[*], app id =
local-1548640692711).
Spark session available as 'spark'.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 2.4.0
 /_/

Using Scala version 2.11.12 (Java HotSpot(TM) 64-Bit Server VM, Java
1.8.0_181)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[163]

It is important that the preceding command line produces output that is similar to this. The
following are a few things to be noted:

The Spark context Web UI is available at http://192.168.1.31:4040
=> where this is an URL (same as http://localhost:4040) a web UI where
we can get more details about the current Spark session.
The Spark context is available as sc (master = local[*], app id =
local-1548640692711) => We are running Spark in local mode.
The Spark session is available as 'spark' => the variable 'spark' and
provides us access to the Spark session.

The following is a screenshot of the UI (http://localhost:4040):

Spark UI is a powerful tool that helps us to understand how the Spark job works, and you
can use it to get very useful insights into the different stages of execution. The landing page
for this UI is http://localhost:4040/jobs/.

Please note that when you run the Spark shell, the following is created for you
automatically:

Spark: A SparkSession object that provides an entry point for interacting with
Spark
sc: A SparkContext object that provides an entry point for interacting with the
Spark SQL

Let's see the features that are available in SparkSession and sparkContext by going
through the following steps:

Start the Spark shell in your Terminal as follows:1.

$ spark-shell

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[164]

Inside the Spark shell, check the type of Spark object, which must be an instance2.
SparkSession for the org.pache.spark.sql package, as follows:

scala> spark.getClass
res0: Class[_ <: org.apache.spark.sql.SparkSession] = class
org.apache.spark.sql.SparkSession

Inside the Spark shell, type spark. <TAB> to get an insight into the methods3.
and attributes of the SparkSession object, as follows:

scala> spark.
baseRelationToDataFrame conf emptyDataFrame implicits range
sessionState sql streams udf
catalog createDataFrame emptyDataset listenerManager read
sharedState sqlContext table version
close createDataset experimental newSession readStream sparkContext
stop time

The SparkSession provides a powerful set of APIs, which are very well documented
here: https:/​/​spark. ​apache. ​org/ ​docs/ ​2. ​4.​0/ ​api/ ​java/ ​org/​apache/ ​spark/ ​sql/
SparkSession.​html. To take full advantage of Spark, it is important to understand these
APIs very well.

Import the Spark objects called implicits; these are automatically imported4.
when a Spark shell is started. For a Spark session that is created by other
mechanisms, these must be imported explicitly to take advantage of the implicit
conversions, as follows:

scala> import spark.implicits._
import spark.implicits._

Make use of the Spark session's implicits to turn a List of integers to a Spark5.
Dataset, as follows:

scala> val ds = List(1, 2, 3).toDS
ds: org.apache.spark.sql.Dataset[Int] = [value: int]

Check the sc type object. This must be an instance of SparkContext from6.
the org.apache.spark package, as follows:

scala> sc.getClass
res1: Class[_ <: org.apache.spark.SparkContext] = class
org.apache.spark.SparkContext

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/SparkSession.html

Introduction to Spark for Distributed Data Analysis Chapter 6

[165]

Inside the Spark shell, type sc. <TAB> to get an insight into methods and7.
attributes of sparkContext as follows:

scala> sc.
accumulable broadcast doubleAccumulator getSchedulingMode listJars
requestExecutors sparkUser
accumulableCollection cancelAllJobs emptyRDD hadoopConfiguration
longAccumulator requestTotalExecutors startTime
accumulator cancelJob files hadoopFile makeRDD runApproximateJob
statusTracker
addFile cancelJobGroup getAllPools hadoopRDD master runJob stop
addJar cancelStage getCheckpointDir isLocal newAPIHadoopFile
sequenceFile submitJob
addSparkListener clearCallSite getConf isStopped newAPIHadoopRDD
setCallSite textFile
appName clearJobGroup getExecutorMemoryStatus jars objectFile
setCheckpointDir uiWebUrl
applicationAttemptId collectionAccumulator getLocalProperty
killExecutor parallelize setJobDescription union
applicationId defaultMinPartitions getPersistentRDDs killExecutors
range setJobGroup version
binaryFiles defaultParallelism getPoolForName killTaskAttempt
register setLocalProperty wholeTextFiles
binaryRecords deployMode getRDDStorageInfo listFiles
removeSparkListener setLogLevel

The SparkContext also provides a powerful set of APIs, which are very well
documented at: https:/ ​/ ​spark. ​apache. ​org/ ​docs/ ​2. ​4.​0/​api/ ​java/ ​org/ ​apache/
spark/​SparkContext. ​html. The Spark context provides access to many of Spark's
lower level features. For advanced users of Spark, it is important for you to
understand these APIs very well.

Create a Spark RDD using SparkContext, as follows:8.

scala> val rdd = sc.parallelize(List(1, 2, 3))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at
parallelize at <console>:27

Compare and contrast the range API available in both SparkSession and9.
SparkContext as follows:

scala> val rangeDS = spark.range(0, 10)
rangeDS: org.apache.spark.sql.Dataset[Long] = [id: bigint]

scala> val rangeRDD = sc.range(0, 10)
rangeRDD: org.apache.spark.rdd.RDD[Long] = MapPartitionsRDD[2] at
range at <console>:27

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/SparkContext.html

Introduction to Spark for Distributed Data Analysis Chapter 6

[166]

From SparkSession, we get a dataset of Long, whereas SparkContext returns
an RDD of Long when using the range API. The dataset is a higher level Spark
construct that is built on top of Spark's lower level RDD construct.

Stop the Spark session as follows:10.

scala> spark.stop()

scala>

Cleanly exit the Spark shell as follows:11.

scala> :quit

Spark core concepts
When our dataset is large, we can envision that there are multiple slices of data that make
up the whole dataset. If a unit of compute work can be performed on each slice of data
independently, then it is possible to parallelize this unit of computation, as shown in the
following illustration:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[167]

In the preceding illustration, there is a large dataset that gets sliced into multiple smaller
slices. Identical computations run on each slice of data to create results from each slice.

At the core of Spark is the notion of RDD. Resilient implies that Spark is able to handle
node failures automatically by retrying the compute work. Distributed, in this context,
means that the dataset is spread across a cluster of nodes thereby overcoming the
limitations associated with the resources of a single node.

Once we have this model of RDD in place, we can think of a slice of data and the
computation together as one unit of work. This can be shipped to any worker to perform
the work as illustrated in the following diagram:

In the preceding example, we have three workers working on different slices of data and
applying the associated compute.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[168]

Let's look at a concrete example to understand this concept further. Say we have a stack of
cards with each card containing a number, and we want to find the maximum value from
this stack of cards. In Scala REPL, we can solve this using the following steps:

Generate 20 random integers using Scala's random number generator, as follows:1.

// Generate 20 random ints
scala> val nums = for(i <- 1 to 20) yield scala.util.Random.nextInt
nums: scala.collection.immutable.IndexedSeq[Int] =
Vector(1701897084, -471839866, 289636030, -68368275, 1453521457,
1776989974, -333257299, 907038439, -157459682, 1279280488,
703554062, -658257712, 74262668, -2034769618, -1796054725,
1618075730, 642862982, 19687648, -1505425837, 1992429366)

Apply the reduce API on random numbers so that it picks up the higher of two2.
numbers and applies this repeatedly to provide the highest number, as follows:

scala> nums.reduce((a, b) => if (a >= b) a else b) // reduce by
taking higher of the two values

res0: Int = 1992429366

Find the highest number using an alternative method, as follows:3.

// for illustration purpose, we will use the reduce method instead
scala> nums.max
res1: Int = 1992429366

In the preceding example, we used the reduce method from the Scala collection API to get
the maximum value. The reduce method takes a function as an argument. The supplied
function must accept two arguments whose types are the same as the element type of the
collection. It must return a value that is also the same kind of element type. We can explore
this in Scala REPL:

Define a Scala function that accepts two integers as input and returns an integer1.
that is the higher of the two, as follows:

scala> val fun = (a: Int, b: Int) => if (a >= b) a else b
fun: (Int, Int) => Int = <function2>

Use the aforementioned function as a parameter to the reduce API of the2.
collection to get the maximum value, as follows:

scala> nums.reduce(fun)
res2: Int = 1992429366

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[169]

In the preceding example, we worked with only 20 numbers. If this is very large, a single-
threaded operation would be quite slow to compute. The Scala collection API has support
for parallelizing this compute. Let's explore this with one million numbers:

Create a million random integers as follows:1.

scala> val nums = for(i <- 1 to 1024*1024) yield
scala.util.Random.nextInt
nums: scala.collection.immutable.IndexedSeq[Int] =
Vector(357619961, 1737020067, -469045738, -601249939, -403302690,
-2066886866, -1785453571, -1547877670, -1485755408, 1037008188,
597778092, -11773505, -1087522271, -1065953174, -1910311733,
2031863519, -2077923104, 839563816, 1282957796, 674409356,
1813034923, -2070250813, -533697263, -1797217719, -751180312,
-1115480418, 890799862, -1566443600, -940178443, 1942197186,
1208980209, -1936454251, -1233813123, 1696121754, 882872208,
-1607840660, -1193358067, -249398026, 27578947, -1040824601,
62576870, 241072729, 914410066, -530844701, -1092314860,
1708591216, -2017362160, 1647649412, 1151979199, -197717793,
1392917841, -638219106, 2094838976, 567119171, 1904027672,
-216847530, -310681225, 1126606452, 1440522388, -1249070584,
1334505947, -...

Define the function that computes the higher of two integers as follows:2.

scala> val fun = (a: Int, b: Int) => if (a >= b) a else b
fun: (Int, Int) => Int = <function2>

Turn the collection into a parallel one and then apply the reduce API using the3.
preceding function as the parameter, as follows:

scala> nums.par.reduce(fun) // turns into parallel collection and
then reduces
res4: Int = 2147483017

This worked for one million numbers. We can still go with a higher count of numbers;
however, at some point, we will start seeing errors like those shown in the following code:

java.lang.OutOfMemoryError: GC overhead limit exceeded
 at java.lang.Integer.valueOf(Integer.java:832)
 at scala.runtime.BoxesRunTime.boxToInteger(BoxesRunTime.java:65)
 at $anonfun$1.apply(<console>:11)
 at
scala.collection.TraversableLike$$anonfunmap1.apply(TraversableLike.scala
:234)
 at
scala.collection.TraversableLike$$anonfunmap1.apply(TraversableLike.scala
:234)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[170]

 at scala.collection.immutable.Range.foreach(Range.scala:160)
 at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
 at scala.collection.AbstractTraversable.map(Traversable.scala:104)
 ... 24 elided

In the preceding example, we are reaching the resource limits of a single machine. A
machine has the following two key resources that affect the overall compute:

RAM: Random access memory, where data is stored for computation
CPU core: This performs the compute

For an approach that relies on a single machine for computations, the only option is to add
more resources as the data volume grows. This approach reaches its limits fairly quickly,
and in fact, the cost of such an approach gets fairly high with the addition of more
resources.

Spark's RDD addresses this issue in a scalable way. At the core, RDD has the following two
salient features:

Resilient: RDDs preserve the dataset's consistency in the event of failures.
Distributed: RDDs overcome the limitations of a single machine by distributing
the dataset in a cluster of nodes.

Let's look at the same example in the Spark shell by going through the following steps:

Start the Spark shell as follows:1.

$ spark-shell

Create a Spark RDD of one million random integers as follows:2.

scala> val numRDD = spark.range(1024*1024).rdd.map(i =>
scala.util.Random.nextInt())
numRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[5] at map
at <console>:23

Get the number of partitions in RDD as follows:3.

scala> numRDD.getNumPartitions
res0: Int = 8

Print the size of each partition as follows:4.

scala> numRDD.foreachPartition(p => println(p.size))
131072
131072
131072

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[171]

131072
131072
131072
131072
131072

Use the reduce API on the RDD compute maximum as follows:5.

scala> numRDD.reduce((a, b) => if (a >= b) a else b)
res2: Int = 2147483447

Let's look at what was being done here:

spark.range(1024*1024).rdd.map(i =>

scala.util.Random.nextInt()):
We used Spark's range function to generate 1 million numbers
and convert them to an RDD
We used RDD's map function to generate a random integer for each
number

numRDD.getNumPartitions:
There are eight partitions in this RDD

numRDD.foreachPartition(p => println(p.size)):
Each partition of the RDD has 131,072 records

numRDD.reduce((a, b) => if (a >= b) a else b):
We used RDD's reduce function to get the maximum value
RDD's reduce API is similar to Scala collection's reduce API;
however, RDD's reduce works on distributed data

Let's look at this in more detail by going to the Spark UI at http://localhost:4040:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[172]

We can see the following two jobs associated with the RDD:

Job #0: The foreach operation on RDD that prints the size of each partition
Job #1: The reduce operation on RDD that computes the maximum value

If we drill down further in Job 1, we can see the following details:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[173]

There was a map operation performed to randomize the numbers. As expected, there were
in total eight tasks, since there were eight partitions in the RDD. The following are a few
terms to note here:

Job: A higher level unit of work that consists of one or more transformations and
an action
Stage: A series of transformations that happen within a job and are confined to a
single partition
Task: The work to be performed on a single partition of data

We can see more details about this in the Stages tab of the Spark UI, as shown in the
following screenshot:

Spark uses lazy evaluation to perform its work. Spark's operations can be divided into the
following two parts:

Transformations: Operations that perform some data manipulations, data
filtering
Actions: Operations that materialize the results

When we perform transformations on an RDD in Spark, we are essentially building a
recipe. When an action is performed, the recipe is materialized and action results are
produced.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[174]

In the following code, we have created an RDD and performed a map transformation. At
this point, RDD is defined; however, Spark has not performed any work, as seen in the
following:

val numRDD = spark.range(1024*1024).rdd.map(i =>
scala.util.Random.nextInt())

Once we run the reduce operation, which is a Spark action, Spark starts to execute the
following recipe that we defined earlier:

numRDD.reduce((a, b) => if (a >= b) a else b)

The reduce action creates a Spark job. This job consists of a single stage. Within this stage,
there are eight tasks, one for each partition.

This lazy evaluation approach offers the following benefits:

When a Spark action is executed, it looks at the entire execution graph that is
needed to materialize the action. This provides opportunities for transformation
optimization, such as eliminating redundant transformations and reordering
operations that provide better overall performance while maintaining the overall
consistency of the results produced.
It provides opportunities for caching only the results that are used repeatedly.
This becomes important when data to be handled is large.

Next, we will look at Spark's datasets and DataFrames while still exploring more details of
Spark.

Spark Datasets and DataFrames
In the previous section, we looked at Spark's core functionality using RDDs. RDDs are
powerful constructs; however, there are still some low-level details that a Spark user has to
understand and master before making use of it. Spark's Datasets and DataFrame constructs
provide higher level APIs for working with data.

Spark's Dataset brings a declarative style of programming along with the functional
programming style of RDD. Structured Query Language (SQL) is a very popular
declarative language, and is extremely popular among people who do not have a strong
background in functional programming. The Spark DataFrame is a special type of dataset
that provides the concepts of the row and column, as seen in the tradition relational
database (RDBS) work.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[175]

Let's explore the example we used earlier using RDD. We will use the dataset and
DataFrame constructs instead:

Start a spark-shell as follows:1.

$ spark-shell

Create a dataset of one million random integers, as follows:2.

scala> val numDS = spark.range(1024*1024).map(i =>
scala.util.Random.nextInt())
numDS: org.apache.spark.sql.Dataset[Int] = [value: int]

Use the reduce API of the dataset to compute the maximum, as follows:3.

scala> numDS.reduce((a, b) => if (a >= b) a else b)
res4: Int = 2147478392

Create a Spark DataFrame consisting of one million random integers, as follows:4.

scala> val numDF = spark.range(1024*1024).map(i =>
scala.util.Random.nextInt()).toDF
numDF: org.apache.spark.sql.DataFrame = [value: int]

Try to perform reduce on the DataFrame; we should get an error, as follows:5.

scala> numDF.reduce((a, b) => if (a >= b) a else b) // DOES NOT
WORK
<console>:26: error: value >= is not a member of
org.apache.spark.sql.Row
 numDF.reduce((a, b) => if (a >= b) a else b)

We constructed a dataset and a DataFrame of random numbers instead of the RDD. We are
able to perform a reduce action on the dataset to get the maximum value; however,
the reduce action of the DataFrame produces an error. This is because each element of the
DataFrame is of the Row type and so, the following operation involving two elements is
incorrect:

(a, b) => if (a >= b) a else b

We can make the following modifications to produce the desired results:

scala> numDF.reduce((a, b) => if (a(0).asInstanceOf[Int] >=
b(0).asInstanceOf[Int]) a else b)
res8: org.apache.spark.sql.Row = [2147480464]

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[176]

This DataFrame's Row has only one column, and it is of the Int type. We take the first
column (at index 0) and cast it as Int before comparing the two values, as follows:

a(0).asInstanceOf[Int] // column at index 0 cast as an Int

Let's look at another concrete example to understand Spark's dataset and DataFrame
properties in a Spark shell:

Start a Spark shell as follows:1.

$ spark-shell

Define a Scala case class called Person as follows:2.

scala> case class Person(fname: String, lname: String, age: Int)
defined class Person

Create a small List of Person objects as follows:3.

scala> val persons = List(Person("Jon", "Doe", 21), Person("Bob",
"Smith", 25), Person("James", "Bond", 47))
persons: List[Person] = List(Person(Jon,Doe,21),
Person(Bob,Smith,25), Person(James,Bond,47))

Create a dataset of Person from the list of persons as follows:4.

scala> val ds = spark.createDataset(persons)
ds: org.apache.spark.sql.Dataset[Person] = [fname: string, lname:
string ... 1 more field]

Create a DataFrame from the list of persons as follows:5.

scala> val df = spark.createDataFrame(persons)
df: org.apache.spark.sql.DataFrame = [fname: string, lname: string
... 1 more field]

Print a schema of the dataset as follows:6.

scala> ds.printSchema
root
 |-- fname: string (nullable = true)
 |-- lname: string (nullable = true)
 |-- age: integer (nullable = false)

Print a schema of the DataFrame as follows:7.

scala> df.printSchema
root

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[177]

 |-- fname: string (nullable = true)
 |-- lname: string (nullable = true)
 |-- age: integer (nullable = false)

In the preceding example, we did the following:

Defined a case class called Person with three attributes:
fname: String
lname: String
age: Int

Created a list of three persons
Created a dataset of persons
Created a DataFrame of persons
Printed a schema of the dataset and the DataFrame

As discussed in Chapter 1, Scala Overview, Scala's case classes come in really handy when
we work with Spark's datasets and, to some degree, DataFrames as well. Datasets provides
a strong type safety that aids significantly in building robust data pipelines. The type of
dataset in the previous example, it was org.apache.spark.sql.Dataset[Person]. This
implies that it is a dataset of Person. When working with DataFrames of this type, safety is
not available because DataFrame is a dataset of Row. We can confirm this in a Spark shell as
follows:

scala> df.getClass
res11: Class[_ <: org.apache.spark.sql.DataFrame] = class
org.apache.spark.sql.Dataset

scala>
df.isInstanceOf[org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]]
res12: Boolean = true

Both dataset and DataFrame are very powerful constructs in Spark, each with its own
strengths. When both are used together, these become a powerful means of working with
data. Spark's Datasets are only available in JVM programming languages. This means that
datasets can be used only in Scala and Java. Spark's DataFrames, on the other hand, are
supported in Scala, Java, Python, and R.

Let's look at some of the dataset APIs, continuing with the same example:

Show from rows from the dataset as follows:1.

scala> ds.show
+-----+-----+---+
|fname|lname|age|

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[178]

+-----+-----+---+
Jon	Doe	21
Bob	Smith	25
James	Bond	47
+-----+-----+---+

Convert first name and last name to uppercase by applying a map operation to2.
each element of the dataset, as follows:

scala> val dsUpper = ds.map(p => p.copy(p.fname.toUpperCase,
p.lname.toUpperCase))
dsUpper: org.apache.spark.sql.Dataset[Person] = [fname: string,
lname: string ... 1 more field]

Show the row from the uppercase mapped dataset as follows:3.

scala> dsUpper.show
+-----+-----+---+
|fname|lname|age|
+-----+-----+---+
JON	DOE	21
BOB	SMITH	25
JAMES	BOND	47
+-----+-----+---+

In the preceding example, we first displayed the contents of the dataset using the show
command, which typically displays up to 20 entries. We then performed a map operation on
each Person object by converting the first name and last name to uppercase. Finally, we
displayed the contents of the transformed dataset.

Let's go through some similar steps with the DataFrame in the Spark shell, as follows:

Show some rows from DataFrame as follows:1.

scala> df.show
+-----+-----+---+
|fname|lname|age|
+-----+-----+---+
Jon	Doe	21
Bob	Smith	25
James	Bond	47
+-----+-----+---+

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[179]

Perform a map operation on DataFrame to convert the first and last name to2.
uppercase. This returns an instance of the dataset where the attributes are named
_1, _2, and _3, as follows:

scala> val dfUpper = df.map(r =>
(r(0).asInstanceOf[String].toUpperCase,
r(1).asInstanceOf[String].toUpperCase, r(2).asInstanceOf[Int]))
dfUpper: org.apache.spark.sql.Dataset[(String, String, Int)] = [_1:
string, _2: string ... 1 more field]

Fix the attribute name issue as follows:3.

scala> val dfUpperWithName = df.map(r =>
(r(0).asInstanceOf[String].toUpperCase,
r(1).asInstanceOf[String].toUpperCase,
r(2).asInstanceOf[Int])).toDF("fname", "lname", "age")
dfUpperWithName: org.apache.spark.sql.DataFrame = [fname: string,
lname: string ... 1 more field]

Show some rows from the mapped DataFrame as follows:4.

scala> dfUpperWithName.show
+-----+-----+---+
|fname|lname|age|
+-----+-----+---+
JON	DOE	21
BOB	SMITH	25
JAMES	BOND	47
+-----+-----+---+

There are some key differences in how the DataFrame works compared to the dataset. The
map API on DataFrame converts it to a dataset of (String, String, Int). The other
difference is that the object available to the map function is of the Row type as opposed
to Person. Different parts of Person need to be extracted from Row and type cast to their
appropriate types. There is also the following alternative way to achieve the same results
without the need for type casting:

scala> val dfUpperWithName = df.map(r => ((r.getString(0), r.getString(1),
r.getInt(2)))).toDF("fname", "lname", "age")
dfUpperWithName: org.apache.spark.sql.DataFrame = [fname: string, lname:
string ... 1 more field]

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[180]

Filtering data on the dataset and DataFrame can be performed in the following way:

Filter the dataset for entries where the age is greater than 25 as follows:1.

scala> val dsAbove25 = ds.where($"age" > 25)
dsAbove25: org.apache.spark.sql.Dataset[Person] = [fname: string,
lname: string ... 1 more field]

Filter DataFrame for entries where the age is greater than 25 as follows:2.

scala> val dfAbove25 = df.where($"age" > 25)
dfAbove25: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] =
[fname: string, lname: string ... 1 more field]

Show the filtered dataset's contents as follows:3.

scala> dsAbove25.show
+-----+-----+---+
|fname|lname|age|
+-----+-----+---+
|James| Bond| 47|
+-----+-----+---+

Show the filtered DataFrame's contents as follows:4.

scala> dfAbove24.show
+-----+-----+---+
|fname|lname|age|
+-----+-----+---+
|James| Bond| 47|
+-----+-----+---+

We used the where API by specifying a filter condition $"age" > 25 in both cases. In this
context, $"age" represents the column in the dataset or DataFrame. We can add more
conditions to the where clause using the following steps:

Use multiple conditions to filter the dataset as follows:1.

scala> val ds25Bob = ds.where($"age" === 25 && $"fname" === "Bob")
ds25Bob: org.apache.spark.sql.Dataset[Person] = [fname: string,
lname: string ... 1 more field]

Use multiple conditions to filter the DataFrame as follows:2.

scala> val df25Bob = df.where($"age" === 25 && $"fname" === "Bob")
df25Bob: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] =
[fname: string, lname: string ... 1 more field]

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[181]

Show the filtered dataset's contents as follows:3.

scala> ds25Bob.show
+-----+-----+---+
|fname|lname|age|
+-----+-----+---+
| Bob|Smith| 25|
+-----+-----+---+

Show the filtered DataFrame's contents as follows:4.

scala> df25Bob.show
+-----+-----+---+
|fname|lname|age|
+-----+-----+---+
| Bob|Smith| 25|
+-----+-----+---+

Please note the usage of the triple equals sign (===). This is needed to indicate that it is a
column compare because the standard double equals (==) compares two references and
returns a Boolean value.

We can also use a free-form expression to perform filtering in where clauses by using the
following steps:

Apply multiple conditions on the dataset using the following expression:1.

scala> val dsWhereFF = ds.where("age = 25 and fname = 'Bob'")
dsWhereFF: org.apache.spark.sql.Dataset[Person] = [fname: string,
lname: string ... 1 more field]

Apply the same conditions to DataFrame using the following expression:2.

scala> val dfWhereFF = df.where("age = 25 and fname = 'Bob'")
dfWhereFF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] =
[fname: string, lname: string ... 1 more field]

Show the filtered dataset's contents as follows:3.

scala> dsWhereFF.show
+-----+-----+---+
|fname|lname|age|
+-----+-----+---+
| Bob|Smith| 25|
+-----+-----+---+

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[182]

Show the filtered DataFrame's contents as follows:4.

scala> dfWhereFF.show
+-----+-----+---+
|fname|lname|age|
+-----+-----+---+
| Bob|Smith| 25|
+-----+-----+---+

In this example, we are able to achieve the same results by using an SQL such as where
condition.

Using the select API, we can select specific columns from the dataset and DataFrame, as
follows:

scala> ds.select("fname", "lname")
res34: org.apache.spark.sql.DataFrame = [fname: string, lname: string]

scala> df.select("fname", "lname")
res35: org.apache.spark.sql.DataFrame = [fname: string, lname: string]

Applying select to a dataset returns a DataFrame, whereas applying select to
DataFrame returns a DataFrame. It is an important observation that some APIs on the
dataset returns a DataFrame. Similar to the select API, the selectExpr API also returns
a DataFrame. The selectExpr API is a powerful API because it also allows
transformations to be performed on the dataset and DataFrame columns.

Sourcing data using Spark
Spark provides a mechanism to work with a variety of data sources and formats. It also has
excellent support for integrating with the Hadoop Distributed File System (HDFS), as well
as several other popular storage systems, such as Amazon S3. In this section, we will focus
on the variety of data sources and formats supported by Spark.

Parquet file format
Apache Parquet (https:/ ​/​parquet. ​apache. ​org/​) is an open source project and defines the
specifications of a columnar data storage format. This storage format is extremely popular
in the big data world for the following reasons:

It supports nested data structures, which is good because most real-world data
fits more naturally into a nested structure.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/

Introduction to Spark for Distributed Data Analysis Chapter 6

[183]

Being columnar storage, it has analytical workloads where only a subset of
columns is used for analysis.The Parquet columnar storage format leads to more
efficient data scans.
Parquet data is stored in row groups, which allows it to be splittable, and at the
same time, data compression can be applied at row-group level without
compromising splittable properties. This is important because this is how Spark
is able to parallelize the processing by forming multiple partitions of a given
dataset.
It uses interesting encoding algorithms based on the properties of data that help
in optimizing storage and data retrieval.
Statistics about the data are stored along with the data as metadata. These are
utilized further to reduce the scans when data is read.
The schema is stored along with the data as part of the metadata. From the
Parquet data files, it is very easy to decipher the schema of stored data.

The Spark API commonly used to read and write a Parquet file is as follows:

spark.read.parquet(sourceLocation)

dataframe.write.parquet(destinationLocation)

The Spark session's read method provides a DataFrameReader object that can be used to
read various types of formats. More details about reading Parquet can be found at: https:/
/​spark.​apache.​org/ ​docs/ ​2.​4. ​0/ ​api/ ​java/ ​org/ ​apache/ ​spark/ ​sql/ ​DataFrameReader.
html#parquet-​java. ​lang. ​String. ​. ​.​- ​.

On the other hand, a DataFrame's write method returns a DataFrameWriter object that
can be used to write data in various types of formats. More details about writing data in
Parquet can be found at: https:/ ​/​spark. ​apache. ​org/ ​docs/ ​2.​4. ​0/​api/ ​java/ ​org/ ​apache/
spark/​sql/​DataFrameWriter. ​html#parquet- ​java. ​lang. ​String- ​.

Both DataFrameReader and DataFrameWriter provide fairly comprehensive APIs to
read and write data in many different formats.

Avro file format
Apache Avro (https:/ ​/​avro. ​apache. ​org/ ​) is another data serialization format. This is a
binary format that provides a compact representation of underlying data. Similar to
Parquet, it is a structured data format and has support for storing nested data. Spark has
excellent support for working with Avro.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameReader.html#parquet-java.lang.String...-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/DataFrameWriter.html#parquet-java.lang.String-
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/

Introduction to Spark for Distributed Data Analysis Chapter 6

[184]

Spark JDBC integration
A significant amount of enterprise data is stored in relational database systems (RDBMS).
The majority of the more popular database systems support Java Database Connectivity
(JDBC) as a way of interacting with these systems. Spark provides a convenient way to use
JDBC for integrating with these RDBMS systems.

Using Spark to explore data
Spark's SQL provides a convenient way to explore data and gain a deeper understanding of
the data. Spark's DataFrame construct can be registered as temporary tables. It is possible to
run SQL on these registered tables by performing all of the normal operations, such as
joining tables and filtering data.

Let's look at an example Spark shell to learn how to explore data by using the following
steps:

Start the Spark shell in a Terminal as follows:1.

$ spark-shell

Define the following Scala case called Person with the following three attributes:2.
fname: String
lname: String
age: Int

scala> case class Person(fname: String, lname: String, age: Int)
defined class Person

Create a Scala list consisting of a few persons and put it into a Spark dataset of3.
Person as follows:

scala> val personsDS = List(Person("Jon", "Doe", 22),
Person("Jack", "Sparrow", 35), Person("James", "Bond", 47),
Person("Mickey", "Mouse", 13)).toDS
personsDS: org.apache.spark.sql.Dataset[Person] = [fname: string,
lname: string ... 1 more field]

Create a Spark temporary view named persons with underlying coming from4.
the dataset created in the previous step:

scala> personsDS.createOrReplaceTempView("persons")

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[185]

Run the SQL using the Spark session query in the temporary view created in the5.
previous step. Limit the selection of persons to those aged 21 or older. This will
return a new Spark DataFrame consisting of records that match the criteria.
Please note that the object returned is a DataFrame, which is a special type of
dataset of Row as follows:

scala> val personsAbove21 = spark.sql("select * from persons where
age >= 21")
personsAbove21: org.apache.spark.sql.DataFrame = [fname: string,
lname: string ... 1 more field]

Show the contents of the DataFrame created in the previous step as follows:6.

scala> personsAbove21.show(truncate=false)
+-----+-------+---+
|fname|lname |age|
+-----+-------+---+
Jon	Doe	22
Jack	Sparrow	35
James	Bond	47
+-----+-------+---+

Run another SQL on the temporary view. Change the fname and lname fields to7.
uppercase as follows:

scala> val personsUpperCase = spark.sql("select upper(fname) as
ufname, upper(lname) ulname, age from persons")
personsUpperCase: org.apache.spark.sql.DataFrame = [ufname: string,
ulname: string ... 1 more field]

Show the DataFrame created in the previous step as follows:8.

scala> personsUpperCase.show(truncate=false)
+------+-------+---+
|ufname|ulname |age|
+------+-------+---+
JON	DOE	22
JACK	SPARROW	35
JAMES	BOND	47
MICKEY	MOUSE	13
+------+-------+---+

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Spark for Distributed Data Analysis Chapter 6

[186]

Summary
In this chapter, we explored the Apache Spark open source distributed data processing
platform. We installed a copy of Apache Spark on our local computer. First, we learned
about of Spark's core API using hands-on examples that explored Spark's resilient
distributed dataset (RDD). Next, we explored the higher level APIs of Spark using datasets
and DataFrames.

In the next chapter, we will look at traditional machine learning concepts.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Traditional Machine Learning

for Data Analysis
This chapter provides an overview of machine learning (ML) techniques for doing data
analysis. In the previous chapters, we have explored some of the techniques that can be
used by human beings to analyze and understand data. In this chapter, we look at how ML
techniques could be used for similar purposes.

At the heart of ML is a number of algorithms that have proven to work for solving specific
categories of problems with a high degree of effectiveness. This chapter covers the
following popular ML methods:

Decision trees
Random forests
Ridge and lasso regression
k-means cluster analysis

It also covers the role of natural language processing (NLP) in effectively analyzing certain
types of data problems. The discussion in this chapter is limited to traditional machine
learning methods. It does not cover newer methods such as deep learning and neural
networks.

Let's first get an understanding of ML before diving into various ML algorithms.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[188]

ML overview
Let's first look at what ML is. In a traditional sense, in order to solve a computational
problem, we typically write explicit computer instructions that solve the problem based on
all of the possible scenarios. The assumption here is that all of the rules associated with the
specific problem being solved are known and well-defined in advance and could be
codified into computer instructions. This assumption, however, is not always true. There
are times when the rules are not known in advance and it is impractical to define
deterministic rules that could be applied to solve the problem.

Let's look at this problem using a concrete example of an app stores where a consumer has
the option of buying an app from a fairly large catalog of available apps. When the
consumer logs into the app store, it displays a set of recommended apps that the consumer
is highly likely to buy. The computational problem we have to solve here is to determine a
small number of the most relevant apps that the consumer is highly likely to buy. Let's
assume that we have the demographic information of the consumer, such as their age, sex,
and location. We also have knowledge of the prior purchases of the consumer from the
same app store. Writing explicit code to solve this problem for each individual consumer is
going to be impractical and ineffective. Each time a new consumer is added to the app
store, we would have to repeat this process. As the number of consumers grows, this
methodology would turn out to be extremely expensive and not feasible to sustain. On the
other hand, if we look at the buying behavior of a sufficiently large population of
consumers in the app store over time and are able to establish some rules, we should be
able to predict the likely purchases of the new consumer more effectively.

In the preceding example, we could use an ML algorithm that can sift through past
observations of consumer purchases from the app store and then deduce some rules that
could be used for predicting what apps a consumer is likely to purchase. These rules are
sometimes known as an analytical model. The model could be fairly simple or complex
based on the ML algorithm used and the richness of the data available.

The important property to observe here is that the machine learns from existing data by
applying a specific algorithm to build an analytical model. Of course, the ML algorithm
needs to be codified. However, the actual analytical model that gets built is based on the
properties of data that the algorithm operates on. Here, the machine is learning about the
properties of data using a specific algorithm, ultimately to arrive at a model. This model
could be applied to make predictions about new and previously unseen input data points.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[189]

Characteristics of ML
The following are some of the most important characteristics of ML:

The goal of ML is to build an analytical model without much human
intervention.
The machine analyzes already available-data by applying a specific ML
algorithm and learning from the data. Human effort is still necessary for selecting
an appropriate algorithm, determining the effectiveness of the algorithm, and
tuning it up.
The analytical model built by ML should be effective in making effective
predictions about new and previously unseen data points. A machine is
considered to be learning from data only if the built analytical model turns out to
be effective in making future predictions.
ML plays an important role in automating the process of model building.

Put simply, ML is the process of building an autonomous analytical model by applying an
ML algorithm on already observed data.

Categories or types of ML
ML can be broken down into two distinct categories of learning:

Supervised learning: The training data is labeled; that is, the training data
consists of inputs as well as associated observed outcomes or outputs.
Unsupervised learning: The training data is not labeled; that is, the training data
consists of inputs only and there are no observed outcomes or outputs associated
with it.

Next, we will look at some important ML algorithms from both of these categories.

Decision trees
As the name suggests, decision trees in ML build a tree-like structure with decision
conditions on each branch. Conditions define the flow of the decision-making process. We
can also think of decision trees as being similar to flow charts.

Decision trees are supervised ML algorithms. This implies that this algorithm learns from
labeled data. It can be used for classification as well as regression.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[190]

Implementing decision trees
Let's look at a simple example to understand and explore this concept. We have the
following observations:

Age in Years Height in Inches Weight in Pounds Gender Shoe Size
25 180 200 M 12
35 165 190 F 9
20 175 195 M 11
70 170 200 M 9
75 170 170 F 8

Our inputs, variables, or features are as follows:

Age in Years
Height in Inches
Weight in Pounds
Gender

The outcome or output is as follows:

Shoe Size

The aforementioned is an example of labeled data. We can envision labeled data as a tuple
of inputs and the corresponding output.

In this example, the problem that we are trying to solve is to predict the shoe size of a
person based on their age, height, weight, and gender.

Using the decision trees ML algorithm, we can solve this problem, provided we have
enough high-quality labeled training data. The algorithm will build a model based on the
learnings from the training dataset. This model needs to be evaluated for effectiveness and
this can be done by testing against labeled testing data.

From our intuitive understanding, we already know that for determining the shoe size of
an adult, gender and height are the two most dominant factors. In the decision-making
process, gender can also act well as a good split. The decision tree algorithm is about
finding those good splits based on the provided labeled observations. This is a greedy
algorithm that works recursively to find splits and then evaluates these splits to find the
most effective splits.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[191]

Decision tree algorithms
Decision trees algorithms are of two types:

Classification: Answering a yes/no type of question
Regression: Outputting a continuous value

Implementing decision tree algorithms in our example
The example we are discussing here falls into the category of regression because our output
is Shoe Size, which has multiple values.

If we ask a slightly different question, we could turn this into a classification problem. For
example, given the following input variables, we can predict gender:

Age in Years

Height in Inches

Weight in Pounds

Shoe Size

In this simple example, we only have two possible values for this answer.

Let's look at how to run a decision tree classifier using Spark and Scala. The complete Spark
example code is located here on GitHub:

https:/​/​github.​com/ ​apache/ ​spark/ ​blob/ ​master/ ​examples/ ​src/ ​main/ ​scala/ ​org/ ​apache/
spark/​examples/​mllib/ ​DecisionTreeClassificationExample. ​scala

Additionally, the following Spark documentation provides a good overview of the decision
tree and the preceding example:

https:/​/​spark.​apache. ​org/ ​docs/ ​2. ​4. ​0/ ​mllib- ​decision- ​tree. ​html

The sample data for this example is located here:

https:/​/​github.​com/ ​apache/ ​spark/ ​blob/ ​master/ ​data/ ​mllib/ ​sample_ ​libsvm_ ​data. ​txt

For this exploration, it is best to download this file locally using the following curl
command:

$ curl
 "https://raw.githubusercontent.com/apache/spark/master/data/mllib
 /sample_libsvm_data.txt" -o sample_libsvm_data.txt

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://spark.apache.org/docs/2.4.0/mllib-decision-tree.html
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt
https://github.com/apache/spark/blob/master/data/mllib/sample_libsvm_data.txt

Traditional Machine Learning for Data Analysis Chapter 7

[192]

It is important that while downloading, the raw link is used (https:/ ​/​raw.
githubusercontent. ​com/ ​apache/ ​spark/ ​master/ ​data/ ​mllib/ ​sample_ ​libsvm_ ​data. ​txt)
and the data is saved into a local file.

Run the following command in the shell to make sure that the downloaded data is correct:

$ head -1 sample_libsvm_data.txt
0 128:51 129:159 130:253 131:159 132:50 155:48 156:238 157:252 158:252
159:252 160:237 182:54 183:227 184:253 185:252 186:239 187:233 188:252
189:57 190:6 208:10 209:60 210:224 211:252 212:253 213:252 214:202 215:84
216:252 217:253 218:122 236:163 237:252 238:252 239:252 240:253 241:252
242:252 243:96 244:189 245:253 246:167 263:51 264:238 265:253 266:253
267:190 268:114 269:253 270:228 271:47 272:79 273:255 274:168 290:48
291:238 292:252 293:252 294:179 295:12 296:75 297:121 298:21 301:253
302:243 303:50 317:38 318:165 319:253 320:233 321:208 322:84 329:253
330:252 331:165 344:7 345:178 346:252 347:240 348:71 349:19 350:28 357:253
358:252 359:195 372:57 373:252 374:252 375:63 385:253 386:252 387:195
400:198 401:253 402:190 413:255 414:253 415:196 427:76 428:246 429:252
430:112 441:253 442:252 443:148 455:85 456:252 457:230 458:25 467:7 468:135
469:253 470:186 471:12 483:85 484:252 485:223 494:7 495:131 496:252 497:225
498:71 511:85 512:252 513:145 521:48 522:165 523:252 524:173 539:86 540:253
541:225 548:114 549:238 550:253 551:162 567:85 568:252 569:249 570:146
571:48 572:29 573:85 574:178 575:225 576:253 577:223 578:167 579:56 595:85
596:252 597:252 598:252 599:229 600:215 601:252 602:252 603:252 604:196
605:130 623:28 624:199 625:252 626:252 627:253 628:252 629:252 630:233
631:145 652:25 653:128 654:252 655:253 656:252 657:141 658:37

This data is created as per Library for Support Vector Machines (LIBSVM) specifications
and more details about LIBSVM can be found at https:/ ​/​www. ​csie. ​ntu.​edu. ​tw/ ​~cjlin/
libsvmtools/​datasets/ ​.​

Now, let's build a decision tree classifier using this dataset in spark-shell:

Start spark-shell in your Terminal:1.

$ spark-shell

Import DecisionTree from Spark's MLLib's tree package. More information2.
about this class can be found at https:/ ​/​spark. ​apache. ​org/ ​docs/ ​2.​4.​1/ ​api/
java/​index. ​html? ​org/ ​apache/ ​spark/ ​mllib/ ​tree/ ​DecisionTree. ​html. This
class implements a decision tree learning algorithm for classification and
regression:

scala> import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.mllib.tree.DecisionTree

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://raw.githubusercontent.com/apache/spark/master/data/mllib/sample_libsvm_data.txt
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html

Traditional Machine Learning for Data Analysis Chapter 7

[193]

Import DecisionTreeModel from Spark's MLLib's tree.model package. More3.
information about this can be found at https:/ ​/​spark. ​apache. ​org/ ​docs/ ​2.​4. ​1/
api/​java/ ​index. ​html? ​org/ ​apache/ ​spark/ ​mllib/ ​tree/ ​DecisionTree. ​html:

scala> import org.apache.spark.mllib.tree.model.DecisionTreeModel
import org.apache.spark.mllib.tree.model.DecisionTreeModel

Import MLUtils from Spark's MLLib's util package. More information about4.
this can be found at https:/ ​/​spark. ​apache. ​org/ ​docs/ ​2.​4. ​1/​api/ ​java/ ​index.
html?​org/ ​apache/ ​spark/ ​mllib/ ​tree/ ​DecisionTree. ​html. MLUtils provides
utility methods for loading, saving, and preprocessing data used in MLLib:

scala> import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.mllib.util.MLUtils

Using MLUtils, load the sample data in LIBSVM format. Note that doing so5.
returns a Spark RDD of MLLib's LabeledPoint:

scala> val data = MLUtils.loadLibSVMFile(sc,
"sample_libsvm_data.txt") // load data in LIBSVM format
data:
org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledP
oint] = MapPartitionsRDD[6] at map at MLUtils.scala:86

Split the data randomly into two parts: one with 70% of the data and another one6.
with the remaining 30%. Note that we are using Spark RDD's randomSplit API
to do so. This provides us with an RDD array of LabeledPoint:

// 70/30 split
scala> val splits = data.randomSplit(Array(0.7, 0.3))
splits:
Array[org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.La
beledPoint]] = Array(MapPartitionsRDD[7] at randomSplit at
<console>:28, MapPartitionsRDD[8] at randomSplit at <console>:28)

Designate the 70% split as training data and the 30% split as test data. This is a7.
fairly standard practice to reserve 30% of the labeled data for testing. We now
have two RDDs of LabeledPoint, training and test:

// 70% is training data and 30% test data
scala> val (trainingData, testData) = (splits(0), splits(1))
trainingData: org.apache.spark.rdd.RDD
 [org.apache.spark.mllib.regression.LabeledPoint] =
 MapPartitionsRDD[7] at randomSplit at <console>:28
testData:
org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/tree/DecisionTree.html

Traditional Machine Learning for Data Analysis Chapter 7

[194]

 .LabeledPoint] = MapPartitionsRDD[8] at randomSplit at
<console>:28

Define the number of classes. In this case, the value is 2 because only two values8.
are possible:

scala> val numClasses = 2 // two possible values (0 or 1)
numClasses: Int = 2

Define an empty Map method for categorical features because there are no9.
categorical features for this use case. Note that the key and value for the Map are
both of type Int:

scala> val categoricalFeaturesInfo = Map[Int, Int]() // no
categorical features
categoricalFeaturesInfo: scala.collection.immutable.Map[Int,Int] =
Map()

Define the impurity as a gini impurity measure:10.

scala> val impurity = "gini"
impurity: String = gini

Define the maximum depth of the tree:11.

scala> val maxDepth = 5 // maximum depth of the tree
maxDepth: Int = 5

Define the maximum width of the tree:12.

scala> val maxBins = 32 // maximum with of the tree
maxBins: Int = 32

Create a decision tree model by training on the training data and using the13.
parameter previously specified:

scala> val model = DecisionTree.trainClassifier(trainingData,
numClasses, categoricalFeaturesInfo, impurity, maxDepth, maxBins)
model: org.apache.spark.mllib.tree.model.DecisionTreeModel =
DecisionTreeModel classifier of depth 2 with 5 nodes

Output the model as follows:14.

scala> model.toDebugString
res0: String =
"DecisionTreeModel classifier of depth 2 with 5 nodes
 If (feature 351 <= 38.0)
 If (feature 125 <= 254.5)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[195]

 Predict: 0.0
 Else (feature 125 > 254.5)
 Predict: 1.0
 Else (feature 351 > 38.0)
 Predict: 1.0
"

Let's take a look at the data:

0 128:51 129:159 130:253 131:159 132:50 155:48 156:238 157:252 158:252

Here is what we can see:

The first value is the outcome or result. This has two possible values: 0 or 1.
Subsequent values are listed as <feature id>:<associated value>.

Evaluating the results
The decision tree training classifier is able to find a good split at features 351 and 125.
Please note that you might see a completely different model because the training and test
data is getting randomly split into a 70:30 ratio.

Let's evaluate how the model performs on the test data:

For each record in testData, first, predict the results using the features of the1.
record by applying the model. Record this as an observed value and a predicted
value pair:

scala> val labelAndPreds = testData.map { point =>
 | val prediction = model.predict(point.features)
 | (point.label, prediction)
 | }
labelAndPreds: org.apache.spark.rdd.RDD[(Double, Double)] =
MapPartitionsRDD[24] at map at <console>:30

Calculate how many records were incorrectly predicted:2.

scala> val testErr = labelAndPreds.filter(r => r._1 !=
r._2).count().toDouble / testData.count()
testErr: Double = 0.11764705882352941

We have a roughly 12% error in predicting the correct outcome.

This model can be saved to a file using the following API:3.

scala> model.save(sc, "myDecisionTreeClassificationModel")

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[196]

This saves the model to the myDecisionTreeClassificationModel directory.

Exit out of spark-shell as follows:4.

scala> spark.stop()

scala> :quit

Using our model with a decision tree
Now the model is ready to use:

Start the spark-shell:1.

$ spark-shell

Import DecisionTreeModel from Spark's MLLib package:2.

scala> import org.apache.spark.mllib.tree.model.DecisionTreeModel
import org.apache.spark.mllib.tree.model.DecisionTreeModel

Use DecisionTreeModel objects' load API to load the model:3.

scala> val model = DecisionTreeModel.load(sc,
"myDecisionTreeClassificationModel")
model: org.apache.spark.mllib.tree.model.DecisionTreeModel =
DecisionTreeModel classifier of depth 2 with 5 nodes

The output of the model is as follows:4.

scala> model.toDebugString
res0: String =
"DecisionTreeModel classifier of depth 2 with 5 nodes
 If (feature 351 <= 38.0)
 If (feature 125 <= 254.5)
 Predict: 0.0
 Else (feature 125 > 254.5)
 Predict: 1.0
 Else (feature 351 > 38.0)
 Predict: 1.0
"

We can see that the loaded model is the same one that we built earlier. This model can be
used to predict outcomes of unseen observations by doing the following:

scala> model.predict(features) // features is a new observation

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[197]

The model will output a value of 0 or 1.

Random forest
Random forest is an easy-to-use and powerful ML algorithm. It is also a supervised
algorithm and requires labeled data to learn from. In fact, the decision tree acts as the
building block for the random forest algorithm. Just like the decision tree, the random
forest ML algorithm can be used for classification as well as regression.

The fundamental motivation behind the random forest algorithm is to combine results from
multiple random decision trees into a single model. One very nice outcome of the random
forest algorithm is that it prevents overfitting of the model to the training dataset.

Random forest algorithms
The random forest algorithm can be summarized as follows:

Each decision tree in a random forest uses a subset of random features.
Only a random subset of training data is used to build a decision tree.
Models from multiple random decision trees are combined to build a single
model.

We can think of a random forest algorithm as something like consensus building, where we
take multiple, diverse ideas and converge these into a single idea.

In the real world, collective wisdom has proven to provide very effective guidance in
multiple, diverse fields. The random forest algorithm essentially borrows from the same
idea.

Let's explore the random forest algorithm using Spark ML. We will be using the same
sample_libsvm_data.txt data file from the decision tree example:

Run Spark shell from your Terminal:1.

$ spark-shell

Import the required classes from Spark's ML package:2.

scala> import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.Pipeline
scala> import
org.apache.spark.ml.classification.{RandomForestClassificationModel

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[198]

, RandomForestClassifier}
import
org.apache.spark.ml.classification.{RandomForestClassificationModel
, RandomForestClassifier}
scala> import
org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import
org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
scala> import org.apache.spark.ml.feature.{IndexToString,
StringIndexer, VectorIndexer}
import org.apache.spark.ml.feature.{IndexToString, StringIndexer,
VectorIndexer}

Use SparkSession to read the _libsvm_data.txt file sample in libsvm format3.
as a Spark DataFrame:

scala> val data =
spark.read.format("libsvm").load("./sample_libsvm_data.txt")
2019-04-24 21:49:27 WARN LibSVMFileFormat:66 - 'numFeatures' option
not specified, determining the number of features by going though
the input. If you know the number in advance, please specify it via
'numFeatures' option to avoid the extra scan.
data: org.apache.spark.sql.DataFrame = [label: double, features:
vector]

Index the label column of the source DataFrame and create a new DataFrame4.
with indexedLabel as an additional column:

scala> val labelIndexer = new
StringIndexer().setInputCol("label").setOutputCol("indexedLabel").f
it(data)
labelIndexer: org.apache.spark.ml.feature.StringIndexerModel =
strIdx_484cb0e8e765

Index the features column of the source DataFrame and create a new DataFrame5.
with indexedFeatures as an additional column. Make sure that the features are
treated as continuous variables if there are more than four distinct values,
otherwise, they will be categorical:

scala> val featureIndexer = new
VectorIndexer().setInputCol("features").setOutputCol("indexedFeatur
es").setMaxCategories(4).fit(data)
featureIndexer: org.apache.spark.ml.feature.VectorIndexerModel =
vecIdx_07847af33557

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[199]

Randomly split the source DataFrame into two DataFrames using a 7:3 ratio. The6.
first DataFrame is to be used for training purposes. The second DataFrame is to
be used for testing purposes:

scala> val Array(trainingData, testData) =
data.randomSplit(Array(0.7, 0.3))
trainingData:
org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label:
double, features: vector]
testData: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] =
[label: double, features: vector]

Create RandomForestClassifier using the builder pattern. Set the label7.
column name as indexedLabel and the features column name as features
column. Allow 10 decision trees to be used for arriving at a consensus:

scala> val randomForest = new
RandomForestClassifier().setLabelCol("indexedLabel").setFeaturesCol
("indexedFeatures").setNumTrees(10)
randomForest:
org.apache.spark.ml.classification.RandomForestClassifier =
rfc_954d41674853

Create a label converter object that converts indexed labels back to the original8.
labels:

scala> val labelConverter = new
IndexToString().setInputCol("prediction").setOutputCol("predictedLa
bel").setLabels(labelIndexer.labels)
labelConverter: org.apache.spark.ml.feature.IndexToString =
idxToStr_74f8a7c145d8

Create a Pipeline object that chains the label indexer, feature indexer, random9.
forest, and label converter:

scala> val pipeline = new Pipeline().setStages(Array(labelIndexer,
featureIndexer, randomForest, labelConverter))
pipeline: org.apache.spark.ml.Pipeline = pipeline_8cd293d72ebd

Run the pipeline to fit training data and create a model. Doing so runs the label10.
indexer, feature indexer, random forest, and label converter one after the other:

scala> val model = pipeline.fit(trainingData)
model: org.apache.spark.ml.PipelineModel = pipeline_8cd293d72ebd

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[200]

Using the model, run predictions on the test data:11.

scala> val predictions = model.transform(testData)
predictions: org.apache.spark.sql.DataFrame = [label: double,
features: vector ... 6 more fields]

Display five rows from the created predictions DataFrame:12.

scala> predictions.select("predictedLabel", "label",
"features").show(5, true)
+--------------+-----+--------------------+
|predictedLabel|label| features|
+--------------+-----+--------------------+
0.0	0.0	(692,[95,96,97,12...
0.0	0.0	(692,[100,101,102...
0.0	0.0	(692,[122,123,148...
0.0	0.0	(692,[123,124,125...
0.0	0.0	(692,[124,125,126...
+--------------+-----+--------------------+
only showing top 5 rows

Evaluate the accuracy of the predicted label by comparing it against the original13.
label:

scala> val evaluator = new
MulticlassClassificationEvaluator().setLabelCol("indexedLabel").set
PredictionCol("prediction").setMetricName("accuracy")
evaluator:
org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator =
mcEval_4b737dba9096

scala> val accuracy = evaluator.evaluate(predictions)
accuracy: Double = 1.0

scala> println(s"Test Error = ${(1.0 - accuracy)}")
Test Error = 0.0

Extract the built model, getting the element at index 2 of the pipeline stages:14.

scala> val rfModel =
model.stages(2).asInstanceOf[RandomForestClassificationModel]
rfModel:
org.apache.spark.ml.classification.RandomForestClassificationModel
= RandomForestClassificationModel (uid=rfc_954d41674853) with 10
trees

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[201]

Print out the contents of the built model:15.

scala> println(s"Learned classification forest model:\n
${rfModel.toDebugString}")
Learned classification forest model:
 RandomForestClassificationModel (uid=rfc_954d41674853) with 10
trees
 Tree 0 (weight 1.0):
 If (feature 552 <= 5.5)
 If (feature 441 <= 2.5)
 If (feature 207 <= 161.0)
 Predict: 0.0
 Else (feature 207 > 161.0)
 Predict: 1.0
 Else (feature 441 > 2.5)
 Predict: 1.0
 Else (feature 552 > 5.5)
 Predict: 1.0
 Tree 1 (weight 1.0):
 If (feature 463 <= 19.5)
 If (feature 317 <= 8.0)
 If (feature 544 <= 135.0)
 Predict: 1.0
 Else (feature 544 > 135.0)
 Predict: 0.0
 Else (feature 317 > 8.0)
 Predict: 1.0
 Else (feature 463 > 19.5)
 Predict: 0.0
 Tree 2 (weight 1.0):
 If (feature 540 <= 102.5)
 If (feature 101 <= 57.0)
 Predict: 0.0
 Else (feature 101 > 57.0)
 Predict: 1.0
 Else (feature 540 > 102.5)
 Predict: 1.0
 Tree 3 (weight 1.0):
 If (feature 328 <= 24.0)
 If (feature 690 <= 3.5)
 If (feature 481 <= 14.5)
 If (feature 100 <= 44.0)
 Predict: 0.0
 Else (feature 100 > 44.0)
 Predict: 1.0
 Else (feature 481 > 14.5)
 Predict: 1.0
 Else (feature 690 > 3.5)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[202]

 Predict: 1.0
 Else (feature 328 > 24.0)
 Predict: 1.0
 Tree 4 (weight 1.0):
 If (feature 429 <= 7.0)
 If (feature 407 <= 9.5)
 Predict: 1.0
 Else (feature 407 > 9.5)
 Predict: 0.0
 Else (feature 429 > 7.0)
 Predict: 1.0
 Tree 5 (weight 1.0):
 If (feature 462 <= 62.5)
 Predict: 1.0
 Else (feature 462 > 62.5)
 Predict: 0.0
 Tree 6 (weight 1.0):
 If (feature 512 <= 8.0)
 If (feature 289 <= 249.0)
 If (feature 550 <= 46.0)
 Predict: 0.0
 Else (feature 550 > 46.0)
 Predict: 1.0
 Else (feature 289 > 249.0)
 Predict: 1.0
 Else (feature 512 > 8.0)
 Predict: 1.0
 Tree 7 (weight 1.0):
 If (feature 512 <= 8.0)
 If (feature 288 <= 154.5)
 Predict: 0.0
 Else (feature 288 > 154.5)
 Predict: 1.0
 Else (feature 512 > 8.0)
 Predict: 1.0
 Tree 8 (weight 1.0):
 If (feature 462 <= 62.5)
 Predict: 1.0
 Else (feature 462 > 62.5)
 Predict: 0.0
 Tree 9 (weight 1.0):
 If (feature 377 <= 103.5)
 If (feature 435 <= 32.5)
 Predict: 1.0
 Else (feature 435 > 32.5)
 Predict: 0.0
 Else (feature 377 > 103.5)
 If (feature 317 <= 8.0)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[203]

 Predict: 0.0
 Else (feature 317 > 8.0)
 Predict: 1.0

Ridge and lasso regression
Ridge and lasso regression are supervised linear regression ML algorithms. Both of these
algorithms aim at reducing model complexity and prevent overfitting. When there is a
large number of features or variables in a training dataset, the model built by ML generally
tends to be complex.

Characteristics of ridge regression
The key characteristics of ridge regression are as follows:

Coefficient shrinkage: This helps in reducing model complexity
Regularization: This adds information to prevent overfitting

Characteristics of lasso regression
Lasso stands for least absolute shrinkage and selection operator. The following are key
characteristics of lasso regression:

Feature selection: Selecting a subset of the most relevant features from a large
number of features
Regularization: Adding information to prevent overfitting

Let's look at running linear regression methods on Spark:

Download the data file needed for exploration in your Terminal:1.

 $ curl
https://raw.githubusercontent.com/apache/spark/master/data/mllib/ri
dge-data/lpsa.data -o lpsa.data

Start a Spark shell in your Terminal:2.

$ spark-shell

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[204]

Import the necessary classes from the Spark MLLib package, which are needed3.
for linear regression:

scala> import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.Vectors
scala> import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.regression.LabeledPoint
scala> import
org.apache.spark.mllib.regression.LinearRegressionModel
import org.apache.spark.mllib.regression.LinearRegressionModel
scala> import
org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.regression.LinearRegressionWithSGD

Load the data as follows:4.

scala> val data = sc.textFile("./lpsa.data")
data: org.apache.spark.rdd.RDD[String] = ./lpsa.data
MapPartitionsRDD[1] at textFile at <console>:28

Parse the data into LabeledPoint and cache:5.

scala> val parsedData = data.map { line =>
 | val parts = line.split(',')
 | LabeledPoint(parts(0).toDouble,
Vectors.dense(parts(1).split(' ').map(_.toDouble)))
 | }.cache()
parsedData:
org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledP
oint] = MapPartitionsRDD[2] at map at <console>:29

Build the model by setting the number of step-size iterations:6.

scala> val numIterations = 100
numIterations: Int = 100

scala> val stepSize = 0.00000001
stepSize: Double = 1.0E-8
scala> val model = LinearRegressionWithSGD.train(parsedData,
numIterations, stepSize)
model: org.apache.spark.mllib.regression.LinearRegressionModel =
org.apache.spark.mllib.regression.LinearRegressionModel: intercept
= 0.0, numFeatures = 8

Evaluate the model on the training examples and compute the training errors, as7.
follows:

scala> val valuesAndPreds = parsedData.map { point =>

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[205]

 | val prediction = model.predict(point.features)
 | (point.label, prediction)
 | }
valuesAndPreds: org.apache.spark.rdd.RDD[(Double, Double)] =
MapPartitionsRDD[9] at map at <console>:31

scala> val MSE = valuesAndPreds.map{ case(v, p) => math.pow((v -
p), 2) }.mean()
MSE: Double = 7.4510328101026015
scala> println(s"training Mean Squared Error $MSE")
training Mean Squared Error 7.4510328101026015

Save the model as follows:8.

scala> model.save(sc, "./LinearRegressionWithSGDModel")

Load the saved model as follows:9.

scala> val sameModel = LinearRegressionModel.load(sc,
"./LinearRegressionWithSGDModel")
sameModel: org.apache.spark.mllib.regression.LinearRegressionModel
= org.apache.spark.mllib.regression.LinearRegressionModel:
intercept = 0.0, numFeatures = 8

Output the model as follows:10.

scala> sameModel
res2: org.apache.spark.mllib.regression.LinearRegressionModel =
org.apache.spark.mllib.regression.LinearRegressionModel: intercept
= 0.0, numFeatures = 8
scala> sameModel.toPMML
res3: String =
"<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PMML version="4.2" xmlns="http://www.dmg.org/PMML-4_2">
 <Header description="linear regression">
 <Application name="Apache Spark MLlib" version="2.4.0"/>
 <Timestamp>2019-04-24T22:45:35</Timestamp>
 </Header>
 <DataDictionary numberOfFields="9">
 <DataField name="field_0" optype="continuous"
dataType="double"/>
 <DataField name="field_1" optype="continuous"
dataType="double"/>
 <DataField name="field_2" optype="continuous"
dataType="double"/>
 <DataField name="field_3" optype="continuous"
dataType="double"/>
 <DataField name="field_4" optype="continuous"

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[206]

dataType="double"/>
 <DataField name="field_5" optype="continuous"
dataType="double"/>
 <...

In the preceding example, we used Spark MLLib's LinearRegressionWithSGD class for
building a linear regression model. Spark MLLib has two other
classes; RidgeRegressionWithSGD and LassoWithSGD can be used in a similar fashion to
build linear models in Spark.

k-means cluster analysis
k-means is a clustering ML algorithm. This is a nonsupervised ML algorithm. Its primary
use is for clustering together closely related data and gaining an understanding of the
structural properties of the data.

As the name suggests, this algorithm tries to form a k number of clusters around k-mean
values. How many clusters are to be formed, that is, the value of k, is something a human
being has to determine at the outset. This algorithm relies on the Euclidean distance to
calculate the distance between two points. We can think of each observation as a point in n-
dimensional space, where n is the number of features. The distance between two
observations is the Euclidean distance between these in n-dimensional space.

To begin with, the algorithm picks up k random records from the dataset. These are the
initial k-mean values. In the next step, for each record in the set, it calculates the Euclidean
distance of this record from each k-mean record and assigns the record to the k-mean record
with the lowest Euclidean distance. At the end of this, it has the first k clusters. Now for
each cluster, it computes the mean value and thus has k-mean values. These k-mean values
are used for the next iteration of the algorithm. It repeats these steps with these k values
and arrives at a new step of k values, which are used for the next iteration of the algorithm.
This gets repeated over and over again until the k-mean values start to converge, that is, k
centroids are established around where the data is concentrated.

Let's explore k-means clustering using Spark's MLLib library:

Download the test data in your Terminal using the following command:1.

$ curl
https://raw.githubusercontent.com/apache/spark/master/data/mllib/km
eans_data.txt -o kmeans_data.txt

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[207]

Start Spark shell in your Terminal:2.

$ spark-shell

Import the necessary classes from Spark's MLLib package:3.

scala> import org.apache.spark.mllib.clustering.{KMeans,
KMeansModel}
import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
scala> import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.Vectors

Load and parse the data:4.

scala> val data = sc.textFile("./kmeans_data.txt")
data: org.apache.spark.rdd.RDD[String] = ./kmeans_data.txt
MapPartitionsRDD[1] at textFile at <console>:26
scala> val parsedData = data.map(s => Vectors.dense(s.split('
').map(_.toDouble))).cache()
parsedData:
org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] =
MapPartitionsRDD[2] at map at <console>:27

Cluster the data into two classes using KMeans:5.

scala> val numClusters = 2
numClusters: Int = 2
scala> val numIterations = 20
numIterations: Int = 20
scala> val clusters = KMeans.train(parsedData, numClusters,
numIterations)
2019-04-24 22:24:17 WARN BLAS:61 - Failed to load implementation
from: com.github.fommil.netlib.NativeSystemBLAS
2019-04-24 22:24:17 WARN BLAS:61 - Failed to load implementation
from: com.github.fommil.netlib.NativeRefBLAS
clusters: org.apache.spark.mllib.clustering.KMeansModel =
org.apache.spark.mllib.clustering.KMeansModel@77f43f3e

Evaluate the clustering by computing Within Set Sum of Squared Errors:6.

scala> val WSSSE = clusters.computeCost(parsedData)
WSSSE: Double = 0.11999999999994547
scala> println(s"Within Set Sum of Squared Errors = $WSSSE")
Within Set Sum of Squared Errors = 0.11999999999994547

Save the model:7.

scala> clusters.save(sc, "./KMeansModel")

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[208]

Load the saved model:8.

scala> val sameModel = KMeansModel.load(sc, "./KMeansModel")
sameModel: org.apache.spark.mllib.clustering.KMeansModel =
org.apache.spark.mllib.clustering.KMeansModel@68efc9a2

Output the loaded model:9.

scala> sameModel.toPMML
res3: String =
"<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PMML version="4.2" xmlns="http://www.dmg.org/PMML-4_2">
 <Header description="k-means clustering">
 <Application name="Apache Spark MLlib" version="2.4.0"/>
 <Timestamp>2019-04-24T22:25:03</Timestamp>
 </Header>
 <DataDictionary numberOfFields="3">
 <DataField name="field_0" optype="continuous"
dataType="double"/>
 <DataField name="field_1" optype="continuous"
dataType="double"/>
 <DataField name="field_2" optype="continuous"
dataType="double"/>
 </DataDictionary>
 <ClusteringModel modelName="k-means" functionName="clustering"
modelClass="centerBased" numberOfClusters="2">
 <MiningSchema>
 <MiningField name="field_0" usageType="active"/>

Natural language processing for data
analysis
Natural language processing (NLP) is the ability of a machine to analyze and understand
human language. Human language has a very high amount of complexity, which makes
parsing and understanding it difficult. There is a great deal of context in spoken and
written language. Machines work well with precise rules that are within the confines of
good context. With that said, it is still possible to gain an insight into text analysis using
NLP techniques. An excellent example of this is Twitter sentiment analysis. Based on the
contents of tweets, using NLP, it is possible to determine whether the sentiments of the
people are generally positive or negative as a group. Another great example is the
successful application of NLP techniques in analyzing customer reviews of a product or
service.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Traditional Machine Learning for Data Analysis Chapter 7

[209]

The ML algorithms explored so far in this chapter make use of the variables in data that are
for either numerical or categorical. NLP works with data that is nonnumerical and contains
text information.

For running NLP in Spark, please refer to https:/ ​/​github. ​com/ ​JohnSnowLabs/ ​spark- ​nlp
for detailed directions on how to run NLP. This is a separate project that is built on top of
Spark and provides interesting ways to use NLP in Spark using Scala. For a quick start,
please refer to https:/ ​/​nlp. ​johnsnowlabs. ​com/ ​quickstart. ​html.

Algorithm selections
Each ML algorithm has its own strengths and weaknesses. Selecting an appropriate
machine algorithm and tuning the model requires a fair amount of experience working
with these algorithms, however, the following factors also play a significant role in
applying these techniques effectively:

Asking the right question: A great deal of effort is generally required in
formulating the right question.
Understanding the business domain: Having a good understanding of the
relevant business domain and context is equally important to build good models.
Understanding data: Ultimately, the data is used to train the model. If the data is
not understood correctly or the data quality is poor, the built model is unlikely to
be effective.

All of the preceding aspects outlined are somewhat interdependent and a mastery of all of
these is a prerequisite to selecting the appropriate ML algorithm.

As a general rule, when the number of variables or features is relatively small and,
intuitively, data can be easily split based on certain conditions, the decision tree could be
the first choice. The model built by decision trees is easier to understand and comprehend.
To make the model more effective, a random forest algorithm is the next choice, which can
prevent the model from overfitting the training data.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/JohnSnowLabs/spark-nlp
https://github.com/JohnSnowLabs/spark-nlp
https://github.com/JohnSnowLabs/spark-nlp
https://github.com/JohnSnowLabs/spark-nlp
https://github.com/JohnSnowLabs/spark-nlp
https://github.com/JohnSnowLabs/spark-nlp
https://github.com/JohnSnowLabs/spark-nlp
https://github.com/JohnSnowLabs/spark-nlp
https://github.com/JohnSnowLabs/spark-nlp
https://github.com/JohnSnowLabs/spark-nlp
https://github.com/JohnSnowLabs/spark-nlp
https://github.com/JohnSnowLabs/spark-nlp
https://github.com/JohnSnowLabs/spark-nlp
https://nlp.johnsnowlabs.com/quickstart.html
https://nlp.johnsnowlabs.com/quickstart.html
https://nlp.johnsnowlabs.com/quickstart.html
https://nlp.johnsnowlabs.com/quickstart.html
https://nlp.johnsnowlabs.com/quickstart.html
https://nlp.johnsnowlabs.com/quickstart.html
https://nlp.johnsnowlabs.com/quickstart.html
https://nlp.johnsnowlabs.com/quickstart.html
https://nlp.johnsnowlabs.com/quickstart.html
https://nlp.johnsnowlabs.com/quickstart.html
https://nlp.johnsnowlabs.com/quickstart.html
https://nlp.johnsnowlabs.com/quickstart.html
https://nlp.johnsnowlabs.com/quickstart.html

Traditional Machine Learning for Data Analysis Chapter 7

[210]

When there is a large number of features in the dataset and the problem to be solved is a
regression in nature, ridge and lasso regression algorithms work the best by reducing
model complexity and preventing overfitting. The ridge algorithm reduces model
complexity by coefficient shrinkage, whereas lasso reduces the number of features selected.
There is another machine algorithm called elastic net regression that combines both of
these aspects into model building. We have not discussed the elastic net regression
algorithm in this chapter. The point to be noted here is that there are multiple ML
algorithms that could be used to solve the same problem. It is often the case that one has to
try and measure the effectiveness of each one of these. The outcome is generally dependent
on the nature of the underlying data.

For problems that involve clustering, the k-means clustering algorithm works very well.
Determining the value of k for the number of clusters requires a certain amount of
experience and intuition about the data.

For analyzing human created text and voice data, the NLP algorithm is the only choice in
the traditional ML space. We have not discussed deep learning algorithms in this chapter.
Deep learning algorithms work quite differently from traditional ML algorithms. For such
types of problems, deep learning algorithms are a great choice.

Summary
In this chapter, we learned about ML and some of the most popular ML algorithms. The
primary goal of ML is to build an analytical model using historical data without much
human intervention. ML algorithms can be divided into two categories, namely, supervised
learning and unsupervised learning. The supervised learning algorithm relies on labeled
data to build models, whereas unsupervised learning uses data that is not labeled. We
looked at the k-means cluster analysis algorithm, which is an unsupervised ML algorithm.
Of the supervised ML algorithms, we explored decision trees, random forests, and
ridge/lasso regression. We also got an overview of using NLP for performing text data
analysis.

In the next chapter, we will examine the processing of data in real time and perform data
analysis as the data becomes available.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Section 3: Real-Time Data

Analysis and Scalability
This section will introduce you to an emerging field of data analysis where you, analyze
data in near real time using streaming technologies. In this section, you will learn about the
concept of steam oriented processing and will be taken on a deeper dive into Spark
steaming. You will also learn to analyse data from multiple dimensions, such as cost,
reliability, and performance. This will provide you with a complete picture of how a
practical real-world data analysis life cycle works and will prepare you for the future of
data analysis.

This section will contain the following chapters:

Chapter 8, Near Real-Time Data Analysis Using Streaming
Chapter 9, Working with Data at Scale

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
Near Real-Time Data Analysis

Using Streaming
This chapter introduces another emerging and powerful technique in the field of data
analysis—analyzing data in near real time using Streaming technologies. In the previous
chapters, we looked at analyzing data that had already been created, using a technique
known as batch-oriented data processing.

There are numerous cases where the value of data starts to diminish as the data starts to
age. An excellent example of this is an online retailer that tracks customer interaction on its
website. Offline batch-oriented analysis of this data to understand customer' behavior and
preferences is certainly of great value to the retailer; however, a near real-time analysis of
this data could have an even greater impact on the customer's experience. For example, a
customer's experience could be made adaptive based on the current context in which the
customer is interacting with the website.

To illustrate this with a more specific example, let's say that a customer has returned to the
website after a long time and is searching for a specific category item in the catalog. To
encourage the customer to purchase an item from that category, a discount offer could be
made at that instant. In this case, time is of the essence because the customer may leave the
website fairly quickly and not return for a considerable amount of time.

Overview of streaming
Stream processing is the act of continuously computing results as new data becomes
available. A very simple example of this is computing the average of some numbers in a
continuous fashion. To begin with, we start with the following information:

Number of items = 0
Current average = 0

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[213]

As a new number comes in, we perform the following steps:

Compute a new total = Number of items x Current average + New number1.
Increment the number of items by one2.
Set the current average = New total / Number of items3.

As you can see, the continuous average computation algorithm is quite different from the
batch-oriented algorithm. It is important to bear in mind the following facts when using
this algorithm:

The average value gets updated as new numbers become available
The previously computed average value is reused to compute a new average

The following recipe using Scala code illustrates this:

Define a Scala function called runningAverage that will be used to provide an1.
updated running average based on the previous running average and new items
received, as follows:

scala> def runningAverage(prevAvgCount: Tuple2[Double, Long],
 newItems: Array[Int]): Tuple2[Double, Long] = {
 | val prevAverage = prevAvgCount._1
 | val prevItemCount = prevAvgCount._2
 | val newTotal = prevAverage * prevItemCount + newItems.sum
 | val newItemCount = prevItemCount + newItems.size
 | val newAverage = newTotal / newItemCount
 | Tuple2(newAverage, newItemCount)
 | }

runningAverage: (prevAvgCount: (Double, Long), newItems:
Array[Int])
 (Double, Long)

Using the following code, initialize the current average count as (0.0, 0),2.
where 0.0 is the current average and 0 is the number of items:

scala> var currentAvgCount = Tuple2(0.0, 0L)

currentAvgCount: (Double, Long) = (0.0,0)

Compute the initial running average for three new items, (1, 2, 3), with the3.
expected running average of (2.0, 3) using the following code:

scala> currentAvgCount = runningAverage(currentAvgCount,
 Array(1,2,3))
currentAvgCount: (Double, Long) = (2.0,3)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[214]

Using the following code, update the current running average by adding 4 as a4.
new item, creating an expected running average of (2.5, 4):

scala> currentAvgCount = runningAverage(currentAvgCount, Array(4))

currentAvgCount: (Double, Long) = (2.5,4)

Using the following code, repeat the preceding step for 5, creating the expected5.
running average of (3.0, 5):

scala> currentAvgCount = runningAverage(currentAvgCount, Array(5))

currentAvgCount: (Double, Long) = (3.0,5)

Using the following code, repeat the preceding step for 6, creating the expected6.
running average of (3.5, 6):

scala> currentAvgCount = runningAverage(currentAvgCount, Array(6))

currentAvgCount: (Double, Long) = (3.5,6)

Using the following code, repeat the preceding step for 7, creating the expected7.
running average of (4.0, 7):

scala> currentAvgCount = runningAverage(currentAvgCount, Array(7))

currentAvgCount: (Double, Long) = (4.0,7)

The previously mentioned runningAverage method is a Scala function that is able to
compute the new average given the following information:

A tuple consisting of the previous average and previous item count
An array of integers consisting of new items

If we compare the aformentioned algorithm to a simple average computation, we can
observe some key differences:

Define a Scala function called simpleAverage that takes an array of items as1.
input, computes the average of all items in the input, and returns this average
value, as follows:

scala> def simpleAverage(items: Array[Int]): Double =
 items.sum.toDouble / items.size

simpleAverage: (items: Array[Int])Double

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[215]

Compute the average of (1, 2, 3) using the simpleAverage function, as2.
follows:

scala> simpleAverage(Array(1, 2, 3))
res0: Double = 2.0

Repeat the average computation for arrays of different sizes, as follows:3.

scala> simpleAverage(Array(1, 2, 3, 4))
res1: Double = 2.5

scala> simpleAverage(Array(1, 2, 3, 4, 5))
res2: Double = 3.0

scala> simpleAverage(Array(1, 2, 3, 4, 5, 6))
res3: Double = 3.5

scala> simpleAverage(Array(1, 2, 3, 4, 5, 6, 7))
res4: Double = 4.0

Some of the key differences to be noted are as follows:

The simpleAverage function requires all of the input items to be provided in
order to compute the average. In contrast, runningAverage only needs
previously computed results and new items to perform computations.
simpleAverage does not hold and rely on any state information. On the other
hand, runningAverage requires previously computed results to be preserved
for the next iteration of computation.
runningAverage can potentially operate on a very large number of items by
working incrementally on small batches of items. For simpleAverage, all of the
items have to be present at the time of computation, and its functionality
becomes limited for a large number of items.

Although the preceding example is simple, it highlights the advantages of incremental and
continuous data processing. The amount of recomputing that needs to be redone as a result
of new data is generally significantly lower compared to reprocessing the entire dataset. For
real-time or near real-time applications, fast response time is a necessity for success.
Stream-oriented processing helps us to achieve that response time requirement. Stream
processing does introduce some degree of complexity because some of the state
information needs to be preserved, and the processing algorithm needs to be refactored and
adapted to allow for continuous updates upon the arrival of new data.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[216]

The following diagram illustrates the general model of stream processing, where a stream
processor is acting upon one or more observations at a time:

The follows facts should be noted regarding this generalized model:

We can think of a stream as unbounded information written on tape. Each
observation is recorded on the tape as it happens.
Observation t1 arrives before Observation t2, and so on. Observation t1 is
written first, t2 next, and so on.
The stream processor sees Observation t1 before t2, and so on. It computes the
results based on t1 first, t2 next, and so on.

We can also imagine that streams of information are passing through the processor, and it
is computing the results as and when this happens.

In reality, most streaming solutions use microbatches, where these accumulate certain
amounts of information before handing it off to the processor. This is done to make the
processing more efficient.

Spark Streaming overview
Spark Streaming is an extension of the core Spark API that enables scalable and fault-
tolerant, stream-oriented processing of data. Spark provides the ability to stream data from
multiple sources, with a number of key sources being the following:

Apache Kafka
Amazon Kinesis and S3
TCP
HDFS

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[217]

Spark offers two flavors of streaming:

Spark Structured Streaming that is built on top of the Spark SQL engine
Spark Discretized Stream (DStream), which uses a discretized stream—that is, a
continuous stream of data

In this section, we will be exploring Spark DStreams and develop an understanding of how
this could be leveraged to develop streaming solutions.

Let's start with a classic word count problem, where we are trying to count the frequency of
each distinct word.

Word count using pure Scala
Generating a word count is a classic problem that is widely used to demonstrate some key
concepts related to solving problems involving a massive dataset. At a high level, the
objective of the word count problem is to count the frequencies of each distinct word in a
document.

First, let's look at solving this problem in Scala without using Spark. For the sake of
simplicity, we will treat the same word with different cases as distinct words. Try using the
following Scala REPL as follows:

Create some sample text data using the following code:1.

scala> val text = "This is a sample for testing word count example
 It should count the frequency of each distinct word"

text: String = This is a sample for testing word count example It
 should count the frequency of each distinct word

Split the data using white space as the delimiter, as follows. This provides us2.
with an array of strings:

scala> val words = text.split("\\s+") // split on white spaces

words: Array[String] = Array(This, is, a, sample, for, testing,
 word, count, example, It, should,
 count, the, frequency, of, each,
 distinct, word)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[218]

Group these same words together by using the groupBy method of the Scala3.
array, as follows. We get a mapping from word to array, where the word is
repeated as many times as it occurs in the data:

scala> val grouped = words.groupBy(w => w) // group same words
together

grouped: scala.collection.immutable.Map[String,Array[String]] =
Map(for -> Array(for), count -> Array(count, count), is ->
Array(is), This -> Array(This), a -> Array(a), each -> Array(each),
testing -> Array(testing), should -> Array(should), distinct ->
Array(distinct), sample -> Array(sample), It -> Array(It),
frequency -> Array(frequency), example -> Array(example), word ->
Array(word, word), of -> Array(of), the -> Array(the))

Count the number of words in each array by applying the mapValues method, as4.
follows. This provides us with another map, where the key represents a distinct
word and the value represents the number of occurrences of that word:

scala> val wordCount = grouped.mapValues(_.size) // count the
number of elements for each key

wordCount: scala.collection.immutable.Map[String,Int] = Map(for ->
1, count -> 2, is -> 1, This -> 1, a -> 1, each -> 1, testing -> 1,
should -> 1, distinct -> 1, sample -> 1, It -> 1, frequency -> 1,
example -> 1, word -> 2, of -> 1, the -> 1)

There are multiple ways to solve the word count problem in Scala. The preceding example
is one such way. We performed the following actions:

Split the text into an array of words by splitting it with white spaces.1.
Grouped the same words together into a map whose key is the word and whose2.
values are an array of the word repeated as the occurrence of that word.
Next, we mapped the values of grouped results into the count of the number of3.
elements. This gave us a map of the distinct word to the associated count.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[219]

Word count using Scala and Spark
Next, let's look at solving the same word count problem in Spark. Try going through the
following steps:

Start a Spark shell session in your Terminal, as follows:1.

$ spark-shell

Define the sample test data. We will use the same text as the previous example,2.
as shown in the following code:

scala> val text = "This is a sample for testing word count example
 It should count the frequency of each distinct
 word"

text: String = This is a sample for testing word count example It
 should count the frequency of each distinct word

Convert the sample data into a Spark resilient distributed dataset (RDD) using3.
SparkContext, given as the variable sc in the session, as shown in the following
code:

scala> val rdd = sc.parallelize(Seq(text)) // convert to an RDD

rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[8] at
parallelize at <console>:26

Split the data using white spaces as the delimiter and map each word to a4.
pair (word, 1) and sum the value according to distinct word, as follows:

// flat map of splits, word to count 1 and reduce by adding counts
// of a word
scala> val wc = rdd.flatMap(_.split("\\s+")).map(w => (w,
 1)).reduceByKey(_+_)

wc: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[11] at
reduceByKey at <console>:25

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[220]

Finally, collect the results to force Spark to execute the recipe we built earlier, as5.
follows:

scala> wc.collect
res0: Array[(String, Int)] = Array((testing,1), (a,1), (each,1),
 (for,1), (the,1), (example,1), (is,1),
 (word,2), (sample,1), (should,1),
 (It,1), (frequency,1), (distinct,1),
 (This,1), (of,1), (count,2))

As we can see in the previous steps, we are able to produce the same results using Spark;
however, the recipe has the following important differences compared to a pure Scala
solution:

We had to create an RDD from the input text. At first, this might seem an
inconvenient and unnecessary step; however, RDD is the feature of Spark that
provides the foundation for distributed computing and performing data
processing at scale.
We used the flatMap API of RDD to split each word as an individual item.
Next, we mapped each word as a tuple of the word and 1 as the count.
We used the reduceByKey API of RDD to sum the count of each word. This gave
us a new RDD that had the desired results of the words and their associated
counts.
We performed a collect operation on RDD to gather the results. Please note that
Spark transformations, such as flatMap, map, and reduceByKey, are all lazily
evaluated. An action such as collect materializes the results.

Word count using Scala and Spark Streaming
As a next step, we will look at solving this problem in a streaming fashion using Spark
DStreams. We will use the Transmission Control Protocol (TCP) as a means of sending
data to the stream processor using a tool called netcat (or nc). The nc tool is a simple but
powerful utility tool available on most Linux distributions and macOS. The recipe here
uses macOS, as follows:

Let's first start the nc server process on one Terminal, as follows:1.

$ nc -kl 12345 # 12345 is the port number server listens

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[221]

On another Terminal, start the nc client that connects to this server:2.

$ nc localhost 12345 # client connects to server on localhost at
port 12345

At this point, the client has established a connection. Now, enter some text on the3.
server screen and hit Enter. This text should be displayed back on the client
screen as well, showing text similar to the following:

$ nc -kl 12345 # Server
Here is some text
Here is some more text

$ nc localhost 12345 # Client
Here is some text
Here is some more text

This test is to make sure that the nc setup is working correctly. For the Spark DStreams
exercise, we just need the nc server process to be running since the Spark DStreams process
will act as a client process. You can kill the client process now by pressing Control + C on
that Terminal. Please make sure that the nc server process keeps running. Here is an
overview of data flow between the three participants:

The preceding diagram illustrates the following:

The Message Producer—we will act as a message producer by typing in a
message on the netcat server Terminal
The Netcat Server will receive the typed message
The Spark DStreams will receive the message from the netcat server almost
instantly using TCP

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[222]

Now, we will set up a Spark Streaming context by going through the following steps:

Start the Spark shell, as follows:1.

$ spark-shell

Using the following code, stop the current Spark session, because the default2.
session does not support streaming:

scala> spark.stop() // stop the existing Spark session

Import the org.apache.spark package using the following; this is needed for3.
setting the Spark configuration for Spark Streaming:

scala> import org.apache.spark._import org.apache.spark._

Import the org.apache.spark.streaming package using the following; this is4.
needed for setting up the Spark Streaming session:

scala> import org.apache.spark.streaming.
 importorg.apache.spark.streaming.

Create a new Spark configuration using the following code, making sure that at5.
least two cores are reserved:

scala> val conf = new
SparkConf().setMaster("local[2]").setAppName("HandsOnSparkStreaming
") // least two cores are required to prevent a starvation scenario
conf: org.apache.spark.SparkConf =
org.apache.spark.SparkConf@3031d9e9

Create a Spark StreamingContext using the preceding Spark configuration, as6.
follows:

scala> val ssc = new StreamingContext(conf, Seconds(5)) // 5
seconds: the time interval at which streaming data will be divided
into batches

ssc: org.apache.spark.streaming.StreamingContext =
org.apache.spark.streaming.StreamingContext@40874f54

Set up a .checkpoint directory as follows:7.

scala> ssc.checkpoint(".") // use current directory for checkpoint

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[223]

We have already done the following:

Stopped the existing Spark session because we needed a StreamingContext
instead.
Set up a StreamingContext with two cores.
Set up the current directory as a checkpoint. This is needed for stateful stream
processing.

Next, let's define the RunningUpdate Scala case object and test it by going through the
following steps:

Define RunningUpdate, as follows:1.

scala> // Define a Serializeable running update function

scala> case object RunningUpdate { // this makes the object
Serializeable
 | val updateCount = (newValues: Seq[Int], runningCount:
 Option[Int]) => {
 | val newCount = runningCount.getOrElse(0) + newValues.sum
 | Some(newCount): Option[Int]
 | }
 | }

defined object RunningUpdate

The RunningUpdate object has the following properties:

It is a Scala case object, which makes this serializable. This is needed for it to
work with Spark Streaming because of its distributed nature.
It holds a method, updateCount, which takes a sequence of new values and the
running count. This method returns the new running count.

Test the RunningUpdate, as follows:2.

scala> RunningUpdate.updateCount(Seq(1, 2, 3), Some(10)) // test
update: expected 1+2+3+10 = 16

res2: Option[Int] = Some(16)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[224]

The Spark Streaming framework will invoke this updateCount method automatically, as
we will see:

Set up a socket text stream on the localhost at port 12345 as follows. Please note1.
the our nc server is running on the localhost at this port. By doing this, we can
start receiving messages from the nc server in a streaming fashion:

scala> val lines = ssc.socketTextStream("localhost", 12345) //
12345 is the netcat server port

lines:
org.apache.spark.streaming.dstream.ReceiverInputDStream[String] =
org.apache.spark.streaming.dstream.SocketInputDStream@4bb05a4e

Split each line in the stream into words, as follows:2.

scala> val words = lines.flatMap(_.split("\\s+"))
words: org.apache.spark.streaming.dstream.DStream[String] =
org.apache.spark.streaming.dstream.FlatMappedDStream@60877629

Map each word as a (word, 1) key–value pair, as follows:3.

scala> val pairs = words.map(word => (word, 1))

pairs: org.apache.spark.streaming.dstream.DStream[(String, Int)] =
org.apache.spark.streaming.dstream.MappedDStream@531f6879

Apply the updateCount function, RunningUpdate, in a stateful way, as follows:4.

scala> val runningCounts =
pairs.updateStateByKey[Int](RunningUpdate.updateCount) // apply
running update on stream

runningCounts: org.apache.spark.streaming.dstream.DStream[(String,
Int)] = org.apache.spark.streaming.dstream.StateDStream@4819a11f

Print out sample running counts, as follows:5.

scala> runningCounts.print()

So far, we have built the recipe for streaming. The stream processing has not6.
started as yet. Start stream processing now using the following code:

scala> ssc.start() // Start the computation

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[225]

Set up a reasonable timeout to receive the control back into the Spark shell, as7.
follows:

scala> ssc.awaitTerminationOrTimeout(1000*60*5) // Wait for 5
minutes before timing out

We have done the following in the preceding code example:

Connected to our nc server running on the localhost at port 12345 to receive
messages as single lines of text.
Applied a recipe similar to Spark on each line of text by using flatMap and map
APIs.
Applied a running update state to each pair by running them through
the RunningUpdate.updateCount function.
Printed running counts.
Started the Spark Streaming process. Work starts to get performed only after the
invocation of this method.

On the netcat screen, input some text messages introducing some intermediate delays
between each message typing. The following code is an example of this:

$ nc -kl 12345
hello world
hello
hello
world
how are you
hello again

On your Spark shell, you should see the counts being updated as this happens, along with
some debug information outputted by Spark Stream. The following code is an example
based on the input provided using the preceding netcat example:

...
(hello,1)
(world,1)
...
(hello,2)
(world,1)
...
(hello,3)
(world,2)
...
(are,1)
(how,1)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[226]

(hello,4)
(again,1)
(world,2)
(you,1)

Run the following code to gracefully stop the Spark Streaming process and quit Spark shell:

scala> ssc.stop()

scala> :quit

You can also terminate the netcat server process if required by pressing Control + C on the
Terminal.

You should now see that Spark Streaming provides a powerful framework for performing
continuous computations as new data arrives. It also provides new UI-based tools to look at
stream processing details and the performance statistics of the job. This can be done by
going to the URL, http://localhost:4040, in your web browser. The first set of
interesting information is found under the Jobs tab, as shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[227]

The Jobs tab shows the overall progress of the job. You can see that the work is being
completed at intervals of five seconds, since we defined our batch window as a five-second
interval. Depending on the use case, an appropriate value for the interval can be chosen. In
an application where the response time is critical, a lower value can be selected. A higher
value provides more efficiency, since processing happens in bigger batches; however, this
comes at the cost of a slower response time.

Another interesting tab to look at in this UI is the Streaming tab, as shown in the following
screenshot:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[228]

The Streaming tab provides performance statistics from several different perspectives. This
is a very useful tool for streaming jobs that run in production because it provides a fairly
good insight into any potential delays with stream processing. One of the main reasons for
moving toward stream-oriented processing is that it performs computations as new data
arrives and provides insight based on the new information. Any unexpected delays in
processing data would be undesirable, and this specific dashboard can act as a good tool to
determine whether delays are occurring.

Deep dive into the Spark Streaming solution
Let's look at how the Spark Streaming solution was used to solve the word count problem.
There are a few important pieces of information that we need to take a look at in order to
understand this solution.

The first important piece is the RunningUpdate object, which is a Scala case object. One
important feature of the Scala case object and objects created from the Scala case class is
that the objects are serializable. This object holds a running update function that is assigned
to the updateCount Scala value, as follows:

case object RunningUpdate { // this makes the object serializable
 val updateCount = (newValues: Seq[Int], runningCount: Option[Int]) => {
 val newCount = runningCount.getOrElse(0) + newValues.sum
 Some(newCount): Option[Int]
 }
}

This object needs to be serializable because Spark is a distributed system, and it ships the
code to workers. The code shipped must be serializable and a worker will receive this code.
The worker deserializes the code received and applies this code to a piece of data it is
working on.

The second important piece of information is the following code that uses
the updateStateByKey API of Spark Streaming:

val runningCounts = pairs.updateStateByKey[Int](RunningUpdate.updateCount)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[229]

We are passing the RunningUpdate object's updateCount function as a parameter to
the updateStateByKey method on the pairs stream. We can envision the pairs stream as a
mapping from the word to the current count, as follows:

The word is the key
The current count is the value

It is also not the signature of updateCount. The first parameter is a sequence of integers,
where the second parameter is an optional parameter. The following list goes into more
detail:

newValues: A sequence of integers containing newly observed counts for a
specific word.
runningCount: The current running count for the same word. This value is none
at the start of the stream and when a word is observed for the first time by the
stream. Its value is Some(newcount) if the word has been seen earlier.

The final import part is the flatMap and map APIs, as shown in the following code:

val ssc = new StreamingContext(conf, Seconds(5))
...
val lines = ssc.socketTextStream("localhost", 12345) // 12345 is the netcat
server port
val words = lines.flatMap(_.split("\\s+"))
val pairs = words.map(word => (word, 1))
val runningCounts = pairs.updateStateByKey[Int](RunningUpdate.updateCount)
// apply running update on stream
runningCounts.print()
ssc.start() // Start the computation

Even though flatMap and map seem to be working like standard Spark APIs, they are
working on Spark DStreams. They have the following characteristics:

lines represent a minibatch of data received within the 5 second window
flapMap and map are applied to this minibatch
The same is true for updateStateByKey

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[230]

The stream is started only when ssc.start() is executed, and the following piece of the
recipe is repeated over and over again for each batch window until the stream is stopped:

val words = lines.flatMap(_.split("\\s+"))
val pairs = words.map(word => (word, 1))
val runningCounts = pairs.updateStateByKey[Int](RunningUpdate.updateCount)
// apply running update on stream
runningCounts.print()

We can also rewrite the preceding code in the following way with identical results:

ssc.socketTextStream("localhost", 12345).
 flatMap(_.split("\\s+")).
 map(word => (word, 1)).
 updateStateByKey[Int](RunningUpdate.updateCount).
 print()

Please note that socketTextStream is called only once; however, the following are called
for each minibatch, in this order:

flatMap

map

updateStateByKey

print

Since this is a stateful stream, we also need checkpointing to persist states, as follows:

ssc.checkpoint(".") // use current directory for checkpoint

For more information on the checkpoint, please refer to the Apache Spark
documentation for Spark DStreams at https:/ ​/​spark. ​apache. ​org/ ​documentation. ​html.

Let's now put this all together in plain Scala to understand the flow by going through the
following steps. We will use the same inputs as we provided to the netcat server:

Define an updateCount method as follows:1.

scala> val updateCount = (newValues: Seq[Int], runningCount:
Option[Int]) => {
 | val newCount = runningCount.getOrElse(0) + newValues.sum
 | Some(newCount): Option[Int]
 | }
updateCount: (Seq[Int], Option[Int]) => Option[Int] =
$$Lambda$3671/605827193@2fdd23c1

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html

Near Real-Time Data Analysis Using Streaming Chapter 8

[231]

Create inputs as arrays of texts, as follows:2.

scala> val inputs = Array("hello world", "hello", "hello", "world",
"how are you", "hello again")

inputs: Array[String] = Array(hello world, hello, hello, world, how
are you, hello again)

Import Scala's mutable.Map, as follows. This is needed because we will need a3.
map that cannot be updated:

scala> import collection.mutable.Map
import collection.mutable.Map

Create a mutable.Map as follows:4.

scala> val wordToCount = Map[String, Int]()
wordToCount: scala.collection.mutable.Map[String,Int] = Map()

For each element in the inputs, process and apply the update as follows:5.

scala> inputs.foreach(i => {val words = i.split("\\s+").groupBy(w
=> w).mapValues(vs => vs.map(v => 1).toSeq).foreach(
 | wc => {
 | val word = wc._1
 | val newValues = wc._2
 | val runningCount = if (wordToCount.contains(word))
Some(wordToCount(word)) else None
 | val updatedCount = updateCount(newValues, runningCount)
 | wordToCount(word) = updatedCount.get
 | }); println(wordToCount);
 | })
Map(world -> 1, hello -> 1)
Map(world -> 1, hello -> 2)
Map(world -> 1, hello -> 3)
Map(world -> 2, hello -> 3)
Map(you -> 1, how -> 1, world -> 2, are -> 1, hello -> 3)
Map(again -> 1, you -> 1, how -> 1, world -> 2, are -> 1, hello ->
4)

We defined a mutable.Map that holds the running count for each unique word. To begin
with, the Map is empty. As we iterate through each input record, the counts are updated for
each observed word. When we use Spark Streaming, this all happens under the hood, and
the streaming framework repeats the loop with each new batch of data. It also keeps track
of the state in a similar way to the mutable.Map and wordToCount method that we
described previously.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[232]

The preceding illustration provides some insight into what Spark Streaming does to process
this data continuously. One of the biggest advantages of using a framework such as Spark
is that it also provides stream processing with fault tolerance. Fault tolerance semantics can
become fairly complex in the case of stateful processing, such as the example we just
explored. Spark provides certain guarantees of how this works. Please refer to the Apache
Spark Streaming documentation for more details on this at https:/ ​/ ​spark. ​apache. ​org/
documentation.​html.

Streaming a k-means clustering algorithm
using Spark
The k-means algorithm is an unsupervised machine learning (ML) clustering algorithm.
The objective of this algorithm is to build k centers around which data points are centered,
thereby forming k clusters. The most common implementation of this algorithm is generally
done using batch-oriented processing. Streaming-based clustering algorithms are also
available for this, with the following properties:

The k clusters are built using initial data
As new data arrives in minibatches, existing k clusters are updated to compute
new k clusters
It also possible to control the decay or decrease in the significance of older data

At a high level, the preceding steps are quite similar to the word count problem that we
solved using the streaming solution. The goal of the k-means algorithm is to partition the
data into k clusters. If the data is static and does not change, then k clusters can be formed
and will also remain static. On the other hand, if new data is arriving, new k clusters need
to be computed, and these will change based on the combined properties of old and new
data. A streaming-based k-means algorithm works on a minibatch of new data.

In Spark Streaming and Spark MLlib , the clusters can be computed dynamically as the new
data arrives as part of a data stream. The Spark API is defined here at https:/ ​/​spark.
apache.​org/​docs/ ​2. ​4.​1/ ​api/ ​java/ ​index. ​html? ​org/​apache/ ​spark/ ​mllib/ ​clustering/
StreamingKMeans.​html.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html
https://spark.apache.org/docs/2.4.1/api/java/index.html?org/apache/spark/mllib/clustering/StreamingKMeans.html

Near Real-Time Data Analysis Using Streaming Chapter 8

[233]

To initialize a StreamingKMeans object, the following needs to be done using the builder
pattern:

Instantiate the StreamingKMeans object—new StreamingKMeans()
Set the number of clusters as setK(k)
Set the decay factor using setDecayFactor(decayFactor)
Set initial random centers using setRandomCenters(dimension, weight,
seed)

We finally get a model that can be trained in a streaming fashion and can be used
to make predictions

Let's set this up in a Spark shell by going through the following steps:

Start a Spark shell on the Terminal, as follows:1.

$ spark-shell

Using the following code, stop the current Spark session because it does not2.
support Streaming. We need to explicitly create a Spark Streaming session:

scala> spark.stop() // stop current Spark session

Import the Spark package using the following code. This is needed to configure3.
Spark:

scala> import org.apache.spark._
import org.apache.spark._

Using the following code, import the Spark Streaming package, which is needed4.
to set up the Spark Streaming session:

scala> import org.apache.spark.streaming._
import org.apache.spark.streaming._

Import the StreamingKMeans class from the Spark MLlib package, as follows:5.

scala> import org.apache.spark.mllib.clustering.StreamingKMeans
import org.apache.spark.mllib.clustering.StreamingKMeans

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[234]

Create a new Spark configuration as follows, making sure that at least two cores6.
are allocated for processing:

scala> val conf = new
SparkConf().setMaster("local[2]").setAppName("HandsOnKMeanStreaming
")

conf: org.apache.spark.SparkConf =
org.apache.spark.SparkConf@1483c738

Create a Spark Streaming context as follows:7.

scala> val ssc = new StreamingContext(conf, Seconds(30))
ssc: org.apache.spark.streaming.StreamingContext =
 org.apache.spark.streaming.StreamingContext@7a5a26b7

Initialize the StreamingKmeans object:8.

scala> val model = new StreamingKMeans().
 | setK(4). // number of clusters
 | setDecayFactor(1.0). // decay
 | setRandomCenters(3, 0.0) // 3 dimensions and 0 weight
model: org.apache.spark.mllib.clustering.StreamingKMeans =
 org.apache.spark.mllib.clustering.StreamingKMeans@2e1b1d22

The preceding code is quite similar to the one used for the word count, with the following
important properties:

We set the Spark Streaming context, ssc, in exactly the same way as the
Streaming word count problem
We initialized a Spark Streaming k-means model with the desired set of
parameters

The next steps are about creating a DStream that provides the input data and trains the
model using new batches of data coming on Spark DStreams, and then finally starts the
Streaming context. Look at the following code:

...
model.trainOn(trainingData) // traningData is a Spark DStreams with data
coming in mini batches
...
ssc.start()
...

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[235]

To see this in action, let's start with some data preparation. Create a new temporary
directory in a suitable location for training and test data. One good choice for such data is
the /tmp directory on Linux and macOS, as shown in the following code:

$ mkdir /tmp/k-means-train-data
$ mkdir /tmp/k-means-test-data

We will work with three-dimensional data to explore and understand this. The format for
three-dimensional training data is as follows:

[n1, n2, n3]

The following is an example of training data:

[1000, 0, 0]
[1001, 0, 0]
[1002, 0, 0]
[1003, 0, 0]
[1004, 0, 0]
[1005, 0, 0]
[1006, 0, 0]
[1007, 0, 0]
[1008, 0, 0]
[1009, 0, 0]
[0, 1000, 0]
[0, 1001, 0]
[0, 1002, 0]
[0, 1003, 0]
[0, 1004, 0]
[0, 1005, 0]
[0, 1006, 0]
[0, 1007, 0]
[0, 1008, 0]
[0, 1009, 0]
[0, 0, 1000]
[0, 0, 1001]
[0, 0, 1002]
[0, 0, 1003]
[0, 0, 1004]
[0, 0, 1005]
[0, 0, 1006]
[0, 0, 1007]
[0, 0, 1008]
[0, 0, 1009]

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[236]

The format of test data is as follows:

(num, [n1, n2, n3])

The following is an example of test data:

(1, [1002, 0, 0])
(1, [1001, 0, 0])
(2, [0, 1002, 0])
(2, [0, 1001, 0])
(3, [0, 0, 1002])
(3, [0, 0, 1001])

To start exploring this algorithm, start a Spark shell and go through the following steps:

Start a Spark shell using the following command:1.

$ spark-shell

Stop the current Spark session using the following command:2.

spark.stop() // stop current Spark session

Import the necessary packages and classes as follows:3.

import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.mllib.clustering.StreamingKMeans

Set up the Spark configuration and streaming context as follows:4.

val conf = new
SparkConf().setMaster("local[2]").setAppName("HandsOnKMeanStreaming
")
val ssc = new StreamingContext(conf, Seconds(10))

Create a StreamingKMeans method by initializing the parameters. The5.
following code is the model:

val model = new StreamingKMeans().
 setK(4). // number of clusters is 4
 setDecayFactor(1.0). // decay factor (the forgetfulness of the
previous centroids)
 setRandomCenters(3, 0.0) // 3 dimensions and 0 weight

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[237]

Set up the training data stream as follows:6.

import org.apache.spark.mllib.linalg.Vectors
val trainingData = ssc.textFileStream("file:/tmp/k-means-train-
data").map(Vectors.parse).cache()
trainingData.print() // to output training data for debug purpose

Set up the test data stream as follows:7.

import org.apache.spark.mllib.regression.LabeledPoint
val testData = ssc.textFileStream("file:/tmp/k-means-test-
data").map(LabeledPoint.parse)

Train the model on the data from the training data stream as follows:8.

model.trainOn(trainingData)

Use the model to predict how to use the data from the test data stream, as9.
follows:

model.predictOnValues(testData.map(lp => (lp.label,
 lp.features))).print()

Start the streaming processing, as follows:10.

ssc.start()

Set a timeout for streaming processing to run before getting control back in the11.
shell, as follows:

ssc.awaitTerminationOrTimeout(1000*60*3) // Wait for the
computation to terminate (3 minutes)

Remember to stop the streaming context cleanly and exit the Spark shell when it12.
is finished, as follows:

scala> ssc.stop()

scala> :quit

Go through the following steps to see k-means streaming-based clustering in action:

Copy a text file containing some training data in the previously specified training1.
data format to the /tmp/k-means-train-data directory.
Copy a text file containing some test data in the previously specified test data2.
format to the /tmp/k-means-test-data directory.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[238]

Repeat the preceding steps with new training and test data copied to the3.
respective directories. You should now see the clusters being updated
continuously.

In your Spark shell, you can also see some additional details pertaining to the latest model,
as shown in the following code:

...
scala> model.latestModel.clusterCenters
res15: Array[org.apache.spark.mllib.linalg.Vector] =
Array([0.0,1004.5,0.0],
[502.2500000000017,3.3333333333333336E-15,502.2500000000017],
[502.249999999995,-1.0E-14,502.249999999995])
...
scala> model.latestModel.clusterWeights
res16: Array[Double] = Array(20.0, 30.0, 10.0)

We initially started with random centers and zero weights. As the training data passes
through the streaming k-means trainOn API, it recomputes new centers and weights.
Using the decay factor, the significance of aged data can also be controlled.

Streaming linear regression using Spark
Using Spark Streaming, it is possible to update the parameters of the linear model online. In
many ways, Spark Streaming's linear regression solution works very similarly to the k-
means streaming solution.

We will be using the StreamingLinearRegressionWithSGD class that is provided as part
of Spark MLlib. To initialize a StreamingLinearRegressionWithSGD object, the
following needs to be done:

Instantiate the StreamingLinearRegressionWithSGD object using the new1.
StreamingLinearRegressionWithSGD() method
Set the number of initial weights2.
We should get a model that can be trained in a streaming fashion and can be3.
used to make predictions

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[239]

Let's explore this solution in a Spark shell by going through the following steps:

Start a Spark shell in your Terminal as follows:1.

$ spark-shell

Stop the current Spark session using the following code, since we need to2.
explicitly create a streaming session:

scala> spark.stop() // stop current Spark session

Using the following code, import the spark package, which is required to3.
configure Spark:

scala> import org.apache.spark._
import org.apache.spark._

Use the following code to import the Spark Streaming package, which is needed4.
for Spark Streaming:

scala> import org.apache.spark.streaming._
 import org.apache.spark.streaming._

Use the following code to import the Vectors from Spark MLlib's linear algebra5.
package:

scala> import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.Vectors

Use the following code to import LabelPoint from Spark MLlib's regression6.
package:

scala> import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.regression.LabeledPoint

Import the StreamingLinearRegressionWithSGD class from Spark MLlib's7.
regression package using the following code:

scala> import
org.apache.spark.mllib.regression.StreamingLinearRegressionWithSGD
import
org.apache.spark.mllib.regression.StreamingLinearRegressionWithSGD

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[240]

Using the following code, set up Spark's configuration, making sure that there8.
are at least two cores allocated for processing:

scala> val conf = new
SparkConf().setMaster("local[2]").setAppName("HandsOnStreamingLinea
rReg")
conf: org.apache.spark.SparkConf =
org.apache.spark.SparkConf@403b7be3

Set up the Spark Streaming context using the following code:9.

scala> val ssc = new StreamingContext(conf, Seconds(10))
ssc: org.apache.spark.streaming.StreamingContext =
org.apache.spark.streaming.StreamingContext@72bef795

scala> val numFeatures = 3
numFeatures: Int = 3

scala> val model = new StreamingLinearRegressionWithSGD().
 | setInitialWeights(Vectors.zeros(numFeatures))
model:
org.apache.spark.mllib.regression.StreamingLinearRegressionWithSGD
=
org.apache.spark.mllib.regression.StreamingLinearRegressionWithSGD@
5db6083b

Set the number of features to 3 (as we will be working with three-dimensional10.
data) using the following code:

scala> val numFeatures = 3
numFeatures: Int = 3

Initialize the model, as follows:11.

scala> val model = new StreamingLinearRegressionWithSGD().
 | setInitialWeights(Vectors.zeros(numFeatures))
model:
org.apache.spark.mllib.regression.StreamingLinearRegressionWithSGD
=
org.apache.spark.mllib.regression.StreamingLinearRegressionWithSGD@
5db6083b

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[241]

Just like the k-means streaming solution, the next step is to create a DStreams that provides
the input data and trains the model using new batches of data coming on Spark DStreams.
Then, we can finally start the Streaming context. Let's set this up by going through the
following steps:

Set up the training data stream as follows:1.

val trainingData = ssc.textFileStream("file:/tmp/lin-reg-train-
 data").map(Vectors.parse).cache()
trainingData.print() // to output training data for debug purpose

Set up the test data stream as follows:2.

val testData = ssc.textFileStream("file:/tmp/lin-reg-test-
 data").map(LabeledPoint.parse)

Train the model on data from the training data stream, as follows:3.

model.trainOn(trainingData)

Use the model to predict using data from the test data stream, as follows:4.

model.predictOnValues(testData.map(lp => (lp.label,
lp.features))).print()

Start the processing of streaming using the following command:5.

ssc.start()

Set a timeout for the streaming processing to run before getting control back in6.
the shell, as follows:

ssc.awaitTerminationOrTimeout(1000*60*3) // Wait for the
computation to terminate (3 minutes)

Remember to stop the streaming context cleanly and exit the Spark shell when7.
finished, as follows:

scala> ssc.stop()

scala> :quit

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Near Real-Time Data Analysis Using Streaming Chapter 8

[242]

To see this in action, let's start with some data preparation. Create a new temporary
directory in a suitable location for training and test data. One good choice for this location
is the /tmp directory on Linux and macOS, as shown in the following code:

$ mkdir /tmp/lin-reg-train-data
$ mkdir /tmp/lin-reg-test-data

We will work with three-dimensional data to explore and understand this. The format for
three-dimensional training data is as follows:

(num, [n1, n2, n3])

Since linear regression is a supervised ML algorithm, we need to provide labeled data for
training. The following list shows the labels that are used in detail:

[n1, n2, n3] represents a data point of three features
num represents the associated label or known observation

Summary
In this chapter, we learned how to process data in near real time using a streaming-based
approach. Streaming processing is quite different from traditional batch-oriented
processing. Through a classic word count example, we explored how streaming-oriented
processing could be applied to such problems to get near real-time updates. The streaming
algorithm is quite different from the classic solution to this problem, and introduces a few
complex concepts, such as state management. For all the added complexity in the streaming
solution, it is generally worth employing because of the significantly improved response
time in gaining real-time details of the data that is being monitored.

We also looked at how to make use of the streaming-oriented approach for ML. In the next
chapter, we will look at scalability concerns.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Working with Data at Scale

Data is being produced at an accelerated pace with advancements in technology. The
widespread usage and adoption of the Internet of Things (IoT) is a great example of this.
These specifically purposed IoT devices are tens of billions in number and are growing
rapidly. Many of these devices, using their sensors, continually produce observations as
data. Even though the data might be small as a unit, combined together it becomes
humongous. IoT is just one example of how much and how fast the data is being created.

This kind of data is sometimes referred to as big data that is too big to fit on a single
machine for storage and computing purposes. Big data has three important properties:

Variety: Data in different formats and structures
Velocity: New data arriving at a fast rate
Volume: Huge overall data size

In the prior chapters, we learned how to deal with a variety of data formats in Scala. For
example, we explored Scala libraries for processing data in CSV, XML, and JSON formats.

We also explored various data processing techniques that fall into two categories:

Batch-oriented
Stream-oriented

Stream-oriented processing helps us continually perform computations as the data arrives.
On the other hand, batch-oriented processing provides more efficiency at the cost of higher
latency in the availability of computed results. Stream-oriented processing is a powerful
tool for dealing with data velocity problems. In the example of data created by IoT devices,
the value of data generally starts to decrease as the data ages, and low latency data
processing becomes one of the dominant factors in the design of such systems.

Dealing with large volumes of data is a different kind of challenge. The data needs to be
organized and stored at a large scale. It also needs to be processed for various purposes
within the desired time periods to extract meaningful business values from it. In this
chapter, we will focus on the volume aspect of data.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[244]

In this chapter, we will cover the following topics:

Working with data at scale
Cost considerations
Reliability considerations

Working with data at scale
Working with data at scale and handling large data volumes significantly changes data
analysis and processing. To get an intuition for the problems with data at scale, let's look at
a simple problem of computing the median value of numbers. The median is the mid-point
that splits the data into two parts. Use the following numbers as an example:

8 1 2 7 9 0 5

We will first sort the numbers in ascending order:

0 1 2 5 7 8 9

The median value is 5, because it splits the data into two halves, where half of the values
are below five and the another half are above five.

Now, let's imagine that the count of these numbers was of the order of billions. Let's
explore a solution to this problem in Scala REPL. Traditionally, we would need to do the
following steps to compute the median value:

Load the data into memory on a single computer's process:1.

scala> val data = Array(8, 1, 2, 7, 9, 0, 5) // Step 1: set or load
data
data: Array[Int] = Array(8, 1, 2, 7, 9, 0, 5)

We have used a very small sample of seven numbers. This is a good enough size to
understand the problem and appreciate the underlying issues with the proposed solution.

Sort the data in ascending order in the same process:2.

scala> val dataSorted = data.sorted // Step 2: sort the data
dataSorted: Array[Int] = Array(0, 1, 2, 5, 7, 8, 9)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[245]

Please note that sort is a very expensive operation, particularly when performed on a large
dataset. We covered the performance characteristics of Scala's collection API in Chapter 1,
Scala Overview. There are several choices of sort algorithms, because a balance is required
between intermediate memory usage and overall compute time. For most sort algorithms,
the worst case performance is O(n log(n)). This implies that the time it takes to sort the
dataset is roughly proportional to the number of elements in the dataset.

Extract the median value as a midpoint from the sorted data:3.

scala> val median = dataSorted(dataSorted.size/2) // Step 3:
extract the median as midpoint from sorted data
median: Int = 5

This solution works well for small datasets, but it is unlikely to work successfully for large
datasets for the following reasons:

A single computer is unlikely to have enough RAM to hold all of this data in
memory.
The time it takes to compute is likely to be very high because of the limited
number of processing cores in a single computer. Many sorting algorithms can be
parallelized; however, each thread still needs a CPU core in order to execute.
The sorting algorithm itself is going to require a significant amount of
intermediate memory to perform its computations.

We are essentially facing two limitations of a single computer:

Limits on the total amount of main memory
Limits on the number of cores

It is certainly possible to solve such problems on a single supercomputer with huge
amounts of RAM and an equally huge number of cores, but the cost of doing so would be
too high and wouldn't be economically viable for any enterprise.

The volume of data significantly changes how we solve such problems and forces us to
explore alternative algorithms toward finding feasible solutions. Let's look at solving this
problem in a scalable and cost-effective way. For solving real-world problems, it is very
important to appreciate the following factors associated with data:

A good understanding of the domain and context in which the problem is to be
solved goes a long way in building cost-effective solutions.
Analysis, discovery, and observations of some key properties of the associated
real data is a must. The data generally tells a story and a lot can be learned from
that.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[246]

Let's assume that the data in our current context has the following properties:

All the records are integral numbers
The total count records are of the order of billions
The range of integral value is 1 to 1,000

For the sake of generation, we will use the notion of a record that contains related data
points associated with an observation. Our record has only one data point, which can have
only numeric values.

The Range property is a very significant property, because of the real-world nature of data.
With this property in mind, we can look at solving this in a completely different way. We
defined a range of 1 to 1,000, which implies that there are a significant number of repeated
values in the dataset.

Some such properties could come from the business rules of the domain, while others can
be discovered using frequency analysis on data. To get an intuition for this, let's look at a
simple Scala example in Scala REPL:

Create a dataset of 20 random integers in the Range[0, 5) class:1.

scala> val data = Range(0, 20).map(i =>
scala.util.Random.nextInt(5)) // Step 1: Create dataset of 20
random
 integers in range [0, 5)
data: scala.collection.immutable.IndexedSeq[Int] = Vector(3, 2, 4,
2, 2, 3, 3, 1, 2, 4, 3, 3, 0, 0, 0, 1, 1, 4, 0, 3)

We used the Scala Range class to generate 20 numbers from 0 to 19 and map each one of
these to a random number from 0 to 4 using the scala.util.Random object's nextInt
method. We get a Vector object consisting of 20 random numbers from 0 to 4.

Please note that each run of the preceding code would produce a different
result because of the randomizing involved.

Get the distinct values from the dataset:2.

scala> data.distinct
scala> val dataDist = data.distinct // Step 2: Get distinct values
dataDist: scala.collection.immutable.IndexedSeq[Int] = Vector(3, 2,
 4, 1, 0)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[247]

We use the distinct method of the Vector object that returned a new vector consisting of
the five distinct values. We can indeed see that distinct values are 0 through 4, as expected.
This kind of data analysis is sometimes known as frequency analysis.

Get counts for each distinct value:3.

scala> val counts = data.map(i => (i,
1)).groupBy(_._1).mapValues(_.size) // Step 3: Get counts for each
distinct value

counts: scala.collection.immutable.Map[Int,Int] = Map(0 -> 4, 1 ->
3, 2 -> 4, 3 -> 6, 4 -> 3)

To get the counts for each distinct value, we first mapped each value to a pair of (value, 1),
performed a group by the value component of (value, 1), and finally counted 1 in each
value. We can now see exactly the amount of occurrences of each number. Similar to the
analysis in the previous step, this kind of analysis is also known as frequency analysis.

In the preceding example, we intentionally limited values from in the range of 0 to 4, and
generated a dataset of 20 such random numbers. We observed that the dataset has 5 distinct
numbers, as expected. We also saw that some values are repeated more often than others;
for example, value 3 is repeated six times.

A real-world example of such a property could be an online retail system tracking the
number of item purchases per order. An order would have at least one item and no more
than 1,000 items, assuming that the retailer limits the maximum size of the order to 1,000
items.

The most important takeaway from these observations is that the dataset has a few distinct
values and cannot exceed 1,000 in total. With this in mind, we apply a different algorithm
to compute the median:

For each distinct value, count the number of occurrences. Represent this as a pair1.
of (value, count).
Sort (value, count) in ascending order by sorting on the value part.2.
Compute the range index of each distinct value. The smallest value starts with3.
index 0 and the index is incremented by the number of occurrences of this value
to represent the start of the next index. We then move on to the next smallest
number and repeat this process.
Determine the left index of the midpoint. This is needed to handle the situation4.
when the numbers of the records are even. If this is the case, we have two
midpoints and we need to take the average of the two to compute the median.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[248]

Determine the right index of the midpoint.5.
Filter out the relevant ranges based on the left and right midpoint indexes.6.
Compute the median by averaging the filtered values.7.

Let's explore this algorithm in Scala REPL using a concrete example:

Create a sample dataset of 20 random integers in range(0, 5):1.

scala> val data = Range(0, 20).map(i =>
scala.util.Random.nextInt(5)) // Step 1: Create dataset of 20
random integers in range [0, 5)

data: scala.collection.immutable.IndexedSeq[Int] = Vector(3, 2, 4,
2, 2, 3, 3, 1, 2, 4, 3, 3, 0, 0, 0, 1, 1, 4, 0, 3)

This dataset is the same dataset that was used in the previous example.

Count the number of occurrences for each distinct value:2.

scala> val counts = data.map(i => (i,
1)).groupBy(_._1).mapValues(_.size) // Count number of occurences
for each distinct value

counts: scala.collection.immutable.Map[Int,Int] = Map(0 -> 4, 1 ->
3, 2 -> 4, 3 -> 6, 4 -> 3)

The counts a Map object and it has a mapping from the value to the number of its
occurrences.

Sort the counts by the value part:3.

scala> val sortedCounts = counts.toArray.sortBy(_._1) // Sort by
value

sortedCounts: Array[(Int, Int)] = Array((0,4), (1,3), (2,4), (3,6),
(4,3))

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[249]

We used the sortBy method array to perform the sort. The method accepts an argument
that defines the field to be used for sorting. We used the value part by using the _._1 Scala
notation. This is shorthand for indicating the first element of the incoming object. In this
case, the incoming object is a Scala tuple of [Int, Int].

Compute the range index for each distinct value:4.

scala> val valuesWithIndex = {var currentTotal = 0;
sortedCounts.map(kv => {val from = currentTotal; currentTotal +=
kv._2; val to = currentTotal -1; (kv._1, from, to)})} // Compute
range index for each distinct value
valuesWithIndex: Array[(Int, Int, Int)] = Array((0,0,3), (1,4,6),
(2,7,10), (3,11,16), (4,17,19))

This assigns an index range to each distinct value. The smallest value starts with an index
of zero. This concept is discussed in more detail later in this chapter.

Compute the left index of the mid-point:5.

scala> val leftMidPointIdx = if (data.size % 2 == 0) data.size/2-1
else data.size/2 // left index of mid-point
leftMidPointIdx: Int = 9

Finding the median depends upon whether the dataset has an even or odd number of
records. If it has an odd number of records, then there is only one mid-point. For an even
number of records, there are two mid-points that have to be averaged to compute the
median.

For an odd number of records, the left and right mid-points are the same.

Compute the right index of the mid-point:6.

scala> val rightMidPointIdx = data.size/2 // right mid-point index
rightMidPointIdx: Int = 10

The right index does not depend upon whether a dataset has an even or an odd number of
records.

Filter out the entries that are not in the range of the left and right mid-points:7.

scala> val midPoints = valuesWithIndex.filter(v => (leftMidPointIdx
>= v._2 && leftMidPointIdx <= v._3) || (rightMidPointIdx >= v._2 &&
rightMidPointIdx <= v._3)) // Filter out the relevant distinct
values
midPoints: Array[(Int, Int, Int)] = Array((2,7,10))

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[250]

From the valuesWithIndex method, we have filtered out all of the entries that are not
within the range of the left and right mid-points. This must provide us with either one
entry or two entries. In this specific case, we got only one entry (2, 7, 10) because of the
left mid-point index 9 and right mid-point index 10. Both are within the range of 7 to 10.

Compute the median value from the mid-points:8.

scala> val median: Double = midPoints.map(_._1).sum/midPoints.size
// Step 7: Compute median by taking average

median: Double = 2.0

We take the average of the mid-point values to compute the median value. This is required
in order to account for the possibility of two entries in mid-points as a result of an even
number of records and each mid-point falling in different ranges.

We can easily represent the preceding median derivation logic as a reusable Scala function
by defining the following function:

getMedian:
Input: An array consisting of a pair of value and associated count
Output: Median value

def getMedian(counts: Array[(Int, Int)]): Double = {
 val totalCount = counts.map(_._2).sum // Total number of records
 val sortedCounts = counts.sortBy(_._1) // Sort by value
 // Compute range index for each distinct value
 val valuesWithIndex = {
 var currentTotal = 0
 sortedCounts.map(kv => { val from = currentTotal; currentTotal
+= kv._2; val to = currentTotal - 1; (kv._1, from, to) })
 }
 // left index of mid-point
 val leftMidPointIdx = if (totalCount % 2 == 0) totalCount / 2 - 1
else totalCount / 2
 val rightMidPointIdx = totalCount / 2 // right mid-point index
 // Filter out the relevant distinct values
 val midPoints = valuesWithIndex.filter(v => (leftMidPointIdx >=
v._2 && leftMidPointIdx <= v._3) || (rightMidPointIdx >= v._2 &&
rightMidPointIdx <= v._3))
 midPoints.map(_._1).sum / midPoints.size // Compute median by
taking average
}

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[251]

The preceding Scala function is generalized enough, and can be reused once we are able to
count distinct values in our dataset. The function should work on a single machine as long
as the requirements for data properties are met; that is, our dataset has few distinct values.

Let's look at what is going on here in more detail. We can envision our dataset laid out in a
linear fashion as follows:

// Sorted numbers
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4,
4
// Corresponding index
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19

We are reducing the aforementioned information into the following condensed form:

Value Start Index End Index
0 0 3
1 4 6
2 7 10
3 11 13
4 14 19

Once we have the aforementioned information, we can easily compute the median value.
This algorithm is significantly different from the previously discussed simpler version.
Now the question is, how able is this new algorithm to scale for large datasets? This is
primarily because counting distinct values has two distinct properties that make this
algorithm parallelizable:

We can easily combine two or more such results into a single result if the
individual results are computed from two mutually exclusive slices of the
dataset.
The dataset can be sliced in any way and any number of pieces, we would still
get the same computed final result.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[252]

To verify this hypothesis, let's perform the following in Scala REPL:

Create a sample dataset of 20 random integers in range [0, 5):1.

scala> val data = Range(0, 20).map(i =>
scala.util.Random.nextInt(5)) // Step 1: Create dataset of 20
random integers in range [0, 5)

data: scala.collection.immutable.IndexedSeq[Int] = Vector(3, 2, 4,
2, 2, 3, 3, 1, 2, 4, 3, 3, 0, 0, 0, 1, 1, 4, 0, 3)

This dataset is the same dataset that was used in the previous two examples.

Split our data into two parts, with even numbers in one part and odd numbers in2.
the other part:

scala> val (evens, odds) = data.partition(_ % 2 == 0) // Split data
into even and odd

evens: scala.collection.immutable.IndexedSeq[Int] = Vector(2, 4, 2,
2, 2, 4, 0, 0, 0, 4, 0)

odds: scala.collection.immutable.IndexedSeq[Int] = Vector(3, 3, 3,
1, 3, 3, 1, 1, 3)

We use the partition method of Vector to split the data into two new vectors.
The evens object contains all even numbers, while the odds object contains all odd
numbers.

Compute the distinct counts for even numbers:3.

scala> val evenCount = evens.map(i => (i,
1)).groupBy(_._1).mapValues(_.size) // Compute distinct value count
for even

evenCount: scala.collection.immutable.Map[Int,Int] = Map(2 -> 4, 4
-> 3, 0 -> 4)

Compute the distinct count for odd numbers:4.

scala> val oddCount = odds.map(i => (i,
1)).groupBy(_._1).mapValues(_.size) // Step 3: Compute distinct
value count for odd

oddCount: scala.collection.immutable.Map[Int,Int] = Map(1 -> 3, 3
-> 6)

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[253]

Combine the two results to create the final result:5.

scala> val combined = evenCount.union(oddCount).map(kv => (kv._1,
kv._2)).groupBy(_._1).mapValues(_.map(_._2).sum) // Step 4: Combine
the results of even and odd

combined: scala.collection.immutable.Map[Int,Int] = Map(0 -> 4, 1
-> 3, 2 -> 4, 3 -> 6, 4 -> 3)

We first took a union of odd and even counts and mapped each entry to a Scala tuple of
[Int, Int] as a (value, count) pair. We then performed a groupBy method on the
value part and mapped the values summing the counts.

The preceding code example proves that our hypothesis is correct. This can be confirmed
by performing two or more random splits and by repeating similar steps. Once we have
this condensed information that only consists of five entries, we can apply the previous
algorithm, defined in the getMedian function, to get the median value. The main
achievement of the aforementioned methodology is the ability to work on multiple smaller
segments of data, compute intermediate results, and then combine these results to arrive at
the same answer as when it was done traditionally.

Let's re-examine at these steps at a broader level to get a complete picture.

At a very high level, we are doing the following things:

We start with the data to be processed.1.
We then split the data into multiple segments or splits, S1 through Sn, where n is2.
the number of segments. This assumes that data is splittable. An example of data
that can be split easily is the CSV data format where a newline designates the
start of a new record. A CSV format file of 10 million records can easily be split
into 10 segments, with each segment having approximately 1 million records.
This is possible because of the newline character being the CSV record delimiter.
Apply identical computation on each segment; the results of each individual3.
segment are represented as R1 through Rn.
Combine the results for R1 through Rn to produce the final results.4.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[254]

The following diagram is a visual representation of the outlined steps and data flow:

The previous steps are fundamental to processing data at scale. In order to solve problems
that involve massive datasets, we need to think of data and computation as two separate
entities. At the beginning of this book, we compared object-oriented programming and
functional programming. Object-oriented programming treats data and computation as a
single entity. On the other hand, functional programming treats these two as separate
entities. Such algorithms are more in line with functional programming principles. That is
the main reason why functional programming is ideally suited to solving such problems at
a large scale.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[255]

Now, let's look at a complete example of solving this problem in Spark, which can leverage
a large cluster of nodes to solve this problem at a massive scale. Spark uses the terminology
partition, which is equivalent to a split or segment used in the earlier explanation. For
demonstration purposes, we will use small datasets of 20 numbers and 2 partitions to begin
with:

Start a new Spark shell at the command line:1.

$ spark-shell

Generate 20 random numbers in range [0, 5) with two partitions:2.

scala> // Generate 20 random numbers in range [0, 5) with 2
partitions

scala> val ds = spark.range(20). // 20 numbers
 | repartition(2). // 2 Partitions
 | map(i => scala.util.Random.nextInt(5)). // Randomize
 | cache() // Preserve random values
ds: org.apache.spark.sql.Dataset[Int] = [value: int]

We utilized Spark's Range function to generate 20 numbers, instructed Spark to create two
partitions, and then mapped each number to a random number between 0 to 4. This
produces a Spark dataset of Int. Finally, we cached the dataset to preserve the values in
the dataset during the session.

Map each partition to count distinct values:3.

scala> // Map each partition to count distinct values

scala> val dsWithCount = ds.mapPartitions(_.toArray.map(i => (i,
1)).groupBy(_._1).mapValues(_.size).toIterator)
dsWithCount: org.apache.spark.sql.Dataset[(Int, Int)] = [_1: int,
_2: int]

scala> // Step 3: Combine the results

scala> val combined = dsWithCount.rdd.reduceByKey(_+_).collect
combined: Array[(Int, Int)] = Array((4,3), (0,4), (2,2), (1,5),
(3,6))

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[256]

Combine the results of both partitions:4.

scala> // Combine the results

scala> val combined = dsWithCount.rdd.reduceByKey(_+_).collect
combined: Array[(Int, Int)] = Array((4,3), (0,4), (2,2), (1,5), (3,6))

Please note that Spark is lazily evaluated, and this required us to use the cache API in step
two. This is because of Spark's compute model, where the entire DAG is re-evaluated
whenever an action is performed on the dataset. By caching this dataset, we are suggesting
that Spark should evaluate the DAG for this dataset only once during the session. As we
are generating random numbers, without the cache API usage, each Spark action on the
dataset will produce a different result.

Let's check whether the aforementioned computation was performed correctly or not by
examining the following data:

scala> ds.collect
res0: Array[Int] = Array(3, 1, 4, 0, 4, 1, 3, 2, 4, 0, 2, 3, 0, 1, 1, 3, 0,
3, 1, 3)

We can count manually to verify that the combined results are correctly computed.

Although this example was demonstrated using small numbers of data points and
partitions, it can be made to work with massive datasets by having a large enough Spark
cluster of computer nodes and tuning some of the parameters, such as the number of
partitions. We can examine more details in Spark's UI by going to localhost:4040 and
looking at the Jobs tab:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[257]

Some of the key observations from the UI are as follows:

Job 0 is the first Job.
Job 0 consists of three stages: Stage 0, Stage 1, and Stage 2.
We can see the mapParitions and the reduceByKey transformations being
performed on the dataset. This is triggered by the collect action.
Stage 0 consists of four tasks, Stage 1 and Stage 2 have two tasks each.

Now, let's rerun the same Spark recipe with the following variations:

1,000,000 records
10 partitions (100,000 records in each partition)

We will then observe Spark's behavior:

Start a new Spark shell at the command line:1.

$ spark-shell

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[258]

Generate 1 million random numbers in range [0, 5) with 10 Spark partitions:2.

scala> // Generate 1,000,000 random numbers in range [0, 5) with 10
partitions

scala> val ds = spark.range(1000000). // 1,000,000 numbers
 | repartition(10). // Partitions
 | map(i => scala.util.Random.nextInt(5)) // Randomize
ds: org.apache.spark.sql.Dataset[Int] = [value: int]

scala> // Step 2: Map each partition to count distinct values

scala> val dsWithCount = ds.mapPartitions(_.toArray.map(i => (i,
1)).groupBy(_._1).mapValues(_.size).toIterator)
dsWithCount: org.apache.spark.sql.Dataset[(Int, Int)] = [_1: int,
_2: int]

scala> // Step 3: Combine the results

scala> val combined = dsWithCount.rdd.reduceByKey(_+_).collect
combined: Array[(Int, Int)] = Array((0,199918), (1,200006),
(2,199896), (3,199636), (4,200544))

Map each partition to count distinct values:3.

scala> // Map each partition to count distinct values

scala> val dsWithCount = ds.mapPartitions(_.toArray.map(i => (i,
1)).groupBy(_._1).mapValues(_.size).toIterator)
dsWithCount: org.apache.spark.sql.Dataset[(Int, Int)] = [_1: int,
_2: int]

Combine the results from all partitions:4.

scala> // Combine the results

scala> val combined = dsWithCount.rdd.reduceByKey(_+_).collect
combined: Array[(Int, Int)] = Array((0,199918), (1,200006),
(2,199896), (3,199636), (4,200544))

Please note that we intentionally removed the caching of data to avoid
memory issues.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[259]

Now, let's look in Spark UI again, at localhost:4040, and look at the Jobs tab:

If we compare this UI result to the previous one, we can see a few changes:

Even though the number of stages is still 3, the stage 1 graph has changed
slightly. This is because of the removal of the cache operation.
Stage 1 and Stage 2 now have 10 tasks each. Since we have 10 partitions now,
each task corresponds to a Spark partition and we now see 10 tasks instead of 2.

As a final review, let's look at a complete and simplified solution to this problem using
Spark, by simplifying the map partition step significantly:

Start a new Spark shell at the command line:1.

$ spark-shell

Generate 1 million random numbers in range [0, 5) with 10 partitions:2.

scala> // Generate 1,000,000 random numbers in range [0, 5) with 10
partitions

scala> val ds = spark.range(1000000). // 1a: 1,000,000 numbers
 | repartition(10). // 1b: 10 Partitions
 | map(i => scala.util.Random.nextInt(5)) // 1c: Randomize
ds: org.apache.spark.sql.Dataset[Int] = [value: int]

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[260]

Map each num as a key-value pair of (num, count), where count = 1:3.

scala> // Map each num as key value pair of (num, count) where
count = 1

scala> val dsWithCount = ds.rdd.map((_, 1))
dsWithCount: org.apache.spark.rdd.RDD[(Int, Int)] =
MapPartitionsRDD[8] at map at <console>:25

Combine the results:4.

scala> // Combine the results

scala> val combined = dsWithCount.reduceByKey(_+_).collect
combined: Array[(Int, Int)] = Array((0,199724), (1,199558),
(2,199909), (3,200306), (4,200503))

Step three is simplified significantly, since we are mapping each number to a key-value pair
of number as the key and one as the value. Now, the question is, how does it scale as the
number records in the reduceByKey step are exactly the same as the number of original
records? The answer to this lies in how Spark's reduceByKey API works under the hood.
Spark's reduceByKey API does the following:

Apply reduceByKey for each partition locally and produce local results.
Combine all local results from every partition to produce an aggregate result.

In the previous solution, we had used Spark's MapPartitions API to achieve this by
computing results for each partition; however, we needed to bring the complete data from
the partition in memory to compute that. We replaced them MapPartitions API with the
much simpler map API of Spark. We can rely on Spark to perform all of the optimizations
related to memory usage.

Let's see if we make this example work with a billion numbers in Spark. We will do
essentially the same steps, except for a small modification in the usage of Spark's range
API:

val ds = spark.range(0, 1000000000, 1, 1000). // 1,000,000,000 numbers
starting with 0 with 1000 partitions

We removed the repartitioning in the preceding step to avoid memory issues, because we
are running Spark locally on a single machine. Instead, we asked Spark to create 1,000
partitions implicitly for us instead of using the repartition API explicitly. The
repartition operation, if done explicitly on a large dataset, is a fairly expensive operation
in terms of memory and network usage.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[261]

Let's run the example in the Spark shell and see whether it works:

Start a new Spark shell at the command line:1.

$ spark-shell

Generate 1 billion random number in the range of [0, 5) with 1000 partitions:2.

scala> // Generate 1,000,000,000 random numbers in range [0, 5)
1000 partitions

scala> val ds = spark.range(0, 1000000000, 1, 1000). //
1,000,000,000 numbers starting with 0 with 1000 partitions
 | map(i => scala.util.Random.nextInt(5)) // Randomize
ds: org.apache.spark.sql.Dataset[Int] = [value: int]

Map each num as a key-value pair of (num, count), where count = 1:3.

scala> // Map each num as key value pair of (num, count) where
count = 1

scala> val dsWithCount = ds.rdd.map((_, 1))
dsWithCount: org.apache.spark.rdd.RDD[(Int, Int)] =
MapPartitionsRDD[4] at map at <console>:25

Combine the results:4.

scala> // Combine the results

scala> val combined = dsWithCount.reduceByKey(_+_).collect
combined: Array[(Int, Int)] = Array((0,200012500), (1,199977942),
(2,200005787), (3,199988344), (4,200015427))

This actually worked, although it took a few minutes to complete. We can intuitively see
that it correctly computed results, as we are generating random numbers from 0 to 4.
Assuming a nearly uniform distribution of random numbers, each number should have
occurred about 200 million times.

You can experiment with different combinations of the number of records, partitions, and
range to get a good understanding of some of these principles. The following is the output
with a range of (0, 20], using 1 billion numbers and 1,000 partitions:

scala> val ds = spark.range(0, 1000000000, 1, 1000). // 1a: 1,000,000,000
numbers starting with 0 with 1000 partitions
 | map(i => scala.util.Random.nextInt(20)) // 1b: Randomize
...
scala> val combined = dsWithCount.reduceByKey(_+_).collect

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[262]

combined: Array[(Int, Int)] = Array((0,49990682), (1,49996451),
(2,50012140), (3,50004536), (4,49995865), (5,50006713), (6,50003562),
(7,50006684), (8,50006651), (9,50011185), (10,49993332), (11,49993691),
(12,50000625), (13,49989406), (14,49994246), (15,49994717), (16,50005893),
(17,49996304), (18,49997009), (19,50000308))

As can be seen in the preceding code, each number has roughly 50 million counts. From
these experimentations, we can conclude that this solution is scalable, however, we need to
realize that context is very important. In this case, our dataset is very large, however, the
number of distinct values is relatively small. If the dataset had mostly unique values, this
solution would not work and would run into the memory limitations of a single computer.
With mostly unique values, the reduceByKey step would produce nearly the same number
of records as the original dataset, and that is unlikely to fit into the memory on a single
computer.

Working with data at scale has its challenges and requires a paradigm shift in working with
such datasets. The traditional algorithms that work with small datasets need to be adapted
and modified so that these can work on smaller slices of data, and are able to combine the
results from smaller slices of in such a way that end result is the same.

Cost considerations
As the size of data grows, there are many factors to consider to manage costs effectively.
Some of the costs associated with data are direct, while others are indirect. A clear and well-
defined data strategy plays a central role in managing these costs and maximizing the value
of data.

There are multiple points of view to consider when looking at the cost:

Data storage
Data governance

Data storage
Not at all data is created equal. Some types of data have more value than the others. The
value of data might also be sensitive to its age and might start to decrease as the data ages.
At the same time, some data is accessed more frequently than others. All of these factors,
and many more, determine how the data is stored and will influence storage decisions.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[263]

Faster access storage would significantly increase the cost of storing data, but would also
increase the speed of storing and retrieving processed data. An excellent example of this is
Solid State Storage (SSS) technologies that provide high-performance data storage and
retrieval, but cost significantly more than the more prevalent spindle disk-based magnetic
storage. Magnetic disks are still the most cost-effective solutions for high-density data
storage; however, due to the mechanical movements involved, it does add significant
latency to data retrieval.

In the previous section, we looked at how working with data at scale requires us to adapt
and change data processing algorithms. In fact, cost-effective processing requires data to be
processed and stored in a certain way. In fact, when we have a network of computers
processing a large dataset, the dataset must be accessible over the network. The dataset also
has to be splittable in such a way that multiple workers could perform the computations on
each assigned split or segment in a parallelized fashion. The computation logic is generally
small in size and can be distributed over the network to multiple workers without incurring
too much of a cost. On the other hand, if we have to move data around, the cost of doing so
is significantly high because of the following reasons:

Large datasets involve the movement of a huge amount of data over the network.
The network is generally the slowest communication link when it comes to a
computer's data processing.

To get a feel for how the network contributes to latency, please refer to https:/ ​/ ​people.
eecs.​berkeley.​edu/ ​~rcs/ ​research/ ​interactive_ ​latency. ​html.

The key takeaways from the preceding link are as follows:

It is always faster for a process to read the data from the main memory.
SSDs provide the next fastest speed, followed by disks.
Networks add additional latency and it progressively gets progressively worse as
the physical separation becomes wider. For example, it is relatively faster when
communication happens within the same data center, but becomes most latent on
wide area networks (WANs).

One other aspect of networking to realize is that it is a shared resource used for connecting
multiple computers. Even though these networks might be very high-speed networks, their
overall bandwidth is limited because of its shared nature.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Working with Data at Scale Chapter 9

[264]

When designing a cost-effective storage strategy for big data systems, networking topology
must be kept in mind. Networking is the backbone of any distributed processing system, so
it is impossible to avoid network usage completely; however, the overall system has been
designed to reduce an excessive flow of data over the network, particularly during the data
processing phase.

Apache Hadoop's distributed file system, Hadoop Distributed File System (HDFS), was
designed with some of these concerns in mind. When storing a file, HDFS slices it multiple
large chunks, typically of 128 MB in size. Each slice is stored on multiple nodes, and most
typically on three nodes. The slices are somewhat randomly distributed on different nodes
in the cluster. Furthermore, most Apache Hadoop clusters have all of their nodes located
within a single data center, where these are connected by a high-speed network. It also
supports the notion of rack awareness, where nodes located within the same rack can
communicate with each other much faster than going across the rack.

When this data needs to be processed, Apache Hadoop MapReduce or Apache Spark plan
the work in such a way that the worker and data are colocated as much as is possible. In
essence, computation is moved to a worker node in the cluster where the data is also
located.

Let's look at how this works in practice using a simple example:

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[265]

We have the following configuration:

A five node cluster, with Node 1 through Node 5, within a single data center
connected through a high-speed network.
Each node has local storage attached to it.
We also have a file that has three slices, S1 through S3.

Here is the distribution of the file's three slices on different nodes in the cluster:

Node 1 Node 2 Node 3 Node 4 Node 5
S1 S1 S1 S2 S2
S2 S3 S3 S3

The selected nodes in this example for processing are this dataset:

S1 S2 S3
Node 1 Node 5 Node 3

The arrangement of data slices to the assigned worker node avoids the usage of moving the
source dataset around during processing and can be processed efficiently. Since we have
three copies of each slice of data, this design also works well when there are node failures.
For example, let's say Node 1 dies because of some hardware failure-slice S1 needs to be
processed somewhere else. Node 2 and Node 3 have copies of slice S1. It can then easily
use the following configuration to process this dataset:

S1 S2 S3
Node 2 (instead of Node 1) Node 5 Node 3

Solutions such as Hadoop are great for on-premises data centers.

Now the question is, what happens when these data processing workloads run in the cloud,
such as on Amazon Web Services (AWS) or Google Cloud Platform (GCP)? One of the
greatest benefits of a cloud-based solution is on-demand computing, and having the
flexibility to pay only for the computations and storage being used. The cloud is also a
paradigm shift in itself and requires thoughtful architectural considerations in terms of how
and where the data should be stored.

Earlier, we touched upon the point that some data is accessed more frequently than others.
The cloud offers many great choices in this regard and can help manage not just stored
data, but will also compute more efficiently, if designed properly.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[266]

AWS, for example, offers many choices in terms of data storage. For example, AWS's
Simple Storage Service (S3) could be used to store data that can be accessed efficiently
from within the AWS ecosystem. AWS S3 is an object store and is, by default, distributed
over the network. AWS handles the network optimizations when S3 data is accessed from
within the AWS ecosystem by big data frameworks such as Spark and MapReduce. For
long-term storage, AWS Glacier provides a cost-effective solution; however, this is not
suitable for frequent and low-latency access.

The data that needs to be accessed with low latency of an order of a few milliseconds
requires very approach to storage. A key-value store, such as Apache HBase and Apache
Cassandra, are some of the choices that can be used on-premises. For AWS, Dynamo DB is
a great choice because it is fully managed and provides elasticity of usage and storage in a
cost-effective way.

Data governance
Data governance is a very broad topic in itself. With the advent of big data, this has become
one of the biggest challenges to deal with. There are strict government rules with respect to
what type of data an organization can collect, store, and use. Many of these rules are
country-specific and must be followed rigorously in order to stay in compliance and avoid
severe penalties.

The problem that big data poses is that there is so much of it and it generally manifests all
of its three V properties, namely, volume, variety, and velocity. Sensitive data must be
secured at all phases and must have well-established access control mechanisms
throughout the enterprise. In order for modern enterprises to innovate and succeed in
today's business environment, employees need access to data. Some of this data could be
sensitive. Having excessive and unnecessary access control to data might prevent an
organization from innovating rapidly. On the other hand, having poor access control
around data might lead to compliance violations.

The solution to this problem once again lies in having a well-defined data strategy, where
data governance must be a first-class citizen. Whenever a new dataset is collected and
stored, the following questions must be asked:

Is the data relevant to the company's business? Collecting and storing data
irrelevant to the business creates an unnecessary cost that can be avoided.
Does the data contain sensitive information? If yes, then what is the mechanism
to be used to secure this data in transit and at rest?

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[267]

How would the lineage of this data be maintained? For example, if some part of
the source data is bad and gets corrected later on, how would the downstream
system handle these corrections?
What is the retention policy around this data? If the data needs to be purged,
what must be done about the linked data stored in downstream systems?

These are only some of the questions that must be answered beforehand, and clear
guidelines need to be defined to address these at the outset.

For large data volumes, one of the biggest problems is cleaning up data. Let's look at a
specific example of an online retailer that tracks customer's activity on its website. In some
countries, there is a law that authorizes a customer to have their data deleted once the
customer closes his or her account. This cleanup action must be performed online within a
designated period. This can be a very difficult problem to solve if the data storage and
processing systems are not designed with this specific requirement in mind. A customer's
data could be sitting in raw files, database tables, Excel files, and many more places. This is
where strong data governance policy and lineage tracking comes into the picture. The
system must be designed to facilitate the cleanup of a customer's data efficiently and
correctly, without impacting the system's overall performance.

One common technique used to handle scenarios like this is to segregate the data that needs
to be cleaned up, from that data that can remain immutable until it has reached its end of
life cycle. Once again, to design a cost-effective data governance solution, knowledge of the
business domain is essential, along with a good understanding of the underlying tools
needed to support it.

Reliability considerations
Processing large datasets requires reliability to be looked at from a slightly different point
of view. It is quite common to have a small percentage of errors in such large datasets. An
acceptable error tolerance level can only be defined by business rules. Large datasets are
generally processed by a network of computers, where failures are more common
compared to processing on a single computer. In this section, we will look at the following
aspects of error handling:

Input data errors
Processing failures

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[268]

Input data errors
As a general guideline, it is crucial to measure and monitor the number of errors in the
input data over time. If the quality of the input data is bad, then any analysis performed
and conclusions drawn on that data would be unreliable. In fact, if the downstream systems
consuming that data are unaware of the bad quality of the data, this might have
undesirable results, creating a chain reaction of failures.

The data coming from external sources, that is, sources outside of the enterprise, in
particular, must have very well defined rules with respect to validation and acceptance of
data. Just imagine an FTP data file that was sent by a third party that got corrupted in
transit. Processing this corrupted data can have unintended consequences. One way to
protect against such data corruption is to have an associated checksum file and ensure that
the data file has the expected checksum.

It is also possible that some of the records in the input dataset might have missing values or
incorrect data types. It might be acceptable to have a few hundred bad records in a dataset
consisting of billions of records. Again, this all depends on the business rules and the
context that this data applies to.

Let's look at an example in Spark on how to handle and measure such data errors:

Start a new Spark shell at the command line:1.

$ spark-shell

Import Spark's functions package:2.

scala> import org.apache.spark.sql.functions._
import org.apache.spark.sql.functions._

Import Spark's types package:3.

scala> import org.apache.spark.sql.types._
import org.apache.spark.sql.types._

Create a dummy dataset with good and bad records:4.

scala> val df = List("1", "one", "2", "3", "4").toDF // Create a
dummy dataset of records with one column called value. Some records
have a valid number while a few have an invalid string.
df: org.apache.spark.sql.DataFrame = [value: string]

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[269]

We will get a Spark DataFrame here that has only one field. The field name is value and
the datatype is string.

Add a new int_value column to the dataset by casting the original value to the5.
integer type:

scala> val dfWithInt = df.withColumn("int_value",
col("value").cast(IntegerType)) // Create a new dataset by adding
int_value column that converts value column to int.
dfWithInt: org.apache.spark.sql.DataFrame = [value: string,
int_value: int]

The cast function is defined in Spark's functions package, while IntegerType is defined
in Spark's types package.

Add a new Boolean column called has_error to indicate whether there was an6.
error in casting from string to integer:

scala> val dfWithError = dfWithInt.selectExpr("value", "int_value",
"(value is not null and int_value is null) has_error") // Add a new
column called has_error which set to true if invalid data type.
dfWithError: org.apache.spark.sql.DataFrame = [value: string,
int_value: int ... 1 more field]

Spark DataFrame's selectExpr method lets us use a SQL-like expression as the
parameters. This produces a new DataFrame by applying each of the supplied expressions.

Display the contents of the new dataset:7.

scala> dfWithError.show // Show the dataset
+-----+---------+---------+
|value|int_value|has_error|
+-----+---------+---------+
1	1	false
one	null	true
2	2	false
3	3	false
4	4	false
+-----+---------+---------+

In the preceding example, we created a new indicative column that can represent whether
an error occurred during conversion from string to integer. Please note that Spark silently
set the value of the row in error to a null value. We can easily count the number of records
in error:

scala> dfWithError.where("has_error").count
res4: Long = 1

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[270]

Although the preceding example is fairly simple, it demonstrates how to measure errors
using a few lines of code. This principle can easily be applied while processing large
datasets where errors are tracked. In fact, in many cases, it is worthwhile storing such
information along with processed data, so that the user of this data can make a decision on
whether to use this dataset or discard a subset of records with bad data.

Processing failures
As highlighted earlier in this chapter, processing failures are quite common in distributed
systems processing large datasets. The time it takes to process large datasets could be
significant, and, if the processing is interrupted due to failures, it would extend the time it
takes to complete processing.

Processing frameworks such as Apache Hadoop MapReduce and Apache Spark handle
many of the system failures automatically, by retrying the failed portion of work on a
different node. This is a very powerful feature of these frameworks that greatly simplifies a
programmer's task. This benefit, however, comes with a few responsibilities:

The work or computation to be performed has to be idempotent. What this really
means is that, given an input to the worker, it must always produce the same
output.
The computation must not depend on the state of an external system.

A concrete example of this is a computation that updates a database table by incrementing
a counter as part of its work. Let's say that, immediately after it has updated the database
table, the node on which it is running fails. MapReduce or Spark will try this work on some
other node on the cluster and healthy. This will cause the database table to be updated
again and the counter will be incremented one more time. This type of processing is not
idempotent and must not be performed on systems such as MapReduce and Spark.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Data at Scale Chapter 9

[271]

Summary
In this chapter, we looked at working with data at scale. Working with large datasets
requires a paradigm shift in how the data is processed. Traditional methods that work with
smaller datasets generally don't work well with large datasets, because these are designed
to work on a single computer. These methods need to be re-engineered to work effectively
with large datasets. For scalability, we need to turn to distributed computing; however, this
introduces significant additional complexity because of the network being involved, where
failures are more common. Using good, time-tested frameworks, such as Apache Spark, is
the key to addressing these concerns.

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Another Book You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Scala Machine Learning Projects
Md. Rezaul Karim

ISBN: 9781788479042

Apply advanced regression techniques to boost the performance of predictive
models
Use different classification algorithms for business analytics
Generate trading strategies for Bitcoin and stock trading using ensemble
techniques
Train Deep Neural Networks (DNN) using H2O and Spark ML
Utilize NLP to build scalable machine learning models
Learn how to apply reinforcement learning algorithms such as Q-learning for
developing ML application
Learn how to use autoencoders to develop a fraud detection application
Implement LSTM and CNN models using DeepLearning4j and MXNet

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/big-data-and-business-intelligence/scala-machine-learning-projects

Another Book You May Enjoy

[273]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
ad hoc analysis
 performing 113, 114, 116, 117
algorithm selection 209, 210
Amazon Web Services (AWS) 265
analytical model 188
Apache Avro
 URL 183
Apache Parquet
 URL 182
Apache Spark
 about 46
 core concepts 166, 168, 170, 173
 DataFrames 174, 181
 datasets 174, 177, 181
 overview 160, 161, 163, 166
 setting up 160, 161, 163, 166
 URL 46, 158, 160
 used, for sourcing data 182
 used, for streaming k-means clustering algorithm

232, 235, 237
 used, for streaming linear regression 238, 242
 used, to explore data 184
Avro File Format 183

B
batch-oriented data processing 212
Box plot 132, 133
Breeze-viz
 about 47
 reference link 47
Breeze
 about 46
 reference link 46
Bubble charts 135

C
comma-separated values (CSV) 56
correlation statistics 143, 144, 145, 146
cost considerations
 about 262
 data governance 266
 data storage 262, 264, 265
CSV data
 reference link 108

D
Data Consumer 79, 84
data elements
 relationship between, finding 118
data enrichment 97, 99
data extraction
 about 78
 pull-oriented data extraction 79
 push-oriented data delivery 84
data formats
 about 52
 comma-separated values (CSV) 56
 Extensible Markup Language (XML) 52
 JavaScript Object Notation (JSON) 54
data governance 266
data pipeline
 creating 77
Data Processor 88
Data Producer 79, 84
Data Receiving Area 88
data sourcing
 Apache Spark used 182
 Avro File Format 183
 Parquet File Format 182
 Spark JDBC Integration 184
Data Staging Area 88

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

[275]

data staging
 about 87
 need for 88
data storage 262
data visualization
 about 120
 other libraries 71
 Spark Notebook 124
 used, for data exploration 68
 Vegas viz 120, 122
 vegas-viz library, using 69
data
 about 58
 analyzing 51
 cleaning 50, 89, 95
 datasets, combining 50
 enrichment 50
 exploring, Apache Spark used 184
 hypothesis, building 51
 hypothesis, testing 51
 normalizing 89, 95
 organizing 102
 overview 50
 pipeline, creating 51
 raw data creation 50
 raw data extraction 50
 raw data ingestion 50
 sample selecting, Saddle used 108, 111, 112
 sample, selecting 106, 108
 sampling 105
 sourcing 51
 statistical methods, used for data exploration 59
 storing 102
 validating 50
 variety 243
 velocity 243
 visualizing 51
 volume 243
 working with, at scale 244, 247, 249, 253, 255,

259, 262
decision trees
 about 189
 algorithms 191
 algorithms, implementing 191, 192, 193
 implementing 190

 model, using 196
 results, evaluating 195, 196
decorator design pattern 82
DeepLearning 47
DeepLearning.scala toolkit
 reference link 47
Discretized Stream (DStream) 159, 217

E
elastic net regression 210
Epic
 about 47
 reference link 47
Extensible Markup Language (XML)
 about 52
 reference link 52

F
File Transfer Protocol (FTP) 79
frequency analysis 247
functional programming
 overview 20
 Scala, used 26, 31

G
Garbage Collection (GC) 99
Google Cloud Platform (GCP) 265

H
Hadoop Distributed File System (HDFS) 264
histogram 133, 135
Homebrew tool 11
Hypothesis testing 155

I
integrated development environment (IDE)
 about 14
 installing 14, 16, 20
Internet of Things (IoT) 49, 102, 243

J
Java Virtual Machine (JVM) 7, 68, 159
JavaScript Object Notation (JSON)
 URL 54

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

[276]

JetBrains
 URL, for downloading 14
json4s
 URL 54
Jupyter Notebooks
 URL 77

K
k-means cluster analysis 206, 207, 208
k-means clustering algorithm
 streaming, Apache Spark used 232, 235, 237
Kinesis Data Streams (KDS) 50

L
lasso regression 203
lasso regression, characteristics
 about 203, 204
 feature selection 203
 regularization 203
least absolute shrinkage and selection operator

(lasso) 203
Library for Support Vector Machines (LIBSVM)
 reference link 192
linear regression
 streaming, Spark used 238, 242

M
machine learning (ML) 51
machine learning (ML), categories
 supervised learning 189
 unsupervised learning 189
machine learning (ML)
 about 48, 146, 158, 187, 232
 categories 189
 characteristics 189
 overview 188
 types 189
 used, to learn from data 71
median value 141
ML pipelines
 reference link 77

N
natural language processing (NLP)

 about 187
 for data analysis 208, 209

O
object-oriented programming, core tenets
 abstraction 22
 encapsulation 22
 inheritance 22
 polymorphism 22
object-oriented programming
 overview 20
 Scala, used 21, 25

P
Papermill
 reference link 77
Parquet File Format 182
pull-oriented data extraction
 about 79
 FTP/SFTP 79
 HTTP/HTTPS 79
 JDBC/ODBC 79
 web service 79
push-oriented data delivery
 about 84
 FTP/SFTP 84
 Pub-Sub 84
 REST 84
 web services 84

R
random data generation
 about 149, 150
 pseudorandom numbers 150, 151
 random numbers, with normal distribution 152,

153

 random numbers, with poisson distribution 154,
155

random forest
 about 197
 algorithm 197, 199, 200, 201
relational database (RDBS) 174
Relational Database Management System (RDMS)

79

reliability considerations

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

[277]

 about 267
 input data errors 268
 processing failures 270
Resilient Distributed Datasets (RDD)
 about 159, 219
 distributed 170
 Resilient 170
ridge regression 203
ridge regression, characteristics
 about 203
 coefficient shrinkage 203
 regularization 203

S
Saddle
 about 47
 reference link 63
 URL 47
Scala Build Tool (sbt) 11, 92, 159
Scala case classes 31, 34
Scala collection API
 about 31, 35
 array 35
 list 38
 map 43
Scala libraries
 about 48
 Apache Spark 46
 Breeze 46
 Breeze-viz 47
 DeepLearning 47
 Epic 47
 overview, for data analysis 45
 Saddle 47
 Scala Lift JSON 92
 Scala XML 92
 Scalalab 47
Scala resource
 reference link 35
Scala's random utility
 reference link 108
Scala
 command-line tools, installing 11
 initiating 8
 installing, on computer 10

 integrated development environment (IDE) 14
 tools 63, 67
 used, in functional programming 26, 31
 used, in object-oriented programming 21
 used, in word count 220, 223, 225, 227
 using 59, 62
ScalaFiddle
 about 10
 URL 10
Scalalab
 about 47
 reference link 47
Scastie
 about 9
 URL 9
Secure File Transfer Protocol (SFTP) 79
Secure Sockets Layer (SSL) 79
Simple Storage Service (S3) 266
Smile
 about 48
 executing 74
 reference link 48, 72
 setting up 72
Solid State Storage (SSD) 263
Spark API
 reference link 232
Spark JDBC Integration 184
Spark Notebook
 Box plot 132, 133
 Bubble charts 135
 charts 131
 creating, with simple visuals 127, 128, 130, 131
 downloading 124, 125
 for data visualization 124
 histogram 133, 135
 installing 124, 125
 reference link 124
Spark Streaming
 exploring, into solution 228, 230
 overview 216
 used, in word count 220, 225, 227
 word count, Scala used 217, 219
 word count, Spark used 219
Staged-dataset-n 88
statistics

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

 correlation statistics 143, 144, 145, 146
 summary level statistics 138, 140, 141, 143
Stream Processor 216
Streaming
 overview 212, 213, 214, 215
Structured Query Language (SQL) 174
Summarizer tool
 reference link 149
summary level statistics 138, 140, 141, 143
SummaryBuilder
 reference link 147

T
Transmission Control Protocol (TCP) 220
Transport Layer Security (TLS) 79

U
uniform resource locator 80

V
vector level statistics 146, 147, 148, 149
Vegas viz
 for data visualization 120
 reference link 120
vegas-viz
 URL 69
Vegas
 about 48
 reference link 48

W
wide area networks (WAN) 263

 EBSCOhost - printed on 2/9/2023 7:52 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Scala and Data Analysis Life Cycle
	Chapter 1: Scala Overview
	Getting started with Scala
	Running Scala code online
	Scastie
	ScalaFiddle

	Installing Scala on your computer
	Installing command-line tools
	Installing IDE

	Overview of object-oriented and functional programming
	Object-oriented programming using Scala
	Functional programming using Scala

	Scala case classes and the collection API
	Scala case classes
	Scala collection API
	Array
	List
	Map

	Overview of Scala libraries for data analysis
	Apache Spark
	Breeze
	Breeze-viz
	DeepLearning
	Epic
	Saddle
	Scalalab
	Smile
	Vegas

	Summary

	Chapter 2: Data Analysis Life Cycle
	Data journey
	Sourcing data
	Data formats
	XML
	JSON
	CSV

	Understanding data
	Using statistical methods for data exploration
	Using Scala
	Other Scala tools

	Using data visualization for data exploration
	Using the vegas-viz library for data visualization
	Other libraries for data visualization

	Using ML to learn from data
	Setting up Smile
	Running Smile

	Creating a data pipeline
	Summary

	Chapter 3: Data Ingestion
	Data extraction
	Pull-oriented data extraction
	Push-oriented data delivery

	Data staging
	Why is the staging important?

	Cleaning and normalizing
	Enriching
	Organizing and storing
	Summary

	Chapter 4: Data Exploration and Visualization
	Sampling data
	Selecting the sample
	Selecting samples using Saddle

	Performing ad hoc analysis
	Finding a relationship between data elements
	Visualizing data
	Vegas viz for data visualization
	Spark Notebook for data visualization
	Downloading and installing Spark Notebook
	Creating a Spark Notebook with simple visuals
	More charts with Spark Notebook
	Box plot
	Histogram
	Bubble chart

	Summary

	Chapter 5: Applying Statistics and Hypothesis Testing
	Basics of statistics
	Summary level statistics
	Correlation statistics

	Vector level statistics
	Random data generation
	Pseudorandom numbers
	Random numbers with normal distribution
	Random numbers with Poisson distribution

	Hypothesis testing
	Summary

	Section 2: Advanced Data Analysis and Machine Learning
	Chapter 6: Introduction to Spark for Distributed Data Analysis
	Spark setup and overview
	Spark core concepts

	Spark Datasets and DataFrames
	Sourcing data using Spark
	Parquet file format
	Avro file format
	Spark JDBC integration

	Using Spark to explore data
	Summary

	Chapter 7: Traditional Machine Learning for Data Analysis
	ML overview
	Characteristics of ML
	Categories or types of ML

	Decision trees
	Implementing decision trees
	Decision tree algorithms
	Implementing decision tree algorithms in our example
	Evaluating the results

	Using our model with a decision tree

	Random forest
	Random forest algorithms

	Ridge and lasso regression
	Characteristics of ridge regression
	Characteristics of lasso regression

	k-means cluster analysis
	Natural language processing for data analysis
	Algorithm selections
	Summary

	Section 3: Real-Time Data Analysis and Scalability
	Chapter 8: Near Real-Time Data Analysis Using Streaming
	Overview of streaming
	Spark Streaming overview
	Word count using pure Scala
	Word count using Scala and Spark
	Word count using Scala and Spark Streaming
	Deep dive into the Spark Streaming solution

	Streaming a k-means clustering algorithm using Spark
	Streaming linear regression using Spark
	Summary

	Chapter 9: Working with Data at Scale
	Working with data at scale
	Cost considerations
	Data storage
	Data governance

	Reliability considerations
	Input data errors
	Processing failures

	Summary

	Another Book You May Enjoy
	Index

