
C
o
p
y
r
i
g
h
t

2
0
1
9
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 1:48 PM via
AN: 2142583 ; Jonathan Baier, Gigi Sayfan, Jesse White.; The Complete Kubernetes Guide : Become an Expert in Container Management with the Power of Kubernetes
Account: ns335141

The Complete Kubernetes
Guide

Become an expert in container management with the power
of Kubernetes

Jonathan Baier
Gigi Sayfan
Jesse White

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

The Complete Kubernetes Guide
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2019

Production reference: 1160519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-734-6

www.packtpub.com

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Jonathan Baier is an emerging technology leader living in Brooklyn, New York. He has had
a passion for technology since an early age. When he was 14 years old, he was so interested
in the family computer (an IBM PCjr) that he pored over the several hundred pages of
BASIC and DOS manuals. Then, he taught himself to code a very poorly-written version of
Tic-Tac-Toe. During his teenage years, he started a computer support business. Throughout
his life, he has dabbled in entrepreneurship. He currently works as Senior Vice President of
Cloud Engineering and Operations for Moody's Corporation in New York.

Gigi Sayfan is a principal software architect at Helix, and he has been developing software
professionally for more than 22 years in domains, such as instant messaging and morphing.
He has written production code every day in many programming languages, such as Go,
Python, C/C++, C#, Java, Delphi, JavaScript, and even Cobol and PowerBuilder for
operating systems, such as Windows, Linux, macOS, Lynx (embedded), and more. His
technical expertise includes databases, networking, distributed systems, unorthodox user
interfaces, and general software development life cycles.

Jesse White is a 15-year veteran and technology leader in New York City's very own Silicon
Alley, where he is a pillar of the vibrant engineering ecosystem. As the founder of
DockerNYC and an active participant in the open source community, you can find Jesse at a
number of leading industry events, including DockerCon and VelocityConf, giving talks
and workshops.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Kubernetes 7
Technical requirements 8
A brief overview of containers 8

What is a container? 9
cgroups 10
Namespaces 11
Union filesystems 13

Why are containers so cool? 15
The advantages of Continuous Integration/Continuous Deployment 17

Resource utilization 18
Microservices and orchestration 19

Future challenges 19
Our first clusters 20

Running Kubernetes on GCE 21
Kubernetes UI 32
Grafana 36
Command line 37
Services running on the master 38
Services running on the minions 41
Tearing down a cluster 44

Working with other providers 44
CLI setup 45
IAM setup 45
Cluster state storage 47
Creating your cluster 47

Other modes 53
Resetting the cluster 54
Investigating other deployment automation 54
Local alternatives 55
Starting from scratch 56

Cluster setup 56
Installing Kubernetes components (kubelet and kubeadm) 58
Setting up a master 59
Joining nodes 61
Networking 61
Joining the cluster 62

Summary 63

Chapter 2: Understanding Kubernetes Architecture 64

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

What is Kubernetes? 65
What Kubernetes is not 65
Understanding container orchestration 66

Physical machines, virtual machines, and containers 66
The benefits of containers 66
Containers in the cloud 67
Cattle versus pets 67

Kubernetes concepts 68
Cluster 69
Node 70
Master 70
Pod 70
Label 71
Annotations 71
Label selectors 72
Replication controllers and replica sets 72
Services 73
Volume 73
StatefulSet 74
Secrets 74
Names 74
Namespaces 75

Diving into Kubernetes architecture in-depth 75
Distributed systems design patterns 75

Sidecar pattern 76
Ambassador pattern 76
Adapter pattern 76
Multinode patterns 77

The Kubernetes APIs 77
Resource categories 78

Workloads API 78
Discovery and load balancing 79
Config and storage 79
Metadata 80
Cluster 80

Kubernetes components 80
Master components 80

API server 81
Etcd 81
Kube controller manager 81
Cloud controller manager 81
Kube-scheduler 83
DNS 83
Node components 83
Proxy 83
Kubelet 84

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Kubernetes runtimes 84
The Container Runtime Interface (CRI) 85
Docker 87
Rkt 88

App container 88
Cri-O 89
Rktnetes 89
Is rkt ready for use in production? 89

Hyper containers 90
Stackube 90

Continuous integration and deployment 90
What is a CI/CD pipeline? 91
Designing a CI/CD pipeline for Kubernetes 92

Summary 92

Chapter 3: Building a Foundation with Core Kubernetes Constructs 93
Technical requirements 93

The Kubernetes system 93
Nucleus 94
Application layer 96
Governance layer 97
Interface layer 97
Ecosystem 97

The architecture 98
The Master 98
Cluster state 99
Cluster nodes 101
Master 103
Nodes (formerly minions) 104

Core constructs 107
Pods 108

Pod example 108
Labels 110
The container's afterlife 111
Services 111
Replication controllers and replica sets 114

Our first Kubernetes application 114
More on labels 121
Replica sets 124

Health checks 125
TCP checks 130
Life cycle hooks or graceful shutdown 131

Application scheduling 133
Scheduling example 133

Summary 137

Chapter 4: Working with Networking, Load Balancers, and Ingress 138

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Technical requirements 138
Container networking 139

The Docker approach 139
Docker default networks 139
Docker user-defined networks 140

The Kubernetes approach 141
Networking options 142
Networking comparisons 143

Weave 143
Flannel 144
Project Calico 144
Canal 144
Kube-router 144

Balanced design 145
Advanced services 146

External services 147
Internal services 148
Custom load balancing 150
Cross-node proxy 152
Custom ports 153
Multiple ports 154
Ingress 155
Types of ingress 156
Migrations, multicluster, and more 162
Custom addressing 164

Service discovery 165
DNS 166
Multitenancy 167

Limits 169
A note on resource usage 173
Summary 173

Chapter 5: Using Critical Kubernetes Resources 174
Designing the Hue platform 174

Defining the scope of Hue 175
Hue components 176
Hue microservices 178

Planning workflows 179
Automatic workflows 179
Human workflows 180
Budget-aware workflows 180

Using Kubernetes to build the Hue platform 180
Using Kubectl effectively 180
Understanding Kubectl resource configuration files 181
Deploying long-running microservices in pods 183

Creating pods 183

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

Decorating pods with labels 185
Deploying long-running processes with deployments 185
Updating a deployment 186

Separating internal and external services 187
Deploying an internal service 187
Creating the hue-reminders service 189
Exposing a service externally 190

Ingress 190
Using namespace to limit access 192
Launching jobs 194

Running jobs in parallel 195
Cleaning up completed jobs 196
Scheduling cron jobs 196

Mixing non-cluster components 198
Outside-the-cluster-network components 198
Inside-the-cluster-network components 198
Managing the Hue platform with Kubernetes 199

Using liveness probes to ensure your containers are alive 199
Using readiness probes to manage dependencies 200

Employing Init Containers for orderly pod bring-up 201
Sharing with DaemonSet pods 202

Evolving the Hue platform with Kubernetes 203
Utilizing Hue in enterprises 203
Advancing science with Hue 203
Educating the kids of the future with Hue 204

Summary 204

Chapter 6: Exploring Kubernetes Storage Concepts 205
Technical requirements 206
Persistent storage 206

Temporary disks 207
Cloud volumes 208

GCE Persistent Disks 208
AWS Elastic Block Store 214

Other storage options 215
PersistentVolumes and Storage Classes 215
Dynamic volume provisioning 217

StatefulSets 218
A stateful example 219

Summary 225

Chapter 7: Monitoring and Logging 226
Technical requirements 226
Monitoring operations 226
Built-in monitoring 227

Exploring Heapster 229

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vi]

Customizing our dashboards 231
FluentD and Google Cloud Logging 235

FluentD 236
Maturing our monitoring operations 237

GCE (Stackdriver) 238
Signing up for GCE monitoring 238
Alerts 238

Beyond system monitoring with Sysdig 240
Sysdig Cloud 240

Detailed views 241
Topology views 242
Metrics 244

Alerting 245
The Sysdig command line 247
The Csysdig command-line UI 248

Prometheus 250
Prometheus summary 250
Prometheus installation choices 251
Tips for creating an Operator 252
Installing Prometheus 253

Summary 255

Chapter 8: Monitoring, Logging, and Troubleshooting 257
Monitoring Kubernetes with Heapster 258

cAdvisor 258
Installing Heapster 259
InfluxDB backend 260

The storage schema 261
CPU 261
Filesystem 262
Memory 262
Network 263
Uptime 263

Grafana visualization 264
Performance analysis with the dashboard 265

Top-level view 266
Cluster 266
Workloads 270
Discovery and load balancing 272

Adding central logging 273
Planning central logging 274
Fluentd 274
Elasticsearch 275
Kibana 275

Detecting node problems 275
Node problem detector 276
DaemonSet 276
Problem daemons 276

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vii]

Troubleshooting scenarios 277
Designing robust systems 277
Hardware failure 277

Quotas, shares, and limits 278
Bad configuration 280
Cost versus performance 281

Managing cost on the cloud 281
Managing cost on bare metal 281
Managing cost on hybrid clusters 281

Using Prometheus 281
What are operators? 282
The Prometheus Operator 282
Installing Prometheus with kube-prometheus 282
Monitoring your cluster with Prometheus 283

Summary 286

Chapter 9: Operating Systems, Platforms, and Cloud and Local
Providers 287

Technical requirements 287
The importance of standards 288

The OCI Charter 289
The OCI 290

Container Runtime Interface 291
Trying out CRI-O 294
More on container runtimes 301

CNCF 302
Standard container specification 303
CoreOS 304

rkt 307
etcd 308

Kubernetes with CoreOS 308
Tectonic 310

Dashboard highlights 311
Hosted platforms 315

Amazon Web Services 315
Microsoft Azure 315
Google Kubernetes Engine 316

Summary 316

Chapter 10: Creating Kubernetes Clusters 317
A quick single-node cluster with Minikube 318

Getting ready 318
On Windows 318
On macOS 319
Creating the cluster 320

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[viii]

Troubleshooting 321
Checking out the cluster 322
Doing work 324
Examining the cluster with the dashboard 324

Creating a multinode cluster using kubeadm 326
Setting expectations 326
Getting ready 326
Preparing a cluster of vagrant VMs 327
Installing the required software 327

The host file 328
The vars.yml file 329
The playbook.yml file 329

Creating the cluster 330
Initializing the master 330

Setting up the pod network 332
Adding the worker nodes 333

Creating clusters in the cloud (GCP, AWS, and Azure) 334
The cloud-provider interface 334
Google Cloud Platform (GCP) 335
Amazon Web Services (AWS) 335

Amazon Elastic Container Service for Kubernetes (EKS) 336
Fargate 337

Azure 337
Alibaba Cloud 338

Creating a bare-metal cluster from scratch 338
Use cases for bare metal 338
When should you consider creating a bare-metal cluster? 339

The process 339
Using virtual private cloud infrastructure 340

Bootkube 340
Summary 340

Chapter 11: Cluster Federation and Multi-Tenancy 341
Technical requirements 341
Introduction to federation 342
Why federation? 342

The building blocks of federation 343
Key components 346
Federated services 347

Setting up federation 347
Contexts 348
New clusters for federation 348
Initializing the federation control plane 349
Adding clusters to the federation system 351
Federated resources 351
Federated configurations 354

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ix]

Federated horizontal pod autoscalers 357
How to use federated HPAs 359

Other federated resources 359
Events 360
Jobs 360

True multi-cloud 360
Getting to multi-cloud 361

Deleting the cluster 371
Summary 374

Chapter 12: Cluster Authentication, Authorization, and Container
Security 375

Basics of container security 375
Keeping containers contained 376
Resource exhaustion and orchestration security 376

Image repositories 377
Continuous vulnerability scanning 378
Image signing and verification 378

Kubernetes cluster security 379
Secure API calls 380

Secure node communication 380
Authorization and authentication plugins 381
Admission controllers 381

RBAC 382
Pod security policies and context 383

Enabling PodSecurityPolicies 383
Additional considerations 388

Securing sensitive application data (secrets) 388
Summary 390

Chapter 13: Running Stateful Applications with Kubernetes 391
Stateful versus stateless applications in Kubernetes 391

Understanding the nature of distributed data-intensive apps 392
Why manage state in Kubernetes? 392
Why manage state outside of Kubernetes? 392

Shared environment variables versus DNS records for discovery 393
Accessing external data stores via DNS 393
Accessing external data stores via environment variables 393

Creating a ConfigMap 394
Consuming a ConfigMap as an environment variable 394
Using a redundant in-memory state 396
Using DaemonSet for redundant persistent storage 396
Applying persistent volume claims 396
Utilizing StatefulSet 396

When to use StatefulSet 397
The components of StatefulSet 397

Running a Cassandra cluster in Kubernetes 398

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[x]

Quick introduction to Cassandra 399
The Cassandra Docker image 400

Exploring the run.sh script 401
Hooking up Kubernetes and Cassandra 406

Digging into the Cassandra configuration 406
The custom seed provider 407

Creating a Cassandra headless service 408
Using StatefulSet to create the Cassandra cluster 409

Dissecting the stateful set configuration file 409
Using a replication controller to distribute Cassandra 413

Dissecting the replication controller configuration file 413
Assigning pods to nodes 416

Using DaemonSet to distribute Cassandra 417
Summary 418

Chapter 14: Rolling Updates, Scalability, and Quotas 419
Horizontal pod autoscaling 419

Declaring horizontal pod autoscaler 420
Custom metrics 422

Using custom metrics 423
Autoscaling with kubectl 423

Performing rolling updates with autoscaling 426
Handling scarce resources with limits and quotas 427

Enabling resource quotas 428
Resource quota types 428

Compute resource quota 429
Storage resource quota 429
Object count quota 430

Quota scopes 431
Requests and limits 432
Working with quotas 432

Using namespace-specific context 432
Creating quotas 432
Using limit ranges for default compute quotas 436

Choosing and managing the cluster capacity 437
Choosing your node types 437
Choosing your storage solutions 438
Trading off cost and response time 438
Using effectively multiple node configurations 439
Benefiting from elastic cloud resources 439

Autoscaling instances 440
Mind your cloud quotas 440
Manage regions carefully 441

Considering Hyper.sh (and AWS Fargate) 441
Pushing the envelope with Kubernetes 442

Improving the performance and scalability of Kubernetes 442
Caching reads in the API server 443

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xi]

The pod life cycle event generator 443
Serializing API objects with protocol buffers 444
etcd3 444
Other optimizations 445

Measuring the performance and scalability of Kubernetes 445
The Kubernetes SLOs 446
Measuring API responsiveness 446
Measuring end-to-end pod startup time 449

Testing Kubernetes at scale 450
Introducing the Kubemark tool 451
Setting up a Kubemark cluster 451
Comparing a Kubemark cluster to a real-world cluster 451

Summary 452

Chapter 15: Advanced Kubernetes Networking 453
Understanding the Kubernetes networking model 454

Intra-pod communication (container to container) 454
Inter-pod communication (pod to pod) 454
Pod-to-service communication 455
External access 455
Kubernetes networking versus Docker networking 456
Lookup and discovery 457

Self-registration 458
Services and endpoints 458
Loosely coupled connectivity with queues 459
Loosely coupled connectivity with data stores 459
Kubernetes ingress 460

Kubernetes network plugins 460
Basic Linux networking 460
IP addresses and ports 460
Network namespaces 460
Subnets, netmasks, and CIDRs 461
Virtual Ethernet devices 461
Bridges 461
Routing 461
Maximum transmission unit 461
Pod networking 462
Kubenet 462

Requirements 462
Setting the MTU 463

Container Networking Interface (CNI) 463
Container runtime 464
CNI plugin 464

Kubernetes networking solutions 467
Bridging on bare metal clusters 467
Contiv 467
Open vSwitch 468
Nuage networks VCS 470
Canal 470

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xii]

Flannel 471
Calico project 473
Romana 473
Weave net 474

Using network policies effectively 475
Understanding the Kubernetes network policy design 475
Network policies and CNI plugins 475
Configuring network policies 475
Implementing network policies 476

Load balancing options 477
External load balancer 477

Configuring an external load balancer 478
Via configuration file 479
Via Kubectl 479

Finding the load balancer IP addresses 479
Preserving client IP addresses 480

Specifying original client IP address preservation 480
Understanding potential in even external load balancing 481

Service load balancer 481
Ingress 482

HAProxy 483
Utilizing the NodePort 484
Custom load balancer provider using HAProxy 484
Running HAProxy Inside the Kubernetes cluster 484
Keepalived VIP 485

Træfic 485
Writing your own CNI plugin 486

First look at the loopback plugin 486
Building on the CNI plugin skeleton 488
Reviewing the bridge plugin 489

Summary 491

Chapter 16: Kubernetes Infrastructure Management 492
Technical requirements 492
Planning a cluster 493

Picking what's right 493
Securing the cluster 495
Tuning examples 496

Upgrading the cluster 497
Upgrading PaaS clusters 497

Scaling the cluster 501
On GKE and AKS 502
DIY clusters 502
Node maintenance 503

Additional configuration options 504
Summary 504

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xiii]

Chapter 17: Customizing Kubernetes - API and Plugins 505
Working with the Kubernetes API 505

Understanding OpenAPI 506
Setting up a proxy 506
Exploring the Kubernetes API directly 506

Using Postman to explore the Kubernetes API 508
Filtering the output with httpie and jq 509

Creating a pod via the Kubernetes API 510
Accessing the Kubernetes API via the Python client 511

Dissecting the CoreV1API group 512
Listing objects 513
Creating objects 514
Watching objects 515
Invoking Kubectl programmatically 515
Using Python subprocess to run Kubectl 516

Extending the Kubernetes API 517
Understanding the structure of a custom resource 518
Developing custom resource definitions 519
Integrating custom resources 520

Finalizing custom resources 521
Validating custom resources 522

Understanding API server aggregation 522
Utilizing the service catalog 523

Writing Kubernetes plugins 524
Writing a custom scheduler plugin 524

Understanding the design of the Kubernetes scheduler 525
The scheduler 525
Registering an algorithm provider 526
Configuring the scheduler 526

Packaging the scheduler 527
Deploying the custom scheduler 528
Running another custom scheduler in the cluster 529
Assigning pods to the custom scheduler 529
Verifying that the pods were scheduled using the custom scheduler 530

Employing access control webhooks 530
Using an authentication webhook 531
Using an authorization webhook 533
Using an admission control webhook 534

Configuring webhook admission controller on the fly 535
Providing custom metrics for horizontal pod autoscaling 535
Extending Kubernetes with custom storage 536

Taking advantage of FlexVolume 537
Benefitting from CSI 537

Summary 538

Chapter 18: Handling the Kubernetes Package Manager 539
Understanding Helm 539

The motivation for Helm 540

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xiv]

The Helm architecture 540
Helm components 540

The Tiller server 541
The Helm client 541

Using Helm 541
Installing Helm 541

Installing the Helm client 542
Installing the Tiller server 542

Installing Tiller in-cluster 542
Installing Tiller locally 543
Using Alternative Storage Backend 543

Finding charts 544
Installing packages 546

Checking installation status 548
Customizing a chart 548
Additional installation options 550
Upgrading and rolling back a release 550
Deleting a release 551

Working with repositories 552
Managing charts with Helm 553

Taking advantage of starter packs 553
Creating your own charts 554

The Chart.yaml file 554
Versioning charts 555
The appVersion field 555
Deprecating charts 555

Chart metadata files 556
Managing chart dependencies 556

Managing dependencies with requirements.yaml 556
Using special fields in requirements.yaml 557

Using templates and values 559
Writing template files 559

Using pipelines and functions 560
Embedding predefined values 561
Feeding values from a file 561
Scope, dependencies, and values 562

Summary 563

Chapter 19: The Future of Kubernetes 564
The road ahead 564

Kubernetes releases and milestones 565
Kubernetes special interest and working groups 566

Competition 566
The value of bundling 566
Docker Swarm 567
Mesos/Mesosphere 567
Cloud platforms 567
AWS 568

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xv]

Azure 568
Alibaba Cloud 569

The Kubernetes momentum 569
Community 569
GitHub 569
Conferences and meetups 570
Mindshare 570
Ecosystem 571
Public cloud providers 571

OpenShift 571
OpenStack 571
Other players 572

Education and training 572
Modularization and out-of-tree plugins 573
Service meshes and serverless frameworks 574

Service meshes 574
Serverless frameworks 575

Summary 575

Other Books You May Enjoy 576

Index 580

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
If you are running more containers or want automated management of your containers,
you need Kubernetes at your disposal.

This Learning Path focuses on core Kubernetes constructs, such as pods, services, replica
sets, replication controllers, and labels. You'll learn to integrate your build pipeline and
deployments in a Kubernetes cluster. As you move ahead in the Learning Path, you'll
orchestrate updates behind the scenes, avoid downtime on your cluster, and deal with
underlying cloud provider instability in your cluster. Using real-world use cases, you'll
explore the options for network configuration, and understand how to set up, operate, and
troubleshoot various Kubernetes networking plugins. In addition to this, you'll also get to
grips with custom resource development and utilization in automation and maintenance
workflows.

By the end of this Learning Path, you'll know everything you need to graduate from
intermediate to advanced level of understanding Kubernetes.

Who this book is for
This Learning Path is ideal for you if you are a developer or a system administrator with an
intermediate understanding of Kubernetes and want to master its advanced features. Basic
knowledge of networking is required to easily understand the concepts explained here.

What this book covers
Chapter 1, Introduction to Kubernetes, is a brief overview of containers and the how, what,
and why of Kubernetes orchestration, exploring how it impacts your business goals and
everyday operations.

Chapter 2, Understanding Kubernetes Architecture, will help you understand the design of
the Kubernetes systems and appreciate why some of these design choices have been made.

Chapter 3, Building a Foundation with Core Kubernetes Constructs, uses a few simple
examples to explore core Kubernetes constructs, namely pods, services, replication
controllers, replica sets, and labels. Basic operations, including health checks and
scheduling, will also be covered.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

Chapter 4, Working with Networking, Load Balancers, and Ingress, covers cluster networking
for Kubernetes and the Kubernetes proxy. It also takes a deeper dive into services and
shows a brief overview of some higher-level isolation features for multi-tenancy.

Chapter 5, Using Critical Kubernetes Resources, will help you use almost all the latest
Kubernetes resources for appropriate use cases in production. You will also learn how to
define, version, and deliver them.

Chapter 6, Exploring Kubernetes Storage Concepts, covers storage concerns and persistent
data across pods and the container life cycle. We will also look at new constructs for
working with stateful applications in Kubernetes.

Chapter 7, Monitoring and Logging, teaches how to use and customize built-in and third-
party monitoring tools on your Kubernetes cluster. We will look at built-in logging and
monitoring, the Google Cloud Monitoring/Logging service, and Sysdig.

Chapter 8, Monitoring, Logging, and Troubleshooting, will help you set up and understand
monitoring and metering in Kubernetes clusters, and will enable you to identify and
troubleshoot typical problems that administrators encounter during day-to-day operations.

Chapter 9, Operating Systems, Platforms, and Cloud and Local Providers, starts off by covering
Open Container Project and its mission to provide an open container specification, looking
at how having open standards encourages a diverse ecosystem of container
implementations (such as Docker, rkt, Kurma, and JetPack). The second half of this chapter
will cover available OSes, such as CoreOS, Project Atomic, and their advantages as a host
OSes, including performance and support for various container implementations.

Chapter 10, Creating Kubernetes Clusters, will make you understand the different options for
creating Kubernetes clusters. You will create several clusters using the tools and examine
the clusters.

Chapter 11, Cluster Federation and Multi-Tenancy, explores the new federation capabilities
and how to use them to manage multiple clusters. We will also cover the federated version
of the core constructs and the integration to public cloud vendor DNS.

Chapter 12, Cluster Authentication, Authorization, and Container Security, get into the options
for container security, from the container run-time level to the host itself. We will discuss
how to apply these concepts to workloads running in a Kubernetes cluster and some of the
security concerns and practices that relate specifically to running your Kubernetes cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

Chapter 13, Running Stateful Applications with Kubernetes, will teach you how to transform
monolithic stateful applications to microservices running on Kubernetes, suitable for
production workload. They will also learn several ways that this can be done with or
without the PetSet resource prior to Kubernetes release 1.3. You will be able to fill in the
gaps in the available documentation resources.

Chapter 14, Rolling Updates, Scalability, and Quotas, will teach you how rolling updates and
horizontal pod autoscaling behave. You will learn how to customize and run scaling testing
at production environment. You will be able to use resource quotas for CPU and memory.

Chapter 15, Advanced Kubernetes Networking, will help you determine which networking
plugin is suitable in different deployments, and you will learn how to deploy Kubernetes
with different network plugins. You will be able to understand iptables load balancing and
how to extend them.

Chapter 16, Kubernetes Infrastructure Management, focuses on how to make changes to the
infrastructure that powers your Kubernetes infrastructure, whether it be a purely public
cloud platform or a hybrid installation. We'll discuss methods for handling underlying
instance and resource instability, and strategies for running highly available workloads on
the partially available underlying hardware.

Chapter 17, Customizing Kubernetes – API and Plugins, will help you implement third-party
resources, understand concepts of enhancing the Kubernetes API, and show you how to
integrate resources with existing environments. You will learn how schedulers work and
how to implement your own scheduling engine. Finally, you will also learn how to
implement custom external load balancing for on-premise deployments based on common
services such as haproxy or nginx.

Chapter 18, Handling the Kubernetes Package Manager, explains how to handle Kubernetes
applications as packages. The chapter starts with Helm Classic and goes through Helm for
Kubernetes, and finally covers real-world examples of how to create and update packages
in a Helm repository in order to be able to maintain them for production application
deployments.

Chapter 19, The Future of Kubernetes, will help you create your own Kubernetes packages
and store them in Helm repository. You will get an understanding of delivery pipelines for
Kubernetes packages, from repositories to clusters.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[4]

To get the most out of this book
This book will cover downloading and running the Kubernetes project. You'll need access
to a Linux system (VirtualBox will work if you are on Windows) and some familiarity with
the command shell. To follow the examples in each chapter, you need a recent version of
Docker and Kubernetes installed on your machine, ideally Kubernetes 1.10. If your
operating system is Windows 10 Professional, you can enable hypervisor mode; otherwise,
you will need to install VirtualBox and use a Linux guest OS.

Additionally, you should have a Google Cloud Platform account. You can sign up for a free
trial here: https:/ /cloud. google. com/ .

Also, an AWS account is necessary for a few sections of the book. You can sign up for a free
trial here: https:/ /aws. amazon. com/ .

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Getting- Started- with- Kubernetes- third- edition. In case there's an
update to the code, it will be updated on the existing GitHub repository.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition

Preface

[5]

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The last two main pieces of the Master nodes are kube-controller-manager
and cloud-controller-manager."

A block of code is set as follows:

"conditions": [
 {
 "type": "Ready",
 "status": "True"
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

"conditions": [
 {
 "type": "Ready",
 "status": "True"
 }

Any command-line input or output is written as follows:

$ kubectl describe pods/node-js-pod

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on Jobs and then long-task from the list, so we can see the details."

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introduction to Kubernetes

In this book, we will help you build, scale, and manage production-ready Kubernetes
clusters. Each section of this book will empower you with the core container concepts and
the operational context of running modern web services that need to be available 24 hours
of the day, 7 days a week, 365 days of the year. As we progress, you'll be given concrete,
code-based examples that you can deploy into running clusters in order to get real-world
feedback on Kubernetes' many abstractions. By the end of this book, you will have
mastered the core conceptual building blocks of Kubernetes, and will have a firm
understanding of how to handle the following paradigms:

Orchestration
Scheduling
Networking
Security
Storage
Identity and authentication
Infrastructure management

This chapter will set the stage for why Kubernetes? and give an overview of modern
container history, diving into how containers work, as well as why it's important to
schedule, orchestrate, and manage a container platform well. We'll tie this back to concrete
objectives and goals for your business and product. This chapter will also give a brief
overview of how Kubernetes orchestration can enhance our container management strategy
and how we can get a basic Kubernetes cluster up, running, and ready for container
deployments.

In this chapter, we will cover the following topics:

Introducing container operations and management
The importance of container management
The advantages of Kubernetes

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[8]

Downloading the latest Kubernetes
Installing and starting up a new Kubernetes cluster
The components of a Kubernetes cluster

Technical requirements
You'll need to have the following tools installed:

Python
AWS CLI
Google Cloud CLI
Minikube

We'll go into the specifics of these tools' installation and configuration as we go through
this chapter. If you already know how to do this, you can go ahead and set them up now.

A brief overview of containers
Believe it or not, containers and their precursors have been around for over 15 years in the
Linux and Unix operating systems. If you look deeper into the fundamentals of how
containers operate, you can see their roots in the chroot technology that was invented all
the way back in 1970. Since the early 2000s, FreeBSD, Linux, Solaris, Open VZ, Warden, and
finally Docker all made significant attempts at encapsulating containerization technology
for the end user.

While the VServer's project and first commit (running several general purpose Linux server on a
single box with a high degree of independence and security (http:/ /ieeexplore. ieee. org/
document/1430092/ ? reload= true)) may have been one of the most interesting historical
junctures in container history, it's clear that Docker set the container ecosystem on fire back
in late 2013 when they went full in on the container ecosystem and decided to rebrand from
dotCloud to Docker. Their mass marketing of container appeal set the stage for the broad
market adoption we see today and is a direct precursor of the massive container
orchestration and scheduling platforms we're writing about here.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true

Introduction to Kubernetes Chapter 1

[9]

Over the past five years, containers have grown in popularity like wildfire. Where
containers were once relegated to developer laptops, testing, or development
environments, you'll now see them as the building blocks of powerful production systems.
They're running highly secure banking workloads and trading systems, powering IoT,
keeping our on-demand economy humming, and scaling up to millions of containers to
keep the products of the 21st century running at peak efficiency in both the cloud and
private data centers. Furthermore, containerization technology permeates our technological
zeitgest, with every technology conference in the world devoting a significant portion of
their talks and sessions devoted to building, running, or developing in containers.

At the beginning of this compelling story lies Docker and their compelling suite of
developer-friendly tools. Docker for macOS and Windows, Compose, Swarm, and Registry
have been incredibly powerful tools that have shaped workflows and changed how
companies develop software. They've built a bridge for containers to exist at the very heart
of the Software Delivery Life Cycle (SDLC), and a remarkable ecosystem has sprung up
around those containers. As Malcom McLean revolutionized the physical shipping world in
the 1950s by creating a standardized shipping container, which is used today for everything
from ice cube trays to automobiles, Linux containers are revolutionizing the software
development world by making application environments portable and consistent across the
infrastructure landscape.

We'll pick this story up as containers go mainstream, go to production, and go big within
organizations. We'll look at what makes a container next.

What is a container?
Containers are a type of operating system virtualization, much like the virtual machines
that preceded them. There's also lesser known types of virtualization such as Application
Virtualization, Network Virtualization, and Storage Virtualization. While these
technologies have been around since the 1960s, Docker's encapsulation of the container
paradigm represents a modern implementation of resource isolation that utilizes built-in
Linux kernel features such as chroot, control groups (cgroups), UnionFS, and namespaces
to fully isolated resource control at the process level.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[10]

Containers use these technologies to create lightweight images that act as a standalone,
fully encapsulated piece of software that carries everything it needs inside the box. This can
include application binaries, any system tools or libraries, environment-based
configuration, and runtime. This special property of isolation is very important, as it allows
developers and operators to leverage the all-in-one nature of a container to run without
issue, regardless of the environment it's run on. This includes developer laptops and any
kind of pre-production or production environment.

This decoupling of application packaging mechanism from the environment on which it
runs is a powerful concept that provides a clear separation of concerns between
engineering teams. This allows developers to focus on building the core business
capabilities into their application code and managing their own dependencies, while
operators can streamline the continuous integration, promotion, and deployment of said
applications without having to worry about their configuration.

At the core of container technology are three key concepts:

cgroups
Namespaces
Union filesystems

cgroups
cgroups work by allowing the host to share and also limit the resources each process or
container can consume. This is important for both resource utilization and security, as it
prevents denial-of-service (DoS) attacks on the host's hardware resources. Several
containers can share CPU and memory while staying within the predefined constraints.
cgroups allow containers to provision access to memory, disk I/O, network, and CPU. You
can also access devices (for example, /dev/foo). cgroups also power the soft and hard
limits of container constraints that we'll discuss in later chapters.

There are seven major cgroups:

Memory cgroup: This keeps track of page access by the group, and can define
limits for physical, kernel, and total memory.
Blkio cgroup: This tracks the I/O usage per group, across the read and write
activity per block device. You can throttle by group per device, on operations
versus bytes, and for reads versus writes.
CPU cgroup: This keeps track of user and system CPU time and usage per CPU.
This allows you to set weights, but not limits.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[11]

Freezer cgroup: This is useful in batch management systems that are often
stopping and starting tasks in order to schedule resources efficiently. The
SIGSTOP signal is used to suspend a process, and the process is generally
unaware that it is being suspended (or resumed, for that matter.)
CPUset cgroup: This allows you to pin a group to a specific CPU within a multi-
core CPU architecture. You can pin by application, which will prevent it from
moving between CPUs. This can improve the performance of your code by
increasing the amount of local memory access or minimizing thread switching.
Net_cls/net_prio cgroup: This keeps tabs on the egress traffic class (net_cls) or
priority (net_prio) that is generated by the processes within the cgroup.
Devices cgroup: This controls what read/write permissions the group has on
device nodes.

Namespaces
Namespaces offer another form of isolation for process interaction within operating
systems, creating the workspace we call a container. Linux namespaces are created via a
syscall named unshare, while clone and setns allow you to manipulate namespaces in
other manners.

unshare() allows a process (or thread) to disassociate parts of
its execution context that are currently being shared with other processes
(or threads). Part of the execution context, such as the mount namespace,
is shared implicitly when a new process is created using FORK(2) (for
more information visit http:/ /man7. org/ linux/ man- pages/ man2/ fork. 2.
html) or VFORK(2) (for more information visit http:/ /man7. org/ linux/
man-pages/ man2/ vfork. 2. html), while other parts, such as virtual
memory, may be shared by explicit request when creating a process or
thread using CLONE(2) (for more information visit http:/ /man7. org/
linux/ man- pages/ man2/ clone. 2.html).

Namespaces limit the visibility a process has on other processes, networking, filesystems,
and user ID components. Container processes are limited to seeing only what is in the same
namespace. Processes from containers or the host processes are not directly accessible from
within this container process. Additionally, Docker gives each container its own
networking stack that protects the sockets and interfaces in a similar fashion.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html

Introduction to Kubernetes Chapter 1

[12]

If cgroups limit how much of a thing you can use, namespaces limit what things you can
see. The following diagram shows the composition of a container:

In the case of the Docker engine, the following namespaces are used:

pid: Provides process isolation via an independent set of process IDs from other
namespaces. These are nested.
net: Manages network interfaces by virtualizing the network stack through
providing a loopback interface, and can create physical and virtual network
interfaces that exist in a single namespace at a time.
ipc: Manages access to interprocess communication.
mnt: Controls filesystem mount points. These were the first kind of namespaces
created in the Linux kernel, and can be private or shared.
uts: The Unix time-sharing system isolates version IDs and kernel by allowing a
single system to provide different host and domain naming schemes to different
processes. The processes gethostname and sethostname use this namespace.
user: This namespace allows you to map UID/GID from container to host, and
prevents the need for extra configuration in the container.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[13]

Union filesystems
Union filesystems are also a key advantage of using Docker containers. Containers run
from an image. Much like an image in the VM or cloud world, it represents state at a
particular point in time. Container images snapshot the filesystem, but tend to be much
smaller than a VM. The container shares the host kernel and generally runs a much smaller
set of processes, so the filesystem and bootstrap period tend to be much smaller—though
those constraints are not strictly enforced. Second, the union filesystem allows for the
efficient storage, download, and execution of these images. Containers use the idea of copy-
on-write storage, which is able to create a brand new container immediately, without having
to wait on copying out a whole new filesystem. This is similar to thin provisioning in other
systems, where storage is allocated as needed:

Copy-on-write storage keeps track of what's changed, and in this way is similar to
distributed version control systems (DVCS) such as Git. There are a number of options
available to the end user that leverage copy-on-write storage:

AUFS and overlay at the file level
Device mapper at the block level
BTRFS and ZFS and the filesystem level

The easiest way to understand union filesystems is to think of them like a layer cake with
each layer baked independently. The Linux kernel is our base layer; then, we might add an
OS such as Red Hat Linux or Ubuntu.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[14]

Next, we might add an application such as nginx or Apache. Every change creates a new
layer. Finally, as you make changes and new layers are added, you'll always have a top
layer (think frosting) that is a writable layer. Union filesystems leverage this strategy to
make each layer lightweight and speedy.

In Docker's case, the storage driver is responsible for stacking these layers on top of each
other and providing a single pane of glass to view these systems. The thin writable layer on
the top of this stack of layers is where you'll do your work: the writable container layer. We
can consider each layer below to be container image layers:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[15]

What makes this truly efficient is that Docker caches the layers the first time we build them.
So, let's say that we have an image with Ubuntu and then add Apache and build the image.
Next, we build MySQL with Ubuntu as the base. The second build will be much faster
because the Ubuntu layer is already cached. Essentially, our chocolate and vanilla layers,
from the preceding diagram, are already baked. We simply need to bake the pistachio
(MySQL) layer, assemble, and add the icing (the writable layer).

Why are containers so cool?
What's also really exciting is that not only has the open source community embraced
containers and Kubernetes, but the cloud providers have also deeply embraced the
container ecosystem and invested millions of dollars in supporting tooling, ecosystem, and
management planes that can help manage containers. This means you have more options to
run container workloads, and you'll have more tools to manage the scheduling and
orchestration of the applications running on your clusters.

We'll explore some specific opportunities available to Kubernetes users, but at the time of
this book's publishing, all of the major cloud service providers (CSPs) are offering some
form of hosted or managed Kubernetes:

Amazon Web Services: AWS offers Elastic Container Service for Kubernetes
(EKS) (for more information visit https:/ /aws. amazon. com/eks/), a managed
service that simplifies running Kubernetes clusters in their cloud. You can also
roll your own clusters with kops (for information visit https:/ /kubernetes. io/
docs/setup/ custom- cloud/ kops/). This product is still in active development:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/

Introduction to Kubernetes Chapter 1

[16]

Google Cloud Platform: GCP offers the Google Kubernetes Engine (GKE) (for
more information visit https:/ / cloud. google. com/ kubernetes- engine/), a
powerful cluster manager that can deploy, manage, and scale containerized
applications in the cloud. Google has been running containerized workloads for
over 15 years, and this platform is an excellent choice for sophisticated workload
management:

Microsoft Azure: Azure offers the Azure Container Service (AKS) (for more
information visit https:/ / azure. microsoft. com/ en-us/ services/ kubernetes-
service/), which aims to simplify the deployment, management, and operations
of a full-scale Kubernetes cluster. This product is still in active development:

When you take advantage of one of these systems, you get built-in management
of your Kubernetes cluster, which allows you to focus on the optimization,
configuration, and deployment of your cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/

Introduction to Kubernetes Chapter 1

[17]

The advantages of Continuous
Integration/Continuous Deployment
ThoughtWorks defines Continuous Integration as a development practice that requires
developers to integrate code into a shared repository several times a day. By having a
continuous process of building and deploying code, organizations are able to instill quality
control and testing as part of the everyday work cycle. The result is that updates and bug
fixes happen much faster and the overall quality improves.

However, there has always been a challenge in creating development environments that
match those of testing and production. Often, inconsistencies in these environments make it
difficult to gain the full advantage of Continuous Delivery. Continuous Integration is the
first step in speeding up your organization's software delivery life cycle, which helps you
get your software features in front of customer quickly and reliably.

The concept of Continuous Delivery/Deployment uses Continuous Integration to enables
developers to have truly portable deployments. Containers that are deployed on a
developer's laptop are easily deployed on an in-house staging server. They are then easily
transferred to the production server running in the cloud. This is facilitated due to the
nature of containers, which build files that specify parent layers, as we discussed
previously. One advantage of this is that it becomes very easy to ensure OS, package, and
application versions are the same across development, staging, and production
environments. Because all the dependencies are packaged into the layer, the same host
server can have multiple containers running a variety of OS or package versions.
Furthermore, we can have various languages and frameworks on the same host server
without the typical dependency clashes we would get in a VM with a single operating
system.

This sets the stage for Continuous Delivery/Deployment of the application, as the
operations teams or the developers themselves can focus on getting deployments and
application rollouts correct, without having to worry about the intricacies of dependencies.

Continuous Delivery is the embodiment and process wherein all code changes are
automatically built, tested (Continuous Integration), and then released into production
(Continuous Delivery). If this process captures the correct quality gates, security
guarantees, and unit/integration/system tests, the development teams will constantly
release production-ready and deployable artifacts that have moved through an automated
and standardized process.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[18]

It's important to note that CD requires the engineering teams to automate more than just
unit tests. In order to utilize CD in sophisticated scheduling and orchestration systems such
as Kubernetes, teams need to verify application functionality across many dimensions
before they're deployed to customers. We'll explore deployment strategies that Kubernetes
has to offer in later chapters.

Lastly, it's important to keep in mind that utilizing Kubernetes with CI/CD reduces the risk
of the many common problems that technology firms face:

Long release cycles: If it takes a long time to release code to your users, then it's a
potential functionality that they're missing out on, and this results in lost
revenue. If you have a manual testing or release process, it's going to slow down
getting changes to production, and therefore in front of your customers.
Fixing code is hard: When you shorten the release cycle, you're able to discover
and remediate bugs closer to the point of creation. This lowers the fixed cost, as
there's a correlation between bug introduction and bug discovery times.
Release better: The more you release, the better you get at releasing. Challenging
your developers and operators to build automation, monitoring, and logging
around the processes of CI/CD will make your pipeline more robust. As you
release more often, the amount of difference between releases also decreases. A
smaller difference allows teams to troubleshoot potential breaking changes more
quickly, which in turn gives them more time to refine the release process further.
It's a virtuous cycle!

Because all the dependencies are packaged into the layer, the same host server can have
multiple containers running a variety of OS or package versions. Furthermore, we can have
various languages and frameworks on the same host server without the typical dependency
clashes we would get in a VM with a single operating system.

Resource utilization
The well-defined isolation and layer filesystem also makes containers ideal for running
systems with a very small footprint and domain-specific purpose. A streamlined
deployment and release process means we can deploy quickly and often. As such, many
companies have reduced their deployment time from weeks or months to days and hours
in some cases. This development life cycle lends itself extremely well to small, targeted
teams working on small chunks of a larger application.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[19]

Microservices and orchestration
As we break down an application into very specific domains, we need a uniform way to
communicate between all the various pieces and domains. Web services have served this
purpose for years, but the added isolation and granular focus that containers bring have
paved the way for microservices.

A definition for microservices can be a bit nebulous, but a definition from Martin Fowler, a
respected author and speaker on software development, says this:

In short, the microservice architectural style is an approach to developing a single
application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and independently deployable by fully
automated deployment machinery. There is a bare minimum of centralized management of
these services, which may be written in different programming languages and use different
data storage technologies.

As the pivot to containerization and as microservices evolve in an organization, they will
soon need a strategy to maintain many containers and microservices. Some organizations
will have hundreds or even thousands of containers running in the years ahead.

Future challenges
Life cycle processes alone are an important piece of operation and management. How will
we automatically recover when a container fails? Which upstream services are affected by
such an outage? How will we patch our applications with minimal downtime? How will
we scale up our containers and services as our traffic grows?

Networking and processing are also important concerns. Some processes are part of the
same service and may benefit from proximity to the network. Databases, for example, may
send large amounts of data to a particular microservice for processing. How will we place
containers near each other in our cluster? Is there common data that needs to be accessed?
How will new services be discovered and made available to other systems?

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[20]

Resource utilization is also key. The small footprint of containers means that we can
optimize our infrastructure for greater utilization. Extending the savings started in the
Elastic cloud will take us even further toward minimizing wasted hardware. How will we
schedule workloads most efficiently? How will we ensure that our important applications
always have the right resources? How can we run less important workloads on spare
capacity?

Finally, portability is a key factor in moving many organizations to containerization.
Docker makes it very easy to deploy a standard container across various operating systems,
cloud providers, and on-premise hardware or even developer laptops. However, we still
need tooling to move containers around. How will we move containers between different
nodes on our cluster? How will we roll out updates with minimal disruption? What process
do we use to perform blue-green deployments or canary releases?

Whether you are starting to build out individual microservices and separating concerns
into isolated containers or you simply want to take full advantage of the portability and
immutability in your application development, the need for management and orchestration
becomes clear. This is where orchestration tools such as Kubernetes offer the biggest value.

Our first clusters
Kubernetes is supported on a variety of platforms and OSes. For the examples in this book,
I used an Ubuntu 16.04 Linux VirtualBox (https:/ /www. virtualbox. org/ wiki/ Downloads)
for my client and Google Compute Engine (GCE) with Debian for the cluster itself. We will
also take a brief look at a cluster running on Amazon Web Services (AWS) with Ubuntu.

To save some money, both GCP (https:/ / cloud. google. com/ free/) and
AWS (https:/ /aws. amazon. com/ free/) offer free tiers and trial offers for
their cloud infrastructure. It's worth using these free trials for learning
Kubernetes, if possible.

Most of the concepts and examples in this book should work on any
installation of a Kubernetes cluster. To get more information on other
platform setups, refer to the Kubernetes getting started page, which will
help you pick the right solution for your cluster: http:/ /kubernetes. io/
docs/ getting- started- guides/ .

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/

Introduction to Kubernetes Chapter 1

[21]

Running Kubernetes on GCE
We have a few options for setting up the prerequisites for our development environment.
While we'll use a Linux client on our local machine in this example, you can also use the
Google Cloud Shell to simplify your dependencies and setup. You can check out that
documentation at https:/ / cloud. google. com/ shell/ docs/ , and then jump down to the
gcloud auth login portion of the tutorial.

Getting back to the local installation, let's make sure that our environment is properly set
up before we install Kubernetes. Start by updating the packages:

$ sudo apt-get update

You should see something similar to the following output:

$ sudo apt update
[sudo] password for user:
Hit:1 http://archive.canonical.com/ubuntu xenial InRelease
Ign:2 http://dl.google.com/linux/chrome/deb stable InRelease
Hit:3 http://archive.ubuntu.com/ubuntu xenial InRelease
Get:4 http://security.ubuntu.com/ubuntu xenial-security InRelease [102 kB]
Ign:5 http://dell.archive.canonical.com/updates xenial-dell-dino2-mlk
InRelease
Hit:6 http://ppa.launchpad.net/webupd8team/sublime-text-3/ubuntu xenial
InRelease
Hit:7 https://download.sublimetext.com apt/stable/ InRelease
Hit:8 http://dl.google.com/linux/chrome/deb stable Release
Get:9 http://archive.ubuntu.com/ubuntu xenial-updates InRelease [102 kB]
Hit:10 https://apt.dockerproject.org/repo ubuntu-xenial InRelease
Hit:11 https://deb.nodesource.com/node_7.x xenial InRelease
Hit:12 https://download.docker.com/linux/ubuntu xenial InRelease
Ign:13 http://dell.archive.canonical.com/updates xenial-dell InRelease
<SNIPPED...>
Fetched 1,593 kB in 1s (1,081 kB/s)
Reading package lists... Done
Building dependency tree
Reading state information... Done
120 packages can be upgraded. Run 'apt list --upgradable' to see them.
$

Install Python and curl if they are not present:

$ sudo apt-get install python
$ sudo apt-get install curl

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/

Introduction to Kubernetes Chapter 1

[22]

Install the gcloud SDK:

$ curl https://sdk.cloud.google.com | bash

We will need to start a new shell before gcloud is on our path.

Configure your GCP account information. This should automatically open a browser, from
where we can log in to our Google Cloud account and authorize the SDK:

$ gcloud auth login

If you have problems with login or want to use another browser, you can
optionally use the --no-launch-browser command. Copy and paste the
URL to the machine and/or browser of your choice. Log in with your
Google Cloud credentials and click Allow on the permissions page.
Finally, you should receive an authorization code that you can copy and
paste back into the shell, where the prompt will be waiting.

A default project should be set, but we can verify this with the following command:

$ gcloud config list project

We can modify this and set a new default project with the following command. Make sure
to use project ID and not project name, as follows:

$ gcloud config set project <PROJECT ID>

We can find our project ID in the console at the following
URL: https://console.developers.google.com/project. Alternatively,
we can list the active projects with $ gcloud alpha projects list.

You can turn on API access to your project at this point in the GCP dashboard, https:/ /
console.developers. google. com/ project, or the Kubernetes script will prompt you to do
so in the next section:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project

Introduction to Kubernetes Chapter 1

[23]

Next, you want to change to a directory when you can install the Kubernetes binaries. We'll
set that up and then download the software:

$ mkdir ~/code/gsw-k8s-3
$ cd ~/code/gsw-k8s-3

Installing the latest Kubernetes version is done in a single step, as follows:

$ curl -sS https://get.k8s.io | bash

It may take a minute or two to download Kubernetes depending on your connection speed.
Earlier versions would automatically call the kube-up.sh script and start building our
cluster. In version 1.5, we will need to call the kube-up.sh script ourselves to launch the
cluster. By default, it will use the Google Cloud and GCE:

$ kubernetes/cluster/kube-up.sh

If you get an error at this point due to missing components, you'll need to add a few pieces
to your local Linux box. If you're running the Google Cloud Shell, or are utilizing a VM in
GCP, you probably won't see this error:

$ kubernetes_install cluster/kube-up.sh...
Starting cluster in us-central1-b using provider gce
... calling verify-prereqs
missing required gcloud component "alpha"
missing required gcloud component "beta"
$

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[24]

You can see that these components are missing and are required for leveraging the kube-
up.sh script:

$ gcloud components list
Your current Cloud SDK version is: 193.0.0
The latest available version is: 193.0.0
┌──
───
────────────────────┐
│ Components │
├───────────────┬────────────────────────────
──────────────────────────┬──────────────────
────────┬───────────┤
│ Status │ Name │ ID │ Size │
├───────────────┼────────────────────────────
──────────────────────────┼──────────────────
────────┼───────────┤
│ Not Installed │ App Engine Go Extensions │ app-engine-go │ 151.9 MiB │
│ Not Installed │ Cloud Bigtable Command Line Tool │ cbt │ 4.5 MiB │
│ Not Installed │ Cloud Bigtable Emulator │ bigtable │ 3.7 MiB │
│ Not Installed │ Cloud Datalab Command Line Tool │ datalab │ < 1 MiB │
│ Not Installed │ Cloud Datastore Emulator │ cloud-datastore-emulator │
17.9 MiB │
│ Not Installed │ Cloud Datastore Emulator (Legacy) │ gcd-emulator │ 38.1
MiB │
│ Not Installed │ Cloud Pub/Sub Emulator │ pubsub-emulator │ 33.4 MiB │
│ Not Installed │ Emulator Reverse Proxy │ emulator-reverse-proxy │ 14.5
MiB │
│ Not Installed │ Google Container Local Builder │ container-builder-
local │ 3.8 MiB │
│ Not Installed │ Google Container Registry's Docker credential helper │
docker-credential-gcr │ 3.3 MiB │
│ Not Installed │ gcloud Alpha Commands │ alpha │ < 1 MiB │
│ Not Installed │ gcloud Beta Commands │ beta │ < 1 MiB │
│ Not Installed │ gcloud app Java Extensions │ app-engine-java │ 118.9
MiB │
│ Not Installed │ gcloud app PHP Extensions │ app-engine-php │ │
│ Not Installed │ gcloud app Python Extensions │ app-engine-python │ 6.2
MiB │
│ Not Installed │ gcloud app Python Extensions (Extra Libraries) │ app-
engine-python-extras │ 27.8 MiB │
│ Not Installed │ kubectl │ kubectl │ 12.3 MiB │
│ Installed │ BigQuery Command Line Tool │ bq │ < 1 MiB │
│ Installed │ Cloud SDK Core Libraries │ core │ 7.3 MiB │
│ Installed │ Cloud Storage Command Line Tool │ gsutil │ 3.3 MiB │
└───────────────┴────────────────────────────
──────────────────────────┴──────────────────
────────┴───────────┘

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[25]

To install or remove components at your current SDK version [193.0.0], run:
 $ gcloud components install COMPONENT_ID
 $ gcloud components remove COMPONENT_ID
To update your SDK installation to the latest version [193.0.0], run:
 $ gcloud components update

You can update the components by adding them to your shell:

$ gcloud components install alpha beta
Your current Cloud SDK version is: 193.0.0
Installing components from version: 193.0.0
┌──
──┐
│ These components will be installed. │
├───────────────────────┬────────────┬───────
──┤
│ Name │ Version │ Size │
├───────────────────────┼────────────┼───────
──┤
│ gcloud Alpha Commands │ 2017.09.15 │ < 1 MiB │
│ gcloud Beta Commands │ 2017.09.15 │ < 1 MiB │
└───────────────────────┴────────────┴───────
──┘
For the latest full release notes, please visit:
 https://cloud.google.com/sdk/release_notes
Do you want to continue (Y/n)? y
╔══
════════════════╗
╠═ Creating update staging area ═╣
╠══
════════════════╣
╠═ Installing: gcloud Alpha Commands ═╣
╠══
════════════════╣
╠═ Installing: gcloud Beta Commands ═╣
╠══
════════════════╣
╠═ Creating backup and activating new installation ═╣
╚══
════════════════╝
Performing post processing steps...done.
Update done!

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[26]

After you run the kube-up.sh script, you will see quite a few lines roll past. Let's take a
look at them one section at a time:

If your gcloud components are not up to date, you may be prompted to
update them.

The preceding screenshot shows the checks for prerequisites, as well as making sure that all
components are up to date. This is specific to each provider. In the case of GCE, it will
verify that the SDK is installed and that all components are up to date. If not, you will see a
prompt at this point to install or update:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[27]

Now, the script is turning up the cluster. Again, this is specific to the provider. For GCE, it
first checks to make sure that the SDK is configured for a default project and zone. If they
are set, you'll see those in the output:

You may see an output that the bucket for storage hasn't been created.
That's normal! The creation script will go ahead and create it.

BucketNotFoundException: 404 gs://kubernetes-staging-22caacf417 bucket does
not exist.

Next, it uploads the server binaries to Google Cloud storage, as seen in the Creating gs:...
lines:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[28]

It then checks for any pieces of a cluster already running. Then, we finally start creating the
cluster. In the output in the preceding screenshot, we can see it creating the master server,
IP address, and appropriate firewall configurations for the cluster:

Finally, it creates the minions or nodes for our cluster. This is where our container
workloads will actually run. It will continually loop and wait while all the minions start up.
By default, the cluster will have four nodes (minions), but K8s supports having more than
1,000 (and soon beyond). We will come back to scaling the nodes later on in this book:

Attempt 1 to create kubernetes-minion-template
WARNING: You have selected a disk size of under [200GB]. This may result in
poor I/O performance. For more information, see:
https://developers.google.com/compute/docs/disks#performance.
Created
[https://www.googleapis.com/compute/v1/projects/gsw-k8s-3/global/instanceTe
mplates/kubernetes-minion-template].

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[29]

NAME MACHINE_TYPE PREEMPTIBLE CREATION_TIMESTAMP
kubernetes-minion-template n1-standard-2 2018-03-17T11:14:04.186-07:00
Created
[https://www.googleapis.com/compute/v1/projects/gsw-k8s-3/zones/us-central1
-b/instanceGroupManagers/kubernetes-minion-group].
NAME LOCATION SCOPE BASE_INSTANCE_NAME SIZE TARGET_SIZE INSTANCE_TEMPLATE
AUTOSCALED
kubernetes-minion-group us-central1-b zone kubernetes-minion-group 0 3
kubernetes-minion-template no
Waiting for group to become stable, current operations: creating: 3
Group is stable
INSTANCE_GROUPS=kubernetes-minion-group
NODE_NAMES=kubernetes-minion-group-176g kubernetes-minion-group-s9qw
kubernetes-minion-group-tr7r
Trying to find master named 'kubernetes-master'
Looking for address 'kubernetes-master-ip'
Using master: kubernetes-master (external IP: 104.155.172.179)
Waiting up to 300 seconds for cluster initialization.

Now that everything is created, the cluster is initialized and started. Assuming that
everything goes well, we will get an IP address for the master:

... calling validate-cluster
Validating gce cluster, MULTIZONE=
Project: gsw-k8s-3
Network Project: gsw-k8s-3
Zone: us-central1-b
No resources found.
Waiting for 4 ready nodes. 0 ready nodes, 0 registered. Retrying.
No resources found.
Waiting for 4 ready nodes. 0 ready nodes, 0 registered. Retrying.
Waiting for 4 ready nodes. 0 ready nodes, 1 registered. Retrying.
Waiting for 4 ready nodes. 0 ready nodes, 4 registered. Retrying.
Found 4 node(s).
NAME STATUS ROLES AGE VERSION
kubernetes-master Ready,SchedulingDisabled <none> 32s v1.9.4
kubernetes-minion-group-176g Ready <none> 25s v1.9.4
kubernetes-minion-group-s9qw Ready <none> 25s v1.9.4
kubernetes-minion-group-tr7r Ready <none> 35s v1.9.4
Validate output:
NAME STATUS MESSAGE ERROR
etcd-1 Healthy {"health": "true"}
scheduler Healthy ok
controller-manager Healthy ok
etcd-0 Healthy {"health": "true"}
Cluster validation succeeded

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[30]

Also, note that configuration along with the cluster management credentials are stored
in home/<Username>/.kube/config.

Then, the script will validate the cluster. At this point, we are no longer running provider-
specific code. The validation script will query the cluster via the kubectl.sh script. This is
the central script for managing our cluster. In this case, it checks the number of minions
found, registered, and in a ready state. It loops through, giving the cluster up to 10 minutes
to finish initialization.

After a successful startup, a summary of the minions and the cluster component health is
printed on the screen:

Done, listing cluster services:
Kubernetes master is running at https://104.155.172.179
GLBCDefaultBackend is running at
https://104.155.172.179/api/v1/namespaces/kube-system/services/default-http
-backend:http/proxy
Heapster is running at
https://104.155.172.179/api/v1/namespaces/kube-system/services/heapster/pro
xy
KubeDNS is running at
https://104.155.172.179/api/v1/namespaces/kube-system/services/kube-dns:dns
/proxy
kubernetes-dashboard is running at
https://104.155.172.179/api/v1/namespaces/kube-system/services/https:kubern
etes-dashboard:/proxy
Metrics-server is running at
https://104.155.172.179/api/v1/namespaces/kube-system/services/https:metric
s-server:/proxy
Grafana is running at
https://104.155.172.179/api/v1/namespaces/kube-system/services/monitoring-g
rafana/proxy
InfluxDB is running at
https://104.155.172.179/api/v1/namespaces/kube-system/services/monitoring-i
nfluxdb:http/proxy
To further debug and diagnose cluster problems, use 'kubectl cluster-info
dump'.

Finally, a kubectl cluster-info command is run, which outputs the URL for the master
services, including DNS, UI, and monitoring. Let's take a look at some of these components.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[31]

If you'd like to get further debugging and/or diagnose cluster problems, you can use
kubectl cluster-info dump to see what's going on with your cluster. Additionally, if
you need to pause and take a break and want to conserve your free hours, you can log into
the GUI and set the kubernetes-minion-group instance group to zero, which will
remove all of the instances. The pencil will edit the group for you; set it to zero. Don't forget
to set it back to three if you want to pick up again!

You can simply stop the manager as well. You'll need to click the stop button to shut it
down:

If you'd like to start the cluster up again, start the servers again to keep going. They'll need
some time to start up and connect to each other.

If you want to work on more than one cluster at a time or you want to use a different name
than the default, see the <kubernetes>/cluster/gce/config-default.sh file for more
fine-grained configuration of your cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[32]

Kubernetes UI
Since Kubernetes v1.3.x, you can no longer authenticate through public IP addresses to the
GUI. To get around this, we'll use the kubectl proxy command. First, grab the token
from the configuration command, and then we'll use it to launch a local proxy version of
the UI:

$ kubectl config view |grep token
 token: RvoYTIn4rExi1bNRzk56g0PU0srZbzOf
$ kubectl proxy --port=8001

Open a browser and enter the following URL: https://localhost/ui/.

You can also type these commands to open a browser window
automatically if you're on macOS: $ open
https://localhost/ui/ or $ xdg-open https://localhost/ui if
you're on Linux.

The certificate is self-signed by default, so you'll need to ignore the warnings in your
browser before proceeding. After this, we will see a login dialog:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[33]

At this login dialog, you'll need to input the token that you grabbed in the aforementioned
command.

This is where we use the credentials listed during the K8s installation. We
can find them at any time by simply using the config command $
kubectl config view.

Use the Token option and log in to your cluster:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[34]

Now that we have entered our token, you should see a dashboard like the one in the
following screenshot:

The main dashboard takes us to a page with not much display at first. There is a link to
deploy a containerized app that will take you to a GUI for deployment. This GUI can be a
very easy way to get started deploying apps without worrying about the YAML syntax for
Kubernetes. However, as your use of containers matures, it's a good practice to use the
YAML definitions that are checked in to source control.

If you click on the Nodes link on the left-hand side menu, you will see some metrics on the
current cluster nodes:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[35]

At the top, we can see an aggregate of the CPU and memory use followed by a listing of
our cluster nodes. Clicking on one of the nodes will take us to a page with detailed
information about that node, its health, and various metrics.

The Kubernetes UI has a lot of other views that will become more useful as we start
launching real applications and adding configurations to the cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[36]

Grafana
Another service installed by default is Grafana. This tool will give us a dashboard to view
metrics on the cluster nodes. We can access it using the following syntax in a browser:

https://localhost/api/v1/proxy/namespaces/kube-system/services/monitoring-g
rafana

The Grafana dashboard should look like this:

From the main page, click on the Home drop-down and select Cluster. Here, Kubernetes is
actually running a number of services. Heapster is used to collect the resource usage on the
pods and nodes, and stores the information in InfluxDB. The results, such as CPU and
memory usage, are what we see in the Grafana UI. We will explore this in depth in
Chapter 7, Monitoring and Logging.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[37]

Command line
The kubectl script has commands for exploring our cluster and the workloads running on
it. You can find it in the /kubernetes/client/bin folder. We will be using this command
throughout the book, so let's take a second to set up our environment. We can do so by
putting the binaries folder on our PATH, in the following manner:

$ export PATH=$PATH:/<Path where you downloaded K8s>/kubernetes/client/bin
$ chmod +x /<Path where you downloaded K8s>/kubernetes/client/bin

You may choose to download the kubernetes folder outside your home
folder, so modify the preceding command as appropriate. It is also a good
idea to make the changes permanent by adding the export command to
the end of your .bashrc file in your home directory.

Now that we have kubectl on our path, we can start working with it. It has quite a few
commands. Since we have not spun up any applications yet, most of these commands will
not be very interesting. However, we can explore two commands right away.

First, we have already seen the cluster-info command during initialization, but we can
run it again at any time with the following command:

$ kubectl cluster-info

Another useful command is get. It can be used to see currently running services, pods,
replication controllers, and a lot more. Here are the three examples that are useful right out
of the gate:

Lists the nodes in our cluster:

 $ kubectl get nodes

Lists cluster events:

 $ kubectl get events

Finally, we can see any services that are running in the cluster, as follows:

 $ kubectl get services

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[38]

To start with, we will only see one service, named kubernetes. This service is the core API
server for the cluster.

For any of the preceding commands, you can always add a -h flag on the end to
understand the intended usage.

Services running on the master
Let's dig a little bit deeper into our new cluster and its core services. By default, machines
are named with the kubernetes- prefix. We can modify this using
$KUBE_GCE_INSTANCE_PREFIX before a cluster is spun up. For the cluster we just started,
the master should be named kubernetes-master. We can use the gcloud command-line
utility to SSH into the machine. The following command will start an SSH session with the
master node. Be sure to substitute your project ID and zone to match your environment:

$ gcloud compute ssh --zone "<your gce zone>" "kubernetes-master"

$ gcloud compute ssh --zone "us-central1-b" "kubernetes-master"
Warning: Permanently added 'compute.5419404412212490753' (RSA) to the list
of known hosts.

Welcome to Kubernetes v1.9.4!

You can find documentation for Kubernetes at:
 http://docs.kubernetes.io/

The source for this release can be found at:
 /home/kubernetes/kubernetes-src.tar.gz
Or you can download it at:
https://storage.googleapis.com/kubernetes-release/release/v1.9.4/kubernetes
-src.tar.gz

It is based on the Kubernetes source at:
 https://github.com/kubernetes/kubernetes/tree/v1.9.4

For Kubernetes copyright and licensing information, see:
 /home/kubernetes/LICENSES

jesse@kubernetes-master ~ $

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[39]

If you have trouble with SSH via the Google Cloud CLI, you can use the
console, which has a built-in SSH client. Simply go to the VM instances
details page and you'll see an SSH option as a column in the
kubernetes-master listing. Alternatively, the VM instance details page
has the SSH option at the top.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[40]

Once we are logged in, we should get a standard shell prompt. Let's run the docker
command that filters for Image and Status:

$ docker container ls --format 'table {{.Image}}\t{{.Status}}'

Even though we have not deployed any applications on Kubernetes yet, we can note that
there are several containers already running. The following is a brief description of each
container:

fluentd-gcp: This container collects and sends the cluster logs file to the Google
Cloud Logging service.
node-problem-detector: This container is a daemon that runs on every node
and currently detects issues at the hardware and kernel layer.
rescheduler: This is another add-on container that makes sure critical
components are always running. In cases of low resource availability, it may
even remove less critical pods to make room.
glbc: This is another Kubernetes add-on container that provides Google Cloud
Layer 7 load balancing using the new Ingress capability.
kube-addon-manager: This component is core to the extension of Kubernetes
through various add-ons. It also periodically applies any changes to
the /etc/kubernetes/addons directory.
etcd-empty-dir-cleanup: A utility to clean up empty keys in etcd.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[41]

kube-controller-manager: This is a controller manager that controls a variety
of cluster functions, ensuring accurate and up-to-date replication is one of its
vital roles. Additionally, it monitors, manages, and discovers new nodes. Finally,
it manages and updates service endpoints.
kube-apiserver: This container runs the API server. As we explored in the
Swagger interface, this RESTful API allows us to create, query, update, and
remove various components of our Kubernetes cluster.
kube-scheduler: This scheduler takes unscheduled pods and binds them to
nodes based on the current scheduling algorithm.
etcd: This runs the etcd software built by CoreOS, and it is a distributed and
consistent key-value store. This is where the Kubernetes cluster state is stored,
updated, and retrieved by various components of K8s.
pause: This container is often referred to as the pod infrastructure container and
is used to set up and hold the networking namespace and resource limits for each
pod.

I omitted the amd64 for many of these names to make this more generic.
The purpose of the pods remains the same.

To exit the SSH session, simply type exit at the prompt.

In the next chapter, we will also show how a few of these services work
together in the first image, Kubernetes core architecture.

Services running on the minions
We could SSH to one of the minions, but since Kubernetes schedules workloads across the
cluster, we would not see all the containers on a single minion. However, we can look at the
pods running on all the minions using the kubectl command:

$ kubectl get pods
No resources found.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[42]

Since we have not started any applications on the cluster yet, we don't see any pods.
However, there are actually several system pods running pieces of the Kubernetes
infrastructure. We can see these pods by specifying the kube-system namespace. We will
explore namespaces and their significance later, but for now, the --namespace=kube-
system command can be used to look at these K8s system resources, as follows:

$ kubectl get pods --namespace=kube-system
jesse@kubernetes-master ~ $ kubectl get pods --namespace=kube-system
NAME READY STATUS RESTARTS AGE
etcd-server-events-kubernetes-master 1/1 Running 0 50m
etcd-server-kubernetes-master 1/1 Running 0 50m
event-exporter-v0.1.7-64464bff45-rg88v 1/1 Running 0 51m
fluentd-gcp-v2.0.10-c4ptt 1/1 Running 0 50m
fluentd-gcp-v2.0.10-d9c5z 1/1 Running 0 50m
fluentd-gcp-v2.0.10-ztdzs 1/1 Running 0 51m
fluentd-gcp-v2.0.10-zxx6k 1/1 Running 0 50m
heapster-v1.5.0-584689c78d-z9blq 4/4 Running 0 50m
kube-addon-manager-kubernetes-master 1/1 Running 0 50m
kube-apiserver-kubernetes-master 1/1 Running 0 50m
kube-controller-manager-kubernetes-master 1/1 Running 0 50m
kube-dns-774d5484cc-gcgdx 3/3 Running 0 51m
kube-dns-774d5484cc-hgm9r 3/3 Running 0 50m
kube-dns-autoscaler-69c5cbdcdd-8hj5j 1/1 Running 0 51m
kube-proxy-kubernetes-minion-group-012f 1/1 Running 0 50m
kube-proxy-kubernetes-minion-group-699m 1/1 Running 0 50m
kube-proxy-kubernetes-minion-group-sj9r 1/1 Running 0 50m
kube-scheduler-kubernetes-master 1/1 Running 0 50m
kubernetes-dashboard-74f855c8c6-v4f6x 1/1 Running 0 51m
l7-default-backend-57856c5f55-2lz6w 1/1 Running 0 51m
l7-lb-controller-v0.9.7-kubernetes-master 1/1 Running 0 50m
metrics-server-v0.2.1-7f8dd98c8f-v9b4c 2/2 Running 0 50m
monitoring-influxdb-grafana-v4-554f5d97-l7q4k 2/2 Running 0 51m
rescheduler-v0.3.1-kubernetes-master 1/1 Running 0 50m

The first six lines should look familiar. Some of these are the services we saw running on
the master, and we will see pieces of these on the nodes. There are a few additional services
we have not seen yet. The kube-dns option provides the DNS and service discovery
plumbing, kubernetes-dashboard-xxxx is the user interface for Kubernetes, l7-
default-backend-xxxx provides the default load balancing backend for the new layer-7
load balancing capability, and heapster-v1.2.0-xxxx and monitoring-influx-
grafana provide the Heapster database and user interface to monitor resource usage
across the cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[43]

Finally, kube-proxy-kubernetes-minion-group-xxxx is the proxy, which directs
traffic to the proper backing services and pods running on our cluster. The kube-
apiserver validates and configures data for the API objects, which include services,
replication controllers, pods, and other Kubernetes objects. The rescheduler guarantees
the scheduling of critical system add-ons, given that the cluster has enough available
resources.

If we did SSH into a random minion, we would see several containers that run across a few
of these pods. A sample might look like the following:

Again, we saw a similar lineup of services on the master. The services we did not see on the
master include the following:

kubedns: This container monitors the service and endpoint resources in
Kubernetes and synchronizes any changes to DNS lookups.
kube-dnsmasq: This is another container that provides DNS caching.
dnsmasq-metrics: This provides metric reporting for DNS services in cluster.
l7-defaultbackend: This is the default backend for handling the GCE L7 load
balancer and Ingress.
kube-proxy: This is the network and service proxy for your cluster. This
component makes sure that service traffic is directed to wherever your
workloads are running on the cluster. We will explore this in more depth later in
this book.
heapster: This container is for monitoring and analytics.
addon-resizer: This cluster utility is for scaling containers.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[44]

heapster_grafana: This tracks resource usage and monitoring.
heapster_influxdb: This time series database is for Heapster data.
cluster-proportional-autoscaler: This cluster utility is for scaling
containers in proportion to the cluster size.
exechealthz: This performs health checks on the pods.

Again, I have omitted the amd64 for many of these names to make this
more generic. The purpose of the pods remains the same.

Tearing down a cluster
Alright, this is our first cluster on GCE, but let's explore some other providers. To keep
things simple, we need to remove the one we just created on GCE. We can tear down the
cluster with one simple command:

$ cluster/kube-down.sh

Working with other providers
By default, Kubernetes uses the GCE provider for Google Cloud. In order to use other
cloud providers, we can explore a rapidly expanding tool set of different options. Let's use
AWS for this example, where we have two main options: kops (https:/ /github. com/
kubernetes/kops) and kube-aws (https:/ /github. com/ kubernetes- incubator/ kube- aws).
For reference, the following KUBERNETES_PROVIDER are listed in this table:

Provider KUBERNETES_PROVIDER
value Type

Google Compute Engine gce Public cloud
Google Container Engine gke Public cloud
Amazon Web Services aws Public cloud
Microsoft Azure azure Public cloud
Hashicorp vagrant vagrant Virtual development environment
VMware vSphere vsphere Private cloud/on-premise virtualization
libvirt running CoreOS libvirt-coreos Virtualization management tool
Canonical Juju (folks behind Ubuntu) juju OS service orchestration tool

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws

Introduction to Kubernetes Chapter 1

[45]

CLI setup
Let's try setting up the cluster on AWS. As a prerequisite, we need to have the AWS
CLI installed and configured for our account. The AWS CLI installation and configuration
documentation can be found at the following links:

Installation documentation:
http://docs.aws.amazon.com/cli/latest/userguide/installing.html#instal
l-bundle-other-os

Configuration documentation:
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-start
ed.html

You'll also need to configure your credentials as recommended by AWS (refer to https:/ /
docs.aws.amazon. com/ sdk- for- go/ v1/ developer- guide/ configuring- sdk.
html#specifying-credentials) in order to use kops. To get started, you'll need to first
install the CLI tool (refer to https:/ / github. com/ kubernetes/ kops/ blob/ master/ docs/
install.md). If you're running on Linux, you can install the tools as follows:

curl -Lo kops https://github.com/kubernetes/kops/releases/download/$(curl -
s https://api.github.com/repos/kubernetes/kops/releases/latest | grep
tag_name | cut -d '"' -f 4)/kops-darwin-amd64
chmod +x ./kops
sudo mv ./kops /usr/local/bin/

If you're installing this for macOS, you can use brew update && brew install kops
from the command-line Terminal. As a reminder, you'll need kubectl installed if you
haven't already! Check the instructions in the preceding links to confirm the installation.

IAM setup
In order for us to use kops, we'll need an IAM role created in AWS with the following
permissions:

AmazonEC2FullAccess
AmazonRoute53FullAccess
AmazonS3FullAccess
IAMFullAccess
AmazonVPCFullAccess

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://docs.aws.amazon.com/cli/latest/userguide/installing.html#install-bundle-other-os
http://docs.aws.amazon.com/cli/latest/userguide/installing.html#install-bundle-other-os
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md

Introduction to Kubernetes Chapter 1

[46]

Once you've created those pieces manually in the AWS GUI, you can run the following
commands from your PC to set up permissions with the correct access:

aws iam create-group --group-name kops

aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/AmazonEC2FullAccess --group-name kops
aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/AmazonRoute53FullAccess --group-name kops
aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/AmazonS3FullAccess --group-name kops
aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/IAMFullAccess --group-name kops
aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/AmazonVPCFullAccess --group-name kops

aws iam create-user --user-name kops

aws iam add-user-to-group --user-name kops --group-name kops

aws iam create-access-key --user-name kops

In order to use this newly created kops user to interact with the kops tool, you need to copy
down the SecretAccessKey and AccessKeyID from the output JSON, and then configure
the AWS CLI as follows:

configure the aws client to use your new IAM user
aws configure # Use your new access and secret key here
aws iam list-users # you should see a list of all your IAM users here
Because "aws configure" doesn't export these vars for kops to use, we
export them now
export AWS_ACCESS_KEY_ID=$(aws configure get aws_access_key_id)
export AWS_SECRET_ACCESS_KEY=$(aws configure get aws_secret_access_key)

We're going to use a gossip-based cluster to bypass a kops configuration requirement of
public DNS zones. This requires kops 1.6.2 or later, and allows you to create a locally
registered cluster that requires a name ending in .k8s.local. More on that in a bit.

If you'd like to explore how to purchase and set up publicly routable DNS
through a provider, you can review the available scenarios in the kops
documentation here: https:/ /github. com/ kubernetes/ kops/ blob/
master/ docs/ aws. md#configure- dns.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns

Introduction to Kubernetes Chapter 1

[47]

Cluster state storage
Since we're building resources in the cloud using configuration management, we're going
to need to store the representation of our cluster in a dedicated S3 bucket. This source of
truth will allow us to maintain a single location for the configuration and state of our
Kubernetes cluster. Please prepend your bucket name with a unique value.

You'll need to have kubectl, kops, the aws cli, and IAM credentials set
up for yourself at this point!

Be sure to create your bucket in the us-east-1 region for now, as kops is currently
opinionated as to where the bucket belongs:

aws s3api create-bucket \
 --bucket gsw-k8s-3-state-store \
 --region us-east-1

Let's go ahead and set up versioning as well, so you can roll your cluster back to previous
states in case anything goes wrong. Behold the power of Infrastructure as Code!

aws s3api put-bucket-versioning --bucket gsw-k8s-3-state-store --
versioning-configuration Status=Enabled

Creating your cluster
We'll go ahead and use the .k8s.local settings mentioned previously to simplify the DNS
setup of the cluster. If you'd prefer, you can also use the name and state flags available
within kops to avoid using environment variables. Let's prepare the local environment first:

$ export NAME=gswk8s3.k8s.local
$ export KOPS_STATE_STORE=s3://gsw-k8s-3-state-store
$ aws s3api create-bucket --bucket gsw-k8s-3-state-store --region us-east-1
{
 "Location": "/gsw-k8s-3-state-store"
}
$

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[48]

Let's spin up our cluster in Ohio, and verify that we can see that region first:

$ aws ec2 describe-availability-zones --region us-east-2
{
 "AvailabilityZones": [
 {
 "State": "available",
 "ZoneName": "us-east-2a",
 "Messages": [],
 "RegionName": "us-east-2"
 },
 {
 "State": "available",
 "ZoneName": "us-east-2b",
 "Messages": [],
 "RegionName": "us-east-2"
 },
 {
 "State": "available",
 "ZoneName": "us-east-2c",
 "Messages": [],
 "RegionName": "us-east-2"
 }
]
}

Great! Let's make some Kubernetes. We're going to use the most basic kops cluster
command available, though there are much more complex examples available in the
documentation (https:/ /github. com/ kubernetes/ kops/ blob/ master/ docs/ high_
availability.md):

kops create cluster --zones us-east-2a ${NAME}

With kops and generally with Kubernetes, everything is going to be created within Auto
Scaling groups (ASGs).

Read more about AWS autoscaling groups here—they're
essential: https:/ /docs. aws. amazon. com/ autoscaling/ ec2/ userguide/
AutoScalingGroup. html.

Once you run this command, you'll get a whole lot of configuration output in what we call
a dry run format. This is similar to the Terraform idea of a Terraform plan, which lets you
see what you're about to build in AWS and lets you edit the output accordingly.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html

Introduction to Kubernetes Chapter 1

[49]

At the end of the output, you'll see the following text, which gives you some basic
suggestions on the next steps:

Must specify --yes to apply changes
Cluster configuration has been created.

Suggestions:
* list clusters with: kops get cluster
* edit this cluster with: kops edit cluster gwsk8s3.k8s.local
* edit your node instance group: kops edit ig --name=gwsk8s3.k8s.local
nodes
* edit your master instance group: kops edit ig --name=gwsk8s3.k8s.local
master-us-east-2a

Finally configure your cluster with: kops update cluster gwsk8s3.k8s.local
--yes

If you don't have an SSH keypair in your ~/.ssh directory, you'll need to
create one. This article will lead you through the steps: https:/ /help.
github. com/ articles/ generating- a-new- ssh- key-and- adding- it-to-
the-ssh- agent/ .

Once you've confirmed that you like the look of the output, you can create the cluster:

kops update cluster gwsk8s3.k8s.local --yes

This will give you a lot of output about cluster creation that you can follow along with:

I0320 21:37:34.761784 29197 apply_cluster.go:450] Gossip DNS: skipping DNS
validation
I0320 21:37:35.172971 29197 executor.go:91] Tasks: 0 done / 77 total; 30
can run
I0320 21:37:36.045260 29197 vfs_castore.go:435] Issuing new certificate:
"apiserver-aggregator-ca"
I0320 21:37:36.070047 29197 vfs_castore.go:435] Issuing new certificate:
"ca"
I0320 21:37:36.727579 29197 executor.go:91] Tasks: 30 done / 77 total; 24
can run
I0320 21:37:37.740018 29197 vfs_castore.go:435] Issuing new certificate:
"apiserver-proxy-client"
I0320 21:37:37.758789 29197 vfs_castore.go:435] Issuing new certificate:
"kubecfg"
I0320 21:37:37.830861 29197 vfs_castore.go:435] Issuing new certificate:
"kube-controller-manager"
I0320 21:37:37.928930 29197 vfs_castore.go:435] Issuing new certificate:
"kubelet"
I0320 21:37:37.940619 29197 vfs_castore.go:435] Issuing new certificate:
"kops"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/

Introduction to Kubernetes Chapter 1

[50]

I0320 21:37:38.095516 29197 vfs_castore.go:435] Issuing new certificate:
"kubelet-api"
I0320 21:37:38.124966 29197 vfs_castore.go:435] Issuing new certificate:
"kube-proxy"
I0320 21:37:38.274664 29197 vfs_castore.go:435] Issuing new certificate:
"kube-scheduler"
I0320 21:37:38.344367 29197 vfs_castore.go:435] Issuing new certificate:
"apiserver-aggregator"
I0320 21:37:38.784822 29197 executor.go:91] Tasks: 54 done / 77 total; 19
can run
I0320 21:37:40.663441 29197 launchconfiguration.go:333] waiting for IAM
instance profile "nodes.gswk8s3.k8s.local" to be ready
I0320 21:37:40.889286 29197 launchconfiguration.go:333] waiting for IAM
instance profile "masters.gswk8s3.k8s.local" to be ready
I0320 21:37:51.302353 29197 executor.go:91] Tasks: 73 done / 77 total; 3
can run
I0320 21:37:52.464204 29197 vfs_castore.go:435] Issuing new certificate:
"master"
I0320 21:37:52.644756 29197 executor.go:91] Tasks: 76 done / 77 total; 1
can run
I0320 21:37:52.916042 29197 executor.go:91] Tasks: 77 done / 77 total; 0
can run
I0320 21:37:53.360796 29197 update_cluster.go:248] Exporting kubecfg for
cluster
kops has set your kubectl context to gswk8s3.k8s.local

As with GCE, the setup activity will take a few minutes. It will stage files in S3 and create
the appropriate instances, Virtual Private Cloud (VPC), security groups, and so on in our
AWS account. Then, the Kubernetes cluster will be set up and started. Once everything is
finished and started, we should see some options on what comes next:

Cluster is starting. It should be ready in a few minutes.

Suggestions:
 * validate cluster: kops validate cluster
 * list nodes: kubectl get nodes --show-labels
 * ssh to the master: ssh -i ~/.ssh/id_rsa admin@api.gswk8s3.k8s.local
The admin user is specific to Debian. If not using Debian please use the
appropriate user based on your OS.
 * read about installing addons:
https://github.com/kubernetes/kops/blob/master/docs/addons.md

You'll be able to see instances and security groups, and a VPC will be created for your
cluster. The kubectl context will also be pointed at your new AWS cluster so that you can
interact with it:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[51]

Once again, we will SSH into master. This time, we can use the native SSH client and the
admin user as the AMI for Kubernetes in kops is Debian. We'll find the key files in
/home/<username>/.ssh:

$ ssh -v -i /home/<username>/.ssh/<your_id_rsa_file> admin@<Your master IP>

If you have trouble with your SSH key, you can set it manually on the cluster by creating a
secret, adding it to the cluster, and checking if the cluster requires a rolling update:

$ kops create secret --name gswk8s3.k8s.local sshpublickey admin -i
~/.ssh/id_rsa.pub
$ kops update cluster --yes
Using cluster from kubectl context: gswk8s3.k8s.local
I0320 22:03:42.823049 31465 apply_cluster.go:450] Gossip DNS: skipping DNS
validation
I0320 22:03:43.220675 31465 executor.go:91] Tasks: 0 done / 77 total; 30
can run
I0320 22:03:43.919989 31465 executor.go:91] Tasks: 30 done / 77 total; 24
can run
I0320 22:03:44.343478 31465 executor.go:91] Tasks: 54 done / 77 total; 19
can run
I0320 22:03:44.905293 31465 executor.go:91] Tasks: 73 done / 77 total; 3
can run
I0320 22:03:45.385288 31465 executor.go:91] Tasks: 76 done / 77 total; 1
can run
I0320 22:03:45.463711 31465 executor.go:91] Tasks: 77 done / 77 total; 0
can run
I0320 22:03:45.675720 31465 update_cluster.go:248] Exporting kubecfg for
cluster
kops has set your kubectl context to gswk8s3.k8s.local

Cluster changes have been applied to the cloud.

Changes may require instances to restart: kops rolling-update cluster

$ kops rolling-update cluster --name gswk8s3.k8s.local

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[52]

NAME STATUS NEEDUPDATE READY MIN MAX NODES
master-us-east-2a Ready 0 1 1 1 1
nodes Ready 0 2 2 2 2

No rolling-update required.
$

Once you've gotten into the cluster master, we can look at the containers. We'll use sudo
docker ps --format 'table {{.Image}}t{{.Status}}' to explore the running
containers. We should see the following:

admin@ip-172-20-47-159:~$ sudo docker container ls --format 'table
{{.Image}}\t{{.Status}}'
IMAGE STATUS
kope/dns-
controller@sha256:97f80ad43ff833b254907a0341c7fe34748e007515004cf0da09727c5
442f53b Up 29 minutes
gcr.io/google_containers/pause-amd64:3.0 Up 29 minutes
gcr.io/google_containers/kube-
apiserver@sha256:71273b57d811654620dc7a0d22fd893d9852b6637616f8e7e3f4507c60
ea7357 Up 30 minutes
gcr.io/google_containers/etcd@sha256:19544a655157fb089b62d4dac02bbd095f82ca
245dd5e31dd1684d175b109947 Up 30 minutes
gcr.io/google_containers/kube-
proxy@sha256:cc94b481f168bf96bd21cb576cfaa06c55807fcba8a6620b51850e1e30febe
b4 Up 30 minutes
gcr.io/google_containers/kube-controller-
manager@sha256:5ca59252abaf231681f96d07c939e57a05799d1cf876447fe6c2e1469d58
2bde Up 30 minutes
gcr.io/google_containers/etcd@sha256:19544a655157fb089b62d4dac02bbd095f82ca
245dd5e31dd1684d175b109947 Up 30 minutes
gcr.io/google_containers/kube-
scheduler@sha256:46d215410a407b9b5a3500bf8b421778790f5123ff2f4364f99b352a2b
a62940 Up 30 minutes
gcr.io/google_containers/pause-amd64:3.0 Up 30 minutes
gcr.io/google_containers/pause-amd64:3.0 Up 30 minutes
gcr.io/google_containers/pause-amd64:3.0 Up 30 minutes
gcr.io/google_containers/pause-amd64:3.0 Up 30 minutes
gcr.io/google_containers/pause-amd64:3.0 Up 30 minutes
gcr.io/google_containers/pause-amd64:3.0 Up 30 minutes
protokube:1.8.1

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[53]

We can see some of the same containers as our GCE cluster had. However, there are several
missing. We can see the core Kubernetes components, but the fluentd-gcp service is
missing, as well as some of the newer utilities such as node-problem-
detector, rescheduler, glbc, kube-addon-manager, and etcd-empty-dir-cleanup.
This reflects some of the subtle differences in the kube-up script between various public
cloud providers. This is ultimately decided by the efforts of the large Kubernetes open-
source community, but GCP often has many of the latest features first.

You also have a command that allows you to check on the state of the cluster in kops
validate cluster, which allows you to make sure that the cluster is working as
expected. There's also a lot of handy modes that kops provides that allow you to do various
things with the output, provisioners, and configuration of the cluster.

Other modes
There are various other modes to take into consideration, including the following:

Build a terraform model: --target=terraform. The terraform model will be
built in out/terraform.
Build a cloudformation model: --target=cloudformation. The
Cloudformation JSON file will be built in out/cloudformation.
Specify the K8s build to run: --kubernetes-version=1.2.2.
Run nodes in multiple zones: --zones=us-east-1b,us-east-1c,us-
east-1d.
Run with a HA master: --master-zones=us-east-1b,us-east-1c,us-
east-1d.
Specify the number of nodes: --node-count=4.
Specify the node size: --node-size=m4.large.
Specify the master size: --master-size=m4.large.
Override the default DNS zone: --dns-zone=<my.hosted.zone>.

The full list of CLI documentation can be found here: https:/ /github.
com/kubernetes/ kops/ tree/master/ docs/ cli.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli

Introduction to Kubernetes Chapter 1

[54]

Another tool for diagnosing the cluster status is the componentstatuses command, which
will inform you of state of the major Kubernetes moving pieces:

$ kubectl get componentstatuses
NAME STATUS MESSAGE ERROR
scheduler Healthy ok
controller-manager Healthy ok
etcd-0 Healthy {"health": "true"}

Resetting the cluster
You just had a little taste of running the cluster on AWS. For the remainder of this book, I
will be basing my examples on a GCE cluster. For the best experience following along, you
can get back to a GCE cluster easily.

Simply tear down the AWS cluster, as follows:

$ kops delete cluster --name ${NAME} --yes

If you omit the --yes flag, you'll get a similar dry run output that you can confirm. Then,
create a GCE cluster again using the following, and in doing so making sure that you're
back in the directory where you installed the Kubernetes code:

$ cd ~/<kubernetes_install_dir>
$ kube-up.sh

Investigating other deployment automation
If you'd like to learn more about other tools for cluster automation, we recommend that you
visit the kube-deploy repository, which has references to community maintained
Kubernetes cluster deployment tools.

Visit https:/ /github. com/ kubernetes/ kube- deploy to learn more.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy

Introduction to Kubernetes Chapter 1

[55]

Local alternatives
The kube-up.sh script and kops are pretty handy ways to get started using Kubernetes on
your platform of choice. However, they're not without flaws and can sometimes run
aground when conditions are not just so.

Luckily, since K8's inception, a number of alternative methods for creating clusters have
emerged. We'd recommend checking out Minikube in particular, as it's an extremely simple
and local development environment that you can use to test out your Kubernetes
configuration.

This project can be found here: https:/ /github. com/ kubernetes/ minikube.

It's important to mention that you're going to need a hypervisor on your
machine to run Minikube. For Linux, you can use kvm/kvm2, or
VirtualBox, and on macOS you can run native xhyve or VirtualBox. For
Windows, Hyper-V is the default hypervisor.

The main limitation for this project is that it only runs a single node, which limits our
exploration of certain advanced topics that require multiple machines. Minikube is a great
resource for simple or local development however, and can be installed very simply on
your Linux VM with the following:

$ curl -Lo minikube
https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd6
4 && chmod +x minikube && sudo mv minikube /usr/local/bin/

Or install it on macOS with the following:

$ brew cask install minikube

We'll cover how to get started with Minikube with the following commands:

$ minikube start
Starting local Kubernetes v1.7.5 cluster...
Starting VM...
SSH-ing files into VM...
Setting up certs...
Starting cluster components...
Connecting to cluster...
Setting up kubeconfig...
Kubectl is now configured to use the cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Introduction to Kubernetes Chapter 1

[56]

You can create a sample deployment quite simply:

$ kubectl run hello-minikube --image=k8s.gcr.io/echoserver:1.4 --port=8080
deployment "hello-minikube" created
$ kubectl expose deployment hello-minikube --type=NodePort
service "hello-minikube" exposed

Once you have your cluster and service up and running, you can interact with it simply by
using the kubectl tool and the context command. You can get to the Minikube
dashboard with minikube dashboard.

Minikube is powered by localkube (https:/ / github. com/ kubernetes/
minikube/ tree/ master/ pkg/localkube) and libmachine (https:/ /
github. com/ docker/ machine/ tree/ master/ libmachine). Check them out!

Additionally, we've already referenced a number of managed services, including GKE,
EKS, and Microsoft Azure Container Service (ACS), which provide an automated
installation and some managed cluster operations.

Starting from scratch
Finally, there is the option to start from scratch. Luckily, starting in 1.4, the Kubernetes
team has put a major focus on simplifying the cluster setup process. To that end, they have
introduced kubeadm for Ubuntu 16.04, CentOS 7, and HypriotOS v1.0.1+.

Let's take a quick look at spinning up a cluster on AWS from scratch using the kubeadm
tool.

Cluster setup
We will need to provision our cluster master and nodes beforehand. For the moment, we
are limited to the operating systems and version listed earlier. Additionally, it is
recommended that you have at least 1 GB of RAM. All the nodes must have network
connectivity to one another.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine

Introduction to Kubernetes Chapter 1

[57]

For this walkthrough, we will need one t2.medium (master node) and three t2.mirco
(nodes) sized instances on AWS. These instance have burstable CPU and come with the
minimum 1 GB of RAM that's required. We will need to create one master and three worker
nodes.

We will also need to create some security groups for the cluster. The following ports are
needed for the master:

Type Protocol Port range Source
All traffic All All {This SG ID (Master SG)}
All traffic All All {Node SG ID}
SSH TCP 22 {Your Local Machine's IP}
HTTPS TCP 443 {Range allowed to access K8s API and UI}

The following table shows the port's node security groups:

Type Protocol Port range Source
All traffic All All {Master SG ID}
All traffic All All {This SG ID (Node SG)}
SSH TCP 22 {Your Local Machine's IP}

Once you have these SGs, go ahead and spin up four instances (one t2.medium and three
t2.mircos) using Ubuntu 16.04. If you are new to AWS, refer to the documentation on
spinning up EC2 instances at the following
URL: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstan
ces.html.

Be sure to identify the t2.medium instance as the master and associate the master security
group. Name the other three as nodes and associate the node security group with those.

These steps are adapted from the walk-through in the manual. For more
information or to work with an alternative to Ubuntu, refer to https:/ /
kubernetes. io/ docs/ getting- started- guides/ kubeadm/ .

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/

Introduction to Kubernetes Chapter 1

[58]

Installing Kubernetes components (kubelet and
kubeadm)
Next, we will need to SSH into all four of the instances and install the Kubernetes
components.

As the root user, perform the following steps on all four instances:

Update the packages and install the apt-transport-https package so1.
that we can download from sources that use HTTPS:

 $ apt-get update
 $ apt-get install -y apt-transport-https

Install the Google Cloud public key:2.

 $ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg |
 apt-key add -

Next, let's set up the repository:3.

 cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
 deb http://apt.kubernetes.io/ kubernetes-xenial main
 EOF
 apt-get update
 apt-get install -y kubelet kubeadm kubectl docker.io kubernetes-cni

You'll need to make sure that the cgroup driver used by the kubelet on the master node is
configured correctly to work with Docker. Make sure you're on the master node, then run
the following:

docker info | grep -i cgroup
cat /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

If these items don't match, you're going to need to change the kubelet configuration to
match the Docker driver. Running sed -i "s/cgroup-driver=systemd/cgroup-
driver=cgroupfs/g" /etc/systemd/system/kubelet.service.d/10-

kubeadm.conf should fix the settings, or you can manually open the systemd file and
add the correct flag to the appropriate environment. After that's complete, restart the
service:

$ systemctl daemon-reload
$ systemctl restart kubelet

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[59]

Setting up a master
On the instance you have previously chosen as master, we will run master initialization.
Again, as the root, run the following command, and you should see the following output:

$ kubeadm init
[init] using Kubernetes version: v1.11.3
[preflight] running pre-flight checks
I1015 02:49:42.378355 5250 kernel_validator.go:81] Validating kernel
version
I1015 02:49:42.378609 5250 kernel_validator.go:96] Validating kernel config
[preflight/images] Pulling images required for setting up a Kubernetes
cluster
[preflight/images] This might take a minute or two, depending on the speed
of your internet connection
[preflight/images] You can also perform this action in beforehand using
'kubeadm config images pull'
[kubelet] Writing kubelet environment file with flags to file
"/var/lib/kubelet/kubeadm-flags.env"
[kubelet] Writing kubelet configuration to file
"/var/lib/kubelet/config.yaml"
[preflight] Activating the kubelet service
[certificates] Generated ca certificate and key.
[certificates] Generated apiserver certificate and key.
[certificates] apiserver serving cert is signed for DNS names [master
kubernetes kubernetes.default kubernetes.default.svc
kubernetes.default.svc.cluster.local] and IPs [10.96.0.1 172.17.0.71]
[certificates] Generated apiserver-kubelet-client certificate and key.
[certificates] Generated sa key and public key.
[certificates] Generated front-proxy-ca certificate and key.
[certificates] Generated front-proxy-client certificate and key.
[certificates] Generated etcd/ca certificate and key.
[certificates] Generated etcd/server certificate and key.
[certificates] etcd/server serving cert is signed for DNS names [master
localhost] and IPs [127.0.0.1 ::1]
[certificates] Generated etcd/peer certificate and key.
[certificates] etcd/peer serving cert is signed for DNS names [master
localhost] and IPs [172.17.0.71 127.0.0.1 ::1]
[certificates] Generated etcd/healthcheck-client certificate and key.
[certificates] Generated apiserver-etcd-client certificate and key.
[certificates] valid certificates and keys now exist in
"/etc/kubernetes/pki"
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/admin.conf"
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/kubelet.conf"
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/controller-
manager.conf"
[kubeconfig] Wrote KubeConfig file to disk:
"/etc/kubernetes/scheduler.conf"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[60]

[controlplane] wrote Static Pod manifest for component kube-apiserver to
"/etc/kubernetes/manifests/kube-apiserver.yaml"
[controlplane] wrote Static Pod manifest for component kube-controller-
manager to "/etc/kubernetes/manifests/kube-controller-manager.yaml"
[controlplane] wrote Static Pod manifest for component kube-scheduler to
"/etc/kubernetes/manifests/kube-scheduler.yaml"
[etcd] Wrote Static Pod manifest for a local etcd instance to
"/etc/kubernetes/manifests/etcd.yaml"
[init] waiting for the kubelet to boot up the control plane as Static Pods
from directory "/etc/kubernetes/manifests"
[init] this might take a minute or longer if the control plane images have
to be pulled
[apiclient] All control plane components are healthy after 43.001889
seconds
[uploadconfig] storing the configuration used in ConfigMap "kubeadm-config"
in the "kube-system" Namespace
[kubelet] Creating a ConfigMap "kubelet-config-1.11" in namespace kube-
system with the configuration for the kubelets in the cluster
[markmaster] Marking the node master as master by adding the label "node-
role.kubernetes.io/master=''"
[markmaster] Marking the node master as master by adding the taints [node-
role.kubernetes.io/master:NoSchedule]
[patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock"
to the Node API object "master" as an annotation
[bootstraptoken] using token: o760dk.q4l5au0jyx4vg6hr
[bootstraptoken] configured RBAC rules to allow Node Bootstrap tokens to
post CSRs in order for nodes to get long term certificate credentials
[bootstraptoken] configured RBAC rules to allow the csrapprover controller
automatically approve CSRs from a Node Bootstrap Token
[bootstraptoken] configured RBAC rules to allow certificate rotation for
all node client certificates in the cluster
[bootstraptoken] creating the "cluster-info" ConfigMap in the "kube-public"
namespace
[addons] Applied essential addon: CoreDNS
[addons] Applied essential addon: kube-proxy

Your Kubernetes master has initialized successfully!

To start using your cluster, you need to run the following as a regular
user:

 mkdir -p $HOME/.kube
 sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
 sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
 https://kubernetes.io/docs/concepts/cluster-administration/addons/

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Kubernetes Chapter 1

[61]

You can now join any number of machines by running the following on each
node
as root:

 kubeadm join 172.17.0.71:6443 --token o760dk.q4l5au0jyx4vg6hr --
discovery-token-ca-cert-hash
sha256:453e2964eb9cc0cecfdb167194f60c6f7bd8894dc3913e0034bf0b33af4f40f5

To start using your cluster, you need to run as a regular user:

mkdir -p $HOME/.kube
 sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
 sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster. Run kubectl apply -f
[podnetwork].yaml with one of the options listed at https:/ /kubernetes. io/ docs/
concepts/cluster- administration/ addons/ .

You can now join any number of machines by running the following on each node
as root:

kubeadm join --token <token> <master-ip>:<master-port> --discovery-token-
ca-cert-hash sha256:<hash>

Note that initialization can only be run once, so if you run into problems, you'll need to
use kubeadm reset.

Joining nodes
After a successful initialization, you will get a join command that can be used by the
nodes. Copy this down for the join process later on. It should look similar to this:

$ kubeadm join --token=<some token> <master ip address>

The token is used to authenticate cluster nodes, so make sure to store it somewhere securely
for future use.

Networking
Our cluster will need a networking layer for the pods to communicate on. Note that
kubeadm requires a CNI compatible network fabric. The list of plugins currently available
can be found here: http://kubernetes.io/docs/admin/addons/.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
http://kubernetes.io/docs/admin/addons/

Introduction to Kubernetes Chapter 1

[62]

For our example, we will use calico. We will need to create the calico components on our
cluster using the following yaml. For convenience, you can download it
here: http://docs.projectcalico.org/v1.6/getting-started/kubernetes/installation
/hosted/kubeadm/calico.yaml.

Once you have this file on your master, create the components with the following
command:

$ kubectl apply -f calico.yaml

Give this a minute to run setup and then list the kube-system nodes in order to check this:

$ kubectl get pods --namespace=kube-system

You should get a listing similar to the following one with three new calico pods and one
completed job that is not shown:

Calico setup

Joining the cluster
Now, we need to run the join command we copied earlier, on each of our node instances:

$ kubeadm join --token=<some token> <master ip address>

Once you've finished that, you should be able to see all nodes from the master by running
the following command:

$ kubectl get nodes

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://docs.projectcalico.org/v1.6/getting-started/kubernetes/installation/hosted/kubeadm/calico.yaml
http://docs.projectcalico.org/v1.6/getting-started/kubernetes/installation/hosted/kubeadm/calico.yaml

Introduction to Kubernetes Chapter 1

[63]

If all went well, this will show three nodes and one master, as shown here:

Summary
We took a very brief look at how containers work and how they lend themselves to the new
architecture patterns in microservices. You should now have a better understanding of how
these two forces will require a variety of operations and management tasks, and how
Kubernetes offers strong features to address these challenges. We created two different
clusters on both GCE and AWS, and explored the startup script as well as some of the built-
in features of Kubernetes. Finally, we looked at the alternatives to the kube-up script in
kops, and tried our hand at manual cluster configuration with the kubeadm tool on AWS
with Ubuntu 16.04.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

2
Understanding Kubernetes

Architecture
Kubernetes is a big open source project and ecosystem with a lot of code and a lot of
functionality. Kubernetes was made by Google, but joined the Cloud Native Computing
Foundation (CNCF) and became the clear leader in the field of container-based
applications. In one sentence, it is a platform to orchestrate the deployment, scaling, and
management of container-based applications. You have probably read about Kubernetes,
and maybe even dipped your toes in and used it in a side project, or maybe even at work.
But to understand what Kubernetes is all about, how to use it effectively, and what the best
practices require much more. In this chapter, we will build the foundation of knowledge
necessary to utilize Kubernetes to its full potential. We will start by understanding what
Kubernetes is, what Kubernetes isn't, and what container orchestration means exactly. Then
we will cover some important Kubernetes concepts that will form the vocabulary that we
will use throughout the book. After that, we will dive into the architecture of Kubernetes in
more detail and look at how it enables all the capabilities that it provides to its users. Then,
we will discuss the various runtimes and container engines that Kubernetes supports
(Docker is just one option) and, finally, we will discuss the role of Kubernetes in the full
continuous integration and deployment pipeline.

At the end of this chapter, you will have a solid understanding of container orchestration,
what problems Kubernetes addresses, the rationale for Kubernetes design and architecture,
and the different runtimes it supports. You'll also be familiar with the overall structure of
the open source repository and be ready to jump in and find answers to any question.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[65]

What is Kubernetes?
Kubernetes is a platform that encompasses a huge number of services and capabilities that
keep growing. Its core functionality is its ability to schedule workloads in containers across
your infrastructure, but it doesn't stop there. Here are some of the other capabilities
Kubernetes brings to the table:

Mounting storage systems
Distributing secrets
Checking application health
Replicating application instances
Using horizontal pod autoscaling
Naming and discovering
Balancing loads
Rolling updates
Monitoring resources
Accessing and ingesting logs
Debugging applications
Providing authentication and authorization 

What Kubernetes is not
Kubernetes is not a platform as a service (PaaS). It doesn't dictate many of the important
aspects of your desired system; instead, it leaves them up to you or to other systems built
on top of Kubernetes, such as Deis, OpenShift, and Eldarion. For example:

Kubernetes doesn't require a specific application type or framework
Kubernetes doesn't require a specific programming language
Kubernetes doesn't provide databases or message queues
Kubernetes doesn't distinguish apps from services
Kubernetes doesn't have a click-to-deploy service marketplace
Kubernetes allows users to choose their own logging, monitoring, and alerting
systems

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[66]

Understanding container orchestration
The primary responsibility of Kubernetes is container orchestration. This means making
sure that all the containers that execute various workloads are scheduled to run on physical
or virtual machines. The containers must be packed efficiently and follow the constraints of
the deployment environment and the cluster configuration. In addition, Kubernetes must
keep an eye on all running containers and replace dead, unresponsive, or otherwise
unhealthy containers. Kubernetes provides many more capabilities that you will learn
about in the following chapters. In this section, the focus is on containers and their
orchestration.

Physical machines, virtual machines, and
containers
It all starts and ends with hardware. In order to run your workloads, you need some real
hardware provisioned. That includes actual physical machines, with certain, compute
capabilities (CPUs or cores), memory, and some local persistent storage (spinning disks or
SSDs). In addition, you will need some shared persistent storage and the networking to
hook up all these machines so they can find and talk to each other. At this point, you can
run multiple virtual machines on the physical machines or stay at the bare-metal level (no
virtual machines). Kubernetes can be deployed on a bare-metal cluster (real hardware) or
on a cluster of virtual machines. Kubernetes, in turn, can orchestrate the containers it
manages directly on bare-metal or virtual machines. In theory, a Kubernetes cluster can be
composed of a mix of bare-metal and virtual machines, but this is not very common.

The benefits of containers
Containers represent a true paradigm shift in the development and operation of large,
complicated software systems. Here are some of the benefits compared to more traditional
models:

Agile application creation and deployment
Continuous development, integration, and deployment
Dev and ops separation of concerns
Environmental consistency across development, testing, and production
Cloud- and OS-distribution portability
Application-centric management

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[67]

Loosely coupled, distributed, elastic, liberated microservices
Resource isolation
Resource utilization 

Containers in the cloud
Containers are ideal to package microservices because, while providing isolation to the
microservice, they are very lightweight, and you don't incur a lot of overhead when
deploying many microservices as you do with virtual machines. That makes containers
ideal for cloud deployment, where allocating a whole virtual machine  for each microservice
would be cost prohibitive.

All major cloud providers, such as Amazon AWS, Google's GCE, Microsoft's Azure and
even Alibaba Cloud, provide container-hosting services these days. Google's GKE has
always been based on Kubernetes. AWS ECS is based on their own orchestration solution.
Microsoft Azure's container service was based on Apache Mesos. Kubernetes can be
deployed on all cloud platforms, but it wasn't deeply integrated with other services until
today. But at the end of 2017, all cloud providers announced direct support for Kubernetes.
Microsofts launched AKS, AWS released EKS, and Alibaba Cloud started working on a
Kubernetes controller manager to integrate Kubernetes seamlessly.

Cattle versus pets
In the olden days, when systems were small, each server had a name. Developers and users
knew exactly what software was running on each machine. I remember that, in many of the
companies I worked for, we had multi-day discussions to decide on a naming theme for our
servers. For example, composers and Greek mythology characters were popular choices.
Everything was very cozy. You treated your servers like beloved pets. When a server died,
it was a major crisis. Everybody scrambled to figure out where to get another server, what
was even running on the dead server, and how to get it working on the new server. If the
server stored some important data, then hopefully you had an up-to-date backup and
maybe you'd even be able to recover it.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[68]

Obviously, that approach doesn't scale. When you have a few tens or hundreds of servers,
you must start treating them like cattle. You think about the collective and not individuals.
You may still have some pets, but your web servers are just cattle.

Kubernetes takes the cattle approach to the extreme and takes full responsibility for
allocating containers to specific machines. You don't need to interact with individual
machines (nodes) most of the time. This works best for stateless workloads. For stateful
applications, the situation is a little different, but Kubernetes provides a solution called
StatefulSet, which we'll discuss soon.

In this section, we covered the idea of container orchestration and discussed the
relationships between hosts (physical or virtual) and containers, as well as the benefits of
running containers in the cloud, and finished with a discussion about cattle versus pets. In
the following section, we will get to know the world of Kubernetes and learn its concepts
and terminology.

Kubernetes concepts
In this section, I'll briefly introduce many important Kubernetes concepts and give you
some context as to why they are needed and how they interact with other concepts. The
goal is to get familiar with these terms and concepts. Later, we will see how these concepts
are woven together and organized into API groups and resource categories to achieve
awesomeness. You can consider many of these concepts as building blocks. Some of the
concepts, such as nodes and masters, are implemented as a set of Kubernetes components.
These components are at a different abstraction level, and I discuss them in detail in a
dedicated section, Kubernetes components.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[69]

Here is the famous Kubernetes architecture diagram:

Cluster
A cluster is a collection of compute, storage, and networking resources that Kubernetes
uses to run the various workloads that comprise your system. Note that your entire system
may consist of multiple clusters. We will discuss this advanced use case of federation in
detail later.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[70]

Node
A node is a single host. It may be a physical or virtual machine. Its job is to run pods, which
we will look at in a moment. Each Kubernetes node runs several Kubernetes components,
such as a kubelet and a kube proxy. Nodes are managed by a Kubernetes master. The nodes
are the worker bees of Kubernetes and shoulder all the heavy lifting. In the past, they were
called minions. If you have read some old documentation or articles, don't get confused.
Minions are nodes.

Master
The master is the control plane of Kubernetes. It consists of several components, such as an
API server, a scheduler, and a controller manager. The master is responsible for the global,
cluster-level scheduling of pods and the handling of events. Usually, all the master
components are set up on a single host. When considering high-availability scenarios or
very large clusters, you will want to have master redundancy.

Pod
A pod is the unit of work in Kubernetes. Each pod contains one or more containers. Pods
are always scheduled together (that is, they always run on the same machine). All the
containers in a pod have the same IP address and port space; they can communicate using
localhost or standard interprocess communication. In addition, all the containers in a pod
can have access to shared local storage on the node hosting the pod. The shared storage can
be mounted on each container. Pods are an important feature of Kubernetes. It is possible to
run multiple applications inside a single Docker container by having something such as
supervisord as the main Docker application that runs multiple processes, but this practice
is often frowned upon for the following reasons:

Transparency: Making the containers within the pod visible to the infrastructure
enables the infrastructure to provide services to those containers, such as process
management and resource monitoring. This facilitates a number of convenient
functionalities for users.
Decoupling software dependencies: The individual containers may be
versioned, rebuilt, and redeployed independently. Kubernetes may even support
live updates of individual containers someday.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[71]

Ease of use: Users don't need to run their own process managers, worry about
signal and exit-code propagation, and so on.
Efficiency: Because the infrastructure takes on more responsibility, containers
can be more lightweight.

Pods provide a great solution for managing groups of closely related containers that
depend on each other and need to cooperate on the same host to accomplish their purpose.
It's important to remember that pods are considered ephemeral, throwaway entities that
can be discarded and replaced at will. Any pod storage is destroyed with its pod. Each pod
gets a unique ID (UID), so you can still distinguish between them if necessary.

Label
Labels are key-value pairs that are used to group together sets of objects, very often pods.
This is important for several other concepts, such as replication controllers, replica sets, and
services that operate on dynamic groups of objects and need to identify the members of the
group. There is an NxN relationship between objects and labels. Each object may have
multiple labels, and each label may be applied to different objects. There are certain
restrictions on labels by design. Each label on an object must have a unique key. The label
key must adhere to a strict syntax. It has two parts: prefix and name. The prefix is optional.
If it exists, then it is separated from the name by a forward slash (/) and it must be a valid
DNS subdomain. The prefix must be 253 characters long at most. The name is mandatory
and must be 63 characters long at most. Names must start and end with an alphanumeric
character (a-z, A-Z, 0-9) and contain only alphanumeric characters, dots, dashes, and
underscores. Values follow the same restrictions as names. Note that labels are dedicated to
identifying objects and not to attach arbitrary metadata to objects. This is what annotations
are for (see the following section).

Annotations
Annotations let you associate arbitrary metadata with Kubernetes objects. Kubernetes just
stores the annotations and makes their metadata available. Unlike labels, they don't have
strict restrictions about allowed characters and size limits.

In my experience, you always need such metadata for complicated systems, and it is nice
that Kubernetes recognizes this need and provides it out of the box so you don't have to
come up with your own separate metadata store and map objects to their metadata.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[72]

We've covered most, if not all, of Kubernetes's concepts; there are a few more I mentioned
briefly. In the next section, we will continue our journey into Kubernetes's architecture by
looking into its design motivations, the internals, and its implementation, and even pick at
the source code.

Label selectors
Label selectors are used to selecting objects based on their labels. Equality-based selectors
specify a key name and a value. There are two operators, = (or ==) and !=, to denote
equality or inequality based on the value. For example:

role = webserver

This will select all objects that have that label key and value.

Label selectors can have multiple requirements separated by a comma. For example:

role = webserver, application != foo

Set-based selectors extend the capabilities and allow selection based on multiple values:

role in (webserver, backend)

Replication controllers and replica sets
Replication controllers and replica sets both manage a group of pods identified by a label
selector and ensure that a certain number is always up and running. The main difference
between them is that replication controllers test for membership by name equality and
replica sets can use set-based selection. Replica sets are the way to go, as they are a superset
of replication controllers. I expect replication controllers to be deprecated at some point.

Kubernetes guarantees that you will always have the same number of pods running that
you specified in a replication controller or a replica set. Whenever the number drops
because of a problem with the hosting node or the pod itself, Kubernetes will fire up new
instances. Note that if you manually start pods and exceed the specified number, the
replication controller will kill the extra pods.

Replication controllers used to be central to many workflows, such as rolling updates and
running one-off jobs. As Kubernetes evolved, it introduced direct support for many of these
workflows, with dedicated objects such as Deployment, Job, and DaemonSet. We will
meet them all later.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[73]

Services
Services are used to expose a certain functionality to users or other services. They usually
encompass a group of pods, usually identified by—you guessed it—a label. You can have
services that provide access to external resources, or to pods you control directly at the
virtual IP level. Native Kubernetes services are exposed through convenient endpoints.
Note that services operate at layer 3 (TCP/UDP). Kubernetes 1.2 added the Ingress object,
which provides access to HTTP objects—more on that later. Services are published or
discovered through one of two mechanisms: DNS or environment variables. Services can be
load balanced by Kubernetes, but developers can choose to manage load balancing
themselves in the case of services that use external resources or require special treatment.

There are many gory details associated with IP addresses, virtual IP addresses, and port
spaces. We will discuss them in-depth in a future chapter.

Volume
Local storage on the pod is ephemeral and goes away with the pod. Sometimes that's all
you need if the goal is just to exchange data between containers of the node, but sometimes
it's important for the data to outlive the pod, or it's necessary to share data between pods.
The volume concept supports that need. Note that, while Docker has a volume concept too,
it is quite limited (although it is getting more powerful). Kubernetes uses its own separate
volumes. Kubernetes also supports additional container types, such as rkt, so it can't rely on
Docker volumes, even in principle.

There are many volume types. Kubernetes currently directly supports many volume types,
but the modern approach for extending Kubernetes with more volume types is through the
Container Storage Interface (CSI), which I'll discuss in detail later. The emptyDir volume
type mounts a volume on each container that is backed by default by whatever is available
on the hosting machine. You can request a memory medium if you want. This storage is
deleted when the pod is terminated for any reason. There are many volume types for
specific cloud environments, various networked filesystems, and even Git repositories. An
interesting volume type is the persistentDiskClaim, which abstracts the details a little
bit and uses the default persistent storage in your environment (typically in a cloud
provider).

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[74]

StatefulSet
Pods come and go, and if you care about their data, then you can use persistent storage.
That's all good. But sometimes you might want Kubernetes to manage a distributed data
store, such as Kubernetes or MySQL Galera. These clustered stores keep the data
distributed across uniquely identified nodes. You can't model that with regular pods and
services. Enter StatefulSet. If you remember, earlier I discussed treating servers as pets
or cattle and how cattle is the way to go. Well, StatefulSet sits somewhere in the middle.
StatefulSet ensures (similar to a replication set) that a given number of pets with unique
identities are running at any given time. The pets have the following properties:

A stable hostname, available in DNS
An ordinal index
Stable storage linked to the ordinal and hostname

StatefulSet can help with peer discovery, as well as adding or removing pets.

Secrets
Secrets are small objects that contain sensitive information, such as credentials and tokens.
They are stored in etcd, are accessible by the Kubernetes API server, and can be mounted
as files into pods (using dedicated secret volumes that piggyback on regular data volumes)
that need access to them. The same secret can be mounted into multiple pods. Kubernetes
itself creates secrets for its components, and you can create your own secrets. Another
approach is to use secrets as environment variables. Note that secrets in a pod are always
stored in memory (tmpfs, in the case of mounted secrets) for better security.

Names
Each object in Kubernetes is identified by a UID and a name. The name is used to refer to
the object in API calls. Names should be up to 253 characters long and use lowercase
alphanumeric characters, dashes (-), and dots (.). If you delete an object, you can create
another object with the same name as the deleted object, but the UIDs must be unique
across the life cycle of the cluster. The UIDs are generated by Kubernetes, so you don't have
to worry about that.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[75]

Namespaces
A namespace is a virtual cluster. You can have a single physical cluster that contains
multiple virtual clusters segregated by namespaces. Each virtual cluster is totally isolated
from the other virtual clusters, and they can only communicate through public interfaces.
Note that node objects and persistent volumes don't live in a namespace. Kubernetes may
schedule pods from different namespaces to run on the same node. Likewise, pods from
different namespaces can use the same persistent storage.

When using namespaces, you have to consider network policies and resource quotas to
ensure proper access and distribution of the physical cluster resources.

Diving into Kubernetes architecture in-depth
Kubernetes has very ambitious goals. It aims to manage and simplify the orchestration,
deployment, and management of distributed systems across a wide range of environments
and cloud providers. It provides many capabilities and services that should work across all
that diversity, while evolving and remaining simple enough for mere mortals to use. This is
a tall order. Kubernetes achieves this by following a crystal-clear, high-level design and
using a well-thought-out architecture that promotes extensibility and pluggability. Many
parts of Kubernetes are still hard coded or environment aware, but the trend is to refactor
them into plugins and keep the core generic and abstract. In this section, we will peel
Kubernetes like an onion, starting with the various distributed systems design patterns and
how Kubernetes supports them, then go over the mechanics of Kubernetes, including its set
of APIs, and then take a look at the actual components that comprise Kubernetes. Finally,
we will take a quick tour of the source-code tree to gain even better insight into the
structure of Kubernetes itself.

At the end of this section, you will have a solid understanding of the Kubernetes
architecture and implementation, and why certain design decisions were made.

Distributed systems design patterns
All happy (working) distributed systems are alike, to paraphrase Tolstoy in Anna Karenina.
This means that, to function properly, all well-designed distributed systems must follow
some best practices and principles. Kubernetes doesn't want to be just a management
system. It wants to support and enable these best practices and provide high-level services
to developers and administrators. Let's look at some of these design patterns.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[76]

Sidecar pattern
The sidecar pattern is about co-locating another container in a pod in addition to the main
application container. The application container is unaware of the sidecar container and just
goes about its business. A great example is a central logging agent. Your main container can
just log to stdout, but the sidecar container will send all logs to a central logging service
where they will be aggregated with the logs from the entire system. The benefits of using a
sidecar container versus adding central logging to the main application container are
enormous. First, applications are no longer burdened with central logging, which could be
a nuisance. If you want to upgrade or change your central logging policy or switch to a
totally new provider, you just need to update the sidecar container and deploy it. None of
your application containers change, so you can't break them by accident.

Ambassador pattern
The ambassador pattern is about representing a remote service as if it were local and
possibly enforcing a policy. A good example of the ambassador pattern is if you have a
Redis cluster with one master for writes and many replicas for reads. A local ambassador
container can serve as a proxy and expose Redis to the main application container on the
localhost. The main application container simply connects to Redis on localhost:6379
(Redis's default port), but it connects to the ambassador running in the same pod, which
filters the requests, sends write requests to the real Redis master, and read requests
randomly to one of the read replicas. Just as we saw with the sidecar pattern, the main
application has no idea what's going on. That can help a lot when testing against a real local
Redis. Also, if the Redis cluster configuration changes, only the ambassador needs to be
modified; the main application remains blissfully unaware.

Adapter pattern
The adapter pattern is about standardizing output from the main application container.
Consider the case of a service that is being rolled out incrementally: It may generate reports
in a format that doesn't conform to the previous version. Other services and applications
that consume that output haven't been upgraded yet. An adapter container can be
deployed in the same pod with the new application container and can alter its output to
match the old version until all consumers have been upgraded. The adapter container
shares the filesystem with the main application container, so it can watch the local
filesystem, and whenever the new application writes something, it immediately adapts it.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[77]

Multinode patterns
The single-node patterns are all supported directly by Kubernetes through pods. Multinode
patterns, such as leader election, work queues, and scatter-gather, are not supported
directly, but composing pods with standard interfaces to accomplish them is a viable
approach with Kubernetes.

The Kubernetes APIs
If you want to understand the capabilities of a system and what it provides, you must pay a
lot of attention to its APIs. These APIs provide a comprehensive view of what you can do
with the system as a user. Kubernetes exposes several sets of REST APIs for different
purposes and audiences through API groups. Some of the APIs are used primarily by tools
and some can be used directly by developers. An important fact regarding the APIs is that
they are under constant development. The Kubernetes developers keep it manageable by
trying to extend it (by adding new objects and new fields to existing objects) and avoid
renaming or dropping existing objects and fields. In addition, all API endpoints are
versioned and often have an alpha or beta notation too. For example:

/api/v1
/api/v2alpha1

You can access the API through the kubectl cli, through client libraries, or directly
through REST API calls. There are elaborate authentication and authorization mechanisms
that we will explore in a later chapter. If you have the right permissions, you can list, view,
create, update, and delete various Kubernetes objects. At this point, let's glimpse the surface
area of the APIs. The best way to explore these APIs is through API groups. Some API
groups are enabled by default. Other groups can be enabled/disabled via flags. For
example, to disable the batch V1 group and enable the batch V2 alpha group, you can set
the --runtime-config flag when running the API server as follows:

--runtime-config=batch/v1=false,batch/v2alpha=true

The following resources are enabled by default, in addition to the core resources:

DaemonSets

Deployments

HorizontalPodAutoscalers

Ingress

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[78]

Jobs

ReplicaSets

Resource categories
In addition to API groups, another useful classification of the available APIs is
functionality. The Kubernetes API is huge, and breaking it down into categories helps a lot
when you're trying to find your way around. Kubernetes defines the following resource
categories:

Workloads: The objects you use to manage and run containers on the cluster.
Discovery and load balancing: The objects you use to expose your workloads to
the world as externally accessible, load-balanced services.
Config and storage: The objects you use to initialize and configure your
applications and to persist data that is outside the container.
Cluster: The objects that define how the cluster itself is configured; these are
typically used only by cluster operators.
Metadata: The objects you use to configure the behavior of other resources
within the cluster, such as HorizontalPodAutoscaler for scaling workloads.

In the following subsections, I'll list the resources that belong to each group, along with the
API group they belong to. I will not specify the version here because APIs move rapidly
from alpha to beta to general availability (GA), and then from V1 to V2, and so on.

Workloads API
The workloads API contains the following resources:

Container: Core
CronJob: Batch
DaemonSet: Apps
Deployment: Apps
Job: Batch
Pod: Core
ReplicaSet: Apps
ReplicationController: Core
StatefulSet: Apps

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[79]

Containers are created by controllers using pods. Pods run containers and provide
environmental dependencies, such as shared or persistent storage volumes, and
configuration or secret data injected into the container.

Here is a detailed description of one of the most common operations, which gets a list of all
the pods as a REST API:

GET /api/v1/pods

It accepts various query parameters (all optional):

pretty: If true, the output is pretty-printed
labelSelector: A selector expression to limit the result
watch: If true, this watches for changes and returns a stream of events
resourceVersion: Returns only events that occurred after that version
timeoutSeconds: Timeout for the list or watch operation

Discovery and load balancing
By default, workloads are only accessible within the cluster, and they must be exposed
externally using either a LoadBalancer or NodePort service. During development,
internally accessible workloads can be accessed via a proxy through the API master using
the kubectl proxy command:

Endpoints: Core
Ingress: Extensions
Service: Core

Config and storage
Dynamic configuration without redeployment is a cornerstone of Kubernetes and running
complex distributed applications on your Kubernetes cluster:

ConfigMap: Core
Secret: Core
PersistentVolumeClaim: Core
StorageClass: Storage
VolumeAttachment: Storage

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[80]

Metadata
The metadata resources typically are embedded as subresources of the resources they
configure. For example, a limit range will be part of a pod configuration. You will not
interact with these objects directly most of the time. There are many metadata resources.
You can find the complete list at https:/ /kubernetes. io/docs/ reference/ generated/
kubernetes-api/v1. 10/ #- strong- metadata- strong- .

Cluster
The resources in the cluster category are designed for use by cluster operators as opposed
to developers. There are many resources in this category as well. Here some of the most
important resources:

Namespace: Core
Node: Core
PersistentVolume: Core
ResourceQuota : Core
ClusterRole: Rbac
NetworkPolicy : Networking

Kubernetes components
A Kubernetes cluster has several master components that are used to control the cluster, as
well as node components that run on each cluster node. Let's get to know all these
components and how they work together.

Master components
The master components typically run on one node, but in a highly available or very large
cluster, they may be spread across multiple nodes.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#-strong-metadata-strong-

Understanding Kubernetes Architecture Chapter 2

[81]

API server
The Kube API server exposes the Kubernetes REST API. It can easily scale horizontally as it
is stateless and stores all the data in the etcd cluster. The API server is the embodiment of
the Kubernetes control plane.

Etcd
Etcd is a highly reliable, distributed data store. Kubernetes uses it to store the entire cluster
state. In a small, transient cluster, a single instance of etcd can run on the same node as all
the other master components, but for more substantial clusters, it is typical to have a three-
node or even five-node etcd cluster for redundancy and high availability.

Kube controller manager
The Kube controller manager is a collection of various managers rolled up into one binary.
It contains the replication controller, the pod controller, the services controller, the
endpoints controller, and others. All these managers watch over the state of the cluster
through the API and their job is to steer the cluster into the desired state.

Cloud controller manager
When running in the cloud, Kubernetes allows cloud providers to integrate their platform
for the purpose of managing nodes, routes, services, and volumes. The cloud provider code
interacts with the Kubernetes code. It replaces some of the functionality of the Kube
controller manager. When running Kubernetes with a cloud controller manager, you must
set the Kube controller manager flag --cloud-provider to external. This will disable the
control loops that the cloud controller manager is taking over. The cloud controller
manager was introduced in Kubernetes 1.6 and it is being used by multiple cloud providers
already.

A quick note about Go to help you parse the code: The method name
comes first, followed by the method's parameters in parentheses. Each
parameter is a pair, consisting of a name followed by its type. Finally, the
return values are specified. Go allows multiple return types. It is very
common to return an error object in addition to the actual result. If
everything is OK, the error object will be nil.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[82]

Here is the main interface of the cloudprovider package:

package cloudprovider
import (
 "errors"
 "fmt"
 "strings"
 "k8s.io/api/core/v1"
 "k8s.io/apimachinery/pkg/types"
 "k8s.io/client-go/informers"
 "k8s.io/kubernetes/pkg/controller"
)
// Interface is an abstract, pluggable interface for cloud providers.
type Interface interface {
 Initialize(clientBuilder controller.ControllerClientBuilder)
 LoadBalancer() (LoadBalancer, bool)
 Instances() (Instances, bool)
 Zones() (Zones, bool)
 Clusters() (Clusters, bool)
 Routes() (Routes, bool)
 ProviderName() string
 HasClusterID() bool
}

Most of the methods return other interfaces with their own method. For example, here is
the LoadBalancer interface:

type LoadBalancer interface {
 GetLoadBalancer(clusterName string,
 service *v1.Service) (status
*v1.LoadBalancerStatus,
 exists
bool,
 err
error)
 EnsureLoadBalancer(clusterName string,
 service *v1.Service,
 nodes []*v1.Node)
(*v1.LoadBalancerStatus, error)
 UpdateLoadBalancer(clusterName string, service *v1.Service, nodes
[]*v1.Node) error
 EnsureLoadBalancerDeleted(clusterName string, service *v1.Service)
error
}

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[83]

Kube-scheduler
kube-scheduler is responsible for scheduling pods into nodes. This is a very complicated
task as it requires considering multiple interacting factors, such as the following:

Resource requirements
Service requirements
Hardware/software policy constraints
Node affinity and antiaffinity specifications
Pod affinity and antiaffinity specifications
Taints and tolerations
Data locality
Deadlines

If you need some special scheduling logic not covered by the default Kube scheduler, you
can replace it with your own custom scheduler. You can also run your custom scheduler
side by side with the default scheduler and have your custom scheduler schedule only a
subset of the pods.

DNS
Since Kubernetes 1.3, a DNS service has been part of the standard Kubernetes cluster. It is
scheduled as a regular pod. Every service (except headless services) receives a DNS name.
Pods can receive a DNS name too. This is very useful for automatic discovery.

Node components
Nodes in the cluster need a couple of components to interact with the cluster master
components and to receive workloads to execute and update the cluster on their status.

Proxy
The Kube proxy does low-level, network housekeeping on each node. It reflects the
Kubernetes services locally and can do TCP and UDP forwarding. It finds cluster IPs
through environment variables or DNS.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[84]

Kubelet
The kubelet is the Kubernetes representative on the node. It oversees communicating with
the master components and manages the running pods. This includes the following actions:

Downloading pod secrets from the API server
Mounting volumes
Running the pod's container (through the CRI or rkt)
Reporting the status of the node and each pod
Running container liveness probes

In this section, we dug into the guts of Kubernetes, explored its architecture (from a very
high-level perspective), and supported design patterns, through its APIs and the
components used to control and manage the cluster. In the next section, we will take a
quick look at the various runtimes that Kubernetes supports.

Kubernetes runtimes
Kubernetes originally only supported Docker as a container runtime engine. But that is no
longer the case. Kubernetes now supports several different runtimes:

Docker (through a CRI shim)
Rkt (direct integration to be replaced with rktlet)
Cri-o

Frakti (Kubernetes on the hypervisor, previously Hypernetes)
Rktlet (CRI implementation for rkt)
cri-containerd

A major design policy is that Kubernetes itself should be completely decoupled from
specific runtimes. The Container Runtime Interface (CRI) enables this.

In this section, you'll get a closer look at the CRI and get to know  the individual runtime
engines. At the end of this section, you'll be able to make a well-informed decision about
which runtime engine is appropriate for your use case and under what circumstances you
may switch or even combine multiple runtimes in the same system.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[85]

The Container Runtime Interface (CRI)
The CRI is a gRPC API, containing specifications/requirements and libraries for container
runtimes to integrate with kubelet on a node. In Kubernetes 1.7, the internal Docker
integration in Kubernetes was replaced with a CRI-based integration. This is a big deal. It
opened the door to multiple implementations that take advantage of advances in the field
of container. The Kubelet doesn't need to interface directly with multiple runtimes. Instead,
it can talk to any CRI-compliant container runtime. The following diagram illustrates the
flow:

There are two gRPC service interfaces—ImageService and RuntimeService—that CRI
container runtimes (or shims) must implement. The ImageService is responsible for
managing images. Here is the gRPC/protobuf interface (this is not Go):

service ImageService {
 rpc ListImages(ListImagesRequest) returns (ListImagesResponse) {}
 rpc ImageStatus(ImageStatusRequest) returns (ImageStatusResponse) {}
 rpc PullImage(PullImageRequest) returns (PullImageResponse) {}
 rpc RemoveImage(RemoveImageRequest) returns (RemoveImageResponse) {}
 rpc ImageFsInfo(ImageFsInfoRequest) returns (ImageFsInfoResponse) {}
}

The RuntimeService is responsible for managing pods and containers. Here is the
gRPC/profobug interface:

service RuntimeService {
 rpc Version(VersionRequest) returns (VersionResponse) {}
 rpc RunPodSandbox(RunPodSandboxRequest) returns (RunPodSandboxResponse)
{}
 rpc StopPodSandbox(StopPodSandboxRequest) returns
(StopPodSandboxResponse) {}
 rpc RemovePodSandbox(RemovePodSandboxRequest) returns
(RemovePodSandboxResponse) {}
 rpc PodSandboxStatus(PodSandboxStatusRequest) returns
(PodSandboxStatusResponse) {}

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[86]

 rpc ListPodSandbox(ListPodSandboxRequest) returns
(ListPodSandboxResponse) {}
 rpc CreateContainer(CreateContainerRequest) returns
(CreateContainerResponse) {}
 rpc StartContainer(StartContainerRequest) returns
(StartContainerResponse) {}
 rpc StopContainer(StopContainerRequest) returns (StopContainerResponse)
{}
 rpc RemoveContainer(RemoveContainerRequest) returns
(RemoveContainerResponse) {}
 rpc ListContainers(ListContainersRequest) returns
(ListContainersResponse) {}
 rpc ContainerStatus(ContainerStatusRequest) returns
(ContainerStatusResponse) {}
 rpc UpdateContainerResources(UpdateContainerResourcesRequest) returns
(UpdateContainerResourcesResponse) {}
 rpc ExecSync(ExecSyncRequest) returns (ExecSyncResponse) {}
 rpc Exec(ExecRequest) returns (ExecResponse) {}
 rpc Attach(AttachRequest) returns (AttachResponse) {}
 rpc PortForward(PortForwardRequest) returns (PortForwardResponse) {}
 rpc ContainerStats(ContainerStatsRequest) returns
(ContainerStatsResponse) {}
 rpc ListContainerStats(ListContainerStatsRequest) returns
(ListContainerStatsResponse) {}
 rpc UpdateRuntimeConfig(UpdateRuntimeConfigRequest) returns
(UpdateRuntimeConfigResponse) {}
 rpc Status(StatusRequest) returns (StatusResponse) {}
}

The data types used as arguments and return types are called messages, and are also
defined as part of the API. Here is one of them:

message CreateContainerRequest {
 string pod_sandbox_id = 1;
 ContainerConfig config = 2;
 PodSandboxConfig sandbox_config = 3;
}

As you can see, messages can be embedded inside each other. The
CreateContainerRequest message has one string field and two other fields, which are
themselves messages: ContainerConfig and PodSandboxConfig.

Now that you are familiar at the code level with the Kubernetes runtime engine, let's look
at the individual runtime engines briefly.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[87]

Docker
Docker is, of course, the 800-pound gorilla of containers. Kubernetes was originally
designed to manage only Docker containers. The multi-runtime capability was first
introduced in Kubernetes 1.3 and the CRI in Kubernetes 1.5. Until then, Kubernetes could
only manage Docker containers.

If you are reading this book, I assume you're very familiar with Docker and what it brings
to the table. Docker is enjoying tremendous popularity and growth, but there is also a lot of
criticism being directed toward it. Critics often mention the following concerns:

Security
Difficulty setting up multi-container applications (in particular, networking)
Development, monitoring, and logging
Limitations of Docker containers running one command
Releasing half-baked features too fast

Docker is aware of the criticisms and has addressed some of these concerns. In particular,
Docker has invested in its Docker Swarm product. Docker swarm is a Docker-native
orchestration solution that competes with Kubernetes. It is simpler to use than Kubernetes,
but it's not as powerful or mature.

Since Docker 1.12, swarm mode has been included in the Docker daemon
natively, which upset some people because of its bloat and scope creep.
That in turn made more people turn to CoreOS rkt as an alternative
solution.

Since Docker 1.11, released in April 2016, Docker has changed the way it runs containers.
The runtime now uses containerd and runC to run Open Container Initiative (OCI)
images in containers:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[88]

Rkt
Rkt is a container manager from CoreOS (the developers of the CoreOS Linux distro, etcd,
flannel, and more). The rkt runtime prides itself on its simplicity and strong emphasis on
security and isolation. It doesn't have a daemon like the Docker engine, and relies on the OS
init system, such as systemd, to launch the rkt executable. Rkt can download images (both
app container (appc) images and OCI images), verify them, and run them in containers. Its
architecture is much simpler.

App container
CoreOS started a standardization effort in December 2014 called appc. This included the
standard image format (ACI), runtime, signing, and discovery. A few months later, Docker
started its own standardization effort with OCI. At this point, it seems these efforts will
converge. This is a great thing as tools, images, and runtime will be able to interoperate
freely. We're not there yet.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[89]

Cri-O
Cri-o is a Kubernetes incubator project. It is designed to provide an integration path
between Kubernetes and OCI-compliant container runtimes, such as Docker. The idea is
that Cri-O will provide the following capabilities:

Support multiple image formats, including the existing Docker image format
Support multiple means of downloading images, including trust and image
verification
Container image management (managing image layers, overlaying filesystems,
and so on)
Container process life cycle management
The monitoring and logging required to satisfy the CRI
Resource isolation as required by the CRI

Then any OCI-compliant container runtime can be plugged in and will be integrated with
Kubernetes.

Rktnetes
Rktnetes is Kubernetes plus rkt as the runtime engine. Kubernetes is still in the process of
abstracting away the runtime engine. Rktnetes is not really a separate product. From the
outside, all it takes is running the Kubelet on each node with a couple of command-line
switches.

Is rkt ready for use in production?
I don't have a lot of hands-on experience with rkt. However, it is used by Tectonic—the
commercial CoreOS-based Kubernetes distribution. If you run a different type of cluster, I
would suggest that you wait until rkt is integrated with Kubernetes through the CRI/rktlet.
There are some known issues you need to be aware of when using rkt as opposed to Docker
with Kubernetes—for example, missing volumes are not created automatically, Kubectl's
attach and get logs don't work, and init containers are not supported, among other issues.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[90]

Hyper containers
Hyper containers are another option. A Hyper container has a lightweight VM (its own
guest kernel) and it runs on bare metal. Instead of relying on Linux cgroups for isolation, it
relies on a hypervisor. This approach presents an interesting mix compared to standard,
bare-metal clusters that are difficult to set up and public clouds where containers are
deployed on heavyweight VMs.

Stackube
Stackube (previously called Hypernetes) is a multitenant distribution that uses Hyper
containers as well as some OpenStack components for authentication, persistent storage,
and networking. Since containers don't share the host kernel, it is safe to run containers of
different tenants on the same physical host. Stackube uses Frakti as its container runtime, of
course.

In this section, we've covered the various runtime engines that Kubernetes supports, as
well as the trend toward standardization and convergence. In the next section, we'll take a
step back and look at the big picture, as well as how Kubernetes fits into the CI/CD
pipeline.

Continuous integration and deployment
Kubernetes is a great platform for running your microservice-based applications. But, at the
end of the day, it is an implementation detail. Users, and often most developers, may not be
aware that the system is deployed on Kubernetes. But Kubernetes can change the game and
make things that were too difficult before possible.

In this section, we'll explore the CI/CD pipeline and what Kubernetes brings to the table. At
the end of this section, you'll be able to design CI/CD pipelines that take advantage of
Kubernetes properties, such as easy-scaling and development-production parity, to
improve the productivity and robustness of your day-to-day development and
deployment.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[91]

What is a CI/CD pipeline?
A CI/CD pipeline is a set of steps implemented by developers or operators that modify the
code, data, or configuration of a system, test it, and deploy it to production. Some pipelines
are fully automated and some are semiautomated with human checks. In large
organizations, there may be test and staging environments that changes are deployed to
automatically, but release to production requires manual intervention. The following
diagram describes a typical pipeline.

It may be worth mentioning that developers can be completely isolated from the
production infrastructure. Their interface is just a Git workflow—a good example of this is
the Deis workflow (PaaS on Kubernetes; similar to Heroku).

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kubernetes Architecture Chapter 2

[92]

Designing a CI/CD pipeline for Kubernetes
When your deployment target is a Kubernetes cluster, you should rethink some traditional
practices. For starters, the packaging is different. You need to bake images for your
containers. Reverting code changes is super easy and instantaneous using smart labeling. It
gives you a lot of confidence that, if a bad change slips through the testing net, somehow,
you'll be able to revert to the previous version immediately. But you want to be careful
there. Schema changes and data migrations can't be automatically rolled back.

Another unique capability of Kubernetes is that developers can run a whole cluster locally.
That takes some work when you design your cluster, but since the microservices that
comprise your system run in containers, and those containers interact through APIs, it is
possible and practical to do. As always, if your system is very data-driven, you will need to
accommodate for that and provide data snapshots and synthetic data that your developers
can use.

Summary
In this chapter, we covered a lot of ground, and you got to understand the design and
architecture of Kubernetes. Kubernetes is an orchestration platform for microservice-based
applications running as containers. Kubernetes clusters have master and worker nodes.
Containers run within pods. Each pod runs on a single physical or virtual machine.
Kubernetes directly supports many concepts, such as services, labels, and persistent
storage. You can implement various distributed system design patterns on Kubernetes.
Container runtimes just need to implement the CRI. Docker, rkt, Hyper containers, and
more are supported.

In Chapter 10, Creating Kubernetes Clusters, we will explore the various ways to create
Kubernetes clusters, discuss when to use different options, and build a multi-node cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

3
Building a Foundation with Core

Kubernetes Constructs
This chapter will cover the core Kubernetes constructs, namely pods, services, replication
controllers, replica sets, and labels. We will describe Kubernetes components, dimensions
of the API, and Kubernetes objects. We will also dig into the major Kubernetes cluster
components. A few simple application examples will be included to demonstrate each
construct. This chapter will also cover basic operations for your cluster. Finally, health
checks and scheduling will be introduced with a few examples.

The following topics will be covered in this chapter:

Kubernetes' overall architecture
The context of Kubernetes architecture within system theory
Introduction to core Kubernetes constructs, architecture, and components
How labels can simplify the management of a Kubernetes cluster
Monitoring services and container health
Setting up scheduling constraints based on available cluster resources

Technical requirements
You'll need to have your Google Cloud Platform account enabled and logged in or you can
use a local Minikube instance of Kubernetes. You can also use Play with Kubernetes over
the web: https://labs. play- with- k8s. com/.

Here's the GitHub repository for this chapter: https:/ /github. com/PacktPublishing/ The-
Complete-Kubernetes- Guide/ tree/ master/ Chapter03.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter03

Building a Foundation with Core Kubernetes Constructs Chapter 3

[94]

The Kubernetes system
To understand the complex architecture and components of Kubernetes, we should take a
step back and look at the landscape of the overall system in order to understand the context
and place of each moving piece. This book focuses mainly on the technical pieces and
processes of the Kubernetes software, but let's examine the system from a top-down
perspective. In the following diagram, you can see the major parts of the Kubernetes
system, which is a great way to think about the classification of the parts we'll describe and
utilize in this book:

Let's take a look at each piece, starting from the bottom.

Nucleus
The nucleus of the Kubernetes system is devoted to providing a standard API and manner
in which operators and/or software can execute work on the cluster. The nucleus is the bare
minimum set of functionality that should be considered absolutely stable in order to build
up the layers above. Each piece of this layer is clearly documented, and these pieces are
required to build higher-order concepts at other layers of the system. You can consider the
APIs here to make up the core bits of the Kubernetes control plane.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[95]

The cluster control plane is the first half of the Kubernetes nucleus, and it provides the
RESTful APIs that allow operators to utilized the mostly CRUD-based operations of the
cluster. It is important to note that the Kubernetes nucleus and consequently the cluster
control plane was built with multi-tenancy in mind, so the layer must be flexible enough to
provide logical separation of teams or workloads within a single cluster. The cluster control
plane follows API conventions that allow it to take advantage of shared services such as
identity and auditing, and has access to the namespaces and events of the cluster.

The second half of the nucleus is execution. While there are a number of controllers in
Kubernetes, such as the replication controller, replica set, and deployments, the kubelet is
the most important controller and it forms the basis of the node and pod APIs that allow us
to interact with the container execution layer. Kubernetes builds upon the kubelet with the
concept of pods, which allow us to manage many containers and their constituent storage
as a core capability of the system. We'll dig more into pods later.

Below the nucleus, we can see the various pieces that the kubelet depends on in order to
manage the container, network, container storage, image storage, cloud provider, and
identity. We've left these intentionally vague as there are several options for each box, and
you can pick and choose from standard and popular implementations or experiment with
emerging tech. To give you an idea of how many options there are in the base layer, we'll
outline container runtime and network plugin options here.

Container Runtime options: You'll use the Kubernetes Container Runtime Interface (CRI)
to interact with the two main container runtimes:

containerd
rkt

You're still able to run Docker containers on Kubernetes at this point, and as containerd is
the default runtime, it's going to be transparent to the operator at this point due to the
defaults. You'll be able to run all of the same docker <action> commands on the cluster
to introspect and gather information about your clusters.

There are also several competing, emerging formats:

 cri-containerd: https:/ / github. com/ containerd/ cri- containerd

runv and clear containers, which are hypervisor-based solutions: https:/ /
github.com/ hyperhq/ runv and https:/ /github. com/ clearcontainers/ runtime

kata containers, which are a combination of runv and clear containers: https:/ /
katacontainers. io/

frakti containers, which combine runv and Docker: https:/ /github. com/
kubernetes/ frakti

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti

Building a Foundation with Core Kubernetes Constructs Chapter 3

[96]

You can read more about the CRI here: http:/ /blog. kubernetes. io/
2016/ 12/ container- runtime- interface- cri-in- kubernetes. html.

Network plugin: You can use the CNI to leverage any of the following plugins or the
simple Kubenet networking implementation if you're going to rely on a cloud provider's
network segmentation, or if you're going to be running a single node cluster:

Cilium
Contiv
Contrail
Flannel
Kube-router
Multus
Calico
Romana
Weave net

Application layer
The application layer, often referred to as the service fabric or orchestration layer, does all
of the fun things we've come to value so highly in Kubernetes: basic deployment and
routing, service discovery, load balancing, and self-healing. In order for a cluster operator
to manage the life cycle of the cluster, these primitives must be present and functional in
this layer. Most containerized applications will depend on the full functionality of this
layer, and will interact with these functions in order to provide "orchestration" of the
application across multiple cluster hosts. When an application scales up or changes a
configuration setting, the application layer will be managed by this layer. The application
layer cares about the desired state of the cluster, the application composition, service
discovery, load balancing, and routing, and utilizes all of these pieces to keep data flowing
from the correct point A to the correct point B.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html

Building a Foundation with Core Kubernetes Constructs Chapter 3

[97]

Governance layer
The governance layer consists of high-level automation and policy enforcement. This layer
can be thought of as an opinionated version of the application management layer, as it
provides the ability to enforce tenancy, gather metrics, and do intelligent provisioning and
autoscaling of containers. The APIs at this layer should be considered options for running
containerized applications.

The governance layer allows operators to control methods used for authorization, as well as
quotas and control around network and storage. At this layer, functionality should be
applicable to scenarios that large enterprises care about, such as operations, security, and
compliance scenarios.

Interface layer
The interface layer is made up of commonly used tools, systems, user interfaces, and
libraries that other custom Kubernetes distributions might use. The kubectl library is a
great example of the interface layer, and importantly it's not seen as a privileged part of the
Kubernetes system; it's considered a client tool in order to provide maximum flexibility for
the Kubernetes API. If you run $ kubectl -h, you will get a clear picture of the
functionality exposed to the interface layer.

Other pieces at this layer include cluster federation tools, dashboards, Helm, and client
libraries such as client-node, KubernetesClient, and python. These tools provide
common tasks for you, so you don't have to worry about writing code for authentication,
for example. These libraries use the Kubernetes Service Account to authenticate to the
cluster.

Ecosystem
The last layer of the Kubernetes system is the ecosystem, and it's by far the busiest and
most hectic part of the picture. Kubernetes approach to container orchestration and
management is to present the user with the options of a complementary choice; there are
plug-in and general purpose APIs available for external systems to utilize. You can consider
three types of ecosystem pieces in the Kubernetes system:

Above Kubernetes: All of the glue software and infrastructure that's needed to
"make things go" sits at this level, and includes operational ethos such as
ChatOps and DevOps, logging and monitoring, Continuous Integration and
Delivery, big data systems, and Functions as a Service.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[98]

Inside Kubernetes: In short, what's inside a container is outside of
Kubernetes. Kubernetes, or K8s, cares not at all what you run inside of a
container.
Below Kubernetes: These are the gray squares detailed at the bottom of the
diagram. You'll need a technology for each piece of foundational technology to
make Kubernetes function, and the ecosystem is where you get them. The cluster
state store is probably the most famous example of an ecosystem component:
etcd. Cluster bootstrapping tools such as minikube, bootkube, kops, kube-
aws, and kubernetes-anywhere are other examples of community-provided
ecosystem tools.

Let's move on to the architecture of the Kubernetes system, now that we understand the
larger context.

The architecture
Although containers bring a helpful layer of abstraction and tooling for application
management, Kubernetes brings additional to schedule and orchestrate containers at scale,
while managing the full application life cycle.

K8s moves up the stack, giving us constructs to deal with management at the application-
or service- level. This gives us automation and tooling to ensure high availability,
application stack, and service-wide portability. K8s also allows finer control of resource
usage, such as CPU, memory, and disk space across our infrastructure.

Kubernetes architecture is comprised of three main pieces:

The cluster control plane (the master)
The cluster state (a distributed storage system called etcd)
Cluster nodes (individual servers running agents called kubelets)

The Master
The cluster control plane, otherwise known as the Master, makes global decisions based on
the current and desired state of the cluster, detecting and responding to events as they
propagate across the cluster. This includes starting and stopping pods if the replication
factor of a replication controller is unsatisfied or running a scheduled cron job.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[99]

The overarching goal of the control plane is to report on and work towards a desired state.
The API that the master runs depends on the persistent state store, etcd, and utilizes
the watch strategy for minimizing change latency while enabling decentralized component
coordination.

Components of the Master can be realistically run on any machine in the cluster, but best
practices and production-ready systems dictate that master components should be co-
located on a single machine (or a multi-master high availability setup). Running all of the
Master components on a single machine allows operators to exclude running user
containers on those machines, which is recommended for more reliable control plane
operations. The less you have running on your Master node, the better!

We'll dig into the Master components, including kube-apiserver, etcd, kube-
scheduler, kube-controller-manager, and cloud-controller-manager when we
get into more detail on the Master node. It is important to note that the Kubernetes goal
with these components is to provide a RESTful API against mostly persistent storage
resources and a CRUD (Create, Read, Update, and Delete) strategy. We'll explore the basic
primitives around container-specific orchestration and scheduling later in this chapter
when we read about services, ingress, pods, deployments, StatefulSet, CronJobs, and
ReplicaSets.

Cluster state
The second major piece of the Kubernetes architecture, the cluster state, is the etcd key
value store. etcd is consistent and highly available, and is designed to quickly and reliably
provide Kubernetes access to critical cluster current and desired state. etcd is able to
provide this distributed coordination of data through such core concepts as leader election
and distributed locks. The Kubernetes API, via its API server, is in charge of updating
objects in etcd that correspond to the RESTful operations of the cluster. This is very
important to remember: the API server is responsible for managing what's stuck into
Kubernetes' picture of the world. Other components in this ecosystem watch etcd for
changes in order to modify themselves and enter into the desired state.

This is of particular important because every component we've described in the Kubernetes
Master and those that we'll investigate in the nodes below are stateless, which means their
state is stored elsewhere, and that elsewhere is etcd.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[100]

Kubernetes doesn't take specific action to make things happen on the cluster; the
Kubernetes API, via the API server, writes into etcd what should be true, and then the
various pieces of Kubernetes make it so. etcd provides this interface via a simple
HTTP/JSON API, which makes interacting with it quite simple.

etcd is also important in considerations of the Kubernetes security model due to it existing
at a very low layer of the Kubernetes system, which means that any component that can
write data to etcd has root to the cluster. Later on, we'll look into how the Kubernetes
system is divided into layers in order to minimize this exposure. You can consider etcd to
underlay Kubernetes with other parts of the ecosystem such as the container runtime, an
image registry, a file storage, a cloud provider interface, and other dependencies that
Kubernetes manages but does not have an opinionated perspective on.

In non-production Kubernetes clusters, you'll see single-node instantiations of etcd to save
money on compute, simplify operations, or otherwise reduce complexity. It is essential to
note however that a multi-master strategy of 2n+1 nodes is essential for production-ready
clusters, in order to replicate data effectively across masters and ensure fault tolerance. It is
recommended that you check the etcd documentation for more information.

Check out the etcd documentation here: https:/ /github. com/ coreos/
etcd/ blob/ master/ Documentation/ docs. md.

If you're in front of your cluster, you can check to see the status of etcd by checking
componentstatuses or cs:

[node3 /]$ kubectl get componentstatuses
NAME STATUS MESSAGE ERROR
scheduler Healthy ok
controller-manager Healthy ok
etcd-0 Healthy {"health": "true"}

Due to a bug in the AKS ecosystem, this will currently not work on Azure.
You can track this issue here to see when it is resolved:

https:/ /github. com/ Azure/ AKS/ issues/ 173: kubectl get
componentstatus fails for scheduler and controller-
manager #173

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173
https://github.com/Azure/AKS/issues/173

Building a Foundation with Core Kubernetes Constructs Chapter 3

[101]

If you were to see an unhealthy etcd service, it'd look something like so:

[node3 /]$ kubectl get cs

NAME STATUS MESSAGE ERROR
etcd-0 Unhealthy Get
http://127.0.0.1:2379/health: dial tcp 127.0.0.1:2379: getsockopt:
connection refused
controller-manager Healthy ok
scheduler Healthy ok

Cluster nodes
The third and final major Kubernetes component are the cluster nodes. While the master
node components only run on a subset of the Kubernetes cluster, the node components run
everywhere; they manage the maintenance of running pods, containers, and other
primitives and provide the runtime environment. There are three node components:

Kubelet
Kube-proxy
Container runtime

We'll dig into the specifics of these components later, but it's important to note several
things about node componentry first. The kubelet can be considered the primary controller
within Kubernetes, and providers the pod/node APIs that are used by the container
runtime to execute container functionality. This functionality is grouped by container and
their corresponding storage volumes into the concept of pods. The concept of a pod gives
application developers a straightforward packaging paradigm from which to design their
application, and allows us to take maximum advantage of the portability of containers,
while realizing the power of orchestration and scheduling across many instances of a
cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[102]

It's interesting to note that a number of Kubernetes components run on Kubernetes itself (in
other words, powered by the kubelets), including DNS, ingress, the Dashboard, and the
resource monitoring of Heapster:

Kubernetes core architecture

In the preceding diagram, we see the core architecture of Kubernetes. Most administrative
interactions are done via the kubectl script and/or RESTful service calls to the API.

As mentioned, note the ideas of the desired state and actual state carefully. This is the key
to how Kubernetes manages the cluster and its workloads. All the pieces of K8s are
constantly working to monitor the current actual state and synchronize it with the desired
state defined by the administrators via the API server or kubectl script. There will be
times when these states do not match up, but the system is always working to reconcile the
two.

Let's dig into more detail on the Master and node instances.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[103]

Master
We know now that the Master is the brain of our cluster. We have the core API server,
which maintains RESTful web services for querying and defining our desired cluster and
workload state. It's important to note that the control pane only accesses the master to
initiate changes and not the nodes directly.

Additionally, the master includes the scheduler. The replication controller/replica set
works with the API server to ensure that the correct number of pod replicas are running at
any given time. This is exemplary of the desired state concept. If our replication
controller/replica set is defining three replicas and our actual state is two copies of the pod
running, then the scheduler will be invoked to add a third pod somewhere in our cluster.
The same is true if there are too many pods running in the cluster at any given time. In this
way, K8s is always pushing toward that desired state.

As discussed previously, we'll look more closely into each of the Master components.
kube-apiserver has the job of providing the API for the cluster as the front end of the
control plane that the Master is providing. In fact, the apiserver is exposed through a
service specifically called kubernetes, and we install the API server using the kubelet.
This service is configured via the kube-apiserver.yaml file, which lives in
/etc/kubernetes/manifests/ on every manage node within your cluster.

kube-apiserver is a key portion of high availability in Kubernetes and, as such, it's
designed to scale horizontally. We'll discuss how to construct highly available clusters later
in this book, but suffice to say that you'll need to spread the kube-apiserver container
across several Master nodes and provide a load balancer in the front.

Since we've gone into some detail about the cluster state store, it will suffice to say that an
etcd agent is running on all of the Master nodes.

The next piece of the puzzle is kube-scheduler, which makes sure that all pods are
associated and assigned to a node for operation. The schedulers works with the API server
to schedule workloads in the form of pods on the actual minion nodes. These pods include
the various containers that make up our application stacks. By default, the basic Kubernetes
scheduler spreads pods across the cluster and uses different nodes for matching pod
replicas. Kubernetes also allows specifying necessary resources, hardware and software
policy constraints, affinity or anti-affinity as required, and data volume locality for each
container, so scheduling can be altered by these additional factors.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[104]

The last two main pieces of the Master nodes are kube-controller-manager and cloud-
controller-manager. As you might have guessed based on their names, while both of
these services play an important part in container orchestration and scheduling, kube-
controller-manager helps to orchestrate core internal components of Kubernetes, while
cloud-controller-manager interacts with different vendors and their cloud provider
APIs.

kube-controller-manager is actually a Kubernetes daemon that embeds the core control
loops, otherwise known as controllers, that are included with Kubernetes:

The Node controller, which manages pod availability and manages pods when
they go down
The Replication controller, which ensures that each replication controller object
in the system has the correct number of pods
The Endpoints controller, which controls endpoint records in the API, thereby
managing DNS resolution of a pod or set of pods backing a service that defines
selectors

In order to reduce the complexity of the controller components, they're all packed and
shipped within this single daemon as kube-controller-manager.

cloud-controller-manager, on the other hand, pays attention to external components,
and runs controller loops that are specific to the cloud provider that your cluster is
using. The original intent of this design was to decouple the internal development of
Kubernetes from cloud-specific vendor code. This was accomplished through the use of
plugins, which prevents Kubernetes from relying on code that is not inherent to its value
proposition. We can expect over time that future releases of Kubernetes will move vendor-
specific code completely out of the Kubernetes code base, and that vendor-specific code
will be maintained by the vendor themselves, and then called on by the Kubernetes cloud-
controller-manager. This design prevents the need for several pieces of Kubernetes to
communicate with the cloud provider, namely the kubelet, Kubernetes controller manager,
and the API server.

Nodes (formerly minions)
In each node, we have several components as mentioned already. Let's look at each of them
in detail.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[105]

The kubelet interacts with the API server to update the state and to start new workloads
that have been invoked by the scheduler. As previously mentioned, this agent runs on
every node of the cluster. The primary interface of the kubelet is one or more PodSpecs,
which ensure that the containers and configurations are healthy.

The kube-proxy provides basic load balancing and directs the traffic destined for specific
services to the proper pod on the backend. It maintains these network rules to enable the
service abstraction through connection forwarding.

The last major component of the node is the container runtime, which is responsible for
initiating, running, and stopping containers. The Kubernetes ecosystem has introduced the
OCI runtime specification to democratize the container scheduler/orchestrator interface.
While Docker, rkt, and runc are the current major implementations, the OCI aims to
provide a common interface so you can bring your own runtime. At this point, Docker is
the overwhelmingly dominant runtime.

Read more about the OCI runtime specifications here: https:/ /github.
com/opencontainers/ runtime- spec.

In your cluster, the nodes may be virtual machines or bare metal hardware. Compared to
other items such as controllers and pods, the node is not an abstraction that is created by
Kubernetes. Rather, Kubernetes leverages cloud-controller-manager to interact with
the cloud provider API, which owns the life cycle of the nodes. That means that when we
instantiate a node in Kubernetes, we're simply creating an object that represents a machine
in your given infrastructure. It's up to Kubernetes to determine if the node has converged
with the object definition. Kubernetes validates the node's availability through its IP
address, which is gathered via the metadata.name field. The status of these nodes can be
discovered through the following status keys.

The addresses are where we'll find information such as the hostname and private and
public IPs. This will be specific to your cloud provider's implementation. The
condition field will give you a view into the state of your node's status in terms of disk,
memory, network, and basic configuration.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec

Building a Foundation with Core Kubernetes Constructs Chapter 3

[106]

Here's a table with the available node conditions:

A healthy node will have a status that looks similar to the following if you run it, you'll see
the following output in the code:

$ kubectl get nodes -o json

"conditions": [
 {
 "type": "Ready",
 "status": "True"
 }
]

Capacity is simple: it's the available CPU, memory, and resulting number of pods that can
be run on a given node. Nodes self-report their capacity and leave the responsibility for
scheduling the appropriate number of resources to Kubernetes. The Info key is similarly
straightforward and provides version information for Docker, OS, and Kubernetes.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[107]

It's important to note that the major component of the Kubernetes and node relationship is
the node controller, which we called out previously as one of the core system controllers.
There are three strategic pieces to this relationship:

Node health: When you run large clusters in private, public, or hybrid cloud
scenarios, you're bound to lose machines from time to time. Even within the data
center, given a large enough cluster, you're bound to see regular failures at scale.
The node controller is responsible for updating the node's NodeStatus to either
NodeReady or ConditionUnknown, depending on the instance's availability.
This management is key as Kubernetes will need to migrate pods (and therefore
containers) to available nodes if ConditionUnknown occurs. You can set the
health check interval for nodes in your cluster with --node-monitor-period.
IP assignment: Every node needs some IP addresses, so it can distribute IPs to
services and or containers.
Node list: In order to manage pods across a number of machines, we need to
keep an up-to-date list of available machines. Based on the aforementioned
NodeStatus, the node controller will keep this list current.

We'll look into node controller specifics when investigating highly available clusters that
span Availability Zones (AZs), which requires the spreading of nodes across AZs in order
to provide availability.

Finally, we have some default pods, which run various infrastructure services for the node.
As we explored briefly in the previous chapter, the pods include services for the Domain
Name System (DNS), logging, and pod health checks. The default pod will run alongside
our scheduled pods on every node.

In v1.0, minion was renamed to node, but there are still remnants of the
term minion in some of the machine naming scripts and documentation
that exists on the web. For clarity, I've added the term minion in addition
to node in a few places throughout this book.

Core constructs
Now, let's dive a little deeper and explore some of the core abstractions Kubernetes
provides. These abstractions will make it easier to think about our applications and ease the
burden of life cycle management, high availability, and scheduling.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[108]

Pods
Pods allow you to keep related containers close in terms of the network and hardware
infrastructure. Data can live near the application, so processing can be done without
incurring a high latency from network traversal. Similarly, common data can be stored on
volumes that are shared between a number of containers. Pods essentially allow you to
logically group containers and pieces of our application stacks together.

While pods may run one or more containers inside, the pod itself may be one of many that
is running on a Kubernetes node (minion). As we'll see, pods give us a logical group of
containers across which we can then replicate, schedule, and balance service endpoints.

Pod example
Let's take a quick look at a pod in action. We'll spin up a Node.js application on the cluster.
You'll need a GCE cluster running for this; if you don't already have one started, refer to the
Our first cluster section in Chapter 1, Introduction to Kubernetes.

Now, let's make a directory for our definitions. In this example, I'll create a folder in the
/book-examples subfolder under our home directory:

$ mkdir book-examples
$ cd book-examples
$ mkdir 02_example
$ cd 02_example

You can download the example code files from your account at
http://www.packtpub.com for all of the Packt Publishing books you have
purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed
directly to you.

Use your favorite editor to create the following file and name it as nodejs-pod.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: node-js-pod
spec:
 containers:
 - name: node-js-pod
 image: bitnami/apache:latest
 ports:
 - containerPort: 80

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com
http://www.packtpub.com/support

Building a Foundation with Core Kubernetes Constructs Chapter 3

[109]

This file creates a pod named node-js-pod with the latest bitnami/apache container
running on port 80. We can check this using the following command:

$ kubectl create -f nodejs-pod.yaml
pod "node-js-pod" created

This gives us a pod running the specified container. We can see more information on the
pod by running the following command:

$ kubectl describe pods/node-js-pod

You'll see a good deal of information, such as the pod's status, IP address, and even
relevant log events. You'll note the pod IP address is a private IP address, so we cannot
access it directly from our local machine. Not to worry, as the kubectl exec command
mirrors Docker's exec functionality. You can get the pod IP address in a number of ways.
A simple get of the pod will show you the IP where we use a template output that looks
up the IP address in the status output:

$ kubectl get pod node-js-pod --template={{.status.podIP}}

You can use that IP address directly, or execute that command within backticks to exec
into the pod. Once the pod shows it's in a running state, we can use this feature to run a
command inside a pod:

$ kubectl exec node-js-pod -- curl <private ip address>

--or--

$ kubectl exec node-js-pod -- curl `kubectl get pod node-js-pod --
template={{.status.podIP}}`

By default, this runs a command in the first container it finds, but you can
select a specific one using the -c argument.

After running the command, you should see some HTML code. We'll have a prettier view
later in this chapter, but for now, we can see that our pod is indeed running as expected.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[110]

If you have experience with containers, you've probably also exec 'd into a container. You
can do something very similar with Kubernetes:

master $ kubectl exec -it node-js-pod -- /bin/bash
root@node-js-pod:/opt/bitnami/apache/htdocs# exit
master $

You can also run other command directly into the container with the exec command. Note
that you'll need to use two dashes to separate your command's argument in case it has the
same in kubectl:

$ kubectl exec node-js-pod ls /
$ kubectl exec node-js-pod ps aux
$ kubectl exec node-js-pod -- uname -a

Labels
Labels give us another level of categorization, which becomes very helpful in terms of
everyday operations and management. Similar to tags, labels can be used as the basis of
service discovery as well as a useful grouping tool for day-to-day operations and
management tasks. Labels are attached to Kubernetes objects and are simple key-value
pairs. You will see them on pods, replication controllers, replica sets, services, and so on.
Labels themselves and the keys/values inside of them are based on a constrained set of
variables, so that queries against them can be evaluated efficiently using optimized
algorithms and data structures.

The label indicates to Kubernetes which resources to work with for a variety of operations.
Think of it as a filtering option. It is important to note that labels are meant to be
meaningful and usable to the operators and application developers, but do not imply any
semantic definitions to the cluster. Labels are used for organization and selection of subsets
of objects, and can be added to objects at creation time and/or modified at any time during
cluster operations. Labels are leveraged for management purposes, an example of which is
when you want to know all of the backing containers for a particular service, you can
normally get them via the labels on the container which correspond to the service at hand.
With this type of management, you often end up with multiple labels on an object.

Kubernetes cluster management is often a cross-cutting operation, involving scaling up of
different resources and services, management of multiple storage devices and dozens of
nodes and is therefore a highly multi-dimensional operation.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[111]

Labels allow horizontal, vertical, and diagonal encapsulation of Kubernetes objects. You'll
often see labels such as the following:

environment: dev, environment: integration, environment: staging,
environment: UAT, environment: production
tier: web, tier: stateless, tier: stateful, tier: protected
tenancy: org1, tenancy: org2

Once you've mastered labels, you can use selectors to identify a novel group of objects
based on a particular set of label combination. There are currently equality-based and set-
based selectors. Equality-based selectors allow operators to filter by keys/value pairs, and
in order to select(or) an object, it must match all specified constraints. This kind of
selector is often used to choose a particular node, perhaps to run against particularly
speedy storage. Set-based selectors are more complex, and allow the operator to filter keys
according to a specific value. This kind of selector is often used to determine where a object
belongs, such as a tier, tenancy zone, or environment.

In short, an object may have many labels attached to it, but a selector can provide
uniqueness to an object or set of objects.

We will take a look at labels in more depth later in this chapter, but first we will explore the
remaining three constructs: services, replication controllers, and replica sets.

The container's afterlife
As Werner Vogels, CTO of AWS, famously said, everything fails all the time; containers and
pods can and will crash, become corrupted, or maybe even just get accidentally shut off by
a clumsy administrator poking around on one of the nodes. Strong policy and security
practices such as enforcing least privilege curtail some of these incidents, but involuntary
workload slaughter happens and is simply a fact of operations.

Luckily, Kubernetes provides two very valuable constructs to keep this somber affair all
tidied up behind the curtains. Services and replication controllers/replica sets give us the
ability to keep our applications running with little interruption and graceful recovery.

Services
Services allow us to abstract access away from the consumers of our applications. Using a
reliable endpoint, users and other programs can access pods running on your cluster
seamlessly. This is in direct contradiction to one of our core Kubernetes constructs: pods.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[112]

Pods by definition are ephemeral and when they die they are not resurrected. If we trust
that replication controllers will do their job to create and destroy pods as necessary, we'll
need another construct to create a logical separation and policy for access.

Here we have services, which use a label selector to target a group of ever-changing pods.
Services are important because we want frontend services that don't care about the specifics
of backend services, and vice versa. While the pods that compose those tiers are fungible,
the service via ReplicationControllers manages the relationships between objects and
therefore decouples different types of applications.

For applications that require an IP address, there's a Virtual IP (VIP) available which can
send round robin traffic to a backend pod. With cloud-native applications or microservices,
Kubernetes provides the Endpoints API for simple communication between services.

K8s achieves this by making sure that every node in the cluster runs a proxy named kube-
proxy. As the name suggests, the job of kube-proxy is to proxy communication from a
service endpoint back to the corresponding pod that is running the actual application:

The kube-proxy architecture

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[113]

Membership of the service load balancing pool is determined by the use of selectors and
labels. Pods with matching labels are added to the list of candidates where the service
forwards traffic. A virtual IP address and port are used as the entry points for the service,
and the traffic is then forwarded to a random pod on a target port defined by either K8s or
your definition file.

Updates to service definitions are monitored and coordinated from the K8s cluster Master
and propagated to the kube-proxy daemons running on each node.

At the moment, kube-proxy is running on the node host itself. There are
plans to containerize this and the kubelet by default in the future.

A service is a RESTful object, which relies on a POST transaction to the apiserver to create a
new instance of the Kubernetes object. Here's an example of a simple service named
service-example.yaml:

kind: Service
apiVersion: v1
metadata:
 name: gsw-k8s-3-service
spec:
 selector:
 app: gswk8sApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

This creates a service named gsw-k8s-3-service, which opens up a target port of 8080
with the key/value label of app:gswk8sApp. While the selector is continuously evaluated
by a controller, the results of the IP address assignment (also called a cluster IP) will be
posted to the endpoints object of gsw-k8s-3-service. The kind field is required, as is
ports, while selector and type are optional.

Kube-proxy runs a number of other forms of virtual IP for services aside from the strategy
outlined previously. There are three different types of proxy modes that we'll mention here,
but will investigate in later chapters:

Userspace
Iptables
Ipvs

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[114]

Replication controllers and replica sets
Replication controllers have been deprecated in favor of using
Deployments, which configure ReplicaSets. This method is a more robust
manner of application replication and has been developed as a response to
the feedback of the container running community.

Replication controllers (RCs), as the name suggests, manage the number of nodes that a
pod and included container images run on. They ensure that an instance of an image is
being run with the specific number of copies. RCs ensure that a pod or many same pods are
always up and available to serve application traffic.

As you start to operationalize your containers and pods, you'll need a way to roll out
updates, scale the number of copies running (both up and down), or simply ensure that at
least one instance of your stack is always running. RCs create a high-level mechanism to
make sure that things are operating correctly across the entire application and cluster. Pods
created by RCs are replaced if they fail, and are deleted when terminated. RCs are
recommended for use even if you only have a single pod in your application.

RCs are simply charged with ensuring that you have the desired scale for your application.
You define the number of pod replicas you want running and give it a template for how to
create new pods. Just like services, we'll use selectors and labels to define a pod's
membership in an RC.

Kubernetes doesn't require the strict behavior of the replication controller,
which is ideal for long-running processes. In fact, job controllers can be
used for short-lived workloads, which allow jobs to be run to a
completion state and are well suited for batch work.

Replica sets are a new type, currently in beta, that represent an improved version of
replication controllers. Currently, the main difference consists of being able to use the new
set-based label selectors, as we will see in the following examples.

Our first Kubernetes application
Before we move on, let's take a look at these three concepts in action. Kubernetes ships with
a number of examples installed, but we'll create a new example from scratch to illustrate
some of the concepts.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[115]

We already created a pod definition file but, as you learned, there are many advantages to
running our pods via replication controllers. Again, using the book-
examples/02_example folder we made earlier, we'll create some definition files and start
a cluster of Node.js servers using a replication controller approach. Additionally, we'll add
a public face to it with a load-balanced service.

Use your favorite editor to create the following file and name it as nodejs-
controller.yaml:

apiVersion: v1
kind: ReplicationController
metadata:
 name: node-js
 labels:
 name: node-js
spec:
 replicas: 3
 selector:
 name: node-js
 template:
 metadata:
 labels:
 name: node-js
 spec:
 containers:
 - name: node-js
 image: jonbaier/node-express-info:latest
 ports:
 - containerPort: 80

This is the first resource definition file for our cluster, so let's take a closer look. You'll note
that it has four first-level elements (kind, apiVersion, metadata, and spec). These are
common among all top-level Kubernetes resource definitions:

Kind: This tells K8s the type of resource we are creating. In this case, the type is
ReplicationController. The kubectl script uses a single create command
for all types of resources. The benefit here is that you can easily create a number
of resources of various types without the need for specifying individual
parameters for each type. However, it requires that the definition files can
identify what it is they are specifying.
apiVersion: This simply tells Kubernetes which version of the schema we are
using.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[116]

Metadata: This is where we will give the resource a name and also specify labels
that will be used to search and select resources for a given operation. The
metadata element also allows you to create annotations, which are for the non-
identifying information that might be useful for client tools and libraries.
Finally, we have spec, which will vary based on the kind or type of resource we
are creating. In this case, it's ReplicationController, which ensures the
desired number of pods are running. The replicas element defines the desired
number of pods, the selector element tells the controller which pods to watch,
and finally, the template element defines a template to launch a new pod. The
template section contains the same pieces we saw in our pod definition earlier.
An important thing to note is that the selector values need to match the
labels values specified in the pod template. Remember that this matching is
used to select the pods being managed.

Now, let's take a look at the service definition named nodejs-rc-service.yaml:

apiVersion: v1
kind: Service
metadata:
 name: node-js
 labels:
 name: node-js
spec:
 type: LoadBalancer
 ports:
 - port: 80
 selector:
 name: node-js

If you are using the free trial for Google Cloud Platform, you may have
issues with the LoadBalancer type services. This type creates an external
IP addresses, but trial accounts are limited to only one static address.

For this example, you won't be able to access the example from the
external IP address using Minikube. In Kubernetes versions above 1.5,
you can use Ingress to expose services but that is outside of the scope of
this chapter.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[117]

The YAML here is similar to ReplicationController. The main difference is seen in the
service spec element. Here, we define the Service type, listening port, and selector,
which tell the Service proxy which pods can answer the service.

Kubernetes supports both YAML and JSON formats for definition files.

Create the Node.js express replication controller:

$ kubectl create -f nodejs-controller.yaml

The output is as follows:

replicationcontroller "node-js" created

This gives us a replication controller that ensures that three copies of the container are
always running:

$ kubectl create -f nodejs-rc-service.yaml

The output is as follows:

service "node-js" created

On GCE, this will create an external load balancer and forwarding rules, but you may need
to add additional firewall rules. In my case, the firewall was already open for port 80.
However, you may need to open this port, especially if you deploy a service with ports
other than 80 and 443.

OK, now we have a running service, which means that we can access the Node.js servers
from a reliable URL. Let's take a look at our running services:

$ kubectl get services

The following screenshot is the result of the preceding command:

Services listing

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[118]

In the preceding screenshot (services listing), we should note that the node-js service is
running, and in the IP(S) column, we should have both a private and a public
(130.211.186.84 in the screenshot) IP address. If you don't see the external IP, you may
need to wait a minute for the IP to be allocated from GCE. Let's see if we can connect by
opening up the public address in a browser:

Container information application

You should see something like the previous screenshot. If we visit multiple times, you
should note that the container name changes. Essentially, the service load balancer is
rotating between available pods on the backend.

Browsers usually cache web pages, so to really see the container name
change, you may need to clear your cache or use a proxy like this
one: https://hide.me/en/proxy.

Let's try playing chaos monkey a bit and kill off a few containers to see what Kubernetes
does. In order to do this, we need to see where the pods are actually running. First, let's list
our pods:

$ kubectl get pods

The following screenshot is the result of the preceding command:

Currently running pods

Now, let's get some more details on one of the pods running a node-js container. You can
do this with the describe command and one of the pod names listed in the last command:

$ kubectl describe pod/node-js-sjc03

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://hide.me/en/proxy

Building a Foundation with Core Kubernetes Constructs Chapter 3

[119]

The following screenshot is the result of the preceding command:

Pod description

You should see the preceding output. The information we need is the Node: section. Let's
use the node name to SSH (short for Secure Shell) into the node (minion) running this
workload:

$ gcloud compute --project "<Your project ID>" ssh --zone "<your gce zone>"
"<Node from
pod describe>"

Once SSHed into the node, if we run the sudo docker ps command, we should see at
least two containers: one running the pause image and one running the actual node-
express-info image. You may see more if K8s scheduled more than one replica on this
node. Let's grab the container ID of the jonbaier/node-express-info image (not
gcr.io/google_containers/pause) and kill it off to see what happens. Save this
container ID somewhere for later:

$ sudo docker ps --filter="name=node-js"
$ sudo docker stop <node-express container id>
$ sudo docker rm <container id>
$ sudo docker ps --filter="name=node-js"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[120]

Unless you are really quick, you'll probably note that there is still a node-express-info
container running, but look closely and you'll note that container id is different and the
creation timestamp shows only a few seconds ago. If you go back to the service URL, it is
functioning as normal. Go ahead and exit the SSH session for now.

Here, we are already seeing Kubernetes playing the role of on-call operations, ensuring that
our application is always running.

Let's see if we can find any evidence of the outage. Go to the Events page in the Kubernetes
UI. You can find it by navigating to the Nodes page on the main K8s dashboard. Select a
node from the list (the same one that we SSHed into) and scroll down to Events on the node
details page.

You'll see a screen similar to the following screenshot:

Kubernetes UI event page

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[121]

You should see three recent events. First, Kubernetes pulls the image. Second, it creates a
new container with the pulled image. Finally, it starts that container again. You'll note that,
from the timestamps, this all happens in less than a second. Time taken may vary based on
the cluster size and image pulls, but the recovery is very quick.

More on labels
As mentioned previously, labels are just simple key-value pairs. They are available on
pods, replication controllers, replica sets, services, and more. If you recall our service
YAML nodejs-rc-service.yaml, there was a selector attribute. The
selector attribute tells Kubernetes which labels to use in finding pods to forward traffic
for that service.

K8s allows users to work with labels directly on replication controllers, replica sets, and
services. Let's modify our replicas and services to include a few more labels. Once again,
use your favorite editor to create these two files and name it as nodejs-labels-
controller.yaml and nodejs-labels-service.yaml, as follows:

apiVersion: v1
kind: ReplicationController
metadata:
 name: node-js-labels
 labels:
 name: node-js-labels
 app: node-js-express
 deployment: test
spec:
 replicas: 3
 selector:
 name: node-js-labels
 app: node-js-express
 deployment: test
 template:
 metadata:
 labels:
 name: node-js-labels
 app: node-js-express
 deployment: test
 spec:
 containers:
 - name: node-js-labels
 image: jonbaier/node-express-info:latest
 ports:
 - containerPort: 80

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[122]

apiVersion: v1
kind: Service
metadata:
 name: node-js-labels
 labels:
 name: node-js-labels
 app: node-js-express
 deployment: test
spec:
 type: LoadBalancer
 ports:
 - port: 80
 selector:
 name: node-js-labels
 app: node-js-express
 deployment: test

Create the replication controller and service as follows:

$ kubectl create -f nodejs-labels-controller.yaml
$ kubectl create -f nodejs-labels-service.yaml

Let's take a look at how we can use labels in everyday management. The following table
shows us the options to select labels:

Operators Description Example

= or == You can use either style to select keys with values equal to
the string on the right name = apache

!= Select keys with values that do not equal the string on the
right Environment != test

in Select resources whose labels have keys with values in this
set tier in (web, app)

notin Select resources whose labels have keys with values not in
this set tier notin (lb, app)

<Key name> Use a key name only to select resources whose labels
contain this key tier

Label selectors

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[123]

Let's try looking for replicas with test deployments:

$ kubectl get rc -l deployment=test

The following screenshot is the result of the preceding command:

Replication controller listing

You'll notice that it only returns the replication controller we just started. How about
services with a label named component? Use the following command:

$ kubectl get services -l component

The following screenshot is the result of the preceding command:

Listing of services with a label named component

Here, we see the core Kubernetes service only. Finally, let's just get the node-js servers we
started in this chapter. See the following command:

$ kubectl get services -l "name in (node-js,node-js-labels)"

The following screenshot is the result of the preceding command:

Listing of services with a label name and a value of node-js or node-js-labels

Additionally, we can perform management tasks across a number of pods and services. For
example, we can kill all replication controllers that are part of the demo deployment (if we
had any running), as follows:

$ kubectl delete rc -l deployment=demo

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[124]

Otherwise, kill all services that are part of a production or test deployment (again, if we
have any running), as follows:

$ kubectl delete service -l "deployment in (test, production)"

It's important to note that, while label selection is quite helpful in day-to-day management
tasks, it does require proper deployment hygiene on our part. We need to make sure that
we have a tagging standard and that it is actively followed in the resource definition files
for everything we run on Kubernetes.

While we used service definition YAML files to create our services so far,
you can actually create them using a kubectl command only. To try this
out, first run the get pods command and get one of the node-js pod
names. Next, use the following expose command to create a service
endpoint for just that pod:
$ kubectl expose pods node-js-gxkix --port=80 --
name=testing-vip --type=LoadBalancer

This will create a service named testing-vip and also a public vip (load
balancer IP) that can be used to access this pod over port 80.
There are number of other optional parameters that can be used. These
can be found with the following command: kubectl expose --help.

Replica sets
As discussed earlier, replica sets are the new and improved version of replication
controllers. Here is an example of ReplicaSet based on and similar to the
ReplicationController. Name this file as nodejs-labels-replicaset.yaml:

apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
 name: node-js-rs
spec:
 replicas: 3
 selector:
 matchLabels:
 app: node-js-express
 deployment: test
 matchExpressions:
 - {key: name, operator: In, values: [node-js-rs]}
 template:
 metadata:
 labels:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[125]

 name: node-js-rs
 app: node-js-express
 deployment: test
 spec:
 containers:
 - name: node-js-rs
 image: jonbaier/node-express-info:latest
 ports:
 - containerPort: 80

Health checks
Kubernetes provides three layers of health checking. First, in the form of HTTP or TCP
checks, K8s can attempt to connect to a particular endpoint and give a status of healthy on a
successful connection. Second, application-specific health checks can be performed using
command-line scripts. We can also use the exec container to run a health check from
within your container. Anything that exits with a 0 status will be considered healthy.

Let's take a look at a few health checks in action. First, we'll create a new controller
named nodejs-health-controller.yaml with a health check:

apiVersion: v1
kind: ReplicationController
metadata:
 name: node-js
 labels:
 name: node-js
spec:
 replicas: 3
 selector:
 name: node-js
 template:
 metadata:
 labels:
 name: node-js
 spec:
 containers:
 - name: node-js
 image: jonbaier/node-express-info:latest
 ports:
 - containerPort: 80
 livenessProbe:
 # An HTTP health check
 httpGet:
 path: /status/

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[126]

 port: 80
 initialDelaySeconds: 30
 timeoutSeconds: 1

Note the addition of the livenessprobe element. This is our core health check element.
From here, we can specify httpGet, tcpScoket, or exec. In this example, we use httpGet
to perform a simple check for a URI on our container. The probe will check the path and
port specified and restart the pod if it doesn't successfully return.

Status codes between 200 and 399 are all considered healthy by the
probe.

Finally, initialDelaySeconds gives us the flexibility to delay health checks until the pod
has finished initializing. The timeoutSeconds value is simply the timeout value for the
probe.

Let's use our new health check-enabled controller to replace the old node-js RC. We can
do this using the replace command, which will replace the replication controller
definition:

$ kubectl replace -f nodejs-health-controller.yaml

Replacing the RC on its own won't replace our containers because it still has three healthy
pods from our first run. Let's kill off those pods and let the updated
ReplicationController replace them with containers that have health checks:

$ kubectl delete pods -l name=node-js

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[127]

Now, after waiting a minute or two, we can list the pods in an RC and grab one of the pod
IDs to inspect it a bit deeper with the describe command:

$ kubectl describe rc/node-js

The following screenshot is the result of the preceding command:

Description of node-js replication controller

Now, use the following command for one of the pods:

$ kubectl describe pods/node-js-7esbp

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[128]

The following screenshot is the result of the preceding command:

Description of node-js-1m3cs pod

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[129]

At the top, we'll see the overall pod details. Depending on your timing, under State, it will
either show Running or Waiting with a CrashLoopBackOff reason and some error
information. A bit below that, we can see information on our Liveness probe and we will
likely see a failure count above 0. Further down, we have the pod events. Again, depending
on your timing, you are likely to have a number of events for the pod. Within a minute or
two, you'll note a pattern of killing, started, and created events repeating over and over
again. You should also see a note in the Killing entry that the container is unhealthy. This
is our health check failing because we don't have a page responding at /status.

You may note that if you open a browser to the service load balancer address, it still
responds with a page. You can find the load balancer IP with a kubectl get services
command.

This is happening for a number of reasons. First, the health check is simply failing because
/status doesn't exist, but the page where the service is pointed is still functioning
normally between restarts. Second, the livenessProbe is only charged with restarting the
container on a health check fail. There is a separate readinessProbe that will remove a
container from the pool of pods answering service endpoints.

Let's modify the health check for a page that does exist in our container, so we have a
proper health check. We'll also add a readiness check and point it to the nonexistent status
page. Open the nodejs-health-controller.yaml file and modify the spec section to
match the following listing and save it as nodejs-health-controller-2.yaml:

apiVersion: v1
kind: ReplicationController
metadata:
 name: node-js
 labels:
 name: node-js
spec:
 replicas: 3
 selector:
 name: node-js
 template:
 metadata:
 labels:
 name: node-js
 spec:
 containers:
 - name: node-js
 image: jonbaier/node-express-info:latest
 ports:
 - containerPort: 80
 livenessProbe:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[130]

 # An HTTP health check
 httpGet:
 path: /
 port: 80
 initialDelaySeconds: 30
 timeoutSeconds: 1
 readinessProbe:
 # An HTTP health check
 httpGet:
 path: /status/
 port: 80
 initialDelaySeconds: 30
 timeoutSeconds: 1

This time, we'll delete the old RC, which will kill the pods with it, and create a new RC with
our updated YAML file:

$ kubectl delete rc -l name=node-js-health
$ kubectl create -f nodejs-health-controller-2.yaml

Now, when we describe one of the pods, we only see the creation of the pod and the
container. However, you'll note that the service load balancer IP no longer works. If we run
the describe command on one of the new nodes, we'll note a Readiness probe failed
error message, but the pod itself continues running. If we change the readiness probe path
to path: /, we'll again be able to fulfill requests from the main service. Open up nodejs-
health-controller-2.yaml in an editor and make that update now. Then, once again
remove and recreate the replication controller:

$ kubectl delete rc -l name=node-js
$ kubectl create -f nodejs-health-controller-2.yaml

Now the load balancer IP should work once again. Keep these pods around as we will use
them again in Chapter 4, Working with Networking, Load Balancers, and Ingress.

TCP checks
Kubernetes also supports health checks via simple TCP socket checks and also with custom
command-line scripts.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[131]

The following snippets are examples of what both use cases look like in the YAML file.

Health check using command-line script:

livenessProbe:
 exec:
 command:
 -/usr/bin/health/checkHttpServce.sh
 initialDelaySeconds:90
 timeoutSeconds: 1

Health check using simple TCP Socket connection:

livenessProbe:
 tcpSocket:
 port: 80
 initialDelaySeconds: 15
 timeoutSeconds: 1

Life cycle hooks or graceful shutdown
As you run into failures in real-life scenarios, you may find that you want to take additional
action before containers are shut down or right after they are started. Kubernetes actually
provides life cycle hooks for just this kind of use case.

The following example controller definition, apache-hooks-controller.yaml, defines
both a postStart action and a preStop action to take place before Kubernetes moves the
container into the next stage of its life cycle:

apiVersion: v1
kind: ReplicationController
metadata:
 name: apache-hook
 labels:
 name: apache-hook
spec:
 replicas: 3
 selector:
 name: apache-hook
 template:
 metadata:
 labels:
 name: apache-hook
 spec:
 containers:
 - name: apache-hook

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[132]

 image: bitnami/apache:latest
 ports:
 - containerPort: 80
 lifecycle:
 postStart:
 httpGet:
 path: http://my.registration-server.com/register/
 port: 80
 preStop:
 exec:
 command: ["/usr/local/bin/apachectl","-k","graceful-
 stop"]

You'll note that, for the postStart hook, we define an httpGet action, but for the
preStop hook, we define an exec action. Just as with our health checks, the httpGet
action attempts to make an HTTP call to the specific endpoint and port combination, while
the exec action runs a local command in the container.

The httpGet and exec actions are both supported for the postStart and preStop hooks.
In the case of preStop, a parameter named reason will be sent to the handler as a
parameter. See the following table for valid values:

Reason parameter Failure description
Delete Delete command issued via kubectl or the API
Health Health check fails
Dependency Dependency failure such as a disk mount failure or a default infrastructure pod crash

Valid preStop reasons

Check out the references section here: https:/ /github. com/ kubernetes/
kubernetes/ blob/ release- 1. 0/docs/ user- guide/ container-
environment. md#container- hooks.

It's important to note that hook calls are delivered at least once. Therefore, any logic in the
action should gracefully handle multiple calls. Another important note is that postStart
runs before a pod enters its ready state. If the hook itself fails, the pod will be considered
unhealthy.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks

Building a Foundation with Core Kubernetes Constructs Chapter 3

[133]

Application scheduling
Now that we understand how to run containers in pods and even recover from failure, it
may be useful to understand how new containers are scheduled on our cluster nodes.

As mentioned earlier, the default behavior for the Kubernetes scheduler is to spread
container replicas across the nodes in our cluster. In the absence of all other constraints, the
scheduler will place new pods on nodes with the least number of other pods belonging to
matching services or replication controllers.

Additionally, the scheduler provides the ability to add constraints based on resources
available to the node. Today, this includes minimum CPU and memory allocations. In
terms of Docker, these use the CPU-shares and memory limit flags under the covers.

When additional constraints are defined, Kubernetes will check a node for available
resources. If a node does not meet all the constraints, it will move to the next. If no nodes
can be found that meet the criteria, then we will see a scheduling error in the logs.

The Kubernetes road map also has plans to support networking and storage. Because
scheduling is such an important piece of overall operations and management for
containers, we should expect to see many additions in this area as the project grows.

Scheduling example
Let's take a look at a quick example of setting some resource limits. If we look at our K8s
dashboard, we can get a quick snapshot of the current state of resource usage on our cluster
using https://<your master ip>/api/v1/proxy/namespaces/kube-
system/services/kubernetes-dashboard and clicking on Nodes on the left-hand side
menu.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[134]

We'll see a dashboard, as shown in the following screenshot:

Kube node dashboard

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[135]

This view shows the aggregate CPU and memory across the whole cluster, nodes, and
Master. In this case, we have fairly low CPU utilization, but a decent chunk of memory in
use.

Let's see what happens when I try to spin up a few more pods, but this time, we'll request
512 Mi for memory and 1500 m for the CPU. We'll use 1500 m to specify 1.5 CPUs; since
each node only has 1 CPU, this should result in failure. Here's an example of the RC
definition. Save this file as nodejs-constraints-controller.yaml:

apiVersion: v1
kind: ReplicationController
metadata:
 name: node-js-constraints
 labels:
 name: node-js-constraints
spec:
 replicas: 3
 selector:
 name: node-js-constraints
 template:
 metadata:
 labels:
 name: node-js-constraints
 spec:
 containers:
 - name: node-js-constraints
 image: jonbaier/node-express-info:latest
 ports:
 - containerPort: 80
 resources:
 limits:
 memory: "512Mi"
 cpu: "1500m"

To open the preceding file, use the following command:

$ kubectl create -f nodejs-constraints-controller.yaml

The replication controller completes successfully, but if we run a get pods command, we'll
note the node-js-constraints pods are stuck in a pending state. If we look a little closer
with the describe pods/<pod-id> command, we'll note a scheduling error (for pod-id
use one of the pod names from the first command):

$ kubectl get pods
$ kubectl describe pods/<pod-id>

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[136]

The following screenshot is the result of the preceding command:

Pod description

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Foundation with Core Kubernetes Constructs Chapter 3

[137]

Note, in the bottom events section, that the WarningFailedScheduling pod error listed
in Events is accompanied by fit failure on node....Insufficient cpu after the
error. As you can see, Kuberneftes could not find a fit in the cluster that met all the
constraints we defined.

If we now modify our CPU constraint down to 500 m, and then recreate our replication
controller, we should have all three pods running within a few moments.

Summary
We took a look at the overall architecture for Kubernetes, as well as the core constructs
provided to build your services and application stacks. You should have a better
understanding of how these abstractions make it easier to manage the life cycle of your
stack and/or services as a whole and not just the individual components. Additionally, we
took a first-hand look at how to manage some simple day-to-day tasks using pods, services,
and replication controllers. We also looked at how to use Kubernetes to automatically
respond to outages via health checks. Finally, we explored the Kubernetes scheduler and
some of the constraints users can specify to influence scheduling placement.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

4
Working with Networking, Load

Balancers, and Ingress
In this chapter, we will discuss Kubernetes' approach to cluster networking and how it
differs from other approaches. We will describe key requirements for Kubernetes
networking solutions and explore why these are essential for simplifying cluster
operations. We will investigate DNS in the Kubernetes cluster, dig into the Container
Network Interface (CNI) and plugin ecosystems, and will take a deeper dive into services
and how the Kubernetes proxy works on each node. Finishing up, we will look at a brief
overview of some higher level isolation features for multitenancy.

In this chapter, we will cover the following topics:

Kubernetes networking
Advanced services concepts
Service discovery
DNS, CNI, and ingress
Namespace limits and quotas

Technical requirements
You'll need a running Kubernetes cluster like the one we created in the previous chapters.
You'll also need access to deploy the cluster through the kubectl command.

The GitHub repository for this chapter can be found at https:/ /github. com/
PacktPublishing/The- Complete- Kubernetes- Guide/ tree/ master/ Chapter04.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter04

Working with Networking, Load Balancers, and Ingress Chapter 4

[139]

Container networking
Networking is a vital concern for production-level operations. At a service level, we need a
reliable way for our application components to find and communicate with each other.
Introducing containers and clustering into the mix makes things more complex as we now
have multiple networking namespaces to bear in mind. Communication and discovery now
becomes a feat that must navigate container IP space, host networking, and sometimes even
multiple data center network topologies.

Kubernetes benefits here from getting its ancestry from the clustering tools used by Google
for the past decade. Networking is one area where Google has outpaced the competition
with one of the largest networks on the planet. Earlier, Google built its own hardware
switches and Software-defined Networking (SDN) to give them more control,
redundancy, and efficiency in their day-to-day network operations. Many of the lessons
learned from running and networking two billion containers per week have been distilled
into Kubernetes, and informed how K8s networking is done.

The Docker approach
In order to understand the motivation behind the K8s networking model, let's review
Docker's approach to container networking.

Docker default networks
The following are some of Docker's default networks:

Bridge network: In a nonswarm scenario, Docker will use the bridge network
driver (called bridge) to allow standalone containers to speak to each other. You
can think of the bridge as a link layer device that forwards network traffic
between segments. If containers are connected to the same bridge network, they
can communicate; if they're not connected, they can't. The bridged network is the
default choice unless otherwise specified. In this mode, the container has its own
networking namespace and is then bridged via virtual interfaces to the host (or
node, in the case of K8s) network. In the bridged network, two containers can use
the same IP range because they are completely isolated. Therefore, service
communication requires some additional port mapping through the host side of
network interfaces.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[140]

Host based: Docker also offers host-based networking for standalone containers,
which creates a virtual bridge called docker0 that allocates private IP address
space for the containers using that bridge. Each container gets a virtual Ethernet
(veth) device that you can see in the container as eth0. Performance is greatly
benefited since it removes a level of network virtualization; however, you lose
the security of having an isolated network namespace. Additionally, port usage
must be managed more carefully since all containers share an IP.

There's also a none network, which creates a container with no external interface. Only a
loopback device is shown if you inspect the network interfaces.

In all of these scenarios, we are still on a single machine, and outside of host mode, the
container IP space is not available outside that machine. Connecting containers across two
machines requires NAT and port mapping for communication.

Docker user-defined networks
In order to address the cross-machine communication issue and allow greater flexibility,
Docker also supports user-defined networks via network plugins. These networks exist
independent of the containers themselves. In this way, containers can join the same existing
networks. Through the new plugin architecture, various drivers can be provided for
different network use cases such as the following:

Swarm: In a clustered situation with Swarm, the default behavior is an overlay
network, which allows you to connect multiple Docker daemons running on
multiple machines. In order to coordinate across multiple hosts, all containers
and daemons must all agree on the available networks and their topologies.
Overlay networking introduces a significant amount of complexity with dynamic
port mapping that Kubernetes avoids.

You can read more about overlay networks here: https:/ /docs. docker.
com/network/ overlay/ .

Macvlan: Docker also provides macvlan addressing, which is most similar to the
networking model that Kubernetes provides, as it assigns each Docker container
a MAC address that makes it appear as a physical device on your network.
Macvlan offers a more efficient network virtualization and isolation as it
bypasses the Linux bridge. It is important to note that as of this book's
publishing, Macvlan isn't supported in most cloud providers.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/

Working with Networking, Load Balancers, and Ingress Chapter 4

[141]

As a result of these options, Docker must manage complex port allocation on a per-machine
basis for each host IP, and that information must be maintained and propagated to all other
machines in the cluster. Docker users a gossip protocol to manage the forwarding and
proxying of ports to other containers.

The Kubernetes approach
Kubernetes' approach to networking differs from the Docker's, so let's see how. We can
learn about Kubernetes while considering four major topics in cluster scheduling and
orchestration:

Decoupling container-to-container communication by providing pods, not
containers, with an IP address space
Pod-to-pod communication and service as the dominant communication
paradigm within the Kubernetes networking model
Pod-to-service and external-to-service communications, which are provided by
the services object

These considerations are a meaningful simplification for the Kubernetes networking model,
as there's no dynamic port mapping to track. Again, IP addressing is scoped at the pod
level, which means that networking in Kubernetes requires that each pod has its own IP
address. This means that all containers in a given pod share that IP address, and are
considered to be in the same network namespace. We'll explore how to manage this shared
IP resource when we discuss internal and external services later in this chapter. Kubernetes
facilitates the pod-to-pod communication by not allowing the use of network address
translation (NAT) for container-to-container or container-to-node (minion) traffic.
Furthermore, the internal container IP address must match the IP address that is used to
communicate with it. This underlines the Kubernetes assumption that all pods are able to
communicate with all other pods regardless of the host they've landed on, and that
communication then informs routing within pods to a local IP address space that is
provided to containers. All containers within a given host can communicate with each other
on their reserved ports via localhost. This unNATed, flat IP space simplifies networking
changes when you begin scaling to thousands of pods.

These rules keep much of the complexity out of our networking stack and ease the design
of the applications. Furthermore, they eliminate the need to redesign network
communication in legacy applications that are migrated from existing infrastructure. In
greenfield applications, they allow for a greater scale in handling hundreds, or even
thousands of services and application communications.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[142]

Astute readers may have also noticed that this creates a model that's backward compatible
with VMs and physical hosts that have a similar IP architecture as pods, with a single
address per VM or physical host. This means you don't have to change your approach to
service discovery, load balancing, application configuration, and port management, and
can port over your application management workflows when working with Kubernetes.

K8s achieves this pod-wide IP magic using a pod container placeholder. Remember that the
pause container that we saw in Chapter 1, Introduction to Kubernetes, in the Services running
on the master section, is often referred to as a pod infrastructure container, and it has the
important job of reserving the network resources for our application containers that will be
started later on. Essentially, the pause container holds the networking namespace and IP
address for the entire pod, and can be used by all the containers running within. The pause
container joins first and holds the namespace while the subsequent containers in the pod
join it when they start up using Docker's --net=container:%ID% function.

If you'd like to look over the code in the pause container, it's right
here: https:/ /github. com/ kubernetes/ kubernetes/ blob/ master/ build/
pause/ pause. c.

Kubernetes can achieve the preceding feature set using either CNI plugins for production
workloads or kubenet networking for simplified cluster communication. Kubernetes can
also be used when your cluster is going to rely on logical partioning provided by a cloud
service provider's security groups or network access control lists (NACLs). Let's dig into
the specific networking options now.

Networking options
There are two approaches to the networking model that we have suggested. First, you can
use one of the CNI plugins that exist in the ecosystem. This involves solutions that work
with native networking layers of AWS, GCP, and Azure. There are also overlay-friendly
plugins, which we'll cover in the next section. CNI is meant to be a common plugin
architecture for containers. It's currently supported by several orchestration tools such as
Kubernetes, Mesos, and CloudFoundry.

Network plugins are considered in alpha and therefore their capabilities,
content, and configuration will change rapidly.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c
https://github.com/kubernetes/kubernetes/blob/master/build/pause/pause.c

Working with Networking, Load Balancers, and Ingress Chapter 4

[143]

If you're looking for a simpler alternative for testing and using smaller clusters, you can use
the kubenet plugin, which uses bridge and host-local CNI plugs with a straightforward
implementation of cbr0. This plugin is only available on Linux, and doesn't provide any
advanced features. As it's often used with the supplementation of a cloud provider's
networking stance, it does not handle policies or cross-node networking.

Just as with CPU, memory, and storage, Kubernetes takes advantage of network
namespaces, each with their own iptables rules, interfaces, and route tables. Kubernetes
uses iptables and NAT to manage multiple logical addresses that sit behind a single
physical address, though you have the option to provide your cluster with multiple
physical interfaces (NICs). Most people will find themselves generating multiple logical
interfaces and using technologies such as multiplexing, virtual bridges, and hardware
switching using SR-IOV in order to create multiple devices.

You can find out more information at https:/ /github. com/
containernetworking/ cni.

Always refer to the Kubernetes documentation for the latest and full list of supported
networking options.

Networking comparisons
To get a better understanding of networking in containers, it can be instructive to look at
the popular choices for container networking. The following approaches do not make an
exhaustive list, but should give a taste of the options available.

Weave
Weave provides an overlay network for Docker containers. It can be used as a plugin with
the new Docker network plugin interface, and it is also compatible with Kubernetes
through a CNI plugin. Like many overlay networks, many criticize the performance impact
of the encapsulation overhead. Note that they have recently added a preview release with
Virtual Extensible LAN (VXLAN) encapsulation support, which greatly improves
performance. For more information, visit http:/ /blog. weave. works/ 2015/ 06/12/ weave-
fast-datapath/.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/

Working with Networking, Load Balancers, and Ingress Chapter 4

[144]

Flannel
Flannel comes from CoreOS and is an etcd-backed overlay. Flannel gives a full subnet to
each host/node, enabling a similar pattern to the Kubernetes practice of a routable IP per
pod or group of containers. Flannel includes an in-kernel VXLAN encapsulation mode for
better performance and has an experimental multi-network mode similar to the overlay
Docker plugin. For more information, visit https:/ / github. com/ coreos/ flannel.

Project Calico
Project Calico is a layer 3-based networking model that uses the built-in routing functions
of the Linux kernel. Routes are propagated to virtual routers on each host via Border
Gateway Protocol (BGP). Calico can be used for anything from small-scale deploys to large
internet-scale installations. Because it works at a lower level on the network stack, there is
no need for additional NAT, tunneling, or overlays. It can interact directly with the
underlying network infrastructure. Additionally, it has a support for network-level ACLs to
provide additional isolation and security. For more information,
visit http://www.projectcalico.org/.

Canal
Canal merges both Calico for the network policy and Flannel for the overlay into one
solution. It supports both Calico and Flannel type overlays and uses the Calico policy
enforcement logic. Users can choose from overlay and non-overlay options with this setup
as it combines the features of the preceding two projects. For more information,
visit https://github. com/ tigera/ canal.

Kube-router
Kube-router option is a purpose-built networking solution that aims to provide high
performance that's easy to use. It's based on the Linux LVS/IPVS kernel load balancing
technologies as proxy. It also uses kernel-based networking and uses iptables as a network
policy enforcer. Since it doesn't use an overlay technology, it's potentially a high-
performance option for the future. For more information, visit the following URL: https:/ /
github.com/cloudnativelabs/ kube- router.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
http://www.projectcalico.org/
https://github.com/tigera/canal
https://github.com/tigera/canal
https://github.com/tigera/canal
https://github.com/tigera/canal
https://github.com/tigera/canal
https://github.com/tigera/canal
https://github.com/tigera/canal
https://github.com/tigera/canal
https://github.com/tigera/canal
https://github.com/tigera/canal
https://github.com/tigera/canal
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router

Working with Networking, Load Balancers, and Ingress Chapter 4

[145]

Balanced design
It's important to point out the balance that Kubernetes is trying to achieve by placing the IP
at the pod level. Using unique IP addresses at the host level is problematic as the number of
containers grows. Ports must be used to expose services on specific containers and allow
external communication. In addition to this, the complexity of running multiple services
that may or may not know about each other (and their custom ports) and managing the
port space becomes a big issue.

However, assigning an IP address to each container can be overkill. In cases of sizable scale,
overlay networks and NATs are needed in order to address each container. Overlay
networks add latency, and IP addresses would be taken up by backend services as well
since they need to communicate with their frontend counterparts.

Here, we really see an advantage in the abstractions that Kubernetes provides at the
application and service level. If I have a web server and a database, we can keep them on
the same pod and use a single IP address. The web server and database can use the local
interface and standard ports to communicate, and no custom setup is required.
Furthermore, services on the backend are not needlessly exposed to other application stacks
running elsewhere in the cluster (but possibly on the same host). Since the pod sees the
same IP address that the applications running within it see, service discovery does not
require any additional translation.

If you need the flexibility of an overlay network, you can still use an overlay at the pod
level. Weave, Flannel, and Project Calico can be used with Kubernetes as well as a plethora
of other plugins and overlays that are available.

This is also very helpful in the context of scheduling the workloads. It is key to have a
simple and standard structure for the scheduler to match constraints and understand where
space exists on the cluster's network at any given time. This is a dynamic environment with
a variety of applications and tasks running, so any additional complexity here will have
rippling effects.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[146]

There are also implications for service discovery. New services coming online must
determine and register an IP address on which the rest of the world, or at least a cluster, can
reach them. If NAT is used, the services will need an additional mechanism to learn their
externally facing IP.

Advanced services
Let's explore the IP strategy as it relates to services and communication between containers.
If you recall, in the Services section of Chapter 3, Building a Foundation with Core Kubernetes
Constructs, you learned that Kubernetes is using kube-proxy to determine the proper pod
IP address and port serving each request. Behind the scenes, kube-proxy is actually using
virtual IPs and iptables to make all this magic work.

kube-proxy now has two modes—userspace and iptables. As of now, 1.2 iptables is the
default mode. In both modes, kube-proxy is running on every host. Its first duty is to
monitor the API from the Kubernetes master. Any updates to services will trigger an
update to iptables from kube-proxy. For example, when a new service is created, a virtual
IP address is chosen and a rule in iptables is set, which will direct its traffic to kube-proxy
via a random port. Thus, we now have a way to capture service-destined traffic on this
node. Since kube-proxy is running on all nodes, we have cluster-wide resolution for the
service VIP (short for virtual IP). Additionally, DNS records can point to this VIP as well.

In the userspace mode, we have a hook created in iptables, but the proxying of traffic is still
handled by kube-proxy. The iptables rule is only sending traffic to the service entry in
kube-proxy at this point. Once kube-proxy receives the traffic for a particular service, it
must then forward it to a pod in the service's pool of candidates. It does this using a
random port that was selected during service creation.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[147]

Refer to the following diagram for an overview of the flow:

Kube-proxy communication

It is also possible to always forward traffic from the same client IP to the
same backend pod/container using the sessionAffinity element in
your service definition.

In the iptables mode, the pods are coded directly in the iptable rules. This removes the
dependency on kube-proxy for actually proxying the traffic. The request will go straight to
iptables and then on to the pod. This is faster and removes a possible point of failure.
Readiness probe, as we discussed in the Health Check section of Chapter 3, Building a
Foundation with Core Kubernetes Constructs, is your friend here as this mode also loses the
ability to retry pods.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[148]

External services
In the previous chapter, we saw a few service examples. For testing and demonstration
purposes, we wanted all the services to be externally accessible. This was configured by the
type: LoadBalancer element in our service definition. The LoadBalancer type creates
an external load balancer on the cloud provider. We should note that support for external
load balancers varies by provider, as does the implementation. In our case, we are using
GCE, so integration is pretty smooth. The only additional setup needed is to open firewall
rules for the external service ports.

Let's dig a little deeper and do a describe command on one of the services from the More
on labels section in Chapter 3, Building a Foundation with Core Kubernetes Constructs:

$ kubectl describe service/node-js-labels

The following screenshot is the result of the preceding command:

Service description

In the output of the preceding screenshot, you'll note several key elements. Our
Namespace: is set to default, the Type: is LoadBalancer, and we have the external IP
listed under LoadBalancer Ingress:. Furthermore, we can see Endpoints:, which
shows us the IPs of the pods that are available to answer service requests.

Internal services
Let's explore the other types of services that we can deploy. First, by default, services are
only internally facing. You can specify a type of clusterIP to achieve this, but, if no type
is defined, clusterIP is the assumed type. Let's take a look at an example, nodejs-
service-internal.yaml; note the lack of the type element:

apiVersion: v1
kind: Service

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[149]

metadata:
 name: node-js-internal
 labels:
 name: node-js-internal
spec:
 ports:
 - port: 80
 selector:
 name: node-js

Use this listing to create the service definition file. You'll need a healthy version of the
node-js RC (Listing nodejs-health-controller-2.yaml). As you can see, the selector
matches on the pods named node-js that our RC launched in the previous chapter. We
will create the service and then list the currently running services with a filter as follows:

$ kubectl create -f nodejs-service-internal.yaml
$ kubectl get services -l name=node-js-internal

The following screenshot is the result of the preceding command:

Internal service listing

As you can see, we have a new service, but only one IP. Furthermore, the IP address is not
externally accessible. We won't be able to test the service from a web browser this time.
However, we can use the handy kubectl exec command and attempt to connect from
one of the other pods. You will need node-js-pod (nodejs-pod.yaml) running. Then,
you can execute the following command:

$ kubectl exec node-js-pod -- curl <node-js-internal IP>

This allows us to run a docker exec command as if we had a shell in the node-js-pod
container. It then hits the internal service URL, which forwards to any pods with the node-
js label.

If all is well, you should get the raw HTML output back. You have successfully created an
internal-only service. This can be useful for backend services that you want to make
available to other containers running in your cluster, but not open to the world at large.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[150]

Custom load balancing
A third type of service that K8s allows is the NodePort type. This type allows us to expose
a service through the host or node (minion) on a specific port. In this way, we can use the IP
address of any node (minion) and access our service on the assigned node port. Kubernetes
will assign a node port by default in the range of 3000-32767, but you can also specify
your own custom port. In the example in the following listing nodejs-service-
nodeport.yaml, we choose port 30001, as follows:

apiVersion: v1
kind: Service
metadata:
 name: node-js-nodeport
 labels:
 name: node-js-nodeport
spec:
 ports:
 - port: 80
 nodePort: 30001
 selector:
 name: node-js
 type: NodePort

Once again, create this YAML definition file and create your service, as follows:

$ kubectl create -f nodejs-service-nodeport.yaml

The output should have a message like this:

New GCP firewall rule

Note message about opening firewall ports. Similar to the external load balancer type,
NodePort is exposing your service externally using ports on the nodes. This could be
useful if, for example, you want to use your own load balancer in front of the nodes. Let's
make sure that we open those ports on GCP before we test our new service.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[151]

From the GCE VM instance console, click on the details for any of your nodes (minions).
Then, click on the network, which is usually the default unless otherwise specified during
creation. In Firewall rules, we can add a rule by clicking on Add firewall rule.

Create a rule like the one shown in the following screenshot (tcp:30001 on the 0.0.0.0/0
IP range):

Create a new firewall rule page

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[152]

We can now test our new service by opening a browser and using an IP address of any
node (minion) in your cluster. The format to test the new service is as follows:

http://<Minoion IP Address>:<NodePort>/

Finally, the latest version has added an ExternalName type, which maps a CNAME to the
service.

Cross-node proxy
Remember that kube-proxy is running on all the nodes, so even if the pod is not running
there, the traffic will be given a proxy to the appropriate host. Refer to the Cross-node
traffic screenshot for a visual on how the traffic flows. A user makes a request to an external
IP or URL. The request is serviced by Node in this case. However, the pod does not happen
to run on this node. This is not a problem because the pod IP addresses are routable. So,
kube-proxy or iptables simply passes traffic onto the pod IP for this service. The network
routing then completes on Node 2, where the requested application lives:

Cross-node traffic

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[153]

Custom ports
Services also allow you to map your traffic to different ports; then, the containers and pods
expose themselves. We will create a service that exposes port 90 and forwards traffic to
port 80 on the pods. We will call the node-js-90 pod to reflect the custom port number.
Create the following two definition files, nodejs-customPort-controller.yaml
and nodejs-customPort-service.yaml:

apiVersion: v1
kind: ReplicationController
metadata:
 name: node-js-90
 labels:
 name: node-js-90
spec:
 replicas: 3
 selector:
 name: node-js-90
 template:
 metadata:
 labels:
 name: node-js-90
 spec:
 containers:
 - name: node-js-90
 image: jonbaier/node-express-info:latest
 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: node-js-90
 labels:
 name: node-js-90
spec:
 type: LoadBalancer
 ports:
 - port: 90
 targetPort: 80
 selector:
 name: node-js-90

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[154]

If you are using the free trial for Google Cloud Platform, you may have
issues with the LoadBalancer type services. This type creates multiple
external IP addresses, but trial accounts are limited to only one static
address.

You'll note that in the service definition, we have a targetPort element. This element tells
the service the port to use for pods/containers in the pool. As we saw in previous examples,
if you do not specify targetPort, it assumes that it's the same port as the service. This port
is still used as the service port, but, in this case, we are going to expose the service on port
90 while the containers serve content on port 80.

Create this RC and service and open the appropriate firewall rules, as we did in the last
example. It may take a moment for the external load balancer IP to propagate to the get
service command. Once it does, you should be able to open and see our familiar web
application in a browser using the following format:

http://<external service IP>:90/

Multiple ports
Another custom port use case is that of multiple ports. Many applications expose multiple
ports, such as HTTP on port 80 and port 8888 for web servers. The following example
shows our app responding on both ports. Once again, we'll also need to add a firewall rule
for this port, as we did for the list nodejs-service-nodeport.yaml previously. Save the
listing as nodejs-multi-controller.yaml and nodejs-multi-service.yaml:

apiVersion: v1
kind: ReplicationController
metadata:
 name: node-js-multi
 labels:
 name: node-js-multi
spec:
 replicas: 3
 selector:
 name: node-js-multi
 template:
 metadata:
 labels:
 name: node-js-multi
 spec:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[155]

 containers:
 - name: node-js-multi
 image: jonbaier/node-express-multi:latest
 ports:
 - containerPort: 80
 - containerPort: 8888

apiVersion: v1
kind: Service
metadata:
 name: node-js-multi
 labels:
 name: node-js-multi
spec:
 type: LoadBalancer
 ports:
 - name: http
 protocol: TCP
 port: 80
 - name: fake-admin-http
 protocol: TCP
 port: 8888
 selector:
 name: node-js-multi

The application and container itself must be listening on both ports for
this to work. In this example, port 8888 is used to represent a fake admin
interface. If, for example, you want to listen on port 443, you would need
a proper SSL socket listening on the server.

Ingress
We previously discussed how Kubernetes uses the service abstract as a means to proxy
traffic to a backing pod that's distributed throughout our cluster. While this is helpful in
both scaling and pod recovery, there are more advanced routing scenarios that are not
addressed by this design.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[156]

To that end, Kubernetes has added an ingress resource, which allows for custom proxying
and load balancing to a back service. Think of it as an extra layer or hop in the routing path
before traffic hits our service. Just as an application has a service and backing pods, the
ingress resource needs both an Ingress entry point and an ingress controller that perform
the custom logic. The entry point defines the routes and the controller actually handles the
routing. This is helpful for picking up traffic that would normally be dropped by an edge
router or forwarded elsewhere outside of the cluster.

Ingress itself can be configured to offer externally addressable URLs for internal services, to
terminate SSL, offer name-based virtual hosting as you'd see in a traditional web server, or
load balance traffic. Ingress on its own cannot service requests, but requires an additional
ingress controller to fulfill the capabilities outlined in the object. You'll see nginx and other
load balancing or proxying technology involved as part of the controller framework. In the
following examples, we'll be using GCE, but you'll need to deploy a controller yourself in
order to take advantage of this feature. A popular option at the moment is the nginx-based
ingress-nginx controller.

You can check it out here: https:/ /github. com/ kubernetes/ ingress-
gce/blob/ master/ BETA_ LIMITATIONS. md#glbc- beta- limitations.

An ingress controller is deployed as a pod which runs a daemon. This pod watches the
Kubernetes apiserver/ingresses endpoint for changes to the ingress resource. For our
examples, we will use the default GCE backend.

Types of ingress
There are a couple different types of ingress, such as the following:

Single service ingress: This strategy exposes a single service via creating an
ingress with a default backend that has no rules. You can alternatively use
Service.Type=LoadBalancer or Service.Type=NodePort, or a port proxy to
accomplish something similar.
Fanout: Given that od IP addressing is only available internally to the
Kubernetes network, you'll need to use a simple fanout strategy in order to
accommodate edge traffic and provide ingress to the correct endpoints in your
cluster. This will resemble a load balancer in practice.
Name-based hosting: This approach is similar to service name indication (SNI),
which allows a web server to present multiple HTTPS websites with different
certificates on the same TCP port and IP address.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations

Working with Networking, Load Balancers, and Ingress Chapter 4

[157]

Kubernetes uses host headers to route requests with this approach. The following example
snippet ingress-example.yaml shows what name-based virtual hosting would look like:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: name-based-hosting
spec:
 rules:
 - host: example01.foo.com
 http:
 paths:
 - backend:
 serviceName: sevice01
 servicePort: 8080
 - host: example02.foo.com
 http:
 paths:
 - backend:
 serviceName: sevice02
 servicePort: 8080

As you may recall, in Chapter 1, Introduction to Kubernetes, we saw that a GCE cluster
comes with a default back which provides Layer 7 load balancing capability. We can see
this controller running if we look at the kube-system namespace:

$ kubectl get rc --namespace=kube-system

We should see an RC listed with the l7-default-backend-v1.0 name, as shown here:

GCE Layer 7 Ingress controller

This provides the ingress controller piece that actually routes the traffic defined in our
ingress entry points. Let's create some resources for an Ingress.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[158]

First, we will create a few new replication controllers with the httpwhalesay image. This
is a remix of the original whalesay that was displayed in a browser. The following
listing, whale-rcs.yaml, shows the YAML. Note the three dashes that let us combine
several resources into one YAML file:

apiVersion: v1
kind: ReplicationController
metadata:
 name: whale-ingress-a
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: whale-ingress-a
 spec:
 containers:
 - name: sayhey
 image: jonbaier/httpwhalesay:0.1
 command: ["node", "index.js", "Whale Type A, Here."]
 ports:
 - containerPort: 80

apiVersion: v1
kind: ReplicationController
metadata:
 name: whale-ingress-b
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: whale-ingress-b
 spec:
 containers:
 - name: sayhey
 image: jonbaier/httpwhalesay:0.1
 command: ["node", "index.js", "Hey man, It's Whale B, Just
 Chillin'."]
 ports:
 - containerPort: 80

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[159]

Note that we are creating pods with the same container, but different startup parameters.
Take note of these parameters for later. We will also create Service endpoints for each of
these RCs as shown in the whale-svcs.yaml listing:

apiVersion: v1
kind: Service
metadata:
 name: whale-svc-a
 labels:
 app: whale-ingress-a
spec:
 type: NodePort
 ports:
 - port: 80
 nodePort: 30301
 protocol: TCP
 name: http
 selector:
 app: whale-ingress-a

apiVersion: v1
kind: Service
metadata:
 name: whale-svc-b
 labels:
 app: whale-ingress-b
spec:
 type: NodePort
 ports:
 - port: 80
 nodePort: 30284
 protocol: TCP
 name: http
 selector:
 app: whale-ingress-b

apiVersion: v1
kind: Service
metadata:
 name: whale-svc-default
 labels:
 app: whale-ingress-a
spec:
 type: NodePort
 ports:
 - port: 80
 nodePort: 30302
 protocol: TCP

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[160]

 name: http
 selector:
 app: whale-ingress-a

Again, create these with the kubectl create -f command, as follows:

$ kubectl create -f whale-rcs.yaml
$ kubectl create -f whale-svcs.yaml

We should see messages about the successful creation of the RCs and Services. Next, we
need to define the Ingress entry point. We will use http://a.whale.hey and
http://b.whale.hey as our demo entry points as shown in the following listing whale-
ingress.yaml:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: whale-ingress
spec:
 rules:
 - host: a.whale.hey
 http:
 paths:
 - path: /
 backend:
 serviceName: whale-svc-a
 servicePort: 80
 - host: b.whale.hey
 http:
 paths:
 - path: /
 backend:
 serviceName: whale-svc-b
 servicePort: 80

Again, use kubectl create -f to create this ingress. Once this is successfully created, we
will need to wait a few moments for GCE to give the ingress a static IP address. Use the
following command to watch the Ingress resource:

$ kubectl get ingress

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[161]

Once the Ingress has an IP, we should see an entry in ADDRESS, like the one shown here:

Ingress description

Since this is not a registered domain name, we will need to specify the resolution in the
curl command, like this:

$ curl --resolve a.whale.hey:80:130.211.24.177 http://a.whale.hey/

This should display the following:

Whalesay A

We can also try the second URL. Doing this, we will get our second RC:

$ curl --resolve b.whale.hey:80:130.211.24.177 http://b.whale.hey/

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[162]

Whalesay B

Note that the images are almost the same, except that the words from each whale reflect the
startup parameters from each RC we started earlier. Thus, our two Ingress points are
directing traffic to different backends.

In this example, we used the default GCE backend for an Ingress
controller. Kubernetes allows us to build our own, and nginx actually has
a few versions available as well.

Migrations, multicluster, and more
As we've already seen so far, Kubernetes offers a high level of flexibility and customization
to create a service abstraction around your containers running in the cluster. However,
there may be times where you want to point to something outside your cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[163]

An example of this would be working with legacy systems or even applications running on
another cluster. In the case of the former, this is a perfectly good strategy in order to
migrate to Kubernetes and containers in general. We can begin by managing the service
endpoints in Kubernetes while stitching the stack together using the K8s orchestration
concepts. Additionally, we can even start bringing over pieces of the stack, as the frontend,
one at a time as the organization refactors applications for microservices and/or
containerization.

To allow access to non pod-based applications, the services construct allows you to use
endpoints that are outside the cluster. Kubernetes is actually creating an endpoint resource
every time you create a service that uses selectors. The endpoints object keeps track of the
pod IPs in the load balancing pool. You can see this by running the get endpoints
command, as follows:

$ kubectl get endpoints

You should see something similar to the following:

NAME ENDPOINTS
http-pd 10.244.2.29:80,10.244.2.30:80,10.244.3.16:80
kubernetes 10.240.0.2:443
node-js 10.244.0.12:80,10.244.2.24:80,10.244.3.13:80

You'll note the entry for all the services we currently have running on our cluster. For most
services, the endpoints are just the IP of each pod running in an RC. As I mentioned
previously, Kubernetes does this automatically based on the selector. As we scale the
replicas in a controller with matching labels, Kubernetes will update the endpoints
automatically.

If we want to create a service for something that is not a pod and therefore has no labels to
select, we can easily do this with both a service definition nodejs-custom-service.yaml
and endpoint definition nodejs-custom-endpoint.yaml, as follows:

apiVersion: v1
kind: Service
metadata:
 name: custom-service
spec:
 type: LoadBalancer
 ports:
 - name: http
 protocol: TCP
 port: 80

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[164]

apiVersion: v1
kind: Endpoints
metadata:
 name: custom-service
subsets:
- addresses:
 - ip: <X.X.X.X>
 ports:
 - name: http
 port: 80
 protocol: TCP

In the preceding example, you'll need to replace <X.X.X.X> with a real IP address, where
the new service can point to. In my case, I used the public load balancer IP from the node-
js-multi service we created earlier in listing ingress-example.yaml. Go ahead and
create these resources now.

If we now run a get endpoints command, we will see this IP address at port 80, which is
associated with the custom-service endpoint. Furthermore, if we look at the service
details, we will see the IP listed in the Endpoints section:

$ kubectl describe service/custom-service

We can test out this new service by opening the custom-service external IP from a
browser.

Custom addressing
Another option to customize services is with the clusterIP element. In our examples so
far, we've not specified an IP address, which means that it chooses the internal address of
the service for us. However, we can add this element and choose the IP address in advance
with something like clusterip: 10.0.125.105.

There may be times when you don't want to load balance and would rather have DNS with
A records for each pod. For example, software that needs to replicate data evenly to all
nodes may rely on A records to distribute data. In this case, we can use an example like the
following one and set clusterip to None.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[165]

Kubernetes will not assign an IP address and instead only assign A records in DNS for each
of the pods. If you are using DNS, the service should be available at node-js-none or
node-js-none.default.cluster.local from within the cluster. For this, we will use
the following listing nodejs-headless-service.yaml:

apiVersion: v1
kind: Service
metadata:
 name: node-js-none
 labels:
 name: node-js-none
spec:
 clusterIP: None
 ports:
 - port: 80
 selector:
 name: node-js

Test it out after you create this service with the trusty exec command:

$ kubectl exec node-js-pod -- curl node-js-none

Service discovery
As we discussed earlier, the Kubernetes master keeps track of all service definitions and
updates. Discovery can occur in one of three ways. The first two methods use Linux
environment variables. There is support for the Docker link style of environment variables,
but Kubernetes also has its own naming convention. Here is an example of what our node-
js service example might look like using K8s environment variables (note that IPs will
vary):

NODE_JS_PORT_80_TCP=tcp://10.0.103.215:80
NODE_JS_PORT=tcp://10.0.103.215:80
NODE_JS_PORT_80_TCP_PROTO=tcp
NODE_JS_PORT_80_TCP_PORT=80
NODE_JS_SERVICE_HOST=10.0.103.215
NODE_JS_PORT_80_TCP_ADDR=10.0.103.215
NODE_JS_SERVICE_PORT=80

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[166]

Another option for discovery is through DNS. While environment variables can be useful
when DNS is not available, it has drawbacks. The system only creates variables at creation
time, so services that come online later will not be discovered or will require some
additional tooling to update all the system environments.

DNS
DNS solves the issues seen with environment variables by allowing us to reference the
services by their name. As services restart, scale out, or appear anew, the DNS entries will
be updating and ensuring that the service name always points to the latest infrastructure.
DNS is set up by default in most of the supported providers. You can add DNS support for
your cluster via a cluster add on (https:/ /kubernetes. io/docs/ concepts/ cluster-
administration/addons/).

If DNS is supported by your provider, but is not set up, you can configure
the following variables in your default provider config when you create
your Kubernetes cluster:
ENABLE_CLUSTER_DNS="${KUBE_ENABLE_CLUSTER_DNS:-true}"
DNS_SERVER_IP="10.0.0.10"
DNS_DOMAIN="cluster.local"

DNS_REPLICAS=1.

With DNS active, services can be accessed in one of two forms—either the service name
itself, <service-name>, or a fully qualified name that includes the namespace, <service-
name>.<namespace-name>.cluster.local. In our examples, it would look similar to
node-js-90 or node-js-90.default.cluster.local.

The DNS server create DNS records based on new services that are created through the
API. Pods in shared DNS namespaces will be able to see each other, and can use DNS SRV
records to record ports as well.

Kubernetes DNS is comprised of a DNS pod and Service on the cluster which
communicates directly with kubelets and containers in order to translate DNS names to IP.
Services with clusterIPs are given my-service.my-namespace.svc.cluster.local
addresses. If the service does not have a clusterIP (otherwise called headless) it gets the
same address format, but this resolves in a round-robin fashion to a number of IPs that
point to the pods of a service. There a number of DNS policies that can also be set.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/

Working with Networking, Load Balancers, and Ingress Chapter 4

[167]

One of the Kubernetes incubator projects, CoreDNS can also be used for service discovery.
This replaces the native kube-dns DNS services and requires Kubernetes v1.9 or later.
You'll need to leverage kubeadm during the initialization process in order to try CoreDNS
out. You can install this on your cluster with the following command:

$ kubeadm init --feature-gates=CoreDNS=true

If you'd like more information on an example use case of CoreDNS, check out this blog
post: https://coredns. io/ 2017/ 05/ 08/ custom- dns-entries- for- kubernetes/ .

Multitenancy
Kubernetes also has an additional construct for isolation at the cluster level. In most cases,
you can run Kubernetes and never worry about namespaces; everything will run in the
default namespace if not specified. However, in cases where you run multitenancy
communities or want broad-scale segregation and isolation of the cluster resources,
namespaces can be used to this end. True, end-to-end multitenancy is not yet feature
complete in Kubernetes, but you can get very close using RBAC, container permissions,
ingress rules, and clear network policing. If you're interested in enterprise-strength
multitenancy right now, Red Hat's Openshift Origin (OO) would be a good place to learn.

You can check out OO at https:/ /github. com/openshift/ origin.

To start, Kubernetes has two namespaces—default and kube-system. The kube-
system namespace is used for all the system-level containers we saw in Chapter 1,
Introduction to Kubernetes, in the Services running on the minions section. UI, logging, DNS,
and so on are all run in kube-system. Everything else the user creates runs in the default
namespace. However, our resource definition files can optionally specify a custom
namespace. For the sake of experimenting, let's take a look at how to build a new
namespace.

First, we'll need to create a namespace definition file test-ns.yaml like the one in the
following lines of code:

apiVersion: v1
kind: Namespace
metadata:
 name: test

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/coredns/coredns
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin

Working with Networking, Load Balancers, and Ingress Chapter 4

[168]

We can go ahead and create this file with our handy create command:

$ kubectl create -f test-ns.yaml

Now, we can create resources that use the test namespace. The following listing, ns-
pod.yaml, is an example of a pod using this new namespace:

apiVersion: v1
kind: Pod
metadata:
 name: utility
 namespace: test
spec:
 containers:
 - image: debian:latest
 command:
 - sleep
 - "3600"
 name: utility

While the pod can still access services in other namespaces, it will need to use the long DNS
form of <service-name>.<namespace-name>.cluster.local. For example, if you
were to run a command from inside the container in listing ns-pod.yaml, you could use
node-js.default.cluster.local to access the Node.js example from Chapter 3,
Building a Foundation with Core Kubernetes Constructs.

Here is a note about resource utilization. At some point in this book, you
may run out of space on your cluster to create new Kubernetes resources.
The timing will vary based on cluster size, but it's good to keep this in
mind and do some cleanup from time to time. Use the following
commands to remove old examples:
 $ kubectl delete pod <pod name>
 $ kubectl delete svc <service name>
 $ kubectl delete rc <replication controller name>

 $ kubectl delete rs <replicaset name>.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[169]

Limits
Let's inspect our new namespace a bit more. Run the describe command as follows:

$ kubectl describe namespace/test

The following screenshot is the result of the preceding command:

The describe namespace

Kubernetes allows you to both limit the resources used by individual pods or containers
and the resources used by the overall namespace using quotas. You'll note that there are no
resource limits or quotas currently set on the test namespace.

Suppose we want to limit the footprint of this new namespace; we can set quotas as shown
in the following listing quota.yaml:

apiVersion: v1
kind: ResourceQuota
metadata:
 name: test-quotas
 namespace: test
spec:
 hard:
 pods: 3
 services: 1
 replicationcontrollers: 1

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[170]

In reality, namespaces would be for larger application communities and
would probably never have quotas this low. I am using this for ease of
illustration of the capability in this example.

Here, we will create a quota of 3 pods, 1 RC, and 1 service for the test namespace. As you
have probably guessed, this is executed once again by our trusty create command, as
follows:

$ kubectl create -f quota.yaml

Now that we have that in place, let's use describe on the namespace, as follows:

$ kubectl describe namespace/test

The following screenshot is the result of the preceding command:

The describe namespace after the quota is set

You'll note that we now have some values listed in the quota section, and that the limits
section is still blank. We also have a Used column, which lets us know how close to the
limits we are at the moment. Let's try to spin up a few pods using the following definition
busybox-ns.yaml:

apiVersion: v1
kind: ReplicationController
metadata:
 name: busybox-ns
 namespace: test
 labels:
 name: busybox-ns
spec:
 replicas: 4
 selector:
 name: busybox-ns

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[171]

 template:
 metadata:
 labels:
 name: busybox-ns
 spec:
 containers:
 - name: busybox-ns
 image: busybox
 command:
 - sleep
 - "3600"

You'll note that we are creating four replicas of this basic pod. After using create to build
this RC, run the describe command on the test namespace once more. You'll notice that
the Used values for pods and RCs are at their max. However, we asked for four replicas
and can only see three pods in use.

Let's see what's happening with our RC. You might attempt to do that with the following
command:

kubectl describe rc/busybox-ns

However, if you try, you'll be discouraged by being met with a not found message from
the server. This is because we created this RC in a new namespace and kubectl assumes
the default namespace if not specified. This means that we need to specify --
namepsace=test with every command when we wish to access resources in the test
namespace.

We can also set the current namespace by working with the context
settings. First, we need to find our current context, which is found with
the following command:
$ kubectl config view | grep current-context

Next, we can take that context and set the namespace variable like in the
following code:
$ kubectl config set-context <Current Context> --
namespace=test

Now, you can run the kubectl command without the need to specify the
namespace. Just remember to switch back when you want to look at the
resources running in your default namespace.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[172]

Run the command with the namespace specified as shown in the following command. If
you've set your current namespace as demonstrated in the tip box, you can leave off the --
namespace argument:

$ kubectl describe rc/busybox-ns --namespace=test

The following screenshot is the result of the preceding command:

Namespace quotas

As you can see in the preceding image, the first three pods were successfully created, but
our final one fails with a Limited to 3 pods error.

This is an easy way to set limits for resources partitioned out at a community scale. It's
worth noting that you can also set quotas for CPU, memory, persistent volumes, and
secrets. Additionally, limits work in a similar way to quota, but they set the limit for each
pod or container within the namespace.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Networking, Load Balancers, and Ingress Chapter 4

[173]

A note on resource usage
As most of the examples in this book utilize GCP or AWS, it can be costly to keep
everything running. It's also easy to run out of resources using the default cluster size,
especially if you keep every example running. Therefore, you may want to delete older
pods, replication controllers, replica sets, and services periodically. You can also destroy the
cluster and recreate it using Chapter 1, Introduction to Kubernetes, as a way to lower your
cloud provider bill.

Summary
In this chapter, we took a deeper look into networking and services in Kubernetes. You
should now understand how networking communications are designed in K8s and feel
comfortable accessing your services internally and externally. We saw how kube-proxy
balances traffic both locally and across the cluster. Additionally, we explored the new
Ingress resources that allow us finer control of incoming traffic. We also looked briefly at
how DNS and service discovery is achieved in Kubernetes. We finished off with a quick
look at namespaces and isolation for multitenancy.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

5
Using Critical Kubernetes

Resources
In this chapter, we will design a massive-scale platform that will challenge Kubernetes'
capabilities and scalability. The Hue platform is all about creating an omniscient and
omnipotent digital assistant. Hue is a digital extension of you. It will help you do anything,
find anything, and, in many cases, will do a lot on your behalf. It will obviously need to
store a lot of information, integrate with many external services, respond to notifications
and events, and be smart about interacting with you.

We will take the opportunity in this chapter to get to know Kubectl and other related tools
a little better, and will explore in detail resources that we've seen before, such as pods, as
well as new resources, such as jobs. At the end of this chapter, you will have a clear picture
of how impressive Kubernetes is and how it can be used as the foundation for hugely
complex systems.

Designing the Hue platform
In this section, we will set the stage and define the scope of the amazing Hue platform. Hue
is not Big Brother, Hue is Little Brother! Hue will do whatever you allow it to do. It will be
able to do a lot, but some people might be concerned, so you get to pick how much or how
little Hue can help you with. Get ready for a wild ride!

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[175]

Defining the scope of Hue
Hue will manage your digital persona. It will know you better than you know yourself.
Here is a list of some of the services which Hue can manage and help you with:

Search and content aggregation
Medical
Smart home
Finance-bank, savings, retirement, investing
Office
Social
Travel
Wellbeing
Family
Smart reminders and notifications: Let's think of the possibilities. Hue will
know you, but also know your friends and the aggregate of other users across all
domains. Hue will update its models in real time. It will not be confused by stale
data. It will act on your behalf, present relevant information, and learn your
preferences continuously. It can recommend new shows or books that you may
like, make restaurant reservations based on your schedule and your family or
friends, and control your home automation.
Security, identity, and privacy: Hue is your proxy online. The ramifications of
someone stealing your Hue identity, or even just eavesdropping on your Hue
interaction, are devastating. Potential users may even be reluctant to trust the
Hue organization with their identity. Let's devise a non-trust system where users
have the power to pull the plug on Hue at any time. Here are a few ideas in the
right direction:

Strong identity through a dedicated device with multi-factor
authorization, including multiple biometric reasons
Frequently rotating credentials
Quick service pause and identity re-verification of all external
services (will require original proof of identity to each provider)
The Hue backend will interact with all external services through
short-lived tokens
Architecting Hue as a collection of loosely-coupled microservices

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[176]

Hue's architecture will need to support enormous variation and flexibility. It will
also need to be very extensible where existing capabilities and external services
are constantly upgraded, and new capabilities and external services are integrated
into the platform. That level of scale calls for microservices, where each capability
or service is totally independent of other services except for well-defined
interfaces through standard and/or discoverable APIs.

Hue components
Before embarking on our microservice journey, let's review the types of component we
need to construct for Hue.

User profile:

The user profile is a major component, with lots of sub-components. It is the
essence of the user, their preferences, history across every area, and everything
that Hue knows about them.

User graph:

The user graph component models networks of interactions between users across
multiple domains. Each user participates in multiple networks: social networks
such as Facebook and Twitter, professional networks, hobby networks, and
volunteering communities. Some of these networks are ad hoc, and Hue will be
able to structure them to benefit users. Hue can take advantage of the rich profiles
it has of user connections to improve interactions even without exposing private
information.

Identity:

Identity management is critical, as mentioned previously, so it deserves a separate
component. A user may prefer to manage multiple mutually exclusive profiles
with separate identities. For example, maybe users are not comfortable with
mixing their health profile with their social profile because of the risk of
inadvertently exposing personal health information to their friends.

Authorizer:

The authorizer is a critical component where the user explicitly authorizes Hue to
perform certain actions or collect various data on its behalf. This includes access
to physical devices, accounts of external services, and level of initiative.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[177]

External service:

Hue is an aggregator of external services. It is not designed to replace your bank,
your health provider, or your social network. It will keep a lot of metadata about
your activities, but the content will remain with your external services. Each
external service will require a dedicated component to interact with the external
service API and policies. When no API is available, Hue emulates the user by
automating the browser or native apps.

Generic sensor:

A big part of Hue's value proposition is to act on the user's behalf. In order to do
that effectively, Hue needs to be aware of various events. For example, if Hue
reserved a vacation for you but it senses that a cheaper flight is available, it can
either automatically change your flight or ask you for confirmation. There is an
infinite number of things to sense. To reign in sensing, a generic sensor is needed.
A generic sensor will be extensible, but exposes a generic interface that the other
parts of Hue can utilize uniformly even as more and more sensors are added.

Generic actuator:

This is the counterpart of the generic sensor. Hue needs to perform actions on
your behalf, such as reserving a flight. To do that, Hue needs a generic actuator
that can be extended to support particular functions but can interact with other
components, such as the identity manager and the authorizer, in a uniform
fashion.

User learner:

This is the brain of Hue. It will constantly monitor all of your interactions (that
you authorize) and update its model of you. This will allow Hue to become more
and more useful over time, predict what you need and what will interest you,
provide better choices, surface more relevant information at the right time, and
avoid being annoying and overbearing.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[178]

Hue microservices
The complexity of each of the components is enormous. Some of the components, such as
the external service, the generic sensor, and generic actuator, will need to operate across
hundreds, thousands, or more external services that constantly change outside the control
of Hue. Even the user learner needs to learn the user's preferences across many areas and
domains. Microservices address this need by allowing Hue to evolve gradually and grow
more isolated capabilities without collapsing under its own complexity. Each microservice
interacts with generic Hue infrastructure services through standard interfaces and,
optionally, with a few other services through well-defined and versioned interfaces. The
surface area of each microservice is manageable, and the orchestration between
microservices is based on standard best practices:

Plugins:

Plugins are the key to extending Hue without a proliferation of interfaces. The
thing about plugins is that you often need plugin chains that cross multiple
abstraction layers. For example, if we want to add a new integration for Hue with
YouTube, then you can collect a lot of YouTube-specific information: your
channels, favorite videos, recommendations, and videos you have watched. To
display this information to users and allow them to act on it, you need plugins
across multiple components and eventually in the user interface as well. Smart
design will help by aggregating categories of actions such as recommendations,
selections, and delayed notifications to many different services.

The great thing about plugins is that they can be developed by anyone. Initially,
the Hue development team will have to develop the plugins, but as Hue becomes
more popular, external services will want to integrate with Hue and build Hue
plugins to enable their service.

That will lead, of course, to a whole ecosystem of plugin registration, approval,
and curation.

Data stores:

Hue will need several types of data store, and multiple instances of each type, to
manage its data and metadata:

Relational database
Graph database
Time-series database
In-memory caching

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[179]

Due to the scope of Hue, each one of these databases will have to be clustered and
distributed.

Stateless microservices:

The microservices should be mostly stateless. This will allow specific instances to
be started and killed quickly, and migrated across the infrastructure as necessary.
The state will be managed by the stores and accessed by the microservices with
short-lived access tokens.

Queue-based interactions:

All these microservices need to talk to each other. Users will ask Hue to perform
tasks on their behalf. External services will notify Hue of various events. Queues
coupled with stateless microservices provide the perfect solution. Multiple
instances of each microservice will listen to various queues and respond when
relevant events or requests are popped from the queue. This arrangement is very
robust and easy to scale. Every component can be redundant and highly
available. While each component is fallible, the system is very fault-tolerant.

A queue can be used for asynchronous RPC or request-response style interactions
too, where the calling instance provides a private queue name and the callee posts
the response to the private queue.

Planning workflows
Hue often needs to support workflows. A typical workflow will get a high-level task, such
as making a dentist appointment; it will extract the user's dentist details and schedule,
match it with the user's schedule, choose between multiple options, potentially confirm
with the user, make the appointment, and set up a reminder. We can classify workflows
into fully automatic and human workflows where humans are involved. Then there are
workflows that involve spending money.

Automatic workflows
Automatic workflows don't require human intervention. Hue has full authority to execute
all the steps from start to finish. The more autonomy the user allocates to Hue, the more
effective it will be. The user should be able to view and audit all workflows, past and
present.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[180]

Human workflows
Human workflows require interaction with a human. Most often it will be the user that
needs to make a choice from multiple options or approve an action, but it may involve a
person on another service. For example, to make an appointment with a dentist, you may
have to get a list of available times from the secretary.

Budget-aware workflows
Some workflows, such as paying bills or purchasing a gift, require spending money. While,
in theory, Hue can be granted unlimited access to the user's bank account, most users will
probably be more comfortable with setting budgets for different workflows or just making
spending a human-approved activity.

Using Kubernetes to build the Hue platform
In this section, we will look at various Kubernetes resources and how they can help us
build Hue. First, we'll get to know the versatile Kubectl a little better, then we will look at
running long-running processes in Kubernetes, exposing services internally and externally,
using namespaces to limit access, launching ad hoc jobs, and mixing in non-cluster
components. Obviously, Hue is a huge project, so we will demonstrate the ideas on a local
Minikube cluster and not actually build a real Hue Kubernetes cluster.

Using Kubectl effectively
Kubectl is your Swiss Army knife. It can do pretty much anything around the cluster.
Under the hood, Kubectl connects to your cluster through the API. It reads your
.kube/config file, which contains information necessary to connect to your cluster or
clusters. The commands are divided into multiple categories:

Generic commands: Deal with resources in a generic way: create, get, delete,
run, apply, patch, replace, and so on
Cluster management commands: Deal with nodes and the cluster at large:
cluster-info, certificate, drain, and so on
Troubleshooting commands: describe, logs, attach, exec, and so on
Deployment commands: Deal with deployment and scaling: rollout, scale,
auto-scale, and so on

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[181]

Settings commands: Deal with labels and annotations: label, annotate, and so
on

Misc commands: help, config, and version

You can view the configuration with Kubernetes config view.

Here is the configuration for a Minikube cluster:

~/.minikube > k config view
apiVersion: v1
clusters:
- cluster:
 certificate-authority: /Users/gigi.sayfan/.minikube/ca.crt
 server: https://192.168.99.100:8443
 name: minikube
contexts:
- context:
 cluster: minikube
 user: minikube
 name: minikube
current-context: minikube
kind: Config
preferences: {}
users:
- name: minikube
 user:
 client-certificate: /Users/gigi.sayfan/.minikube/client.crt
 client-key: /Users/gigi.sayfan/.minikube/client.key

Understanding Kubectl resource configuration
files
Many Kubectl operations, such as create, require complicated hierarchical output (since
the API requires this output). Kubectl uses YAML or JSON configuration files. Here is a
JSON configuration file for creating a pod:

apiVersion: v1
kind: Pod
metadata:
 name: ""
 labels:
 name: ""
 namespace: ""
 annotations: []

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[182]

 generateName: ""
spec:
 ...

apiVersion: The very important Kubernetes API keeps evolving and can
support different versions of the same resource through different versions of the
API.
kind: kind tells Kubernetes what type of resource it is dealing with, in this case,
pod. This is always required.
metadata: This is a lot of information that describes the pod and where it
operates:

name: Identifies the pod uniquely within its namespace
labels: Multiple labels can be applied
namespace: The namespace the pod belongs to
annotations: A list of annotations available for query

spec: spec is a pod template that contains all of the information necessary to
launch a pod. It can be quite elaborate, so we'll explore it in multiple parts:

"spec": {
 "containers": [
],
 "restartPolicy": "",
 "volumes": [
]
}

Container spec: The pod spec's container is a list of container specs. Each
container spec has the following structure:

 {
 "name": "",
 "image": "",
 "command": [
 ""
],
 "args": [
 ""
],
 "env": [
 {
 "name": "",
 "value": ""
 }
],

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[183]

 "imagePullPolicy": "",
 "ports": [
 {
 "containerPort": 0,
 "name": "",
 "protocol": ""
 }
],
 "resources": {
 "cpu": ""
 "memory": ""
 }
 }

Each container has an image, a command that, if specified, replaces the Docker image
command. It also has arguments and environment variables. Then, there are, of course, the
image pull policy, ports, and resource limits. We covered those in earlier chapters.

Deploying long-running microservices in pods
Long-running microservices should run in pods and be stateless. Let's look at how to create
pods for one of Hue's microservices. Later, we will raise the level of abstraction and use a
deployment.

Creating pods
Let's start with a regular pod configuration file for creating a Hue learner internal service.
This service doesn't need to be exposed as a public service, and it will listen to a queue for
notifications and store its insights in some persistent storage.

We need a simple container that the pod will run in. Here is possibly the simplest Docker
file ever, which will simulate the Hue learner:

FROM busybox
CMD ash -c "echo 'Started...'; while true ; do sleep 10 ; done"

It uses the busybox base image, prints to standard output Started... and then goes into
an infinite loop, which is, by all accounts, long-running.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[184]

I have built two Docker images tagged as g1g1/hue-learn:v3.0 and g1g1/hue-
learn:v4.0 and pushed them to the Docker Hub registry (g1g1 is my user name).

docker build . -t g1g1/hue-learn:v3.0
docker build . -t g1g1/hue-learn:v4.0
docker push g1g1/hue-learn:v3.0
docker push g1g1/hue-learn:v4.0

Now, these images are available to be pulled into containers inside of Hue's pods.

We'll use YAML here because it's more concise and human-readable. Here are the
boilerplate and metadata labels:

apiVersion: v1
kind: Pod
metadata:
 name: hue-learner
 labels:
 app: hue
 runtime-environment: production
 tier: internal-service
 annotations:
 version: "3.0"

The reason I use an annotation for the version and not a label is that labels are used to
identify the set of pods in the deployment. Modifying labels is not allowed.

Next comes the important containers spec, which defines for each container the
mandatory name and image:

spec: containers: - name: hue-learner image: g1g1/hue-learn:v3.0

The resources section tells Kubernetes the resource requirements of the container, which
allows for more efficient and compact scheduling and allocations. Here, the container
requests 200 milli-cpu units (0.2 core) and 256 MiB:

resources:
 requests:
 cpu: 200m
 memory: 256Mi

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[185]

The environment section allows the cluster administrator to provide environment variables
that will be available to the container. Here it tells it to discover the queue and the store
through dns. In a testing environment, it may use a different discovery method:

env:
- name: DISCOVER_QUEUE
 value: dns
- name: DISCOVER_STORE
 value: dns

Decorating pods with labels
Labeling pods wisely is key for flexible operations. It lets you evolve your cluster live,
organize your microservices into groups that you can operate on uniformly, and drill down
in an ad hoc manner to observe different subsets.

For example, our Hue learner pod has the following labels:

Runtime-environment: Production
Tier: Internal-service

The version annotation can be used to support running multiple versions at the same time.
If both version 2 and version 3 need to run at the same time, either to provide backward
compatibility or just temporarily during the migration from v2 to v3, then having a version
annotation or label allows both scaling pods of different versions independently and
exposing services independently. The runtime-environment label allows performing
global operations on all pods that belong to a certain environment. The tier label can be
used to query all pods that belong to a particular tier. These are just examples; your
imagination is the limit here.

Deploying long-running processes with deployments
In a large-scale system, pods should never be just created and let loose. If a pod dies
unexpectedly for whatever reason, you want another one to replace it to maintain overall
capacity. You can create replication controllers or replica sets yourself, but that leaves the
door open to mistakes as well as the possibility of partial failure. It makes much more sense
to specify how many replicas you want when you launch your pods.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[186]

Let's deploy three instances of our Hue learner microservice with a Kubernetes deployment
resource. Note that deployment objects became stable at Kubernetes 1.9:

apiVersion: apps/v1 (use apps/v1beta2 before 1.9)
 kind: Deployment
 metadata:
 name: hue-learn
 labels:
 app: hue
 spec:
 replicas: 3
 selector:
 matchLabels:
 app: hue
 template:
 metadata:
 labels:
 app: hue
 spec:
 <same spec as in the pod template>

The pod spec is identical to the spec section from the pod configuration file that we used
previously.

Let's create the deployment and check its status:

> kubectl create -f .\deployment.yaml
deployment "hue-learn" created
> kubectl get deployment hue-learn
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
hue-learn 3 3 3 3 4m
> kubectl get pods | grep hue-learn
NAME READY STATUS RESTARTS AGE
hue-learn-237202748-d770r 1/1 Running 0 2m
hue-learn-237202748-fwv2t 1/1 Running 0 2m
hue-learn-237202748-tpr4s 1/1 Running 0 2m

You can get a lot more information about the deployment using the kubectl describe
command.

Updating a deployment
The Hue platform is a large and ever-evolving system. You need to upgrade constantly.
Deployments can be updated to roll out updates in a painless manner. You change the pod
template to trigger a rolling update which is fully managed by Kubernetes.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[187]

Currently, all the pods are running with version 3.0:

> kubectl get pods -o json | jq .items[0].spec.containers[0].image
"3.0"

Let's update the deployment to upgrade to version 4.0. Modify the image version in the
deployment file. Don't modify labels; it will cause an error. Typically, you modify the
image and some related metadata in annotations. Then we can use the apply command to
upgrade the version:

> kubectl apply -f hue-learn-deployment.yaml
deployment "hue-learn" updated
> kubectl get pods -o json | jq .items[0].spec.containers[0].image
"4.0"

Separating internal and external services
Internal services are services that are accessed directly only by other services or jobs in the
cluster (or administrators that log in and run ad hoc tools). In some cases, internal services
are not accessed at all, and just perform their function and store their results in a persistent
store that other services access in a decoupled way.

But some services need to be exposed to users or external programs. Let's look at a fake
Hue service that manages a list of reminders for a user. It doesn't really do anything, but
we'll use it to illustrate how to expose services. I pushed a dummy hue-reminders image
(the same as hue-learn) to Docker Hub:

docker push g1g1/hue-reminders:v2.2

Deploying an internal service
Here is the deployment, which is very similar to the Hue-learner deployment, except that I
dropped the annotations, env, and resources sections, kept just one label to save space,
and added a ports section to the container. That's crucial, because a service must expose a
port through which other services can access it:

apiVersion: apps/v1a1
kind: Deployment
metadata:
 name: hue-reminders
spec:
 replicas: 2

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[188]

 template:
 metadata:
 name: hue-reminders
 labels:
 app: hue-reminders
 spec:
 containers:
 - name: hue-reminders
 image: g1g1/hue-reminders:v2.2
 ports:
 - containerPort: 80

When we run the deployment, two Hue reminders pods are added to the cluster:

> kubectl create -f hue-reminders-deployment.yaml
> kubectl get pods
NAME READY STATUS RESTARTS AGE
hue-learn-56886758d8-h7vm7 1/1 Running 0 49m
hue-learn-56886758d8-lqptj 1/1 Running 0 49m
hue-learn-56886758d8-zwkqt 1/1 Running 0 49m
hue-reminders-75c88cdfcf-5xqtp 1/1 Running 0 50s
hue-reminders-75c88cdfcf-r6jsx 1/1 Running 0 50s

OK, the pods are running. In theory, other services can look up or be configured with their
internal IP address and just access them directly because they are all in the same network
space. But this doesn't scale. Every time a reminders pod dies and is replaced by a new one,
or when we just scale up the number of pods, all the services that access these pods must
know about it. Services solve this issue by providing a single access point to all the pods.
The service is as follows:

apiVersion: v1
kind: Service
metadata:
 name: hue-reminders
 labels:
 app: hue-reminders
spec:
 ports:
 - port: 80
 protocol: TCP
 selector:
 app: hue-reminders

The service has a selector that selects all the pods that have labels that match it. It also
exposes a port, which other services will use to access it (it doesn't have to be the same port
as the container's port).

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[189]

Creating the hue-reminders service
Let's create the service and explore it a little bit:

> kubectl create -f hue-reminders-service.yaml
service "hue-reminders" created
> kubectl describe svc hue-reminders
Name: hue-reminders
Namespace: default
Labels: app=hue-reminders
Annotations: <none>
Selector: app=hue-reminders
Type: ClusterIP
IP: 10.108.163.209
Port: <unset> 80/TCP
TargetPort: 80/TCP
Endpoints: 172.17.0.4:80,172.17.0.6:80
Session Affinity: None
Events: <none>

The service is up and running. Other pods can find it through environment variables or
DNS. The environment variables for all services are set at pod creation time. That means
that if a pod is already running when you create your service, you'll have to kill it and let
Kubernetes recreate it with the environment variables (you create your pods through a
deployment, right?):

> kubectl exec hue-learn-56886758d8-fjzdd -- printenv | grep
HUE_REMINDERS_SERVICE
HUE_REMINDERS_SERVICE_PORT=80
HUE_REMINDERS_SERVICE_HOST=10.108.163.209

But using DNS is much simpler. Your service DNS name is:

<service name>.<namespace>.svc.cluster.local
> kubectl exec hue-learn-56886758d8-fjzdd -- nslookup hue-reminders
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local
Name: hue-reminders
Address 1: 10.108.163.209 hue-reminders.default.svc.cluster.local

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[190]

Exposing a service externally
The service is accessible inside the cluster. If you want to expose it to the world, Kubernetes
provides two ways to do it:

Configure NodePort for direct access
Configure a cloud load balancer if you run it in a cloud environment

Before you configure a service for external access, you should make sure it is secure. The
Kubernetes documentation has a good example that covers all the gory details here:

https://github.com/kubernetes/examples/blob/master/staging/https-nginx/README.m

d.

Here is the spec section of the Hue-reminders service when exposed to the world through
NodePort:

spec:
 type: NodePort
 ports:
 - port: 8080
 targetPort: 80
 protocol: TCP
 name: http
 - port: 443
 protocol: TCP
 name: https
 selector:
 app: hue-reminders

Ingress
Ingress is a Kubernetes configuration object that lets you expose a service to the outside
world and take care of a lot of details. It can do the following:

Provide an externally visible URL to your service
Load-balance traffic
Terminate SSL
Provide name-based virtual hosting

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/examples/blob/master/staging/https-nginx/README.md
https://github.com/kubernetes/examples/blob/master/staging/https-nginx/README.md

Using Critical Kubernetes Resources Chapter 5

[191]

To use Ingress, you must have an Ingress controller running in your cluster. Note that
Ingress is still in beta and has many limitations. If you're running your cluster on GKE,
you're probably OK. Otherwise, proceed with caution. One of the current limitations of the
Ingress controller is that it isn't built for scale. As such, it is not a good option for the Hue
platform yet. We'll cover the Ingress controller in greater detail in Chapter 15, Advanced
Kubernetes Networking.

Here is what an Ingress resource looks like:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: test
spec:
 rules:
 - host: foo.bar.com
 http:
 paths:
 - path: /foo
 backend:
 serviceName: fooSvc
 servicePort: 80
 - host: bar.baz.com
 http:
 paths:
 - path: /bar
 backend:
 serviceName: barSvc
 servicePort: 80

The Nginx Ingress controller will interpret this Ingress request and create a
corresponding configuration file for the Nginx web server:

http {
 server {
 listen 80;
 server_name foo.bar.com;

 location /foo {
 proxy_pass http://fooSvc;
 }
 }
 server {
 listen 80;
 server_name bar.baz.com;

 location /bar {

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[192]

 proxy_pass http://barSvc;
 }
 }
}

It is possible to create other controllers.

Using namespace to limit access
The Hue project is moving along nicely, and we have a few hundred microservices and
about 100 developers and DevOps engineers working on it. Groups of related microservices
emerge, and you notice that many of these groups are pretty autonomous. They are
completely oblivious to the other groups. Also, there are some sensitive areas, such as
health and finance, that you will want to control access to more effectively. Enter
namespaces.

Let's create a new service, Hue-finance, and put it in a new namespace called restricted.

Here is the YAML file for the new restricted namespace:

kind: Namespace
 apiVersion: v1
 metadata:
 name: restricted
 labels:
 name: restricted
> kubectl create -f restricted-namespace.yaml
namespace "restricted" created

Once the namespace has been created, we need to configure a context for the namespace.
This will allow restricting access just to this namespace:

> kubectl config set-context restricted --namespace=restricted --
cluster=minikube --user=minikube
Context "restricted" set.
> kubectl config use-context restricted
Switched to context "restricted".

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[193]

Let's check our cluster configuration:

> kubectl config view
apiVersion: v1
clusters:
- cluster:
 certificate-authority: /Users/gigi.sayfan/.minikube/ca.crt
 server: https://192.168.99.100:8443
 name: minikube
contexts:
- context:
 cluster: minikube
 user: minikube
 name: minikube
- context:
 cluster: minikube
 namespace: restricted
 user: minikube
 name: restricted
current-context: restricted
kind: Config
preferences: {}
users:
- name: minikube
 user:
 client-certificate: /Users/gigi.sayfan/.minikube/client.crt
 client-key: /Users/gigi.sayfan/.minikube/client.key

As you can see, the current context is restricted.

Now, in this empty namespace, we can create our hue-finance service, and it will be on
its own:

> kubectl create -f hue-finance-deployment.yaml
deployment "hue-finance" created
> kubectl get pods
NAME READY STATUS RESTARTS AGE
hue-finance-7d4b84cc8d-gcjnz 1/1 Running 0 6s
hue-finance-7d4b84cc8d-tqvr9 1/1 Running 0 6s
hue-finance-7d4b84cc8d-zthdr 1/1 Running 0 6s

You don't have to switch contexts. You can also use the --namespace=<namespace> and -
-all-namespaces command-line switches.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[194]

Launching jobs
Hue has a lot of long-running processes deployed as microservices, but it also has a lot of
tasks that run, accomplish some goal, and exit. Kubernetes supports this functionality
through the job resource. A Kubernetes job manages one or more pods and ensures that
they run until success. If one of the pods managed by the job fails or is deleted, then the job
will run a new pod until it succeeds.

Here is a job that runs a Python process to compute the factorial of 5 (hint: it's 120):

apiVersion: batch/v1
kind: Job
metadata:
 name: factorial5
spec:
 template:
 metadata:
 name: factorial5
 spec:
 containers:
 - name: factorial5
 image: python:3.6
 command: ["python",
 "-c",
 "import math; print(math.factorial(5))"]
 restartPolicy: Never

Note that the restartPolicy must be either Never or OnFailure. The default Always
value is invalid because a job shouldn't restart after successful completion.

Let's start the job and check its status:

> kubectl create -f .\job.yaml
job "factorial5" created
> kubectl get jobs
NAME DESIRED SUCCESSFUL AGE
factorial5 1 1 25s

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[195]

The pods of completed tasks are not displayed by default. You must use the --show-all
option:

> kubectl get pods --show-all
NAME READY STATUS RESTARTS AGE
factorial5-ntp22 0/1 Completed 0 2m
hue-finance-7d4b84cc8d-gcjnz 1/1 Running 0 9m
hue-finance-7d4b84cc8d-tqvr9 1/1 Running 0 8m
hue-finance-7d4b84cc8d-zthdr 1/1 Running 0 9m

The factorial5 pod has a status of Completed. Let's check out its output:

> kubectl logs factorial5-ntp22
120

Running jobs in parallel
You can also run a job with parallelism. There are two fields in the spec, called
completions and parallelism. The completions are set to 1 by default. If you want
more than one successful completion, then increase this value. parallelism determines
how many pods to launch. A job will not launch more pods than needed for successful
completions, even if the parallelism number is greater.

Let's run another job that just sleeps for 20 seconds until it has three successful
completions. We'll use a parallelism factor of 6, but only three pods will be launched:

apiVersion: batch/v1
kind: Job
metadata:
 name: sleep20
spec:
 completions: 3
 parallelism: 6
 template:
 metadata:
 name: sleep20
 spec:
 containers:
 - name: sleep20
 image: python:3.6
 command: ["python",
 "-c",
 "import time; print('started...');
 time.sleep(20); print('done.')"]
 restartPolicy: Never

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[196]

> Kubectl get pods
NAME READY STATUS RESTARTS AGE
sleep20-1t8sd 1/1 Running 0 10s
sleep20-sdjb4 1/1 Running 0 10s
sleep20-wv4jc 1/1 Running 0 10s

Cleaning up completed jobs
When a job completes, it sticks around - and its pods do, too. This is by design, so you can
look at logs or connect to pods and explore. But normally, when a job has completed
successfully, it is not needed anymore. It's your responsibility to clean up completed jobs
and their pods. The easiest way is to simply delete the job object, which will delete all the
pods too:

> kubectl delete jobs/factroial5
job "factorial5" deleted
> kubectl delete jobs/sleep20
job "sleep20" deleted

Scheduling cron jobs
Kubernetes cron jobs are jobs that run for a specified time, once or repeatedly. They behave
as regular Unix cron jobs, specified in the /etc/crontab file.

In Kubernetes 1.4 they were known as a ScheduledJob. But, in Kubernetes 1.5, the name
was changed to CronJob. Starting with Kubernetes 1.8, the CronJob resource is enabled by
default in the API server and there no need to pass a --runtime-config flag anymore,
but it's still in beta. Here is the configuration to launch a cron job every minute to remind
you to stretch. In the schedule, you may replace the * with ?:

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: stretch
spec:
 schedule: "*/1 * * * *"
 jobTemplate:
 spec:
 template:
 metadata:
 labels:
 name: stretch
 spec:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[197]

 containers:
 - name: stretch
 image: python
 args:
 - python
 - -c
 - from datetime import datetime; print('[{}]
Stretch'.format(datetime.now()))
 restartPolicy: OnFailure

In the pod spec, under the job template, I added a label called name. The reason is that cron
jobs and their pods are assigned names with a random prefix by Kubernetes. The label
allows you to easily discover all the pods of a particular cron job. See the following
command lines:

> kubectl get pods
NAME READY STATUS RESTARTS AGE
stretch-1482165720-qm5bj 0/1 ImagePullBackOff 0 1m
stretch-1482165780-bkqjd 0/1 ContainerCreating 0 6s

Note that each invocation of a cron job launches a new job object with a new pod:

> kubectl get jobs
NAME DESIRED SUCCESSFUL AGE
stretch-1482165300 1 1 11m
stretch-1482165360 1 1 10m
stretch-1482165420 1 1 9m
stretch-1482165480 1 1 8m

When a cron job invocation completes, its pod gets into a Completed state and will not be
visible without the -show-all or -a flags:

> Kubectl get pods --show-all
NAME READY STATUS RESTARTS AGE
stretch-1482165300-g5ps6 0/1 Completed 0 15m
stretch-1482165360-cln08 0/1 Completed 0 14m
stretch-1482165420-n8nzd 0/1 Completed 0 13m
stretch-1482165480-0jq31 0/1 Completed 0 12m

As usual, you can check the output of the pod of a completed cron job using the logs
command:

> kubectl logs stretch-1482165300-g5ps6
[2016-12-19 16:35:15.325283] Stretch

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[198]

When you delete a cron job, it stops scheduling new jobs and deletes all the existing job
objects along with all the pods it created.

You can use the designated label (the name is equal to STRETCH in this case) to locate all the
job objects launched by the cron job. You can also suspend a cron job so it doesn't create
more jobs without deleting completed jobs and pods. You can also manage previous jobs by
setting in the spec history limits: spec.successfulJobsHistoryLimit and
.spec.failedJobsHistoryLimit.

Mixing non-cluster components
Most real-time system components in the Kubernetes cluster will communicate with out-of-
cluster components. These could be completely external third-party services which are
accessible through some API, but could also be internal services running in the same local
network that, for various reasons, are not part of the Kubernetes cluster.

There are two categories here: inside-the-cluster-network and outside-the-cluster-network.
Why is the distinction important?

Outside-the-cluster-network components
These components have no direct access to the cluster. They can only access it through
APIs, externally visible URLs, and exposed services. These components are treated just like
any external user. Often, cluster components will just use external services, which pose no
security issue. For example, in my previous job we had a Kubernetes cluster that reported
exceptions to a third-party service (https://sentry.io/welcome/). It was one-way
communication from the Kubernetes cluster to the third-party service.

Inside-the-cluster-network components
These are components that run inside-the-network but are not managed by Kubernetes.
There are many reasons to run such components. They could be legacy applications that
have not be Kubernetized yet, or some distributed data store that is not easy to run inside
Kubernetes. The reason to run these components inside-the-network is for performance,
and to have isolation from the outside world so that traffic between these components and
pods can be more secure. Being part of the same network ensures low-latency, and the
reduced need for authentication is both convenient and can avoid authentication overhead.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://sentry.io/welcome/

Using Critical Kubernetes Resources Chapter 5

[199]

Managing the Hue platform with Kubernetes
In this section, we will look at how Kubernetes can help operate a huge platform such as
Hue. Kubernetes itself provides a lot of capabilities to orchestrate pods and manage quotas
and limits, detecting and recovering from certain types of generic failures (hardware
malfunctions, process crashes, and unreachable services). But, in a complicated system such
as Hue, pods and services may be up and running but in an invalid state or waiting for
other dependencies in order to perform their duties. This is tricky because if a service or
pod is not ready yet, but is already receiving requests, then you need to manage it
somehow: fail (puts responsibility on the caller), retry (how many times? for how long? how
often?), and queue for later (who will manage this queue?).

It is often better if the system at large can be aware of the readiness state of different
components, or if components are visible only when they are truly ready. Kubernetes
doesn't know Hue, but it provides several mechanisms, such as liveness probes, readiness
probes, and Init Containers, to support the application-specific management of your
cluster.

Using liveness probes to ensure your containers are
alive
Kubectl watches over your containers. If a container process crashes, Kubelet will take care
of it based on the restart policy. But this is not always enough. Your process may not crash,
but instead run into an infinite loop or a deadlock. The restart policy might not be nuanced
enough. With a liveness probe, you get to decide when a container is considered alive. Here
is a pod template for the Hue music service. It has a livenessProbe section, which uses
the httpGet probe. An HTTP probe requires a scheme (HTTP or HTTPS, default to HTTP,
a host (which defaults to PodIp), a path, and a port). The probe is considered successful if
the HTTP status is between 200 and 399. Your container may need some time to initialize,
so you can specify an initialDelayInSeconds. The Kubelet will not hit the liveness
check during this period:

apiVersion: v1
kind: Pod
metadata:
 labels:
 app: hue-music
 name: hue-music
spec:
 containers:
 image: the_g1g1/hue-music
 livenessProbe:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[200]

 httpGet:
 path: /pulse
 port: 8888
 httpHeaders:
 - name: X-Custom-Header
 value: ItsAlive
 initialDelaySeconds: 30
 timeoutSeconds: 1
 name: hue-music

If a liveness probe fails for any container, then the pod's restart policy goes into effect. Make
sure your restart policy is not Never, because that will make the probe useless.

There are two other types of probe:

TcpSocket: Just check that a port is open
Exec: Run a command that returns 0 for success

Using readiness probes to manage dependencies
Readiness probes are used for different purpose. Your container may be up and running,
but it may depend on other services that are unavailable at the moment. For example, Hue-
music may depend on access to a data service that contains your listening history. Without
access, it is unable to perform its duties. In this case, other services or external clients
should not send requests to the Hue music service, but there is no need to restart it.
Readiness probes address this use case. When a readiness probe fails for a container, the
container's pod will be removed from any service endpoint it is registered with. This
ensures that requests don't flood services that can't process them. Note that you can also
use readiness probes to temporarily remove pods that are overbooked until they drain
some internal queue.

Here is a sample readiness probe. I use the exec probe here to execute a custom command.
If the command exits a non-zero exit code, the container will be torn down:

readinessProbe:
 exec:
 command:
 - /usr/local/bin/checker
 - --full-check
 - --data-service=hue-multimedia-service
 initialDelaySeconds: 60
 timeoutSeconds: 5

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[201]

It is fine to have both a readiness probe and a liveness probe on the same container as they
serve different purposes.

Employing Init Containers for orderly pod
bring-up
Liveness and readiness probes are great. They recognize that, at startup, there may be a
period where the container is not ready yet, but shouldn't be considered failed. To
accommodate that there is the initialDelayInSeconds setting where containers will not
be considered failed. But what if this initial delay is potentially very long? Maybe, in most
cases, a container is ready after a couple of seconds and ready to process requests, but
because the initial delay is set to five minutes just in case, we waste a lot of time when the
container is idle. If the container is part of a high-traffic service, then many instances can all
sit idle for five minutes after each upgrade and pretty much make the service unavailable.

Init Containers address this problem. A pod may have a set of Init Containers that run to
completion before other containers are started. An Init Container can take care of all the
non-deterministic initialization and let application containers with their readiness probe
have minimal delay.

Init Containers came out of beta in Kubernetes 1.6. You specify them in the pod spec as the
initContainers field, which is very similar to the containers field. Here is an example:

apiVersion: v1
kind: Pod
metadata:
 name: hue-fitness
spec:
 containers:
 name: hue-fitness
 Image: hue-fitness:v4.4
 InitContainers:
 name: install
 Image: busybox
 command: /support/safe_init
 volumeMounts:
 - name: workdir
 mountPath: /workdir

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[202]

Sharing with DaemonSet pods
DaemonSet pods are pods that are deployed automatically, one per node (or a designated
subset of the nodes). They are typically used for keeping an eye on nodes and ensuring that
they are operational. This is a very important function that we covered in Chapter 8,
Monitoring, Logging, and Troubleshooting, when we discussed the node problem detector. But
they can be used for much more. The nature of the default Kubernetes scheduler is that it
schedules pods based on resource availability and requests. If you have lots of pods that
don't require a lot of resources, many pods will be scheduled on the same node. Let's
consider a pod that performs a small task and then, every second, sends a summary of all
its activities to a remote service. Imagine that, on average, 50 of these pods are scheduled on
the same node. This means that, every second, 50 pods make 50 network requests with very
little data. How about we cut it down by 50 times to just a single network request? With a
DaemonSet pod, all the other 50 pods can communicate with it instead of talking directly to
the remote service. The DaemonSet pod will collect all the data from the 50 pods and, once
a second, will report it in aggregate to the remote service. Of course, that requires the
remote service API to support aggregate reporting. The nice thing is that the pods
themselves don't have to be modified; they will just be configured to talk to the DaemonSet
pod on localhost instead of the remote service. The DaemonSet pod serves as an
aggregating proxy.

The interesting part about this configuration file is that the hostNetwork, hostPID, and
hostIPC options are set to true. This enables the pods to communicate efficiently with the
proxy, utilizing the fact that they are running on the same physical host:

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: hue-collect-proxy
 labels:
 tier: stats
 app: hue-collect-proxy
spec:
 template:
 metadata:
 labels:
 hue-collect-proxy
 spec:
 hostPID: true
 hostIPC: true
 hostNetwork: true
 containers:
 image: the_g1g1/hue-collect-proxy
 name: hue-collect-proxy

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[203]

Evolving the Hue platform with Kubernetes
In this section, we'll discuss other ways to extend the Hue platform and service additional
markets and communities. The question is always, What Kubernetes features and capabilities
can we use to address new challenges or requirements?

Utilizing Hue in enterprises
Enterprises often can't run in the cloud, either due to security and compliance reasons, or
for performance reasons because the system has work with data and legacy systems that
are not cost-effective to move to the cloud. Either way, Hue for enterprise must support on-
premise clusters and/or bare-metal clusters.

While Kubernetes is most often deployed on the cloud, and even has a special cloud-
provider interface, it doesn't depend on the cloud and can be deployed anywhere. It does
require more expertise, but enterprise organizations that already run systems on their own
datacenters have that expertise.

CoreOS provides a lot of material regarding deploying Kubernetes clusters on bare-metal
lusters.

Advancing science with Hue
Hue is so great at integrating information from multiple sources that it would be a boon for
the scientific community. Consider how Hue can help multi-disciplinary collaborations
between scientists from different areas.

A network of scientific communities might require deployment across multiple
geographically-distributed clusters. Enter cluster federation. Kubernetes has this use case in
mind and evolves its support. We will discuss it at length in a later chapter.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Critical Kubernetes Resources Chapter 5

[204]

Educating the kids of the future with Hue
Hue can be utilized for education and provide many services to online education systems.
But privacy concerns may prevent deploying Hue for kids as a single, centralized system.
One possibility is to have a single cluster, with namespaces for different schools. Another
deployment option is that each school or county has its own Hue Kubernetes cluster. In the
second case, Hue for education must be extremely easy to operate to cater for schools
without a lot of technical expertise. Kubernetes can help a lot by providing self-healing and
auto-scaling features and capabilities for Hue, to be as close to zero-administration as
possible.

Summary
In this chapter, we designed and planned the development, deployment, and management
of the Hue platform - an imaginary omniscient and omnipotent service - built on
microservices architecture. We used Kubernetes as the underlying orchestration platform,
of course, and delved into many of its concepts and resources. In particular, we focused on
deploying pods for long-running services, as opposed to jobs for launching short-term or
cron jobs, explored internal services versus external services, and also used namespaces to
segment a Kubernetes cluster. Then we looked at the management of a large system such as
Hue with liveness and readiness probes, Init Containers, and DaemonSets.

You should now feel comfortable architecting web-scale systems composed of
microservices, and understand how to deploy and manage them in a Kubernetes cluster.

In the next chapter, we will look into the super-important area of storage. Data is king, but
often the least-flexible element of the system. Kubernetes provides a storage model, and
many options for integrating with various storage solutions.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

6
Exploring Kubernetes Storage

Concepts
In order to power modern microservices and other stateless applications, Kubernetes
operators need to have a way to manage stateful data storage on the cluster. While it's
advantageous to maintain as much state as possible outside of the cluster in dedicated
database clusters as a part of cloud-native service offerings, there's often a need to keep a
statement of record or state cluster for stateless and ephemeral services. We'll explore
what's considered a more difficult problem in the container orchestration and scheduling
world: managing locality-specific, mutable data in a world that relies on declarative state,
decoupling physical devices from logical objects, and immutable approaches to system
updates. We'll explore strategies for setting up reliable, replicated storage for modern
database engines.

In this chapter, we will discuss how to attach persistent volumes and create storage for
stateful applications and data. We will walk through storage concerns and how we can
persist data across pods and the container life cycle. We will explore the
PersistentVolumes types, as well as PersistentVolumeClaim. Finally, we will take a
look at StatefulSets and how to use dynamic volume provisioning.

The following topics will be covered in the chapter:

Persistent storage
PersistentVolumes

PersistentVolumeClaim

Storage Classes
Dynamic volume provisioning
StatefulSets

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[206]

Technical requirements
You'll need to have a running Kubernetes cluster to go through these examples. Please start
your cluster up on your cloud provider of choice, or a local Minikube instance.

The code for this repository can be found here: https:/ /github. com/ PacktPublishing/
The-Complete-Kubernetes- Guide/ tree/ master/ Chapter06.

Persistent storage
So far, we only worked with workloads that we could start and stop at will, with no issue.
However, real-world applications often carry state and record data that we prefer (even
insist) not to lose. The transient nature of containers themselves can be a big challenge. If
you recall our discussion of layered filesystems in Chapter 1, Introduction to Kubernetes, the
top layer is writable. (It's also frosting, which is delicious.) However, when the container
dies, the data goes with it. The same is true for crashed containers that Kubernetes restarts.

This is where volumes or disks come into play. Volumes exist outside the container and are
coupled to the pod, which allows us to save our important data across containers outages.
Further more, if we have a volume at the pod level, data can be shared between containers
in the same application stack and within the same pod. A volume itself on Kubernetes is a
directory, which the Pod provides to the containers running on it. There are a number of
different volume types available at spec.volumes, which we'll explore, and they're
mounted into containers with the spec.containers.volumeMounts parameter.

To see all the types of volumes available, visit https:/ /kubernetes. io/
docs/ concepts/ storage/ volumes/ #types- of-volumes.

Docker itself has some support for volumes, but Kubernetes gives us persistent storage that
lasts beyond the lifetime of a single container. The volumes are tied to pods and live and
die with those pods. Additionally, a pod can have multiple volumes from a variety of
sources. Let's take a look at some of these sources.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code%20files/Chapter%2005
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes

Exploring Kubernetes Storage Concepts Chapter 6

[207]

Temporary disks
One of the easiest ways to achieve improved persistence amid container crashes and data
sharing within a pod is to use the emptydir volume. This volume type can be used with
either the storage volumes of the node machine itself or an optional RAM disk for higher
performance.

Again, we improve our persistence beyond a single container, but when a pod is removed,
the data will be lost. A machine reboot will also clear any data from RAM-type disks. There
may be times when we just need some shared temporary space or have containers that
process data and hand it off to another container before they die. Whatever the case, here is
a quick example of using this temporary disk with the RAM-backed option.

Open your favorite editor and create a storage-memory.yaml file and type the following
code:

apiVersion: v1
kind: Pod
metadata:
 name: memory-pd
spec:
 containers:
 - image: nginx:latest
 ports:
 - containerPort: 80
 name: memory-pd
 volumeMounts:
 - mountPath: /memory-pd
 name: memory-volume
 volumes:
 - name: memory-volume
 emptyDir:
 medium: Memory

The preceding example is probably second nature by now, but we will once again issue a
create command followed by an exec command to see the folders in the container:

$ kubectl create -f storage-memory.yaml
$ kubectl exec memory-pd -- ls -lh | grep memory-pd

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[208]

This will give us a Bash shell in the container itself. The ls command shows us a memory-
pd folder at the top level. We use grep to filter the output, but you can run the command
without | grep memory-pd to see all folders:

Temporary storage inside a container

Again, this folder is temporary as everything is stored in the node's (minion's) RAM. When
the node gets restarted, all the files will be erased. We will look at a more permanent
example next.

Cloud volumes
Let's move on to something more robust. There are two types of PersistentVolumes that
we'll touch base with in order to explain how you can use AWS's and GCE's block storage
engines to provide stateful storage for your Kubernetes cluster. Given that many companies
have already made significant investment in cloud infrastructure, we'll get you up and
running with two key examples. You can consider these types of volumes or persistent
volumes as storage classes. These are different from the emptyDir that we created before,
as the contents of a GCE persistent disk or AWS EBS volume will persist even if a pod is
removed. Looking ahead, this provides operators with the clever feature of being able to
pre-populate data in these drives and can also be switched between pods.

GCE Persistent Disks
Let's mount a gcePersistentDisk first. You can see more information about these drives
here: https://cloud. google. com/ compute/ docs/ disks/ .

Google Persistent Disk is durable and high performance block storage for
the Google Cloud Platform. Persistent Disk provides SSD and HDD
storage, which can be attached to instances running in either Google
Compute Engine or Google Container Engine. Storage volumes can be
transparently resized, quickly backed up, and offer the ability to support
simultaneous readers.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/

Exploring Kubernetes Storage Concepts Chapter 6

[209]

You'll need to create a Persistent Disk using the GCE GUI, API, or CLI before we're able to
use it in our cluster, so let's get started:

From the console, in Compute Engine, go to Disks. On this new screen, click on1.
the Create Disk button. We'll be presented with a screen similar to the
following GCE new persistent disk screenshot:

GCE new persistent disk

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[210]

Choose a name for this volume and give it a brief description. Make sure that2.
Zone is the same as the nodes in your cluster. GCE Persistent Disks can only be
attached to machines in the same zone.
Enter mysite-volume-1 in the Name field. Choose a zone matching at least one3.
node in your cluster. Choose None (blank disk) for Source type and give 10 (10
GB) as the value in Size (GB). Finally, click on Create:

The nice thing about Persistent Disks on GCE is that they allow for mounting to multiple
machines (nodes in our case). However, when mounting to multiple machines, the volume
must be in read-only mode. So, let's first mount this to a single pod, so we can create some
files. Use the following code to make a storage-gce.yaml file to create a pod that will
mount the disk in read/write mode:

apiVersion: v1
kind: Pod
metadata:
 name: test-gce
spec:
 containers:
 - image: nginx:latest
 ports:
 - containerPort: 80
 name: test-gce
 volumeMounts:
 - mountPath: /usr/share/nginx/html
 name: gce-pd
 volumes:
 - name: gce-pd
 gcePersistentDisk:
 pdName: mysite-volume-1
 fsType: ext4

First, let's issue a create command followed by a describe command to find out which
node it is running on:

$ kubectl create -f storage-gce.yaml
$ kubectl describe pod/test-gce

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[211]

Note the node and save the pod IP address for later. Then, open an SSH session into that
node:

Pod described with persistent disk

Type the following command:

$ gcloud compute --project "<Your project ID>" ssh --zone "<your gce zone>"
"<Node running test-gce pod>"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[212]

Since we've already looked at the volume from inside the running container, let's access it
directly from the node (minion) itself this time. We will run a df command to see where it
is mounted, but we will need to switch to root first:

$ sudo su -
$ df -h | grep mysite-volume-1

As you can see, the GCE volume is mounted directly to the node itself. We can use the
mount path listed in the output of the earlier df command. Use cd to change to the folder
now. Then, create a new file named index.html with your favorite editor:

$ cd /var/lib/kubelet/plugins/kubernetes.io/gce-pd/mounts/mysite-volume-1
$ vi index.html

Enter a quaint message, such as Hello from my GCE PD!. Now, save the file and exit the
editor. If you recall from the storage-gce.yaml file, the Persistent Disk is mounted
directly to the nginx HTML directory. So, let's test this out while we still have the SSH
session open on the node. Do a simple curl command to the pod IP we wrote down
earlier:

$ curl <Pod IP from Describe>

You should see Hello from my GCE PD! or whatever message you saved in the
index.html file. In a real-world scenario, we can use the volume for an entire website or
any other central storage. Let's take a look at running a set of load balanced web servers all
pointing to the same volume.

First, leave the SSH session with two exit commands. Before we proceed, we will need to
remove our test-gce pod so that the volume can be mounted read-only across a number
of nodes:

$ kubectl delete pod/test-gce

Now, we can create an ReplicationController that will run three web servers, all
mounting the same Persistent Disk, as follows. Save the following code as the http-pd-
controller.yaml file:

apiVersion: v1
kind: ReplicationController
metadata:
 name: http-pd
 labels:
 name: http-pd
spec:
 replicas: 3

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[213]

 selector:
 name: http-pd
 template:
 metadata:
 name: http-pd
 labels:
 name: http-pd
 spec:
 containers:
 - image: nginx:latest
 ports:
 - containerPort: 80
 name: http-pd
 volumeMounts:
 - mountPath: /usr/share/nginx/html
 name: gce-pd
 volumes:
 - name: gce-pd
 gcePersistentDisk:
 pdName: mysite-volume-1
 fsType: ext4
 readOnly: true

Let's also create an external service and save it as the http-pd-service.yaml file, so we
can see it from outside the cluster:

apiVersion: v1
kind: Service
metadata:
 name: http-pd
 labels:
 name: http-pd
spec:
 type: LoadBalancer
 ports:
 - name: http
 protocol: TCP
 port: 80
 selector:
 name: http-pd

Go ahead and create these two resources now. Wait a few moments for the external IP to
get assigned. After this, a describe command will give us the IP we can use in a browser:

$ kubectl describe service/http-pd

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[214]

The following screenshot is the result of the preceding command:

K8s service with GCE PD shared across three pods

If you don't see the LoadBalancer Ingress field yet, it probably needs more time to get
assigned. Type the IP address from LoadBalancer Ingress into a browser, and you
should see your familiar index.html file show up with the text we entered previously!

AWS Elastic Block Store
K8s also supports AWS Elastic Block Store (EBS) volumes. Like the GCE Persistent Disks,
EBS volumes are required to be attached to an instance running in the same availability
zone. A further limitation is that EBS can only be mounted to a single instance at one time.
Similarly to before, you'll need to create an EBS volume using API calls, the CLI, or you'll
need to log in to the GUI manually and create the volume referenced by volumeID. If
you're authorized in the AWS CLI, you can use the following command to create a volume:

$ aws ec2 create-volume --availability-zone=us-west-1a eu-west-1a --size=20
--volume-type=gp2

Make sure that your volume is created in the same region as your Kubernetes cluster!

For brevity, we will not walk through an AWS example, but a sample YAML file is
included to get you started. Again, remember to create the EBS volume before your pod.
Save the following code as the storage-aws.yaml file:

apiVersion: v1
kind: Pod
metadata:
 name: test-aws
spec:
 containers:
 - image: nginx:latest

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[215]

 ports:
 - containerPort: 80
 name: test-aws
 volumeMounts:
 - mountPath: /usr/share/nginx/html
 name: aws-pd
 volumes:
 - name: aws-pd
 awsElasticBlockStore:
 volumeID: aws://<availability-zone>/<volume-id>
 fsType: ext4

Other storage options
Kubernetes supports a variety of other types of storage volumes. A full list can be found
here: https://kubernetes. io/ docs/ concepts/ storage/ volumes/ #types- of- volumes.

Here are a few that may be of particular interest:

nfs: This type allows us to mount a Network File Share (NFS), which can be
very useful for both persisting the data and sharing it across the infrastructure
gitrepo: As you might have guessed, this option clones a Git repository into a
new and empty folder

PersistentVolumes and Storage Classes
Thus far, we've seen examples of directly provisioning the storage within our pod
definitions. This works quite well if you have full control over your cluster and
infrastructure, but at larger scales, application owners will want to use storage that is
managed separately. Typically, a central IT team or the cloud provider will take care of the
details behind provisioning storage and leave the application owners to worry about their
primary concern, the application itself. This separation of concerns and duties in
Kubernetes allows you to structure your engineering focus around a storage subsystem that
can be managed by a distinct group of engineers.

In order to accommodate this, we need some way for the application to specify and request
storage without being concerned with how that storage is provided. This is where
PersistentVolumes and PersistentVolumeClaim come into play.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes

Exploring Kubernetes Storage Concepts Chapter 6

[216]

PersistentVolumes are similar to the volumes we created earlier, but they are provided
by the cluster administrator and are not dependent on a particular pod.
PersistentVolumes are a resource that's provided to the cluster just like any other object.
The Kubernetes API provides an interface for this object in the form of NFS, EBS Persistent
Disks, or any other volume type described before. Once the volume has been created, you
can use PersistentVolumeClaims to request storage for your applications.

PersistentVolumeClaims is an abstraction that allows users to specify the details of the
storage needed. We can defined the amount of storage, as well as the access type, such as
ReadWriteOnce (read and write by one node), ReadOnlyMany (read-only by multiple
nodes), and ReadWriteMany (read and write by many nodes). The cluster operators are in
charge of providing a wide variety of storage options for application operators in order to
meet requirements across a number of different access modes, sizes, speeds, and durability
without requiring the end users to know the details of that implementation. The modes
supported by cluster operators is dependent on the backing storage provider. For example,
we saw in the AWS aws-ebs example that mounting to multiple nodes was not an option,
while with GCP Persistent Disks could be shared among several nodes in read-only mode.

Additionally, Kubernetes provides two other methods for specifying certain groupings or
types of storage volumes. The first is the use of selectors, as we have seen previously for
pod selection. Here, labels can be applied to storage volumes and then claims can reference
these labels to further filter the volume they are provided. Second, Kubernetes has the
concept of StorageClass, which allows us specify a storage provisioner and parameters
for the types of volumes it provisions.

PersistentVolumes and PersistentVolumeClaims have a life cycle that involves the
following phases:

Provisioning
Static or dynamic
Binding
Using
Reclaiming
Delete, retain, or recycle

We will dive into Storage Classes in the next section, but here is a quick example of a
PersistentVolumeClaim for illustration purposes. You can see in the annotations that we
request 1Gi of storage in ReadWriteOnce mode with a StorageClass of solidstate and
a label of aws-storage. Save the following code as the pvc-example.yaml file:

kind: PersistentVolumeClaim
apiVersion: v1

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[217]

metadata:
 name: demo-claim
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Filesystem
 resources:
 requests:
 storage: 1Gi
 storageClassName: ssd
 selector:
 matchLabels:
 release: "aws-storage"
 matchExpressions:
 - {key: environment, operator: In, values: [dev, stag, uat]}

As of Kubernetes version 1.8, there's also alpha support for expanding
PersistentVolumeClaim for gcePersistentDisk, awsElasticBlockStore, Cinder,
glusterfs, and rbd volume claim types. These are similar to the thin provisioning that
you may have seen with systems such as VMware, and they allow for resizing of a storage
class via the allowVolumeExpansion field as long as you're running either XFS or
Ext3/Ext4 filesystems. Here's a quick example of what that looks like:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: Cinder-volume-01
provisioner: kubernetes.io/cinder
parameters:
 resturl: "http://192.168.10.10:8080"
 restuser: ""
 secretNamespace: ""
 secretName: ""
allowVolumeExpansion: true

Dynamic volume provisioning
Now that we've explored how to build from volumes, storage classes, persistent volumes,
and persistent volume claims, let's take a look at how to make that all dynamic and take
advantage of the built-in scaling of the cloud! Dynamic provisioning removes the need for
pre-crafted storage; it relies on requests from application users instead. You use the
StorageClass API object to create dynamic resources.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[218]

First, we can create a manifest that will define the type of storage class that we'll use for our
dynamic storage. We'll use a vSphere example here to try out another storage class:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: durable-medium
provisioner: kubernetes.io/vsphere-volume
parameters:
 type: thin

Once we have the manifest, we can use this storage by including it as a class in a new
PersistentVolumeClaim. You may remember this as
volume.beta.kubernetes.io/storage-class in earlier, pre-1.6 versions of
Kubernetes, but now you can simply include this property in the
PersistentVolumeClaim object. Keep in mind that the value of storageClassName
must match the available, dynamic StorageClass that the cluster operators have
provided. Here's an example of that:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: webtier-vclaim-01
spec:
 accessModes:
 - ReadWriteMany
 storageClassName: durable-medium
 resources:
 requests:
 storage: 20Gi

When this claim is removed, the storage is dynamically deleted. You can make this a cluster
default by ensuring that the DefaultStorageClass admission controller is turned on, and
after you ensure that one StorageClass object is set to default.

StatefulSets
The purpose of StatefulSets is to provide some consistency and predictability to application
deployments with stateful data. Thus far, we have deployed applications to the cluster,
defining loose requirements around required resources such as compute and storage. The
cluster has scheduled our workload on any node that can meet these requirements. While
we can use some of these constraints to deploy in a more predictable manner, it will be
helpful if we had a construct built to help us provide this consistency.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[219]

StatefulSets were set to GA in 1.6 as we went to press. There were
previously beta in version 1.5 and were known as Pet Sets prior to that
(alpha in 1.3 and 1.4).

This is where StatefulSets come in. StatefulSets provide us first with numbered and reliable
naming for both network access and storage claims. The pods themselves are named with
the following convention, where N is from 0 to the number of replicas:

"Name of Set"-N

This means that a StatefulSet called db with three replicas will create the following pods:

db-0
db-1
db-2

This gives Kubernetes a way to associate network names and PersistentVolumes with
specific pods. Additionally, it also serves to order the creation and termination of pods. Pod
will be started from 0 to N and terminated from N to 0.

A stateful example
Let's take a look at an example of a stateful application. First, we will want to create and use
a StorageClass, as we discussed earlier. This will allow us to hook into the Google Cloud
Persistent Disk provisioner. The Kubernetes community is building provisioners for a
variety of StorageClasses, including GCP and AWS. Each provisioner has its own set of
parameters available. Both GCP and AWS providers let you choose the type of disk (solid-
state, standard, and so on) as well as the fault zone that is needed to match the pod
attaching to it. AWS additionally allows you to specify encryption parameters as well as
IOPs for provisioned IOPs volumes. There are a number of other provisioners in the works,
including Azure and a variety of non-cloud options. Save the following code
as solidstate-sc.yaml file:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: solidstate
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-ssd
 zone: us-central1-b

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[220]

Use the following command with the preceding listing to create a StorageClass kind of
SSD drive in us-central1-b:

$ kubectl create -f solidstate.yaml

Next, we will create a StatefulSet kind with our trusty httpwhalesay demo. While this
application does include any real state, we can see the storage claims and explore the
communication path as shown in the listing sayhey-statefulset.yaml:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: whaleset
spec:
 serviceName: sayhey-svc
 replicas: 3
 template:
 metadata:
 labels:
 app: sayhey
 spec:
 terminationGracePeriodSeconds: 10
 containers:
 - name: sayhey
 image: jonbaier/httpwhalesay:0.2
 command: ["node", "index.js", "Whale it up!."]
 ports:
 - containerPort: 80
 name: web
 volumeMounts:
 - name: www
 mountPath: /usr/share/nginx/html
 volumeClaimTemplates:
 - metadata:
 name: www
 annotations:
 volume.beta.kubernetes.io/storage-class: solidstate
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[221]

Use the following command to start the creation of this StatefulSet. If you observe pod
creation closely, you will see it create whaleset-0, whaleset-1, and whaleset-2 in
succession:

$ kubectl create -f sayhey-statefulset.yaml

Immediately after this, we can see our StatefulSet and the corresponding pods using the
familiar get subcommand:

$ kubectl get statefulsets
$ kubectl get pods

These pods should create an output similar to the following images:

StatefulSet listing

The get pods output will show the following:

Pods created by StatefulSet

Depending on your timing, the pods may still be being created. As you can see in the
preceding screenshot, the third container is still being spun up.

We can also see the volumes the set has created and claimed for each pod. First are the
PersistentVolumes themselves:

$ kubectl get pv

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[222]

The preceding command should show the three PersistentVolumes named www-
whaleset-N. We notice the size is 1Gi and the access mode is set to ReadWriteOnce
(RWO), just as we defined in our StorageClass:

The PersistentVolumes listing

Next, we can look at the PersistentVolumeClaim that reserves the volumes for each pod:

$ kubectl get pvc

The following is the output of the preceding command:

The PersistentVolumeClaim listing

You'll notice many of the same settings here as with the PersistentVolumes themselves.
You might also notice the end of the claim name (or PersistentVolumeClaim name in the
previous listing) looks like www-whaleset-N. www is the mount name we specified in the
preceding YAML definition. This is then appended to the pod name to create the actual
PersistentVolume and PersistentVolumeClaim name. One more area we can ensure
that the proper disk is linked with it's matching pod.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[223]

Another area where this alignment is important is in network communication. StatefulSets
also provide consistent naming here. Before we can do this, let's create a service endpoint
sayhey-svc.yaml, so we have a common entry point for incoming requests:

apiVersion: v1
kind: Service
metadata:
 name: sayhey-svc
 labels:
 app: sayhey
spec:
 ports:
 - port: 80
 name: web
 clusterIP: None
 selector:
 app: sayhey

$ kubectl create -f sayhey-svc.yaml

Now, let's open a shell in one of the pods and see if we can communicate with another in
the set:

$ kubectl exec whaleset-0 -i -t bash

The preceding command gives us a bash shell in the first whaleset pod. We can now use
the service name to make a simple HTTP request. We can use both the short name,
sayhey-svc, and the fully qualified name, sayhey-svc.default.svc.cluster.local:

$ curl sayhey-svc
$ curl sayhey-svc.default.svc.cluster.local

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[224]

You'll see an output similar to the following screenshot. The service endpoint acts as a
common communication point for all three pods:

HTTP whalesay curl output (whalesay-0 Pod)

Now, let's see if we can communicate with a specific pod in the StatefulSet. As we noticed
earlier, the StatefulSet named the pods in an orderly manner. It also gives them hostnames
in a similar fashion so that there is a specific DNS entry for each pod in the set. Again, we
will see the convention of "Name of Set"-N and then add the fully qualified service URL.
The following example shows this for whaleset-1, which is the second pod in our set:

$ curl whaleset-1.sayhey-svc.default.svc.cluster.local

Running this command from our existing Bash shell in whaleset-0 will show us the
output from whaleset-1:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kubernetes Storage Concepts Chapter 6

[225]

HTTP whalesay curl output (whalesay-1 Pod)

You can exit out of this shell now with exit.

For learning purposes, it may also be instructive to describe some of the
items from this section in more detail. For example, kubectl describe
svc sayhey-svc will show us all three pod IP address in the service
endpoints.

Summary
In this chapter, we explored a variety of persistent storage options and how to implement
them with our pods. We looked at PersistentVolumes and also
PersistentVolumeClaim, which allow us to separate storage provisioning and
application storage requests. Additionally, we looked at StorageClasses for provisioning
groups of storage according to a specification. We also explored the new StatefulSets
abstraction and learned how we can deploy stateful applications in a consistent and
ordered manner.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

7
Monitoring and Logging

This chapter will cover the use and customization of both built-in and third-party
monitoring tools on our Kubernetes cluster. We will cover how to use the tools to monitor
the health and performance of our cluster. In addition, we will look at built-in logging, the
Google Cloud Logging service, and Sysdig.

The following topics will be covered in this chapter:

How Kuberentes uses cAdvisor, Heapster, InfluxDB, and Grafana
Customizing the default Grafana dashboard
Using Fluentd and Grafana
Installing and using logging tools
Working with popular third-party tools, such as Stackdriver and Sysdig, to
extend our monitoring capabilities

Technical requirements
You'll need to have your Google Cloud Platform account enabled and logged in to it, or you
can use a local Minikube instance of Kubernetes. You can also use Play with Kubernetes
over the web: https:/ /labs. play- with- k8s. com/ .

Monitoring operations
Real-world monitoring goes far beyond checking whether a system is up and running.
Although health checks like those you learned in Chapter 3, Building a Foundation with Core
Kubernetes Constructs, in the Health checks section can help us isolate problem applications,
operations teams can best serve the business when they can anticipate the issues and
mitigate them before a system goes offline.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/

Monitoring and Logging Chapter 7

[227]

The best practices in monitoring are to measure the performance and usage of core
resources and watch for trends that stray from the normal baseline. Containers are not
different here, and a key component to managing our Kubernetes cluster is having a clear
view of the performance and availability of the OS, network, system (CPU and memory),
and storage resources across all nodes.

In this chapter, we will examine several options to monitor and measure the performance
and availability of all our cluster resources. In addition, we will look at a few options for
alerting and notifications when irregular trends start to emerge.

Built-in monitoring
If you recall from Chapter 1, Introduction to Kubernetes, we noted that our nodes were
already running a number of monitoring services. We can see these once again by running
the get pods command with the kube-system namespace specified as follows:

$ kubectl get pods --namespace=kube-system

The following screenshot is the result of the preceding command:

System pod listing

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[228]

Again, we see a variety of services, but how does this all fit together? If you recall, the node
(formerly minions) section from Chapter 3, Building a Foundation with Core Kubernetes
Constructs, each node is running a kubelet. The kubelet is the main interface for nodes to
interact with and update the API server. One such update is the metrics of the node
resources. The actual reporting of resource usage is performed by a program named
cAdvisor.

The cAdvisor program is another open source project from Google, which provides various
metrics on container resource use. Metrics include CPU, memory, and network statistics.
There is no need to tell cAdvisor about individual containers; it collects the metrics for all
containers on a node and reports this back to the kubelet, which in turn reports to
Heapster.

Google's open source projects: Google has a variety of open source
projects related to Kubernetes. Check them out, use them, and even
contribute your own code!

Both cAdvisor and Heapster are mentioned in the following sections of
GitHub:

cAdvisor: https://github.com/google/cadvisor
Heapster: https:/ /github. com/ kubernetes/ heapster

Contrib is a catch-all term for a variety of components that are not part of
core Kubernetes. It can be found
at https://github.com/kubernetes/contrib. LevelDB is a key store
library that was used in the creation of InfluxDB. It can be found
at https://github.com/google/leveldb.

Heapster is yet another open source project from Google; you may start to see a theme
emerging here (see the preceding information box). Heapster runs in a container on one of
the minion nodes and aggregates the data from a kubelet. A simple REST interface is
provided to query the data.

When using the GCE setup, a few additional packages are set up for us, which saves us
time and gives us a complete package to monitor our container workloads. As we can see
from the preceding System pod listing screenshot, there is another pod with influx-
grafana in the title.

InfluxDB is described on its official website as follows:

An open-source distributed time series database with no external dependencies.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/google/cadvisor
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/contrib
https://github.com/google/leveldb

Monitoring and Logging Chapter 7

[229]

InfluxDB is based on a key store package (refer to the previous Google's open source projects
information box) and is perfect to store and query event- or time-based statistics such as
those provided by Heapster.

Finally, we have Grafana, which provides a dashboard and graphing interface for the data
stored in InfluxDB. Using Grafana, users can create a custom monitoring dashboard and get
immediate visibility into the health of their Kubernetes cluster, and therefore their entire
container infrastructure.

Exploring Heapster
Let's quickly look at the REST interface by running SSH to the node that is running the
Heapster pod. First, we can list the pods to find the one that is running Heapster, as
follows:

$ kubectl get pods --namespace=kube-system

The name of the pod should start with monitoring-heapster. Run a describe
command to see which node it is running on, as follows:

$ kubectl describe pods/<Heapster monitoring Pod> --namespace=kube-system

From the output in the following screenshot, we can see that the pod is running in
kubernetes-minion-merd. Also note the IP for the pod, a few lines down, as we will
need that in a moment:

Heapster pod details

Next, we can SSH to this box with the familiar gcloud ssh command, as follows:

$ gcloud compute --project "<Your project ID>" ssh --zone "<your gce zone>"
"<kubernetes minion from describe>"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[230]

From here, we can access the Heapster REST API directly using the pod's IP address.
Remember that pod IPs are routable not only in the containers but also on the nodes
themselves. The Heapster API is listening on port 8082, and we can get a full list of
metrics at /api/v1/metric-export-schema/.

Let's look at the list now by issuing a curl command to the pod IP address we saved from
the describe command, as follows:

$ curl -G <Heapster IP from describe>:8082/api/v1/metric-export-schema/

We will see a listing that is quite long. The first section shows all the metrics available. The
last two sections list fields by which we can filter and group. For your convenience, I've
added the following tables which are a little bit easier to read:

Metric Description Unit Type

uptime
The number of milliseconds since the container was
started ms Cumulative

cpu/usage The cumulative CPU usage on all cores ns Cumulative
cpu/limit The CPU limit in millicores - Gauge
memory/usage Total memory usage Bytes Gauge

memory/working_set
Total working set usage; the working set is the memory
that is being used, and is not easily dropped by the
kernel

Bytes Gauge

memory/limit The memory limit Bytes Gauge
memory/page_faults The number of page faults - Cumulative
memory/major_page_faults The number of major page faults - Cumulative

network/rx
The cumulative number of bytes received over the
network Bytes Cumulative

network/rx_errors
The cumulative number of errors while receiving over
the network - Cumulative

network/tx The cumulative number of bytes sent over the network Bytes Cumulative

network/tx_errors
The cumulative number of errors while sending over
the network - Cumulative

filesystem/usage The total number of bytes consumed on a filesystem Bytes Gauge
filesystem/limit The total size of filesystem in bytes Bytes Gauge

filesystem/available
The number of available bytes remaining in a the
filesystem Bytes Gauge

Table 6.1. Available Heapster metrics

Field Description Label type
nodename The node name where the container ran Common
hostname The host name where the container ran Common

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[231]

host_id
An identifier specific to a host, which is set by the
cloud provider or user Common

container_base_image
The user-defined image name that is run inside the
container Common

container_name
The user-provided name of the container or full
container name for system containers Common

pod_name The name of the pod Pod
pod_id The unique ID of the pod Pod
pod_namespace The namespace of the pod Pod
namespace_id The unique ID of the namespace of the pod Pod
labels A comma-separated list of user-provided labels Pod

Table 6.2. Available Heapster fields

Customizing our dashboards
Now that we have the fields, we can have some fun. Recall the Grafana page that we looked
at in Chapter 1, Introduction to Kubernetes. Let's pull that up again by going to our cluster's
monitoring URL. Note that you may need to log in with your cluster credentials. Refer to
the following format of the link you need to use: https://<your master
IP>/api/v1/proxy/namespaces/kube-system/services/monitoring-grafana

We'll see the default Home dashboard. Click on the down arrow next to Home and select
Cluster. This shows the Kubernetes cluster dashboard, and now we can add our own
statistics to the board. Scroll all the way to the bottom and click on Add a Row. This should
create a space for a new row and present a green tab on the left-hand side of the screen.

Let's start by adding a view into the filesystem usage for each node (minion). Click on the
green tab to expand, and then select Add Panel and then Graph. An empty graph should
appear on the screen, along with a query panel for our custom graph.

The first field in this panel should show a query that starts with SELECT mean("value")
FROM. Click on the A character next to this field to expand it. Leave the first field next to
FROM as default and then click on the next field with the select measurement value. A
drop-down menu will appear with the Heapster metrics we saw in the previous tables.
Select filesystem/usage_bytes_gauge. Now, in the SELECT row, click on mean() and
then on the x symbol to remove it. Next, click on the + symbol on the end of the row and
add selectors and max. Then, you'll see a GROUP BY row with time($interval) and
fill(none). Carefully click on fill and not on the (none) portion, and again on x to remove it.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[232]

Then, click on the + symbol at the end of the row and select tag(hostname).Finally, at the
bottom of the screen we should see a Group by time interval. Enter 5s there and you
should have something similar to the following screenshot:

Heapster pod details

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[233]

Next, let's click on the Axes tab, so that we can set the units and legend. Under Left Y Axis,
click on the field next to Unit and set it to data | bytes and Label to Disk Space Used.
Under Right Y Axis, set Unit to none | none. Next, on the Legend tab, make sure to check
Show in Options and Max in Values.

Now, let's quickly go to the General tab and choose a title. In my case, I named mine
Filesystem Disk Usage by Node (max).

We don't want to lose this nice new graph we've created, so let's click on the save icon in
the top-right corner. It looks like a floppy disk (you can do a Google image search if you
don't know what this is).

After we click on the save icon, we will see a green dialog box that verifies that the
dashboard was saved. We can now click the x symbol above the graph details panel and
below the graph itself.

This will return us to the dashboard page. If we scroll all the way down, we will see our
new graph. Let's add another panel to this row. Again, use the green tab and then select
Add Panel | singlestat. Once again, an empty panel will appear with a setting form below
it.

Let's say we want to watch a particular node and monitor network usage. We can easily do
this by first going to the Metrics tab. Then, expand the query field and set the second value
in the FROM field to network/rx. Now, we can specify the WHERE clause by clicking the
+ symbol at the end of the row and choosing hostname from the drop-down. After
hostname =, click on select tag value and choose one of the minion nodes from the list.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[234]

Finally, leave mean() for the second SELECT field shown as follows:

Singlestat options

In the Options tab, make sure that Unit format is set to data | bytes and check the
Show box next to Spark lines. The spark line gives us a quick historical view of the recent
variations in the value. We can use Background mode to take up the entire background; by
default, it uses the area below the value.

In Coloring, we can optionally check the Value or Background box and
choose Thresholds and Colors. This will allow us to choose different
colors for the value based on the threshold tier we specify. Note that an
unformatted version of the number must be used for threshold values.

Now, let's go back to the General tab and set the title as Network bytes received
(Node35ao). Use the identifier for your minion node.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[235]

Once again, let's save our work and return to the dashboard. We should now have a row
that looks like the following screenshot:

Custom dashboard panels

Grafana has a number of other panel types that you can play with, such as Dashboard list,
Plugin list, Table, and Text.

As we can see, it is pretty easy to build a custom dashboard and monitor the health of our
cluster at a glance.

FluentD and Google Cloud Logging
Looking back at the System pod listing screenshot at the beginning of the chapter, you may
have noted a number of pods starting with the words fluentd-cloud-logging-
kubernetes. These pods appear when using the GCE provider for your K8s cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[236]

A pod like this exists on every node in our cluster, and its sole purpose is to handle the
processing of Kubernetes logs. If we log in to our Google Cloud Platform account, we can
see some of the logs processed there. Simply use the left side, and under Stackdriver,
select Logging. This will take us to a log listing page with a number of drop-down menus
on the top. If this is your first time visiting the page, the first drop-down will likely be set to
Cloud HTTP Load Balancer.

In this drop-down menu, we'll see a number of GCE types of entries. Select GCE VM
instances and then the Kubernetes master or one of the nodes. In the second drop-down, we
can choose various log groups, including kubelet. We can also filter by the event log level
and date. Additionally, we can use the play button to watch events stream in live shown as
follows:

The Google Cloud Logging filter

FluentD
Now we know that the fluentd-cloud-logging-kubernetes pods are sending the data
to the Google Cloud, but why do we need FluentD? Simply put, FluentD is a collector.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[237]

It can be configured to have multiple sources to collect and tag logs, which are then sent to
various output points for analysis, alerting, or archiving. We can even transform data using
plugins before it is passed on to its destination.

Not all provider setups have FluentD installed by default, but it is one of the recommended
approaches to give us greater flexibility for future monitoring operations. The AWS
Kubernetes setup also uses FluentD, but instead forwards events to Elasticsearch.

Exploring FluentD: If you are curious about the inner workings of the
FluentD setup or just want to customize the log collection, we can explore
quite easily using the kubectl exec command and one of the pod names
from the command we ran earlier in the chapter. First, let's see if we can
find the FluentD config file: $ kubectl exec fluentd-cloud-
logging-kubernetes-minion-group-r4qt --namespace=kube-

system -- ls /etc/td-agent.
 We will look in the etc folder and then td-agent, which is the fluent
sub folder. While searching in this directory, we should see a td-
agent.conf file. We can view that file with a simple cat command, as
follows: $ kubectl exec fluentd-cloud-logging-kubernetes-
minion-group-r4qt --namespace=kube-system -- cat /etc/td-

agent/td-agent.conf.

We should see a number of sources, including the various Kubernetes
components, Docker, and some GCP elements. While we can make
changes here, remember that it is a running container and our changes
won't be saved if the pod dies or is restarted. If we really want to
customize, it's best to use this container as a base and build a new
container, which we can push to a repository for later use.

Maturing our monitoring operations
While Grafana gives us a great start to monitoring our container operations, it is still a work
in progress. In the real world of operations, having a complete dashboard view is great
once we know there is a problem. However, in everyday scenarios, we'd prefer to be
proactive and actually receive notifications when issues arise. This kind of alerting
capability is a must to keep the operations team ahead of the curve and out of reactive
mode.

There are many solutions available in this space, and we will take a look at two in
particular: GCE monitoring (Stackdriver) and Sysdig.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[238]

GCE (Stackdriver)
Stackdriver is a great place to start for infrastructure in the public cloud. It is actually
owned by Google, so it's integrated as the Google Cloud Platform monitoring service.
Before your lock-in alarm bells start ringing, Stackdriver also has solid integration with
AWS. In addition, Stackdriver has alerting capability with support for notification to a
variety of platforms and webhooks for anything else.

Signing up for GCE monitoring
In the GCE console, in the Stackdriver section, click on Monitoring. This will open a new
window, where we can sign up for a free trial of Stackdriver. We can then add our GCP
project and optionally an AWS account as well. This requires a few more steps, but
instructions are included on the page. Finally, we'll be given instructions on how to install
the agents on our cluster nodes. We can skip this for now, but will come back to it in a
minute.

Click on Continue, set up your daily alerts, and click on Continue again.

Click on Launch Monitoring to proceed. We'll be taken to the main dashboard page, where
we will see some basic statistics on our node in the cluster. If we select Resources from the
side menu and then Instances, we'll be taken to a page with all our nodes listed. By clicking
on the individual node, we can again see some basic information even without an agent
installed.

Stackdriver also offers monitoring and logging agents that can be installed
on the nodes. However, it currently does not support the container OS
that is used by default in the GCE kube-up script. You can still see the
basic metrics for any nodes in GCE or AWS, but will need to use another
OS if you want a detailed agent installation.

Alerts
Next, we can look at the alerting policies available as part of the monitoring service. From
the instance details page, click on the Create Alerting Policy button in the Incidents section
at the top of the page.

We will click on Add Condition and select a Metric Threshold. In the Target section, set
RESOURCE TYPE to Instance (GCE). Then, set APPLIES TO to Group and kubernetes.
Leave CONDITION TRIGGERS IF set to Any Member Violates.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[239]

In the Configuration section, leave IF METRIC as CPU Usage (GCE Monitoring) and
CONDITION as above. Now, set THRESHOLD to 80 and set the time in FOR to 5
minutes.

Then click on Save Condition:

Google Cloud Monitoring alert policy

Next, we will add a notification. In the Notification section, leave Method as Email and
enter your email address.

We can skip the Documentation section, but this is where we can add text and formatting
to alert messages.

Finally, name the policy Excessive CPU Load and click on Save Policy.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[240]

Now, whenever the CPU from one of our instances goes above 80 percent, we will receive
an email notification. If we ever need to review our policies, we can find them in the
Alerting drop-down and then in Policies Overview in the menu on the left-hand side of
the screen.

Beyond system monitoring with Sysdig
Monitoring our cloud systems is a great start, but what about the visibility of the containers
themselves? Although there are a variety of cloud monitoring and visibility tools, Sysdig
stands out for its ability to dive deep, not only into system operations, but specifically
containers.

Sysdig is open source and is billed as a universal system visibility tool with native support
for containers. It is a command line tool that provides insight into the areas we looked at
earlier, such as storage, network, and system processes. What sets it apart is the level of
detail and visibility it offers for these process and system activities. Furthermore, it has
native support for containers, which gives us a full picture of our container operations. This
is a highly recommended tool for your container operations arsenal. The main website of
Sysdig is http://www.sysdig.org/.

Sysdig Cloud
We will take a look at the Sysdig tool and some of the useful command line-based UIs in a
moment. However, the team at Sysdig has also built a commercial product, named Sysdig
Cloud, which provides the advanced dashboard, alerting, and notification services we
discussed earlier in the chapter. Also, the differentiator here has high visibility into
containers, including some nice visualizations of our application topology.

If you'd rather skip the Sysdig Cloud section and just try out the command-
line tool, simply skip to The Sysdig command line section later in this
chapter.

If you have not done so already, sign up for Sysdig Cloud at http://www.sysdigcloud.com.

After activating and logging in for the first time, we'll be taken to a welcome page. Clicking
on Next, we are shown a page with various options to install the Sysdig agents. For our
example environment, we will use the Kubernetes setup. Selecting Kubernetes will give
you a page with your API key and a link to instructions. The instructions will walk you
through how to create a Sysdig agent DaemonSet on your cluster. Don't forget to add the
API key from the install page.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.sysdig.org/
http://www.sysdigcloud.com

Monitoring and Logging Chapter 7

[241]

We will not be able to continue on the install page until the agents connect. After creating
the DaemonSet and waiting a moment, the page should continue to the AWS integration
page. You can fill this out if you like, but for this walk-through, we will click on Skip. Then,
click on Let's Get Started.

As of this writing, Sysdig and Sysdig Cloud were not fully compatible
with the latest container OS deployed by default in the GCE kube-up
script, Container-optimized OS from Google: https:/ /cloud. google.
com/container- optimized- os/ docs.

We'll be taken to the main Sysdig Cloud dashboard screen. We should see at least two
minion nodes appear under the Explore tab. We should see something similar to the
following screenshot with our minion nodes:

Sysdig Cloud Explore page

This page shows us a table view, and the links on the left let us explore some key metrics
for CPU, memory, networking, and so on. Although this is a great start, the detailed views
will give us a much deeper look at each node.

Detailed views
Let's take a look at these views. Select one of the minion nodes and then scroll down to the
detail section that appears below. By default, we should see the System: Overview by
Process view (if it's not selected, just click on it from the list on the left-hand side). If the
chart is hard to read, simply use the maximize icon in the top-left corner of each graph for a
larger view.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs

Monitoring and Logging Chapter 7

[242]

There are a variety of interesting views to explore. Just to call out a few others,
Services | HTTP Overview and Hosts & Containers | Overview by Container give us
some great charts for inspection. In the latter view, we can see stats for CPU, memory,
network, and file usage by container.

Topology views
In addition, there are three topology views at the bottom. These views are perfect for
helping us understand how our application is communicating. Click on
Topology | Network Traffic and wait a few seconds for the view to fully populate. It
should look similar to the following screenshot:

Sysdig Cloud network topology view

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[243]

Note that the view maps out the flow of communication between the minion nodes and the
master in the cluster. You may also note a + symbol in the top corner of the node boxes.
Click on that in one of the minion nodes and use the zoom tools at the top of the view area
to zoom into the details, as shown in the following screenshot:

The Sysdig Cloud network topology detailed view

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[244]

Note that we can now see all the components of Kubernetes running inside the master. We
can see how the various components work together. We can see kube-proxy and the
kubelet process running, as well as a number of boxes with the Docker whale, which
indicate that they are containers. If we zoom in and use the plus icon, we can see that these
are the containers for our pods and core Kubernetes processes, as we saw in the services
running on the master section in Chapter 1, Introduction to Kubernetes.

Also, if you have the master included in your monitored nodes, you can watch
kubelet initiate communication from a minion and follow it all the way through the
kube-apiserver container in the master.

We can even sometimes see the instance communicating with the GCE infrastructure to
update metadata. This view is great in order to get a mental picture of how our
infrastructure and underlying containers are talking to one another.

Metrics
Next, let's switch over to the Metrics tab in the left-hand menu next to Views. Here, there
are also a variety of helpful views.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[245]

Let's look at capacity.estimated.request.total.count in System. This view shows us an
estimate of how many requests a node is capable of handling when fully loaded. This can
be really useful for infrastructure planning:

Sysdig Cloud capacity estimate view

Alerting
Now that we have all this great information, let's create some notifications. Scroll back up
to the top of the page and find the bell icon next to one of your minion entries. This will
open a Create Alert dialog. Here, we can set manual alerts similar to what we did earlier in
the chapter. However, there is also the option to use BASELINE and HOST
COMPARISON.

Using the BASELINE option is extremely helpful, as Sysdig will watch the historical
patterns of the node and alert us whenever one of the metrics strays outside the expected
metric thresholds. No manual settings are required, so this can really save time for the
notification setup and help our operations team to be proactive before issues arise. Refer to
the following screenshot:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[246]

Sysdig Cloud new alert

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[247]

The HOST COMPARISON option is also a great help as it allows us to compare metrics
with other hosts and alert whenever one host has a metric that differs significantly from the
group. A great use case for this is monitoring resource usage across minion nodes to ensure
that our scheduling constraints are not creating a bottleneck somewhere in the cluster.

You can choose whichever option you like and give it a name and warning level. Enable
the notification method. Sysdig supports email, SNS (short for Simple Notification
Service), and PagerDuty as notification methods. You can optionally enable Sysdig
Capture to gain deeper insight into issues. Once you have everything set, just click on
Create and you will start to receive alerts as issues come up.

The Sysdig command line
Whether you only use the open source tool or you are trying out the full Sysdig Cloud
package, the command line utility is a great companion to have to track down issues or get
a deeper understanding of your system.

In the core tool, there is the main sysdig utility and also a command line-style UI named
csysdig. Let's take a look at a few useful commands.

Find the relevant installation instructions for your OS here: http:/ /www. sysdig. org/
install/.

Once installed, let's first look at the process with the most network activity by issuing the
following command:

$ sudo sysdig -pc -c topprocs_net

The following screenshot is the result of the preceding command:

A Sysdig top process by network activity

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.sysdig.org/install/
http://www.sysdig.org/install/
http://www.sysdig.org/install/
http://www.sysdig.org/install/
http://www.sysdig.org/install/
http://www.sysdig.org/install/
http://www.sysdig.org/install/
http://www.sysdig.org/install/
http://www.sysdig.org/install/
http://www.sysdig.org/install/
http://www.sysdig.org/install/

Monitoring and Logging Chapter 7

[248]

This is an interactive view that will show us a top process in terms of network activity.
Also, there are a plethora of commands to use with sysdig. A few other useful commands
to try out include the following:

$ sudo sysdig -pc -c topprocs_cpu
$ sudo sysdig -pc -c topprocs_file
$ sudo sysdig -pc -c topprocs_cpu container.name=<Container Name NOT ID>

More examples can be found at
http://www.sysdig.org/wiki/sysdig-examples/.

The Csysdig command-line UI
Just because we are in a shell on one of our nodes doesn't mean we can't have a UI. Csysdig
is a customizable UI for exploring all the metrics and insight that Sysdig provides. Simply
type csysdig in the prompt:

$ csysdig

After entering csysdig, we will see a real-time listing of all processes on the machine. At
the bottom of the screen, you'll note a menu with various options. Click on Views or
press F2 if you love to use your keyboard. In the left-hand menu, there are a variety of
options, but we'll look at threads. Double-click on Threads.

On some operating systems and with some SSH clients, you may have
issues with the function keys. Check the settings on your terminal and
make sure that the function keys are using the VT100+ sequences.

We can see all the threads currently running on the system and some information about the
resource usage. By default, we see a big list that is updated often. If we click on the Filter,
F4 for the mouse-challenged, we can slim down the list.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.sysdig.org/wiki/sysdig-examples/

Monitoring and Logging Chapter 7

[249]

Type kube-apiserver, if you are on the master, or kube-proxy, if you are on a node
(minion), in the filter box and press Enter. The view now filters for only the threads in that
command:

Csysdig threads

If we want to inspect this a little further, we can simply select one of the threads in the list
and click on Dig or press F6. Now, we see a detailed listing of system calls from the
command in real time. This can be a really useful tool to gain deep insight into the
containers and processes running on our cluster.

Click on Back or press the Backspace key to go back to the previous screen. Then, go to
Views once more. This time, we will look at the Containers view. Once again, we can filter
and also use the Dig view to get more in-depth visibility into what is happening at the
system call level.

Another menu item you might note here is Actions, which is available in the newest
release. These features allow us to go from process monitoring to action and response. It
gives us the ability to perform a variety of actions from the various process views in
Csysdig. For example, the container view has actions to drop into a Bash shell, kill
containers, inspect logs, and more. It's worth getting to know the various actions and
hotkeys, and even add your own custom hotkeys for common operations.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[250]

Prometheus
A newcomer to the monitoring scene is an open source tool called Prometheus. Prometheus
is an open source monitoring tool that was built by a team at SoundCloud. You can find
more about the project at https:/ / prometheus. io.

Their website offers the following features:

A multi-dimensional data model (https:/ / prometheus. io/docs/ concepts/
data_model/) (the time series are identified by their metric name and key/value
pairs)
A flexible query language (https:/ /prometheus. io/ docs/ prometheus/ latest/
querying/ basics/) to leverage this dimensionality
No reliance on distributed storage; single-server nodes are autonomous
Time series collection happens via a pull model over HTTP
Pushing time series (https:/ / prometheus. io/docs/ instrumenting/ pushing/) is
supported via an intermediary gateway
Targets are discovered via service discovery or static configuration
Multiple modes of graphing and dashboard support

Prometheus summary
Prometheus offers a lot of value to the operators of a Kubernetes cluster. Let's look at some
of the more important dimensions of the software:

Simple to operate: It was built to run as individual servers using local storage for
reliability
It's precise: You can use a query language similar to JQL, DDL, DCL, or SQL
queries to define alerts and provide a multi-dimensional view of status
Lots of libraries: You can use more than ten languages and numerous client
libraries in order to introspect your services and software
Efficient: With data stored in an efficient, custom format both in memory and on
disk, you can scale out easily with sharding and federation, creating a strong
platform from which to issue powerful queries that can construct powerful data
models and ad hoc tables, graphs, and alerts

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/

Monitoring and Logging Chapter 7

[251]

Also, Promethus is 100% open source and is (as of July 2018) currently an incubating project
in the CNCF. You can install it with Helm as we did with other software, or do a manual
installation as we'll detail here. Part of the reason that we're going to look at Prometheus
today is due to the overall complexity of the Kubernetes system. With lots of moving parts,
many servers, and potentially differing geographic regions, we need a system that can cope
with all of that complexity.

A nice part about Prometheus is the pull nature, which allows you to focus on exposing
metrics on your nodes as plain text via HTTP, which Prometheus can then pull back to a
central monitoring and logging location. It's also written in Go and inspired by the closed
source Borgmon system, which makes it a perfect match for our Kubernetes cluster. Let's
get started with an install!

Prometheus installation choices
As with previous examples, we'll need to either use our local Minikube install or the GCP
cluster that we've spun up. Log in to your cluster of choice, and then let's get Prometheus
set up. There's actually lots of options for installing Prometheus due to the fast moving
nature of the software:

The simplest, manual method; if you'd like to build the software from the getting
started documents, you can jump in with https:/ /prometheus. io/ docs/
prometheus/ latest/ getting_ started/ and get Prometheus monitoring itself.
The middle ground, with Helm; if you'd like to take the middle road, you can
install Prometheus on your cluster with Helm (https:/ /github. com/ helm/
charts/tree/ master/ stable/ prometheus).
The advanced Operator method; if you want to use the latest and greatest, let's
take a look at the Kubernetes Operator class of software, and use it to install
Prometheus. The Operator was created by CoreOS, who have recently been
acquired by Red Hat. That should mean interesting things for Project Atomic and
Container Linux. We'll talk more about that later, however! We'll use the
Operator model here.

The Operator is designed to build upon the Helm-style management of
software in order to build additional human operational knowledge into
the installation, maintenance, and recovery of applications. You can think
of the Operator software just like an SRE Operator: someone who's an
expert in running a piece of software.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/helm/charts/tree/master/stable/prometheus

Monitoring and Logging Chapter 7

[252]

An Operator is an application-specific controller that extends the Kubernetes API in order
to manage complex stateful applications such as caches, monitoring systems, and relational
or non-relational databases. The Operator uses the API in order to create, configure, and
manage these stateful systems on behalf of the user. While Deployments are excellent in
dealing with seamless management of stateless web applications, the Deployment object in
Kubernetes struggles to orchestrate all of the moving pieces in a stateful application when it
comes to scaling, upgrading, recovering from failure, and reconfiguring these systems.

You can read more about extending the Kubernetes API here: https:/ /
kubernetes. io/ docs/ concepts/ extend- kubernetes/ api-extension/ .

Operators leverage some core Kubernetes concepts that we've discussed in other chapters.
Resources (ReplicaSets) and Controllers (for example Deployments, Services, and
DaemonSets) are leverage with additional operational knowledge of the manual steps that
are encoded in the Operator software. For example, when you scale up an etcd cluster
manually, one of the key steps in the process is to create a DNS name for the new etcd
member that can be used to route to the new member once it's been added to the cluster.
With the Operator pattern being used, that systematized knowledge is built into the
Operator class to provide the cluster administrator with seamless updates to the etcd
software.

The difficulty in creating operators is understanding the underlying functionality of the
stateful software in question, and then encoding that into a resource configuration and
control loop. Keep in mind that Kubernetes can be thought of as simply being a large
distributed messaging queue, with messages that exist in the form of a YAML blob of
declarative state that the cluster operator defines, which the Kubernetes system puts into
place.

Tips for creating an Operator
If you want to create your own Operator in the future, you can keep the following tips
from CoreOS in mind. Given the nature of their application-specific domain, you'll need to
keep a few things in mind when managing complex applications. First, you'll have a set of
system flow activities that your Operator should be able to perform. This will be actions
such as creating a user, creating a database, modifying user permissions and passwords,
and deleting users (such as the default user installed when creating many systems).

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/

Monitoring and Logging Chapter 7

[253]

You'll also need to manage your installation dependencies, which are the items that need to
be present and configured for your system to work in the first place. CoreOS also
recommends the following principles be followed when creating an Operator:

Single step to deploy: Make sure your Operator can be initialized and run with
a single command that takes no additional work to get running.
New third-party type: Your Operator should leverage the third-party API
types, which users will take advantage of when creating applications that use
your software.
Use the basics: Make sure that your Operator uses the core Kubernetes objects
such as ReplicaSets, Services, and StatefulSets, in order to leverage all of the hard
work being poured into the open source Kubernetes project.
Compatible and default working: Make sure you build your Operators so that
they exist in harmony with older versions, and design your system so that it still
continues to run unaffected if the Operator is stopped or accidentally deleted
from your cluster.
Version: Make sure to facilitate the ability to version instances of your
Operator, so cluster administrators don't shy away from updating your
software.
Test: Also, make sure to test your Operator against a destructive force such as a
Chaos Monkey! Your Operator should be able to survive the failure of nodes,
pods, storage, configuration, and networking outages.

Installing Prometheus
Let's run through an install of Prometheus using the new pattern that we've discovered.
First, let's use the Prometheus definition file to create the deployment. We'll use Helm here
to install the Operator!

Make sure you have Helm installed, and then make sure you've initialized it:

$ helm init
master $ helm init
Creating /root/.helm
...
Adding stable repo with URL:
https://kubernetes-charts.storage.googleapis.com
Adding local repo with URL: http://127.0.0.1:8879/charts
$HELM_HOME has been configured at /root/.helm.
...
Happy Helming!
$

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[254]

Next, we can install the various Operator packages required for this demo:

$ helm repo add coreos
https://s3-eu-west-1.amazonaws.com/coreos-charts/stable/
"coreos" has been added to your repositories

Now, install the Operator:

$ helm install coreos/prometheus-operator --name prometheus-operator

You can see that it's installed and running by first checking the installation:

$ helm ls prometheus-operator
NAME REVISION UPDATED STATUS
CHART NAMESPACE
prometheus-operator 1 Mon Jul 23 02:10:18 2018 DEPLOYED
prometheus-operator-0.0.28 default

Then, look at the pods:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
prometheus-operator-d75587d6-bmmvx 1/1 Running 0 2m

Now, we can install kube-prometheus to get all of our dependencies up and running:

$ helm install coreos/kube-prometheus --name kube-prometheus --set
global.rbacEnable=true
NAME: kube-prometheus
LAST DEPLOYED: Mon Jul 23 02:15:59 2018
NAMESPACE: default
STATUS: DEPLOYED

RESOURCES:
==> v1/Alertmanager
NAME AGE
kube-prometheus 1s

==> v1/Pod(related)
NAME READY STATUS RESTARTS
AGE
kube-prometheus-exporter-node-45rwl 0/1 ContainerCreating
0 1s
kube-prometheus-exporter-node-d84mp 0/1 ContainerCreating
0 1s
kube-prometheus-exporter-kube-state-844bb6f589-z58b6 0/2 ContainerCreating
0 1s
kube-prometheus-grafana-57d5b4d79f-mgqw5 0/2 ContainerCreating
0 1s

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[255]

==> v1beta1/ClusterRoleBinding
NAME AGE
psp-kube-prometheus-alertmanager 1s
kube-prometheus-exporter-kube-state 1s
psp-kube-prometheus-exporter-kube-state 1s
psp-kube-prometheus-exporter-node 1s
psp-kube-prometheus-grafana 1s
kube-prometheus 1s
psp-kube-prometheus 1s
…

We've truncated the output here as there's a lot of information. Let's look at the pods again:

$ kubectl get pods
NAME READY STATUS
RESTARTS AGE
alertmanager-kube-prometheus-0 2/2 Running 0 3m
kube-prometheus-exporter-kube-state-85975c8577-vfl6t 2/2
Running 0 2m
kube-prometheus-exporter-node-45rwl 1/1 Running 0 3m
kube-prometheus-exporter-node-d84mp 1/1 Running 0 3m
kube-prometheus-grafana-57d5b4d79f-mgqw5 2/2 Running 0 3m
prometheus-kube-prometheus-0 3/3 Running 1 3m
prometheus-operator-d75587d6-bmmvx 1/1 Running 0 8m

Nicely done!

If you forward the port for prometheus-kube-prometheus-0 to 8448, you should be able
to see the Prometheus dashboard, which we'll revisit in later chapters as we explore high
availability and the productionalization of your Kubernetes cluster. You can check this out
at http://localhost:8449/alerts.

Summary
We took a quick look at monitoring and logging with Kubernetes. You should now be
familiar with how Kubernetes uses cAdvisor and Heapster to collect metrics on all the
resources in a given cluster. Furthermore, we saw how Kubernetes saves us time by
providing InfluxDB and Grafana set up and configured out of the box. Dashboards are
easily customizable for our everyday operational needs.

In addition, we looked at the built-in logging capabilities with FluentD and the Google
Cloud Logging service. Also, Kubernetes gives us great time savings by setting up the
basics for us.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring and Logging Chapter 7

[256]

Finally, you learned about the various third-party options available to monitor our
containers and clusters. Using these tools will allow us to gain even more insight into the
health and status of our applications. All these tools combine to give us a solid toolset to
manage day-to-day operations. Lastly, we explored different methods of installing
Prometheus, with an eye on building more robust production systems.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

8
Monitoring, Logging, and

Troubleshooting
In Chapter 10, Creating Kubernetes Clusters, you learned how to create Kubernetes clusters
in different environments, experimented with different tools, and created a couple of
clusters.

Creating a Kubernetes cluster is just the beginning of the story. Once the cluster is up and
running, you need to make sure that it is operational, all the necessary components are in
place and properly configured, and enough resources are deployed to satisfy the
requirements. Responding to failures, debugging, and troubleshooting is a major part of
managing any complicated system, and Kubernetes is no exception.

The following topics will be covered in this chapter:

Monitoring with Heapster
Performance analytics with Kubernetes dashboard
Central logging
Detecting problems at the node level
Troubleshooting scenarios
Using Prometheus

At the end of this chapter, you will have a solid understanding of the various options
available to monitor Kubernetes clusters, how to access logs, and how to analyze them. You
will be able to look at a healthy Kubernetes cluster and verify that everything is OK. You
will also be able to look at an unhealthy Kubernetes cluster and methodically diagnose it,
locate the problems, and address them.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[258]

Monitoring Kubernetes with Heapster
Heapster is a Kubernetes project that provides a robust monitoring solution for Kubernetes
clusters. It runs as a pod (of course), so it can be managed by Kubernetes itself. Heapster
supports Kubernetes and CoreOS clusters. It has a very modular and flexible design.
Heapster collects both operational metrics and events from every node in the cluster, stores
them in a persistent backend (with a well-defined schema), and allows visualization and
programmatic access. Heapster can be configured to use different backends (or sinks, in
Heapster's parlance) and their corresponding visualization frontends. The most common
combination is InfluxDB as the backend and Grafana as the frontend. The Google Cloud
Platform integrates Heapster with the Google monitoring service. There are many other less
common backends, as follows:

Log
Google Cloud monitoring
Google Cloud logging
Hawkular-Metrics (metrics only)
OpenTSDB
Monasca (metrics only)
Kafka (metrics only)
Riemann (metrics only)
Elasticsearch

You can use multiple backends by specifying sinks on the command line:

--sink=log --sink=influxdb:http://monitoring-influxdb:80/

cAdvisor
cAdvisor is part of the kubelet, which runs on every node. It collects information about the
CPU/cores' usage, memory, network, and filesystems of each container. It provides a basic
UI on port 4194, but, most importantly for Heapster, it provides all this information
through the Kubelet. Heapster records the information collected by cAdvisor on each node
and stores it in its backend for analysis and visualization.

The cAdvisor UI is useful if you want to quickly verify that a particular node is set up
correctly, for example, while creating a new cluster when Heapster is not hooked up yet.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[259]

Here is what it looks like:

Installing Heapster
Heapster components may or may not be installed in your Kubernetes cluster. If Heapster
is not installed, you can install it with a few simple commands. First, let's clone the
Heapster repo:

> git clone https://github.com/kubernetes/heapster.git
> cd heapster

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[260]

In earlier versions of Kubernetes, Heapster exposed the services as NodePort by default.
Now, they are exposed by default as ClusterIP, which means that they are available only
inside the cluster. To make them available locally, I added type: NodePort to the spec of
each service in deploy/kube-config/influxdb. For example, for deploy/kube-
config/influxdb/influxdb.yaml:

> git diff deploy/kube-config/influxdb/influxdb.yaml
diff --git a/deploy/kube-config/influxdb/influxdb.yaml b/deploy/kube-
config/influxdb/influxdb.yaml
index 29408b81..70f52d2c 100644
--- a/deploy/kube-config/influxdb/influxdb.yaml
+++ b/deploy/kube-config/influxdb/influxdb.yaml
@@ -33,6 +33,7 @@ metadata:
 name: monitoring-influxdb
 namespace: kube-system
 spec:
+ type: NodePort
 ports:
 - port: 8086
 targetPort: 8086

I made a similar change to deploy/kube-config/influxdb/grafana.yaml, which has +
type: NodePort this line commented out, so I just uncommented it. Now, we can actually
install InfluxDB and Grafana:

> kubectl create -f deploy/kube-config/influxdb

You should see the following output:

deployment "monitoring-grafana" created
service "monitoring-grafana" created
serviceaccount "heapster" created
deployment "heapster" created
service "heapster" created
deployment "monitoring-influxdb" created
service "monitoring-influxdb" created

InfluxDB backend
InfluxDB is a modern and robust distributed time-series database. It is very well-suited and
used broadly for centralized metrics and logging. It is also the preferred Heapster backend
(outside the Google Cloud Platform). The only thing is InfluxDB clustering; high
availability is part of enterprise offering.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[261]

The storage schema
The InfluxDB storage schema defines the information that Heapster stores in InfluxDB, and
it is available for querying and graphing later. The metrics are divided into multiple
categories, named measurements. You can treat and query each metric separately, or you
can query a whole category as one measurement and receive the individual metrics as
fields. The naming convention is <category>/<metrics name> (except for uptime, which
has a single metric). If you have an SQL background, you can think of measurements as
tables. Each metric is stored per container. Each metric is labeled with the following
information:

pod_id: A unique ID of a pod
pod_name: A user-provided name of a pod
pod_namespace: The namespace of a pod
container_base_image: A base image for the container
container_name: A user-provided name of the container or full cgroup name
for system containers
host_id: A cloud-provider-specified or user-specified identifier of a node
hostname: The hostname where the container ran
labels: The comma-separated list of user-provided labels; format is key:value
namespace_id: The UID of the namespace of a pod
resource_id: A unique identifier used to differentiate multiple metrics of the
same type, for example, FS partitions under filesystem/usage

Here are all the metrics grouped by category, as you can see, it is quite extensive.

CPU
The CPU metrics are:

cpu/limit: CPU hard limit in millicores
cpu/node_capacity: CPU capacity of a node
cpu/node_allocatable: CPU allocatable of a node
cpu/node_reservation: Share of CPU that is reserved on the node allocatable
cpu/node_utilization: CPU utilization as a share of node allocatable

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[262]

cpu/request: CPU request (the guaranteed amount of resources) in millicores
cpu/usage: Cumulative CPU usage on all cores
cpu/usage_rate: CPU usage on all cores in millicores

Filesystem
The Filesystem metrics are:

filesystem/usage: The total number of bytes consumed on a filesystem
filesystem/limit: The total size of the filesystem in bytes
filesystem/available: The number of available bytes remaining in the
filesystem

Memory
The memory metrics are:

memory/limit: Memory hard limit in bytes
memory/major_page_faults: The number of major page faults
memory/major_page_faults_rate: The number of major page faults per
second
memory/node_capacity: Memory capacity of a node
memory/node_allocatable: Memory allocatable of a node
memory/node_reservation: Share of memory that is reserved on the node
allocatable
memory/node_utilization: Memory utilization as a share of memory
allocatable
memory/page_faults: The number of page faults
memory/page_faults_rate: The number of page faults per second
memory/request: Memory request (the guaranteed amount of resources) in
bytes
memory/usage: Total memory usage
memory/working_set: Total working set usage; working set is the memory
being used and is not easily dropped by the kernel

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[263]

Network
The network metrics are:

network/rx: Cumulative number of bytes received over the network
network/rx_errors: Cumulative number of errors while receiving over
the network
network/rx_errors_rate: The number of errors per second while receiving
over the network
network/rx_rate: The number of bytes received over the network per second
network/tx: Cumulative number of bytes sent over the network
network/tx_errors: Cumulative number of errors while sending over the
network
network/tx_errors_rate: The number of errors while sending over the
network
network/tx_rate: The number of bytes sent over the network per second

Uptime
Uptime is the number of milliseconds since the container was started.

You can work with InfluxDB directly if you're familiar with it. You can either connect to it
using its own API or use its web interface. Type the following command to find its port and
endpoint:

> k describe service monitoring-influxdb --namespace=kube-system | grep
NodePort
Type: NodePort
NodePort: <unset> 32699/TCP

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[264]

Now, you can browse the InfluxDB web interface using the HTTP port. You'll need to
configure it to point to the API port. The Username and Password are root and root by
default:

Once you're set up, you can select what database to use (see the top-right corner). The
Kubernetes database is named k8s. You can now query the metrics using the InfluxDB
query language.

Grafana visualization
Grafana runs in its own container and serves a sophisticated dashboard that works well
with InfluxDB as a data source. To locate the port, type the following command:

k describe service monitoring-influxdb --namespace=kube-system | grep
NodePort
Type: NodePort
NodePort: <unset> 30763/TCP

Now, you can access the Grafana web interface on that port. The first thing you need to do
is set up the data source to point to the InfluxDB backend:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[265]

Make sure to test the connection and then go explore the various options in the dashboards.
There are several default dashboards, but you should be able to customize them to your
preferences. Grafana is designed to let you adapt it to your needs.

Performance analysis with the dashboard
My favorite tool by far, when I just want to know what's going on in the cluster, is the
Kubernetes dashboard. There are a couple of reasons for this, as follows:

It is built-in (always in sync and tested with Kubernetes)
It's fast
It provides an intuitive drill-down interface, from the cluster level all the way
down to individual container
It doesn't require any customization or configuration

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[266]

Although Heapster, InfluxDB, and Grafana are better for customized and heavy-duty views
and queries, the Kubernetes dashboard's predefined views can probably answer all your
questions 80-90% of the time.

You can also deploy applications and create any Kubernetes resource using the dashboard
by uploading the proper YAML or JSON file, but I will not cover this because it is an anti-
pattern for manageable infrastructure. It may be useful when playing around with a test
cluster, but for actually modifying the state of the cluster, I prefer the command line. Your
mileage may vary.

Let's find the port first:

k describe service kubernetes-dashboard --namespace=kube-system | grep
NodePort
Type: NodePort
NodePort: <unset> 30000/TCP

Top-level view
The dashboard is organized with a hierarchical view on the left (it can be hidden by
clicking the hamburger menu) and dynamic, context-based content on the right. You can
drill down into the hierarchical view to get deeper into the information that's relevant.

There are several top-level categories:

Cluster
Overview
Workloads
Discovery and load balancing
Config and storage

You can also filter everything by a particular namespace or choose all namespaces.

Cluster
The Cluster view has five sections: Namespaces, Nodes, PersistentVolumes, Roles, and
Storage Classes. It is mostly about observing the physical resources of the cluster:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[267]

You get, in a glance, a lot of information: CPU and memory usage of all the nodes, what
namespaces are available, their Status, and Age. For each node, you can see its Age, Labels,
and if it's ready or not. If there were persistent volumes and roles, you would see them as
well, then the storage classes (just host path in this case).

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[268]

If we drill down the nodes and click on the minikube node itself, we get a detailed screen
of information about that node and the allocated resources in a nice pie chart. This is critical
for dealing with performance issues. If a node doesn't have enough resources, then it might
not be able to satisfy the needs of its pods:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[269]

If you scroll down, you'll see even more interesting information. The Conditions pane is
where it's at. You get a great, concise view of memory and disk pressure at the individual
node level:

There are also Pods and Events panes. We'll talk about pods in the next section.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[270]

Workloads
The Workloads category is the main one. It organizes many types of Kubernetes resources,
such as CronJobs, Daemon Sets, Deployments, Jobs, Pods, Replica Sets,
Replication Controllers, and Stateful Sets. You can drill down along any of these
dimensions. Here is the top-level Workloads view for the default namespace that currently
has only the echo service deployed. You can see the Deployments, Replica Sets, and Pods:

Let's switch to all namespaces and dive into the Pods subcategory. This is a very useful
view. In each row, you can tell if the pod is running or not, how many times it restarted, its
IP, and the CPU and memory usage histories are even embedded as nice little graphs:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[271]

You can also view the Logs for any pod by clicking the text symbol (second from the right).
Let's check the Logs of the InfluxDB pod. It looks like everything is in order and Heapster is
successfully writing to it:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[272]

There is one more level of detail that we haven't explored yet. We can go down to the
container level. Let's click on the kubedns pod. We get the following screen, which shows
the individual containers and their run command; we can also view their logs:

Discovery and load balancing
The discovery and load balancing category is often where you start from. Services are the
public interface to your Kubernetes cluster. Serious problems will affect your services,
which will affect your users:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[273]

When you drill down by clicking on a service, you get some information about the service
(most important is the label selector) and a pods view.

Adding central logging
Central logging or cluster-level logging is a fundamental requirement for any cluster with
more than a couple of nodes, pods, or containers. First, it is impractical to view the logs of
each pod or container independently. You can't get a global picture of the system, and there
will be just too many messages to sift through. You need a solution that aggregates the log
messages and lets you slice and dice them easily. The second reason is that containers are
ephemeral. Problematic pods will often just die, and their replication controller or replica
set will just start a new instance, losing all the important log info. By logging to a central
logging service, you preserve this critical troubleshooting information.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[274]

Planning central logging
Conceptually, central logging is very simple. On each node, you run a dedicated agent that
intercepts all log messages from all the pods and containers on the node, and sends them,
along with enough metadata, to a central repository where they are stored safely.

As usual, if you run on the Google platform, then GKE's got you covered, and there is a
Google central-logging service integrated nicely. For other platforms, a popular solution is
fluentd, Elasticsearch, and Kibana. There is an official add-on to set up the proper services
for each component. The fluentd-elasticsearch add-on is at http://bit.ly/2f6MF5b.

It is installed as a set of services for Elasticsearch and Kibana, and the fluentd agent is
installed on each node.

Fluentd
Fluentd is a unified logging layer that sits between arbitrary data sources and arbitrary data
sinks and makes sure that log messages can stream from A to B. Kubernetes comes with an
add-on that has a Docker image that deploys the fluentd agent, which knows how to read
various logs that are relevant to Kubernetes, such as Docker logs, etcd logs, and Kube
logs. It also adds labels to each log message to make it easy for users to filter later by label.
Here is a snippet from the fluentd-es-configmap.yaml file:

Example:
2016/02/04 06:52:38 filePurge: successfully removed file
/var/etcd/data/member/wal/00000000000006d0-00000000010a23d1.wal
<source>
 type tail
 # Not parsing this, because it doesn't have anything particularly
useful to
 # parse out of it (like severities).
 format none
 path /var/log/etcd.log
 pos_file /var/log/es-etcd.log.pos
 tag etcd
</source>

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://bit.ly/2f6MF5b

Monitoring, Logging, and Troubleshooting Chapter 8

[275]

Elasticsearch
Elasticsearch is a great document store and full-text search engine. It is a favorite in the
enterprise because it is very fast, reliable, and scalable. It is used in the Kubernetes central
logging add-on as a Docker image, and it is deployed as a service. Note that a fully-fledged
production cluster of Elasticsearch (which will be deployed on a Kubernetes cluster)
requires its own master, client, and data nodes. For large-scale and highly-available
Kubernetes clusters, the central logging itself will be clustered. Elasticsearch can use self-
discovery. Here is an enterprise grade solution: https:/ /github. com/ pires/ kubernetes-
elasticsearch-cluster.

Kibana
Kibana is Elasticsearch's partner in crime. It is used to visualize and interact with the data
stored and indexed by Elasticsearch. It is also installed as a service by the add-on. Here is
the Kibana Dockerfile template (http://bit.ly/2lwmtpc).

Detecting node problems
In Kubernetes' conceptual model, the unit of work is the pod. However, pods are scheduled
on nodes. When it comes to monitoring and reliability, the nodes are what require the most
attention, because Kubernetes itself (the scheduler and replication controllers) takes care of
the pods. Nodes can suffer from a variety of problems that Kubernetes is unaware of. As a
result, it will keep scheduling pods to the bad nodes and the pods might fail to function
properly. Here are some of the problems that nodes may suffer while still appearing
functional:

Bad CPU
Bad memory
Bad disk
Kernel deadlock
Corrupt filesystem
Problems with the Docker daemon

The kubelet and cAdvisor don't detect these issues, another solution is needed. Enter the
node problem detector.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
https://github.com/pires/kubernetes-elasticsearch-cluster
http://bit.ly/2lwmtpc

Monitoring, Logging, and Troubleshooting Chapter 8

[276]

Node problem detector
The node problem detector is a pod that runs on every node. It needs to solve a difficult
problem. It needs to detect various problems across different environments, different
hardware, and different OSes. It needs to be reliable enough not to be affected itself
(otherwise, it can't report the problem), and it needs to have relatively-low overhead to
avoid spamming the master. In addition, it needs to run on every node. Kubernetes recently
received a new capability named DaemonSet that addresses that last concern.

The source code is at https:/ /github. com/ kubernetes/ node- problem- detector.

DaemonSet
DaemonSet is a pod for every node. Once you define DaemonSet, every node that's added
to the cluster automatically gets a pod. If that pod dies, Kubernetes will start another
instance of that pod on that node. Think about it as a fancy replication controller with 1:1
node-pod affinity. Node problem detector is defined as a DaemonSet, which is a perfect
match for its requirements. It is possible to use affinity, anti-affinity, and taints to have
more fine-grained control over DaemonSet scheduling.

Problem daemons
The problem with node problem detector (pun intended) is that there are too many
problems which it needs to handle. Trying to cram all of them into a single codebase can
lead to a complex, bloated, and never-stabilizing codebase. The design of the node problem
detector calls for separation of the core functionality of reporting node problems to the
master from the specific problem detection. The reporting API is based on generic
conditions and events. The problem detection should be done by separate problem
daemons (each in its own container). This way, it is possible to add and evolve new
problem detectors without impacting the core node problem detector. In addition, the
control plane may have a remedy controller that can resolve some node problems
automatically, therefore implementing self-healing.

At this stage (Kubernetes 1.10), problem daemons are baked into the node
problem detector binary, and they execute as Goroutines, so you don't get
the benefits of the loosely-coupled design just yet.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector

Monitoring, Logging, and Troubleshooting Chapter 8

[277]

In this section, we covered the important topic of node problems, which can get in the way
of successful scheduling of workloads, and how the node problem detector can help. In the
next section, we'll talk about various failure scenarios and how to troubleshoot them using
Heapster, central logging, the Kubernetes dashboard, and node problem detector.

Troubleshooting scenarios
There are so many things that can go wrong in a large Kubernetes cluster, and they will,
this is expected. You can employ best practices and minimize some of them (mostly human
errors) using stricter processes. However, some issues such as hardware failures and
networking issues can't be totally avoided. Even human errors should not always be
minimized if it means slower development time. In this section, we'll discuss various
categories of failures, how to detect them, how to evaluate their impact, and consider the
proper response.

Designing robust systems
When you want to design a robust system, you first need to understand the possible failure
modes, the risk/probability of each failure, and the impact/cost of each failure. Then, you
can consider various prevention and mitigation measures, loss-cutting strategies, incident-
management strategies, and recovery procedures. Finally, you can come up with a plan that
matches risks to mitigation profiles, including cost. A comprehensive design is important
and needs to be updated as the system evolves. The higher the stakes, the more thorough
your plan should be. This process has to be tailored for each organization. A corner of error
recovery and robustness is detecting failures and being able to troubleshoot. The following
subsections describe common failure categories, how to detect them, and where to collect
additional information.

Hardware failure
Hardware failures in Kubernetes can be divided into two groups:

The node is unresponsive
The node is responsive

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[278]

When the node is not responsive, it can be difficult sometimes to determine if it's a
networking issue, a configuration issue, or actual hardware failure. You obviously can't use
any information like logs or run diagnostics on the node itself. What can you do? First,
consider if the node was ever responsive. If it's a node that was just added to the cluster, it
is more likely a configuration issue. If it's a node that was part of the cluster then you can
look at historical data from the node on Heapster or central logging and see if you detect
any errors in the logs or degradation in performance that may indicate failing hardware.

When the node is responsive, it may still suffer from the failure of redundant hardware,
such as non-OS disk or some cores. You can detect the hardware failure if the node problem
detector is running on the node and raises some event or node condition to the attention of
master. Alternatively, you may note that pods keep getting restarted or jobs take longer to
complete. All of these may be signs of hardware failure. Another strong hint for hardware
failure is if the problems are isolated to a single node and standard maintenance operations
such as reboot don't alleviate the symptoms.

If your cluster is deployed in the cloud, replacing a node which you suspect as having
hardware problems is trivial. It is simple to just manually provision a new VM and remove
the bad VM. In some cases, you may want to employ a more automated process and
employ a remedy controller, as suggested by the node problem detector design. Your
remedy controller will listen to problems (or missing health checks) and can automatically
replace bad nodes. This approach can work even for private hosting or bare metal if you
keep a pool of extra nodes ready to kick in. Large-scale clusters can function just fine, even
with reduced capacity most of the time. Either you can tolerate slightly reduced capacity
when a small number of nodes are down, or you can over-provision a little bit. This way,
you have some headway when a node goes down.

Quotas, shares, and limits
Kubernetes is a multitenant system. It is designed to use resources efficiently, but it
schedules pods and allocates resources based on a system of checks and balances between
available quotas and limits per namespace, and requests for guaranteed resources from
pods and containers. We will dive into the details later in the book. Here, we'll just consider
what can go wrong and how to detect it. There are several bad outcomes you can run into:

Insufficient resources: If a pod requires a certain amount of CPU or memory,
and there is no node with available capacity, then the pod can't be scheduled.
Under-utilization: A pod may declare that it requires a certain amount of CPU or
memory, and Kubernetes will oblige, but then the pod may only use a small
percentage of its requested resources. This is just wasteful.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[279]

Mismatched node configuration: A pod that requires a lot of CPU but very little
memory may be scheduled to a high-memory node and use all its CPU resources,
thereby hogging the node, so no other pod can be scheduled but the unused
memory is wasted.

Checking out the dashboard is a great way to look for suspects visually. Nodes and pods
that are either over-subscribed or under-utilized are candidates for quota and resource
request mismatches:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[280]

Once you detect a candidate, you can dive into using the describe command at the node
or pod level. In a large-scale cluster, you should have automated checks that compare the
utilization against capacity planning. This is important because most large systems have
some level of fluctuation and a uniform load is not expected. Make sure that you
understand the demands on your system and that your cluster's capacity is within the
normal range or can adjust elastically, as needed.

Bad configuration
Bad configuration is an umbrella term. Your Kubernetes cluster state is configuration; your
containers' command-line arguments are configuration; all the environment variables used
by Kubernetes, your application services, and any third-party services are configuration;
and all the configuration files are configuration. In some data-driven systems, configuration
is stored in various data stores. Configuration issues are very common because, usually,
there aren't any established good practices to test them. They often have various fallbacks
(for example, search path for configuration files) and defaults, and the production-
environment configuration is different to the development or staging environment.

At the Kubernetes cluster level, there are many possible configuration problems, as follows:

Incorrect labeling of nodes, pods, or containers
Scheduling pods without a replication controller
Incorrect specification of ports for services
Incorrect ConfigMap

Most of these problems can be addressed by having a proper automated deployment
process, but you must have a deep understanding of your cluster architecture and how
Kubernetes resources fit together.

Configuration problems typically occur after you change something. It is critical, after each
deployment or manual change to the cluster, to verify its state.

Heapster and the dashboard are great options here. I suggest starting from the services and
verifying that they are available, responsive, and functional. Then, you can dive deeper and
verify that the system also operates within the expected performance parameters.

The logs also provide helpful hints and can pinpoint specific configuration options.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[281]

Cost versus performance
Large clusters are not cheap. This is especially true if you run in the cloud. A major part of
operating massive-scale systems is keeping track of the expense.

Managing cost on the cloud
One of the greatest benefits of the cloud is that it can satisfy elastic demand that caters for
systems that expand and contract automatically by allocating and deallocating resources as
needed. Kubernetes fits this model very well and can be extended to provision more nodes
as necessary. The risk here is that, if not constrained properly, a denial-of-service attack
(malicious, accidental, or self-inflicted) can lead to arbitrary provisioning of expensive
resources. This needs to be monitored carefully, so it can be caught early on. Quotas on
namespaces can avoid it, but you still need to be able to dive in and pinpoint the core issue.
The root cause can be external (a botnet attack), misconfiguration, an internal test gone
awry, or a bug in the code that detects or allocate resources.

Managing cost on bare metal
On bare metal, you typically don't have to worry about runaway allocation, but you can
easily run into a wall if you need extra capacity and can't provision more resources fast
enough. Capacity planning and monitoring your system's performance to detect the need
early are primary concerns for OPS. Heapster can show historical trends and help identify
both peak times and overall growth in demand.

Managing cost on hybrid clusters
Hybrid clusters run on both bare metal and the cloud (and possibly on private hosting
services too). The considerations are similar, but you may need to aggregate your analysis.
We will discuss hybrid clusters in more detail later.

Using Prometheus
Heapster and the default monitoring and logging that come in the box with Kubernetes are
a great starting point. However, the Kubernetes community is bursting with innovation
and several alternative solutions are available. One of the most popular solutions is
Prometheus. In this section, we will explore the new world of operators, the Prometheus
Operator, how to install it, and how to use it to monitor your cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[282]

What are operators?
Operators are a new class of software that encapsulates the operational knowledge needed
to develop, manage, and maintain applications on top of Kubernetes. The term was
introduced by CoreOS in late 2016. An operator is an application-specific controller that
extends the Kubernetes API to create, configure, and manage instances of complex stateful
applications on behalf of a Kubernetes user. It builds upon the basic Kubernetes resource
and controller concepts, but includes domain or application-specific knowledge to
automate common tasks.

The Prometheus Operator
Prometheus (https:/ /prometheus. io) is an open source systems monitoring and alerting
toolkit for monitoring applications in clusters. It was inspired by Google's Borgmon and
designed for the Kubernetes model of assigning and scheduling units of work. It joined
CNCF in 2016, and it has been adopted widely across the industry. The primary differences
between InfluxDB and Prometheus is that Prometheus uses a pull model where anyone can
hit the /metrics endpoint, and its query language is very expressive, but simpler than the
SQL-like query language of InfluxDB.

Kubernetes has built-in features to support Prometheus metrics, and Prometheus
awareness of Kuberneres keeps improving. The Prometheus Operator packages all that
monitoring goodness into an easy to install and use bundle.

Installing Prometheus with kube-prometheus
The easiest way to install Prometheus is using kube-prometheus. It uses the Prometheus
Operator as well as Grafana for dashboarding and AlertManager for managing alerts. To
get started, clone the repo and run the deploy script:

> git clone https://github.com/coreos/prometheus-operator.git
> cd contrib/kube-prometheus
> hack/cluster-monitoring/deploy

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io

Monitoring, Logging, and Troubleshooting Chapter 8

[283]

The script creates a monitoring namespace and lots of Kubernetes entities and supporting
components:

The Prometheus Operator itself
The Prometheus node_exporter
kube-state metrics
A Prometheus configuration covering monitoring of all Kubernetes core
components and exporters
A default set of alerting rules on the cluster components' health
A Grafana instance serving dashboards on cluster metrics
A three node highly available Alertmanager cluster

Let's verify that everything is in order:

> kg po --namespace=monitoring
NAME READY STATUS RESTARTS AGE
alertmanager-main-0 2/2 Running 0 1h
alertmanager-main-1 2/2 Running 0 1h
alertmanager-main-2 0/2 Pending 0 1h
grafana-7d966ff57-rvpwk 2/2 Running 0 1h
kube-state-metrics-5dc6c89cd7-s9n4m 2/2 Running 0 1h
node-exporter-vfbhq 1/1 Running 0 1h
prometheus-k8s-0 2/2 Running 0 1h
prometheus-k8s-1 2/2 Running 0 1h
prometheus-operator-66578f9cd9-5t6xw 1/1 Running 0 1h

Note that alertmanager-main-2 is pending. I suspect that this is due to Minikube
running on two cores. It is not causing any problem in practice in my setup.

Monitoring your cluster with Prometheus
Once the Prometheus Operator is up and running along with Grafana and the
Alertmanager, you can access their UIs and interact with the different components:

Prometheus UI on node port 30900
Alertmanager UI on node port 30903
Grafana on node port 30902

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[284]

Prometheus supports a dizzying array of metrics to choose from. Here is a screenshot that
shows the duration of HTTP requests in microseconds broken down by container:

To limit the view to only the 0.99 quantile for the prometheus-k8s service, use the
following query:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[285]

http_request_duration_microseconds{service="prometheus-k8s",
quantile="0.99"}

The Alertmanager is another important part of the Prometheus monitoring story. Here is a
screenshot of the web UI that lets you define and configure alerts based on arbitrary
metrics.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Monitoring, Logging, and Troubleshooting Chapter 8

[286]

Summary
In this chapter, we looked at monitoring, logging, and troubleshooting. This is a crucial
aspect of operating any system and, in particular, a platform such as Kubernetes with so
many moving pieces. My greatest worry, whenever I'm responsible for something, is that
something will go wrong and I will have no systematic way to figure out what's wrong and
how to fix it. Kubernetes has ample tools and facilities built in, such as Heapster, logging,
DaemonSets, and node problem detector. You can also deploy any kind of monitoring
solution you prefer.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

9
Operating Systems, Platforms,
and Cloud and Local Providers

The first half of this chapter will cover how open standards encourage a diverse ecosystem
of container implementations. We'll look at the Open Container Initiative (OCI) and its
mission to provide an open container specification as well. The second half of this chapter
will cover the various operating systems available for running containerized workloads,
such as CoreOS. We'll also look at its advantages as a host OS, including performance and
support for various container implementations. Additionally, we'll take a brief look at the
Tectonic Enterprise offering from CoreOS. We'll look at the various hosted platforms
offered by the major cloud service providers (CSPs) and see how they stack up.

This chapter will discuss the following topics:

Why do standards matter?
The OCI and the Cloud Native Computing Foundation (CNCF)
Container specifications versus implementations
Various container-oriented operating systems
Tectonic
The CSP platforms available that can run Kubernetes workloads

Technical requirements
You'll need to have your Google Cloud Platform account enabled and logged in, or you can
use a local Minikube instance of Kubernetes. You can also use Play with Kubernetes online
at https://labs.play- with- k8s. com/ .

You'll also need GitHub credentials, which we'll go over setting up later in the chapter.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[288]

The GitHub repository for this chapter can be found at https:/ /github. com/
PacktPublishing/The- Complete- Kubernetes- Guide/ tree/ master/ Chapter09.

The importance of standards
Over the past two years, containerization technology has had tremendous growth in
popularity. While Docker has been at the center of this ecosystem, there is an increasing
number of players in the container space. There are already a number of alternatives to the
containerization and Docker implementation itself (rkt, Garden, and so on). In addition,
there is a rich ecosystem of third-party tools that enhance and complement your container
infrastructure. While Kubernetes is designed to manage the state of a container and the
orchestration, scheduling, and networking side of this ecosystem, the bottom line is that all
of these tools form the basis to build cloud-native applications.

As we mentioned at the very beginning of this book, one of the most attractive things about
containers is their ability to package our application for deployment across various
environment tiers (that is, development, testing, and production) and various infrastructure
providers (GCP, AWS, on-premises, and so on).

To truly support this type of deployment agility, we need not only the containers
themselves to have a common platform, but also the underlying specifications to follow a
common set of ground rules. This will allow for implementations that are both flexible and
highly specialized. For example, some workloads may need to be run on a highly secure
implementation. To provide this, the implementation will have to make more intentional
decisions about some aspects of the implementation. In either case, we will have more
agility and freedom if our containers are built on some common structures that all
implementations agree on and support.

In the following pages, we'll explore the building blocks of the many competing standards
in the Kubernetes ecosystem. We'll explain how they're changing and developing and what
part they may play in the future.

One of the examples that we'll explore more deeply in this third edition is the CRI-O
project, which came to be after the creation of the OCI Charter. Let's make sure we
understand the importance of that mission.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter09

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[289]

The OCI Charter
The mission of the OCI Charter is to ensure that the open source community has a stable
platform from which industry participants can contribute the portable, open, and vendor-
neutral runtimes required to build container-powered applications. The Linux Foundation
is the holder of the charter, which is a sister organization to the CNCF.

If you'd like to read more about these foundations, you can check out their
websites here: https:/ / www. linuxfoundation. org/ and https:/ /www.
cncf. io/ .

While the OCI Charter tries to standardize the building blocks of the ecosystem, it does not
attempt to define the system at the macroscopic level, nor does it market a particular
pathway or solution. There's also a process defined that helps technology mature in a
responsible way through these foundations, to ensure that the best possible technology is
reaching the end user. These are defined as the following stages:

Sandbox1.
Incubating2.
Graduated3.

For the specifics of this chapter as regards the OCI, let's look at what else they're trying to
accomplish. Firstly, we're attempting to create a format specification. This specification will
call out a few important dimensions in order to create a consensus:

Provide a format: In order to ensure a specification that can be used across
multiple runtimes, you need a standard container format and runtime
specification. The container format is represented by the root filesystem that sits
on the disk, with the necessary additional configuration that allows a given
container to be run on the system. There is a push to categorize the
standardization into the following layers: base, optional, and out of scope.
Provide a runtime: This is more straightforward, as it's designed to provide an
executable that can directly run a container via consumption of the
aforementioned container format and runtime specification.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[290]

The Charter also incentivizes a number of projects, the first two of which are the runc
projects, and the third of which involves the definition of its own specifications in the OCI
Specification project. New projects are added by members through a review process that
needs two-thirds approval from the current Technical Oversight Board (TOB). If we look
deeper into the principles that govern the OCI, the website names six guiding principles:

Technology leadership
Influence through contribution
Limited scope, limited politics
Minimalist structure
Representative leadership
Adherence to anti-trust regulations

These items are a blend of philosophical and logical frameworks that encourage
competition, collaboration, meritocracy, and the continuous improvement cycles that many
Agile and DevOps practitioners have long utilized.

Let's dig more into the initiative itself now.

The OCI
One of the first initiatives to gain widespread industry engagement is the OCI. Among the
36 industry collaborators are Docker, Red Hat, VMware, IBM, Google, and AWS, as listed
on the OCI website at https://www.opencontainers.org/.

The purpose of the OCI is to split implementations, such as Docker and rkt, from a
standard specification for the format and runtime of containerized workloads. According to
their own terms, the goal of the OCI specifications has three basic tenets (you can refer to
more details about this in the Further reading section at the end of the chapter):

Creating a formal specification for container image formats and runtime, which
will allow a compliant container to be portable across all major, compliant
operating systems and platforms without artificial technical barriers.
Accepting, maintaining, and advancing the projects associated with these
standards. It will look to agree on a standard set of container actions (start, exec,
pause, and so on), as well as a runtime environment associated with a container
runtime.
Harmonizing the previously referenced standard with other proposed standards,
including the appc specification.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.opencontainers.org/

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[291]

By following these principals, the OCI hopes to bolster a collaborative and inclusive
ecosystem that provides a rich and evolving toolset to meet the needs of today's complex
application workloads, be they cloud-native or traditional.

There are additionally some guiding principles for the development of standards in this
space. These principles were integrated from the founding beliefs of the folks who created
appc, and are as follows:

Security: Isolate containers via pluggable interfaces using secure cryptographic
principles, and a chain of custody for both images and application code.
Portability: Ensure that containers continue to be portable across a wide variety
software, clouds, and hardware.
Decentralized: Container images should be straightforward and should take
advantage of federation and namespacing.
Open: The runtime and formats should be community-built, with multiple
interchangeable parts.
Backward compatible: Given the popularity of Docker and containers with
nearly 9 billion downloads, backward compatibility should be given high
priority.
Composable: Tools for the operation of containers should be well integrated, but
modular.
Code: Consensus should be built from running, working code that follows
principles of minimalism that adhere to domain-driven design. It should be
stable and extensible.

Container Runtime Interface
Let's look at one of the newer and Kubernetes-specific OCI-based initiatives, CRI-O. CRI-O
is currently part of the Kubernetes incubator, but it may move out to its own project as it
matures. One of the compelling parts of the CRI-O design is that it never breaks
Kubernetes. This is different because other runtimes are designed to do many things, such
as building images, managing security, orchestration, and inspecting images. CRI-O is only
designed to help Kubernetes orchestrate and schedule containers.

You can get the code for the CRI-O project and read the documentation
at https:/ / github. com/ kubernetes- incubator/ cri- o/.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[292]

To this end, CRI-O is developed congruently with the CRI itself, and aligns itself with
upstream releases of the Kubernetes system. The following diagram shows how the CRI-O
works with the OCI:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[293]

In order to achieve this workflow, the following happens:

The operator decides to start a pod, which causes Kubernetes to use the kubelet1.
to start a pod. That kubelet talks through the CRI to the CRI-O daemon.
CRI-O then uses several libraries, built with the OCI standard, to pull and2.
unpack the given container image from a registry. From these operations, CRI-O
generates a JSON blob that is used in the next step to run the container.
CRI-O kicks off an OCI-compatible runtime, which then runs the container3.
process. This could be runc or the new Kata Container runtime (which has
absorbed Intel's clear containers initiative).

You'll notice here that the CRI-O is acting as an interleaving layer between the libraries and
runtimes, such that it's using standard formats to accomplish most its goals. This ensures
the goal is making Kubernetes work at all times. Here's a diagram showing the system of
the flow that was described in this section:

For networking, CRI-O would leverage the Container Networking Interface (CNI), which
is similar to the CRI, but deals with the networking stack. You should begin to see a pattern
emerge here.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[294]

CRI-O is an implementation that helps to implement the OCI specification. This allows
users to take for granted the container runtime being used as an implementation detail, and
to focus instead on how the application is interacting with the objects and abstractions of
the Kubernetes system.

Trying out CRI-O
Let's look at some installation methods so you can give CRI-O a try on your own. In order
to get started, you'll need a few things, including runc or another OCI compatible runtime,
as well as socat, iproute, and iptables. There's a few options for running CRI-O in
Kubernetes:

In a full-scale cluster, using kube-adm and systemd to leverage the CRI-O socket
with --container-runtime-endpoint /var/run/crio/crio.sock
With Minikube, by starting it up with specific command-line options
On atomic with atomic install --system-package=no -n cri-o --storage
ostree registry.centos.org/projectatomic/cri-o:latest

If you'd like to build CRI-O from source, you can run the following on your laptop. You
need some dependencies installed in order to make this build phase work. First, run the
following commands to get your dependencies installed.

The following commands are for Fedora, CentOS, and RHEL distributions:

yum install -y \
 btrfs-progs-devel \
 device-mapper-devel \
 git \
 glib2-devel \
 glibc-devel \
 glibc-static \
 go \
 golang-github-cpuguy83-go-md2man \
 gpgme-devel \
 libassuan-devel \
 libgpg-error-devel \
 libseccomp-devel \
 libselinux-devel \
 ostree-devel \
 pkgconfig \
 runc \
 skopeo-containers

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[295]

These commands are to be used for Debian, Ubuntu, and related distributions:

apt-get install -y \
 btrfs-tools \
 git \
 golang-go \
 libassuan-dev \
 libdevmapper-dev \
 libglib2.0-dev \
 libc6-dev \
 libgpgme11-dev \
 libgpg-error-dev \
 libseccomp-dev \
 libselinux1-dev \
 pkg-config \
 go-md2man \
 runc \
 skopeo-containers

Secondly, you'll need to grab the source code like so:

git clone https://github.com/kubernetes-incubator/cri-o # or your fork
cd cri-o

Once you have the code, go ahead and build it:

make install.tools
make
sudo make install

You can use additional build flags to add thing such as seccomp, SELinux, and apparmor
with this format: make BUILDTAGS='seccomp apparmor'.

You can run Kubernetes locally with the local-up-cluster.sh script in Kubernetes. I'll
also show you how to run this on Minikube.

First, clone the Kubernetes repository:

git clone https://github.com/kubernetes/kubernetes.git

Next, you'll need to start the CRI-O daemon and run the following command to get spin up
your cluster using CRI-O:

CGROUP_DRIVER=systemd \
 CONTAINER_RUNTIME=remote \
 CONTAINER_RUNTIME_ENDPOINT='unix:///var/run/crio/crio.sock --runtime-
request-timeout=15m' \
 ./hack/local-up-cluster.sh

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[296]

If you have a running cluster, you can also use the instructions, available
at the following URL, to switch the runtime from Docker to
CRI-O: https:/ /github. com/kubernetes- incubator/ cri- o/ blob/
master/ kubernetes. md/ .

Let's also check how to use CRI-O on Minikube, which is one of the easiest ways to get
experimenting:

minikube start \
 --network-plugin=cni \
 --extra-config=kubelet.container-runtime=remote \
 --extra-config=kubelet.container-runtime-endpoint=/var/run/crio/crio.sock
\
 --extra-config=kubelet.image-service-endpoint=/var/run/crio/crio.sock \
 --bootstrapper=kubeadm

Lastly, we can use our GCP platform to spin up a cluster with CRI-O and start
experimenting:

gcloud compute instances create cri-o \
 --machine-type n1-standard-2 \
 --image-family ubuntu-1610 \
 --image-project ubuntu-os-cloud

Let's use these machines to run through a quick tutorial. SSH into the machine using
gcloud compute ssh cri-o.

Once you're on the server, we'll need to install the cri-o, crioctl, cni, and runc
programs. Grab the runc binary first:

wget
https://github.com/opencontainers/runc/releases/download/v1.0.0-rc4/runc.am
d64

Set it executable and move it to your path as follows:

chmod +x runc.amd64
sudo mv runc.amd64 /usr/bin/runc

You can see it's working by checking the version:

$ runc -version
runc version 1.0.0-rc4
commit: 2e7cfe036e2c6dc51ccca6eb7fa3ee6b63976dcd
spec: 1.0.0

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md
https://github.com/kubernetes-incubator/cri-o/blob/master/kubernetes.md

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[297]

You'll need to install the CRI-O binary from source, as it's not currently shipping any
binaries.

First, download the latest binary release and install Go:

wget https://storage.googleapis.com/golang/go1.8.5.linux-amd64.tar.gz
sudo tar -xvf go1.8.5.linux-amd64.tar.gz -C /usr/local/
mkdir -p $HOME/go/src
export GOPATH=$HOME/go
export PATH=$PATH:/usr/local/go/bin:$GOPATH/bin

This should feel familiar, as you would install Go the same way for any other project.
Check your version:

go version
go version go1.8.5 linux/amd64

Next up, get crictl using the following commands:

go get github.com/kubernetes-incubator/cri-tools/cmd/crictl
cd $GOPATH/src/github.com/kubernetes-incubator/cri-tools
make
make install

After that's downloaded, you'll need to build CRI-O from source:

sudo apt-get update && apt-get install -y libglib2.0-dev \
 libseccomp-dev \
 libgpgme11-dev \
 libdevmapper-dev \
 make \
 git

Now, get CRI-O and install it:

go get -d github.com/kubernetes-incubator/cri-o
cd $GOPATH/src/github.com/kubernetes-incubator/cri-o
make install.tools
Make
sudo make install

After this is complete, you'll need to create configuration files with sudo make
install.config. You need to ensure that you're using a valid registry option in the
/etc/crio/cirio.conf file. An example of this looks like the following:

registries = ['registry.access..com', 'registry.fedoraproject.org',
'docker.io']

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[298]

At this point, we're ready to start the CRI-O system daemon, which we can do by
leveraging systemctl. Let's create a crio.service:

$ vim /etc/systemd/system/crio.service

Add the following text:

[Unit]
Description=OCI-based implementation of Kubernetes Container Runtime
Interface
Documentation=https://github.com/kubernetes-incubator/cri-o

[Service]
ExecStart=/usr/local/bin/crio
Restart=on-failure
RestartSec=5

[Install]
WantedBy=multi-user.target

Once that's complete, we can reload systemctl and enable CRI-O:

$ sudo systemctl daemon-reload && \
 sudo systemctl enable crio && \
 sudo systemctl start crio

After this is complete, we can validate whether or not we have a working install of CRI-O
by checking the version of the endpoint as follows:

$ sudo crictl --runtime-endpoint unix:///var/run/crio/crio.sock version
Version: 0.1.0
RuntimeName: cri-o
RuntimeVersion: 1.10.0-dev
RuntimeApiVersion: v1alpha1

Next up, we'll need to grab the latest version of the CNI plugin, so we can build and use it
from source. Let's use Go to grab our source code:

go get -d github.com/containernetworking/plugins
cd $GOPATH/src/github.com/containernetworking/plugins
./build.sh

Next, install the CNI plugins into your cluster:

sudo mkdir -p /opt/cni/bin
sudo cp bin/* /opt/cni/bin/

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[299]

Now, we can configure the CNI so that CRI-O can use it. First, make a directory to store the
configuration, then we'll set two configuration files as follows:

sudo mkdir -p /etc/cni/net.d

Next, you'll want to create and compose 10-mynet.conf:

sudo sh -c 'cat >/etc/cni/net.d/10-mynet.conf <<-EOF
{
"cniVersion": "0.2.0",
 "name": "mynet",
 "type": "bridge",
 "bridge": "cni0",
 "isGateway": true,
 "ipMasq": true,
 "ipam": {
 "type": "host-local",
 "subnet": "10.88.0.0/16",
 "routes": [
 { "dst": "0.0.0.0/0" }
]
 }
}
EOF'

And then, compose the loopback interface as follows:

sudo sh -c 'cat >/etc/cni/net.d/99-loopback.conf <<-EOF
{
 "cniVersion": "0.2.0",
 "type": "loopback"
}
EOF'

Next up, we'll need some special containers from Project Atomic to get this working.
skopeo is a command-line utility that is OCI-compliant and can perform various
operations on container images and image repositories. Install the containers as follows:

sudo add-apt-repository ppa:projectatomic/ppa
sudo apt-get update
sudo apt-get install skopeo-containers -y

Restart CRI-O to pick up the CNI configuration with sudo systemctl restart crio.
Great! Now that we have these components installed, let's build something!

First off, we'll create a sandbox using a template policy from the Kubernetes incubator.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[300]

This template is NOT production ready!

Change first to the CRI-O source tree with the template, as follows:

cd $GOPATH/src/github.com/kubernetes-incubator/cri-o

Next, you'll need to create and capture the pod ID:

sudo mkdir /etc/containers/
sudo cp test/policy.json /etc/containers

You can use critcl to get the status of the pod as follows:

sudo crictl inspectp --output table $POD_ID
ID: cd6c0883663c6f4f99697aaa15af8219e351e03696bd866bc3ac055ef289702a
Name: podsandbox1
UID: redhat-test-crio
Namespace: redhat.test.crio
Attempt: 1
Status: SANDBOX_READY
Created: 2016-12-14 15:59:04.373680832 +0000 UTC
Network namespace: /var/run/netns/cni-bc37b858-fb4d-41e6-58b0-9905d0ba23f8
IP Address: 10.88.0.2
Labels:
group -> test
Annotations:
owner -> jwhite
security.alpha.kubernetes.io/seccomp/pod -> unconfined
security.alpha.kubernetes.io/sysctls ->
kernel.shm_rmid_forced=1,net.ipv4.ip_local_port_range=1024 65000
security.alpha.kubernetes.io/unsafe-sysctls -> kernel.msgmax=8192

We'll use the crictl tool again to pull a container image for a Redis server:

sudo crictl pull quay.io/crio/redis:alpine
CONTAINER_ID=$(sudo crictl create $POD_ID
test/testdata/container_redis.json test/testdata/sandbox_config.json)

Next, we'll start and check the status of the Redis container as follows:

sudo crictl start $CONTAINER_ID
sudo crictl inspect $CONTAINER_ID

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[301]

At this point, you should be able to telnet into the Redis container to test its functionality:

telnet 10.88.0.2 6379
Trying 10.88.0.2…
Connected to 10.88.0.2.
Escape character is '^]'.

Nicely done—you've now created a pod and container manually, using some of the core
abstractions of the Kubernetes system! You can stop the container and shut down the pod
with the following commands:

sudo crictl stop $CONTAINER_ID
sudo crictl rm $CONTAINER_ID
sudo crictl stopp $POD_ID
sudo crictl rmp $POD_ID
sudo crictl pods
sudo crictl ps

More on container runtimes
There's a number of container- and VM-based options for OCI-compliant implementations.
We know of runc, which is the standard reference implementation of the OCI runtime. This
is what the container uses. There's also the following available:

projectatomic/bwrap-oci (https:/ /github. com/ projectatomic/ bwrap- oci):
Converts the OCI spec file to a command line for projectatomic/bubblewrap
(https:/ / github. com/ projectatomic/ bubblewrap)
giuseppe/crun (https:/ / github. com/ giuseppe/ crun): Runtime
implementation in C

There are also VM-based implementations that take a different path towards security:

hyperhq/runv (https:/ / github. com/ hyperhq/ runv)—hypervisor-based
runtime for OCI
clearcontainers/runtime (https:/ /github. com/ clearcontainers/
runtime)—hypervisor-based OCI runtime utilizing
containers/virtcontainers (https:/ /github. com/ containers/
virtcontainers) by Intel
google/gvisor (https:/ / github. com/ google/ gvisor)—gVisor is a user-space
kernel, which contains runsc to run sandboxed containers

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bwrap-oci
https://github.com/projectatomic/bubblewrap
https://github.com/projectatomic/bubblewrap
https://github.com/projectatomic/bubblewrap
https://github.com/projectatomic/bubblewrap
https://github.com/projectatomic/bubblewrap
https://github.com/projectatomic/bubblewrap
https://github.com/projectatomic/bubblewrap
https://github.com/projectatomic/bubblewrap
https://github.com/projectatomic/bubblewrap
https://github.com/projectatomic/bubblewrap
https://github.com/projectatomic/bubblewrap
https://github.com/giuseppe/crun
https://github.com/giuseppe/crun
https://github.com/giuseppe/crun
https://github.com/giuseppe/crun
https://github.com/giuseppe/crun
https://github.com/giuseppe/crun
https://github.com/giuseppe/crun
https://github.com/giuseppe/crun
https://github.com/giuseppe/crun
https://github.com/giuseppe/crun
https://github.com/giuseppe/crun
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/containers/virtcontainers
https://github.com/containers/virtcontainers
https://github.com/containers/virtcontainers
https://github.com/containers/virtcontainers
https://github.com/containers/virtcontainers
https://github.com/containers/virtcontainers
https://github.com/containers/virtcontainers
https://github.com/containers/virtcontainers
https://github.com/containers/virtcontainers
https://github.com/containers/virtcontainers
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/google/gvisor

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[302]

kata-containers/runtime (https:/ /github. com/ kata- containers/
runtime)—hypervisor-based OCI runtime combining technology from
clearcontainers/runtime (https:/ /github. com/ clearcontainers/ runtime)
and hyperhq/runv (https:/ /github. com/ hyperhq/ runv)

The most interesting project of these is the last in the list, Kata containers, which combines
clear container and runV into a cohesive package. These foundational pieces are already in
production use at scale in the enterprises, and Kata is looking to provide a secure,
lightweight VM for containerized environments. By utilizing runV, Kata containers can run
inside of any KVM-compatible VM, such as Xen, KVM, and vSphere, while still remaining
compatible with CRI-O, which is important! Kata hopes to offer the speed of a container
with the security surface of a VM.

Here's a diagram from Kata's site, explaining the architecture in visual detail:

CNCF
A second initiative that also has widespread industry acceptance is the CNCF. While still
focused on containerized workloads, the CNCF operates a bit higher up the stack, at the
application design level.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kata-containers/runtime
https://github.com/kata-containers/runtime
https://github.com/kata-containers/runtime
https://github.com/kata-containers/runtime
https://github.com/kata-containers/runtime
https://github.com/kata-containers/runtime
https://github.com/kata-containers/runtime
https://github.com/kata-containers/runtime
https://github.com/kata-containers/runtime
https://github.com/kata-containers/runtime
https://github.com/kata-containers/runtime
https://github.com/kata-containers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[303]

Its purpose is to provide a standard set of tools and technologies to build, operate, and
orchestrate cloud-native application stacks. Cloud has given us access to a variety of new
technologies and practices that can improve and evolve our classic software designs. The
CNCF is also particularly focused on the new paradigm of microservice-oriented
development.

As a founding participant in the CNCF, Google has donated the Kubernetes open source
project. The goal will be to increase interoperability in the ecosystem and support better
integration with projects. The CNCF already hosts a variety of projects on orchestration,
logging, monitoring, tracing, and application resilience.

For more information on CNCF, refer to https:/ /cncf. io/ .

We'll talk more about the CNCF, Special Interest Groups (SIGs), and the landscape therein
in the following chapters.

For now, here's a landscape and trail map to consider: https:/ /www. cncf. io/
blog/ 2018/ 03/ 08/ introducing- the- cloud- native- landscape- 2- 0-
interactive- edition/ .

Standard container specification
A core result of the OCI effort is the creation and development of the overarching container
specification. The specification has five core principles that all containers should follow,
which I will briefly paraphrase:

The container must have standard operations to create, start, and stop containers
across all implementations.
The container must be content-agnostic, which means that type of application
inside the container does not alter the standard operations or publishing of the
container itself.
The container must be infrastructure-agnostic as well. Portability is paramount;
therefore, the container must be able to operate just as easily in GCE as in your
company's data center or on a developer's laptop.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://cncf.io/
https://cncf.io/
https://cncf.io/
https://cncf.io/
https://cncf.io/
https://cncf.io/
https://cncf.io/
https://cncf.io/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/
https://www.cncf.io/blog/2018/03/08/introducing-the-cloud-native-landscape-2-0-interactive-edition/

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[304]

A container must also be designed for automation, which allows us to automate
across the build, as well as for updates and the deployment pipelines. While this
rule is a bit vague, the container implementation should not require onerous
manual steps for creation and release.
Finally, the implementation must support industrial-grade delivery. Once again,
this means speaking to the build and deployment pipelines and requiring
streamlined efficiency in the portability and transit of the containers between
infrastructure and deployment tiers.

The specification also defines core principles for container formats and runtimes. You can
read more about the specifications on the open containers GitHub page at https:/ /github.
com/opencontainers/ specs.

While the core specification can be a bit abstract, the runc implementation is a concrete
example of the OCI specs, in the form of a container runtime and image format. Again, you
can read more of the technical details on GitHub
at https://github.com/opencontainers/runc.

The backing format and runtime for a variety of popular container tools is runc. It was
donated to OCI by Docker and was created from the same plumbing work used in the
Docker platform. Since its release, it has received a welcome uptake by numerous projects.

Even the popular open source PaaS Cloud Foundry announced that it will use runc in
Garden. Garden provides the containerization plumbing for Diego, which acts as an
orchestration layer similar to Kubernetes.

The rkt implementation was originally based on the appc specification. The appc
specification was actually an earlier attempt by the folks at CoreOS to form a common
specification around containerization. Now that CoreOS is participating in OCI, they are
working to help merge the appc specification into OCI; this should result in a higher level
of compatibility across the container ecosystem.

CoreOS
While the specifications provide us with a common ground, there are also some trends
evolving around the choice of OS for our containers. There are several tailored-fit OSes that
are being developed specifically to run container workloads. Although implementations
vary, they all have similar characteristics. The focus is on a slim installation base, atomic OS
updating, and signed applications for efficient and secure operations.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/opencontainers/specs
https://github.com/opencontainers/specs
https://github.com/opencontainers/specs
https://github.com/opencontainers/specs
https://github.com/opencontainers/specs
https://github.com/opencontainers/specs
https://github.com/opencontainers/specs
https://github.com/opencontainers/specs
https://github.com/opencontainers/specs
https://github.com/opencontainers/specs
https://github.com/opencontainers/runc

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[305]

One OS that is gaining popularity is CoreOS. CoreOS offers major benefits for both security
and resource utilization. It provides resource utilization by completely removing package
dependencies from the picture. Instead, CoreOS runs all applications and services in
containers. By providing only a small set of services required to support running containers
and bypassing the need for hypervisor usage, CoreOS lets us use a larger portion of the
resource pool to run our containerized applications. This allows users to gain higher
performance from their infrastructure and better container-to-node (server) usage ratios.

Recently, CoreOS was purchased by Red Hat, which means that the current version of
container Linux will evolve against Red Hat's container OS offering, Project Atomic. These
two products will eventually turn into Red Hat CoreOS. If you consider the upstream
community approach that Fedora takes to Red Hat Enterprise Linux, it seems likely that
there will be something similar for Red Hat CoreOS.

This also means that Red Hat will be integration Tectonic, which we'll explore later in the
chapter, and the Quay, the enterprise container registry that CoreOS acquired. It's
important to note that the rkt container standard will not be part of the acquisition, and will
instead become a community supported project.

If you'd like to see the relevant official announcements for the news
discussed in the preceding section, you can check out these posts:

Press release: https:/ /www. redhat. com/ en/ about/ press-
releases/ red- hat- acquire- coreos- expanding- its-
kubernetes- and- containers- leadership

Red Hat blog: https:/ / www.redhat. com/ en/blog/ coreos- bet

CoreOS blog: https:/ /coreos. com/ blog/ coreos- agrees- to-
join- red- hat/

Here's a brief overview of the various container OSes. There are several other container-
optimized OSes that have emerged recently:

Red Hat Enterprise Linux Atomic Host focuses on security with SELinux enabled by
default and atomic updates to the OS similar to what we saw with CoreOS. Refer
to the following link: https:/ / access. redhat. com/ articles/ rhel- atomic-
getting- started.
Ubuntu Snappy also capitalizes on the efficiency and security gains of separating
the OS components from the frameworks and applications. Using application
images and verification signatures, we get an efficient Ubuntu-based OS for our
container workloads at http:/ / www. ubuntu. com/ cloud/ tools/ snappy.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://www.redhat.com/en/blog/coreos-bet
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://coreos.com/blog/coreos-agrees-to-join-red-hat/
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
https://access.redhat.com/articles/rhel-atomic-getting-started
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[306]

Ubuntu LXD runs a container hypervisor and provides a path for migrating
Linux-based VMs to containers with ease: https:/ /www. ubuntu. com/cloud/ lxd.
VMware Photon is another lightweight container OS that is optimized specifically
for vSphere and the VMware platform. It runs Docker, rkt, and Garden and also
has some images that you can run on the popular public cloud providers. Refer
to the following link: https:/ / vmware. github. io/ photon/ .

Using the isolated nature of containers, we increase reliability and decrease the complexity
of updates for each application. Now, applications can be updated along with supporting
libraries whenever a new container release is ready, as shown in the following diagram:

CoreOS update procedure

Finally, CoreOS has some added advantages in the realm of security. For starters, the OS
can be updated as one whole unit, instead of via individual packages (refer to the preceding
diagram). This avoids many issues that arise from partial updates. To achieve this, CoreOS
uses two partitions: one as the active OS partition, and a secondary one to receive a full
update. Once updates are completed successfully, a reboot promotes the secondary
partition. If anything goes wrong, the original partition is available as a fallback.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.ubuntu.com/cloud/lxd
https://www.ubuntu.com/cloud/lxd
https://www.ubuntu.com/cloud/lxd
https://www.ubuntu.com/cloud/lxd
https://www.ubuntu.com/cloud/lxd
https://www.ubuntu.com/cloud/lxd
https://www.ubuntu.com/cloud/lxd
https://www.ubuntu.com/cloud/lxd
https://www.ubuntu.com/cloud/lxd
https://www.ubuntu.com/cloud/lxd
https://www.ubuntu.com/cloud/lxd
https://www.ubuntu.com/cloud/lxd
https://www.ubuntu.com/cloud/lxd
https://vmware.github.io/photon/
https://vmware.github.io/photon/
https://vmware.github.io/photon/
https://vmware.github.io/photon/
https://vmware.github.io/photon/
https://vmware.github.io/photon/
https://vmware.github.io/photon/
https://vmware.github.io/photon/
https://vmware.github.io/photon/
https://vmware.github.io/photon/
https://vmware.github.io/photon/
https://vmware.github.io/photon/

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[307]

The system owners can also control when those updates are applied. This gives us the
flexibility to prioritize critical updates, while working with real-world scheduling for the
more common updates. In addition, the entire update is signed and transmitted via SSL for
added security across the entire process.

rkt
As mentioned previously, rkt will be continuing on as a community driven project. rkt is
another implementation with a specific focus on security. The main advantage of rkt is that
it runs the engine without a daemon as root, the way Docker does today. Initially, rkt also
had an advantage in the establishment of trust for container images. However, recent
updates to Docker have made great strides, especially the new content trust feature.

The bottom line is that rkt is still an implementation, with a focus on security, for running
containers in production. rkt uses an image format named ACI, but it also supports Docker-
based images. Over the past year, rkt has undergone significant updates and is now at
version 1.24.0. It has gained much momentum as a means to run Docker images securely in
production.

Here's a diagram showing how the rkt execution chain works:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[308]

In addition, CoreOS is working with Intel® to integrate the new Intel® Virtualization
Technology, which allows containers to run in higher levels of isolation. This hardware-
enhanced security allows the containers to be run inside a Kernel-based Virtual Machine
(KVM) process, providing isolation from the kernel in a similar fashion to what we see
with hypervisors today.

etcd
Another central piece in the CoreOS ecosystem worth mentioning is their open source etcd
project. etcd is a distributed and consistent key-value store. A RESTful API is used to
interface with etcd, so it's easy to integrate with your project.

If it sounds familiar, it's because we saw this process running in Chapter 1, Introduction
to Kubernetes, in the section entitled Services running on the master. Kubernetes actually
utilizes etcd to keep track of cluster configuration and current state. K8s uses it for its
service discovery capabilities as well. For more details, refer to https:/ /github. com/
coreos/etcd.

Kubernetes with CoreOS
Now that we understand the benefits, let's take a look at a Kubernetes cluster using
CoreOS. The documentation supports a number of platforms, but one of the easiest to spin
up is AWS with the CoreOS CloudFormation and CLI scripts.

If you are interested in running Kubernetes with CoreOS on other
platforms, you can find more details in the CoreOS documentation at
https:/ /coreos. com/ kubernetes/ docs/ latest/ . You can find the
latest instructions for AWS at https:/ /coreos. com/ kubernetes/
docs/ latest/ kubernetes- on- aws.html.

You can follow the instructions covered previously in this chapter to spin up Kubernetes on
CoreOS. You'll need to create a key pair on AWS, and also specify a region, cluster name,
cluster size, and DNS to proceed.

In addition, we will need to create a DNS entry, and will require a service such as Route 53
or a production DNS service. When following the instructions, you'll want to set the DNS to
a domain or sub-domain on which you have permission to set up a record. We will need to
update the record after the cluster is up and running and has a dynamic endpoint defined.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[309]

There you have it! We now have a cluster running CoreOS. The script creates all the
necessary AWS resources, such as Virtual Private Clouds (VPCs), security groups, and
IAM roles. Now that the cluster is up and running, we can get the endpoint with the
status command and update our DNS record as follows:

$ kube-aws status

Copy the entry listed next to Controller DNS Name in the output from the preceding
command, and then edit your DNS records to get the domain or sub-domain you specified
earlier to point to this load balancer.

If you forget which domain you specified or need to check on the configuration, you can
look in the generated kubeconfig file with your favorite editor. It will look something like
this:

apiVersion: v1
kind: Config
clusters:
- cluster:
 certificate-authority: credentials/ca.pem
 server: https://coreos.mydomain.com
 name: kube-aws-my-coreos-cluster-cluster
contexts:
- context:
 cluster: kube-aws-my-coreos-cluster-cluster
 namespace: default
 user: kube-aws-my-coreos-cluster-admin
 name: kube-aws-my-coreos-cluster-context
users:
- name: kube-aws-my-coreos-cluster-admin
 user:
 client-certificate: credentials/admin.pem
 client-key: credentials/admin-key.pem
current-context: kube-aws-my-coreos-cluster-context

In this case, the server line will have your domain name.

If this is a fresh box, you will need to download kubectl separately, as it
is not bundled with kube-aws:
$ wget
https://storage.googleapis.com/kubernetes-release/release
/v1.0.6/bin/linux/amd64/kubectl

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[310]

We can now use kubectl to see our new cluster:

$./kubectl --kubeconfig=kubeconfig get nodes

We should see a single node listed with the EC2 internal DNS as the name. Note
kubeconfig, this tells Kubernetes the path to use the configuration file for the cluster that
was just created instead. This is also useful if we want to manage multiple clusters from the
same machine.

Tectonic
Running Kubernetes on CoreOS is a great start, but you may find that you want a higher
level of support. Enter Tectonic, the CoreOS enterprise offering for running Kubernetes
with CoreOS. Tectonic uses many of the components we already discussed. Both Docker
and rkt runtimes are supported. In addition, Kubernetes, etcd, and flannel are packaged
together to give a full stack of cluster orchestration. We discussed flannel briefly in Chapter
4, Working with Networking, Load Balancers, and Ingress. It is an overlay network that uses a
model similar to the native Kubernetes model, and uses etcd as a backend.

Offering a support package similar to Red Hat, CoreOS also provides 24/7 support for the
open source software that Tectonic is built on. Tectonic also provides regular cluster
updates and a nice dashboard with views for all of the components of Kubernetes.
CoreUpdate allows users to have more control of the automatic update process. In
addition, it ships with modules for monitoring, SSO, and other security features.

As CoreOS is integrated into Red Hat, this offering will be replaced over time with a Red
Hat approach.

You can find more information and the latest instructions to install
at https:/ / coreos. com/ tectonic/ docs/ latest/ install/ aws/ index.
html.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html
https://coreos.com/tectonic/docs/latest/install/aws/index.html

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[311]

Dashboard highlights
Some highlights of the Tectonic dashboard are shown in the following screenshot:

The Tectonic main dashboard

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[312]

Tectonic is now generally available and the dashboard already has some nice features. As
you can see in the following screenshot, we can see a lot of detail about our replication
controller, and can even use the GUI to scale up and down with the click of a button:

Tectonic replication controller detail

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[313]

This graphic is quite large, so it's broken across two pages. The following screenshot
continues from the preceding screenshot:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[314]

Another nice feature is the Events page. Here, we can watch the events live, pause them,
and filter them based on event severity and resource type:

Events stream

A useful feature to browse anywhere in the dashboard system is the Namespace: filtering
option. Simply click on the drop-down menu next to the word Namespace: at the top of
any page that shows resources, and we can filter our views by namespace. This can be
helpful if we want to filter out the Kubernetes system pods, or just look at a particular
collection of resources:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[315]

Namespace filtering

Hosted platforms
There are several options available for hosted Kubernetes in the cloud. These Platforms as a
service (PaaS) can provide a stable operating model as you push towards production.
Here's an overview of the major PaaSes provided by Amazon, Microsoft, and Google.

Amazon Web Services
Elastic Container Service (ECS) has just been launched as of the time of this chapter's
writing. AWS is preparing a networking plugin to differentiate itself from other offerings,
called the vpc-cni. This allows for pod networking in Kubernetes to use Elastic Network
Interfaces (ENIs) on AWS. With ECS, you do have to pay for manager nodes, which is a
different path to that taken by Microsoft and Google. ECS' startup procedure is also
currently more complex and doesn't have single-command creation via the CLI.

Microsoft Azure
The Azure Container Service is the second longest running hosted Kubernetes service in the
cloud after the Google Kubernetes Engine. You can use Azure templates and the Resource
Manager to spin up clusters with Terraform. Microsoft offers advanced networking
features, integration with Azure Active Directory, and monitoring as its standout features.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Operating Systems, Platforms, and Cloud and Local Providers Chapter 9

[316]

Google Kubernetes Engine
The Google Kubernetes Engine is another excellent option for running your containerized
workloads. At the time of writing, it's considered to be one of the most robust offerings.
GKE is able to autoscale the cluster size, while AWS and Azure offer manual scaling. GKE
offers a one-command start, and is the fastest to provision a Kubernetes cluster. It also
offers an Alpha Mode where you can try bleeding edge features in the alpha channel
releases. GKE provides high availability in zones and regions, the latter of which spreads
out master node zones to provide best-in-class high availability.

Summary
In this chapter, we looked at the emerging standards bodies in the container community
and how they are using open specifications to shape the technology for the better. We
looked at various container frameworks and runtimes. We dipped our toes into the CNCF,
and tried out CRI-O.

We also took a closer look at CoreOS, a key player in both the container and Kubernetes
community. We explored the technology that CoreOS is developing in order to enhance
and complement container orchestration, and saw first-hand how to use some of it with
Kubernetes. Finally, we looked at the supported enterprise offering of Tectonic and some of
the features that are available now.

We also looked at some of the major PaaS offered by cloud service providers.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

10
Creating Kubernetes Clusters

In the previous chapter, we learned what Kubernetes is all about, how it is designed, what
concepts it supports, how to use its runtime engines, and how it fits within the CI/CD
pipeline.

Creating a Kubernetes cluster is a non-trivial task. There are many options and tools to
select from, and there are many factors to consider. In this chapter, we'll roll up our sleeves
and build some Kubernetes clusters. We will also discuss and evaluate tools such as
Minikube, kubeadm, kube-spray, bootkube, and stackube. We will also look into
deployment environments, such as local, cloud, and bare metal. The topics we will cover
are as follows:

Creating a single-node cluster with Minikube
Creating a multi-node cluster using kubeadm
Creating clusters in the cloud
Creating bare-metal clusters from scratch
Reviewing other options for creating Kubernetes clusters

At the end of this chapter, you will have a solid understanding of the various options to
create Kubernetes clusters and knowledge of the best-of-breed tools to support the creation
of Kubernetes clusters; you will also build a couple of clusters, both single-node and multi-
node.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[318]

A quick single-node cluster with Minikube
In this section, we will create a single-node cluster on Windows. The reason we will use
Windows is that Minikube and single-node clusters are most useful for local developer
machines. While Kubernetes is typically deployed on Linux in production, many
developers work on Windows PCs or Macs. That said, there aren't too many differences if
you do want to install Minikube on Linux:

Getting ready
There are some prerequisites to install before you can create the cluster itself. These include
VirtualBox, the kubectl command-line interface for Kubernetes, and, of course, Minikube
itself. Here is a list of the latest versions at the time of writing:

VirtualBox: https://www.virtualbox.org/wiki/Downloads
Kubectl: https://kubernetes.io/docs/tasks/tools/install-kubectl/
Minikube: https://kubernetes.io/docs/tasks/tools/install-minikube/

On Windows
Install VirtualBox and make sure kubectl and Minikube are on your path. I personally just
throw all the command-line programs I use into c:\windows. You may prefer another
approach. I use the excellent ConEMU to manage multiple consoles, terminals, and SSH
sessions. It works with cmd.exe, PowerShell, PuTTY, Cygwin, msys, and Git-Bash. It
doesn't get much better than that on Windows.

With Windows 10 Pro, you have the option to use the Hyper-V
hypervisor. This is technically a better solution than VirtualBox, but it
requires the Pro version of Windows and is completely Windows-specific.
When using VirtualBox, these instructions are universal and will be easy
to adapt to other versions of Windows, or other operating systems
altogether. If you have Hyper-V enabled, you must disable it because
VirtualBox can't co-exist with Hyper-V.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.virtualbox.org/wiki/Downloads
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-minikube/

Creating Kubernetes Clusters Chapter 10

[319]

I recommend using PowerShell in administrator mode. You can add the following alias and
function to your PowerShell profile:

Set-Alias -Name k -Value kubectl
function mk
{
minikube-windows-amd64 `
--show-libmachine-logs `
--alsologtostderr `
@args
}

On macOS
You can add aliases to your .bashrc file (similar to the PowerShell alias and function on
Windows):

alias k='kubectl'
alias mk='/usr/local/bin/minikube'

Now I can use k and mk and type less. The flags to Minikube in the mk function provide
better logging that way, and direct the output to the console, as well as to the files (similar
to tee).

Type mk version to verify that Minikube is correctly installed and functioning:

> mk version

minikube version: v0.26.0

Type k version to verify that kubectl is correctly installed and functioning:

> k version
Client Version: version.Info{Major:"1", Minor:"9", GitVersion:"v1.9.0",
GitCommit:"925c127ec6b946659ad0fd596fa959be43f0cc05", GitTreeState:"clean",
BuildDate:"2017-12-16T03:15:38Z", GoVersion:"go1.9.2", Compiler:"gc",
Platform:"darwin/amd64"}
Unable to connect to the server: dial tcp 192.168.99.100:8443: getsockopt:
operation timed out

Don't worry about the error on the last line. There is no cluster running, so kubectl can't
connect to anything. That's expected.

You can explore the available commands and flags for both Minikube and kubectl. I will
not go over each and every one, only the commands I use.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[320]

Creating the cluster
The Minikube tool supports multiple versions of Kubernetes. At the time of writing, this is
the list of supported versions:

> mk get-k8s-versions
The following Kubernetes versions are available when using the localkube
bootstrapper:
- v1.10.0
- v1.9.4
- v1.9.0
- v1.8.0
- v1.7.5
- v1.7.4
- v1.7.3
- v1.7.2
- v1.7.0
- v1.7.0-rc.1
- v1.7.0-alpha.2
- v1.6.4
- v1.6.3
- v1.6.0
- v1.6.0-rc.1
- v1.6.0-beta.4
- v1.6.0-beta.3
- v1.6.0-beta.2
- v1.6.0-alpha.1
- v1.6.0-alpha.0
- v1.5.3
- v1.5.2
- v1.5.1
- v1.4.5
- v1.4.3
- v1.4.2
- v1.4.1
- v1.4.0
- v1.3.7
- v1.3.6
- v1.3.5
- v1.3.4
- v1.3.3
- v1.3.0

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[321]

I will go with 1.10.0, the latest stable release. Let's create the cluster by using the start
command and specifying v1.10.0 as the version.

This can take a while as Minikube may need to download an image and then set up the
local cluster. Just let it run. Here is the expected output (on Mac):

> mk start --kubernetes-version="v1.10.0"
Starting local Kubernetes v1.10.0 cluster...
Starting VM...
Getting VM IP address...
Moving files into cluster...
Finished Downloading kubeadm v1.10.0
Finished Downloading kubelet v1.10.0
Setting up certs...
Connecting to cluster...
Setting up kubeconfig...
Starting cluster components...
Kubectl is now configured to use the cluster.
Loading cached images from config file.

Let's review what Minikube does by following the output. You'll need to do a lot of this
when creating a cluster from scratch:

Start a VirtualBox VM1.
Create certificates for the local machine and the VM2.
Download images3.
Set up networking between the local machine and the VM4.
Run the local Kubernetes cluster on the VM5.
Configure the cluster6.
Start all the Kubernetes control plane components7.
Configure kubectl to talk to the cluster8.

Troubleshooting
If something goes wrong during the process, try to follow the error messages. You can add
the --alsologtostderr flag to get detailed error info from the console. Everything
Minikube does is organized neatly under ~/.minikube. Here is the directory structure:

> tree ~/.minikube -L 2
/Users/gigi.sayfan/.minikube
├── addons
├── apiserver.crt
├── apiserver.key

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[322]

├── ca.crt
├── ca.key
├── ca.pem
├── cache
│ ├── images
│ ├── iso
│ └── localkube
├── cert.pem
├── certs
│ ├── ca-key.pem
│ ├── ca.pem
│ ├── cert.pem
│ └── key.pem
├── client.crt
├── client.key
├── config
│ └── config.json
├── files
├── key.pem
├── last_update_check
├── logs
├── machines
│ ├── minikube
│ ├── server-key.pem
│ └── server.pem
├── profiles
│ └── minikube
├── proxy-client-ca.crt
├── proxy-client-ca.key
├── proxy-client.crt
└── proxy-client.key

13 directories, 21 files

Checking out the cluster
Now that we have a cluster up and running, let's peek inside.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[323]

First, let's ssh into the VM:

> mk ssh
 _ _
 _ _ () ()
 ___ ___ (_) ___ (_)| |/') _ _ | |_ __
/' _ ` _ `\| |/' _ `\| || , < () ()| '_`\ /'__`\
| () () || || () || || |\`\ | (_) || |_))(___/
(_) (_) (_)(_)(_) (_)(_)(_) (_)`___/'(_,__/'`____)

$ uname -a

Linux minikube 4.9.64 #1 SMP Fri Mar 30 21:27:22 UTC 2018 x86_64 GNU/Linux$

Great! That works. The weird symbols are ASCII art for minikube. Now, let's start using
kubectl, because it is the Swiss Army knife of Kubernetes and will be useful for all
clusters (including federated clusters).

We will cover many of the kubectl commands on our journey. First, let's check the cluster
status using cluster-info:

> k cluster-info

The Kubernetes master is running at https://192.168.99.101:8443

KubeDNS is running at
https://192.168.99.1010:8443/api/v1/namespaces/kube-system/services/kub
e-dns:dns/proxy

To further debug and diagnose cluster problems, use kubectl cluster-info dump. You
can see that the master is running properly. To see a much more detailed view of all the
objects in the cluster as a JSON type, use k cluster-info dump. The output can be a little
daunting, so let's use more specific commands to explore the cluster.

Let's check out the nodes in the cluster using get nodes:

> k get nodes
NAME STATUS ROLES AGE VERSION
NAME STATUS ROLES AGE VERSION
minikube Ready master 15m v1.10.0

So, we have one node called minikube. To get a lot of information about it, type k
describe node minikube. The output is verbose; I'll let you try it yourself.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[324]

Doing work
We have a nice empty cluster up and running (well, not completely empty, as the DNS
service and dashboard run as pods in the kube-system namespace). It's time to run some
pods. Let's use the echo server as an example:

k run echo --image=gcr.io/google_containers/echoserver:1.8 --port=8080
deployment "echo" created

Kubernetes created a deployment and we have a pod running. Note the echo prefix:

> k get pods
NAME READY STATUS RESTARTS AGE
echo-69f7cfb5bb-wqgkh 1/1 Running 0 18s

To expose our pod as a service, type the following:

> k expose deployment echo --type=NodePort
 service "echo" exposed

Exposing the service as a NodePort type means that it is exposed to the host on a port, but
it is not the 8080 port we ran the pod on. Ports get mapped in the cluster. To access the
service, we need the cluster IP and exposed port:

> mk ip
192.168.99.101
> k get service echo --output='jsonpath="{.spec.ports[0].nodePort}"'
30388

Now we can access the echo service, which returns a lot of information:

> curl http://192.168.99.101:30388/hi

Congratulations! You just created a local Kubernetes cluster and deployed a service.

Examining the cluster with the dashboard
Kubernetes has a very nice web interface, which is deployed, of course, as a service in a
pod. The dashboard is well designed, and provides a high-level overview of your cluster,
and also drills down into individual resources, viewing logs, editing resource files, and
more. It is the perfect weapon when you want to manually check out your cluster. To
launch it, type minikube dashboard.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[325]

Minikube will open a browser window with the dashboard UI. Note that on Windows,
Microsoft Edge can't display the dashboard. I had to run it myself on a different browser.

Here is the workloads view, which displays Deployments, Replica Sets, Replication
Controllers, and Pods:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[326]

It can also display Daemon Sets, Stateful Sets, and Jobs, but we don't have any in this
cluster.

In this section, we created a local, single-node Kubernetes cluster on Windows, explored it
a little bit using kubectl, deployed a service, and played with the web UI. In the next
section, we'll move on to a multi-node cluster.

Creating a multinode cluster using kubeadm
In this section, I'll introduce you to kubeadm, the recommended tool for creating
Kubernetes clusters on all environments. It is still under active development, but it is the
way to go because it is part of Kubernetes, and will always embody best practices. To make
it accessible for the entire cluster, we will base it on VMs. This section is for readers who
want a hands-on experience of deploying a multi-node cluster.

Setting expectations
Before embarking on this journey, I want to make it clear that it might not be a smooth ride.
kubeadm has a difficult task: It has to follow the evolution of Kubernetes itself, which is a
moving target. As a result, it is not always stable. When I wrote the first edition of
Mastering Kubernetes, I had to dig deep and hunt for various workarounds to make it work.
Guess what? I had to do the same thing for the second edition. Be prepared to make some
adjustments and ask around. If you want a more streamlined solution, I will discuss some
very good options later.

Getting ready
Kubeadm operates on preprovisioned hardware (physical or virtual). Before we create the
Kubernetes cluster, we need to prepare a few VMs and install basic software, such as
docker, kubelet, kubeadm, and kubectl (which is only needed on the master).

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[327]

Preparing a cluster of vagrant VMs
The following vagrant file will create a cluster of four VMs called n1, n2, n3, and n4. Type
vagrant up to get the cluster up and running. It is based on Bento/Ubuntu versions 16.04
and not Ubuntu/Xenial, which suffers from various issues:

-*- mode: ruby -*-
vi: set ft=ruby :
hosts = {
 "n1" => "192.168.77.10",
 "n2" => "192.168.77.11",
 "n3" => "192.168.77.12",
 "n4" => "192.168.77.13"
}
Vagrant.configure("2") do |config|
 # always use Vagrants insecure key
 config.ssh.insert_key = false
 # forward ssh agent to easily ssh into the different machines
 config.ssh.forward_agent = true

 check_guest_additions = false
 functional_vboxsf = false

 config.vm.box = "bento/ubuntu-16.04"
 hosts.each do |name, ip|
 config.vm.hostname = name
 config.vm.define name do |machine|
 machine.vm.network :private_network, ip: ip
 machine.vm.provider "virtualbox" do |v|
 v.name = name
 end
 end
 end
end

Installing the required software
I like Ansible a lot for configuration management. I installed it on the n4 VM (running
Ubuntu 16.04). From now on I'll use n4 as my control machine, which means we're
operating in a Linux environment. I could use Ansible directly on my Mac, but since
Ansible doesn't run on Windows, I prefer a more universal approach:

> vagrant ssh n4
Welcome to Ubuntu 16.04.3 LTS (GNU/Linux 4.4.0-87-generic x86_64)
* Documentation: https://help.ubuntu.com

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[328]

* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
0 packages can be updated.
0 updates are security updates.
vagrant@vagrant:~$ sudo apt-get -y --fix-missing install python-pip
￼sshpass
vagrant@vagrant:~$ sudo pip install ansible

I used version 2.5.0. You should be fine with the latest version:

vagrant@vagrant:~$ ansible --version
ansible 2.5.0
 config file = None
 configured module search path =
[u'/home/vagrant/.ansible/plugins/modules',
u'/usr/share/ansible/plugins/modules']
 ansible python module location = /home/vagrant/.local/lib/python2.7/site-
packages/ansible
 executable location = /home/vagrant/.local/bin/ansible
 python version = 2.7.12 (default, Dec 4 2017, 14:50:18) [GCC 5.4.0
20160609]
python version = 2.7.12 (default, Dec 4 2017, 14:50:18) [GCC 5.4.0
20160609]

The sshpass program I installed will help ansible connect to all the vagrant VMs with
the built-in vagrant user. This is important only for a local VM-based multi-node cluster.

I created a directory called ansible and put three files in it: hosts, vars.yml, and
playbook.yml.

The host file
The host file is the inventory file that tells the ansible directory what hosts to operate on.
The hosts must be SSH-accessible from the controller machine. The following are the three
VMs that the cluster will be installed on:

[all]
192.168.77.10 ansible_user=vagrant ansible_ssh_pass=vagrant
192.168.77.11 ansible_user=vagrant ansible_ssh_pass=vagrant
192.168.77.12 ansible_user=vagrant ansible_ssh_pass=vagrant

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[329]

The vars.yml file
The vars.yml file just keeps a list of the packages I want to install on each node. vim,
htop, and tmux are my favorite packages to install on each machine I need to manage. The
others are required by Kubernetes:

PACKAGES:
 - vim - htop - tmux - docker.io
 - kubelet
 - kubeadm
 - kubectl
 - kubernetes-cni

The playbook.yml file
The playbook.yml file is the file you run to install the packages on all hosts:

- hosts: all
 become: true
 vars_files:
 - vars.yml
 strategy: free
 tasks:
 - name: hack to resolve Problem with MergeList Issue
 shell: 'find /var/lib/apt/lists -maxdepth 1 -type f -exec rm -v {} \;'
 - name: update apt cache directly (apt module not reliable)
 shell: 'apt-get clean && apt-get update'
 - name: Preliminary installation
 apt: name=apt-transport-https force=yes
 - name: Add the Google signing key
 apt_key: url=https://packages.cloud.google.com/apt/doc/apt-key.gpg
state=present
 - name: Add the k8s APT repo
 apt_repository: repo='deb http://apt.kubernetes.io/ kubernetes-xenial
main' state=present
 - name: update apt cache directly (apt module not reliable)
 shell: 'apt-get update'
 - name: Install packages
 apt: name={{ item }} state=installed force=yes
 with_items: "{{ PACKAGES }}"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[330]

Since some of the packages are from the Kubernetes APT repository, I need to add it, along
with the Google signing key:

Connect to n4:

> vagrant ssh n4

You may need to ssh once to each of the n1, n2, and n3 nodes:

vagrant@vagrant:~$ ssh 192.168.77.10
vagrant@vagrant:~$ ssh 192.168.77.11
vagrant@vagrant:~$ ssh 192.168.77.12

A more permanent solution is to add a file called ~/.ansible.cfg that contains the
following:

[defaults]
host_key_checking = False

Run the playbook from n4 as follows:

vagrant@n4:~$ ansible-playbook -i hosts playbook.yml

If you run into connection failure, try again. The Kubernetes APT
repository is sometimes slow to respond. You need to do this just once per
node.

Creating the cluster
It's time to create the cluster itself. We'll initialize the master on the first VM, then set up
networking and add the rest of the VMs as nodes.

Initializing the master
Let's initialize the master on n1 (192.168.77.10). It is critical to use the --apiserver-
advertise-address flag in case of a vagrant VM-based cloud:

> vagrant ssh n1
vagrant@n1:~$ sudo kubeadm init --apiserver-advertise-address 192.168.77.10

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[331]

In Kubernetes 1.10.1, this results in the following error message:

[init] Using Kubernetes version: v1.10.1
[init] Using Authorization modes: [Node RBAC]
[preflight] Running pre-flight checks.
 [WARNING FileExisting-crictl]: crictl not found in system path
[preflight] Some fatal errors occurred:
 [ERROR Swap]: running with swap on is not supported. Please disable
swap
[preflight] If you know what you are doing, you can make a check non-fatal
with `--ignore-preflight-errors=...`

The reason is that the required cri-tools are not installed by default. We are dealing with the
cutting edge of Kubernetes here. I created an additional playbook to install Go and cri-
tools, turned off the swap, and fixed the hostname of the vagrant VMs:

- hosts: all
 become: true
 strategy: free
 tasks:
 - name: Add the longsleep repo for recent golang version
 apt_repository: repo='ppa:longsleep/golang-backports' state=present
 - name: update apt cache directly (apt module not reliable)
 shell: 'apt-get update'
 args:
 warn: False
 - name: Install Go
 apt: name=golang-go state=present force=yes
 - name: Install crictl
 shell: 'go get github.com/kubernetes-incubator/cri-tools/cmd/crictl'
 become_user: vagrant
 - name: Create symlink in /usr/local/bin for crictl
 file:
 src: /home/vagrant/go/bin/crictl
 dest: /usr/local/bin/crictl
 state: link
 - name: Set hostname properly
 shell: "hostname n$((1 + $(ifconfig | grep 192.168 | awk '{print $2}'
| tail -c 2)))"
 - name: Turn off swap
 shell: 'swapoff -a'
 –

Remember to run it on n4 again to update all the nodes in the cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[332]

Here is some of the output of a successful launch of Kubernetes:

vagrant@n1:~$ sudo kubeadm init --apiserver-advertise-address 192.168.77.10
[init] Using Kubernetes version: v1.10.1
[init] Using Authorization modes: [Node RBAC]
[certificates] Generated ca certificate and key.
[certificates] Generated apiserver certificate and key.
[certificates] Valid certificates and keys now exist in
"/etc/kubernetes/pki"
.
.
.
[addons] Applied essential addon: kube-dns
[addons] Applied essential addon: kube-proxy
Your Kubernetes master has initialized successfully!

There will be a lot more information that you must write down to join other nodes to the
cluster later. To start using your cluster, you need to run the following as a regular user:

vagrant@n1:~$ mkdir -p $HOME/.kube
vagrant@n1:~$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
vagrant@n1:~$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

You can now join any number of machines by running a command on each node as the
root. Use the command returned from kubeadm init cmmand:sudo kubeadm join --
token << token>> --discovery-token-ca-cert-hash <<discvery token>> --

skip-prflight-cheks.

Setting up the pod network
The networking of the cluster is the big-ticket item. The pods need to be able to talk to each
other. That requires a pod network add-on. There are several options for this. Clusters
generated by kubeadm, require a CNI-based add-on. I chose to use the Weave Net add-on,
which supports the Network Policy resource. Your can choose whatever you like.

Run the following commands on the master VM:

vagrant@n1:~$ sudo sysctl net.bridge.bridge-nf-call-iptables=1
net.bridge.bridge-nf-call-iptables = 1vagrant@n1:~$ kubectl apply -f
"https://cloud.weave.works/k8s/net?k8s-version=$(kubectl version | base64 |
tr -d '\n')"

You should see the following:

serviceaccount "weave-net" created
clusterrole.rbac.authorization.k8s.io "weave-net" created

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[333]

clusterrolebinding.rbac.authorization.k8s.io "weave-net" created
role.rbac.authorization.k8s.io "weave-net" created
rolebinding.rbac.authorization.k8s.io "weave-net" created
daemonset.extensions "weave-net" created

To verify, use the following:

vagrant@n1:~$ kubectl get po --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system etcd-n1 1/1 Running 0 2m
kube-system kube-apiserver-n1 1/1 Running 0 2m
kube-system kube-controller-manager-n1 1/1 Running 0 2m
kube-system kube-dns-86f4d74b45-jqctg 3/3 Running 0 3m
kube-system kube-proxy-l54s9 1/1 Running 0 3m
kube-system kube-scheduler-n1 1/1 Running 0 2m
kube-system weave-net-fl7wn 2/2 Running 0 31s

The last pod is our weave-net-fl7wn, which is what we're looking for, as well as the
kube-dns pod. Both are running. All is well!

Adding the worker nodes
Now we can add worker nodes to the cluster using the token we got earlier. On each node,
run the following command (don't forget sudo) with the tokens you got when initializing
Kubernetes on the master node:

sudo kubeadm join --token <<token>> --discovery-token-ca-cert-hash
<<discovery token>> --ignore-preflight-errors=all

At the time of writing (using Kubernetes 1.10) some preflight checks fail, but this is a false
negative. Everything is actually fine, and you can skip those preflight checks by adding --
ignore-preflight-errors=all. I hope that when you read the book, these wrinkles will
be ironed out. You should see the following:

[discovery] Trying to connect to API Server "192.168.77.10:6443"
[discovery] Created cluster-info discovery client, requesting info from
"https://192.168.77.10:6443"
[discovery] Requesting info from "https://192.168.77.10:6443" again to
validate TLS against the pinned public key
[discovery] Cluster info signature and contents are valid and TLS
certificate validates against pinned roots, will use API Server
"192.168.77.10:6443"
[discovery] Successfully established connection with API Server
"192.168.77.10:6443"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Kubernetes Clusters Chapter 10

[334]

This node has joined the cluster:

* Certificate signing request was sent to master and a response
 was received.
* The Kubelet was informed of the new secure connection details.

Run kubectl get nodes on the master to see this node join the cluster.

This might not work for some combinations because of an issue with CNI plugin
initialization.

Creating clusters in the cloud (GCP, AWS,
and Azure)
Creating clusters locally is fun, and important during development and when trying to
troubleshoot problems locally. But in the end, Kubernetes is designed for cloud-native
applications (applications that run in the cloud). Kubernetes doesn't want to be aware of
individual cloud environments because that doesn't scale. Instead, Kubernetes has the
concept of a cloud-provider interface. Every cloud provider can implement this interface
and then host Kubernetes. Note that, as of version 1.5, Kubernetes still maintains
implementations for many cloud providers in its tree, but in the future, they will be
refactored out.

The cloud-provider interface
The cloud-provider interface is a collection of Go data types and interfaces. It is defined in a
file called cloud.go, available at http://bit.ly/2fq4NbW. Here is the main interface:

type Interface interface {
 Initialize(clientBuilder controller.ControllerClientBuilder)
 LoadBalancer() (LoadBalancer, bool)
 Instances() (Instances, bool)
 Zones() (Zones, bool)
 Clusters() (Clusters, bool)
 Routes() (Routes, bool)
 ProviderName() string
 HasClusterID() bool
}

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://bit.ly/2fq4NbW

Creating Kubernetes Clusters Chapter 10

[335]

This is very clear. Kubernetes operates in terms of instances, Zones, Clusters, and
Routes, and also requires access to a load balancer and provider name. The main interface
is primarily a gateway. Most methods return other interfaces.

For example, the Clusters interface is very simple:

type Clusters interface {
 ListClusters() ([]string, error)
 Master(clusterName string) (string, error)
}

The ListClusters() method returns cluster names. The Master() method returns the IP
address or DNS name of the master node.

The other interfaces are not much more complicated. The entire file is 214 lines long (at the
time of writing) and includes a lot of comments. The take-home point is that it is not too
complicated to implement a Kubernetes provider if your cloud utilizes those basic concepts.

Google Cloud Platform (GCP)
The Google Cloud Platform (GCP) supports Kubernetes out of the box. The so-called
Google Kubernetes Engine (GKE) is a container management solution built on
Kubernetes. You don't need to install Kubernetes on GCP, and you can use the Google
Cloud API to create Kubernetes clusters and provision them. The fact that Kubernetes is a
built-in part of the GCP means it will always be well integrated and well tested, and you
don't have to worry about changes to the underlying platform breaking the cloud-provider
interface.

All in all, if you plan to base your system on Kubernetes and you don't have any existing
code on other cloud platforms, then GCP is a solid choice.

Amazon Web Services (AWS)
Amazon Web Services (AWS) has its own container-management service called ECS, but it
is not based on Kubernetes. You can run Kubernetes on AWS very well. It is a supported
provider, and there is a lot of documentation on how to set it up. While you could
provision some VMs yourself and use kubeadm, I recommend using the Kubernetes
operations (Kops) project. Kops is a Kubernetes project available on GitHub
(http://bit.ly/2ft5KA5). It is not part of Kubernetes itself, but it is developed and
maintained by the Kubernetes developers.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://bit.ly/2ft5KA5

Creating Kubernetes Clusters Chapter 10

[336]

It supports the following features:

Automated Kubernetes cluster CRUD for the cloud (AWS)
Highly-available (HA) Kubernetes clusters
It uses a state-sync model for dry-run and automatic idempotency
Custom support for kubectl add-ons
Kops can generate Terraform configuration
It is based on a simple meta-model defined in a directory tree
Easy command-line syntax
Community support

To create a cluster, you need to do some minimal DNS configuration through route53, set
up a S3 bucket to store the cluster configuration, and then run a single command:

kops create cluster --cloud=aws --zones=us-east-1c ${NAME}

The complete instructions can be found at http://bit.ly/2f7r6EK.

At the end of 2017, AWS joined the CNCF and announced two big projects regarding
Kubernetes: Its own Kubernetes-based container orchestration solution (EKS) and a
container-on-demand solution (Fargate).

Amazon Elastic Container Service for Kubernetes (EKS)
Amazon Elastic Container Service for Kubernetes is a fully managed and highly available
Kubernetes solution. It has three masters running in three AZs. EKS also takes care of
upgrades and patching. The great thing about EKS is that it runs a stock Kubernetes
without any changes. This means you can use all the standard plugins and tools developed
by the community. It also opens the door to convenient cluster federation with other cloud
providers and/or your own on-premises Kubernetes clusters.

EKS provides deep integration with AWS infrastructure. IAM authentication is integrated
with Kubernetes role-based access control (RBAC).

You can also use PrivateLink if you want to access your Kubernetes masters directly
from your own Amazon VPC. With PrivateLink, your Kubernetes masters and the
Amazon EKS service endpoint appear as elastic network interfaces with private IP
addresses in your Amazon VPC.

Another important piece of the puzzle is a special CNI plugin that lets your Kubernetes
components talk to each other using AWS networking.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://bit.ly/2f7r6EK

Creating Kubernetes Clusters Chapter 10

[337]

Fargate
Fargate lets you run containers directly without worrying about provisioning hardware. It
eliminates a huge part of the operational complexity at the cost of losing some control.
When using Fargate, you package your application into a container, specify CPU and
memory requirements, and define networking and IAM policies, and you're off to the races.
Fargate can run on top of ECS and EKS. It is a very interesting member of the serverless
camp, although it's not directly related to Kubernetes.

Azure
Azure used to have its own container management service. You could use the Mesos-based
DC/OS or Docker Swarm to manage them, but you could also use Kubernetes, of course.
You could also provision the cluster yourself (for example, using Azure's desired-state
configuration) then create the Kubernetes cluster using kubeadm. The recommended
approach used to be to use yet another non-core Kubernetes project called kubernetes-
anywhere (http://bit.ly/2eCS7Ps). The goal of kubernetes-anywhere is to provide a
cross-platform way to create clusters in a cloud environment (at least for GCP, AWS, and
Azure).

The process is pretty painless. You need to have Docker, make, and kubectl installed, and
of course, your Azure subscription ID. Then, you clone the kubernetes-anywhere
repository, run a couple of make commands, and your cluster is good to go.

The complete instructions to create an Azure cluster are at http://bit.ly/2d56WdA.

However, in the second half of 2017, Azure jumped on the Kubernetes bandwagon too and
introduced AKS-Azure Container Service. It is similar to Amazon EKS, although it's a little
further ahead in its implementation.

AKS provides a REST API, as well as a CLI, to manage your Kubernetes cluster, but you
can use kubectl and any other Kubernetes tooling directly.

Here are some of the benefits of using AKS:

Automated Kubernetes version upgrades and patching
Easy cluster scaling
Self-healing hosted control plane (masters)
Cost savings—pay only for running agent pool nodes

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://bit.ly/2eCS7Ps
http://bit.ly/2d56WdA

Creating Kubernetes Clusters Chapter 10

[338]

In this section, we covered the cloud-provider interface and looked at the various
recommended ways to create Kubernetes clusters on various cloud providers. The scene is
still young and the tools evolving quickly. I believe convergence will happen soon. Tools
and projects such as kubeadm, kops, Kargo, and kubernetes-anywhere will eventually
merge and provide a uniform and easy way to bootstrap Kubernetes clusters.

Alibaba Cloud
The Chinese Alibaba Cloud is an up-and-comer on the cloud platform scene. It mimics
AWS pretty closely, although its English documentation leaves a lot to be desired. I
deployed a production application on Ali Cloud, but not one that used Kubernetes clusters.
There seems to be official support for Kubernetes on Ali Cloud, but the documentation is in
Chinese. I found one forum post in English that details how to deploy a Kubernetes cluster
on Ali Cloud at https://www.alibabacloud.com/forum/read-830.

Creating a bare-metal cluster from scratch
In the previous section, we looked at running Kubernetes on cloud providers. This is the
dominant deployment story for Kubernetes, but there are strong use cases for running
Kubernetes on bare metal. I don't focus here on hosted versus on-premises; this is yet
another dimension. If you already manage a lot of servers on-premises, you are in the best
position to decide.

Use cases for bare metal
Bare-metal clusters are a beast especially if you manage them yourself. There are companies
that provide commercial support for bare-metal Kubernetes clusters, such as Platform 9,
but the offerings are not mature yet. A solid open-source option is Kubespray, which can
deploy industrial-strength Kubernetes clusters on bare metal, AWS, GCE, Azure, and
OpenStack.

Here are some use cases where it makes sense:

Budget concerns: If you already manage large-scale bare clusters, it may be
much cheaper to run Kubernetes clusters on your physical infrastructure
Low network latency: If you must have low latency between your nodes, then
the VM overhead might be too much

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.alibabacloud.com/forum/read-830

Creating Kubernetes Clusters Chapter 10

[339]

Regulatory requirements: If you must comply with regulations, you may not be
allowed to use cloud providers
You want total control over hardware: Cloud providers give you many options,
but you may have particular needs

When should you consider creating a bare-metal
cluster?
The complexities of creating a cluster from scratch are significant. A Kubernetes cluster is
not a trivial beast. There is a lot of documentation on the web about how to set up bare-
metal clusters, but as the whole ecosystem moves forward, many of these guides get out of
date quickly.

You should consider going down this route if you have the operational capability to take
the time to debug problems at every level of the stack. Most of the problems will probably
be networking-related, but filesystems and storage drivers can bite you too, as well as
general incompatibilities and version mismatches between components, such as Kubernetes
itself, Docker (or rkt, if you brave it), Docker images, your OS, your OS kernel, and the
various add-ons and tools you use.

The process
There is a lot to do. Here is a list of some of the concerns you'll have to address:

Implementing your own cloud provider's interface or sidestepping it
Choosing a networking model and how to implement it (using a CNI plugin or
directly compiling)
Whether or not to use a network policy
Select images for system components
Security models and SSL certificates
Admin credentials
Templates for components such as an API server, replication controller, and
scheduler
Cluster services such as DNS, logging, monitoring, and GUI

I recommend reading the guide at the Kubernetes site (http://bit.ly/1ToR9EC) to get a
deeper understanding of what it takes to create a cluster from scratch.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://bit.ly/1ToR9EC

Creating Kubernetes Clusters Chapter 10

[340]

Using virtual private cloud infrastructure
If your use case falls under the bare-metal use cases, but you don't have the necessary
skilled manpower or the inclination to deal with the infrastructure challenges of bare metal,
you have the option of using a private cloud such as OpenStack (for example, with
stackube). If you want to aim a little higher in the abstraction ladder, then Mirantis offers a
cloud platform built on top of OpenStack and Kubernetes.

In this section, we considered the option of building a bare-metal cluster Kubernetes
cluster. We looked into the use cases that require it and highlighted the challenges and
difficulties.

Bootkube
Bootkube is very interesting too. It can launch self-hosted Kubernetes clusters. Self-hosted
means that most of the cluster components run as regular pods and can be managed,
monitored, and upgraded using the same tools and processes you use for your
containerized applications. There are significant benefits to this approach, which simplifies
the development and operation of Kubernetes clusters.

Summary
In this chapter, we got into some hands-on cluster creation. We created a single-node
cluster using Minikube and a multi-node cluster using kubeadm. Then we looked at the
many options to create Kubernetes clusters using cloud providers. Finally, we touched on
the complexities of creating Kubernetes clusters on bare metal. The current state of affairs is
very dynamic. The basic components are changing rapidly, the tooling is still young, and
there are different options for each environment. It's not completely trivial to set up a
Kubernetes cluster, but with some effort and attention to detail, you can get it done quickly.

In the next chapter, we will explore the important topics of monitoring, logging, and
troubleshooting. Once your cluster is up and running and you start deploying workloads,
you need to make sure that it runs properly and satisfies requirements. This requires
ongoing attention and responding to various failures that happen in the real world.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

11
Cluster Federation and Multi-

Tenancy
This chapter will discuss the new federation capabilities and how to use them to manage
multiple clusters across cloud providers. We will also cover the federated version of the
core constructs. We will walk you through federated Deployments, ReplicaSets,
ConfigMaps, and Events.

This chapter will discuss the following topics:

Federating clusters
Federating multiple clusters
Inspecting and controlling resources across multiple clusters
Launching resources across multiple clusters

Technical requirements
You'll need to have your Google Cloud Platform account enabled and logged in, or you can
use a local Minikube instance of Kubernetes. You can also use Play with Kubernetes over
the web: https://labs. play- with- k8s. com/. There's also the Katacoda playground at
https://www.katacoda. com/ courses/ kubernetes/ playground.

You'll also need GitHub credentials, the setting up of which we'll go over later in this
chapter. Here's the GitHub repository for this chapter: https:/ /github. com/
PacktPublishing/The- Complete- Kubernetes- Guide/ tree/ master/ Chapter11.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/playground
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter11

Cluster Federation and Multi-Tenancy Chapter 11

[342]

Introduction to federation
While federation is still very new in Kubernetes, it lays the groundwork for a highly sought
after cross-cloud provider solution. Using federation, we can run multiple Kubernetes
clusters on-premises and in one or more public cloud providers and manage applications
utilizing the entire set of all our organizational resources.

This begins to create a path for avoiding cloud provider lock-in and highly available
deployment that can place application servers in multiple clusters and allow for
communication to other services located in single points among our federated clusters. We
can improve isolation on outages at a particular provider or geographic location while
providing greater flexibility for scaling and utilizing total infrastructure.

Currently, the federation plane supports these resources: ConfigMap, DaemonSets,
Deployment, Events, Ingress, Namespaces, ReplicaSets, Secrets, and Services. Note that
federation and its components are in alpha and beta phases of release, so functionality may
still be a bit temperamental.

Why federation?
There are several major advantages to taking on Kubernetes cluster federation. As
mentioned previously, federation allows you increase the availability and tenancy
capabilities of your Kubernetes clusters. By scaling across availability zones or regions of a
single cloud service provider (CSP), or by scaling across multiple CSPs, federation takes
the concept of high availability to the next level. Some term this global scheduling, which
will could enable you to direct traffic in order to maximize an inexpensive CSP resource
that becomes available in the spot market. You could also use global scheduling to relocate
workloads cluster to end use populations, improving the performance of your applications.

There is also the opportunity to treat entire clusters as if they were Kubernetes objects, and
deal with failure on a per-cluster basis instead of per machine. Cluster federation could
allow operators to automatically recover from entire clusters failing by routing traffic to
redundant, available clusters.

It should be noted that, while federation increases the potential for high availability on your
cluster, it's clear that the significant increase in complexity also lowers your potential
reliability if your clusters aren't managed well. You can manage some of this complexity by
using a hosted PaaS version of Kubernetes such as GKE, where leaving the cluster
management to GCP will drastically lower the operational load on your teams.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[343]

Federation can also enable your team to support a hybrid environment, with on-premises
clusters pairing with your resources in the cloud. Depending on your traffic routing
requirements, this may require additional engineering in the form of a service mesh.

There's a number of technical features that federation supplies, which enable higher
potential availability.

The building blocks of federation
Federation makes it easy to manage resources across clusters by providing two distinct
types of building blocks. The first is resources and the second is service discovery:

Resource synchronization across clusters: Federation is the glue that allows you
to keep track of the many resources needed to run sets of applications. When
you're running a lot of applications, with many resources and object types, across
many clusters, federation is key to keeping your clusters organized and managed
well. You may find yourself needing to keep an application deployment running
in multiple clusters with a single pane of glass view.
Multi-cluster service discovery: There are a number of resources that share well
between clusters such as DNS, load balancers, object storage, and ingress.
Federation gives you the ability to automatically configure those services with
multi-cluster awareness, so you can route application traffic and manage the
control plane across several clusters.

As we'll learn next, Kubernetes federation is managed by a tool named kubefed, which has
a number of command-line flags that allow you to manage many clusters and the building
blocks we discussed previously. The major building blocks of kubefed that we'll use are as
follows:

kubefed init: Initialize a federation control plane
kubefed join: Join a cluster to a federation
kubefed options: Print the list of flags inherited by all commands
kubefed unjoin: Unjoin a cluster from a federation
kubefed version: Print the client and server version information

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[344]

Here's a handy list of the options that can be used:

 --alsologtostderr log to standard error
as well as files
 --as string Username to
impersonate for the operation
 --as-group stringArray Group to impersonate
for the operation, this flag can be repeated to specify multiple groups.
 --cache-dir string Default HTTP cache
directory (default "/Users/jrondeau/.kube/http-cache")
 --certificate-authority string Path to a cert file
for the certificate authority
 --client-certificate string Path to a client
certificate file for TLS
 --client-key string Path to a client key
file for TLS
 --cloud-provider-gce-lb-src-cidrs cidrs CIDRs opened in GCE
firewall for LB traffic proxy & health checks (default
130.211.0.0/22,209.85.152.0/22,209.85.204.0/22,35.191.0.0/16)
 --cluster string The name of the
kubeconfig cluster to use
 --context string The name of the
kubeconfig context to use
 --default-not-ready-toleration-seconds int Indicates the
tolerationSeconds of the toleration for notReady:NoExecute that is added by
default to every pod that does not already have such a toleration. (default
300)
 --default-unreachable-toleration-seconds int Indicates the
tolerationSeconds of the toleration for unreachable:NoExecute that is added
by default to every pod that does not already have such a toleration.
(default 300)
 -h, --help help for kubefed
 --insecure-skip-tls-verify If true, the server's
certificate will not be checked for validity. This will make your HTTPS
connections insecure
 --ir-data-source string Data source used by
InitialResources. Supported options: influxdb, gcm. (default "influxdb")
 --ir-dbname string InfluxDB database name
which contains metrics required by InitialResources (default "k8s")
 --ir-hawkular string Hawkular configuration
URL
 --ir-influxdb-host string Address of InfluxDB
which contains metrics required by InitialResources (default
"localhost:8080/api/v1/namespaces/kube-system/services/monitoring-
influxdb:api/proxy")
 --ir-namespace-only Whether the estimation
should be made only based on data from the same namespace.
 --ir-password string Password used for

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[345]

connecting to InfluxDB (default "root")
 --ir-percentile int Which percentile of
samples should InitialResources use when estimating resources. For
experiment purposes. (default 90)
 --ir-user string User used for
connecting to InfluxDB (default "root")
 --kubeconfig string Path to the kubeconfig
file to use for CLI requests.
 --log-backtrace-at traceLocation when logging hits line
file:N, emit a stack trace (default :0)
 --log-dir string If non-empty, write
log files in this directory
 --log-flush-frequency duration Maximum number of
seconds between log flushes (default 5s)
 --logtostderr log to standard error
instead of files (default true)
 --match-server-version Require server version
to match client version
 -n, --namespace string If present, the
namespace scope for this CLI request
 --password string Password for basic
authentication to the API server
 --request-timeout string The length of time to
wait before giving up on a single server request. Non-zero values should
contain a corresponding time unit (e.g. 1s, 2m, 3h). A value of zero means
don't timeout requests. (default "0")
 -s, --server string The address and port
of the Kubernetes API server
 --stderrthreshold severity logs at or above this
threshold go to stderr (default 2)
 --token string Bearer token for
authentication to the API server
 --user string The name of the
kubeconfig user to use
 --username string Username for basic
authentication to the API server
 -v, --v Level log level for V logs
 --vmodule moduleSpec comma-separated list
of pattern=N settings for file-filtered logging

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[346]

Here's a high-level diagram that shows what all of these pieces look like when strung
together:

Key components
There are two key components to the federation capability within Kubernetes. These
components make up the federation control plane.

The first is federation-controller-manager, which embeds the core control loops
required to operate federation. federation-controller-manager watches the state of
your clusters via apiserver and makes changes in order to reach a desired state.

The second is federation-apiserver, which validates and configures Kubernetes objects
such as pods, services, and controllers. federation-apiserver is the frontend for the
cluster through which all other components interact.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[347]

Federated services
Now that we have the building blocks of federation conceptualized in our mind, let's
review one more facet of this before setting up federation. How exactly does a common
service, deployed across multiple clusters, work?

Federated services are created in a very similar fashion to regular services: first, by sending
the desired state and properties of the service to an API endpoint, which is then brought to
bear by the Kubernetes architecture. There are two main differences:

A non-federated service will make an API call directly to a cluster API endpoint
A federated service will make the call to the Federated API endpoint at
federation/v1beta1, which will then redirect the API call to all of the
individual clusters within the federation control plane

This second type of service allows us to extend such things as DNS service discovery across
cluster boundaries. The DNS resolv chain is able to leverage service federation and public
DNS records to resolve names across multiple clusters.

The API for a federated service is 100% compatible with regular services.

When a service is created, federation takes care of several things. First, it creates matching
services in all clusters where kubefed specifies they reside. The health of those services is
monitored so that traffic can be routed or re-routed to them. Lastly, federation ensure that
there's a definitive set of public DNS records available through providers such as Route 53
or Google Cloud DNS.

Microservices residing on different pods within your Kubernetes clusters will use all of this
machinery in order to locate the federated service either within their own cluster or
navigate to the nearest healthy example within your federation map.

Setting up federation
While we can use the cluster we had running for the rest of the examples, I would highly
recommend that you start fresh. The default naming of the clusters and contexts can be
problematic for the federation system. Note that the --cluster-context and --secret-
name flags are there to help you work around the default naming, but for first-time
federation, it can still be confusing and less than straightforward.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[348]

Hence, starting fresh is how we will walk through the examples in this chapter. Either use
new and separate cloud provider (AWS and/or GCE) accounts or tear down the current
cluster and reset your Kubernetes control environment by running the following
commands:

$ kubectl config unset contexts
$ kubectl config unset clusters

Double-check that nothing is listed using the following commands:

$ kubectl config get-contexts
$ kubectl config get-clusters

Next, we will want to get the kubefed command on our path and make it executable.
Navigate back to the folder where you have the Kubernetes download extracted. The
kubefed command is located in the /kubernetes/client/bin folder. Run the following
commands to get in the bin folder and change the execution permissions:

$ sudo cp kubernetes/client/bin/kubefed /usr/local/bin
$ sudo chmod +x /usr/local/bin/kubefed

Contexts
Contexts are used by the Kubernetes control plane to keep authentication and cluster
configuration stored for multiple clusters. This allows us to access and manage multiple
clusters accessible from the same kubectl. You can always see the contexts available with
the get-contexts command that we used earlier.

New clusters for federation
Again, make sure you navigate to wherever Kubernetes was downloaded and move into
the cluster sub-folder:

$ cd kubernetes/cluster/

Before we proceed, make sure you have the GCE command line and the
AWS command line installed, authenticated, and configured. Refer to
Chapter 1, Introduction to Kubernetes, if you need assistance doing so on a
new box.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[349]

First, we will create the AWS cluster. Note that we are adding an environment variable
named OVERRIDE_CONTEXT, which will allow us to set the context name to something that
complies with the DNS naming standards. DNS is a critical component for federation as it
allows us to do cross-cluster discovery and service communication. This is important in a
federated world where clusters may be in different data centers and even providers.

Run these commands to create your AWS cluster:

$ export KUBERNETES_PROVIDER=aws
$ export OVERRIDE_CONTEXT=awsk8s
$./kube-up.sh

Next, we will create a GCE cluster, once again using the OVERRIDE_CONTEXT environment
variable:

$ export KUBERNETES_PROVIDER=gce
$ export OVERRIDE_CONTEXT=gcek8s
$./kube-up.sh

If we take a look at our contexts now, we will notice both awsk8s and gcek8s, which we
just created. The star in front of gcek8s denotes that it's where kubectl is currently
pointing and executing against:

$ kubectl config get-contexts

The preceding command should produce something like the following:

Initializing the federation control plane
Now that we have two clusters, let's set up the federation control plane in the GCE cluster.
First, we'll need to make sure that we are in the GCE context, and then we will initialize the
federation control plane:

$ kubectl config use-context gcek8s
$ kubefed init master-control --host-cluster-context=gcek8s --dns-zone-
name="mydomain.com"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[350]

The preceding command creates a new context just for federation called master-control.
It uses the gcek8s cluster/context to host the federation components (such as API server
and controller). It assumes GCE DNS as the federation's DNS service. You'll need to update
dns-zone-name with a domain suffix you manage.

By default, the DNS provider is GCE. You can use --dns-
provider="aws-route53" to set it to AWS route53; however, out of
the box implementation still has issues for many users.

If we check our contexts once again, we will now see three contexts:

$ kubectl config get-contexts

The preceding command should produce something like the following:

Let's make sure we have all of the federation components running before we proceed. The
federation control plane uses the federation-system namespace. Use the kubectl get
pods command with the namespace specified to monitor the progress. Once you see two
API server pods and one controller pod, you should be set:

$ kubectl get pods --namespace=federation-system

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[351]

Now that we have the federation components set up and running, let's switch to that
context for the next steps:

$ kubectl config use-context master-control

Adding clusters to the federation system
Now that we have our federation control plane, we can add the clusters to the federation
system. First, we will join the GCE cluster and then the AWS cluster:

$ kubefed join gcek8s --host-cluster-context=gcek8s --secret-name=fed-
secret-gce
$ kubefed join awsk8s --host-cluster-context=gcek8s --secret-name=fed-
secret-aws

Federated resources
Federated resources allow us to deploy across multiple clusters and/or regions. Currently,
version 1.5 of Kubernetes support a number of core resource types in the federation
API, including ConfigMap, DaemonSets, Deployment, Events, Ingress, Namespaces,
ReplicaSets, Secrets, and Services.

Let's take a look at a federated deployment that will allow us to schedule pods across both
AWS and GCE. Save the following file as node-js-deploy-fed.yaml:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: node-js-deploy
 labels:
 name: node-js-deploy
spec:
 replicas: 3
 template:
 metadata:
 labels:
 name: node-js-deploy
 spec:
 containers:
 - name: node-js-deploy
 image: jonbaier/pod-scaling:latest
 ports:
 - containerPort: 80

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[352]

Create this deployment with the following command:

$ kubectl create -f node-js-deploy-fed.yaml

Now, let's try listing the pods from this deployment:

$ kubectl get pods

We should see a message like the preceding one depicted. This is because we are still
using master-control or federation context, which does not itself run pods. We will,
however, see the deployment in the federation plane and, if we inspect the events, we will
see that the deployment was in fact created on both of our federated clusters:

$ kubectl get deployments
$ kubectl describe deployments node-js-deploy

We should see something like the following. Notice that the Events: section shows
deployments in both our GCE and AWS contexts:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[353]

We can also see the federated events using the following command:

$ kubectl get events

It may take a moment for all three pods to run. Once that happens, we can switch to each
cluster context and see some of the pods on each. Note that we can now use get pods
since we are on the individual clusters and not on the control plane:

$ kubectl config use-context awsk8s
$ kubectl get pods

$ kubectl config use-context gcek8s
$ kubectl get pods

We should see the three pods spread across the clusters with two on one and a third on the
other. Kubernetes has spread them across the cluster without any manual intervention. Any
pods that fail will be restarted, but now we have the added redundancy of two cloud
providers.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[354]

Federated configurations
In modern software development, it is common to separate configuration variables from
the application code itself. In this way, it is easier to make updates to service URLs,
credentials, common paths, and so on. Having these values in external configuration files
means we can easily update configuration without rebuilding the entire application.

This separation solves the initial problem, but true portability comes when you can remove
the dependency from the application completely. Kubernetes offers a configuration store
for exactly this purpose. ConfigMaps are simple constructs that store key-value pairs.

Kubernetes also supports Secrets for more sensitive configuration data.
This will be covered in more detail in Chapter 12, Cluster Authentication,
Authorization, and Container Security. You can use the example there in
both single clusters or on the federation control plane as we are
demonstrating with ConfigMaps here.

Let's take a look at an example that will allow us to store some configuration and then
consume it in various pods. The following listings will work for both federated and single
clusters, but we will continue using a federated setup for this example.

The ConfigMap kind can be created using literal values, flat files and directories, and
finally YAML definition files. The following listing is a YAML definition of
the configmap-fed.yaml file:

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-application-config
 namespace: default
data:
 backend-service.url: my-backend-service

Let's first switch back to our federation plane:

$ kubectl config use-context master-control

Now, create this listing with the following command:

$ kubectl create -f configmap-fed.yaml

Let's display the configmap object that we just created. The -o yaml flag helps us to
display the full information:

$ kubectl get configmap my-application-config -o yaml

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[355]

Now that we have a ConfigMap object, let's start up a federated ReplicaSet that can use
the ConfigMap object. This will create replicas of pods across our cluster that can access
the ConfigMap object. ConfigMaps can be accessed via environment variables or mount
volumes. This example will use a mount volume that provides a folder hierarchy and the
files for each key with the contents representing the values. Save the following file
as configmap-rs-fed.yaml:

apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
 name: node-js-rs
spec:
 replicas: 3
 selector:
 matchLabels:
 name: node-js-configmap-rs
 template:
 metadata:
 labels:
 name: node-js-configmap-rs
 spec:
 containers:
 - name: configmap-pod
 image: jonbaier/node-express-info:latest
 ports:
 - containerPort: 80
 name: web
 volumeMounts:
 - name: configmap-volume
 mountPath: /etc/config

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[356]

volumes:
 - name: configmap-volume
 configMap:
 name: my-application-config

Create this pod with kubectl create -f configmap-rs-fed.yaml. After creation, we
will need to switch contexts to one of the clusters where the pods are running. You can
choose either, but we will use the GCE context here:

$ kubectl config use-context gcek8s

Now that we are on the GCE cluster specifically, let's check configmaps here:

$ kubectl get configmaps

As you can see, the ConfigMap is propagated locally to each cluster. Next, let's find a
pod from our federated ReplicaSet:

$ kubectl get pods

Let's take one of the node-js-rs pod names from the listing and run a bash shell with
kubectl exec:

$ kubectl exec -it node-js-rs-6g7nj bash

Then, let's change directories to the /etc/config folder that we set up in the pod
definition. Listing this directory reveals a single file with the name of the ConfigMap we
defined earlier:

$ cd /etc/config
$ ls

If we then display the contents of the files with the following command, we should see the
value we entered earlier, my-backend-service:

$ echo $(cat backend-service.url)

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[357]

If we were to look in any of the pods across our federated cluster, we would see the same
values. This is a great way to decouple configuration from an application and distribute it
across our fleet of clusters.

Federated horizontal pod autoscalers
Let's look at another example of a newer resource that you can use with the federated
model: horizontal pod autoscalers (HPAs).

Here's what the architecture of these looks like in a single cluster:

Credit: https:/ / kubernetes. io/ docs/ tasks/ run- application/
horizontal- pod- autoscale/ #how- does- the- horizontal- pod-
autoscaler- work.

These HPAs will act in a similar fashion to normal HPAs, with the same functionality and
same API-based compatibility—only, with federation, the management will traverse your
clusters. This is an alpha feature, so it is not enabled by default on your cluster. In order to
enable it, you'll need to run federation-apiserver with the --runtime-
config=api/all=true option. Currently, the only metrics that work to manage HPAs are
CPU utilization metrics.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-the-horizontal-pod-autoscaler-work

Cluster Federation and Multi-Tenancy Chapter 11

[358]

First, let's create a file that contains the HPA configuration, called node-hpa-fed.yaml:

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: nodejs
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps/v1beta1 kind: Deployment
name: nodejs
 minReplicas: 5
 maxReplicas: 20
 targetCPUUtilizationPercentage: 70

We can add this to our cluster with the following command:

kubectl --context=federation-cluster create -f node-hpa-fed.yaml

In this case, --context=federation-cluster is telling kubectl to send the request
to federation-apiserver instead of kube-apiserver.

If, for example, you wanted to restrict this HPA to a subset of your Kubernetes clusters, you
can use cluster selectors to restrict the federated object by using the
federation.alpha.kubernetes.io/cluster-selector annotation. It's similar in
function to nodeSelector, but acts upon full Kubernetes clusters. Cool! You'll need to create
an annotation in JSON format. Here's a specific example of a ClusterSelector annotation:

metadata:
 annotations:
 federation.alpha.kubernetes.io/cluster-selector: '[{"key": "hipaa",
"operator":
 "In", "values": ["true"]}, {"key": "environment", "operator":
"NotIn", "values": ["nonprod"]}]'

This example is going to keep workloads with the hipaa label out of environments with
the nonprod label.

For a full list of Top Level Federation API objects, see the
following: https:/ / kubernetes. io/docs/ reference/ federation/

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/
https://kubernetes.io/docs/reference/federation/

Cluster Federation and Multi-Tenancy Chapter 11

[359]

You can check your clusters to see whether the HPA was created in an individual location
by specifying the context:

kubectl --context=gce-cluster-01 get HPA nodejs

Once you're finished with the HPA, it can be deleted with the following kubectl
command:

kubectl --context=federation-cluster delete HPA nodejs

How to use federated HPAs
HPAs used in the previous manner are an essential tool for ensuring that your clusters scale
up as their workloads increase. The default behavior for HPA spreading in clusters ensure
that maximum replicas are spread evenly first in all clusters. Let's say that you have 10
registered Kubernetes clusters in your federation control plane. If you have
spec.maxReplicas = 30, each of the clusters will receive the following HPA spec:

spec.maxReplicas = 10

If you were to then set spec.minReplicas = 5, then some of the clusters will receive the
following:

spec.minReplicas = 1

This is due to being unable to have a replica sum of 0. It's important to note that federation
manipulates the minx/mix replicas it creates on the federated clusters, not by directly
monitoring the target object metrics (in our case, CPU). The federated HPA controller is
relying on HPAs within the federated cluster to monitor CPU utilization, which then makes
changes to specs such as current and desired replicas.

Other federated resources
So far, we have seen federated Deployments, ReplicaSets, Events, and ConfigMaps in
action. DaemonSets, Ingress, Namespaces, Secrets, and Services are also supported. Your
specific setup will vary and you may have a set of clusters that differ from our example
here. As mentioned earlier, these resources are still in beta, so it's worth spending some
time to experiment with the various resource types and understand how well the federation
constructs are supported for your particular mix of infrastructure.

Let's look at some examples that we can use to leverage other common Kubernetes API
objects from a federated perspective.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[360]

Events
If you want to see what events are only stored in the federation control plane, you can use
the following command:

kubectl --context=federation-cluster get events

Jobs
When you go to create a job, you'll use similar concepts as before. Here's what that looks
like when you create a job within the federation context:

kubectl --context=federation-cluster create -f fedjob.yaml

You can get the list of these jobs within the federated context with the following:

kubectl --context=gce-cluster-01 get job fedjob

As with HPAs, you can spread your jobs across multiple underlying clusters with the
appropriate specs. The relevant definitions are spec.parallelism and
spec.completions, and they can be modified by specifying the correct
ReplicaAllocationPreferences with the federation.kubernetes.io/job-
preferences key.

True multi-cloud
This is an exciting space to watch. As it grows, it gives us a really good start to doing multi-
cloud implementations and providing redundancy across regions, data centers, and even
cloud providers.

While Kubernetes does provide an easy and exciting path to multi-cloud infrastructure, it's
important to note that production multi-cloud requires much more than distributed
deployments. A full set of capabilities from logging and monitoring to compliance and
host-hardening, there is much to manage in a multi-provider setup.

True multi-cloud adoption will require a well-planned architecture, and Kubernetes takes a
big step forward in pursuing this goal.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[361]

Getting to multi-cloud
In this exercise, we're going to unite two clusters using Istio's multi-cloud feature.
Normally, we'd create two clusters from scratch, across two CSPs, but for the purposes of
exploring one single isolated concept at a time, we're going to use the GKE to spin up our
clusters, so we can focus on the inner workings of Istio's multi-cloud functionality.

Let's get started by logging in to your Google Cloud Project! First, you'll want to create a
project in the GUI called gsw-k8s-3, if you haven't already, and get your Google Cloud
Shell to point to it. If you're already pointed at your GCP account, you can disregard that.

Click this button for an easy way to get access to the CLI tools:

Once you've launched the shell, you can point it to your project:

anonymuse@cloudshell:~$ gcloud config set project gsw-k8s-3
Updated property [core/project].
anonymuse@cloudshell:~ (gsw-k8s-3)$

Next, we'll set up an environment variable for the project ID, which can echo back to see:

anonymuse@cloudshell:~ (gsw-k8s-3)$ proj=$(gcloud config list --
format='value(core.project)')
anonymuse@cloudshell:~ (gsw-k8s-3)$ echo $proj
Gsw-k8s-3

Now, let's create some clusters. Set some variables for the zone and cluster name:

zone="us-east1-b"
cluster="cluster-1"

First, create cluster one:

gcloud container clusters create $cluster --zone $zone --username "
 --cluster-version "1.10.6-gke.2" --machine-type "n1-standard-2" --image-
type "COS" --disk-size "100" \
 --scopes gke-default \
 --num-nodes "4" --network "default" --enable-cloud-logging --enable-cloud-
monitoring --enable-ip-alias --async

WARNING: Starting in 1.12, new clusters will not have a client certificate
issued. You can manually enable (or disable) the issuance of the client

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[362]

certificate using the `--[no-]issue-client-certificate` flag. This will
enable the autorepair feature for nodes. Please see
https://cloud.google.com/kubernetes-engine/docs/node-auto-repair for more
information on node autorepairs.

WARNING: Starting in Kubernetes v1.10, new clusters will no longer get
compute-rw and storage-ro scopes added to what is specified in --scopes
(though the latter will remain included in the default --scopes). To use
these scopes, add them explicitly to --scopes. To use the new behavior, set
container/new_scopes_behavior property (gcloud config set
container/new_scopes_behavior true).

NAME TYPE LOCATION TARGET STATUS_MESSAGE STATUS START_TIME
END_TIME
cluster-1 us-east1-b PROVISIONING

You may need to change the cluster version to a newer GKE version as
updates are made. Older versions become unsupported over time. For
example, you might see a message such as this:

ERROR: (gcloud.container.clusters.create) ResponseError:
code=400, message=EXTERNAL: Master version "1.9.6-gke.1"
is unsupported.

You can check this web page to find out the currently supported version
of GKE: https:/ / cloud. google. com/ kubernetes- engine/ release- notes.

Next, specify cluster-2:

cluster="cluster-2"

Now, create it, where you'll see messages above. We'll omit them this time around:

gcloud container clusters create $cluster --zone $zone --username "admin" \
--cluster-version "1.10.6-gke.2" --machine-type "n1-standard-2" --image-
type "COS" --disk-size "100" \
 --scopes gke-default \
 --num-nodes "4" --network "default" --enable-cloud-logging --enable-cloud-
monitoring --enable-ip-alias --async

You'll see the same messaging above. You can create another Google Cloud Shell window
by clicking on the + icon in order to create some watch commands to see the clusters
created. Take a minute to do this while the instances are created:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes
https://cloud.google.com/kubernetes-engine/release-notes

Cluster Federation and Multi-Tenancy Chapter 11

[363]

In that window, launch this command: gcloud container clusters list. You should
see the following:

gcloud container clusters list
<snip>
Every 1.0s: gcloud container clusters list
cs-6000-devshell-vm-375db789-dcd6-42c6-b1a6-041afea68875: Mon Sep 3
12:26:41 2018

NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE NODE_VERSION
NUM_NODES STATUS
cluster-1 us-east1-b 1.10.6-gke.2 35.237.54.93 n1-standard-2 1.10.6-
gke.2 4 RUNNING
cluster-2 us-east1-b 1.10.6-gke.2 35.237.47.212 n1-standard-2 1.10.6-
gke.2 4 RUNNING

On the dashboard, it'll look like so:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[364]

Next up, we'll grab the cluster credentials. This command will allow us to set a
kubeconfig context for each specific cluster:

for clusterid in cluster-1 cluster-2; do gcloud container clusters get-
credentials $clusterid --zone $zone; done
Fetching cluster endpoint and auth data.
kubeconfig entry generated for cluster-1.
Fetching cluster endpoint and auth data.
kubeconfig entry generated for cluster-2.

Let's ensure that we can use kubectl to get the context for each cluster:

anonymuse@cloudshell:~ (gsw-k8s-3)$ kubectl config use-context
"gke_${proj}_${zone}_cluster-1"
Switched to context "gke_gsw-k8s-3_us-east1-b_cluster-1".

If you then run kubectl get pods --all-namespaces after executing each of the
cluster context switches, you should see something similar to this for each cluster:

anonymuse@cloudshell:~ (gsw-k8s-3)$ kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system event-exporter-v0.2.1-5f5b89fcc8-2qj5c 2/2 Running 0 14m
kube-system fluentd-gcp-scaler-7c5db745fc-qxqd4 1/1 Running 0 13m
kube-system fluentd-gcp-v3.1.0-g5v24 2/2 Running 0 13m
kube-system fluentd-gcp-v3.1.0-qft92 2/2 Running 0 13m
kube-system fluentd-gcp-v3.1.0-v572p 2/2 Running 0 13m
kube-system fluentd-gcp-v3.1.0-z5wjs 2/2 Running 0 13m
kube-system heapster-v1.5.3-5c47587d4-4fsg6 3/3 Running 0 12m
kube-system kube-dns-788979dc8f-k5n8c 4/4 Running 0 13m
kube-system kube-dns-788979dc8f-ldxsw 4/4 Running 0 14m
kube-system kube-dns-autoscaler-79b4b844b9-rhxdt 1/1 Running 0 13m
kube-system kube-proxy-gke-cluster-1-default-pool-e320df41-4mnm 1/1 Running
0 13m
kube-system kube-proxy-gke-cluster-1-default-pool-e320df41-536s 1/1 Running
0 13m
kube-system kube-proxy-gke-cluster-1-default-pool-e320df41-9gqj 1/1 Running
0 13m
kube-system kube-proxy-gke-cluster-1-default-pool-e320df41-t4pg 1/1 Running
0 13m
kube-system l7-default-backend-5d5b9874d5-n44q7 1/1 Running 0 14m
kube-system metrics-server-v0.2.1-7486f5bd67-h9fq6 2/2 Running 0 13m

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[365]

Next up, we're going to need to create a Google Cloud firewall rule so each cluster can talk
to the other. We're going to need to gather all cluster networking data (tags and CIDR), and
then create firewall rules with gcloud. The CIDR ranges will look something like this:

anonymuse@cloudshell:~ (gsw-k8s-3)$ gcloud container clusters list --
format='value(clusterIpv4Cidr)'
10.8.0.0/14
10.40.0.0/14

The tags will be per-node, resulting in eight total tags:

anonymuse@cloudshell:~ (gsw-k8s-3)$ gcloud compute instances list --
format='value(tags.items.[0])'
gke-cluster-1-37037bd0-node
gke-cluster-1-37037bd0-node
gke-cluster-1-37037bd0-node
gke-cluster-1-37037bd0-node
gke-cluster-2-909a776f-node
gke-cluster-2-909a776f-node
gke-cluster-2-909a776f-node
gke-cluster-2-909a776f-node

Let's run the full command now to create the firewall rules. Note the join_by function is a
neat hack that allows us to join multiple elements of an array in Bash:

function join_by { local IFS="$1"; shift; echo "$*"; }
ALL_CLUSTER_CIDRS=$(gcloud container clusters list --
format='value(clusterIpv4Cidr)' | sort | uniq)
echo $ALL_CLUSTER_CDIRS
ALL_CLUSTER_CIDRS=$(join_by , $(echo "${ALL_CLUSTER_CIDRS}"))
echo $ALL_CLUSTER_CDIRS
ALL_CLUSTER_NETTAGS=$(gcloud compute instances list --
format='value(tags.items.[0])' | sort | uniq)
echo $ALL_CLUSTER_NETTAGS
ALL_CLUSTER_NETTAGS=$(join_by , $(echo "${ALL_CLUSTER_NETTAGS}"))
echo $ALL_CLUSTER_NETTAGS
gcloud compute firewall-rules create istio-multicluster-test-pods \
 --allow=tcp,udp,icmp,esp,ah,sctp \
 --direction=INGRESS \
 --priority=900 \
 --source-ranges="${ALL_CLUSTER_CIDRS}" \
 --target-tags="${ALL_CLUSTER_NETTAGS}"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[366]

That will set up our security firewall rules, which should look similar to this in the GUI
when complete:

Let's create an admin role that we can use in future steps. First, set KUBE_USER to the email
address associated with your GCP account with KUBE_USER="<YOUR_EMAIL>". Next, we'll
create a clusterrolebinding:

kubectl create clusterrolebinding gke-cluster-admin-binding \
 --clusterrole=cluster-admin \
 --user="${KUBE_USER}"
clusterrolebinding "gke-cluster-admin-binding" created

Next up, we'll install the Istio control plane with Helm, create a namespace, and deploy
Istio using a chart.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[367]

Check to make sure you're using cluster-1 as your context with kubectl config
current-context. Next, we'll install Helm with these commands:

curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get >
get_helm.sh
 chmod 700 get_helm.sh
./get_helm.sh
Create a role for tiller to use. Youll need to clone the Istio repo first:
git clone https://github.com/istio/istio.git && cd istio
Now, create a service account for tiller.
kubectl apply -f install/kubernetes/helm/helm-service-account.yaml
And then we can intialize Tiller on the cluster.
/home/anonymuse/.helm
Creating /home/anonymuse/.helm/repository
...
To prevent this, run `helm init` with the --tiller-tls-verify flag.
For more information on securing your installation see:
https://docs.helm.sh/using_helm/#securing-your-helm-installation
Happy Helming!
anonymuse@cloudshell:~/istio (gsw-k8s-3)$

Now, switch to another, Istio-specific context where we'll install Istio in its own namespace:

kubectl config use-context "gke_${proj}_${zone}_cluster-1"

Copy over the installation chart for Istio into our home directory:

helm template install/kubernetes/helm/istio --name istio --namespace istio-
system > $HOME/istio_master.yaml

Create a namespace for it to be used in, install it, and enable injection:

kubectl create ns istio-system \
 && kubectl apply -f $HOME/istio_master.yaml \
 && kubectl label namespace default istio-injection=enabled

We'll now set some more environment variables to collect the IPs of our pilot, statsD,
policy, and telemetry pods:

export PILOT_POD_IP=$(kubectl -n istio-system get pod -l istio=pilot -o
jsonpath='{.items[0].status.podIP}')
export POLICY_POD_IP=$(kubectl -n istio-system get pod -l istio=mixer -o
jsonpath='{.items[0].status.podIP}')
export STATSD_POD_IP=$(kubectl -n istio-system get pod -l istio=statsd-
prom-bridge -o jsonpath='{.items[0].status.podIP}')
export TELEMETRY_POD_IP=$(kubectl -n istio-system get pod -l istio-mixer-
type=telemetry -o jsonpath='{.items[0].status.podIP}')

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[368]

We can now generate a manifest for our remote cluster, cluster-2:

helm template install/kubernetes/helm/istio-remote --namespace istio-system
\
 --name istio-remote \
 --set global.remotePilotAddress=${PILOT_POD_IP} \
 --set global.remotePolicyAddress=${POLICY_POD_IP} \
 --set global.remoteTelemetryAddress=${TELEMETRY_POD_IP} \
 --set global.proxy.envoyStatsd.enabled=true \
 --set global.proxy.envoyStatsd.host=${STATSD_POD_IP} > $HOME/istio-
remote.yaml

Now, we'll instill the minimal Istio components and sidecar inject in our target, cluster-2.
Run the following commands in order:

kubectl config use-context "gke_${proj}_${zone}_cluster-2"
kubectl create ns istio-system
kubectl apply -f $HOME/istio-remote.yaml
kubectl label namespace default istio-injection=enabled

Now, we'll create more scaffolding to take advantage of the features of Istio. We'll need to
create a file in which we can configure kubeconfig to work with Istio. First, change back
into your home directory with cd. The --minify flag will ensure that you only see output
associated with your current context. Now, enter the following groups of commands:

export WORK_DIR=$(pwd)
CLUSTER_NAME=$(kubectl config view --minify=true -o
"jsonpath={.clusters[].name}")
CLUSTER_NAME="${CLUSTER_NAME##*_}"
export KUBECFG_FILE=${WORK_DIR}/${CLUSTER_NAME}
SERVER=$(kubectl config view --minify=true -o
"jsonpath={.clusters[].cluster.server}")
NAMESPACE=istio-system
SERVICE_ACCOUNT=istio-multi
SECRET_NAME=$(kubectl get sa ${SERVICE_ACCOUNT} -n ${NAMESPACE} -o
jsonpath='{.secrets[].name}')
CA_DATA=$(kubectl get secret ${SECRET_NAME} -n ${NAMESPACE} -o
"jsonpath={.data['ca\.crt']}")
TOKEN=$(kubectl get secret ${SECRET_NAME} -n ${NAMESPACE} -o
"jsonpath={.data['token']}" | base64 --decode)

Create a file with the following cat command. This will inject the contents here into a file
that's going to be located in ~/${WORK_DIR}/{CLUSTER_NAME}:

cat <<EOF > ${KUBECFG_FILE}
apiVersion: v1
clusters:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[369]

 - cluster:
 certificate-authority-data: ${CA_DATA}
 server: ${SERVER}
 name: ${CLUSTER_NAME}
contexts:
 - context:
 cluster: ${CLUSTER_NAME}
 user: ${CLUSTER_NAME}
 name: ${CLUSTER_NAME}
current-context: ${CLUSTER_NAME}
kind: Config
preferences: {}
users:
 - name: ${CLUSTER_NAME}
 user:
 token: ${TOKEN}
EOF

Next up, we'll create a secret so that the control plane for Istio that exists on cluster-1 can
access istio-pilot on cluster-2. Switch back to the first cluster, create a Secret, and
label it:

anonymuse@cloudshell:~ (gsw-k8s-3)$ kubectl config use-context gke_gsw-
k8s-3_us-east1-b_cluster-1
Switched to context "gke_gsw-k8s-3_us-east1-b_cluster-1".
kubectl create secret generic ${CLUSTER_NAME} --from-file ${KUBECFG_FILE} -
n ${NAMESPACE}
kubectl label secret ${CLUSTER_NAME} istio/multiCluster=true -n
${NAMESPACE}

Once we've completed these tasks, let's use all of this machinery to deploy one of Google's
code examples, bookinfo, across both clusters. Run this on the first:

kubectl config use-context "gke_${proj}_${zone}_cluster-1"
kubectl apply -f samples/bookinfo/platform/kube/bookinfo.yaml
kubectl apply -f samples/bookinfo/networking/bookinfo-gateway.yaml
kubectl delete deployment reviews-v3

Now, create a file called reviews-v3.yaml for deploying bookinfo to the remote cluster.
The file contents can be found in the repository directory of this chapter:

###
#######################
Ratings service
###
#######################
apiVersion: v1
kind: Service

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[370]

metadata:
 name: ratings
 labels:
 app: ratings
spec:
 ports:
 - port: 9080
 name: http

###
#######################
Reviews service
###
#######################
apiVersion: v1
kind: Service
metadata:
 name: reviews
 labels:
 app: reviews
spec:
 ports:
 - port: 9080
 name: http
 selector:
 app: reviews

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: reviews-v3
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: reviews
 version: v3
 spec:
 containers:
 - name: reviews
 image: istio/examples-bookinfo-reviews-v3:1.5.0
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 9080

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[371]

Let's install this deployment on the remote cluster, cluster-2:

kubectl config use-context "gke_${proj}_${zone}_cluster-2"
kubectl apply -f $HOME/reviews-v3.yaml

Once this is complete, you'll need to get access to the external IP of Istio's isto-
ingressgateway service, in order to view the data in the bookinfo homepage. You can
run this command to open that up. You'll need to reload that page dozens of times in order
to see Istio's load balancing take place. You can hold down F5 in order to reload the page
many times.

You can access http://<GATEWAY_IP>/productpage in order to see the reviews.

Deleting the cluster
In order to clean up the control panel once you're finished, you can run the following
commands.

First, delete the firewall rules:

gcloud compute firewall-rules delete istio-multicluster-test-pods
The following firewalls will be deleted:
 - [istio-multicluster-test-pods]
Do you want to continue (Y/n)? y
Deleted
[https://www.googleapis.com/compute/v1/projects/gsw-k8s-3/global/firewalls/
istio-multicluster-test-pods].
anonymuse@cloudshell:~ (gsw-k8s-3)$

Next up, we'll delete our cluster-admin-role binding:

anonymuse@cloudshell:~ (gsw-k8s-3)$ kubectl delete clusterrolebinding gke-
cluster-admin-bindingclusterrolebinding "gke-cluster-admin-binding" deleted
anonymuse@cloudshell:~ (gsw-k8s-3)$

Lastly, let's delete our GKE clusters:

anonymuse@cloudshell:~ (gsw-k8s-3)$ gcloud container clusters delete
cluster-1 --zone $zone
The following clusters will be deleted. - [cluster-1] in [us-east1-b]
Do you want to continue (Y/n)? y
Deleting cluster cluster-1...done.
Deleted
[https://container.googleapis.com/v1/projects/gsw-k8s-3/zones/us-east1-b/cl
usters/cluster-1].
anonymuse@cloudshell:~ (gsw-k8s-3)

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[372]

In the GUI, you can see the cluster being deleted:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[373]

You can also see it on the command line from your watch command:

Run the same command with your other cluster. You can double-check the Compute
Engine dashboard to ensure that your instances are being deleted:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Federation and Multi-Tenancy Chapter 11

[374]

Summary
In this chapter, we looked at the new federation capabilities in Kubernetes. We saw how we
can deploy clusters to multiple cloud providers and manage them from a single control
plane. We also deployed an application across clusters in both AWS and GCE. While these
features are new and still mainly in alpha and beta, we should now have the skills to utilize
them as they evolve and become part of the standard Kubernetes operating model.

In the next chapter, we will take a look at another advanced topic: security. We will cover
the basics for secure containers and also how to secure your Kubernetes cluster. We will
also look at the Secrets construct, which gives us the capability to store sensitive
configuration data similar to our preceding ConfigMap example.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

12
Cluster Authentication,

Authorization, and Container
Security

This chapter will discuss the basics of container security from the container runtime level to
the host itself. We will discuss how to apply these concepts to workloads running in a
Kubernetes cluster and some of the security concerns and practices that relate specifically to
running your Kubernetes cluster.

This chapter will discuss the following topics:

Basic container security
Container image security and continuous vulnerability scanning
Kubernetes cluster security
Kubernetes secrets

Basics of container security
Container security is a deep subject area and in itself can fill its own book. Having said this,
we will cover some of the high-level concerns and give you a starting point so that you can
start thinking about this area.

In the A brief overview of containers section of Chapter 1, Introduction to Kubernetes, we
looked at some of the core isolation features in the Linux kernel that enable container
technology. Understanding the details of how containers work is the key to grasping the
various security concerns in managing them.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Authentication, Authorization, and Container Security Chapter 12

[376]

A good paper to dive deeper is NCC's Whitepaper, Understanding and Hardening Linux
Containers. In section 7, the paper explores the various attack vectors of concern for
container deployments, which I will summarize.

Keeping containers contained
One of the most obvious features that is discussed in the paper we mentioned in the
preceding section is that of escaping the isolation/virtualization of the container construct.
Modern container implementations guard against using namespaces to isolate processes as
well as allowing the control of Linux capabilities that are available to a container.
Additionally, there is an increased move toward secure default configurations of the out-of-
the-box container environment. For example, by default, Docker only enables a small set of
capabilities. Networking is another avenue of escape and it can be challenging since there
are a variety of network options that plug into most modern container setups.

The next area discussed in the paper is that of attacks between two containers. The User
namespace model gives us added protection here by mapping the root user within the
container to a lower-level user on the host machine. Networking is, of course, still an issue,
and something that requires proper diligence and attention when selecting and
implementing your container networking solution.

Attacks within the container itself are another vector and, as with previous concerns,
namespaces and networking are key to protection here. Another aspect that is vital in this
scenario is the application security itself. The code still needs to follow secure coding
practices and the software should be kept up to date and patched regularly. Finally, the
efficiency of container images has an added benefit of shrinking the attack surface. The
images should be built with only the packages and software that's necessary.

Resource exhaustion and orchestration security
Similar to the denial-of-service (DoS) attacks, we've seen in various other areas of
computing that resource exhaustion is very much a pertinent concern in the container
world. While cgroups provide some limitations on resource usage for things such as CPU,
memory, and disk usage, there are still valid attack avenues for resource exhaustion. Tools
such as Docker offer some starting defaults to the cgroups limitations, and Kubernetes also
offers additional limits that can be placed on groups of containers running in the cluster. It's
important to understand these defaults and to adjust for your deployments.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Authentication, Authorization, and Container Security Chapter 12

[377]

While the Linux kernel and the features that enable containers give us some form of
isolation, they are fairly new to the Linux operating system. As such, they still contain their
own bugs and vulnerabilities. The built-in mechanisms for capabilities and namespaces can
and do have issues, and it is important to track these as part of your secure container
operations.

The final area covered in the NCC paper is the attack of the container management layer
itself. The Docker engine, image repositories, and orchestration tools are all significant
vectors of attack and should be considered when developing your strategy. We'll look in
more depth at how we can address the repositories and Kubernetes as an orchestration
layer in the following sections.

If you're interested in knowing more about the specific security features of
Docker's implementation, take a look here: https:/ /docs. docker. com/
engine/ security/ security/ .

Image repositories
Vulnerability management is a critical component of any modern day IT operation. Zero-
day vulnerabilities are on the rise and even those vulnerabilities with patches can be
cumbersome to remediate. First, application owners must be made aware of their
vulnerabilities and potential patches. Then, these patches must be integrated into systems
and code, and often this requires additional deployments or maintenance windows. Even
when there is visibility to vulnerabilities, there is often a lag in remediation, often taking
large organizations several months to patch.

While containers greatly improve the process of updating applications and minimizing
downtime, there still remains a challenge that's inherent in vulnerability management.
Especially since an attacker only needs to expose one such vulnerability, making anything
less than 100% of the systems patched is a risk of compromise.

What's needed is a faster feedback loop in addressing vulnerabilities. Continuous scanning
and tying into the software deployment life cycle is key to speeding up the information and
remediation of vulnerabilities. Luckily, this is exactly the approach that's being built into
the latest container management and security tooling.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/

Cluster Authentication, Authorization, and Container Security Chapter 12

[378]

Continuous vulnerability scanning
One such open source project that has emerged in this space is clair. clair is an open source
project for the static analysis of vulnerabilities in appc (https:/ /github. com/ appc/ spec)
and Docker (https:/ / github. com/ moby/ moby/ blob/ master/ image/ spec/ v1.md) containers.

You can visit clair at the following link: https:/ /github. com/ coreos/
clair.

clair scans your code against Common Vulnerabilities and Exploits (CVEs). It can be
integrated into your CI/CD pipeline and run as a response to new builds. If vulnerabilities
are found, they can be taken as feedback into the pipeline, even stop deployment, and fail
the build. This forces developers to be aware of and remediate vulnerabilities during their
normal release process.

clair can be integrated with a number of container image repositories and CI/CD pipelines.

clair can even be deployed on Kubernetes: https:/ / github. com/ coreos/
clair/ blob/ master/ Documentation/ running- clair. md#kubernetes-
helm.

clair is also used as the scanning mechanism in CoreOS's Quay image repository. Quay
offers a number of enterprise features, including continuous vulnerability scanning
(https://quay.io/).

Both Docker Hub and Docker Cloud support security scanning. Again, containers that are
pushed to the repository are automatically scanned against CVEs, and notifications of
vulnerabilities are sent as a result of any findings. Additionally, binary analysis of the code
is performed to match the signature of the components with that of known versions.

There are a variety of other scanning tools that can be used as well for scanning your image
repositories, including OpenSCAP, Twistlock, Aqua Sec, and many more.

Image signing and verification
Whether you are using a private image repository in-house or a public repository such as
Docker Hub, it's important to know that you are only running the code that your
developers have written. The potential for malicious code or man-in-the-middle attacks on
downloads is an important factor in protecting your container images.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/appc/spec
https://github.com/appc/spec
https://github.com/appc/spec
https://github.com/appc/spec
https://github.com/appc/spec
https://github.com/appc/spec
https://github.com/appc/spec
https://github.com/appc/spec
https://github.com/appc/spec
https://github.com/appc/spec
https://github.com/appc/spec
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md#kubernetes-helm
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/

Cluster Authentication, Authorization, and Container Security Chapter 12

[379]

As such, both rkt and Docker support the ability to sign images and verify that the contents
have not changed. Publishers can use keys to sign the images when they are pushed to the
repositories, and users can verify the signature on the client side when downloading for
use.

This is from the rkt documentation:

"Before executing a remotely fetched ACI, rkt will verify it based on attached
signatures generated by the ACI creator."

For more information, visit the following links:

https:/ /github. com/rkt/ rkt/ blob/ master/ Documentation/
subcommands/ trust. md

https:/ /github. com/rkt/ rkt/ blob/ master/ Documentation/
signing- and- verification- guide. md

This is from the Docker documentation:
"Content trust gives you the ability to verify both the integrity and the publisher
of all the data received from a registry over any channel. "

For more information, visit https:/ /docs. docker. com/engine/ security/
trust/ content_ trust/ .
This is from the Docker Notary GitHub page:

"The Notary project comprises a server and a client for running and interacting
with trusted collections."

For more information, visit https:/ /github. com/docker/ notary.

Kubernetes cluster security
Kubernetes has continued to add a number of security features in their latest releases and
has a well-rounded set of control points that can be used in your cluster – everything from
secure node communication to pod security and even the storage of sensitive configuration
data.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/subcommands/trust.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/rkt/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://coreos.com/rkt/docs/latest/signing-and-verification-guide.html
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://github.com/docker/notary
https://github.com/docker/notary
https://github.com/docker/notary
https://github.com/docker/notary
https://github.com/docker/notary
https://github.com/docker/notary
https://github.com/docker/notary
https://github.com/docker/notary
https://github.com/docker/notary
https://github.com/docker/notary
https://github.com/docker/notary

Cluster Authentication, Authorization, and Container Security Chapter 12

[380]

Secure API calls
During every API call, Kubernetes applies a number of security controls. This security life
cycle is depicted here:

API call life cycle

After secure TLS communication is established, the API server runs through authorization
and authentication. Finally, an admission controller loop is applied to the request before it
reaches the API server.

Secure node communication
Kubernetes supports the use of secure communication channels between the API server
and any client, including the nodes themselves. Whether it's a GUI or command-line utility
such as kubectl, we can use certificates to communicate with the API server. Hence, the
API server is the central interaction point for any changes to the cluster and is a critical
component to secure.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Authentication, Authorization, and Container Security Chapter 12

[381]

In deployments such as GCE, the kubelet on each node is deployed for secure
communication by default. This setup uses TLS bootstrapping and the new certificates' API
to establish a secure connection with the API server using TLS client certificates and a
Certificate Authority (CA) cluster.

Authorization and authentication plugins
The plugin mechanisms for authentication and authorization in Kubernetes are still being
developed. They have come a long way, but still have plugins in beta stages and
enhancements in the works. There are also third-party providers that integrate with the
features here, so bear that in mind when building your hardening strategy.

Authentication is currently supported in the form of tokens, passwords, and certificates,
with plans to add the plugin capability at a later stage. OpenID Connect tokens are
supported and several third-party implementations, such as Dex from CoreOS and user
account and authentication from Cloud Foundry, are available.

Authorization already supports three modes. The role-based access control (RBAC) mode
recently went to general availability in the 1.8 release and brings the standard role-based
authentication model to Kubernetes. Attribute-based access control (ABAC) has long
been supported and lets a user define privileges via attributes in a file.

Additionally, a Webhook mechanism is supported, which allows for integration with third-
party authorization via REST web service calls. Finally, we have the new
node authorization method, which grants permissions to kubelets based on the pods they
are scheduled to run.

You can learn more about each area at the following links:

http:/ / kubernetes. io/ docs/ admin/ authorization/

http:/ / kubernetes. io/ docs/ admin/ authentication/

https:/ /kubernetes. io/ docs/ reference/ access- authn-
authz/ node/

Admission controllers
Kubernetes also provides a mechanism for integrating, with additional verification as a
final step. This could be in the form of image scanning, signature checks, or anything that is
able to respond in the specified fashion.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authorization/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/node/

Cluster Authentication, Authorization, and Container Security Chapter 12

[382]

When an API call is made, the hook is called and that server can run its
verification. Admission controllers can also be used to transform requests and add or alter
the original request. Once the operations are run, a response is then sent back with a status
that instructs Kubernetes to allow or deny the call.

This can be especially helpful for verifying or testing images, as we mentioned in the last
section. The ImagePolicyWebhook plugin provides an admission controller that allows for
integration with additional image inspection.

For more information, visit the Using Admission Controller page in the
following documentation: https:/ /kubernetes. io/ docs/ admin/
admission- controllers/ .

RBAC
As mentioned earlier in this chapter, Kubernetes has now made RBAC a central component
to authorization within the cluster. Kubernetes offers two levels for this kind of control.
First, there is a ClusterRole, which provides cluster-wide authorization to resources. This is
handy for enforcing access control across multiple teams, products, or to cluster-wide
resources such as the underlying cluster nodes. Second, we have a Role, which simply
provides access to resources within a specific namespace.

Once you have a role, you need a way to provide users with membership to that role. These
are referred to as Bindings, and again we have ClusterRoleBinding and RoleBinding. As with
the roles themselves, the former is meant for cluster-wide access and the latter is meant to
apply within a specific namespace.

We will not dive into the details of RBAC in this book, but it is something you'll want to
explore as you get ready for production grade deployments. The PodSecurityPolicy
discussed in the next section typically utilizes Roles and RoleBindings to control which
policies each user has access to.

For more information, please refer to the documentation here: https:/ /
kubernetes. io/ docs/ reference/ access- authn- authz/ rbac/ .

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/admin/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Cluster Authentication, Authorization, and Container Security Chapter 12

[383]

Pod security policies and context
One of the latest additions to the Kubernetes' security arsenal is that of pod security policies
and contexts. These allow users to control users and groups for container processes and
attached volumes, limit the use of host networks or namespaces, and even set the root
filesystem to read-only. Additionally, we can limit the capabilities available and also set
SELinux options for the labels that are applied to the containers in each pod.

In addition to SELinux, Kubernetes also added beta support for using
AppArmor with your pods by using annotations. For more information,
refer to the following documentation page: https:/ /kubernetes. io/
docs/ admin/ apparmor/ .

PodSecurityPolicies are enforced using the admission controller we spoke of earlier in this
book. By default, Kubernetes doesn't enable PodSecurityPolicy, so if you have a GKE
cluster running, you can try the following:

$ kubectl get psp

You should see 'No resources found.', assuming you haven't enabled them.

Let's try an example by using the Docker image from our previous chapters. If we use the
following run command on a cluster with no PodSecurityPolicy applied, it will happily
run:

$ kubectl run myroottest --image=jonbaier/node-express-info:latest

Follow this with kubectl get pods and in a minute or so we should see a pod starting
with myroottest in the listings.

Go ahead and clean this up with the following code before proceeding:

$ kubectl delete deployment myroottest

Enabling PodSecurityPolicies
Now, let's try this with a cluster that can utilize PodSecurityPolicies. If you are using GKE,
it is quite easy to create a cluster with PodSecurityPolicy enabled. Note you will need the
Beta APIs enabled for this:

$ gcloud beta container clusters create [Cluster Name] --enable-pod-
security-policy --zone=[Zone To Deply Cluster]

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/admin/apparmor/
https://kubernetes.io/docs/admin/apparmor/
https://kubernetes.io/docs/admin/apparmor/
https://kubernetes.io/docs/admin/apparmor/
https://kubernetes.io/docs/admin/apparmor/
https://kubernetes.io/docs/admin/apparmor/
https://kubernetes.io/docs/admin/apparmor/
https://kubernetes.io/docs/admin/apparmor/
https://kubernetes.io/docs/admin/apparmor/
https://kubernetes.io/docs/admin/apparmor/
https://kubernetes.io/docs/admin/apparmor/
https://kubernetes.io/docs/admin/apparmor/
https://kubernetes.io/docs/admin/apparmor/

Cluster Authentication, Authorization, and Container Security Chapter 12

[384]

If you have an existing GKE cluster, you can enable it with a command
similar to the preceding one. Simply replace the create keyword
with update.

For clusters created with kube-up, like we saw in Chapter 1, Introduction
to Kubernetes, you'll need to enable the admission controller on the API
server. Take a look here for more information: https:/ /kubernetes. io/
docs/ concepts/ policy/ pod-security- policy/ #enabling- pod-security-
policies.

Once you have PodSecurityPolicy enabled, you can see the applied policies by using the
following code:

$ kubectl get psp

GKE default pod security policies

You'll notice a few predefined policies that GKE has already defined. You can explore the
details and the YAML used to create these policies with the following code:

$ kubectl get psp/[PSP Name] -o yaml

It's important to note that PodSecurityPolicies work with the RBAC features of Kubernetes.
There are a few default roles, role bindings, and namespaces that are defined by GKE. As
such, we will see different behaviors based on how we interact with Kubernetes. For
example, by using kubectl in a GCloud Shell, you may be sending commands as a cluster
admin and therefore have access to all policies, including gce.privileged. However,
using the kubectl run command, as we did previously, will invoke the pods through the
kube-controller-manager, which will be restricted to the policies bound to its role. Thus, if
you simply create a pod with kubectl, it will create it without an issue, but by using the
run command, we will be restricted.

Sticking to our previous method of using kubectl run, let's try the same deployment as
the preceding one:

$ kubectl run myroottest --image=jonbaier/node-express-info:latest

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies

Cluster Authentication, Authorization, and Container Security Chapter 12

[385]

Now, if we follow this with kubectl get pods, we won't see any pods prefaced with
myroottest. We can dig a bit deeper by describing our deployment:

$ kubectl describe deployment myroottest

By using the name of the replica set listed in the output from the preceding command, we
can then get the details on the failure. Run the following command:

$ kubectl describe rs [ReplicaSet name from deployment describe]

Under the events at the bottom, you will see the following pod security policy validation
error:

Replica set pod security policy validation error

Again, because the run command uses the controller manager and that role has no
bindings that allow the use of the existing PodSecurityPolicies, we are unable to run any
pods.

Understanding that running containers securely is not merely the task of administrators
adding constraints is important. The work must be done in collaboration with developers,
who will properly create the images.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Authentication, Authorization, and Container Security Chapter 12

[386]

You can find all of the possible parameters for PodSecurityPolicies in the source code, but
I've created the following table for convenience. You can find more handy lookups like this
on my new site, http:/ /www. kubesheets. com:

Parameter Type Description Required

Privileged bool
Allows or disallows running a
pod as privileged. No

DefaultAddCapabilities []v1.Capaility

This defines a default set of
capabilities that are added to
the container. If the pod
specifies a capability drop that
will override, then add it here.
Values are strings of POSIX
capabilities minus the leading
CAP_. For example,
CAP_SETUID would be
SETUID (http:/ /man7. org/
linux/ man- pages/ man7/
capabilities. 7. html).

No

RequiredDropCapabilities []v1.Capaility

This defines a set of capabilities
that must be dropped from a
container. The pod cannot
specify any of these
capabilities.
Values are strings of POSIX
capabilities minus the leading
CAP_. For example,
CAP_SETUID would be
SETUID (http:/ /man7. org/
linux/ man- pages/ man7/
capabilities. 7. html).

No

AllowedCapabilities []v1.Capaility

This defines a set of capabilities
that are allowed and can be
added to a container. The pod
can specify any of these
capabilities.
Values are strings of POSIX
capabilities minus the leading
CAP_. For example,
CAP_SETUID would be
SETUID (http:/ /man7. org/
linux/ man- pages/ man7/
capabilities. 7. html).

No

Volumes []string

This list defines which volumes
can be used. Leave this empty
for all types (https:/ /github.
com/ kubernetes/ kubernetes/
blob/ release- 1. 5/pkg/ apis/
extensions/ v1beta1/ types.
go#L1127).

No

HostNetwork bool
This allows or disallows the
pod to use the host network. No

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.kubesheets.com
http://www.kubesheets.com
http://www.kubesheets.com
http://www.kubesheets.com
http://www.kubesheets.com
http://www.kubesheets.com
http://www.kubesheets.com
http://www.kubesheets.com
http://www.kubesheets.com
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127
https://github.com/kubernetes/kubernetes/blob/release-1.5/pkg/apis/extensions/v1beta1/types.go#L1127

Cluster Authentication, Authorization, and Container Security Chapter 12

[387]

HostPorts []HostPortRange
This lets us restrict allowable
host ports that can be exposed. No

HostPID bool
This allows or disallows the
pod to use the host PID. No

HostIPC bool
This allows or disallows the
pod to use the host IPC. No

SELinux SELinuxStrategyOptions

Set it to one of the strategy
options, as defined
here: https:/ / kubernetes. io/
docs/ concepts/ policy/ pod-
security- policy/ #selinux.

Yes

RunAsUser RunAsUserStrategyOptions

Set it to one of the strategy
options, as defined
here: https:/ / kubernetes. io/
docs/ concepts/ policy/ pod-
security- policy/ #users- and-
groups.

Yes

SupplementalGroups SupplementalGroupsStrategyOptions

Set it to one of the strategy
options, as defined
here: https:/ / kubernetes. io/
docs/ concepts/ policy/ pod-
security- policy/ #users- and-
groups

Yes

FSGroup FSGroupStrategyOptions

Set it to one of the strategy
options, as defined
here: https:/ / kubernetes. io/
docs/ user- guide/ pod-
security- policy/ #strategies

Yes

ReadOnlyRootFilesystem bool

Setting this to true will either
deny the pod or force it to run
with a read-only root
filesystem.

No

allowedHostPaths []AllowedHostPath
This provides a whitelist of
host paths that can be used at
volumes.

No

allowedFlexVolumes []AllowedFlexVolume
This provides a whitelist of flex
volumes that can be mounted. No

allowPrivilegeEscalation bool

This governs where setuid
can be used to change the user
a process is running under. Its
default is true.

No

defaultAllowPrivilegeEscalation bool
Sets the default for
allowPrivilegeEscalation. No

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies
https://kubernetes.io/docs/user-guide/pod-security-policy/#strategies

Cluster Authentication, Authorization, and Container Security Chapter 12

[388]

Additional considerations
In addition to the features we just reviewed, Kubernetes has a number of other constructs
that should be considered in your overall cluster hardening process. Earlier in this book, we
looked at namespaces that provide a logical separation for multi-tenancy. While the
namespaces themselves do not isolate the actual network traffic, some of the network
plugins, such as Calico and Canal, provide additional capability for network policies. We
also looked at quotas and limits that can be set for each namespace, which should be used
to prevent a single tenant or project from consuming too many resources within the cluster.

Securing sensitive application data (secrets)
Sometimes, our application needs to hold sensitive information. This can be credentials or
tokens to log in to a database or service. Storing this sensitive information in the image
itself is something to be avoided. Here, Kubernetes provides us with a solution in the
construct of secrets.

Secrets give us a way to store sensitive information without including plaintext versions in
our resource definition files. Secrets can be mounted to the pods that need them and then
accessed within the pod as files with the secret values as content. Alternatively, you can
also expose the secrets via environment variables.

Given that Kubernetes still relies on plaintext etcd storage, you may want
to explore integration with more mature secrets vaults, such as Vault from
Hashicorp. There is even a GitHub project for integration: https:/ /
github. com/ Boostport/ kubernetes- vault.

We can easily create a secret either with YAML or on the command line. Secrets do need to
be base-64 encoded, but if we use the kubectl command line, this encoding is done for us.

Let's start with the following secret:

$ kubectl create secret generic secret-phrases --from-literal=quiet-
phrase="Shh! Dont' tell"

We can then check for the secret with this command:

$ kubectl get secrets

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault

Cluster Authentication, Authorization, and Container Security Chapter 12

[389]

Now that we have successfully created the secret, let's make a pod that can use the secret.
Secrets are consumed in pods by way of attached volumes. In the following secret-
pod.yaml file, you'll notice that we use volumeMount to mount the secret to a folder in our
container:

apiVersion: v1
kind: Pod
metadata:
 name: secret-pod
spec:
 containers:
 - name: secret-pod
 image: jonbaier/node-express-info:latest
 ports:
 - containerPort: 80
 name: web
 volumeMounts:
 - name: secret-volume
 mountPath: /etc/secret-phrases
 volumes:
 - name: secret-volume
 secret:
 secretName: secret-phrases

Create this pod with kubectl create -f secret-pod.yaml. Once created, we can get a
bash shell in the pod with kubectl exec and then change directories to the
/etc/secret-phrases folder that we set up in the pod definition. Listing this directory
reveals a single file with the name of the secret that we created earlier:

$ kubectl exec -it secret-pod bash
$ cd /etc/secret-phrases
$ ls

If we then display its contents, we should see the phrase we encoded previously, Shh!
Dont' tell:

$ cat quiet-phrase

Typically, this would be used for a username and password to a database or service, or any
sensitive credentials and configuration data.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cluster Authentication, Authorization, and Container Security Chapter 12

[390]

Bear in mind that secrets are still in their early stages, but they are a vital component for
production operations. There are several improvements being planned for future releases.
At the moment, secrets are still stored in plaintext in the etcd server. However, the secrets
construct does allow us to control which pods can access it, and it stores the information on
the tmpfs, but does not store it at rest for each pod. You can limit users with access to etcd
and perform additional wipe procedures when you decommission servers, but you'll likely
want more protection in place for a production-ready system.

Summary
In this chapter, we took a look at basic container security and some essential areas of
consideration. We also touched on basic image security and continuous vulnerability
scanning. Later in this chapter, we looked at the overall security features of Kubernetes,
including secrets for storing sensitive configuration data, secure API calls, and even setting
up security policies and contexts for pods running on our cluster. You should now have a
solid starting point for securing your cluster and moving toward production.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

13
Running Stateful Applications

with Kubernetes
In this chapter, we will look into what it takes to run stateful applications on Kubernetes.
Kubernetes takes a lot of work out of our hands by automatically starting and restarting
pods across the cluster nodes as needed, based on complex requirements and
configurations such as namespaces, limits, and quotas. But when pods run storage-aware
software, such as databases and queues, relocating a pod can cause the system to break.
First, we'll understand the essence of stateful pods and why they are much more
complicated to manage in Kubernetes. We will look at a few ways to manage the
complexity, such as shared environment variables and DNS records. In some situations, a
redundant in-memory state, a DaemonSet, or persistent storage claims can do the trick. The
main solution that Kubernetes promotes for state-aware pods is the StatefulSet (previously
called PetSet) resource, which allows us to manage an indexed collection of pods with
stable properties. Finally, we will dive deep into a full-fledged example of running a
Cassandra cluster on top of Kubernetes.

Stateful versus stateless applications in
Kubernetes
A stateless Kubernetes application is an application that doesn't manage its state in the
Kubernetes cluster. All of the state is stored outside the cluster and the cluster containers
access it in some manner. In this section, we'll understand why state management is critical
to the design of a distributed system and the benefits of managing state within the
Kubernetes cluster.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[392]

Understanding the nature of distributed data-
intensive apps
Let's start from the basics here. Distributed applications are a collection of processes that
run on multiple machines, process inputs, manipulate data, expose APIs, and possibly have
other side effects. Each process is a combination of its program, its runtime environment,
and its inputs and outputs. The programs you write at school get their input as command-
line arguments, maybe they read a file or access a database, and then write their results to
the screen or a file or a database. Some programs keep state in-memory and can serve
requests over the network. Simple programs run on a single machine, can hold all their
state in memory or read from a file. Their runtime environment is their operating system. If
they crash, the user has to restart them manually. They are tied to their machine. A
distributed application is a different animal. A single machine is not enough to process all
the data or serve all the requests fast enough. A single machine can't hold all the data. The
data that needs to be processed is so large that it can't be downloaded cost-effectively into
each processing machine. Machines can fail and need to be replaced. Upgrades need to be
performed over all the processing machines. Users may be distributed across the globe.

Taking all these issues into account, it becomes clear that the traditional approach doesn't
work. The limiting factor becomes the data. Users/client must receive only summary or
processed data. All massive data processing must be done close to the data itself because
transferring data is prohibitively slow and expensive. Instead, the bulk of processing code
must run in the same data center and network environment of the data.

Why manage state in Kubernetes?
The main reason to manage state in Kubernetes itself as opposed to a separate cluster is that
a lot of the infrastructure needed to monitor, scale, allocate, secure and operate a storage
cluster is already provided by Kubernetes. Running a parallel storage cluster will lead to a
lot of duplicated effort.

Why manage state outside of Kubernetes?
Let's not rule out the other option. It may be better in some situations to manage state in a
separate non-Kubernetes cluster, as long as it shares the same internal network (data
proximity trumps everything).

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[393]

Some valid reasons are as follows:

You already have a separate storage cluster and you don't want to rock the boat
Your storage cluster is used by other non-Kubernetes applications
Kubernetes support for your storage cluster is not stable or mature enough

You may want to approach stateful applications in Kubernetes incrementally, starting with
a separate storage cluster and integrating more tightly with Kubernetes later.

Shared environment variables versus DNS
records for discovery
Kubernetes provides several mechanisms for global discovery across the cluster. If your
storage cluster is not managed by Kubernetes, you still need to tell Kubernetes pods how to
find it and access it. There are two main methods:

DNS
Environment variables

In some cases, you may want to use both where environment variables can override DNS.

Accessing external data stores via DNS
The DNS approach is simple and straightforward. Assuming your external storage cluster
is load balanced and can provide a stable endpoint, then pods can just hit that endpoint
directly and connect to the external cluster.

Accessing external data stores via environment
variables
Another simple approach is to use environment variables to pass connection information to
an external storage cluster. Kubernetes offers the ConfigMap resource as a way to keep
configuration separate from the container image. The configuration is a set of key-value
pairs. The configuration information can be exposed as an environment variable inside the
container as well as volumes. You may prefer to use secrets for sensitive connection
information.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[394]

Creating a ConfigMap
The following configuration file will create a configuration file that keeps a list of
addresses:

apiVersion: v1
kind: ConfigMap
metadata:
 name: db-config
 namespace: default
data:
 db-ip-addresses: 1.2.3.4,5.6.7.8

> kubectl create -f .\configmap.yamlconfigmap
 "db-config" created

The data section contains all the key-value pairs, in this case, just a single pair with a key
name of db-ip-addresses. It will be important later when consuming the configmap in a
pod. You can check out the content to make sure it's OK:

> kubectl get configmap db-config -o yaml
apiVersion: v1
data:
 db-ip-addresses: 1.2.3.4,5.6.7.8
kind: ConfigMap
metadata:
 creationTimestamp: 2017-01-09T03:14:07Z
 name: db-config
 namespace: default
 resourceVersion: "551258"
 selfLink: /api/v1/namespaces/default/configmaps/db-config
 uid: aebcc007-d619-11e6-91f1-3a7ae2a25c7d

There are other ways to create ConfigMap. You can directly create them using the --from-
value or --from-file command-line arguments.

Consuming a ConfigMap as an environment
variable
When you are creating a pod, you can specify a ConfigMap and consume its values in
several ways. Here is how to consume our configuration map as an environment variable:

apiVersion: v1
kind: Pod

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[395]

metadata:
 name: some-pod
spec:
 containers:
 - name: some-container
 image: busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: DB_IP_ADDRESSES
 valueFrom:
 configMapKeyRef:
 name: db-config
 key: db-ip-addresses
 restartPolicy: Never

This pod runs the busybox minimal container and executes an env bash command and
immediately exists. The db-ip-addresses key from the db-config map is mapped to the
DB_IP_ADDRESSES environment variable, and is reflected in the output:

> kubectl logs some-pod
HUE_REMINDERS_SERVICE_PORT=80
HUE_REMINDERS_PORT=tcp://10.0.0.238:80
KUBERNETES_PORT=tcp://10.0.0.1:443
KUBERNETES_SERVICE_PORT=443
HOSTNAME=some-pod
SHLVL=1
HOME=/root
HUE_REMINDERS_PORT_80_TCP_ADDR=10.0.0.238
HUE_REMINDERS_PORT_80_TCP_PORT=80
HUE_REMINDERS_PORT_80_TCP_PROTO=tcp
DB_IP_ADDRESSES=1.2.3.4,5.6.7.8
HUE_REMINDERS_PORT_80_TCP=tcp://10.0.0.238:80
KUBERNETES_PORT_443_TCP_ADDR=10.0.0.1
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP_PROTO=tcp
KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_PORT_443_TCP=tcp://10.0.0.1:443
HUE_REMINDERS_SERVICE_HOST=10.0.0.238
PWD=/
KUBERNETES_SERVICE_HOST=10.0.0.1

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[396]

Using a redundant in-memory state
In some cases, you may want to keep a transient state in-memory. Distributed caching is a
common case. Time-sensitive information is another one. For these use cases, there is no
need for persistent storage, and multiple pods accessed through a service may be just the
right solution. We can use standard Kubernetes techniques, such as labeling, to identify
pods that belong to the store redundant copies of the same state and expose it through a
service. If a pod dies, Kubernetes will create a new one and, until it catches up, the other
pods will serve the state. We can even use the pod's anti-affinity alpha feature to ensure
that pods that maintain redundant copies of the same state are not scheduled to the same
node.

Using DaemonSet for redundant persistent
storage
Some stateful applications, such as distributed databases or queues, manage their state
redundantly and sync their nodes automatically (we'll take a very deep look into Cassandra
later). In these cases, it is important that pods are scheduled to separate nodes. It is also
important that pods are scheduled to nodes with a particular hardware configuration or are
even dedicated to the stateful application. The DaemonSet feature is perfect for this use
case. We can label a set of nodes and make sure that the stateful pods are scheduled on a
one-by-one basis to the selected group of nodes.

Applying persistent volume claims
If the stateful application can use effectively shared persistent storage, then using a
persistent volume claim in each pod is the way to go. The stateful application will be
presented with a mounted volume that looks just like a local filesystem.

Utilizing StatefulSet
The StatefulSet controller is a relatively new addition to Kubernetes (introduced as PetSets
in Kubernetes 1.3 and renamed StatefulSet in Kubernetes 1.5). It is especially designed to
support distributed stateful applications where the identities of the members are important,
and if a pod is restarted it must retain its identity in the set. It provides ordered deployment
and scaling. Unlike regular pods, the pods of a stateful set are associated with persistent
storage.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[397]

When to use StatefulSet
StatefulSet is great for applications that require one or more of the following:

Stable, unique network identifiers
Stable, persistent storage
Ordered, graceful deployment, and scaling
Ordered, graceful deletion, and termination

The components of StatefulSet
There are several pieces that need to be configured correctly in order to have a working
StatefulSet:

A headless service responsible for managing the network identity of the
StatefulSet pods
The StatefulSet itself with a number of replicas
Persistent storage provision dynamically or by an administrator

Here is an example of a service called nginx that will be used for a StatefulSet:

apiVersion: v1
kind: Service
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 ports:
 - port: 80
 name: web
 clusterIP: None
 selector:
 app: nginx

Now, the StatefulSet configuration file will reference the service:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: web
spec:
 serviceName: "nginx"
 replicas: 3

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[398]

 template:
 metadata:
 labels:
 app: nginx

The next part is the pod template that includes a mounted volume named www:

spec:
 terminationGracePeriodSeconds: 10
 containers:
 - name: nginx
 image: gcr.io/google_containers/nginx-slim:0.8
 ports:
 - containerPort: 80
 name: web
 volumeMounts:
 - name: www
 mountPath: /usr/share/nginx/html

Last but not least, volumeClaimTemplates use a claim named www matching the mounted
volume. The claim requests 1Gib of storage with ReadWriteOnce access:

volumeClaimTemplates:
- metadata:
 name: www
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gib

Running a Cassandra cluster in Kubernetes
In this section, we will explore in detail a very large example of configuring a Cassandra
cluster to run on a Kubernetes cluster. The full example can be accessed here:

https://github.com/kubernetes/kubernetes/tree/master/examples/storage/cassandra

First, we'll learn a little bit about Cassandra and its idiosyncrasies, and then follow a step-
by-step procedure to get it running using several of the techniques and strategies we've
covered in the previous section.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kubernetes/tree/master/examples/storage/cassandra

Running Stateful Applications with Kubernetes Chapter 13

[399]

Quick introduction to Cassandra
Cassandra is a distributed columnar data store. It was designed from the get-go for big
data. Cassandra is fast, robust (no single point of failure), highly available, and linearly
scalable. It also has multi-data center support. It achieves all this by having a laser focus
and carefully crafting the features it supports—and just as importantly—the features it
doesn't support. In a previous company, I ran a Kubernetes cluster that used Cassandra as
the main data store for sensor data (about 100 TB). Cassandra allocates the data to a set of
nodes (node ring) based on a distributed hash table (DHT) algorithm. The cluster nodes
talk to each other via a gossip protocol and learn quickly about the overall state of the
cluster (what nodes joined and what nodes left or are unavailable). Cassandra constantly
compacts the data and balances the cluster. The data is typically replicated multiple times
for redundancy, robustness, and high-availability. From a developer's point of view,
Cassandra is very good for time-series data and provides a flexible model where you can
specify the consistency level in each query. It is also idempotent (a very important feature
for a distributed database), which means repeated inserts or updates are allowed.

Here is a diagram that shows how a Cassandra cluster is organized and how a client can
access any node and how the request will be forwarded automatically to the nodes that
have the requested data:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[400]

The Cassandra Docker image
Deploying Cassandra on Kubernetes as opposed to a standalone Cassandra cluster
deployment requires a special Docker image. This is an important step because it means we
can use Kubernetes to keep track of our Cassandra pods. The image is available here:

https://github.com/kubernetes/kubernetes/tree/master/examples/storage/cassandra
/image

Here are the essential parts of the Docker file. The image is based on Ubuntu Slim:

FROM gcr.io/google_containers/ubuntu-slim:0.9

Add and copy the necessary files (Cassandra.jar, various configuration files, run script,
and read-probe script), create a data directory for Cassandra to store its SSTables, and
mount it:

ADD files /

RUN set -e && echo 'debconf debconf/frontend select Noninteractive' |
debconf-set-selections \
 && apt-get update && apt-get -qq -y --force-yes install --no-install-
recommends \
 openjdk-8-jre-headless \
 libjemalloc1 \
 localepurge \
 wget && \
 mirror_url=$(wget -q -O -
http://www.apache.org/dyn/closer.cgi/cassandra/ \
 | sed -n 's#.*href="\(http://.*/cassandra\/[^"]*\)".*#\1#p' \
 | head -n 1 \
) \
 && wget -q -O - ${mirror_url}/${CASSANDRA_VERSION}/apache-cassandra-
${CASSANDRA_VERSION}-bin.tar.gz \
 | tar -xzf - -C /usr/local \
 && wget -q -O -
https://github.com/Yelp/dumb-init/releases/download/v${DI_VERSION}/dumb-ini
t_${DI_VERSION}_amd64 > /sbin/dumb-init \
 && echo "$DI_SHA /sbin/dumb-init" | sha256sum -c - \
 && chmod +x /sbin/dumb-init \
 && chmod +x /ready-probe.sh \
 && mkdir -p /cassandra_data/data \
 && mkdir -p /etc/cassandra \
 && mv /logback.xml /cassandra.yaml /jvm.options /etc/cassandra/ \
 && mv /usr/local/apache-cassandra-${CASSANDRA_VERSION}/conf/cassandra-
env.sh /etc/cassandra/ \
 && adduser --disabled-password --no-create-home --gecos '' --disabled-

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kubernetes/tree/master/examples/storage/cassandra/image
https://github.com/kubernetes/kubernetes/tree/master/examples/storage/cassandra/image

Running Stateful Applications with Kubernetes Chapter 13

[401]

login cassandra \
 && chown cassandra: /ready-probe.sh \

VOLUME ["/$CASSANDRA_DATA"]

Expose important ports for accessing Cassandra and to let Cassandra nodes gossip with
each other:

7000: intra-node communication
7001: TLS intra-node communication
7199: JMX
9042: CQL
9160: thrift service

EXPOSE 7000 7001 7199 9042 9160

Finally, the command, which uses dumb-init, a simple container init system from yelp,
eventually runs the run.sh script:

CMD ["/sbin/dumb-init", "/bin/bash", "/run.sh"]

Exploring the run.sh script
The run.sh script requires some shell skills, but it's worth the effort. Since Docker allows
running only one command, it is very common with non-trivial applications to have a
launcher script that sets up the environment and prepares for the actual application. In this
case, the image supports several deployment options (stateful set, replication controller,
DaemonSet) that we'll cover later, and the run script accommodates it all by being very
configurable via environment variables.

First, some local variables are set for the Cassandra configuration file at
/etc/cassandra/cassandra.yaml. The CASSANDRA_CFG variable will be used in the rest
of the script:

set -e
CASSANDRA_CONF_DIR=/etc/cassandra
CASSANDRA_CFG=$CASSANDRA_CONF_DIR/cassandra.yaml

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[402]

If no CASSANDRA_SEEDS were specified, then set the HOSTNAME, which is used in the
StatefulSet solution:

we are doing StatefulSet or just setting our seeds
if [-z "$CASSANDRA_SEEDS"]; then
 HOSTNAME=$(hostname -f)
Fi

Then comes a long list of environment variables with defaults. The syntax, ${VAR_NAME:-
<default}, uses the VAR_NAME environment variable, if it's defined, or the default value.

A similar syntax, ${VAR_NAME:=<default}, does the same thing, but also assigns
the default value to the environment variable if it's not defined.

Both variations are used here:

CASSANDRA_RPC_ADDRESS="${CASSANDRA_RPC_ADDRESS:-0.0.0.0}"
CASSANDRA_NUM_TOKENS="${CASSANDRA_NUM_TOKENS:-32}"
CASSANDRA_CLUSTER_NAME="${CASSANDRA_CLUSTER_NAME:='Test Cluster'}"
CASSANDRA_LISTEN_ADDRESS=${POD_IP:-$HOSTNAME}
CASSANDRA_BROADCAST_ADDRESS=${POD_IP:-$HOSTNAME}
CASSANDRA_BROADCAST_RPC_ADDRESS=${POD_IP:-$HOSTNAME}
CASSANDRA_DISK_OPTIMIZATION_STRATEGY="${CASSANDRA_DISK_OPTIMIZATION_STRATEG
Y:-ssd}"
CASSANDRA_MIGRATION_WAIT="${CASSANDRA_MIGRATION_WAIT:-1}"
CASSANDRA_ENDPOINT_SNITCH="${CASSANDRA_ENDPOINT_SNITCH:-SimpleSnitch}"
CASSANDRA_DC="${CASSANDRA_DC}"
CASSANDRA_RACK="${CASSANDRA_RACK}"
CASSANDRA_RING_DELAY="${CASSANDRA_RING_DELAY:-30000}"
CASSANDRA_AUTO_BOOTSTRAP="${CASSANDRA_AUTO_BOOTSTRAP:-true}"
CASSANDRA_SEEDS="${CASSANDRA_SEEDS:false}"
CASSANDRA_SEED_PROVIDER="${CASSANDRA_SEED_PROVIDER:-
org.apache.cassandra.locator.SimpleSeedProvider}"
CASSANDRA_AUTO_BOOTSTRAP="${CASSANDRA_AUTO_BOOTSTRAP:false}"

Turn off JMX auth
CASSANDRA_OPEN_JMX="${CASSANDRA_OPEN_JMX:-false}"
send GC to STDOUT
CASSANDRA_GC_STDOUT="${CASSANDRA_GC_STDOUT:-false}"

Then comes a section where all the variables are printed to the screen. Let's skip most of it:

echo Starting Cassandra on ${CASSANDRA_LISTEN_ADDRESS}
echo CASSANDRA_CONF_DIR ${CASSANDRA_CONF_DIR}
...

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[403]

The next section is very important. By default, Cassandra uses a simple snitch, which is
unaware of racks and data centers. This is not optimal when the cluster spans multiple data
centers and racks.

Cassandra is rack- and data center-aware and can optimize both for redundancy and high
availability while limiting communication across data centers appropriately:

if DC and RACK are set, use GossipingPropertyFileSnitch
if [[$CASSANDRA_DC && $CASSANDRA_RACK]]; then
 echo "dc=$CASSANDRA_DC" > $CASSANDRA_CONF_DIR/cassandra-rackdc.properties
 echo "rack=$CASSANDRA_RACK" >> $CASSANDRA_CONF_DIR/cassandra-
rackdc.properties
 CASSANDRA_ENDPOINT_SNITCH="GossipingPropertyFileSnitch"
fi

Memory management is important, and you can control the maximum heap size to ensure
Cassandra doesn't start thrashing and swapping to disk:

if [-n "$CASSANDRA_MAX_HEAP"]; then
 sed -ri "s/^(#)?-Xmx[0-9]+.*/-Xmx$CASSANDRA_MAX_HEAP/"
"$CASSANDRA_CONF_DIR/jvm.options"
 sed -ri "s/^(#)?-Xms[0-9]+.*/-Xms$CASSANDRA_MAX_HEAP/"
"$CASSANDRA_CONF_DIR/jvm.options"
fi

if [-n "$CASSANDRA_REPLACE_NODE"]; then
 echo "-Dcassandra.replace_address=$CASSANDRA_REPLACE_NODE/" >>
"$CASSANDRA_CONF_DIR/jvm.options"
fi

The rack and data center information is stored in a simple Java properties file:

for rackdc in dc rack; do
 var="CASSANDRA_${rackdc^^}"
 val="${!var}"
 if ["$val"]; then
 sed -ri 's/^('"$rackdc"'=).*/1 '"$val"'/' "$CASSANDRA_CONF_DIR/cassandra-
rackdc.properties"
 fi
done

The next section loops over all the variables defined earlier, finds the corresponding key in
the Cassandra.yaml configuration files, and overwrites them. That ensures that each
configuration file is customized on the fly just before it launches Cassandra itself:

for yaml in \
 broadcast_address \

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[404]

 broadcast_rpc_address \
 cluster_name \
 disk_optimization_strategy \
 endpoint_snitch \
 listen_address \
 num_tokens \
 rpc_address \
 start_rpc \
 key_cache_size_in_mb \
 concurrent_reads \
 concurrent_writes \
 memtable_cleanup_threshold \
 memtable_allocation_type \
 memtable_flush_writers \
 concurrent_compactors \
 compaction_throughput_mb_per_sec \
 counter_cache_size_in_mb \
 internode_compression \
 endpoint_snitch \
 gc_warn_threshold_in_ms \
 listen_interface \
 rpc_interface \
 ; do
 var="CASSANDRA_${yaml^^}"
 val="${!var}"
 if ["$val"]; then
 sed -ri 's/^(#)?('"$yaml"':).*/\2 '"$val"'/' "$CASSANDRA_CFG"
 fi
done

echo "auto_bootstrap: ${CASSANDRA_AUTO_BOOTSTRAP}" >> $CASSANDRA_CFG

The next section is all about setting the seeds or seed provider depending on the
deployment solution (StatefulSet or not). There is a little trick for the first pod to bootstrap
as its own seed:

set the seed to itself. This is only for the first pod, otherwise
it will be able to get seeds from the seed provider
if [[$CASSANDRA_SEEDS == 'false']]; then
 sed -ri 's/- seeds:.*/- seeds: "'"$POD_IP"'"/' $CASSANDRA_CFG
else # if we have seeds set them. Probably StatefulSet
 sed -ri 's/- seeds:.*/- seeds: "'"$CASSANDRA_SEEDS"'"/' $CASSANDRA_CFG
fi

sed -ri 's/- class_name: SEED_PROVIDER/- class_name:
'"$CASSANDRA_SEED_PROVIDER"'/' $CASSANDRA_CFG

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[405]

The following section sets up various options for remote management and JMX monitoring.
It's critical in complicated distributed systems to have proper administration tools.
Cassandra has deep support for the ubiquitous Java Management Extensions (JMX)
standard:

send gc to stdout
if [[$CASSANDRA_GC_STDOUT == 'true']]; then
 sed -ri 's/ -Xloggc:\/var\/log\/cassandra\/gc\.log//'
$CASSANDRA_CONF_DIR/cassandra-env.sh
fi

enable RMI and JMX to work on one port
echo "JVM_OPTS=\"\$JVM_OPTS -Djava.rmi.server.hostname=$POD_IP\"" >>
$CASSANDRA_CONF_DIR/cassandra-env.sh

getting WARNING messages with Migration Service
echo "-
Dcassandra.migration_task_wait_in_seconds=${CASSANDRA_MIGRATION_WAIT}" >>
$CASSANDRA_CONF_DIR/jvm.options
echo "-Dcassandra.ring_delay_ms=${CASSANDRA_RING_DELAY}" >>
$CASSANDRA_CONF_DIR/jvm.options

if [[$CASSANDRA_OPEN_JMX == 'true']]; then
 export LOCAL_JMX=no
 sed -ri 's/ -Dcom\.sun\.management\.jmxremote\.authenticate=true/ -
Dcom\.sun\.management\.jmxremote\.authenticate=false/'
$CASSANDRA_CONF_DIR/cassandra-env.sh
 sed -ri 's/ -
Dcom\.sun\.management\.jmxremote\.password\.file=\/etc\/cassandra\/jmxremot
e\.password//' $CASSANDRA_CONF_DIR/cassandra-env.sh
fi

Finally, the CLASSPATH is set to the Cassandra JAR file, and it launches Cassandra in the
foreground (not daemonized) as the Cassandra user:

export CLASSPATH=/kubernetes-cassandra.jar
su cassandra -c "$CASSANDRA_HOME/bin/cassandra -f"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[406]

Hooking up Kubernetes and Cassandra
Connecting Kubernetes and Cassandra takes some work because Cassandra was designed
to be very self-sufficient, but we want to let it hook Kubernetes at the right time to provide
capabilities, such as automatically restarting failed nodes, monitoring, allocating Cassandra
pods, and providing a unified view of the Cassandra pods side by side with other pods.
Cassandra is a complicated beast and has many knobs to control it. It comes with a
Cassandra.yaml configuration file, and you can override all the options with environment
variables.

Digging into the Cassandra configuration
There are two settings that are particularly relevant: the seed provider and the snitch. The
seed provider is responsible for publishing a list of IP addresses (seeds) of nodes in the
cluster. Every node that starts running connects to the seeds (there are usually at least
three) and if it successfully reaches one of them they immediately exchange information
about all the nodes in the cluster. This information is updated constantly for each node as
the nodes gossip with each other.

The default seed provider configured in Cassandra.yaml is just a static list of IP
addresses, in this case just the loopback interface:

seed_provider:
 - class_name: SEED_PROVIDER
 parameters:
 # seeds is actually a comma-delimited list of addresses.
 # Ex: "<ip1>,<ip2>,<ip3>"
 - seeds: "127.0.0.1"

The other important setting is the snitch. It has two roles:

It teaches Cassandra enough about your network topology to route requests
efficiently.
It allows Cassandra to spread replicas around your cluster to avoid correlated
failures. It does this by grouping machines into data centers and racks. Cassandra
will do its best not to have more than one replica on the same rack (which may
not actually be a physical location).

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[407]

Cassandra comes pre-loaded with several snitch classes, but none of them are Kubernetes-
aware. The default is SimpleSnitch, but it can be overridden:

You can use a custom Snitch by setting this to the full class
name of the snitch, which will be assumed to be on your classpath.
endpoint_snitch: SimpleSnitch

The custom seed provider
When running Cassandra nodes as pods in Kubernetes, Kubernetes may move pods
around, including seeds. To accommodate that, a Cassandra seed provider needs to interact
with the Kubernetes API server.

Here is a short snippet from the custom KubernetesSeedProvider Java class that
implements the Cassandra SeedProvider API:

public class KubernetesSeedProvider implements SeedProvider {
 ...
 /**
 * Call kubernetes API to collect a list of seed providers
 * @return list of seed providers
 */
 public List<InetAddress> getSeeds() {
 String host = getEnvOrDefault("KUBERNETES_PORT_443_TCP_ADDR",
"kubernetes.default.svc.cluster.local");
 String port = getEnvOrDefault("KUBERNETES_PORT_443_TCP_PORT",
"443");
 String serviceName = getEnvOrDefault("CASSANDRA_SERVICE",
"cassandra");
 String podNamespace = getEnvOrDefault("POD_NAMESPACE", "default");
 String path = String.format("/api/v1/namespaces/%s/endpoints/",
podNamespace);
 String seedSizeVar = getEnvOrDefault("CASSANDRA_SERVICE_NUM_SEEDS",
"8");
 Integer seedSize = Integer.valueOf(seedSizeVar);
 String accountToken = getEnvOrDefault("K8S_ACCOUNT_TOKEN",
"/var/run/secrets/kubernetes.io/serviceaccount/token");
 List<InetAddress> seeds = new ArrayList<InetAddress>();
 try {
 String token = getServiceAccountToken(accountToken);

 SSLContext ctx = SSLContext.getInstance("SSL");
 ctx.init(null, trustAll, new SecureRandom());

 String PROTO = "https://";
 URL url = new URL(PROTO + host + ":" + port + path +

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[408]

serviceName);
 logger.info("Getting endpoints from " + url);
 HttpsURLConnection conn =
(HttpsURLConnection)url.openConnection();

 conn.setSSLSocketFactory(ctx.getSocketFactory());
 conn.addRequestProperty("Authorization", "Bearer " + token);
 ObjectMapper mapper = new ObjectMapper();
 Endpoints endpoints = mapper.readValue(conn.getInputStream(),
Endpoints.class); }
 ...
 }
 ...
 return Collections.unmodifiableList(seeds);
}

Creating a Cassandra headless service
The role of the headless service is to allow clients in the Kubernetes cluster to connect to the
Cassandra cluster through a standard Kubernetes service instead of keeping track of the
network identities of the nodes or putting a dedicated load balancer in front of all the
nodes. Kubernetes provides all that out of the box through its services.

Here is the configuration file:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: cassandra
 name: cassandra
spec:
 clusterIP: None
 ports:
 - port: 9042
 selector:
 app: Cassandra

The app: Cassandra label will group all the pods to participate in the service. Kubernetes
will create endpoint records and the DNS will return a record for discovery. The
clusterIP is None, which means the service is headless and Kubernetes will not do any
load balancing or proxying. This is important because Cassandra nodes do their own
communication directly.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[409]

The 9042 port is used by Cassandra to serve CQL requests. Those can be queries,
inserts/updates (it's always an upsert with Cassandra), or deletes.

Using StatefulSet to create the Cassandra cluster
Declaring a StatefulSet is not trivial. It is arguably the most complex Kubernetes resource. It
has a lot of moving parts: standard metadata, the stateful set spec, the pod template (which
is often pretty complex itself), and volume claim templates.

Dissecting the stateful set configuration file
Let's go methodically over this example stateful set configuration file that declares a three-
node Cassandra cluster.

Here is the basic metadata. Note the apiVersion string is apps/v1 (StatefulSet became
generally available from Kubernetes 1.9):

apiVersion: "apps/v1"
kind: StatefulSet
metadata:
 name: cassandra

The stateful set spec defines the headless service name, how many pods there are in the
stateful set, and the pod template (explained later). The replicas field specifies how many
pods are in the stateful set:

spec:
 serviceName: cassandra
 replicas: 3
 template: ...

The term replicas for the pods is an unfortunate choice because the pods are not replicas
of each other. They share the same pod template, but they have a unique identity and they
are responsible for different subsets of the state in general. This is even more confusing in
the case of Cassandra, which uses the same term, replicas, to refer to groups of nodes
that redundantly duplicate some subset of the state (but are not identical, because each can
manage additional state too). I opened a GitHub issue with the Kubernetes project to
change the term from replicas to members:

https://github.com/kubernetes/kubernetes.github.io/issues/2103

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kubernetes.github.io/issues/2103

Running Stateful Applications with Kubernetes Chapter 13

[410]

The pod template contains a single container based on the custom Cassandra image. Here is
the pod template with the app: cassandra label:

template:
 metadata:
 labels:
 app: cassandra
 spec:
 containers: ...

The container spec has multiple important parts. It starts with a name and the image we
looked at earlier:

containers:
 - name: cassandra
 image: gcr.io/google-samples/cassandra:v12
 imagePullPolicy: Always

Then, it defines multiple container ports needed for external and internal communication
by Cassandra nodes:

ports:
- containerPort: 7000
 name: intra-node
- containerPort: 7001
 name: tls-intra-node
- containerPort: 7199
 name: jmx
- containerPort: 9042
 name: cql

The resources section specifies the CPU and memory needed by the container. This is
critical because the storage management layer should never be a performance bottleneck
due to cpu or memory.

resources:
 limits:
 cpu: "500m"
 memory: 1Gi
 requests:
 cpu: "500m"
 memory: 1Gi

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[411]

Cassandra needs access to IPC, which the container requests through the security content's
capabilities:

securityContext:
capabilities:
 add:
 - IPC_LOCK

The env section specifies environment variables that will be available inside the container.
The following is a partial list of the necessary variables. The CASSANDRA_SEEDS variable is
set to the headless service, so a Cassandra node can talk to seeds on startup and discover
the whole cluster. Note that in this configuration we don't use the special Kubernetes seed
provider. POD_IP is interesting because it utilizes the Downward API to populate its value
via the field reference to status.podIP:

 env:
 - name: MAX_HEAP_SIZE
 value: 512M
 - name: CASSANDRA_SEEDS
 value: "cassandra-0.cassandra.default.svc.cluster.local"
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP

The container has a readiness probe, too, to ensure the Cassandra node doesn't receive
requests before it's fully online:

readinessProbe:
 exec:
 command:
 - /bin/bash
 - -c
 - /ready-probe.sh
 initialDelaySeconds: 15
 timeoutSeconds: 5

Cassandra needs to read and write the data, of course. The cassandra-data volume
mount is where it's at:

volumeMounts:
- name: cassandra-data
 mountPath: /cassandra_data

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[412]

That's it for the container spec. The last part is the volume claim template. In this case,
dynamic provisioning is used. It's highly recommended to use SSD drives for Cassandra
storage, and especially its journal. The requested storage in this example is 1 Gi. I
discovered through experimentation that 1-2 TB is ideal for a single Cassandra node. The
reason is that Cassandra does a lot of data shuffling under the covers, compacting and
rebalancing the data. If a node leaves the cluster or a new one joins the cluster, you have to
wait until the data is properly rebalanced before the data from the node that left is properly
re-distributed or a new node is populated. Note that Cassandra needs a lot of disk space to
do all this shuffling. It is recommended to have 50% free disk space. When you consider
that you also need replication (typically 3x), then the required storage space can be 6x your
data size. You can get by with 30% free space if you're adventurous and maybe use just 2x
replication depending on your use case. But don't get below 10% free disk space, even on a
single node. I learned the hard way that Cassandra will simply get stuck and will be unable
to compact and rebalance such nodes without extreme measures.

The access mode is, of course, ReadWriteOnce:

volumeClaimTemplates:
- metadata:
 name: cassandra-data
 annotations:
 volume.beta.kubernetes.io/storage-class: fast
spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

When deploying a stateful set, Kubernetes creates the pod in order per its index number.
When scaling up or down, it also does it in order. For Cassandra, this is not important
because it can handle nodes joining or leaving the cluster in any order. When a Cassandra
pod is destroyed, the persistent volume remains. If a pod with the same index is created
later, the original persistent volume will be mounted into it. This stable connection between
a particular pod and its storage enables Cassandra to manage the state properly.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[413]

Using a replication controller to distribute
Cassandra
A StatefulSet is great, but, as mentioned earlier, Cassandra is already a sophisticated
distributed database. It has a lot of mechanisms for automatically distributing, balancing,
and replicating the data around the cluster. These mechanisms are not optimized for
working with network persistent storage. Cassandra was designed to work with the data
stored directly on the nodes. When a node dies, Cassandra can recover having redundant
data stored on other nodes. Let's look at a different way to deploy Cassandra on a
Kubernetes cluster, which is more aligned with Cassandra's semantics. Another benefit of
this approach is that if you have an existing Kubernetes cluster; you don't have to upgrade
it to the latest and greatest just to use a stateful set.

We will still use the headless service, but instead of a stateful set we'll use a regular
replication controller. There are some important differences:

Replication controller instead of a stateful set
Storage on the node the pod is scheduled to run on
The custom Kubernetes seed provider class is used

Dissecting the replication controller configuration file
The metadata is pretty minimal, with just a name (labels are not required):

apiVersion: v1
kind: ReplicationController
metadata:
 name: cassandra
 # The labels will be applied automatically
 # from the labels in the pod template, if not set
 # labels:
 # app: Cassandra

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[414]

The spec specifies the number of replicas:

spec:
 replicas: 3
 # The selector will be applied automatically
 # from the labels in the pod template, if not set.
 # selector:
 # app: Cassandra

The pod template's metadata is where the app: Cassandra label is specified. The
replication controller will keep track and make sure that there are exactly three pods with
that label:

template:
 metadata:
 labels:
 app: Cassandra

The pod template's spec describes the list of containers. In this case, there is just one
container. It uses the same Cassandra Docker image named cassandra and runs the
run.sh script:

spec:
 containers:
 - command:
 - /run.sh
 image: gcr.io/google-samples/cassandra:v11
 name: cassandra

The resources section just requires 0.5 units of CPU in this example:

 resources:
 limits:
 cpu: 0.5

The environment section is a little different. The CASSANDRA_SEED_PROVDIER specifies the
custom Kubernetes seed provider class we examined earlier. Another new addition here is
POD_NAMESPACE, which uses the Downward API again to fetch the value from the
metadata:

 env:
 - name: MAX_HEAP_SIZE
 value: 512M
 - name: HEAP_NEWSIZE
 value: 100M
 - name: CASSANDRA_SEED_PROVIDER
 value: "io.k8s.cassandra.KubernetesSeedProvider"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[415]

 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP

The ports section is identical, exposing the intra-node communication ports (7000 and
7001), the 7199 JMX port used by external tools, such as Cassandra OpsCenter, to
communicate with the Cassandra cluster, and of course the 9042 CQL port, through which
clients communicate with the cluster:

 ports:
 - containerPort: 7000
 name: intra-node
 - containerPort: 7001
 name: tls-intra-node
 - containerPort: 7199
 name: jmx
 - containerPort: 9042
 name: cql

Once again, the volume is mounted into /cassandra_data. This is important because the
same Cassandra image configured properly just expects its data directory to be at a certain
path. Cassandra doesn't care about the backing storage (although you should care, as the
cluster administrator). Cassandra will just read and write using filesystem calls:

volumeMounts:
 - mountPath: /cassandra_data
 name: data

The volumes section is the biggest difference from the stateful set solution. A stateful set
uses persistent storage claims to connect a particular pod with a stable identity to a
particular persistent volume. The replication controller solution just uses an emptyDir on
the hosting node:

volumes:
 - name: data
 emptyDir: {}

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[416]

This has many ramifications. You have to provision enough storage on each node. If a
Cassandra pod dies, its storage goes away. Even if the pod is restarted on the same physical
(or virtual) machine, the data on disk will be lost because emptyDir is deleted once its pod
is removed. Note that container restarts are OK because emptyDir survives container
crashes. So, what happens when the pod dies? The replication controller will start a new
pod with empty data. Cassandra will detect that a new node was added to the cluster,
assign it some portion of the data, and start rebalancing automatically by moving data from
other nodes. This is where Cassandra shines. It constantly compacts, rebalances, and
distributes the data evenly across the cluster. It will just figure out what to do on your
behalf.

Assigning pods to nodes
The main problem with the replication controller approach is that multiple pods can get
scheduled on the same Kubernetes node. What if you have a replication factor of three and
all three pods that are responsible for some range of the keyspace are all scheduled to the
same Kubernetes node? First, all requests for read or writes of that range of keys will go to
the same node, creating more pressure. But, even worse, we just lost our redundancy. We
have a single point of failure (SPOF). If that node dies, the replication controller will
happily start three new pods on some other Kubernetes node, but none of them will have
data, and no other Cassandra node in the cluster (the other pods) will have data to copy
from.

This can be solved using a Kubernetes scheduling concept called anti-affinity. When
assigning pods to nodes, a pod can be annotated so that the scheduler will not schedule it
to a node that already has a pod with a particular set of labels. Add this to the pod spec to
ensure that at most a single Cassandra pod will be assigned to a node:

spec:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - cassandra
 topologyKey: kubernetes.io/hostname

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[417]

Using DaemonSet to distribute Cassandra
A better solution to the problem of assigning Cassandra pods to different nodes is to use a
DaemonSet. A DaemonSet has a pod template like a replication controller. But a
DaemonSet has a node selector that determines on which nodes to schedule its pods. It
doesn't have a certain number of replicas, it just schedules a pod on each node that matches
its selector. The simplest case is to schedule a pod on each node in the Kubernetes cluster.
But the node selector can also use match expressions against labels to deploy to a particular
subset of nodes. Let's create a DaemonSet for deploying our Cassandra cluster onto the
Kubernetes cluster:

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: cassandra-daemonset

The spec of the DaemonSet contains a regular pod template. The nodeSelector section is
where the magic happens, and it ensures that one and exactly one pod will always be
scheduled to each node with a label of app: Cassandra:

spec:
 template:
 metadata:
 labels:
 app: cassandra
 spec:
 # Filter only nodes with the label "app: cassandra":
 nodeSelector:
 app: cassandra
 containers:

The rest is identical to the replication controller. Note that nodeSelector is expected to be
deprecated in favor of affinity. When that will happen, it's not clear.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Running Stateful Applications with Kubernetes Chapter 13

[418]

Summary
In this chapter, we covered the topic of stateful applications and how to integrate them with
Kubernetes. We discovered that stateful applications are complicated and considered
several mechanisms for discovery, such as DNS and environment variables. We also
discussed several state management solutions, such as in-memory redundant storage and
persistent storage. The bulk of the chapter revolved around deploying a Cassandra cluster
inside a Kubernetes cluster using several options, such as a stateful set, a replication
controller, and a DaemonSet. Each approach has its own pros and cons. At this point, you
should have a thorough understanding of stateful applications and how to apply them in
your Kubernetes-based system. You are armed with multiple methods for various use
cases, and maybe you've even learned a little bit about Cassandra.

In the next chapter, we will continue our journey and explore the important topic of
scalability, in particular auto-scalability, and how to deploy and do live upgrades and
updates as the cluster dynamically grows. These issues are very intricate, especially when
the cluster has stateful apps running on it.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

14
Rolling Updates, Scalability,

and Quotas
In this chapter, we will explore the automated pod scalability that Kubernetes provides,
how it affects rolling updates, and how it interacts with quotas. We will touch on the
important topic of provisioning and how to choose and manage the size of the cluster.
Finally, we will go over how the Kubernetes team tests the limits of Kubernetes with a
5,000-node cluster. Here are the main points we will cover:

Horizontal pod autoscaling
Performing rolling updates with autoscaling
Handling scarce resources with quotas and limits
Pushing the envelope with Kubernetes performance

By the end of this chapter, you will have the ability to plan a large-scale cluster, provision it
economically, and make informed decisions about the various trade-offs between
performance, cost, and availability. You will also understand how to set up horizontal pod
auto-scaling and use resource quotas intelligently to let Kubernetes automatically handle
intermittent fluctuations in volume.

Horizontal pod autoscaling
Kubernetes can watch over your pods and scale them when the CPU utilization or some
other metric crosses a threshold. The autoscaling resource specifies the details (percentage
of CPU, how often to check) and the corresponding autoscale controller adjusts the number
of replicas, if needed.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[420]

The following diagram illustrates the different players and their relationships:

As you can see, the horizontal pod autoscaler doesn't create or destroy pods directly. It
relies instead on the replication controller or deployment resources. This is very smart
because you don't need to deal with situations where autoscaling conflicts with the
replication controller or deployments trying to scale the number of pods, unaware of the
autoscaler's efforts.

The autoscaler automatically does what we had to do ourselves before. Without the
autoscaler, if we had a replication controller with replicas set to 3, but we determined that
based on average CPU utilization we actually needed 4, then we would update the
replication controller from 3 to 4 and keep monitoring the CPU utilization manually in all
pods. The autoscaler will do it for us.

Declaring horizontal pod autoscaler
To declare a horizontal pod autoscaler, we need a replication controller, or a deployment,
and an autoscaling resource. Here is a simple replication controller configured to maintain
three nginx pods:

apiVersion: v1
kind: ReplicationController
metadata:
 name: nginx

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[421]

spec:
 replicas: 3
 template:
 metadata:
 labels:
 run: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80

The autoscaling resource references the NGINX replication controller in
scaleTargetRef:

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: nginx
 namespace: default
spec:
 maxReplicas: 4
 minReplicas: 2
 targetCPUUtilizationPercentage: 90
 scaleTargetRef:
 apiVersion: v1
 kind: ReplicationController
 name: nginx

minReplicas and maxReplicas specify the range of scaling. This is needed to avoid
runaway situations that could occur because of some problem. Imagine that, due to some
bug, every pod immediately uses 100% CPU regardless of the actual load. Without the
maxReplicas limit, Kubernetes will keep creating more and more pods until all cluster
resources are exhausted. If we are running in a cloud environment with autoscaling of VMs
then we will incur a significant cost. The other side of this problem is that, if there are no
minReplicas and there is a lull in activity, then all pods could be terminated, and, when
new requests come in, all the pods will have to be created and scheduled again. If there are
patterns of on and off activity, then this cycle can repeat multiple times. Keeping the
minimum of replicas running can smooth this phenomenon. In the preceding example,
minReplicas is set to 2 and maxReplicas is set to 4. Kubernetes will ensure that there are
always between 2 to 4 NGINX instances running.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[422]

The target CPU utilization percentage is a mouthful. Let's abbreviate it to TCUP. You
specify a single number like 80%. This could lead to constant thrashing if the average load
hovers around the TCUP. Kuberentes will alternate frequently between adding more
replicas and removing replicas. This is often not a desired behavior. To address this
concern, you can specify a delay for either scaling up or scaling down. There are two flags
to the kube-controller-manager to support this:

--horizontal-pod-autoscaler-downscale-delay: The value for this option
is a duration that specifies how long the autoscaler has to wait before another
downscale operation can be performed after the current one has completed. The
default value is 5 minutes (5m0s).
--horizontal-pod-autoscaler-upscale-delay: The value for this option is
a duration that specifies how long the autoscaler has to wait before another
upscale operation can be performed after the current one has completed. The
default value is 3 minutes (3m0s).

Custom metrics
CPU utilization is an important metric to gauge whether pods that are bombarded with too
many requests should be scaled up, or whether they are mostly idle and can be scaled
down. But the CPU is not the only and sometimes not even the best metric to keep track of.
Memory may be the limiting factor, and there are more specialized metrics, such as the
depth of a pod's internal on-disk queue, the average latency on a request, or the average
number of service timeouts.

The horizontal pod custom metrics were added as an alpha extension in version 1.2. In
version 1.6 they were upgraded to beta status. You can now autoscale your pods based on
multiple custom metrics. The autoscaler will evaluate all the metrics and will autoscale
based on the largest number of replicas required, so the requirements of all the metrics are
respected.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[423]

Using custom metrics
Using the horizontal pod autoscaler with custom metrics requires some configuration when
launching your cluster. First, you need to enable the API aggregation layer. Then you need
to register your resource metrics API and your custom metrics API. Heapster provides an
implementation of the resource metrics API you can use. Just start Heapster with the --
api-server flag set to true. You need to run a separate server that exposes the custom
metrics API. A good starting point is this:
https://github.com/kubernetes-incubator/custom-metrics-apiserver.

The next step is to start the kube-controller-manager with the following flags:

--horizontal-pod-autoscaler-use-rest-clients=true
--kubeconfig <path-to-kubeconfig> OR --master <ip-address-of-apiserver>

The --master flag will override --kubeconfig if both are specified. These flags specify
the location of the API aggregation layer, allowing the controller manager to communicate
to the API server.

In Kubernetes 1.7, the standard aggregation layer that Kubernetes provides runs in-process
with the kube-apiserver, so the target IP address can be found with this:

> kubectl get pods --selector k8s-app=kube-apiserver --namespace kube-
system -o jsonpath='{.items[0].status.podIP}'

Autoscaling with kubectl
kubectl can create an autoscale resource using the standard create command and
accepting a configuration file. But kubectl also has a special command, autoscale, that
lets you easily set an autoscaler in one command without a special configuration file:

First, let's start a replication controller that makes sure there are three replicas of1.
a simple pod that just runs an infinite bash-loop:

apiVersion: v1
kind: ReplicationController
metadata:
 name: bash-loop-rc
spec:
 replicas: 3
 template:
 metadata:
 labels:
 name: bash-loop-rc

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes-incubator/custom-metrics-apiserver

Rolling Updates, Scalability, and Quotas Chapter 14

[424]

 spec:
 containers:
 - name: bash-loop
 image: ubuntu
 command: ["/bin/bash", "-c", "while true; do sleep 10;
 done"]

Let's create a replication controller:2.

 > kubectl create -f bash-loop-rc.yaml
 replicationcontroller "bash-loop-rc" created

Here is the resulting replication controller:3.

 > kubectl get rc
 NAME DESIRED CURRENT READY AGE
 bash-loop-rc 3 3 3 1m

You can see that the desired and current count are both three, meaning three4.
pods are running. Let's make sure:

 > kubectl get pods
 NAME READY STATUS RESTARTS AGE
 bash-loop-rc-8h59t 1/1 Running 0 50s
 bash-loop-rc-lsvtd 1/1 Running 0 50s
 bash-loop-rc-z7wt5 1/1 Running 0 50s

Now, let's create an autoscaler. To make it interesting, we'll set the minimum5.
number of replicas to 4 and the maximum number to 6:

 > kubectl autoscale rc bash-loop-rc --min=4 --max=6 --cpu-
percent=50
replicationcontroller "bash-loop-rc" autoscaled

Here is the resulting horizontal pod autoscaler (you can use hpa). It shows the6.
referenced replication controller, the target and current CPU percentage, and the
min/max pods. The name matches the referenced replication controller:

 > kubectl get hpa
 NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
AGE
 bash-loop-rc bash-loop-rc 50% 4 6 4
16m

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[425]

Originally, the replication controller was set to have three replicas, but the7.
autoscaler has a minimum of four pods. What's the effect on the replication
controller? That's right. Now the desired number of replicas is four. If the
average CPU utilization goes above 50%, then it may climb to five, or even six:

 > kubectl get rc
 NAME DESIRED CURRENT READY AGE
 bash-loop-rc 4 4 4 21m

Just to make sure everything works, here is another look at the pods. Note the8.
new pod (17 minutes old) that was created because of the autoscaling:

 > kubectl get pods
 NAME READY STATUS RESTARTS AGE
 bash-loop-rc-8h59t 1/1 Running 0 21m
 bash-loop-rc-gjv4k 1/1 Running 0 17m
 bash-loop-rc-lsvtd 1/1 Running 0 21m
 bash-loop-rc-z7wt5 1/1 Running 0 21m

When we delete the horizontal pod autoscaler, the replication controller retains9.
the last desired number of replicas (four in this case). Nobody remembers that
the replication controller was created with three replicas:

 > kubectl delete hpa bash-loop-rc
 horizontalpodautoscaler "bash-loop-rc" deleted

As you can see, the replication controller wasn't reset and still maintains four10.
pods even when the autoscaler is gone:

 > kubectl get rc
 NAME DESIRED CURRENT READY AGE
 bash-loop-rc 4 4 4 28m

Let's try something else. What happens if we create a new horizontal pod autoscaler with a
range of 2 to 6 and the same CPU target of 50%?

> kubectl autoscale rc bash-loop-rc --min=2 --max=6 --cpu-percent=50
 replicationcontroller "bash-loop-rc" autoscaled

Well, the replication controller still maintains its four replicas, which is within the range:

> kubectl get rc
NAME DESIRED CURRENT READY AGE
bash-loop-rc 4 4 4 29m

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[426]

However, the actual CPU utilization is zero, or close to zero. The replica count should have
been scaled down to two replicas, but because the horizontal pod autoscaler didn't receive
CPU metrics from Heapster it doesn't know it needs to scale down the number of replicas
in the replication controller.

Performing rolling updates with autoscaling
Rolling updates are the cornerstone of managing large clusters. Kubernetes support rolling
updates at the replication controller level and by using deployments. Rolling updates using
replication controllers are incompatible with the horizontal pod autoscaler. The reason is
that, during the rolling deployment, a new replication controller is created and the
horizontal pod autoscaler remains bound to the old replication controller. Unfortunately,
the intuitive kubectl rolling-update command triggers a replication controller rolling
update.

Since rolling updates are such an important capability, I recommend that you always bind
horizontal pod autoscalers to a deployment object instead of a replication controller or a
replica set. When the horizontal pod autoscaler is bound to a deployment, it can set the
replicas in the deployment spec and let the deployment take care of the necessary
underlying rolling update and replication.

Here is a deployment configuration file we've used for deploying the hue-reminders
service:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: hue-reminders
spec:
 replicas: 2
 template:
 metadata:
 name: hue-reminders
 labels:
 app: hue-reminders
 spec:
 containers:
 - name: hue-reminders
 image: g1g1/hue-reminders:v2.2
 ports:
 - containerPort: 80

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[427]

To support it with autoscaling and ensure we always have between 10 to 15 instances
running, we can create an autoscaler configuration file:

apiVersion: autoscaling/v1
 kind: HorizontalPodAutoscaler
 metadata:
 name: hue-reminders
 namespace: default
 spec:
 maxReplicas: 15
 minReplicas: 10
 targetCPUUtilizationPercentage: 90
 scaleTargetRef:
 apiVersion: v1
 kind: Deployment
 name: hue-reminders

The kind of the scaleTargetRef field is now Deployment instead
of ReplicationController. This is important because we may have a replication
controller with the same name. To disambiguate and ensure that the horizontal pod
autoscaler is bound to the correct object, the kind and the name must match.

Alternatively, we can use the kubectl autoscale command:

> kubectl autoscale deployment hue-reminders --min=10--max=15
--cpu-percent=90

Handling scarce resources with limits and
quotas
With the horizontal pod autoscaler creating pods on the fly, we need to think about
managing our resources. Scheduling can easily get out of control, and inefficient use of
resources is a real concern. There are several factors that can interact with each other in
subtle ways:

Overall cluster capacity
Resource granularity per node
Division of workloads per namespace
DaemonSets
StatefulSets
Affinity, anti-affinity, taints, and tolerations

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[428]

First, let's understand the core issue. The Kubernetes scheduler has to take into account all
these factors when it schedules pods. If there are conflicts or a lot of overlapping
requirements, then Kubernetes may have a problem finding room to schedule new pods.
For example, a very extreme yet simple scenario is that a daemon set runs on every node a
pod that requires 50% of the available memory. Now, Kubernetes can't schedule any pod
that needs more than 50% memory because the daemon set pod gets priority. Even if you
provision new nodes, the daemon set will immediately commandeer half of the memory.

Stateful sets are similar to daemon sets in that they require new nodes to expand. The
trigger to adding new members to the stateful set is growth in data, but the impact is taking
resources from the pool available for Kubernetes to schedule other members. In a multi-
tenant situation, the noisy neighbor problem can rear its head in a provisioning or resource
allocation context. You may plan exact rations meticulously in your namespace between
different pods and their resource requirements, but you share the actual nodes with your
neighbors from other namespaces that you may not even have visibility into.

Most of these problems can be mitigated by judiciously using namespace resource quotas
and careful management of the cluster capacity across multiple resource types, such as
CPU, memory, and storage.

Enabling resource quotas
Most Kubernetes distributions support resource quota out of the box. The API servers' --
admission-control flag must have ResourceQuota as one of its arguments. You will
also have to create a ResourceQuota object to enforce it. Note that there may be at most
one ResourceQuota object per namespace to prevent potential conflicts. This is enforced
by Kubernetes.

Resource quota types
There are different types of quota we can manage and control. The categories are compute,
storage, and objects.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[429]

Compute resource quota
Compute resources are CPU and memory. For each one, you can specify a limit or request a
certain amount. Here is the list of compute related fields. Note that requests.cpu can be
specified as just cpu, and requests.memory can be specified as just memory:

limits.cpu: Across all pods in a non-terminal state, the sum of CPU limits
cannot exceed this value
limits.memory: Across all pods in a non-terminal state, the sum of memory
limits cannot exceed this value
requests.cpu: Across all pods in a non-terminal state, the sum of CPU requests
cannot exceed this value
requests.memory: Across all pods in a non-terminal state, the sum of memory
requests cannot exceed this value

Storage resource quota
The storage resource quota type is a little more complicated. There are two entities you can
restrict per namespace: the amount of storage and the number of persistent volume claims.
However, in addition to just globally setting the quota on total storage or total number of
persistent volume claims, you can also do that per storage class. The notation for storage
class resource quota is a little verbose, but it gets the job done:

requests.storage: Across all persistent volume claims, the sum of storage
requests cannot exceed this value
persistentvolumeclaims: The total number of persistent volume claims that
can exist in the namespace
<storage-class>.storageclass.storage.k8s.io/requests.storage:
Across all persistent volume claims associated with the storage-class-name,
the sum of storage requests cannot exceed this value
<storage-

class>.storageclass.storage.k8s.io/persistentvolumeclaims:
Across all persistent volume claims associated with the storage-class-name,
this is the total number of persistent volume claims that can exist in the
namespace

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[430]

Kubernetes 1.8 added alpha support for ephemeral storage quotas too:

requests.ephemeral-storage: Across all pods in the namespace, the sum of
local ephemeral storage requests cannot exceed this value
limits.ephemeral-storage: Across all pods in the namespace, the sum of
local ephemeral storage limits cannot exceed this value

Object count quota
Kubernetes has another category of resource quotas, which is API objects. My guess is that
the goal is to protect the Kubernetes API server from having to manage too many objects.
Remember that Kubernetes does a lot of work under the hood. It often has to query
multiple objects to authenticate, authorize, and ensure that an operation doesn't violate any
of the many policies that may be in place. A simple example is pod scheduling based on
replication controllers. Imagine that you have 1 billion replication controller objects. Maybe
you just have three pods and most of the replication controllers have zero replicas. Still,
Kubernetes will spend all its time just verifying that indeed all those billion replication
controllers have no replicas of their pod template and that they don't need to kill any pods.
This is an extreme example, but the concept applies. Too many API objects means a lot of
work for Kubernetes.

The overage of objects that can be restricted is a little spotty. For example, you can limit the
number of replication controllers, but not replica sets, which are almost an improved
version of replication controller that can do exactly the same damage if too many of them
are around.

The most glaring omission is namespaces. There is no limit to the number of namespaces.
Since all limits are per namespace, you can easily overwhelm Kubernetes by creating too
many namespaces, as each namespace has only a small number of API objects.

Here are all the supported objects:

ConfigMaps: The total number of configuration maps that can exist in the
namespace.
PersistentVolumeClaims: The total number of persistent volume claims that
can exist in the namespace.
Pods: The total number of pods in a non-terminal state that can exist in the
namespace. A pod is in a terminal state if status.phase in (Failed,
Succeeded) is true.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[431]

ReplicationControllers: The total number of replication controllers that can
exist in the namespace.
ResourceQuotas: The total number of resource quotas that can exist in the
namespace.
Services: The total number of services that can exist in the namespace.
Services.LoadBalancers: The total number of load balancer services that can
exist in the namespace.
Services.NodePorts: The total number of node port services that can exist in
the namespace.
Secrets: The total number of secrets that can exist in the namespace.

Quota scopes
Some resources, such as pods, may be in different states, and it is useful to have different
quotas for these different states. For example, if there are many pods that are terminating
(this happens a lot during rolling updates) then it is OK to create more pods even if the
total number exceeds the quota. This can be achieved by only applying a pod object count
quota to non-terminating pods. Here are the existing scopes:

Terminating: Match pods where spec.activeDeadlineSeconds >= 0
NotTerminating: Match pods where spec.activeDeadlineSeconds is nil
BestEffort: Match pods that have best effort quality of service
NotBestEffort: Match pods that do not have best effort quality of service

While the BestEffort scope applies only to pods, the Terminating, NotTerminating,
and NotBestEffort scopes apply to CPU and memory, too. This is interesting because a
resource quota limit can prevent a pod from terminating. Here are the supported objects:

cpu

limits.cpu

limits.memory

memory

pods

requests.cpu

requests.memory

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[432]

Requests and limits
The meaning of requests and limits in the context of resource quotas is that it requires the
containers to explicitly specify the target attribute. This way, Kubernetes can manage the
total quota because it knows exactly what range of resources is allocated to each container.

Working with quotas
Let's create a namespace first:

> kubectl create namespace ns
namespace "ns" created

Using namespace-specific context
When working with namespaces other than default, I prefer to use a context, so I don't
have to keep typing --namespace=ns for every command:

> kubectl config set-context ns --cluster=minikube --user=minikube --
namespace=ns
Context "ns" set.
> kubectl config use-context ns
Switched to context "ns".

Creating quotas
Create a compute quota object:1.

 apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: compute-quota
 spec:
 hard:
 pods: "2"
 requests.cpu: "1"
 requests.memory: 20Mi
 limits.cpu: "2"
 limits.memory: 2Gi
 > kubectl create -f compute-quota.yaml
 resourcequota "compute-quota" created

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[433]

Next, let's add a count quota object:2.

 apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: object-counts-quota
 spec:
 hard:
 configmaps: "10"
 persistentvolumeclaims: "4"
 replicationcontrollers: "20"
 secrets: "10"
 services: "10"
 services.loadbalancers: "2"
 > kubectl create -f object-count-quota.yaml
 resourcequota "object-counts-quota" created

We can observe all the quotas:3.

 > kubectl get quota
 NAME AGE
 compute-resources 17m
 object-counts 15m

And we can even get all the information using describe:4.

 > kubectl describe quota compute-quota
 Name: compute-quota
 Namespace: ns
 Resource Used Hard
 -------- ---- ----
 limits.cpu 0 2
 limits.memory 0 2Gi
 pods 0 2
 requests.cpu 0 1
 requests.memory 0 20Mi
 > kubectl describe quota object-counts-quota
 Name: object-counts-quota
 Namespace: ns
 Resource Used Hard
 -------- ---- ----
 configmaps 0 10
 persistentvolumeclaims 0 4
 replicationcontrollers 0 20
 secrets 1 10
 services 0 10
 services.loadbalancers 0 2

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[434]

This view gives us an instant understanding of the global resource usage of important
resources across the cluster without diving into too many separate objects.

Let's add an NGINX server to our namespace:1.

 > kubectl run nginx --image=nginx --replicas=1
 deployment "nginx" created
 > kubectl get pods
 No resources found.

Uh-oh. No resources found. But there was no error when the deployment was2.
created. Let's check out the deployment resource:

 > kubectl describe deployment nginx
 Name: nginx
 Namespace: ns
 CreationTimestamp: Sun, 11 Feb 2018 16:04:42 -0800
 Labels: run=nginx
 Annotations: deployment.kubernetes.io/revision=1
 Selector: run=nginx
 Replicas: 1 desired | 0 updated | 0 total | 0 available |
1 unavailable
 StrategyType: RollingUpdate
 MinReadySeconds: 0
 RollingUpdateStrategy: 1 max unavailable, 1 max surge
 Pod Template:
 Labels: run=nginx
 Containers:
 nginx:
 Image: nginx
 Port: <none>
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
 Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 ReplicaFailure True FailedCreate
 OldReplicaSets: <none>
 NewReplicaSet: nginx-8586cf59 (0/1 replicas created)
 Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
Normal ScalingReplicaSet 16m deployment-controller Scaled up replica
set nginx-8586cf59 to 1

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[435]

There it is, in the conditions section. The ReplicaFailure status is True and the reason
is FailedCreate. You can see that the deployment created a new replica set called
nginx-8586cf59, but it couldn't create the pod it was supposed to create. We still don't
know why. Let's check out the replica set:

 > kubectl describe replicaset nginx-8586cf59
 Name: nginx-8586cf59
 Namespace: ns
 Selector: pod-template-hash=41427915,run=nginx
 Labels: pod-template-hash=41427915
 run=nginx
 Annotations: deployment.kubernetes.io/desired-replicas=1
 deployment.kubernetes.io/max-replicas=2
 deployment.kubernetes.io/revision=1
 Controlled By: Deployment/nginx
 Replicas: 0 current / 1 desired
 Pods Status: 0 Running / 0 Waiting / 0 Succeeded / 0 Failed
 Conditions:
 Type Status Reason
 ---- ------ ------
 ReplicaFailure True FailedCreate
 Events:
 Type Reason Age From
Message
 ---- ------ ---- ---- ----

 Warning FailedCreate 17m (x8 over 22m) replicaset-controller
(combined from similar events): Error creating: pods "nginx-8586cf59-sdwxj"
is forbidden: failed quota: compute-quota: must specify
limits.cpu,limits.memory,requests.cpu,requests.memory

The output is very wide, so it overlaps several lines, but the message is crystal clear. Since
there is a compute quota in the namespace, every container must specify its CPU, memory
requests, and limit. The quota controller must account for every container compute
resources usage to ensure the total namespace quota is respected.

OK. We understand the problem, but how to resolve it? One way is to create a dedicated
deployment object for each pod type we want to use and carefully set the CPU and
memory requests and limit. But what if we're not sure? What if there are many pod types
and we don't want to manage a bunch of deployment configuration files?

Another solution is to specify the limit on the command line when we run the deployment:

 > kubectl run nginx \
 --image=nginx \
 --replicas=1 \

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[436]

 --requests=cpu=100m,memory=4Mi \
 --limits=cpu=200m,memory=8Mi \
 --namespace=ns

That works, but creating deployments on the fly with lots of arguments is a very fragile
way to manage your cluster:

 > kubectl get pods
 NAME READY STATUS RESTARTS AGE
 nginx-2199160687-zkc2h 1/1 Running 0 2m

Using limit ranges for default compute quotas
A better way is to specify default compute limits. Enter limit ranges. Here is a1.
configuration file that sets some defaults for containers:

 apiVersion: v1
 kind: LimitRange
 metadata:
 name: limits
 spec:
 limits:
 - default:
 cpu: 200m
 memory: 6Mi
 defaultRequest:
 cpu: 100m
 memory: 5Mi
 type: Container
 > kubectl create -f limits.yaml
 limitrange "limits" created

Here are the current default limits:2.

> kubectl describe limits limitsName: limits
Namespace: ns
Type Resource Min Max Default Request Default Limit Max
Limit/Request Ratio
---- -------- --- --- ---------------
------------- -----------------------
Container cpu - - 100m 200m -
Container memory - - 5Mi 6Mi -

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[437]

Now, let's run NGINX again without specifying any CPU or memory requests3.
and limits. But first, let's delete the current NGINX deployment:

 > kubectl delete deployment nginx
 deployment "nginx" deleted
 > kubectl run nginx --image=nginx --replicas=1
 deployment "nginx" created

Let's see if the pod was created. Yes, it was:4.

 > kubectl get pods
 NAME READY STATUS RESTARTS AGE
 nginx-8586cf59-p4dp4 1/1 Running 0 16m

Choosing and managing the cluster capacity
With Kubernetes' horizontal pod autoscaling, daemon sets, stateful sets, and quotas, we can
scale and control our pods, storage, and other objects. However, in the end, we're limited
by the physical (virtual) resources available to our Kubernetes cluster. If all your nodes are
running at 100% capacity, you need to add more nodes to your cluster. There is no way
around it. Kubernetes will just fail to scale. On the other hand, if you have very dynamic
workloads then Kubernetes can scale down your pods, but if you don't scale down your
nodes correspondingly, you will still pay for the excess capacity. In the cloud, you can stop
and start instances.

Choosing your node types
The simplest solution is to choose a single node type with a known quantity of CPU,
memory, and local storage. But that is typically not the most efficient and cost-effective
solution. It makes capacity planning simple because the only question is how many nodes
are needed. Whenever you add a node, you add a known quantity of CPU and memory to
your cluster, but most Kubernetes clusters and components within the cluster handle
different workloads. We may have a stream processing pipeline where many pods receive
some data and process it in one place. This workload is CPU-heavy and may or may not
need a lot of memory. Other components, such as a distributed memory cache, need a lot of
memory, but very little CPU. Other components, such as a Cassandra cluster, need multiple
SSD disks attached to each node.

For each type of node, you should consider proper labeling and making sure that
Kubernetes schedules the pods that are designed to run on that node type.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[438]

Choosing your storage solutions
Storage is a huge factor in scaling a cluster. There are three categories of scalable storage
solution:

Roll your own
Use your cloud platform storage solution
Use an out-of-cluster solution

When you use roll your own, you install some type of storage solution in your Kubernetes
cluster. The benefits are flexibility and full control, but you have to manage and scale it
yourself.

When you use your cloud platform storage solution, you get a lot out of the box, but you
lose control, you typically pay more, and, depending on the service, you may be locked in
to that provider.

When you use an out-of-cluster solution, the performance and cost of data transfer may be
much greater. You typically use this option if you need to integrate with an existing system.

Of course, large clusters may have multiple data stores from all categories. This is one of
the most critical decisions you have to make, and your storage needs may change and
evolve over time.

Trading off cost and response time
If money is not an issue you can just over-provision your cluster. Every node will have the
best hardware configuration available, you'll have way more nodes than are needed to
process your workloads, and you'll have copious amounts of available storage. Guess
what? Money is always an issue!

You may get by with over-provisioning when you're just starting and your cluster doesn't
handle a lot of traffic. You may just run five nodes, even if two nodes are enough most of
the time. Multiply everything by 1,000 and someone will come asking questions if you have
thousands of idle machines and petabytes of empty storage.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[439]

OK. So, you measure and optimize carefully and you get 99.99999% utilization of every
resource. Congratulations, you just created a system that can't handle an iota of extra load
or the failure of a single node without dropping requests on the floor or delaying responses.

You need to find the middle ground. Understand the typical fluctuations of your
workloads and consider the cost/benefit ratio of having excess capacity versus having
reduced response time or processing ability.

Sometimes, if you have strict availability and reliability requirements, you can build
redundancy into the system and then you over-provision by design. For example, you want
to be able to hot swap a failed component with no downtime and no noticeable effects.
Maybe you can't lose even a single transaction. In this case, you'll have a live backup for all
critical components, and that extra capacity can be used to mitigate temporary fluctuations
without any special actions.

Using effectively multiple node configurations
Effective capacity planning requires you to understand the usage patterns of your system
and the load each component can handle. That may include a lot of data streams generated
inside the system. When you have a solid understanding of the typical workloads, you can
look at workflows and which components handle which parts of the load. Then you can
compute the number of pods and their resource requirements. In my experience, there are
some relatively fixed workloads, some workloads that vary predictably (such as office
hours versus non-office hours), and then you have your completely crazy workloads that
behave erratically. You have to plan according to each workload, and you can design
several families of node configurations that can be used to schedule pods that match a
particular workload.

Benefiting from elastic cloud resources
Most cloud providers let you scale instances automatically, which is a perfect complement
to Kubernetes' horizontal pod autoscaling. If you use cloud storage, it also grows magically
without you having to do anything. However, there are some gotchas that you need to be
aware of.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[440]

Autoscaling instances
All the big cloud providers have instance autoscaling in place. There are some differences,
but scaling up and down based on CPU utilization is always available, and sometimes
custom metrics are available too. Sometimes, load balancing is offered as well. As you can
see, there is some overlap with Kubernetes here. If your cloud provider doesn't have
adequate autoscaling with proper control, it is relatively easy to roll your own, so that you
monitor your cluster resource usage and invoke cloud APIs to add or remove instances.
You can extract the metrics from Kubernetes.

Here is a diagram that shows how two new instances are added based on a CPU load
monitor:

Mind your cloud quotas
When working with cloud providers, some of the most annoying things are quotas. I've
worked with four different cloud providers (AWS, GCP, Azure, and Alibaba Cloud) and I
was always bitten by quotas at some point. The quotas exist to let the cloud providers do
their own capacity planning (and also to protect you from inadvertently starting 1 million
instances that you won't be able to pay for), but from your point of view it is yet one more
thing that can trip you up. Imagine that you set up a beautiful autoscaling system that
works like magic, and suddenly the system doesn't scale when you hit 100 nodes. You
quickly discover that you are limited to 100 nodes and you open a support request to
increase the quota. However, a human must approve quota requests, and that can take a
day or two. In the meantime, your system is unable to handle the load.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[441]

Manage regions carefully
Cloud platforms are organized in regions and availability zones. Some services and
machine configurations are available only in some regions. Cloud quotas are also managed
at the regional level. The performance and cost of data transfers within regions is much
lower (often free) than across regions. When planning your cluster, you should consider
your geo-distribution strategy carefully. If you need to run your cluster across multiple
regions, you may have some tough decisions to make regarding redundancy, availability,
performance, and cost.

Considering Hyper.sh (and AWS Fargate)
Hyper.sh is a container-aware hosting service. You just start containers. The service takes
care of allocating the hardware. Containers start within seconds. You never need to wait
minutes for a new VM. Hypernetes is Kubernetes on Hyper.sh, and it completely eliminates
the need to scale the nodes because there are no nodes as far as you're concerned. There are
only containers (or pods).

In the following diagram, you can see on the right how Hyper Containers run directly on a
multi-tenant bare-metal container cloud:

AWS recently released Fargate, which similarly abstracts away the underlying instances
and just let you schedule containers in the cloud. In combination with EKS, it may become
the most popular way to deploy Kubernetes.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[442]

Pushing the envelope with Kubernetes
In this section, we will see how the Kubernetes team pushes Kubernetes to its limit. The
numbers are quite telling, but some of the tools and techniques, such as Kubemark, are
ingenious, and you may even use them to test your clusters. In the wild, there are some
Kubernetes clusters with 3,000 nodes. At CERN, the OpenStack team achieved 2 million
requests per second:

http://superuser.openstack.org/articles/scaling-magnum-and-kubernetes-2-million

-requests-per-second/.

Mirantis conducted a performance and scaling test in their scaling lab where they deployed
5,000 Kubernetes nodes (in VMs) on 500 physical servers.

For more detail on Mirantis, please refer to: http://bit.ly/2oijqQY.

OpenAI scaled their machine learning Kubernetes cluster to 2,500 nodes and learned some
valuable lessons, such as minding the query load of logging agents and storing events in a
separate etcd cluster:

https://blog.openai.com/scaling-kubernetes-to-2500-nodes/

At the end of this section, you'll appreciate the effort and creativity that goes into
improving Kubernetes on a large scale, you will know how far you can push a single
Kubernetes cluster and what performance to expect, and you'll get an inside look at some of
the tools and techniques that can help you evaluate the performance of your own
Kubernetes clusters.

Improving the performance and scalability of
Kubernetes
The Kubernetes team focused heavily on performance and scalability in Kubernetes 1.6.
When Kubernetes 1.2 was released, it supported clusters of up to 1,000 nodes within the
Kubernetes service-level objectives. Kubernetes 1.3 doubled the number to 2,000 nodes, and
Kubernetes 1.6 brought it to a staggering 5,000 nodes per cluster. We will get into the
numbers later, but first let's look under the hood and see how Kubernetes achieved these
impressive improvements.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://superuser.openstack.org/articles/scaling-magnum-and-kubernetes-2-million-requests-per-second/
http://superuser.openstack.org/articles/scaling-magnum-and-kubernetes-2-million-requests-per-second/
http://bit.ly/2oijqQY
https://blog.openai.com/scaling-kubernetes-to-2500-nodes/

Rolling Updates, Scalability, and Quotas Chapter 14

[443]

Caching reads in the API server
Kubernetes keeps the state of the system in etcd, which is very reliable, though not
superfast (although etcd3 delivered a massive improvement specifically in order to enable
larger Kubernetes clusters). The various Kubernetes components operate on snapshots of
that state and don't rely on real-time updates. That fact allows the trading of some latency
for throughput. All the snapshots used to be updated by etcd watches. Now, the API server
has an in-memory read cache that is used for updating state snapshots. The in-memory
read cache is updated by etcd watches. These schemes significantly reduce the load on etcd
and increase the overall throughput of the API server.

The pod life cycle event generator
Increasing the number of nodes in a cluster is key for horizontal scalability, but pod density
is crucial too. Pod density is the number of pods that the Kubelet can manage efficiently on
one node. If pod density is low, then you can't run too many pods on one node. That means
that you might not benefit from more powerful nodes (more CPU and memory per node)
because the Kubelet will not be able to manage more pods. The other alternative is to force
the developers to compromise their design and create coarse-grained pods that do more
work per pod. Ideally, Kubernetes should not force your hand when it comes to pod
granularity. The Kubernetes team understands this very well and has invested a lot of work
in improving pod density.

In Kubernetes 1.1, the official (tested and advertised) number was 30 pods per node. I
actually ran 40 pods per node on Kubernetes 1.1, but I paid for it with an excessive kubelet
overhead that stole CPU from the worker pods. In Kubernetes 1.2, the number jumped to
100 pods per node.

The kubelet used to poll the container runtime constantly for each pod in its own go
routine. That put a lot of pressure on the container runtime so that, during performance
peaks, there were reliability issues, particularly with CPU utilization. The solution was the
Pod Lifecycle Event Generator (PLEG). The way the PLEG works is that it lists the state of
all the pods and containers and compares it to the previous state. This is done once for all
the pods and containers. Then, by comparing the state to the previous state, the PLEG
knows which pods need to sync again and invokes only those pods. That change resulted in
a significant four times lower CPU usage by the Kubelet and the container runtime. It also
reduced the polling period, which improves responsiveness.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[444]

The following diagram shows the CPU utilization for 120 pods on Kubernetes 1.1 versus
Kubernetes 1.2. You can see the 4x factor very clearly:

Serializing API objects with protocol buffers
The API server has a REST API. REST APIs typically use JSON as their serialization format,
and the Kubernetes API server was no different. However, JSON serialization implies
marshaling and unmarshaling JSON to native data structures. This is an expensive
operation. In a large-scale Kubernetes cluster, a lot of components need to query or update
the API server frequently. The cost of all that JSON parsing and composition adds up
quickly. In Kubernetes 1.3, the Kubernetes team added an efficient protocol buffers
serialization format. The JSON format is still there, but all internal communication between
Kubernetes components uses the protocol buffers serialization format.

etcd3
Kubernetes switched from etcd2 to etcd3 in Kubernetes 1.6. This was a big deal. Scaling
Kubernetes to 5,000 nodes wasn't possible due to limitations of etcd2, especially related to
the watch implementation. The scalability needs of Kubernetes drove many of the
improvements of etcd3, as CoreOS used Kubernetes as a measuring stick. Some of the big
ticket items are as follows:

GRPC instead of REST-etcd2 has a REST API, etcd3 has a gRPC API (and a REST
API via gRPC gateway). The http/2 protocol at the base of gRPC can use a single
TCP connection for multiple streams of requests and responses.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[445]

Leases instead of TTLs-etcd2 uses time to live (TTL) per key as the mechanism to
expire keys, and etcd3 uses leases with TTLs, where multiple keys can share the
same key. This reduces significantly keep alive traffic.
The watch implementation of etcd3 takes advantage of GRPC bi-directional
streams and maintains a single TCP connection to send multiple events, which
reduced the memory footprint by at least an order of magnitude.
With etcd3, Kubernetes started storing all the state as protobug, which
eliminated a lot of wasteful JSON serialization overhead.

Other optimizations
The Kubernetes team made many other optimizations:

Optimizing the scheduler (which resulted in 5-10x higher scheduling
throughput)
Switching all controllers to a new recommended design using shared informers,
which reduced resource consumption of controller-manager-for reference see this
document at https:/ /github. com/kubernetes/ community/ blob/ master/
contributors/ devel/ controllers. md

Optimizing individual operations in the API server (conversions, deep-copies,
patch)
Reducing memory allocation in the API server (which significantly impacts the
latency of API calls)

Measuring the performance and scalability of
Kubernetes
In order to improve performance and scalability, you need a sound idea of what you want
to improve and how you're going to measure the improvements. You must also make sure
that you don't violate basic properties and guarantees in the quest for improved
performance and scalability. What I love about performance improvements is that they
often buy you scalability improvements for free. For example, if a pod needs 50% of the
CPU of a node to do its job and you improve performance so that the pod can do the same
work using 33% of the CPU, then you can suddenly run three pods instead of two on that
node, and you've improved the scalability of your cluster by 50% overall (or reduced your
cost by 33%).

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md
https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.md

Rolling Updates, Scalability, and Quotas Chapter 14

[446]

The Kubernetes SLOs
Kubernetes has Service Level Objectives (SLOs). These guarantees must be respected
when trying to improve performance and scalability. Kubernetes has a one-second response
time for API calls. That's 1,000 milliseconds. It actually achieves an order of magnitude
faster response time most of the time.

Measuring API responsiveness
The API has many different endpoints. There is no simple API responsiveness number.
Each call has to be measured separately. In addition, due to the complexity and the
distributed nature of the system, not to mention networking issues, there can be a lot of
volatility to the results. A solid methodology is to break the API measurements into
separate endpoints, then run a lot of tests over time and look at percentiles (which is
standard practice).

It's also important to use enough hardware to manage a large number of objects. The
Kubernetes team used a 32-core VM with 120 GB for the master in this test.

The following diagram describes the 50th, 90th, and 99th percentile of various important
API call latencies for Kubernetes 1.3. You can see that the 90th percentile is very low, below
20 milliseconds. Even the 99th percentile is less than 125 milliseconds for the DELETE pods
operation, and less than 100 milliseconds for all other operations:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[447]

Another category of API calls is LIST operations. Those calls are more expansive because
they need to collect a lot of information in a large cluster, compose the response, and send a
potential large response. This is where performance improvements such as the in-memory
read-cache and the protocol buffers serialization really shine. The response time is
understandably greater than the single API calls, but it is still way below the SLO of one
second (1,000 milliseconds):

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[448]

This is excellent, but check out the API call latencies with Kubernetes 1.6 on a 5,000 nodes
cluster:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[449]

Measuring end-to-end pod startup time
One of the most important performance characteristics of a large dynamic cluster is end-to-
end pod startup time. Kubernetes creates, destroys, and shuffles pods around all the time.
You could say that the primary function of Kubernetes is to schedule pods.

In the following diagram, you can see that pod startup time is less volatile than API calls.
This makes sense since there is a lot of work that needs to be done, such as launching a new
instance of a runtime that doesn't depend on cluster size. With Kubernetes 1.2 on a 1,000-
node cluster, the 99th percentile end-to-end time to launch a pod was less than 3 seconds.
With Kubernetes 1.3, the 99th percentile end-to-end time to launch a pod was a little over
2.5 seconds. It's remarkable that the time is very close, but a little better with Kubernetes 1.3
on a 2,000-node cluster versus a 1,000-node cluster:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[450]

Kubernetes 1.6 takes it to the next level and does even better on a larger cluster:

Testing Kubernetes at scale
Clusters with thousands of nodes are expensive. Even a project such as Kubernetes that
enjoys the support of Google and other industry giants still needs to come up with
reasonable ways to test without breaking the bank.

The Kubernetes team runs a full-fledged test on a real cluster at least once per release to
collect real-world performance and scalability data. However, there is also a need for a
lightweight and cheaper way to experiment with potential improvements and to detect
regressions. Enter the Kubemark.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling Updates, Scalability, and Quotas Chapter 14

[451]

Introducing the Kubemark tool
The Kubemark is a Kubernetes cluster that runs mock nodes called hollow nodes used for
running lightweight benchmarks against large-scale (hollow) clusters. Some of the
Kubernetes components that are available on a real node such as the kubelet is replaced
with a hollow kubelet. The hollow kubelet fakes a lot of the functionality of a real kubelet.
A hollow kubelet doesn't actually start any containers, and it doesn't mount any volumes.
But from the Kubernetes cluster point of view -the state stored in etcd- all those objects exist
and you can query the API server. The hollow kubelet is actually the real kubelet with an
injected mock Docker client that doesn't do anything.

Another important hollow component is the hollow-proxy, which mocks the Kubeproxy
component. It again uses the real Kubeproxy code with a mock proxier interface that does
nothing and avoids touching iptables.

Setting up a Kubemark cluster
A Kubemark cluster uses the power of Kubernetes. To set up a Kubemark cluster, perform
the following steps:

Create a regular Kubernetes cluster where we can run N hollow-nodes.1.
Create a dedicated VM to start all master components for the Kubemark cluster.2.
Schedule N hollow-node pods on the base Kubernetes cluster. Those hollow-3.
nodes are configured to talk to the Kubemark API server running on the
dedicated VM.
Create add-on pods by scheduling them on the base cluster and configuring4.
them to talk to the Kubemark API server.

A full-fledged guide on GCP is available at http://bit.ly/2nPMkwc.

Comparing a Kubemark cluster to a real-world cluster
The performance of Kubemark clusters is pretty similar to the performance of real clusters.
For the pod startup end-to-end latency, the difference is negligible. For the API-
responsiveness, the differences are higher, though generally less than a factor of two.
However, trends are exactly the same: an improvement/regression in a real cluster is visible
as a similar percentage drop/increase in metrics in Kubemark.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://bit.ly/2nPMkwc

Rolling Updates, Scalability, and Quotas Chapter 14

[452]

Summary
In this chapter, we've covered many topics relating to scaling Kubernetes clusters. We
discussed how the horizontal pod autoscaler can automatically manage the number of
running pods-based CPU utilization or other metrics, how to perform rolling updates
correctly and safely in the context of auto-scaling, and how to handle scarce resources via
resource quotas. Then we moved on to overall capacity planning and management of the
cluster's physical or virtual resources. Finally, we delved into a real-world example of
scaling a single Kubernetes cluster to handle 5,000 nodes.

At this point, you have a good understanding of all the factors that come into play when a
Kubernetes cluster is facing dynamic and growing workloads. You have multiple tools to
choose from for planning and designing your own scaling strategy.

In the next chapter, we will dive into advanced Kubernetes networking. Kubernetes has a
networking model based on the Common Networking Interface (CNI) and supports
multiple providers.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

15
Advanced Kubernetes

Networking
In this chapter, we will examine the important topic of networking. Kubernetes, as an
orchestration platform, manages containers/pods running on different machines (physical
or virtual) and requires an explicit networking model. We will look at the following topics:

The Kubernetes networking model
Standard interfaces that Kubernetes supports, such as EXEC, Kubenet, and, in
particular, CNI
Various networking solutions that satisfy the requirements of Kubernetes
networking
Network policies and load balancing options
Writing a custom CNI plugin

At the end of this chapter, you will understand the Kubernetes approach to networking and
be familiar with the solution space for aspects such as standard interfaces, networking
implementations, and load balancing. You will even be able to write your very own CNI
plugin if you wish.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[454]

Understanding the Kubernetes networking
model
The Kubernetes networking model is based on a flat address space. All pods in a cluster can
directly see each other. Each pod has its own IP address. There is no need to configure any
NAT. In addition, containers in the same pod share their pod's IP address and can
communicate with each other through localhost. This model is pretty opinionated, but,
once set up, it simplifies life considerably both for developers and administrators. It makes
it particularly easy to migrate traditional network applications to Kubernetes. A pod
represents a traditional node and each container represents a traditional process.

Intra-pod communication (container to container)
A running pod is always scheduled on one (physical or virtual) node. That means that all
the containers run on the same node and can talk to each other in various ways, such as the
local filesystem, any IPC mechanism, or using localhost and well-known ports. There is no
danger of port collision between different pods because each pod has its own IP address,
and when a container in the pod uses localhost, it applies to the pod's IP address only. So, if
container 1 in pod 1 connects to port 1234, which container 2 listens to on pod 1, it will not
conflict with another container in pod 2 running on the same node that also listens on port
1234. The only caveat is that if you're exposing ports to the host then you should be careful
about pod-to-node affinity. This can be handled using several mechanisms, such as
DaemonSet and pod anti-affinity.

Inter-pod communication (pod to pod)
Pods in Kubernetes are allocated a network-visible IP address (not private to the node).
Pods can communicate directly without the aid of network address translation, tunnels,
proxies, or any other obfuscating layer. Well-known port numbers can be used for a
configuration-free communication scheme. The pod's internal IP address is the same as its
external IP address that other pods see (within the cluster network; not exposed to the
outside world). This means that standard naming and discovery mechanisms such as DNS
work out of the box.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[455]

Pod-to-service communication
Pods can talk to each other directly using their IP addresses and well-known ports, but that
requires the pods to know each other's IP addresses. In a Kubernetes cluster, pods can be
destroyed and created constantly. The service provides a layer of indirection that is very
useful because the service is stable even if the set of actual pods that respond to requests is
ever-changing. In addition, you get automatic, highly-available load balancing because the
Kube-proxy on each node takes care of redirecting traffic to the correct pod:

External access
Eventually, some containers need to be accessible from the outside world. The pod IP
addresses are not visible externally. The service is the right vehicle, but external access
typically requires two redirects. For example, cloud provider load balancers are
Kubernetes-aware, so they can't direct traffic to a particular service directly to a node that
runs a pod that can process the request. Instead, the public load balancer just directs traffic
to any node in the cluster and the Kube-proxy on that node will redirect again to an
appropriate pod if the current node doesn't run the necessary pod.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[456]

The following diagram shows how all that the external load balancer on the right side does
is send traffic to all nodes that reach the proxy, which takes care of further routing, if it's
needed:

Kubernetes networking versus Docker
networking
Docker networking follows a different model, although over time it has gravitated towards
the Kubernetes model. In Docker networking, each container has its own private IP address
from the 172.xxx.xxx.xxx address space confined to its own node. It can talk to other
containers on the same node via their own 172.xxx.xxx.xxx IP addresses. This makes
sense for Docker because it doesn't have the notion of a pod with multiple interacting
containers, so it models every container as a lightweight VM that has its own network
identity. Note that with Kubernetes, containers from different pods that run on the same
node can't connect over localhost (except by exposing host ports, which is discouraged).
The whole idea is that, in general, Kubernetes can kill and create pods anywhere, so
different pods shouldn't rely, in general, on other pods available on the node. Daemon sets
are a notable exception, but the Kubernetes networking model is designed to work for all
use cases and doesn't add special cases for direct communication between different pods on
the same node.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[457]

How do Docker containers communicate across nodes? The container must publish ports to
the host. This obviously requires port coordination because if two containers try to publish
the same host port, they'll conflict with each other. Then containers (or other processes)
connect to the host's port that get channeled into the container. A big downside is that
containers can't self-register with external services because they don't know what their
host's IP address is. You could work around it by passing the host's IP address as an
environment variable when you run the container, but that requires external coordination
and complicates the process.

The following diagram shows the networking setup with Docker. Each container has its
own IP address; Docker creates the docker0 bridge on every node:

Lookup and discovery
In order for pods and containers to communicate with each other, they need to find each
other. There are several ways for containers to locate other containers or announce
themselves. There are also some architectural patterns that allow containers to interact
indirectly. Each approach has its own pros and cons.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[458]

Self-registration
We've mentioned self-registration several times. Let's understand exactly what it means.
When a container runs, it knows its pod's IP address. Each container that wants to be
accessible to other containers in the cluster can connect to some registration service and
register its IP address and port. Other containers can query the registration service for the
IP addresses and port of all registered containers and connect to them. When a container is
destroyed (gracefully), it will unregister itself. If a container dies ungracefully then some
mechanism needs to be established to detect that. For example, the registration service can
periodically ping all registered containers, or the containers are required periodically to
send a keepalive message to the registration service.

The benefit of self-registration is that once the generic registration service is in place (no
need to customize it for different purposes), there is no need to worry about keeping track
of containers. Another huge benefit is that containers can employ sophisticated policies and
decide to unregister temporarily if they are unavailable because of local conditions, such as
if a container is busy and doesn't want to receive any more requests at the moment. This
sort of smart and decentralized dynamic load balancing can be very difficult to achieve
globally. The downside is that the registration service is yet another non-standard
component that containers need to know about in order to locate other containers.

Services and endpoints
Kubernetes services can be considered as a registration service. Pods that belong to a
service are registered automatically based on their labels. Other pods can look up the
endpoints to find all the service pods or take advantage of the service itself and directly
send a message to the service that will get routed to one of the backend pods. Although
most of the time, pods will just send their message to the service itself, which will forward
it to one of the backing pods.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[459]

Loosely coupled connectivity with queues
What if containers can talk to each other without knowing their IP addresses and ports or
even service IP addresses or network names? What if most of the communication can be
asynchronous and decoupled? In many cases, systems can be composed of loosely coupled
components that are not only unaware of the identities of other components, but they are
unaware that other components even exist. Queues facilitate such loosely coupled systems.
Components (containers) listen to messages from the queue, respond to messages, perform
their jobs, and post messages to the queue about progress, completion status, and errors.
Queues have many benefits:

Easy to add processing capacity without coordination; just add more containers
that listen to the queue
Easy to keep track of overall load by queue depth
Easy to have multiple versions of components running side by side by versioning
messages and/or topics
Easy to implement load balancing as well as redundancy by having multiple
consumers process requests in different modes

The downsides of queues are the following:

Need to make sure that the queue provides appropriate durability and high
availability so it doesn't become a critical SPOF
Containers need to work with the async queue API (could be abstracted away)
Implementing request-response requires the somewhat cumbersome listening on
response queues

Overall, queues are an excellent mechanism for large-scale systems and they can be utilized
in large Kubernetes clusters to ease coordination.

Loosely coupled connectivity with data stores
Another loosely coupled method is to use a data store (for example, Redis) to store
messages and then other containers can read them. While possible, this is not the design
objective of data stores and the result is often cumbersome, fragile, and doesn't have the
best performance. Data stores are optimized for data storage and not for communication.
That being said, data stores can be used in conjunction with queues, where a component
stores some data in a data store and then sends a message to the queue that data is ready
for processing. Multiple components listen to the message and all start processing the data
in parallel.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[460]

Kubernetes ingress
Kubernetes offers an ingress resource and controller that is designed to expose Kubernetes
services to the outside world. You can do it yourself, of course, but many tasks involved in
defining ingress are common across most applications for a particular type of ingress, such
as a web application, CDN, or DDoS protector. You can also write your own ingress objects.

The ingress object is often used for smart load balancing and TLS termination. Instead of
configuring and deploying your own NGINX server, you can benefit from the built-in
ingress. If you need a refresher, hop on to Chapter 5, Using Critical Kubernetes Resources,
where we discussed the ingress resource with examples.

Kubernetes network plugins
Kubernetes has a network plugin system, because networking is so diverse and different
people would like to implement it in different ways. Kubernetes is flexible enough to
support any scenario. The primary network plugin is CNI, which we will discuss in depth.
But Kubernetes also comes with a simpler network plugin called Kubenet. Before we go
over the details, let's get on the same page with the basics of Linux networking (just the tip
of the iceberg).

Basic Linux networking
Linux, by default, has a single shared network space. The physical network interfaces are
all accessible in this namespace, but the physical namespace can be divided into multiple
logical namespaces, which is very relevant to container networking.

IP addresses and ports
Network entities are identified by their IP address. Servers can listen to incoming
connections on multiple ports. Clients can connect (TCP) or send data (UDP) to servers
within their network.

Network namespaces
Namespaces group a bunch of network devices such that they can reach other servers in the
same namespace, but not other servers even if they are physically on the same network.
Linking networks or network segments can be done through bridges, switches, gateways,
and routing.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[461]

Subnets, netmasks, and CIDRs
Granular division of network segments is very useful when designing and maintaining
networks. Dividing networks in to smaller subnets with a common prefix is a common
practice. These subnets can be defined by bitmasks that represent the size of the subnet
(how many hosts it can contain). For example, a netmask of 255.255.255.0 means that
the first three octets are used for routing and only 256 (actually 254) individual hosts are
available. The Classless Inter-Domain Routing (CIDR) notation is often used for this
purpose because it is more concise, encodes more information, and also allows combining
hosts from multiple legacy classes (A, B, C, D, E). For example, 172.27.15.0/24 means
that the first 24 bits (three octets) are used for routing.

Virtual Ethernet devices
Virtual Ethernet (veth) devices represent physical network devices. When you create a
veth that's linked to a physical device, you can assign that veth (and by extension the
physical device) into a namespace in which devices from other namespaces can't reach it
directly, even if physically they are on the same local network.

Bridges
Bridges connect multiple network segments to an aggregate network, so all the nodes can
communicate with each other. Bridging is done at the L1 (physical) and L2 (data link) layers
of the OSI network model.

Routing
Routing connects separate networks, typically based on routing tables that instruct network
devices how to forward packets to their destination. Routing is done through various
network devices, such as routers, bridges, gateways, switches, and firewalls, including
regular Linux boxes.

Maximum transmission unit
The maximum transmission unit (MTU) determines how big packets can be. On Ethernet
networks, for example, the MTU is 1,500 bytes. The bigger the MTU, the better the ratio
between payload and headers, which is a good thing. The downside is that minimum
latency is reduced because you have to wait for the entire packet to arrive and, furthermore,
if there's a failure, you have to retransmit the entire packet.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[462]

Pod networking
Here is a diagram that describes the relationship between pod, host, and the global internet
at the networking level through veth0:

Kubenet
Back to Kubernetes. Kubenet is a network plugin; it's very rudimentary and just creates a
Linux bridge called cbr0 and a veth for each pod. Cloud providers typically use it to set
up routing rules for communication between nodes, or in single-node environments. The
veth pair connects each pod to its host node using an IP address from the host's IP address
range.

Requirements
The Kubenet plugin has the following requirements:

The node must be assigned a subnet to allocate IP addresses for its pods
The standard CNI bridge, lo, and host-local plugins are required for version
0.2.0 or greater
The Kubelet must be run with the --network-plugin=kubenet argument
The Kubelet must be run with the --non-masquerade-cidr=<clusterCidr>
argument

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[463]

Setting the MTU
The MTU is critical for network performance. Kubernetes network plugins such as Kubenet
make their best efforts to deduce optimal MTU, but sometimes they need help. If an
existing network interface (for example, the Docker docker0 bridge) sets a small MTU,
then Kubenet will reuse it. Another example is IPSEC, which requires lowering the MTU
due to the extra overhead from IPSEC encapsulation overhead, but the Kubenet network
plugin doesn't take it into consideration. The solution is to avoid relying on the automatic
calculation of the MTU and just tell the Kubelet what MTU should be used for network
plugins through the --network-plugin-mtu command-line switch, which is provided to
all network plugins. However, at the moment, only the Kubenet network plugin accounts
for this command-line switch.

Container Networking Interface (CNI)
CNI is a specification as well as a set of libraries for writing network plugins to configure
network interfaces in Linux containers (not just Docker). The specification actually evolved
from the rkt network proposal. There is a lot of momentum behind CNI and it's on a fast
track to become the established industry standard. Some of the organizations that use CNI
are:

Kubernetes
Kurma
Cloud foundry
Nuage
RedHat
Mesos

The CNI team maintains some core plugins, but there are a lot of third-party plugins too
that contribute to the success of CNI:

Project Calico: A layer 3 virtual network
Weave: A multi-host Docker network
Contiv networking: Policy-based networking
Cilium: BPF and XDP for containers
Multus: A Multi plugin
CNI-Genie: A generic CNI network plugin
Flannel: A network fabric for containers, designed for Kubernetes
Infoblox: Enterprise IP address management for containers

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[464]

Container runtime
CNI defines a plugin spec for networking application containers, but the plugin must be
plugged into a container runtime that provides some services. In the context of CNI, an
application container is a network-addressable entity (has its own IP address). For Docker,
each container has its own IP address. For Kubernetes, each pod has its own IP address and
the pod is the CNI container and not the containers within the pod.

Likewise, rkt's app containers are similar to Kubernetes pods in that they may contain
multiple Linux containers. If in doubt, just remember that a CNI container must have its
own IP address. The runtime's job is to configure a network and then execute one or more
CNI plugins, passing them the network configuration in JSON format.

The following diagram shows a container runtime using the CNI plugin interface to
communicate with multiple CNI plugins:

CNI plugin
The CNI plugin's job is to add a network interface into the container network namespace
and bridge the container to the host via a veth pair. It should then assign an IP address
through an IPAM (IP address management) plugin and set up routes.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[465]

The container runtime (Docker, rkt, or any other CRI-compliant runtime) invokes the CNI
plugin as an executable. The plugin needs to support the following operations:

Add a container to the network
Remove a container from the network
Report version

The plugin uses a simple command-line interface, standard input/output, and environment
variables. The network configuration in JSON format is passed to the plugin through
standard input. The other arguments are defined as environment variables:

CNI_COMMAND: Indicates the desired operation; ADD, DEL, or VERSION.
CNI_CONTAINERID: Container ID.
CNI_NETNS: Path to network namespace file.
* CNI_IFNAME: Interface name to set up; the plugin must honor this interface
name or return an error.
* CNI_ARGS: Extra arguments passed in by the user at invocation time.
Alphanumeric key-value pairs are separated by semicolons, for example,
FOO=BAR;ABC=123.
CNI_PATH: List of paths to search for CNI plugin executables. Paths are separated
by an OS-specific list separator, for example, : on Linux and ; on Windows.

If the command succeeds, the plugin returns a zero exit code and the generated interfaces
(in the case of the ADD command) are streamed to standard output as JSON. This low-tech
interface is smart in the sense that it doesn't require any specific programming language, or
component technology, or binary API. CNI plugin writers can use their favorite
programming language too.

The result of invoking the CNI plugin with the ADD command is as follows:

{
 "cniVersion": "0.3.0",
 "interfaces": [(this key omitted by IPAM plugins)
 {
 "name": "<name>",
 "mac": "<MAC address>", (required if L2 addresses are meaningful)
 "sandbox": "<netns path or hypervisor identifier>" (required for
container/hypervisor interfaces, empty/omitted for host interfaces)
 }
],
 "ip": [
 {
 "version": "<4-or-6>",

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[466]

 "address": "<ip-and-prefix-in-CIDR>",
 "gateway": "<ip-address-of-the-gateway>", (optional)
 "interface": <numeric index into 'interfaces' list>
 },
 ...
],
 "routes": [(optional)
 {
 "dst": "<ip-and-prefix-in-cidr>",
 "gw": "<ip-of-next-hop>" (optional)
 },
 ...
]
 "dns": {
 "nameservers": <list-of-nameservers> (optional)
 "domain": <name-of-local-domain> (optional)
 "search": <list-of-additional-search-domains> (optional)
 "options": <list-of-options> (optional)
 }
}

The input network configuration contains a lot of information: cniVersion, name, type,
args (optional), ipMasq (optional), ipam, and dns. The ipam and dns parameters are
dictionaries with their own specified keys. Here is an example of a network configuration:

{
 "cniVersion": "0.3.0",
 "name": "dbnet",
 "type": "bridge",
 // type (plugin) specific
 "bridge": "cni0",
 "ipam": {
 "type": "host-local",
 // ipam specific
 "subnet": "10.1.0.0/16",
 "gateway": "10.1.0.1"
 },
 "dns": {
 "nameservers": ["10.1.0.1"]
 }
}

Note that additional plugin-specific elements can be added. In this case, the bridge: cni0
element is a custom one that the specific bridge plugin understands.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[467]

The CNI spec also supports network configuration lists where multiple CNI plugins can
be invoked in order. Later, we will dig into a fully-fledged implementation of a CNI plugin.

Kubernetes networking solutions
Networking is a vast topic. There are many ways to set up networks and connect devices,
pods, and containers. Kubernetes can't be opinionated about it. The high-level networking
model of a flat address space for pods is all that Kubernetes prescribes. Within that space,
many valid solutions are possible, with various capabilities and policies for different
environments. In this section, we'll examine some of the available solutions and understand
how they map to the Kubernetes networking model.

Bridging on bare metal clusters
The most basic environment is a raw bare-metal cluster with just an L2 physical network.
You can connect your containers to the physical network with a Linux bridge device. The
procedure is quite involved and requires familiarity with low-level Linux network
commands such as brctl, ip addr, ip route, ip link, nsenter, and so on. If you plan
to implement it, this guide can serve as a good start (search for the With Linux Bridge devices
section): http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/.

Contiv
Contiv is a general-purpose network plugin for container networking and it can be used
with Docker directly, Mesos, Docker Swarm, and of course Kubernetes, through a CNI
plugin. Contiv is focused on network policies that overlap somewhat with Kubernetes' own
network policy object. Here are some of the capabilities of the Contiv net plugin:

Supports both libnetwork's CNM and the CNI specification
A feature-rich policy model to provide secure, predictable application
deployment
Best-in-class throughput for container workloads
Multi-tenancy, isolation, and overlapping subnets

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/

Advanced Kubernetes Networking Chapter 15

[468]

Integrated IPAM and service discovery
A variety of physical topologies:

Layer2 (VLAN)
Layer3 (BGP)
Overlay (VXLAN)
Cisco SDN solution (ACI)

IPv6 support
Scalable policy and route distribution
Integration with application blueprints, including the following:

Docker-compose
Kubernetes deployment manager
Service load balancing is built in east-west microservice load
balancing
Traffic isolation for storage, control (for example, etcd/consul),
network, and management traffic

Contiv has many features and capabilities. I'm not sure if it's the best choice for
Kubernetes due to its broad surface area and the fact that it caters to multiple
platforms.

Open vSwitch
Open vSwitch is a mature software-based virtual switch solution endorsed by many big
players. The Open Virtualization Network (OVN) solution lets you build various virtual
networking topologies. It has a dedicated Kubernetes plugin, but it is not trivial to set up,
as demonstrated by this guide: https://github.com/openvswitch/ovn-kubernetes. The
Linen CNI plugin may be easier to set up, although it doesn't support all the features of
OVN: https://github.com/John-Lin/linen-cni. Here is a diagram of the Linen CNI
plugin:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/openvswitch/ovn-kubernetes
https://github.com/John-Lin/linen-cni

Advanced Kubernetes Networking Chapter 15

[469]

Open vSwitch can connect bare-metal servers, VMs, and pods/containers using the same
logical network. It actually supports both overlay and underlay modes.

Here are some of its key features:

Standard 802.1Q VLAN model with trunk and access ports
NIC bonding with or without LACP on upstream switch
NetFlow, sFlow(R), and mirroring for increased visibility
QoS (Quality of Service) configuration, plus policing
Geneve, GRE, VXLAN, STT, and LISP tunneling
802.1ag connectivity fault management
OpenFlow 1.0 plus numerous extensions
Transactional configuration database with C and Python bindings
High-performance forwarding using a Linux kernel module

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[470]

Nuage networks VCS
The Virtualized Cloud Services (VCS) product from Nuage networks provides a highly
scalable policy-based Software-Defined Networking (SDN) platform. It is an enterprise-
grade offering that builds on top of the open source Open vSwitch for the data plane along
with a feature-rich SDN controller built on open standards.

The Nuage platform uses overlays to provide seamless policy-based networking between
Kubernetes Pods and non-Kubernetes environments (VMs and bare metal servers). Nuage's
policy abstraction model is designed with applications in mind and makes it easy to declare
fine-grained policies for applications. The platform's real-time analytics engine enables
visibility and security monitoring for Kubernetes applications.

In addition, all VCS components can be installed in containers. There are no special
hardware requirements.

Canal
Canal is a mix of two open source projects: Calico and Flannel. The name Canal is a
portmanteau of the project names. Flannel, by CoreOS, is focused on container networking,
and Calico is focused on network policy. Originally, they were developed independently,
but users wanted to use them together. The open source Canal project is currently a
deployment pattern to install both projects as separate CNI plugins. Tigera—a company
formed by Calico's founders—is shepherding both projects now and had plans for tighter
integration, but since they released their secure application connectivity solution for
Kubernetes the focus seemed to shift to contribute back to Flannel and Calico to ease
configuration and integration rather than providing a unified solution. The following
diagram demonstrates the present status of Canal and how it relates to container
orchestrators such as Kubernetes and Mesos:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[471]

Note that when integrating with Kubernetes, Canal doesn't use etcd directly anymore,
instead it relies on the Kubernetes API server.

Flannel
Flannel is a virtual network that gives a subnet to each host for use with container
runtimes. It runs a flaneld agent on each host, which allocates a subnet to the node from a
reserved address space stored in etcd. Forwarding packets between containers and,
ultimately, hosts is done by one of multiple backends. The most common backend uses
UDP over a TUN device that tunnels through port 8285 by default (make sure it's open in
your firewall).

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[472]

The following diagram describes in detail the various components of Flannel, the virtual
network devices it creates, and how they interact with the host and the pod through the
docker0 bridge. It also shows the UDP encapsulation of packets and how they are
transmitted between hosts:

Other backends include the following:

vxlan: Uses in-kernel VXLAN to encapsulate the packets.
host-gw: Creates IP routes to subnets via remote machine IPs. Note that this
requires direct layer2 connectivity between hosts running Flannel.
aws-vpc: Creates IP routes in an Amazon VPC route table.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[473]

gce: Creates IP routes in a Google compute engine network.
alloc: Only performs subnet allocation (no forwarding of data packets).
ali-vpc: Creates IP routes in an alicloud VPC route table.

Calico project
Calico is a versatile virtual networking and network security solution for containers. Calico
can integrate with all the primary container orchestration frameworks
and runtimes:

Kubernetes (CNI plugin)
Mesos (CNI plugin)
Docker (libnework plugin)
OpenStack (Neutron plugin)

Calico can also be deployed on-premises or on public clouds with its full feature set.
Calico's network policy enforcement can be specialized for each workload and make sures
that traffic is controlled precisely and packets always go from their source to vetted
destinations. Calico can automatically map network policy concepts from orchestration
platforms to its own network policy. The reference implementation of Kubernetes' network
policy is Calico.

Romana
Romana is a modern cloud-native container networking solution. It operates at layer 3,
taking advantage of standard IP address management techniques. Whole networks can
become the unit of isolation as Romana uses Linux hosts to create gateways and routes to
the networks. Operating at layer 3 level means that no encapsulation is needed. Network
policy is enforced as a distributed firewall across all endpoints and services. Hybrid
deployments across cloud platforms and on-premises deployments are easier as there is no
need to configure virtual overlay networks.

New Romana virtual IPs allow on-premise users to expose services on layer 2 LANs
through external IPs and service specs.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[474]

Romana claims that their approach brings significant performance improvements. The
following diagram shows how Romana eliminates a lot of the overhead associated with
VXLAN encapsulation:

Weave net
Weave net is all about ease of use and zero configuration. It uses VXLAN encapsulation
under the covers and micro DNS on each node. As a developer, you operate at a high
abstraction level. You name your containers, and Weave net lets you connect to and use
standard ports for services. This helps you to migrate existing applications into
containerized applications and microservices. Weave net has a CNI plugin for interfacing
with Kubernetes (and Mesos). On Kubernetes 1.4 and higher, you can integrate Weave net
with Kubernetes by running a single command that deploys a DaemonSet:

kubectl apply -f https://git.io/weave-kube

The Weave net pods on every node will take care of attaching any new pod you create to
the Weave network. Weave net supports the network policy API as well providing a
complete yet easy-to-set-up solution.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[475]

Using network policies effectively
The Kubernetes network policy is about managing network traffic to selected pods and
namespaces. In a world of hundreds of deployed and orchestrated microservices, as is often
the case with Kubernetes, managing networking and connectivity between pods is
essential. It's important to understand that it is not primarily a security mechanism. If an
attacker can reach the internal network, they will probably be able to create their own pods
that comply with the network policy in place and communicate freely with other pods. In
the previous section, we looked at different Kubernetes networking solutions and focused
on the container networking interface. In this section, the focus is on network policy,
although there are strong connections between the networking solution and how network
policy is implemented on top of it.

Understanding the Kubernetes network policy
design
A network policy is a specification of how selections of pods can communicate with each
other and other network endpoints. NetworkPolicy resources use labels to select pods and
define whitelist rules that allow traffic to the selected pods in addition to what is allowed
by the isolation policy for a given namespace.

Network policies and CNI plugins
There is an intricate relationship between network policies and CNI plugins. Some CNI
plugins implement both network connectivity and network policy, while others implement
just one aspect, but they can collaborate with another CNI plugin that implements the other
aspect (for example, Calico and Flannel).

Configuring network policies
Network policies are configured through the NetworkPolicy resource. Here is a sample
network policy:

apiVersion: networking.k8s.io/v1kind: NetworkPolicy
metadata:
 name: test-network-policy
 namespace: default
spec:
 podSelector:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[476]

 matchLabels:
 role: db
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: awesome-project
 - podSelector:
 matchLabels:
 role: frontend
 ports:
 - protocol: tcp
 port: 6379

Implementing network policies
While the network policy API itself is generic and is part of the Kubernetes API, the
implementation is tightly coupled to the networking solution. That means that on each
node, there is a special agent or gatekeeper that does the following:

Intercepts all traffic coming into the node
Verifies that it adheres to the network policy
Forwards or rejects each request

Kubernetes provides the facility to define and store network policies through the API.
Enforcing the network policy is left to the networking solution or a dedicated network
policy solution that is tightly integrated with the specific networking solution. Calico and
Canal are good examples of this approach. Calico has its own networking solution and a
network policy solution that work together, but it can also provide network policy
enforcement on top of Flannel as part of Canal. In both cases, there is tight integration
between the two pieces. The following diagram shows how the Kubernetes policy
controller manages the network policies and how agents on the nodes execute it:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[477]

Load balancing options
Load balancing is a critical capability in dynamic systems such as a Kubernetes cluster.
Nodes, VMs, and pods come and go, but the clients can't keep track of which individual
entities can service their requests. Even if they could, it would require a complicated dance
of managing a dynamic map of the cluster, refreshing it frequently, and handling
disconnected, unresponsive, or just slow nodes. Load balancing is a battle-tested and well-
understood mechanism that adds a layer of indirection that hides the internal turmoil from
the clients or consumers outside the cluster. There are options for external as well as
internal load balancers. You can also mix and match and use both. The hybrid approach has
its own particular pros and cons, such as performance versus flexibility.

External load balancer
An external load balancer is a load balancer that runs outside the Kubernetes cluster. There
must be an external load balancer provider that Kubernetes can interact with to configure
the external load balancer with health checks, firewall rules, and to get the external IP
address of the load balancer.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[478]

The following diagram shows the connection between the load balancer (in the cloud), the
Kubernetes API server, and the cluster nodes. The external load balancer has an up-to-date
picture of which pods run on which nodes, and it can direct external service traffic to the
right pods:

Configuring an external load balancer
An external load balancer is configured via the service configuration file or directly through
Kubectl. We use a service type of LoadBalancer instead of using a service type of
ClusterIP, which directly exposes a Kubernetes node as a load balancer. This depends on
an external load balancer provider being properly installed and configured in the cluster.
Google's GKE is the most well-tested provider, but other cloud platforms provide their
integrated solution on top of their cloud load balancer.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[479]

Via configuration file
Here is an example service configuration file that accomplishes this goal:

{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "example-service"
 },
 "spec": {
 "ports": [{
 "port": 8765,
 "targetPort": 9376
 }],
 "selector": {
 "app": "example"
 },
 "type": "LoadBalancer"
 }
}

Via Kubectl
You can also accomplish the same result using a direct kubectl command:

> kubectl expose rc example --port=8765 --target-port=9376 \
--name=example-service --type=LoadBalancer

The decision whether to use a service configuration file or kubectl command is usually
determined by the way you set up the rest of your infrastructure and deploy your system.
Configuration files are more declarative and arguably more appropriate for production
usage, where you want a versioned, auditable, and repeatable way to manage your
infrastructure.

Finding the load balancer IP addresses
The load balancer will have two IP addresses of interest. The internal IP address can be
used inside the cluster to access the service. Clients outside the cluster will use the external
IP address. It's a good practice to create a DNS entry for the external IP address. To get both
addresses, use the kubectl describe command. The IP will denote the internal IP
address. LoadBalancer ingress will denote the external IP address:

> kubectl describe services example-service
 Name: example-service

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[480]

 Selector: app=example
 Type: LoadBalancer
 IP: 10.67.252.103
 LoadBalancer Ingress: 123.45.678.9
 Port: <unnamed> 80/TCP
 NodePort: <unnamed> 32445/TCP
 Endpoints: 10.64.0.4:80,10.64.1.5:80,10.64.2.4:80
 Session Affinity: None
 No events.

Preserving client IP addresses
Sometimes, the service may be interested in the source IP address of the clients. Up until
Kubernetes 1.5, this information wasn't available. In Kubernetes 1.5, there is a beta feature
available only on GKE through an annotation to get the source IP address. In Kubernetes
1.7, the capability to preserve the original client IP was added to the API.

Specifying original client IP address preservation
You need to configure the following two fields of the service spec:

service.spec.externalTrafficPolicy: This field determines whether the
service should route external traffic to a node-local endpoint or a cluster-wide
endpoint, which is the default. The cluster option doesn't reveal the client source
IP and might add a hop to a different node, but spreads the load well. The Local
option keeps the client source IP and doesn't add an extra hop as long as the
service type is LoadBalancer or NodePort. Its downside is it might not balance
the load very well.
service.spec.healthCheckNodePort: This field is optional. If used, then the
service health check will use this port number. The default is the allocate node
port. It has an effect for services of type LoadBalancer whose
externalTrafficPolicy is set to Local.

Here is an example:

 {
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "example-service"
 },
 "spec": {
 "ports": [{
 "port": 8765,

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[481]

 "targetPort": 9376
 }],
 "selector": {
 "app": "example"
 },
 "type": "LoadBalancer"
 "externalTrafficPolicy: "Local"
 }
 }

Understanding potential in even external load balancing
External load balancers operate at the node level; while they direct traffic to a particular
pod, the load distribution is done at the node level. That means that if your service has four
pods, and three of them are on node A and the last one is on node B, then an external load
balancer is likely to divide the load evenly between node A and node B. This will have the
three pods on node A handle half of the load (1/6 each) and the single pod on node B
handle the other half of the load on its own. Weights may be added in the future to address
this issue.

Service load balancer
Service load balancing is designed for funneling internal traffic within the Kubernetes
cluster and not for external load balancing. This is done by using a service type of
clusterIP. It is possible to expose a service load balancer directly via a pre-allocated port
by using service type of NodePort and use it as an external load balancer, but it wasn't
designed for that use case. For example, desirable features such as SSL termination and
HTTP caching will not be readily available.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[482]

The following diagram shows how the service load balancer (the yellow cloud) can route
traffic to one of the backend pods it manages (through labels, of course):

Ingress
Ingress in Kubernetes is, at its core, a set of rules that allow inbound connections to reach
cluster services. In addition, some ingress controllers support the following:

Connection algorithms
Request limits
URL rewrites and redirects
TCP/UDP load balancing
SSL termination
Access control and authorization

Ingress is specified using an ingress resource and is serviced by an ingress controller. It's
important to note that ingress is still in beta and it doesn't yet cover all of the necessary
capabilities. Here is an example of an ingress resource that manages traffic into two
services. The rules map the externally visible http:// foo.bar.com/foo to the s1
service and http://foo.bar.com/bar to the s2 service:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: test
spec:
 rules:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[483]

 - host: foo.bar.com
 http:
 paths:
 - path: /foo
 backend:
 serviceName: s1
 servicePort: 80
 - path: /bar
 backend:
 serviceName: s2
 servicePort: 80

There are two official ingress controllers right now. One of them is an L7 ingress controller
for GCE only, the other is a more general-purpose NGINX ingress controller that lets you
configure NGINX through a ConfigMap. The NGNIX ingress controller is very
sophisticated and brings to bear a lot of features that are not available yet through the
ingress resource directly. It uses the endpoints API to directly forward traffic to pods. It
supports Minikube, GCE, AWS, Azure, and bare-metal clusters. For a detailed review,
check out https://github.com/kubernetes/ingress-nginx.

HAProxy
We discussed using a cloud provider external load balancer using service type of
LoadBalancer and using the internal service load balancer inside the cluster using
ClusterIP. If we want a custom external load balancer, we can create a custom external
load balancer provider and use LoadBalancer or use the third service type, NodePort.
High Availability (HA) Proxy is a mature and battle-tested load balancing solution. It is
considered the best choice for implementing external load balancing with on-premises
clusters. This can be done in several ways:

Utilize NodePort and carefully manage port allocations
Implement custom load balancer provider interface
Run HAProxy inside your cluster as the only target of your frontend servers at
the edge of the cluster (load balanced or not)

You can use all approaches with HAProxy. Regardless, it is still recommended to use
ingress objects. The service-loadbalancer project is a community project that
implemented a load balancing solution on top of HAProxy. You can find it at:
https://github.com/kubernetes/contrib/tree/master/service-loadbalancer.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/contrib/tree/master/service-loadbalancer

Advanced Kubernetes Networking Chapter 15

[484]

Utilizing the NodePort
Each service will be allocated a dedicated port from a predefined range. This usually is a
high range, such as 30,000 and above, to avoid clashing with other applications using low
known ports. HAProxy will run outside the cluster in this case, and it will be configured
with the correct port for each service. Then it can just forward any traffic to any nodes and
Kubernetes through the internal service, and the load balancer will route it to a proper pod
(double load balancing). This is, of course, sub-optimal because it introduces another hop.
The way to circumvent it is to query the Endpoints API and dynamically manage for each
service the list of its backend pods and directly forward traffic to the pods.

Custom load balancer provider using HAProxy
This approach is a little more complicated, but the benefit is that it is better integrated with
Kubernetes and can make the transition to/from on-premises from/to the cloud easier.

Running HAProxy Inside the Kubernetes cluster
In this approach, we use the internal HAProxy load balancer inside the cluster. There may
be multiple nodes running HAProxy, and they will share the same configuration to map
incoming requests and load balance them across the backend servers (the Apache servers in
the following diagram):

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[485]

Keepalived VIP
Keepalived VirtualIP (VIP) is not necessarily a load balancing solution of its own. It can be
a complement to the NGINX ingress controller or the HAProxy-based service
LoadBalancer. The main motivation is that pods move around in Kubernetes, including
your load balancer(s). That creates a problem for clients outside the network that require a
stable endpoint. DNS is often not good enough due to performance issues. Keepalived
provides a high-performance virtual IP address that can serve as the address to the NGINX
ingress controller or the HAProxy load balancer. Keepalived utilizes core Linux networking
facilities such as IPVS (IP virtual server) and implements high availability through Virtual
Redundancy Router Protocol (VRRP). Everything runs at layer 4 (TCP/UDP). It takes some
effort and attention to detail to configure it. Luckily, there is a Kubernetes contrib project
that can get you started,
at https://github.com/kubernetes/contrib/tree/master/keepalived-vip.

Træfic
Træfic is a modern HTTP reverse proxy and load balancer. It was designed to support
microservices. It works with many backends, including Kubernetes, to manage its
configuration automatically and dynamically. This is a game changer compared to
traditional load balancers. It has an impressive list of features:

It's fast
Single Go executable
Tiny official Docker image
Rest API
Hot-reloading of configuration; no need to restart the process
Circuit breakers, retry
Round Robin, rebalancer load-balancers
Metrics (Rest, Prometheus, Datadog, Statsd, InfluxDB)
Clean AngularJS Web UI
Websocket, HTTP/2, GRPC ready
Access Logs (JSON, CLF)
Let's Encrypt support (Automatic HTTPS with renewal)
High availability with cluster mode

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/contrib/tree/master/keepalived-vip

Advanced Kubernetes Networking Chapter 15

[486]

Writing your own CNI plugin
In this section, we will look at what it takes to actually write your own CNI plugin. First,
we will look at the simplest plugin possible – the loopback plugin. Then, we will examine
the plugin skeleton that implements most of the boilerplate associated with writing a CNI
plugin. Finally, we will review the implementation of the bridge plugin. Before we dive in,
here is a quick reminder of what a CNI plugin is:

A CNI plugin is an executable
It is responsible for connecting new containers to the network, assigning unique
IP addresses to CNI containers, and taking care of routing
A container is a network namespace (in Kubernetes, a pod is a CNI container)
Network definitions are managed as JSON files, but stream to the plugin through
standard input (no files are being read by the plugin)
Auxiliary information can be provided via environment variables

First look at the loopback plugin
The loopback plugin simply adds the loopback interface. It is so simple that it doesn't
require any network configuration information. Most CNI plugins are implemented in
Golang, and the loopback CNI plugin is no exception. The full source code is available at:

https://github.com/containernetworking/plugins/blob/master/plugins/main/loopbac
k

Let's look at the imports first. There are multiple packages from the container networking
project on GitHub that provide many of the building blocks necessary to implement CNI
plugins and the netlink package for adding and removing interfaces, as well as setting IP
addresses and routes. We will look at the skel package soon:

package main
import (
 "github.com/containernetworking/cni/pkg/ns"
 "github.com/containernetworking/cni/pkg/skel"
 "github.com/containernetworking/cni/pkg/types/current"
 "github.com/containernetworking/cni/pkg/version"
 "github.com/vishvananda/netlink"
)

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/containernetworking/plugins/blob/master/plugins/main/loopback
https://github.com/containernetworking/plugins/blob/master/plugins/main/loopback

Advanced Kubernetes Networking Chapter 15

[487]

Then, the plugin implements two commands, cmdAdd and cmdDel, which are called when
a container is added to or removed from the network. Here is the cmdAdd command:

func cmdAdd(args *skel.CmdArgs) error {
 args.IfName = "lo"
 err := ns.WithNetNSPath(args.Netns, func(_ ns.NetNS) error {
 link, err := netlink.LinkByName(args.IfName)
 if err != nil {
 return err // not tested
 }

 err = netlink.LinkSetUp(link)
 if err != nil {
 return err // not tested
 }

 return nil
 })
 if err != nil {
 return err // not tested
 }

 result := current.Result{}
 return result.Print()
}

The core of this function is setting the interface name to lo (for loopback) and adding the
link to the container's network namespace. The del command does the opposite:

func cmdDel(args *skel.CmdArgs) error {
 args.IfName = "lo"
 err := ns.WithNetNSPath(args.Netns, func(ns.NetNS) error {
 link, err := netlink.LinkByName(args.IfName)
 if err != nil {
 return err // not tested
 }

 err = netlink.LinkSetDown(link)
 if err != nil {
 return err // not tested
 }

 return nil
 })
 if err != nil {
 return err // not tested
 }

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[488]

 result := current.Result{}
 return result.Print()

}

The main function simply calls the skel package, passing the command functions. The
skel package will take care of running the CNI plugin executable and will invoke the
addCmd and delCmd functions at the right time:

func main() {
 skel.PluginMain(cmdAdd, cmdDel, version.All)
}

Building on the CNI plugin skeleton
Let's explore the skel package and see what it does under the covers. Starting with the
PluginMain() entry point, it is responsible for invoking PluginMainWithError(),
catching errors, printing them to standard output, and exiting:

func PluginMain(cmdAdd, cmdDel func(_ *CmdArgs) error, versionInfo
version.PluginInfo) {
 if e := PluginMainWithError(cmdAdd, cmdDel, versionInfo); e != nil {
 if err := e.Print(); err != nil {
 log.Print("Error writing error JSON to stdout: ", err)
 }
 os.Exit(1)
 }
}

The PluginErrorWithMain() instantiates a dispatcher, sets it up with all the I/O streams
and the environment, and invokes its PluginMain() method:

func PluginMainWithError(cmdAdd, cmdDel func(_ *CmdArgs) error, versionInfo
version.PluginInfo) *types.Error {
 return (dispatcher{
 Getenv: os.Getenv,
 Stdin: os.Stdin,
 Stdout: os.Stdout,
 Stderr: os.Stderr,
 }).pluginMain(cmdAdd, cmdDel, versionInfo)
}

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[489]

Here is, finally, the main logic of the skeleton. It gets the cmd arguments from the
environment (which includes the configuration from standard input), detects which cmd is
invoked, and calls the appropriate plugin function (cmdAdd or cmdDel). It can also return
version information:

func (t *dispatcher) pluginMain(cmdAdd, cmdDel func(_ *CmdArgs) error,
versionInfo version.PluginInfo) *types.Error {
 cmd, cmdArgs, err := t.getCmdArgsFromEnv()
 if err != nil {
 return createTypedError(err.Error())
 }

 switch cmd {
 case "ADD":
 err = t.checkVersionAndCall(cmdArgs, versionInfo, cmdAdd)
 case "DEL":
 err = t.checkVersionAndCall(cmdArgs, versionInfo, cmdDel)
 case "VERSION":
 err = versionInfo.Encode(t.Stdout)
 default:
 return createTypedError("unknown CNI_COMMAND: %v", cmd)
 }

 if err != nil {
 if e, ok := err.(*types.Error); ok {
 // don't wrap Error in Error
 return e
 }
 return createTypedError(err.Error())
 }
 return nil
}

Reviewing the bridge plugin
The bridge plugin is more substantial. Let's look at some of the key parts of its
implementation. The full source code is available at:

https://github.com/containernetworking/plugins/blob/master/plugins/main/bridge.

It defines a network configuration struct with the following fields:

type NetConf struct {
 types.NetConf
 BrName string `json:"bridge"`
 IsGW bool `json:"isGateway"`

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/containernetworking/plugins/blob/master/plugins/main/bridge
https://github.com/containernetworking/plugins/blob/master/plugins/main/bridge

Advanced Kubernetes Networking Chapter 15

[490]

 IsDefaultGW bool `json:"isDefaultGateway"`
 ForceAddress bool `json:"forceAddress"`
 IPMasq bool `json:"ipMasq"`
 MTU int `json:"mtu"`
 HairpinMode bool `json:"hairpinMode"`
 PromiscMode bool `json:"promiscMode"`
}

We will not cover what each parameter does and how it interacts with the other parameters
due to space limitations. The goal is to understand the flow and have a starting point if you
want to implement your own CNI plugin. The configuration is loaded from JSON through
the loadNetConf() function. It is called at the beginning of the cmdAdd() and cmdDel()
functions:

n, cniVersion, err := loadNetConf(args.StdinData)

Here is the core of the cmdAdd() function. It uses information from network configuration,
sets up a veth, interacts with the IPAM plugin to add a proper IP address, and returns the
results:

hostInterface, containerInterface, err := setupVeth(netns, br, args.IfName,
n.MTU,
n.HairpinMode)
 if err != nil {
 return err
 }

 // run the IPAM plugin and get back the config to apply
 r, err := ipam.ExecAdd(n.IPAM.Type, args.StdinData)
 if err != nil {
 return err
 }

 // Convert the IPAM result was into the current Result type
 result, err := current.NewResultFromResult(r)
 if err != nil {
 return err
 }

 if len(result.IPs) == 0 {
 return errors.New("IPAM returned missing IP config")
 }

 result.Interfaces = []*current.Interface{brInterface, hostInterface,
containerInterface}

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Kubernetes Networking Chapter 15

[491]

This is just part of the full implementation. There is also route setting and hardware IP
allocation. I encourage you to pursue the full source code, which is quite extensive, to get
the full picture.

Summary
In this chapter, we covered a lot of ground. Networking is such a vast topic and there are so
many combinations of hardware, software, operating environments, and user skills that
coming up with a comprehensive networking solution that is robust, secure, performs well,
and is easy to maintain, is a very complicated endeavor. For Kubernetes clusters, the cloud
providers mostly solve these issues. But if you run on-premise clusters or need a tailor-
made solution, you get a lot of options to choose from. Kubernetes is a very flexible
platform, designed for extension. Networking, in particular, is totally pluggable. The main
topics we discussed were the Kubernetes networking model (flat address space where pods
can reach others and shared localhost between all containers inside a pod), how lookup and
discovery work, the Kubernetes network plugins, various networking solutions at different
levels of abstraction (a lot of interesting variations), using network policies effectively to
control the traffic inside the cluster, the spectrum of load balancing solutions, and finally
we looked at how to write a CNI plugin by dissecting a real-world implementation.

At this point, you are probably overwhelmed, especially if you're not a subject-matter
expert. You should have a good grasp of the internals of Kubernetes networking, be aware
of all the interlocking pieces required to implement a fully-fledged solution, and be able to
craft your own solution based on trade-offs that make sense for your system.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

16
Kubernetes Infrastructure

Management
In this chapter, we'll discuss how to make changes to the infrastructure that powers your
Kubernetes infrastructure, whether or not it is a purely public cloud platform or a hybrid
installation. We'll discuss methods for handling underlying instance and resource
instability, and strategies for running highly available workloads on partially available
underlying hardware. We'll cover a few key topics in this chapter in order to build your
understanding of how to manage infrastructure in this way:

How do we plan to deploy Kubernetes components?
How do we secure Kubernetes infrastructure?
How do we upgrade the cluster and kubeadm?
How do we scale up the cluster?
What external resources are available to us?

In this chapter, you'll learn about the following:

Cluster upgrades
How to manage kubeadm
Cluster scaling
Cluster maintenance
The SIG Cluster Lifecycle group

Technical requirements
You'll need to have your Google Cloud Platform account enabled and logged in, or you can
use a local Minikube instance of Kubernetes. You can also use Play with Kubernetes over
the web: https://labs. play- with- k8s. com/.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/

Kubernetes Infrastructure Management Chapter 16

[493]

Here's the GitHub repository for this chapter: https:/ /github. com/PacktPublishing/ The-
Complete-Kubernetes- Guide/ tree/ master/ Chapter16.

Planning a cluster
Looking back over the work we've done up till now in this book, there are a lot of options
when it comes to building a cluster with Kubernetes. Let's briefly highlight the options you
have available to you when you're planning on building your cluster. We have a few key
areas to investigate when planning ahead.

Picking what's right
The first and arguably most important step when choosing a cluster is to pick the right
hosted platform for your Kubernetes cluster. At a high level, here are the choices you have:

Local solutions include the following:
Minikube: A single-node Kubernetes cluster
Ubuntu on LXD: This uses LXD to deploy a nine-instance cluster
of Kubernetes
IBM's Cloud Private-CE: This uses VirtualBox to deploy
Kubernetes on n+1 instances
kubeadm-dind (Docker-in-Docker): This allows for multi-node
Kubernetes clusters

Hosted solutions include the following:
Google Kubernetes Engine
Amazon Elastic Container Services
Azure Kubernetes Service
Stackpoint
Openshift online
IBM Cloud Kubernetes Services
Giant Swarm

On all of the aforementioned clouds and more, there are many turnkey solutions
that allow you to spin up full clusters with community-maintained scripts

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Kubernetes-Guide/tree/master/Chapter16
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code%20files/Chapter%2015

Kubernetes Infrastructure Management Chapter 16

[494]

As of this book's publishing, here's a list of projects and solutions:

Check out this link for more turnkey solutions: https:/ /kubernetes. io/
docs/ setup/ pick- right- solution/ #turnkey- cloud- solutions.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions
https://kubernetes.io/docs/setup/pick-right-solution/#turnkey-cloud-solutions

Kubernetes Infrastructure Management Chapter 16

[495]

Securing the cluster
As we've discussed, there are several areas of focus when securing a cluster. Ensure that
you have read through and made configuration changes (in code) to your cluster
configuration in the following areas:

Logging: Ensure that your Kubernetes logs are enabled. You can read more
about audit logging here: https:/ /kubernetes. io/ docs/ tasks/ debug-
application- cluster/ audit/ .
Make sure you have authentication enabled so that your users, operators, and
services identify themselves as unique identifiers. Read more about
authentication here: https:/ /kubernetes. io/docs/ reference/ access- authn-
authz/authentication/ .
Ensure that you have proper separation of duties, role-based access control, and
fine grained privileges using authorization. You can read more about HTTP-
based controls here: https:/ / kubernetes. io/docs/ reference/ access- authn-
authz/authorization/ .
Make sure that you have locked down the API to specific permissions and
groups. You can read more about access to the API here: https:/ /kubernetes.
io/docs/ reference/ access- authn- authz/ controlling- access/ .
When appropriate, enable an admission controller to further re-validate requests
after they pass through the authentication and authorization controls. These
controllers can take additional, business-logic based validation steps in order to
secure your cluster further. Read more about admission controllers here: https:/
/kubernetes. io/ docs/ reference/ access- authn- authz/ controlling- access.
Tune Linux system parameters via the sysctl interface. This allows you to
modify kernel parameters for node-level and namespaced sysctl features.
There are safe and unsafe system parameters. There are several subsystems that
can be tweaked with sysctls. Possible parameters are as follows:

abi: Execution domains and personalities
fs: Specific filesystems, filehandle, inode, dentry, and quota
tuning
kernel: Global kernel information/tuning
net: Networking
sunrpc: SUN Remote Procedure Call (RPC)
vm: Memory management tuning, buffer, and cache management
user: Per user per user namespace limits

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/

Kubernetes Infrastructure Management Chapter 16

[496]

You can read more about sysctl calls here: https:/ /kubernetes. io/ docs/
tasks/administer- cluster/ sysctl- cluster/ .

You can enable unsafe sysctl values by running the following
command:

kubelet --allowed-unsafe-sysctls ‘net.ipv4.route.min_pmtu'

Here's a diagram of the authorization, authentication, and admission control working
together:

Tuning examples
If you'd like to experiment with modifying sysctls, you can set a security context as
follows, per pod:

apiVersion: v1
kind: Pod
metadata:
 name: sysctl-example
spec:
 securityContext:
 sysctls:
 - name: kernel.shm_rmid_forced
 value: "0"
 - name: net.core.somaxconn
 value: "10000"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/

Kubernetes Infrastructure Management Chapter 16

[497]

 - name: kernel.msgmax
 value: "65536"
 - name: ipv4.ip_local_port_range
 value: ‘1024 65535'

You can also tune variables such as the ARP cache, as Kubernetes consumes a lot of IPs at
scale, which can exhaust space in the ARP cache. Changing these settings is common in
large scale HPC clusters and can help with address exhaustion with Kubernetes as well.
You can set these values, as follows:

net.ipv4.neigh.default.gc_thresh1 = 90000
net.ipv4.neigh.default.gc_thresh2 = 100000
net.ipv4.neigh.default.gc_thresh3 = 120000

Upgrading the cluster
In order to run your cluster over long periods of time, you'll need to update your cluster as
needed. There are several ways to manage cluster upgrades, and the difficulty level of the
upgrades is determined by the platform you've chosen previously. As a general rule, hosted
Platform as a service (PaaS) options are simpler, while roll your own options rely on you to
manage your cluster upgrades.

Upgrading PaaS clusters
Upgrading PaaS clusters is a lot simpler than updating your hand-rolled clusters. Let's
check out how the major cloud service providers update their hosted Kubernetes platforms.

With Azure, it's relatively straightforward to manage an upgrade of both the control plane
and nodes of your cluster. You can check which upgrades are available for your cluster
with the following command:

az aks get-upgrades --name “myAKSCluster” --resource-group myResourceGroup -
-output table
Name ResourceGroup MasterVersion NodePoolVersion Upgrades

------- --------------- --------------- ----------------- -----------------
--

default gsw-k8s-aks 1.8.10 1.8.10 1.9.1, 1.9.2, 1.9.6

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Kubernetes Infrastructure Management Chapter 16

[498]

When upgrading AKS clusters, you have to upgrade through minor versions. AKS handles
adding a new node to your cluster and manages to cordon and drain process in order to
prevent any disruption to your running applications. You can see how the drain process
works in a following section.

You can run the upgrade command as follows. You should experiment with this feature
before running on production workloads so you can understand the impact on running
applications:

az aks upgrade --name myAKSCluster --resource-group myResourceGroup --
kubernetes-version 1.9.6

You should see a lot of output that identifies the update, which will look something like
this:

{
 "id": "/subscriptions/<Subscription
ID>/resourcegroups/myResourceGroup/providers/Microsoft.ContainerService/man
agedClusters/myAKSCluster",
 "location": "eastus",
 "name": "myAKSCluster",
 "properties": {
 "accessProfiles": {
 "clusterAdmin": {
 "kubeConfig": "..."
 },
 "clusterUser": {
 "kubeConfig": "..."
 }
 },
 "agentPoolProfiles": [
 {
 "count": 1,
 "dnsPrefix": null,
 "fqdn": null,
 "name": "myAKSCluster",
 "osDiskSizeGb": null,
 "osType": "Linux",
 "ports": null,
 "storageProfile": "ManagedDisks",
 "vmSize": "Standard_D2_v2",
 "vnetSubnetId": null
 }
],
 "dnsPrefix": "myK8sClust-myResourceGroup-4f48ee",
 "fqdn": "myk8sclust-
myresourcegroup-4f48ee-406cc140.hcp.eastus.azmk8s.io",

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Kubernetes Infrastructure Management Chapter 16

[499]

 "kubernetesVersion": "1.9.6",
 "linuxProfile": {
 "adminUsername": "azureuser",
 "ssh": {
 "publicKeys": [
 {
 "keyData": "..."
 }
]
 }
 },
 "provisioningState": "Succeeded",
 "servicePrincipalProfile": {
 "clientId": "e70c1c1c-0ca4-4e0a-be5e-aea5225af017",
 "keyVaultSecretRef": null,
 "secret": null
 }
 },
 "resourceGroup": "myResourceGroup",
 "tags": null,
 "type": "Microsoft.ContainerService/ManagedClusters"
}

You can additionally show the current version:

az aks show --name myAKSCluster --resource-group myResourceGroup --output
table

To upgrade a GCE cluster, you'll follow a similar procedure. In GCE's case, there are two
mechanisms that allow you update your cluster:

For manager node upgrades, GCP deletes and recreates the master nodes using
the same Persistent Disk (PD) to preserve your state across upgrades
With your worker nodes, you'll use GCP's manage instance groups and perform
a rolling upgrade of your cluster, wherein each node is destroyed and replaced to
avoid interruption to your workloads

You can upgrade your cluster master to a specific version:

cluster/gce/upgrade.sh -M v1.0.2

Or, you can update your full cluster with this command:

cluster/gce/upgrade.sh -M v1.0.2

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Kubernetes Infrastructure Management Chapter 16

[500]

To upgrade a Google Kubernetes Engine cluster, you have a simple, user-initiated option.
You'll need to set your project ID:

gcloud config set project [PROJECT_ID]

And, make sure that you have the latest set of gcloud components:

gcloud components update

When updating Kubernetes clusters on GCP, you get the following benefits. You can
downgrade your nodes, but you cannot downgrade your master:

GKE will handle node and pod drainage without application interruption
Replacement nodes will be recreated with the same node and configuration as
their predecessors
GKE will update software for the following pieces of the cluster:

kubelet

kube-proxy

Docker daemon
OS

You can see what options your server has for upgrades with this command:

gcloud container get-server-config

Keep in mind that data stored in the hostPath and emptyDir directories will be deleted
during the upgrade, and only PDs will be preserved during it. You can turn on automatic
node updates for your cluster with GKE, or you can perform them manually.

To turn on automatic node automatic upgrades read this: https:/ / cloud.
google. com/ kubernetes- engine/ docs/ concepts/ node- auto- upgrades.

You can also create clusters with this set to default with the --enable-autoupgrade
command:

gcloud container clusters create [CLUSTER_NAME] --zone [COMPUTE_ZONE] \
 --enable-autoupgrade

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades

Kubernetes Infrastructure Management Chapter 16

[501]

If you'd like to update your clusters manually, you can issue specific commands. It is
recommended for production systems to turn off automatic upgrades and to perform them
during periods of low traffic or during maintenance windows to ensure minimal disruption
for your applications. Once you build confidence in updates, you may be able to
experiment with auto-upgrades.

To manually kick off a node upgrade, you can run the following command:

gcloud container clusters upgrade [CLUSTER_NAME]

If you'd like to upgrade to a specific version of Kubernetes, you can add the --cluster-
version tag.

You can see a running list of operations on your cluster to keep track of the update
operation:

gcloud beta container operations list
NAME TYPE ZONE TARGET STATUS_MESSAGE STATUS START_TIME END_TIME
operation-1505407677851-8039e369 CREATE_CLUSTER us-west1-a my-cluster DONE
20xx-xx-xxT16:47:57.851933021Z 20xx-xx-xxT16:50:52.898305883Z
operation-1505500805136-e7c64af4 UPGRADE_CLUSTER us-west1-a my-cluster DONE
20xx-xx-xxT18:40:05.136739989Z 20xx-xx-xxT18:41:09.321483832Z
operation-1505500913918-5802c989 DELETE_CLUSTER us-west1-a my-cluster DONE
20xx-xx-xxT18:41:53.918825764Z 20xx-xx-xxT18:43:48.639506814Z

You can then describe your particular upgrade operation with the following:

gcloud beta container operations describe [OPERATION_ID]

The previous command will tell you details about the cluster upgrade action:

gcloud beta container operations describe operation-1507325726639-981f0ed6
endTime: '20xx-xx-xxT21:40:05.324124385Z'
name: operation-1507325726639-981f0ed6
operationType: UPGRADE_CLUSTER
selfLink:
https://container.googleapis.com/v1/projects/.../kubernetes-engine/docs/zon
es/us-central1-a/operations/operation-1507325726639-981f0ed6
startTime: '20xx-xx-xxT21:35:26.639453776Z'
status: DONE
targetLink:
https://container.googleapis.com/v1/projects/.../kubernetes-engine/docs/zon
es/us-central1-a/clusters/...
zone: us-central1-a

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Kubernetes Infrastructure Management Chapter 16

[502]

Scaling the cluster
As with PaaS versus hosted clusters, you have several options for scaling up your
production Kubernetes cluster.

On GKE and AKS
When upgrading a GKE cluster, all you need to do is issue a scaling command that
modifies the number of instances in your minion group. You can resize the node pools that
control your cluster with the following:

gcloud container clusters resize [CLUSTER_NAME] \
 --node-pool [POOL_NAME]
 --size [SIZE]

Keep in mind that new nodes are created with the same configuration as the current
machines in your node pool. When additional pods are scheduled, they'll be scheduled on
the new nodes. Existing pods will not be relocated or rebalanced to the new nodes.

Scaling up the AKS cluster engine is a similar exercise, where you'll need to specify the --
resource-group node count to your required number of nodes:

az aks scale --name myAKSCluster --resource-group gsw-k8s-group --node-
count 1

DIY clusters
When you add resources to your hand-rolled Kubernetes cluster, you'll need to do more
work. In order to have nodes join in as you add them automatically via a scaling group, or
manually via Infrastructure as code, you'll need to ensure that automatic registration of
nodes is enabled via the --register-node flag. If this flag is turned on, new nodes will
attempt to auto-register themselves. This is the default behavior.

You can also join nodes manually, using a pre-vetted token, to your clusters. If you
initialize kubeadm with the following token:

kubeadm init --token=101tester101 --kubernetes-version $(kubeadm version -o
short)

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Kubernetes Infrastructure Management Chapter 16

[503]

You can then add additional nodes to your clusters with this command:

kubeadm join --discovery-token-unsafe-skip-ca-verification --
token=101tester101:6443

Normally in a production install of kubeadm, you would not specify the token and need to
extract it and store it from the kubeadm init command.

Node maintenance
If you're scaling your cluster up or down, it's essential to know how the manual process of
node deregistration and draining works. We'll use the kubectl drain command here to
remove all pods from your node before removing the node from your cluster. Removing all
pods from your nodes ensures that there are not running workloads on your instance or
VM when you remove it.

Let's get a list of available nodes using the following command:

kubectl get nodes

Once we have the node list, the command to drain nodes is fairly simple:

kubectl drain <node>

This command will take some time to execute, as it has to reschedule the workloads on the
node onto other machines that have available resources. Once the draining is complete, you
can remove the node via your preferred programmatic API. If you're merely removing the
node for maintenance, you can add it back to the available nodes with the uncordon
command:

kubectl uncordon <node>

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Kubernetes Infrastructure Management Chapter 16

[504]

Additional configuration options
Once you've built up an understanding of how Kubernetes cluster configuration is
managed, it's a good idea to explore the additional tools that offer enhanced mechanisms or
abstractions to configure the state of your clusters.

ksonnet is one such tool, which allows you to build a structure around your various
configurations in order to keep many environments configured. ksonnet uses another
powerful tool called Jsonnet in order to maintain the state of the cluster. ksonnet is a
different approach to cluster management that's different from the Helm approach we
discussed in earlier chapters, in that it doesn't define packages by dependency, but instead
takes a composable prototype approach, where you build JSON templates that are rendered
by the ksonnet CLI to apply state on the cluster. You start with parts that create prototypes,
which becomes a component once it's configured, and those components can then get
combined into applications. This helps avoid repeated code in your code base. Check it out
here: https://ksonnet. io/ .

Summary
In this chapter, we discussed how to make changes to the infrastructure that provides
compute, storage, and networking capacity to your Kubernetes infrastructure, whether it be
a purely public cloud platform or a hybrid installation. In observing the public cloud
platforms, we discussed methods for handling underlying instance and resource instability,
and strategies for running highly available workloads on partially available underlying
hardware.

Additionally, we covered a key topic on how to build infrastructure using tools such as
kubeadm, kubectl, and public cloud provider tools that can scale up and down your
clusters.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://ksonnet.io/
https://ksonnet.io/
https://ksonnet.io/
https://ksonnet.io/
https://ksonnet.io/
https://ksonnet.io/
https://ksonnet.io/
https://ksonnet.io/

17
Customizing Kubernetes - API

and Plugins
In this chapter, we will dig deep into the guts of Kubernetes. We will start with the
Kubernetes API and learn how to work with Kubernetes programmatically via direct access
to the API, the Python client, and then we will automate Kubectl. Then, we'll look into
extending the Kubernetes API with custom resources. The last part is all about the various
plugins Kubernetes supports. Many aspects of the Kubernetes operation are modular and
designed for extension. We will examine several types of plugins, such as custom
schedulers, authorization, admission control, custom metrics, and volumes. Finally, we'll
look into extending Kubectl and adding your own commands.

The topics we cover are as follows:

Working with the Kubernetes API
Extending the Kubernetes API
Writing Kubernetes and Kubectl plugins
Writing webhooks

Working with the Kubernetes API
The Kubernetes API is comprehensive and encompasses the entire functionality of
Kubernetes. As you may expect, it is huge. But it is designed very well using best practices,
and it is consistent. If you understand the basic principles, you can discover everything you
need to know.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[506]

Understanding OpenAPI
OpenAPI allows API providers to define their operations and models, and enables
developers to automate their tools and generate their favorite language's client to talk to
that API server. Kubernetes has supported Swagger 1.2 (an older version of the OpenAPI
spec) for a while, but the spec was incomplete and invalid, making it hard to generate
tools/clients based on it.

In Kubernetes 1.4, alpha support was added for the OpenAPI spec (formerly known as
Swagger 2.0 before it was donated to the OpenAPI Initiative) and current models and
operations were updated. In Kubernetes 1.5, support for the OpenAPI spec has been
completed by auto-generating the spec directly from the Kubernetes source, which keeps
the spec and documentation completely in sync with future changes in operations/models.

The new spec enables better API documentation and an auto-generated Python client that
we will explore later.

The spec is modular and divided by group version. This is future-proof. You can run
multiple API servers that support different versions. Applications can transition gradually
to newer versions.

The structure of the spec is explained in detail in the OpenAPI spec definition. The
Kubernetes team used the operation's tags to separate each group version and fill in as
much information as possible about paths/operations and models. For a specific operation,
all parameters, calling methods, and responses are documented. The result is impressive.

Setting up a proxy
To simplify access, you can use Kubectl to set up a proxy:

> kubectl proxy --port 8080

Now, you can access the API server at http://localhost:8080 and it will reach the
same Kubernetes API server that Kubectl is configured for.

Exploring the Kubernetes API directly
The Kubernetes API is easy to find out about. You can just browse to the URL of the API
server at http://localhost:8080 and get a nice JSON document that describes all the
available operations under the paths key.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[507]

Here is a partial list due to space constraints:

{
 "paths": [
 "/api",
 "/api/v1",
 "/apis",
 "/apis/apps",
 "/apis/storage.k8s.io/v1",
 .
 .
 .
 "/healthz",
 "/healthz/ping",
 "/logs",
 "/metrics",
 "/swaggerapi/",
 "/ui/",
 "/version"
]
}

You can drill down any one of the paths. For example, here is the response from
the /api/v1/namespaces/default endpoint:

{
 "apiVersion": "v1",
 "kind": "Namespace",
 "metadata": {
 "creationTimestamp": "2017-12-25T10:04:26Z",
 "name": "default",
 "resourceVersion": "4",
 "selfLink": "/api/v1/namespaces/default",
 "uid": "fd497868-e95a-11e7-adce-080027c94384"
 },
 "spec": {
 "finalizers": [
 "kubernetes"
]
 },
 "status": {
 "phase": "Active"
 }
}

I discovered this endpoint by going first to /api, then discovered /api/v1, which told me
there is /api/v1/namespaces, which pointed me to /api/v1/namespaces/default.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[508]

Using Postman to explore the Kubernetes API
Postman (https://www.getpostman.com) is a very polished application for working with
RESTful APIs. If you lean more to the GUI side, you may find it extremely useful.

The following screenshot shows the available endpoints under the batch V1 API group:

Postman has a lot of options, and it organizes the information in a very pleasing way. Give
it a try.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.getpostman.com

Customizing Kubernetes - API and Plugins Chapter 17

[509]

Filtering the output with httpie and jq
The output from the API can be too verbose sometimes. Often, you're interested just in one
value out of a huge chunk of JSON responses. For example, if you want to get the names of
all running services, you can hit the /api/v1/services endpoint. The response, however,
includes a lot of additional information that is irrelevant. Here is a very partial subset of the
output:

$ http http://localhost:8080/api/v1/services
{
 "apiVersion": "v1",
 "items": [
 {
 "metadata": {
 "creationTimestamp": "2018-03-03T05:18:30Z",
 "labels": {
 "component": "apiserver",
 "provider": "kubernetes"
 },
 "name": "kubernetes",
 …
 },
 "spec": {
 …
 },
 "status": {
 "loadBalancer": {}
 }
 },
 …
],
 "kind": "ServiceList",
 "metadata": {
 "resourceVersion": "1076",
 "selfLink": "/api/v1/services"
 }
}

The complete output is 121 lines long! Let's see how to use httpie and jq to gain full
control over the output and show only the names of the services. I prefer
(https://httpie.org/) over CURL for interacting with REST APIs on the command line.
The jq (https://stedolan.github.io/jq/) command-line JSON processor is great for
slicing and dicing JSON.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://httpie.org/
https://stedolan.github.io/jq/

Customizing Kubernetes - API and Plugins Chapter 17

[510]

Examining the full output, you can see that the service names are in the metadata sections
of each item in the items array. The jq expression that will select just the name is as follows:

.items[].metadata.name

Here is the full command and output:

$ http http://localhost:8080/api/v1/services | jq .items[].metadata.name
"kubernetes"
"kube-dns"
"kubernetes-dashboard"

Creating a pod via the Kubernetes API
The API can be used for creating, updating, and deleting resources too, given the following
pod manifest in nginx-pod.json:

{
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata":{
 "name": "nginx",
 "namespace": "default",
 "labels": {
 "name": "nginx"
 }
 },
 "spec": {
 "containers": [{
 "name": "nginx",
 "image": "nginx",
 "ports": [{"containerPort": 80}]
 }]
 }
}

The following command will create the pod through the API:

> http POST http://localhost:8080/api/v1/namespaces/default/pods @nginx-
pod.json

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[511]

To verify that it worked, let's extract the name and status of the current pods. The endpoint
is as follows:

/api/v1/namespaces/default/pods

The jq expression is as follows:

items[].metadata.name,.items[].status.phase

Here is the full command and output:

> FILTER='.items[].metadata.name,.items[].status.phase'
> http http://localhost:8080/api/v1/namespaces/default/pods | jq $FILTER
"nginx"
"Running"

Accessing the Kubernetes API via the Python
client
Exploring the API interactively using httpie and jq is great, but the real power of API
comes when you consume and integrate it with other software. The Kubernetes incubator
project provides a full-fledged and very well-documented Python client library. It is
available at https://github.com/kubernetes-incubator/client-python.

First, make sure you have Python installed (either 2.7 or 3.5+). Then install the Kubernetes
package:

> pip install kubernetes

To start talking to a Kubernetes cluster, you need to connect to it. Start an interactive
Python session:

> python
Python 3.6.4 (default, Mar 1 2018, 18:36:42)
[GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

The Python client can read your Kubectl config:

>>> from kubernetes import client, config
>>> config.load_kube_config()
>>> v1 = client.CoreV1Api()

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[512]

Or it can connect directly to an already running proxy:

>>> from kubernetes import client, config
>>> client.Configuration().host = 'http://localhost:8080'
>>> v1 = client.CoreV1Api()

Note that the client module provides methods to get access to different group versions,
such as CoreV1API.

Dissecting the CoreV1API group
Let's dive in and understand the CoreV1API group. The Python object has 481 public
attributes:

>>> attributes = [x for x in dir(v1) if not x.startswith('__')]
>>> len(attributes)
481

Ignore the attributes that starts with double underscores because those are special
class/instance methods unrelated to Kubernetes.

Let's pick ten random methods and see what they look like:

>>> import random
>>> from pprint import pprint as pp
>>> pp(random.sample(attributes, 10))
['patch_namespaced_pod',
 'connect_options_node_proxy_with_path_with_http_info',
 'proxy_delete_namespaced_pod_with_path',
 'delete_namespace',
 'proxy_post_namespaced_pod_with_path_with_http_info',
 'proxy_post_namespaced_service',
 'list_namespaced_pod_with_http_info',
 'list_persistent_volume_claim_for_all_namespaces',
 'read_namespaced_pod_log_with_http_info',
 'create_node']

Very interesting. The attributes begin with a verb such as list, patch, or read. Many of
them have this notion of a namespace, and many have a with_http_info suffix. To
understand the better, let's count how many verbs exist and how many attributes use
each verb (where the verb is the first token before the underscore):

>>> from collections import Counter
>>> verbs = [x.split('_')[0] for x in attributes]
>>> pp(dict(Counter(verbs)))
{'api': 1,

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[513]

 'connect': 96,
 'create': 36,
 'delete': 56,
 'get': 2,
 'list': 56,
 'patch': 48,
 'proxy': 84,
 'read': 52,
 'replace': 50}

We can drill further and look at the interactive help for a specific attribute:

>>> help(v1.create_node)
Help on method create_node in module kuber-netes.client.apis.core_v1_api:

create_node(body, **kwargs) method of kuber-
netes.client.apis.core_v1_api.CoreV1Api instance
 create a Node
 This method makes a synchronous HTTP request by default. To make an
 asynchronous HTTP request, please pass async=True
 >>> thread = api.create_node(body, async=True)
 >>> result = thread.get()

 :param async bool
 :param V1Node body: (required)
 :param str pretty: If 'true', then the output is pretty printed.
 :return: V1Node
 If the method is called asynchronously,
 returns the request thread.

You can poke around yourself and learn more about the API. Let's look at some common
operations, such as listing, creating, watching, and deleting objects.

Listing objects
You can list different kinds of object. The method names start with list_. Here is an
example listing all namespaces:

 >>> for ns in v1.list_namespace().items:
... print(ns.metadata.name)
...
default
kube-public
kube-system

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[514]

Creating objects
To create an object, you need to pass a body parameter to the create method. The body
must be a Python dictionary that is equivalent to a YAML configuration file you would use
with Kubectl. The easiest way to do it is to actually use a YAML and then use the Python
YAML module (this is not part of the standard library and must be installed separately) to
read the YAML file and load it into a dictionary. For example, to create an nginx-
deployment with 3 replicas, we can use this YAML configuration file:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

To install the yaml Python module, type this command:

> pip install yaml

Then the following Python program will create the deployment:

from os import path
import yaml
from kubernetes import client, config

def main():
 # Configs can be set in Configuration class directly or using
 # helper utility. If no argument provided, the config will be
 # loaded from default location.
 config.load_kube_config()

 with open(path.join(path.dirname(__file__),
 'nginx-deployment.yaml')) as f:
 dep = yaml.load(f)
 k8s = client.AppsV1Api()
 status = k8s_beta.create_namespaced_deployment(

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[515]

 body=dep, namespace="default").status
 print("Deployment created. status='{}'".format(status))

if __name__ == '__main__':
 main()

Watching objects
Watching objects is an advanced capability. It is implemented using a separate watch
module. Here is an example to watch for 10 namespace events and print them to the screen:

from kubernetes import client, config, watch

Configs can be set in Configuration class directly or using helper
utility
config.load_kube_config()
v1 = client.CoreV1Api()
count = 10
w = watch.Watch()
for event in w.stream(v1.list_namespace, _request_timeout=60):
 print(f"Event: {event['type']} {event['object'].metadata.name}")
 count -= 1
 if count == 0:
 w.stop()

print('Done.')

Invoking Kubectl programmatically
If you're not a Python developer and don't want to deal with the REST API directly, you
have another option. Kubectl is used mostly as an interactive command-line tool, but
nothing is stopping you from automating it and invoking it through scripts and programs.
Here are some of the benefits of using Kubectl as your Kubernetes API client:

Easy to find examples for any usage
Easy to experiment on the command line to find the right combination of
commands and arguments
Kubectl supports output in JSON or YAML for quick parsing
Authentication is built-in via Kubectl configuration

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[516]

Using Python subprocess to run Kubectl
I'll use Python again, so you can compare using the official Python client with rolling your
own. Python has a module called subprocess that can run external processes such as
Kubectl and capture the output. Here is a Python 3 example running Kubectl on its own
and displaying the beginning of the usage output:

>>> import subprocess
>>> out = subprocess.check_output('kubectl').decode('utf-8')
>>> print(out[:276])

Kubectl controls the Kubernetes cluster manager. Find more information at
https://github.com/kubernetes/kubernetes.

Here are some basic commands for beginners:

create: Create a resource using the filename or stdin
expose: Take a replication controller, service, deployment, or pod

The check_checkout() function captures the output as a bytes array that needs to be
decoded to utf-8 to display it properly. We can generalize it a little bit and create a
convenience function called k that accepts parameters it feeds to Kubectl, and then decodes
the output and returns it:

from subprocess import check_output
def k(*args):
 out = check_output(['kubectl'] + list(args))
 return out.decode('utf-8')
Let's use it to list all the running pods in the default namespace:
>>> print(k('get', 'po'))
NAME Ready Status Restarts Age
nginx-deployment-6c54bd5869-9mp2g 1/1 Running 0 18m
nginx-deployment-6c54bd5869-lgs84 1/1 Running 0 18m
nginx-deployment-6c54bd5869-n7468 1/1 Running 0 . 18m

This is nice for display, but Kubectl already does that. The real power comes when you use
the structured output options with the -o flag. Then the result can be converted
automatically to a Python object. Here is a modified version of the k() function that accepts
a Boolean use_json keyword argument (default is False); if True adds -o json and then
parses the JSON output to a Python object (dictionary):

from subprocess import check_output
import json

def k(use_json=False, *args):

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kubernetes

Customizing Kubernetes - API and Plugins Chapter 17

[517]

 cmd = ['kubectl']
 cmd += list(args)
 if use_json:
 cmd += ['-o', 'json']
 out = check_output(cmd)
 if use_json:
 out = json.loads(out)
 else:
 out = out.decode('utf-8')
 return out

That returns a full-fledged API object, which can be navigated and drilled down just like
when accessing the REST API directly or using the official Python client:

result = k('get', 'po', use_json=True)
for r in result['items']:
 print(r['metadata']['name'])
nginx-deployment-6c54bd5869-9mp2g
nginx-deployment-6c54bd5869-lgs84
nginx-deployment-6c54bd5869-n7468

Let's see how to delete the deployment and wait until all the pods are gone. The Kubectl
delete command doesn't accept the -o json option (although it has -o name), so let's leave
out use_json:

k('delete', 'deployment', 'nginx-deployment')
while len(k('get', 'po', use_json=True)['items']) > 0:
 print('.')
print('Done.')
Done.

Extending the Kubernetes API
Kubernetes is an extremely flexible platform. It allows you to extend its own API with new
types of resources called custom resources. If that is not enough you can even provide your
API server that integrates with the Kubernetes API server in a mechanism called API
aggregation. What can you do with custom resources? Plenty. You can use them to manage
the Kubernetes API resources that live outside the Kubernetes cluster, which your pods
communicate with.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[518]

By adding those external resources as custom resources, you get a full picture of your
system and you benefit from many Kubernetes API features such as the following:

Custom CRUD REST endpoints
Versioning
Watches
Automatic integration with generic Kubernetes tooling

Other use cases for custom resources are metadata for custom controllers and automation
programs.

Custom resources that were introduced in Kubernetes 1.7 are a significant improvement
over the now deprecated third-party resources. Let's dive in and see what custom resources
are all about.

Understanding the structure of a custom
resource
In order to play nice with the Kubernetes API server, third-party resources must conform to
some basic requirements. Similar to built-in API objects, they must have the following
fields:

apiVersion: apiextensions.k8s.io/v1beta1
metadata: Standard Kubernetes object metadata
kind: CustomResourceDefinition
spec: Describes how the resource appears in the API and tools
status: Indicates the current status of the CRD

The spec has an internal structure that includes fields like group, names, scope, validation,
and version. The status includes the fields acceptedNames and Conditions. In the next
section, I'll show you an example that clarifies the meaning of these fields.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[519]

Developing custom resource definitions
You develop your custom resources using custom resource definitions, aslo known as CRD.
The intention is for CRDs to integrate smoothly with Kubernetes, its API, and its tooling, so
you need to provide a lot of information. Here is an example for a custom resource called
Candy:

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 # name must match the spec fields below, and be in the form:
<plural>.<group>
 name: candies.awesome.corp.com
spec:
 # group name to use for REST API: /apis/<group>/<version>
 group: awesome.corp.com
 # version name to use for REST API: /apis/<group>/<version>
 version: v1
 # either Namespaced or Cluster
 scope: Namespaced
 names:
 # plural name to be used in the URL: /apis/<group>/<version>/<plural>
 plural: candies
 # singular name to be used as an alias on the CLI and for display
 singular: candy
 # kind is normally the CamelCased singular type. Your resource
manifests use this.
 kind: Candy
 # shortNames allow shorter string to match your resource on the CLI
 shortNames:
 - cn

Let's create it:

> kubectl create -f crd.yaml
customresourcedefinition "candies.awesome.corp.com" created

Note that the metadata name with the plural notation is returned. Now, let's verify that we
can access it:

> kubectl get crd
NAME AGE
candies.awesome.corp.com 17m

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[520]

There is also a new API endpoint for managing this new resource:

/apis/awesome.corp.com/v1/namespaces/<namespace>/candies/

Let's use our Python code to access it:

>>> config.load_kube_config()
>>> print(k('get', 'thirdpartyresources'))
NAME AGE
candies.awesome.corp.com 24m

Integrating custom resources
Once the CustomResourceDefinition object has been created, you can create custom
resources of that resource kind in particular, Candy in this case (candy becomes
CamelCase Candy). Candy objects can contain arbitrary fields with arbitrary JSON. In the
following example, a flavor custom field is set on the Candy object. The apiVersion field
is derived from the CRD spec's group and version fields:

apiVersion: "awesome.corp.com/v1"
kind: Candy
metadata:
 name: chocolatem
spec:
 flavor: "sweeeeeeet"

You can add arbitrary fields to your custom resources. The values can be any JSON values.
Note that these fields are not defined in the CRD. Different objects can have different fields.
Let's create it:

> kubectl create -f candy.yaml
candy "chocolate" created

At this point, kubectl can operate on Candy objects just like it works on built-in objects.
Note that resource names are case-insensitive when using kubectl:

$ kubectl get candies
NAME AGE
chocolate 2m

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[521]

We can also view the raw JSON data using the standard -o json flag. I'll use the short
name cn this time:

> kubectl get cn -o json
{
 "apiVersion": "v1",
 "items": [
 {
 "apiVersion": "awesome.corp.com/v1",
 "kind": "Candy",
 "metadata": {
 "clusterName": "",
 "creationTimestamp": "2018-03-07T18:18:42Z",
 "name": "chocolate",
 "namespace": "default",
 "resourceVersion": "4791773",
 "selfLink":
"/apis/awesome.corp.com/v1/namespaces/default/candies/chocolate",
 "uid": "f7a6fd80-2233-11e8-b432-080027c94384"
 },
 "spec": {
 "flavor": "sweeeeeeet"
 }
 }
],
 "kind": "List",
 "metadata": {
 "resourceVersion": "",
 "selfLink": ""
 }
}

Finalizing custom resources
Custom resources support finalizers just like standard API objects. A finalizer is a
mechanism where objects are not deleted immediately but have to wait for special
controllers that run in the background and watch for deletion requests. The controller may
perform any necessary cleanup options and then remove its finalizer from the target object.
There may be multiple finalizers on an object. Kubenetes will wait until all finalizers have
been removed and only then delete the object. The finalizers in the metadata are just
arbitrary strings that their corresponding controller can identify. Here is an example with a
Candy object that has two finalizers, eat-me and drink-me:

apiVersion: "awesome.corp.com/v1"
kind: Candy

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[522]

metadata:
 name: chocolate
 finalizers:
 - eat-me
 - drink-me
spec:
 flavor: "sweeeeeeet"

Validating custom resources
You can add any field to a CRD. This may cause invalid definitions. Kubernetes 1.9
introduced a validation mechanism for CRDs based on the OpenAPI V3 schema. It's still in
beta and can be disabled using a feature gate when starting the API server:

--feature-gates=CustomResourceValidation=false

In your CRD, you add a validation section to the spec:

validation:
 openAPIV3Schema:
 properties:
 spec:
 properties:
 cronSpec:
 type: string
 pattern: '^(\d+|*)(/\d+)?(\s+(\d+|*)(/\d+)?){4}$'
 replicas:
 type: integer
 minimum: 1
 maximum: 10

If you try to create objects that violate the validation in the spec, you'll get an error message.
You can read more about the OpenAPI schema here: http://bit.ly/2FsBfWA.

Understanding API server aggregation
CRDs are great when all you need is some CRUD operations on your own types. You can
just piggyback on the Kubernetes API server, which will store your objects and provide API
support and integration with tooling such as Kubectl. You can run controllers that watch
for your objects and perform some operations when they are created, updated, or deleted.
But CRDs have limitations. If you need more advanced features and customization, you can
use API server aggregation and write your own API server that the Kubernetes API server
will delegate to.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[523]

Your API server will use the same API machinery as the Kubernetes API server itself. Some
of the advanced capabilities are as follows:

Controlling the storage of your objects
Multi-versioning
Custom operations beyond CRUD (such as exec or scale)
Using protocol buffer payloads

Writing an extension API server is a non-trivial effort. If you decide you need all that
power, I recommend using the API builder project:

https://github.com/kubernetes-incubator/apiserver-builder

It is a young project, but it takes care of a lot of the necessary boilerplate code. The API
builder provides the following capabilities:

Bootstrap complete type definitions, controllers, and tests, as well as
documentation
You can run the extension control plane locally, inside Minikube, or on an actual
remote cluster
Your generated controllers will be able to watch and update API objects
Adding resources (including sub-resources)
Default values you can override if needed

Utilizing the service catalog
The Kubernetes service catalog project allows you to integrate smoothly and painlessly any
external service that support the Open Service Broker API specification:

https://github.com/openservicebrokerapi/servicebroker

The intention of the open service broker API is to expose external services to any cloud
environment through a standard specification with supporting documentation and a
comprehensive test suite. That lets providers implement a single specification and supports
multiple cloud environments. The current environments include Kubernetes and
CloudFoundry. The project works towards broad industry adoption.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes-incubator/apiserver-builder
https://github.com/openservicebrokerapi/servicebroker

Customizing Kubernetes - API and Plugins Chapter 17

[524]

The service catalog is particularly useful for integrating the services of cloud platform
providers. Here are some examples of such services:

Microsoft Azure Cloud Queue
Amazon Simple Queue Service
Google Cloud Pub/Sub

This capability is a boon for organizations that are committed to the cloud. You get to build
your system on Kubernetes, but you don't have to deploy, manage, and maintain every
service in your cluster yourself. You can offload that to your cloud provider, enjoy deep
integration, and focus on your application.

The service catalog can potentially make your Kubernetes cluster fully autonomous by
allowing you to provision cloud resources through service brokers. We're not there yet, but
the direction is very promising.

This concludes our discussion of accessing and extending Kubernetes from the outside. In
the next section, we will direct our gaze inward and look into customizing the inner
workings of Kubernetes itself via plugins.

Writing Kubernetes plugins
In this section, we will dive into the guts of Kubernetes and learn how to take advantage of
its famous flexibility and extensibility. We will learn about the different aspects that can be
customized via plugins, and how to implement such plugins and integrate them with
Kubernetes.

Writing a custom scheduler plugin
Kubernetes defines itself as a container scheduling and management system. As such, the
scheduler is the most important component of Kubernetes. Kubernetes comes with a
default scheduler, but allows for writing additional schedulers. To write your own custom
scheduler, you need to understand what the scheduler does, how it is packaged, how to
deploy your custom scheduler, and how to integrate your scheduler. The scheduler source
code is available here:

https://github.com/kubernetes/kubernetes/tree/master/pkg/scheduler

In the rest of this section, we will dive deep into the source and examine data types,
algorithms, and code.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kubernetes/tree/master/pkg/scheduler

Customizing Kubernetes - API and Plugins Chapter 17

[525]

Understanding the design of the Kubernetes scheduler
The job of the scheduler is to find a node for newly created or restarted pods, and create a
binding in the API server and run it there. If the scheduler can't find a suitable node for the
pod, it will remain in pending state.

The scheduler
Most of the work of the scheduler is pretty generic—it figures out which pods need to be
scheduled, updates their state, and runs them on the selected node. The custom part is how
to map pods to nodes. The Kubernetes team recognized the need for custom scheduling,
and the generic scheduler can be configured with different scheduling algorithms.

The main data type is the Scheduler struct that contains a Config struct with lots of
properties (this will soon be replaced by a configurator interface):

type Scheduler struct {
 config *Config
}

Here is the Config struct:

type Config struct {
 SchedulerCache schedulercache.Cache
 Ecache *core.EquivalenceCache
 NodeLister algorithm.NodeLister
 Algorithm algorithm.ScheduleAlgorithm
 GetBinder func(pod *v1.Pod) Binder
 PodConditionUpdater PodConditionUpdater
 PodPreemptor PodPreemptor
 NextPod func() *v1.Pod
 WaitForCacheSync func() bool
 Error func(*v1.Pod, error)
 Recorder record.EventRecorder
 StopEverything chan struct{}
 VolumeBinder *volumebinder.VolumeBinder
}

Most of these are interfaces, so you can configure the scheduler with custom functionality.
In particular, the scheduler algorithm is relevant if you want to customize pod scheduling.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[526]

Registering an algorithm provider
The scheduler has the concept of an algorithm provider and an algorithm. Together, they
let you use the substantial functionality of the built-in scheduler in order to replace the core
scheduling algorithm.

The algorithm provider lets you register new algorithm providers with the factory. There is
already one custom provider registered, called ClusterAutoScalerProvider. We will
see later how the scheduler knows which algorithm provider to use. The key file is as
follows:

https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/algorithmpro
vider/defaults/defaults.go

The init() function calls the registerAlgorithmProvider(), which you should extend
to include your algorithm provider in addition to the default and autoscaler providers:

func registerAlgorithmProvider(predSet, priSet sets.String) {
 // Registers algorithm providers. By default we use 'DefaultProvider'
 // but user can specify one to be used by specifying flag.
 factory.RegisterAlgorithmProvider(factory.DefaultProvider, predSet,
priSet)
 // Cluster autoscaler friendly scheduling algorithm.
 factory.RegisterAlgorithmProvider(ClusterAutoscalerProvider, predSet,
 copyAndReplace(priSet, "LeastRequestedPriority",
"MostRequestedPriority"))
}

In addition to registering the provider, you also need to register a fit predicate and a
priority function, which are used to actually perform the scheduling.

You can use the factory's RegisterFitPredicate() and
RegisterPriorityFunction2() functions.

Configuring the scheduler
The scheduler algorithm is provided as part of the configuration. Custom schedulers can
implement the ScheduleAlgorithm interface:

type ScheduleAlgorithm interface {
 Schedule(*v1.Pod, NodeLister) (selectedMachine string, err error)
 Preempt(*v1.Pod, NodeLister, error) (selectedNode *v1.Node,
 preemptedPods []*v1.Pod,
 cleanupNominatedPods []*v1.Pod,
 err error)
 Predicates() map[string]FitPredicate

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/algorithmprovider/defaults/defaults.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/algorithmprovider/defaults/defaults.go

Customizing Kubernetes - API and Plugins Chapter 17

[527]

 Prioritizers() []PriorityConfig
}

When you run the scheduler, you can provide the name of the custom scheduler or a
custom algorithm provider as a command-line argument. If none are provided, the default
algorithm provider will be used. The command-line arguments to the scheduler are --
algorithm-provider and --scheduler-name.

Packaging the scheduler
The custom scheduler runs as a pod inside the same Kubernetes cluster it oversees. It needs
to be packaged as a container image. Let's use a copy of the standard Kubernetes scheduler
for demonstration purposes. We can build Kubernetes from the source to get a scheduler
image:

git clone https://github.com/kubernetes/kubernetes.git
cd kubernetes
make

Create the following Dockerfile:

FROM busybox
ADD ./_output/bin/kube-scheduler /usr/local/bin/kube-scheduler

Use it to build a Docker image type:

docker build -t custom-kube-scheduler:1.0 .

Finally, push the image to a container registry. I'll use DockerHub here. You'll need to
create an account on DockerHub and log in before pushing your image:

> docker login
> docker push g1g1/custom-kube-scheduler

Note that I built the scheduler locally, and in the Dockerfile I just copy it from the host into
the image. That works when you deploy on the same OS that you build with. If this is not
the case, then it may be better to insert the build commands into the Dockerfile. The price
you pay is that you need to pull all of Kubernetes into the image.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[528]

Deploying the custom scheduler
Now that the scheduler image is built and available in the registry, we need to create a
Kubernetes deployment for it. The scheduler is, of course, critical, so we can use Kubernetes
itself to ensure that it is always running. The following YAML file defines a deployment
with a single replica and a few other bells and whistles, such as liveness and readiness
probes:

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 component: scheduler
 tier: control-plane
 name: custom-scheduler
 namespace: kube-system
spec:
 replicas: 1
 template:
 metadata:
 labels:
 component: scheduler
 tier: control-plane
 version: second
 spec:
 containers:
 - command:
 - /usr/local/bin/kube-scheduler
 - --address=0.0.0.0
 - --leader-elect=false
 - --scheduler-name=custom-scheduler
 image: g1g1/custom-kube-scheduler:1.0
 livenessProbe:
 httpGet:
 path: /healthz
 port: 10251
 initialDelaySeconds: 15
 name: kube-second-scheduler
 readinessProbe:
 httpGet:
 path: /healthz
 port: 10251
 resources:
 requests:
 cpu: '0.1'

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[529]

The name of the scheduler (custom-scheduler here) is important and must be unique. It
will be used later to associate pods with the scheduler to schedule them. Note that the
custom scheduler belongs in the kube-system namespace.

Running another custom scheduler in the cluster
Running another custom scheduler is as simple as creating the deployment. This is the
beauty of this encapsulated approach. Kubernetes is going to run a second scheduler,
which is a big deal, but Kubernetes is unaware of what's going on. It just deploys a pod like
any other pod, except this pod happens to be a custom scheduler:

$ kubectl create -f custom-scheduler.yaml

Let's verify that the scheduler pod is running:

$ kubectl get pods --namespace=kube-system
NAME READY STATUS RESTARTS AGE
....
custom-scheduler-7cfc49d749-lwzxj 1/1 Running 0 2m
...

Our custom scheduler is running.

Assigning pods to the custom scheduler
OK. The custom scheduler is running alongside the default scheduler. But how does
Kubernetes choose which scheduler to use when a pod needs scheduling? The answer is
that the pod decides and not Kubernetes. The pod spec has an optional scheduler name
field. If it's missing, the default scheduler is used; otherwise, the specified scheduler is
used. This is the reason the custom scheduler names must be unique. The name of the
default scheduler is default-scheduler, in case you want to be explicit in your pod spec.
Here is a pod definition that will be scheduled using the default scheduler:

apiVersion: v1
kind: Pod
metadata:
 name: some-pod
 labels:
 name: some-pod
spec:
 containers:
 - name: some-container
 image: gcr.io/google_containers/pause:2.0

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[530]

To have the custom-scheduler schedule this pod, change the pod spec to the following:

apiVersion: v1
kind: Pod
metadata:
 name: some-pod
 labels:
 name: some-pod
spec:
 schedulerName: custom-scheduler
 containers:
 - name: some-container
 image: gcr.io/google_containers/pause:2.0

Verifying that the pods were scheduled using the
custom scheduler
There are two primary ways to verify pods get scheduled by the correct scheduler. First,
you can create pods that need to be scheduled by the custom scheduler before deploying
the custom scheduler. The pods will remain in the pending state. Then, deploy the custom
scheduler and the pending pods will be scheduled and start running.

The other method is to check the event logs and look for scheduled events using this
command:

$ kubectl get events

Employing access control webhooks
Kubernetes always provided ways for you to customize access control. In Kubernetes
access control can be denoted as triple-A: Authentication, Authorization, and Admission
control. In early versions, it was done through plugins that required Go programming,
installing into your cluster, registration, and other invasive procedures. Now, Kubernetes
lets you customize authentication, authorization, and admission control webhooks.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[531]

Using an authentication webhook
Kubernetes lets you extend the authentication process by injecting a webhook for bearer
tokens. It requires two pieces of information: how to access the remote authentication
service and the duration of the authentication decision (it defaults to two minutes).

To provide this information and enable authentication webhooks, start the API server with
the following command-line arguments:

--runtime-config=authentication.k8s.io/v1beta1=true

--authentication-token-webhook-config-file

--authentication-token-webhook-cache-ttl

The configuration file uses the kubeconfig file format. Here is an example:

clusters:
 - name: remote-authentication-service
 cluster:
 certificate-authority: /path/to/ca.pem
 server: https://example.com/authenticate

users:
 - name: k8s-api-server
 user:
 client-certificate: /path/to/cert.pem
 client-key: /path/to/key.pem

current-context: webhook
contexts:
- context:
 cluster: remote-authentication-service
 user: k8s-api-sever
 name: webhook

Note that a client certificate and key must be provided to Kubernetes for mutual
authentication against the remote authentication service.

The cache TTL is useful because often users will make multiple consecutive requests to
Kubernetes. Having the authentication decision cached can save a lot of round trips to the
remote authentication service.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[532]

When an API HTTP request comes in, Kubernetes extracts the bearer token from its headers
and posts a TokenReview JSON request to the remote authentication service through the
webhook:

{
 "apiVersion": "authentication.k8s.io/v1beta1",
 "kind": "TokenReview",
 "spec": {
 "token": "<bearer token from original request headers>"
 }
}

The remote authentication service will respond with a decision. The status authentication
will either be true or false. Here is an example of a successful authentication:

{
 "apiVersion": "authentication.k8s.io/v1beta1",
 "kind": "TokenReview",
 "status": {
 "authenticated": true,
 "user": {
 "username": "gigi@gg.com",
 "uid": "42",
 "groups": [
 "developers",
],
 "extra": {
 "extrafield1": [
 "extravalue1",
 "extravalue2"
]
 }
 }
 }
}

A rejected response is much more concise:

{
 "apiVersion": "authentication.k8s.io/v1beta1",
 "kind": "TokenReview",
 "status": {
 "authenticated": false
 }
}

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[533]

Using an authorization webhook
The authorization webhook is very similar to the authentication webhook. It just requires a
configuration file that is in the same format as the authentication webhook configuration
file. There is no authorization caching because unlike authentication, the same user may
make lots of requests to different API endpoints with different parameters and
authorization decisions may be different, so caching is not a viable option.

You configure the webhook by passing the following command-line arguments to the API
server:

--runtime-config=authorization.k8s.io/v1beta1=true

--authorization-webhook-config-file=<configuration filename>

When a request passes authentication, Kubernetes will send a SubjectAccessReview
JSON object to the remote authorization service. It will contain the request user as well as
requested resource and other request attributes:

{
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "spec": {
 "resourceAttributes": {
 "namespace": "awesome-namespace",
 "verb": "get",
 "group": "awesome.example.org",
 "resource": "pods"
 },
 "user": "gigi@gg.com",
 "group": [
 "group1",
 "group2"
]
 }
}

The request will be allowed:

{
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "status": {
 "allowed": true
 }
}

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[534]

Or it will be disallowed (with a reason):

{
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "status": {
 "allowed": false,
 "reason": "user does not have read access to the namespace"
 }
}

A user may be authorized to access a resource, but not non-resource attributes such as /api,
/apis, /metrics, /resetMetrics, /logs, /debug, /healthz, /swagger-ui/,
/swaggerapi/, /ui, and /version.

Here is how to request access to the logs:

{
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "spec": {
 "nonResourceAttributes": {
 "path": "/logs",
 "verb": "get"
 },
 "user": "gigi@gg.com",
 "group": [
 "group1",
 "group2"
]
 }
}

Using an admission control webhook
Dynamic admission control supports webhooks too. It is still in alpha. You need to enable
the generic admission webhook by passing the following command-line arguments to the
API server:

--admission-control=GenericAdmissionWebhook

--runtime-config=admissionregistration.k8s.io/v1alpha1

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[535]

Configuring webhook admission controller on the fly
The authentication and authorization webhooks must be configured when you start the API
server. The admission control webhooks can be configured dynamically by creating
externaladmissionhookconfiguration objects:

apiVersion: admissionregistration.k8s.io/v1alpha1
kind: ExternalAdmissionHookConfiguration
metadata:
 name: example-config
externalAdmissionHooks:
- name: pod-image.k8s.io
 rules:
 - apiGroups:
 - ""
 apiVersions:
 - v1
 operations:
 - CREATE
 resources:
 - pods
 failurePolicy: Ignore
 clientConfig:
 caBundle: <pem encoded ca cert that signs the server cert used by the
webhook>
 service:
 name: <name of the front-end service>
 namespace: <namespace of the front-end service>

Providing custom metrics for horizontal pod
autoscaling
Prior to Kubernetes 1.6, custom metrics were implemented as a Heapster model. In
Kubernetes 1.6, a new custom metrics API landed and matured gradually. As of Kubernetes
1.9, they are enabled by default. Custom metrics rely on API aggregation. The
recommended path is to start with the custom metrics API server boilerplate available here:

https://github.com/kubernetes-incubator/custom-metrics-apiserver

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes-incubator/custom-metrics-apiserver

Customizing Kubernetes - API and Plugins Chapter 17

[536]

Then, you implement the CustomMetricsProvider interface:

type CustomMetricsProvider interface {
 GetRootScopedMetricByName(groupResource schema.GroupResource,
 name string,
 metricName string)
(*custom_metrics.MetricValue, error)
 GetRootScopedMetricBySelector(groupResource schema.GroupResource,
 selector labels.Selector,
 metricName string)
(*custom_metrics.MetricValueList,
 error)
 GetNamespacedMetricByName(groupResource schema.GroupResource,
 namespace string,
 name string,
 metricName string)
(*custom_metrics.MetricValue, error)
 GetNamespacedMetricBySelector(groupResource schema.GroupResource,
 namespace
string,
 selector
labels.Selector,
 metricName
string) (*MetricValueList, error)
 ListAllMetrics() []MetricInfo
}

Extending Kubernetes with custom storage
Volume plugins are yet another type of plugin. Prior to Kubernetes 1.8, you had to write a
Kublet plugin that required implementing, registration with Kubernetes, and linking with
the Kubelet. Kubernetes 1.8 introduced the FlexVolume, which is much more versatile.
Kubernetes 1.9 took it to the next level with the Container Storage Interface (CSI).

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[537]

Taking advantage of FlexVolume
Kubernetes volume plugins are designed to support a particular type of storage or storage
provider. There are numerous volume plugins, which we covered in Chapter 7, Handling
Kubernetes Storage. The existing volume plugins are more than enough for most users, but if
you need to integrate with a storage solution that is not supported you must implement
your own volume plugin, which is not trivial. If you want it to get accepted as an official
Kubernetes plugin then you have to get through a rigorous approval process. But
FlexVolume provides another path. It is a generic plugin that allows you to hook up your
unsupported storage backend without deep integration with Kubernetes itself.

FlexVolume lets you add arbitrary attributes to the spec, and it communicates with your
backend via a callout interface that includes the following operations:

Attach: Attaches a volume to the Kubernetes Kubelet node
Detach: Detaches the volume from the Kubernetes Kubelet node
Mount: Mounts the attached volume
Unmount: Unmounts the attached volume

Each operation is implemented by the backend driver as a binary that the FlexVolume
invokes at the right time. The driver must be installed in
/usr/libexec/kubernetes/kubelet-

plugins/volume/exec/<vendor>~<driver>/<driver>.

Benefitting from CSI
FlexVolume provides out-of-tree plugin capability, but it still requires the FlexVolume
plugin itself and a somewhat cumbersome installation and invocation model. The CSI will
improve on it significantly by having the vendor implement it directly. The best thing about
it is that you, as a developer, don't have to create and maintain those plugins. It is the
responsibility of the storage solution provider to implement and maintain the CSI, and it's
in their interest to make it as robust as possible so that people don't choose a different
storage solution that works out of the box on Kubernetes (and other platforms that
integrate with CSI).

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing Kubernetes - API and Plugins Chapter 17

[538]

Summary
In this chapter, we covered three major topics: working with the Kubernetes API, extending
the Kubernetes API, and writing Kubernetes plugins. The Kubernetes API supports the
OpenAPI spec and is a great example of REST API design that follows all current best
practices. It is very consistent, well organized, and well documented, yet it is a big API and
is not easy to understand. You can access the API directly via REST over HTTP, using client
libraries including the official Python client, and even by invoking Kubectl.

Extending the Kubernetes API involves defining your own custom resources and optionally
extending the API server itself via API aggregation. Custom resources are most effective
when you combine them with additional custom plugins or controllers when you query
and update them externally.

Plugins and webhooks are the foundation of Kubernetes design. Kubernetes was always
meant to be extended by users to accommodate any need. We looked at various plugins
and webhooks you can write and how to register and integrate them seamlessly with
Kubernetes.

We also looked at custom metrics and even how to extend Kubernetes with custom storage
options.

At this point, you should be well aware of all the major mechanisms to extend, customize,
and control Kubernetes through API access, custom resources, and custom plugins. You are
in a great position to take advantage of these capabilities to augment the existing
functionality of Kubernetes and adapt it to your needs and your systems.

In the next chapter, we'll look at Helm, the Kubernetes package manager, and its charts. As
you may have realized, deploying and configuring complex systems on Kubernetes is far
from simple. Helm allows the grouping together of a bunch of manifests into a chart, which
can be installed as a single unit.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

18
Handling the Kubernetes

Package Manager
In this chapter, we are going to look into Helm, the Kubernetes package manager. Every
successful and important platform must have a good packaging system. Helm was
developed by Deis (acquired by Microsoft in April 2017) and later contributed to the
Kubernetes project directly. We will start by understanding the motivation for Helm, its
architecture, and its components. Then, we'll get hands-on experience and see how to use
Helm and its charts within Kubernetes. This includes finding, installing, customizing,
deleting, and managing charts. Last but not least, we'll cover how to create your own charts
and handle versioning, dependencies, and templating.

The following topics will be covered:

Understanding Helm
Using Helm
Creating your own charts

Understanding Helm
Kubernetes provides many ways to organize and orchestrate your containers at runtime,
but it lacks a higher-level organization of grouping sets of images together. This is where
Helm comes in. In this section, we'll go over the motivation for Helm, its architecture and
components, and discuss what has changed in the transition from Helm Classic to Helm.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[540]

The motivation for Helm
Helm provides support for several important use cases:

Managing complexity
Easy upgrades
Simple sharing
Safe rollbacks

Charts can describe even the most complex apps, provide repeatable application
installation, and serve as a single point of authority. In-place upgrades and custom hooks
allow easy updates. It's simple to share charts that can be versioned and hosted on public or
private servers. When you need to roll back recent upgrades, Helm provides a single
command to roll back a cohesive set of changes to your infrastructure.

The Helm architecture
Helm is designed to perform the following:

Create new charts from scratch
Package charts into chart archive (tgz) files
Interact with chart repositories where charts are stored
Install and uninstall charts into an existing Kubernetes cluster
Manage the release cycle of charts that have been installed with Helm

Helm uses a client-server architecture to achieve these goals.

Helm components
Helm has a server component that runs on your Kubernetes cluster and a client component
that you run on a local machine.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[541]

The Tiller server
The server is responsible for managing releases. It interacts with the Helm clients as well as
the Kubernetes API server. Its main functions are as follows:

Listening for incoming requests from the Helm client
Combining a chart and configuration to build a release
Installing charts into Kubernetes
Tracking the subsequent release
Upgrading and uninstalling charts by interacting with Kubernetes

The Helm client
You install the Helm client on your machine. It is responsible for the following:

Local chart development
Managing repositories
Interacting with the Tiller server
Sending charts to be installed
Asking for information about releases
Requesting upgrades or uninstallation of existing releases

Using Helm
Helm is a rich package management system that lets you perform all the necessary steps to
manage the applications installed on your cluster. Let's roll up our sleeves and get going.

Installing Helm
Installing Helm involves installing the client and the server. Helm is implemented in Go,
and the same binary executable can serve as either client or server.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[542]

Installing the Helm client
You must have Kubectl configured properly to talk to your Kubernetes cluster, because the
Helm client uses the Kubectl configuration to talk to the Helm server (Tiller).

Helm provides binary releases for all platforms, at
https://github.com/kubernetes/helm/releases/latest.

For Windows, you can also use the chocolatey package manager, but it may be a little
behind the official version,
https://chocolatey.org/packages/kubernetes-helm/<version>.

For macOS and Linux, you can install the client from a script:

$ curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
> get_helm.sh
$ chmod 700 get_helm.sh
$./get_helm.sh

On macOS X, you can also use Homebrew:

brew install kubernetes-helm

Installing the Tiller server
Tiller typically runs inside your cluster. For development, it is sometimes easier to run
Tiller locally.

Installing Tiller in-cluster
The easiest way to install Tiller is from a machine where the Helm client is installed. Run
the following command:

helm init

This will initialize both the client and the Tiller server on the remote Kubernetes cluster.
When the installation is done, you will have a running Tiller pod in the kube-system
namespace of your cluster:

> kubectl get po --namespace=kube-system -l name=tiller
NAME READY STATUS RESTARTS AGE
tiller-deploy-3210613906-2j5sh 1/1 Running 0 1m

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/helm/releases/latest

Handling the Kubernetes Package Manager Chapter 18

[543]

You can also run helm version to check out both the client's and the server's version:

> helm version
Client: &version.Version{SemVer:"v2.2.3",
GitCommit:"1402a4d6ec9fb349e17b912e32fe259ca21181e3", GitTreeState:"clean"}
Server: &version.Version{SemVer:"v2.2.3",
GitCommit:"1402a4d6ec9fb349e17b912e32fe259ca21181e3", GitTreeState:"clean"}

Installing Tiller locally
If you want to run Tiller locally, you need to build it first. This is supported on Linux and
macOS:

> cd $GOPATH
> mkdir -p src/k8s.io
> cd src/k8s.io
> git clone https://github.com/kubernetes/helm.git
> cd helm
> make bootstrap build

The bootstrap target will attempt to install dependencies, rebuild the vendor/ tree, and
validate configuration.

The build target will compile Helm and place it in bin/helm. Tiller is also compiled and is
placed in bin/tiller.

Now you can just run bin/tiller. Tiller will connect to the Kubernetes cluster via your
Kubectl configuration.

You need to tell the Helm client to connect to the local Tiller server. You can do it by setting
an environment variable:

> export HELM_HOST=localhost:44134

Otherwise, you can pass it as a command-line argument: --host localhost:44134.

Using Alternative Storage Backend
Helm 2.7.0 added the option to store release information as secrets. Earlier versions always
stored release information in ConfigMaps. The secrets backend increases the security of
charts. It's a complement to general Kubernetes encryption at rest. To use the Secrets
backend, you need to run Helm with the following command line:

> helm init --override
'spec.template.spec.containers[0].command'='{/tiller,--storage=secret}'

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[544]

Finding charts
In order to install useful applications and software with Helm, you need to find their charts
first. This is where the helm search command comes in. Helm, by default, searches the
official Kubernetes chart repository, which is named stable:

> helm search
NAME VERSION DESCRIPTION
stable/acs-engine-autoscaler 2.1.1 Scales worker nodes within
agent pools
stable/aerospike 0.1.5 A Helm chart for Aerospike in
Kubernetes
stable/artifactory 6.2.4 Universal Repository Manager
supporting all maj...
stable/aws-cluster-autoscaler 0.3.2 Scales worker nodes within
autoscaling groups.
stable/buildkite 0.2.0 Agent for Buildkite
stable/centrifugo 2.0.0 Centrifugo is a real-time
messaging server.
stable/chaoskube 0.6.1 Chaoskube periodically kills
random pods in you...
stable/chronograf 0.4.0 Open-source web application
written in Go and R..
stable/cluster-autoscaler 0.3.1 Scales worker nodes within
autoscaling groups.

The official repository has a rich library of charts that represent all modern open source
databases, monitoring systems, Kubernetes-specific helpers, and a slew of other offerings,
such as a Minecraft server. You can search for specific charts, for example, let's search for
charts that contain kube in their name or description:

> helm search kube
NAME VERSION DESCRIPTION
stable/chaoskube 0.6.1 Chaoskube periodically kills
random pods in you...
stable/kube-lego 0.3.0 Automatically requests
certificates from Let's ...
stable/kube-ops-view 0.4.1 Kubernetes Operational View -
read-only system ...
stable/kube-state-metrics 0.5.1 Install kube-state-metrics to
generate and expo...
stable/kube2iam 0.6.1 Provide IAM credentials to pods
based on annota...
stable/kubed 0.1.0 Kubed by AppsCode - Kubernetes
daemon
stable/kubernetes-dashboard 0.4.3 General-purpose web UI for
Kubernetes clusters

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[545]

stable/sumokube 0.1.1 Sumologic Log Collector
stable/aerospike 0.1.5 A Helm chart for Aerospike in
Kubernetes
stable/coredns 0.8.0 CoreDNS is a DNS server that
chains plugins and...
stable/etcd-operator 0.6.2 CoreOS etcd-operator Helm chart
for Kubernetes
stable/external-dns 0.4.4 Configure external DNS servers
(AWS Route53...
stable/keel 0.2.0 Open source, tool for automating
Kubernetes dep...
stable/msoms 0.1.1 A chart for deploying omsagent as
a daemonset...
stable/nginx-lego 0.3.0 Chart for nginx-ingress-
controller and kube-lego
stable/openvpn 2.0.2 A Helm chart to install an
openvpn server insid...
stable/risk-advisor 2.0.0 Risk Advisor add-on module for
Kubernetes
stable/searchlight 0.1.0 Searchlight by AppsCode - Alerts
for Kubernetes
stable/spartakus 1.1.3 Collect information about
Kubernetes clusters t...
stable/stash 0.2.0 Stash by AppsCode - Backup your
Kubernetes Volumes
stable/traefik 1.15.2 A Traefik based Kubernetes
ingress controller w...
stable/voyager 2.0.0 Voyager by AppsCode - Secure
Ingress Controller...
stable/weave-cloud 0.1.2 Weave Cloud is a add-on to
Kubernetes which pro...
stable/zetcd 0.1.4 CoreOS zetcd Helm chart for
Kubernetes
stable/buildkite 0.2.0 Agent for Buildkite

Let's try another search:

> helm search mysql
NAME VERSION DESCRIPTION
stable/mysql 0.3.4 Fast, reliable, scalable, and easy to
use open-...
stable/percona 0.3.0 free, fully compatible, enhanced, open
source d...
stable/gcloud-sqlproxy 0.2.2 Google Cloud SQL Proxy
stable/mariadb 2.1.3 Fast, reliable, scalable, and easy to
use open-...

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[546]

What happened? Why does mariadb show up in the results? The reason is that mariadb
(which is a fork of MySQL) mentions MySQL in its description, even though you can't see
it in the truncated output. To get the full description, use the helm inspect command:

> helm inspect stable/mariadb
appVersion: 10.1.30
description: Fast, reliable, scalable, and easy to use open-source
relational database
 system. MariaDB Server is intended for mission-critical, heavy-load
production systems
 as well as for embedding into mass-deployed software.
engine: gotpl
home: https://mariadb.org
icon:
https://bitnami.com/assets/stacks/mariadb/img/mariadb-stack-220x234.png
keywords:
- mariadb
- mysql
- database
- sql
- prometheus
maintainers:
- email: containers@bitnami.com
 name: bitnami-bot
name: mariadb
sources:
- https://github.com/bitnami/bitnami-docker-mariadb
- https://github.com/prometheus/mysqld_exporter
version: 2.1.3

Installing packages
OK. You've found the package of your dreams. Now, you probably want to install it on
your Kubernetes cluster. When you install a package, Helm creates a release that you can
use to keep track of the installation progress. Let's install MariaDB using the helm
install command. Let's go over the output in detail. The first part of the output lists the
name of the release - cranky-whippet in this case (you can choose your own with the --
name flag), the namespace, and the deployment status:

> helm install stable/mariadb
NAME: cranky-whippet
LAST DEPLOYED: Sat Mar 17 10:21:21 2018
NAMESPACE: default
STATUS: DEPLOYED

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[547]

The second part of the output lists all the resources created by this chart. Note that the
resource names are all derived from the release name:

RESOURCES:
==> v1/Service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
cranky-whippet-mariadb ClusterIP 10.106.206.108 <none> 3306/TCP
1s
==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
cranky-whippet-mariadb 1 1 1 0 1s
==> v1/Pod(related)
NAME READY STATUS RESTARTS AGE
cranky-whippet-mariadb-6c85fb4796-mttf7 0/1 Init:0/1 0 1s
==> v1/Secret
NAME TYPE DATA AGE
cranky-whippet-mariadb Opaque 2 1s
==> v1/ConfigMap
NAME DATA AGE
cranky-whippet-mariadb 1 1s
cranky-whippet-mariadb-tests 1 1s
==> v1/PersistentVolumeClaim
NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
cranky-whippet-mariadb Bound pvc-9cb7e176-2a07-11e8-9bd6-080027c94384
8Gi RWO standard 1s

The last part is notes that provide easy-to-understand instructions on how to use MariaDB
in the context of your Kubernetes cluster:

NOTES:
MariaDB can be accessed via port 3306 on the following DNS name from within
your cluster:
cranky-whippet-mariadb.default.svc.cluster.local
To get the root password run:
MARIADB_ROOT_PASSWORD=$(kubectl get secret --namespace default cranky-
whippet-mariadb -o jsonpath="{.data.mariadb-root-password}" | base64 --
decode)
To connect to your database:
1. Run a pod that you can use as a client:
kubectl run cranky-whippet-mariadb-client --rm --tty -i --env
MARIADB_ROOT_PASSWORD=$MARIADB_ROOT_PASSWORD --image bitnami/mariadb --
command -- bash
2. Connect using the mysql cli, then provide your password:
mysql -h cranky-whippet-mariadb -p$MARIADB_ROOT_PASSWORD

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[548]

Checking installation status
Helm doesn't wait for the installation to complete because it may take a while. The helm
status command displays the latest information on a release in the same format as the
output of the initial helm install command. In the output of the install command,
you can see that the PersistentVolumeClaim had a PENDING status. Let's check it out
now:

> helm status cranky-whippet | grep Persist -A 3
==> v1/PersistentVolumeClaim
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
cranky-whippet-mariadbBoundpvc-9cb7e176-2a07-11e8-9bd6-080027c943848Gi
RWO standard 5m

Hooray! It is bound now, and there is a volume attached with 8 GB capacity.

Let's try to connect and verify that mariadb is indeed accessible. Let's modify the suggested
commands a little bit from the notes to connect. Instead of running bash and then running
mysql, we can directly run the mysql command on the container:

> kubectl run cranky-whippet-mariadb-client --rm --tty -i --image
bitnami/mariadb --command -- mysql -h cranky-whippet-mariadb

If you don't see a command prompt, try pressing Enter.

MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
+--------------------+
3 rows in set (0.00 sec)

Customizing a chart
Very often, as a user, you want to customize or configure the charts you install. Helm fully
supports customization through config files. To learn about possible customizations, you
can use the helm inspect command again, but this time, focus on the values. Here is a
partial output:

> helm inspect values stable/mariadb
Bitnami MariaDB image version
ref: https://hub.docker.com/r/bitnami/mariadb/tags/

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[549]

##
Default: none
image: bitnami/mariadb:10.1.30-r1
Specify an imagePullPolicy (Required)
It's recommended to change this to 'Always' if the image tag is 'latest'
ref: http://kubernetes.io/docs/user-guide/images/#updating-images
imagePullPolicy: IfNotPresent
Use password authentication
usePassword: true
Specify password for root user
Defaults to a random 10-character alphanumeric string if not set and
usePassword is true
ref:
https://github.com/bitnami/bitnami-docker-mariadb/blob/master/README.md#set
ting-the-root-password-on-first-run
##
mariadbRootPassword:
Create a database user
Password defaults to a random 10-character alphanumeric string if not
set and usePassword is true
ref:
https://github.com/bitnami/bitnami-docker-mariadb/blob/master/README.md#cre
ating-a-database-user-on-first-run
##
mariadbUser:
mariadbPassword:
Create a database
ref:
https://github.com/bitnami/bitnami-docker-mariadb/blob/master/README.md#cre
ating-a-database-on-first-run
##
mariadbDatabase:

For example, if you want to set a root password and create a database when installing
mariadb, you can create the following YAML file and save it as mariadb-config.yaml:

mariadbRootPassword: supersecret
mariadbDatabase: awesome_stuff

Then, run helm and pass it the yaml file:

> helm install -f config.yaml stable/mariadb

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[550]

You can also set individual values on the command line with --set. If both --f and --set
try to set the same values, then --set takes precedence. For example, in this case, the root
password will be evenbettersecret:

helm install -f config.yaml --set mariadbRootPassword=evenbettersecret
stable/mariadb

You can specify multiple values using comma-separated lists: --set a=1,b=2.

Additional installation options
The helm install command can install from several sources:

A chart repository (as we've seen)
A local chart archive (helm install foo-0.1.1.tgz)
An unpacked chart directory (helm install path/to/foo)
A full URL (helm install https://example.com/charts/foo-1.2.3.tgz)

Upgrading and rolling back a release
You may want to upgrade a package you installed to the latest and greatest version. Helm
provides the upgrade command, which operates intelligently and only updates things that
have changed. For example, let's check the current values of our mariadb installation:

> helm get values cranky-whippet
mariadbDatabase: awesome_stuff
mariadbRootPassword: evenbettersecret

Now, let's run, upgrade, and change the name of the database:

> helm upgrade cranky-whippet --set mariadbDatabase=awesome_sauce
stable/mariadb
$ helm get values cranky-whippet
mariadbDatabase: awesome_sauce

Note that we've lost our root password. All the existing values are replaced when you
upgrade. OK, let's roll back. The helm history command shows us all the available
revisions we can roll back to:

> helm history cranky-whippet
REVISION STATUS CHART DESCRIPTION
1 SUPERSEDED mariadb-2.1.3 Install complete
2 SUPERSEDED mariadb-2.1.3 Upgrade complete

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[551]

3 SUPERSEDED mariadb-2.1.3 Upgrade complete
4 DEPLOYED mariadb-2.1.3 Upgrade complete

Let's roll back to revision 3:

> helm rollback cranky-whippet 3
Rollback was a success! Happy Helming!
> helm history cranky-whippet
REVISION STATUS CHART DESCRIPTION
1 SUPERSEDED mariadb-2.1.3 Install complete
2 SUPERSEDED mariadb-2.1.3 Upgrade complete
3 SUPERSEDED mariadb-2.1.3 Upgrade complete
4 SUPERSEDED mariadb-2.1.3 Upgrade complete
5 DEPLOYED mariadb-2.1.3 Rollback to 3

Let's verify that our changes were rolled back:

> helm get values cranky-whippet
mariadbDatabase: awesome_stuff
mariadbRootPassword: evenbettersecret

Deleting a release
You can, of course, delete a release too using the helm delete command.

First, let's examine the list of releases. We have only cranky-whippet:

> helm list
NAME REVISION STATUS CHART NAMESPACE
cranky-whippet 5 DEPLOYED mariadb-2.1.3 default

Now, let's delete it:

> helm delete cranky-whippet
release "cranky-whippet" deleted

So, no more releases:

> helm list

However, Helm keeps track of deleted releases too. You can see them using the --all flag:

> helm list --all
NAME REVISION STATUS CHART NAMESPACE
cranky-whippet 5 DELETED mariadb-2.1.3 default

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[552]

To delete a release completely, add the --purge flag:

> helm delete --purge cranky-whippet

Working with repositories
Helm stores charts in repositories that are simple HTTP servers. Any standard HTTP server
can host a Helm repository. In the cloud, the Helm team verified that AWS S3 and Google
Cloud storage can both serve as Helm repositories in web-enabled mode. Helm also comes
bundled with a local package server for developer testing. It runs on the client machine, so
it's inappropriate for sharing. In a small team, you may run the Helm package server on a
shared machine on the local network accessible to all team members.

To use the local package server, type helm serve. Do it in a separate terminal window
because it is blocking. Helm will start serving charts from ~/.helm/repository/local
by default. You can put your charts there and generate an index file with helm index.

The generated index.yaml file lists all the charts.

Note that Helm doesn't provide tools to upload charts to remote repositories because that
would require the remote server to understand Helm, to know where to put the chart, and
how to update the index.yaml file.

On the client's side, the helm repo command lets you list, add, remove, index, and
update:

> helm repo

This command consists of multiple subcommands to interact with chart repositories.

It can be used to add, remove, list, and index chart repositories:

Example usage:

$ helm repo add [NAME] [REPO_URL]

Usage:

helm repo [command]

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[553]

Available commands:

 add add a chart repository
 index generate an index file for a given a directory
 list list chart repositories
 remove remove a chart repository
 update update information on available charts

Managing charts with Helm
Helm provides several commands to manage charts. It can create a new chart for you:

> helm create cool-chart
Creating cool-chart

Helm will create the following files and directories under cool-chart:

-rw-r--r-- 1 gigi.sayfan gigi.sayfan 333B Mar 17 13:36 .helmignore
-rw-r--r-- 1 gigi.sayfan gigi.sayfan 88B Mar 17 13:36 Chart.yaml
drwxr-xr-x 2 gigi.sayfan gigi.sayfan 68B Mar 17 13:36 charts
drwxr-xr-x 7 gigi.sayfan gigi.sayfan 238B Mar 17 13:36 templates
-rw-r--r-- 1 gigi.sayfan gigi.sayfan 1.1K Mar 17 13:36 values.yaml

Once you have edited your chart, you can package it into a tar gzipped archive:

> helm package cool-chart

Helm will create an archive named cool-chart-0.1.0.tgz and store both in the local
directory and in the local repository.

You can also use helm to help you find issues with your chart's formatting or information:

> helm lint cool-chart
==> Linting cool-chart
[INFO] Chart.yaml: icon is recommended
1 chart(s) linted, no failures

Taking advantage of starter packs
The helm create command takes an optional --starter flag that lets you specify a
starter chart.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[554]

Starters are regular charts located in $HELM_HOME/starters. As a chart developer, you
may author charts that are specifically designed to be used as starters. Such charts should
be designed with the following considerations in mind:

The Chart.yaml will be overwritten by the generator
Users will expect to modify such a chart's contents, so documentation should
indicate how users can do so

At the moment, there is no way to install charts to $HELM_HOME/starters, the user must
copy it manually. Make sure to mention that in your chart's documentation if you develop
starter pack charts.

Creating your own charts
A chart is a collection of files that describe a related set of Kubernetes resources. A single
chart might be used to deploy something simple, such as a memcached pod, or something
complex, such as a full web app stack with HTTP servers, databases, and caches.

Charts are created as files laid out in a particular directory tree. Then, they can be packaged
into versioned archives to be deployed. The key file is Chart.yaml.

The Chart.yaml file
The Chart.yaml file is the main file of a Helm chart. It requires a name and version fields:

name: The name of the chart (same as the directory name)
version: A SemVer 2 version

It may also contain various optional fields:

kubeVersion: A SemVer range of compatible Kubernetes versions
description: A single-sentence description of this project
keywords: A list of keywords about this project
home: The URL of this project's home page
sources: A list of URLs to source code for this project

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[555]

maintainers:
name: The maintainer's name (required for each maintainer)
email: The maintainer's email (optional)
url: A URL for the maintainer (optional)

engine: The name of the template engine (defaults to gotpl)
icon: A URL to an SVG or PNG image to be used as an icon
appVersion: The version of the app that this contains
deprecated: Is this chart deprecated? (Boolean)
tillerVersion: The version of Tiller that this chart requires

Versioning charts
The version field inside the Chart.yaml is used by the CLI and the Tiller server. The helm
package command will use the version that it finds in the Chart.yaml when constructing
the package name. The version number in the chart package name must match the version
number in the Chart.yaml.

The appVersion field
The appVersion field is not related to the version field. It is not used by Helm and serves
as metadata or documentation for users that want to understand what they are deploying.
Correctness is not enforced by Helm.

Deprecating charts
From time to time, you may want to deprecate a chart. You can mark a chart as deprecated
by setting the deprecated field in Chart.yaml to true. It's enough to deprecate the latest
version of a chart. You can later reuse the chart name and publish a newer version that is
not deprecated. The workflow used by the kubernetes/charts project is:

Update the chart's Chart.yaml to mark the chart as deprecated and bump the
version
Release a new version of the chart
Remove the chart from the source repository

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[556]

Chart metadata files
Charts may contain various metadata files, such as README.md, LICENSE, and NOTES.txt,
that describe the installation, configuration, usage, and license of a chart. The README.md
file should be formatted as markdown. It should provide the following information:

A description of the application or service the chart provides
Any prerequisites or requirements to run the chart
Descriptions of options in values.yaml and default values
Any other information that may be relevant to the installation or configuration of
the chart

The templates/NOTES.txt file will be displayed after installation or when viewing the
release status. You should keep the NOTES concise and point to the README.md for detailed
explanations. It's common to put usage notes and next steps such as information about
connecting to a database or accessing a web UI.

Managing chart dependencies
In Helm, a chart may depend on any number of other charts. These dependencies are
expressed explicitly by listing them in a requirements.yaml file or by copying the
dependency charts into the charts/ sub-directory during installation.

A dependency can be either a chart archive (foo-1.2.3.tgz) or an unpacked chart
directory. However, its name cannot start with _ or .. Such files are ignored by the chart
loader.

Managing dependencies with requirements.yaml
Instead of manually placing charts in the charts/ subdirectory, it is better to declare
dependencies using a requirements.yaml file inside your chart.

A requirements.yaml file is a simple file for listing the chart dependencies:

dependencies:
 - name: foo
 version: 1.2.3
 repository: http://example.com/charts
 - name: bar
 version: 4.5.6
 repository: http://another.example.com/charts

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[557]

The name field is the name of the chart you want.

The version field is the version of the chart you want.

The repository field is the full URL to the chart repository. Note that you must also
use helm repo to add that repository locally.

Once you have a dependencies file, you can run the helm dep up and it will use your
dependency file to download all of the specified charts into the charts subdirectory for you:

$ helm dep up foo-chart
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "local" chart repository
...Successfully got an update from the "stable" chart repository
...Successfully got an update from the "example" chart repository
...Successfully got an update from the "another" chart repository
Update Complete. Happy Helming!
Saving 2 charts
Downloading Foo from repo http://example.com/charts
Downloading Bar from repo http://another.example.com/charts

Helm stores dependency charts retrieves during helm dependency update as chart archives
in the charts/ directory. For the preceding example, these files will be present in the
charts directory:

charts/
 foo-1.2.3.tgz
 bar-4.5.6.tgz

Managing charts and their dependencies with requirements.yaml is a best practice, both
for explicitly documenting dependencies, sharing across the team, and support automated
pipelines.

Using special fields in requirements.yaml
Each entry in the requirements.yaml file may also contain the optional fields tags and
condition.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[558]

These fields can be used to dynamically control the loading of charts (by default, all charts
are loaded). When tags or condition are present, Helm will evaluate them and determine if
the target chart should be loaded:

condition: The condition field holds one or more YAML paths (delimited by
commas). If this path exists in the top parent's values and resolves to a Boolean
value, the chart will be enabled or disabled based on that Boolean value. Only the
first valid path found in the list is evaluated, and if no paths exist, then the
condition has no effect.
tags: The tags field is a YAML list of labels to associate with this chart. In the
top parent's values, all charts with tags can be enabled or disabled by specifying
the tag and a Boolean value.
Here is an example of requirements.yaml and values.yaml that make good
use of conditions and tags to enable and disable the installation of dependencies.
The requirements.yaml file defines two conditions for installing its
dependencies based on the value of the global enabled field and the specific
sub-charts enabled field:

 # parentchart/requirements.yaml
 dependencies:
 - name: subchart1
 repository: http://localhost:10191
 version: 0.1.0
 condition: subchart1.enabled, global.subchart1.enabled
 tags:
 - front-end
 - subchart1
 - name: subchart2
 repository: http://localhost:10191
 version: 0.1.0
 condition: subchart2.enabled,global.subchart2.enabled
 tags:
 - back-end
 - subchart2

The values.yaml file assigns values to some of the condition variables. The subchart2
tag doesn't get a value, so it is considered enabled:

parentchart/values.yaml
 subchart1:
 enabled: true
 tags:
 front-end: false
 back-end: true

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[559]

You can set tag and conditions values from the command line too when installing a chart,
and they'll take precedence over the values.yaml file:

helm install --set subchart2.enabled=false

The resolution of tags and conditions is as follows:

Conditions (when set in values) always override tags. The first condition path
that exists wins, and subsequent ones for that chart are ignored.
If any of the chart's tags are true then enable the chart.
Tags and condition values must be set in the top parent's values.
The tags: key-in values must be a top-level key. Globals and nested tags are not
supported.

Using templates and values
Any important application will require configuration and adaptation to the specific use
case. Helm charts are templates that use the Go template language to populate
placeholders. Helm supports additional functions from the Sprig library and a few other
specialized functions. The template files are stored in the templates/ subdirectory of the
chart. Helm will use the template engine to render all files in this directory and apply the
provided value files.

Writing template files
Template files are just text files that follow the Go template language rules. They can
generate Kubernetes configuration files. Here is the service template file from the
artifactory chart:

kind: Service
apiVersion: v1
kind: Service
metadata:
 name: {{ template "artifactory.fullname" . }}
 labels:
 app: {{ template "artifactory.name" . }}
 chart: {{ .Chart.Name }}-{{ .Chart.Version }}
 component: "{{ .Values.artifactory.name }}"
 heritage: {{ .Release.Service }}
 release: {{ .Release.Name }}
{{- if .Values.artifactory.service.annotations }}
 annotations:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[560]

{{ toYaml .Values.artifactory.service.annotations | indent 4 }}
{{- end }}
spec:
 type: {{ .Values.artifactory.service.type }}
 ports:
 - port: {{ .Values.artifactory.externalPort }}
 targetPort: {{ .Values.artifactory.internalPort }}
 protocol: TCP
 name: {{ .Release.Name }}
 selector:
 app: {{ template "artifactory.name" . }}
 component: "{{ .Values.artifactory.name }}"
 release: {{ .Release.Name }}

Using pipelines and functions
Helm allows rich and sophisticated syntax in the template files through the built-in Go
template functions, sprig functions, and pipelines. Here is an example template that takes
advantage of these capabilities. It uses the repeat, quote, and upper functions for the food
and drink keys, and it uses pipelines to chain multiple functions together:

apiVersion: v1
kind: ConfigMap
metadata:
 name: {{ .Release.Name }}-configmap
data:
 greeting: "Hello World"
 drink: {{ .Values.favorite.drink | repeat 3 | quote }}
 food: {{ .Values.favorite.food | upper | quote }}

See if the values file has the following section:

favorite:
 drink: coffee
 food: pizza

If it does, then the resulting chart would be as follows:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cool-app-configmap
data:
 greeting: "Hello World"
 drink: "coffeecoffeecoffee"
 food: "PIZZA"

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[561]

Embedding predefined values
Helm provides some predefined values which you can use in your templates. In the
previous artifactory chart template, Release.Name, Release.Service, Chart.Name, and
Chart.Version are examples of Helm predefined values. Other predefined values are as
follows:

Release.Time

Release.Namespace

Release.IsUpgrade

Release.IsInstall

Release.Revision

Chart

Files

Capabilities

The chart is the content of Chart.yaml. The files and capabilities predefined values are
map-like objects that allow access through various functions. Note that unknown fields in
Chart.yaml are ignored by the template engine and cannot be used to pass arbitrary
structured data to templates.

Feeding values from a file
Here is part of the artifactory default values file. The values from this file are used to
populate multiple templates. For example, the artifactory name and internalPort
values are used in the preceding service template:

artifactory:
 name: artifactory
 replicaCount: 1
 image:
 # repository: "docker.bintray.io/jfrog/artifactory-oss"
 repository: "docker.bintray.io/jfrog/artifactory-pro"
 version: 5.9.1
 pullPolicy: IfNotPresent
 service:
 name: artifactory
 type: ClusterIP
 annotations: {}
 externalPort: 8081
 internalPort: 8081
 persistence:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[562]

 mountPath: "/var/opt/jfrog/artifactory"
 enabled: true
 accessMode: ReadWriteOnce
 size: 20Gi

You can provide your own YAML values files to override the defaults during the install
command:

> helm install --values=custom-values.yaml gitlab-ce

Scope, dependencies, and values
Value files can declare values for the top-level chart, as well as for any of the charts that are
included in that chart's charts/ directory. For example, the artifactory-ce
values.yaml file contains some default values for its dependency chart postgresql:

Configuration values for the postgresql dependency
ref:
https://github.com/kubernetes/charts/blob/master/stable/postgressql/README.
md
##
postgresql:
postgresUser: "artifactory"
postgresPassword: "artifactory"
postgresDatabase: "artifactory"
persistence:
 enabled: true

The top-level chart has access to values of its dependent charts, but not vice versa. There is
also a global value that is accessible to all charts. For example, you could add something
like this:

global:
 app: cool-app

When a global is present, it will be replicated to each dependent chart's values as follows:

global:
 app: cool-app
 postgresql:
 global:
 app: cool-app
 ...

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Handling the Kubernetes Package Manager Chapter 18

[563]

Summary
In this chapter, we took a look at Helm, the Kubernetes package manager. Helm gives
Kubernetes the ability to manage complicated software composed of many Kubernetes
resources with interdependencies. It serves the same purpose as an OS package manager. It
organizes packages and lets you search charts, install and upgrade charts, and share charts
with collaborators. You can develop your charts and store them in repositories.

At this point, you should understand the important role that Helm serves in the Kubernetes
ecosystem and community. You should be able to use it productively and even develop and
share your own charts.

In the next chapter, we will look ahead to the future of Kubernetes and examine its
roadmap and a few personal items from my wish list.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

19
The Future of Kubernetes

In this chapter, we look at the future of Kubernetes from multiple angles. We'll start with
the roadmap and forthcoming product features, including diving into the design process of
Kubernetes. Then, we'll cover the momentum of Kubernetes since its inception, including
dimensions such as community, ecosystem, and mindshare. A big part of Kubernetes'
future will be determined by how it fares against its competition. Education will play a
major role too, as container orchestration is new, fast-moving, and not a well-understood
domain. Then, we'll discuss a capability at the top of my wish list—dynamic plugins.

The covered topics are as follows:

The road ahead
Competition
The Kubernetes momentum
Education and training
Modularization and out-of-tree plugins
Service meshes and serverless frameworks

The road ahead
Kubernetes is a large open source project. Let's look at some of the planned features and
upcoming releases, as well the various special interest groups that focus on specific areas.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of Kubernetes Chapter 19

[565]

Kubernetes releases and milestones
Kubernetes has fairly regular releases. The current release, as of April 2018, is 1.10. The next
release, 1.11, is currently 33% complete. Here are a couple of issues from the 1.11 releases to
give you a taste of the work being done:

Update to Go 1.10.1 and default etcd server to 3.2
Support out-of-tree authentication providers
Migrate kublet flags to kublet.config.k8s.io
Add support of Azure Standard Load Balancer and public IP
Add kubectl api-resources command
Minor releases are released every 3 months, and patch releases plug holes and
issues until the next minor release. Here are the release dates of the three most
recent releases:

10.0 released on March 26, 2018, and 1.9.6 released on March, 21
2018
9.0 released on Dec 15, 2017, and 1.8.5 released on December, 7
2017
8.0 and 1.7.7 released on Sep 28, 2017 (my birthday!)

Another good way to look at what is coming is to look at the work being done on the alpha
and beta releases. You can check the change log
here: https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG.md.

Here are some of the major themes of the 1.10 release:

Node
Network
Storage
Windows
OpenStack
API machinery
Auth
Azure
CLI

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG.md

The Future of Kubernetes Chapter 19

[566]

Kubernetes special interest and working groups
As a large open source community project, most of the development work on Kubernetes
takes place in multiple working groups. The complete list is here:

https://github.com/kubernetes/community/blob/master/sig-list.md

The planning for future releases is done mostly within these SIGs and working groups
because Kubernetes is too big to handle it all centrally. SIGs meet regularly and discuss.

Competition
The first edition of Mastering Kubernetes was published in May 2017. The competitive
landscape of Kubernetes was very different then. Here is what I wrote back then:

"Kubernetes operates in one of the hottest technology areas of container orchestration. The
future of Kubernetes must be considered as part of the whole market. As you will see, some
of the possible competitors may also be partners that promote both their own offering as
well as Kubernetes (or at least, Kubernetes can run on their platform)."

In less than a year, the situation has changed drastically. In short, Kubernetes won. All the
cloud providers offer managed Kubernetes services. IBM provides support for Kubernetes
on bare metal clusters. Companies that develop software and add-ons for container
orchestration focus on Kubernetes as opposed to creating products that support multiple
orchestration solutions.

The value of bundling
Container orchestration platforms such as Kubernetes compete directly and indirectly with
larger and smaller scopes. For example, Kubernetes may be available on a particular Cloud
platform, such as AWS, but may not be the default/go-to solution. On the other hand,
Kubernetes is at the core of GKE on the Google Cloud Platform. Developers who choose a
higher level of abstraction, such as a cloud platform or even PaaS, will more often than not
go with the default solution. But some developers or organizations worry about vendor
lock-in or need to run on multiple cloud platforms or a hybrid public/private. Kubernetes
has a strong advantage here. Bundling was a potential serious threat to Kubernetes
adoption, but the momentum was too great, and now every major player offers Kubernetes
directly on their platform or solution.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/community/blob/master/sig-list.md

The Future of Kubernetes Chapter 19

[567]

Docker Swarm
Docker is currently the de facto standard for containers (although CoreOS rkt is gathering
steam), and often people say Docker when they mean containers. Docker wants to get a
piece of the orchestration cake and released the Docker Swarm product. The main benefit of
Docker Swarm is that it comes as part of the Docker installation and uses standard Docker
APIs. So, the learning curve is not as steep, and it's easier to get started. However, Docker
Swarm is way behind Kubernetes in terms of capabilities and maturity. In addition,
Docker's reputation is not great when it comes to high-quality engineering and security.
Organizations and developers that are concerned with the stability of their systems may
shy away from Docker Swarm. Docker is aware of the problem and is taking steps to
address it. It released an Enterprise offering and also reworked Docker's internals as a set of
independent components through the Moby project. But, recently Docker acknowledged
the prominent place of Kubernetes as the container orchestration platform. Docker now
supports Kubernetes directly side-by-side with Docker swarm. My guess is that Docker
swarm will fizzle out, and it will be used just for very small prototyping.

Mesos/Mesosphere
Mesosphere is the company behind the open source Apache Mesos, and the DC/OS product
is the incumbent that runs containers and big data in the cloud. The technology is mature
and Mesosphere evolves it, but they don't have the resources and momentum that
Kubernetes has. I believe that Mesosphere will do very well because it is a big market, but it
will not threaten Kubernetes as the number one container orchestration solution. In
addition, Mesosphere also recognized that they can't beat Kubernetes and opted to join it.
In DC/OS 1.11, you get Kubernetes-as-a-Service. The DC/OS offering is a highly available,
easy to set up, and secure by default deployment of Kubernetes that was tested on Google,
AWS, and Azure.

Cloud platforms
A large contingent of organizations and developers flock to public cloud platforms to avoid
the headaches of low-level management of their infrastructure. Those companies' primary
motivation is often to move fast and focus on their core competency. As such, they'll often
go with the default deployment solution offered by their Cloud provider because the
integration is the most seamless and streamlined.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of Kubernetes Chapter 19

[568]

AWS
Kubernetes runs very well on AWS through the official Kubernetes Kops project:
https://github.com/kubernetes/kops.

Some of Kops, features are as follows:

Automate the provisioning of Kubernetes clusters in AWS
Deploy highly-available Kubernetes masters
The ability to generate Terraform configurations

However, Kops is not an official AWS solution. If you manage your infrastructure through
the AWS console and APIs, the path of least resistance used to be AWS Elastic Container
Service (ECS)—a built-in container orchestration solution that is not based on Kubernetes.

Now, AWS is fully committed to Kubernetes and is in the process of releasing Elastic
Kubernetes Service (EKS), which is a fully managed and highly available upstream
Kubernetes cluster, with no modifications, but with tight integration through add-ons and
plugins to AWS services.

I speculated in the first edition that AWS would stick to its guns and stand behind ECS, but
I was wrong. Even the mighty AWS deferred to Kubernetes; ECS will stick around because
a lot of organizations invested in it and might not want to migrate to Kubernetes. However,
over time, I predict that ECS will be relegated to legacy service status, maintained to
support organizations that don't have enough incentive to move to Kubernetes.

Azure
Azure provides the Azure container service, and they don't pick favorites. You can choose
if you want to use Kubernetes, Docker Swarm, or DC/OS. This is interesting because,
initially, Azure was based on Mesosphere DC/OS and they added Kubernetes and Docker
Swarm as orchestration options later. As Kubernetes pulls forward in capabilities, maturity,
and mindshare, I believe it will become the number one orchestration option on Azure too.

In the second half of 2017, Azure officially released Azure Kubernetes Service (AKS) and
Microsoft got fully behind Kubernetes as the container orchestration solution. It is very
active in the Kubernetes community, acquired Deis (the Helm developers), and contributes
a lot of tools, code fixes, and integrations. The Windows support for Kubernetes keeps
improving as well as integration with Azure.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/kops

The Future of Kubernetes Chapter 19

[569]

Alibaba Cloud
Alibaba Cloud is the Chinese AWS in more ways than one. Their APIs are intentionally
very much like AWS APIs. Alibaba Cloud used to provide a container management service
based on Docker Swarm. I've deployed some applications at a small scale on Alibaba
Cloud, and they seem to be able to keep up with the changes in the field and quickly follow
the big players. Over the past year, Alibaba Cloud (Aliyun) joined the ranks of Kubernetes
supporters. There are several resources for deploying and managing Kubernetes clusters on
the Alibaba cloud including an implementation on GitHub of the cloud provider interface.

The Kubernetes momentum
Kubernetes has tremendous momentum behind it; the community is super strong. Users
flock to Kubernetes as its mindshare increases, the technical press acknowledges its number
one leadership position, the ecosystem is sizzling, and a lot of big corporations and
companies (in addition to Google) actively support it and many more evaluate it and run it
in production.

Community
The Kubernetes community is one of its greatest assets. Kubernetes recently became the
first project to graduate from the Cloud Native Computing Foundation (CNCF).

GitHub
Kubernetes is developed on GitHub and is one of the top projects on GitHub. It is in the top
0.01 percent in stars and number one in terms of activity. Note that over the past year,
Kubernetes became more modular, and many pieces of the puzzle are now developed
separately.

More professionals list Kubernetes in their LinkedIn profile than any other comparable
offering by a wide margin.

A year ago, Kubernetes had ~1,100 contributors and ~34,000 commits. Now, the number
exploded to more than 1,600 contributors and more than 63,000 commits.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of Kubernetes Chapter 19

[570]

Conferences and meetups
Another indication of Kubernetes momentum is the number of conferences, meetups, and
attendees. KubeCon is growing quickly and new Kubernetes meetups open up every day.

Mindshare
Kubernetes is getting a lot of attention and deployments. Large and small companies that
get into the containers/DevOps/microservices arena adopt Kubernetes and the trend is
clear. One interesting metric is the number of stack overflow questions over time. The
community steps in to answer questions and foster collaboration. The growth dwarfs its
rivals, and the trend is very clear:

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of Kubernetes Chapter 19

[571]

Ecosystem
The Kubernetes ecosystem is very impressive, from cloud providers to PaaS platforms and
startups that offer a streamlined environment.

Public cloud providers
All the major cloud providers support Kubernetes directly. Obviously, Google is leading
the pack with GKE, which is the native container engine on the Google Cloud Platform. The
Kops project, mentioned earlier, is a well-supported, maintained, and documented solution
on AWS, and EKS is just around the corner. Azure offers AKS. The IBM container cloud
service is powered by Kubernetes. Oracle tracks Kubernetes closely and offers Oracle
container services for Kubernetes based on upstream Kubernetes and Kubeadm.

OpenShift
OpenShift is RedHat's container application product that's built on top of the open source
OpenShift origin, which is based on Kubernetes. OpenShift adds application life cycle
management and DevOps tooling on top of Kubernetes and contributes a lot to Kubernetes
(such as autoscaling). This type of interaction is very healthy and encouraging. RedHat
recently acquired CoreOS and the merging of CoreOS Tectonic with OpenShift may
provide great synergy.

OpenStack
OpenStack is the open source private cloud platform, and it has recently decided to
standardize on Kubernetes as the underlying orchestration platform. This is a big deal
because large enterprises that want to deploy across a mix of public and private Clouds will
have a much better integration with Kubernetes cloud federation on one end and
OpenStack as a private cloud platform using Kubernetes under the hood.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of Kubernetes Chapter 19

[572]

The latest OpenStack survey from November 2017 shows that Kubernetes is by far the most
popular solution for container orchestration:

Other players
There are a number of other companies that use Kubernetes as a foundation, such as
Rancher and Apprenda. A large number of startups develop add-ons and services that run
inside the Kubernetes cluster. The future is bright.

Education and training
Education will be critical. As the early adopters of Kubernetes make way to the majority, it
is very important to have the right resources for organizations and developers to pick up
Kubernetes and be productive quickly. There are already some pretty good resources, and,
in the future, I predict that the number and quality will just increase. Of course, the book
you're reading right now is part of this drive.

The official Kubernetes documentation is getting better and better. The online tutorials are
great for getting started:

The CNCF has a free introductory Kubernetes course (as well as more advanced
paid courses), at https://www.cncf.io/certification/training/.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.cncf.io/certification/training/

The Future of Kubernetes Chapter 19

[573]

Google has created a few Udacity courses on Kubernetes. Check them out
at https:/ /www. udacity. com/ course/ scalable- microservices- with-
kubernetes- -ud615.
Another excellent resource is KataCoda, which provides a completely free
Kubernetes playground, where you can get a private cluster within seconds, in
addition to multiple hands-on tutorials on advanced topics,
at https://www.katacoda.com/courses/kubernetes.

There are also a lot of paid training options for Kubernetes. As the popularity of Kubernetes
grows even further, more and more options will be available.

Modularization and out-of-tree plugins
Kubernetes has made great strides toward modularization since the first edition.
Kubernetes was always a paragon of flexibility and extensibility. However, originally you
had to build and link your code into the Kubernetes API server or the Kublet (with the
exception of CNI plugins). You also had to get your code vetted and integrated with the
main Kubernetes codebase to make it available to other developers. At the time, I was very
excited about Go 1.8 dynamic plugins and how they could be used to extend Kubernetes in
a much more agile way. The Kubernetes developers and community took a different path
and decided to make Kubernetes proper a general-purpose and versatile engine where
almost every aspect can be customized or extended from the outside through standard
interfaces. You've seen many examples in Chapter 17, Customizing Kubernetes - APIs and
Plugins. The out-of-tree approach means that you integrate a plugin or extension with
Kubernetes that lives outside of the Kubernetes code tree on GitHub. There are several
mechanisms in use:

CNI plugins use standard input and out through a separate executables
CSI plugins use pods gRPC
Kubectl plugins use YAML descriptors and binary commands
API aggregators use custom API servers
Webhooks use remote HTTP interfaces
Various other plugins can be deployed as pods
External credential providers

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.katacoda.com/courses/kubernetes

The Future of Kubernetes Chapter 19

[574]

Service meshes and serverless frameworks
Kubernetes helps with a lot of the heavy lifting involved in container orchestration and cost
reduction due to efficient scheduling. But, there are two trends that gain momentum in
cloud native world. Service meshes fit Kubernetes like a glove, and running a serverless
framework plays to Kubernetes strengths as well.

Service meshes
A service mesh operates at a higher level than container orchestration. A service mesh
manages services. The service mesh provides various capabilities that are very necessary
when running systems with hundreds and thousands different services such as:

Dynamic routing
Latency-aware east-west load balancing (inside the cluster)
Auto retries of idempotent requests
Operational metrics

In the past, applications had to address those responsibilities on top of their core
functionality. Now, service meshes take the load off and provide an infrastructure layer so
that applications can focus on their primary goals.

The most well-known service mesh is Linkered by Buoyant. Linkered supports Kubernetes
as well as other orchestrators. But, given the momentum of Kubernetes.

Buoyant decided to develop a new Kubernetes-only service mesh named Conduit (in Rust).
This is another testament to the traction of Kubernetes where all the innovation takes place.
Another Kubernetes service mesh is Istio. Istio was founded by teams from Google, IBM,
and Lyft. It's built on top of Lyft's Envoy and it's moving fast.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of Kubernetes Chapter 19

[575]

Serverless frameworks
Serverless computing is an exciting new trend in the cloud native landscape. AWS Lambda
functions are the most popular, but all cloud platforms provide them now. The idea is that
you don't have to provision hardware, instances, and storage. Instead you just write your
code, package it (often in a container), and invoke it whenever you want. The cloud
platform takes care of allocating resources to run your code at invocation time and
deallocate the resources when the code finished running. This can save a lot of costs (you
only pay for the resources you use) and eliminate the need to provision and manage
infrastructure. However, the serverless capabilities provided by cloud providers often come
with strings attached (runtime and memory limits), or they are not flexible enough (can't
control the hardware your code will run on). Kubernetes can also provide serverless
capabilities once your cluster is provisioned. There are multiple frameworks at different
levels of maturity available, as follows:

Fast-netes
Nuclio.io
Apache OpenWhisk
Platform9 Fission
Kubless.io

This is great news for people running Kubernetes on bare metal or who need more
flexibility than cloud platforms provide.

Summary
In this chapter, we looked at the future of Kubernetes, and it looks great! The technical
foundation, the community, the broad support, and the momentum are all very impressive.
Kubernetes is still young, but the pace of innovation and stabilization is very encouraging.
The modularization and extensibility principles of Kubernetes let it become the universal
foundation for modern cloud native applications.

At this point, you should have a clear idea of where Kubernetes is right now and where it's
going from here. You should have confidence that Kubernetes is not just here to stay but
that it will be the leading container orchestration platform for many years to come and will
integrate with larger offerings and environments.

Now, it's up to you to use what you have learned and build amazing things with
Kubernetes!

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Kubernetes for Developers
Joseph Heck

ISBN: 978-1-78883-475-9

Build your software into containers.
Deploy and debug software running in containers within Kubernetes.
Declare and add configuration through Kubernetes.
Define how your application fits together, using internal and external services.
Add feedback to your code to help Kubernetes manage your services
Monitor and measure your services through integration testing and in
production deployments.

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers

Other Books You May Enjoy

[577]

DevOps with Kubernetes
Hideto Saito, Hui-Chuan Chloe Lee, Cheng-Yang Wu

ISBN: 978-1-78839-664-6

Learn fundamental and advanced DevOps skills and tools
Get a comprehensive understanding for container
Learn how to move your application to container world
Learn how to manipulate your application by Kubernetes
Learn how to work with Kubernetes in popular public cloud
Improve time to market with Kubernetes and Continuous Delivery
Learn how to monitor, log, and troubleshoot your application with Kubernetes

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/virtualization-and-cloud/devops-kubernetes

Other Books You May Enjoy

[578]

Kubernetes Cookbook - Second Edition
Hideto Saito, Hui-Chuan Chloe Lee, Ke-Jou Carol Hsu

ISBN: 978-1-78883-760-6

Build your own container cluster
Deploy and manage highly scalable, containerized applications with Kubernetes
Build high-availability Kubernetes clusters
Build a continuous delivery pipeline for your application
Track metrics and logs for every container running in your cluster
Streamline the way you deploy and manage your applications with large-scale
container orchestration

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook-second-edition

Other Books You May Enjoy

[579]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
access control webhooks
 admission control webhook, using 534
 authentication webhook, using 531, 532
 authorization webhook, using 533, 534
 custom metrics, providing for horizontal pod

autoscaling 535
 employing 530
adapter pattern 76
admission control webhook
 configuring, on fly 535
 using 534
advanced services
 about 146, 147
 cross-node proxy 152
 custom addressing 164
 custom load balancing 150, 152
 custom ports 153, 154
 external services 148
 Ingress 155, 156
 internal services 148, 149
 migrations 162, 163, 164
 multicluster 163, 164
 multiple ports 154
Alibaba Cloud
 about 338, 569
 URL 338
Amazon Elastic Container Service for Kubernetes

(EKS) 336
Amazon Web Services (AWS)
 about 315, 335, 568
 Amazon Elastic Container Service for Kubernetes

(EKS) 336
 Fargate 337
 features 336
 reference 20

ambassador pattern 76
annotation 71
ansible directory
 about 328
 host file 328
 playbook.yml file 329, 330
 vars.yml file 329
API builder project
 reference 523
API call
 admission controllers 381
 authentication plugin 381
 authorization plugin 381
 node communication, securing 380
 securing 380
API server
 about 81
app container (appc) 88
application layer 96
application scheduling
 about 133
 example 133, 135, 136, 137
architecture, Kubernetes system 98
architecture
 about 75
 distributed systems design patterns 75
Attribute-Based Access Control (ABAC) 381
authentication webhook
 using 531, 532
authorization webhook
 using 533, 534
Auto Scaling groups (ASGs) 48
autoscaling
 rolling updates, performing 426, 427
Availability Zones (AZ) 107
AWS Elastic Block Store (EBS) 214
Azure Container Service (ACS)

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[581]

 about 56
 reference 16
Azure Kubernetes Service (AKS)
 about 568
 benefits 337
Azure
 about 337, 568
 reference 337

B
bare-metal cluster
 considerations 339
 cost, managing 281
 creating, from scratch 338
 creation process 339
 use cases 338
Bootkube 340
Border Gateway Protocol (BGP) 144
bridge plugin
 reference 489
 reviewing 489
built-in monitoring
 about 227, 228, 229
 dashboards, customizing 231, 232, 233, 234,

235

 Heapster 229, 230
bundling 566

C
cAdvisor 258, 259
 about 228
 reference 228
Calico 473
Canal 144, 470
capacity 106
Cassandra cluster
 creating, with StatefulSet 409
 Docker image, using 400
 executing, in Kubernetes 398
 reference 398
Cassandra
 about 399
 and Kubernetes, hooking up 406
 configuration 406
 custom seed provider 407

 distributing, with DaemonSet 417
 distributing, with replication controller 413
 headless service, creating 408
cattle
 versus pets 67
central logging
 adding 273
 Elasticsearch 275
 Fluentd 274
 Kibana 275
 planning 274
Certificate Authority (CA) 381
change log
 reference 565
Chart.yaml file, fields
 appVersion 555
 deprecated 555
 description 554
 engine 555
 home 554
 icon 555
 keywords 554
 kubeVersion 554
 maintainers 555
 name 554
 sources 554
 tillerVersion 555
 version 554
Chart.yaml file
 about 554
 appVersion field 555
 charts, deprecating 555
 charts, versioning 555
charts
 managing, with Helm 553
 searching, with Helm 544, 546
 starter packs, advantage 554
chocolatey package manager
 URL 542
CI/CD pipeline
 about 91
 designing, for Kubernetes 92
clair 378
client IP addresses
 preserving 480

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[582]

 specifying 480
cloud controller manager 81, 82
Cloud Native Computing Foundation (CNCF) 64
 about 302
 reference 303
cloud platforms 567
cloud service provider (CSP)
 about 15, 287, 342
 Amazon Web Services 15
 Google Cloud Platform 16
 Microsoft Azure 16
cloud volumes
 about 208
 AWS Elastic Block Store (EBS) 214
 GCE Persistent Disks 208, 210, 211, 212, 213,

214

cloud.go file
 URL 334
cloud
 Alibaba Cloud 338
 Amazon Web Services (AWS) 335
 Azure 337
 cloud-provider interface 334
 clusters, creating 334
 cost, managing 281
 Google Cloud Platform (GCP) 335
cluster add on
 reference 166
cluster capacity
 cost, trading off 438
 elastic cloud resources, benefits 439
 Hyper.sh, considering 441
 managing 437
 multiple node configurations, using 439
 node types, selecting 437
 response time, trading off 438
 selecting 437
 storage solutions, selecting 438
cluster control plane 98
cluster nodes 101, 102
cluster state 99, 101
cluster, GCE provider
 modes 53
cluster, setup process
 about 56

 cluster, joining 62
 Kubernetes components, installing 58
 master, setting up 59
 networking 61
 nodes, joining 61
clusters
 about 69
 creating, in cloud 334
command line 37
Common Vulnerabilities and Exploits (CVEs) 378
competitive landscape, Kubernetes
 about 566
 Alibaba Cloud 569
 AWS 568
 Azure 568
 bundling 566
 cloud platforms 567
 Docker Swarm 567
 Mesos/Mesosphere 567
components
 about 80
 master components 80
compute resource quota 429
ConfigMap
 consuming, as environment variable 394
 creating 394
ConfigMaps 354
Container Network Interface (CNI) 138, 293
Container Networking Interface (CNI)
 about 463
 CNI plugin 464, 465
 container runtime 464
 third-party plugins 463
container networking
 about 139
 balanced design 145
 Canal 144
 comparisons 143
 Docker approach 139
 Flannel 144
 Kube-router 144
 Kubernetes approach 141, 142
 options 142, 143
 Project Calico 144
 reference 143

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[583]

 Weave 143
Container Runtime Interface (CRI) 84, 85, 86, 95,

291, 293, 294
container security
 basics 375
 containers, keeping contained 376
 orchestration security 376
 resource exhaustion 376
Container Storage Interface (CSI)
 about 73, 536
 benefits 537
Container-optimized OS
 reference 241
containers, locating
 about 457
 endpoints 458
 ingress 460
 loosely coupled connectivity, with data stores

459

 loosely coupled connectivity, with queues 459
 self-registration 458
 services 458
containers
 about 9, 15, 66
 benefits 66
 cattle, versus pets 67
 cgroups 10
 in cloud 67
 namespaces 11
 orchestration 66
 overview 8
 union filesystems 13
continuous deployment (CD) 90
Continuous Deployment
 advantages 17
 resource utilization 18
 risks 18
continuous integration (CI) 90
Continuous Integration
 advantages 17
 resource utilization 18
 risks 18
Contiv
 about 467
 capabilities 467, 468

Contrib 228
control groups (cgroups)
 about 9, 10
 Blkio cgroup 10
 CPU cgroup 10
 CPUset cgroup 11
 devices cgroup 11
 Freezer cgroup 11
 memory cgroup 10
 Net_cls/net_prio cgroup 11
controllers
 Endpoints 104
 Node 104
 Replication 104
core constructs
 about 107
 container's afterlife 111
 labels 110, 111
 pods 108
 replica sets 114
 replication controllers 114
 services 111, 113
CoreDNS
 about 167
 reference 167
CoreOS
 about 304, 306
 etcd 308
 Kubernetes 308, 310
 reference 305
 rkt 307
CoreUpdate 310
Cri-O 89
CRI-O
 about 291
 reference 291, 296
 using 294, 295, 296, 297, 298, 299, 300, 301
cross-node proxy 152
Csysdig command-line UI 248, 249
custom addressing 164
custom charts
 Chart.yaml file 554
 creating 554
 dependencies, managing 556
 metadata files 556

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[584]

 templates, using 559
 values, using 559
custom CNI plugin
 bridge plugin, reviewing 489
 loopback plugin 486, 487
 skeleton, building 488, 489
 writing 486
custom load balancing 150, 152
custom metrics
 about 422
 reference 423, 535
 using 423
custom ports 153, 154
custom resource
 definitions, developing 519
 finalizing 521
 integrating 520
 structure 518
 validating 522
custom scheduler plugin
 about 525
 algorithm provider, registering 526
 configuring 526
 deploying 528
 design 525
 executing, in cluster 529
 packaging 527
 pods, assigning 529
 pods, verifying 530
 reference 524
 writing 524
custom storage
 about 536
 CSI, benefits 537
 FlexVolume 537

D
DaemonSet pods 202
DaemonSet
 about 276
 Cassandra, distributing 417
 using, for redundant persistent storage 396
dashboard
 central logging, adding 273
 top-level view 266

 used, for performance analysis 265, 266
denial-of-service (DoS) 10, 376
dependency, charts
 managing 556
 managing, with requirements.yaml 556, 557
 special fields, using in requirements.yaml 557,

559

distributed data-intensive apps 392
distributed hash table (DHT) algorithm 399
distributed systems design patterns
 about 75
 adapter pattern 76
 ambassador pattern 76
 multinode patterns 77
 sidecar pattern 76
distributed version control systems (DVCS) 13
DNS 83
DNS records
 external data stores, accessing 393
 versus shared environment variables 393
Docker 87
Docker approach, for container networking
 Docker default networks 139
 Docker user-defined networks 140
Docker default networks
 Bridge network 139
 Host Based 140
Docker image
 reference 400
 run.sh script, exploring 401, 402, 403
 using 400
Docker networking
 versus Kubernetes networking 456, 457
Docker security, features
 reference 377
Docker Swarm 567
Docker user-defined networks
 Macvlan 140
 Swarm 140
Domain Name System (DNS) 107, 166, 167
dynamic volume
 provisioning 217, 218

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[585]

E
EC2 instances
 reference 57
elastic cloud resources
 benefits 439
 cloud quotas, managing 440
 instances, autoscaling 440
 regions, managing 441
Elastic Container Service (ECS) 315, 335, 568
Elastic Kubernetes Service (EKS) 568
Elastic Network Interfaces (ENIs) 315
Elasticsearch 237
 about 275
 URL 275
environment variables
 ConfigMap, creating 394
 external data stores, accessing 393
etcd3 444
etcd
 about 81, 100, 308
 reference 308
 URL 100
external access 455, 456
external load balancer
 about 477, 478
 configuring 478
 configuring, via configuration file 479
 configuring, via Kubectl 479
 potential 481
external services 148

F
Fargate 337
federated horizontal pod autoscalers
 about 357, 358
 creating 358
 reference 357
 using 359
federated resources
 about 359
 events 360
 jobs 360
Federation API
 reference 358

federation control plane
 initializing 349, 350
federation
 about 342
 building blocks 343, 344, 346
 clusters 348, 349
 clusters, adding 351
 contexts 348
 federated configurations 354, 355, 356
 federated resources 351, 352, 353
 federated services 347
 key components 346
 multi-cluster service discovery 343
 need for 342, 343
 other federated resources 359
 resource synchronization 343
 setting up 347
Flannel 471, 472, 473
 about 144
 reference 144
FlexVolume
 advantage 537
FluentD 235, 236
Fluentd 274
fluentd-elasticsearch add-on
 URL 274
futures, Kubernetes
 about 564
 education 572
 milestones 565
 modularization 573
 online resources 572
 out-of-tree plugins 573
 releases 565
 serverless frameworks 574
 service meshes 574
 special interest groups 566
 training 572
 working groups 566

G
GCE monitoring
 signing up 238
 with Stackdriver 238
GCE Persistent Disks

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[586]

 about 208, 210, 211, 212, 213, 214
 reference 208
GCE provider
 CLI setup 45
 cluster state storage 47
 cluster, creating 47, 52
 cluster, creating with alternative method 55
 cluster, resetting 54
 cluster, setup process 56
 deployment automation, investigating 54
 IAM setup 45
 working with 44
general availability (GA) 78
Google Cloud Logging 235, 236
Google Cloud Platform (GCP)
 about 316, 335
 account, configuring 22
 reference 451
Google Compute Engine (GCE)
 reference 20
Google Kubernetes Engine (GKE) 335
 about 316
 reference 16
governance layer 97
Grafana 36, 229
Grafana visualization 264

H
hardware failure
 about 277, 278
 bad configuration 280
 cost, versus performance 281
 limits 278, 280
 quotas 278, 280
 shares 278, 280
health checks
 about 125, 126, 128, 129, 130
 life cycle hooks 131
 TCP checks 130
Heapster
 about 228
 cAdvisor 258, 259
 exploring 229, 230
 installing 259, 260
 Kubernetes, monitoring 258

 reference 228
Helm
 about 539
 architecture 540
 charts, managing 553
 charts, searching 544, 546
 components 540
 Helm client 541
 Helm client, installing 542
 installing 541
 motivation 540
 packages, installing 546, 547
 releases, URL 542
 repositories 552
 Tiller server 541
 Tiller server, installing 542
 using 541
High Availability (HA) Proxy 483
Horizontal Pod Autoscalers (HPAs) 357
horizontal pod autoscaling
 about 419, 420
 custom metrics 422
 custom metrics, providing 535
 horizontal pod autoscaler, declaring 420, 422
 with Kubectl 423, 425, 426
hosted platforms
 about 315
 Amazon Web Services (AWS) 315
 Google Cloud Platform 316
 Microsoft Azure 315
httpie
 URL 509
Hue components
 about 176
 authorizer 176
 external service 177
 generic actuator 177
 generic sensor 177
 identity 176
 user graph 176
 user learner 177
 user profile 176
Hue microservices
 about 178
 data stores 178

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[587]

 plugins 178
 queue-based interactions 179
 stateless microservices 179
Hue platform
 advancing science 203
 alive containers, ensuring with liveness probes

199

 building, with Kubernetes 180
 designing 174
 education 204
 evolving 203
 Hue, utilizing in enterprises 203
 Kubectl, using 180, 181
 long-running microservices, deploying in pods

183

 managing, with Kubernetes 199
 scope, defining 175, 176
 workflows, planning 179
hybrid clusters
 cost, managing 281
Hyper container
 about 90, 441
 Stackube 90
Hyper.sh 441

I
image repositories
 about 377
 continuous vulnerability scanning 378
 image, signing 378
 image, verification 379
InfluxDB 228
 about 260
 Grafana visualization 264
 storage schema 261
Ingress
 about 155, 156, 482
 Fanout 156
 HAProxy 483
 HAProxy, executing inside Kubernetes cluster

484

 HAProxy, used for custom load balancer provider
484

 Keepalived VirtualIP (VIP) 485
 Name-based hosting 156

 NodePort, utilizing 484
 reference 156, 483
 Single Service Ingress 156
 types 156, 157, 159, 160, 161, 162
 using 190, 191
Init Containers
 employing, for orderly pod bring-up 201
 sharing, with DaemonSet pods 202
inter-pod communication (pod to pod) 454
interface layer 97
internal services 148, 149
 and external services, separating 187
 deploying 187
 hue-reminders service, creating 189
 service, exposing externally 190
intra-pod communication (container to container)

454

J
Java Management Extensions (JMX) 405
jobs
 completed jobs, cleaning up 196
 cron jobs, scheduling 196, 198
 executing, in parallel 195
 launching 194, 195
jq command-line JSON processor
 URL 509

K
Keepalived VirtualIP (VIP)
 about 485
 reference 485
Kernel-based Virtual Machine (KVM) 308
Kibana 275
Kibana Dockerfile template
 URL 275
Kube controller manager 81
kube-prometheus
 Prometheus, installing 282, 283
Kube-router
 about 144
 reference 144
kube-scheduler 83
kubeadm
 multinode cluster, creating 326

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[588]

 reference 57
Kubectl
 about 84
 resource configuration files 181
 URL 318
 used, for horizontal pod autoscaling 423, 425,

426

 using 180, 181
Kubemark tool
 about 451
 cluster, comparing to real-world cluster 451
 cluster, setting up 451
Kubenet
 about 460, 462
 MTU, setting 463
 requisites 462
Kubernetes API
 about 77, 505
 accessing, via Python client 511
 custom resource definitions, developing 519
 custom resource, structure 518
 custom resources, integrating 520
 exploring 506
 exploring, with Postman 508
 extending 517, 518
 OpenAPI 506
 output, filtering with httpie and jq 509
 pod, creating 510, 511
 proxy, setting up 506
 reference 252
 resource categories 78
 server aggregation 522, 523
 service catalog, utilizing 523, 524
Kubernetes application
 creating 114, 116, 117, 118, 119, 121
 labels, using 121, 122, 124
 replica sets 124
Kubernetes cluster security
 about 379
 additional considerations 388
 API call, securing 380
 pod security context 383
 pod security policies 383
 RBAC 382
Kubernetes cluster

 about 20
 command line 37
 configuration options 504
 DIY clusters 502
 examples, tuning 496
 executing, on GCE 21, 28
 Grafana 36
 node maintenance 503
 planning 493
 scaling 502
 scaling, on AKS 502
 scaling, on GKE 502
 securing 495
 selecting 493
 services, executing on master 38
 services, executing on minions 41
 tearing down 44
 UI 32, 35
 upgrading 497
Kubernetes operations (Kops)
 about 335
 features 568
 reference 335, 568
Kubernetes plugins
 custom scheduler plugin, writing 524
 writing 524
Kubernetes system
 about 94
 application layer 96
 architecture 98
 cluster nodes 101, 102
 cluster state 99, 101
 ecosystem 97
 governance layer 97
 interface layer 97
 Master 98, 103, 104
 nodes 104, 106
 Nucleus 94, 96
kubernetes-anywhere
 about 337
 URL 337
Kubernetes
 about 65
 and Cassandra, hooking up 406
 annotation 71

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[589]

 architecture 69, 75
 capabilities 65
 CI/CD pipeline, designing 92
 cluster 69
 competitive landscape 566
 components 80
 concepts 68
 features 65
 futures 564
 Hue platform, managing 199
 label 71
 label selector 72
 master 70
 momentum 569
 monitoring, with Heapster 258
 name 74
 namespace 75
 node 70
 pod 70
 public cloud providers 571
 reference 308
 replica set 72
 replication controller 72
 runtimes 84
 secret 74
 service 73
 special interest groups, URL 566
 StatefulSet 74
 volume 73
 with CoreOS 308, 309, 310

L
label 71
label selector 72
labels
 about 110, 111
 using 121, 122, 124
LevelDB 228
Linkered 574
Linux Foundation
 about 289
 reference 289
Linux networking 460
load balancing
 about 477

 client IP addresses, preserving 480
 external load balancer 477, 478
 Ingress 482
 load balancer IP addresses, searching 479
 options 477
 service load balancer 481, 482
long-running microservices
 deploying, in pods 183

M
macOS
 single-node cluster, creating 319
Macvlan 140
Master 98, 103, 104
master 70
master components
 about 80
 API server 81
 cloud controller manager 81, 82
 DNS 83
 etcd 81
 Kube controller manager 81
 kube-scheduler 83
 Kubelet 84
 node components 83
 proxy 83
maximum transmission unit (MTU) 461
Mesos/Mesosphere 567
metadata resources
 references 80
microservices
 about 19
 future challenges 19
Microsoft Azure 315
migrations 163, 164
Minikube
 single-node cluster, creating 318
 URL 318
minions 70
momentum, Kubernetes
 about 569
 community 569
 conferences 570
 ecosystem 571
 GitHub 569

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[590]

 meetups 570
 mindshare 570
monitoring operations
 GCE monitoring 238
 maturing 237
 system monitoring, with Sysdig 240
 with Prometheus 250
monitoring
 operations 226
multi-cloud infrastructure
 about 360
 cluster, deleting 371, 372, 373
 implementing 361, 362, 363, 364, 365, 366,

367, 368, 369
multicluster 163, 164
multinode cluster
 ansible directory 328
 creating 330
 creating, with kubeadm 326
 expectations, setting 326
 master, initializing 330, 332
 pod network, setting up 332
 preparing, of vagrant VMs 327
 prerequisites 326
 required software, installing 327
 worker nodes, adding 333
multinode patterns 77
multiple ports 154
multitenancy
 about 167, 168
 limits 169, 170, 172

N
name 74
namespace
 about 75
 used, for limiting access 192, 193
namespaces 11
Network Access Control Lists (NACLs) 142
Network Address Translation (NAT) 141
Network File Share (NFS) 215
network plugins
 about 460
 bridges 461
 CIDRs 461

 Container Networking Interface (CNI) 463
 IP addresses 460
 Kubenet 462
 Linux networking 460
 maximum transmission unit (MTU) 461
 netmasks 461
 network namespaces 460
 pod networking 462
 ports 460
 routing 461
 subnets 461
 Virtual Ethernet (veth) devices 461
network policies
 and CNI plugins 475
 configuring 475
 design 475
 implementing 476
 using 475
networking model
 about 454
 containers, discovery 457
 containers, lookup 457
 external access 455, 456
 inter-pod communication (pod to pod) 454
 intra-pod communication (container to container)

454

 network plugins 460
 pod-to-service communication 455
 versus Docker networking 456
networking solutions
 about 467
 bare metal clusters, bridging on 467
 Calico 473
 Canal 470
 Contiv 467, 468
 Flannel 471, 472, 473
 Nuage networks VCS 470
 Open vSwitch 468
 Romana 473, 474
 Weave net 474
networking
 container networking 143
node 70
node components 83
node controller 107

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[591]

node problem detector
 about 276
 source code, URL 276
node problems
 DaemonSet 276
 detecting 275
 node problem detector 276
 problem daemons 276
NodePort
 utilizing 484
nodes 105
non-cluster components
 dependencies, managing with readiness probes

200

 Hue platform, managing with Kubernetes 199
 inside-the-cluster-network components 198
 mixing 198
 outside-the-cluster-network components 198
none network 140
Nuage networks VCS 470
nucleus 94, 96

O
object count quota 430, 431
OCI Charter
 about 289, 290
 specification 289
Open Container Initiative (OCI) 87
 about 287, 290
 Container Runtime Interface (CRI) 291, 293,

294

 container runtimes 301, 302
 principles 291
 purpose 290
 reference 290
open containers
 reference 304
Open Service Broker API
 URL 523
Open Virtualization Network (OVN)
 about 468
 reference 468
Open vSwitch
 about 468
 features 469

OpenAPI 506
Openshift Origin (OO)
 about 167
 reference 167
operators 282
orchestration 19
overlay networks
 reference 140

P
PaaS clusters
 upgrading 497, 499, 501
packages, Helm
 chart, customizing 548, 549
 helm install command 550
 installation status, checking 548
 installing 546, 547
 release, deleting 551
 release, rolling back 550, 551
 release, upgrading 550, 551
PagerDuty 247
pause container
 reference 142
performance optimization
 about 442
 API objects, serializing with protocol buffers 444
 etcd3 444
 other options 445
 pod life cycle event generator 443
 reads, caching in API server 443
Persistent Disk (PD) 499
persistent storage
 about 206
 cloud volumes 208
 dynamic volume, provisioning 217, 218
 PersistentVolumes 215, 216, 217
 Storage classes 215, 216, 217
 storage options 215
 temporary disks 207, 208
Persistent Volume Claim (PVC)
 applying 396
pets
 properties 74
 versus cattle 67
physical machines 66

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[592]

platform as a service (PaaS) 65
Platform as a service (PaaS) 315, 497
Pod Lifecycle Event Generator (PLEG) 443
pod security context 383
pod security policies
 about 383
 enabling 383, 385
pod-to-service communication 455
pods
 about 70, 108
 creating 183, 184, 185
 decorating, with labels 185
 deployment, updating 186, 187
 example 108, 109, 110
 long-running microservices, deploying 183
 long-running processes, deploying with

deployments 185, 186
PodSecurityPolicy
 about 385
 creating 386, 387
Postman
 Kubernetes API, exploring 508
 URL 508
problem daemons 276
Project Calico
 about 144
 reference 144
Prometheus
 about 250
 cluster, monitoring 283, 284, 285
 features 250, 251
 installation options 251, 252
 installing 253, 254, 255
 installing, with kube-prometheus 282, 283
 Operator, creating 252, 253
 operators 282
 Prometheus Operator 282
 reference 250, 251
 URL 282
 using 281
proxy 83
public cloud providers
 about 571
 Apprenda 572
 OpenShift 571

 OpenStack 571
 Rancher 572
Python client
 CoreV1API group, dissecting 512
 Kubectl, executing with Python subprocess 516
 Kubectl, invoking programmatically 515
 Kubernetes API, accessing 511
 objects, creating 514
 objects, listing 513
 objects, watching 515

Q
Quay.io
 reference 378
quotas
 creating 432, 433, 434, 435
 limit ranges, used for default compute quotas

436, 437
 limits 432
 namespace-specific context, using 432
 requests 432
 resource quotas, enabling 428
 resources, handling 427, 428
 scopes 431
 working with 432

R
RBAC (Role-Based Access Control) 381
ReadWriteOnce (RWO) 222
Red Hat Enterprise Linux Atomic Host
 about 305
 reference 305
redundant in-memory state
 using 396
Remote Procedure Call (RPC) 495
replica set 72
replica sets 114, 124
replication controller
 about 72
 Cassandra, distributing 413
 configuration file 413, 415
 pods, assigning to nodes 416
replication controllers (RCs) 114
repositories, Helm 552
requirements.yaml

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[593]

 chart dependencies, managing 556, 557
 special fields, using 558, 559
resource categories
 about 78
 cluster 80
 config 79
 discovery 79
 load balancing 79
 metadata 80
 storage 79
 workloads API 78
resource quotas
 compute resource quota 429
 enabling 428
 object count quota 430, 431
 storage resource quota 429
 types 428
resource
 usage 173
resources
 handling, with limits and quotas 427, 428
rkt 307
 about 88
 app container (appc) 88
 Cri-O 89
 Rktnetes 89
 usage 89
Rktnetes 89
robust system
 designing 277
Role-Based Access Control (RBAC) 336
rolling updates
 performing, with autoscaling 426, 427
Romana 473, 474
Route 53 308
runc
 reference 304
runtimes
 about 84
 Container Runtime Interface (CRI) 85, 86
 Docker 87
 Hyper container 90
 rkt 88

S
scalability, measuring
 about 445
 API responsiveness, measuring 446
 end-to-end pod startup time, measuring 449
 Service Level Objectives (SLOs) 446
scalability
 Kubemark tool, using 451
 testing 450
scheduler 103
secrets
 about 74
sensitive application data
 securing 388
serverless frameworks 574, 575
service catalog
 utilizing 523, 524
service discovery 165
Service Level Objectives (SLOs) 446
service load balancer 481, 482
service mesh
 about 574
 capabilities 574
Service Name Indication (SNI) 156
service
 about 73
 exposing, externally 190
 Ingress, using 190, 191
services 111, 113
shared environment variables
 versus DNS records 393
sidecar pattern 76
single point of failure (SPOF) 416
single-node cluster
 checking out 322, 323
 creating 320, 321
 creating, on macOS 319
 creating, on Windows 318
 creating, with Minikube 318
 examining, with dashboard 324, 326
 pods, executing 324
 prerequisites 318
 troubleshooting 321
SNS (Simple Notification Service) 247

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

[594]

Software Delivery Life Cycle (SDLC) 9
Software-Defined Networking (SDN) 139, 470
Special Interest Groups (SIGs) 303
Stackdriver
 about 238
 alerts 238, 240
 GCE monitoring, signing up for 238
Stackube 90
standard container
 specification 303, 304
standards
 importance 288
 OCI Charter 289, 290
state management
 distributed data-intensive apps 392
 in Kubernetes 392
 outside of Kubernetes 392, 393
stateful application
 versus stateless application 391
StatefulSet
 about 74
 Cassandra cluster, creating 409
 components 397
 configuration file, exploring 409, 410
 using 397
 utilizing 396
StatefulSets
 about 218, 219
 stateful example 219, 220, 221, 222, 223, 224,

225

storage resource quota 429
storage schema, InfluxDB
 about 261
 CPU metrics 261
 filesystem metrics 262
 memory metrics 262
 network metrics 263
 uptime 263, 264
storage volumes
 reference 215
StorageClass 216
Swagger 2.0 506
Swarm 140
sysctls
 reference 496

Sysdig Capture 247
Sysdig Cloud
 about 240, 241
 detailed views 241
 Metrics 244
 reference 240
 topology views 242, 243, 244
Sysdig
 alerting 245, 247
 command line 247, 248
 Csysdig command-line UI 248, 249
 for system monitoring 240
 reference 240, 247
 Sysdig Cloud 240, 241

T
target CPU (TCUP) 422
Technical Oversight Board (TOB) 290
Tectonic
 about 310
 dashboard 311, 312, 313, 314
 reference 310
template files, charts
 functions, using 560
 pipelines, using 560
 writing 559
templates, charts
 template files, writing 559
 using 559
temporary disks 207, 208
Tiller server
 installing 542
 installing, in-cluster 542
 installing, locally 543
 installing, with alternative storage backend 543
time to live (TTL) 445
top-level view, dashboard
 about 266
 cluster 266, 268, 269
 discovery 272
 load balancing 272
 Workloads 270, 272
Træfic
 about 485
 features 485

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

U
Ubuntu LXD
 about 306
 reference 306
Ubuntu Snappy
 about 305
 reference 305
union filesystems 13
unique ID (UID) 71

V
values, charts
 declaring 562
 dependency 562
 feeding, from file 561
 predefined values, embedding 561
 scope 562
 using 559
virtual Ethernet (veth) devices 461
Virtual Extensible LAN (VXLAN) 143
virtual IP (VIP) 112, 146
virtual machines 66
Virtual Private Cloud (VPC) 50, 309
virtual private cloud infrastructure
 Bootkube 340

 using 340
Virtual Redundancy Router Protocol (VRRP) 485
VirtualBox
 reference 20
 URL 318
Virtualized Cloud Services (VCS) 470
VMware Photon
 about 306
 reference 306
volumes
 about 73
 reference 206

W
Weave net 474
Weave
 about 143
 reference 143
Windows
 single-node cluster, creating 318
workflows, Hue
 automatic workflows 179
 budget-aware workflows 180
 human workflows 180
 planning 179

 EBSCOhost - printed on 2/9/2023 1:48 PM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Kubernetes
	Technical requirements
	A brief overview of containers
	What is a container?
	cgroups
	Namespaces
	Union filesystems

	Why are containers so cool?
	The advantages of Continuous Integration/Continuous Deployment
	Resource utilization

	Microservices and orchestration
	Future challenges

	Our first clusters
	Running Kubernetes on GCE
	Kubernetes UI
	Grafana
	Command line
	Services running on the master
	Services running on the minions
	Tearing down a cluster

	Working with other providers
	CLI setup
	IAM setup
	Cluster state storage
	Creating your cluster
	Other modes

	Resetting the cluster
	Investigating other deployment automation
	Local alternatives
	Starting from scratch
	Cluster setup
	Installing Kubernetes components (kubelet and kubeadm)
	Setting up a master
	Joining nodes
	Networking
	Joining the cluster

	Summary

	Chapter 2: Understanding Kubernetes Architecture
	What is Kubernetes?
	What Kubernetes is not
	Understanding container orchestration
	Physical machines, virtual machines, and containers
	The benefits of containers
	Containers in the cloud
	Cattle versus pets

	Kubernetes concepts
	Cluster
	Node
	Master
	Pod
	Label
	Annotations
	Label selectors
	Replication controllers and replica sets
	Services
	Volume
	StatefulSet
	Secrets
	Names
	Namespaces

	Diving into Kubernetes architecture in-depth
	Distributed systems design patterns
	Sidecar pattern
	Ambassador pattern
	Adapter pattern
	Multinode patterns

	The Kubernetes APIs
	Resource categories
	Workloads API
	Discovery and load balancing
	Config and storage
	Metadata
	Cluster

	Kubernetes components
	Master components
	API server
	Etcd
	Kube controller manager
	Cloud controller manager
	Kube-scheduler
	DNS
	Node components
	Proxy
	Kubelet

	Kubernetes runtimes
	The Container Runtime Interface (CRI)
	Docker
	Rkt
	App container
	Cri-O
	Rktnetes
	Is rkt ready for use in production?

	Hyper containers
	Stackube

	Continuous integration and deployment
	What is a CI/CD pipeline?
	Designing a CI/CD pipeline for Kubernetes

	Summary

	Chapter 3: Building a Foundation with Core Kubernetes Constructs
	Technical requirements
	The Kubernetes system
	Nucleus
	Application layer
	Governance layer
	Interface layer
	Ecosystem

	The architecture
	The Master
	Cluster state
	Cluster nodes
	Master
	Nodes (formerly minions)

	Core constructs
	Pods
	Pod example

	Labels
	The container's afterlife
	Services
	Replication controllers and replica sets

	Our first Kubernetes application
	More on labels
	Replica sets

	Health checks
	TCP checks
	Life cycle hooks or graceful shutdown

	Application scheduling
	Scheduling example

	Summary

	Chapter 4: Working with Networking, Load Balancers, and Ingress
	Technical requirements
	Container networking
	The Docker approach
	Docker default networks
	Docker user-defined networks

	The Kubernetes approach
	Networking options
	Networking comparisons
	Weave
	Flannel
	Project Calico
	Canal
	Kube-router

	Balanced design

	Advanced services
	External services
	Internal services
	Custom load balancing
	Cross-node proxy
	Custom ports
	Multiple ports
	Ingress
	Types of ingress
	Migrations, multicluster, and more
	Custom addressing

	Service discovery
	DNS
	Multitenancy
	Limits

	A note on resource usage
	Summary

	Chapter 5: Using Critical Kubernetes Resources
	Designing the Hue platform
	Defining the scope of Hue
	Hue components
	Hue microservices

	Planning workflows
	Automatic workflows
	Human workflows
	Budget-aware workflows

	Using Kubernetes to build the Hue platform
	Using Kubectl effectively
	Understanding Kubectl resource configuration files
	Deploying long-running microservices in pods
	Creating pods
	Decorating pods with labels
	Deploying long-running processes with deployments
	Updating a deployment

	Separating internal and external services
	Deploying an internal service
	Creating the hue-reminders service
	Exposing a service externally
	Ingress

	Using namespace to limit access
	Launching jobs
	Running jobs in parallel
	Cleaning up completed jobs
	Scheduling cron jobs

	Mixing non-cluster components
	Outside-the-cluster-network components
	Inside-the-cluster-network components
	Managing the Hue platform with Kubernetes
	Using liveness probes to ensure your containers are alive

	Using readiness probes to manage dependencies

	Employing Init Containers for orderly pod bring-up
	Sharing with DaemonSet pods

	Evolving the Hue platform with Kubernetes
	Utilizing Hue in enterprises
	Advancing science with Hue
	Educating the kids of the future with Hue

	Summary

	Chapter 6: Exploring Kubernetes Storage Concepts
	Technical requirements
	Persistent storage
	Temporary disks
	Cloud volumes
	GCE Persistent Disks
	AWS Elastic Block Store

	Other storage options
	PersistentVolumes and Storage Classes
	Dynamic volume provisioning

	StatefulSets
	A stateful example

	Summary

	Chapter 7: Monitoring and Logging
	Technical requirements
	Monitoring operations
	Built-in monitoring
	Exploring Heapster
	Customizing our dashboards

	FluentD and Google Cloud Logging
	FluentD

	Maturing our monitoring operations
	GCE (Stackdriver)
	Signing up for GCE monitoring
	Alerts

	Beyond system monitoring with Sysdig
	Sysdig Cloud
	Detailed views
	Topology views
	Metrics

	Alerting
	The Sysdig command line
	The Csysdig command-line UI

	Prometheus
	Prometheus summary
	Prometheus installation choices
	Tips for creating an Operator
	Installing Prometheus

	Summary

	Chapter 8: Monitoring, Logging, and Troubleshooting
	Monitoring Kubernetes with Heapster
	cAdvisor

	Installing Heapster
	InfluxDB backend
	The storage schema
	CPU
	Filesystem
	Memory
	Network
	Uptime

	Grafana visualization

	Performance analysis with the dashboard
	Top-level view
	Cluster
	Workloads
	Discovery and load balancing

	Adding central logging
	Planning central logging
	Fluentd
	Elasticsearch
	Kibana

	Detecting node problems
	Node problem detector
	DaemonSet
	Problem daemons

	Troubleshooting scenarios
	Designing robust systems
	Hardware failure
	Quotas, shares, and limits
	Bad configuration
	Cost versus performance
	Managing cost on the cloud
	Managing cost on bare metal
	Managing cost on hybrid clusters

	Using Prometheus
	What are operators?
	The Prometheus Operator
	Installing Prometheus with kube-prometheus
	Monitoring your cluster with Prometheus

	Summary

	Chapter 9: Operating Systems, Platforms, and Cloud and Local Providers
	Technical requirements
	The importance of standards
	The OCI Charter

	The OCI
	Container Runtime Interface
	Trying out CRI-O
	More on container runtimes

	CNCF
	Standard container specification
	CoreOS
	rkt
	etcd

	Kubernetes with CoreOS
	Tectonic
	Dashboard highlights

	Hosted platforms
	Amazon Web Services
	Microsoft Azure
	Google Kubernetes Engine

	Summary

	Chapter 10: Creating Kubernetes Clusters
	A quick single-node cluster with Minikube
	Getting ready
	On Windows
	On macOS
	Creating the cluster
	Troubleshooting
	Checking out the cluster
	Doing work
	Examining the cluster with the dashboard

	Creating a multinode cluster using kubeadm
	Setting expectations
	Getting ready
	Preparing a cluster of vagrant VMs
	Installing the required software
	The host file
	The vars.yml file
	The playbook.yml file

	Creating the cluster
	Initializing the master

	Setting up the pod network
	Adding the worker nodes

	Creating clusters in the cloud (GCP, AWS, and Azure)
	The cloud-provider interface
	Google Cloud Platform (GCP)
	Amazon Web Services (AWS)
	Amazon Elastic Container Service for Kubernetes (EKS)
	Fargate

	Azure
	Alibaba Cloud

	Creating a bare-metal cluster from scratch
	Use cases for bare metal
	When should you consider creating a bare-metal cluster?

	The process
	Using virtual private cloud infrastructure
	Bootkube

	Summary

	Chapter 11: Cluster Federation and Multi-Tenancy
	Technical requirements
	Introduction to federation
	Why federation?
	The building blocks of federation
	Key components
	Federated services

	Setting up federation
	Contexts
	New clusters for federation
	Initializing the federation control plane
	Adding clusters to the federation system
	Federated resources
	Federated configurations
	Federated horizontal pod autoscalers
	How to use federated HPAs

	Other federated resources
	Events
	Jobs

	True multi-cloud
	Getting to multi-cloud
	Deleting the cluster

	Summary

	Chapter 12: Cluster Authentication, Authorization, and Container Security
	Basics of container security
	Keeping containers contained
	Resource exhaustion and orchestration security

	Image repositories
	Continuous vulnerability scanning
	Image signing and verification

	Kubernetes cluster security
	Secure API calls
	Secure node communication
	Authorization and authentication plugins
	Admission controllers

	RBAC
	Pod security policies and context
	Enabling PodSecurityPolicies

	Additional considerations

	Securing sensitive application data (secrets)
	Summary

	Chapter 13: Running Stateful Applications with Kubernetes
	Stateful versus stateless applications in Kubernetes
	Understanding the nature of distributed data-intensive apps
	Why manage state in Kubernetes?
	Why manage state outside of Kubernetes?

	Shared environment variables versus DNS records for discovery
	Accessing external data stores via DNS
	Accessing external data stores via environment variables
	Creating a ConfigMap

	Consuming a ConfigMap as an environment variable
	Using a redundant in-memory state
	Using DaemonSet for redundant persistent storage
	Applying persistent volume claims
	Utilizing StatefulSet
	When to use StatefulSet
	The components of StatefulSet

	Running a Cassandra cluster in Kubernetes
	Quick introduction to Cassandra
	The Cassandra Docker image
	Exploring the run.sh script

	Hooking up Kubernetes and Cassandra
	Digging into the Cassandra configuration
	The custom seed provider

	Creating a Cassandra headless service
	Using StatefulSet to create the Cassandra cluster
	Dissecting the stateful set configuration file

	Using a replication controller to distribute Cassandra
	Dissecting the replication controller configuration file
	Assigning pods to nodes

	Using DaemonSet to distribute Cassandra

	Summary

	Chapter 14: Rolling Updates, Scalability, and Quotas
	Horizontal pod autoscaling
	Declaring horizontal pod autoscaler
	Custom metrics
	Using custom metrics

	Autoscaling with kubectl

	Performing rolling updates with autoscaling
	Handling scarce resources with limits and quotas
	Enabling resource quotas
	Resource quota types
	Compute resource quota
	Storage resource quota
	Object count quota

	Quota scopes
	Requests and limits
	Working with quotas
	Using namespace-specific context
	Creating quotas
	Using limit ranges for default compute quotas

	Choosing and managing the cluster capacity
	Choosing your node types
	Choosing your storage solutions
	Trading off cost and response time
	Using effectively multiple node configurations
	Benefiting from elastic cloud resources
	Autoscaling instances
	Mind your cloud quotas
	Manage regions carefully

	Considering Hyper.sh (and AWS Fargate)

	Pushing the envelope with Kubernetes
	Improving the performance and scalability of Kubernetes
	Caching reads in the API server
	The pod life cycle event generator
	Serializing API objects with protocol buffers
	etcd3
	Other optimizations

	Measuring the performance and scalability of Kubernetes
	The Kubernetes SLOs
	Measuring API responsiveness
	Measuring end-to-end pod startup time

	Testing Kubernetes at scale
	Introducing the Kubemark tool
	Setting up a Kubemark cluster
	Comparing a Kubemark cluster to a real-world cluster

	Summary

	Chapter 15: Advanced Kubernetes Networking
	Understanding the Kubernetes networking model
	Intra-pod communication (container to container)
	Inter-pod communication (pod to pod)
	Pod-to-service communication
	External access
	Kubernetes networking versus Docker networking
	Lookup and discovery
	Self-registration
	Services and endpoints
	Loosely coupled connectivity with queues
	Loosely coupled connectivity with data stores
	Kubernetes ingress

	Kubernetes network plugins
	Basic Linux networking
	IP addresses and ports
	Network namespaces
	Subnets, netmasks, and CIDRs
	Virtual Ethernet devices
	Bridges
	Routing
	Maximum transmission unit
	Pod networking
	Kubenet
	Requirements
	Setting the MTU

	Container Networking Interface (CNI)
	Container runtime
	CNI plugin

	Kubernetes networking solutions
	Bridging on bare metal clusters
	Contiv
	Open vSwitch
	Nuage networks VCS
	Canal
	Flannel
	Calico project
	Romana
	Weave net

	Using network policies effectively
	Understanding the Kubernetes network policy design
	Network policies and CNI plugins
	Configuring network policies
	Implementing network policies

	Load balancing options
	External load balancer
	Configuring an external load balancer
	Via configuration file
	Via Kubectl

	Finding the load balancer IP addresses
	Preserving client IP addresses
	Specifying original client IP address preservation

	Understanding potential in even external load balancing

	Service load balancer
	Ingress
	HAProxy
	Utilizing the NodePort
	Custom load balancer provider using HAProxy
	Running HAProxy Inside the Kubernetes cluster
	Keepalived VIP

	Træfic
	Writing your own CNI plugin
	First look at the loopback plugin
	Building on the CNI plugin skeleton
	Reviewing the bridge plugin

	Summary

	Chapter 16: Kubernetes Infrastructure Management
	Technical requirements
	Planning a cluster
	Picking what's right
	Securing the cluster
	Tuning examples

	Upgrading the cluster
	Upgrading PaaS clusters

	Scaling the cluster
	On GKE and AKS
	DIY clusters
	Node maintenance

	Additional configuration options
	Summary

	Chapter 17: Customizing Kubernetes - API and Plugins
	Working with the Kubernetes API
	Understanding OpenAPI
	Setting up a proxy
	Exploring the Kubernetes API directly
	Using Postman to explore the Kubernetes API
	Filtering the output with httpie and jq

	Creating a pod via the Kubernetes API
	Accessing the Kubernetes API via the Python client
	Dissecting the CoreV1API group
	Listing objects
	Creating objects
	Watching objects
	Invoking Kubectl programmatically
	Using Python subprocess to run Kubectl

	Extending the Kubernetes API
	Understanding the structure of a custom resource
	Developing custom resource definitions
	Integrating custom resources
	Finalizing custom resources
	Validating custom resources

	Understanding API server aggregation
	Utilizing the service catalog

	Writing Kubernetes plugins
	Writing a custom scheduler plugin
	Understanding the design of the Kubernetes scheduler
	The scheduler
	Registering an algorithm provider
	Configuring the scheduler

	Packaging the scheduler
	Deploying the custom scheduler
	Running another custom scheduler in the cluster
	Assigning pods to the custom scheduler
	Verifying that the pods were scheduled using the custom scheduler

	Employing access control webhooks
	Using an authentication webhook
	Using an authorization webhook
	Using an admission control webhook
	Configuring webhook admission controller on the fly

	Providing custom metrics for horizontal pod autoscaling
	Extending Kubernetes with custom storage
	Taking advantage of FlexVolume
	Benefitting from CSI

	Summary

	Chapter 18: Handling the Kubernetes Package Manager
	Understanding Helm
	The motivation for Helm
	The Helm architecture
	Helm components
	The Tiller server
	The Helm client

	Using Helm
	Installing Helm
	Installing the Helm client
	Installing the Tiller server
	Installing Tiller in-cluster
	Installing Tiller locally
	Using Alternative Storage Backend

	Finding charts
	Installing packages
	Checking installation status
	Customizing a chart
	Additional installation options
	Upgrading and rolling back a release
	Deleting a release

	Working with repositories
	Managing charts with Helm
	Taking advantage of starter packs

	Creating your own charts
	The Chart.yaml file
	Versioning charts
	The appVersion field
	Deprecating charts

	Chart metadata files
	Managing chart dependencies
	Managing dependencies with requirements.yaml
	Using special fields in requirements.yaml

	Using templates and values
	Writing template files
	Using pipelines and functions

	Embedding predefined values
	Feeding values from a file
	Scope, dependencies, and values

	Summary

	Chapter 19: The Future of Kubernetes
	The road ahead
	Kubernetes releases and milestones
	Kubernetes special interest and working groups

	Competition
	The value of bundling
	Docker Swarm
	Mesos/Mesosphere
	Cloud platforms
	AWS
	Azure
	Alibaba Cloud
	The Kubernetes momentum

	Community
	GitHub
	Conferences and meetups
	Mindshare
	Ecosystem
	Public cloud providers
	OpenShift
	OpenStack
	Other players

	Education and training
	Modularization and out-of-tree plugins
	Service meshes and serverless frameworks
	Service meshes
	Serverless frameworks

	Summary

	Other Books You May Enjoy
	Index

