
C
o
p
y
r
i
g
h
t

2
0
1
9
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 11:39 AM via
AN: 2142586 ; Ivo Balbaert, Adrian Salceanu.; Julia 1.0 Programming Complete Reference Guide : Discover Julia, a High-performance Language for Technical
Computing
Account: ns335141

Julia 1.0 Programming
Complete Reference Guide

Discover Julia, a high-performance language
for technical computing

Ivo Balbaert
Adrian Salceanu

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Julia 1.0 Programming Complete
Reference Guide
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors nor Packt Publishing or its dealers
and distributors will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2019

Production reference: 1170519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83882-224-8

www.packtpub.com

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Ivo Balbaert has been a lecturer in web programming and databases at CVO Antwerpen, a
community college in Belgium. He received a Ph.D. in Applied Physics from the University
of Antwerp in 1986. He worked for 20 years in the software industry as a developer and
consultant in several companies, and for 10 years as a project manager at the University
Hospital of Antwerp. From 2000 onwards, he switched to partly teaching and partly
developing software (at KHM Mechelen, CVO Antwerpen). He also wrote an introductory
book in Dutch about developing in Ruby and Rails, Programmeren met Ruby en Rails, by
Van Duuren Media. In 2012, he authored a book on the Go programming language, The
Way To Go, by IUniverse. He wrote a number of introductory books for new programming
languages, notably Dart, Julia, Rust, and Red, all published by Packt.

Adrian Salceanu has been a professional software developer for over 15 years. For the last
10, he's been leading agile teams in developing real-time, data-intensive web and mobile
products. Adrian is a public speaker and an enthusiastic contributor to the open source
community, focusing on high-performance web development. He's the organizer of the
Barcelona Julia Users group and the creator of Genie, a high-performance, highly
productive Julia web framework. Adrian has a Master's degree in computing and a
postgraduate degree in advanced computer science.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Installing the Julia Platform 7
Installing Julia 7

Windows OS 8
OS X 9
Linux OS 9
Building from source 10
JuliaPro 10

Working with Julia's REPL 11
Startup options and Julia scripts 14
Packages 16

Adding a new package 16
Installing and working with IJulia 17
Installing Juno 20
Installing julia-vscode 20
Installing Sublime-IJulia 20
Other editors and IDEs 21
How Julia works 21
Summary 23

Chapter 2: Variables, Types, and Operations 24
Variables, naming conventions, and comments 25
Types 27
Integers 29
Floating point numbers 29
Elementary mathematical functions and operations 30
Rational and complex numbers 31
Characters 32
Strings 32

Formatting numbers and strings 34
Regular expressions 36
Ranges and arrays 38

Other ways to create arrays 41
Some common functions for arrays 41

Dates and times 44
Scope and constants 45
Summary 48

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Chapter 3: Functions 49
Defining functions 49
Optional and keyword arguments 52
Anonymous functions 54
First-class functions and closures 54
functions 57
Broadcasting 58
Map, filter, and list comprehensions 58
Generic functions and multiple dispatch 60
Summary 63

Chapter 4: Control Flow 64
Conditional evaluation 64
Repeated evaluation 66

for loops 66
while loops 68
The break statement 68
The continue statement 69

Exception handling 70
Scope revisited 73
Tasks 76
Summary 78

Chapter 5: Collection Types 79
Matrices 79
Tuples 85
Dictionaries 87

Keys and values – looping 89
Sets 90
An example project – word frequency 92
Summary 93

Chapter 6: More on Types, Methods, and Modules 94
Type annotations 95

Type conversions and promotions 95
The type hierarchy – subtypes and supertypes 97
Concrete and abstract types 98
User-defined and composite types 99

When are two values or objects equal or identical? 101
A multiple-dispatch example 102

Types and collections – inner constructors 105
Type unions 107
Parametric types and methods 108
Standard modules and paths 110

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Summary 114

Chapter 7: Metaprogramming in Julia 115
Expressions and symbols 115
Evaluation and interpolation 118
Defining macros 119
Built-in macros 123

Testing 123
Debugging 124
Benchmarking 124
Starting a task 124

Reflection capabilities 125
Summary 126

Chapter 8: I/O, Networking, and Parallel Computing 127
Basic input and output 127
Working with files 129

Reading and writing CSV files 131
Using DataFrames 134

Other file formats 139
Working with TCP sockets and servers 139
Interacting with databases 142
Parallel operations and computing 144

Creating processes 144
Using low-level communications 147
Parallel loops and maps 150

Summary 153

Chapter 9: Running External Programs 154
Running shell commands 154

Interpolation 155
Pipelining 156

Calling C and Fortran 157
Calling Python 159
Performance tips 159

Tools to use 161
Summary 162

Chapter 10: The Standard Library and Packages 163
Digging deeper into the standard library 163
Julia's package manager 165

Installing and updating packages 166
Graphics in Julia 167
Using Plots on data 168
Summary 169

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Chapter 11: Creating Our First Julia App 170
Technical requirements 171
Defining variables 171

Constants 173
Why are constants important? 174

Comments 175
Strings 175

Triple-quoted strings 175
Concatenating strings 177
Interpolating strings 178
Manipulating strings 179
Unicode and UTF-8 180

Regular expressions 182
Raw string literals 185
Numbers 185

Integers 186
Overflow behavior 186
Floating-point numbers 187
Rational numbers 188
Numerical operators 188
Vectorized dot operators 189
There's more to it 190

Tuples 191
Named tuples 192

Ranges 192
Arrays 193

Iteration 197
Mutating arrays 198
Comprehensions 201
Generators 202

Exploratory data analysis with Julia 204
The Iris flower dataset 204
Using the RDatasets package 204

Using simple statistics to better understand our data 208
Visualizing the Iris flowers data 212

Loading and saving our data 217
Saving and loading using tabular file formats 219
Working with Feather files 219
Saving and loading with MongoDB 220

Summary 223

Chapter 12: Setting Up the Wiki Game 224
Technical requirements 225
Data harvesting through web scraping 226

How the web works – a crash course 226

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

Making HTTP requests 227
Learning about HTTP methods 227
Understanding HTTPS 227

Understanding HTML documents 228
HTML selectors 229

Learning about the HTML attributes 230
Learning about CSS and JavaScript selectors 231
Understanding the structure of a link 231

Accessing the internet from Julia 232
Making requests with the HTTP package 232

Handling HTTP responses 234
HTTP status codes 234
Learning about HTTP headers 235
The HTTP message body 235

Understanding HTTP responses 236
The status code 236

The headers 236
The message body 237
Learning about pairs 239

Dictionaries 240
Constructing dictionaries 240

Ordered dictionaries 244
Working with dictionaries 244

Using the HTTP response 247
Manipulating the response body 247
Building a DOM representation of the page 248
Parsing HTML with Gumbo 248

Coding defensively 250
The pipe operator 251

Handling errors like a pro 252
The try...catch statements 252
The finally clause 254
Throwing exceptions on errors 255
Rethrowing exceptions 256

Learning about functions 257
The return keyword 258
Returning multiple values 258

Optional arguments 259
Keyword arguments 259

Documenting functions 260
Writing a basic web crawler – take one 262

Setting up our project 262
Writing a Julia program 263
Conditional evaluation of if, elseif, and else statements 265
The ternary operator 266
Short-circuit evaluation 267

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vi]

Beware of operator precedence 268
Carrying on with the crawler's implementation 268
Summary 271

Chapter 13: Building the Wiki Game Web Crawler 272
Technical requirements 273
Six Degrees of Wikipedia, the gameplay 274

Some additional requirements 274
Organizing our code 275

Using modules to tame our code 275
Defining modules 277

Productive REPL sessions with Julia 277
Setting up our modules 279
Referencing modules 281

Setting up the LOAD_PATH 282
Loading modules with using 283
Loading modules with import 285
Loading modules with include 285

Nesting modules 286
Setting up our game's architecture 287

Checking our code 290
Building our Wikipedia crawler - take two 291

Using blocks 293
Implementing the gameplay 295
Finishing touches 299

One more thing 304
Learning about Julia's type system 304

Defining our own types 305
Constructing types 306
Mutable composite types 307
Type hierarchy and inheritance 308
Type unions 309

Using article types 310
Inner constructors 312

Methods 314
Working with relational databases 318

Adding MySQL support 318
Connecting to the database 319

Setting up our Article module 320
Adding the persistence and retrieval methods 321
Putting it all together 323

Summary 329

Chapter 14: Adding a Web UI for the Wiki Game 330
Technical requirements 331
The game plan 331

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vii]

Learning about Julia's web stack 332
Beginning with a simple example – Hello World 333

Developing the game's web UI 338
Defining our routes 339
Preparing the landing page 340

Starting a new game 344
Extracting the difficulty settings from the page URL 344
Starting a new game session 345
Rendering the first Wikipedia article from the chain 346
Setting up in-article navigation 350
Displaying information about the game session 352

Displaying a Wikipedia article page 357
Navigating back up the article chain 359

Showing the solution 359
Handling any other requests 360
Wrapping it up 361
Summary 363

Chapter 15: Implementing Recommender Systems with Julia 364
Technical requirements 365
Understanding recommender systems 366
Classifying recommender systems 367

Learning about non-personalized, stereotyped, and personalized
recommendations 367

Understanding personalized recommendations 370
Explicit and implicit ratings 370

Understanding content-based recommender systems 370
Beginning with association-based recommendations 374
Learning about collaborative filtering 375

Understanding user-item CF 376
Item-item CF 391

Summary 399

Chapter 16: Machine Learning for Recommender Systems 400
Technical requirements 401
Comparing the memory-based versus model-based recommenders 401

Learning about the model-based approach 403
Understanding our data 404

A first look at the data 404
Loading the data 405
Handling missing data 406

Data analysis and preparation 407
Training our data models 418
Scaling down our dataset 419
Training versus testing data 420

Machine learning-based recommendations 421
Making recommendations with Recommendation 421

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[viii]

Setting up the training data 422
Building and training the recommender 424

Matrix Factorization 424
Making recommendations 425

Testing the recommendations 426
Learning about hybrid recommender systems 430
Summary 431

Other Books You May Enjoy 432

Index 435

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
Julia offers the high productivity and ease of use of Python and R with the lightning-fast
speed of C++. There’s never been a better time to learn this language, thanks to its large-
scale adoption across a wide range of domains, including fintech, biotech and artificial
intelligence (AI).

You will begin by learning how to set up a running Julia platform, before exploring its
various built-in types. This Learning Path walks you through two important collection
types: arrays and matrices. You’ll be taken through how type conversions and promotions
work, and in further chapters you'll study how Julia interacts with operating systems and
other languages. You’ll also learn about the use of macros, what makes Julia suitable for
numerical and scientific computing, and how to run external programs.

Once you have grasped the basics, this Learning Path goes on to how to analyze the Iris
dataset using DataFrames. While building a web scraper and a web app, you’ll explore the
use of functions, methods, and multiple dispatches. In the final chapters, you'll delve into
machine learning, where you'll build a book recommender system.

By the end of this Learning Path, you’ll be well versed with Julia and have the skills you
need to leverage its high speed and efficiency for your applications.

This Learning Path includes content from the following Packt products:

Julia 1.0 Programming - Second Edition by Ivo Balbaert
Julia Programming Projects by Adrian Salceanu

Who this book is for
This Learning Path is ideal for you if you are a statistician or data scientist who wants a
crash course in the Julia programming language while building big data applications. Basic
knowledge of mathematics and programming are needed to understand the various
methods that are used or created during the course of this Learning Path.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

What this book covers
Chapter 1, Installing the Julia Platform, explains how to install all the necessary
components for a Julia environment. It teaches you how to work with Julia's console (the
REPL) and discusses some of the more elaborate development editors you can use.

Chapter 2, Variables, Types, and Operations, discusses the elementary built-in types in
Julia and the operations that can be performed on them so that you are prepared to start
writing code with them.

Chapter 3, Functions, teaches you why functions are the basic building blocks of Julia, and
how to effectively use them.

Chapter 4, Control Flow, shows Julia's elegant control constructs, how to perform error
handling, and how to use coroutines (called Tasks in Julia) to structure the execution of
your code.

Chapter 5, Collection Types, explores the different types that group individual values, such
as arrays and matrices, tuples, dictionaries, and sets.

Chapter 6, More on Types, Methods, and Modules, digs deeper into the type concept and
how it is used in multiple dispatch to get C-like performance. Modules, a higher code
organizing concept, are discussed as well.

Chapter 7, Metaprogramming in Julia, touches on deeper layers of Julia, such as
expressions and reflection capabilities, and demonstrates the power of macros.

Chapter 8, I/O, Networking, and Parallel Computing, shows how to work with data in files
and databases by using DataFrames. It also looks at networking capabilities, and how to set
up a parallel computing environment with Julia.

Chapter 9, Running External Programs, looks at how Julia interacts with the command-line
and with other languages and also discusses performance tips.

Chapter 10, The Standard Library and Packages, digs deeper into the standard library, and
demonstrates important packages for the visualization of data.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

Chapter 11, Creating Our First Julia App, will show you how to perform data analysis
against the Iris dataset with Julia. We take a look at RDatasets, a package that provides
access to 700 learning datasets distributed with the R language. We'll load the Iris dataset
and we'll manipulate it using standard data analysis functions. We also look more closely at
the data by employing common visualization techniques using Gadfly. In the process, we
cover strings and regular expressions, numbers, tuples, ranges, and arrays. Finally, we'll see
how to persist and (re)load our data with CSV, Feather, and MongoDB.

Chapter 12, Setting Up the Wiki Game, introduces our first fully featured Julia project, a
Wikipedia web crawler disguised as a popular game. In the first iteration, we will build a
program that gets a random web page from Wikipedia. Then we'll learn about parsing the
HTML response using CSS selectors. We'll use this to introduce key concepts such as
functions, pairs, dictionaries, exceptions, and conditional evaluation.

Chapter 13, Building the Wiki Game Web Crawler, will build upon the foundations set in
the previous chapter, and we'll build a Wikipedia web scraper that implements the
requirements of the wiki game.

Chapter 14, Adding a Web UI for the Wiki Game, will see us finish the Wiki Game by
adding a web UI. We'll build a simple web app that will allow the player to start a new
game, render the Wikipedia articles picked by the game engine, and navigate between
linked Wikipedia articles. The UI will also keep track of and display current game progress
and determine a session as a win or a loss.

Chapter 15, Implementing Recommender Systems with Julia, will have you take on a more
challenging example project and build a few basic recommender systems. We'll set up a
supervised machine learning system powered by Julia and we will develop some simple
movie recommenders.

Chapter 16, Machine Learning for Recommender Systems, will show you how to
implement a more powerful recommender system using the Recommender.jl package. We
will use a sample dataset to train our system and generate book recommendations as we'll
learn about model-based recommenders.

To get the most out of this book
To run the code examples in the book, you will need the Julia 1.0 platform for your
computer, which can be downloaded from http:/ /julialang. org/ downloads/ . To work
more comfortably with Julia scripts, a development environment such as IJulia, Sublime
Text, or Visual Studio Code is advisable. The first chapter contains detailed instructions on
how to set up your Julia environment.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/

Preface

[4]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
TrainingByPackt/Julia- 1- Programming- Complete- Reference- Guide.In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781838822248_ ColorImages. pdf.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822248_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788292740_ColorImages.pdf

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example:
"Add /Applications/Julian.m.app/Contents/Resources/julia/bin/Julia to
make Julia available everywhere on your computer."

A block of code is set as follows:

for arg in ARGS
 println(arg)
end

Any command-line input or output is written as follows:

julia> include("hello.jl")

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Start it up, go to Settings, and then Install Panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Installing the Julia Platform

This chapter guides you through the download and installation process of all the necessary
components of Julia. The topics covered in this chapter are as follows:

Installing Julia
Working with Julia's REPL
Startup options and Julia scripts
Packages
Installing and working with IJulia
Installing Juno
Installing julia-vscode
Installing Sublime-IJulia
Other editors and IDEs
How Julia works

By the end of this chapter, you will have a running Julia platform. Moreover, you will be
able to work with Julia's shell as well as with editors or integrated development
environments with a lot of built-in features to make development more comfortable.

Installing Julia
The Julia platform, in binary (that is, executable) form, can be downloaded from http:/ /
julialang.org/downloads/ . It exists for three major platforms (Windows, Linux, and OS X)
in 32- and 64-bit format, and it is delivered as a package or in an archive version. FreeBSD
64-bit is also supported.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/
http://julialang.org/downloads/

Installing the Julia Platform Chapter 1

[8]

You should use the current official stable release when doing serious professional work
with Julia. At the time of writing, Julia has reached its version 1.0 production release. The
previous link contains detailed and platform-specific instructions for the installation. We
will not repeat these instructions here completely, but we will summarize some important
points.

Windows OS
Keep in mind that your Windows OS must be version 7 or higher. Now, follow the steps
shown here:

Download the julia-n.m.p-win64.exe file into a temporary folder (n.m.p is1.
the version number, such as 0.7.0 or 0.1.0; win32/win64 are the 32- and 64-bit
versions, respectively; a release candidate file looks like julia-1.0.0-rc1-
nnnnnnn-win64 (where nnnnnnn is a checksum number such as 0480f1b)).
Double-click on the file (or right-click and select Run as Administrator if you2.
want Julia installed for all users on the machine). Click OK on the security dialog
message. Then, choose the installation directory (for example, for C:\julia, the
default installation folder is: C:\Users\UserName\AppData\Local\Julia-
n.m.p (where n.m.p is the version number)) and the setup program will extract
the archive into the chosen folder, producing the following directory structure,
and taking some 800 MB of disk space:

The Julia folder structure in Windows

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing the Julia Platform Chapter 1

[9]

A menu shortcut will be created which, when clicked, starts the Julia command-3.
line version or Read Evaluate Print Loop (REPL), as shown in the following
screenshot:

The Julia REPL

On Windows, if you have chosen C:\Julia as your installation directory, this is4.
the C:\Julia\bin\julia.exe file. Add C:\Julia\bin to your PATH variable
if you want the REPL to be available on any command window.
More information on Julia's installation for the Windows OS can be found at5.
https://github.com/JuliaLang/julia/blob/master/README.windows.md.

OS X
Installation for OS X is straightforward, and can be done using the standard software
installation tools for the platform. Add /Applications/Julia-
n.m.app/Contents/Resources/julia/bin/Julia to make Julia available everywhere
on your computer.

Linux OS
Generic Linux binaries for x86 can be downloaded. This will get you a compressed tar.gz
archive that will have a name similar to julia-1.0-linux-x86_64.tar.gz, for example,
in your ~/Downloads directory in Ubuntu. Open up a Terminal window and navigate to
the Downloads directory using cd Downloads. Move the tar.gz file to a directory of your
choice, and then extract the tar.gz file using the tar -zxvf julia-1.0-linux-
x86_64.tar.gz command. A directory with the extracted contents will be generated in the
same parent directory as the compressed archive with a name similar to julia-n.m.p,
where n.m.p is Julia's version number.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/JuliaLang/julia/blob/master/README.windows.md

Installing the Julia Platform Chapter 1

[10]

This is the directory from which Julia will be run; no further installation is needed. To run
it, simply navigate to the julia-n.m.p\bin directory in your Terminal and type:
./julia.

If you want to be at the bleeding edge of development, you can download the nightly
builds instead of the stable releases from
https://julialang.org/downloads/nightlies.html. The nightly builds are generally less
stable, but will contain the most recent features. They are available for Windows, Linux,
and OS X.

The path to the Julia executable is contained in the environment variable, JULIA_BINDIR
(for example, in our installation procedure, this was C:\Julia\bin on Windows).

If you want code to be run whenever you start a Julia session, put it in
/home/.juliarc.jl on Ubuntu, ~/.juliarc.jl on OS X, or
C:\Users\username\.juliarc.jl on Windows.

Building from source
Download the source code, rather than the binaries, if you intend to contribute to the
development of Julia itself, or if no Julia binaries are provided for your operating system or
particular computer architecture. The Julia source code can be found on GitHub at
https://github.com/JuliaLang/julia.git. Compiling the source code will get you the
latest Julia version, not the stable version (if you want the latter, download the binaries, and
refer to the previous section).

Because of the diversity of platforms and the possible issues involved, we refer you to
https://github.com/JuliaLang/julia, and in that, the Source Download and Compilation
section.

JuliaPro
Another alternative is JuliaPro, which is available from
https://juliacomputing.com/products/juliapro.html. This is an Anaconda-style Julia
repository, which, at present, is only up to version 0.6.4. It does come with about 200+
verified ready-to-go packages, and is a very good way for beginners to start. JuliaPro
version 1.0 will probably become available after some time.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://julialang.org/downloads/nightlies.html
https://github.com/JuliaLang/julia.git
https://github.com/JuliaLang/julia
https://juliacomputing.com/products/juliapro.html

Installing the Julia Platform Chapter 1

[11]

There are two ways of using Julia. As described in the previous section, we can use the Julia
shell for interactive work. Alternatively, we can write programs in a text file, save them
with a .jl extension, and let Julia execute the program by starting it by running julia
program.jl.

Working with Julia's REPL
We started with Julia's REPL in the previous section to verify the correctness of the
installation by issuing the julia command in a Terminal session. The REPL is Julia's
working environment, where you can interact with the just in time (JIT) compiler to test
out pieces of code. When satisfied, you can copy and paste this code into a file with a .jl
extension, such as program.jl. Alternatively, you can continue to work on this code from
within a text editor or an IDE, such as the ones we will point out later in this chapter. After
the banner with Julia's logo has appeared, you will get a julia> prompt for the input. To
end this session and get to the OS Command Prompt, type Ctrl + D, and hit Enter. To
evaluate an expression, type it and press Enter to show the result, as shown in the following
screenshot:

Working with the REPL (1)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing the Julia Platform Chapter 1

[12]

If, for some reason, you don't need to see the result, end the expression with a ; (semicolon)
such as 8 * 5; In both the cases, the resulting value is stored, for convenience, in a
variable named ans that can be used in expressions, but only inside the REPL. You can
bind a value to a variable by entering an assignment as a = 3. Julia is dynamic, and we
don't need to enter a type for a, but we do need to enter a value for the variable so that Julia
can infer its type. Using a variable b that is not bound to the a value results in the ERROR:
UndefVarError: b not defined message. Strings are delineated by double quotes ("
"), as in b = "Julia". The following screenshot illustrates this in the REPL:

Working with the REPL (2)

Previous expressions can be retrieved in the same session by working with the up and
down arrow keys. The following key bindings are also handy:

To clear or interrupt a current command, press Ctrl + C
To clear the screen, press Ctrl + L (variables are kept in memory)

Commands from the previous sessions can still be retrieved, because they are stored (with a
timestamp) in a repl_history.jl file (in /home/$USER/.julia/logs on Ubuntu,
C:\Users\username\.julia\logs on Windows, or ~/.julia/logs/repl_history on
OS X). Ctrl + R (produces a reverse-i-search prompt) searches through these
commands.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing the Julia Platform Chapter 1

[13]

Typing ? starts up the help mode (help?>) to give you quick access to Julia's
documentation. Information on function names, types, macros, and so on, is given when
typing in their names. Alternatively, to get more information on a variable, for example, a,
type ?a, and to get more information on a function such as sort, type ?sort. To find all
the places where a function such as println is defined or used, type
apropos("println"), which gives the following output:

Base.Pair
Base.any
Base.@isdefined
Base.eachindex
Base.all
Base.Generator
Base.Timer
…
Printf.@sprintf
REPL.TerminalMenus.request

Thus, we can see that it is defined in the Base module, and that it is used in several other
functions.

Different complete expressions on the same line have to be separated by a ; (semicolon),
and only the last result is shown. You can enter multiline expressions, as shown in the
following screenshot. If the shell detects that the statement is syntactically incomplete, it
will not attempt to evaluate it. Rather, it will wait for the user to enter additional lines until
the multiline statement can be evaluated:

Working with the REPL (3)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing the Julia Platform Chapter 1

[14]

A handy autocomplete feature also exists. Type one or more letters, press the Tab key twice,
and then a list of functions starting with these letters appears. For example, type so, press
the Tab key twice, and then you will get the list as sort sort! sortcols sortperm
sortperm! sortrows.

If you start a line with ;, the rest of the line is interpreted as a system shell command (try,
for example, ls, cd, mkdir, whoami on Linux). The Backspace key returns to the Julia
prompt.

A Julia script can be executed in the REPL by calling it with include. For example, for
hello.jl, which contains the println("Hello, Julia World!") statement, the
command is as follows:

julia> include("hello.jl")

The preceding command prints the output as follows:

Hello, Julia World!

Experiment a bit with different expressions to get a feeling for this environment.

Startup options and Julia scripts
Without any options, the julia command starts up the REPL environment. A useful
option to check your environment is julia -v. This shows Julia's version, for example,
julia version 1.0.0. (The versioninfo()function in REPL is more detailed, and
the VERSION constant only gives you the version number: v"1.0.0"). An option that lets
you evaluate expressions on the command line itself is -e, for example:

julia -e 'a = 6 * 7;
println(a)'

The preceding commands print out 42 (this also works in a PowerShell window on
Windows, but in an ordinary Windows Command Prompt, use " instead of the '
character).

Some other options that are useful for parallel processing will be discussed in Chapter 9,
Running External Programs. Type julia -h for a list of all options.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing the Julia Platform Chapter 1

[15]

A script.jl file with Julia source code can be started from the command line with the
following command:

julia script.jl arg1 arg2 arg3

Here, arg1, arg2, and arg3 are optional arguments to be used in the script's code. They are
available from the global constant ARGS. Take a look at the args.jl file, which contains the
following:

for arg in ARGS
 println(arg)
end

The julia args.jl 1 Red C command prints out 1, Red, and C on consecutive lines.

A script file can also execute other source files by including them in the REPL; for example,
main.jl contains include("hello.jl"), which will execute the code from hello.jl
when called with julia main.jl.

Sometimes, it can be useful to know when code is executed interactively in the REPL, or
when started up with the Julia VM with the julia command. This can be tested with the
isinteractive() function. The isinteractive.jl script contains the following code:

println("Is this interactive? $(isinteractive())")

If you start this up in the REPL with include("isinteractive.jl"), the output will be
Is this interactive? true.

When started up in a Terminal window as julia isinteractive.jl, the output is Is
this interactive? false.

You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you have
purchased. If you purchased this book elsewhere, you can visit https:/ /
github. com/ TrainingByPackt/ Julia- 1-Programming- Complete-
Reference- Guide.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide

Installing the Julia Platform Chapter 1

[16]

Packages
Most of the standard library in Julia (which can be found in /share/julia/base and
/share/julia/stdlib, relative to where Julia was installed) is written in Julia itself. The
rest of Julia's code ecosystem is contained in packages that are simply GitHub repositories.
They are most often authored by external contributors, and already provide functionality
for such diverse disciplines such as bioinformatics, chemistry, cosmology, finance,
linguistics, machine learning, mathematics, statistics, and high-performance computing. A
package listing can be found at http:/ / pkg. julialang. org.

Julia's installation contains a built-in package manager, Pkg, for installing additional
packages that are written in Julia. Version and dependency management is handled
automatically by Pkg.

Pkg has a REPL mode, which can be started from within the Julia REPL by entering the]
key, which is often called the REPL's package mode. The Pkg mode is shown as a blue
prompt, like this: (v1.0) pkg>.

From this mode, we can start all functions of Pkg. To return to the normal REPL mode,
press Backspace or Ctrl + C.

To initialize your environment, enter the init command, which creates an empty
Project.toml file in your Julia installation folder.

Adding a new package
Before adding a new package, it is always a good idea to update your package database for
the already installed packages with the up command. Then, add a new package by issuing
the add PackageName command, and execute it by using PackageName in the code or in
the REPL.

For example, to add 2D plotting capabilities, install the Plots package with add Plots in
the Package mode by first typing]. This installs the Plots package and all of its
dependencies, building them when needed.

To make a graph of 100 random numbers between 0 and 1, execute the following
commands:

using Plots
plot(rand(100))

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://pkg.julialang.org
http://pkg.julialang.org
http://pkg.julialang.org
http://pkg.julialang.org
http://pkg.julialang.org
http://pkg.julialang.org
http://pkg.julialang.org
http://pkg.julialang.org
http://pkg.julialang.org

Installing the Julia Platform Chapter 1

[17]

The rand(100) function is an array with 100 random numbers. This produces the
following output:

A plot of white noise with Plots

After installing a new Julia version, update all the installed packages by running up in the
Pkg REPL-mode.

Installing and working with IJulia
IJulia (https://github.com/JuliaLang/IJulia.jl) is a combination of the Jupyter
Notebook interactive environment (http://jupyter.org/) with a Julia language backend.
It allows you to work with a powerful graphical notebook (which combines code, formatted
text, math, and multimedia in a single document) with a regular REPL. Detailed
instructions for installation can be found at the GitHub page for IJulia
(https://github.com/JuliaLang/IJulia.jl) and in the Julia at MIT notes
(https://github.com/stevengj/julia-mit/blob/master/README.md). Add the IJulia
package in the REPL package mode with add IJulia.

Then, whenever you want to use it, start up a Julia REPL and type the following
commands:

using IJulia
notebook()

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/JuliaLang/IJulia.jl
http://jupyter.org/
https://github.com/JuliaLang/IJulia.jl
https://github.com/stevengj/julia-mit/blob/master/README.md

Installing the Julia Platform Chapter 1

[18]

If you want to run it from the command line, type:

jupyter notebook

The IJulia dashboard should look as follows:

The IJulia dashboard

You should see the Jupyter logo in the upper-left corner of the browser window. Julia code
is entered in the input cells (the input can be multiline) and then executed with Shift +
Enter.

Here is a small example (ijulia-example.jl):

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing the Julia Platform Chapter 1

[19]

The output should be something as follows:

An IJulia session example

In the first input cell, the value of b is calculated from a:

a = 5
b = 2a^2 + 30a + 9

In the second input cell, we use PyPlot. Install this package with add PyPlot in the REPL
package mode, and by issuing using PyPlot in the REPL.

The range(0,stop=5,length=101) command defines an array of 100 equally spaced
values between 0 and 5; y is defined as a function of x and is then shown graphically with
the plot command, as follows:

using PyPlot
x = range(0,stop=5,length=101)
y = cos.(2x .+ 5)
plot(x, y, linewidth=2.0, linestyle="--")
title("a nice cosinus")
xlabel("x axis")
ylabel("y axis")

Save a notebook in file format (with the .ipynb extension) by downloading it from the
menu.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing the Julia Platform Chapter 1

[20]

Installing Juno
Juno (http://junolab.org/) is a full-fledged IDE for Julia by Mike Innes, which is based
on the Atom environment. The setup page at
https://github.com/JunoLab/uber-juno/blob/master/setup.md provides detailed
instructions for installing and configuring Juno. Here is a summary of the steps:

Download and install Atom (https://atom.io/)1.
Start it up, go to Settings, and then click Install Panel2.
Enter uber-juno into the search box3.

Atom works extensively with a command palette that you can open by typing Ctrl +
spacebar, entering a command, and then selecting it. Juno provides an integrated console,
and you can evaluate single expressions in the code editor directly by typing Ctrl + Enter at
the end of the line. A complete script is evaluated by typing Ctrl + Shift + Enter. More on
basic usage can be found here: http:/ / docs. junolab. org/latest/ man/ basic_ usage. html.

Installing julia-vscode
Another IDE called julia-vscode is based on the Visual Studio Code editor
(https://code.visualstudio.com/). Install it by following the instructions given here:
https://github.com/JuliaEditorSupport/julia-vscode. This IDE provides syntax
highlighting, code snippets, Julia-specific commands (execute code by pressing F5), an
integrated Julia REPL, code completion, hover help, a linter, code navigation, and tasks for
running tests, builds, benchmarks, and build documentation.

Installing Sublime-IJulia
The Sublime Text editor (http://www.sublimetext.com/3) has a plugin called Julia-
sublime: https://github.com/JuliaEditorSupport/Julia-sublime. It gives you syntax
highlighting, autocompletion, auto-indentation, and code snippets. To install it, select
Julia from the Package Control: Install Package drop-down list in the Command
Palette.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/JunoLab/uber-juno/blob/master/setup.md
https://atom.io/
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
http://docs.junolab.org/latest/man/basic_usage.html
https://code.visualstudio.com/
https://github.com/JuliaEditorSupport/julia-vscode
http://www.sublimetext.com/3
https://github.com/JuliaEditorSupport/Julia-sublime

Installing the Julia Platform Chapter 1

[21]

Other editors and IDEs
For Terminal users, the available editors are as follows:

Vim, together with julia-vim, works great
(https://github.com/JuliaLang/julia-vim)
Emacs, with julia-mode.el, from the
https://github.com/JuliaLang/julia/tree/master/contrib directory

On Linux, gedit is very good. The Julia plugin works well and provides autocompletion.
Notepad++ also has Julia support from the contrib directory mentioned earlier.

The CoCalc project (https://cocalc.com/) runs Julia in the cloud within a Terminal and
lets you work with Jupyter notebooks. You can also work and teach with Julia in the cloud
by using the JuliaBox platform (https://juliabox.org/).

How Julia works
(You can safely skip this section on a first reading.) Julia works with an LLVM JIT compiler
framework that is used for JIT generation of machine code. The first time you run a Julia
function, it is parsed, and the types are inferred. Then, LLVM code is generated by the
JIT compiler, which is then optimized and compiled down to native code. The second time
you run a Julia function, the native code that's already generated is called. This is the reason
why, the second time you call a function with arguments of a specific type, it takes much
less time to run than the first time (keep this in mind when doing benchmarks of Julia
code).

This generated code can be inspected. Suppose, for example, that we have defined a f(x)
= 2x + 5 function in a REPL session. Julia responds with the message f (generic function
with one method); the code is dynamic because we didn't have to specify the type of x or f.
Functions are, by default, generic in Julia because they are ready to work with different
data types for their variables.

The code_llvm function can be used to see the JIT bytecode. This is the bytecode generated
by LLVM, and it will be different for each target platform. For example, for the Intel x64
platform, if the x argument is of type Int64, it will be as follows:

julia> code_llvm(f, (Int64,))

; Function f
; Location: REPL[7]:1

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/JuliaLang/julia-vim
https://github.com/JuliaLang/julia-vim
https://github.com/JuliaLang/julia-vim
https://github.com/JuliaLang/julia/tree/master/contrib
https://cocalc.com/
https://juliabox.org/

Installing the Julia Platform Chapter 1

[22]

; Function Attrs: uwtable
define i64 @julia_f_33833(i64) #0 {
top:
; Function *; {
; Location: int.jl:54
 %1 = shl i64 %0, 1
;}
; Function +; {
; Location: int.jl:53
 %2 = add i64 %1, 5
;}
 ret i64 %2
}

The code_native function can be used to see the assembly code that was generated for the
same type of x:

julia> code_native(f, (Int64,))

 .text
; Function f {
; Location: REPL[7]:1
 pushq %rbp
 movq %rsp, %rbp
; Function +; {
; Location: int.jl:53
 leaq 5(%rcx,%rcx), %rax
;}
 popq %rbp
 retq
 nopl (%rax,%rax)
;}

Compare this with the code generated when x is of type Float64:

julia> code_native(f, (Float64,))

 .text
; Function f {
; Location: REPL[7]:1
 pushq %rbp
 movq %rsp, %rbp
; Function *; {
; Location: promotion.jl:314
; Function *; {
; Location: float.jl:399
 vaddsd %xmm0, %xmm0, %xmm0
 movabsq $424735072, %rax # imm = 0x1950F160

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing the Julia Platform Chapter 1

[23]

;}}
; Function +; {
; Location: promotion.jl:313
; Function +; {
; Location: float.jl:395
 vaddsd (%rax), %xmm0, %xmm0
;}}
 popq %rbp
 retq
 nopl (%rax,%rax)
;}

Julia code is fast because it generates specialized versions of functions for each data type.
Julia also implements automatic memory management. The user doesn't have to worry
about allocating and keeping track of the memory for specific objects. Automatic deletion of
objects that are not needed anymore (and hence, reclamation of the memory associated
with those objects) is done using a garbage collector (GC).

The GC runs at the same time as your program. Exactly when a specific object is garbage
collected is unpredictable. The GC implements an incremental mark-and-sweep algorithm.
You can start garbage collection yourself by calling GC.gc(), or if you don't need it, you
can disable it by calling GC.enable(false).

The standard library is implemented in Julia itself. The I/O functions rely on the libuv
library for an efficient, platform-independent I/O. The standard library is contained in a
package called Base, which is automatically imported when starting Julia.

Summary
By now, you should have been able to install Julia in the working environment you prefer
using. You should also have some experience with working in the REPL. We will put this to
good use starting in the next chapter, where we will meet the basic data types in Julia by
testing out everything in the REPL.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Variables, Types, and

Operations
Julia is an optionally typed language, which means that the user can choose to specify the
type of arguments passed to a function and the type of variables used inside a function.
Julia's type system is the key for its performance; understanding it well is important, and it
can pay off to use type annotations, not only for documentation or tooling, but also for
execution speed. This chapter discusses the realm of elementary built-in types in Julia, the
operations that can be performed on them, as well as the important concepts of types and
scope.

The following topics are covered in this chapter:

Variables, naming conventions, and comments
Types
Integers
Floating point numbers
Elementary mathematical functions and operations
Rational and complex numbers
Characters
Strings
Regular expressions
Ranges and arrays
Dates and times
Scope and constants

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[25]

You will need to follow along by typing in the examples in the REPL, or executing the code
snippets in the code files of this chapter.

Variables, naming conventions, and
comments
Data is stored in values such as 1, 3.14, and "Julia", and every other value has a type, for
example, the type of 3.14 is Float64. Some other examples of elementary values and their
data types are 42 of the Int64 type, true and false of the Bool type, and 'X' of the Char
type.

Julia, unlike many modern programming languages, differentiates between single
characters and strings. Strings can contain any number of characters, and are specified
using double quotes—single quotes are only used for a character literal. Variables are the
names that are bound to values by assignments, such as x = 42. They have the type of the
value they contain (or reference); this type is given by the typeof function. For example,
typeof(x) returns Int64.

The type of a variable can change, because putting x = "I am Julia" now results in
typeof(x) returning String. In Julia, we don't have to declare a variable (that indicates
its type) such as in C or Java, for instance, but a variable must be initialized (that is, bound
to a value) so that Julia can deduce its type:

julia> y = 7
7
typeof(y) # Int64
julia> y + z
ERROR: UndefVarError: z not defined

In the preceding example, z was not assigned a value before we used it, so we got an error.
By combining variables through operators and functions such as the + operator (as in the
preceding example), we get expressions. An expression always results in a new value after
computation. Contrary to many other languages, everything in Julia is an expression, so it
returns a value. That's why working in a REPL is so great: because you can see the values at
each step.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[26]

The type of variables determines what you can do with them, that is, the operators with
which they can be combined. In this sense, Julia is a strongly typed language. In the
following example, x is still a String value, so it can't be summed with y, which is of type
Int64, but if we give x a float value, the sum can be calculated, as shown in the following
example:

julia> x + y
ERROR: MethodError: no method matching +(::String, ::Int64)
julia> x = 3.5; x + y
10.5

Here, the semicolon (;) ends the first expression and suppresses its output. Names of the
variables are case-sensitive. By convention, lowercase is used with multiple words
separated by an underscore. They start with a letter and, after that, you can use letters,
digits, underscores, and exclamation points. You can also use Unicode characters. Use clear,
short, and to-the-point names. Here are some valid variable names: mass, moon_velocity,
current_time, pos3, and ω1. However, the last two are not very descriptive, and they
should better be replaced with, for example, particle_position and
particle_ang_velocity.

A line of code preceded by a hash sign (#) is a comment, as we can see in the following
example:

Calculate the gravitational acceleration grav_acc:
gc = 6.67e-11 # gravitational constant in m3/kg s2
mass_earth = 5.98e24 # in kg
radius_earth = 6378100 # in m
grav_acc = gc * mass_earth / radius_earth^2 # 9.8049 m/s2

Multiline comments are helpful for writing comments that span across multiple lines or
commenting out code. In Julia, all lines between #= and =# are treated as a comment. For
printing out values, use the print or println functions, as follows:

julia> print(x)
3.5

If you want your printed output to be in color, use printstyled("I love Julia!",
color=:red), which returns the argument string in the color indicated by the second
argument.

The term object (or instance) is frequently used when dealing with variables of more
complex types. However, we will see that, when doing actions on objects, Julia uses
functional semantics. We write action(object) instead of object.action(), as we do
in more object-oriented languages such as Java or C#.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[27]

In a REPL, the value of the last expression is automatically displayed each time a statement
is evaluated (unless it ends with a ; sign). In a standalone script, Julia will
not display anything unless the script specifically instructs it to. This is achieved with a
print or println statement. To display any object in the way the REPL does in code, use
display(object) or show(object) (show is a basic function that prints a text
representation of an object, which is often more specific than print).

Types
Julia's type system is unique. Julia behaves as a dynamically typed language (such as
Python, for instance) most of the time. This means that a variable bound to an integer at one
point might later be bound to a string. For example, consider the following:

julia> x = 10
10
julia> x = "hello"
"hello"

However, one can, optionally, add type information to a variable. This causes the variable
to only accept values that match that specific type. This is done through a type of
annotation. For instance, declaring x::String implies that only strings can be bound to x;
in general, it looks like var::TypeName. These are used the most often to qualify the
arguments a function can take. The extra type information is useful for documenting the
code, and often allows the JIT compiler to generate better-optimized native code. It also
allows the development environments to give more support, and code tools such as a linter
that can check your code for possible wrong type use.

Here is an example: a function with the calc_position name defined as the function
calc_position(time::Float64) indicates that this function takes one argument named
time of type Float64.

Julia uses the same syntax for type assertions, which are used to check whether a variable
or an expression has a specific type. Writing (expr)::TypeName raises an error if expr is
not of the required type. For instance, consider the following:

julia> (2+3)::String
ERROR: TypeError: in typeassert, expected String, got Int64

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[28]

Notice that the type comes after the variable name, unlike in most other languages. In
general, the type of a variable can change in Julia, but this is detrimental to performance.
For utmost performance, you need to write type-stable code. Code is type-stable if the type of
every variable does not vary over time. Carefully thinking in terms of the types of variables
is useful in avoiding performance bottlenecks. Adding type annotations to variables that
are updated in the inner loop of a critical region of code can lead to drastic improvements
in the performance by helping the JIT compiler remove some type checking. To see an
excellent example where this is important, read the article available at
http://www.johnmyleswhite.com/notebook/2013/12/06/writing-type-stable-code-in-j

ulia/.

A lot of types exist; in fact, a whole type hierarchy is built-in in Julia. If you don't specify
the type of a function argument, it has the Any type, which is effectively the root or parent
of all types. Every object is at least of the universal type Any. At the other end of the
spectrum, there is type Nothing, which has no values. No object can have this type, but it is
a subtype of every other type. While running the code, Julia will infer the type of the
parameters passed in a function, and with this information, it will generate optimal
machine code.

You can define your own custom types as well, for instance, a Person type. We'll come
back to this in Chapter 6, More on Types, Methods, and Modules. By convention, the names of
types begin with a capital letter, and if necessary, the word separation is shown with
CamelCase, such as BigFloat or AbstractArray.

If x is a variable, then typeof(x) gives its type, and isa(x, T) tests whether x is of type
T. For example, isa("ABC", String) returns true, and isa(1, Bool) returns false.

Everything in Julia has a type, including types themselves, which are of type DataType:
typeof(Int64) returns DataType. Conversion of a variable var to a type Type1 can be
done using the type name as a function, such as Type1(var). For example, Int64(3.0)
returns 3.

However, this raises an error if type conversion is impossible, as follows:

julia> Int64("hello")
ERROR: MethodError: Cannot `convert` an object of type String to an object
of type Int64

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.johnmyleswhite.com/notebook/2013/12/06/writing-type-stable-code-in-julia/
http://www.johnmyleswhite.com/notebook/2013/12/06/writing-type-stable-code-in-julia/

Variables, Types, and Operations Chapter 2

[29]

Integers
Julia offers support for integer numbers ranging from types Int8 to Int128, with 8 to 128
representing the number of bits used, and with unsigned variants with a U prefix, such as
UInt8. The default type (which can also be used as Int) is Int32 or Int64, depending on
the target machine architecture. The bit width is given by the Sys.WORD_SIZE variable. The
number of bits used by the integer affects the maximum and minimum value this integer
can have. The minimum and maximum values are given by the typemin() and
typemax() functions, respectively; for example, typemax(Int16) returns 32767.

If you try to store a number larger than that allowed by typemax, overflow occurs. For
example, note the following:

julia> typemax(Int)
9223372036854775807 # might be different on 32 bit platform
julia> ans + 1
-9223372036854775808

Overflow checking is not automatic, so an explicit check (for example, the result has the
wrong sign) is needed when this can occur. Integers can also be written in binary (0b), octal
(0o), and hexadecimal (0x) format.

For computations needing arbitrary-precision integers, Julia has a BigInt type. These
values can be constructed as BigInt(number) or big(number), and support the same
operators as normal integers. Conversions between numeric types are automatic, but not
between the primitive types and the big types. The normal operations of addition (+),
subtraction (-), and multiplication (*) apply for integers. A division (/) always gives a
floating point number. If you only want integer divisor and remainder, use div and rem.
The symbol ^ is used to obtain the power of a number.

The logical values, true and false, of type Bool are also integers with 8 bits. 0 amounts to
false, and 1 to true. Negation can be done with the ! operator; for example, !true is
false. Comparing numbers with == (equal), != or < and > returns a Bool value, and
comparisons can be chained after one another (as in 0 < x < 3).

Floating point numbers
Floating point numbers follow the IEEE 754 standard and represent numbers with a
decimal point, such as 3.14, or an exponent notation, such as 4e-14, and come in the types
Float16 up to Float64, the last one being used for double precision.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[30]

Single precision is achieved through the use of the Float32 type. Single precision float
literals must be written in scientific notation, such as 3.14f0, but with f, where one
normally uses e. That is, 2.5f2 indicates 2.5*10^2 with single precision, while 2.5e2
indicates 2.5*10^2 in double precision. Julia also has a BigFloat type for arbitrary-
precision floating numbers computations.

A built-in type promotion system takes care of all the numeric types that can work together
seamlessly, so that there is no explicit conversion needed. Special values exist: Inf and -
Inf are used for infinity, and NaN is used for "not a number" values such as the result of
0/0 or Inf - Inf.

Floating point arithmetic in all programming languages is often a source of subtle bugs and
counter-intuitive behavior. For instance, note the following:

julia> 0.1 + 0.2
0.30000000000000000004

This happens because of the way the floating point numbers are stored internally. Most
numbers cannot be stored internally with a finite number of bits, such as 1/3 having no
finite representation in base 10. The computer will choose the closest number it can
represent, introducing a small round-off error. These errors might accumulate over the
course of long computations, creating subtle problems.

Maybe the most important consequence of this is the need to avoid using equality when
comparing floating point numbers:

julia> 0.1 + 0.2 == 0.3
false

A better solution is to use >= or <= comparisons in logical tests that involve floating point
numbers, wherever possible.

Elementary mathematical functions and
operations
You can view the binary representation of any number (integer or float) with the
bitstring function, for example, bitstring(3) returns
"0011".

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[31]

To round a number, use the round() function which returns a floating point number. All
standard mathematical functions are provided, such as sqrt(), cbrt(), exp(), log(),
sin(), cos(), tan(), erf() (the error function), and many more (refer to the URL
mentioned at the end of this section). To generate a random number, use rand().

Use parentheses () around expressions to enforce precedence. Chained assignments, such
as a = b = c = d = 1, are allowed. The assignments are evaluated right-to-left.
Assignments for different variables can be combined, as shown in the following example:

 a = 1; b = 2; c = 3; d = 4
 a, b = c, d

Now, a has a value of 3 and b has a value of 4. In particular, this makes an easy swap
possible:

 a, b = b, a # now a is 4 and b is 3

Like in many other languages, the Boolean operators working on the true and false
values for and, or, and not have &&, ||, and ! as symbols, respectively. Julia applies a short-
circuit optimization here. That means the following:

In a && b, b is not evaluated when a is false (since && is already false)
In a || b, b is not evaluated when a is true (since || is already true)

The operators & and | are also used for non-short-circuit Boolean evaluations.

Julia also supports bitwise operations on integers. Note that n++ or n-- with n as an integer
does not exist in Julia, as it does in C++ or Java. Use n += 1 or n -= 1 instead.

For more detailed information on operations, such as the bitwise operators, special
precedence, and so on, refer to
http://docs.julialang.org/en/latest/manual/mathematical-operations/.

Rational and complex numbers
Julia supports these types out of the box. The global constant im represents the square root
of -1, so that 3.2 + 7.1im is a complex number with floating point coefficients, so it is of
the type Complex{Float64}.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://docs.julialang.org/en/latest/manual/mathematical-operations/

Variables, Types, and Operations Chapter 2

[32]

This is the first example of a parametric type in Julia. For this example, we can write this as
Complex{T}, where type T can take a number of different type values, such as Int32,
Int64, or Float64.

All operations and elementary functions, such as exp(), sqrt(), sinh(), real(),
imag(), abs(), and so on, are also defined on complex numbers; for example, abs(3.2 +
7.1im) = 7.787810988975015.

If a and b are two variables that contain a number, use complex(a,b) to form a complex
number with them. Rational numbers are useful when you want to work with exact ratios
of integers, for example, 3//4, which is of type Rational{Int64}.

Again, comparisons and standard operations are defined: float() converts to a floating
point number, and num() and den() gives the numerator and denominator. Both types
work together seamlessly with all the other numeric types.

Characters
Like C or Java, but unlike Python, Julia implements a type for a single character, the Char
type. A character literal is written as 'A', where typeof('A') returns Char. A Char value
is a Unicode code point, and it ranges from '\0' to '\Uffffffff'. Convert this to its
code point with Int(): Int('A') returns 65, and Int('α') returns 945, so this takes
two bytes.

The reverse also works: Char(65) returns 'A', Char(945) returns '\u3b1', which is the
code point for α (3b1 is hexadecimal for 945).

Unicode characters can be entered by a \u in single quotes, followed by four hexadecimal
digits (ranging from 0-9 or A-F), or \U followed by eight hexadecimal digits. The
isvalid(Char, value) function can test whether a number returns an existing Unicode
character: isvalid(Char,0x3b1) returns true. The normal escape characters, such as \t
(tab), \n (newline), \', and so on, also exist in Julia.

Strings
Literal strings are always of type String:

julia> typeof("hello")
String

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[33]

This is also true if they contain UTF-8 characters that cannot be represented in ASCII, as in
this example:

julia> typeof("Güdrun")
String

UTF-16 and UTF-32 are also supported. Strings are contained in double quotes (" ") or
triple quotes (""" """). They are immutable, which means that they cannot be altered once
they have been defined:

julia> s = "Hello, Julia"
julia> s[2] = 'z'
ERROR: MethodError: no method matching setindex!(::String, ::Char, ::Int64)

String is a succession, or an array of characters (see the Ranges and arrays section) that can
be extracted from the string by indexing it, starting from 1: with str = "Julia", str[1]
returns the character 'J', and str[end] returns the character 'a', the last character in the
string. The index of the last byte is also given by endof(str), and length() returns the
number of characters. These two are different if the string contains multi-byte Unicode
characters, for example, endof("Güdrun") gives 7, while length("Güdrun") gives 6.

Using an index less than one or greater than the index of the last byte gives
a BoundsError. In general, strings can contain Unicode characters, which can take up to
four bytes, so not every index is a valid character index. For example, for str2 = "I am
the α: the beginning", we have str2[10], which returns '\u3b1' (the two-byte
character representing α), str2[11] returns ERROR: StringIndexError (because this is
the second byte of the α character), and str2[12] returns colon (:).

We can see 25 characters. length(str2) returns 25, but the last index given by
lastindex(str2) returns 26. For this reason, looping over a string's characters can best
be done as an iteration and not by using the index, as follows:

for c in str2
 println(c)
end

A substring can be obtained by taking a range of indices:str[3:5] or
using str[3:end], which returns "lia". A string that contains a single character is
different from that Char value: 'A' == "A" returns false.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[34]

Julia has an elegant string interpolation mechanism for constructing strings: $var inside a
string is replaced by the value of var, and $(expr), where expr is an expression, is
replaced by its computed value. When a is 2 and b is 3, the following expression "$a * $b
= $(a * b)" returns "2 * 3 = 6". If you need to write the $ sign in a string, escape it as
\$.

You can also concatenate strings with the * operator or with the string() function: "ABC"
* "DEF" returns "ABCDEF", and string("abc", "def", "ghi") returns "abcdefghi".

Strings prefixed with : are of type Symbol, such as :green; we already used it in the
printstyled function. They are more efficient than strings and are used for IDs or keys.
Symbols cannot be concatenated. They should only be used if they are expected to remain
constant over the course of the execution of the program.

The String type is very rich, and it has 96 functions defined on it, given by
methodswith(String). Some useful methods include the following:

replace(string, str1, str2): This changes substrings str1 to str2 in
string, for example, replace("Julia","u" => "o") returns "Jolia".
split(string, char or [chars]): This splits a string on the specified
character or characters, for example, split("34,Tom Jones,Pickwick
Street 10,Aberdeen", ',') returns the four strings in an array: ["34","Tom
Jones","Pickwick Street 10","Aberdeen"]. If char is not specified, the
split is done on space characters (spaces, tabs, newlines, and so on).

Formatting numbers and strings
The @printf macro from the Printf package (we'll look deeper into macros in Chapter 7,
Metaprogramming in Julia) takes a format string and one or more variables to substitute into
this string while being formatted. It works in a manner similar to printf in C. You can
write a format string that includes placeholders for variables, for example, as follows:

julia> name = "Pascal"
julia> using Printf
julia> @printf("Hello, %s \n", name) # returns Hello, Pascal

Because @printf now lives in another package, you have to do this using Printf first
(prior to 1.0, it belonged to Base).

If you need a string as the return value, use the macro @sprintf.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[35]

The following formatting.jl script shows the most common formats:

using Printf
d for integers:
@printf("%d\n", 1e5) #> 100000
x = 7.35679
f = float format, rounded if needed:
@printf("x = %0.3f\n", x) #> 7.357
aa = 1.5231071779744345
bb = 33.976886930000695
@printf("%.2f %.2f\n", aa, bb) #> 1.52 33.98
or to create another string:
str = @sprintf("%0.3f", x)
show(str) #> "7.357"
println()
e = scientific format with e:
@printf("%0.6e\n", x) #> 7.356790e+00
c = for characters:
@printf("output: %c\n", 'α') #> output: α
s for strings:
@printf("%s\n", "I like Julia")
right justify:
@printf("%50s\n", "text right justified!")
p for pointers:
@printf("a pointer: %p\n", 1e10) #> a pointer: 0x00000002540be400

The following output is obtained upon running the preceding script:

100000
x = 7.357
1.52 33.98
"7.357"
7.356790e+00
output: α
I like Julia
 text right justified!
a pointer: 0x00000002540be400

A special kind of string is VersionNumber, which the form v"0.3.0" (note the preceding
v), with optional additional details. They can be compared, and are used for Julia's
versions, but also in the package versions and dependency mechanism of Pkg (refer to the
Packages section of Chapter 1, Installing the Julia Platform). If you have the code that works
differently for different versions, use something as follows:

if v"0.5" <= VERSION < v"0.6-"
do something specific to 0.5 release series
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[36]

Regular expressions
To search for and match patterns in text and other data, regular expressions are an
indispensable tool for the data scientist. Julia adheres to the Perl syntax of regular
expressions. For a complete reference, refer to
http://www.regular-expressions.info/reference.html. Regular expressions are
represented in Julia as a double (or triple) quoted string preceded by r, such as r"..."
(optionally, followed by one or more of the i, s, m, or x flags), and they are of type Regex.
The regexp.jl script shows some examples.

In the first example, we will match the email addresses (#> shows the result):

email_pattern = r".+@.+"
input = "john.doe@mit.edu"
println(occursin(email_pattern, input)) #> true

The regular expression pattern + matches any (non-empty) group of characters. Thus, this
pattern matches any string that contains @ somewhere in the middle.

In the second example, we will try to determine whether a credit card number is valid or
not:

visa = r"^(?:4[0-9]{12}(?:[0-9]{3})?)$" # the pattern
input = "4457418557635128"
occursin(visa, input) #> true
if occursin(visa, input)
 println("credit card found")
 m = match(visa, input)
 println(m.match) #> 4457418557635128
 println(m.offset) #> 1
 println(m.offsets) #> []
end

The occursin(regex, string) function returns true or false, depending on whether
the given regex matches the string, so we can use it in an if expression. If you want the
detailed information of the pattern matching, use match instead of occursin. This either
returns nothing when there is no match, or an object of type RegexMatch when the
pattern is found (nothing is, in fact, a value to indicate that nothing is returned or printed,
and it has a type of Nothing).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.regular-expressions.info/reference.html

Variables, Types, and Operations Chapter 2

[37]

The RegexMatch object has the following properties:

match contains the entire substring that matches (in this example, it contains the
complete number)
offset states at what position the matching begins (here, it is 1)
offsets gives the same information as the preceding line, but for each of the
captured substrings
captures contains the captured substrings as a tuple (refer to the following
example)

Besides checking whether a string matches a particular pattern, regular expressions can also
be used to capture parts of the string. We can do this by enclosing parts of the pattern in
parentheses (). For instance, to capture the username and hostname in the email address
pattern used earlier, we modify the pattern as follows:

email_pattern = r"(.+)@(.+)"

Notice how the characters before @ are enclosed in brackets. This tells the regular
expression engine that we want to capture this specific set of characters. To see how this
works, consider the following example:

email_pattern = r"(.+)@(.+)"
input = "john.doe@mit.edu"
m = match(email_pattern, input)
println(m.captures) #> Union{Nothing,
SubString{String}}["john.doe", "mit.edu"]

Here is another example:

m = match(r"(ju|l)(i)?(a)", "Julia")
println(m.match) #> "lia"
println(m.captures) #> l - i - a
println(m.offset) #> 3
println(m.offsets) #> 3 - 4 - 5

The search and replace functions also take regular expressions as arguments, for
example, replace("Julia", r"u[\w]*l" => "red") returns "Jredia". If you want to
work with all the matches, matchall and eachmatch come in handy:

str = "The sky is blue"
reg = r"[\w]{3,}" # matches words of 3 chars or more
r = collect((m.match for m = eachmatch(reg, str)))
show(r) #> ["The","sky","blue"]

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[38]

iter = eachmatch(reg, str)
for i in iter
 println("\"$(i.match)\" ")
end

The collect function returns an array with RegexMatch for each match. eachmatch
returns an iterator, iter, over all the matches, which we can loop through with a simple
for loop. The screen output is "The", "sky", and "blue", printed on consecutive lines.

Ranges and arrays
Ranges come in handy when you have to work with an interval of numbers, for example,
one up to thousand: 1:1000. The type of this object, typeof(1:1000), is
UnitRange{Int64}. By default, the step is 1, but this can also be specified as the second
number; 0:5:100 gives all multiples of 5 up to 100. You can iterate over a range, as
follows:

code from file chapter2\arrays.jl
for i in 1:2:9
 println(i)
end

This prints out 1, 3, 5, 7, 9 on consecutive lines.

In the previous section on Strings, we already encountered the array type when discussing
the split function:

a = split("A,B,C,D",",")
typeof(a) #> Array{SubString{String},1}
show(a) #> SubString{String}["A","B","C","D"]

Julia's arrays are very efficient, powerful, and flexible. The general type format for an array
is Array{Type, n}, with n number of dimensions (we will discuss multidimensional
arrays or matrices in Chapter 6, More on Types, Methods, and Modules). As with the complex
type, we can see that the Array type is generic, and all the elements have to be of the same
type. A one-dimensional array (also called a vector in Julia) can be initialized by separating
its values by commas and enclosing them in square brackets, for example, arr = [100,
25, 37] is a 3-element Array{Int64,1}; the type is automatically inferred with this
notation. If you want the type to be Any, then define it as follows: arra = Any[100, 25,
"ABC"].

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[39]

The index starts from 1:

julia> arr[0]
ERROR: BoundsError: attempt to access 3-element Array{Int64,1} at index [0]
julia> arr[1]
100

Notice that we don't have to indicate the number of elements. Julia takes care of that and
lets an array grow dynamically when needed.

Arrays can also be constructed by passing a type parameter and a number of elements:

arr2 = Array{Int64}(undef, 5) # is a 5-element Array{Int64,1}
show(arr2) #> [326438368, 326438432, 326438496, 326438560, 326438624]

undef makes sure that your array gets populated with random values of the given type.

You can define an array with 0 elements of type Float64 as follows:

arr3 = Float64[] #> 0-element Array{Float64,1}

To populate this array, use push!; for example, push!(arr3, 1.0) returns 1-element
Array{Float64,1}.

Creating an empty array with arr3 = [] is not very useful because the element type is
Any. Julia wants to be able to infer the type!

Arrays can also be initialized from a range with the collect function:

arr4 = collect(1:7) #> 7-element Array{Int64,1}
show(arr4) #> [1, 2, 3, 4, 5, 6, 7]

Of course, when dealing with large arrays, it is better to indicate the final number of
elements from the start for the performance. Suppose you know beforehand that arr2 will
need 10^5 elements, but not more. If you use sizehint!(arr2, 10^5), you'll be able to
push! at least 10^5 elements without Julia having to reallocate and copy the data already
added, leading to a substantial improvement in performance.

Arrays store a sequence of values of the same type (called elements), indexed by integers 1
through the number of elements (as in mathematics, but unlike most other high-level
languages such as Python). Like with strings, we can access the individual elements with
the bracket notation; for example, with arr being [100, 25, 37], arr[1] returns 100,
and arr[end] is 37. Use an invalid index result in an exception, as follows:

arr[6] #> ERROR: BoundsError: attempt to access 3-element Array{Int64,1} at
index [6]

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[40]

You can also set a specific element the other way around:

arr[2] = 5 #> [100, 5, 37]

The main characteristics of an array are given by the following functions:

The element type is given by eltype(arr); in our example, this is Int64
The number of elements is given by length(arr), and here this is 3
The number of dimensions is given by ndims(arr), and here this is 1
The number of elements in dimension n is given by size(arr, n), and here,
size(arr, 1) returns 3

A for...in loop over an array is read-only, and you cannot change elements of the array
inside it:

da = [1,2,3,4,5]
for n in da
 n *= 2
end
da #> 5-element Array{Int64,1}: 1 2 3 4 5

Instead, use an index i, like this:

for i in 1:length(da)
 da[i] *= 2
end
da #> 5-element Array{Int64,1}: 2 4 6 8 10

It is easy to join the array elements to a string separated by a comma character and a space,
for example, with arr4 = [1, 2, 3, 4, 5, 6, 7]:

join(arr4, ", ") #> "1, 2, 3, 4, 5, 6, 7"

We can also use this range syntax (called a slice as in Python) to obtain subarrays:

arr4[1:3] #>#> 3-element array [1, 2, 3]
arr4[4:end] #> 3-element array [4, 5, 6, 7]

Slices can be assigned to, with one value or with another array:

arr = [1,2,3,4,5]
arr[2:4] = [8,9,10]
println(arr) #> 1 8 9 10 5

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[41]

Other ways to create arrays
For convenience, zeros(n) returns an n element array with all the elements equal to 0.0,
and ones(n) does the same with elements equal to 1.0.

range(start, stop=value, length=value) creates a vector of n equally spaced
numbers from start to stop, for example, as follows:

eqa = range(0, step=10, length=5) #> 0:10:40
show(eqa) #> 0:10:40

You can use the following to create an array with undefined values #undef, as shown here:

println(Array{Any}(undef, 4)) #> Any[#undef,#undef,#undef,#undef]

To fill an array arr with the same value for all the elements, use fill!(arr, 42), which
returns [42, 42, 42, 42, 42].

To create a five-element array with random Int32 numbers, execute the following:

v1 = rand(Int32,5)
5-element Array{Int32,1}:
 905745764
 840462491
 -227765082
 -286641110
 16698998

Some common functions for arrays
If b = [1:7] and c = [100,200,300], then you can concatenate b and c with the
following command:

append!(b, c) #> Now b is [1, 2, 3, 4, 5, 6, 7, 100, 200, 300]

The array, b, is changed by applying this append! method—that's why it ends in an
exclamation mark (!). This is a general convention.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[42]

A function whose name ends in a ! changes its first argument.

Likewise, push! and pop! append one element at the end, or take one away and return
that, while the array is changed:

pop!(b) #> 300, b is now [1, 2, 3, 4, 5, 6, 7, 100, 200]
push!(b, 42) # b is now [1, 2, 3, 4, 5, 6, 7, 100, 200, 42]

If you want to do the same operations on the front of the array, use popfirst! and
pushfirst! (formerly unshift! and shift!, respectively):

popfirst!(b) #> 1, b is now [2, 3, 4, 5, 6, 7, 100, 200, 42]
pushfirst!(b, 42) # b is now [42, 2, 3, 4, 5, 6, 7, 100, 200, 42]

To remove an element at a certain index, use the splice! function, as follows:

splice!(b,8) #> 100, b is now [42, 2, 3, 4, 5, 6, 7, 200, 42]

Checking whether an array contains an element is very easy with the in function:

in(42, b) #> true , in(43, b) #> false

To sort an array, use sort! if you want the array to be changed in place, or sort if the
original array must stay the same:

sort(b) #> [2,3,4,5,6,7,42,42,200], but b is not changed:
println(b) #> [42,2,3,4,5,6,7,200,42]
sort!(b) #> println(b)
#> b is now changed to [2,3,4,5,6,7,42,42,200]

To loop over an array, you can use a simple for loop:

for e in arr
 print("$e ") # or process e in another way
end

If a dot (.) precedes operators such as + or *, the operation is done element-wise, that is, on
the corresponding elements of the arrays:

arr = [1, 2, 3]
arr .+ 2 #> [3, 4, 5]
arr * 2 #> [2, 10, 6]

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[43]

As another example, if a1 = [1, 2, 3] and a2 = [4, 5, 6], then a1 .* a2 returns
the array [4, 10, 18]. On the other hand, if you want the dot (or scalar) product of
vectors, use the LinearAlgebra.dot(a1, a2) function, which returns 32, so this gives
the same result as sum(a1 .* a2):

using LinearAlgebra
LinearAlgebra.dot(a1, a2) #> 32
sum(a1 .* a2)

Lots of other useful methods exist, such as repeat([1, 2, 3], inner = [2]), which
produces [1,1,2,2,3,3].

The methodswith(Array) function returns 47 methods. You can use help in the REPL, or
search the documentation for more information.

When you assign an array to another array, and then change the first array, both the arrays
change. Consider the following example:

a = [1,2,4,6]
a1 = a
show(a1) #> [1,2,4,6]
a[4] = 0
show(a) #> [1,2,4,0]
show(a1) #> [1,2,4,0]

This happens because they point to the same object in memory. If you don't want this, you
have to make a copy of the array. Just use b = copy(a) or b = deepcopy(a) if some
elements of a are arrays that have to be copied recursively.

As we have seen, arrays are mutable (in contrast to strings), and as arguments to a function,
they are passed by reference. As a consequence, the function can change them, as in this
example:

a = [1,2,3]

function change_array(arr)
 arr[2] = 25
end

change_array(a)
println(a) #>[1, 25, 3]

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[44]

Suppose you have an array arr = ['a', 'b', 'c']. Which function on arr do we need
to return all characters in one string?

The function join will do the trick: join(arr) returns the string "abc".

string(arr) does not: this returns ['a', 'b', 'c'], but string(arr...) does return
"abc". This is because ... is the splice operator (also known as splat). It causes
the contents of arr to be passed as individual arguments, rather than passing arr as an
array.

Dates and times
To get the basic time information, you can use the time() function that returns, for
example, 1.408719961424e9, which is the number of seconds since a predefined date
called the epoch (normally, the 1st of January 1970 on a Unix system). This is useful for
measuring the time interval between two events, for example, to benchmark how long a
long calculation takes:

start_time = time()
long computation
time_elapsed = time() - start_time
println("Time elapsed: $time_elapsed")

Use the Dates module that is built in into the standard library, with Date for days and
DateTime for times down to milliseconds, to implement this. Additional time zone
functionality can be added through the Timezones.jl package.

The Date and DateTime functions can be constructed as follows, or with simpler versions
with less information:

d = Date(2014,9,1) returns 2014-09-01
dt = DateTime(2014,9,1,12,30,59,1) returns
2014-09-01T12:30:59.001

These objects can be compared and subtracted to get the duration. The Date function parts
or fields can be retrieved through accessor functions, such as year(d), month(d),
week(d), and day(d). Other useful functions exist, such as dayofweek, dayname,
daysinmonth, dayofyear, isleapyear, and so on.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[45]

Scope and constants
The region in the program where a variable is known is called the scope of that variable.
Until now, we have only seen how to create top-level or global variables that are accessible
from anywhere in the program. By contrast, variables defined in a local scope can only be
used within that scope. A common example of a local scope is the code inside a function.
Using global scope variables is not advisable for several reasons, notably the performance.
If the value and type can change at any moment in the program, the compiler cannot
optimize the code.

So, restricting the scope of a variable to local scope is better. This can be done by defining
them within a function or a control construct, as we will see in the following chapters. This
way, we can use the same variable name more than once without name conflicts.

Let's take a look at the following code fragment:

code in chapter 2\scope.jl
x = 1.0 # x is Float64
x = 1 # now x is Int
y::Float64 = 1.0
ERROR: syntax: type declarations on global variables are not yet
supported

function scopetest()
 println(x) # 1, x is known here, because it's in global scope
 y::Float64 = 1.0
y must be Float64, this is not possible in global scope
end

scopetest()
#> 1
#> 1.0

println(y) #> ERROR: UndefVarError: y not defined

Variable x changes its type, which is allowed, but because it makes the code type unstable,
it could be the source of a performance hit. From the definition of y in the third line, we can
see that type annotations can only be used in local scope (here, in the scopetest()
function).

Some code constructs introduce scope blocks. They support local variables. We have
already mentioned functions, but for, while, try, let, and type blocks can all support a
local scope. Any variable defined in a for, while, try, or let block will be local unless it is
used by an enclosing scope before the block.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[46]

The following structure, called a compound expression, does not introduce a new scope.
Several (preferably short) sub-expressions can be combined in one compound expression if
you start it with begin, as in this example:

x = begin
 a = 5
 2 * a
end # now x is 10
println(a) #> a is 5

After end, x has the value 10 and a is 5. This can also be written with () as follows:

x = (a = 5; 2 * a) #> 10

The value of a compound expression is the value of the last sub-expression. Variables
introduced in it are still known after the expression ends.

Values that don't change during program execution are constants, which are declared with
const. In other words, they are immutable, and their type is inferred. It is a good practice
to write their name in uppercase letters, like this:

const GC = 6.67e-11 # gravitational constant in m3/kg s2

Julia defines a number of constants, such as ARGS (an array that contains the command-line
arguments), VERSION (the version of Julia that is running), and OS_NAME (the name of the
operating system such as Linux, Windows, or Darwin), mathematical constants (such as pi
and e), and Datetime constants (such as Friday, Fri, August, and Aug).

If you try to give a global constant a new value, you get a warning, but if you change its
type, you get an error, as follows:

julia> GC = 3.14
 Warning: redefining constant GC
julia> GC = 10
 ERROR: invalid redefinition of constant GC

Constants can only be assigned a value once, and their type cannot
change, so they can be optimized. Use them whenever possible in the
global scope.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[47]

So, global constants are more about type than value, which makes sense, because Julia gets
its speed from knowing the correct types. If, however, the constant variable is of a mutable
type (for example, Array, Dict (refer to Chapter 8, I/O, Networking, and Parallel
Computing)), then you can't change it to a different array, but you can always change
the contents of that variable:

julia> const ARR = [4,7,1]
julia> ARR[1] = 9
julia> show(ARR) #> [9,7,1]
julia> ARR = [1, 2, 3]
 Warning: redefining constant ARR

To review what we have learned in this chapter, we will play with characters, strings, and
arrays in the following program (strings_arrays.jl):

using Statistics
a newspaper headline:
str = "The Gold and Blue Loses a Bit of Its Luster"
println(str)
nchars = length(str)
println("The headline counts $nchars characters") # 43
str2 = replace(str, "Blue" => "Red")

strings are immutable
println(str) # The Gold and Blue Loses a Bit of Its Luster
println(str2)
println("Here are the characters at position 25 to 30:")
subs = str[25:30]
print("-$(lowercase(subs))-") # "-a bit -"
println("Here are all the characters:")
for c in str
 println(c)
end
arr = split(str,' ')
show(arr)
#["The","Gold","and","Blue","Loses","a","Bit","of","Its","Luster"]
nwords = length(arr)
println("The headline counts $nwords words") # 10
println("Here are all the words:")
for word in arr
 println(word)
end
arr[4] = "Red"
show(arr) # arrays are mutable
println("Convert back to a sentence:")
nstr = join(arr, ' ')
println(nstr) # The Gold and Red Loses a Bit of Its Luster

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables, Types, and Operations Chapter 2

[48]

working with arrays:
println("arrays: calculate sum, mean and standard deviation ")
arr = collect(1:100)
typeof(arr) #> Array{Int64,1}
println(sum(arr)) #> 5050
println(mean(arr)) #> 50.5

Summary
In this chapter, we reviewed some basic elements of Julia, such as constants, variables, and
types. We also learned how to work with the basic types such as numbers, characters,
strings, and ranges, and encountered the very versatile array type. In the next chapter, we
will look in-depth at functions and realize that Julia deserves to be called a functional
language.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Functions

Julia is first and foremost a functional language because computations and data
transformations are done through functions; they are first-class citizens in Julia. Programs
are structured around defining functions and to overload them for different combinations
of argument types. This chapter discusses this keystone concept, covering the following
topics:

Defining functions
Optional and keyword arguments
Anonymous functions
First-class functions and closures
Recursive functions
Broadcasting
Map, filter, and list comprehensions
Generic functions and multiple dispatch

Defining functions
A function is an object that gets a number of arguments (the argument list, arglist) as the
input, then does something with these values in the function body, and returns none, one,
or more value(s). Multiple arguments are separated by commas (,) in an arglist (in fact,
they form a tuple, as do the return values; refer to the Tuples section of Chapter 5, Collection
Types). The arguments are also optionally typed, and the type(s) can be user-defined. The
general syntax is as follows:

function fname(arglist)
 # function body...
 return value(s)
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[50]

A function's argument list can also be empty; in this case, it is written as fname().

The following is a simple example:

code in functions101.jl
function mult(x, y)
 println("x is $x and y is $y")
 return x * y
end

Function names such as mult are, by convention, in lower-case. They can contain Unicode
characters, which are useful in mathematical notations. The return keyword in the last line
is optional; we could have written the line as x * y. In general, the value of the last
expression in the function is returned, but writing return is mostly a good idea in
multiline functions to increase readability.

The function called with n = mult(3, 4) returns 12, and assigns the return value to a
new variable, n. You can also execute a function just by calling fname(arglist) if you
only need its side-effects (that is, how the function affects the program state; for instance, by
changing the global variables). The return keyword can also be used within a condition in
other parts of the function body to exit the function earlier, as in this example:

function mult(x, y)
 println("x is $x and y is $y")
 if x == 1
 return y
 end
 x * y
end

In this case, return can also be used without a value so that the function returns nothing.

Functions are not limited to returning a single value. Here is an example with multiple
return values:

function multi(n, m)
 n*m, div(n,m), n%m
end

This returns the tuple (16,4,0) when called with multi(8, 2). The return values can be
extracted to other variables such as x, y, z = multi(8, 2); then x becomes 16, y
becomes 4, and z becomes 0. In fact, you can say that Julia always returns a single value,
but this value can be a tuple that can be used to pass multiple variables back to the
program.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[51]

We can also have a variable with a number of arguments using the ellipsis operator
(...). An example of this operator is as follows:

function varargs(n, m, args...)
 println("arguments : $n $m $args")
 end

Here, n and m are just positional arguments (there can be more or none at all). The args...
argument takes in all the remaining parameters in a tuple. If we call the function with
varargs(1, 2, 3, 4), then n is 1, m is 2, and args has the value (3, 4). When there are
still more parameters, the tuple can grow; or if there are none, it can be empty (). The same
splat operator can also be used to unpack a tuple or an array into individual arguments. For
example, we can define a second variable argument function as follows:

function varargs2(args...)
 println("arguments2: $args")
end

With x = (3, 4), we can call varargs2 as varargs2(1, 2, x...). Now, args
becomes the tuple (1, 2, 3, 4); the tuple x was spliced. This also works for arrays. If x
= [10, 11, 12], then args becomes (1, 2, 10, 11, 12). The receiving function does
not need to be a variable argument function, but then the number of spliced parameters
must exactly match the number of arguments.

It is important to realize that, in Julia, all arguments to functions (with the exception of
plain data such as numbers and chars) are passed by reference. Their values are not copied
when they are passed, which means they can be changed from inside the function, and the
changes will be visible to the calling code.

For example, consider the following code:

function insert_elem(arr)
 push!(arr, -10)
end

arr = [2, 3, 4]
insert_elem(arr)
arr is now [2, 3, 4, -10]

As this example shows, arr itself has been modified by the function.

Due to the way Julia compiles, a function must be defined by the time it is actually called
(but it can be used before that in other function definitions).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[52]

It can also be useful to indicate the argument types, to restrict the kind of parameters
passed when calling. Our function header for floating point numbers would then look
like: function mult(x::Float64, y::Float64). When this is the only mult function,
and we call this function with mult(5, 6), we receive an error, ERROR: MethodError:
no method matching mult(::Int64, ::Int64), proving that Julia is indeed a
strongly typed language. It does not accept integer parameters for floating point
arguments.

If we define a function without types, it is generic; the Julia JIT compiler is ready to
generate versions called methods for different argument types when needed. Define the
previous function mult in the REPL, and you will see the output as mult (generic
function with 1 method).

There is also a more compact, one-line function syntax (the assignment form) for short
functions, for example, mult(x, y) = x * y. Use this, preferably, for simple one-line
functions, as it will lend the code greater clarity. Because of this, mathematical functions
can also be written in an intuitive form:

f(x, y) = x^3 - y + x * y; f(3, 2) #=> 31

A function defines its own scope. The set of variables that are declared inside a function are
only known inside the function, and this is also true for the arguments. Functions can be
defined as top-level (global) or nested (a function can be defined within another function).
Usually, functions with related functionality are grouped in their own Julia file, which is
included in a main file. Or, if the function is big enough, it can have its own file, preferably
with the same name as the function.

Optional and keyword arguments
When defining functions, one or more arguments can be given a default value such as
f(arg = val). If no parameter is supplied for arg, then val is taken as the value of arg.
The position of these arguments in the function's input is important, just as it is for
normal arguments; that's why they are called optional positional arguments. Here is an
example of an f function with an optional argument b:

code in arguments.jl:
f(a, b = 5) = a + b

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[53]

For example, if it's f(1), then it returns 6; f(2, 5) returns 7; and f(3) returns 8.
However, calling it with f() or f(1,2,3) returns an error, because there is no matching
function f with zero or three arguments. These arguments are still only defined by position:
calling f(2, b = 5) raises an error as ERROR: function f does not accept
keyword arguments.

Until now, arguments were only defined by position. For code clarity, it can be useful to
explicitly call them by name, so they are called optional keyword arguments. Because the
arguments are given explicit names, their order is irrelevant, but they must come last and
be separated from the positional arguments by a semi-colon (;) in the argument list, as
shown in this example:

 k(x; a1 = 1, a2 = 2) = x * (a1 + a2)

Now, k(3, a2 = 3) returns 12, k(3, a2 = 3, a1 = 0) returns 9 (so their position
doesn't matter), but k(3) returns 9 (demonstrating that the keyword arguments are
optional). Normal, optional positional, and keyword arguments can be combined as
follows:

function allargs(normal_arg, optional_positional_arg=2; keyword_arg="ABC")
 print("normal arg: $normal_arg" -)
 print("optional arg: $optional_positional_arg" -)
 print("keyword arg: $keyword_arg")
end

If we call allargs(1, 3, keyword_arg=4), it prints normal arg: 1 - optional
arg: 3 - keyword arg: 4.

A useful case is when the keyword arguments are splatted as follows:

function varargs2(;args...)
 args
end

Calling this with varargs2(k1="name1", k2="name2", k3=7) returns
pairs(::NamedTuple) with three entries: (:k1,"name1") (:k2,"name2") (:k3,7).
Now, args is a collection of (key, value) tuples, where each key comes from the name of
the keyword argument, and it is also a symbol (refer to the Strings section of Chapter 2,
Variables, Types, and Operations) because of the colon (:) as prefix.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[54]

Anonymous functions
The function f(x, y) at the end of the Defining functions section can also be written with
no name, as an anonymous function: (x, y) -> x^3 - y + x * y. We can, however,
bind it to a name, such as f = (x, y) -> x^3 - y + x * y, and then call it, for
example, as f(3, 2). Anonymous functions are also often written using the following
syntax (note the space before (x)):

 function (x)
 x + 2
 end
(anonymous function)
julia> ans(3)
5

Often, they are also written with a lambda expression as (x) -> x + 2. Before the stab
character (->) are the arguments, and after the stab character we have the return value. This
can be shortened to x -> x + 2. A function without arguments would be written as ()
-> println("hello, Julia").

Here is an anonymous function taking three arguments: (x, y, z) -> 3x + 2y - z.
When the performance is important, try to use named functions instead, because calling
anonymous functions involves a huge overhead. Anonymous functions are mostly used
when passing a function as an argument to another function, which is precisely what we
will discuss in the next section.

First-class functions and closures
In this section, we will demonstrate the power and flexibility of functions (example code
can be found in Chapter 3\first_class.jl). Firstly, functions have their own type:
Function. Functions can also be assigned to a variable by their name:

julia> m = mult
julia> m(6, 6) #> 36

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[55]

This is useful when working with anonymous functions, such as c = x -> x + 2, or as
follows:

julia> plustwo = function (x)
 x + 2
 end
(anonymous function)
julia> plustwo(3)
5

Operators are just functions written with their arguments in an infix form; for example, x +
y is equivalent to +(x, y). In fact, the first form is parsed to the second form when it is
evaluated. We can confirm it in the REPL: +(3,4) returns 7 and typeof(+) returns
Function.

A function can take a function (or multiple functions) as its argument, which calculates the
numerical derivative of a function f; as defined in the following function:

function numerical_derivative(f, x, dx=0.01)
 derivative = (f(x+dx) - f(x-dx))/(2*dx)
 return derivative
end

The function can be called as numerical_derivative(f, 1, 0.001), passing an
anonymous function f as an argument:

f = x -> 2x^2 + 30x + 9
println(numerical_derivative(f, 1, 0.001)) #> 33.99999999999537

A function can also return another function (or multiple functions) as its value. This is
demonstrated in the following code, which calculates the derivative of a function (this is
also a function):

function derivative(f)
 return function(x)
 # pick a small value for h
 h = x == 0 ? sqrt(eps(Float64)) : sqrt(eps(Float64)) * x
 xph = x + h
 dx = xph - x
 f1 = f(xph) # evaluate f at x + h
 f0 = f(x) # evaluate f at x
 return (f1 - f0) / dx # divide by h
 end
end

As we can see, both are excellent use cases for anonymous functions.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[56]

Here is an example of a counter function that returns (a tuple of) two anonymous
functions:

function counter()
 n = 0
 () -> n += 1, () -> n = 0
end

We can assign the returned functions to variables:

 (addOne, reset) = counter()

Notice that n is not defined outside the function:

julia> n
ERROR: n not defined

Then, when we call addOne repeatedly, we get the following output:

addOne() #=> 1
addOne() #=> 2
addOne() #=> 3
reset() #=> 0

What we see is that, in the counter function, the variable n is captured in the anonymous
functions. It can only be manipulated by the functions, addOne and reset. The two
functions are said to be closed over the variable n and both have references to n. That's why
they are called closures.

Currying (also called a partial application) is the technique of translating the evaluation of
a function that takes multiple arguments (or a tuple of arguments) into evaluating a
sequence of functions, each with a single argument. Here is an example of function
currying:

function add(x)
 return function f(y)
 return x + y
 end
end

The output returned is add (generic function with 1 method).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[57]

Calling this function with add(1)(2) returns 3. This example can be written more
succinctly as add(x) = f(y) = x + y or, with an anonymous function, as add(x) = y
-> x + y. Currying is especially useful when passing functions around, as we will see in
the Map, filter, and list comprehensions section.

functions
Functions can be nested, as demonstrated in the following example:

function a(x)
 z = x * 2
 function b(z)
 z += 1
 end
 b(z)
end

d = 5
a(d) #=> 11

A function can also be recursive, that is, it can call itself. To show some examples, we need
to be able to test a condition in code. The simplest way to do this in Julia is to use the
ternary operator ? of the form expr ? b : c (ternary because it takes three arguments).
Julia also has a normal if construct. (Refer to the Conditional evaluation section of Chapter
4, Control Flow.) expr is a condition and, if it is true, then b is evaluated and the value is
returned, else c is evaluated. This is used in the following recursive definition to calculate
the sum of all the integers up to and including a certain number:

sum(n) = n > 1 ? sum(n-1) + n : n

The recursion ends because there is a base case: when n is 1, this value is returned. Here is
the famous function to calculate the nth Fibonacci number that is defined as the sum of the
two previous Fibonacci numbers:

fib(n) = n < 2 ? n : fib(n-1) + fib(n-2)

When using recursion, care should be taken to define a base case to stop the calculation.
Also, although Julia can nest very deeply, watch out for stack overflows, because, until
now, Julia has not done tail call optimization automatically.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[58]

Broadcasting
A function f can be broadcast over all elements of an array (or matrix) by using the dot
notation f.(matrix); for example:

arr = [1.0, 2.0, 3.0]
sin.(arr) #>
3-element Array{Float64,1}:
0.8414709848078965
0.9092974268256817
0.1411200080598672

Here is another example:

f(x,y) = x + 7y
f.(pi, arr)
#> 3-element Array{Float64,1}:
10.141592653589793
17.141592653589793
24.141592653589793

Broadcasting is very useful in Julia to write compact expressions with arrays and matrices.

Map, filter, and list comprehensions
Maps and filters are typical for functional languages. A map is a function of the form
map(func, coll), where func is a (often anonymous) function that is successively
applied to every element of the coll collection, so map returns a new collection. Some
examples are as follows:

map(x -> x * 10, [1, 2, 3]) returns [10, 20, 30]
cubes = map(x-> Base.power_by_squaring(x, 3),

collect(1:5)) returns [1, 8, 27, 64, 125]

power_by_squaring is an internal function in Base, which means it is
not exported, so it has to be qualified with Base.

The map function can also be used with functions that take more than one argument. In this
case, it requires a collection for each argument; for example, map(*, [1, 2, 3], [4, 5,
6]) works per element and returns [4, 10, 18].

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[59]

When the function passed to map requires several lines, it can be a bit unwieldy to write as
an anonymous function. For instance, consider using the following function:

map(x-> begin
 if x == 0 return 0
 elseif iseven(x) return 2
 elseif isodd(x) return 1
 end
 end, collect(-3:3))

This function returns [1,2,1,0,1,2,1]. This can be simplified with a do block as follows:

map(collect(-3:3)) do x
 if x == 0 return 0
 elseif iseven(x) return 2
 elseif isodd(x) return 1
 end
end

The do x statement creates an anonymous function with the argument x and passes it as
the first argument to map.

A filter is a function of the form filter(func, coll), where func is a (often
anonymous) Boolean function that is checked on each element of the collection coll. Filter
returns a new collection with only the elements on which func is evaluated to be true. For
example, the following code filters the even numbers and returns [2, 4, 6, 8, 10]:

filter(n -> iseven(n), collect(1:10))

An incredibly powerful and simple way to create an array is to use a list comprehension.
This is a kind of implicit loop which creates the result array and fills it with values. Some
examples are as follows:

arr = Float64[x^2 for x in 1:4] creates 4-element
Array{Float64,1} with elements 1.0, 4.0, 9.0, and 16.0.
cubes = [x^3 for x in collect(1:5)] returns [1, 8, 27, 64, 125].
mat1 = [x + y for x in 1:2, y in 1:3] creates a 2 x 3 array
(Array{Int64,2}):

2 3 4
3 4 5

table10 = [x * y for x=1:10, y=1:10] creates a 10 x 10 array
(Array{Int64,2}), and returns the multiplication table of 10.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[60]

arrany = Any[i * 2 for i in 1:5] creates 5-element Array{Any,1}
with elements 2, 4, 6, 8, and 10.

For more examples, you can refer to the Dictionaries section in Chapter 5, Collection Types.

Constraining the type, as with arr, is often helpful for performance. Using typed
comprehensions everywhere for explicitness and safety in production code is certainly the
best practice.

Generic functions and multiple dispatch
We have already seen that functions are inherently defined as generic, that is, they can be
used for different types of their arguments. The compiler will generate a separate version of
the function each time it is called with arguments of a new type. In Julia, a concrete version
of a function for a specific combination of argument types is called a method. To define a
new method for a function (also called overloading), just use the same function name but a
different signature, that is, with different argument types. A list of all the methods is stored
in a virtual method table (vtable) on the function itself; methods do not belong to a
particular type. When a function is called, Julia will lookup in vtable at runtime to find
which concrete method it should call, based on the types of all its arguments; this is
Julia's multiple dispatch mechanism, which Python, C++, or Fortran do not implement this.
It allows open extensions where normal object-oriented code would have forced you to
change a class or subclass to an existing class and thus change your library. Note that only
positional arguments are taken into account for multiple dispatch, and not keyword
arguments.

For each of these different methods, specialized low-level code is generated, targeted to the
processor's instruction set. In contrast to object-oriented (OO) languages, vtable is stored
in the function, and not in the type (or class). In OO languages, a method is called on a
single object, object.method(), which is generally called single dispatch. In Julia, one
can say that a function belongs to multiple types, or that a function is specialized or
overloaded for different types. Julia's ability to compile code that reads like a high-level
dynamic language into machine code that performs almost entirely like C is derived from
its ability to do multiple dispatch.

To make this idea more concrete, a function such as square(x) = x * x actually defines
a potentially infinite family of methods, one for each of the possible types of the argument
x. For example, square(2) will call a specialized method that uses the CPU's native
integer multiplication instruction, whereas square(2.0) will use the CPU's native floating
point multiplication instruction.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[61]

Let's see multiple dispatch in action. We will define a function f that takes two arguments n
and m returning a string, but, in some methods, the type of n or m, or both, is annotated.
(Number is a supertype of Integer, refer to the The type hierarchy – subtypes and supertypes
section in Chapter 6, More on Types, Methods, and Modules.) This can be seen in the
following example:

f(n, m) = "base case"
f(n::Number, m::Number) = "n and m are both numbers"
f(n::Number, m) = "n is a number"
f(n, m::Number) = "m is a number"
f(n::Integer, m::Integer) = "n and m are both integers"

This returns f (generic function with 5 methods).

When n and m have no type, as in "base case", then their type is Any, the supertype of all
types. Let's take a look at how the most appropriate method is chosen in each of the
following function calls:

f(1.5, 2) returns n and m are both numbers
f(1, "bar") returns n is a number
f(1, 2) returns n and m are both integers
f("foo", [1,2]) returns base case

Calling f(n, m) will never result in an error, because if no other method matches, the base
case will be invoked when we add a new method:

f(n::Float64, m::Integer) = "n is a float and m is an integer"

So, the call to f(1.5,2) now returns n is a float and m is an integer.

To get a quick overview of all the versions of a function, type methods(fname) into the
REPL. For example, methods(+) shows a listing of 174 methods for a generic function +:

+(x::Bool) at bool.jl:36
+(x::Bool,y::Bool) at bool.jl:39
...
+(a,b,c) at operators.jl:82
+(a,b,c,xs...) at operators.jl:83

You can even take a look in the source code at how they are defined, as in base/bool.jl
in the local Julia installation or at
https://github.com/JuliaLang/julia/blob/master/base/bool.jl, where we can see the
addition of Bool variables equal to the addition of integers: +(x::Bool, y::Bool) =
int(x) + int(y), where int(false) is 0 and int(true) is 1.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/JuliaLang/julia/blob/master/base/bool.jl

Functions Chapter 3

[62]

As a second example, methods(sort) shows # 6 methods for the generic
function "sort".

The macro @which gives you the exact method that is used and where in the source code
that method is defined, for example, @which 2 * 2 returns *(x::Int64, y::Int64) at
int.jl:47. This also works the other way around. If you want to know which methods are
defined for a certain type, or use that type, ask methodswith(Type) from the
InteractiveUtils module. For example, here is a part of the output of
InteractiveUtils .methodswith(String):

[18] getindex(s::String, r::UnitRange{Int64}) in Base at
strings/string.jl:240
[19] getindex(s::String, i::Int64) in Base at strings/string.jl:205
[20] getindex(s::String, r::UnitRange{#s56} where #s56<:Integer) in Base at
strings/string.jl:237 ...

As already noted, type stability is crucial for optimal performance. A function is type-stable
if the return type(s) of all the output variables can be deduced from the types of the inputs.
So try to design your functions with type stability in mind.

Some crude performance measurements (execution time and memory used) on the
execution of functions can be obtained from the macro @time, for example:

@time fib(35)
elapsed time: 0.115188593 seconds (6756 bytes allocated) 9227465

@elapsed only returns the execution time. @elapsed fib(35) returns 0.115188593.

In Julia, the first call of a method invokes the LLVM JIT compiler backend (refer to the How
Julia works section in Chapter 1, Installing the Julia Platform), to emit machine code for it, so
this warm-up call will take a bit longer. Start timing or benchmarking from the second call
onward, after doing a dry run.

When writing a program with Julia, first write an easy version that works. Then, if
necessary, improve the performance of that version by profiling it and then fixing
performance bottlenecks. We'll come back to performance measurements in the Performance
tips section of Chapter 9, Running External Programs.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions Chapter 3

[63]

Summary
In this chapter, we saw that functions are the basic building blocks of Julia. We explored the
power of functions, their arguments and return values, closures, maps, filters, and
comprehensions. However, to make the code in a function more interesting, we need to see
how Julia does basic control flow, iterations, and loops. This is the topic of the next chapter.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Control Flow

Julia offers many control statements that are familiar to the other languages, while also
simplifying the syntax for many of them. However, tasks are probably new; they are based
on the coroutine concept to make computations more flexible.

We will cover the following topics in this chapter:

Conditional evaluation
Repeated evaluation
Exception handling
Scope revisited
Tasks

Conditional evaluation
Conditional evaluation means that pieces of code are evaluated, depending on whether a
Boolean expression is either true or false. The familiar if...elseif...else...end
syntax is used here, which is as follows:

code in Chapter 4\conditional.jl
var = 7
if var > 10
 println("var has value $var and is bigger than 10.")
elseif var < 10
 println("var has value $var and is smaller than 10.")
else
 println("var has value $var and is 10.")
end
=> prints "var has value 7 and is smaller than 10."

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[65]

The elseif (of which there can be more than one) or else branches are optional. The
condition in the first branch is evaluated, only the code in that branch is executed when the
condition is true, and so on; so only one branch ever gets evaluated. No parentheses around
condition(s) are needed, but they can be used for clarity. Each expression tested must
effectively result in a true or false value, and no other values (such as 0 or 1) are allowed.

Because every expression in Julia returns a value, so also does the if expression. We can
use this expression to do an assignment depending on a condition. In the preceding case,
the return value is nothing since that is what println returns.

However, in the following snippet, the value 15 is assigned to z:

a = 10
b = 15
z = if a > b a
 else b
 end

These kinds of expression can be simplified using the ternary operator ? (which we
introduced in the Recursive functions section in Chapter 3, Functions) as follows:

z = a > b ? a : b

Here, only a or b is evaluated and parentheses () can be added around each clause, as
they are necessary for clarity. The ternary operator can be chained, but then it often
becomes harder to read. Our first example can be rewritten as follows:

var = 7
varout = "var has value $var"
cond = var > 10 ? "and is bigger than 10." : var < 10 ? "and is
 smaller than 10" : "and is 10."
println("$varout $cond") # var has value 7 and is smaller than 10

Using short-circuit evaluation (refer to the Elementary mathematical functions section in
Chapter 2, Variables, Types, and Operations), the statements with if...only are often
written as follows:

if <cond> <statement> end is written as <cond> && <statement
if !<cond> <statement> end is written as <cond> || <statement>

To make this clearer, the first can be read as <cond> and then <statement>, and the second
as <cond> or else <statement>.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[66]

This feature can come in handy when guarding the parameter values passed into the
arguments, which calculates the square root, like in the following function:

function sqroot(n::Int)
 n >= 0 || error("n must be non-negative")
 n == 0 && return 0
 sqrt(n)
end
sqroot(4) #=> 2.0
sqroot(0) #=> 0.0
sqroot(-6) #=> ERROR: LoadError: n must be non-negative

The error statement effectively throws an exception with the given message and stops the
code execution (refer to the Exception handling section in this chapter).

Julia has no switch/case statement, and the language provides no built-in pattern matching
(although one can argue that multiple dispatch is a kind of pattern matching that is based
not on value, but on type).

Repeated evaluation
Julia has a for loop for iterating over a collection or repeating some code a certain number
of times. You can use a while loop when the repetition depends on a condition, and you
can influence the execution of both loops through break and continue.

for loops
We already encountered the for loop when iterating over the element e of a collection
coll (refer to the Strings, Ranges and Arrays sections in Chapter 2, Variables, Types, and
Operations). This takes the following general form:

code in Chapter 4\repetitions.jl
for e in coll
 # body: process(e) executed for every element e in coll
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[67]

Here, coll can be a range, a string, an array, or any other iterable collection (for other uses,
also refer to Chapter 5, Collection Types). The variable e is not known outside the for loop.
When iterating over a numeric range, often = (equal to) is used instead of in:

 for n = 1:10
 print(n^3)
 end

(This code can be a one-liner, but is spread over three lines for clarity.) The for loop is
generally used when the number of repetitions is known.

Use for i in 1:n rather than for i in [1:n] since the latter allocates
an array while the former uses a simpler range object.

You can also use ϵ instead of in or =.

If you need to know the index when iterating over the elements of an array, run the
following code:

arr = [x^2 for x in 1:10]
for i = 1:length(arr)
 println("the $i-th element is $(arr[i])")
end

A more elegant way to accomplish this uses the enumerate function, as follows:

for (ix, val) in enumerate(arr)
 println("the $ix-th element is $val")
end

Nested for loops are possible, as in this code snippet, for a multiplication table:

for n = 1:5
 for m = 1:5
 println("$n * $m = $(n * m)")
 end
end

However, nested for loops can often be combined into a single outer loop, as follows:

for n = 1:5, m = 1:5
 println("$n * $m = $(n * m)")
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[68]

while loops
When you want to use looping as long as a condition stays true, use the while loop, which
is as follows:

a = 10; b = 15
while a < b
 # body: process(a)
 println(a)
 global a += 1
end
prints on consecutive lines: 10 11 12 13 14

In the body of the loop, something has to change the value of a so that the initial condition
becomes false and the loop ends. If the initial condition is false at the start, the body of the
while loop is never executed. The global keyword makes a in the current scope refer to
the global variable of that name.

If you need to loop over an array while adding or removing elements from the array, use a
while loop, as follows:

arr = [1,2,3,4]
while !isempty(arr)
 print(pop!(arr), ", ")
end

The preceding code returns the output as 4, 3, 2, 1.

The break statement
Sometimes, it is convenient to stop the loop repetition inside the loop when a certain
condition is reached. This can be done with the break statement, which is as follows:

a = 10; b = 150
while a < b
 # process(a)
 println(a)
 global a += 1
 if a >= 50
 break
 end
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[69]

This prints out the numbers 10 to 49, and then exits the loop when break is encountered.
The following is an idiom that is often used; how to search for a given element in an array,
and stop when we have found it:

arr = rand(1:10, 10)
println(arr)
get the index of search in an array arr:
searched = 4
for (ix, curr) in enumerate(arr)
 if curr == searched
 println("The searched element $searched occurs on index $ix")
 break
 end
end

A possible output might be as follows:

[8,4,3,6,3,5,4,4,6,6]
The searched element 4 occurs on index 2

The break statement can be used in for loops as well as in while loops. It is, of course,
mandatory in a while true...end loop.

The continue statement
What should you do when you want to skip one (or more) loop repetitions then,
nevertheless, continue with the next loop iteration? For this, you need continue, as in this
example:

for n in 1:10
 if 3 <= n <= 6
 continue # skip current iteration
 end
 println(n)
end

This prints out, 1 2 7 8 9 10, skipping the numbers three to six, using a chained
comparison.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[70]

There is no repeat...until or do...while construct in Julia. A do...while loop can be
simulated as follows:

while true
code
 condition || break
end

Exception handling
When executing a program, abnormal conditions can occur that force the Julia runtime to
throw an exception or error, show the exception message and the line where it occurred,
and then exit. For example (follow along with the code in Chapter 4\errors.jl):

Using the wrong index for an array, for example, arr = [1,2,3]and then
asking for arr[0] causes a program to stop with ERROR: BoundsError()
Calling sqrt() on a negative value, for example, sqrt(-3) causes ERROR:
DomainError: sqrt will only return a complex result if called

with a complex argument, try sqrt(complex(x)); the
sqrt(complex(-3)) function gives the correct result 0.0 +
1.7320508075688772im

A syntax error in Julia code will usually result in LoadError

Similar to these, there are 18 predefined exceptions that Julia can generate (refer to
http://docs.julialang.org/en/latest/manual/control-flow/#man-exception-

handling). They are all derived from a base type, Exception.

How can you signal an error condition yourself? You can call one of the built-in exceptions
by throwing such an exception; that is, calling the throw function with the exception as an
argument. Suppose an input field, code, can only accept the codes listed in codes =
["AO", "ZD", "SG", "EZ"]. If code has the value, AR, the following test produces
DomainError:

if code in codes
 println("This is an acceptable code")
else
 throw(DomainError())
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://docs.julialang.org/en/latest/manual/control-flow/#man-exception-handling
http://docs.julialang.org/en/latest/manual/control-flow/#man-exception-handling

Control Flow Chapter 4

[71]

A rethrow() statement can be useful to hand the current exception to a higher calling code
level.

Note that you can't give your own message as an argument to DomainError(). This is
possible with the error(message) function (refer to the Conditional evaluation section) with
a String message. This results in a program stopping with an ErrorException function
and an ERROR: message message.

Creating user-defined exceptions can be done by deriving from the base type, Exception,
such as mutable struct CustomException <: Exception end (for an explanation of
<, refer to the The type hierarchy - subtypes and supertypes section in Chapter 6, More on Types,
Methods, and Modules). These can also be used as arguments to be thrown.

In order to catch and handle possible exceptions yourself so that the program can continue
to run, Julia uses the familiar try...catch...finally construct, which includes the
following:

The dangerous code that comes in the try block
The catch block that stops the exception and allows you to react to the code that
threw the exception

Here is an example:

a = []
try
 pop!(a)
catch ex
 println(typeof(ex))
 showerror(STDOUT, ex)
end

This example prints the output, as follows:

 ArgumentError
 array must be non-empty

Popping an empty array generates an exception. The variable, ex, contains the exception
object, but a plain catch without a variable can also be used. The showerror function is a
handy function; its first argument can be any I/O stream, so it could be a file.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[72]

To differentiate between the different types of exception in the catch block, you can use
the following code:

try
 # try this code
catch ex
 if isa(ex, DomainError)
 # do this
 elseif isa(ex, BoundsError)
 # do this
 end
end

Similar to if and while, try is an expression, so you can assign its return value to a
variable. So, run the following code:

ret = try
 global a = 4 * 2
 catch ex
 end

After running the preceding code, ret contains the value 8.

Sometimes, it is useful to have a set of statements to be executed no matter what, for
example, to clean up resources. Typical use cases are when reading from a file or a
database. We want the file or the database connection to be closed after the execution,
regardless of whether an error occurred while the file or database was being processed.
This is achieved with the finally clause of a try...catch...finally construct, as in
the following code snippet:

try
 global f = open("file1.txt") # returns an IOStream(<file file1.txt>)
operate on file f
catch ex
finally
 close(f)
end

f must be defined as global in try, otherwise it is not known in the finally branch.

Here is a more concrete example:

try
 open("file1.txt", "r") do f
 k = 0
 while(!eof(f))
 a=readline(f)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[73]

 println(a)
 k += 1
 end
 println("\nNumber of lines in file: $k")
 end
catch ex
finally
 close(f)
end

The try...catch...finally full construct guarantees that the finally block is always
executed, even when there is a return in try. In general, all three combinations of
try...catch, try...finally, and try...catch...finally are possible.

It is important to realize that try...catch should not be used in
performance bottlenecks, because the mechanism impedes performance.
Whenever feasible, test a possible exception with normal conditional
evaluation.

The preceding code can be written more idiomatically as follows:

open("file1.txt", "w") do f
 # operate on file f
end

close(f) is no longer needed: it is done implicitly with the end.

Scope revisited
A variable that is defined at the top level is said to have global scope.

The for, while, and try blocks (but not the if blocks) all introduce a new scope. Variables
defined in these blocks are only known to that scope. This is called the local scope, and
nested blocks can introduce several levels of local scope. However, global variables are not
accessible in for and while loops.

Variables with the same name in different scopes can safely be used simultaneously. If a
variable exists both in global and local scope, you can decide which one you want to use by
prefixing them with the global or local keyword:

global: This indicates that you want to use the variable from the outer, global
scope. This applies to the whole of the current scope block.
local: This means that you want to define a new variable in the current scope.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[74]

The following example will clarify this, as follows:

code in Chapter 4\scope.jl
x = 9
function funscope(n)
 x = 0 # x is in the local scope of the function
 for i = 1:n
 local x # x is local to the for loop
 x = i + 1
 if (x == 7)
 println("This is the local x in for: $x") #=> 7
 end
 end
 x
 println("This is the local x in funscope: $x") #=> 0
 global x = 15
end

funscope(10)
println("This is the global x: $x") #=> 15

This prints out the following result:

This is the local x in for: 7
This is the local x in funscope: 0
This is the global x: 15

If the local keyword was omitted from the for loop, the second print statement would
print out 11 instead of 7, as follows:

This is the local x in for: 7
This is the local x in funscope: 11
This is the global x: 15

What is the output when the global x = 15 statement is left out? In this situation, the
program prints out this result:

This is the local x in for: 7
This is the local x in funscope: 11
This is the global x: 9

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[75]

However, needless to say, such name conflicts obscure the code and are a
source of bugs, so try to avoid them if possible.

If you need to create a new local binding for a variable, use the let block. Execute the
following code snippet:

anon = Array{Any}(undef, 2)
for i = 1:2
 anon[i] = ()-> println(i)
 i += 1
end

Here, both anon[1] and anon[2] are anonymous functions. When they are called with
anon[1]() and anon[2](), they print 2 and 3 (the values of i when they were created
plus one). What if you wanted them to stick with the value of i at the moment of their
creation? Then, you have to use let and change the code to the following:

anon = Array{Any}(undef, 2)
for i = 1:2
 let i = i
 anon[i] = ()-> println(i)
 end
 i += 1
end

Now, anon[1]() and anon[2]() print 1 and 2, respectively. Because of let, they kept the
value of i the same as when they were created.

The let statement also introduces a new scope. You can, for example, combine it with
begin, like this:

begin
 local x = 1
 let
 local x = 2
 println(x) #> 2
 end
 x
 println(x) #> 1
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[76]

for loops and comprehensions differ in the way they scope an iteration variable. When i is
initialized to 0 before a for loop, after executing for i = 1:10 end, the variable i is now
10:

i = 0
for i = 1:10
end
println(i) #> 10

After executing a comprehension such as [i for i = 1:10], the variable i is still 0:

i = 0
[i for i = 1:10]
println(i) #> 0

Tasks
Julia has a built-in system for running tasks, which are, in general, known as coroutines.
With this, a computation that generates values into a Channel (with a put! function) can
be suspended as a task, while a consumer task can pick up the values (with a take!
function). This is similar to the yield keyword in Python.

As a concrete example, let's take a look at a fib_producer function that calculates the first
10 Fibonacci numbers (refer to the Recursive functions section in Chapter 3, Functions), but it
doesn't return the numbers, it produces them:

code in Chapter 4\tasks.jl
 function fib_producer(c::Channel)
 a, b = (0, 1)
 for i = 1:10
 put!(c, b)
 a, b = (b, a + b)
 end
 end

Construct a Channel by providing this function as an argument:

chnl = Channel(fib_producer)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[77]

The task's state is now runnable. To get the Fibonacci numbers, start consuming them with
take! until Channel is closed, and the task is finished (state is :done):

take!(chnl) #> 1
take!(chnl) #> 1
take!(chnl) #> 2
take!(chnl) #> 3
take!(chnl) #> 5
take!(chnl) #> 8
take!(chnl) #> 13
take!(chnl) #> 21
take!(chnl) #> 34
take!(chnl) #> 55
take!(chnl) #> ERROR: InvalidStateException("Channel is closed.", :closed)

It is as if the fib_producer function was able to return multiple times, once for each
take! call. Between calls to fib_producer, its execution is suspended, and the consumer
has control.

The same values can be more easily consumed in a for loop, where the loop variable
becomes one by one the produced values:

for n in chnl
 println(n)
end

This produces: 1 1 2 3 5 8 13 21 34 55.

There is a macro @task that does the same thing:

chnl = @task fib_producer(c::Channel)

Coroutines are not executed in different threads, so they cannot run on separate CPUs.
Only one coroutine is running at once, but the language runtime switches between them.
An internal scheduler controls a queue of runnable tasks and switches between them based
on events, such as waiting for data, or data coming in.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Control Flow Chapter 4

[78]

Here is another example, which uses @async to start a task asynchronously, binds a
channel to the task, and then prints out the contents of the channel:

fac(i::Integer) = (i > 1) ? i*fac(i - 1) : 1
c = Channel(0)
task = @async foreach(i->put!(c,fac(i)), 1:5)
bind(c,task)
for i in c
 @show i
end

This prints out the following:

i = 1
i = 2
i = 6
i = 24
i = 120

Tasks should be seen as a form of cooperative multitasking in a single thread. Switching
between tasks does not consume stack space, unlike normal function calls. In general, tasks
have very low overhead; so you can use lots of them if needed. Exception handling in Julia
is implemented using Tasks as well as servers that accept many incoming connections
(refer to the Working with TCP sockets and servers section in Chapter 8, IO, Networking, and
Parallel Computing).

True parallelism in Julia is discussed in the Parallel operations and computing section of
Chapter 8, IO, Networking, and Parallel Computing.

Summary
In this chapter, we explored different control constructs, such as if and while. We also
saw how to catch exceptions with try or catch, and how to throw our own exceptions.
Some subtleties of scope were discussed, and finally, we got an overview of how to use
coroutines in Julia with tasks. Now we are well-equipped to explore more complex types
that consist of many elements. This is the topic of the next chapter, Collection Types.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Collection Types

Collections of values appear everywhere in programs, and Julia has the most important
built-in collection types. In Chapter 2, Variables, Types, and Operations, we introduced two
important types of collection: arrays and tuples. In this chapter, we will look more deeply
into multidimensional arrays (or matrices), and into the tuple type as well. A dictionary
type, where you can look up a value through a key, is indispensable in a modern language,
and Julia has this too. Finally, we will explore the set type. Like arrays, all these types are
parameterized; the type of their elements can be specified at the time of object construction.

Collections are also iterable types, the types over which we can loop with for or an iterator
producing each element of the collection successively. The iterable types include string,
range, array, tuple, dictionary, and set.

So, the following are the topics for this chapter:

Matrices
Tuples
Dictionaries
Sets
An example project—word frequency

Matrices
We know that the notation [1, 2, 3] is used to create an array. In fact, this notation
denotes a special type of array, called a (column) vector in Julia, as shown in the following
screenshot:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[80]

To create this as a row vector (1 2 3), use the notation [1 2 3] with spaces instead of
commas. This array is of type 1 x 3 Array{Int64,2}, so it has two dimensions. (The
spaces used in [1, 2, 3] are for readability only, we could have written this as [1,2,3]).

A matrix is a two- or multidimensional array (in fact, a matrix is an alias for the two-
dimensional case). We can write this as follows:

Array{Int64, 1} == Vector{Int64} #> true
Array{Int64, 2} == Matrix{Int64} #> true

As matrices are so prevalent in data science and numerical programming, Julia has an
amazing range of functionalities for them.

To create a matrix, use space-separated values for the columns and semicolon-separated for
the rows:

// code in Chapter 5\matrices.jl:
matrix = [1 2; 3 4]
 2x2 Array{Int64,2}:
 1 2
 3 4

So, the column vector from the beginning can also be written as [1; 2; 3]. However, you
cannot use commas and semicolons together.

To get the value from a specific element in the matrix, you need to index it by row and then
by column, for example, matrix[2, 1] returns the value 3 (second row, first column).

Using the same notation, one can calculate products of matrices such as [1 2] * [3 ;
4]; this is calculated as [1 2] * [3 4], which returns the value 11 (which is equal to 1*3
+ 2*4). In contrast to this, conventional matrix multiplication is defined with the operator
.*:

[1 2] .* [3 ; 4]
2 Array{Int64,2}:
3 6
4 8

To create a matrix from random numbers between 0 and 1, with three rows and
five columns, use ma1 = rand(3, 5), which shows the following results:

3x5 Array{Float64,2}:
 0.0626778 0.616528 0.60699 0.709196 0.900165
 0.511043 0.830033 0.671381 0.425688 0.0437949
 0.0863619 0.621321 0.78343 0.908102 0.940307

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[81]

The ndims function can be used to obtain the number of dimensions of a matrix. Consider
the following example:

 julia> ndims(ma1) #> 2
 julia> size(ma1) #> a tuple with the dimensions (3, 5)

To get the number of rows (3), run the following command:

julia> size(ma1,1) #> 3

The number of columns (5) is given by:

julia> size(ma1,2) #> 5
julia> length(ma1) #> 15, the number of elements

That's why you will often see this: nrows, ncols = size(ma), where ma is a matrix,
nrows is the number of rows, and ncols is the number of columns.

If you need an identity matrix, where all the elements are zero, except for the elements on
the diagonal that are 1.0, use the I function (from the LinearAlgebra package) with the
argument 3 for a 3 x 3 matrix:

using LinearAlgebra
 idm = Matrix(1.0*I, 3, 3)
#> 3x3 Array{Float64,2}:
 1.0 0.0 0.0
 0.0 1.0 0.0
 0.0 0.0 1.0

You can easily work with parts of a matrix, known as slices; these are similar to those used
in Python and NumPy as follows:

idm[1:end, 2] or shorter idm[:, 2] returns the entire second column
idm[2, :] returns the entire second row
idmc = idm[2:end, 2:end] returns the output as follows:

2x2 Array{Float64,2}
 1.0 0.0
 0.0 1.0

idm[2, :] .= 0 sets the entire second row to 0
idm[2:end, 2:end] = [5 7 ; 9 11] will change the matrix as follows:

1.0 0.0 0.0
0.0 5.0 7.0
0.0 9.0 11.0

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[82]

Slicing operations create views into the original array rather than copying the data, so a
change in the slice changes the original array or matrix.

Any multidimensional matrix can also be seen as a one-dimensional vector in column
order, as follows:

a = [1 2;3 4]
2 Array{Int64,2}:
 1 2
 3 4

a[:]
4-element Array{Int64,1}:
 1
 3
 2
 4

To make an array of arrays (a jagged array), use an Array initialization, and then push!
each array in its place, for example:

jarr = (Array{Int64, 1})[]
push!(jarr, [1,2])
push!(jarr, [1,2,3,4])
push!(jarr, [1,2,3])
#=>
3-element Array{Array{Int64,1},1}:
 [1,2]
 [1,2,3,4]
 [1,2,3]

If ma is a matrix, say [1 2; 3 4], then ma' is the transpose matrix, that is [1 3; 2 4]:

ma: 1 2 ma' 1 3
 3 4 2 4

ma' is an operator notation for the transpose(ma) function.

Multiplication is defined between matrices, as in mathematics, so ma * ma' returns the 2 x
2 matrix or type Array{Int64,2} as follows:

5 11
11 25

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[83]

If you need element-wise multiplication, use ma .* ma', which returns 2 x 2
Array{Int64,2}:

1 6
6 16

The inverse of a matrix ma (if it exists) is given by the inv(ma) function. The inv(ma)
function returns 2 x 2 Array{Float64,2}:

-2.0 1.0
1.5 -0.5

The inverse means that ma * inv(ma) produces the identity matrix:

1.0 0.0
0.0 1.0

Trying to take the inverse of a singular matrix (a matrix that does not have
a well-defined inverse) will result in LAPACKException or
SingularException, depending on the matrix type. Suppose you want
to solve the ma1 * X = ma2 equation, where ma1, X, and ma2 are
matrices. The obvious solution is X = inv(ma1) * ma2. However, this is
actually not that good. It is better to use the built-in solver, where X =
ma1 \ ma2. If you have to solve the X * ma1 = ma2 equation, use the
solution X = ma2 / ma1. Solutions that use / and \ are much more
numerically stable, and also much faster.

If v = [1.,2.,3.] and w = [2.,4.,6.], and you want to form a 3 x 2 matrix with these
two column vectors, then use hcat(v, w) (for horizontal concatenation) to produce the
following output:

1.0 2.0
2.0 4.0
3.0 6.0

vcat(v,w) (for vertical concatenation) results in a one-dimensional array with all the six
elements with the same result as append!(v, w).

Thus, hcat concatenates vectors or matrices along the second dimension (columns), while
vcat concatenates along the first dimension (rows). The more general cat can be used to
concatenate multidimensional arrays along arbitrary dimensions.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[84]

There is an even simpler literal notation: to concatenate two matrices a and b with the same
number of rows to a matrix c, just execute c = [a b]. now b is appended to the right of a.
To put b beneath c, use c = [a; b]. The following is a concrete example, a = [1 2; 3
4]and b = [5 6; 7 8]:

a b c = [a b] c = [a; b]

1 2
3 4

5 6
7 8

1 2 5 6
3 4 7 8

1 2
3 4
5 6
7 8

The reshape function changes the dimensions of a matrix to new values if this is possible,
for example:

reshape(1:12, 3, 4) #> returns a 3x4 array with the values 1 to 12
3x4 Array{Int64,2}:
 1 4 7 10
 2 5 8 11
 3 6 9 12
a = rand(3, 3) #> produces a 3x3 Array{Float64,2}
3x3 Array{Float64,2}:
 0.332401 0.499608 0.355623
 0.0933291 0.132798 0.967591
 0.722452 0.932347 0.809577
reshape(a, (9,1)) #> produces a 9x1 Array{Float64,2}:
9x1 Array{Float64,2}:
 0.332401
 0.0933291
 0.722452
 0.499608
 0.132798
 0.932347
 0.355623
 0.967591
 0.809577
reshape(a, (2,2)) #> does not succeed:
ERROR: DimensionMismatch("new dimensions (2,2) must be consistent
 with array size 9")

When working with arrays that contain arrays, it is important to realize that such an array
contains references to the contained arrays, not their values. If you want to make a copy of
an array, you can use the copy() function, but this produces only a shallow copy with
references to the contained arrays. In order to make a complete copy of the values, we need
to use the deepcopy() function.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[85]

The following example makes this clear:

x = Array{Any}(undef, 2) #> 2-element Array{Any,1}: #undef #undef
x[1] = ones(2) #> 2-element Array{Float64} 1.0 1.0
x[2] = trues(3) #> 3-element BitArray{1}: true true true
x #> 2-element Array{Any,1}: [1.0,1.0] Bool[true,true,true]
a = x
b = copy(x)
c = deepcopy(x)
Now if we change x:
x[1] = "Julia"
x[2][1] = false
x #> 2-element Array{Any,1}: "Julia" Bool[false,true,true]
a #> 2-element Array{Any,1}: "Julia" Bool[false,true,true]
isequal(a, x) #> true, a is identical to x
b #> 2-element Array{Any,1}: [1.0,1.0] Bool[false,true,true]
isequal(b, x) #> false, b is a shallow copy of x
c #> 2-element Array{Any,1}: [1.0,1.0] Bool[true,true,true]
isequal(c, x) #> false

The value of a remains identical to x when this changes, because it points to the same object
in the memory. The deep copy c function remains identical to the original x. The b value
retains the changes in a contained array of x, but not if one of the contained arrays becomes
another array.

To further increase performance, consider using the statically-sized and immutable vectors
and matrices from the ImmutableArrays package, which is a lot faster, certainly for small
matrices, and particularly for vectors.

Tuples
A tuple is a fixed-sized group of values, separated by commas and optionally surrounded
by parentheses (). The type of these values can be the same, but it doesn't have to be; a
tuple can contain values of different types, unlike arrays. A tuple is a heterogeneous
container, whereas an array is a homogeneous container. The type of a tuple is just a tuple
of the types of the values it contains. So, in this sense, a tuple is very much the counterpart
of an array in Julia. Also, changing a value in a tuple is not allowed; tuples are immutable.

In Chapter 2, Variables, Types, and Operations, we saw fast assignment, which is made
possible by tuples:

// code in Chapter 5\tuples.jl:
a, b, c, d = 1, 22.0, "World", 'x'

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[86]

This expression assigns a value 1, b becomes 22.0, c takes up the value World, and d
becomes x.

The expression returns a tuple (1, 22.0,"World",'x'), as the REPL shows as follows:

If we assign this tuple to a variable t1 and ask for its type, we get the following result:

typeof(t1) #> Tuple{Int64,Float64,String,Char}

The argument list of a function (refer to the Defining functions section in Chapter 3,
Functions) is, in fact, also a tuple. Similarly, Julia simulates the possibility of returning
multiple values by packaging them into a single tuple, and a tuple also appears when using
functions with variable argument lists. () represents the empty tuple, and (1,) is a one-
element tuple. The type of a tuple can be specified explicitly through a type annotation
(refer to the Types section in Chapter 2, Variables, Types, and Operations), such as ('z',
3.14)::Tuple{Char, Float64}.

The following snippet shows that we can index tuples in the same way as arrays by using
brackets, indexing starting from 1, slicing, and index control:

t3 = (5, 6, 7, 8)
t3[1] #> 5
t3[end] #> 8
t3[2:3] #> (6, 7)
t3[5] #> BoundsError: attempt to access (5, 6, 7, 8) at index [5]
t3[3] = 9 #> Error: 'setindex' has no matching ...
author = ("Ivo", "Balbaert", 62)
author[2] #> "Balbaert"

To iterate over the elements of a tuple, use a for loop:

for i in t3
 println(i)
end # #> 5 6 7 8

A tuple can be unpacked or deconstructed like this: a, b = t3; now a is 5 and b is 6. Notice
that we don't get an error despite the left-hand side not being able to take all the values of
t3. To do this, we would have to write a, b, c, d = t3.

In the preceding example, the elements of the author tuple are unpacked into separate
variables: first_name, last_name, and age = author.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[87]

So, tuples are nice and simple types that make a lot of things possible. We'll find them again
in the next section as elements of a dictionary.

Dictionaries
When you want to store and look up values based on a unique key, then the dictionary type
Dict (also called hash, associative collection, or map in other languages) is what you need.
It is basically a collection of two-element tuples of the form (key, value). To define a
dictionary d1 as a literal value, the following syntax is used:

// code in Chapter 5\dicts.jl:
d1 = Dict(1 => 4.2, 2 => 5.3)

It returns Dict{Int64,Float64} with two entries: 2 => 5.3 and 1 => 4.2, so there are
two key-value tuples here, (1, 4.2) and (2, 5.3); the key appears before the => symbol
and the value appears after it, and the tuples are separated by commas.

To explicitly specify the types, use:

d1 = Dict{Int64,Float64}(1 => 4.2, 2 => 5.3)

If you use the former [] notation to try to define a dictionary, you now
get Array{Pairs{}} instead:
d1 = [1 => 4.2, 2 => 5.3]
2-element Array{Pair{Int64,Float64},1}:
1 => 4.2
2 => 5.3

Here are some other examples:

d2 = Dict{Any,Any}("a"=>1, (2,3)=>true)
d3 = Dict(:A => 100, :B => 200)

The Any type is inferred when a common type among the keys or values cannot be
detected.

So a Dict can have keys of different types, and the same goes for the values: their type is
then indicated as Any. In general, dictionaries that have type {Any, Any} tend to lead to
lower performance since the JIT compiler does not know the exact type of the elements.
Dictionaries used in performance-critical parts of the code should therefore be explicitly
typed. Notice that the (key, value) pairs are not returned (or stored) in the key order.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[88]

If the keys are of the Char or String type, you can also use Symbol as the key type, which
could be more appropriate since Symbols are immutable, for example:

d3 = Dict{Symbol,Int64}(:A => 100, :B => 200)

Use the bracket notation, with a key as an index, to get the corresponding value: d3[:B]
returns 200. However, the key must exist, otherwise we will get an error, d3[:Z], that
returns ERROR: KeyError: key not found: :Z. To get around this, use the get
method and provide a default value that is returned instead of the error, get(d3, :Z,
999) returns 999.

Here is a dictionary that resembles an object, storing the field names as symbols in the keys:

dmus = [:first_name => "Louis", :surname => "Armstrong",
 :occupation => "musician", :date_of_birth => "4/8/1901"]

To test if a key is present in Dict, you can use the function haskey as follows:

haskey(d3, :Z) returns false
haskey(d3, :B) returns true

Dictionaries are mutable. If we tell Julia to execute d3[:A] = 150, then the value for key
:A in d3 has changed to 150. If we do this with a new key, then that tuple is added to the
dictionary:

d3[:C] = 300

d3 is now Dict(:A=>150,:B=>200,:C=>300), and it has three elements: length(d3)
returns 3.

d4 = Dict() is an empty dictionary of type Any, and you can start populating it in the
same way as in the example with d3.

d5 = Dict{Float64, Int64}() is an empty dictionary with key type Float64 and
value type Int64. As to be expected, adding keys or values of another type to a typed
dictionary is an error. d5["c"] = 6 returns ERROR: MethodError 'convert' has no
method matching convert(::Type{Float64}, ::ASCIIString) and d3["CVO"] =
500 returns ERROR: ArgumentError: CVO is not a valid key for type Symbol.

Deleting a key mapping from a collection is also straightforward. delete!(d3, :B)
removes (:B, 200) from the dictionary, and returns the collection that contains only :A
=> 100.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[89]

Keys and values – looping
To isolate the keys of a dictionary, use the keys function ki = keys(d3), with ki being a
KeyIterator object, which we can use in a for loop as follows:

for k in keys(d3)
 println(k)
end

Assuming d3 is again d3 = Dict(:A => 100, :B => 200), this prints out A and B. This
also gives us an alternative way to test if a key exists with in. For example, :A in
keys(d3) returns true and :Z in keys(d3) returns false.

If you want to work with an array of keys, use collect(keys(d3)), which returns a two-
element Array{Symbol,1} that contains :A and :B. To obtain the values, use the values
function: vi = values(d3), with vi being a ValueIterator object, which we can also
loop through with for:

for v in values(d3)
 println(v)
end

This returns 100 and 200, but the order in which the values or keys are returned is
undefined.

Creating a dictionary from arrays with keys and values is trivial because we have a Dict
constructor that can use these; as in the following example:

keys1 = ["J.S. Bach", "Woody Allen", "Barack Obama"] and
values1 = [1685, 1935, 1961]

Then, d5 = Dict(zip(keys1, values1)) results in a Dict{String,Int64} with three
entries as follows:

"J.S. Bach" => 1685
"Woody Allen" => 1935
"Barack Obama" => 1961

Working with both the key and value pairs in a loop is also easy. For instance, the for
loop over d5 is as follows:

for (k, v) in d5
 println("$k was born in $v")
 end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[90]

This will print the following output:

J.S. Bach was born in 1685
Barack Obama was born in 1961
Woody Allen was born in 1935

Alternatively, we can use an index in the tuple:

for p in d5
 println("$(p[1]) was born in $(p[2])")
end

Here are some more neat tricks, where dict is a dictionary:

Copying the keys of a dictionary to an array with a list comprehension:

arrkey = [key for (key, value) in dict]

This is the same as collect(keys(dict)).

Copying the values of a dictionary to an array with a list comprehension:

arrval = [value for (key, value) in dict]

This is the same as collect(values(dict))

Sets
Array elements are ordered, but can contain duplicates, that is, the same value can occur at
different indices. In a dictionary, keys have to be unique, but the values do not, and the
keys are not ordered. If you want a collection where order does not matter, but where the
elements have to be unique, then use a Set. Creating a set is as easy as this:

// code in Chapter 5\sets.jl:
s = Set([11, 14, 13, 7, 14, 11])

The Set() function creates an empty set Set(Any[]). The preceding line returns Set([7,
14, 13, 11]), where the duplicates have been eliminated.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[91]

Operations from the set theory are also defined for s1 = Set([11, 25]) and s2 =
Set([25, 3.14]) as follows:

union(s1, s2) produces Set([3.14,25,11])
intersect(s1, s2) produces Set([25])
setdiff(s1, s2) produces Set{Any}([11]), whereas setdiff(s2, s1)
produces Set([3.14])
issubset(s1, s2) produces false, but issubset(s1, Set([11, 25,
36])) produces true

To add an element to a set is easy: push!(s1, 32) adds 32 to set s1. Adding an existing
element will not change the set. To test whether a set contains an element, use in. For
example, in(32, s1) returns true and in(100, s1) returns false.

Set([1,2,3]) produces a set of integers Set([2,3,1]) of the Set{Int64} type. To get a
set of arrays, use Set([[1,2,3]]), which returns Set(Array{Int64,1}[[1, 2, 3]]).

Sets are commonly used when we need to keep track of objects in no particular order. For
instance, we might be searching through a graph. We can then use a set to remember which
nodes of the graph we have already visited in order to avoid visiting them again. Checking
whether an element is present in a set is independent of the size of the set. This is extremely
useful for very large sets of data, for example:

x = Set(collect(1:100))
@time 2 in x
#> 0.003186 seconds (33 allocations: 2.078 KiB)
x2 = Set(collect(1:1000000))
@time 2 in x2
0.000003 seconds (4 allocations: 160 bytes)

The second statement executes much faster using much less memory, despite the fact that
x2 is four orders of magnitude larger than x.

Take a look at the Collections module if you need more specialized containers. It
contains a priority queue as well as some lower-level heap functions.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[92]

An example project – word frequency
A lot of the concepts and techniques that we have seen so far in this book come together in
this little project. Its aim is to read a text file, remove all characters that are not used in
words, and count the frequency of the words in the remaining text. This can be useful, for
example, when counting the word density on a web page, the frequency of DNA
sequences, or the number of hits on a website that came from various IP addresses. This can
be done in some ten lines of code. For example, when words1.txt contains the sentence to
be, or not to be, that is the question!, then this is the output of the program:

Word : frequency
be : 2
is : 1
not : 1
or : 1
question : 1
that : 1
the : 1
to : 2

Here is the code with comments:

code in chapter 5\word_frequency.jl:
1- read in text file:
str = read("words1.txt", String)
2- replace non alphabet characters from text with a space:
nonalpha = r"(\W\s?)" # define a regular expression
str = replace(str, nonalpha => ' ')
digits = r"(\d+)"
str = replace(str, digits => ' ')
3- split text in words:
word_list = split(str, ' ')
4- make a dictionary with the words and count their frequencies:
word_freq = Dict{String, Int64}()
for word in word_list
 word = strip(word)
 if isempty(word) continue end
 haskey(word_freq, word) ?
 word_freq[word] += 1 :
 word_freq[word] = 1
end
5- sort the words (the keys) and print out the frequencies:
println("Word : frequency \n")
words = sort!(collect(keys(word_freq)))
for word in words
 println("$word : $(word_freq[word])")
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Collection Types Chapter 5

[93]

The strip() function removes white space from a string at the front/back.

The isempty function is quite general and can be used on any collection.

Try the code out with the example text files words1.txt or words2.txt. See the output in
results_words1.txt and results_words2.txt.

Summary
In this chapter, we looked at the built-in collection types Julia has to offer. We saw the
power of matrices, the elegance of dictionaries, and the usefulness of tuples and sets.
However, to dig deeper into the fabric of Julia, we need to learn how to define new types,
which is another concept necessary that we need to organize code. We must know how
types can be constructed, and how they are used in multiple dispatch. This is the main topic
of the next chapter, where we will also see modules, which serve to organize code, but at an
even higher level than types.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
More on Types, Methods, and

Modules
Julia has a rich built-in type system, and most data types can be parameterized, such as
Array{Float64, 2} or Dict{Symbol, Float64}. Typing a variable (or more exactly the
value it is bound to) is optional. However, indicating the type of some variables, although
they are not statically checked, can provide some of the advantages of static-type systems
as in C++, Java, or C#. A Julia program can run without any indication of types, which can
be useful in a prototyping stage, and it will still run fast. However, some type indications
can increase the performance by allowing more specialized multiple dispatch. Type
assertions also help the LLVM compiler to create more compact, better optimized code.
Moreover, typing function parameters makes the code easier to read and understand. The
robustness of the program is also enhanced by throwing exceptions, in cases where certain
type operations are not allowed. These failures will manifest themselves during testing, or
the code can provide an exception handling mechanism.

All functions in Julia are inherently generic or polymorphic, that is, they can operate on
different types of their arguments. The most appropriate method (an implementation of the
function where argument types are indicated) will be chosen at runtime to be executed,
depending on the type of arguments passed to the function. As we will see in this chapter,
you can also define your own types, and Julia provides a limited form of abstract types and
subtyping.

A lot of these topics have already been discussed in previous chapters; for example, refer to
the Generic functions and multiple dispatch section in Chapter 3, Functions. In this chapter, we
broaden the previous discussions by covering the following topics:

Type annotations
The type hierarchy—subtypes and supertypes
Concrete and abstract types
User-defined and composite types

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[95]

Types and collections—inner constructors
Type unions
Parametric types and methods
Standard modules and paths

Type annotations
As we saw in Chapter 2, Variables, Types, and Operations, type-annotating a variable is done
with the :: operator, such as in the function definition function write(io::IO,
s::String) #... end, where the parameter io has to be of type IO, and s of type
String. To put it differently, io has to be an instance of type IO, and s an instance of type
String. The :: operator is, in fact, an assertion that affirms that the value on the left is of
the type on the right. If this is not true, a typeassert error is thrown. Try this out in the
REPL:

see the code in Chapter 6\conversions.jl:
(31+42)::Float64

We get an ERROR: TypeError: in typeassert, expected Float64, got Int64
error message.

This is, in addition to the method specialization for multiple dispatch, an important reason
why type annotations are used in function signatures.

The operator :: can also be used in the sense of a type declaration, but only in local scope,
such as in functions, as follows:

n::Int16 or local n::Int16 or n::Int16 = 5

Every value assigned to n will be implicitly converted to the indicated type with the
convert function.

Type conversions and promotions
The convert function can also be used explicitly in the code as convert(Int64, 7.0),
which returns 7.

In general, convert(Type, x) will attempt to put the x value in an instance of Type. In
most cases, type(x) will also do the trick, as in Int64(7.0), returning 7.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[96]

The conversion, however, doesn't always work:

When precision is lost—Int64(7.01)returns an ERROR:
InexactError() error message
When the target type is incompatible with the source value—convert(Int64,

"CV") returns an ERROR: MethodError: Cannot `convert` an object of
type String to an object of type Int64 error message

This last error message really shows us how multiple dispatch works; the types of the input
arguments are matched against the methods available for that function.

We can define our own conversions by providing new methods for the convert function.
For example, for information on how to do this, refer to
http://docs.julialang.org/en/latest/manual/conversion-and-

promotion/#conversion.

Julia has a built-in system called automatic type promotion to promote arguments of
mathematical operators and assignments to a common type: in 4 + 3.14, the integer 4 is
promoted to a Float64 value, so that the addition can take place and results in
7.140000000000001. In general, promotion refers to the conversion of values of different
types to one common type. This can be done with the promote function, which takes a
number of arguments, and returns a tuple of the same values, converting them to a
common type. An exception is thrown if promotion is not possible. Some examples are as
follows:

promote(1, 2.5, 3//4) returns (1.0, 2.5, 0.75)
promote(1.5, im) returns (1.5 + 0.0im, 0.0 + 1.0im)
promote(true, 1.0) returns (1.0, 1.0)

Thanks to the automatic type promotion system for numbers, Julia doesn't have to define,
for example, the + operator for any combinations of numeric types. Instead, it is defined as
+(x::Number, y::Number) = +(promote(x,y)...).

It basically says: first, promote the arguments to a common type, and then perform the
addition. Number is a common supertype for all values of numeric types. To determine the
common promotion type of the two types, use promote_type(Int8, UInt16) to find
whether it returns UInt16.

This is because, somewhere in the standard library, the following promote_rule function
was defined as promote_rule(::Type{Int8}, ::Type{Uint16}) = UInt16.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://docs.julialang.org/en/latest/manual/conversion-and-promotion/#conversion
http://docs.julialang.org/en/latest/manual/conversion-and-promotion/#conversion

More on Types, Methods, and Modules Chapter 6

[97]

You can take a look at how promoting is defined in the source code Julia in
base/promotion.jl. These kinds of promotion rules can be defined for your own types
too if needed.

The type hierarchy – subtypes and
supertypes
In Julia, every value has a type, for example, typeof(2) is Int64 (or Int32 on 32-bit
systems). Julia has a lot of built-in types, in fact, a whole hierarchy starting from the type
Any at the top. Every type in this structure also has a type, namely, DataType, so it is very
consistent. typeof(Any), typeof(Int64), typeof(Complex{Int64}), and
typeof(DataType) all return DataType. So, types in Julia are also objects; all concrete
types, except tuple types, which are a tuple of the types of its arguments, are of type
DataType.

Follow along with the code in type_hierarchy.jl.

This type hierarchy is like a tree; each type has one parent given by the supertype
function:

supertype(Int64) returns Signed
supertype(Signed) returns Integer
supertype(Integer) returns Real
supertype(Real) returns Number
supertype(Number) returns Any
supertype(Any) returns Any

A type can have a lot of children or subtypes (a function from the InteractiveUtils
package) as follows:

subtypes(Integer) form 3-element Array{Any,1}, which contains Bool,
Signed, and Unsigned
subtypes(Signed) form 6-element Array{Any,1}, which contains BigInt,
Int128, Int16, Int32, Int64, and Int8
subtypes(Int64) is 0-element Array{Any,1}, which has no subtypes

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[98]

To indicate the subtype relationship, the operator < is used: Bool <: Integer and Bool
<: Any returns true, while Bool <: Char is false. The following is a visualization of part
of this type tree:

Concrete and abstract types
In this hierarchy, some types, such as Number, Integer, and Signed, are abstract, which
means that they have no concrete objects or values of their own. Instead, objects or values
are of concrete types given by the result of applying typeof(value), such as Int8,
Float64, and String. For example, the concrete type of the value 5 is Int64 given by
typeof(5) (on a 64-bit machine). However, a value also has the type of all of its
supertypes; for example, isa(5, Number) returns true (we introduced the isa function in
the Types section of Chapter 2, Variables, Types, and Operations).

Concrete types have no subtypes and might only have abstract types as their supertypes.
Schematically, we can differentiate them as follows:

Type Instantiate Subtypes
concrete Y N

abstract N Y

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[99]

An abstract type (such as Number and Real) is only a name that groups multiple subtypes
together, but it can be used as a type annotation or used as a type in array literals. These
types are the nodes in the type hierarchy that mainly serve to support the type tree. Also,
note that an abstract type cannot have any fields.

The abstract type Any is the supertype of all types, and all the objects are also instances of
Any.

At the other end is Union{}: this type has no values and no subtypes. All types are
supertypes of Union{} , and no object is an instance of Union{}. It is unlikely that you will
ever have to use this type. The Nothing type has one value called nothing.

When a function is only used for its side-effects, convention dictates that it returns
nothing. We have seen this with the println function, where the printing is the side-
effect, for instance:

x = println("hello") #> hello
x == nothing #> true

User-defined and composite types
In Julia, as a developer you can define your own types to structure data used in
applications. For example, if you need to represent points in a three-dimensional space, you
can define a type Point, as follows:

see the code in Chapter 6\user_defined.jl:
mutable struct Point
 x::Float64
 y::Float64
 z::Float64
end

mutable here means that Point values can be modified. If your type values cannot be
changed, simply use struct.

The type Point is a concrete type. Objects of this type can be created as p1 = Point(2,
4, 1.3), and it has no subtypes: typeof(p1) returns Point (constructor with 2
methods), subtypes(Point)returns 0-element Array{Any,1}.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[100]

Such a user-defined type is composed of a set of named fields with an optional type
annotation; that's why it is a composite type, and its type is also DataType. If the type of a
named field is not given, then it is Any. A composite type is similar to struct in C, or a
class without methods in Java.

Unlike in other object-oriented languages such as Python or Java, where you call a function
on an object such as object.func(args), Julia uses the func(object, args) syntax.

Julia has no classes (as types with functions belong to that type); this keeps the data and
functions separate. Functions and methods for a type will be defined outside that type.
Methods cannot be tied to a single type, because multiple dispatch connects them with
different types. This provides more flexibility, because when adding a new method for a
type, you don't have to change the code of the type itself, as you would have to do with the
code of the class in object-oriented languages.

The names of the fields that belong to a composite type can be obtained with the names
function of the type or object: fieldnames(Point) or fieldnames(typeof(p1)) returns
(:x, :y, :z).

A user-defined type has two default implicit constructors that have the same name as the
type and take an argument for each field. You can see this by asking for the methods of
Point: methods(Point); it returns two methods for generic function Point:
Point(x::Float64, y::Float64, z::Float64) and Point(x ,y ,z). Here, the field
values can be of type Any.

You can now make objects simply like this:

orig = Point(0, 0, 0)
p1 = Point(2, 4, 1.3).

Fields that together contain the state of the object can be accessed by name, as in: p1.y,
which returns 4.0.

Objects of such a type are mutable, for example, I can change the z field to a new value with
p1.z = 3.14, resulting in p1 now having the value Point(2.0, 4.0, 3.14). Of course,
types are checked: p1.z = "A" results in an error.

Objects as arguments to functions are passed by reference, so that they can be changed inside
the function (for example, refer to the function insert_elem(arr) in the Defining types
section of Chapter 3, Functions).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[101]

If you don't want your objects to be changeable, replace type with the keyword struct,
for example:

struct Vector3D
 x::Float64
 y::Float64
 z::Float64
end

Calling p = Vector3D(1, 2, 3) returns Vector3D(1.0, 2.0, 3.0) and p.y = 5
returns ERROR: type Vector3D is immutable.

Immutable types enhance performance, because Julia can optimize the
code for them. Another big advantage of immutable types is thread safety:
an immutable object can be shared between threads without needing
synchronization. If, however, such an immutable type contains a mutable
field such as an array, the contents of that field can be changed. So, define
your immutable types without mutable fields.

A type once defined cannot be changed. If we try to define a new type Point with fields of
type Int64, or with added fields, we get an ERROR: invalid redefinition of
constant TypeName error message.

A new type that is exactly the same as an existing type can be defined as an alias through a
simple assignment, for instance, Point3D = Point. Now, objects of type Point3D can also
be created: p31 = Point3D(1, 2, 3) returns Point(1.0, 2.0, 3.0). Julia also uses
this internally; the alias Int is used for either Int64 or Int32, depending on the
architecture of the system that is being used.

When are two values or objects equal or
identical?
Whether two values are equal or not can be decided by the == operator, for example, 5 ==
5 and 5 == 5.0 are both true. Equivalent to this operator is the isequal() function:

isequal(5, 5) #> true
isequal(5, 5.0) #> true

Both the preceding statements return true, because objects such as numbers are immutable
and they are compared at the bits level.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[102]

To see whether the two objects x and y are identical, they must be compared with the ===
operator. The result is a Bool value, true or false: x === y -> Bool, for example:

5 === 5 #> true
5 === 5.0 #> false

For objects that are more complex, such as strings, arrays, or objects that are constructed
from composite types, the addresses in the memory are compared to check whether they
point to the same memory location. For immutable object such as struct, this gets
optimized so that instances with the same value point to the same object:

struct Vector3D
 x::Float64
 y::Float64
 z::Float64
end

q = Vector3D(4.0, 3.14, 2.71)
r = Vector3D(4.0, 3.14, 2.71)
isequal(q, r) #> true
q === r #> true

However, if objects are mutable, they are different objects even if they have the same value,
as follows:

mutable struct MVector3D
 x::Float64
 y::Float64
 z::Float64
end

q = MVector3D(4.0, 3.14, 2.71)
r = MVector3D(4.0, 3.14, 2.71)
isequal(q, r) #> false
q === r #> false

A multiple-dispatch example
Let's now explore an example about people working in a company to show multiple
dispatch in action. Let's define an abstract type Employee and a type Developer that is a
subtype:

abstract type Employee
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[103]

mutable struct Developer <: Employee
 name::String
 iq
 favorite_lang::String
end

We cannot make objects from an abstract type: calling Employee() only returns an ERROR:
MethodError: no constructors have been defined for Employee error message.

The type Developer has two implicit constructors, but we can define another outer
constructor, which uses a default constructor as follows:

Developer(name, iq) = Developer(name, iq, "Java")

Outer constructors provide additional convenient methods to construct objects. Now, we
can make the following two developer objects:

devel1 = Developer("Bob", 110), which returns
Developer("Bob",110,"Java")

devel2 = Developer("William", 145, "Julia"), which returns
Developer("William",145,"Julia")

Similarly, we can define a type Manager and an instance of it as follows:

mutable struct Manager
 name::String
 iq
 department::String
end
man1 = Manager("Julia", 120, "ICT")

Concrete types, such as Developer or Manager, cannot be subtyped:

mutable struct MobileDeveloper <: Developer
 platform
end

This returns ERROR: invalid subtyping in definition of MobileDeveloper.

If we now define a function cleverness as cleverness(emp::Employee) = emp.iq,
then cleverness(devel1) returns 110, but cleverness(man1) returns an ERROR:
MethodError: `cleverness` has no method matching cleverness(::Manager)

error message; the function has no method for a manager.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[104]

The following function makes us think that managers are always cleverer, which is, of
course, not true:

function cleverer(m::Manager, e::Employee)
 println("The manager $(m.name) is cleverer!")
end

cleverer(man1, devel1) #> The manager Julia is cleverer!
cleverer(man1, devel2) #> The manager Julia is cleverer!

Suppose we introduce a function cleverer with the following argument types:

function cleverer(d::Developer, e::Employee)
 println("The developer $(d.name) is cleverer I think!")
end

The cleverer(devel1, devel2) call will now print "The developer Bob is
cleverer I think!". (Clearly, the function isn't yet coded right.) It matches a method
because devel2 is also an employee.

However, cleverer(devel1, man1) will give an ERROR: MethodError: `cleverer`
has no method matching cleverer(::Developer,::Manager) error message, as a
manager is not an employee, and a method with this signature was not defined.

We should now define another method for cleverer as follows:

function cleverer(e::Employee, d::Developer)
 if e.iq <= d.iq
 println("The developer $(d.name) is cleverer!")
 else
 println("The employee $(e.name) is cleverer!")
 end
end

If we now call cleverer(devel1, devel2) an ambiguity arises; Julia detects a problem
in the definitions and gives us the following error:

#> ERROR: MethodError: cleverer(::Developer, ::Developer) is ambiguous.
Candidates:
 cleverer(e::Employee, d::Developer) in Main at REPL[32]:2
 cleverer(d::Developer, e::Employee) in Main at REPL[29]:2
Possible fix, define
 cleverer(::Developer, ::Developer)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[105]

The ambiguity is that, if cleverer is called with e being a Developer, which of the two
defined methods should be chosen? To remove this ambiguity, we will now define the
more specific (and correct) method, as follows:

function cleverer(d1::Developer, d2::Developer)
 if d1.iq <= d2.iq
 println("The developer $(d2.name) is cleverer!")
 else
 println("The developer $(d1.name) is cleverer!")
 end
end

Now, cleverer(devel1, devel2) prints "The developer William is cleverer!"
as well as cleverer(devel2, devel1). This illustrates multiple dispatching. When
defined, the more specific method definition (here, the second method cleverer) is
chosen; more specific means the method with more specialized type annotations for its
arguments. More specialized doesn't only mean subtypes, it can also mean using type
aliases.

Always avoid method ambiguities by specifying an appropriate method
for the intersection case.

Types and collections – inner constructors
Here is another type with only default constructors:

see the code in Chapter 6\inner_constructors.jl
mutable struct Person
 firstname::String
 lastname::String
 sex::Char
 age::Float64
 children::Array{String, 1}
end

p1 = Person("Alan", "Bates", 'M', 45.5, ["Jeff", "Stephan"])

This example demonstrates that an object can contain collections, such as arrays or
dictionaries. Custom types can also be stored in a collection, just like built-in types, for
example:

people = Person[]

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[106]

This returns 0-element Array{Person,1}:

push!(people, p1)
push!(people, Person("Julia", "Smith", 'F', 27, ["Viral"]))

The show(people) function now returns the following output:

Person[Person("Alan", "Bates", 'M', 45.5, ["Jeff", "Stephan"]),
 Person("Julia", "Smith", 'F', 27.0, ["Viral"])]

Now we can define a function fullname on type Person. You will notice that the
definition stays outside the type's code:

fullname(p::Person) = "$(p.firstname) $(p.lastname)"

Or, slightly more performant:

fullname(p::Person) = string(p.firstname, " ", p.lastname)

Now print(fullname(p1)) returns Alan Bates.

If you need to include error checking or transformations as part of the type construction
process, you can use inner constructors (so-called because they are defined inside the type
itself), as shown in the following example:

mutable struct Family
 name::String
 members::Array{String, 1}
 big::Bool
 Family(name::String) = new(name, String[], false)
 Family(name::String, members) = new(name, members,
 length(members) > 4)
end

We can make a Family object as follows:

fam = Family("Bates-Smith", ["Alan", "Julia", "Jeff", "Stephan",
 "Viral"])

Then the output is as follows:

Family("Bates-Smith",String["Alan","Julia","Jeff","Stephan","Viral"],true)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[107]

The keyword new can only be used in an inner constructor to create an object of the
enclosing type. The first constructor takes one argument and generates a default for the
other two values. The second constructor takes two arguments and infers the value of big.
Inner constructors give you more control over how the values of the type can be created.
Here, they are written with the short function notation, but if they are multiline, they will
use the normal function syntax.

Note that when you use inner constructors, there are no default constructors any more.
Outer constructors, calling a limited set of inner constructors, are often the best practice.

Type unions
In geometry, a two-dimensional point and a vector are not the same, even if they both have
an x and y component. In Julia, we can also define them as different types, as follows:

see the code in Chapter 6\unions.jl
mutable struct Point
 x::Float64
 y::Float64
end

mutable struct Vector2D
 x::Float64
 y::Float64
end

Here are the two objects:

p = Point(2, 5) that returns Point(2.0, 5.0)

v = Vector2D(3, 2) that returns Vector2D(3.0, 2.0)

Suppose we want to define the sum for these types as a point which has coordinates as the
sum of the corresponding coordinates:

+(p, v)

This results in an ERROR: MethodError: `+` has no method matching +(::Point,
::Vector2D) error message.

To define a + method here, first do an import Base.+

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[108]

Even after defining the following, +(p, v) still returns the same error because of multiple
dispatch. Julia has no way of knowing that +(p,v) should be the same as +(v,p):

+(p::Point, q::Point) = Point(p.x + q.x, p.y + q.y)
+(u::Vector2D, v::Vector2D) = Point(u.x + v.x, u.y + v.y)
+(u::Vector2D, p::Point) = Point(u.x + p.x, u.y + p.y)

Only when we define the type matching method as +(p::Point, v::Vector2D) =
Point(p.x + v.x, p.y + v.y), do we get a result +(p, v), which returns
Point(5.0,7.0).

Now you can ask the question: Don't multiple dispatch and many types give rise to code
duplication, as is the case here?

The answer is no, because, in such a case, we can define a union type, VecOrPoint:

VecOrPoint = Union{Vector2D, Point}

If p is a point, it is also of type VecOrPoint, and the same is true for v which is Vector2D.
isa(p, VecOrPoint) and isa(v, VecOrPoint); both return true.

Now we can define one + method that works for any of the preceding four cases:

+(u::VecOrPoint, v:: VecOrPoint) = VecOrPoint(u.x + v.x, u.y +
 v.y)

So, now we only need one method instead of four.

Parametric types and methods
An array can take elements of different types. Therefore, we can have, for example, arrays
of the following types: Array{Int64,1}, Array{Int8,1}, Array{Float64,1}, or
Array{String, 1}, and so on. That is why an Array is a parametric type; its elements can
be of any arbitrary type T, written as Array{T, 1}.

In general, types can take type parameters, so that type declarations actually introduce a
whole family of new types. Returning to the Point example of the previous section, we can
generalize it to the following:

see the code in Chapter 6\parametric.jl
mutable struct Point{T}
 x::T
 y::T
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[109]

This is conceptually similar to the generic types in Java or templates in
C++.

This abstract type creates a whole family of new possible concrete types (but they are only
compiled as needed at runtime), such as Point{Int64}, Point{Float64}, and
Point{String}.

These are all subtypes of Point: Point{String} <: Point returns true. However, this
is not the case when comparing different Point types, whose parameter types are subtypes
of one another: Point{Float64} <: Point{Real} returns false.

To construct objects, you can indicate the type T in the constructor, as in p =
Point{Int64}(2, 5), but this can be shortened to p = Point(2, 5). Or let's consider
another example: p = Point("London", "Great-Britain").

If you want to restrict the parameter type T to only the subtypes of Real, this can be written
as follows:

mutable struct Point{T <: Real}
 x::T
 y::T
end

Now, the statement p = Point("London", "Great-Britain") results in an ERROR:
MethodError: `Point{T<:Real}` has no method matching

Point{T<:Real}(::String, :String) error message, because String is not a subtype
of Real.

In much the same way, methods can also optionally have type parameters immediately
after their name and before the tuple of arguments. For example, to constrain two
arguments to be of the same type T, run the following command:

add(x::T, y::T) where T = x + y

Now, add(2, 3) returns 5 and add(2, 3.0) returns an ERROR: MethodError: `add`
has no method matching add(::Int64, ::Float64) error message.

Here, we restrict T to be a subtype of Number in add as follows:

add(x::T, y::T) where T <: Number = x + y

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[110]

As another example, here is how to check whether a vecfloat function only takes a vector
of floating point numbers as the input. Simply define it with a type parameter T as follows:

function vecfloat(x::Vector{T}) where T <: AbstractFloat
 # code
 end

Inner constructors can also take type parameters in their definition.

Standard modules and paths
The code for Julia packages (also called libraries) is contained in a module whose name
starts with an uppercase letter by convention, like this:

see the code in Chapter 6\modules.jl
module Package1

export Type1, perc

include("file1.jl")
include("file2.jl")

code
mutable struct Type1
 total
end

perc(a::Type1) = a.total * 0.01

end

This serves to separate all its definitions from those in other modules so that no name
conflicts occur. Name conflicts are solved by qualifying the function by the module name.
For example, the packages Winston and Gadfly both contain a function plot. If we needed
these two versions in the same script, we would write it as follows:

import Winston
import Gadfly
Winston.plot(rand(4))
Gadfly.plot(x=[1:10], y=rand(10))

All variables defined in the global scope are automatically added to the Main module.
Thus, when you write x = 2 in the REPL, you are adding the variable x to the Main
module.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[111]

Julia starts with Main as the current top-level module. The module Core is a set of non-Julia
sources (in the src directory of the GitHub source); for example, C/C++ and Femtolisp,
which are used to create libjulia, are used by the Julia source to interface to the OS
through the API. The standard library is also available. The code for the standard library
(the contents of /base) is contained in the following modules:

Base64

FileWatching

LinearAlgebra

Printf

Serialization

SuiteSparse

CRC32c

Future

Logging

Profile

SharedArrays

Test

Dates

InteractiveUtils

Markdown

REPL

Sockets

UUIDs

DelimitedFiles

LibGit2

Mmap

Random

SparseArrays

Unicode

Distributed

Libdl

Pkg

SHA
Statistics

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[112]

The type of a module is Module: typeof(Base), which returns Module. If we call
names(Main), we get, for example, 5-element Array{Symbol,1}: :ans, :Main,
:Core, :Base, and :InteractiveUtils. If you have defined other variables or functions
in the REPL, these would also show up.

All the top-level defined variables and functions, together with the default modules, are
stored as symbols. The varinfo() function lists these objects with their types:

name size summary
–––––––––––––––– ––––––––––– –––––––
Base Module
Core Module
InteractiveUtils 157.063 KiB Module
Main Module

This can also be used for another module. For example, varinfo(Winston) lists all the
exported names from the module Winston.

A module can make some of its internal definitions (such as constants, variables, types,
functions, and so on) visible to other modules (as if making them public) by declaring them
with export. This can be seen in the following example:

export Type1, perc

For the preceding example, using Package1 will make the type Type1 and function perc
available in other modules that import them through this statement. All the other
definitions remain invisible (or private).

As we saw in Chapter 1, Installing the Julia Platform, a module can also include other source
files in their entirety with include("file1.jl"). However, this means that the included
files are not modules. Using include("file1.jl") is, to the compiler, no different from
copying file1.jl and pasting it directly in the current file or the REPL.

In general, use import to import definitions from another module in the current module:

After import.LibA, you can use all definitions from LibA inside the current
module by qualifying them with LibA., such as LibA.a

The import LibB.varB or import LibD.funcD statement only imports one
name; the function funcD must be used as LibD.funcD.

Use importall LibE to import all the exported names from LibE in the current
module.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[113]

Here is a more concrete example. Suppose we define a TemperatureConverter module as
follows:

#code in Chapter 6\temperature_converter.jl
module TemperatureConverter

 function as_celsius(temperature, unit)
 if unit == :Celsius
 return temperature
 elseif unit == :Kelvin
 return kelvin_to_celsius(temperature)
 end
 end

 function kelvin_to_celsius(temperature)
 # 'private' function
 return temperature + 273
 end

end

We can now use this module in another program as follows:

#code in Chapter 6\using_module.jl
include("temperature_converter.jl")

println("$(TemperatureConverter.as_celsius(100, :Celsius))")
#> 100
println("$(TemperatureConverter.as_celsius(100, :Kelvin))")
#> 373
println("$(TemperatureConverter.kelvin_to_celsius(0))") #> 273

Imported variables are read-only, and the current module cannot create variables with the
same names as the imported ones. A source file can contain many modules, or one module
can be defined in several source files. If a module contains a function __init__(), this will
be executed when the module is first loaded.

The variable LOAD_PATH contains a list of directories where Julia looks for (module) files
when running the using, import, or include statements. Put this statement in the file
~/.julia/config/startup.jl to extend LOAD_PATH on every Julia startup:

push!(LOAD_PATH, "new/path/to/search")

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

More on Types, Methods, and Modules Chapter 6

[114]

Summary
In this chapter, we delved into types and type hierarchies in Julia. We got a much better
understanding of types and how functions work on them through multiple dispatch. The
next chapter will reveal another power tool in Julia: metaprogramming and macros.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Metaprogramming in Julia

Everything in Julia is an expression that returns a value when executed. Every piece of the
program code is internally represented as an ordinary Julia data structure, also called an
expression. In this chapter, we will see how, by working on expressions, a Julia program
can transform and even generate new code. This is a very powerful characteristic, also
called homoiconicity. It inherits this property from Lisp, where code and data are just lists,
and where it is commonly referred to with the phrase: Code is data and data is code.

In homoiconic languages, code can be expressed in terms of the language syntax. This is the
case for the Lisp-like family of languages: Lisp, Scheme and, more recently, Clojure, which
use s-expressions. Julia is homoiconic, as are others such as Prolog, IO, Rebol, and Red. As
such, these are able to generate code during runtime, which can be subsequently executed.

We will explore this metaprogramming power by covering the following topics:

Expressions and symbols
Evaluation and interpolation
Defining macros
Built-in macros
Reflection capabilities

Expressions and symbols
An abstract syntax tree (AST) is a tree representation of the abstract syntactic structure of
source code written in a programming language. When Julia code is parsed by its LLVM JIT
compiler, it is internally represented as an abstract syntax tree. The nodes of this tree are
simple data structures of the type expression Expr. For more information on abstract
syntax trees, refer to http:/ /en. wikipedia. org/wiki/ Abstract_ syntax_ tree.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree

Metaprogramming in Julia Chapter 7

[116]

An expression is simply an object that represents Julia code. For example, 2 + 3 is a piece
of code, which is an expression of type Int64 (follow along with the code in Chapter
7\expressions.jl). Its syntax tree can be visualized as follows:

To make Julia see this as an expression and block its evaluation, we have to quote it, that is,
precede it by a colon (:) as in :(2 + 3). When you evaluate :(2 + 3) in the REPL, it just
returns :(2 + 3), which is of type Expr: typeof(:(2 + 3)) returns Expr. In fact, the :
operator (also called the quote operator) sets out to treat its argument as data, not as code.

If this code is more than one line, enclose the lines between the quote and end keywords to
turn the code into an expression. For example, this expression just returns itself:

quote
 a = 42
 b = a^2
 a - b
end

In fact, this is the same as :(a = 42; b = a^2; a - b). quote...end is just another
way to convert blocks of code into expressions.

We can give an expression such as this a name, such as e1 = :(2 + 3). We can ask for the
following information:

e1.head returns :call, indicating the kind of expression, which here is a
function call
e1.args returns 3-element Array{Any,1}: :+ 2 3

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metaprogramming in Julia Chapter 7

[117]

Indeed the expression 2 + 3 is, in fact, a call of the + function with the argument 2, and 3:
2 + 3 == + (2, 3) returns true. The args argument consists of a symbol :+, and two
literal values, 2 and 3. Expressions are made up of symbols and literals. More complicated
expressions will consist of literal values, symbols, and sub- or nested expressions, which
can, in turn, be reduced to symbols and literals.

For example, consider the expression e2 = :(2 + a * b - c), which can be visualized
by the following syntax tree:

e2 consists of e2.args, which is a 3-element Array{Any,1} that contains :- and :c,
which are symbols, and :(2 + a * b), which is also an expression. This last expression,
in turn, is itself an expression with args:+, 2, and :(a * b); :(a * b) is an expression
with arguments and symbols: :*, :a, and :b. We can see that this works recursively; we
can simplify every subexpression in the same way until we end up with elementary
symbols and literals.

In the context of an expression, symbols are used to indicate access to variables; they represent
the variable in the tree structure for the code. In fact, the prevent evaluation character of
the quote operator (:) is already at work with symbols: after x = 5, x returns 5, but :x
returns :x.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metaprogramming in Julia Chapter 7

[118]

The dump function presents the abstract syntax tree for its argument in a nice way. For
example, dump(:(2 + a * b - c)) returns the output, as shown in the following
screenshot:

Evaluation and interpolation
With the definition of type Expr from the preceding section, we can also build expressions
directly from the constructor for Expr. For example: e1 = Expr(:call, *, 3, 4)
returns :((*)(3, 4)) (follow along with the code in Chapter 7\eval.jl).

The result of an expression can be computed with the eval function, eval(e1), which
returns 12 in this case. At the time an expression is constructed, not all the symbols have to
be defined, but they have to be defined at the time of evaluation, otherwise an error occurs.

For example, e2 = Expr(:call, *, 3, :a) returns :((*)(3, a)), and
eval(e2) then gives ERROR: UndefVarError: a not defined. Only after we say, for
example, a = 4 does eval(e2) return 12.

Expressions can also change the state of the execution environment, for example, the
expression e3 = :(b = 1) assigns a value to b when evaluated, and even defines b, if it
doesn't exist already.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metaprogramming in Julia Chapter 7

[119]

To make writing expressions a bit simpler, we can use the $ operator to do interpolation in
expressions, as with $ in strings, and this will evaluate immediately when the expression is
made. The expressions a = 4 and b = 1, e4 = :(a + b) return :(a + b), and e5 =
:($a + b) returns :(4 + b); both expressions evaluate to 5. So, there are two kinds of
evaluation here:

Expression interpolation (with $) evaluates when the expression is constructed
(at parse time)
Quotation (with : or quote) evaluates only when the expression is passed to
eval at runtime

We now have the capability to build code programmatically. Inside a Julia program, we can
construct arbitrary code while it is running, and then evaluate this with eval. So, Julia can
generate the code from inside itself during the normal program execution.

This happens all the time in Julia and it is used, for example, to do things such as
generating bindings for external libraries, to reducing the repetitive boilerplate code needed
to bind big libraries, or generating lots of similar routines in other situations. Also, in the
field of robotics, the ability to generate another program and then run it is very useful. For
example: a chirurgical robot learns how to move by perceiving a human surgeon
demonstrating a procedure. Then, the robot generates the program code from that
perception, so that it is able to perform the procedure by itself.

One of the most powerful Julia tools emerging from what we discussed before is macros,
which exist in all the languages of the Lisp family.

Julia version 1.0 also introduces the concept of generated functions: such functions are
prefixed by the @generated macro and, instead of normal values, they return expressions.
We won't discuss this advanced concept here in this book.

Defining macros
In previous chapters, we have already used macros, such as @printf, in Chapter 2,
Variables, Types, and Operations, and @time in Chapter 3, Functions. Macros are like
functions, but instead of values they take expressions (which can also be symbols or literals)
as input arguments. When a macro is evaluated, the input expression is expanded, that is,
the macro returns a modified expression. This expansion occurs at parse time when the
syntax tree is being built, not when the code is actually executed.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metaprogramming in Julia Chapter 7

[120]

The following descriptions highlight the difference between macros and functions when
they are called or invoked:

Function: It takes the input values and returns the computed values at runtime
Macro: It takes the input expressions and returns the modified expressions at
parse time

In other words, a macro is a custom program transformation. Macros are defined with the
keyword as follows:

macro mname
code returning expression
end

It is invoked as @mname exp1 exp2 or @mname(exp1, exp2) (the @ sign distinguishes it
from a normal function call). The macro block defines a new scope. Macros allow us to
control when the code is executed.

Here are some examples:

A first simple example is macint macro, which does the interpolation of its
argument expression ex:

see the code in Chapter 7\macros.jl)
macro macint(ex)
 quote
 println("start")
 $ex
 println("after")
 end
end

@macint println("Where am I?") will result in:

start
Where am I?
after

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metaprogramming in Julia Chapter 7

[121]

The second example is an assert macro that takes an expression ex and tests
whether it is true or not; in the last case, an error is thrown:

macro assert(ex)
:($ex ? nothing : error("Assertion failed: ",
 $(string(ex))))
end

For example: @assert 1 == 1.0 returns nothing. @assert 1 == 42 returns
ERROR: Assertion failed: 1 == 42.

The macro replaces the expression with a ternary operator expression, which is
evaluated at runtime. To examine the resulting expression, use the macroexpand
function as follows:

macroexpand(Main, :(@assert 1 == 42))

This returns the following expression:

:(if 1 == 42
 nothing
 else
 (Base.throw)((Base.AssertionError)("1 == 42"))
 end)

This assert function is just a macro example, using the built-in assert function in
the production code. (Refer to the Testing subsection of the Built-in macros
section.)

The third example mimics an unless construct, where branch is executed if the
condition test_cond is not true:

macro unless(test_cond, branch)
 quote
 if !$test_cond
 $branch
 end
 end
end

Suppose arr = [3.14, 42, 'b'], then @unless 42 in arr println("arr
does not contain 42") returns nothing, but @unless 41 in arr
println("arr does not contain 41") prints out the following command:

arr does not contain 41

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metaprogramming in Julia Chapter 7

[122]

Here, macroexpand(Main, :(@unless 41 in arr println("arr does
not contain 41"))) returns the following output:

quote
 #= REPL[49]:3 =#
 if !(41 in Main.arr)
 #= REPL[49]:4 =#
 (Main.println)("arr does not contain 41")
 end
end

Unlike functions, macros inject the code directly into the namespace in which they are
called, possibly this is also in a different module than the one in which they were defined. It
is therefore important to ensure that this generated code does not clash with the code in the
module in which the macro is called. When a macro behaves appropriately like this, it is
called a hygienic macro. The following rules are used when writing hygienic macros:

Declare the variables used in the macro as local, so as not to conflict with the
outer variables
Use the escape function esc to make sure that an interpolated expression is not
expanded, but instead is used literally
Don't call eval inside a macro (because it is likely that the variables you are
evaluating don't even exist at that point)

These principles are applied in the following timeit macro, which times the execution of
an expression ex (like the built-in macro @time):

macro timeit(ex)
 quote
 local t0 = time()
 local val = $(esc(ex))
 local t1 = time()
 print("elapsed time in seconds: ")
 @printf "%.3f" t1 - t0
 val
 end
end

The expression is executed through $, and t0 and t1 are respectively the start and end
times.

@timeit factorial(10) returns elapsed time in seconds: 0.0003628800.

@timeit a^3 returns elapsed time in seconds: 0.0013796416.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metaprogramming in Julia Chapter 7

[123]

Hygiene with macros is all about differentiating between the macro context and the calling
context.

Macros are valuable tools which save you a lot of tedious work, and, with the quoting and
interpolation mechanism, they are fairly easy to create. You will see them being used
everywhere in Julia for lots of different tasks. Ultimately, they allow you to create domain-
specific languages (DSLs). To get a better idea of this concept, we suggest you experiment
with the other examples in the accompanying code file.

Built-in macros
Needless to say, the Julia team has put macros to good use. To get help information about a
macro, enter a ? in the REPL, and type @macroname after the help> prompt. Apart from
the built-in macros we encountered in the examples in the previous chapters, here are some
other very useful ones (refer to the code in Chapter 7\built_in_macros.jl).

Testing
The @assert macro actually exists in the standard library. The standard version also
allows you to give your own error message, which is printed after ERROR: assertion
failed.

The Test library contains some useful macros to compare the numbers:

using Test
@test 1 == 3

This returns the following:

Test Failed at REPL[5]:1
 Expression: 1 == 3
 Evaluated: 1 == 3
ERROR: There was an error during testing.

@test with the ≈ operator tests whether the two numbers are approximately equal. @test
1 ≈ 1.1 returns Test Failed because they are not equal within the machine tolerance.
However, you can give the interval as the last argument within which they should be
equal: @test 1 ≈ 1.1 atol=0.2, which returns Test Passed, so 1 and 1.1 are within
0.2 from each other.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metaprogramming in Julia Chapter 7

[124]

Debugging
If you want to look up in the source code where and how a particular method is defined,
use @which. For example: if arr = [1, 2] then @which sort(arr) returns
sort(v::AbstractArray{T,1}) where T) in Base.Sort at sort.jl:683 at
sort.jl:334.

@show shows the expression and its result, which is handy for checking the embedded
results: 456 * 789 + (@show 2 + 3) gives 2 + 3 => 5 359789.

Benchmarking
For benchmarking purposes, we already know @time and @elapsed; @timed gives you the
@time results as a tuple:

@time [x^2 for x in 1:1000] prints elapsed time: 3.911e-6 seconds (8064
bytes allocated) and returns 1000-element Array{Int64,1}:

@timed [x^2 for x in 1:1000] returns the following:

([1, 4, 9, 16, 25, 36, 49, 64, 81, 100 ... 982081, 984064, 986049, 988036,
990025, 992016, 994009, 996004, 998001, 1000000], 3.911e-6, 8064, 0.0)

@elapsed [x^2 for x in 1:1000] returns 3.422e-6.

If you are specifically interested in the allocated memory, use @allocated [x^2 for x
in 1:1000], which returns 8064.

If you are looking for a package, consult BenchmarkingTools. This has some macros and
also a good method for benchmarking.

Starting a task
Tasks (refer to the Tasks section in Chapter 4, Control Flow) are independent units of code
execution. Often, we want to start executing them, and then continue executing the main
code without waiting for the task result. In other words, we want to start the task
asynchronously. This can be done with the @async macro:

a = @async 1 + 2 # Task (done) @0x000000002d70faf0

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metaprogramming in Julia Chapter 7

[125]

Reflection capabilities
We saw in this chapter that code in Julia is represented by expressions that are data
structures of the Expr type. The structure of a program and its types can therefore be
explored programmatically just like any other data. This means that a running program can
dynamically discover its own properties, which is called reflection. We have already
encountered some of these macros or functions before:

Use the @isdefined macro to check whether a variable is already declared, for
example if a is not declared, you get:

@isdefined a #> false

Use the typeof and InteractiveUtils.subtypes to query the type
hierarchy (refer to Chapter 6, More on Types, Methods, and Modules)
Use the methods(f) to see all the methods of a function f (refer to Chapter 3,
Functions)
names and types: given a type Person:

mutable struct Person
 name:: String
 height::Float64
end

Then, fieldnames(Person) returns the field names as a tuple of symbols:
(:name, :height)

Person.types returns a tuple with the field types (String, Float64).

To inspect how a function is represented internally, you can use code_lowered:

code_lowered(+, (Int, Int))

This returns the following output:

1-element Array{Core.CodeInfo,1}:
 CodeInfo(
 53 1 ─ %1 = Base.add_int(%%x, %%y)::Any
│
 └── return %1
│
)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metaprogramming in Julia Chapter 7

[126]

Or you can use code_typed to see the type-inferred form:

code_typed(+, (Int, Int))

This returns the following:

1-element Array{Any,1}:
 1-element Array{Any,1}:
 CodeInfo(
 53 1 ─ %1 = Base.add_int(%%x, %%y)::Int64
│
 └── return %1
│
) => Int64

Using code_typed can show you whether your code is type-optimized
for performance: if the Any type is used instead of an appropriate specific
type that you would expect, then the type annotation in your code can
certainly be improved, leading most likely to speeding up the program's
execution.

To inspect the code generated by the LLVM engine, use code_llvm, and, to see
the assembly code generated, use code_native (refer to the How Julia works
section in Chapter 1, Installing the Julia Platform).

While reflection is not necessary for many of the programs that you will write, it is very
useful for IDEs to be able to inspect the internals of an object, as well as for tools generating
automatic documentation, and for profiling tools. In other words, reflection is
indispensable for tools that need to inspect the internals of code objects programmatically.

You should also look at the MacroTools package (from Mike Innes) which has some good
examples of macros.

Summary
In this chapter, we explored the expression format in which Julia is parsed. Because this
format is a data structure, we can manipulate this in the code, and this is precisely what
macros can do. We explored a number of them, and also some built-in ones that can be
useful.

In the next chapter, we will extend our vision to the network environment in which Julia
runs, and we will explore its powerful capabilities for parallel execution.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
I/O, Networking, and Parallel

Computing
In this chapter, we will explore how Julia interacts with the outside world, reading from
standard input and writing to standard output, files, networks, and databases. Julia
provides asynchronous networking I/O using the libuv library. We will see how to handle
data in Julia. We will also explore Julia's parallel processing model.

In this chapter, the following topics are covered:

Basic input and output
Working with files (including CSV files)
Using DataFrames
Working with TCP sockets and servers
Interacting with databases
Parallel operations and computing

Basic input and output
Julia's vision on input/output (I/O) is stream-oriented, that is, reading or writing streams of
bytes. We will introduce different types of stream, file streams, in this chapter. Standard
input (stdin) and standard output (stdout) are constants of the TTY type (an abbreviation
for the old term, Teletype) that can be read from and written to in Julia code (refer to the
code in Chapter 8\io.jl):

read(stdin, Char): This command waits for a character to be entered, and
then returns that character; for example, when you type in J, this returns 'J'

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[128]

write(stdout, "Julia"): This command types out Julia5 (the added 5 is
the number of bytes in the output stream; it is not added if the command ends in
a semicolon ;)

stdin and stdout are simply streams and can be replaced by any stream object in
read/write commands. readbytes is used to read a number of bytes from a stream into a
vector:

read(stdin,3): This command waits for an input, for example, abe reads three
bytes from it, and then returns 3-element Array{Uint8,1}: 0x61 0x62
0x65.
readline(stdin): This command reads all the input until a newline
character, \n, is entered. For example, type Julia and press Enter; this returns
"Julia\r\n" on Windows and "Julia\n" on Linux.

If you need to read all the lines from an input stream, use the eachline method in a for
loop, for example:

stream = stdin
for line in eachline(stream)
 println("Found $line")
 # process the line
end

Include the following REPL dialog as an example:

First line of input
Found First line of input
2nd line of input
Found 2nd line of input
3rd line...
Found 3rd line...

To test whether you have reached the end of an input stream, use eof(stream) in
combination with a while loop, as follows:

while !eof(stream)
 x = read(stream, Char)
 println("Found: $x")
process the character
end

We can experiment with the preceding code by replacing stream with stdin in these
examples.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[129]

Working with files
To work with files, we need the IOStream type. IOStream is a type with the IO supertype
and has the following characteristics:

The fields are given by fieldnames(IOStream):

(:handle, :ios, :name, :mark)

The types are given by IOStream.types:

(Ptr{Nothing}, Array{UInt8,1}, AbstractString, Int64)

The file handle is a pointer of the Ptr type, which is a reference to the file object.

Opening and reading a line-oriented file with the example.dat name is very easy:

// code in Chapter 8\io.jl
fname = "example.dat"
f1 = open(fname)

fname is a string that contains the path to the file, using the escaping of special characters
with \ when necessary. For example, in Windows, when the file is in the test folder on the
D: drive, this would become d:\\test\\example.dat. The f1 variable is now an
IOStream(<file example.dat>) object.

To read all lines one after another in an array, use data = readlines(f1), which returns
3-element Array{String,1}:

"this is line 1."
"42; 3.14"
"this is line 3."

For processing line by line, now only a simple loop is needed:

for line in data
 println(line) # or process line
end
close(f1)

Always close the IOStream object to clean and save resources. If you want to read the file
into one string, use readall (for example, see the word_frequency program in Chapter
5, Collection Types). Use this only for relatively small files because of the memory
consumption; this can also be a potential problem when using readlines.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[130]

There is a convenient shorthand with the do syntax for opening a file, applying a function
process, and closing it automatically. This goes as follows (file is the IOStream object in
this code):

open(fname) do file
 process(file)
end

As you can recall, in the Map, filter, and list comprehensions section in Chapter 3, Functions,
do creates an anonymous function, and passes it to open. Thus, the previous code example
would have been equivalent to open(process, fname). Use the same syntax for
processing a fname file line by line without the memory overhead of the previous methods,
for example:

open(fname) do file
 for line in eachline(file)
 print(line) # or process line
 end
end

Writing a file requires first opening it with a "w" flag, writing strings to it with write,
print, or println, and then closing the file handle that flushes the IOStream object to the
disk:

fname = "example2.dat"
f2 = open(fname, "w")
write(f2, "I write myself to a file\n")
returns 24 (bytes written)
println(f2, "even with println!")
close(f2)

Opening a file with the "w" option will clear the file if it exists. To append to an existing
file, use "a".

To process all the files in the current folder (or a given folder as an argument to
readdir()), use this for loop:

for file in readdir()
 # process file
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[131]

For example, try out this code, which goes up to the parent directory, prints them out, and
then comes back:

mydir = pwd()
cd("..")

for fn in readdir()
 println(fn)
end
cd(mydir)

Reading and writing CSV files
A CSV file is a comma-separated file. The data fields in each line are separated by commas,
,, or another delimiter, such as semicolons, ;. These files are the de-facto standard for
exchanging small and medium amounts of tabular data. Such files are structured so that
one line contains data about one data object, so we need a way to read and process the file
line by line. As an example, we will use the Chapter 8\winequality.csv datafile, which
contains 1,599 sample measurements, 12 data columns, such as pH and alcohol, per
sample, separated by a semicolon. In the following screenshot, you can see the top 20 rows:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[132]

In general, the readdlm function from the DelimitedFiles package is used to read in the
data from the CSV files:

code in Chapter 8\csv_files.jl:
fname = "winequality.csv"
using DelimitedFiles
data = DelimitedFiles.readdlm(fname, ';')

The second argument is the delimiter character (here, it is ;). The resulting data is a
1600x12 Array{Any,2} array of the Any type because no common type could be found:

 "fixed acidity" "volatile acidity" "alcohol" "quality"
 7.4 0.7 9.4 5.0
 7.8 0.88 9.8 5.0
 7.8 0.76 9.8 5.0
...

The problem with what we have done so far is that the header (the column titles) was read
as part of the data. Fortunately, we can pass the header=true argument to let Julia put the
first line in a separate array. It then naturally gets the correct datatype, Float64, for the
data array. We can also specify the type explicitly, such as this:

data3 = DelimitedFiles.readdlm(fname, ';', Float64, '\n', header=true)

The third argument here is the type of data, which is a numeric type, String or Any. The
next argument is the line-separator character, and the fifth indicates whether or not there is
a header line with the field (column) names. If so, then data3 is a tuple with the data as the
first element and the header as the second, in our case, ([7.4 0.7 ... 9.4 5.0; 7.8
0.88 ... 9.8 5.0; ... ; 5.9 0.645 ... 10.2 5.0; 6.0 0.31 ... 11.0 6.0],
AbstractString["fixed acidity" "volatile acidity" ... "alcohol"

"quality"]) (there are other optional arguments to define readdlm; use ?
DelimitedFiles.readdlm). In this case, the actual data is given by data3[1] and the
header by data3[2].

Let's continue working with variable data. The data forms a matrix, and we can get the
rows and columns of data using the normal array-matrix syntax (refer to the Matrices
section in Chapter 5, Collection Types). For example, the third row is given by row3 =
data[3, :] with data: 7.8 0.88 0.0 2.6 0.098 25.0 67.0 0.9968 3.2 0.68
9.8 5.0, representing the measurements for all the characteristics of a certain wine.

The measurements of a certain characteristic for all wines are given by a data column; for
example, col3 = data[:, 3] represents the measurements of citric acid and returns
a 1600-element Array{Any,1}: "citric acid" 0.0 0.0 0.04 0.56 0.0 0.0
... 0.08 0.08 0.1 0.13 0.12 0.47 column vector.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[133]

If we need columns two to four (volatile acidity to residual sugar) for all wines,
extract the data with x = data[:, 2:4]. If we need these measurements only for the
wines on rows 70-75, get these with y = data[70:75, 2:4], returning a 6 x 3
Array{Any,2} output, as follows:

0.32 0.57 2.0
0.705 0.05 1.9
...
0.675 0.26 2.1

To get a matrix with the data from columns 3, 6, and 11, execute the following command:

z = [data[:,3] data[:,6] data[:,11]]

This includes the headers; if you don't want these, use the following:

z = [data[2:end,3] data[2:end,6] data[2:end,11]]

It would be useful to create a Wine type in the code.

For example, if the data is to be passed around functions, it will improve the code quality to
encapsulate all the data in a single data type, like this:

struct Wine
 fixed_acidity::Array{Float64}
 volatile_acidity::Array{Float64}
 citric_acid::Array{Float64}
 # other fields
 quality::Array{Float64}
end

Then, we can create objects of this type to work with them, like in any other object-oriented
language, for example, wine1 = Wine(data[1, :]...), where the elements of the row
are splatted with the ... operator into the Wine constructor.

To write to a CSV file, the simplest way is to use the writecsv function for a comma
separator, or the writedlm function if you want to specify another separator. For example,
to write an array data to a partial.dat file, you need to execute the following command:

writedlm("partial.dat", data, ';')

If more control is necessary, you can easily combine the more basic functions from the
previous section. For example, the following code snippet writes 10 tuples of three numbers
each to a file:

// code in Chapter 8\tuple_csv.jl
fname = "savetuple.csv"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[134]

csvfile = open(fname,"w")
writing headers:
write(csvfile, "ColName A, ColName B, ColName C\n")
for i = 1:10
 tup(i) = tuple(rand(Float64,3)...)
 write(csvfile, join(tup(i),","), "\n")
end
close(csvfile)

Using DataFrames
If you measure n variables (each of a different type) of a single object, then you get a table
with n columns for each object row. If there are m observations, then we have m rows of
data. For example, given the student grades as data, you might want to know compute
the average grade for each socioeconomic group, where grade and
socioeconomic group are both columns in the table, and there is one row per student.

DataFrame is the most natural representation to work with such a (m x n) table of data.
They are similar to Pandas DataFrames in Python or data.frame in R. DataFrame is a
more specialized tool than a normal array for working with tabular and statistical data, and
it is defined in the DataFrames package, a popular Julia library for statistical work. Install
it in your environment by typing in add DataFrames in the REPL. Then, import it into
your current workspace with using DataFrames. Do the same for the DataArrays and
RDatasets packages (which contain a collection of example datasets mostly used in the R
literature).

A common case in statistical data is that data values can be missing (the information is not
known). The Missings package provides us with a unique value, missing, which
represents a non-existing value, and has the Missing type. The result of the computations
that contain the missing values mostly cannot be determined, for example, 42 + missing
returns missing.

DataFrame is a kind of in-memory database, versatile in the various ways you can work
with data. It consists of columns with names such as Col1, Col2, and Col3. All of these
columns are DataArrays that have their own type, and the data they contain can be
referred to by the column names as well, so we have substantially more forms of indexing.
Unlike two-dimensional arrays, columns in DataFrame can be of different types. One
column might, for instance, contain the names of students and should therefore be a string.
Another column could contain their age and should be an integer.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[135]

We construct DataFrame from the program data as follows:

// code in Chapter 8\dataframes.jl
using DataFrames, Missings
constructing a DataFrame:
df = DataFrame()
df[:Col1] = 1:4
df[:Col2] = [exp(1), pi, sqrt(2), 42]
df[:Col3] = [true, false, true, false]
show(df)

Notice that the column headers are used as symbols. This returns the following 4 x 3
DataFrame object:

show(df) produces a nicely formatted output (whereas show(:Col2) does not). This is
because there is a show() routine defined in the package for the entire contents of
DataFrame.

We could also have used the full constructor, as follows:

df = DataFrame(Col1 = 1:4, Col2 = [e, pi, sqrt(2), 42],
 Col3 = [true, false, true, false])

You can refer to columns either by an index (the column number) or by a name; both of the
following expressions return the same output:

show(df[2])
show(df[:Col2])

This gives the following output:

[2.718281828459045, 3.141592653589793, 1.4142135623730951,42.0]

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[136]

To show the rows or subsets of rows and columns, use the familiar splice (:) syntax, for
example:

To get the first row, execute df[1, :]. This returns 1x3 DataFrame:

Row	Col1	Col2	Col3
1	1	2.71828	true

To get the second and third row, execute df [2:3, :].
To get only the second column from the previous result, execute df[2:3,
:Col2]. This returns [3.141592653589793, 1.4142135623730951].
To get the second and third columns from the second and third row, execute
df[2:3, [:Col2, :Col3]], which returns the following output:

2x2 DataFrame
Row	Col2	Col3
----	----- -	-------
1	3.14159	false
2	1.41421	true

The following functions are very useful when working with DataFrames:

The head(df) and tail(df) functions show you the first six and the last six
lines of data, respectively. You can see this in the following example:

df0 = DataFrame(i = 1:10, x = rand(10),
 y = rand(["a", "b", "c"], 10))
head(df0

The names function gives the names of the names(df) columns. It returns 3-
element Array{Symbol,1}: :Col1 :Col2 :Col3.
The eltypes function gives the data types of the eltypes(df) columns. It gives
the output as 3-element Array{Type{T<:Top},1}: Int64 Float64 Bool.
The describe function tries to give some useful summary information about the
data in the columns, depending on the type. For example, describe(df) gives
for column 2 (which is numeric) the minimum, maximum, median, mean,
number of unique, and the number of missing:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[137]

To load in data from a local CSV file, use the read method from the CSV package (the
following are the docs for that package: https://juliadata.github.io/CSV.jl/stable/).
The returned object is of the DataFrame type:

// code in Chapter 8\dataframes.jl
using DataFrames, CSV
fname = "winequality.csv"
data = CSV.read(fname, delim = ';')
typeof(data) # DataFrame
size(data) # (1599,12)

Here is a fraction of the output:

The readtable method also supports reading in the gzip CSV files.

Writing DataFrame to a file can be done with the CSV.write function, which takes the
filename and DataFrame as arguments, for example, CSV.write ("dataframe1.csv",
df, delim = ';'). By default, write will use the delimiter specified by the filename
extension and write the column names as headers.

Both read and write support numerous options for special cases. Refer to the docs for
more information.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://juliadata.github.io/CSV.jl/stable/

I/O, Networking, and Parallel Computing Chapter 8

[138]

To demonstrate some of the power of DataFrames, here are some queries you can do:

Make a vector with only quality information, data[:quality].
Give wines whose alcohol percentage is equal to 9.5, for example, data[
data[:alcohol] .== 9.5, :].

Here, we use the .== operator, which does an element-wise comparison.
data[:alcohol] .== 9.5 returns an array of Boolean values (true for
datapoints, where :alcohol is 9.5, and false otherwise).
data[boolean_array, :] selects those rows where boolean_array is true.

Count the number of wines grouped by quality with by(data, :quality,
data -> size(data, 1)), which returns the following:

6x2 DataFrame
Row	quality	x1
1	3	10
2	4	53
3	5	681
4	6	638
5	7	199
6	8	18

The DataFrames package contains the by function, which takes in three
arguments:

DataFrame, here it takes data
A column to split DataFrame on, here it takes quality
A function or an expression to apply to each subset of DataFrame,
here data -> size(data, 1), which gives us the number of
wines for each quality value

Another easy way to get the distribution among quality is to execute the histogram hist
function, hist(data[:quality]), which gives the counts over the range of quality
(2.0:1.0:8.0,[10,53,681,638,199,18]). More precisely, this is a tuple with the first
element corresponding to the edges of the histogram bins, and the second denoting the
number of items in each bin. So there are, for example, 10 wines with quality between 2 and
3.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[139]

To extract the counts as a count variable of the Vector type, we can execute _, count =
hist(data[:quality]); _; this means that we neglect the first element of the tuple. To
obtain the quality classes as a DataArray class, we execute the following:

class = sort(unique(data[:quality]))

We can now construct df_quality, a DataFrame type with class and count columns as
df_quality = DataFrame(qual=class, no=count). This gives the following output:

6x2 DataFrame
Row	qual	no
1	3	10
2	4	53
3	5	681
4	6	638
5	7	199
6	8	18

To deepen your understanding and learn about the other features of Julia's DataFrames
(such as joining, reshaping, and sorting), refer to the documentation available at
http://juliadata.github.io/DataFrames.jl/latest/index.html.

Other file formats
Julia can work with other human-readable file formats through specialized packages:

For JSON, use the JSON package. The parse method converts JSON strings into
dictionaries, and the json method turns any Julia object into a JSON string.
For XML, use the LightXML package.
For YAML, use the YAML package.
For HDF5 (a common format for scientific data), use the HDF5 package.
For working with Windows INI files, use the IniFile package.

Working with TCP sockets and servers
To send data over a network, the data has to conform to a certain format or protocol. The
Transmission Control Protocol / Internet Protocol (TCP/IP) is one of the core protocols to
be used on the internet.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://juliadata.github.io/DataFrames.jl/latest/index.html

I/O, Networking, and Parallel Computing Chapter 8

[140]

The following screenshot shows how to communicate over TCP/IP between a Julia
TCP server and a client (see the code in Chapter 8\tcpserver.jl):

The server (in the upper-left corner) is started in a Julia session with server =
Sockets.listen(8080), which returns a TcpServer object listening on port 8080.
The conn = accept(server) line waits for an incoming client to make a connection. In a
second terminal (in the lower-right corner), we start the netcat (nc) tool at the prompt to
make a connection with the Julia server on port 8080, for example, nc localhost 8080.
Then, the accept function creates a TcpSocket object on which the server can read or
write.

Then, the server issues the line = readline(conn) command, blocking the server until
it gets a full line (ending with a newline character) from the client. The client types "hello
Julia server!" followed by Enter, which appears at the server console. The server can
also write text to the client over the TCP connection with the write(conn, "message ")
function, which then appears at the client side. The server can, when finished, close the
TcpSocket connection to close the TCP connection with close(conn); this also closes the
netcat session.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[141]

Of course, a normal server must be able to handle multiple clients. Here, you can see the
code for a server that echoes back to the clients everything they send to the server:

// code in Chapter8\echoserver.jl
using Sockets
server = Sockets.listen(8080)
while true
 conn = accept(server) @async begin
 try
 while true
 line = readline(conn)
 println(line) # output in server console
 write(conn,line)
 end
 catch ex
 print("connection ended with error $ex")
 end
 end # end coroutine block
end

To achieve this, we place the accept() function within an infinite while loop, so that each
incoming connection is accepted. The same is true for reading and writing to a specific
client; the server only stops listening to that client when the client disconnects. Because the
network communication with the clients is a possible source of errors, we have to surround
it within a try/catch expression. When an error occurs, it is bound to the ex object. For
example, when a client terminal exits, you get the connection ended with error
ErrorException("stream is closed or unusable") message.

However, we also see an @async macro here; what is its function? The @async macro starts
a new coroutine (refer to the Tasks section in Chapter 4, Control Flow) in the local process to
handle the execution of the begin...end block that starts right after it. So, the @async
macro handles the connection with each particular client in a separate coroutine. Thus, the
@async block returns immediately, enabling the server to continue accepting new
connections through the outer while loop. Because coroutines have a very low overhead,
making a new one for each connection is perfectly acceptable. If it weren't for the async
block, the program would block it until it was done with its current client before accepting
a new connection.

On the other hand, the @sync macro is used to enclose a number of @async (or @spawn or
@parallel calls, refer to the Parallel operations and computing section), and the code
execution waits at the end of the @sync block until all the enclosed calls are finished.

Start this server example by typing the following command:

julia echoserver.jl

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[142]

We can experiment with a number of netcat sessions in separate terminals. Client sessions
can also be made by typing in a Julia console:

 using Sockets
 conn = Sockets.connect(8080)
#> TCPSocket(Base.Libc.WindowsRawSocket(0x0000000000000340) open, 0 bytes
waiting)
 write(conn, "Do you hear me?\n")

The listen function has some variants, for example, listen(IPv6(0),2001) creates a
TCP server that listens on port 2001 on all IPv6 interfaces. Similarly, instead of readline,
there are also simpler read methods:

read(conn, UInt8): This method blocks until there is a byte to read from
conn, and then returns it. Use convert(Char, n) to convert a UInt8 value into
Char. This will let you see the ASCII letter for UInt8 you read in.
read(conn, Char): This method blocks until there is a byte to read from conn,
and then returns it.

The important aspect about the communication API is that the code looks like synchronous
code executing line by line, even though the I/O is actually happening asynchronously
through the use of tasks. We don't have to worry about writing callbacks as in some other
languages. For more details about possible methods, refer to the I/O and Network section at
https://docs.julialang.org/en/latest/base/io-network/.

Interacting with databases
Open Database Connectivity (ODBC) is a low-level protocol for establishing connections
with the majority of databases and datasources (for more details, refer to
http://en.wikipedia.org/wiki/Open_Database_Connectivity).

Julia has an ODBC package that enables Julia scripts to talk to ODBC data sources. Install the
package through Pkg.add("ODBC"), and at the start of the code, run it using ODBC.

The package can work with a system Data Source Name (DSN) that contains all the
concrete connection information, such as server name, database, credentials, and so on.
Every operating system has its own utility to make DSNs. In Windows, the ODBC
administrator can be reached by navigating to Control Panel | Administrative Tools |
ODBC Data Sources; on other systems, you have IODBC or Unix ODBC.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.julialang.org/en/latest/base/io-network/
http://en.wikipedia.org/wiki/Open_Database_Connectivity

I/O, Networking, and Parallel Computing Chapter 8

[143]

For example, suppose we have a database called pubs running in a SQL Server or a MySQL
Server, and the connection is described with a DSN pubsODBC. (Included in the code
download is a script, instpubs.sql, to install the pubs database with only the titles
table in a SQL Server; the script can be easily adapted for MySQL.)

Now, I can connect to this database as follows:

// code in Chapter 8\odbc.jl
using ODBC
ODBC.DSN("pubsODBC",<user>,<password>)

This returns an output as follows:

Connection Data Source: pubsODBC
pubsODBC Connection Number: 1
 Contains resultset? No

You can also store this DSN object in a dsn variable, as follows:

dsn = ODBC.DSN("pubsODBC",<user>,<password>)

This way, you are able to close the connection when necessary through
ODBC.disconnect!(dsn) to save database resources, or handle multiple connections.

To launch a query on the titles table, you only need to use the query function, as
follows:

results = ODBC.query(dsn, "select * from titles")

The result is of the DataFrame type and the dimensions are 18 x 10, because the table
contains 18 rows and 10 columns, for example; here are some of the columns:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[144]

If you haven't stored the query results in a variable, you can always retrieve them from
conn.resultset, where conn is an existing connection. Now we have all the
functionalities of DataFrames at our disposal to work with this data. Launching data-
manipulation queries works in the same way:

updsql = "update titles set type = 'psychology' where
 title_id='BU1032'"
stmt = ODBC.prepare(dsn, updsql)
ODBC.execute!(stmt)

In order to see which ODBC drivers are installed on the system, ask for
ODBC.listdrivers(). The already available DSNs are listed with ODBC.listdsns().

Julia already has database drivers for Memcache, FoundationDB, MongoDB, Redis,
MySQL, SQLite, and PostgreSQL (for more information, refer to
https://github.com/JuliaDatabases).

Parallel operations and computing
In our multicore CPU and clustered computing world, it is imperative for a new language
to have excellent parallel computing capabilities. This is one of the main strengths of Julia:
providing an environment based on message-passing between multiple processes that can
execute on the same machine or on remote machines.

In that sense, it implements the actor model (as Erlang, Elixir, and Pony do), but we'll see
that the actual coding happens on a higher level than receiving and sending messages
between processes, or workers (processors) as Julia calls them. The developer only needs to
explicitly manage the main process from which all other workers are started. The message
send and receive operations are simulated by higher-level operations that look like function
calls.

Creating processes
To start with processes, add and make available the Distributed package with add
Distributed, and using Distributed.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/JuliaDatabases

I/O, Networking, and Parallel Computing Chapter 8

[145]

Julia can be started as a REPL or as a separate application with a number of workers, n,
available. The following command starts n processes on the local machine (this command
includes the Distributed package automatically):

// code in Chapter 8\parallel.jl
julia -p n # starts REPL with n workers

These workers are different processes, not threads, so they do not share memory.

To get the most out of a machine, set n equal to the number of processor cores. For example,
when n is 8, you have, in fact, nine workers: one for the REPL shell itself, and eight others
that are ready to do parallel tasks. Every worker has its own integer identifier, which we
can see by calling the workers function, workers(). This returns the following:

8-element Array{Int64,1} containing: 2 3 4 5 6 7 8 9

Process 1 is the REPL worker. We can now iterate over the workers with the following
command:

for pid in workers()
 # do something with each process (pid = process id)
end

Each worker can get its own process ID with the myid() function. If you need more
workers, adding new ones is easy:

addprocs(5)

This returns 5-element Array{Any,1}, which contains their process identifiers, 10 11
12 13 14. The default method adds workers on the local machine, but the addprocs
method accepts arguments to start processes on remote machines via SSH. This is the
secure shell protocol that enables you to execute commands on a remote computer via a
shell in a totally encrypted manner.

The number of available workers is given by nprocs(); in our case, this is 14. A worker
can be removed by calling rmprocs() with its identifier; for example, rmprocs(3) stops
the worker with the ID 3.

All these workers communicate via TCP ports and run on the same machine, which is why
it is called a local cluster. To activate workers on a cluster of computers, start Julia as
follows:

julia --machine-file machines driver.jl

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[146]

Here, machines is a file that contains the names of the computers you want to engage, as
follows:

node01
node01
node02
node02
node03

Here node01, node02, and node03 are the three names of computers in the cluster, and we
want to start two workers each on node01 and node02, and one worker on node03.

The driver.jl file is the script that runs the calculations and has a process identifier of 1.
This command uses a password-less SSH login to start the worker processes on the
specified machines. The following screenshot shows all the eight processors on an eight-
core machine when engaged in a parallel operation:

The horizontal axis is time, and the vertical is the CPU usage. On each core, a worker
process is engaged in a long-running Fibonacci calculation.

Processors can be dynamically added or removed to a master Julia process, locally on
symmetric multiprocessor systems, remotely on a computer cluster, as well as in the cloud.
If more versatility is needed, you can work with the ClusterManager type (see
http://docs.julialang.org/en/latest/manual/parallel-computing/).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://docs.julialang.org/en/latest/manual/parallel-computing/

I/O, Networking, and Parallel Computing Chapter 8

[147]

Using low-level communications
Julia's native parallel computing model is based on two primitives: remote calls and remote
references. At this level, we can give a certain worker a function with arguments to execute
with remotecall, and get the result back with fetch. As a trivial example in the following
code, we call upon worker 2 to execute a square function on the number 1000:

r1 = remotecall(x -> x^2, 2, 1000)

This returns Future(2, 1, 15, nothing).

The arguments are: the worker ID, the function, and the function's arguments. Such a
remote call returns immediately, thus not blocking the main worker (the REPL in this case).
The main process continues executing while the remote worker does the assigned job. The
remotecall function returns a variable, r1, of the Future type, which is a reference to the
computed result, which we can get using fetch:

fetch(r1)

This returns 1000000.

The call to fetch will block the main process until worker 2 has finished the calculation.
The main processor can also run wait(r1), which also blocks until the result of the remote
call becomes available. If you need the remote result immediately in the local operation, use
the following command:

remotecall_fetch(sin, 5, 2pi)

Which returns -2.4492935982947064e-16.

This is more efficient than fetch(remotecall(..)).

You can also use the @spawnat macro, which evaluates the expression in the second
argument on the worker specified by the first argument:

r2 = @spawnat 4 sqrt(2) # lets worker 4 calculate sqrt(2)
 fetch(r2) # returns 1.4142135623730951

This is made even easier with @spawn, which only needs an expression to evaluate, because
it decides for itself where it will be executed: r3 = @spawn sqrt(5) returns
RemoteRef(5,1,26) and fetch(r3) returns 2.23606797749979.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[148]

To execute a certain function on all the workers, we can use a comprehension:

r = [@spawnat w sqrt(5) for w in workers()]
fetch(r[3]) # returns 2.23606797749979

To execute the same statement on all the workers, we can also use the @everywhere macro:

@everywhere println(myid()) 1
 From worker 2: 2
 From worker 3: 3
 From worker 4: 4
 From worker 7: 7
 From worker 5: 5
 From worker 6: 6
 From worker 8: 8
 From worker 9: 9

All the workers correspond to different processes; they therefore do not share variables, for
example:

x = 5 #> 5
@everywhere println(x) #> 5
 # exception on worker 2: ERROR: UndefVarError: x not defined ...
 ...and 11 more exception(s)

The x variable is only known in the main process, all the other workers return the ERROR:
x not defined error message.

@everywhere can also be used to make the data, such as the w variable, available to all
processors, for example, @everywhere w = 8.

The following example makes a defs.jl source file available to all the workers:

@everywhere include("defs.jl")

Or, more explicitly, a fib(n) function, as follows:

@everywhere function fib(n)
 if (n < 2) then
 return n
 else return fib(n-1) + fib(n-2)
 end
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[149]

In order to be able to perform its task, a remote worker needs access to the function it
executes. You can make sure that all workers know about the functions they need by
loading the functions.jl source code with include, making it available to all workers:

include("functions.jl")

In a cluster, the contents of this file (and any files loaded recursively) will be sent over the
network.

A best practice is to separate your code into two files: one file
(functions.jl) that contains the functions and parameters that need to
be run in parallel, and the other file (driver.jl) that manages the
processing and collects the results. Use the include("functions.jl")
command in driver.jl to import the functions and parameters to all
processors.

An alternative is to specify that the files load on the command line. If you need
the file1.jl and file2.jl source files on all the n processors at startup time, use
the julia -p n -L file1.jl -L file2.jl driver.jl syntax, where driver.jl is
the script that organizes the computations.

Data-movement between workers (such as when calling fetch) needs to be reduced as
much as possible in order to get performance and scalability.

If every worker needs to know the d variable, this can be broadcast to all processes with the
following code:

for pid in workers()
 remotecall(pid, x -> (global d; d = x; nothing), d)
end

Each worker then has its local copy of data. Scheduling the workers is done with tasks
(refer to the Tasks section of Chapter 4, Control Flow), so that no locking is required; for
example, when a communication operation such as fetch or wait is executed, the current
task is suspended, and the scheduler picks another task to run. When the wait event
completes (for example, the data shows up), the current task is restarted.

In many cases, however, you do not have to specify or create processes to do parallel
programming in Julia, as we will see in the next section.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[150]

Parallel loops and maps
A for loop with a large number of iterations is a good candidate for parallel execution, and
Julia has a special construct to do this: the @parallel macro, which can be used for the for
loops and comprehensions.

Let's calculate an approximation for Π using the famous Buffon's needle problem. If we
drop a needle onto a floor with equal parallel strips of wood, what is the probability that
the needle will cross a line between two strips? Let's take a look at the following screenshot:

Without getting into the mathematical intricacies of this problem (if you are interested, see
http://en.wikipedia.org/wiki/Buffon's_needle), a buffon(n) function can be deduced
from the model assumptions that returns an approximation for Π when throwing the
needle n times (assuming the length of the needle, l, and the width, d, between the strips
both equal 1):

// code in Chapter 8\parallel_loops_maps.jl
function buffon(n)
 hit = 0
 for i = 1:n
 mp = rand()
 phi = (rand() * pi) - pi / 2 # angle at which needle falls
 xright = mp + cos(phi)/2 # x location of needle
 xleft = mp - cos(phi)/2
 # does needle cross either x == 0 or x == 1?
 p = (xright >= 1 || xleft <= 0) ? 1 : 0
 hit += p
 end
 miss = n - hit
 piapprox = n / hit * 2
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://en.wikipedia.org/wiki/Buffon's_needle

I/O, Networking, and Parallel Computing Chapter 8

[151]

With ever-increasing n, the calculation time increases, because the number of the for
iterations that have to be executed in one thread on one processor increases, but we also get
a better estimate for Π:

@time buffon(100000)
 0.208500 seconds (504.79 k allocations: 25.730 MiB, 7.10% gc time)
 3.1441597233139444

@time buffon(100000000)
 4.112683 seconds (5 allocations: 176 bytes)
 3.141258861373451

However, what if we could spread the calculations over the available processors? For this,
we have to rearrange our code a bit. In the sequential version, the variable hit is increased
on every iteration inside the for loop with the p amount (which is 0 or 1). In the parallel
version, we rewrite the code, so that this p is exactly the result of the for loop (one
calculation) done on one of the involved processors.

Julia also provides a @distributed macro that acts on a for loop, splitting the range and
distributing it to each process. It optionally takes a "reducer" as its first argument. If a
reducer is specified, the results from each remote procedure will be aggregated using the
reducer. In the following example, we use the (+) function as a reducer, which means that
the last values of the parallel blocks on each worker will be summed to calculate the final
value of hit:

function buffon_par(n)
 hit = @distributed (+) for i = 1:n
 mp = rand()
 phi = (rand() * pi) - pi / 2
 xright = mp + cos(phi)/2
 xleft = mp - cos(phi)/2
 (xright >= 1 || xleft <= 0) ? 1 : 0
 end
 miss = n - hit
 piapprox = n / hit * 2
end

On my machine with eight processors, this gives the following results:

@time buffon_par(100000)
 1.058487 seconds (951.35 k allocations: 48.192 MiB, 2.04% gc time)
 3.15059861373661

@time buffon_par(100000000)
 0.735853 seconds (1.84 k allocations: 133.156 KiB)
 3.1418106012575633

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[152]

We see much better performance for the higher number of iterations (a factor of 5.6 in this
case). By changing a normal for loop into a parallel-reducing version, we were able to get
substantial improvements in the calculation time, at the cost of higher memory
consumption. In general, always test whether the parallel version really is an improvement
over the sequential version in your specific case!

The first argument of @distributed is the reducing operator (here, (+)), the second is the
for loop, which must start on the same line. The calculations in the loop must be
independent of one another, because the order in which they run is arbitrary, given that
they are scheduled over the different workers. The actual reduction (summing up in this
case) is done on the calling process.

Any variables used inside the parallel loop will be copied (broadcasted) to each process.
Because of this, the code, such as the following, will fail to initialize the arr array, because
each process has a copy of it:

arr = zeros(100000)
@distributed for i=1:100000
 arr[i] = i
end

Afterward the loop, arr still contains all the zeros, because it is the copy on the master
worker.

If the computational task is to apply a function to all elements in some collection, you can
use a parallel map operation through the pmap function. The pmap function takes the
following form: pmap(f, coll), applies an f function on each element of the coll
collection in parallel, but preserves the order of the collection in the result. Suppose we
have to calculate the rank of a number of large matrices. We can do this sequentially, as
follows:

using LinearAlgebra
function rank_marray()
 marr = [rand(1000,1000) for i=1:10]
 for arr in marr
 println(LinearAlgebra.rank(arr))
 end
end

@time rank_marray() # prints out ten times 1000
7.310404 seconds (91.33 k allocations: 162.878 MiB, 1.15% gc time)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

I/O, Networking, and Parallel Computing Chapter 8

[153]

In the following, parallelizing also gives benefits (a factor of 1.6):

function prank_marray()
 marr = [rand(1000,1000) for i=1:10]
 println(pmap(LinearAlgebra.rank, marr))
end

@time prank_marray()
5.966216 seconds (4.15 M allocations: 285.610 MiB, 2.15% gc time)

The @distributed macro and pmap are both powerful tools to tackle map-reduce
problems.

Julia's model for building a large parallel application works by means of a global
distributed address space. This means that you can hold a reference to an object that lives
on another machine participating in a computation. These references are easily
manipulated and passed around between machines, making it simple to keep track of
what's being computed where. Also, machines can be added in mid-computation when
needed.

Summary
In this chapter, we explored a lot of material. We learned how the I/O system in Julia is
constructed, how to work with files and DataFrames, and how to connect with databases
using ODBC. The basics of network programming in Julia were also discussed, and then we
got an overview of the parallel computing functionality, from primitive operations to map-
reduce functions and distributed arrays.

In the next chapter, we will take a look at how Julia interacts with the command line and
with other languages, and discuss a number of performance tips.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Running External Programs

Sometimes, your code needs to interact with programs in the outside world, be it the
operating system in which it runs or other languages such as C or Fortran. This chapter
shows how straightforward it is to run external programs from Julia and covers the
following topics:

Running shell commands—interpolation and pipelining
Calling C and Fortran
Calling Python
Performance tips

Running shell commands
To interact with the operating system from within the Julia REPL, there are a few helper
functions available, as follows:

pwd(): this function prints the current directory, for example, "d:\\test"
cd("d:\\test\\week1"): this function helps to navigate to subdirectories
;: in the interactive shell, you can also use shell mode using the ; modifier, for
example: ; cd folder: navigates to folder

However, what if you want to run a shell command by using the operating system (the
OS)? Julia offers efficient shell integration through the run function, which takes an object
of type Cmd, defined by enclosing a command string in backticks (``).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Running External Programs Chapter 9

[155]

The following are some examples for Linux or macOS X (at the time of writing: September
2018):

Code in Chapter 9\shell.jl:
cmd = `echo Julia is smart`
 typeof(cmd) #> Cmd
 run(cmd) # returns Julia is smart
 run(`date`) #> Sat Jul 14 09:44:50 GMT 2018
 cmd = `cat file1.txt`
 run(cmd) # prints the contents of file1.txt

The preceding code does not work on Windows, although it worked until version 0.6. This
is a bug in version 1.0 and is expected to be resolved in the near future.

Be careful to enclose the command text in backticks (`), not single quotes
(').

If the execution of cmd by the OS goes wrong, run throws a failed process error. You
might want to test the command first before running it; success(cmd) will return true if
it executes successfully, otherwise it returns false.

Julia forks commands as child processes from the Julia process. Instead of immediately
running the command in the shell, backticks create a Cmd object to represent the command.
This can then be run, connected to other commands via pipes, and read or written to.

Interpolation
String interpolation with the $ operator is allowed in a command object, like this:

 file = "file1.txt"
cmd = `cat $file` # equivalent to `cat file1.txt`
run(cmd) #> prints the contents of file1.txt

This is very similar to the string interpolation with $ in strings (refer to the Strings section
in Chapter 2, Variables, Types, and Operations).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Running External Programs Chapter 9

[156]

Pipelining
Julia defines a pipeline function to redirect the output of a command as the input to the
following command:

run(pipeline(`cat $file`,"test.txt"))

This writes the contents of the file referred to by $file into test.txt, which is shown as
follows:

run(pipeline("test.txt",`cat`))

This pipeline function can even take several successive commands, as follows:

run(pipeline(`echo $("\nhi\nJulia")`,`cat`,`grep -n J`)) #>
 3:Julia

If the file tosort.txt contains B, A, and C on consecutive lines, then the following
command will sort the lines:

run(pipeline(`cat "tosort.txt"`,`sort`)) # returns A B C

Another example is to search for the word is in all the text files in the current folder. Use
the following command:

run(`grep is $(readdir())`)

To capture the result of a command in Julia, use read or readline:

a = read(pipeline(`cat "tosort.txt"`,`sort`))

Now a has the value A\r\nB\r\nC\n.

Multiple commands can be run in parallel with the & operator:

run(`cat "file1.txt"` & `cat "tosort.txt"`)

This will print the lines of the two files intermingled, because the printing happens
concurrently.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Running External Programs Chapter 9

[157]

Using this functionality requires careful testing, and, probably, the code will differ
according to the operating system on which your Julia program runs. You can obtain the
OS from the variable Sys.KERNEL, or use the functions iswindows, isunix, islinux, and
isosx from the Sys package, which was specifically designed to handle platform
variations. For example, let's say we want to execute the function fun1() (unless we are on
Windows, in which case the function is fun2()). We can write this as follows:

Sys.iswindows() ? fun1 : fun2

Or we can write it with the more usual if...else keyword:

if Sys.iswindows()
 fun1
else
 fun2
end

Calling C and Fortran
While Julia can rightfully claim to obviate the need to write some C or Fortran code, it is
possible that you will need to interact with the existing C or Fortran shared libraries.
Functions in such a library can be called directly by Julia, with no glue code, boilerplate
code, or compilation needed. Because Julia's LLVM compiler generates native code, calling
a C function from Julia has exactly the same overhead as calling the same function from C
code itself. However, first, we need to know a few more things:

For calling out to C, we need to work with pointer types; a native pointer Ptr{T}
is nothing more than the memory address for a variable of type T. You can use
Cstring if the value is null-terminated.
At this lower level, the term primitive is also used. primitive is a concrete
type whose data consists of bits, such as Int8, UInt8, Int32, Float64, Bool,
and Char.
To pass a string to C, it is converted to a contiguous byte array representation
with the function unsafe_string(); given Ptr to a C string, it returns a Julia
string.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Running External Programs Chapter 9

[158]

Here is how to call a C function in a shared library (calling Fortran is done similarly).
Suppose we want to know the value of an environment variable in our system, say, the
language; we can obtain this by calling the C function getenv from the shared library
libc:

code in Chapter 9\callc.jl:
lang = ccall((:getenv, "libc"), Cstring, (Cstring,), "LANG")

This returns a Cstring. To see its string contents, execute unsafe_string(lang), which
returns en_US.

In general, ccall takes the following arguments:

A (:function, "library") tuple, where the name of the C function (here,
getenv) is used as a symbol, and the library name (here, libc) as a string
The return type (here, Cstring), which can also be any primitive, or Ptr
A Cstring as input arguments: note the tuple notation (Cstring,)
The actual arguments, if there are any (here, "LANG")

It is generally advisable to test for the existence of a library before doing the call. This can
be tested like this: find_library(["libc"]), which returns "libc" when the library is
found, or " " when it cannot find the library.

When calling a Fortran function, all inputs must be passed by reference. Arguments to C
functions are, in general, automatically converted, and the returned values in C types are
also converted to Julia types. Arrays of Booleans are handled differently in C and Julia and
cannot be passed directly, so they must be manually converted. The same applies for some
system-dependent types.

The ccall function will also automatically ensure that all of its arguments will be
preserved from garbage collection until the call returns. C types are mapped to Julia types.
For example, short is mapped to Int16, and double to Float64.

A complete table of these mappings, as well as a lot more intricate details, can be found in
the Julia docs at
http://docs.julialang.org/en/latest/manual/calling-c-and-fortran-code/. The
other way around is also possible, by calling Julia functions from C code (or embedding
Julia in C); refer to http://docs.julialang.org/en/latest/manual/embedding/. Julia and
C can also share array data without copying.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://docs.julialang.org/en/latest/manual/calling-c-and-fortran-code/
http://docs.julialang.org/en/latest/manual/calling-c-and-fortran-code/
http://docs.julialang.org/en/latest/manual/embedding/

Running External Programs Chapter 9

[159]

If you have the existing C code, you must compile it as a shared library to call it from Julia.
With GCC, you can do this using the -shared -fPIC command-line arguments. Support
for C++ is more limited and is provided by the Cpp and Clang packages.

Calling Python
The PyCall package provides us with the ability to call Python from Julia code. As always,
add this package to your Julia environment with add PyCall. Then, you can start using it
in the REPL, or in a script as follows:

using PyCall
py"10*10" #> 100
@pyimport math
math.sin(math.pi / 2) #> 1.0

As we can see with the @pyimport macro, we can easily import any Python library;
functions inside such a library are called with the familiar dot notation.

For more details, refer to https://github.com/stevengj/PyCall.jl.

Performance tips
Throughout this book, we have paid attention to performance. Here, we summarize some
highlighted performance topics and give some additional tips. These tips need not always
be used, and you should always benchmark or profile the code and the effect of a tip.
However, applying some of them can often yield a remarkable performance improvement.
Using type annotations everywhere is certainly not the way to go; Julia's type inferring
engine does that work for you:

Refrain from using global variables. If unavoidable, make them constant with
const, or at least annotate the types. It is better to use local variables instead;
they are often only kept on the stack (or even in registers), especially if they are
immutable.
Use a main() function to structure your code.
Use functions that do their work on local variables via function arguments, rather
than mutating global objects.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/stevengj/PyCall.jl

Running External Programs Chapter 9

[160]

Type stability is very important:
Avoid changing the types of variables over time
The return type of a function should only depend on the type of
the arguments

Even if you do not know the types that will be used in a function, but you do
know it will always be of the same type T, then functions should be defined
keeping that in mind, as in the following code snippet:

function myFunc(a::T, c::Int) where T
 # code
end

If large arrays or dictionaries are needed, indicate their final size with
sizehint! from the start (refer to the Ranges and arrays section of Chapter 2,
Variables, Types, and Operations). The following is an example of its use:

d1 = Dict();
sizehint!(d1, 10000);
for i in [1:10000] d1[string(i)] = 2*i; end;

If arr is a very large array that you no longer need, you can free the memory it
occupies by setting arr = nothing. The occupied memory will be released the
next time the garbage collector runs. You can force this to happen by invoking
GC.gc().
In certain cases (such as real-time applications), disabling garbage collection
(temporarily) with GC.enable(false) can be useful.
Use named functions instead of anonymous functions.
In general, use small functions.
Don't test for the types of arguments inside a function, use an argument type
annotation instead.
If necessary, code different versions of a function (several methods) according to
the types, so that multiple dispatch applies. Normally, this won't be necessary,
because the JIT compiler is optimized to deal with types as they come.
Use types for keyword arguments; avoid using the splat operator (...) for
dynamic lists of keyword arguments.
Using mutating APIs (functions with ! at the end) is helpful, for example, to
avoid copying large arrays.
Prefer array operations to comprehensions, for example, x.^2 is considerably
faster than [val^2 for val in x].
Don't use try/catch in the inner loop of a calculation.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Running External Programs Chapter 9

[161]

Use immutable types (cfr. package ImmutableArrays).
Avoid using type Any, especially in collection types.
Avoid using abstract types in a collection.
Type annotate fields in composite types.
Avoid using a large number of variables, large temporary arrays, and collections,
because this provokes a great deal of garbage collection. Also, don't make copies
of variables if you don't have to.
Avoid using string interpolation ($) when writing to a file, just write the values.
Devectorize your code, that is, use explicit for loops on array elements instead of
simply working with the arrays and matrices. (This is the exact opposite of
advice commonly given to R, MATLAB, or Python users.)
If appropriate, use a parallel reducing form with @distributed instead of a
normal for loop (refer to Chapter 8, IO, Networking, and Parallel Computing).
Reduce data movement between workers in a parallel execution as much as
possible (refer to Chapter 8, IO, Networking, and Parallel Computing).
Fix deprecation warnings.
Use the macro @inbounds so that no array bounds checking occurs in
expressions (if you are absolutely certain that no BoundsError occurs!).
Avoid using eval at runtime.

In general, split your code into functions. Data types will be determined at function calls,
and when a function returns. Types that are not supplied will be inferred, but the Any type
does not translate to efficient code. If types are stable (that is, variables stick to the same
type) and can be inferred, then your code will run quickly.

Tools to use
Execute a function with certain parameter values, and then use @time (refer to the Generic
functions and multiple dispatch section in Chapter 3, Functions) to measure the elapsed time
and memory allocation. If too much memory is allocated, investigate the code for type
problems.

Experiment with different tips and techniques in the script
array_product_benchmark.jl. Use code_typed (refer to the Reflection capabilities
section in Chapter 7, Metaprogramming in Julia) to see if type Any is inferred.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Running External Programs Chapter 9

[162]

A profiler tool is available in the standard library to measure the performance of your
running code and identify possible bottleneck lines. This works through calling your code
with the @profile macro (refer to
https://docs.julialang.org/en/latest/manual/profile/).

The ProfileView package provides a nice graphical browser to investigate profile results
(follow the tutorial at https://github.com/timholy/ProfileView.jl).

BenchmarkingTools is an excellent package with macros and tools for benchmarking your
code.

For more tips, examples, and argumentation about performance, look up
http://docs.julialang.org/en/latest/manual/performance-tips/.

Summary
In this chapter, we saw how easy it is to run commands at the operating system level.
Interfacing with C is not that much more difficult, although it is somewhat specialized.
Finally, we reviewed the best practices at our disposal to make Julia perform at its best. In
the previous chapter, we got to know some of the more important packages when using
Julia in real projects.

In the next chapter, we will be digging deeper into the standard library and on how to use
the package manager to explore different packages in Julia.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.julialang.org/en/latest/manual/profile/
https://github.com/timholy/ProfileView.jl
http://docs.julialang.org/en/latest/manual/performance-tips/
http://docs.julialang.org/en/latest/manual/performance-tips/

10
The Standard Library and

Packages
In this chapter, we will look anew at the standard library and explore the ever-growing
ecosystem of packages for Julia. We will discuss the following topics:

Digging deeper into the standard library
Julia's package manager
Graphics in Julia
Using Plots on data

Digging deeper into the standard library
The standard library is written in Julia and is comprised of a very broad range of
functionalities: from regular expressions, working with dates and times, a package
manager, internationalization and Unicode, linear algebra, complex numbers, specialized
mathematical functions, statistics, I/O and networking, Fast Fourier Transformations
(FFT), and parallel computing, to macros, and reflection. Julia provides a firm and broad
foundation for numerical computing and data science (for example, much of what NumPy
has to offer is provided). Despite being targeted at numerical computing and data science,
Julia aims to be a general-purpose programming language.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Standard Library and Packages Chapter 10

[164]

The source code of the standard library can be found in the share\julia\base and
share\julia\stdlib subfolders of Julia's root installation folder. Coding in Julia leads
almost naturally to this source code, for example, when viewing all the methods of a
particular function with methods(), or when using the @which macro to find out more
about a certain method (refer to the Generic functions and multiple dispatch section in Chapter
3, Functions).

Here, we see the output of the command methods(+), which lists 167+ methods available
in Julia version 1.0, together with their source locations:

The same command in a Jupyter notebook even provides hyperlinks to the source code.

We covered some of the most important types and functions in the previous chapters, and
you can refer to the manual for a more exhaustive overview at https:/ /docs. julialang.
org/en/latest/base/ base/ .

It is certainly important to know that Julia contains a wealth of functional constructs to
work with collections, such as the reduce, fold, min, max, sum, any, all, map, and filter
functions. Some examples are as follows:

filter(f, coll) applies the function f to all the elements of the collection
coll:

code in Chapter 10\stdlib.jl:
filter(x -> iseven(x), 1:10)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/
https://docs.julialang.org/en/latest/base/base/

The Standard Library and Packages Chapter 10

[165]

This returns 5-element Array{Int64,1}, which consists of 2, 4, 6, 8, and 10.

mapreduce(f, op, coll) applies the function f to all the elements of coll
and then reduces this to one resulting value by applying the operation op:

mapreduce(x -> sqrt(x), +, 1:10) #> 22.4682781862041
which is equivalent to:
sum(map(x -> sqrt(x), 1:10))

When working in the REPL, it can be handy to store a variable in the operating system's
clipboard if you want to clean the REPL's variables memory with workspace(). Consider
the ensuing example:

a = 42
using InteractiveUtils
clipboard(a)
quit and restart REPL:
a # returns ERROR: a not defined
a = clipboard() # returns "42"

This also works while copying information from another application, for example, a string
from a website or from a text editor.

Julia's package manager
The Packages section in Chapter 1, Installing the Julia Platform, introduced us to Julia's
package system (some 1,906 packages in September 2018 and counting) and its manager
program Pkg. Most Julia libraries are written exclusively in Julia; this makes them not only
more portable, but also an excellent source for learning and experimenting with Julia in
your own modified versions. The packages that are useful for data scientists are Stats,
Distributions, GLM, and Optim. You can search for applicable packages in the https:/ /
pkg.julialang.org/ repository.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pkg.julialang.org/
https://pkg.julialang.org/
https://pkg.julialang.org/
https://pkg.julialang.org/
https://pkg.julialang.org/
https://pkg.julialang.org/
https://pkg.julialang.org/
https://pkg.julialang.org/
https://pkg.julialang.org/

The Standard Library and Packages Chapter 10

[166]

Installing and updating packages
Use the status command in the package REPL mode to see which packages have already
been installed:

It is advisable to regularly (and certainly before installing a new package) execute the up
command to ensure that your local package repository is up-to-date and synchronized, as
shown in the following screenshot:

If you only want to update one package, specify the package name after the up command.

The rm command is used for deleting a package, but it removes only the reference to it. To
completely remove the sources, use the gc command.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Standard Library and Packages Chapter 10

[167]

As we saw in Chapter 1, Installing the Julia Platform, packages are installed via add
PackageName and brought into scope using PackageName. You can also clone a package
from a git repository as follows:

Pkg.clone("git@github.com:ericchiang/ANN.jl.git")

If you need to force a certain package to a certain version (perhaps an older version), use
pin. For example, use pin HDF5, v"0.4.3" to force the use of version 0.4.3 of package
HDF5, even when you already have version 0.4.4 installed.

Graphics in Julia
Several packages exist to plot data and visualize data relations; Plots and PyPlot are
some of the most commonly used:

PyPlot: (refer to the Installing and working with Jupyter section in Chapter 1,
Installing the Julia Platform) This package works with no overhead through the
PyCall package. The following is a summary of the main commands:

plot(y), plot(x,y) plots y versus 0,1,2,3 or versus
x:loglog(x,y)

semilogx(x,y), semilogy(x,y) for log scale plots
title("A title"), xlabel("x-axis"), and ylabel("foo")
to set labels
legend(["curve 1", "curve 2"], "northwest") to write a
legend at the upper-left
grid(), axis("equal") adds grid lines, and uses equal x and y
scaling
title(L"the curve $e^\sqrt{x}$") sets the title with a
LaTeX equation
savefig("fig.png"), savefig("fig.eps") saves as the
PNG or EPS image

Plots: (refer to the Adding a new package section in Chapter 1, Installing the Julia
Platform) This is the favorite package in the Julia Computing community. It is a
visualization interface and toolset that works with several backends, in particular
GR (the default backend), PyPlot, and PlotyJS. To start using a certain backend,
type gr() or pyplot() after you have given the command using PyPlots.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Standard Library and Packages Chapter 10

[168]

Plot styles can be adapted by so-called attributes (documented at http:/ /docs.
juliaplots. org/ latest/ attributes/). Some of the most used attributes are:

* xaxis, yaxis, and zaxis
line—to adapt line visualizations
fill—to fill surfaces with color and transparency
The subplot category to modify visualization of an entire plot
The plot category to modify visualization of an entire plot

Lots of other plots can be drawn in Plots, such as scatter plots, 2D histograms,
and box plots. You can even draw in the REPL if you want to.

Comprehensive documentation and a tutorial can be found here: http:/ /docs.
juliaplots. org/ latest/

We apply Plots to visualize data in the next section.

Using Plots on data
Let's apply Plots to show a graph on the famous Iris flower data set, which can be found
in the Rdatasets package (don't forget to first add this package). We also need the
StatPlots package when visualizing DataFrames. It contains an @df macro, which makes
this much easier. Here is the code to draw a scatter plot:

code in Chapter 10\plots_iris.jl
 using PyPlots, StatPlots, RDatasets
 iris = dataset("datasets", "iris")
 @df iris scatter(:SepalLength, :SepalWidth, group=:Species,m=(0.5,
 [:+ :h :star7], 4), bg=RGB(1.0,1.0,1.0))

We plot the sepalwidth property against the sepallength of the flowers. In the
preceding code, iris is the name of our DataFrame, which is passed as the first argument
to the @df macro. We then call the scatter function to obtain the following plot:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/attributes/
http://docs.juliaplots.org/latest/
http://docs.juliaplots.org/latest/
http://docs.juliaplots.org/latest/
http://docs.juliaplots.org/latest/
http://docs.juliaplots.org/latest/
http://docs.juliaplots.org/latest/
http://docs.juliaplots.org/latest/
http://docs.juliaplots.org/latest/
http://docs.juliaplots.org/latest/
http://docs.juliaplots.org/latest/
http://docs.juliaplots.org/latest/

The Standard Library and Packages Chapter 10

[169]

Summary
In this chapter, we looked at the built-in functionality Julia has to offer in its standard
library. We also took a peek at some of the more useful packages to apply in the data
sciences.

We hope that you now have a clear overview of Julia's capabilities and it's time to put them
to some good use as in the next chapter you will be creating your first Julia app.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
Creating Our First Julia App

Now that you have a working Julia installation and your IDE of choice is ready to run, it's
time to put them to some good use. In this chapter, you'll learn how to apply Julia for data
analysis—a domain that is central to the language, so expect to be impressed!

We will learn to perform exploratory data analysis with Julia. In the process, we'll take a
look at RDatasets, a package that provides access to over 700 learning datasets. We'll load
one of them, the Iris flowers dataset, and we'll manipulate it using standard data analysis
functions. Then we'll look more closely at the data by employing common visualization
techniques. And finally, we'll see how to persist and (re)load our data.

But, in order to do that, first we need to revisit and take a look at some of the language's
most important building blocks.

We will cover the following topics in this chapter:

Declaring variables (and constants)
Working with Strings of characters and regular expressions
Numbers and numeric types
Our first Julia data structures—Tuple, Range, and Array
* Exploratory data analysis using the Iris flower dataset—RDatasets and core
Statistics

Quick data visualization with Gadfly
* Saving and loading tabular data with CSV and Feather
Interacting with MongoDB databases

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[171]

Technical requirements
The Julia package ecosystem is under continuous development and new package versions
are released on a daily basis. Most of the times this is great news, as new releases bring new
features and bug fixes. However, since many of the packages are still in beta (version 0.x),
any new release can introduce breaking changes. As a result, the code presented in the
book can stop working. In order to ensure that your code will produce the same results as
described in the book, it is recommended to use the same package versions. Here are the
external packages used in this chapter and their specific versions:

CSV@v0.4.3
DataFrames@v0.15.2
Feather@v0.5.1
Gadfly@v1.0.1
IJulia@v1.14.1
JSON@v0.20.0
RDatasets@v0.6.1

In order to install a specific version of a package you need to run:

pkg> add PackageName@vX.Y.Z

For example:

pkg> add IJulia@v1.14.1

Alternatively you can install all the used packages by downloading the Project.toml file
provided with the chapter and using pkg> instantiate as follows:

julia>
download("https://github.com/TrainingByPackt/Julia-1-Programming-Complete-R
eference-Guide/tree/master/Chapter11/Project.toml", "Project.toml")
pkg> activate .
pkg> instantiate

Defining variables
We have seen in the previous chapter how to use the REPL in order to execute
computations and have the result displayed back to us. Julia even lends a helping hand by
setting up the ans variable, which automatically holds the last computed value.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[172]

But, if we want to write anything but the most trivial programs, we need to learn how to
define variables ourselves. In Julia, a variable is simply a name associated to a value. There
are very few restrictions for naming variables, and the names themselves have no semantic
meaning (the language will not treat variables differently based on their names, unlike say
Ruby, where a name that is all caps is treated as a constant).

Let's see some examples:

julia> book = "Julia v1.0 By Example"
julia> pi = 3.14
julia> ANSWER = 42
julia> my_first_name = "Adrian"

You can follow along through the examples in the chapter by loading the
accompanying Jupyter/IJulia notebook provided with this chapter's
support files.

The variables, names are case-sensitive, meaning that ANSWER and answer (and Answer
and aNsWeR) are completely different things:

julia> answer
ERROR: UndefVarError: answer not defined

Unicode names (UTF-8-encoded) are also accepted as variables names:

julia> δ = 130

Remember that you can type many Unicode math symbols by typing backslash (\) then the
name of the symbol and then the Tab key. For example, \pi[Tab] will output π.

Emojis also work, if your terminal supports them:

julia> = "apollo 11"

The only explicitly disallowed names for variables are the names of built-in Julia statements
(do, end, try, catch, if, and else, plus a few more):

julia> do = 3
ERROR: syntax: invalid "do" syntax
julia> end = "Paris"
ERROR: syntax: unexpected end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[173]

Attempting to access a variable that hasn't been defined will result in an error:

julia> MysteryVar
ERROR: UndefVarError: MysteryVar not defined

It's true that the language does not impose many restrictions, but a set of code style
conventions is always useful—and even more so for an open source language. The Julia
community has distilled a set of best practices for writing code. In regard to naming
variables, the names should be lowercase and in just one word; word separation can be
done with underscores (_), but only if the name would be difficult to read without them.
For example, myvar versus total_length_horizontal.

Given that the degree of difficulty in reading a name is a subjective thing,
I'm a bit split about this naming style. I normally prefer the crystal-clear
clarity of separating at word boundaries. But nevertheless, it is better to
follow the recommendation, given that function names in the Julia API
adhere to it. By adhering to the same conventions, your code will be
consistent throughout.

Constants
Constants are variables that, once declared, can't be changed. They are declared by
prefixing them with the const keyword:

julia> const firstmonth = "January"

Very importantly in Julia, constants are not concerned with their value, but rather with
their type. It is a bit too early to discuss types in Julia, so for now it suffices to say that a type
represents what kind of a value we're dealing with. For instance, "abc" (within double
quotes) is of type String, 'a' (within single quotes) is of type Char , and 1000 is of type
Int (because it's an integer). Thus, in Julia, unlike most other languages, we can change the
value assigned to a constant as long as the type remains the same. For instance, we can at
first decide that eggs and milk are acceptable meal choices and go vegetarian:

julia> const mealoption = "vegetarian"

And we can change our mind later on, if we decide to go vegan. Julia will let it slide with
just a warning:

julia> mealoption = "vegan"
WARNING: redefining constant mealoption
"vegan"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[174]

However, attempting to say that mealoption = 2 will result in an error:

julia> mealoption = 2
ERROR: invalid redefinition of constant mealoption

This makes sense, right? Who's ever heard of that kind of diet?

However, the nuances can be more subtle than that, most notably when working with
numbers:

julia> const amount = 10.25
10.25
julia> amount = 10
ERROR: invalid redefinition of constant amount

Julia doesn't allow it because internally 10 and 10.00, despite having the same arithmetical
value, are values of different types (10 is an integer, while 10.00 is a float). We'll take a
closer look at numeric types in just a moment, so it will all become clearer:

julia> amount = 10.00
WARNING: redefining constant amount
10.0

Thus, we need to pass the new value as 10.00—a float, in order to obey the same type
requirement.

Why are constants important?
It's mostly about performance. Constants can be especially useful as global values. Because
global variables are long-lived and can be modified at any time and from any location in
your code, the compiler is having a hard time optimizing them. If we tell the compiler that
the value is constant and thus that the type of the value won't change, the performance
problem can be optimized away.

Of course, just because constants alleviate some critical performance
problems brought about by global variables, it doesn't mean that we are
encouraged to use them. Global values in Julia, like in other languages,
must be avoided whenever possible. Besides performance issues, they can
create subtle bugs that are hard to catch and understand. Also, keep in
mind that, since Julia allows changing the value of a constant, accidental
modification becomes possible.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[175]

Comments
Common programming wisdom says the following:

"Code is read much more often than it is written, so plan accordingly."

Code comments are a powerful tool that make the programs easier to understand later on.
In Julia, comments are marked with the # sign. Single-line comments are denoted by a
and everything that follows this, until the end of the line, is ignored by the compiler.
Multiline comments are enclosed between #= ... =#. Everything within the opening and
the closing comment tags is also ignored by the compiler. Here is an example:

julia> #=
 Our company charges a fixed
 $10 fee per transaction.
 =#
const flatfee = 10 # flat fee, per transaction

In the previous snippet, we can see both multiline and single-line comments in action. A
single-line comment can also be placed at the beginning of the line.

Strings
A string represents a sequence of characters. We can create a string by enclosing the
corresponding sequence of characters between double quotes, as shown in the following:

julia> "Measuring programming progress by lines of code is like measuring
aircraft building progress by weight."

If the string also includes quotes, we can escape these by prefixing them with a backslash \:

julia> "Beta is Latin for \"still doesn't work\"."

Triple-quoted strings
However, escaping can get messy, so there's a much better way of dealing with this—by
using triple quotes """...""".

julia> """Beta is Latin for "still doesn't work"."""

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[176]

Within triple quotes, it is no longer necessary to escape the single quotes. However, make
sure that the single quotes and the triple quotes are separated—or else the compiler will get
confused:

julia> """Beta is Latin for "still doesn't work""""
syntax: cannot juxtapose string literal

The triple quotes come with some extra special powers when used with multiline text. First,
if the opening """ is followed by a newline, this newline is stripped from the string. Also,
whitespace is preserved but the string is dedented to the level of the least-indented line:

julia> """
 Hello
 Look
 Here"""

julia> print(ans)
Hello
Look
Here

The previous snippet illustrates how the first line is stripped and the whitespace is
preserved—but the indentation starts with the least indented line (the space in front of
Here was removed).

Here is how it looks in Jupyter/IJulia:

The longer arrow stands for a Tab (represented by a \t in the output), while the shorter
arrow is a space. Note that each line had a space as the first character—but it was removed.
The least indented line, the last one, was shifted to the left, removing all its whitespace and
beginning with Here, while the remaining whitespace on the other lines was preserved
(now beginning with a Tab).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[177]

Concatenating strings
Two or more strings can be joined together (concatenated) to form a single string by using
the star * operator:

julia> "Hello " * "world!" "Hello world!"

Alternatively, we can invoke the string function, passing in all the words we want to
concatenate:

julia> string("Itsy", " ", "Bitsy", " ", "Spider")
"Itsy Bitsy Spider"

Concatenation works great with variables too:

julia> username = "Adrian"
julia> greeting = "Good morning"
julia> greeting * ", " * username
"Good morning, Adrian"

However, again, we need to be careful when dealing with types (types are central to Julia,
so this will be a recurring topic). Concatenation only works for strings:

julia> username = 9543794
julia> greeting = "Good morning"
julia> greeting * ", " * username
MethodError: no method matching *(::String, ::Int64)

Performing the concatenation by invoking the string function does work even if not all
the arguments are strings:

julia> string(greeting, ", ", username)
 "Good morning, 9543794"

Thus, string has the added advantage that it automatically converts its parameters to
strings. The following example works too:

julia> string(2, " and ", 3)
"2 and 3"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[178]

But this does not:

julia> 2 * " and " * 3
ERROR: MethodError: no method matching *(::Int64, ::String)

There is also a String method (with capital S). Remember that in Julia
names are case-sensitive, so string and String are two different things.
For most purposes we'll need the lowercase function, string. You can
use Julia's help system to access the documentation for String, if you
want to learn about it.

Interpolating strings
When creating longer, more complex strings, concatenation can be noisy and error-prone.
For such cases, we're better off using the $ symbol to perform variable interpolation into
strings:

julia> username = "Adrian"
julia> greeting = "Good morning"
julia> "$greeting, $username"
"Good morning, Adrian"

More complex expressions can be interpolated by wrapping them into $(...):

julia> "$(uppercase(greeting)), $(reverse(username))"
"GOOD MORNING, nairdA"

Here we invoke the uppercase function which changes all the letters of the string into
their uppercase counterparts—and the reverse function which reverses the order of the
letters in the word. Their output is then interpolated in a string. Between the $(...)
boundaries, we can use any Julia code we want.

Just like the string function, interpolation takes care of converting the values to strings:

julia> "The sum of 1 and 2 is $(1 + 2)"
"The sum of 1 and 2 is 3"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[179]

Manipulating strings
Strings can be treated as a list of characters, so we can index into them—that is, access the
character at a certain position in the word:

julia> str = "Nice to see you"
julia> str[1]
'N': ASCII/Unicode U+004e (category Lu: Letter, uppercase)

The first character of the string Nice to see you is N.

Indexing in Julia is 1-based, which means that the first element of a list is found at index 1.
This can be surprising if you've programmed before, given that most programming
languages use 0-based indexing. However, I assure you that 1-based indexing makes for a
very pleasant and straightforward coding experience.

Julia has support for arrays with arbitrary indices, allowing, for example,
to start numbering at 0. However, arbitrary indexing is a more advanced
feature that we won't cover here. If you are curious, you can check the
official documentation at https:/ /docs. julialang. org/ en/v1/ devdocs/
offset- arrays/ .

We can also extract a part of the string (a substring) by indexing with a range, providing
the starting and the ending positions:

julia> str[9:11]
"see"

It is important to notice that indexing via a singular value returns a Char , while indexing
via a range returns a String (remember, for Julia these are two completely different
things):

julia> str[1:1]
"N"

N is a String of just one letter, as indicated by its double quotes:

julia> str[1]
'N': ASCII/Unicode U+004e (category Lu: Letter, uppercase)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/
https://docs.julialang.org/en/v1/devdocs/offset-arrays/

Creating Our First Julia App Chapter 11

[180]

N is a Char, as shown by the single quotes:

julia> str[1:1] == str[1]
false

They are not equal.

Unicode and UTF-8
In Julia, string literals are encoded using UTF-8. UTF-8 is a variable-width encoding,
meaning that not all characters are represented using the same number of bytes. For
example, ASCII characters are encoded using a single byte—but other characters can use up
to four bytes. This means that not every byte index into a UTF-8 string is necessarily a valid
index for a corresponding character. If you index into a string at such an invalid byte index,
an error will be thrown. Here is what I mean:

julia> str = "Søren Kierkegaard was a Danish Philosopher"
julia> str[1]
'S': ASCII/Unicode U+0053 (category Lu: Letter, uppercase)

We can correctly retrieve the character at index 1:

julia> str[2]
'ø': Unicode U+00f8 (category Ll: Letter, lowercase)

And at index 2, we successfully get the ø character:

julia> str[3]
StringIndexError("Søren Kierkegaard was a Danish Philosopher", 3)

However, ø has two bytes, so index 3 is used by ø as well and we cannot access the string at
this position:

julia> str[4]
'r': ASCII/Unicode U+0072 (category Ll: Letter, lowercase)

The third letter, r, is found at position 4.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[181]

Thus ø is a two-byte character that occupies the locations 2 and 3—so the index 3 is invalid,
matching the second byte of ø. The next valid index can be computed using nextind(str,
2)—but the recommended way is to use iteration over the characters (we'll discuss for
loops a bit later in this chapter):

julia> for s in str
 println(s)
 end
S
ø
r
e
n

K
... output truncated...

Because of variable-length encodings, the number of characters in a string is not necessarily
the same as the last index (as you have seen, the third letter, r, was at index 4):

julia> length(str) 42
julia> str[42] 'e': ASCII/Unicode U+0065 (category Ll: Letter, lowercase)

For such cases, Julia provides the end keyword, which can be used as a shorthand for the
last index. You can perform arithmetic and other operations with end, just like a normal
value:

julia> str[end]
'r': ASCII/Unicode U+0072 (category Ll: Letter, lowercase)
julia> str[end-10:end]
"Philosopher"

The end value can be computed programmatically using the endof(str) function.
Attempting to index outside the bounds of a string will result in a BoundsError:

julia> str[end+1]
ERROR: BoundsError: attempt to access "Søren Kierkegaard was a Danish
Philosopher"
 at index [44]

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[182]

Regular expressions
Regular expressions are used for powerful pattern-matching of substrings within strings.
They can be used to search for a substring in a string, based on patterns—and then to
extract or replace the matches. Julia provides support for Perl-compatible regular
expressions.

The most common way to input regular expressions is by using the so-called nonstandard
string literals. These look like regular double-quoted strings, but carry a special prefix. In
the case of regular expressions, this prefix is "r". The prefix provides for a different
behavior, compared to a normal string literal.

For example, in order to define a regular string that matches all the letters, we can use
r"[a-zA-Z]*".

Julia provides quite a few nonstandard string literals—and we can even define our own if
we want to. The most widely used are for regular expressions (r"..."), byte array literals
(b"..."), version number literals (v"..."), and package management commands
(pkg"...").

Here is how we build a regular expression in Julia—it matches numbers between 0 and 9:

julia> reg = r"[0-9]+"
r"[0-9]+"
julia> match(reg, "It was 1970")
RegexMatch("1970")

Our regular expression matches the substring 1970.

We can confirm that the nonstandard string literal reg is in fact a Regex and not a regular
String by checking its type with the typeof function:

julia> typeof(reg)
Regex

This gives away the fact that there's also a Regex constructor available:

julia> Regex("[0-9]+")
r"[0-9]+"

The two constructs are similar:

julia> Regex("[0-9]+") == reg
true

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[183]

Using the constructor can come in handy when we need to create regular
expressions using more complex strings that might include interpolation
or concatenation. But in general, the r"..." format is more used.

The behavior of the regular expression can be affected by using some combination of the
flags i, m, s, and x. These modifiers must be placed right after the closing double quote
mark:

julia> match(r"it was", "It was 1970") # case-sensitive no match
julia> match(r"it was"i, "It was 1970") # case-insensitive match
RegexMatch("It was")

As you might expect, i performs a case-insensitive pattern match. Without the i modifier,
match returns nothing—a special value that does not print anything at the interactive
prompt—to indicate that the regex does not match the given string.

These are the available modifiers:

i—case-insensitive pattern matching.
m—treats string as multiple lines.
s—treats string as single line.
x—tells the regular expression parser to ignore most whitespace that is neither
backslashed nor within a character class. You can use this to break up your
regular expression into (slightly) more readable parts. The # character is also
treated as a metacharacter introducing a comment, just as in ordinary code.

The occursin function is more concise if all we need is to check if a regex or a substring is
contained in a string—if we don't want to extract or replace the matches:

julia> occursin(r"hello", "It was 1970")
false
julia> occursin(r"19", "It was 1970")
true

When a regular expression does match, it returns a RegexMatch object. These objects
encapsulate how the expression matches, including the substring that the pattern matches
and any captured substrings:

julia> alice_in_wonderland = "Why, sometimes I've believed as many as six
impossible things before breakfast."

julia> m = match(r"(\w+)+", alice_in_wonderland)
RegexMatch("Why", 1="Why")

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[184]

The \w regex will match a word, so in this snippet we captured the first word, Why.

We also have the option to specify the index at which to start the search:

m = match(r"(\w+)+", alice_in_wonderland, 6)
RegexMatch("sometimes", 1="sometimes")

Let's try something a bit more complex:

julia> m = match(r"((\w+)(\s+|\W+))", alice_in_wonderland)
RegexMatch("Why, ", 1="Why, ", 2="Why", 3=", ")

The resultant RegexMatch object m exposes the following properties (or fields, in Julia's
lingo):

m.match (Why,) contains the entire substring that matched.
m.captures (an array of strings containing Why, Why, and ,) represents the
captured substrings.
m.offset, the offset at which the whole match begins (in our case 1).
m.offsets, the offsets of the captured substrings as an array of integers (for our
example being [1, 1, 4]).

Julia does not provide a g modifier, for a greedy or global match. If you need all the matches,
you can iterate over them using eachmatch(), with a construct like the following:

julia> for m in eachmatch(r"((\w+)(\s+|\W+))", alice_in_wonderland)
 println(m)
end

Or, alternatively, we can put all the matches in a list using collect():

julia> collect(eachmatch(r"((\w+)(\s+|\W+))", alice_in_wonderland))
 13-element Array{RegexMatch,1}:
 RegexMatch("Why, ", 1="Why, ", 2="Why", 3=", ")
 RegexMatch("sometimes ", 1="sometimes ", 2="sometimes", 3=" ")
 RegexMatch("I'", 1="I'", 2="I", 3="'")
 RegexMatch("ve ", 1="ve ", 2="ve", 3=" ")
 RegexMatch("believed ", 1="believed ", 2="believed", 3=" ")
 RegexMatch("as ", 1="as ", 2="as", 3=" ")
 RegexMatch("many ", 1="many ", 2="many", 3=" ")
 RegexMatch("as ", 1="as ", 2="as", 3=" ")
 RegexMatch("six ", 1="six ", 2="six", 3=" ")
 RegexMatch("impossible ", 1="impossible ", 2="impossible", 3=" ")
 RegexMatch("things ", 1="things ", 2="things", 3=" ")
 RegexMatch("before ", 1="before ", 2="before", 3=" ")
 RegexMatch("breakfast.", 1="breakfast.", 2="breakfast", 3=".")

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[185]

For more info about regular expressions, check the official documentation
at https:/ / docs. julialang. org/ en/stable/ manual/ strings/ #Regular-
Expressions- 1.

Raw string literals
If you need to define a string that does not perform interpolation or escaping, for example
to represent code from another language that might contain $ and \ which can interfere
with the Julia parser, you can use raw strings. They are constructed with raw"..." and
create ordinary String objects that contain the enclosed characters exactly as entered, with
no interpolation or escaping:

julia> "This $will error out"
ERROR: UndefVarError: will not defined

Putting a $ inside the string will cause Julia to perform interpolation and look for a variable
called will:

julia> raw"This $will work"
"This \$will work"

But by using a raw string, the $ symbol will be ignored (or rather, automatically escaped, as
you can see in the output).

Numbers
Julia provides a broad range of primitive numeric types, together with the full range of
arithmetic and bitwise operators and standard mathematical functions. We have at our
disposal a rich hierarchy of numeric types, with the most generic being Number—which
defines two subtypes, Complex and Real. Conversely, Real has four
subtypes—AbstractFloat, Integer, Irrational, and Rational. Finally, Integer
branches into four other subtypes—BigInt, Bool, Signed, and Unsigned.

Let's take a look at the most important categories of numbers.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1
https://docs.julialang.org/en/stable/manual/strings/#Regular-Expressions-1

Creating Our First Julia App Chapter 11

[186]

Integers
Literal integers are represented simply as follows:

julia> 42

The default Integer type, called Int, depends on the architecture of the system upon which
the code is executed. It can be either Int32 or Int64. On my 64-bit system, I get it as
follows:

julia> typeof(42)
Int64

The Int type will reflect that, as it's just an alias to either Int32 or Int64:

julia> @show Int
Int = Int64

Overflow behavior
The minimum and maximum values are given by the typemin() and typemax()
functions:

julia> typemin(Int), typemax(Int)
(-9223372036854775808, 9223372036854775807)

Attempting to use values that go beyond the boundaries defined by the minimum and the
maximum values will not throw an error (or even a warning), resulting instead in a
wraparound behavior (meaning that it will jump over at the other end):

julia> typemin(Int) - 1
9223372036854775807
julia> typemin(Int) - 1 == typemax(Int)
true

Substracting 1 from the minimum value will return the maximum value instead:

julia> typemax(Int) + 1 == typemin(Int)
true

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[187]

The reverse is also true—adding 1 to the maximum value will return the minimum value.

For working with values outside these ranges, we'll use the BigInt type:

julia> BigInt(typemax(Int)) + 1
9223372036854775808

No wraparound here; the result is what we expected.

Floating-point numbers
Floating-point numbers are represented by numerical values separated by a dot:

julia> 3.14
3.14
julia> -1.0
-1.0
julia> 0.25
0.25
julia> .5
0.5

By default they are Float64 values, but they can be converted to Float32:

julia> typeof(1.)
Float64
julia> f32 = Float32(1.)
1.0f0
julia> typeof(f32)
Float32

To improve readability, the underscore (_) separator can be used with both integers and
floats:

julia> 1_000_000, 0.000_000_005
(1000000, 5.0e-9)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[188]

Rational numbers
Julia also provides a Rational number type. This allows us to work with exact ratios, instead
of having to deal with the precision loss inherent in floats. Rational numbers are
represented as their numerator and denominator values, separated by two forward slashes
//:

julia> 3//2
3//2

Rational numbers can be converted to other types, if there is no data loss:

julia> 1//2 + 2//4
1//1

julia> Int(1//1)
1

julia> float(1//3)
0.3333333333333333

julia> Int(1//3)
ERROR: InexactError: Int64(Int64, 1//3)

julia> float(1//3) == 1/3
true

Julia also includes support for Complex numbers. We won't discuss, them
but you can read about the topic in the official documentation at https:/ /
docs. julialang. org/ en/ v1/manual/ complex- and- rational- numbers/
#Complex- Numbers- 1.

Numerical operators
Julia supports the full range of arithmetic operators for its numeric types:

+—(unary and binary plus)
-—(unary and binary minus)
*—(times)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1
https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/#Complex-Numbers-1

Creating Our First Julia App Chapter 11

[189]

/—(divide)
\—(inverse divide)
^—(power)
%—(remainder)

The language also supports handy update operators for each of these (+=,-
=,*=,/=,\=,÷=,%=,and ^=). Here they are in the wild:

julia> a = 2
2
julia> a *= 3 # equivalent of a = a * 3
6
julia> a ^= 2 # equivalent of a = a ^ 2
36
julia> a += 4 # equivalent of a = a + 4
40

Numerical comparisons can be performed with the following set of operators:

==—(equality)
!= or ≠—(inequality)
<—(less than)
<= or ≤—(less than or equal to)
>—(greater than)
>= or ≥—(greater than or equal to)

In Julia, the comparisons can also be chained:

julia> 10 > 5 < 6 == 6 >= 3 != 2
true

Vectorized dot operators
Julia defines corresponding dot operations for every binary operator. These are designed to
work element-wise with collections of values (called vectorized). That is, the operator that
is dotted is applied for each element of the collection.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[190]

In the following example, we'll square each element of the first_five_fib collection:

julia> first_five_fib = [1, 1, 2, 3, 5]
5-element Array{Int64,1}:
 1
 1
 2
 3
 5
julia> first_five_fib .^ 2
5-element Array{Int64,1}:
 1
 1
 4
 9
 25

In the previous example, first_five_fib was not touched and the resultant collection
was returned, but dotted updating operators are also available, updating the values in place.
They match the previously discussed update operators (with the added dot). For example,
to update first_five_fib in place, we'd use the following:

julia> first_five_fib .^= 2

Vectorized code is an important part of the language due to its readability
and conciseness, but also because it provides important performance
optimizations. For more details, check https:/ /docs. julialang. org/ en/
stable/ manual/ functions/ #man- vectorized- 1.

There's more to it
This section barely scratches the surface. For a deeper dive into Julia's numeric types, read
the official documentation at
https://docs.julialang.org/en/stable/manual/mathematical-operations/.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/functions/#man-vectorized-1
https://docs.julialang.org/en/stable/manual/mathematical-operations/

Creating Our First Julia App Chapter 11

[191]

Tuples
Tuples are one of the simplest data types and data structures in Julia. They can have any
length and can contain any kind of value—but they are immutable. Once created, a tuple
cannot be modified. A tuple can be created using the literal tuple notation, by wrapping the
comma-separated values within brackets (...):

(1, 2, 3)

julia> ("a", 4, 12.5)
("a", 4, 12.5)

In order to define a one-element tuple, we must not forget the trailing comma:

julia> (1,)
(1,)

But it's OK to leave off the parenthesis:

julia> 'e', 2
('e', 2)

julia> 1,
(1,)

We can index into tuples to access their elements:

julia> lang = ("Julia", v"1.0")
("Julia", v"1.0.0")

julia> lang[2]
v"1.0.0"

Vectorized dot operations also work with tuples:

julia> (3,4) .+ (1,1) (4, 5)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[192]

Named tuples
A named tuple represents a tuple with labeled items. We can access the individual
components by label or by index:

julia> skills = (language = "Julia", version = v"1.0")
(language = "Julia", version = v"1.0.0")

julia> skills.language
"Julia"

julia> skills[1]
"Julia"

Named tuples can be very powerful as they are similar to full-blown objects, but with the
limitation that they are immutable.

Ranges
We've seen ranges a bit earlier, when learning to index into strings. They can be as simple
as the following:

julia> r = 1:20
1:20

As with previous collections, we can index into ranges:

julia> abc = 'a':'z'
'a':1:'z'

julia> abc[10]
'j': ASCII/Unicode U+006a (category Ll: Letter, lowercase)

julia> abc[end]
'z': ASCII/Unicode U+007a (category Ll: Letter, lowercase)

A range can be expanded into its corresponding values by using the splat operator, "...".
For example, we can splat it into a tuple:

julia> (1:20...,)
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[193]

We can also splat it into a list:

julia> [1:20...]
20-element Array{Int64,1}

The same is true for Tuples, which can also be splatted into lists, among
other things: [(1,2,3)...].

We can see that the range steps in increments of one, by default. We can change that by
passing it an optional step parameter. Here is an example of a range between 0 and 20 with
a step of five:

julia> (0:5:20...,)
(0, 5, 10, 15, 20)

Now our values go from 5 to 5.

This opens the possibility to also go in descending order, by using a negative step:

julia> (20:-5:-20...,)
(20, 15, 10, 5, 0, -5, -10, -15, -20)

Ranges are not limited to integers—you've seen earlier a range of chars; and these are
ranges of floats:

julia> (0.5:10)
0.5:1.0:9.5
julia> (0.5:10...,)
(0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5)

We can also use the collect function to expand the range into a list (an array):

julia> collect(0.5:0.5:10)
20-element Array{Float64,1}

Arrays
An array is a data structure (and the corresponding type) that represents an ordered
collection of elements. More specifically, in Julia, an array is a collection of objects stored in
a multi-dimensional grid.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[194]

Arrays can have any number of dimensions and are defined by their type and number of
dimensions—Array{Type, Dimensions}.

A one-dimensional array, also called a vector, can be easily defined using the array literal
notation, the square brackets [...]:

julia> [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

You can also constrain the type of the elements:

julia> Float32[1, 2, 3, 4]
4-element Array{Float32,1}:
 1.0
 2.0
 3.0
 4.0

A two D array (also called a matrix) can be initialized using the same array literal notation,
but this time without the commas:

julia> [1 2 3 4]
1×4 Array{Int64,2}:
 1 2 3 4

We can add more rows using semicolons:

julia> [1 2 3; 4 5 6; 7 8 9]
3×3 Array{Int64,2}:
 1 2 3
 4 5 6
 7 8 9

Julia comes with a multitude of functions that can construct and initialize arrays with
different values, such as zeroes, ones, trues, falses, similar, rand, fill, and more.
Here are a few of these in action:

julia> zeros(Int, 2)
2-element Array{Int64,1}:
 0
 0

julia> zeros(Float64, 3)
3-element Array{Float64,1}:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[195]

 0.0
 0.0
 0.0

julia> ones(2)
2-element Array{Float64,1}:
 1.0
 1.0

julia> ones(Int, 2)
2-element Array{Int64,1}:
 1
 1

julia> ones(Int, 3, 4)
3×4 Array{Int64,2}:
 1 1 1 1
 1 1 1 1
 1 1 1 1

julia> trues(2)
2-element BitArray{1}:
 true
 true

julia> rand(Int, 4, 2)
4×2 Array{Int64,2}:
 9141724849782088627 6682031028895615978
 -3827856130755187476 -1731760524632072533
 -3369983903467340663 -7550830795386270701
 -3159829068325670125 1153092130078644307

julia> rand(Char, 3, 2)
3×2 Array{Char,2}:
 '\U63e7a' '\Ub8723'

 '\Uda56f'
 '\U7b7fd' '\U5f749'

julia> fill(42, 2, 3)
2×3 Array{Int64,2}:
 42 42 42
 42 42 42

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[196]

Array elements can be accessed by their index, passing in a value for each dimension:

julia> arr1d = rand(5) 5-element Array{Float64,1}: 0.845359 0.0758361
0.379544 0.382333 0.240184
julia> arr1d[5]
 0.240184
julia> arr2d = rand(5,2)
5×2 Array{Float64,2}:
 0.838952 0.312295
 0.800917 0.253152
 0.480604 0.49218
 0.716717 0.889667
 0.703998 0.773618

julia> arr2d[4, 1]
0.7167165812985592

We can also pass a colon (:) to select all indices within the entire dimension—or a range to
define subselections:

julia> arr2d = rand(5,5)
5×5 Array{Float64,2}:
 0.618041 0.887638 0.633995 0.868588 0.19461
 0.400213 0.699705 0.719709 0.328922 0.326825
 0.322572 0.807488 0.866489 0.960801 0.476889
 0.716221 0.504356 0.206264 0.600758 0.843445
 0.705491 0.0334613 0.240025 0.235351 0.740302

This is how we select rows 1 to 3 and columns 3 to 5:

julia> arr2d[1:3, 3:5]
3×3 Array{Float64,2}:
 0.633995 0.868588 0.19461
 0.719709 0.328922 0.326825
 0.866489 0.960801 0.476889

The solitary colon : stands for all—so here we pick all the rows and columns 3 to 5:

julia> arr2d[:, 3:5]
5×3 Array{Float64,2}:
 0.633995 0.868588 0.19461
 0.719709 0.328922 0.326825
 0.866489 0.960801 0.476889
 0.206264 0.600758 0.843445
 0.240025 0.235351 0.740302

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[197]

Another option is an Array of Booleans to select elements at its true indices. Here we
select the rows corresponding to the true values and the columns 3 to 5:

julia> arr2d[[true, false, true, true, false], 3:5]
3×3 Array{Float64,2}:
 0.633995 0.868588 0.19461
 0.866489 0.960801 0.476889
 0.206264 0.600758 0.843445

In a similar way to indexing into an array, we can also assign values to the selected items:

julia> arr2d[1, 1] = 0.0

julia> arr2d[[true, false, true, true, false], 3:5] = ones(3, 3)
julia> arr2d
5×5 Array{Float64,2}:
 0.0 0.641646 1.0 1.0 1.0
 0.750895 0.842909 0.818378 0.484694 0.661247
 0.938833 0.193142 1.0 1.0 1.0
 0.195541 0.338319 1.0 1.0 1.0
 0.546298 0.920886 0.720724 0.0529883 0.238986

Iteration
The simplest way to iterate over an array is with the for construct:

for element in yourarray
 # do something with element
end

Here's an example:

julia> for person in ["Alison", "James", "Cohen"]
 println("Hello $person")
 end

Hello Alison
Hello James
Hello Cohen

If you also need the index while iterating, Julia exposes the eachindex(yourarray)
iterator:

julia> people = ["Alison", "James", "Cohen"]
3-element Array{String,1}:
 "Alison"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[198]

 "James"
 "Cohen"

julia> for i in eachindex(people)
 println("$i. $(people[i])")
 end

1. Alison
2. James
3. Cohen

Mutating arrays
We can add more elements to the end of a collection by using the push! function:

julia> arr = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> push!(arr, 4)
4-element Array{Int64,1}:
 1
 2
 3
 4

julia> push!(arr, 5, 6, 7)
7-element Array{Int64,1}:
 1
 2
 3
 4
 5
 6
 7

Note the ending exclamation mark ! for the push! function. This is a perfectly legal
function name in Julia. It is a convention to warn that the function is mutating—that is, it
will modify the data passed as argument to it, instead of returning a new value.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[199]

We can remove elements from the end of an array using pop!:

julia> pop!(arr)
7

julia> arr
6-element Array{Int64,1}:
 1
 2
 3
 4
 5
 6

The call to the pop! function has removed the last element of arr and returned it.

If we want to remove an element other than the last, we can use the deleteat! function,
indicating the index that we want to be removed:

julia> deleteat!(arr, 3)
5-element Array{Int64,1}:
 1
 2
 4
 5
 6

Finally, a word of warning when mutating arrays. In Julia, the arrays are passed to
functions by reference. This means that the original array is being sent as the argument to
the various mutating functions, and not its copy. Beware not to accidentally make
unwanted modifications. Similarly, when assigning an array to a variable, a new reference
is created, but the data is not copied. So for instance:

julia> arr = [1,2,3]
3-element Array{Int64,1}:
 1
 2
 3

julia> arr2 = arr
3-element Array{Int64,1}:
 1
 2
 3

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[200]

Now we pop an element off arr2:

julia> pop!(arr2)
3

So, arr2 looks like this:

julia> arr2
2-element Array{Int64,1}:
 1
 2

But our original array was modified, too:

julia> arr
2-element Array{Int64,1}:
 1
 2

Assigning arr to arr2 does not copy the values of arr into arr2 , it only creates a new
binding (a new name) that points to the original arr array. To create a separate array with
the same values, we need to use the copy function:

julia> arr
2-element Array{Int64,1}:
 1
 2

julia> arr2 = copy(arr)
2-element Array{Int64,1}:
 1
 2

Now, if we pop an element off the copied array:

julia> pop!(arr2)
2

Our original array is untouched:

julia> arr
2-element Array{Int64,1}:
 1
 2

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[201]

Only the copy was modified:

julia> arr2
1-element Array{Int64,1}:
 1

Comprehensions
Array comprehensions provide a very powerful way to construct arrays. It is similar to the
previously discussed array literal notation, but instead of passing in the actual values, we
use a computation over an iterable object.

An example will make it clear:

julia> [x += 1 for x = 1:5]
10-element Array{Int64,1}:
 2
 3
 4
 5
 6

This can be read as—for each element x within the range 1 to 5, compute x+1 and put the
resultant value in the array.

Just like with the plain array literals, we can constrain the type:

julia> Float64[x+=1 for x = 1:5]
5-element Array{Float64,1}:
 2.0
 3.0
 4.0
 5.0
 6.0

Similarly, we can create multi-dimensional arrays:

julia> [x += y for x = 1:5, y = 11:15]
5×5 Array{Int64,2}:
 12 13 14 15 16
 13 14 15 16 17
 14 15 16 17 18
 15 16 17 18 19
 16 17 18 19 20

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[202]

Comprehensions can be filtered using the if keyword:

julia> [x += 1 for x = 1:10 if x/2 > 3]
4-element Array{Int64,1}:
 8
 9
 10
 11

In this case, we only kept the values where x/2 was greater than 3.

Generators
But the superpower of the comprehensions is activated when they are used for creating
generators. Generators can be iterated to produce values on demand, instead of allocating
an array and storing all the values in advance. You'll see what that means in a second.

Generators are defined just like array comprehensions, but without the square brackets:

julia> (x+=1 for x = 1:10)
Base.Generator{UnitRange{Int64},##41#42}(#41, 1:10)

They allow us to work with potentially infinite collections. Check the following example,
where we want to print the numbers from one to one million with a cube less than or equal
to 1_000:

julia> for i in [x^3 for x=1:1_000_000]
 i >= 1_000 && break
 println(i)
end
1
8
27
64
125
216
343
512
729

This computation uses significant resources because the comprehension creates the full
array of 1 million items, despite the fact that we only iterate over its first nine elements.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[203]

We can see that by benchmarking the code using the handy @time construct:

@time for i in [x^3 for x=1:1_000_000]
 i >= 1_000 && break
 println(i)
end

0.035739 seconds (58.46 k allocations: 10.493 MiB)

Over 10 MB of memory and almost 60,000 allocations. Compare this with using a generator:

@time for i in (x^3 for x=1:1_000_000)
 i >= 1_000 && break
 println(i)
end

0.019681 seconds (16.63 k allocations: 898.414 KiB)

Less than 1 MB and a quarter of the number of allocations. The difference will be even more
dramatic if we increase from 1 million to 1 billion:

julia> @time for i in [x^3 for x=1:1_000_000_000]
 i >= 1_000 && break
 println(i)
 end
1
8
27
64
125
216
343
512
729

 10.405833 seconds (58.48 k allocations: 7.453 GiB, 3.41% gc time)

Over 10 seconds and 7 GB of memory used!

On the other hand, the generator runs practically in constant time:

julia> @time for i in (x^3 for x=1:1_000_000_000)
 i >= 1_000 && break
 println(i)
 end
1

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[204]

8
27
64
125
216
343
512
729

 0.020068 seconds (16.63 k allocations: 897.945 KiB

Exploratory data analysis with Julia
Now that you have a good understanding of Julia's basics, we can apply this knowledge to
our first project. We'll start by applying exploratory data analysis (EDA) to the Iris flower
dataset.

If you already have experience with data analysis, you might've used the Iris dataset before.
If so, that's great! You'll be familiar with the data and the way things are done in your
(previous) language of choice, and can now focus on the Julia way.

On the contrary, if this is the first time you've heard about the Iris flower dataset, no need
to worry. This dataset is considered the Hello World of data science—and we'll take a
good look at it using Julia's powerful toolbox. Enjoy!

The Iris flower dataset
Also called Fisher's Iris dataset, it was first introduced in 1936 by British statistician and
biologist Ronald Fisher. The dataset consists of 50 samples from each of three species of Iris
flower (Iris setosa, Iris virginica, and Iris versicolor). It is sometimes called Anderson's Iris
dataset because Edgar Anderson collected the data. Four features were measured—the
length and the width of the sepals and petals (in centimeters).

Using the RDatasets package
Finding good-quality data for learning, teaching, and statistical software development can
be challenging. That's why the industry practically standardized the use of over 10,00 high-
quality datasets. These were originally distributed with the statistical software environment
R. Hence, they've been aptly named the RDatasets.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[205]

The Iris flower dataset is part of this collection. There are many ways to download it, but
the most convenient is through the RDatasets package. This package provides an easy
way for Julia users to experiment with most of the standard datasets available in R or
included with R's most popular packages. Sounds great; let's add it.

First, switch to package management mode:

 julia>]
 pkg> add RDatasets

Once the package is added, let's tell Julia that we want to use it:

 julia> using RDatasets

We can peek at the included datasets by calling RDatasets.datasets(). It returns a list
of all the 700+ datasets available with RDatasets. It includes details about the data
package, the name of the dataset, its title (or info), number of rows, and number of
columns. These are the first 20 rows:

julia> RDatasets.datasets()

The output is as follows:

You can see that the datasets are part of a Package—we can use that to filter by it. The Iris
flower dataset is part of the datasets package.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[206]

All we have to do now is load the data:

julia> iris = dataset("datasets", "iris")

The output is as follows:

The returned value is a DataFrame object with 150 rows and five columns—SepalLength,
SepalWidth, PetalLength, PetalWidth, and Species, plus an automatically added id
column called Row.

Dataframes are the de facto standard for working with tabular data in Julia. They are a key
part of Julia's data analysis toolset and we'll discuss them in detail in the next chapters. For
now, it suffices to say that, as you can see in the previous examples, it represents a data
structure that looks very much like a table or a spreadsheet.

You can programmatically retrieve the names of the columns using the following:

julia> names(iris)
5-element Array{Symbol,1}:
 :SepalLength
 :SepalWidth
 :PetalLength
 :PetalWidth
 :Species

To check the size, use the following:

julia> size(iris)
(150, 5)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[207]

The result is a tuple that matches the number of rows and columns—(rows, cols). Yep,
as already established, 150 rows over 5 columns.

Let's take a look at the data:

julia> head(iris)

The output is as follows:

The head function shows the top six rows. Optionally, it takes a second parameter to
indicate the number of rows: head(iris, 10). There's also its twin, tail(), which will
display the bottom rows of the DataFrame:

julia> tail(iris, 10)

The output is as follows:

In regard to the species present in the dataset, we see setosa in the head rows and virginica at
the bottom. We should have three species, though, according to the description of the data.
Let's ask for a row count grouped by Species:

julia> by(iris, :Species, nrow)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[208]

The output is as follows:

The by function takes three parameters—the dataset, the name of the column, and a
grouping function—in this case, nrow, which computes the number of rows. We can see
that the third species is versicolor, and for each of the species we have 50 records.

I'm sure you're wondering why, in the preceding example, the name of
the column is prefixed by a colon ":". It is a Symbol. We'll discuss more
about symbols when we learn about metaprogramming. For now, you can
just think of symbols as identifiers or labels.

Using simple statistics to better understand
our data
Now that it's clear how the data is structured and what is contained in the collection, we
can get a better understanding by looking at some basic stats.

To get us started, let's invoke the describe function:

julia> describe(iris)

The output is as follows:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[209]

This function summarizes the columns of the iris DataFrame. If the columns contain
numerical data (such as SepalLength), it will compute the minimum, median, mean, and
maximum. The number of missing and unique values is also included. The last column
reports the type of data stored in the row.

A few other stats are available, including the 25th and the 75th percentile, and the first and
the last values. We can ask for them by passing an extra stats argument, in the form of an
array of symbols:

julia> describe(iris, stats=[:q25, :q75, :first, :last])

The output is as follows:

Any combination of stats labels is accepted. These are all the options—:mean, :std, :min,
:q25, :median, :q75, :max, :eltype, :nunique, :first, :last, and :nmissing.

In order to get all the stats, the special :all value is accepted:

julia> describe(iris, stats=:all)

The output is as follows:

We can also compute these individually by using Julia's Statistics package. For
example, to calculate the mean of the SepalLength column, we'll execute the following:

julia> using Statistics
julia> mean(iris[:SepalLength])
5.843333333333334

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[210]

In this example, we use iris[:SepalLength] to select the whole column. The result, not
at all surprisingly, is the same as that returned by the corresponding describe() value.

In a similar way we can compute the median():

julia> median(iris[:SepalLength])
5.8

And there's (a lot) more, such as, for instance, the standard deviation std():

julia> std(iris[:SepalLength])
0.828066127977863

Or, we can use another function from the Statistics package, cor(), in a simple script
to help us understand how the values are correlated:

julia> for x in names(iris)[1:end-1]
 for y in names(iris)[1:end-1]
 println("$x \t $y \t $(cor(iris[x], iris[y]))")
 end
 println("---")
 end

Executing this snippet will produce the following output:

SepalLength SepalLength 1.0
SepalLength SepalWidth -0.11756978413300191
SepalLength PetalLength 0.8717537758865831
SepalLength PetalWidth 0.8179411262715759
--
SepalWidth SepalLength -0.11756978413300191
SepalWidth SepalWidth 1.0
SepalWidth PetalLength -0.42844010433053953
SepalWidth PetalWidth -0.3661259325364388
--
PetalLength SepalLength 0.8717537758865831
PetalLength SepalWidth -0.42844010433053953
PetalLength PetalLength 1.0
PetalLength PetalWidth 0.9628654314027963
--
PetalWidth SepalLength 0.8179411262715759
PetalWidth SepalWidth -0.3661259325364388
PetalWidth PetalLength 0.9628654314027963
PetalWidth PetalWidth 1.0
--

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[211]

The script iterates over each column of the dataset with the exception of Species (the last
column, which is not numeric), and generates a basic correlation table. The table shows
strong positive correlations between SepalLength and PetalLength (87.17%),
SepalLength and PetalWidth (81.79%), and PetalLength and PetalWidth (96.28%).
There is no strong correlation between SepalLength and SepalWidth.

We can use the same script, but this time employ the cov() function to compute the
covariance of the values in the dataset:

julia> for x in names(iris)[1:end-1]
 for y in names(iris)[1:end-1]
 println("$x \t $y \t $(cov(iris[x], iris[y]))")
 end
 println("--")
 end

This code will generate the following output:

SepalLength SepalLength 0.6856935123042507
SepalLength SepalWidth -0.04243400447427293
SepalLength PetalLength 1.2743154362416105
SepalLength PetalWidth 0.5162706935123043

SepalWidth SepalLength -0.04243400447427293
SepalWidth SepalWidth 0.189979418344519
SepalWidth PetalLength -0.3296563758389262
SepalWidth PetalWidth -0.12163937360178968

PetalLength SepalLength 1.2743154362416105
PetalLength SepalWidth -0.3296563758389262
PetalLength PetalLength 3.1162778523489933
PetalLength PetalWidth 1.2956093959731543

PetalWidth SepalLength 0.5162706935123043
PetalWidth SepalWidth -0.12163937360178968
PetalWidth PetalLength 1.2956093959731543
PetalWidth PetalWidth 0.5810062639821031

The output illustrates that SepalLength is positively related to PetalLength and
PetalWidth, while being negatively related to SepalWidth. SepalWidth is negatively
related to all the other values.

Moving on, if we want a random data sample, we can ask for it like this:

julia> rand(iris[:SepalLength])
7.4

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[212]

Optionally, we can pass in the number of values to be sampled:

julia> rand(iris[:SepalLength], 5)
5-element Array{Float64,1}:
 6.9
 5.8
 6.7
 5.0
 5.6

We can convert one of the columns to an array using the following:

julia> sepallength = Array(iris[:SepalLength])
150-element Array{Float64,1}:
 5.1
 4.9
 4.7
 4.6
 5.0
 # ... output truncated ...

Or we can convert the whole DataFrame to a matrix:

julia> irisarr = convert(Array, iris[:,:])
150×5 Array{Any,2}:
 5.1 3.5 1.4 0.2 CategoricalString{UInt8} "setosa"
 4.9 3.0 1.4 0.2 CategoricalString{UInt8} "setosa"
 4.7 3.2 1.3 0.2 CategoricalString{UInt8} "setosa"
 4.6 3.1 1.5 0.2 CategoricalString{UInt8} "setosa"
 5.0 3.6 1.4 0.2 CategoricalString{UInt8} "setosa"
 # ... output truncated ...

Visualizing the Iris flowers data
Visualization is a powerful tool in exploratory data analysis, helping us to identify patterns
that would otherwise be hard to spot just by looking at the numbers. Julia provides access
to some excellent plotting packages that are very easy to set up and use.

We'll illustrate with some plots created with Gadfly.

We'll start by adding Gadfly with pkg> add "Gadfly"and we'll continue with julia>
using Gadfly. This will bring into scope Gadfly's plot()method. Now, let's find some
interesting data to visualize.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[213]

In the previous section, we have identified that there is a strong covariant relation between
SepalLength and PetalLength. Let's plot the data:

julia> plot(iris, x=:SepalLength, y=:PetalLength, color=:Species)

At the time of writing, Gadfly support for Julia v1 was still incomplete. If
that is still the case, the unstable yet working version of Gadfly can be
installed using—pkg> add Compose#master, Gadfly#master,
Hexagon.

Executing the plot() function will generate the following graph:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[214]

Sure enough, the plot will indicate that SepalLength and PetalLength vary together for
both Iris versicolor and Iris virginica. For Iris setosa, it's not that obvious,
with PetalLength staying pretty much unchanged while the sepal length grows.

A box plot will confirm the same; the sepal length of Iris setosa has little variation:

julia> plot(iris, x=:Species, y=:PetalLength, Geom.boxplot)

Plotting our values looks like this:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[215]

I have a feeling that a histogram would be even better for illustrating the distribution of the
PetalLength:

julia> plot(iris, x=:PetalLength, color=:Species, Geom.histogram)

Generating a histogram using the PetalLength produces the following:

If we visualize the PetalWidth values as a histogram, we'll notice a similar pattern:

julia> plot(iris, x=:PetalWidth, color=:Species, Geom.histogram)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[216]

The output is as follows:

Plotting the petal width and height for the three species should now provide a strong
indication that, for example, we can successfully classify Iris setosa based on the two
values:

julia> plot(iris, x=:PetalWidth, y=:PetalLength, color=:Species)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[217]

The output is as follows:

Loading and saving our data
Julia comes with excellent facilities for reading and storing data out of the box. Given its
focus on data science and scientific computing, support for tabular-file formats (CSV, TSV)
is first class.

Let's extract some data from our initial dataset and use it to practice persistence and
retrieval from various backends.

We can reference a section of a DataFrame by defining its bounds through the
corresponding columns and rows. For example, we can define a new DataFrame composed
only of the PetalLength and PetalWidth columns and the first three rows:

julia> iris[1:3, [:PetalLength, :PetalWidth]]
3×2 DataFrames.DataFrame
│ Row │ PetalLength │ PetalWidth │
├─────┼─────────────┼────────────┤
│ 1 │ 1.4 │ 0.2 │
│ 2 │ 1.4 │ 0.2 │
│ 3 │ 1.3 │ 0.2 │

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[218]

The generic indexing notation is dataframe[rows, cols], where rows can be a number,
a range, or an Array of boolean values where true indicates that the row should be
included:

julia> iris[trues(150), [:PetalLength, :PetalWidth]]

This snippet will select all the 150 rows since trues(150) constructs an array of 150
elements that are all initialized as true. The same logic applies to cols, with the added
benefit that they can also be accessed by name.

Armed with this knowledge, let's take a sample from our original dataset. It will include
some 10% of the initial data and only the PetalLength, PetalWidth, and Species
columns:

julia> test_data = iris[rand(150) .<= 0.1, [:PetalLength, :PetalWidth,
:Species]]
10×3 DataFrames.DataFrame
│ Row │ PetalLength │ PetalWidth │ Species │
├─────┼─────────────┼────────────┼───────────
───┤
│ 1 │ 1.1 │ 0.1 │ "setosa" │
│ 2 │ 1.9 │ 0.4 │ "setosa" │
│ 3 │ 4.6 │ 1.3 │ "versicolor" │
│ 4 │ 5.0 │ 1.7 │ "versicolor" │
│ 5 │ 3.7 │ 1.0 │ "versicolor" │
│ 6 │ 4.7 │ 1.5 │ "versicolor" │
│ 7 │ 4.6 │ 1.4 │ "versicolor" │
│ 8 │ 6.1 │ 2.5 │ "virginica" │
│ 9 │ 6.9 │ 2.3 │ "virginica" │
│ 10 │ 6.7 │ 2.0 │ "virginica" │

What just happened here? The secret in this piece of code is rand(150) .<= 0.1. It does a
lot—first, it generates an array of random Float values between 0 and 1; then, it compares
the array, element-wise, against 0.1 (which represents 10% of 1); and finally, the
resultant Boolean array is used to filter out the corresponding rows from the dataset. It's
really impressive how powerful and succinct Julia can be!

In my case, the result is a DataFrame with the preceding 10 rows, but your data will be
different since we're picking random rows (and it's quite possible you won't have exactly 10
rows either).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[219]

Saving and loading using tabular file formats
We can easily save this data to a file in a tabular file format (one of CSV, TSV, and others)
using the CSV package. We'll have to add it first and then call the write method:

pkg> add CSV
julia> using CSV
julia> CSV.write("test_data.csv", test_data)

And, just as easily, we can read back the data from tabular file formats, with the
corresponding CSV.read function:

julia> td = CSV.read("test_data.csv")
10×3 DataFrames.DataFrame
│ Row │ PetalLength │ PetalWidth │ Species │
├─────┼─────────────┼────────────┼───────────
───┤
│ 1 │ 1.1 │ 0.1 │ "setosa" │
│ 2 │ 1.9 │ 0.4 │ "setosa" │
│ 3 │ 4.6 │ 1.3 │ "versicolor" │
│ 4 │ 5.0 │ 1.7 │ "versicolor" │
│ 5 │ 3.7 │ 1.0 │ "versicolor" │
│ 6 │ 4.7 │ 1.5 │ "versicolor" │
│ 7 │ 4.6 │ 1.4 │ "versicolor" │
│ 8 │ 6.1 │ 2.5 │ "virginica" │
│ 9 │ 6.9 │ 2.3 │ "virginica" │
│ 10 │ 6.7 │ 2.0 │ "virginica" │

Just specifying the file extension is enough for Julia to understand how to handle the
document (CSV, TSV), both when writing and reading.

Working with Feather files
Feather is a binary file format that was specially designed for storing data frames. It is fast,
lightweight, and language-agnostic. The project was initially started in order to make it
possible to exchange data frames between R and Python. Soon, other languages added
support for it, including Julia.

Support for Feather files does not come out of the box, but is made available through the
homonymous package. Let's go ahead and add it and then bring it into scope:

pkg> add Feather
julia> using Feather

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[220]

Now, saving our DataFrame is just a matter of calling Feather.write:

julia> Feather.write("test_data.feather", test_data)

Next, let's try the reverse operation and load back our Feather file. We'll use the counterpart
read function:

julia> Feather.read("test_data.feather")
10×3 DataFrames.DataFrame
│ Row │ PetalLength │ PetalWidth │ Species │
├─────┼─────────────┼────────────┼───────────
───┤
│ 1 │ 1.1 │ 0.1 │ "setosa" │
│ 2 │ 1.9 │ 0.4 │ "setosa" │
│ 3 │ 4.6 │ 1.3 │ "versicolor" │
│ 4 │ 5.0 │ 1.7 │ "versicolor" │
│ 5 │ 3.7 │ 1.0 │ "versicolor" │
│ 6 │ 4.7 │ 1.5 │ "versicolor" │
│ 7 │ 4.6 │ 1.4 │ "versicolor" │
│ 8 │ 6.1 │ 2.5 │ "virginica" │
│ 9 │ 6.9 │ 2.3 │ "virginica" │
│ 10 │ 6.7 │ 2.0 │ "virginica" │

Yeah, that's our sample data all right!

In order to provide compatibility with other languages, the Feather format
imposes some restrictions on the data types of the columns. You can read
more about Feather in the package's official documentation at https:/ /
juliadata. github. io/ Feather. jl/ latest/ index. html.

Saving and loading with MongoDB
Before closing this chapter, let's take a look at using a NoSQL backend for persisting and
retrieving our data. Don't worry, we'll extensively cover interaction with relational
databases in the upcoming chapters too.

In order to follow through this chapter, you'll need a working MongoDB installation. You
can download and install the correct version for your operating system from the official
website, at https:/ / www. mongodb. com/ download- center? jmp= nav#community. I will use a
Docker image which I installed and started up through Docker's Kitematic (available for
download at https://github.com/docker/kitematic/releases).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://juliadata.github.io/Feather.jl/latest/index.html
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community
https://github.com/docker/kitematic/releases

Creating Our First Julia App Chapter 11

[221]

Next, we need to make sure to add the Mongo package. The package also has a dependency
on LibBSON, which is automatically added. LibBSON is used for handling BSON, which
stands for Binary JSON, a binary-encoded serialization of JSON-like documents. While
we're at it, let's add the JSON package as well; we will need it. I'm sure you know how to do
that by now—if not, here is a reminder:

pkg> add Mongo, JSON

At the time of writing, Mongo.jl support for Julia v1 was still a work in
progress. This code was tested using Julia v0.6.

Easy! Let's let Julia know that we'll be using all these packages:

julia> using Mongo, LibBSON, JSON

We're now ready to connect to MongoDB:

julia> client = MongoClient()

Once successfully connected, we can reference a dataframes collection in the db database:

julia> storage = MongoCollection(client, "db", "dataframes")

Julia's MongoDB interface uses dictionaries (a data structure called Dict in Julia) to
communicate with the server. We'll look at dicts in more detail in the next chapter. For
now, all we need to do is to convert our DataFrame to such a Dict. The simplest way to do
it is to sequentially serialize and then deserialize the DataFrame by using the
JSON package. It generates a nice structure that we can later use to rebuild our DataFrame:

julia> datadict = JSON.parse(JSON.json(test_data))

Thinking ahead, to make any future data retrieval simpler, let's add an identifier to our
dictionary:

julia> datadict["id"] = "iris_test_data"

Now we can insert it into Mongo:

julia> insert(storage, datadict)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[222]

In order to retrieve it, all we have to do is query the Mongo database using the "id" field
we've previously configured:

Julia> data_from_mongo = first(find(storage, query("id" =>
"iris_test_data")))

We get a BSONObject, which we need to convert back to a DataFrame. Don't worry, it's
straightforward. First, we create an empty DataFrame:

julia> df_from_mongo = DataFrame()
0×0 DataFrames.DataFrame

Then we populate it using the data we retrieved from Mongo:

for i in 1:length(data_from_mongo["columns"])
 df_from_mongo[Symbol(data_from_mongo["colindex"]["names"][i])] =
Array(data_from_mongo["columns"][i])
end
julia> df_from_mongo
10×3 DataFrames.DataFrame
│ Row │ PetalLength │ PetalWidth │ Species │
├─────┼─────────────┼────────────┼──────────────┤
│ 1 │ 1.1 │ 0.1 │ "setosa" │
│ 2 │ 1.9 │ 0.4 │ "setosa" │
│ 3 │ 4.6 │ 1.3 │ "versicolor" │
│ 4 │ 5.0 │ 1.7 │ "versicolor" │
│ 5 │ 3.7 │ 1.0 │ "versicolor" │
│ 6 │ 4.7 │ 1.5 │ "versicolor" │
│ 7 │ 4.6 │ 1.4 │ "versicolor" │
│ 8 │ 6.1 │ 2.5 │ "virginica" │
│ 9 │ 6.9 │ 2.3 │ "virginica" │
│ 10 │ 6.7 │ 2.0 │ "virginica" │

And that's it! Our data has been loaded back into a DataFrame.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Our First Julia App Chapter 11

[223]

Summary
Julia's intuitive syntax makes for a lean learning curve. The optional typing and the wealth
of shorthand constructors result in readable, noise-free code, while the large collection of
third-party packages makes accessing, manipulating, visualizing, plotting, and saving data
a breeze.

Just by learning Julia's basic data structures and a few related functions, coupled with its
powerful data manipulation toolset, we were able to implement an efficient data analysis
workflow and extract valuable insight from the Iris flowers dataset. That was all we needed
in order to perform efficient exploratory data analysis with Julia.

In the next chapter, we'll continue our journey by learning how to build a web crawler.
Web mining, the process of extracting information from the web, is an important part of
data mining and a key component of data acquisition in general. Julia is a great choice
when building web mining software, given not only its built-in performance and its rapid
prototyping features, but also the availability of powerful libraries that cover everything,
from HTTP clients, to DOM parsing, to text analysis.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

12
Setting Up the Wiki Game

I hope you're excited about Julia by now. The friendly, expressive, and intuitive syntax, the
powerful read-eval-print loop (REPL), the great performance, and the richness of both
built-in and third-party libraries are a game-changing combination for data science in
particular—and programming in general.

The foundation we've laid in the previous chapters are now strong enough to allow us to
develop pretty much any kind of program using Julia. Hard to believe? Well, here's the
proof—in the next three chapters, we'll develop a web-based game with Julia!

It will follow the narrative of the internet-famous Six Degrees of Wikipedia. If you've never
heard of it, the idea is that any two articles on Wikipedia can be connected, using only the
links on the pages, in six clicks or fewer. It is also called six degrees of separation.

In case you're wondering what this has to do with Julia, it is a playful excuse to learn about
data mining and web scraping and to learn more about the language and apply our newly
acquired knowledge to build a web app.

In this chapter, we will lay the foundations of the web scraper. We'll take a look at how
requests are made over the web in a client-server architecture and how to use the HTTP
package to fetch web pages. We'll learn about HTML documents, HTML and CSS selectors,
and Gumbo, a HTML parser for Julia. In the process, we'll experiment with more code in the
REPL and we'll learn about other key features of the language, such as dictionaries, error
handling, functions, and conditional statements. We'll also get to set up our first Julia
project.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[225]

The topics we will cover in this chapter include the following:

What web scraping is and how it is used for data harvesting
How to use Julia to make requests and fetch web pages
Understanding the Pair type
Learning about the dictionary, one of Julia's more versatile data structures
Exception handling, to help us capture errors in our code
Functions, the basic building blocks and one of the most important code units in
Julia—we'll learn how to define and use them to create reusable, modular code
A handful of useful Julia tricks, such as the pipe operator and short-circuit
evaluation
Setting up a Julia project using Pkg

Technical requirements
The Julia package ecosystem is under continuous development and new package versions
are released on a daily basis. Most of the times this is great news, as new releases bring new
features and bug fixes. However, since many of the packages are still in beta (version 0.x),
any new release can introduce breaking changes. As a result, the code presented in the
book can stop working. In order to ensure that your code will produce the same results as
described in the book, it is recommended to use the same package versions. Here are the
external packages used in this chapter and their specific versions:

Gumbo@v0.5.1
HTTP@v0.7.1
IJulia@v1.14.1
OrderedCollections@v1.0.2

In order to install a specific version of a package you need to run:

pkg> add PackageName@vX.Y.Z

For example:

pkg> add IJulia@v1.14.1

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[226]

Alternatively you can install all the used packages by downloading the Project.toml file
provided with the chapter and using pkg> instantiate as follows:

julia>
download("https://github.com/TrainingByPackt/Julia-1-Programming-Complete-R
eference-Guide/tree/master/Chapter12/Project.toml", "Project.toml")
pkg> activate .
pkg> instantiate

Data harvesting through web scraping
The technique for extracting data from web pages using software is called web scraping. It
is an important component of data harvesting, typically implemented through programs
called web crawlers. Data harvesting or data mining is a useful technique, often used in
data science workflows to collect information from the internet, usually from websites (as
opposed to APIs), and then to process that data for different purposes using various
algorithms.

At a very high level, the process involves making a request for a web page, fetching its
content, parsing its structure, and then extracting the desired information. This can be
images, paragraphs of text, or tabular data containing stock information and prices, for
example—pretty much anything that is present on a web page. If the content is spread
across multiple web pages, the crawler will also extract the links and will automatically
follow them to pull the rest of the pages, repeatedly applying the same crawling process.

The most common use of web scrapers is for web indexing, as done by search engines such
as Google or Bing. Online price monitoring and price comparison, personal data mining (or
contact scraping), and online reputation systems, as well as product review platforms,
represent other common use cases for web scrapers.

How the web works – a crash course
The internet has become an integral part of our lives over the last decade. Most of us use it
extensively to access a wealth of information, day in and day out. Googling things like
rambunctious (noisy and lacking in restraint or discipline), catching up with friends on
social networks, checking out the latest gourmet restaurants on Instagram, watching a
blockbuster on Netflix, or reading the Wikipedia entry about Attitogon (a place in Togo
where they practice voodoo)—they're all just a click away. All these, although different in
nature, function in pretty much the same way.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[227]

An internet-connected device, be it a computer using Wi-Fi or a smartphone connected to a
mobile data network, together with an app for accessing the web (generally a web browser
such as Chrome or Firefox, but also a dedicated one such as Facebook or Netflix's mobile
apps), represent the client. At the other end we have the server—a computer that stores the
information, be it in the form of web pages, videos, or entire web apps.

When a client wants to access the information available on the server, it initiates a request. If
the server determines that the client has the permission to access the resource, a copy of the
information is downloaded from the server onto the client, to be displayed.

Making HTTP requests
The Hypertext Transfer Protocol (HTTP) is a communication protocol for transmitting
documents over a network. It was designed for communication between web browsers and
web servers. HTTP implements the standard client-server model, where a client opens a
connection and makes a request, then waits for a response.

Learning about HTTP methods
HTTP defines a set of request methods to indicate the action to be performed for a given
resource. The most common method is GET, which is meant to retrieve data from the server.
It is used when navigating the internet using links. The POST method requests the server to
accept an enclosed data payload, most commonly the result of submitting a web form.
There are a few more methods, including HEAD, PUT, DELETE, PATCH, and others—but they
are less used and less supported by clients and web servers. As we won't need them for our
web crawler, they won't be covered.

If you're interested, you can read about them at
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods.

Understanding HTTPS
HTTP Secure (HTTPS) is basically HTTP over an encrypted connection. It started as an
alternative protocol used primarily for processing payments over the web and transferring
sensitive corporate information. But in recent years, it has begun to see widespread usage,
with a push from major companies to replace plain HTTP connections on the internet. For
the purpose of our discussion, HTTP and HTTPS can be used interchangeably.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

Setting Up the Wiki Game Chapter 12

[228]

Understanding HTML documents
In order to extract data from the fetched web pages, we need to isolate and manipulate the
structural elements that contain the desired information. That's why a basic understanding
of the generic structure of the web pages is helpful when performing web scraping. If
you've done web scraping before, maybe using a different programming language, or if
you just know enough about HTML documents, feel free to skip this section. On the other
hand, if you're new to this or just need a quick refresher, please read on.

Hypertext Markup Language (HTML) is the gold standard for creating web pages and web
applications. HTML goes hand in hand with HTTP, the protocol for transmitting HTML
documents over the internet.

The building blocks of HTML pages are the HTML elements. They provide both the content
and the structure of a web page. They can be nested to define complex relationships with
each other (such as parents, children, siblings, ancestors, and so on). HTML elements are
denoted by tags, written between angle brackets (<tag>...</tag>). The official W3C
specification defines a wealth of such tags, representing everything from headings and
paragraphs, to lists, forms, links, images, quotes, and much more.

To give you an idea, here's how the main heading is represented in HTML on Julia's
Wikipedia page at https://en.wikipedia.org/wiki/Julia_(programming_language):

<h1>Julia (programming language)</h1>

This HTML code renders in a modern browser, like this:

A more elaborate example can present a nested structure such as the following:

<div>
 <h2>Language features</h2>
 <p>According to the official website, the main features of the language
are:</p>

 Multiple dispatch
 Dynamic type sytem
 Good performance

</div>

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Julia_(programming_language)

Setting Up the Wiki Game Chapter 12

[229]

The snippet renders a secondary heading (<h2>), a paragraph of text (<p>), and an
unordered list (), with three list items (), all within a page section (<div>):

HTML selectors
HTML's purpose is to provide content and structure. That's all we need in order to convey
any kind of information, no matter how complex. However, as computers and web
browsers became more powerful and the use of web pages more widespread, users and
developers wanted more. They asked for ways to extend HTML to also include beautiful
formatting (design) and rich behavior (interactivity).

That is why Cascading Style Sheets (CSS) was created—a style language that defines the
design of HTML documents. Additionally, JavaScript emerged as the programming
language of choice for the client side, adding interactivity to web pages.

The style rules and the interactive features provided by CSS and JavaScript are associated
with well-defined HTML elements. That is, styling and interactivity have to explicitly target
elements from the associated HTML document. For example, a CSS rule can target the main
heading of the page—or a JavaScript validation rule can target text input in the login form.
If you think of a web page as a structured collection of HTML elements, this targeting is
achieved by selecting (sub-collections of) elements.

Selecting elements can be done, in its simplest form, by identifying the HTML tags by type
and structure (hierarchy). In the previous example, where we looked at representing a list
of Julia's features, we can select all the list items (the elements) by indicating a
hierarchy like div > ul > li, representing all the li items, nested within a ul element,
nested within a div. These are called HTML selectors.

However, this approach has limitations. On the one hand, when dealing with large,
complex, and deeply nested HTML documents, we have to handle equally complex
hierarchies, a tedious and error-prone task. On the other hand, such an approach might not
provide enough specificity to allow us to select the element we want to target. For example,
on the same Julia Wikipedia page, how would we differentiate the list of features from the
list of external links? They both have similar structures.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[230]

The list of External links on Julia's Wikipedia page looks like this:

The Language features section has a similar structure:

The fact that the two HTML elements are structurally identical makes it difficult to select
the list items for the language features alone.

Learning about the HTML attributes
This is where HTML attributes come into play. These are key-value pairs that enhance
HTML tags, providing extra information. For example, in order to define a link, we're going
to use the <a> tag—<a>This is a link.

But clearly, this is not enough. If this is a link, what does it link to? As developers, we need
to provide extra information about the linked location. This is done by adding the href
attribute with its corresponding value:

This is a link to Julia's home page

Ah yes, now we're talking! A super handy link to Julia's home page.

In general, all the attributes can be used when selecting HTML elements. But not all of them
are equally useful. The most important one is arguably the id attribute. It allows us to
assign a unique identifier to an element and then reference it in a very efficient way.
Another important attribute is the class, extensively used for CSS styling rules.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[231]

This is what our previous example would look like with extra attributes:

This
is a link to Julia's home page

Learning about CSS and JavaScript selectors
Historically, JavaScript started off using selectors based on the id attribute and the names
of the HTML elements (the tags). Later on, the CSS specification came with a more
powerful set of selectors, employing not only the class, the id, and the tags, but also the
presence of attributes and their values, states of the elements (such as focused or
disabled), and more specific element hierarchies that take into account relationships.

Here are a few examples of CSS selectors that can be used to target the previously
discussed <a> tag:

#julia_link is the selector for the id attribute (the #)
.external_link is the selector for the class attribute (the .)
a is the selector for the <a> tag
a[href*="julialang.org"] will select all the <a> tags with a href attribute
that contains "julialang.org"

You can read more about CSS selectors at
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors.
It's worth keeping this resource close as web scraping relies heavily on
CSS selectors, as we'll see in the next chapter.

Understanding the structure of a link
Links, in technical lingo called Uniform Resource Locators (URLs), are strings of characters
that uniquely identify a resource on the internet. They are informally known as web
addresses. Sometimes you might see them called Uniform Resource Identifiers (URIs).

In our previous example, Julia's Wikipedia web page was accessible at the URL
https://en.wikipedia.org/wiki/Julia_(programming_language). This URL refers to the
resource /wiki/Julia_(programming_language) whose representation, as a HTML
document, can be requested via the HTTPS protocol (https:) from a network host whose
domain name is wikipedia.org. (Wow, that's a mouthful, but now you can understand
how complex the process of requesting a web page on the internet is).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://en.wikipedia.org/wiki/Julia_(programming_language)

Setting Up the Wiki Game Chapter 12

[232]

Thus, a common URL can be broken down into the following
parts—scheme://host/path?query#fragment.

For example, if we take a look at https:/ /en. wikipedia. org/ wiki/ Julia_ (programming_
language)?uselang= en#Interaction, we have https as the scheme,
en.wikipedia.org as the host, /wiki/Julia_(programming_language) as the path,
?uselang=en as the query, and, finally, #Interaction as the fragment.

Accessing the internet from Julia
Now that you have a good understanding of how web pages are accessed on the internet
through client-server interactions, let's see how we can do this with Julia.

The most common web clients are the web browsers—apps such as Chrome or Firefox.
However, these are meant to be used by human users, rendering web pages with fancy
styled UIs and sophisticated interactions. Web scraping can be done manually through a
web browser, it's true, but the most efficient and scalable way is through a fully automated,
software-driven process. Although web browsers can be automated (with something like
Selenium from https://www.seleniumhq.org), it's a more difficult, error-prone, and
resource-intensive task. For most use cases, the preferred approach is to use a dedicated
HTTP client.

Making requests with the HTTP package
Pkg, Julia's built-in package manager, provides access to the excellent HTTP package. It
exposes a powerful functionality for building web clients and servers—and we'll use it
extensively.

As you're already accustomed to, extra functionality is only two commands away—pkg>

add HTTP and julia> using HTTP.

Recall our discussion about HTTP methods from the previous section; the most important
ones were GET, used to ask for a resource from the server, and POST, which sends a data
payload to the server and accepts the response. The HTTP package exposes a matching set
of functions—we get access to HTTP.get, HTTP.post, HTTP.delete, HTTP.put, and so
on.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://en.wikipedia.org/wiki/Julia_(programming_language)?uselang=en#Interaction
https://www.seleniumhq.org

Setting Up the Wiki Game Chapter 12

[233]

Let's say we want to request Julia's Wikipedia page. All we need is the page's URL and the
HTTP.get method:

julia>
HTTP.get("https://en.wikipedia.org/wiki/Julia_(programming_language)")

The result will be a Response object that represents Julia's Wikipedia page in all its glory.
The REPL displays the headers and the first lines of the response body, truncating the rest:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[234]

The screenshot shows the details of the HTTP.Messages.Response object we
received—the list of HTTP headers and the first part of the response body. Let's make sure
we keep it in a variable so we can reference it later. Remember that Julia provisionally
stores the result of the last computation in the ans REPL variable, so let's pick it up from
there:

julia> resp = ans

Handling HTTP responses
After receiving and processing a request, the server sends back a HTTP response message.
These messages have a standardized structure. They contain a wealth of information, with
the most important pieces being the status code, the headers, and the body.

HTTP status codes
The status code is a three-digit integer where the first digit represents the category, while
the next two digits are used to define the subcategory. They are as follows:

1XX - Informational: Request was received. This indicates a provisional
response.
2XX - Success: This is the most important response status, acknowledging that
the request was successfully received, understood, and accepted. It's what we're
looking for in our web-mining scripts.
3XX - Redirection: This class of status codes indicates that the client must take
additional action. It usually means that additional requests must be made in
order to get to the resource, so our scripts will have to handle this scenario. We
also need to actively prevent cyclical redirects. We won't deal with such complex
scenarios in our project, but in real-life applications, 3XX status codes will require
specialized handling based on the subcategory.

Wikipedia provides a good description of the various 3XX status codes
and instructions for what to do in each case:
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#3xx_Redi

rection.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#3xx_Redirection
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#3xx_Redirection

Setting Up the Wiki Game Chapter 12

[235]

4XX - Client Error: This means that we've probably made a mistake when
sending our request. Maybe the URL is wrong and the resource cannot be found
(404) or maybe we're not allowed to access the page (401 and 403 status codes).
There's a long list of 4XX response codes and, similar to 3XX ones, our program
should handle the various scenarios to ensure that the requests are eventually
successful.
5XX - Server Error: Congratulations, you found or caused a problem on the
server! Depending on the actual status code, this may or may not be actionable.
503 (service unavailable) or 504 (gateway timeout) are relevant as they indicate
that we should try again later.

Learning about HTTP headers
HTTP headers allow the client and the server to pass additional information. We won't go
into the details of header transmission since Julia's HTTP library saves us from having to
deal with raw headers. However, a few are worth mentioning, as they are important for
web scraping:

Age, Cache-Control, and Expires represent the validity of the page and can be
used to set data refresh times
Last-Modified, Etag, and If-Modified-Since can be used for content
versioning, to check if the page has changed since it was last retrieved
Cookie and Set-Cookie have to be used in order to read and write cookies that
are required for correct communication with the server
The Content-* family of headers, such as Content-Disposition, Content-
Length, Content-Type, Content-Encoding, and so on, help when handling
and validating the response message

Check https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
and https://en.wikipedia.org/wiki/List_of_HTTP_header_fields for
a complete discussion on the HTTP header fields.

The HTTP message body
The message body, the most important part and the reason for web scraping (the content of
the web page itself), is actually an optional part of the response. The presence of the body,
its properties, and its size are specified by the Content-* family of headers.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Setting Up the Wiki Game Chapter 12

[236]

Understanding HTTP responses
The result of the HTTP.get invocation is an object that closely mirrors a raw HTTP
response. The package makes our lives easier by extracting the raw HTTP data and neatly
setting it up in a data structure, which makes manipulating it a breeze.

Let's take a look at its properties (or fields in Julia's lingo):

julia> fieldnames(typeof(resp))
(:version, :status, :headers, :body, :request)

The fieldnames function accepts a type as its argument and returns a tuple containing the
names of the fields (or properties) of the argument. In order to get the type of a value, we
can use the typeof function, like in the previous example.

Right! The status, headers, and body fields should by now sound familiar. The version
field represents the version of the HTTP protocol (the HTTP/1.1 part in the first line of the
response). Most web servers on the internet today use version 1.1 of the protocol, but a new
major version, 2.0, is almost ready for wide deployment. Finally, the request field holds a
reference to the HTTP.Messages.Request object that triggered the current response.

The status code
Let's take a closer look at the status code:

julia> resp.status 200

Sure enough, we got back a valid response, hereby confirmed by the 200 status code.

The headers
What about the headers? As already mentioned, they contain critical information indicating
whether a message body is present. Let's check them out:

julia> resp.headers

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[237]

The output is as follows:

Your output will be different in regard to some of the values, but it should be easy to spot
the key HTTP headers we mentioned before. Content-Length confirms the presence of a
response body. The Content-Type provides information about how to interpret the
encoding of the message body (it's a HTML document using UTF-8 character encoding).
And we can use the Last-Modified value to optimize the caching and the update
frequency of our web crawler.

The message body
Since we just confirmed that we have a response body, let's see it:

julia> resp.body
193324-element Array{UInt8,1}:
 0x3c
 0x21
 0x44
... output truncated ...

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[238]

Oops, that doesn't look like the web page we were expecting. No worries though, these are
the bytes of the raw response—which we can easily convert to a human-readable HTML
string. Remember that I mentioned the String method when learning about strings? Well,
this is where it comes in handy:

julia> resp_body = String(resp.body)

Your REPL should now be outputting a long HTML string that represents Julia's Wikipedia
page.

If we take a look at the first 500 characters, we'll start to see familiar patterns:

julia> resp_body[1:500]

The output is as follows:

Sure enough, using Chrome's view page source will reveal the same HTML:

It's confirmed—we just took our first successful step toward building our web crawler!

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[239]

Learning about pairs
While looking at the response header, you might've noticed that its type is an Array of
Pair objects:

julia> resp.headers
25-element Array{Pair{SubString{String},SubString{String}},1}

A Pair represents a Julia data structure—and the corresponding type. The Pair contains a
couple of values that are generally used to reference key-value relationships. The types of
the two elements determine the concrete type of the Pair.

For example, we can construct a Pair with the following:

julia> Pair(:foo, "bar")
:foo => "bar"

If we check its type we'll see that it's a Pair of Symbol and String:

julia> typeof(Pair(:foo, "bar"))
Pair{Symbol,String}

We can also create Pairs by using the x => y literal notation:

julia> 3 => 'C'
3 => 'C'

julia> typeof(3 => 'C')
Pair{Int64,Char}

The => double arrow should look familiar. It's what we saw in the response header, for
example:

"Content-Type" => "text/html; charset=UTF-8"

Obviously, once created, it is possible to access the values stored in a Pair. One way to do
it is by indexing into it:

julia> p = "one" => 1
"one" => 1

julia> p[1]
"one"

julia> p[2]
1

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[240]

We can also access the first and second fields in order to get to the first and second
values, respectively:

julia> p.first
"one"

julia> p.second
1

Just like the tuples, the Pairs are immutable, so this won't work:

julia> p.first = "two"
ERROR: type Pair is immutable

julia> p[1] = "two"
ERROR: MethodError: no method matching setindex!(::Pair{String,Int64}

Pairs are one of the building blocks of Julia and can be used, among other things, for
creating dictionaries, one of the most important types and data structures.

Dictionaries
The dictionary, called Dict, is one of Julia's most powerful and versatile data structures. It's
an associative collection—it associates keys with values. You can think of a Dict as a look-
up table implementation—given a single piece of information, the key, it will return the
corresponding value.

Constructing dictionaries
Creating an empty instance of a Dict is as simple as the following:

julia> d = Dict()
Dict{Any,Any} with 0 entries

The information between the curly brackets, {Any,Any}, represents the types of keys and
values of the Dict. Thus, the concrete type of a Dict itself is defined by the type of its keys
and values. The compiler will do its best to infer the type of the collection from the types of
its parts. In this case, since the dictionary was empty, no information could be inferred, so
Julia defaulted to Any and Any.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[241]

An {Any,Any} type of Dict allows us to add any kind of data, indiscriminately. We can
use the setindex! method to add a new key-value pair to the collection:

julia> setindex!(d, "World", "Hello")
Dict{Any,Any} with 1 entry:
 "Hello" => "World"

However, adding values to a Dict is routinely done using the square bracket notation
(which is similar to indexing into it, while also performing an assignment):

julia> d["Hola"] = "Mundo"
"Mundo"

Till now, we've only added Strings—but like I said, because our Dict accepts any kind of
keys and value, there aren't any constraints:

julia> d[:speed] = 6.4
6.4

Here is our Dict now:

julia> d
Dict{Any,Any} with 3 entries:
 "Hello" => "World"
 :speed => 6.4
 "Hola" => "Mundo"

Note that the key => value pairs are not in the order in which we added
them. Dicts are not ordered collections in Julia. We'll talk more about this
in a few paragraphs.

If the key already exists, the corresponding value will be updated, returning the new value:

julia> d["Hello"] = "Earth" "Earth"

Here's our updated Dict. Note that "Hello" now points to "Earth" and not "World":

julia> d
Dict{Any,Any} with 3 entries:
 "Hello" => "Earth"
 :speed => 6.4
 "Hola" => "Mundo"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[242]

If we provide some initial data when instantiating the Dict, the compiler will be able to do
better at identifying the types:

julia> dt = Dict("age" => 12)
Dict{String,Int64} with 1 entry:
 "age" => 12

We can see that the type of the Dict is now constraining the keys to be String, and the
values to be Int—which are the types of the Pair we used to instantiate the Dict. Now, if
a different type is passed for a key or a value, Julia will attempt to convert it—if that fails,
an error will occur:

julia> dt[:price] = 9.99
MethodError: Cannot `convert` an object of type Symbol to an object of type
String

In some instances, the automatic conversion works:

julia> dx = Dict(1 => 11)
Dict{Int64,Int64} with 1 entry:
 1 => 11
julia> dx[2.0] = 12
12

Julia has silently converted 2.0 to the corresponding Int value:

julia> dx
Dict{Int64,Int64} with 2 entries:
 2 => 12
 1 => 11

But that won't always work:

julia> dx[2.4] = 12
InexactError: Int64(Int64, 2.4)

We can store randomly complex data in a Dict and its type will be correctly inferred by
Julia:

 julia> clients_purchases = Dict(
 "John Roche" => ["soap", "wine", "apples", "bread"],
 "Merry Lou" => ["bottled water", "apples", "cereals", "milk"]
)
Dict{String,Array{String,1}} with 2 entries:
 "John Roche" => ["soap", "wine", "apples", "bread"]
 "Merry Lou" => ["bottled water", "apples", "cereals", "milk"]

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[243]

You can also specify and constrain the type of Dict upon constructing it, instead of leaving
it up to Julia:

julia> dd = Dict{String,Int}("" => 2.0)
Dict{String,Int64} with 1 entry:
 "x" => 2

Here, we can see how the type definition overruled the type of the 2.0 value, which is a
Float64 (of course, as in the previous example, Julia has converted 2.0 to its integer
counterpart).

We can also use Pairs to create a Dict:

julia> p1 = "a" => 1
"a"=>1
julia> p2 = Pair("b", 2)
"b"=>2
julia> Dict(p1, p2)
Dict{String,Int64} with 2 entries:
 "b" => 2
 "a" => 1

We can also use an Array of Pair:

julia> Dict([p1, p2])
Dict{String,Int64} with 2 entries:
 "b" => 2
 "a" => 1

We can do the same with arrays of tuples:

julia> Dict([("a", 5), ("b", 10)])
Dict{String,Int64} with 2 entries:
 "b" => 10
 "a" => 5

Finally, a Dict can be constructed using comprehensions:

julia> using Dates
julia> Dict([x => Dates.dayname(x) for x = (1:7)])
Dict{Int64,String} with 7 entries:
 7 => "Sunday"
 4 => "Thursday"
 2 => "Tuesday"
 3 => "Wednesday"
 5 => "Friday"
 6 => "Saturday"
 1 => "Monday"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[244]

Your output will be different as it's likely that the keys won't be ordered from 1 to 7. That's
a very important point—as already mentioned, in Julia, the Dict is not ordered.

Ordered dictionaries
If you ever need your dictionaries to stay ordered, you can use the
OrderedCollections package (https:/ /github. com/ JuliaCollections/
OrderedCollections. jl), specifically the OrderedDict:

pkg> add OrderedCollections
julia> using OrderedCollections, Dates
julia> OrderedDict(x => Dates.monthname(x) for x = (1:12))
DataStructures.OrderedDict{Any,Any} with 12 entries:
 1 => "January"
 2 => "February"
 3 => "March"
 4 => "April"
 5 => "May"
 6 => "June"
 7 => "July"
 8 => "August"
 9 => "September"
 10 => "October"
 11 => "November"
 12 => "December"

Now the elements are stored in the order in which they are added to the collection (from 1
to 12).

Working with dictionaries
As we've already seen, we can index into a Dict using the square bracket notation:

julia> d = Dict(:foo => 1, :bar => 2)
Dict{Symbol,Int64} with 2 entries:
 :bar => 2
 :foo => 1

julia> d[:bar]
2

Attempting to access a key that has not been defined will result in a KeyError, as follows:

julia> d[:baz]
ERROR: KeyError: key :baz not found

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/JuliaCollections/%20OrderedCollections.jl
https://github.com/JuliaCollections/%20OrderedCollections.jl
https://github.com/JuliaCollections/%20OrderedCollections.jl
https://github.com/JuliaCollections/%20OrderedCollections.jl
https://github.com/JuliaCollections/%20OrderedCollections.jl
https://github.com/JuliaCollections/%20OrderedCollections.jl
https://github.com/JuliaCollections/%20OrderedCollections.jl
https://github.com/JuliaCollections/%20OrderedCollections.jl
https://github.com/JuliaCollections/%20OrderedCollections.jl
https://github.com/JuliaCollections/%20OrderedCollections.jl
https://github.com/JuliaCollections/%20OrderedCollections.jl
https://github.com/JuliaCollections/%20OrderedCollections.jl
https://github.com/JuliaCollections/%20OrderedCollections.jl

Setting Up the Wiki Game Chapter 12

[245]

To avoid such situations, we can check if the key exists in the first place:

julia> haskey(d, :baz)
false

As an alternative, if we want to also get a default value when the key does not exist, we can
use the following:

julia> get(d, :baz, 0)
0

The get function has a more powerful twin, get!, which also stores the searched key into
the Dict, using the default value:

julia> d
Dict{Symbol,Int64} with 2 entries:
 :bar => 2
 :foo => 1

julia> get!(d, :baz, 100)
100

julia> d
Dict{Symbol,Int64} with 3 entries:
 :baz => 100
 :bar => 2
 :foo => 1

julia> haskey(d, :baz)
true

In case you're wondering, the exclamation mark at the end of the function name is
valid—and denotes an important Julia naming convention. It should be taken as a warning
that using the function will modify its arguments' data. In this case, the get! function will
add the :baz = 100 Pair to the d Dict.

Removing a key-value Pair is just a matter of invoking delete! (note the presence of the
exclamation mark here too):

julia> delete!(d, :baz)
Dict{Symbol,Int64} with 2 entries:
 :bar => 2
 :foo => 1

julia> haskey(d, :baz)
false

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[246]

As requested, the :baz key and its corresponding value have vanished.

We can ask for the collections of keys and values using the aptly named functions keys and
values. They will return iterators over their underlying collections:

julia> keys(d)
Base.KeySet for a Dict{Symbol,Int64} with 2 entries. Keys:
 :bar
 :foo

julia> values(d)
Base.ValueIterator for a Dict{Symbol,Int64} with 2 entries. Values:
 2
 1

Use collect to retrieve the corresponding arrays:

julia> collect(keys(d))
2-element Array{Symbol,1}:
 :bar
 :foo

julia> collect(values(d))
2-element Array{Int64,1}:
 2
 1

We can combine a Dict with another Dict:

julia> d2 = Dict(:baz => 3)
Dict{Symbol,Int64} with 1 entry:
 :baz => 3

julia> d3 = merge(d, d2)
Dict{Symbol,Int64} with 3 entries:
 :baz => 3
 :bar => 2
 :foo => 1

If some of the keys are present in multiple dictionaries, the values from the last collection
will be preserved:

julia> merge(d3, Dict(:baz => 10))
Dict{Symbol,Int64} with 3 entries:
 :baz => 10
 :bar => 2
 :foo => 1

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[247]

Using the HTTP response
Armed with a good understanding of Julia's dictionary data structure, we can now take a
closer look at the headers property of resp, our HTTP response object.

To make it easier to access the various headers, first let's convert the array of Pair to a
Dict:

julia> headers = Dict(resp.headers)
Dict{SubString{String},SubString{String}} with 23 entries:
"Connection" => "keep-alive"
 "Via" => "1.1 varnish (Varnish/5.1), 1.1 varnish (Varni...
 "X-Analytics" => "ns=0;page_id=38455554;https=1;nocookies=1"
#... output truncated... #

We can check the Content-Length value to determine whether or not we have a response
body. If it's larger than 0, that means we got back a HTML message:

julia> headers["Content-Length"]
"193324"

It's important to remember that all the values in the headers dictionary are strings, so we
can't go comparing them straight away:

julia> headers["Content-Length"] > 0
ERROR: MethodError: no method matching isless(::Int64, ::String)

We'll need to parse it into an integer first:

julia> parse(Int, headers["Content-Length"]) > 0
true

Manipulating the response body
Earlier, we read the response body into a String and stored it into the resp_body
variable. It's a long HTML string and, in theory, we could use Regex and other string-
processing functions to find and extract the data that we need. However, such an approach
would be extremely complicated and error-prone. The best way to search for content in a
HTML document is via HTML and CSS selectors. The only problem is that these selectors
don't operate on strings—they only work against a Document Object Model (DOM).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[248]

Building a DOM representation of the page
The DOM represents an in-memory structure of an HTML document. It is a data structure
that allows us to programmatically manipulate the underlying HTML elements. The DOM
represents a document as a logical tree, and we can use selectors to traverse and query this
hierarchy.

Parsing HTML with Gumbo
Julia's Pkg ecosystem provides access to Gumbo, a HTML parser library. Provided with a
HTML string, Gumbo will parse it into a document and its corresponding DOM. This
package is an important tool for web scraping with Julia, so let's add it.

As usual, install using the following:

pkg> add Gumbo
julia> using Gumbo

We're now ready to parse the HTML string into a DOM as follows:

julia> dom = parsehtml(resp_body)
 HTML Document

The dom variable now references a Gumbo.HTMLDocument, an in-memory Julia
representation of the web page. It's a simple object that has only two fields:

julia> fieldnames(typeof(dom))
(:doctype, :root)

The doctype represents the HTML <!DOCTYPE html> element, which is what the
Wikipedia page uses:

julia> dom.doctype
"html"

Now, let's focus on the root property. This is effectively the outermost element of the
HTML page—the <html> tag containing the rest of the elements. It provides us with an
entry point into the DOM. We can ask Gumbo about its attributes:

julia> dom.root.attributes
Dict{AbstractString,AbstractString} with 3 entries:
 "class" => "client-nojs"
 "lang" => "en"
 "dir" => "ltr"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[249]

It's a Dict, the keys representing HTML attributes and the values—the attributes' values.
And sure enough, they match the page's HTML:

There's also a similar attrs method, which serves the same purpose:

julia> attrs(dom.root)
Dict{AbstractString,AbstractString} with 3 entries:
 "class" => "client-nojs"
 "lang" => "en"
 "dir" => "ltr"

When in doubt, we can just ask about the name of an element using the tag method:

julia> tag(dom.root)
:HTML

Gumbo exposes a children method which returns an array containing all the nested
HTMLElement. If you just go ahead and execute julia> children(dom.root), the REPL
output will be hard to follow. The REPL representation of an HTMLElement is its HTML
code, which, for top-level elements with many children, will fill up many Terminal screens.
Let's use a for loop to iterate over the children and show just their tags:

julia> for c in children(dom.root)
 @show tag(c)
 end
tag(c) = :head
tag(c) = :body

Much better!

Since the children are part of a collection, we can index into them:

julia> body = children(dom.root)[2];

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[250]

Please note the closing semicolon (;). When used in the REPL at the end of an expression, it
will suppress the output (so we won't see the very long HTML code of the <body> that
would otherwise be output). The body variable will now reference an instance of
HTMLElement{:body}:

HTMLElement{:body}:
<body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject
page-Julia_programming_language rootpage-Julia_programming_language skin-
vector action-view">
... output truncated ...

The last method that we'll need is getattr, which returns the value of an attribute name. If
the attribute is not defined for the element, it raises a KeyError:

julia> getattr(dom.root, "class")
"client-nojs"

julia> getattr(dom.root, "href") # oops!
ERROR: KeyError: key "href" not found

Asking about the href attribute of a <html> tag doesn't make any sense. And sure enough,
we promptly got a KeyError, since href was not an attribute of this HTMLElement.

Coding defensively
An error like the previous one, when part of a larger script, has the potential to completely
alter a program's execution, leading to undesired and potentially costly results. In general,
when something unexpected occurs during the execution of a program, it may leave the
software in an erroneous state, making it impossible to return a correct value. In such cases,
rather than pushing on and potentially propagating the problem throughout the whole
execution stack, it's preferable to explicitly notify the calling code about the situation by
throwing an Exception.

Many functions, both in Julia's core and within third-party packages, make good use of the
error-throwing mechanism. It's good practice to check the docs for the functions you use
and to see what kinds of errors they throw. An error is called an exception in programming
lingo.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[251]

As in the case of getattr, the author of the Gumbo package warned us that attempting to
read an attribute that was not defined would result in a KeyError exception. We'll learn
soon how to handle exceptions by capturing them in our code, getting info about the
problem, and stopping or allowing the exception to propagate further up the call stack.
Sometimes it's the best approach, but it's not a technique we want to abuse since handling
errors this way can be resource-intensive. Dealing with exceptions is considerably slower
than performing simple data integrity checks and branching.

For our project, the first line of defense is to simply check if the attribute is in fact defined in
the element. We can do this by retrieving the keys of the attributes Dict and checking if the
one we want is part of the collection. It's a one-liner:

julia> in("href", collect(keys(attrs(dom.root))))
false

Clearly, href is not an attribute of the <html> tag.

Using this approach, we can easily write logic to check for the existence of an attribute
before we attempt to look up its value.

The pipe operator
Reading multiple nested functions can be taxing on the brain. The previous example,
collect(keys(attrs(dom.root))), can be rewritten to improve readability using Julia's
pipe operator, |>.

For example, the following snippet nests three function calls, each inner function becoming
the argument of the outermost one:

julia> collect(keys(attrs(dom.root)))
3-element Array{AbstractString,1}:
 "class"
 "lang"
 "dir"

This can be rewritten for improved readability as a chain of functions using the pipe
operator. This code produces the exact same result:

julia> dom.root |> attrs |> keys |> collect
3-element Array{AbstractString,1}:
 "class"
 "lang"
 "dir"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[252]

What the |> operator does is that it takes the output of the first value and pipes it as the
argument of the next function. So dom.root |> attrs is identical to attrs(dom.root).
Unfortunately, the pipe operator works only for one-argument functions. But it's still very
useful for decluttering code, massively improving readability.

For more advanced piping functionality you can check out the Lazy
package, specifically @> and @>> at
https://github.com/MikeInnes/Lazy.jl#macros.

Handling errors like a pro
Sometimes, coding defensively won't be the solution. Maybe a key part of your program
requires reading a file on the network or accessing a database. If the resource can't be
accessed due to a temporary network failure, there's really not much you can do in the
absence of the data.

The try...catch statements
If you identify parts of your code where you think the execution can go off the rails due to
conditions that are out of your control (that is, exceptional conditions—hence the name
exception), you can use Julia's try...catch statements. This is exactly what it sounds
like—you instruct the compiler to try a piece of code and if, as a result of a problem, an
exception is thrown, to catch it. The fact that an exception is caught implies that it won't
propagate throughout the whole application.

Let's see it in action:

julia> try
 getattr(dom.root, "href")
catch
 println("The $(tag(dom.root)) tag doesn't have a 'href' attribute.")
end
The HTML tag doesn't have a 'href' attribute.

In this example, once an error is encountered, the execution of the code in the try branch is
stopped exactly at that point, and the execution flow continues right away, in the catch
branch.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/MikeInnes/Lazy.jl#macros
https://github.com/MikeInnes/Lazy.jl#macros

Setting Up the Wiki Game Chapter 12

[253]

It becomes clearer if we modify the snippet as follows:

julia> try
 getattr(dom.root, "href")
 println("I'm here too")
catch
 println("The $(tag(dom.root)) tag doesn't have a 'href' attribute.")
end
The HTML tag doesn't have a 'href' attribute.

The newly added line, println("I'm here too"), is not executed, as demonstrated by
the fact that the message is not output.

Of course, things change if no exception is thrown:

julia> try
getattr(dom.root, "class")
 println("I'm here too")
catch
 println("The $(tag(dom.root)) tag doesn't have a 'href' attribute.")
end
I'm here too

The catch construct takes an optional argument, the Exception object that's been thrown
by the try block. This allows us to inspect the exception and branch our code depending
on its properties.

In our example, the KeyError exception is built into Julia. It is thrown when we attempt to
access or delete a non-existent element (such as a key in a Dict or an attribute of a
HTMLElement). All instances of KeyError have a key property, which provides
information about the missing data. Thus, we can make our code more generic:

julia> try
 getattr(dom.root, "href")
catch ex
 if isa(ex, KeyError)
 println("The $(tag(dom.root)) tag doesn't have a '$(ex.key)'
attribute.")
 else
 println("Some other exception has occurred")
 end
end
The HTML tag doesn't have a 'href' attribute.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[254]

Here, we pass the exception into the catch block as the ex variable. We then check if we're
dealing with a KeyError exception—if we are, we use this information to display a custom
error by accessing the ex.key field to retrieve the missing key. If it's a different type of
exception, we show a generic error message:

julia> try
 error("Oh my!")
catch ex
 if isa(ex, KeyError)
 println("The $(tag(dom.root)) tag doesn't have a '$(ex.key)'
attribute.")
 else
 println("Some exception has occurred")
 end
end
Some exception has occurred

The finally clause
In code that performs state changes or uses resources such as files or databases, there is
typically some clean-up work (such as closing files or database connections) that needs to
be done when the code is finished. This code would normally go into the try branch—but
what happens if an exception is thrown?

In such cases, the finally clause comes into play. This can be added after a try or after a
catch branch. The code within the finally block is guaranteed to be executed, regardless
of whether exceptions are thrown or not:

julia> try
 getattr(dom.root, "href")
catch ex
 println("The $(tag(dom.root)) tag doesn't have a '$(ex.key)'
attribute.")
finally
 println("I always get called")
end
The HTML tag doesn't have a 'href' attribute.
I always get called

It is illegal to have a try without a catch or a finally:

julia> try getattr(dom.root, "href") end syntax: try without catch or
finally

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[255]

We need to provide either a catch or a finally block (or both).

The try/catch/finally blocks will return the last expression evaluated, so we can
capture it in a variable:

julia> result = try
 error("Oh no!")
 catch ex
 "Everything is under control"
 end
"Everything is under control"

julia> result
"Everything is under control"

Throwing exceptions on errors
As developers, we too have the option to create and throw exceptions when our code
encounters a problem and shouldn't continue. Julia provides a long list of built-in
exceptions that cover a multitude of use cases. You can read about them at
https://docs.julialang.org/en/stable/manual/control-flow/#Built-in-

Exceptions-1.

In order to throw an exception, we use the aptly named throw function. For example, if we
want to replicate the error raised by Gumbo's getattr method, all we have to do is call the
following:

julia> throw(KeyError("href"))
ERROR: KeyError: key "href" not found

If the built-in exceptions provided by Julia aren't relevant enough for your situation, the
language provides a generic error type, the ErrorException. It takes an additional msg
argument which should offer more details about the nature of the error:

julia> ex = ErrorException("To err is human, but to really foul things up
you need a computer.")
ErrorException("To err is human, but to really foul things up you need a
computer.")

julia> throw(ex)
ERROR: To err is human, but to really foul things up you need a computer.

julia> ex.msg
"To err is human, but to really foul things up you need a computer."

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.julialang.org/en/stable/manual/control-flow/#Built-in-Exceptions-1
https://docs.julialang.org/en/stable/manual/control-flow/#Built-in-Exceptions-1

Setting Up the Wiki Game Chapter 12

[256]

Julia provides a shortcut for throwing ErrorException, the error function:

julia> error("To err is human - to blame it on a computer is even more
so.")
ERROR: To err is human - to blame it on a computer is even more so.

Rethrowing exceptions
But what do we do if we realize that the exception we've caught cannot (or should not) be
handled by our code? For example, say we were expecting to catch a possible missing
attribute, but it turned out we got a Gumbo parsing exception instead. Such an issue would
have to be handled higher up the execution stack, maybe by trying to fetch the web page
again and reparsing it, or by logging an error message for the admin.

If we throw the exception ourselves, the origin (the stacktrace) of the initial error would
be lost. For such cases, Julia provides the rethrow function, which can be used as follows:

julia> try
 Dict()[:foo]
 catch ex
 "nothing to see here"
 end
"nothing to see here"

If we simply throw the exception ourselves, this is what happens:

julia> try
 Dict()[:foo]
 catch ex
 throw(ex)
 end
ERROR: KeyError: key :foo not found
Stacktrace:
 [1] top-level scope at REPL

We throw the KeyError exception, but the origin of the exception is lost; it appears as if it
originates in our code in the catch block. Contrast this with the following example, where
we use rethrow:

julia> try
 Dict()[:foo]
 catch ex
 rethrow(ex)
 end
ERROR: KeyError: key :foo not found

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[257]

Stacktrace:
 [1] getindex(::Dict{Any,Any}, ::Symbol) at ./dict.jl:474
 [2] top-level scope at REPL[140]

The original exception is being rethrown, without changing the stacktrace. Now we can see
that the exception originated within the dict.jl file.

Learning about functions
Before we get to write our first full-fledged Julia program, the web crawler, we need to take
yet another important detour. It's the last one, I promise.

As our code becomes more and more complex, we should start using functions. The REPL
is great for exploratory programming due to its quick input-output feedback loop, but for
any non-trivial piece of software, using functions is the way to go. Functions are an integral
part of Julia, promoting readability, code reuse, and performance.

In Julia, a function is an object that takes a tuple of values as an argument and returns a
value:

julia> function add(x, y)
 x + y
 end
add (generic function with 1 method)

There's also a compact assignment form for function declaration:

julia> add(x, y) = x + y
add (generic function with 1 method)

This second form is great for simple one-line functions.

Invoking a function is simply a matter of calling its name and passing it the required
arguments:

julia> add(1, 2)
3

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[258]

The return keyword
If you have previous programming experience, you might be surprised to see that invoking
the add function correctly returns the expected value, despite the fact that we didn't put
any explicit return statement in the function's body. In Julia, a function automatically
returns the result of the last expression that was evaluated. This is usually the last
expression in the body of the function.

An explicit return keyword is also available. Using it will cause the function to exit
immediately, with the value passed to the return statement:

julia> function add(x, y)
 return "I don't feel like doing math today"
 x + y
 end
add (generic function with 1 method)

julia> add(1, 2)
"I don't feel like doing math today"

Returning multiple values
Although Julia does not support returning multiple values, it does offer a neat trick that's
very close to the actual thing. Any function can return a tuple. And because constructing
and destructing tuples is very flexible, this approach is very powerful and readable:

julia> function addremove(x, y)
 x+y, x-y
 end
addremove (generic function with 1 method)

julia> a, b = addremove(10, 5)
(15, 5)

julia> a
15

julia> b
5

Here we defined a function, addremove, which returns a tuple of two integers. We can
extract the values within the tuple by simply assigning a variable corresponding to each of
its elements.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[259]

Optional arguments
Function arguments can have sensible defaults. For such situations, Julia allows defining
default values. When they are provided, the corresponding arguments no longer have to be
passed explicitly on every call:

julia> function addremove(x=100, y=10)
 x+y, x-y
 end
addremove (generic function with 3 methods)

This function has default values for both x and y. We can invoke it without passing any of
the arguments:

julia> addremove()
(110, 90)

This snippet demonstrates how Julia uses the default values when they are not provided
upon function invocation.

We can pass the first argument only—and for the second one, the default value will be
used:

julia> addremove(5)
(15, -5)

Finally, we can pass both arguments; all the defaults will be overwritten:

julia> addremove(5, 1)
(6, 4)

Keyword arguments
The functions that require a long list of arguments can be hard to use, as the programmer
has to remember the order and the types of the expected values. For such cases, we can
define functions that accept labeled arguments instead. These are called keyword
arguments.

In order to define functions that accept keyword arguments, we need to add a semicolon
after the function's list of unlabeled arguments and follow it with one or more
keyword=value pairs. We actually encountered such functions in Chapter 11, Creating
Our First Julia App, when we used Gadfly to plot the Iris flower dataset:

plot(iris, x=:SepalLength, y=:PetalLength, color=:Species)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[260]

In this example, x, y, and color are all keyword arguments.

The definition of a function with keyword arguments looks like this:

function thermal_confort(temperature, humidity; scale = :celsius, age = 35)

Here, we define a new function, thermal_confort, which has two required arguments,
temperature and humidity. The function also accepts two keyword arguments,
scale and age, which have the default values of :celsius and 35, respectively. It is
necessary for all the keyword arguments to have default values.

Invoking such a function implies using the positional as well as the keyword arguments:

thermal_confort(27, 56, age = 72, scale = :fahrenheit)

If the values for the keyword arguments are not supplied, the default values are used.

Keyword argument default values are evaluated left to right, which means that default
expressions may refer to prior keyword arguments:

function thermal_confort(temperature, humidity; scale = :celsius, age = 35,
health_risk = age/100)

Note that we reference the keyword argument age in the default value of health_risk.

Documenting functions
Julia comes out of the box with powerful code-documenting features. The usage is
straightforward—any string appearing at the top level, right before an object, will be
interpreted as documentation (it's called a docstring). The docstring is interpreted as
markdown, so we can use markup for rich formatting.

The documentation for the thermal_confort function could be as follow:

"""
 thermal_confort(temperature, humidity; <keyword arguments>)
Compute the thermal comfort index based on temperature and humidity. It can
optionally take into account the age of the patient. Works for both Celsius
and Fahrenheit.
Examples:
```julia-repl
julia> thermal_confort(32, 78)
12
```
Arguments

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[261]

- temperature: the current air temperature
- humidity: the current air humidity
- scale: whether :celsius or :fahrenheit, defaults to :celsius
- age: the age of the patient
"""
function thermal_confort(temperature, humidity; scale = :celsius, age = 35)

Now we can access the documentation of our function by using the REPL's help mode:

help?> thermal_confort

The output is as follows:

Pretty useful, isn't it? Docstrings can also be used to generate complete documentation for
your Julia projects, with the help of external packages which build full API docs as
standalone websites, markdown documents, PDF documents, etcetera.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[262]

Writing a basic web crawler – take one
We're now ready to write our first fully-fledged Julia program—a simple web crawler. This
first iteration will make a request for Julia's Wikipedia page, will parse it and extract all the
internal URLs, storing them in an Array.

Setting up our project
The first thing we need to do is to set up a dedicated project. This is done by using Pkg. It is
a very important step as it allows us to efficiently manage and version the packages on
which our program depends.

For starters, we need a folder for our software. Create one—let's call it WebCrawler. I'll use
Julia to make it, but you do it however you like:

julia> mkdir("WebCrawler")
"WebCrawler"

julia> cd("WebCrawler/")

Now we can use Pkg to add the dependencies. When we start a new project, we need to
initialise it. This is achieved with the following:

pkg> activate .

This tells Pkg that we want to manage dependencies in the current project as opposed to
doing it globally. You will notice that the cursor has changed, indicating the name of the
active project, WebCrawler:

(WebCrawler) pkg>

All the other packages we installed up until this point were in the global environment,
which was indicated by the (v1.0) cursor:

(v1.0) pkg>

(v1.0) is the global environment, labeled with the currently installed
Julia version. If you try the examples on a different Julia version, you'll get
a different label.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[263]

If we check the status, we'll see that no packages were installed yet in the project's
environment:

(WebCrawler) pkg> st
 Status `Project.toml`

Our software will have two dependencies—HTTP and Gumbo. It's time to add them:

(WebCrawler) pkg> add HTTP
(WebCrawler) pkg> add Gumbo

Now we can create a new file to host our code. Let's call it webcrawler.jl. It can be
created using Julia:

julia> touch("webcrawler.jl")
"webcrawler.jl"

Writing a Julia program
Unlike our previous work in the REPL and IJulia notebooks, this will be a standalone
program: all the logic will go inside this webcrawler.jl file, and when ready, we'll use the
julia binary to execute it.

Julia files are parsed top to bottom, so we need to provide all the necessary instructions in
the right order (using statements, variables initialization, function definitions, etcetera).
We'll pretty much condense all the steps we took so far in this chapter to build this small
program.

To make things simpler, it's best to use a full-fledged Julia editor. Open webcrawler.jl in
Atom/Juno or Visual Studio Code (or whatever your favorite editor is).

The first thing we want to do is to inform Julia that we plan on using the HTTP and Gumbo
packages. We can write a single using statement and list multiple dependencies, separated
by a comma:

using HTTP, Gumbo

Also, we decided that we wanted to use Julia's Wikipedia page to test our crawler. The link
is https://en.wikipedia. org/ wiki/ Julia_ (programming_ language). It's good practice to
store such configuration-like values in constants, rather than spreading magic
strings throughout the whole code base:

const PAGE_URL =
"https://en.wikipedia.org/wiki/Julia_(programming_language)"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)

Setting Up the Wiki Game Chapter 12

[264]

We also said that we wanted to store all the links in an Array—let's set that up too.
Remember that constants in Julia are concerned mostly with types, so there is no problem if
we push values into the array after it's declared:

const LINKS = String[]

Here, we initialize the LINKS constant as an empty Array of String. The notation
String[] produces the same result as Array{String,1}() and Vector{String}(). It
basically represents the empty Array literal [] plus the Type constraint String—creating
a Vector of String values.

The next steps are—fetch the page, look for a successful response (status 200), and then
check the headers to see if we received a message body (Content-Length greater than
zero). In this first iteration, we only have to do this one time. But thinking ahead, for the
final version of our game, we'll have to repeat this process up to six times per game session
(because there will be up to Six Degrees of Wikipedia, so we'll have to crawl up to six
pages). The best thing we can do is to write a generic function which takes a page URL as
its only parameter, fetches the page, performs the necessary checks, and returns the
message body if available. Let's call this function fetchpage:

function fetchpage(url)
 response = HTTP.get(url)
 if response.status == 200 && parse(Int,
Dict(response.headers)["Content-Length"]) > 0
 String(response.body)
 else
 ""
 end
end

First, we call HTTP.get(url), storing the HTTP.Messages.Response object in the
response variable. Then we check if the response status is 200 and if the Content-
Length header is greater than 0. If they are, we read the message body into a string. If not,
we return an empty string, "", to represent the empty body. That's a lot of ifs—looks like
it's time we take a closer look at the conditional if/else statements, as they're really
important.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[265]

Conditional evaluation of if, elseif, and else
statements
All, except maybe the most basic, programs must be able to evaluate variables and execute
different logical branches depending on their current values. Conditional evaluation allows
portions of the code to be executed (or not) depending on the value of a Boolean expression.
Julia provides the if, elseif, and else statements for writing conditional expressions.
They work like this:

julia> x = 5
5

julia> if x < 0
 println("x is a negative number")
 elseif x > 0
 println("x is a positive number greater than 0")
 else
 println("x is 0")
 end
x is a positive number greater than 0

If the condition x < 0 is true, then its underlying block is evaluated. If not, the expression
x > 0 is evaluated, as part of the elseif branch. If it is true, its corresponding block is
evaluated. If neither expression is true, the else block is evaluated.

The elseif and else blocks are optional, and we can use as many elseif blocks as we
want. The conditions in the if,elseif and else construct are evaluated until the first one
returns true. Then the associated block is evaluated and its last computed value is
returned, exiting the conditional evaluation. Thus, conditional statements in Julia also
return a value—the last executed statement in the branch that was chosen. The following
code shows this:

julia> status = if x < 0
 "x is a negative number"
 elseif x > 0
 "x is a positive number greater than 0"
 else
 "x is 0"
 end
"x is a positive number greater than 0"

julia> status
"x is a positive number greater than 0"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[266]

Finally, it's very important to keep in mind that if blocks do not introduce local scope.
That is, variables defined within them will be accessible after the block is exited (of course,
provided that the respective branch has been evaluated):

julia> status = if x < 0
 "x is a negative number"
 elseif x > 0
 y = 20
 "x is a positive number greater than 0"
 else
 "x is 0"
 end
"x is a positive number greater than 0"

julia> y
20

We can see here that the y variable, initialized within the elseif block, is still accessible
outside the conditional expression.

This can be avoided if we declare the variable to be local:

julia> status = if x < 0
 "x is a negative number"
 elseif x > 0
 local z = 20
 "x is a positive number greater than 0"
 else
 "x is 0"
 end
"x is a positive number greater than 0"

julia> z
UndefVarError: z not defined

When declared local, the variable no longer leaks outside the if block.

The ternary operator
An if,then and else type of condition can be expressed using the ternary operator ? :.
Its syntax is as follows:

x ? y : z

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[267]

If x is true, the expression y is evaluated—otherwise, z gets evaluated instead. For instance,
consider the following code:

julia> x = 10
10

julia> x < 0 ? "negative" : "positive"
"positive"

Short-circuit evaluation
Julia provides an even more concise type of evaluation—short-circuit evaluation. In a series
of Boolean expressions connected by && and || operators, only the minimum number of
expressions are evaluated—as many as are necessary in order to determine the final
Boolean value of the entire chain. We can exploit this to return certain values, depending on
what gets to be evaluated. For instance:

julia> x = 10
10

julia> x > 5 && "bigger than 5"
"bigger than 5"

In an expression A && B, the second expression B is only evaluated if and only if A
evaluates to true. In this case, the whole expression has the return value of the sub-
expression B, which in the previous example is bigger than 5.

If, on the contrary, A evaluates to false, B does not get evaluated at all. Thus, beware—the
whole expression will return a false Boolean (not a string!):

julia> x > 15 && "bigger than 15"
false

The same logic applies to the logical or operator, ||:

julia> x < 5 || "greater than 5"
"greater than 5"

In an expression A || B, the second expression B is only evaluated if A evaluates to false.
The same logic applies when the first sub-expression is evaluated to true; true will be the
return value of the whole expression:

julia> x > 5 || "less than 5"
true

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[268]

Beware of operator precedence
Sometimes short-circuit expressions can confuse the compiler, resulting in errors or
unexpected results. For example, short-circuit expressions are often used with assignment
operations, as follows:

julia> x > 15 || message = "That's a lot"

This will fail with the syntax: invalid assignment location "(x > 15) ||
message" error because the = assignment operator has higher precedence than logical
or and ||. It can easily be fixed by using brackets to explicitly control the evaluation order:

julia> x > 15 || (message = "That's a lot")
"That's a lot"

It's something to keep in mind as it's a common source of errors for beginners.

Carrying on with the crawler's
implementation
So far, your code should look like this:

using HTTP, Gumbo

const PAGE_URL =
"https://en.wikipedia.org/wiki/Julia_(programming_language)"
const LINKS = String[]

function fetchpage(url)
 response = HTTP.get(url)
 if response.status == 200 && parse(Int, Dict(response.headers)["Content-
Length"]) > 0
 String(response.body)
 else
 ""
 end
end

It should be now clear that either the response body or an empty string is returned by the
if/else statement. And since this is the last piece of code evaluated inside the
fetchpage function, this value also becomes the return value of the whole function.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[269]

All good, we can now use the fetchpage function to get the HTML content of the
Wikipedia page and store it in the content variable:

content = fetchpage(PAGE_URL)

If the fetch operation is successful and the content is not an empty string, we can pass the
HTML string to Gumbo to construct the DOM. Then, we can loop through all the children of
this DOM's root element and look for links (using the a tag selector). For each element, we
want to check the href attribute and store its value only if it points to another Wikipedia
page:

if ! isempty(content)
 dom = Gumbo.parsehtml(content)
 extractlinks(dom.root)
end

The function for extracting the links is:

function extractlinks(elem)
 if isa(elem, HTMLElement) &&
 tag(elem) == :a && in("href", collect(keys(attrs(elem))))
 url = getattr(elem, "href")
 startswith(url, "/wiki/") && push!(LINKS, url)
 end

 for child in children(elem)
 extractlinks(child)
 end
end

Here, we declare an extractlinks function which takes a Gumbo element, called elem, as
its only parameter. We then check if elem is a HTMLElement and, if it is, we check if it
corresponds to a link tag (the :a Julia Symbol which represents an <a> HTML tag). Then
we check if the element defines a href attribute in order to avoid getting a KeyError. If all
is good, we get the value of the href element. And finally, if the value of the href is an
internal URL—that is, a URL that starts with /wiki/—we add it to our LINKS Array.

Once we're done checking the element for links, we check if it contains other nested HTML
elements. If it does, we want to repeat the same process for each of its children. That's what
the final for loop does.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[270]

The only thing left to do is to display the populated LINKS Array, at the very end of our
file. Since some of the links might come up in the page more than once, let's make sure we
reduce the Array to the unique elements only, by using the unique function:

display(unique(LINKS))

Now we can execute this script by opening a terminal in the folder where the file is stored.
And then run—$ julia webcrawler.jl.

There's plenty of links, so the output will be quite long. Here's the top of the list:

 $ julia webcrawler.jl
440-element Array{String,1}:
 "/wiki/Programming_paradigm"
 "/wiki/Multi-paradigm_programming_language"
 "/wiki/Multiple_dispatch"
 "/wiki/Object-oriented_programming"
 "/wiki/Procedural_programming"
... output truncated ...

By looking at the output, we'll notice that in the first optimization some links point to
special Wikipedia pages—the ones containing parts such as /File:, /Category:, /Help:,
/Special:, and so on. So we can just go ahead and skip all the URLs that contain a
column, :, since these are not articles and are not useful for our game.

To do this, look for the line that reads:

startswith(url, "/wiki/") && push!(LINKS, url)

Replace the preceding line with the following:

startswith(url, "/wiki/") && ! occursin(":", url) && push!(LINKS, url)

If you run the program now, you should see a list of all the URLs from Julia's Wikipedia
page that link to other Wikipedia articles.

This is the full code:

using HTTP, Gumbo

const PAGE_URL =
"https://en.wikipedia.org/wiki/Julia_(programming_language)"
const LINKS = String[]

function fetchpage(url)
 response = HTTP.get(url)
 if response.status == 200 && parse(Int, Dict(response.headers)["Content-

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting Up the Wiki Game Chapter 12

[271]

Length"]) > 0
 String(response.body)
 else
 ""
 end
end

function extractlinks(elem)
 if isa(elem, HTMLElement) && tag(elem) == :a && in("href",
collect(keys(attrs(elem))))
 url = getattr(elem, "href")
 startswith(url, "/wiki/") && ! occursin(":", url) && push!(LINKS,
url)
 end

 for child in children(elem)
 extractlinks(child)
 end
end
content = fetchpage(PAGE_URL)

if ! isempty(content)
 dom = Gumbo.parsehtml(content)
 extractlinks(dom.root)
end

display(unique(LINKS))

Summary
Web scraping is a key component of data mining and Julia provides a powerful toolbox for
handling these tasks. In this chapter, we addressed the fundamentals of building a web
crawler. We learned how to request web pages with a Julia web client and how to read the
responses, how to work with Julia's powerful Dict data structure to read HTTP
information, how to make our software more resilient by handling errors, how to better
organize our code by writing functions and documenting them, and how to use conditional
logic to make decisions.

Armed with this knowledge, we built the first version of our web crawler. In the next
chapter, we will improve it and will use it to extract the data for our upcoming Wiki game.
In the process, we'll dive deeper into the language, learning about types, methods and
modules, and how to interact with relational databases.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

13
Building the Wiki Game Web

Crawler
Wow, Chapter 12, Setting Up the Wiki Game, was quite a ride! Laying the foundation of our
Wikipedia game took us on a real learning tour-de-force. After the quick refresher on how
the web and web pages work, we dived deeper into the key parts of the language, studying
the dictionary data structure and its corresponding data type, conditional expressions,
functions, exception handling, and even the very handy piping operator (|>). In the
process, we built a short script that uses a couple of powerful third-party packages, HTTP
and Gumbo, to request a web page from Wikipedia, parse it as an HTML DOM, and extract
all internal links from within the page. Our script is part of a proper Julia project, which
employs Pkg to efficiently manage dependencies.

In this chapter, we'll continue the development of our game, implementing the complete
workflow and the gameplay. Even if you are not a seasoned developer, it's easy to imagine
that even a simple game like this will end up with multiple logical parts. We could maybe
have a module for the Wikipedia page crawler, one for the gameplay itself, and one for the
UI (the web app that we'll create in the next chapter). Breaking down a problem into
smaller parts always makes for a simpler solution. And, that's especially true when writing
code—having small, specialized functions, grouped by responsibility, makes the software
easier to reason about, develop, extend, and maintain. In this chapter, we'll dig deeper into
Julia's constructs for structuring the code, and we'll revisit a few more key elements of the
language: the type system, constructors, methods, and multiple dispatch.

In this chapter, we'll cover the following topics:

Six Degrees of Wikipedia, the gameplay
Organizing our code using modules and loading code from multiple files (the so-
called mixin behavior)
Types and the type system, which are key to Julia's flexibility and performance

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[273]

Constructors, special functions which allow us to create new instances of our
types
Methods and multiple dispatch, some of the most important aspects of the
language
Interacting with relational databases (specifically, MySQL)

I hope you are ready to dive in.

Technical requirements
The Julia package ecosystem is under continuous development and new package versions
are released on a daily basis. Most of the times this is great news, as new releases bring new
features and bug fixes. However, since many of the packages are still in beta (version 0.x),
any new release can introduce breaking changes. As a result, the code presented in the
book can stop working. In order to ensure that your code will produce the same results as
described in the book, it is recommended to use the same package versions. Here are the
external packages used in this chapter and their specific versions:

Cascadia@v0.4.0
Gumbo@v0.5.1
HTTP@v0.7.1
IJulia@v1.14.1
JSON@v0.20.0
MySQL@v0.7.0

In order to install a specific version of a package you need to run:

pkg> add PackageName@vX.Y.Z

For example:

pkg> add IJulia@v1.14.1

Alternatively you can install all the used packages by downloading the Project.toml file
provided with the chapter and using pkg> instantiate as follows:

julia>
download("https://github.com/TrainingByPackt/Julia-1-Programming-Complete-R
eference-Guide/tree/master/Chapter13/Project.toml", "Project.toml")
pkg> activate .
pkg> instantiate

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[274]

Six Degrees of Wikipedia, the gameplay
As we've seen in the previous chapter, the Six Degrees of Wikipedia game is a play on the
concept of the six degrees of separation theory—the idea that all living things (and pretty
much everything in the world) are six or fewer steps away from each other. For example, a
chain of a friend of a friend can be made to connect any two people in a maximum of six
steps.

For our own game, the goal of the player is to link any two given Wikipedia articles,
passing through six or fewer other Wikipedia pages. In order to make sure that the problem
has a solution (the six degrees of separation theory has not been demonstrated) and that
indeed there is a path from our starting article to the end article, we'll pre-crawl the full
path. That is, we'll begin with a random Wikipedia page, which will be our starting point,
and we'll link through a number of pages toward our destination, the end article. The
algorithm for picking the next linked page will be the simplest—we'll just pick any random
internal link.

To make things more interesting, we will also offer a difficulty setting—easy, medium, or
hard. This will affect how far apart the start page and the end page will be. For an easy
game, they will be two pages away, for medium, four, and for hard, six. Of course, this
logic in not super rigorous. Yes, intuitively, we can say that two articles that are further
apart will be less related and harder to link. But, it's also possible that the player will find a
shorter path. We won't worry about that, though.

The game will also allow the players to go back if they can't find the solution in the
maximum number of steps.

Finally, if the player gives up, we'll add an option to show the solution—the path we found
from the start article to the destination.

This sounds exciting—let's write some code!

Some additional requirements
In order to follow through this chapter, you will need the following:

A working Julia installation
An internet connection
A text editor

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[275]

Organizing our code
Up to this point, we've been mostly coding at the REPL. Recently, in the previous chapter,
we've started to rely more on the IDE to whip up short Julia files.

But, as our skillset grows and we develop more and more ambitious projects, so will grow
the complexity of our programs. This, in turn, will lead to more lines of code, more logic,
and more files—and more difficulties in maintaining and understanding all these down the
line. As the famous coding axiom goes, the code is read many more times than it is
written—so we need to plan accordingly.

Each language comes with its own philosophy and toolset when it comes to code
organization. In Julia, we have files, modules, and packages. We'll learn about all of these
next.

Using modules to tame our code
Modules group together related functions, variables, and other definitions. But, they are not
just organizational units—they are language constructs that can be understood as variable
workspaces. They allow us to define variables and functions without worrying about name
conflicts. Julia's Module is one of the cornerstones of the language—a key structural and
logical entity that helps make code easier to develop, understand, and maintain. We'll make
good use of modules by architecting our game around them.

A module is defined using the module <<name>>...end construct:

module MyModule
code here
end

Let's start a new REPL session and look at a few examples.

Say we want to write a function that retrieves a random Wikipedia page—it's one of our
game's features. We could call this function rand.

As you may suspect, creating random things is a pretty common task, so we're not the first
ones to think about it. You can see for yourself. Try this at the REPL:

julia> rand
rand (generic function with 56 methods)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[276]

Turns out, 56 rand methods are already defined.

This will make it difficult to add our own variant:

julia> function rand()
 # code here
 end
error in method definition: function Base.rand must be explicitly imported
to be extended

Our attempt to define a new rand method raised an error because it was already defined
and loaded.

It's easy to see how this can lead to a nightmare scenario when choosing the names of our
functions. If all the defined names would live in the same workspace, we'd get into endless
name conflicts as we'd run out of relevant names for our functions and variables.

Julia's module allows us to define separate workspaces, providing a level of encapsulation
that separates our variables and functions from everybody else's. By using modules, name
conflicts are eliminated.

Modules are defined within module...end language constructs. Try this example (at the
REPL), where we define our rand function within a module called MyModule:

julia> module MyModule

 function rand()
 println("I'll get a random Wikipedia page")
 end

 end
Main.MyModule

This snippet defines a module called MyModule—and within it, a function called rand.
Here, MyModule effectively encapsulates the rand function, which no longer clashes with
Julia's Base.rand.

As you can see from its full name, Main.MyModule, our newly created module, is actually
added within another existing module called Main. This module, Main, is the default
module within which code executed at the REPL is evaluated.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[277]

In order to access our newly defined function, we need to reference it within MyModule, by
dotting in:

julia> MyModule.rand()
I'll get a random wikipedia page

Defining modules
Since modules are designed to be used with larger code bases, they're not REPL-friendly.
Because once they are defined, we cannot extend them with extra definitions and we're
forced to retype and redefine the whole module, and it's best to use a full-fledged editor.

Let's create a new folder to host our code. Within it, we'll want to create a new folder called
modules/. Then, within the modules/ folder, add three files—Letters.jl, Numbers.jl,
and module_name.jl.

Files containing Julia code use, by convention, the .jl file extension.

Productive REPL sessions with Julia
Why not use Julia's file-wrangling powers to set up this file structure? Let's take a look at
how to do this, as it will come in handy in our day-to-day work.

Remember, you can type ; into the REPL, at the beginning of the line, to trigger the shell
mode. Your cursor will change from julia> to shell> to confirm the change of context. In
IJulia/Jupyter, you have to prefix the code in the cell with ; in order to be executed in shell
mode.

Now, we can perform the following:

shell> mkdir modules # create a new dir called "modules"
shell> cd modules # switch to the "modules" directory

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[278]

Don't forget that Julia's shell mode calls commands as if they run straight into the OS
Terminal—so the invoked binaries must exist on that platform. Both mkdir and cd are
supported on all major operating systems, so we're safe here. But, when it comes to creating
the files, we're out of luck—the touch command is not available on Windows. No problem
though—all we need to do in this case is to invoke the Julia function with the same name.
This will create the files programmatically, in a platform-agnostic way:

julia> for f in ["Letters.jl", "Numbers.jl", "module_name.jl"]
 touch(f)
 end

If you want to make sure that the files were created, use readdir:

julia> readdir()
3-element Array{String,1}:
 "Letters.jl"
 "Numbers.jl"
 "module_name.jl"

Please make sure that you name the files exactly as indicated, respecting
the case.

Another handy productivity trick is invoking edit, which opens a file or directory in your
default Julia editor. The next snippet will open Letters.jl in whatever default editor you
have configured:

julia> edit("Letters.jl")

If the default editor is not your favorite Julia IDE, you can change it by setting one of the
JULIA_EDITOR, VISUAL, or EDITOR environment variables to point to the editor of your
choice. For instance, on my Mac, I can ask for the path to the Atom editor with the
following:

shell> which atom
/usr/local/bin/atom

And then, I can set JULIA_EDITOR as follows:

julia> ENV["JULIA_EDITOR"] = "/usr/local/bin/atom"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[279]

The three variables have slightly different purposes, but in this case, setting any of them
will have the same effect—changing the default editor for the current Julia session. Keep in
mind, though, that they have different weights, with JULIA_EDITOR taking precedence over
VISUAL, which takes precedence over EDITOR.

Setting up our modules
Let's start by editing Letters.jl to make it look like this:

module Letters

using Random

export randstring

const MY_NAME = "Letters"

function rand()
 Random.rand('A':'Z')
end

function randstring()
 [rand() for _ in 1:10] |> join
end

include("module_name.jl")

end

Here, we have defined a module called Letters. In it, we added a rand function that uses
Julia's Random.rand to return a random letter between A and Z in the form of a Char. Next,
we added a function called Letters.randstring, which returns a String of 10 random
characters. This string is generated using a Char[] array comprehension (the _ variable
name is perfectly legal in Julia and, by convention, it designates a variable whose value is
not used) which is piped into the join function to return the string result.

Please note that this is an over complicated way to generate a random
string as Julia provides the Random.randstring function. But, at this
point, it's important to exploit every opportunity to practice writing code,
and I just didn't want to waste the chance of using Julia's comprehension
syntax and the pipe operator. Practice makes perfect!

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[280]

Switching our focus towards the first lines of code, we declared that we'll be using
Random—and we instructed the compiler to make randstring public via export
randstring. Finally, we have also declared a constant called MY_NAME, which points to the
Letters string (which is the name of the module itself).

The last line of the module, include("module_name.jl"), loads the contents of
module_name.jl into Letters. The include function is typically used to load source
code interactively, or to combine files in packages that are split into multiple source
files—and we'll see how this works soon.

Next, let's edit Number.jl. It will have a similar rand function that will return a random
Integer between 1 and 1_000. It exports halfrand, a function that gets a value from
rand and divides it by 2. We pass the result of the division to the floor function, which
will convert it to the closest less than or equal value. And, just like Letters, it also includes
module_name.jl:

module Numbers

using Random

export halfrand

const MY_NAME = "Numbers"

function rand()
 Random.rand(1:1_000)
end
function halfrand()
 floor(rand() / 2)
end

include("module_name.jl")
end

Thus, for both modules, we defined a MY_NAME constant. We'll reference it by editing the
module_name.jl file to make it look like this:

function myname()
 MY_NAME
end

The code returns the corresponding value of the constant, depending on the actual module
where we include the module_name.jl file. This illustrates Julia's mixin behavior, where
included code acts as if it was written directly into the including file. We'll see how this
works next.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[281]

Referencing modules
Despite the fact that we are only now formally discussing modules, we've been using them
all along. The using statement which we employed so many times takes as its parameter a
module name. It's a key language construct that tells the compiler to bring the module's
definitions into the current scope. Referencing functions, variables, and types defined in
other modules is a routine part of programming in Julia—accessing the functionality
provided by a third-party package, for example, revolves around bringing its main module
into scope via using. But, using is not the only tool in Julia's arsenal. We have a few more
commands at our disposal, such as import, include, and export.

The using directive allows us to reference functions, variables, types, and so on exported
by other modules. This tells Julia to make the module's exported definitions available in the
current workspace. If the definitions were exported by the module's author, we can invoke
them without having to prefix them with the module's name (prefixing the name of the
function with the module name represents the fully qualified name). But, be careful though
as this is a double-edged sword—if two used modules export functions with the same
name, the functions will still have to be accessed using the fully qualified name—otherwise
Julia will throw an exception as it won't know which of the functions we refer to.

As for import, it is somewhat similar, in that it also brings definitions from another
module into scope. But, it differs in two important aspects. First, calling import MyModule
would still require prefixing the definitions with the module's name, thereby avoiding
potential name clashes. Second, if we want to extend functions defined in other modules
with new methods, we have to use import.

On the other hand, include is conceptually different. It is used to evaluate the contents of
a file into the current context (that is, into the current module's global scope). It's a way to
reuse code by providing mixin-like behavior, as we have already seen.

The fact that the included file is evaluated in the module's global scope is a very important
point. It means that, even if we include a file within a function's body, the contents of the
file will not be evaluated within the function's scope, but within the module's scope. To see
this in action, let's create a file called testinclude.jl in our modules/ folder. Edit
testinclude.jl and append this line of code:

somevar = 10

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[282]

Now, if you run the following code in the REPL or in IJulia, you'll see what I mean:

julia> function testinclude()
 include("testinclude.jl")
 println(somevar)
 end

julia> testinclude()
10

Apparently, it all worked fine. The testinclude.jl file was included and the somevar
variable was defined. However, somevar was not created within the testinclude
function, but as a global variable in the Main module. We can see that easily, as we can
access the somevar variable directly:

julia> somevar
10

Keep this behavior in mind as it can lead to hard-to-understand bugs by exposing variables
in the global scope.

Finally, export is used by a module's author to expose definitions, much like a public
interface. As we've seen, exported functions and variables are brought into scope by the
module's users via using.

Setting up the LOAD_PATH
Let's look at some examples that illustrate scoping rules when working with modules.
Please open a new Julia REPL.

We've seen the using statement many times throughout the previous chapters, and now
we understand its role—to bring another module and its definitions (variables, functions,
types) into scope. Let's try it with our newly created modules:

julia> using Letters
ERROR: ArgumentError: Package Letters not found in current path:
- Run `Pkg.add("Letters")` to install the Letters package.

Ouch, an exception! Julia informs us that it doesn't know where to find the Letters
module and advises us to use Pkg.add("Letters") to install it. But, since Pkg.add only
works with registered packages and we haven't published our modules to Julia's registry,
that won't help. Turns out we just need to tell Julia where to find our code.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[283]

When asked to bring a module into scope via using, Julia checks a series of paths to look
up the corresponding files. These lookup paths are stored in a Vector called the
LOAD_PATH—and we can append our modules/ folder to this collection by using the push!
function:

julia> push!(LOAD_PATH, "modules/")
4-element Array{String,1}:
 "@"
 "@v#.#"
 "@stdlib"
 "modules/"

Your output might be different, but what matters is that after calling push!, the LOAD_PATH
collection now has an extra element indicating the path to the modules/ folder.

In order for Julia to match the name of a module with its corresponding file, the file must
have exactly the same name as the module, plus the .jl extension. It's OK for a file to include
more than one module, but Julia will not be able to automatically find the extra ones by
filename.

In regard to naming the modules themselves, the convention is to use CamelCase. Thus,
we'll end up with a module called Letters defined in a Letters.jl file, or with a
WebSockets module in a file named WebSockets.jl.

Loading modules with using
Now that we've added our folder to the LOAD_PATH, we're ready to use our modules:

julia> using Letters

At this point, two things have happened:

All the exported definitions are now directly callable in the REPL, in our case,
randstring

The definitions that were not exported are accessible by dotting
into Letters—for example, Letters.rand()

Let's try it:

julia> randstring() # has been exported and is directly accessible
"TCNXFLUOUU"

julia> myname() # has not been exported so it's not available in the
REPLERROR: UndefVarError: myname not defined

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[284]

julia> Letters.myname() # but we can access it under the Letters namespace
"Letters"

julia> Letters.rand() # does not conflict with Base.rand
'L': ASCII/Unicode U+004c (category Lu: Letter, uppercase)

We can see what a module exports with the names function:

julia> names(Letters)
2-element Array{Symbol,1}:
 :Letters
 :randstring

If we want to get all the definitions of a module, exported or not, names takes a second
parameter, all, a Boolean:

julia> names(Letters, all = true)
11-element Array{Symbol,1}:
 # output truncated
 :Letters
 :MY_NAME
 :eval
 :myname
 :rand
 :randstring

We can easily recognize the variables and functions we defined.

As we can see, for instance, myname was not brought directly into scope, since it wasn't
exported in Letters. But, it turns out that we can still get the exported-like behavior if we
explicitly tell Julia to use the function:

julia> using Letters: myname
julia> myname() # we no longer need to "dot into" Letters.myname()
"Letters"

If we want to bring multiple definitions from the same module directly into scope, we can
pass a comma-separated list of names:

julia> using Letters: myname, MY_NAME

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[285]

Loading modules with import
Now, let's look at the effects of the import function, using Numbers:

julia> import Numbers
julia> names(Numbers)
2-element Array{Symbol,1}:
 :Numbers
 :halfrand
julia> halfrand()
ERROR: UndefVarError: halfrand not defined

We can see here that, unlike using, the import function does not bring into scope the
exported definitions.

However, explicitly importing a definition itself will bring it directly into scope,
disregarding whether it was exported or not:

julia> import Numbers.halfrand, Numbers.MY_NAME

This snippet is equivalent to the following:

julia> import Numbers: halfrand, MY_NAME

julia> halfrand()
271.0

Loading modules with include
Manipulating the LOAD_PATH works great when developing standalone apps, like the one
we're working on now. However, this approach is not available for a package developer.
For such instances—and for all the cases when for one reason or another using the
LOAD_PATH is not an option—a common way of loading modules is by including their files.

For example, we can include our Letters module at the REPL, as follows (start a new
REPL session):

julia> include("modules/Letters.jl")
Main.Letters

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[286]

This will read and evaluate the contents of the modules/Letters.jl file in the current
scope. And as a result, it will define the Letters module within our current module, Main.
But, this is not enough—at this point, none of the definitions within Letters were
exported:

julia> randstring()
ERROR: UndefVarError: randstring not defined

We need to bring them into scope:

julia> using Letters
ERROR: ArgumentError: Package Letters not found in current path:
- Run `Pkg.add("Letters")` to install the Letters package.

Not again! What just happened? This is an important distinction when using include with
modules. The Letters module, like we just said, is included in the current module, Main,
so we need to reference it accordingly:

julia> using Main.Letters

julia> randstring()
"QUPCDZKSAH"

We can also reference this kind of nested module hierarchy by using relative paths. For
example, a dot, ., stands for current module. So, the previous Main.Letters nesting can be
expressed as .Letters— it's exactly the same thing:

julia> using .Letters

Similarly, we could use two dots, .., to reference the parent module, three dots for the
parent of the parent, and so on.

Nesting modules
As we've just seen, sometimes, the logic of our program will dictate that a module has to be
part of another module, effectively nesting them. This is used with predilection when
developing our own packages. The best way to organize a package is to expose a top
module and include all the other definitions (functions, variables, and other modules)
within it (to encapsulate the functionality). An example should help clarify things.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[287]

Let's make a change—in the Letters.jl file, under the line saying
include("module_name.jl"), go ahead and add another
line—include("Numbers.jl").

With this change, the Numbers module will effectively be defined within the Letters
module. In order to access the functions of the nested module, we dot into as deep as
necessary:

julia> using .Letters

julia> Letters.Numbers.halfrand()
432.5

Setting up our game's architecture
Let's create a home for our game—make a new folder called sixdegrees/. We'll use it to
organize our game's files. Each file will contain a module and each module will package
related functionality. We'll make use of Julia's auto-loading features, which means that the
filename of each module will be the same as the module's name, plus the .jl extension.

The first thing we need to do, though, once we go into the sixdegrees/ folder, is to
initialize our project through Pkg—so we can use Julia's dependency management features:

julia> mkdir("sixdegrees")
"sixdegrees"

julia> cd("sixdegrees/")

julia>] # go into pkg mode

(v1.0) pkg> activate .

(sixdegrees) pkg>

We'll be using the HTTP and the Gumbo packages, so it's a good idea to add them, now that
we're dealing with dependencies:

(sixdegrees) pkg> add HTTP Gumbo

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[288]

The next thing we need is a container for Wikipedia-related code—a module that
encapsulates the functionality for requesting an article and extracting the internal URLs.
We already have a first iteration of the code in the webcrawler.jl file we wrote in
Chapter 12, Setting Up the Wiki Game. Now, all we need to do is create a Wikipedia
module and fill it up with the contents of webcrawler.jl.

Within the sixdegrees folder, create a new file called Wikipedia.jl. Set it up with the
following code:

module Wikipedia
using HTTP, Gumbo

const RANDOM_PAGE_URL = "https://en.m.wikipedia.org/wiki/Special:Random"

export fetchrandom, fetchpage, articlelinks

function fetchpage(url)
 response = HTTP.get(url)
 if response.status == 200 && length(response.body) > 0
 String(response.body)
 else
 ""
 end
end

function extractlinks(elem, links = String[])
 if isa(elem, HTMLElement) && tag(elem) == :a && in("href",
collect(keys(attrs(elem))))
 url = getattr(elem, "href")
 startswith(url, "/wiki/") && ! occursin(":", url) && push!(links,
url)
 end
 for child in children(elem)
 extractlinks(child, links)
 end
 unique(links)
end

function fetchrandom()
 fetchpage(RANDOM_PAGE_URL)
end

function articlelinks(content)
 if ! isempty(content)
 dom = Gumbo.parsehtml(content)

 links = extractlinks(dom.root)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[289]

 end
end

end

The preceding code should look familiar as it shares much of its logic with
webcrawler.jl. But, there are some important changes.

First of all, we wrapped everything into a module declaration.

Please note a very important convention: in Julia, we do not indent the
code within modules as this would cause the whole file to be indented,
which would affect readability.

On the third line, where we used to have the link to Julia's Wikipedia entry, we now define
a String constant, RANDOM_PAGE_URL, which points to a special Wikipedia URL that
returns a random article. Also, we switched to the mobile version of the Wikipedia website,
as indicated by the en.m. subdomains. Using the mobile pages will make our lives easier
as they are simpler and have less markup.

In the fetchpage function, we're no longer looking for the Content-Length header and
we're instead checking the length of the response.body property. We're doing this
because requesting the special random Wikipedia page performs a redirect and, in the
process, the Content-Length header is dropped.

We have also replaced some of the logic at the bottom of the file. Instead of automatically
fetching Julia's Wikipedia page and dumping the list of internal links onto the screen, we
now define two more functions: fetchrandom and articlelinks. These functions will be
the public interface of the Wikipedia module, and they are exposed using the export
statement. The fetchrandom function does exactly what the name says—it calls the
fetchpage function passing in the RANDOM_PAGE_URL const, effectively fetching a random
Wikipedia page. articlelinks returns an array of strings representing the linked articles.

Finally, we removed the LINKS constant—global variables should be avoided. The
extractlinks function has been refactored accordingly, now accepting a second
parameter, links, a Vector of String, which is used to maintain state during recursion.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[290]

Checking our code
Let's make sure that, after this refactoring, our code still works as expected, by manually
running the code and inspecting the output.

We'll add a new file inside the sixdegrees/ folder, called six_degrees.jl. Looking at
its name, you can guess that it will be a plain Julia file and not a module. We'll use it to
orchestrate the loading of our game:

using Pkg
pkg"activate ."

include("Wikipedia.jl")
using .Wikipedia

fetchrandom() |> articlelinks |> display

The code is straightforward and minimalistic—we use Pkg to activate the current project.
Then, we include the Wikipedia.jl file in the current module, and then we ask the
compiler to bring the Wikipedia module into scope. Finally, we use the previously
discussed fetchrandom and articlelinks to retrieve the list of articles URLs from a
random Wikipedia page and display it.

Time to run our code! In the REPL, make sure that you cd into the sixdegrees folder and
execute:

julia> include("six_degrees.jl")
21-element Array{String,1}:
 "/wiki/Main_Page"
 "/wiki/Arena"
 "/wiki/Saskatoon,_Saskatchewan"
 "/wiki/South_Saskatchewan_River"
 "/wiki/New_York_Rangers"
... output omitted ...

Since we're pulling a random Wikipedia article each time we run our code, your output will
be different than in this snippet. The important thing is that you get a non-empty
Array{String,1} with entries that start with /wiki/.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[291]

Alternatively, you can use the run code or run file option in Visual Studio Code and Atom.
Here's Atom running the six_degrees.jl file:

Building our Wikipedia crawler - take two
Our code runs as expected, refactored and neatly packed into a module. However, there's
one more thing I'd like us to refactor before moving on. I'm not especially fond of our
extractlinks function.

First of all, it naively iterates over all the HTML elements. For example, say that we also
want to extract the title of the page—every time we want to process something that's not a
link, we'll have to iterate over the whole document again. That's going to be resource-
hungry and slow to run.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[292]

Secondly, we're reinventing the wheel. In Chapter 12, Setting Up the Wiki Game, we said
that CSS selectors are the lingua franca of DOM parsing. We'd benefit massively from using
the concise syntax of CSS selectors with the underlying optimizations provided by
specialized libraries.

Fortunately, we don't need to look too far for this kind of functionality. Julia's Pkg system
provides access to Cascadia, a native CSS selector library. And, the great thing about it is
that it works hand in hand with Gumbo.

In order to use Cascadia, we need to add it to our project's list of dependencies:

(sixdegrees) pkg> add Cascadia

Next, tell Julia we'll be using it—modify Wikipedia.jl so that the third line reads as
follows:

using HTTP, Gumbo, Cascadia

With the help of Cascadia, we can now refactor the extractlinks function, as follows:

function extractlinks(elem)
 map(eachmatch(Selector("a[href^='/wiki/']:not(a[href*=':'])"), elem)) do
e
 e.attributes["href"]
 end |> unique
end

Let's take a closer look at all that happens here. The first thing that stands out is the
Selector function. This is provided by Cascadia and constructs a new CSS selector
object. The string that is passed to it as its only parameter is a CSS selector that reads as—all
<a> elements that have a href attribute whose value starts with '/wiki/' and does not
contain a column (:).

Cascadia also exports the eachmatch method. More accurately, it extends the existing
Base.eachmatch method that we've seen previously with regular expressions. This
provides a familiar interface—and we'll see how to extend methods later in this chapter, in
the Methods section. The Cascadia.eachmatch function returns a Vector of elements that
match the selector.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[293]

Once we retrieve the collection of matched elements, we pass it to the map function. The
map function is one of the most used tools in the functional programming toolbox. It takes
as its arguments a function, f, and a collection, c—and it transforms the collection, c, by
applying f to each element, returning the modified collection as the result. Its definition is
as follows:

map(f, c...) -> collection

So then, what's with the strange-looking do e ... end part in the previous snippet? That
doesn't look like invoking the previous map function, it's true. But it is, in fact, the exact
same function invocation, except with a more readable syntax, provided by Julia's blocks.

Using blocks
Because, in Julia, functions are first-class language constructs, they can be referenced and
manipulated like any other type of variable. They can be passed as arguments to other
functions or can be returned as the result of other function calls. The functions that take
another function as their argument or return another function as their result are called
higher-order functions.

Let's look at a simple example using map. We'll take a Vector of Int, and we'll apply to
each element of its collection a function that doubles the value. You can follow along in a
new REPL session (or in the accompanying IJulia notebook):

julia> double(x) = x*2
double (generic function with 1 method)

julia> map(double, [1, 2, 3, 5, 8, 13])
6-element Array{Int64,1}:
 2
 4
 6
 10
 16
 26

In this snippet, you can see how we passed the reference to the double function as the
argument of the higher-order function map. As a result, we got back the Vector, which was
passed as the second argument, but with all the elements doubled.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[294]

That's all good, but having to define a function just to use it as a one-off argument for
another function is inconvenient and a bit wasteful. For this reason, the programming
languages that support functional features, including Julia, usually support anonymous
functions. An anonymous function, or a lambda, is a function definition that is not bound to
an identifier.

We can rewrite the preceding map invocation to use an anonymous function, which is
defined on the spot by using the arrow -> syntax:

julia> map(x -> x*2, [1, 2, 3, 5, 8, 13])
6-element Array{Int64,1}:
 2
 4
 6
 10
 16
 26

In the definition, x -> x*2, the x at the left of the arrow represents the argument that is
passed into the function, while x*2 represents the body of the function.

Great! We have achieved the same end result without having to separately define double.
But, what if we need to use a more complex function? For instance, note the following:

julia> map(x ->
 if x % 2 == 0
 x * 2
 elseif x % 3 == 0
 x * 3
 elseif x % 5 == 0
 x * 5
 else
 x
 end,
 [1, 2, 3, 5, 8, 13])

That's pretty hard to follow! Because Julia allows us to indent our code, we can enhance the
readability of this example to make it more palatable, but the result is still far from great.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[295]

Because these situations occur often, Julia provides the block syntax for defining
anonymous functions. All the functions that take another function as their first argument
can be used with the block syntax. Support for this kind of invocation is baked into the
language, so you don't need to do anything—your functions will support it as well, out of
the box, as long as the function is the first positional argument. In order to use it, we skip
passing in the first argument when invoking the higher-order function—and instead, at the
end of the arguments list, outside of the arguments tuple, we add a do...end block.
Within this block, we define our lambda.

So, we can rewrite the previous example as follows:

map([1, 2, 3, 5, 8, 13]) do x
 if x % 2 == 0
 x * 2
 elseif x % 3 == 0
 x * 3
 elseif x % 5 == 0
 x * 5
 else
 x
 end
 end

Much more readable!

Implementing the gameplay
Our Wikipedia parser is pretty robust now, and the addition of Cascadia greatly simplifies
the code. It's time to think about the actual gameplay.

The most important thing, the core of the game, is to create the riddle—asking the player to
find a path from the initial article to the end article. We previously decided that in order to
be sure that a path between two articles really exists, we will pre-crawl all the pages, from
the first to the last. In order to navigate from one page to the next, we'll simply randomly
pick one of the internal URLs.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[296]

We also mentioned including difficulty settings. We will use the common-sense assumption
that the more links there are between the start article and the end article, the less related
their subjects will be; and thus, the more difficult to identify the path between them,
resulting in a more challenging level.

All right, time to get coding! For starters, create a new file inside the sixdegrees/ folder.
Name it Gameplay.jl and copy and paste the following:

module Gameplay

using ..Wikipedia

export newgame

const DIFFICULTY_EASY = 2
const DIFFICULTY_MEDIUM = 4
const DIFFICULTY_HARD = 6

function newgame(difficulty = DIFFICULTY_HARD)
 articles = []

 for i in 1:difficulty
 article = if i == 1
 fetchrandom()
 else
 rand(articles[i-1][:links]) |> Wikipedia.fetchpage
 end

article_data = Dict(:content => article,
 :links => articlelinks(article))
 push!(articles, article_data)
 end

 articles
end

end

Gamplay.jl defines a new module and brings Wikipedia into scope. Here, you can see
how we reference the Wikipedia module in the parent scope by using ... It then defines
three constants that map the difficulty settings to degrees of separation (named
DIFFICULTY_EASY, DIFFICULTY_MEDIUM, and DIFFICULTY_HARD).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[297]

It then defines a function, newgame, which accepts a difficulty argument, by default set to
hard. In the body of the function, we loop for a number of times equal to the difficulty
value. On each iteration, we check the current degree of separation—if it's the first article,
we call fetchrandom to start off the crawling process. If it's not the first article, we pick a
random link from the list of links of the previously crawled article
(rand(articles[i-1][:links])). We then pass this URL to fetchpage. When
discussing conditionals, we learned that in Julia if/else statements return the value of the
last-evaluated expression. We can see it put to good use here, with the result of the
evaluation being stored in the article variable.

Once we've fetched the article, we store its content and its links within a Dict called
article_data. And, article_data is in turn added to the articles array. On its last
line, the newgame function returns the articles vector that now contains all the steps,
from first to last. This function is also exported.

That wasn't too hard! But, there's a small glitch. If you try to run the code now, it will fail.
The reason is that the article links are relative. This means that they are not fully qualified
URLs; they look like /wiki/Some_Article_Title. When HTTP.jl makes a request, it
needs the full link, protocol, and domain name included. But don't worry, that's easy to fix
in Wikipedia.jl. Please switch your editor to the Wikipedia module and replace the
const RANDOM_PAGE_URL line with the following three lines:

const PROTOCOL = "https://"
const DOMAIN_NAME = "en.m.wikipedia.org"
const RANDOM_PAGE_URL = PROTOCOL * DOMAIN_NAME * "/wiki/Special:Random"

We broke the random page URL into its components—the protocol, the domain name, and
the rest of the relative path.

We'll use a similar approach to turn relative URLs into absolute URLs when fetching
articles. For this, change the body of fetchpage and add this as its first line of code:

url = startswith(url, "/") ? PROTOCOL * DOMAIN_NAME * url : url

Here, we check the url argument—if it starts with "/", it means it's a relative URL so we
need to turn it into its absolute counterpart. We used the ternary operator, as you can tell.

Our code should work just fine now, but spreading this PROTOCOL * DOMAIN_NAME *
url throughout our game is a bit of a code smell. Let's abstract this away into a function:

function buildurl(article_url)
 PROTOCOL * DOMAIN_NAME * article_url
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[298]

A code smell in programming parlance refers to a practice that violates
fundamental design principles and negatively impacts quality. It is not a
bug per se, but indicates weakness in design that may increase the risk of
bugs or failures in the future.

The Wikipedia.jl file should now look like this:

module Wikipedia

using HTTP, Gumbo, Cascadia

const PROTOCOL = "https://"
const DOMAIN_NAME = "en.m.wikipedia.org"
const RANDOM_PAGE_URL = PROTOCOL * DOMAIN_NAME * "/wiki/Special:Random"

export fetchrandom, fetchpage, articlelinks

function fetchpage(url)
 url = startswith(url, "/") ? buildurl(url) : url
 response = HTTP.get(url)

 if response.status == 200 && length(response.body) > 0
 String(response.body)
 else
 ""
 end
end

function extractlinks(elem)
 map(eachmatch(Selector("a[href^='/wiki/']:not(a[href*=':'])"), elem)) do
e
 e.attributes["href"]
 end |> unique
end

function fetchrandom()
 fetchpage(RANDOM_PAGE_URL)
end

function articlelinks(content)
 if ! isempty(content)
 dom = Gumbo.parsehtml(content)
 links = extractlinks(dom.root)
 end
end

function buildurl(article_url)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[299]

 PROTOCOL * DOMAIN_NAME * article_url
end

end

Finishing touches
Our gameplay evolves nicely. Only a few pieces left. Thinking about our game's UI, we'll
want to show the game's progression, indicating the articles the player has navigated
through. For this, we'll need the titles of the articles. If we could also include an image, that
would make our game much prettier.

Fortunately, we are now using CSS selectors, so extracting the missing data should be a
piece of cake. All we need to do is add the following to the Wikipedia module:

import Cascadia: matchFirst

function extracttitle(elem)
 matchFirst(Selector("#section_0"), elem) |> nodeText
end

function extractimage(elem)
 e = matchFirst(Selector(".content a.image img"), elem)
 isa(e, Void) ? "" : e.attributes["src"]
end

The extracttitle and extractimage functions will retrieve the corresponding content
from our article pages. In both cases, since we only want to select a single element, the main
page heading and the first image respectively, we use Cascadia.matchFirst. The
matchFirst function is not publicly exposed by Cascadia—but since it's quite useful, we
import it.

The #section_0 selector identifies the main page heading, a <h1> element. And, because
we need to extract the text between its <h1>...</h1> tags, we invoke the nodeText
method provided by Cascadia.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[300]

You can see in the following screenshot, which shows the main heading of a Wikipedia
page in Safari's inspector, how to identify the desired HTML elements and how to pick
their CSS selectors by inspecting the source of the page and the corresponding DOM
element. The HTML property, id="section_0", corresponds to the #section_0 CSS
selector:

As for extractimage, we look for the main article image, represented by the ".content
a.image img" selector. Since not all the pages have it, we check if we do indeed get a valid
element. If the page does not have an image, we'll get an instance of Nothing, called
nothing. This is an important construct—nothing is the singleton instance of Nothing,
indicating the absence of an object, corresponding to NULL in other languages. If we do get
an img element, we extract the value of its src attribute, which is the URL of the image.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[301]

Here is another Wikipedia screenshot, in which I marked the image element that we're
targeting. The flag is the first image on Wikipedia's Australia page—a perfect match:

Next, we could extend the Gameplay.newgame function, to handle the new functions and
values. But by now, this doesn't feel right—too much of the logic of Wikipedia would leak
into the Gameplay module, coupling them; a dangerous anti-pattern. Instead, let's make the
extraction of the data and setting up of the article, Dict, the full responsibility of
Wikipedia, completely encapsulating the logic. Make the Gameplay.newgame function
looks as shown in the following code:

function newgame(difficulty = DIFFICULTY_HARD)
 articles = []
 for i in 1:difficulty
 article = if i == 1
 fetchrandom()
 else
 rand(articles[i-1][:links]) |> Wikipedia.fetchpage
 end
 push!(articles, articleinfo(article))
 end

 articles
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[302]

Then, update the Wikipedia module to read as follows:

module Wikipedia

using HTTP, Gumbo, Cascadia
import Cascadia: matchFirst

const PROTOCOL = "https://"
const DOMAIN_NAME = "en.m.wikipedia.org"
const RANDOM_PAGE_URL = PROTOCOL * DOMAIN_NAME * "/wiki/Special:Random"

export fetchrandom, fetchpage, articleinfo

function fetchpage(url)
 url = startswith(url, "/") ? buildurl(url) : url

 response = HTTP.get(url)

 if response.status == 200 && length(response.body) > 0
 String(response.body)
 else
 ""
 end
end

function extractlinks(elem)
 map(eachmatch(Selector("a[href^='/wiki/']:not(a[href*=':'])"), elem)) do
e
 e.attributes["href"]
 end |> unique
end

function extracttitle(elem)
 matchFirst(Selector("#section_0"), elem) |> nodeText
end

function extractimage(elem)
 e = matchFirst(Selector(".content a.image img"), elem)
 isa(e, Nothing) ? "" : e.attributes["src"]
end

function fetchrandom()
 fetchpage(RANDOM_PAGE_URL)
end

function articledom(content)
 if ! isempty(content)
 return Gumbo.parsehtml(content)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[303]

 end

 error("Article content can not be parsed into DOM")
end

function articleinfo(content)
 dom = articledom(content)

 Dict(:content => content,
 :links => extractlinks(dom.root),
 :title => extracttitle(dom.root),
 :image => extractimage(dom.root)
)
end

function buildurl(article_url)
 PROTOCOL * DOMAIN_NAME * article_url
end

end

The file has a few important changes. We've removed the articlelinks function and
instead added articleinfo and articledom. The new articledom function parses the
HTML using Gumbo and generates the DOM, which, very importantly, is only parsed once.
We don't want to parse the HTML into a DOM every time we extract a type of element, as
would've been the case if we kept the previous articlelinks function. As for
articleinfo, it is responsible for setting up an article, Dict, with all the relevant
information—content, links, title, and image.

We can do a test run of our code, by modifying the six_degrees.jl file, as follows:

using Pkg
pkg"activate ."

include("Wikipedia.jl")
include("Gameplay.jl")

using .Wikipedia, .Gameplay

for article in newgame(Gameplay.DIFFICULTY_EASY)
 println(article[:title])
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[304]

We start a new game, which goes through two articles (Gameplay.DIFFICULTY_EASY) and
for each article we display its title. We can see it in action by either running it in a REPL
session via julia> include("six_degrees.jl"), or by simply running the file in
Visual Studio Code or Atom. Here it is in the REPL:

julia> include("six_degrees.jl")
Miracle Bell
Indie pop

One more thing
Our test run shows that our difficulty settings have a small glitch. We should crawl a
certain number of articles after the starting point. Our initial article should not count. This is
super easy to fix. In Gameplay.newgame, we need to replace for i in 1:difficulty
with for i in 1:difficulty+1 (note the +1 at the end). Now, if we try again, it works
as intended:

julia> include("six_degrees.jl")
John O'Brien (Australian politician)
Harlaxton, Queensland
Ballard, Queensland

Learning about Julia's type system
Our game works like a charm, but there is one thing we can improve—storing our article
info as a Dict. Julia's dictionaries are very flexible and powerful, but they are not a good fit
in every case. The Dict is a generic data structure that is optimized for search, delete, and
insert operations. None of these are needed here—our articles have a fixed structure and
contain data that doesn't change once created. It's a perfect use case for objects and object-
oriented programming (OOP). Looks like it's time we revisit types.

Julia's type system is the bread and butter of the language—it is all-pervasive, defining the
language's syntax and being the driving force behind Julia's performance and flexibility.
Julia's type system is dynamic, meaning that nothing is known about types until runtime,
when the actual values manipulated by the program are available. However, we can benefit
from the advantages of static typing by using type annotations—indicating that certain
values are of specific types. This can greatly improve the performance of the code and also
enhance readability and simplify debugging.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[305]

It's impossible to talk about Julia and not talk about types. And sure enough, we've seen
many primitive types so far—Integer, Float64, Boolean, Char, and so on. We've also
been exposed to types while learning about the various data structures, such as Array,
Dict, or tuple. These are all built into the language, but it turns out that Julia makes it very
easy to create our own.

Defining our own types
Julia supports two categories of type—primitive and composite. A primitive type is a
concrete type whose data consists of plain old bits. A composite type is a collection of
named fields, an instance of which can be treated as a single value. In many languages,
composite types are the only kind of user-definable type, but Julia lets us declare our own
primitive types as well, rather than providing only a fixed set of built-in ones.

We won't talk about defining primitive types here, but you can read more
about them in the official documentation at
https://docs.julialang.org/en/v1/manual/types/.

In order to represent our articles, we're best served by an immutable composite type. Once
our article object is created, its data won't change. Immutable composite types are
introduced by the struct keyword followed by a block of field names:

struct Article
 content
 links
 title
 image
end

Since we provide no type information for the fields—that is, we don't tell Julia what type
we want each field to be—they will default to any, allowing to hold any type of value. But,
since we already know what data we want to store, we would greatly benefit from
constraining the type of each field. The :: operator can be used to attach type annotations
to expressions and variables. It can be read as is an instance of. Thus, we define the Article
type as follows:

struct Article
 content::String
 links::Vector{String}
 title::String
 image::String
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.julialang.org/en/v1/manual/types/

Building the Wiki Game Web Crawler Chapter 13

[306]

All the fields are of String type, with the exception of links, which is a one-dimensional
Array of String, also called a Vector{String}.

Type annotations can provide important performance benefits—while also eliminating a
whole class of type-related bugs.

Constructing types
New objects of Article type are created by applying the Article type name like a
function. The arguments are the values for its fields:

julia> julia = Article(
 "Julia is a high-level dynamic programming language",
 ["/wiki/Jeff_Bezanson", "/wiki/Stefan_Karpinski",
 "/wiki/Viral_B._Shah", "/wiki/Alan_Edelman"],
 "Julia (programming language)",
 "/220px-Julia_prog_language.svg.png"
)
Article("Julia is a high-level dynamic programming language",
["/wiki/Jeff_Bezanson", "/wiki/Stefan_Karpinski", "/wiki/Viral_B._Shah",
"/wiki/Alan_Edelman"], "Julia (programming language)", "/220px-
Julia_prog_language.svg.png")

The fields of the newly created object can be accessed using the standard dot notation:

julia> julia.title
"Julia (programming language)"

Because we declared our type to be immutable, the values are read-only, so they can't be
changed:

julia> julia.title = "The best programming language, period"
ERROR: type Article is immutable

Our Article type definition won't allow us to change the julia.title property. But,
immutability should not be dismissed as it does come with considerable advantages, per
the official Julia documentation:

It can be more efficient. Some structs can be packed efficiently into arrays, and in
some cases, the compiler is able to avoid allocating immutable objects entirely.
It is not possible to violate the invariants provided by the type's constructors.
Code using immutable objects can be easier to reason about.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[307]

But, that's not the whole story. An immutable object can have fields that reference mutable
objects, such as, for instance, links, which points to an Array{String, 1}. This array is
still mutable:

julia> push!(julia.links, "/wiki/Multiple_dispatch")
5-element Array{String,1}:
 "/wiki/Jeff_Bezanson"
 "/wiki/Stefan_Karpinski"
 "/wiki/Viral_B._Shah"
 "/wiki/Alan_Edelman"
 "/wiki/Multiple_dispatch"

We can see that there is no error when trying to alter the links property, by pushing one
more URL to the underlying collection. If a property points to a mutable type, that type can
be mutated, as long as its type stays the same:

julia> julia.links = [1, 2, 3]
MethodError: Cannot `convert` an object of type Int64 to an object of type
String

We are not allowed to change the type of the links field—Julia tries to accommodate and
attempts to convert the values we provided from Int to String, but fails.

Mutable composite types
It is also possible (and equally easy) to construct mutable composite types. The only thing
we need to do is to use the mutable struct statement, instead of just struct:

julia> mutable struct Player
 username::String
 score::Int
 end

Our Player object should be mutable, as we'll need to update the score property after
each game:

julia> me = Player("adrian", 0)
Player("adrian", 0)

julia> me.score += 10
10

julia> me
Player("adrian", 10)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[308]

Type hierarchy and inheritance
Like all programming languages that implement OOP features, Julia allows developers to
define rich and expressive type hierarchies. However, unlike most OOP languages, there is
a very important difference—only the final (upper) type in the hierarchy can be instantiated in
Julia. All its parents are just nodes in the type graph, and we can't create instances of them.
They are abstract types and are defined using the abstract type keywords:

julia> abstract type Person end

We can use the <: operator to indicate that a type is a subtype of an existing parent:

julia> abstract type Mammal end
julia> abstract type Person <: Mammal end
julia> mutable struct Player <: Person
 username::String
 score::Int
 end

Or, in another example, this is Julia's numerical types hierarchy:

abstract type Number end
abstract type Real <: Number end
abstract type AbstractFloat <: Real end
abstract type Integer <: Real end
abstract type Signed <: Integer end
abstract type Unsigned <: Integer end

The fact that super-types can't be instantiated can seem limiting, but they have a very
powerful role. We can define functions that take a super-type as their argument, in effect
accepting all its subtypes:

julia> struct User <: Person
 username::String
 password::String
 end

julia> sam = User("sam", "password")
User("sam", "password")

julia> function getusername(p::Person)
 p.username
 end

julia> getusername(me)
"adrian"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[309]

julia> getusername(sam)
"sam"

julia> getusername(julia)
ERROR: MethodError: no method matching getusername(::Article)
Closest candidates are:
 getusername(::Person) at REPL[25]:2

Here, we can see how we defined a getusername function, which accepts an argument of
(abstract) type, Person. As both User and Player are subtypes of Person, their instances
are accepted as arguments.

Type unions
Sometimes, we might want to allow a function to accept a set of types that are not
necessarily part of the same type hierarchy. We could, of course, allow the function to
accept any type, but depending on the use case, it could be desirable to strictly limit the
arguments to a well-defined subset of types. For such cases, Julia provides type unions.

A type union is a special abstract type that includes as objects all instances of any of its
argument types, constructed using the special Union function:

julia> GameEntity = Union{Person,Article}
Union{Article, Person}

Here, we have defined a new type union, GameEntity, which includes two types—Person

and Article. Now, we can define functions that know how to handle GameEntities:

julia> function entityname(e::GameEntity)
 isa(e, Person) ? e.username : e.title
 end
entityname (generic function with 1 method)

julia> entityname(julia)
"Julia (programming language)"

julia> entityname(me)
"adrian"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[310]

Using article types
We can refactor our code to eliminate the generic Dict data structure and represent our
articles with specialized Article composite types.

Let's create a new file in our sixdegrees/ work folder, and name it Articles.jl. Edit
the file by typing in the corresponding module declaration. Then, add the definition of our
type and export it:

module Articles

export Article

struct Article
 content::String
 links::Vector{String}
 title::String
 image::String
end

end

We could've added the Article type definition to the Wikipedia.jl file, but chances are
this will grow and it's better to keep them separated instead.

Another thing to note is that both the module and the type are Julia entities that are loaded
in the same scope. For this reason, we can't use the name Article for both the module and
the type—we'd end up with a name clash. However, the pluralized name Articles is a
good name for the module, since it will encapsulate the logic for dealing with articles in
general, while the Article type represents an article entity—hence the singular form.

However, since conceptually an Article object references a Wikipedia page, it should be
part of the Wikipedia namespace. That's easy, we just need to include it into the
Wikipedia module. Add this after the import Cascadia: matchFirst line:

include("Articles.jl")
using .Articles

We're including the Articles module file and bringing it into scope.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[311]

Next, in the same Wikipedia.jl file, we need to modify the articleinfo function.
Please make sure it reads as follows:

function articleinfo(content)
 dom = articledom(content)
 Article(content,
 extractlinks(dom.root),
 extracttitle(dom.root),
 extractimage(dom.root))
end

Instead of creating a generic Dict object, we're now instantiating an instance of Article.

We also need to make a few changes to Gameplay.jl to use the Article types instead of
Dict. It should now look like this:

module Gameplay

using ..Wikipedia, ..Wikipedia.Articles

export newgame

const DIFFICULTY_EASY = 2
const DIFFICULTY_MEDIUM = 4
const DIFFICULTY_HARD = 6

function newgame(difficulty = DIFFICULTY_HARD)
 articles = Article[]
 for i in 1:difficulty+1
 article = if i == 1
 fetchrandom()
 else
 rand(articles[i-1].links) |> fetchpage
 end
 push!(articles, articleinfo(article))
 end

 articles
end

end

Note that on the third line we bring Wikipedia.Articles into scope. Then, in the
newgame function, we initiate the articles array to be of Vector{Article} type. And
then, we update the code in the for loop to deal with Article
objects—rand(articles[i-1].links).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[312]

The last change is in six_degrees.jl. Since newgame now returns a vector of Article
objects instead of a Dict, we print the title by accessing the title field:

using Pkg
pkg"activate ."

include("Wikipedia.jl")
include("Gameplay.jl")

using .Wikipedia, .Gameplay

articles = newgame(Gameplay.DIFFICULTY_EASY)

for article in articles
 println(article.title)
end

A new test run should confirm that all works as expected (your output will be different
since, remember, we're pulling random articles):

julia> include("six_degrees.jl")
Sonpur Bazari
Bengali language
Diacritic

Inner constructors
The external constructor (where we invoke the type as a function) is a default constructor
where we provide the values for all the fields, in the right order—and get back an instance
of the corresponding type. But, what if we want to provide additional constructors, that
maybe impose certain constraints, perform validations, or are simply more user-friendly?
For this purpose, Julia provides internal constructors. I've got a good use case for them.

I'm not especially fond of our Article constructor—it takes too many arguments that need
to be passed in the exact right order. It's hard to remember how to instantiate it. We've
learned earlier about keyword arguments—and it would be awesome to provide an
alternative constructor that takes keyword arguments. Inner constructors are what we
need.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[313]

Inner constructors are very much like the outer constructors, but with two major
differences:

They are declared inside the block of a type declaration, rather than outside of it
like normal methods.
They have access to a special locally existent function called new that creates
objects of the same type.

On the other hand, external constructors have a clear limitation (by design)—we can create
as many as we want, but they can only instantiate objects by invoking the existing internal
constructors (they do not have access to the new function). This way, if we define internal
constructors that implement some business logic constraints, Julia guarantees that the external
constructors cannot go around them.

Our inner constructor with keyword arguments will look like this:

Article(; content = "", links = String[], title = "", image = "") =
new(content, links, title, image)

Note the use of ;, which separates the empty list of positional arguments from the list of
keyword arguments.

This constructor allows us to instantiate Article objects using keyword arguments, which
we can provide in any order:

julia = Article(
 title = "Julia (programming language)",
 content = "Julia is a high-level dynamic programming language",
 links = ["/wiki/Jeff_Bezanson", "/wiki/Stefan_Karpinski",
 "/wiki/Viral_B._Shah", "/wiki/Alan_Edelman"],
 image = "/220px-Julia_prog_language.svg.png"
)

However, there's a small problem. When we don't provide any internal constructor, Julia
provides the default one. But, if any inner constructor is defined, no default constructor
method is provided anymore—it is presumed that we have supplied ourselves all the
necessary inner constructors. In this case, if we want to get back the default constructor
with the positional arguments, we'll have to also define it ourselves as an internal one:

Article(content, links, title, image) = new(content, links, title, image)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[314]

The final version of the Articles.jl file should now be the following, with the two
internal constructors:

module Articles

export Article

struct Article
 content::String
 links::Vector{String}
 title::String
 image::String

 Article(; content = "", links = String[], title = "", image = "") =
new(content, links, title, image)
 Article(content, links, title, image) = new(content, links, title, image)
end

end

It is worth pointing out that, in this case, our keyword constructor
could've been equally added as an external constructor and defined
outside the struct...end body. What kind of constructor you use is an
architectural decision that has to be taken on a case-by-case basis, taking
into account the differences between the internal and the external
constructors.

Methods
If you come from an OOP background, you may have noticed a very interesting aspect
throughout our discussion of types. Unlike other languages, objects in Julia do not define
behavior. That is, Julia's types only define fields (properties) but do not encapsulate
functions.

The reason is Julia's implementation of multiple dispatch, a distinctive feature of the
language.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[315]

Multiple dispatch is explained in the official documentation as follows:

"The choice of which method to execute when a function is applied is called dispatch. Julia
allows the dispatch process to choose which of a function's methods to call based on the
number of arguments given, and on the types of all of the function's arguments. This is
different than traditional object-oriented languages, where dispatch occurs based only on
the first argument [...]. Using all of a function's arguments to choose which method
should be invoked, rather than just the first, is known as multiple dispatch. Multiple
dispatch is particularly useful for mathematical code, where it makes little sense to
artificially deem the operations to belong to one argument more than any of the others."

Julia allows us to define functions that provide specific behavior for certain combinations of
argument types. A definition of one possible behavior for a function is called a method. The
signatures of method definitions can be annotated to indicate the types of arguments, in
addition to their number, and more than a single method definition may be provided. An
example will help.

Let's say we have our previously defined Player type, as follows:

julia> mutable struct Player
 username::String
 score::Int
 end

And here, we see a corresponding getscore function:

julia> function getscore(p)
 p.score
 end
getscore (generic function with 1 method)

So far, so good. But, as our game grows incredibly successful, we could end up adding an
app store to offer in-app purchases. This will lead us to also define a Customer type that
could have a homonymous credit_score field, which stores their credit score:

julia> mutable struct Customer
 name::String
 total_purchase_value::Float64
 credit_score::Float64
 end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[316]

Of course, we'd need a corresponding getscore function:

julia> function getscore(c)
 c.credit_score
 end
getscore (generic function with 1 method)

Now, how would Julia know which function to use? It wouldn't. As both functions are
defined to accept any type of argument, the last-defined function overwrites the previous
one. We need to specialize the two getscore declarations on the type of their arguments:

julia> function getscore(p::Player)
 p.score
 end
getscore (generic function with 1 method)

julia> function getscore(c::Customer)
 c.credit_score
 end
getscore (generic function with 2 methods)

If you look closely at the output for each function declaration, you'll see something
interesting. After the definition of getscore(p::Player), it says getscore (generic
function with 1 method). But, after defining getscore(c::Customer), it shows
getscore (generic function with 2 methods). So now, we have defined two
methods for the getscore function, each specializing on its argument type.

But, what if we add the following?

julia> function getscore(t::Union{Player,Customer})
 isa(t, Player) ? t.score : t.credit_score
 end
getscore (generic function with 3 methods)

Or, alternatively, note the following that we might add:

julia> function getscore(s)
 if in(:score, fieldnames(typeof(s)))
 s.score
 elseif in(:credit_score, fieldnames(typeof(s)))
 s.credit_score
 else
 error("$(typeof(s)) does not have a score property")
 end
end
getscore (generic function with 4 methods)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[317]

Can you guess which methods will be used when invoking getscore with a Player, a
Customer, and an Article object? I'll give you a hint: when a function is applied to a
particular set of arguments, the most specific method applicable to those arguments is
invoked.

If we want to see which method is called for a given set of arguments, we can use @which:

julia> me = Player("adrian", 10)
Player("adrian", 10)

julia> @which getscore(me)
getscore(p::Player) in Main at REPL[58]:2

The same goes for Customer types:

julia> sam = Customer("Sam", 72.95, 100)
Customer("Sam", 72.95, 100.0)

julia> @which getscore(sam)
getscore(c::Customer) in Main at REPL[59]:2

We can see how the most specialized method is invoked—
getscore(t::Union{Player,Customer}), which is more generic, is actually never used.

However, what about the following?

julia> @which getscore(julia)
getscore(s) in Main at REPL[61]:2

Passing an Article type will invoke the last definition of getscore, the one accepting Any
type of argument:

julia> getscore(julia)
ERROR: Article does not have a score property

Since the Article type does not have a score or a credit_score property, the
ErrorException we defined is being thrown.

To find out what methods are defined for a function, use methods():

julia> methods(getscore)
4 methods for generic function "get_score":
getscore(c::Customer) in Main at REPL[59]:2
getscore(p::Player) in Main at REPL[58]:2
getscore(t::Union{Customer, Player}) in Main at REPL[60]:2
getscore(s) in Main at REPL[61]:2

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[318]

Working with relational databases
Our web crawler is quite performant—using CSS selectors is very efficient. But, as it is right
now, if we end up with the same Wikipedia article in different game sessions, we'll have to
fetch it, parse it, and extract its contents multiple times. This is a time-consuming and
resource-expensive operation—and, more importantly, one we can easily eliminate if we
just store the article information once we fetch it the first time.

We could use Julia's serialization features, which we've already seen, but since we're
building a fairly complex game, we would benefit from adding a database backend. Besides
storing articles' data, we could also persist information about players, scores, preferences,
and whatnot.

We have already seen how to interact with MongoDB. In this case, though, a relational
database is the better choice, as we'll work with a series of related entities: articles, games
(referencing articles), players (referencing games), and more.

Julia's package ecosystem provides a good range of options for interacting with relational
databases, from generic ODBC and JDBC libraries to dedicated packages for the main
backends—MySQL/MariaDB, SQLite, and Postgres, to name just a few. For our game, we'll
use MySQL. If you don't already have MySQL installed on your system, please follow the
instructions at https://dev.mysql.com/downloads/mysql/. Alternatively, if you're using
Docker, you can get the official MySQL Docker image from
https://hub.docker.com/r/library/mysql/.

On Julia's side, (sixdegrees) pkg>add MySQL is all we need in order to add support for
MySQL. Make sure you're within the sixdegrees/ project before adding MySQL. You can
confirm this by looking at the prefix of the pkg> cursor; it should look like this:
(sixdegrees) pkg>. If that is not the case, just execute pkg> activate . while making
sure that you're within the sixdegrees/ folder.

Adding MySQL support
When working with SQL databases, it's a good practice to abstract away the DB-related
logic and to avoid littering all the codebase with SQL strings and database-specific
commands. It will make our code more predictable and manageable and will provide a safe
level of abstraction if we ever need to change or upgrade the database system. I'm a big fan
of using ORM systems, but in this case, as a learning device, we'll be adding this
functionality ourselves.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://dev.mysql.com/downloads/mysql/
https://hub.docker.com/r/library/mysql/

Building the Wiki Game Web Crawler Chapter 13

[319]

Connecting to the database
For starters, let's instruct our application to connect to and disconnect from our MySQL
database. Let's extend our game by adding a new Database module within its
corresponding file:

module Database

using MySQL

const HOST = "localhost"
const USER = "root"
const PASS = ""
const DB = "six_degrees"

const CONN = MySQL.connect(HOST, USER, PASS, db = DB)

export CONN

disconnect() = MySQL.disconnect(CONN)

atexit(disconnect)

end

Your Database.jl file should look like the snippet—with the exception maybe of the
actual connection data. Please set up the HOST, USER, and PASS constants with your correct
MySQL connection info. Also, please don't forget to create a new, empty database called
six_degrees—otherwise the connection will fail. I suggest using utf8 for the encoding
and utf8_general_ci for the collation, in order to accommodate all the possible
characters we might get from Wikipedia.

Calling MySQL.connect returns a connection object. We'll need it in order to interact with
the database, so we'll reference it via the CONN constant:

julia> Main.Database.CONN
MySQL Connection

Host: localhost
Port: 3306
User: root
DB: six_degrees

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[320]

Since various parts of our code will access this connection object in order to perform queries
against the database, we export it. Equally importantly, we need to set up some cleanup
mechanism, to automatically disconnect from the database when we're done. We've defined
a disconnect function that can be manually called. But, it's safer if we make sure that the
cleanup function is automatically invoked. Julia provides an atexit function, which
registers a zero-argument function f to be called at process exit. The atexit hooks are
called in last-in-first-out (LIFO) order.

Setting up our Article module
The next step is to add a few more functions to the Article module to enable database
persistence and retrieval functionality. Since it will need access to our DB connection object,
let's give it access to the Database module. We'll also want to use MySQL functions. So,
under the export Article line, add using..Database, MySQL.

Next, we'll add a createtable method. This will be a one-off function that will create the
corresponding database table. We use this instead of just typing CREATE TABLE queries in
the MySQL client, in order to have a consistent and reproducible way of (re)creating the
table. In general, I prefer the use of a fully fledged database migration library, but for now,
better to keep things simple (you can read about schema migrations at
https://en.wikipedia.org/wiki/Schema_migration).

Without further ado, here's our function:

function createtable()
 sql = """
 CREATE TABLE `articles` (
 `title` varchar(1000),
 `content` text,
 `links` text,
 `image` varchar(500),
 `url` varchar(500),
 UNIQUE KEY `url` (`url`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
 """

 MySQL.execute!(CONN, sql)
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Schema_migration

Building the Wiki Game Web Crawler Chapter 13

[321]

Here, we define an sql variable, which references the MySQL CREATE TABLE query, in the
form of a String. The table will have four columns corresponding to the four fields of our
Article type. Then, there's a fifth column, url, which will store the article's Wikipedia
URL. We'll identify articles by URL—and for this reason, we add a unique index on the url
column.

At the end of the function, we pass the query string to MySQL.execute! to be run against
the DB connection. Please append the createtable definition to the end of the Articles
module (within the module, above the closing end).

Now, let's see it in action. Open a new REPL session in the sixdegrees/ folder and run the
following:

julia> using Pkg
julia> pkg"activate ."
julia> include("Database.jl")
julia> include("Articles.jl")
julia> using .Articles
julia> Articles.createtable()

That's it, our table is ready!

The workflow should be pretty clear—we made sure we're loading our project's
dependencies, we included the Database.jl and Articles.jl files, we brought
Articles into scope, and then invoked its createtable method.

Adding the persistence and retrieval methods
We said that when an article is fetched and parsed, we want to store its data in the
database. Thus, before fetching an article, we'll first want to check our database. If the
article was previously persisted, we'll retrieve it. If not, we'll perform the original fetch-and-
parse workflow. We use the url property to uniquely identify articles.

Let's start by adding the Articles.save(a::Article) method for persisting an article
object:

function save(a::Article)
 sql = "INSERT IGNORE INTO articles (title, content, links, image, url)
VALUES (?, ?, ?, ?, ?)"
 stmt = MySQL.Stmt(CONN, sql)
 result = MySQL.execute!(stmt, [a.title, a.content, JSON.json(a.links),
a.image, a.url])
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[322]

Here, we use MySQL.Stmt to create a MySQL prepared statement. The query itself is very
simple, using MySQL's INSERT IGNORE statement, which makes sure that the INSERT
operation is performed only if there is no article with the same url. If there is already an
article with the same url, the query is ignored.

The prepared statement accepts a specially formatted query string, in which the actual
values are replaced with placeholders, designated by question marks—?. We can then
execute the prepared statement by passing it to MySQL.execute!, together with an array of
corresponding values. The values are passed directly from the article object, with the
exception of links. Since this represents a more complex data structure, a
Vector{String}, we'll first serialize it using JSON and store it in MySQL as a string. To
access functions from the JSON package, we'll have to add it to our project, so please
execute (sixdegrees) pkg> add JSON in the REPL.

Prepared statements provide a safe way to execute queries because the values are
automatically escaped, eliminating a common source of MySQL injection attacks. In our
case, MySQL injections are less of a worry since we're not accepting user-generated input.
But, the approach is still valuable, avoiding insert errors caused by improper escaping.

Next, we need a retrieval method. We'll call it find. As its only attribute, it will take an
article URL in the form of a String. It will return an Array of Article objects. By
convention, if no corresponding article is found, the array will be empty:

function find(url) :: Vector{Article}
 articles = Article[]

 result = MySQL.query(CONN, "SELECT * FROM `articles` WHERE url = '$url'")

 isempty(result.url) && return articles

 for i in eachindex(result.url)
 push!(articles, Article(result.content[i], JSON.parse(result.links[i]),
result.title[i],
 result.image[i], result.url[i]))
 end

 articles
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[323]

In this function's declaration, we can see another Julia feature: return value types. After the
regular function declaration, function find(url), we appended :: Vector{Article}.
This constrains the return value of find to an array of Article. If our function won't
return that, an error will be thrown.

The rest of the code, although very compact, has quite a lot of functionality. First, we create
articles, a vector of Article objects, which will be the return value of our function.
Then, we execute a SELECT query against the MySQL database through the MySQL.query
method, attempting to find rows that match the url. The result of the query is stored in the
result variable, which is a NamedTuple (each field in the result NamedTuple references
an array of values corresponding to the database column of the same name). Next, we peek
into our query result to see if we got anything—we chose to sample the result.url
field—if it's empty, it means our query didn't find anything and we can just exit the
function, returning an empty articles vector.

On the other hand, if result.url does contain entries, it means our query brought at least
one row; so we iterate over the result.url array using eachindex, and for each iteration
we construct an Article object with the corresponding values. Finally, we push! this new
Article object into the articles vector which is returned, at the end of the loop.

Putting it all together
The last thing we need to do is update the rest of the code to work with the changes we've
made so far.

First of all, we need to update the Article type to add the extra url field. We need it in
the list of fields and in the two constructors. Here is the final version of Articles.jl:

module Articles

export Article, save, find

using ...Database, MySQL, JSON

struct Article
 content::String
 links::Vector{String}
 title::String
 image::String
 url::String

 Article(; content = "", links = String[], title = "", image = "", url =
"") =

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[324]

 new(content, links, title, image, url)
 Article(content, links, title, image, url) = new(content, links, title,
image, url)
end

function find(url) :: Vector{Article}
 articles = Article[]
 result = MySQL.query(CONN, "SELECT * FROM `articles` WHERE url = '$url'")

 isempty(result.url) && return articles

 for i in eachindex(result.url)
 push!(articles, Article(result.content[i], JSON.parse(result.links[i]),
result.title[i],
 result.image[i], result.url[i]))
 end

 articles
end

function save(a::Article)
 sql = "INSERT IGNORE INTO articles (title, content, links, image, url)
VALUES (?, ?, ?, ?, ?)"
 stmt = MySQL.Stmt(CONN, sql)
 result = MySQL.execute!(stmt, [a.title, a.content, JSON.json(a.links),
a.image, a.url])
end

function createtable()
 sql = """
 CREATE TABLE `articles` (
 `title` varchar(1000),
 `content` text,
 `links` text,
 `image` varchar(500),
 `url` varchar(500),
 UNIQUE KEY `url` (`url`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
 """

 MySQL.execute!(CONN, sql)
end

end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[325]

We also need to make a few important changes to Wikipedia.jl. First, we'll remove
Article instantiation from Wikipedia.articleinfo since creating Article objects
should now also take into account database persistence and retrieval. Instead, we'll return a
tuple representing the article data:

function articleinfo(content)
 dom = articledom(content)
 (content, extractlinks(dom.root), extracttitle(dom.root),
extractimage(dom.root))
end

We can now add a new function, persistedarticle, which will accept as arguments the
article content plus the article URL. It will instantiate a new Article object, save it to the
database, and return it. In a way, persistedarticle can be considered a database-backed
constructor, hence the name:

function persistedarticle(article_content, url)
 article = Article(articleinfo(article_content)..., url)
 save(article)

 article
end

Here, you can see the splat operator ... in action—it decomposes the articleinfo result
Tuple into its corresponding elements so they can be passed into the Article constructor
as individual arguments.

Also, we have to deal with a minor complication. When we start a new game and call the
/wiki/Special:Random URL, Wikipedia automatically performs a redirect to a random
article. When we fetch the page, we get the redirected page content—but we don't have its
URL.

So, we need to do two things. Firstly, we need to check if our request has been redirected
and, if so, get the redirection URL. In order to do this, we can check the request.parent
field of the response object. In the case of a redirect, the response.request.parent
object will be set and will present a headers collection. The collection will include a
"Location" item—and that's what we're after.

Secondly, we also need to return the URL together with the HTML content of the page. This
is easy—we'll return a tuple.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[326]

Here is the updated fetchpage function:

function fetchpage(url)
 url = startswith(url, "/") ? buildurl(url) : url
 response = HTTP.get(url)
 content = if response.status == 200 && length(response.body) > 0
 String(response.body)
 else
 ""
 end
 relative_url = collect(eachmatch(r"/wiki/(.*)$",
(response.request.parent == nothing ? url :
Dict(response.request.parent.headers)["Location"])))[1].match

 content, relative_url
end

Note that we also use eachmatch to extract the part corresponding to the relative URL out
of the absolute URL.

Here is the whole Wikipedia.jl file:

module Wikipedia
using HTTP, Gumbo, Cascadia
import Cascadia: matchFirst

include("Articles.jl")
using .Articles

const PROTOCOL = "https://"
const DOMAIN_NAME = "en.m.wikipedia.org"
const RANDOM_PAGE_URL = PROTOCOL * DOMAIN_NAME * "/wiki/Special:Random"

export fetchrandom, fetchpage, articleinfo, persistedarticle

function fetchpage(url)
 url = startswith(url, "/") ? buildurl(url) : url
 response = HTTP.get(url)
 content = if response.status == 200 && length(response.body) > 0
 String(response.body)
 else
 ""
 end
 relative_url = collect(eachmatch(r"/wiki/(.*)$", (response.request.parent
== nothing ? url :
Dict(response.request.parent.headers)["Location"])))[1].match

 content, relative_url

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[327]

end

function extractlinks(elem)
 map(eachmatch(Selector("a[href^='/wiki/']:not(a[href*=':'])"), elem)) do
e
 e.attributes["href"]
 end |> unique
end

function extracttitle(elem)
 matchFirst(Selector("#section_0"), elem) |> nodeText
end

function extractimage(elem)
 e = matchFirst(Selector(".content a.image img"), elem)
 isa(e, Nothing) ? "" : e.attributes["src"]
end

function fetchrandom()
 fetchpage(RANDOM_PAGE_URL)
end

function articledom(content)
 if ! isempty(content)
 return Gumbo.parsehtml(content)
 end

 error("Article content can not be parsed into DOM")
end

function articleinfo(content)
 dom = articledom(content)
 (content, extractlinks(dom.root), extracttitle(dom.root),
extractimage(dom.root))
end

function persistedarticle(article_content, url)
 article = Article(articleinfo(article_content)..., url)
 save(article)

 article
end

function buildurl(article_url)
 PROTOCOL * DOMAIN_NAME * article_url
end

end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[328]

Now, let's focus on Gameplay.jl. We need to update the newgame function to take
advantage of the newly available methods from the Wikipedia module:

module Gameplay

using ..Wikipedia, ..Wikipedia.Articles

export newgame

const DIFFICULTY_EASY = 2
const DIFFICULTY_MEDIUM = 4
const DIFFICULTY_HARD = 6

function newgame(difficulty = DIFFICULTY_HARD)
 articles = Article[]

 for i in 1:difficulty+1
 article = if i == 1
 article = persistedarticle(fetchrandom()...)
 else
 url = rand(articles[i-1].links)
 existing_articles = Articles.find(url)

 article = isempty(existing_articles) ?
persistedarticle(fetchpage(url)...) : existing_articles[1]
 end

 push!(articles, article)
 end

 articles
end

end

If it's the first article, we fetch a random page and persist its data. Otherwise, we pick a
random URL from the previously crawled page and check if a corresponding article
already exists. If not, we fetch the page, making sure it's also persisted to the DB.

Lastly, our point of entry into the app, the six_degrees.jl file, needs to look like this:

using Pkg
pkg"activate ."

include("Database.jl")
include("Wikipedia.jl")
include("Gameplay.jl")

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building the Wiki Game Web Crawler Chapter 13

[329]

using .Wikipedia, .Gameplay

articles = newgame(Gameplay.DIFFICULTY_EASY)

for article in articles
 println(article.title)
end

A final test run should confirm that all is good:

$ julia six_degrees.jl
Hillary Maritim
Athletics at the 2000 Summer Olympics - Men's 400 metres hurdles
Zahr-el-Din El-Najem

Running the six_degrees.jl file with the julia binary in a terminal will output three
Wikipedia article titles. And we can check the database to confirm that the data has been
saved:

The data for the three previously crawled pages has been safely persisted.

Summary
Congratulations, this was quite a journey! We've applied three key Julia
concepts—modules, types and their constructors, and methods to develop the backend of
our Six Degrees of Wikipedia game, and in the process we've seen how to interact with
MySQL databases, persisting and retrieving our Article objects.

At the end of the next chapter, we'll get the chance to enjoy the fruits of our hard work:
after we add a web UI to our Six degrees of Wikipedia backend, we'll relax by playing a few
rounds. Let's see if you can beat my best score!

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

14
Adding a Web UI for the Wiki

Game
Developing the backend of our game was quite a learning experience. This strong
foundation will serve us well—the modular approach will allow us to easily convert
the read-eval-print loop (REPL) app into a web app, while our understanding of types will
prove to be priceless when dealing with Julia's web stack and its rich taxonomy.

We're now entering the last stage of our game development journey—building a web user
interface for the Six Degrees of Wikipedia. Since building a full-featured web app is no simple
feat, this last part will be dedicated to this task alone. In the process, we will learn about the
following topics:

Julia's web stack; namely, the HTTP package and its main components—Server,
Router, HandlerFunction, and Response
Architecting a web app to take advantage of HTTP and integrate it with existing
Julia modules
Exposing features on the web by defining routes that map URLs to Julia
functions
Spawning a web server to handle user requests and send back proper responses
to the clients

The end of this chapter comes with a cool reward—our game will be ready and we'll play a
few rounds of Six Degrees of Wikipedia!

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[331]

Technical requirements
The Julia package ecosystem is under continuous development and new package versions
are released on a daily basis. Most of the times this is great news, as new releases bring new
features and bug fixes. However, since many of the packages are still in beta (version 0.x),
any new release can introduce breaking changes. As a result, the code presented in the
book can stop working. In order to ensure that your code will produce the same results as
described in the book, it is recommended to use the same package versions. Here are the
external packages used in this chapter and their specific versions:

Cascadia@v0.4.0
Gumbo@v0.5.1
HTTP@v0.7.1
IJulia@v1.14.1

In order to install a specific version of a package you need to run:

pkg> add PackageName@vX.Y.Z

For example:

pkg> add IJulia@v1.14.1

Alternatively you can install all the used packages by downloading the Project.toml file
provided with the chapter and using pkg> instantiate as follows:

julia>
download("https://github.com/TrainingByPackt/Julia-1-Programming-Complete-R
eference-Guide/tree/master/Chapter14/Project.toml", "Project.toml")
pkg> activate .
pkg> instantiate

The game plan
We're onto the last stage of our project—the web UI. Let's start by discussing the spec; we
need to lay out the blueprint before we can proceed with the implementation.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[332]

The player will start on the landing page. This will display the rules and will provide
options for launching a new game, allowing the user to choose a difficulty level. Following
this starting point, the player will be redirected to the new game page. Here, taking into
account the selected difficulty level, we'll bootstrap a new game session by fetching the
articles with the algorithm we wrote in the previous chapter. Once we pick the articles that
represent the Six Degrees of Wikipedia, we will display a heading with the game's
objective—the titles of the start and end articles. We'll also display the content of the first
article, thus kickstarting the game. When the player clicks on a link in this article, we have
to respond accordingly by checking if the player has found the end article and won the
game. If not, render the new article and increment the number of steps taken.

We'll also need an area to display the progress of the game—the articles that were viewed
in the current session, how many steps have been taken in total, and a form of navigation to
allow the players to go back and rethink their choices if they find themselves on the wrong
track. Therefore, we'll need to store the player's navigation history. Finally, it would be nice
to provide an option to solve the puzzle—of course, as a result, the player will lose the
game.

A very important piece of the spec is that between the stateless browser requests and the
server responses, while navigating through the Wikipedia articles, we need some sort of
mechanism to allow us to maintain the state of the game, that is, to retrieve a game with its
corresponding data—difficulty, path (articles) and progress, navigation history, number of
steps taken, and so on. This will be achieved by creating a unique game identifier at the
beginning of each play session and passing it with every request as a part of the URL.

Learning about Julia's web stack
Julia's package ecosystem has long provided a variety of libraries for building web apps.
Some of the most mature are HttpServer, Mux, WebSockets, and JuliaWebAPI (to name
just a few; this list is not exhaustive). But as the ecosystem settled with Julia version 1, a lot
of community effort has been put into a newer package, simply known as HTTP. It provides
a web server, an HTTP client (which we already used in the previous chapters to fetch the
web pages from Wikipedia), as well as various utilities for making web development
simpler. We'll learn about key HTTP modules ,such as Server, Router, Request,
Response, and HandlerFunction, and we'll put them to good use.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[333]

Beginning with a simple example – Hello World
Let's take a look at a simple example of employing the HTTP server stack. This will help us
understand the foundational building blocks before we dive into the more complex issue of
exposing our game on the web.

If you followed the previous chapter, you should already have the HTTP package installed.
If not, you know the drill—run pkg> add HTTP in Julia's REPL.

Now, somewhere on your computer, create a new file called hello.jl. Since this will be a
simple piece of software contained in just one file, there's no need to define a module. Here
is the full code, the whole eight lines, in all their glory. We'll go over them next:

using HTTP, Sockets
const HOST = ip"0.0.0.0"
const PORT = 9999
router = HTTP.Router()
server = HTTP.Server(router)
HTTP.register!(router, "/", HTTP.HandlerFunction(req ->
HTTP.Messages.Response(200, "Hello World")))
HTTP.register!(router, "/bye", HTTP.HandlerFunction(req ->
HTTP.Messages.Response(200, "Bye")))
HTTP.register!(router, "*", HTTP.HandlerFunction(req ->
HTTP.Messages.Response(404, "Not found")))
HTTP.serve(server, HOST, PORT)

The workflow for handling web requests with HTTP requires four entities—Server,
Router, HandlerFunction, and Response.

Beginning our analysis of the code with the simplest part, on the last line, we start our
server by calling HTTP.serve. The serve function takes a server, an object of type
Server, plus the HOST information (an IP string) and the PORT (an integer) that are used to
attach to and listen to requests as arguments. We have defined HOST and PORT at the top of
the file as constants. The value of HOST is defined using the non-standard ip"" string
literal. We learned about non-standard string literals when we discussed the String type.
In this regard, the ip"..." notation is similar to regular expressions (r"..."), version
strings (v"..."), or Pkg commands (pkg"...").

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[334]

Instantiating a new Server requires a Router object, which we will name router. The job
of the Router is to register a list of mappings (called routes) between the links (URIs) that
are exposed by our app on the internet and our Julia functions (called
HandlerFunctions), which provide the response. We have set up the routes using the
register! function, passing the router object, the URI structures (like / or /bye) and the
corresponding HandlerFunction objects as arguments.

Now, if you look at the body of the HandlerFunction, you'll see that the root page / will
display the string "Hello World"; the /bye URL will display the string "Bye"; and
finally, every other URI, expressed by the star symbol *, will return a "Not found" text,
accompanied by the correct 404 Not Found header.

I'm sure you can now recognize the arrow -> operator, hinting to the use of lambdas. Each
HandlerFunction constructor takes an anonymous function. This function is responsible
for processing the request and generating the appropriate Response. As its argument, it
accepts the Request object (named req), and it is expected to return an instance of
Response.

In our example code, we constructed three Response objects using two of the available
HTTP status codes (200 for OK and 404 for page not found), plus some strings for the body
of the responses (the simple strings "Hello World", "Bye", and "Not found",
respectively).

To conclude, when the server receives a request, it delegates it to the router, which matches
the URI of the request to the most appropriately mapped URI pattern and invokes the
corresponding HandlerFunction, passing in the Request as the argument. The handler
function returns a Response object, which is sent by the server back to the client.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[335]

Let's see it in action. You can use the Run functionality in your editor or you can execute $
julia hello.jl in the Terminal. Alternatively, you can run the code in this chapter's
accompanying IJulia notebook:

The preceding screenshot shows the hello.jl file running in Juno. The REPL pane
displays debugging information from the web server as requests are received and handled.

As soon as the server is ready, you'll get a log message saying that the server is listening on
the indicated socket. At this point, you can open a web browser and navigate to
http://localhost:9999. You'll be greeted by the (in)famous Hello World message, as
follows:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[336]

Congratulations—we've just developed our first web app with Julia!

No bonus points for guessing what happens when navigating to
http://localhost:9999/bye.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[337]

Finally, you can confirm that any other request will result in a 404 Not Found page by
attempting to navigate to any other link under http://localhost:9999—for instance,
http://localhost:9999/oh/no:

Here is the Not Found page, correctly returning the 404 status code.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[338]

Developing the game's web UI
Please start your favorite Julia editor and open the sixdegrees/ folder we used in the
previous chapter. It should contain all the files that we've worked on
already—six_degrees.jl, plus the Articles, Database, Gameplay, and Wikipedia
modules.

If you haven't followed through the code up to this point, you can
download this chapter's accompanying support files, which are available
at https:/ / github. com/ TrainingByPackt/ Julia- 1- Programming-
Complete- Reference- Guide/ tree/ master/ Chapter14.

Add a new file for our web app. Since the code will be more complex this time and should
integrate with the rest of our modules, let's define a WebApp module within a new
WebApp.jl file. Then, we can add these first few lines of code:

module WebApp

using HTTP, Sockets

const HOST = ip"0.0.0.0"
const PORT = 8888
const ROUTER = HTTP.Router()
const SERVER = HTTP.Server(ROUTER)

HTTP.serve(SERVER, HOST, PORT)

end

No surprises here—similar to the previous example, we define constants for HOST and
PORT, and then instantiate a Router and a Server and start listening for requests. The code
should work just fine, but it's not worth running it yet as it won't do anything useful. We
need to define and register our routes, and then set up the handler functions for generating
the game's pages.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14

Adding a Web UI for the Wiki Game Chapter 14

[339]

Defining our routes
By reviewing the high-level spec that we defined at the beginning of the chapter, we can
identify the following pages:

Landing page: The starting place of our web app and the home page, where the
player can begin a new game and choose the difficulty.
New game page: Bootstraps a new game, taking into account the difficulty
settings.
Wiki article page: This will display the Wikipedia article corresponding to a link
in the chain and will update the game's stats. Here, we'll also check if the current
article is the goal (the end) article, which is to finish the game as a winner. If not,
we'll check if the maximum number of articles has been reached, and if so finish
the game as a loser.
Back page: This will allow the player to go back up the chain if the solution
wasn't found. We'll display the corresponding Wikipedia article while correctly
updating the game's stats.
Solution page: If the player gives up, this page will display the last article in the
chain, together with the path to it. The game is ended as a loss.
Any other page should end up as Not Found.

Taking into account that the route handlers will be fairly complex, it's best if we don't
define them inline with the route definitions. Instead, we'll use separately defined
functions. Our route's definitions will look like this—please add them to the WebApp
module, as follows:

HTTP.register!(ROUTER, "/", landingpage) # root page
HTTP.register!(ROUTER, "/new/*", newgamepage) # /new/$difficulty_level --
new game
HTTP.register!(ROUTER, "/*/wiki/*", articlepage) #
/$session_id/wiki/$wikipedia_article_url -- article page
HTTP.register!(ROUTER, "/*/back/*", backpage) #
/$session_id/back/$number_of_steps -- go back the navigation history
HTTP.register!(ROUTER, "/*/solution", solutionpage) # /$session_id/solution
-- display the solution
HTTP.register!(ROUTER, "*", notfoundpage) # everything else -- not found

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[340]

You might be wondering what's with the extra * in front of the URI patterns. We stated that
we'll need a way to identify a running game session between the otherwise stateless web
requests. The articlepage, backpage, and solutionpage functions will all require an
existing game session. We'll pass this session ID as the first part of the URL. Effectively,
their paths are to be interpreted as /$session_id/wiki/*, /$session_id/back/*, and
/$session_id/solution, where the $session_id variable represents the unique game
identifier. As for the trailing *, it represents different things for different routes—in the case
of new, it's the difficulty level of the game; for articlepage, it's the actual Wikipedia URL,
which is also our article identifier; and for the backpage, it represents the index in the
navigation stack. Similar to regular expressions, for route matching as well, the * will
match anything. If this sounds complicated, don't worry—seeing and running the code will
make things clear.

Let's add placeholder definitions for each handler function—please add these before the list
of routes:

const landingpage = HTTP.HandlerFunction() do req
end
const newgamepage = HTTP.HandlerFunction() do req
end
const articlepage = HTTP.HandlerFunction() do req
end
const backpage = HTTP.HandlerFunction() do req
end
const solutionpage = HTTP.HandlerFunction() do req
end
const notfoundpage = HTTP.HandlerFunction() do req
end

Preparing the landing page
Straight away, we can address the landing page handler. All it needs to do is display some
static content describing the game's rules, as well as provide a way to start a new game
with various levels of difficulty. Remember that the difficulty of the game determines the
length of the article chain, and we need this information when we start a new game. We can
pass it to the new game page as part of the URL, under the format
/new/$difficulty_level. The difficulty levels are already defined in the Gameplay
module, so don't forget to declare that we're using Gameplay.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[341]

Taking this into account, we'll end up with the following code for our WebApp module.
We're putting everything together and we're also adding the landingpage
HandlerFunction. This works in correlation with the first
route—HTTP.register!(ROUTER, "/",landingpage). What this means is that when
we access the / route in the browser, the landingpage HandlerFunction will be
executed and its output will be returned as the response. In this case, we're simply
returning a bunch of HTML code. If you're not familiar with HTML, here's what the
markup does—we include the Twitter Bootstrap CSS theme to make our page prettier, we
display a few paragraphs of text explaining the rules of the game, and we display three
buttons for starting a new game—one button for each level of difficulty.

Here is the code:

module WebApp

using HTTP, Sockets
using ..Gameplay

Configuration
const HOST = ip"0.0.0.0"
const PORT = 8888
const ROUTER = HTTP.Router()
const SERVER = HTTP.Server(ROUTER)

Routes handlers
const landingpage = HTTP.HandlerFunction() do req
 html = """
 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8" />
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.
css" integrity="sha384-
MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
crossorigin="anonymous">
 <title>6 Degrees of Wikipedia</title>
 </head>

 <body>
 <div class="jumbotron">
 <h1>Six degrees of Wikipedia</h1>
 <p>
 The goal of the game is to find the shortest path between two
random Wikipedia articles.

 Depending on the difficulty level you choose, the Wiki pages will

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[342]

be further apart and less related.

 If you can't find the solution, you can always go back up the
articles chain, but you need to find the solution within the maximum number
of steps, otherwise you lose.

 If you get stuck, you can always check the solution, but you'll
lose.

 Good luck and enjoy!
 </p>

 <hr class="my-4">

 <div>
 <h4>New game</h4>
 <a href="/new/$(Gameplay.DIFFICULTY_EASY)" class="btn btn-primary
btn-lg">Easy ($(Gameplay.DIFFICULTY_EASY) links away) |
 <a href="/new/$(Gameplay.DIFFICULTY_MEDIUM)" class="btn btn-
primary btn-lg">Medium ($(Gameplay.DIFFICULTY_MEDIUM) links away) |
 <a href="/new/$(Gameplay.DIFFICULTY_HARD)" class="btn btn-primary
btn-lg">Hard ($(Gameplay.DIFFICULTY_HARD) links away)
 </div>
 </div>
 </body>
 </html>
 """

 HTTP.Messages.Response(200, html)
end

const newgamepage = HTTP.HandlerFunction() do req
end

const articlepage = HTTP.HandlerFunction() do req
end

const backpage = HTTP.HandlerFunction() do req
end

const solutionpage = HTTP.HandlerFunction() do req
end

const notfoundpage = HTTP.HandlerFunction() do req
end

Routes definitions
HTTP.register!(ROUTER, "/", landingpage) # root page
HTTP.register!(ROUTER, "/new/*", newgamepage) # /new/$difficulty_level --
new game
HTTP.register!(ROUTER, "/*/wiki/*", articlepage) #

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[343]

/$session_id/wiki/$wikipedia_article_url -- article page
HTTP.register!(ROUTER, "/*/back/*", backpage) #
/$session_id/back/$number_of_steps -- go back the navigation history
HTTP.register!(ROUTER, "/*/solution", solutionpage) # /$session_id/solution
-- display the solution
HTTP.register!(ROUTER, "*", notfoundpage) # everything else -- not found

Start server
HTTP.serve(SERVER, HOST, PORT)

end

Let's update the six_degrees.jl file to bootstrap our web app. Please make sure that it
now reads as follows:

using Pkg
pkg"activate ."

include("Database.jl")
include("Wikipedia.jl")
include("Gameplay.jl")
include("WebApp.jl")

using .Wikipedia, .Gameplay, .WebApp

Run six_degrees.jl using your preferred approach, either in the editor or the Terminal
($ julia six_degrees.jl). Look for the message Info: Listening on:..., which
notifies us that the web server has been started. Visit http://localhost:8888/ in your
browser and feast your eyes on our landing page! I'm sure you'll notice the effect of
including the Twitter Bootstrap CSS file—adding just a few CSS classes to our code makes
for a great visual impact!

The preceding screenshot is of our game's landing page running on localhost at port 8888.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[344]

Starting a new game
Excellent! Now, let's focus on the functionality for starting a new game. Here, we need to
implement the following steps:

Extract the difficulty settings from the URL.1.
Start a new game. This game should have an ID, which will be our session id.2.
Plus, it should keep track of the list of articles, progress, navigation history, the
total number of steps taken, and the difficulty.
Render the first Wikipedia article.3.
Set up in-article navigation. We need to make sure that the links within the4.
Wikipedia article will properly link back into our app, and not the Wikipedia
website itself.
Display information about the game session, such as the objective (start and end5.
articles), number of steps taken, and so on.

We'll look at all of these steps next.

Extracting the difficulty settings from the page
URL
This is the very first step. Remember that within our HandlerFunction, we have access to
the Request object, req. All the Request objects expose a field called target that
references the URL of the request. The target does not include the protocol or the domain
name, so it will be of the form /new/$difficulty_level. A quick way to extract the
value of $difficulty_level is to simply replace the first part of the URI with an empty
string, "", effectively removing it. The result will be used in a function, newgamesession,
to create a new game of the indicated difficulty. Put into code, it will look like this:

game = parse(UInt8, (replace(req.target, "/new/"=>""))) |> newgamesession

Since we represent difficulty levels as integers (number of articles), we parse the string into
an integer (specifically of type UInt8) before using it.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[345]

Starting a new game session
Starting a new game session is the second step. The game session manager, which should
include the preceding newgamesession function, is missing entirely, so it's time we added
it. We'll represent a game session as an instance of a corresponding type. Let's pack the
type definition and the methods for manipulating it into a dedicated module. We can
name the module GameSession, and the type Game. Please create the GameSession.jl file
within the "sixdegrees/" folder.

Our Game type will need a custom constructor. We'll provide the difficulty level, and the
constructor will take care of setting all of the internals—it will fetch the right number of
Wikipedia articles using the previously created Gameplay.newgame function; it will create
a unique game ID (which will be our session ID); and it'll initialize the rest of the fields with
default values.

A first attempt will look like this:

module GameSession

using ..Gameplay, ..Wikipedia, ..Wikipedia.Articles
using Random

mutable struct Game
 id::String
 articles::Vector{Article}
 history::Vector{Article}
 steps_taken::UInt8
 difficulty::UInt8

 Game(game_difficulty) =
 new(randstring(), newgame(game_difficulty), Article[], 0,
game_difficulty)
end

const GAMES = Dict{String,Game}()

end

The Random.randstring function creates a random string. This is our game's and our
session's ID.

We've also defined a GAMES dictionary, which will store all the active games and will allow
us to look them up by their id field. Remember, our game is exposed on the web, so we'll
have multiple game sessions running in parallel.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[346]

We can now add the rest of the functions. Add the following definitions before the
module's closing end, as follows:

export newgamesession, gamesession, destroygamesession

function newgamesession(difficulty)
 game = Game(difficulty)
 GAMES[game.id] = game
 game
end

function gamesession(id)
 GAMES[id]
end

function destroygamesession(id)
 delete!(GAMES, id)
end

This is very straightforward. The snippet defines the newgamesession function, which
creates a new Game of the indicated difficulty and stores it into the GAMES dict data
structure. There's also a getter function, gamesession, which retrieves a Game by id.
Finally, we add a destructor function, which removes the corresponding Game from the
GAMES dict, effectively making it unavailable on the frontend and leaving it up for garbage
collection. All of these functions are exported.

It's worth noting that storing our games in memory is fine for the purpose
of this learning project, but in production, with a lot of players, you'd risk
running out of memory quickly. For production use, we'd be better off
persisting each Game to the database and retrieving it as necessary.

Rendering the first Wikipedia article from the
chain
This is the third step. Going back to our WebApp module (in WebApp.jl), let's continue
with the logic for the newgamepage handler. The implementation will look like this:

using ..GameSession, ..Wikipedia, ..Wikipedia.Articles

const newgamepage = HTTP.HandlerFunction() do req
 game = parse(UInt8, (replace(req.target, "/new/"=>""))) |> newgamesession
 article = game.articles[1]
 push!(game.history, article)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[347]

 HTTP.Messages.Response(200, wikiarticle(article))
end

Once we create a new game, we need to reference its first article. We add the starting article
to the game's history and then we render it as HTML using the following wikiarticle
function:

function wikiarticle(article)
 html = """
 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8" />
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.
css" integrity="sha384-
MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
crossorigin="anonymous">
 <title>6 Degrees of Wikipedia</title>
 </head>

 <body>
 <h1>$(article.title)</h1>
 <div id="wiki-article">
 $(article.content)
 </div>
 </body>
 </html>
 """
end

We simply display the title of the Wikipedia article as the main heading, and then the
content.

Finally, don't forget to load GameSession into our app by adding it to
"six_degrees.jl". Beware that it needs to be loaded before WebApp to be available for
WebApp. The full "six_degrees.jl" file should now look like this:

using Pkg pkg"activate ." include("Database.jl") include("Wikipedia.jl")
include("Gameplay.jl") include("GameSession.jl") include("WebApp.jl") using
.Wikipedia, .Gameplay, .GameSession, .WebApp

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[348]

If you rerun our code and navigate to http://localhost:8888/new/2, you'll see our app
rendering a random Wikipedia article:

It's a good start, but there are some problems. First, we were a bit too greedy when fetching
the content from Wikipedia. It includes the full page HTML, which contains things we
don't really need, like the invisible <head> section and the all-too visible Wikipedia content
from above the article's text (the search form, the menu, and so on). This is easy to fix—all
we need to do is be a bit more specific about the content we want by using a better-defined
CSS selector. A bit of playing around with the browser's inspector will reveal that the
desired selector is #bodyContent.

Armed with this knowledge, we need to update the Wikipedia module. Please replace the
existing articleinfo function with this one:

function articleinfo(content)
 dom = articledom(content)
 (extractcontent(dom.root), extractlinks(dom.root),
extracttitle(dom.root), extractimage(dom.root))
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[349]

Instead of using the whole HTML, we will now extract just the content of the desired CSS
selector:

function extractcontent(elem)
 matchFirst(Selector("#bodyContent"), elem) |> string
end

Please add the definition of extractcontent to the Wikipedia.jl file, under the
extractimage function.

By revisiting our page at http://localhost:8888/new/2, we will see our efforts
rewarded with a much better-looking replacement:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[350]

Setting up in-article navigation
All right, that wasn't so hard! But the next issue is more difficult. The fourth step is all
about the setup. We established that we need to capture all the internal Wikipedia links so
that when the player clicks on a link, they are taken to our app instead of going to the
original Wikipedia article. Half of this work is done by Wikipedia's content itself because it
uses relative URLs. That is, instead of using absolute URLs in the form
of https://en.wikipedia.org/wiki/Wikipedia:Six_degrees_of_Wikipedia, it
uses the relative form /wiki/Wikipedia:Six_degrees_of_Wikipedia. This means that
when rendered in the browser, these links will inherit the domain name (or the base URL) of
the current host. That is, when rendering the content of a Wikipedia article at
http://localhost:8888/, its relative URLs will be interpreted as
http://localhost:8888/wiki/Wikipedia:Six_degrees_of_Wikipedia. Therefore,
they'll automatically point back to our web app. That's great, but one big piece of the puzzle
is missing: we said that we want to maintain the state of our game by passing the session ID
as part of the URL. Thus, our URLs should be of the form
http://localhost:8888/ABCDEF/wiki/Wikipedia:Six_degrees_of_Wikipedia,
where ABCDEF represents the game (or session) ID. The simplest solution is to replace
/wiki/ with /ABCDEF/wiki/ when rendering the content—of course, using the actual
game ID instead of ABCDEF.

In the definition of the WebApp.wikiarticle function, please look for this:

<div id="wiki-article">
 $(article.content)
</div>

Replace it with the following:

<div id="wiki-article">
 $(replace(article.content, "/wiki/"=>"/$(game.id)/wiki/"))
</div>

Because we now need the game object, we must make sure that we pass it into the function,
so its declaration should become the following:

function wikiarticle(game, article)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[351]

This means that we also need to update the newgamepage route handler to correctly invoke
the updated wikiarticle function. The last line of the WebApp.newgamepage function
should now be as follows:

HTTP.Messages.Response(200, wikiarticle(game, article))

If you execute six_degrees.jl and take your browser to
http://localhost:8888/new/2, you should see a nice rendering of a Wikipedia article
with all the internal links containing the game ID:

In the preceding screenshot, we can see that all the URLs start with /x2wHk2XI—our game
ID.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[352]

Displaying information about the game session
For the fifth and very last part of our spec, we need to display information about the game
and provide a way to navigate back to the previous articles. We'll define the following
functions:

function objective(game)
 """
 <h3>
 Go from <i>$(game.articles[1].title)</i>
 to <i>$(game.articles[end].title)</i>
 </h3>
 <h5>
 Progress: $(size(game.history, 1) - 1)
 out of maximum $(size(game.articles, 1) - 1) links
 in $(game.steps_taken) steps
 </h5>
 <h6>
 Solution? |
 New game
 </h6>"""
end

The objective function informs the player about the start and end articles and about the
current progress. It also provides a small menu so that you can view the solution or start a
new game.

For navigating back, we need to generate the game history links:

function history(game)
 html = ""
 iter = 0
 for a in game.history
 html *= """
 $(a.title)
 """
 iter += 1
 end
 html * ""
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[353]

Finally, we need a bit of extra logic to check if the game was won or lost:

function puzzlesolved(game, article)
 article.url == game.articles[end].url
end

We have a winner if the URL of the current article is the same as the URL of the last article
in the game.

The game is lost if the player runs out of moves:

function losinggame(game)
 game.steps_taken >= Gameplay.MAX_NUMBER_OF_STEPS
end

The complete code, so far, should look like this:

module WebApp

using HTTP, Sockets
using ..Gameplay, ..GameSession, ..Wikipedia, ..Wikipedia.Articles

Configuration
const HOST = ip"0.0.0.0"
const PORT = 8888
const ROUTER = HTTP.Router()
const SERVER = HTTP.Server(ROUTER)

Functions
function wikiarticle(game, article)
 html = """
 <!DOCTYPE html>
 <html>
 $(head())

 <body>
 $(objective(game))
 $(history(game))
 <hr/>
 $(
 if losinggame(game)
 "<h1>You Lost :(</h1>"
 else
 puzzlesolved(game, article) ? "<h1>You Won!</h1>" : ""
 end
)

 <h1>$(article.title)</h1>

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[354]

 <div id="wiki-article">
 $(replace(article.content, "/wiki/"=>"/$(game.id)/wiki/"))
 </div>
 </body>
 </html>
 """
end

function history(game)
 html = ""
 iter = 0
 for a in game.history
 html *= """
 $(a.title)
 """
 iter += 1
 end

 html * ""
end

function objective(game)
 """
 <h3>
 Go from <i>$(game.articles[1].title)</i>
 to <i>$(game.articles[end].title)</i>
 </h3>
 <h5>
 Progress: $(size(game.history, 1) - 1)
 out of maximum $(size(game.articles, 1) - 1) links
 in $(game.steps_taken) steps
 </h5>
 <h6>
 Solution? |
 New game
 </h6>"""
end

function head()
 """
 <head>
 <meta charset="utf-8" />
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.
css" integrity="sha384-
MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
crossorigin="anonymous">
 <title>6 Degrees of Wikipedia</title>

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[355]

 </head>
 """
end

function puzzlesolved(game, article)
 article.url == game.articles[end].url
end

function losinggame(game)
 game.steps_taken >= Gameplay.MAX_NUMBER_OF_STEPS
end

Routes handlers
const landingpage = HTTP.HandlerFunction() do req
 html = """
 <!DOCTYPE html>
 <html>
 $(head())

 <body>
 <div class="jumbotron">
 <h1>Six degrees of Wikipedia</h1>
 <p>
 The goal of the game is to find the shortest path between two
random Wikipedia articles.

 Depending on the difficulty level you choose, the Wiki pages will
be further apart and less related.

 If you can't find the solution, you can always go back up the
articles chain, but you need to find the solution within the maximum number
of steps, otherwise you lose.

 If you get stuck, you can always check the solution, but you'll
lose.

 Good luck and enjoy!
 </p>

 <hr class="my-4">

 <div>
 <h4>New game</h4>
 <a href="/new/$(Gameplay.DIFFICULTY_EASY)" class="btn btn-primary
btn-lg">Easy ($(Gameplay.DIFFICULTY_EASY) links away) |
 <a href="/new/$(Gameplay.DIFFICULTY_MEDIUM)" class="btn btn-
primary btn-lg">Medium ($(Gameplay.DIFFICULTY_MEDIUM) links away) |
 <a href="/new/$(Gameplay.DIFFICULTY_HARD)" class="btn btn-primary
btn-lg">Hard ($(Gameplay.DIFFICULTY_HARD) links away)
 </div>
 </div>
 </body>

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[356]

 </html>
 """

 HTTP.Messages.Response(200, html)
end

const newgamepage = HTTP.HandlerFunction() do req
 game = parse(UInt8, (replace(req.target, "/new/"=>""))) |> newgamesession
 article = game.articles[1]
 push!(game.history, article)

 HTTP.Messages.Response(200, wikiarticle(game, article))
end

const articlepage = HTTP.HandlerFunction() do req
end

const backpage = HTTP.HandlerFunction() do req
end

const solutionpage = HTTP.HandlerFunction() do req
end

const notfoundpage = HTTP.HandlerFunction() do req
end

Routes definitions
HTTP.register!(ROUTER, "/", landingpage) # root page
HTTP.register!(ROUTER, "/new/*", newgamepage) # /new/$difficulty_level --
new game
HTTP.register!(ROUTER, "/*/wiki/*", articlepage) #
/$session_id/wiki/$wikipedia_article_url -- article page
HTTP.register!(ROUTER, "/*/back/*", backpage) #
/$session_id/back/$number_of_steps -- go back the navigation history
HTTP.register!(ROUTER, "/*/solution", solutionpage) # /$session_id/solution
-- display the solution HTTP.register!(ROUTER, "*", notfoundpage) #
everything else -- not found # Start server HTTP.serve(SERVER, HOST, PORT)

end

Please note that we've also refactored the <head> of the pages, abstracting it away into the
head function, which is used by both landingpage and wikiarticle. This way, we keep
our code DRY, avoiding the repetition of the same <head> HTML element.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[357]

Now, let's make sure that we add Gameplay.MAX_NUMBER_OF_STEPS to Gameplay.jl.
Add it at the top, under the difficulty constants:

const MAX_NUMBER_OF_STEPS = 10

Displaying a Wikipedia article page
The player has read the starting article and clicked on a link within the content. We need to
add the logic for rendering the linked article. We'll have to fetch the article (or read it from
the database if it was already fetched), display it, and update the game's state.

Here is the code:

const articlepage = HTTP.HandlerFunction() do req
 uri_parts = parseuri(req.target)
 game = gamesession(uri_parts[1])
 article_uri = "/wiki/$(uri_parts[end])"
 existing_articles = Articles.find(article_uri)
 article = isempty(existing_articles) ?
 persistedarticle(fetchpage(article_uri)...) :
 existing_articles[1]
 push!(game.history, article)
 game.steps_taken += 1
 puzzlesolved(game, article) && destroygamesession(game.id)
 HTTP.Messages.Response(200, wikiarticle(game, article))
end

We start by parsing the Request URI to extract all the values sent via GET. It is a string
with the format /$session_id/wiki/$article_name, for
example, /c701b1b0b1/wiki/Buenos_Aires. We want to break it into its parts. Since this
is an operation that we'll need to perform more than once, we will abstract this
functionality into the parseuri function:

function parseuri(uri)
 map(x -> String(x), split(uri, "/", keepempty = false))
end

Here, we use Julia's split function to break the URI string into an Array of SubString,
corresponding to the segments between forward slashes /. Then, we convert the resulting
Array of SubString to an Array of String, which is returned and stored in the
uri_parts variable.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[358]

Continuing with the definition of the articlepage handler, we use the first element of the
uri_parts array, which corresponds to the session ID, to retrieve our game object, by
invoking gamesession(uri_parts[1]). With the last element, we generate the
Wikipedia article URL. We then look up the article by URL, and either retrieve it from the
database or fetch it from the website.

Once we have the article, we add it to the game's history and increase the
game.steps_taken counter. Then, we check if we should end the game as a win:

This is a screenshot of the winning article page. The design is not great, but the sweet taste
of victory surely is!

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[359]

Finally, similar to the new game page, we respond by rendering the article and all the game
information.

Navigating back up the article chain
Keep in mind that a back navigation URL looks like /c701b1b0b1/back/1, where the first
part is the session ID and the last part is the index of the item in the history stack. To
implement it, the workflow is similar to articlepage—we parse the Request URI,
retrieve the game by session ID, and get the article from the game's history stack. Since we
go back in the game's history, everything beyond the current article index is to be removed
from the navigation stack. When done, we respond by rendering the corresponding
Wikipedia article. The code is short and readable:

const backpage = HTTP.HandlerFunction() do req
 uri_parts = parseuri(req.target)
 game = gamesession(uri_parts[1])
 history_index = parse(UInt8, uri_parts[end])

 article = game.history[history_index]
 game.history = game.history[1:history_index]

 HTTP.Messages.Response(200, wikiarticle(game, article))
end

Showing the solution
For the solution page, the only thing we need from the Request URI is the session ID.
Then, we follow the same workflow to get the current Game object. Once we have it, we
copy the list of articles into the history stack to display the game's solution using the
existing rendering logic. We also set the steps_taken counter to the maximum because
the game is considered a loss. Finally, we display the last article:

const solutionpage = HTTP.HandlerFunction() do req
 uri_parts = parseuri(req.target)
 game = gamesession(uri_parts[1])
 game.history = game.articles
 game.steps_taken = Gameplay.MAX_NUMBER_OF_STEPS
 article = game.articles[end]
 HTTP.Messages.Response(200, wikiarticle(game, article))
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[360]

The solution page appears as follows, settling the game as a loss:

Handling any other requests
Similar to our Hello World example, we'll respond to any other requests with a 404 Not
Found response:

const notfoundpage = HTTP.HandlerFunction() do req
 HTTP.Messages.Response(404, "Sorry, this can't be found")
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[361]

Wrapping it up
I've added a few more UI tweaks to the WebApp.jl file to spice things up a bit. Here are
the important parts—please download the full file from https:/ /github. com/
TrainingByPackt/Julia- 1- Programming- Complete- Reference- Guide/ tree/ master/
Chapter14/sixdegrees/ WebApp. jl:

module WebApp

code truncated

function history(game)
 html = """<ol class="list-group">"""
 iter = 0
 for a in game.history
 html *= """
 <li class="list-group-item">
 $(a.title)

 """
 iter += 1
 end

 html * ""
end

function objective(game)
 """
 <div class="jumbotron">
 <h3>Go from
 $(game.articles[1].title)
 to
 $(game.articles[end].title)
 </h3>
 <hr/>
 <h5>
 Progress:
 $(size(game.history, 1) - 1)
 out of maximum
 $(size(game.articles, 1) - 1)
 links in
 $(game.steps_taken)
 steps
 </h5>
 $(history(game))
 <hr/>
 <h6>

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees/WebApp.jl

Adding a Web UI for the Wiki Game Chapter 14

[362]

 <a href="/$(game.id)/solution" class="btn btn-primary btn-
lg">Solution? |
 New game
 </h6>
 </div>
 """
end

code truncated

end

You will see that I have reorganized the layout a bit and that I've added a few extra styles to
make our UI prettier. Here is our game with its updated look:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding a Web UI for the Wiki Game Chapter 14

[363]

As for the rest of the files, if you need them, they are available for download in this
chapter's GitHub repository, which is accessible at https:/ /github. com/ TrainingByPackt/
Julia-1-Programming- Complete- Reference- Guide/ tree/ master/ Chapter14/ sixdegrees.

That is all we need to do to run a full game of Six Degrees of Wikipedia. Now, it's time to
enjoy it!

Summary
Julia focuses on scientific computing and data science. But thanks to its great qualities as a
generic programming language, its native parallel computing features, and its performance,
we have an excellent use case for Julia in the area of web development.

The package ecosystem provides access to a powerful set of libraries dedicated to web
programming. They are relatively low level, but still abstract away most of the complexities
of working directly with the network stack. The HTTP package provides a good balance
between usability, performance, and flexibility.

The fact that we managed to build a fairly complex (albeit small) web app with so little
code is a testimony to the power and expressiveness of the language and to the quality of
the third-party libraries. We did a great job with our learning project—it's now time to relax
a bit and enjoy a round of Six Degrees of Wikipedia, Julia style!

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter14/sixdegrees

15
Implementing Recommender

Systems with Julia
In the previous chapters, we took a deep dive into data mining and web development with
Julia. I hope you enjoyed a few relaxing rounds of Six Degrees of Wikipedia while discovering
some interesting articles. Randomly poking through the millions of Wikipedia articles as
part of a game is a really fun way to stumble upon interesting new content. Although I'm
sure that, at times, you've noticed that not all the articles are equally good—maybe they're
stubs, or subjective, or not so well written, or simply irrelevant to you. If we were able to
learn about each player's individual interests, we could filter out certain Wikipedia articles,
which would turn each game session into a wonderful journey of discovery.

It turns out that we're not the only ones struggling with this—information discovery is a
multibillion-dollar problem, regardless of whether it's articles, news, books, music, movies,
hotels, or really any kind of product or service that can be sold over the internet. As
consumers, we are exposed to an immense variety of choices, while at the same time, we
have less and less time to review them—and our attention span is getting shorter and
shorter. Making relevant recommendations instantly is a key feature of all successful online
platforms, from Amazon to Booking.com, to Netflix, to Spotify, to Udemy. All of these
companies have invested in building powerful recommender systems, literally inventing
new business models together with the accompanying data collection and recommendation
algorithms.

In this chapter, we'll learn about recommender systems—the most common and successful
algorithms that are used in the wild for addressing a wide variety of business needs. We'll
look at the following topics:

What recommender systems are and how are they used
Content-based versus collaborative filtering recommender systems
User-based and item-based recommender systems

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[365]

More advanced data analysis using DataFrames and statistical functions
How to roll out our own recommender systems using content-based and
collaborative filtering algorithms

Technical requirements
The Julia package ecosystem is under continuous development and new package versions
are released on a daily basis. Most of the times this is great news, as new releases bring new
features and bug fixes. However, since many of the packages are still in beta (version 0.x),
any new release can introduce breaking changes. As a result, the code presented in the
book can stop working. In order to ensure that your code will produce the same results as
described in the book, it is recommended to use the same package versions. Here are the
external packages used in this chapter and their specific versions:

CSV@v0.4.3
DataFrames@v0.15.2
Distances@v0.7.4
IJulia@v1.14.1
Plots@v0.22.0
StatPlots@v0.8.2

In order to install a specific version of a package you need to run:

pkg> add PackageName@vX.Y.Z

For example:

pkg> add IJulia@v1.14.1

Alternatively you can install all the used packages by downloading the Project.toml file
provided with the chapter and using pkg> instantiate as follows:

julia>
download("https://github.com/TrainingByPackt/Julia-1-Programming-Complete-R
eference-Guide/tree/master/Chapter15/Project.toml", "Project.toml")
pkg> activate .
pkg> instantiate

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[366]

Understanding recommender systems
In its broadest definition, a recommender system (RS) is a technique that's used for
providing suggestions for items that are useful to a person. These suggestions are meant to
help in various decision-making processes, usually related to buying or consuming a
certain category of products or services. They can be about buying a book, listening to a
song, watching a movie, eating out at a certain restaurant, reading a news article, or picking
the hotel for your next holiday.

People have relied on recommendations pretty much since the beginning of history. Some
RS researchers talk about the first recommendations as being the first orally transmitted
information about dangerous plants, animals, or places. Others think that
recommendations systems functioned even before language, by simply observing the
effects on other humans of consuming plants or unwisely confronting dangerous creatures
(that could count as an extreme and possibly violent example of implicit ratings, as we'll see
in the following paragraphs).

But we don't have to go that far into human history. In more recent (and less dangerous)
times, we can find some great examples of highly successful recommender systems, such as
librarians suggesting books based on your tastes and interests, the butcher presenting meat
products for your Sunday recipe, your friends' opinion of the latest blockbuster, your
neighbor's stories about the kindergarten across the street, and even your MD
recommending what treatment to follow to alleviate the symptoms and eliminate the cause
of your disease. Other recommender systems are more formal, but equally pervasive and
familiar, such as the star category ranking of hotels or the blue flags on top beaches around
the world.

For a very long time, the experts in various fields played the part of recommenders, using
their expertise in combination with their understanding of our tastes and interests, skillfully
probing us for details. However, the rise of the internet and online platforms (e-commerce
websites, online radios, movie streaming platforms, and social networks) has replaced the
traditional models by making a huge catalog of items (products) available to a potentially
very large consumer base (now called users). Due to considerations like 24-
hour availability, language barriers, and sheer volume, personal recommendations were no
longer a feasible option (although in the last couple of years, there was a certain recurrence
of human-curated recommendations, from music, to books, to luxury products—but that's a
different discussion).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[367]

This expansion in the number of choices made finding the right product a very difficult
task. At that point, software-based recommender systems entered the stage.

Amazon.com is credited as being the first online business that deployed software
recommender systems at scale, with extraordinary business benefits. Later on, Netflix
became famous for awarding a one million dollar prize to the team that came up with a
recommendation algorithm better than theirs. Nowadays, automated recommender
systems power all major platforms, from Spotify's Discover Weekly playlists to Udemy's
recommended courses.

Classifying recommender systems
Different business needs—from suggesting related products after buying your new laptop,
to compiling the perfect driving playlist, to helping you reconnect with long lost
schoolmates—led to the development of different recommendation algorithms. A key part
of rolling out a recommender system is picking the right approach for the problem at hand
to fully take advantage of the data available. We'll take a look at the most common and
most successful algorithms.

Learning about non-personalized, stereotyped,
and personalized recommendations
The simplest types of recommendations, from a technical and algorithmic perspective, are
the non-personalized ones. That is, they are not customized to take into account specific
user preferences. Such recommendations can include best-selling products, various top 10
songs, blockbuster movies, or the most downloaded apps of the week.

Non-personalized recommendations are less challenging technically, but also considerably
less powerful. They can be good approximations in certain cases, especially when the
product catalog is not very large (there are not that many Hollywood releases, for
example). But for an e-commerce retailer like Amazon, with millions of products available
at any given time, the chances of getting it right using generic recommendations are slim.

An improvement in non-personalized recommendations comes from combining them with
a classification strategy. By stereotyping, we can make the recommended items more
relevant, especially when we can identify significantly different user demographics. A good
example of this is app store recommendations, which are broken down by country. Take,
for instance, the following list of recommended new games. This is what it looks like if you
are a user accessing the app store from the US:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[368]

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[369]

This is what it looks like for a user in Romania, at the exact same time:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[370]

You can easily notice that the top selections vary widely. This is driven by both cultural
differences and preferences, but also by availability (copyright and distribution) issues.

We won't focus on non-personalized recommendations in this chapter, since implementing
them is quite straightforward. All that is needed for making such recommendations is to
identify the relevant metrics and the best performing items, such as the number of
downloads for apps, copies sold for a book, volume of streams for a song or movie, and so
on. However, non-personalized recommendations, as a business solution, should not be
dismissed, as they can be useful when dealing with users that don't present any relevant
personal preferences—usually new users.

Understanding personalized recommendations
Both from a business and a technical perspective, the most interesting recommender
systems are the ones that take into account the user's preferences (or user's ranking).

Explicit and implicit ratings
When looking for personalization features, we must take into account both explicit data
that's willingly provided by the user, as well as relevant information that's generated by
their behavior in the app or on the website (or anywhere else where we're tracking user
behavior really, since the boundary between the online and physical realms is becoming
more blurry, for example, with the introduction of smart cars and autonomous shop
checkouts, to name just a few). The explicit rating includes actions such as grading a
product or an experience, awarding stars to a movie or purchase, and retweeting or liking a
post. On the other hand, not bouncing back to the search results page, sharing a song, or
watching a video until the end are all examples of an implicit positive rating, while
returning a product, canceling a subscription, or not finishing an online training course or
an eBook are instances of negative implicit ranking.

Understanding content-based recommender systems
One of the most common and successful types of recommendations are content-based. The
core idea is that if I expressed a preference for a certain set of items, I will most likely be
interested in more items that share the same attributes. For example, the fact that I watched
Finding Nemo (2003) can be used as an indication that I will be interested in other
movies from the animation and comedy genres.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[371]

Alternatively, watching one of the original Star Wars movie can be interpreted as a signal
that I like other movies from the franchise, or movies with Harrison Ford, or directed by
George Lucas, or science fiction in general. Indeed, Netflix employs such an algorithm,
except at a more granular level. Per a recent article, Netflix has a large team that's tasked
with watching and tagging movies in detail—later on, matching movie features with users
groups. The users themselves are equally carefully classified into thousands of categories.

More advanced content-based recommender systems also take into account the relative
weight of the different tags. In the case of the previously mentioned Finding Nemo
(2003), the suggestions should be less about movies with fish and sharks and more about
the fact that it's a funny, light-hearted family movie, so hopefully, the recommendation will
be more Finding Dory (2016) and less Jaws.

Let's see how we can build a basic movie recommender using a content-based
algorithm. To keep things simple, I have set up a table with the top 10 movies of 2016 and
their genres. You can find this file in this book's GitHub repository, as
top_10_movies.tsv, at https:/ /github. com/ TrainingByPackt/ Julia- 1- Programming-
Complete-Reference- Guide/ tree/ master/ Chapter15/ top_10_ movies. tsv:

In the preceding screenshot, you can see how we use a binary system to represent whether
a movie belongs to a genre (encoded by a 1) or not (a 0).

We can easily load such a table from a CSV/TSV file into Julia by using the readdlm
function, which is available in the DelimitedFiles module. This module comes with the
default Julia installation, so there's no need to add it:

julia> using DelimitedFiles
Julia> movies = readdlm("top_10_movies.tsv", '\t', skipstart=1)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter15/top_10_movies.tsv

Implementing Recommender Systems with Julia Chapter 15

[372]

In the preceding snippet, skipstart=1 tells Julia to skip the first line when reading the Tab
separated top_10_movies.tsv file—otherwise, Julia would interpret the header row as a
data row as well.

There is also the option of letting readdlm know that the first row is the header, passing
header = true. However, this would change the return type of the function invocation to
a tuple of (data_cells, header_cells), which is not pretty-printed in interactive
environments. At this exploratory phase, we're better off with a table-like representation of
the data. The result is a tabular data structure that contains our movie titles and their
genres:

 10×9 Array{Any,2}:
 "Moonlight (2016)" 0 0 0 1 0 0 0 0
 "Zootopia (2016)" 1 1 1 0 0 0 0 0
 "Arrival (2016)" 0 0 0 1 0 1 0 1
 "Hell or High Water (2016)" 0 0 0 1 0 1 0 0
 "La La Land (2016)" 0 0 1 1 0 0 1 0
 "The Jungle Book (2016)" 1 0 0 0 1 0 0 0
 "Manchester by the Sea (2016)" 0 0 0 1 0 0 0 0
 "Finding Dory (2016)" 0 1 0 0 0 0 0 0
 "Captain America: Civil War (2016)" 1 0 0 0 0 0 0 1
 "Moana (2016)" 1 1 0 0 0 0 0 0

Let's see what movie from the top 10 list we could recommend to a user who watched the
aforementioned movie, Finding Nemo (2003). Rotten Tomatoes classifies Finding
Nemo (2003) under the Animation, Comedy, and Kids genres. We can encode this as
follows:

julia> nemo = ["Finding Nemo (2003)", 0, 1, 1, 0, 1, 0, 0, 0] 9-element
Array{Any,1}:
 "Finding Nemo (2003)"
 0
 1
 1
 0
 1
 0
 0
 0

To make a movie recommendation based on genre, all we have to do is find the ones that
are the most similar, that is, the movies that share the most genres with our Finding Nemo
(2003).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[373]

There is a multitude of algorithms for computing the similarity (or on the contrary, the
distance) between items—in our case, as we're dealing with binary values only, the
Hamming distance looks like a good choice. The Hamming distance is a number that's used
to denote the difference between two binary strings. This distance is calculated by
comparing two binary values and taking into account the number of positions at which the
corresponding bits are different. We'll compare each bit in succession and record either 1 or
0, depending on whether or not the bits are different or the same. If they are the same, we
record a 0. For different bits, we record a 1. Then, we add all the 1s and 0s in the record to
obtain the Hamming distance.

A function for calculating the Hamming distance is available in the Distances package.
This is a third-party Julia package that provides access to a multitude of functions for
evaluating distances between vectors, including Euclidian, Jaccard, Hemming, Cosine, and
many others. All we need to do to access this treasure of functionality is run the following:

julia> using Pkg
pkg> add Distances
julia> using Distances

Then, we need to iterate over our movies matrix and compute the Hamming distance
between each movie and Finding Nemo (2003):

julia> distances = Dict{String,Int}()
Dict{String,Int64} with 0 entries

julia> for i in 1:size(movies, 1)
 distances[movies[i,:][1]] = hamming(Int[movies[i,2:end]...],
Int[nemo[2:end]...])
 end

In the preceding snippet, we iterated over each movie and calculated the Hamming
distance between its genres and the genres of Finding Nemo (2003). To do this, we only
extracted the genres (leaving off the name of the movie) and converted the list of values
into an array of Int. Finally, we placed the result of the computation into the
distances Dict we defined previously, which uses the name of the movie as the key, and
the distance as the value.

This is the end result:

julia> distances
Dict{String,Int64} with 10 entries:
 "The Jungle Book (2016)" => 3
 "Hell or High Water (2016)" => 5
 "Arrival (2016)" => 6
 "La La Land (2016)" => 4

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[374]

 "Moana (2016)" => 3
 "Captain America: Civil War (2016)" => 5
 "Moonlight (2016)" => 4
 "Finding Dory (2016)" => 2
 "Zootopia (2016)" => 2
 "Manchester by the Sea (2016)" => 4

Since we're computing distances, the most similar movies are the ones within the shortest
distance. So, according to our recommender, a user who watched Finding Nemo
(2003) should next watch Finding Dory (2016) or Zootopia (2016) (distance 2) and
when done, should move on to The Jungle Book (2016) and Moana (2016) (both at a
distance of 3). If you haven't watched all of these recommended movies already, I can tell
you that the suggestions are quite appropriate. Similarly, the least recommended movie is
Arrival (2016), which although is an excellent science fiction drama, has nothing in
common with cute Nemo and forgetful Dory.

Beginning with association-based recommendations
Although content-based recommender systems can produce great results, they do have
limitations. For starters, they can't be used to recommend new items. Based on my initial
Finding Nemo (2003) ranking alone, I would be stuck getting suggestions for animated
movies alone and I'd never get the chance to hear about any new documentaries or car or
cooking shows that I sometimes enjoy.

Also, it works best for categories of items that can be purchased repeatedly, like books,
apps, songs, or movies, to name a few. But if I'm on Amazon and purchase a new
dishwasher from the Home and kitchen category, it doesn't make a lot of sense to get
recommendations about products within the same group, such as a fridge or a washing
machine, as chances are I'm not replacing all of the expensive kitchen appliances at the
same time. However, I will most likely need the corresponding joints and taps and pipes
and whatever else is needed to install the dishwasher, together with the recommended
detergent and maybe other accessories. Since the e-commerce platform is selling all of these
products as well, it's beneficial to order them together and receive them at the same time,
saving on transport too.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[375]

These bundles of products can form the foundation of a RS based on product association.
These types of recommendations are quite common, and are usually presented as frequently
bought together on e-commerce platforms. For physical stores, this type of data
analysis—also known as market basket analysis—is used to place products that are
purchased together in close physical proximity. Think, for example, about pasta being side
by side with sauces, or shampoo with conditioners.

One of the most popular algorithms used for association based recommendations is the
Apriori algorithm. It is used to identify items that frequently occur together in different
scenarios (shopping baskets, web browsing, adverse drug reactions, and so on). The
Apriori algorithm helps us identify correlations through data mining by employing
association rules.

Space constraints don't allow us to get into the details of building such as system, but if you
would like to dive deeper into this topic, there are many free resources to get you started. I
recommend beginning with Movie Recommendation with Market Basket Analysis (https:/ /
rpubs.com/vitidN/ 203264) as it builds a movie recommender that's very similar to ours.

Learning about collaborative filtering
Collaborative filtering (CF) is another very successful and widely used recommendation
algorithm. It is based on the idea that people with similar preferences will have similar
interests. If two customers, let's call them Annie and Bob, give Finding Nemo (2003) a
good rating and Annie also highly ranks Finding Dory (2016), then chances are that
Bob will also like Finding Dory (2016). Of course, comparing two users and two
products may not seem like much, but applied to very large datasets representing both
users and products, the recommendations become highly relevant.

If you're confused as to what the difference between CF and content filtering is, since both
can be used to infer Finding Dory (2016) based on Finding Nemo (2003), the key
point is that CF does not care about item attributes. Indeed, when using CF, we don't need
the movie genre information, nor any other tags. The algorithm is not concerned with the
classification of the items. It pretty much states that if, for whatever reason, the items were
ranked highly by a subset of users, then other items that are highly ranked by the same
subset of users will be relevant for our target user, hence making for a good
recommendation.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://rpubs.com/vitidN/203264
https://rpubs.com/vitidN/203264
https://rpubs.com/vitidN/203264
https://rpubs.com/vitidN/203264
https://rpubs.com/vitidN/203264
https://rpubs.com/vitidN/203264
https://rpubs.com/vitidN/203264
https://rpubs.com/vitidN/203264
https://rpubs.com/vitidN/203264
https://rpubs.com/vitidN/203264

Implementing Recommender Systems with Julia Chapter 15

[376]

Understanding user-item CF
This was the basic idea, and with the advent of big data, the CF technique has become quite
powerful. As it's been applied to different business needs and usage scenarios, the
algorithm was refined to better address the problems it was attempting to solve. As a
consequence, a few other approaches emerged, and the original one became known as user-
item CF.

It's gotten this name because it takes as its input user data (user preferences, rankings) and
outputs item data (item recommendations). It's also known as user-based CF.

You can see it illustrated in the following diagram:

The preceding diagram shows that Annie likes A, B, and E, while Bob likes A, B, C, and D.

The recommender algorithm established that, between Annie and Bob, there's a high
degree of similarity because they both like items A and B. Next, it will assume that Annie
will also like other items from Bob's list of preferences that she hasn't discovered yet, and
the reverse for Bob—he'll like items from Annie's list that he hasn't discovered yet. Thus,
since Annie also likes item E, we can recommend it to Bob, and since Bob's very fond of C
and D and Annie has no knowledge about these yet, we can confidently suggest that she
checks them out.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[377]

Let's take another very simple example, also from the realm of movie recommendations.
Sticking to our previous list of top 10 movies for the year 2016 on Rotten Tomatoes, this
time, let's ignore the classification by genre and imagine that we have user ratings data
instead:

The preceding screenshot shows a table of movie titles and users and their corresponding
ratings. As it happens in real life, not all of the users have rated all of the moves—the
absence of a rating is indicated by an empty cell.

You will notice in the preceding screenshot that by a strange twist of faith, the user's names
provide a hint as to what kind of movies they prefer. Acton is very much into action
movies, while Annie loves animations. Comey's favorites are the comedies, while Dean
enjoys good dramas. Kit's highest rankings went to kids movies, Missie loves mystery
movies, while musical's are Musk reasons for binge watching. Finally, Sam is a science
fiction fan.

The dataset is provided in this chapter's files under the name
top_10_movies_user_rankings.csv. Please download it from https:/ /github. com/
TrainingByPackt/Julia- 1- Programming- Complete- Reference- Guide/ blob/ master/
Chapter15/top_10_ movies_ user_ rankings. csv and place it somewhere on your hard drive
where you can easily access it from Julia's REPL.

We can load it into memory using the same readdlm Julia function as before:

movies = readdlm("/path/to/top_10_movies_user_rankings.csv", ';')

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter15/top_10_movies_user_rankings.csv

Implementing Recommender Systems with Julia Chapter 15

[378]

This file uses the ; char as the column separator, so we need to pass that into the readdlm
function call. Remember that in Julia, ";" is different from ':'. The first is a String of
length one, while the second is a Char.

This is the result of the .csv file being read—a matrix containing movies on rows and
people on columns, with each person's rating at the corresponding intersection between
rows and columns:

It works, but the data doesn't look too good. As usually happens with data in real life, we
don't always have ratings from all the users. The missing values were imported as empty
strings "", and the headers were interpreted as entries in the matrix. Julia's readdlm is
great for quick data imports, but for more advanced data wrangling, we can benefit
considerably from using Julia's powerful DataFrames package.

DataFrames is a third-party Julia package that exposes a rich set of functions for
manipulating tabular data. You should remember it from our Using DataFrames in Chapter
8, I/O, Networking, and Parallel Computing—if not, please take a few minutes to review that
part. The rest of our discussion will assume that you have a basic understanding of
DataFrames so that we can now focus on the more advanced features and use cases.

If, for some reason, you no longer have the DataFrames package, pkg> add DataFrames
is all we need. While we're at it, let's also install the CSV package—it's a powerful utility
library for handling delimited text files. We can add both in one step:

pkg> add DataFrames CSV

We'll use CSV to load the comma-separated file and produce a DataFrame:

julia> movies = CSV.read("top_10_movies_user_rankings.csv", delim = ';')

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[379]

The resulting DataFrame should look like this:

We get a beautifully rendered tabular data structure, with the missing ratings correctly
represented as missing data.

We can get a quick summary of our data by using the describe function:

julia> describe(movies)

The output for this is as follows:

Multiple columns have missing values. A missing value represents a value that is absent
in the dataset. It is defined in the Missings package (https:/ /github. com/JuliaData/
Missings.jl), and it's the singleton instance of the Missing type. If you're familiar
with NULL in SQL or NA in R, missing is the same in Julia.

Missing values are problematic when working with real-life datasets as they can affect the
accuracy of the computations. For this reason, common operations that involve missing
values usually propagate missing. For example, 1 + missing and cos(missing) will
both return missing.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/JuliaData/Missings.jl
https://github.com/JuliaData/Missings.jl
https://github.com/JuliaData/Missings.jl
https://github.com/JuliaData/Missings.jl
https://github.com/JuliaData/Missings.jl
https://github.com/JuliaData/Missings.jl
https://github.com/JuliaData/Missings.jl
https://github.com/JuliaData/Missings.jl
https://github.com/JuliaData/Missings.jl
https://github.com/JuliaData/Missings.jl
https://github.com/JuliaData/Missings.jl
https://github.com/JuliaData/Missings.jl

Implementing Recommender Systems with Julia Chapter 15

[380]

We can check if a value is missing by using the ismissing function:

julia> movies[1,2]
missing

julia> ismissing(movies[1, 2])
true

In many cases, missing values will have to be skipped or replaced with a valid value.
What value is appropriate for replacing missing will depend from case to case, as dictated
by the business logic. In our case, for the missing ratings, we can use the value 0. By
convention, we can agree that valid ratings range from 1 to 10, and that a rating of 0
corresponds to no rating at all.

One way to do the replacement is to iterate over each column except Movie title and
then over each cell, and if the corresponding value is missing, replace it with 0. Here is the
code:

julia> for c in names(movies)[2:end]
 movies[ismissing.(movies[c]), c] = 0
 end

We're all done—our data is now clean, with zeroes replacing all the previously missing
values:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[381]

It would help if you saved this clean version of our data as a Tab separated file, for future
reference, with the following code:

julia> CSV.write("top_10_movies_user_rankings.tsv", movies, delim='\t')

Now that we have our ratings loaded into Julia, the next step is to compute the similarity
between the various users. The Hamming distance, the formula that we used when
computing content based recommendations, would not be a good choice for numerical
data. A much better alternative is Pearson's correlation coefficient. This coefficient, also
known as Pearson's r or bivariate correlation, is a measure of the linear correlation
between two variables. It has a value between +1 and −1. A value of 1 indicates total
positive linear correlation (both values increase together), while -1 represents total
negative linear correlation (one value decreases while the other increases). The value 0
means that there's no linear correlation.

Here are a few examples of scatter diagrams with different visualizations of the correlation
coefficient (By Kiatdd—Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=37108966):

Let's see how we would calculate the similarity between Acton and Annie, based on the
movie ratings they provided. Let's make things simpler and focus strictly on their data by
extracting the Movie title column, together with the Acton and Annie columns:

julia> acton_and_annie = movies[:, 1:3]

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://commons.wikimedia.org/w/index.php?curid=37108966

Implementing Recommender Systems with Julia Chapter 15

[382]

The output is as follows:

This returns another DataFrame, referenced as acton_and_annie, which corresponds to
the columns one to three of the movies DataFrame, representing Acton's and Annie's
ratings for each of the movies.

This is good, but we're only interested in the movies that were rated by both users. If you
remember from our discussion of DataFrame in Chapter 8, I/O, Networking, and Parallel
Computing, we can select rows (and columns) by passing a Boolean value—true to select it,
false to skip it. We can use this in combination with the dot syntax for element-wise
operations to check if the values in the :Acton and :Annie columns are greater than 0. The
code will look like this:

julia> acton_and_annie_in_common = acton_and_annie[(acton_and_annie[:Acton]
.> 0) .& (acton_and_annie[:Annie] .> 0), :]

Although it might look a bit intimidating, the snippet should be easy to follow: we use the
(acton_and_annie[:Acton] .> 0) .& (acton_and_annie[:Annie] .>

0) expression to check element-wise if the values in the Acton and Annie columns are
greater than 0. Each comparison will return an array of true/false values—more exactly
two 10-element BitArrays, as follows:

julia> acton_and_annie[:Acton] .> 0
10-element BitArray{1}:
 false
 true
 true
 true
 true
 true
 false

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[383]

 true
 true
 true

julia> acton_and_annie[:Annie] .> 0
10-element BitArray{1}:
 true
 true
 false
 false
 false
 true
 false
 true
 false
 true

Next, we apply the bitwise & operator, which is also element-wise, to the resulting arrays:

julia> (acton_and_annie[:Acton] .> 0) .& (acton_and_annie[:Annie] .> 0)
10-element BitArray{1}:
 false
 true
 false
 false
 false
 true
 false
 true
 false
 true

Finally, this array of true/false values is passed into the DataFrame to filter the rows. The
preceding snippet will produce the following output, a new DataFrame that contains only
the movies that have been rated by both Acton and Annie:

The output is as follows:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[384]

To quickly visualize our data, let's use the appropriately named Plots library that we saw
in Chapter 10, The Standard Library and Packages.

Plots is designed as a higher-level interface to other plotting libraries (named backends in
Plots language), such as GR or PyPlot. It basically unifies multiple lower-level plotting
packages (backends) under a common API.

As always, start with pkg> add Plots and continue with using Plots.

We're now ready to generate the visualization:

julia> plot(acton_and_annie_in_common[:,2], acton_and_annie_in_common[:,3],
seriestype=:scatter, xticks=0:10, yticks=0:10, lims=(0,11), label="")

In the preceding snippet, we invoke the plot function, passing it Acton's and Annie's
ratings. As options, we ask it to produce a scatter plot. We also want to make sure that the
axes start at 0 and end at 11 (so that value 10 is fully visible), with ticks at each unit. We'll
end up with the following plot:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[385]

By the looks of it, there is a good correlation between the user's movie preferences. But we
can do even better.

Julia's ecosystem provides access to yet another powerful package that combines both
plotting and statistical features. It's called StatPlots and actually works on top of the
Plots package, providing statistical plotting recipes for Plots. It also supports DataFrame
visualizations out of the box, so it's a perfect match for our needs.

Let's add it with pkg> add StatPlots and bring it into scope (using StatPlots). We
can now use the @df macro that's exposed by StatPlots to generate a scatter plot of our
data:

julia> @df acton_and_annie_in_common scatter([:Acton], [:Annie], smooth =
true, line = :red, linewidth = 2, title = "Acton and Annie", legend =
false, xlimits = (5, 11), ylimits = (5, 11))

The preceding code will produce the following visualization:

This new plot shows the correlation between the movies, despite the outlier.

Let's compute the Pearson correlation between Acton's and Annie's ratings:

julia> using Statistics
julia> cor(acton_and_annie_in_common[:Acton],
acton_and_annie_in_common[:Annie])

0.6324555320336759

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[386]

Pretty much any value over 0.6 indicates a good similarity, so it looks like we're onto
something.

Now, we can recommend to Annie some of Acton's favorites that she hasn't seen, as
follows:

julia> annies_recommendations = acton_and_annie[(acton_and_annie[:Annie]
.== 0) .& (acton_and_annie[:Acton] .> 0), :]

This snippet should be easy to understand since it's a slight variation of the common rating
formula. From the acton_and_annie DataFrame, we only select the rows where Annie's
score is 0 (she hasn't rated the movie) and Acton's is greater than 0 (he has rated the
movie).

We'll get a DataFrame with four rows:

However, there's a small glitch. We assumed that all the ratings indicate a strong
preference, but in this case, many of Acton's ratings are rather an indication of a dislike.
With the exception of Captain America: Civil War (2016), all the possible
recommendations have bad ratings. Luckily, that is easy to fix—we just need to recommend
movies that have a high rating, let's say, of at least 7:

julia> annies_recommendations = acton_and_annie[(acton_and_annie[:Annie]
.== 0) .&(acton_and_annie[:Acton] .>= 7), :]

This leaves us with only one movie, Captain America: Civil War (2016):

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[387]

Now that we understand the logic of user-based recommender systems, let's put all of these
steps together to create a simple recommender script.

We'll analyze our users' rating matrix in a script that will take advantage of all the available
data to generate recommendations for all of our users.

Here's a possible implementation—please create a
user_based_movie_recommendations.jl file with the following code. Do make sure
that the top_10_movies_user_rankings.tsv file is in the same folder (or update the
path in the code to match your location). Here's the code:

using CSV, DataFrames, Statistics

const minimum_similarity = 0.8
const movies = CSV.read("top_10_movies_user_rankings.tsv", delim = '\t')

function user_similarity(target_user)
 similarity = Dict{Symbol,Float64}()
 for user in names(movies[:, 2:end])
 user == target_user && continue
 ratings = movies[:, [user, target_user]]
 common_movies = ratings[(ratings[user] .> 0) .&
(ratings[target_user] .> 0), :]
 correlation = try
 cor(common_movies[user], common_movies[target_user])
 catch
 0.0
 end
 similarity[user] = correlation
 end
 similarity
end

function recommendations(target_user)
 recommended = Dict{String,Float64}()
 for (user,similarity) in user_similarity(target_user)
 similarity > minimum_similarity || continue
 ratings = movies[:, [Symbol("Movie title"), user, target_user]]
 recommended_movies = ratings[(ratings[user] .>= 7) .&
(ratings[target_user] .== 0), :]
 for movie in eachrow(recommended_movies)
 recommended[movie[Symbol("Movie title")]] = movie[user] *
similarity
 end
 end
 recommended
end

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[388]

for user in names(movies)[2:end]
 println("Recommendations for $user: $(recommendations(user))")
end

In the preceding snippet, we define two functions, user_similarity and
recommendations. They both take, as their single argument, a user's name in the form of a
Symbol. This argument matches the column name in our movies DataFrame.

The user_similarity function computes the similarity of our target user (the one passed
into the function as the argument) with all the other users and returns a dictionary of the
form:

Dict(
 :Comey => 1.0,
 :Dean => 0.907841,
 :Missie => NaN,
 :Kit => 0.774597,
 :Musk => 0.797512,
 :Sam => 0.0,
 :Acton => 0.632456
)

The dict represents Annie's similarity with all the other users.

We use the similarities in the recommendations function to pick the relevant users and
make recommendations based on their favorite movies, which were not already rated by
our target user.

I've also added a little twist to make the recommendations more relevant—a weight factor.
This is computed by multiplying the user's rating with the user's similarity. If, say, Comey
gives a movie an 8 and is 100% similar to Missie (correlation coefficient equals 1), the
weight of the recommendation will also be 8 (8 * 1). But if Comey is only 50% similar to
Musk (0.5 correlation coefficient), then the weight of the recommendation (corresponding
to the estimated rating) will be just 4 (8 * 0.5).

At the end of the file, we bootstrap the whole process by looping through an array of all the
users, and we produce and print the movie recommendations for each of them.

Running this will output movie recommendations, together with their weights for each of
our users:

Recommendations for Acton: Dict("Moonlight (2016)"=>9.0)
Recommendations for Annie: Dict("La La Land (2016)"=>8.0)
Recommendations for Comey: Dict("The Jungle Book (2016)"=>7.0,"Moana
(2016)"=>7.0,"Moonlight (2016)"=>9.0)
Recommendations for Dean: Dict("Moana (2016)"=>10.0,"Zootopia

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[389]

(2016)"=>10.0)
Recommendations for Kit: Dict("Hell or High Water (2016)"=>10.0,"Arrival
(2016)"=>10.0,"La La Land (2016)"=>9.0,"Moonlight (2016)"=>10.0,"Manchester
by the Sea (2016)"=>8.0)
Recommendations for Missie: Dict("The Jungle Book (2016)"=>8.0,
"Moana (2016)"=>8.0, "La La Land (2016)"=>8.0,"Captain America: Civil War
(2016)"=>10.0,"Finding Dory (2016)"=>7.0,"Zootopia (2016)"=>9.0)
Recommendations for Musk: Dict{String,Float64}()
Recommendations for Sam: Dict("Hell or High Water (2016)"=>10.0,
"La La Land (2016)"=>9.0,"Moonlight (2016)"=>10.0,"Zootopia
(2016)"=>7.0,"Manchester by the Sea (2016)"=>8.0)

The data looks quite good, considering that this is a toy example. A production quality
recommender system should be based on millions of such ratings.

However, if you look closely, you might notice that something's not quite right—the
Recommendations for Kit. Kit likes kids movies—light-hearted animated comedies.
Our system recommends him, with quite a lot of weight, a lot of dramas! What gives? If we
look at the similarity data for Kit, we'll see that he's very well correlated with Dean and
Dean likes drama. That might sound weird, but it's actually correct if we check the data:

julia> movies[:, [Symbol("Movie title"), :Dean, :Kit]]

The output is as follows:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[390]

Notice how the only movies they both watched are The Jungle Book (2016) and
Finding Dory (2016), and how the ratings are correlated since both give higher ratings
to Finding Dory (2016). Therefore, there is a strong positive correlation between Dean
and Kit. But what our algorithm doesn't take into account is that even if Dean likes
Finding Dory (2016) more than The Jungle Book (2016), he still doesn't really like
either, as indicated by the low ratings of 4 and 2, respectively.

The solution is quite simple, though—we just need to remove ratings that don't indicate a
strong positive preference. Again, we can use a rating equal to or larger than 7 to count as a
like. So, in the user_similarity function, please look for the following line:

common_movies = ratings[(ratings[user] .> 0) .& (ratings[target_user] .>
0), :]

Replace ratings[user] .> 0 with ratings[user] .> 7 so that the whole line now
reads as follows:

common_movies = ratings[Array(ratings[user] .> 7) .&
Array(ratings[target_user] .> 0), :]

What this does is now compute similarity only based on favorites. As a result, Kit is no
longer similar to Dean (the correlation coefficient is 0).

Another consequence of the fact that our recommendations are more targeted is that we no
longer have recommendations for all the users—but this is, again, caused by the fact that
we're working with a very small example dataset. Here are the final recommendations:

Recommendations for Acton: Dict("Moonlight (2016)"=>9.0)
Recommendations for Annie: Dict{String,Float64}()
Recommendations for Comey: Dict(
"Moana (2016)"=>9.0,
"Moonlight (2016)"=>9.0)
Recommendations for Dean: Dict(
"Moana (2016)"=>8.0,
"Zootopia (2016)"=>9.0)
Recommendations for Kit: Dict{String,Float64}()
Recommendations for Missie: Dict{String,Float64}()
Recommendations for Musk: Dict{String,Float64}()
Recommendations for Sam: Dict{String,Float64}()

We only have suggestions for Acton, Comey, and Dean, but they are now much more
accurate.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[391]

Item-item CF
User-based CF works quite well and is widely used in production in the wild, but it does
have a few considerable downsides. First, it's difficult to get enough preference information
from users, leaving many of them without a solid base for relevant recommendations.
Second, as the platform and the underlying business grows, the number of users will grow
much faster than the number of items. Netflix, for example, to keep the discussion in the
familiar area of movies, grows its user base massively by expanding into new countries,
while the production of movies stays pretty much the same on a yearly basis. Finally, the
user's data does change quite a lot, so the rating matrix would have to be updated often,
which is a resource-intensive and time-consuming process.

These problems became painfully obvious at Amazon, some 10 years ago. They realized
that since the number of products grows at a much slower rate than the number of users,
instead of computing user similarity, they could compute item similarity and make
recommendations stemming from the list of related items.

The following diagram should help you understand the difference between item-based (or
item-item) and user-based (or user-item) CF:

The preceding diagram shows that Annie purchased A, B, and E, Bob purchased A, B, and
D, and Charley purchased A and C. The purchasing behavior of Annie and Bob will
indicate a correlation between A and B, and since Charley already purchased A but not B,
we can recommend Charley to take a look at B.

From an implementation perspective, there are similarities to user-item CF, but it is more
involved as it includes an extra layer of analysis. Let's try this out with our imaginary
movie rankings. Let's create a new file called item_based_recommendations.jl to host
our code.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[392]

Here is the complete implementation:

using CSV, DataFrames, DelimitedFiles, Statistics

const minimum_similarity = 0.8

function setup_data()
 movies = readdlm("top_10_movies_user_rankings.tsv", '\t')
 movies = permutedims(movies, (2,1))
 movies = convert(DataFrame, movies)
 names = convert(Array, movies[1, :])[1,:]
 names!(movies, [Symbol(name) for name in names])
 deleterows!(movies, 1)
 rename!(movies, [Symbol("Movie title") => :User])
end

function movie_similarity(target_movie)
 similarity = Dict{Symbol,Float64}()
 for movie in names(movies[:, 2:end])
 movie == target_movie && continue
 ratings = movies[:, [movie, target_movie]]
 common_users = ratings[(ratings[movie] .>= 0) .&
(ratings[target_movie] .> 0), :]
 correlation = try
 cor(common_users[movie], common_users[target_movie])
 catch
 0.0
 end

 similarity[movie] = correlation
 end

 # println("The movie $target_movie is similar to $similarity")
 similarity
end

function recommendations(target_movie)
 recommended = Dict{String,Vector{Tuple{String,Float64}}}()
 # @show target_movie
 # @show movie_similarity(target_movie)

 for (movie, similarity) in movie_similarity(target_movie)
 movie == target_movie && continue
 similarity > minimum_similarity || continue
 # println("Checking to which users we can recommend $movie")
 recommended["$movie"] = Vector{Tuple{String,Float64}}()

 for user_row in eachrow(movies)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[393]

 if user_row[target_movie] >= 5
 # println("$(user_row[:User]) has watched $target_movie so
we can recommend similar movies")
 if user_row[movie] == 0
 # println("$(user_row[:User]) has not watched $movie so
we can recommend it")
 # println("Recommending $(user_row[:User]) the movie
$movie")
 push!(recommended["$movie"], (user_row[:User],
user_row[target_movie] * similarity))
 end
 end
 end
 end

 recommended
end

const movies = setup_data()
println("Recommendations for users that watched Finding Dory (2016):
$(recommendations(Symbol("Finding Dory (2016)")))")

To keep the code simpler, we're only generating recommendations for a single movie—but
it should be relatively simple to extend it to come up with recommendations for each movie
in our list (you can try this as an exercise). We'll only suggest similar movies to the users
that have watched Finding Dory (2016).

Let's take it apart and see how the script works.

As you can see, I've added some println and @show calls that output
extra debug information—they're commented out, but feel free to
uncomment them when running the file to help you better understand
what each section does and what the workflow of the code is.

Setting up our data matrix is more difficult now. We need to transpose our initial dataset,
that is, rotate it. The setup_data function is dedicated to this task alone—loading the data
file, transposing the matrix, and setting up the data into a DataFrame. It's a proper extract,
transform, load (ETL) process in just a few lines of code, which is pretty cool! Let's look at
this closely—it's quite a common day-to-day data science task.

In the first line of the function, we load the data into a Julia matrix. The readdlm function is
not as powerful as DataFrames, so it has no knowledge of headers, gobbling everything
into an Array:

julia> movies = readdlm("top_10_movies_user_rankings.tsv", '\t')

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[394]

We'll end up with the following matrix:

As we can see, the headings are mixed with the actual data.

Now, we need to transpose the matrix. Unfortunately, transposing doesn't work smoothly
for all kinds of matrices in Julia yet, and the recommended way is to do this via
permutedims:

julia> movies = permutedims(movies, (2,1))

The output is as follows:

We're getting closer!

Next, we convert it into a DataFrame:

julia> movies = convert(DataFrame, movies)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[395]

The output is as follows:

If you run the previous code yourself, you might notice that the REPL will
omit some of the DataFrame columns, since the output is too wide. To get
Julia to display all the columns, like in this snippet, you can use the
showall function, as in showall(movies).

It looks good, but we need to give the columns proper names, using the data that is now on
the first row. Let's extract all the columns names into a Vector:

julia> movie_names = convert(Array, movies[1, :])[1,:]
11-element Array{Any,1}:
 "Movie title"
 "Moonlight (2016)"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[396]

 "Zootopia (2016)"
 "Arrival (2016)"
 "Hell or High Water (2016)"
 "La La Land (2016)"
 "The Jungle Book (2016)"
 "Manchester by the Sea (2016)"
 "Finding Dory (2016)"
 "Captain America: Civil War (2016)"
 "Moana (2016)"

Now, we can use it to name the columns:

julia> names!(movies, [Symbol(name) for name in movie_names])

The output is as follows:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[397]

Our DataFrame looks better already. The only things left to do are to remove the extra row
with the headers and change the Movie title header to User:

julia> deleterows!(movies, 1) julia> rename!(movies, Symbol("Movie title")
=> :User)

The output is as follows:

All done—our ETL process is complete!

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[398]

We start our recommender by invoking the recommendations function, passing in the
name of the movie, Finding Dory (2016), as a Symbol. The first thing this function does
is invoke the movie_similarity function, which computes which other movies are
similar to Finding Dory (2016) based on the users' ratings. For our target movie, we'll
get the following results:

Dict(
Symbol("La La Land (2016)")=>-0.927374,
Symbol("Captain America: Civil War (2016)")=>-0.584176,
Symbol("The Jungle Book (2016)")=>0.877386,
Symbol("Manchester by the Sea (2016)")=>-0.785933,
Symbol("Arrival (2016)")=>-0.927809,
Symbol("Zootopia (2016)")=>0.826331,
Symbol("Moonlight (2016)")=>-0.589269,
Symbol("Hell or High Water (2016)")=>-0.840462,
Symbol("Moana (2016)")=>0.933598
)

We can see here that there's an almost perfect negative correlation with La La Land
(2016) (so users that like La La Land (2016) do not like Finding Dory (2016)).
There is also a very strong positive correlation with The Jungle Book (2016), Zootopia
(2016), and Moana (2016), which makes sense, since they're all animations.

Here is where the logic gets a bit more complicated. Now, we have a list of movies that are
similar to Finding Dory (2016). To make recommendations, we want to look at all the
users that have watched Finding Dory (2016) (and gave it a good enough rating), and
suggest similar movies that they haven't watched yet (movies that have a rating of 0). This
time, we'll be using a minimum rating of 5 instead of the previous 7, since given our very
limited dataset, 7 would be too restrictive and would yield no recommendations. We'll
compute the weight of the suggestions as the product between the user's rating of Finding
Dory (2016) and the correlation coefficient between Finding Dory (2016) and the
recommended movie. Makes sense? Let's see it in action!

If we run the script, we get the following output:

Recommendations for users that watched Finding Dory (2016):
Dict(
 "The Jungle Book (2016)"=> Tuple{String,Float64}[("Comey", 4.38693)],
 "Moana (2016)"=> Tuple{String,Float64}[("Comey", 4.66799)],
 "Zootopia (2016)"=> Tuple{String,Float64}[]
)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Recommender Systems with Julia Chapter 15

[399]

The only user that would be (kind of) interested in watching movies similar to Finding
Dory (2016) in our small dataset is Comey—but the recommendations won't be great. The
algorithm estimates a weight (and thus, a rating) of 4.38693 for The Jungle Book
(2016) and 4.66799 for Moana (2016).

Summary
This concludes the first part of our journey into recommender systems. They are an
extremely important part of today's online business models and their usefulness is ever-
growing, in direct relation to the exponential growth of data generated by our connected
software and hardware. Recommender systems are a very efficient solution to the
information overload problem—or rather, an information filter problem. Recommenders
provide a level of filtering that's appropriate for each user, turning information, yet again,
into a vector of customer empowerment.

Although it's critical to understand how the various types of recommender systems work,
in order to be able to choose the right algorithm for the types of problems you'll solve in
your work as a data scientist, implementing production-grade systems by hand is not
something most people do. As with almost everything in the realm of software
development, it's best to use stable, powerful, and mature existing libraries when they're
available.

In the next chapter, we'll learn how to build a more powerful recommender system using
existing Julia libraries. We'll generate recommendations for a dating site, taking advantage
of publicly available and anonymized dating data. In the process, we'll learn about yet
another type of recommender system, called model-based (as a side note, all of the
algorithms that were discussed in this chapter were memory-based, but don't worry—I'll
explain everything in a minute).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

16
Machine Learning for

Recommender Systems
I hope that you are now excited about the amazing possibilities offered by the
recommender systems that we've built. The techniques we've learned will provide you with
a tremendous amount of data-taming prowess and practical abilities that you can already
apply in your projects.

However, there is more to recommendation systems than that. Due to their large-scale
applications in recent years, as an efficient solution to the information overload caused by
the abundance of offerings on online platforms, recommenders have received a lot of
attention, with new algorithms being developed at a rapid pace. In fact, all the algorithms
that we studied in the previous chapter are part of a single category, called memory-based
recommenders. Besides these, there's another very important class or recommender, which
is known as model-based.

In this chapter, we'll learn about them. We will discuss the following topics:

Memory-based versus model-based recommendation systems
Data processing for training a model-based recommender
Building a model-based recommender
Hybrid recommendation systems

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[401]

Technical requirements
The Julia package ecosystem is under continuous development and new package versions
are released on a daily basis. Most of the times this is great news, as new releases bring new
features and bug fixes. However, since many of the packages are still in beta (version 0.x),
any new release can introduce breaking changes. As a result, the code presented in the
book can stop working. In order to ensure that your code will produce the same results as
described in the book, it is recommended to use the same package versions. Here are the
external packages used in this chapter and their specific versions:

CSV@v.0.4.3
DataFrames@v0.15.2
Gadfly@v1.0.1
IJulia@v1.14.1
Recommendation@v0.1.0+

In order to install a specific version of a package you need to run:

pkg> add PackageName@vX.Y.Z

For example:

pkg> add IJulia@v1.14.1

Alternatively you can install all the used packages by downloading the Project.toml file
provided with the chapter and using pkg> instantiate as follows:

julia>
download("https://github.com/TrainingByPackt/Julia-1-Programming-Complete-R
eference-Guide/tree/master/Chapter16/Project.toml", "Project.toml")
pkg> activate .
pkg> instantiate

Comparing the memory-based versus
model-based recommenders
It is important to understand the strengths and weaknesses of both memory-based and
model-based recommenders so that we can make the right choice according to the available
data and the business requirements. As we saw in the previous chapter, we can classify
recommender systems according to the data they are using and the algorithms that are
employed.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[402]

First, we can talk about non-personalized versus personalized recommenders. Non-
personalized recommenders do not take into account user preferences, but that doesn't
make them less useful. They are successfully employed when the relevant data is missing,
for example, for a user that is new to the system or just not logged in. Such
recommendations can include the best apps of the week on the Apple App Store, trending
movies on Netflix, songs of the day on Spotify, NY Times bestsellers, Billboard Top 10, and
so on.

Moving on to personalized recommender systems, these can be further split into content-
based and collaborative system. A content-based system makes recommendations by
matching an item, specifications. A famous example of this category is Pandora and its
Music Genome Project. The Music Genome Project, which powers Pandora, is the most
comprehensive analysis of music ever undertaken. They worked with trained musicologists
who listened to music across all genres and decades, studying and collecting musical
details on every track—450 musical attributes altogether. Pandora makes recommendations
by picking other songs from its catalog that closely match the features (features is data-
science language for attributes, properties, or tags) of the tracks that the user previously
liked.

As for collaborative filtering, the idea behind it is that we can identify a metric that
correctly reflects a user's tastes and then exploit it in combination with a dataset of other
users, whose preferences were already collected. The underlying supposition is that if we
have a pool of users that enjoy many of the same things, we can recommend to one of them
some items from another's user list, which were not yet discovered by the targeted user.
Any item in the list of options that is not part of the targeted user's list can readily be
offered as a recommendation because similar preferences will lead to other similar choices.

This specific type of collaborative filtering was named user-based since the primary focus
of the algorithm is the similarity between the target user and other users.

Another variation of the collaborative algorithm is item-based filtering. The main
difference between this and user-based filtering is that the focus is on similar items. Which
approach is the best depends on the specific use case—item-based recommendations are
more efficient when the product catalog is considerably smaller and changes less often than
the number of users and their preferences.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[403]

The last of the commonly accepted typologies divides the recommender systems into
memory-based and model-based. Memory-based refers to the fact that the system requires
the whole dataset to be loaded into working memory (the RAM). The algorithms rely on
mapping to and from memory to consequently calculate the similarity between two users
or items, and produce a prediction for the user by taking the weighted average of all the
ratings. A few ways of computing the correlation can be used, such as Pearson's r. There are
certain advantages to this approach, like the simplicity of the implementation, the easy
facilitation of new data, or the fact that the results can be easily explained. But,
unsurprisingly, it does come with significant performance downsides, creating problems
when the data is sparse and the datasets are large.

Because of the limitations of the memory-based recommender systems, alternative
solutions were needed, mainly driven by the continuous growth of online businesses and
their underlying data. These were characterized by large volumes of users and an
increasing number of products. The most famous example is Netflix's one million dollar
competition—in 2006, Netflix offered a one million dollar prize to the individual or team
that could improve their existing recommendations algorithm, called Cinematch, by at
least 10%. It took three years for this feat to be achieved, and it was done by a joint team of
initial competitors, who ultimately decided to join forces to grab the prize.

Learning about the model-based approach
This innovative approach to recommender systems was named model-based, and it made
extensive use of matrix factorization techniques. In this approach, models are developed
using different machine learning algorithms to predict a user's ratings. In a way, the model-
based approach can be seen as a complementary technique to improve memory-based
recommendations. They address the matrix sparsity problem by guessing how much a user
will like a new item. Machine learning algorithms are used to train on the existing vector of
ratings of a specific user, and then build a model that can predict the user's score for an
item that the user hasn't tried yet. Popular model-based techniques are Bayesian Networks,
singular value decomposition (SVD), and Probabilistic Latent Semantic Analysis (PLSA)
or Probabilistic Latent Semantic Indexing (PLSI).

There are a number of popular approaches for building the models:

Probability: Making a recommendation is framed as a problem of predicting the
probability of a rating being of a particular value. Bayesian networks are often
used with this implementation.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[404]

Enhanced memory-based: This uses a model to represent the similarities
between users or items and then predicts the ratings. The Netflix prize-winning
ALS-WR algorithm represents this type of implementation.
Linear algebra: Finally, recommendations can be made by performing linear
algebra operations on the matrices of users and ratings. A commonly used
algorithm is SVD.

In the following sections, we'll implement a model-based recommender. We'll use a third-
party Julia package and code our business logic around it.

Understanding our data
To get conclusive results from our Machine Learning (ML) models, we need data—and
plenty of it. There are many open source datasets available online. Kaggle, for example,
provides a large collection of high quality and anonymized data dumps that can be used for
training and experimenting, and is available for download at
https://www.kaggle.com/datasets. Another famous data repository is provided by
FiveThirtyEight, at https://github.com/fivethirtyeight/data. Buzzfeed also makes a
large treasure of data public at https://github.com/BuzzFeedNews.

For our project, we'll create a book recommendation system. We'll use the Book-Crossing
Dataset, which is available for download at
http://www2.informatik.uni-freiburg.de/~cziegler/BX/. This data was collected
during the months of August and September 2004, under permission, from the Book-
Crossing community (https://www.bookcrossing.com/). It includes over 1.1 million book
ratings, for more than 270,000 books, from 278,000 users. The user data is anonymized, but
still includes demographic information (location and age, where available). We'll use this
data to train our recommendation system and then ask it for interesting new books for our
users.

A first look at the data
The dataset is composed of three tables—one for users, one for books, and one for ratings.
The BX-Users table contains the users' data. The User-ID is a sequential integer value, as
the original user ID has been anonymized. The Location and Age columns contain the
corresponding demographic information. This is not available for all the users and in these
cases, we'll encounter the NULL value (as the NULL string).

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.kaggle.com/datasets
https://github.com/fivethirtyeight/data
https://github.com/BuzzFeedNews
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
https://www.bookcrossing.com/

Machine Learning for Recommender Systems Chapter 16

[405]

The BX-Books table stores the information about the books. For the unique identifier, we
have the standard ISBN book code. Besides this, we are also provided with the book's title
(the Book-Title column), author (Book-Author), publishing year (Year-of-
Publication), and the publisher (Publisher). URLs of thumbnail cover images are also
provided, corresponding to three sizes—small (Image-URL-S), medium (Image-URL-M),
and large (Image-URL-L).

Finally, the BX-Book-Ratings table contains the actual ratings. The table has a simple
structure, with three columns—User-ID, for the user making the rating; the ISBN of the
book; and Book-Rating, which is the score. The ratings are expressed on a scale from 1 to
10, where higher is better. The value 0 signifies an implicit rating.

This dataset is available in SQL and CSV formats, packaged as ZIP archives. Please
download the CSV version from
http://www2.informatik.uni-freiburg.de/~cziegler/BX/BX-CSV-Dump.zip.

Unzip the file somewhere on your computer.

Loading the data
Loading this dataset is going to be a bit more challenging, as we have to work with three
distinct files, and due to the particularities of the data itself. Here is the head of the BX-
Users.csv file, in a plain text editor:

We have to explicitly handle the following formatting particularities, which will otherwise
cause the import to fail:

The columns are separated by ; instead of the more customary comma or Tab
Missing values are represented by the string NULL
The first row is the header, representing the column names
The data is enclosed in double quotes " ", and double quotes within the data
itself are escaped by backslashes, for example, "1273";"valladolid,
\"n/a\", spain";"27"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www2.informatik.uni-freiburg.de/~cziegler/BX/BX-CSV-Dump.zip

Machine Learning for Recommender Systems Chapter 16

[406]

Fortunately, the CSV package provides additional options for passing in all of this
information when reading in the file:

julia> users = CSV.read("BX-Users.csv", header = 1, delim = ';',
missingstring = "NULL", escapechar = '\\')

It might take a bit of time to load the table, but eventually, we'll get the sweet taste of
success—278858 rows loaded into memory!

We'll use the same approach to load the books and rankings tables:

julia> books = CSV.read("BX-Books.csv", header = 1, delim = ';',
missingstring = "NULL", escapechar = '\\')
271379×8 DataFrames.DataFrame
output omitted

julia> books_ratings = CSV.read("BX-Book-Ratings.csv", header = 1, delim =
';', missingstring = "NULL", escapechar = '\\')
1149780×3 DataFrames.DataFrame
output omitted

Excellent! We now have all three tables loaded into memory as DataFrames.

Handling missing data
In data science, missing values occur when no data value is stored for a field in a record—in
other words, when we don't have a value for a column in a row. It is a common scenario,
but nonetheless, it can have a significant negative effect on the usefulness of the data, so it
needs to be explicitly handled.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[407]

The approach in DataFrames is to mark the missing value by using the Missing type. The
default behavior is the propagation of the missing values, thus poisoning the data operations
that involve missing—that is, operations involving valid input, and missing will return
missing or fail. Hence, in most cases, the missing values need to be addressed in the
data-cleaning phase.

The most common techniques for handling missing values are as follows:

Deletion: The rows containing the missing variables are deleted (also called
listwise deletion). The downside of this approach is that it leads to loss of
information. However, if we have plenty of data and not many incomplete
records (say, under 10%), this is the simplest approach and the most commonly
used.
Imputation: The missing values are inferred using some technique, usually
mean, median, or mode. However, you need to be careful, as this artificially
reduces the variation of the dataset. As an alternative, a predictive model could
be used to infer the missing value by applying statistical methods.

You can read more about Julia's treatment of missing values in the
documentation at
https://docs.julialang.org/en/v1.0/manual/missing/, while a more
advanced discussion of the theoretical aspects of handling missing data
can be found at https:/ / datascience. ibm. com/blog/ missing- data-
conundrum- exploration- and- imputation- techniques/ .

Data analysis and preparation
Let's get a feel of the data, starting with the users:

julia> using DataFrames
julia> describe(users, stats = [:min, :max, :nmissing, :nunique, :eltype])

The output is as follows:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.julialang.org/en/v1.0/manual/missing/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/
https://datascience.ibm.com/blog/missing-data-conundrum-exploration-and-imputation-techniques/

Machine Learning for Recommender Systems Chapter 16

[408]

We chose a few key stats—the minimum and maximum values, the number of missing and
unique values, and the type of data. Unsurprisingly, the User-ID column, which is the
table's primary key, starts at 1 and goes all the way up to 278858 with no missing values.
However, the Age column shows a clear sign of data errors—the maximum age is 244
years! Let's see what we have there by plotting the data with Gadfly:

julia> using Gadfly
julia> plot(users, x = :Age, Geom.histogram(bincount = 15))

The output is as follows:

We rendered a histogram of the ages, splitting the data into 15 intervals. We have some
outliers indicating incorrect ages, but most of the data is distributed within the expected
range, up to 80-90 years old. Since anything after 100 years old is highly unlikely to be
correct, let's get rid of it. The simplest way is to filter out all the rows where the age is
greater than 100:

julia> users = users[users[:Age] .< 100, :]
ERROR: ArgumentError: unable to check bounds for indices of type Missing

Oops! Our Age column has missing values that cannot be compared. We could remove
these as well, but in this case, the missing age seems to be more of a symptom of the user
not disclosing the information, rather than a data error. Therefore, I'm more inclined to
keep the rows while replacing the missing data with valid values. The question is, what
values? Imputation using the mean seems like a good option. Let's compute it:

julia> using Statistics

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[409]

julia> mean(skipmissing(users[:Age]))
34.75143370454978

We used the skipmissing function to iterate over all the non-missing Age values and
compute the mean. Now, we can use this in conjunction with coalesce to replace the
missing values:

julia> users[:Age] = coalesce.(users[:Age], mean(skipmissing(users[:Age])))
278858-element Array{Real,1}:
 34.75143370454978
 18
 34.75143370454978
 17
 34.75143370454978
output omitted

We are effectively replacing the Age column of the users DataFrame with a new array,
resulting from the application of coalesce to the same Age column. Please notice the dot
in the invocation of coalesce, indicating that it is applied element-wise.

Great—finally, we need to get rid of those erroneous ages:

julia> users = users[users[:Age] .< 100, :]
278485×3 DataFrame
 # output omitted #

julia> head(users)

The output is as follows:

Looking good!

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[410]

We're done with the users, so let's move on to the books data:

julia> describe(books, stats = [:nmissing, :nunique, :eltype])

The output is as follows:

The data looks much cleaner—first of all, there's no missing values. Then, looking at the
counts for nunique, we can tell that some of the books have identical titles and that there's
a considerable amount of authors that have published more than one book. Finally, the
books come from almost 17,000 publishers.

So far, so good, but let's take a look at the Year-Of-Publication:

julia> maximum(skipmissing(books[Symbol("Year-Of-Publication")]))
2050

julia> minimum(skipmissing(books[Symbol("Year-Of-Publication")]))
0

Something's not right here—we have some publishing years that don't make sense. Some
are too far in the past, while others are way in the future. I wonder what the distribution
looks like. Let's render another histogram:

julia> plot(books, x = Symbol("Year-Of-Publication"), Geom.histogram)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[411]

The output is as follows:

Most of the data seems to be correct, but there are some faulty outliers. We can take a look
at the values:

julia> unique(books[Symbol("Year-Of-Publication")]) |> sort
116-element Array{Union{Missing, Int64},1}:
 0
 1376
 1378
output omitted
 2037
 2038
 2050

At first sight, we can get rid of the rows that have the publishing year equal to 0. We can
also safely assume that all the rows where the publishing date is greater than the year when
the data was collected (2004) are also wrong, and so they can be removed. It's difficult to
say what to do about the rest, but still, it's hard to believe that people have ranked books
that were published in the Middle Ages. Let's just keep the books that were published
between 1970 and 2004:

julia> books = books[books[Symbol("Year-Of-Publication")] .>= 1970, :]
264071×8 DataFrame
output omitted

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[412]

julia> books = books[books[Symbol("Year-Of-Publication")] .<= 2004, :]
263999×8 DataFrame
output omitted

julia> plot(books, x = Symbol("Year-Of-Publication"), Geom.histogram)

The output is as follows:

This is much better and entirely plausible.

Finally, let's check the ratings:

julia> describe(books_ratings)

The output is as follows:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[413]

There's no missing values, which is great. The Book-Rating values are between 0 (implicit
rating) and 10, where 1 to 10 represent explicit ratings. The median of 0.0 is a bit of a
concern though, so let's take a look:

julia> plot(books_ratings, x = Symbol("Book-Rating"), Geom.histogram)

The output is as follows:

It turns out that most of the ratings are implicit, thus set to 0. These are not relevant to our
recommender, so let's get rid of them:

julia> books_ratings = books_ratings[books_ratings[Symbol("Book-Rating")]
.> 0, :]
433671×3 DataFrame
output omitted

julia> plot(books_ratings, x = Symbol("Book-Rating"), Geom.histogram)

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[414]

Here is the output:

We're doing great! There's one more step in our extract, transform, load (ETL)
process—let's put the three DataFrames together by joining them on the matching
columns, thus removing the various orphan entries (the ones that don't have corresponding
rows in all the other tables).

First, we'll join book ratings and books:

julia> books_ratings_books = join(books_ratings, books, on = :ISBN, kind =
:inner)
374896×10 DataFrame
output omitted

We're using the join method, indicating the two DataFrames we want to join, plus the
join column and the kind of join we want. An inner join requires that the result contains
rows for values of the key that exist in both the first and second DataFrame.

Now, let's join with the user's data:

julia> books_ratings_books_users = join(books_ratings_books, users, on =
Symbol("User-ID"), kind = :inner)
374120×12 DataFrame
output omitted

Our dataset now contains only the valid data, nicely packed in a single DataFrame.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[415]

As our ratings are on a scale between 1 and 10, not all of these ratings can be considered an
endorsement for the book. It's true that the vast majority of the rankings are above 5, but a
5 is still not good enough for a useful recommendation. Let's simplify our data a bit to
make the computations faster by assuming that any ranking starting with 8 represents a
positive review and would make for a strong recommendation. Therefore, we'll keep only
these rows and discard the rest:

julia> top_ratings =
books_ratings_books_users[books_ratings_books_users[Symbol("Book-Rating")]
.>= 8, :]
217991×12 DataFrame
output omitted

This is looking good, but it will look even better with just a small tweak to make the
column names more Julia-friendly:

julia> for n in names(top_ratings) rename!(top_ratings, n =>
Symbol(replace(string(n), "-"=>""))) end

We will iterate over each column name and remove the dashes. This way, we'll be able to
use the names without having to explicitly use the Symbol constructor every time. We'll
end up with the following names:

julia> names(top_ratings)
12-element Array{Symbol,1}:
 :UserID
 :ISBN
 :BookRating
 :BookTitle
 :BookAuthor
 :YearOfPublication
 :Publisher
 :ImageURLS
 :ImageURLM
 :ImageURLL
 :Location
 :Age

We're getting closer—the last step in our data processing workflow is to check the number
of reviews per user. The more reviews we have from a user, the better the preference profile
we can create, leading to more relevant and better quality recommendations. Basically, we
want to get a count of ratings, per user, and then get a count of each count (that is, how
many rating of ones, twos, threes, and so on, up to ten ratings we have):

julia> ratings_count = by(top_ratings, :UserID, df -> size(df[:UserID])[1])

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[416]

Here, we group the top_ratings data by UserID and use the size function as our
aggregation function, which returns a tuple of dimensions—out of which we retrieve just
its first dimension. We'll get the following result, where the x1 column contains the number
of ratings provided by the corresponding user:

The output is as follows:

Wondering what this data will reveal? Let's find out:

julia> describe(ratings_count)

Here is the output:

The minimum number of ratings is 1, while the most productive user has provided no less
than 5491, with a mean of around 5 reviews per user. Considering that the
recommendations for a user with less than 5 reviews would be pretty weak anyway, we're
better off removing the users without enough data:

julia> ratings_count = ratings_count[ratings_count[:x1] .>= 5, :]
7296×2 DataFrame
output omitted

We're only keeping the users that have at least 5 ratings. Let's see how the number of
ratings is distributed now:

julia> plot(ratings_count, x = :x1, Geom.histogram(maxbincount = 6))

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[417]

The output is as follows:

Looks like the vast majority of users have up to 1000 ratings. What about the outliers with
lots of reviews?

julia> ratings_count[ratings_count[:x1] .> 1000, :]

The output is as follows:

There's only 3 users. We'd better remove them so that they don't skew our results:

julia> ratings_count = ratings_count[ratings_count[:x1] .<= 1000, :]
7293×2 DataFrame
output omitted

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[418]

Now that we have the list of final users, the next step is to remove all the others from the
top_ratings DataFrame. Again, let's use an inner join—it's pretty straightforward:

julia> top_ratings = join(top_ratings, ratings_count, on = :UserID, kind =
:inner)
150888×13 DataFrame
output omitted

That's it, our data is ready. Great job!

If you want, you can save this data to file by using CSV.write:

julia> CSV.write("top_ratings.csv", top_ratings)

If you've had problems following along, don't worry. In a few paragraphs,
I'll explain how you can load a ready-made dataset, which is provided in
this chapter's support files.

Training our data models
Machine learning can be divided into four main types, depending on the methodology and
the type of data that is used:

Supervised
Unsupervised
Semi-supervised
Reinforcement

In supervised learning, we start with a dataset that contains training (or teaching) data,
where each record is labeled, representing both input (let's call it X), and output values
(named Y). Then, the algorithm's job is to identify a function f from input to output, so that
Y = f(X). Once this function is identified, it can be used on new data (that is, new inputs that
are not labeled) to predict the output. Depending on the type of output that needs to be
computed, if the output has to be assigned to a certain class of entities (as in, it represents
categorical data), then a classification algorithm will be used. Alternatively, if the type of
output is a numeric value, we'll be dealing with a regression problem.

With unsupervised machine learning, we have the inputs, but not the outputs. In such a
scenario, once we use the learning dataset to train our system, the main goal will be data
clustering, that is, generating different clusters of inputs and being able to assign new data
to the most appropriate cluster.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[419]

Semi-supervised, as the name suggests, represents a mixture of the two previously
described approaches, both of which are applicable when our data contains both labeled
and unlabeled records.

In reinforcement learning, the algorithm is informed about the success of its previous
decisions. Based on this, the algorithm modifies its strategy in order to maximize the
outcome.

Depending on the learning style and the specific problem that's meant to be solved, there
are a multitude of algorithms that can be applied. For supervised learning, we can use
regression (linear or logistic), decision trees, or neural networks, to name just a few. With
unsupervised learning, we could choose k-means clustering or Apriori algorithms.

Since our data is tagged (we have the rating for each user), we are dealing with a
supervised machine learning problem. For our test case, since our data is represented as a
matrix, we'll employ an algorithm called Matrix Factorization (MF).

You can read more about the various types of ML algorithms and how to
choose them at the following links:
https://docs.microsoft.com/en-us/azure/machine-learning/studio/a
lgorithm-choice
https://blog.statsbot.co/machine-learning-algorithms-183cc73197c
https://elitedatascience.com/machine-learning-algorithms
https://machinelearningmastery.com/a-tour-of-machine-learning-al
gorithms/

Scaling down our dataset
Training machine learning models at scale usually requires (lots of) powerful computers
and plenty of time. If you have neither of these while reading this book, I have prepared a
smaller dataset so that you can go through our project.

Training the recommender on the full top_ratings data took over 24 hours on my quad-
core, 16 GB RAM laptop. If you're so inclined, feel free to try it. It is also available for
download at https:/ /github. com/ TrainingByPackt/ Julia- 1- Programming- Complete-
Reference-Guide/ blob/ master/ Chapter16/ data/ large/ top_ ratings. csv. zip? raw= true.

However, if you'd like to follow through the code while reading this chapter, please
download the top_ratings.csv file that's provided with this chapter's support files
at https://github. com/ TrainingByPackt/ Julia- 1- Programming- Complete- Reference-
Guide/tree/master/ Chapter16/ data/ top_ ratings. csv. I will be using the data from this
smaller file for the remainder of this chapter.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/azure/machine-learning/studio/algorithm-choice
https://docs.microsoft.com/en-us/azure/machine-learning/studio/algorithm-choice
https://blog.statsbot.co/machine-learning-algorithms-183cc73197c
https://elitedatascience.com/machine-learning-algorithms
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/blob/master/Chapter16/data/large/top_ratings.csv.zip?raw=true
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/top_ratings.csv

Machine Learning for Recommender Systems Chapter 16

[420]

Once you've downloaded the file, you can load its content into the top_ratings variable
by using the CSV.read function:

julia> top_ratings = CSV.read("top_ratings.csv")
11061×13 DataFrame
output omitted

Training versus testing data
A common strategy in machine learning implementations is to split the data into training
(some 80-90%) and testing (the remaining 10-20%) datasets. First, we'll initialize two empty
DataFrames to store this data:

julia> training_data = DataFrame(UserID = Int[], ISBN = String[], Rating =
Int[])
0×3 DataFrame

julia> test_data = DataFrame(UserID = Int[], ISBN = String[], Rating =
Int[])
0×3 DataFrame

Next, we'll iterate through our top_ratings and put the contents into the corresponding
DataFrame. We'll go with 10% of data for testing—so with each iteration, we'll generate a
random integer between 1 and 10. The chances of getting a 10 are, obviously, one in ten, so
when we get it, we put the corresponding row into the test dataset. Otherwise, it goes into
the training one, as follows:

julia> for row in eachrow(top_ratings)
 rand(1:10) == 10 ?
 push!(test_data, convert(Array, row[[:UserID, :ISBN, :BookRating]])) :
 push!(training_data, convert(Array, row[[:UserID, :ISBN, :BookRating]]))
 end

There's no canonical way for pushing a DataFrameRow onto another DataFrame, so we're
using one of the recommended approaches, which is to convert the row into an Array and
push! it to the DataFrame. Our training and testing datasets are now ready.

For me, they look like this, but since the data was generated randomly, it will be different
for you:

julia> test_data
1056×3 DataFrame
 # output omitted #

julia> training_data

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[421]

10005×3 DataFrame
output omitted

If you prefer for us to work with the same datasets, you can download the data dump from
this chapter's support files (available at https:/ /github. com/ TrainingByPackt/ Julia- 1-
Programming-Complete- Reference- Guide/ tree/ master/ Chapter16/ data/ training_ data.
csv and https:// github. com/ TrainingByPackt/ Julia- 1-Programming- Complete-
Reference-Guide/ tree/ master/ Chapter16/ data/ test_ data. csv, respectively) and read
them in as follows:

julia> test_data = CSV.read("data/test_data.csv")
julia> training_data = CSV.read("data/training_data.csv")

Machine learning-based recommendations
Julia's ecosystem provides access to Recommendation.jl, a package that implements a
multitude of algorithms for both personalized and non-personalized recommendations. For
model-based recommenders, it has support for SVD, MF, and content-based
recommendations using TF-IDF scoring algorithms.

There's also another very good alternative—the ScikitLearn.jl package
(https://github.com/cstjean/ScikitLearn.jl). This implements Python's very popular
scikit-learn interface and algorithms in Julia, supporting both models from the Julia
ecosystem and those of the scikit-learn library (via PyCall.jl). The Scikit website and
documentation can be found at http://scikit-learn.org/stable/. It is very powerful and
definitely worth keeping in mind, especially for building highly efficient recommenders for
production usage. For learning purposes, we'll stick to Recommendation, as it provides for
a simpler implementation.

Making recommendations with Recommendation
For our learning example, we'll use Recommendation. It is the simplest of the available
options, and it's a good teaching device, as it will allow us to further experiment with its
plug-and-play algorithms and configurable model generators.

Before we can do anything interesting, though, we need to make sure that we have the
package installed:

 pkg> add Recommendation#master
 julia> using Recommendation

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/training_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/TrainingByPackt/Julia-1-Programming-Complete-Reference-Guide/tree/master/Chapter16/data/test_data.csv
https://github.com/cstjean/ScikitLearn.jl
http://scikit-learn.org/stable/

Machine Learning for Recommender Systems Chapter 16

[422]

Please note that I'm using the #master version, because the tagged
version, at the time of writing this book, was not yet fully updated for
Julia 1.0.

The workflow for setting up a recommender with Recommendation involves three steps:

Setting up the training data1.

Instantiating and training a recommender using one of the available algorithms2.

Once the training is complete, asking for recommendations3.

Let's implement these steps.

Setting up the training data
Recommendation uses a DataAccessor object to set up the training data. This can be
instantiated with a set of Event objects. A Recommendation.Event is an object that
represents a user-item interaction. It is defined like this:

struct Event
 user::Int
 item::Int
 value::Float64
end

In our case, the user field will represent the UserID, the item field will map to the ISBN,
and the value field will store the Rating. However, a bit more work is needed to bring our
data in the format required by Recommendation:

First of all, our ISBN data is stored as a string and not as an integer.1.
Second, internally, Recommendation builds a sparse matrix of user * item and2.
stores the corresponding values, setting up the matrix using sequential IDs.
However, our actual user IDs are large numbers, and Recommendation will set
up a very large, sparse matrix, going all the way from the minimum to the
maximum user IDs.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[423]

What this means is that, for example, we only have 69 users in our dataset (as confirmed by
unique(training_data[:UserID]) |> size), with the largest ID being 277,427, while
for books we have 9,055 unique ISBNs. If we go with this, Recommendation will create a
277,427 x 9,055 matrix instead of a 69 x 9,055 matrix. This matrix would be very large,
sparse, and inefficient.

Therefore, we'll need to do a bit more data processing to map the original user IDs and the
ISBNs to sequential integer IDs, starting from 1.

We'll use two Dict objects that will store the mappings from the UserID and ISBN
columns to the recommender's sequential user and book IDs. Each entry will be of the form
dict[original_id] = sequential_id:

julia> user_mappings, book_mappings = Dict{Int,Int}(), Dict{String,Int}()

We'll also need two counters to keep track of, and increment, the sequential IDs:

julia> user_counter, book_counter = 0, 0

We can now prepare the Event objects for our training data:

julia> events = Event[]
julia> for row in eachrow(training_data)
 global user_counter, book_counter user_id, book_id, rating = row[:UserID],
row[:ISBN], row[:Rating] haskey(user_mappings, user_id) ||
(user_mappings[user_id] = (user_counter += 1)) haskey(book_mappings,
book_id) || (book_mappings[book_id] = (book_counter += 1)) push!(events,
Event(user_mappings[user_id], book_mappings[book_id], rating)) end

This will fill up the events array with instances of Recommendation.Event, which
represent a unique UserID, ISBN, and Rating combination. To give you an idea, it will
look like this:

julia> events
10005-element Array{Event,1}:
 Event(1, 1, 10.0)
 Event(1, 2, 8.0)
 Event(1, 3, 9.0)
 Event(1, 4, 8.0)
 Event(1, 5, 8.0)
 # output omitted #

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[424]

Please remember this very important aspect—in Julia, the for loop
defines a new scope. This means that variables defined outside the for
loop are not accessible inside it. To make them visible within the loop's
body, we need to declare them as global.

Now, we are ready to set up our DataAccessor:

julia> da = DataAccessor(events, user_counter, book_counter)

Building and training the recommender
At this point, we have all that we need to instantiate our recommender. A very efficient and
common implementation uses MF—unsurprisingly, this is one of the options provided by
the Recommendation package, so we'll use it.

Matrix Factorization
The idea behind MF is that, if we're starting with a large sparse matrix like the one used to
represent user x profile ratings, then we can represent it as the product of multiple smaller
and denser matrices. The challenge is to find these smaller matrices so that their product is
as close to our original matrix as possible. Once we have these, we can fill in the blanks in
the original matrix so that the predicted values will be consistent with the existing ratings
in the matrix:

Our user x books rating matrix can be represented as the product between smaller and
denser users and books matrices.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[425]

To perform the matrix factorization, we can use a couple of algorithms, among which the
most popular are SVD and Stochastic Gradient Descent (SGD). Recommendation uses
SGD to perform matrix factorization.

The code for this looks as follows:

julia> recommender = MF(da)
julia> build(recommender)

We instantiate a new MF recommender and then we build it—that is, train it. The build
step might take a while (a few minutes on a high-end computer using the small dataset
that's provided in this chapter's support files).

If we want to tweak the training process, since SGD implements an iterative approach for
matrix factorization, we can pass a max_iter argument to the build function, asking it for a
maximum number of iterations. The more iterations we do, in theory, the better the
recommendations—but the longer it will take to train the model. If you want to speed
things up, you can invoke the build function with a max_iter of 30 or
less—build(recommender, max_iter = 30).

We can pass another optional argument for the learning rate, for example, build
(recommender, learning_rate=15e-4, max_iter=100). The learning rate specifies
how aggressively the optimization technique should vary between each iteration. If the
learning rate is too small, the optimization will need to be run a lot of times. If it's too big,
then the optimization might fail, generating worse results than the previous iterations.

Making recommendations
Now that we have successfully built and trained our model, we can ask it for
recommendations. These are provided by the recommend function, which takes an instance
of a recommender, a user ID (from the ones available in the training matrix), the number of
recommendations, and an array of books ID from which to make recommendations as its
arguments:

julia> recommend(recommender, 1, 20, [1:book_counter...])

With this line of code, we retrieve the recommendations for the user with the recommender
ID 1, which corresponds to the UserID 277427 in the original dataset. We're asking for up
to 20 recommendations that have been picked from all the available books.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[426]

We get back an array of a Pair of book IDs and recommendation scores:

20-element Array{Pair{Int64,Float64},1}:
 5081 => 19.1974
 5079 => 19.1948
 5078 => 19.1946
 5077 => 17.1253
 5080 => 17.1246
 # output omitted #

Testing the recommendations
Finally, our machine learning-based recommender system is ready. It will provide a
significant boost in user experience for any bookshop, for sure. But before we start
advertising it, we should make sure that it's reliable. Remember that we put aside 10% of
our dataset for testing purposes. The idea is to compare the recommendations with actual
ratings from the test data to see what degree of similarity exists between the two; that is,
how many of the actual ratings from the dataset were in fact recommended. Depending on
the data that's used for the training, you may want to test that both correct
recommendations are made, but also that bad recommendations are not included (that is,
the recommender does not suggest items that got low ratings, indicating a dislike). Since
we only used ratings of 8, 9, and 10, we won't check if low-ranked recommendations were
provided. We'll just focus on checking how many of the recommendations are actually part
of the user's data.

Because the test data uses the original user and profile IDs, and our recommender uses the
normalized, sequential IDs, we'll need a way to convert the data between the two. We
already have the user_mappings and book_mappings dictionaries, which map from the
original IDs to recommender IDs. However, we'll also need the reverse. So, let's start by
defining a helper function for reversing a dictionary:

julia> function reverse_dict(d) Dict(value => key for (key, value) in d)
end

This is simple, but very useful—we can now use this function to look up the original IDs
based on the recommender IDs. For instance, if we want to test the recommendations for
user 1, we'll need to retrieve this user's actual ratings, so we'll need the original ID. We can
easily get it with the following code:

julia> reverse_dict(user_mappings)[1]
277427

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[427]

The same applies to the books mappings—for instance, the recommendation with ID 5081
corresponds to ISBN 981013004X from the original dataset:

julia> reverse_dict(book_mappings)[5081]
"981013004X"

All right, let's check the test data that we put aside for UserID 277427 (recommender user
1):

julia> user_testing_data = test_data[test_data[:UserID] .==
reverse_dict(user_mappings)[1], :]
8×3 DataFrame

The output is as follows:

The snippet filters the testing_data DataFrame by doing an element-wise
comparison—for each row, it checks if the UserID column equals 277427 (which is the ID
returned by reverse_dict(user_mappings)[1], remember?). If yes, then the whole
row is added to user_testing_data.

To check for recommended versus actually rated profiles, the easiest approach is to
intersect the vector of recommendations with the vector of ratings. So, the first thing to do
is put the test ratings into a vector, out of the DataFrame:

julia> test_profile_ids = user_testing_data[:, :ISBN]
8-element Array{Union{Missing, String},1}:
 "0060006641"
 "0441627404"
 "0446600415"
 "0671727079"
 "0671740504"
 "0671749897"
 "0836218817"
 "0842370668"

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[428]

We just select the ISBN column data, for all the rows, as an Array.

Doing the same for the recommendations is a bit more involved. Also, since I expect we'll
want to test with various recommender settings and with different numbers of
recommendations, it's best to define a function that converts the recommendations to a
vector of ISBNs, so that we can easily reuse the code:

julia> function recommendations_to_books(recommendations)
 [reverse_dict(book_mappings)[r[1]] for r in recommendations]
 end

The recommendations_to_books function takes the vector of id => score pairs
generated by the recommender as its only argument and converts it into a vector of original
ISBNs:

julia> recommendations_to_books(recommend(recommender, 1, 20,
[1:book_counter...]))
20-element Array{String,1}:
 "981013004X"
 "1856972097"
 "1853263656"
 "1853263133"
 "1857231791"
 # output omitted #

The recommendations_to_books function outputs the ISBNs for the 20 recommended
books.

Now, we have all of the pieces to check recommendations versus ratings:

julia> intersect(test_profile_ids,
recommendations_to_books(recommend(recommender, 1, 500,
[1:book_counter...])))
1-element Array{Union{Missing, String},1}:
 "0441627404"

We use the intersect function to check what elements from the first vector—the list of books
we put away for testing—also show up in the second vector, that is, the recommendations.
We had to ask for 500 recommendations as the chances of hitting one of the eight test books
in a pool of 9,055 books were very slim. This is due to the fact that we worked with very
little data, but in a production environment and potentially billions of rows, we would get a
lot more overlapping data.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[429]

Let's see what the top five recommendations were:

julia> for i in recommendations_to_books(recommend(recommender, 1, 20,
[1:book_counter...])) top_ratings[top_ratings.ISBN .== i, :BookTitle] |>
println end

Union{Missing, String}["Fun With Chinese Characters Volume 1"]
Union{Missing, String}["Fantasy Stories (Story Library)"]
Union{Missing, String}["The Wordsworth Complete Guide to Heraldry
(Wordsworth Reference)"]
Union{Missing, String}["The Savoy Operas (Wordsworth Collection)"]
Union{Missing, String}["Against a Dark Background"]

In an IJulia Notebook, we can even look at the covers, thus rendering a small piece of
HTML using the cover's URLs:

thumbs = DataFrame(Thumb = String[])

for i in recommendations_to_profiles(recommend(recommender, 1, 20,
[1:book_counter...]))
 push!(thumbs, top_ratings[top_ratings.ISBN .== i, :ImageURLL])
end

for img in thumbs[:, :Thumb]
 HTML("""""") |> display
end

The output will be as follows:

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Recommender Systems Chapter 16

[430]

Excellent! We did a great job. We tamed a very complex dataset, performed advanced
analysis, and then we optimized it for usage in our recommender. We then successfully
trained our recommender and used it to generate book recommendations for our users.

Deploying and working with the Recommendation package is very straightforward, as I'm
sure you've come to appreciate. Again, as in most data science projects, the ETL step was
the most involved.

Learning about hybrid recommender
systems
There are some clear advantages when using model-based recommenders. As mentioned
already, scalability is one of the most important. Usually, the models are much smaller than
the initial dataset, so that even for very large data samples, the models are small enough to
allow efficient usage. Another benefit is the speed. The time required to query the model, as
opposed to querying the whole dataset, is usually considerably smaller.

These advantages stem from the fact that the models are generally prepared offline,
allowing for almost instantaneous recommendations. But since there's no such thing as free
performance, this approach also comes with a few significant negatives—on one hand, it is
less flexible, because building the models takes considerable time and resources, making
the updates difficult and costly; on the other hand, because it does not use the whole
dataset, the predictions can be less accurate.

As with everything, there's no silver bullet, and the best approach depends on the data you
have at hand and the problem you need to solve. However, it doesn't always have to be
memory-based versus model-based. Even more, it doesn't have to be just one recommender
system. It turns out that multiple algorithms and approaches can be efficiently combined to
compensate for the limitations of one type of recommender. Such architectures are called
hybrid. Due to space limitations, we won't cover any implementations of hybrid
recommender systems, but I want to give you an idea of the possible approaches. I'm just
going to refer you to Robin Burke's classification from Chapter 12 of The Adaptive Web,
entitled Hybrid Web Recommender Systems. The whole chapter is available online for free
at https://www.researchgate.net/publication/200121024_Hybrid_Web_Recommender_Sy
stems. If you're interested in this topic, I highly recommended it.

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.researchgate.net/publication/200121024_Hybrid_Web_Recommender_Systems
https://www.researchgate.net/publication/200121024_Hybrid_Web_Recommender_Systems

Machine Learning for Recommender Systems Chapter 16

[431]

Summary
Recommender systems represent a very active and dynamic field of study. They started
initially as a marginal application of machine learning algorithms and techniques, but due
to their practical business value, they have become mainstream in recent years. These days,
almost all major programming languages provide powerful recommendations systems
libraries—and all major online businesses employ recommenders in one form or another.

Julia is a great language for building recommenders due to its excellent performance.
Despite the fact that the language is still young, we already have a couple of interesting
packages to choose from.

Now, you have a solid understanding of the model-based recommendation systems and of
their implementation workflow—both on a theoretical and practical level. Plus, throughout
our journey, we've also been exposed to more advanced data wrangling using
DataFrames, an invaluable tool in Julia's data science arsenal.

We hope that this whirlwind overview of Julia has shown you why Julia is a rising star in
the world of scientific computing and (big) data applications. You are now prepared—and
we hope eager—to use Julia in your projects. So, instead of Goodbye, we'd like to
say—Welcome to the wonderful world of Julia programming!

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Julia 1.0 Programming Cookbook
Bogumił Kamiński, Przemysław Szufel

ISBN: 9781788998369

Boost your code’s performance using Julia’s unique features
Organize data in to fundamental types of collections: arrays and dictionaries
Organize data science processes within Julia and solve related problems
Scale Julia computations with cloud computing
Write data to IO streams with Julia and handle web transfer
Define your own immutable and mutable types
Speed up the development process using metaprogramming

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/application-development/julia-10-programming-cookbook

Other Books You May Enjoy

[433]

Hands-On Computer Vision with Julia
Dmitrijs Cudihins

ISBN: 978-1-78899-879-6

Analyze image metadata and identify critical data using JuliaImages
Apply filters and improve image quality and color schemes
Extract 2D features for image comparison using JuliaFeatures
Cluster and classify images with KNN/SVM machine learning algorithms
Recognize text in an image using the Tesseract library

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/application-development/hands-computer-vision-julia

Other Books You May Enjoy

[434]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
abstract syntax tree (AST)
 about 115
 reference 115
abstract type 98
anonymous functions 54
arrays
 about 38, 39, 40, 79
 creating 41
 functions 41, 42, 43, 44
Article model
 code, updating 323, 325, 328
 persistence method, adding 321, 322, 323
 retrieval method, adding 321, 322, 323
 setting up 320, 321
article types
 inner constructors 312, 313
 using 310, 311, 312
association-based recommendations 374
automatic type promotion 96

B
basic movie recommender
 building, content-based algorithm used 371, 372
basic web crawler
 implementing 268, 270
 Julia program, writing 263
 project setup 262
 writing 262
bivariate correlation 381
Book-Crossing Dataset
 reference 404
broadcasting 58
built-in macros
 @assert macro 123
 @test macro 123

 about 123
 benchmarking 124
 debugging 124
 task, starting 124

C
C
 calling 157, 158
Cascading Style Sheets (CSS) 229
characters 32
child processes 155
closures 56
code organization, Six Degrees of Wikipedia game
 about 275
 modules, defining 277
 modules, nesting 286
 modules, referencing 281, 282
 modules, setting up 279, 280
 modules, using 275, 276, 277
collaborative filtering
 about 375
 item-item collaborative filtering 391, 393, 394,

395, 397, 398
 user-item collaborative filtering 376, 377, 379,

382, 385, 386, 387, 388, 390
comma-separated file
 reading 131, 133
 writing 131, 133
comments 25, 26, 27, 175
complex numbers 31, 32
composite type 305
composite types
 about 99, 100, 101
 equal objects, checking 101
 equal values, checking 101
 multiple dispatch example 102, 104, 105
compound expression 46

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

[436]

concrete types 98
conditional evaluation 64, 65, 66, 265
constants 45, 46, 47
 about 173, 174
 significance 174
content-based algorithm
 used, for building basic movie recommender

371, 373
content-based recommender systems 370
coroutines 76
CSS selectors
 reference 231
CSV.jl documentation
 reference 137
currying 56, 57

D
data harvesting
 through web scraping 226
Data Source Name (DSN) 142
databases
 interacting with 142, 144
DataFrames.jl
 reference 139
DataFrames
 using 134, 136, 137, 139
dates 44
defensive coding 251
dictionaries
 about 87, 88, 240
 constructing 240, 241, 242, 243
 keys and values 89, 90
 ordered dictionaries 244
 working with 244, 245, 246
docstring 260
Document Object Model (DOM) 247
domain-specific languages (DSLs) 123
dump function 118

E
editors 21
elementary mathematical functions 30, 31
elementary mathematical operations 30, 31
else statement 266
elseif statement 265

epoch 44
errors
 exceptions, throwing on 255
 handling 252
evaluation 118
exception handling 70, 71, 72
exceptions
 rethrowing 256
 throwing, on errors 255
expression 115, 116, 117
extract, transform, load (ETL) 414

F
Fast Fourier Transformations (FFT) 163
file formats 139
files
 working with 129, 130, 131
filter 58, 59
finally clause 254, 255
first-class functions 54, 55
FiveThirtyEight
 reference 404
floating point numbers 29, 30
Fortran
 calling 157, 158
functions
 about 57, 257
 defining 49, 50, 51, 52
 documenting 260
 multiple values, returning 258
 versus macros 120

G
garbage collector (GC) 23
generated functions 119
generic functions 60
global scope 73
Gumbo
 HTML, parsing 248

H
higher-order functions 293
homoiconicity 115
HTML attributes 230
HTML documents 228

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

[437]

HTML selectors 229
HTML
 parsing, with Gumbo 248
HTTP headers
 about 235
 reference 235
HTTP message body 235
HTTP methods
 about 227
 reference 227
HTTP package
 requests, making with 232
HTTP requests
 making 227
HTTP response
 DOM representation, building of page 248
HTTP responses
 about 236
 handling 234
 headers 236
 message body 237
 pairs 239
 response body, manipulating 247
 status code 236
 using 247
HTTP Secure (HTTPS) 227
HTTP status codes
 1XX - Informational 234
 2XX - Success 234
 3XX - Redirection 234
 4XX - Client Error 235
 5XX - Server Error 235
hybrid 430
Hybrid recommender systems
 about 430
 reference 430
hygienic macro 122
Hypertext Markup Language (HTML) 228
Hypertext Transfer Protocol (HTTP) 227

I
IDEs 21
IJulia
 installing 17, 18, 19
 references 17

 working with 17, 18, 19
inner constructor 312, 313
inner constructors 105, 106, 107
input/output (I/O) 127, 128
integer 29
integers 186
internet
 accessing, from Julia 232
interpolation 119
item-based filtering 402
item-item collaborative filtering 391, 393, 394,

395, 397, 398

J
JavaScript selectors 231
Julia scripts 14, 15
Julia source code
 reference 10
Julia's package manager
 about 165
 installing 166, 167
 updating 166, 167
Julia's REPL
 working with 11, 12, 13, 14
julia-vscode
 about 20
 installing 20
Julia
 building, from source 10
 graphics 167
 installing 7, 8
 installing, on Linux OS 9, 10
 installing, on OS X 9
 installing, on Windows OS 8, 9
 internet, accessing from 232
 performance tips 159, 160, 161
 plots, reference 168
 tools 161
 type system 304
 types 27, 28
 web stack 332
 working 21, 23
JuliaPro 10, 11
Juno
 installing 20

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

[438]

just in time (JIT) compiler 11

K
Kaggle
 reference 404
keyword arguments 52, 53, 259, 260

L
landing page
 preparing 340, 343
last-in-first-out (LIFO) 320
libraries 110
link
 structure 231
Lisp 115
list comprehensions 58, 59
listwise deletion 407
local scope 73
low-level communications
 using 147, 148, 149

M
Machine Learning (ML) models 404
machine learning-based recommendations
 about 421
 creating 425
 recommendations, creating 421
 recommender, building 424
 recommender, training 424
 testing 426, 427, 428, 429, 430
 training data, setting up 422, 423, 424
macros
 defining 119, 120, 121
 versus functions 120
map 58, 59
market basket analysis 375
matrices 79, 80, 81, 82, 83, 84, 85
Matrix Factorization (MF) 419, 424, 425
memory-based recommenders
 versus model-based recommenders 401, 402,

403

method 60
methods
 about 314
 defining 315, 316, 317

missing values
 handling 407
 handling, via deletion 407
 handling, via imputation 407
 reference 407
Missings package
 reference 379
mixin behavior 272
ML algorithms
 reference 419
model-based approach
 enhanced memory-based 404
 linear algebra 404
 probability 403
model-based recommenders
 about 403
 data 404
 data analysis 407, 408, 410, 411, 413, 414,

415, 416, 417
 data models, training 418, 419
 data preparation 407, 408, 410, 411, 413, 414,

415, 416, 417
 data, preprocessing 404
 dataset, loading 405, 406
 dataset, scaling down 419
 missing data, handling 406
 testing data, versus training data 420
modules, Six Degrees of Wikipedia game
 defining 277
 LOAD_PATH, setting up 282, 283
 loading 283, 284
 loading, with import function 285
 loading, with include 285, 286
 nesting 286
 productive REPL sessions 277, 279
 setting up 279, 280
 using 275, 276, 277
multiple dispatch 60, 61, 314
mutable composite types 307
MySQL Docker image
 reference 318
MySQL
 adding 318
 connecting to 319, 320
 reference 318

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

[439]

N
naming conventions 25, 26, 27
new game
 difficulty settings, extracting from page URL 344
 in-article navigation, setting up 350, 351
 information, displaying 352, 353, 356
 session, starting 345, 346
 starting 344
 Wikipedia article, rendering from chain 346, 347,

348

non-standard string literals 182
numbers
 about 185
 integers 186

O
object-oriented (OO) languages 60
object-oriented programming (OOP) 304
Open Database Connectivity (ODBC) 142
operator precedence 268
operators 55
optional arguments 259
optional positional arguments 52, 53
ordered dictionaries 244
overloading 60

P
package
 about 16
 adding 16, 17
pairs 239
parallel computing
 about 144
 low-level communications, using 147, 148, 149
 processes, creating 145, 146
parallel operations 144
parametric type 32, 108, 109
Pearson's r correlation 381
performance tips, Julia
 reference 162
personalized recommendations
 about 370
 explicit ratings 370
 implicit ratings 370

pipe operator 251, 252
Plots
 using, on data 168
primitive type 305
Probabilistic Latent Semantic Analysis (PLSA) 403
Probabilistic Latent Semantic Indexing (PLSI) 403
profiler tool
 about 162
 reference 162
Python
 calling 159

Q
quote 116

R
ranges 38, 39, 40
rational numbers 31, 32
raw string literals 185
Read Evaluate Print Loop (REPL) 9
read-eval-print loop (REPL) 224
recommender systems
 about 366
 association-based 374
 classifying 367
 content-based 370
 non-personalized 367
 personalized 367, 370
 stereotyped 367
recommender
 building 424
 Matrix Factorization (MF) 424, 425
 training 424
reflection
 capabilities 125, 126
regular expressions 36, 37, 38
 about 182, 183
 reference 184
relational databases
 Article model, setting up 320, 321
 MySQL support, adding 318
 working with 318
repeated evaluation
 about 66
 break statement 68, 69

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

[440]

 continue statement 69, 70
 for loops 66, 67
 while loops 68
requests
 handling 360
 making, with HTTP package 232
return keyword 258
routes 334

S
schema migrations
 reference 320
scikit-learn library
 reference 421
ScikitLearn.jl package
 reference 421
scope 45, 46, 47, 73, 74, 75, 76
Selenium
 reference 232
sets 90, 91
shell commands
 executing 154, 155
 pipelining 156, 157
short-circuit evaluation 267
single dispatch 60
singular value decomposition (SVD) 403
six degrees of separation 224
Six Degrees of Wikipedia game
 architecture, setting up 287, 288, 289
 code, checking 290
 code, organizing 275
 game plan 332
 gameplay 274
 gameplay, testing 304
 image, including 299, 300, 301, 303, 304
 technical requisites 274
 web UI, developing 338
slices 81
solution page
 displaying 359
splice operator 44
standard input (stdin) 127
standard library 163, 165
standard modules 110, 111, 112, 113
standard output (stdout) 127

Stochastic Gradient Descent (SGD) 425
strings
 about 32, 33, 34, 175
 concatenating 177
 formatting 34, 35
 interpolating 178
 manipulating 179
 numbers, formatting 34, 35
 triple quoted strings 175, 176
Sublime-IJulia
 about 20
 installing 20
subtypes 97
supertype function 97
symbols 117

T
tasks 76, 78
TCP servers
 working with 139, 141
TCP sockets
 working with 139, 141
ternary operator 266
times 44
Transmission Control Protocol / Internet Protocol

(TCP/IP) 139
triple quoted strings 175, 176
try...catch statements 252, 253
tuples 79, 85, 86
type annotations
 about 95
 promotions 95, 96
 type conversions 95, 96
type system, Julia
 about 304
 composite type 305
 constructing 306, 307
 custom type, defining 305, 306
 hierarchy 308, 309
 inheritance 308, 309
 mutable composite types 307
 primitive type 305
 reference 305
 type unions 309
type unions 107, 108

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

U
Unicode 180
Uniform Resource Identifiers (URIs) 231
Uniform Resource Locators (URLs) 231
user-defined type 99, 100, 101
user-item collaborative filtering 376, 377, 379,

382, 385, 386, 387, 388, 390
UTF-8 180

V
variables 25, 26, 27
 defining 171, 172
vector 38

W
web addresses 231
web crawlers 226
web scraping 226
web stack
 about 332

 Hello World example 333, 335, 336, 337
web UI
 back page 339
 developing 338
 landing page 339
 landing page, preparing 340, 343
 new game page 339
 routes, defining 339, 340
 solution page 339
 WebApp.jl file 361, 362, 363
 Wiki article page 339
web
 working 226
Wikipedia article page
 displaying 357, 358
 navigating back 359
Wikipedia crawler
 blocks, using 293, 294, 295
 building 291, 292, 293
 gameplay, implementing 295, 296, 297
word frequency 92

 EBSCOhost - printed on 2/9/2023 11:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Installing the Julia Platform
	Installing Julia
	Windows OS
	OS X
	Linux OS
	Building from source
	JuliaPro

	Working with Julia's REPL
	Startup options and Julia scripts
	Packages
	Adding a new package

	Installing and working with IJulia
	Installing Juno
	Installing julia-vscode
	Installing Sublime-IJulia
	Other editors and IDEs
	How Julia works
	Summary

	Chapter 2: Variables, Types, and Operations
	Variables, naming conventions, and comments
	Types
	Integers
	Floating point numbers
	Elementary mathematical functions and operations
	Rational and complex numbers
	Characters
	Strings
	Formatting numbers and strings

	Regular expressions
	Ranges and arrays
	Other ways to create arrays
	Some common functions for arrays

	Dates and times
	Scope and constants
	Summary

	Chapter 3: Functions
	Defining functions
	Optional and keyword arguments
	Anonymous functions
	First-class functions and closures
	functions
	Broadcasting
	Map, filter, and list comprehensions
	Generic functions and multiple dispatch
	Summary

	Chapter 4: Control Flow
	Conditional evaluation
	Repeated evaluation
	for loops
	while loops
	The break statement
	The continue statement

	Exception handling
	Scope revisited
	Tasks
	Summary

	Chapter 5: Collection Types
	Matrices
	Tuples
	Dictionaries
	Keys and values – looping

	Sets
	An example project – word frequency
	Summary

	Chapter 6: More on Types, Methods, and Modules
	Type annotations
	Type conversions and promotions

	The type hierarchy – subtypes and supertypes
	Concrete and abstract types
	User-defined and composite types
	When are two values or objects equal or identical?
	A multiple-dispatch example

	Types and collections – inner constructors
	Type unions
	Parametric types and methods
	Standard modules and paths
	Summary

	Chapter 7: Metaprogramming in Julia
	Expressions and symbols
	Evaluation and interpolation
	Defining macros
	Built-in macros
	Testing
	Debugging
	Benchmarking
	Starting a task

	Reflection capabilities
	Summary

	Chapter 8: I/O, Networking, and Parallel Computing
	Basic input and output
	Working with files
	Reading and writing CSV files

	Using DataFrames
	Other file formats

	Working with TCP sockets and servers
	Interacting with databases
	Parallel operations and computing
	Creating processes
	Using low-level communications
	Parallel loops and maps

	Summary

	Chapter 9: Running External Programs
	Running shell commands
	Interpolation
	Pipelining

	Calling C and Fortran
	Calling Python
	Performance tips
	Tools to use

	Summary

	Chapter 10: The Standard Library and Packages
	Digging deeper into the standard library
	Julia's package manager
	Installing and updating packages

	Graphics in Julia
	Using Plots on data
	Summary

	Chapter 11: Creating Our First Julia App
	Technical requirements
	Defining variables
	Constants
	Why are constants important?

	Comments
	Strings
	Triple-quoted strings
	Concatenating strings
	Interpolating strings
	Manipulating strings
	Unicode and UTF-8

	Regular expressions
	Raw string literals
	Numbers
	Integers
	Overflow behavior
	Floating-point numbers
	Rational numbers
	Numerical operators
	Vectorized dot operators
	There's more to it

	Tuples
	Named tuples

	Ranges
	Arrays
	Iteration
	Mutating arrays
	Comprehensions
	Generators

	Exploratory data analysis with Julia
	The Iris flower dataset
	Using the RDatasets package

	Using simple statistics to better understand our data
	Visualizing the Iris flowers data

	Loading and saving our data
	Saving and loading using tabular file formats
	Working with Feather files
	Saving and loading with MongoDB

	Summary

	Chapter 12: Setting Up the Wiki Game
	Technical requirements
	Data harvesting through web scraping
	How the web works – a crash course
	Making HTTP requests
	Learning about HTTP methods
	Understanding HTTPS

	Understanding HTML documents
	HTML selectors
	Learning about the HTML attributes

	Learning about CSS and JavaScript selectors
	Understanding the structure of a link

	Accessing the internet from Julia
	Making requests with the HTTP package

	Handling HTTP responses
	HTTP status codes
	Learning about HTTP headers
	The HTTP message body

	Understanding HTTP responses
	The status code
	The headers
	The message body
	Learning about pairs

	Dictionaries
	Constructing dictionaries
	Ordered dictionaries
	Working with dictionaries

	Using the HTTP response
	Manipulating the response body
	Building a DOM representation of the page
	Parsing HTML with Gumbo

	Coding defensively
	The pipe operator

	Handling errors like a pro
	The try...catch statements
	The finally clause
	Throwing exceptions on errors
	Rethrowing exceptions

	Learning about functions
	The return keyword
	Returning multiple values
	Optional arguments
	Keyword arguments

	Documenting functions

	Writing a basic web crawler – take one
	Setting up our project
	Writing a Julia program
	Conditional evaluation of if, elseif, and else statements
	The ternary operator
	Short-circuit evaluation
	Beware of operator precedence

	Carrying on with the crawler's implementation
	Summary

	Chapter 13: Building the Wiki Game Web Crawler
	Technical requirements
	Six Degrees of Wikipedia, the gameplay
	Some additional requirements

	Organizing our code
	Using modules to tame our code
	Defining modules
	Productive REPL sessions with Julia

	Setting up our modules
	Referencing modules
	Setting up the LOAD_PATH
	Loading modules with using
	Loading modules with import
	Loading modules with include

	Nesting modules

	Setting up our game's architecture
	Checking our code

	Building our Wikipedia crawler - take two
	Using blocks

	Implementing the gameplay
	Finishing touches
	One more thing

	Learning about Julia's type system
	Defining our own types
	Constructing types
	Mutable composite types
	Type hierarchy and inheritance
	Type unions

	Using article types
	Inner constructors

	Methods
	Working with relational databases
	Adding MySQL support
	Connecting to the database

	Setting up our Article module
	Adding the persistence and retrieval methods
	Putting it all together

	Summary

	Chapter 14: Adding a Web UI for the Wiki Game
	Technical requirements
	The game plan
	Learning about Julia's web stack
	Beginning with a simple example – Hello World

	Developing the game's web UI
	Defining our routes
	Preparing the landing page

	Starting a new game
	Extracting the difficulty settings from the page URL
	Starting a new game session
	Rendering the first Wikipedia article from the chain
	Setting up in-article navigation
	Displaying information about the game session

	Displaying a Wikipedia article page
	Navigating back up the article chain

	Showing the solution
	Handling any other requests
	Wrapping it up
	Summary

	Chapter 15: Implementing Recommender Systems with Julia
	Technical requirements
	Understanding recommender systems
	Classifying recommender systems
	Learning about non-personalized, stereotyped, and personalized recommendations
	Understanding personalized recommendations
	Explicit and implicit ratings

	Understanding content-based recommender systems
	Beginning with association-based recommendations
	Learning about collaborative filtering
	Understanding user-item CF
	Item-item CF

	Summary

	Chapter 16: Machine Learning for Recommender Systems
	Technical requirements
	Comparing the memory-based versus model-based recommenders
	Learning about the model-based approach
	Understanding our data
	A first look at the data
	Loading the data
	Handling missing data

	Data analysis and preparation
	Training our data models
	Scaling down our dataset
	Training versus testing data

	Machine learning-based recommendations
	Making recommendations with Recommendation
	Setting up the training data
	Building and training the recommender
	Matrix Factorization

	Making recommendations

	Testing the recommendations
	Learning about hybrid recommender systems
	Summary

	Other Books You May Enjoy
	Index

