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PREFACE 

Entropy is one of the most interesting concepts in physics. 

Although it is a well-defined concept, it is still perceived by 

even well-known scientists as a concept cloaked in mystery. It 

is also the most misused and often abused concept in physics. 

Some scientists believe that entropy will forever remain a 

mysterious quantity, and for them demystifying entropy 

remains as elusive as ever. 

This book's title "Entropy for Smart Kids" might be 

misleading. What it actually means is that even "Smart Kids" 

can understand the concept of entropy. The prerequisites for 

understanding entropy are: 

1 .  You need to have a probability-sense (I will show you in 

Chapter I that you already have). 

2. You need to have an information-sense (I will explain in 

Chapter 2, and show you that you already have). 

3. You need common-sense (which I hope you have). You will 

need that in order to understand Chapter 3 .  
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Entropy for Smart Kids and their Curious Parents X111 

My aim in writing this book is to show you that if you have 

even a rudimentary sense of probability and of information, and 

if you are willing to use your common-sense, then you can 

understand what entropy is. 

It is my conviction that in order to understand entropy, one 

needs to understand Shannon' s measure of information (SMI), 

and in order to understand SMI one must be familiar with some 

basic concepts of probability. 

Therefore, this book consists of three chapters. Chapter 1 

discusses probability. You will find out in this chapter that you 

already know what probability is. Once you know what 

probability is, you can also understand what SMI means. This 

is discussed in Chapter 2. This knowledge will lead you to a 

straightforward understanding of entropy. You will see in 

Chapter 3 that entropy is nothing but a special case of SMI. 

Please memorize this acronym. It will appear many times in 

this book. A simple way of memorizing the meaning of this 

term is to think of a twenty-question (20Q) game. In this game 

there is always a minimal number of binary questions one needs 

to ask in order to find out one out of N possibilities. 

In Chapter 3 we also briefly discuss the Second Law of 

Thermodynamics (2nd Law). We shall see that the 2nd Law is 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use
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nothing but a law of probability. We shall also see under what 

conditions the 2nd Law is related to the concept of entropy. We 

shall conclude this book by mentioning a few misuses and 

misapplications of entropy and the Second Law. You will leam 

how, and why entropy, and the 2nd Law became so mysterious 

as a result of these very same misuses and misapplications, as 

well as the gross-exaggeration of the "power" of entropy. 

You do not need to know any mathematics in order to 

understand this book. It is helpful to know though what a 

logarithm is, but in case you have no clue as to what it is, you 

can still understand both entropy and the Second Law. In 

Appendix A you will find a simple, qualitative discussion of 

logarithm. If you do not know what the symbol logz G) means 

you can simply look at the relevant graph in Appendix A. 

I urge you to read this book slowly, carefully, and critically. 

You also need to do some exercises in order to test your 

comprehension. Once you do all these, I guarantee that upon 

reaching the end ofthe book, you would know what entropy is, 

you will understand the 2nd Law, and you will also understand 

why entropy has become such a mysterious concept in physics. 

Furthermore, I promise with confidence, that once you read 

this book your understanding of entropy will surpass the 
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understanding of entropy by many authors who write about 

entropy. 
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CHAPTER 1 

PROBABILITY AND PROBABILITY 

DISTRIBUTIONS 

In this chapter we discuss the concept of probability. We will 

start by playing some very simple games. These games were 

designed in such a way that playing them will prove to you 

that you already know what probability means. To put it 

another way, you will be convinced that you already possess 

a probability-sense; you have an intuitive understanding of 

the concept of probability although you do not know how to 

define it. 

Next, we shall briefly learn how the concept of probability 

evolved from gambling games into a well-respected branch of 

mathematics. This will lead us to attempt to define the concept 

of probability. As we shall see, all definitions of probability 

are circular, i. e. they use the concept of probability (or an 

equivalent one, like "chances," or "likelihood") in order to 

define probability. 
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2 Chapter 1 

Next, we will jilrther train ourselves with some simple 

probability problems which will be important to 

understanding the concept of Shannon's measure of 

information discussed in Chapter 2, and the concept of 

entropy discussed in Chapter 3. 

Finally, we will discuss a few probability distributions, and 

learn how to calculate average quantities. We shall use the 

concept of average to create a measure of an average 

uncertainty about the outcomes of an experiment. This 

average will have a similar meaning to Shannon's measure 

of information. It will also be indispensable for 

understanding entropy. 

1.1 Your probability-sense 

In this section, we shall play a few simple games. These games 

were so designed in such a way that while playing, you will 

either consciously or subconsciously be using probabilistic 

reasoning even before knowing what it is, or how it is defined. 

We shall go back to discussing the "definitions" of probability 

later on. 

Let us start with a very simple game. 
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Probability and Probability Distributions 3 

Figure 1 . l(see color centerfold) shows seven different dice. 

Each die has six faces. I tell you that the dice are "fair." You 

might ask "what does a fair die mean 7" For the moment I will 

tell you that all the dice we will play with are perfect cubes, i.e. 

all faces have the same area, and all the edges have the same 

length. I also tell you that the density of the material of which 

the dice are made of (plastic, metal, or any other material) is 

the same at each point within the dice which means that there 

is no unsymmetrical mass distribution within the dice. If I 

throw the dice into the air, there is no preferred face on which 

the dice will land. 

Can you explain why such a die is called a fair die?! 

All the dice in Figure 1 . 1  are "fair, but instead of a regular die 

with different numbers of dots (as in Figure 1 .2a (see color 

centerfold) on its face, we have different colors. The dice in 

Figure 1 . 1  are colored as follows: 

die a has six blue faces 

die b has one red, and five blue faces 

die c has two red, and four blue faces 
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4 Chapter 1 

die d has three red, and three blue faces 

die e has four red, and two blue faces 

die [has five red and one blue face 

die g has six red faces 

Altogether, we have seven different dice. All of these dice 

are [air, which means that any one of the six faces of any die 

has the same likelihood of appearing when I throw it. 

Here are the rules of the game. Read them carefully before 

you accept, or refuse to play this game. 

I choose a die from the seven dice in Figure 1 . 1 .  I tell you 

that it is fair, and that I will throw it high into the air in such a 

way that it will roll over several times before it falls on the 

ground, Figure 1 .3 .  I ask you to please trust me, at least for this 

particular game - that I have no control on the outcome ofthis 

throw. In other words, I caunot affect, nor do I know on which 

face the die will land on the ground. If you do not trust me (why 

should you?), then just imagine that a machine or a robot will 

be throwing the die. 
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Figure 1.3. A die whirls in the air 

5 

You look at the die, count the number of blue and red faces, 

and see that the die is a perfect cube having no discernible 

defects, cuts, or irregularities. 

Now, I offer you to play the following game: 

I will choose one of the dice in Figure 1.1. You examine it, 

and choose either a blue or a red die. 

Then I throw the die 100 times. Whenever the color you 

chose appears on the upper face of the die, you will get $1.00. 

If the color of the upper face is not the one you chose, you pay 

$1.00. 
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If you uuderstand the rules of the game, repeat them before 

we continue playing this game. 

First game: 

I choose the die a, from Figure 1 . 1 .  Which color will you 

choose? 

Before you decide on the color, refresh your memory about 

the rules ofthe game (I chose the die, you chose the color after 

examining the die. I toss the die 100 times, and every time the 

outcome is the color you chose, you get $ 1 .00, otherwise you 

pay $ 1 .00). Are you ready? 

Obviously, presuming that you uuderstood the rules of the 

game, you will choose the color blue. (One important aspect 

which I would like to tell you is that I implicitly presume that 

in playing any of these games, your goal is to maximize your 

earnings). 

Clearly, in case of die a you will choose the color blue, as 

this choice will ensure you that on each toss you will get $ 1 .00. 

Altogether, you shall have earned $ 100.00 after I toss the die 

100 times. 
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What an easy game! You do not have to think hard in order 

to choose the color ofthe die. You also do not have to use your 

probability-sense. You only need plain common-sense. 

Can you use the word "probability" to explain why you 

chose the color blue? 2 

Second game: 

I choose die b. You examine it, refresh your memory with 

the rules of the game, and choose a color. If you forgot the 

rules, read them again before you proceed to make a choice. 

Which color will you choose? 

I am sure you will choose blue again. Why am I so sure? In 

the previous game, I was sure you'd choose blue because in 

case a, because you were certain to win $1 .  00 on each toss. 

Now, I am also sure that you will choose blue. But, I am not 

sure that you will win on each toss. In fact, I cannot even 

guarantee that you will win any money after 100 tosses. 

Can you explain why you chose blue? 

Here, unlike the previous game you must use your 

probability-sense to make the "right" choice. You see that die 

b has five blue faces, and one red. Your judgement tells you 
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that there are "more chances" that the outcome blue will occur, 

therefore, it is in your interest to choose the color blue. 

Can you explain why you chose blue by using the term 

probability? 3 

Note, at each toss of this die there is a chance that you will 

have to pay $ 1 .00. However, your probability-sense tells you 

that if you play this game many times you will, "on average," 

earn money. It is not certain that you will always earn, but it is 

very likely, or highly probable. 

Although we did not define the concept of an average, I 

believe that you have a qualitative estimate of the average (or 

the expected, as mathematicians refer to it) earnings after 100 

tosses? 4 

Remember that in this game there are some chances that you 

will earn $100.00. There are also some chances that you will 

lose $ 100.00. Your probability-sense tells you that the former 

is more likely than the latter. Knowing probability theory 

allows you to make a more precise statement on the 

probabilities of these two extreme events. 5 

Third game: 
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I chose die c from Figure 1 . 1, you examine it, count the number 

of faces having different colors, and choose a color. 

Which color will you choose? 

Your intuition, or your probability-sense tells you that it will 

be advantageous to choose blue. Can you explain why you 

chose blue in the term probability? 6 

Clearly, in this particular case the chances of earning in 100 

tosses is less than in case b, but it is still to your advantage to 

choose the color blue. The argument favoring the color blue is 

not as powerful as in the previous case (b), and certainly less 

powerful than in case a, yet it is still a good choice. Can you 

estimate your average net earnings in 100 tosses? 7 

Remember that in this case, you might earn $ 1  00.00. You 

might also lose $100.00 in 100 tosses. Can you estimate the 

probabilities of these two extreme events? 8 

Fourth game: 

Next, I choose die d. You look at the faces, count how many 

reds, and blues there are. Refresh your memory about the "rules 

of the game" before you choose a color. 

Which color are you going to choose? 
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This is the most "difficult" game. It is difficult because you 

are clueless as to the preference of occurrence of either the red, 

or the blue. In Chapter 2, we shall see that in this case you are 

"given" the minimal "information" on how to make a choice. 

However, without knowing information theory, and without 

knowing even probability theory, your probability-sense tells 

you that there is no preferred color. In other words, you can 

choose either blue or red; there is no advantage in any ofthese 

choices. 

Can you repeat the argument on the lack of advantage for 

any particular choice in terms of probabilities? 9 

Your intuition - or probability-sense tells you that 

whichever color you choose, and that no matter how many 

times you play this particular game, your expected "gain" is the 

same as your expected "loss," and therefore your expected net 

gain is $0.0. This is another way of characterizing a fair die 

which has three red, and three blue faces. 

Note again that even with this die ( d), there is a chance that 

you will earn $100.00, but there is also a chance that you will 

lose $100.00. However, these two extreme cases are extremely 

improbable, and their probabilities of occurrence are equal. 10 
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You can easily calculate that your average earnings in this 

case is $0.00. However, we do not need to calculate this 

average as we can trust our intuition, or our probability sense. 

Although this particular case is relatively simple, it is 

instructive to pause, and calculate a few more probabilities. 

This will be important for understanding the Shannon measure 

of information in Chapter 2, and very important as well for 

understanding the Second Law in Chapter 3 .  

We saw in case d that the two outcomes; blue and red have 

equal probabilities; v,. We also saw that in 100 throws there is 

a small probability (very small but finite) that all of the 

outcomes will be red (and the same that all of the outcomes will 

be blue). 

However, there IS also a probability that any possible 

sequence of blues and reds will occur. For simplicity (to 

minimize on writing), suppose that we toss the die d ten times. 

A possible outcome in 10 tosses could be: 

B, B, R, B, B, R, R, B, B, R  

( B  = Blue and R = Red). This is referred to as a specific 

sequence of 10 outcomes. By specific, we mean that we know 

which color occurred at which throw; first B, second B, third 
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R, and so forth. In this specific sequence, there are 6Bs, and 

4Rs. We shall later learn that all specific sequence with 6Bs, 

and 4Rs have the same probability as the sequence of all Rs, or 

all Bs. 

Sometimes we are interested in a non-specific sequence 

which we call a generic sequence. This means that we toss the 

die d ten times, and got, say 6Bs, and 4Rs, but we do not care 

about the order of the occurrence of the B s, and the Rs, For 

instance, the sequences: 

B, B, B, R, R, R, B, R, B, B  

R, R, B, R, R, B, B, B, B, B  

These two sequences have 6Bs, and 4Rs, therefore, they are 

two different specific sequences, but they are of the same 

generic sequence. I should mention at this point that the 

distinction between a specific and a generic sequence is 

essential for understanding the Second Law. As an exercise, 

write down all possible sequences of four tosses of die d. Can 

you tell why a generic sequence ofBs and Rs will always have 

larger probabilities compared with a specific sequence, except 

for the extreme case of all Bs, or all RS?1 1  
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Table 1.1: All possible sequences of four outcomes of blues 

and reds 

Sequence Probability of the 

specific sequence 

BBBB 1/16 

BBBR 1/16 

BBRB 
BRBB 
RBBB 
BBRR 1/16 

BRBR 
RBBR 
RBRB 
RRBB 
BRRB 
RRRB 1/16 

RRBR 
RBRR 
BRRR 
RRRR 1/16 

sum- l 

Probability of the 

generic sequence 

1/16 

1 1 
4x-�-

16 4 

1 3 
6x-�-

16 8 

1 1 
4x-�-

16 4 

1116 

sum-l 

Note that the probability of each specific sequence is the same 

1116. 

At this point, I mentioned the distinction between a specific, 

and a generic sequence only in the context of probability. As 

you can see from Table 1 . 1  (Note 1 1), except for the two 
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extreme cases, the probability ofthe generic sequence is always 

larger than the probability of a specific sequence. Can you 

explain why? 

Note also that each specific sequence has the same 

probability 12 

Fifth game: 

Next, I choose die e. You examine it, and as in the previous 

game, recall the rules ofthe game, and choose a color. 

You realize that this case is "similar" to the case of die c. 

Which color will you choose now, and why? Can you estimate 

your net earnings in this case? What if you have chosen blue? 

Sixth game: 

Next, I choose die f, and you have to choose a color in order 

to play the same game with exactly the same rules. 

Which color would you choose? Is this game similar to any 

of the previous games? 

Seventh game: 

I choose die g. By remembering the rules of the game, you 

should not have any problem in choosing the color which will 
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guarantee that you will gain at each toss. This game is  similar 

to the case of die a, only the color has changed. 

Now that you have successfully played all these games, and 

you have hopefully earned (on average) in most of the games, 

you should realize that in all the games you have used 

probabilistic judgements, or probabilistic arguments. In each 

case you had to make a choice between two possibilities. 

Briefly, I hope you were convinced that you have some 

degree of probability-sense. This probability-sense is not much 

different from what people refer to as "common sense." 

In order to actually calculate the various probabilities of 

some events you should learn the rules of the Theory of 

Probability. We shall devote sections 1 .3 and 1 .4 to learn the 

elements of this theory. 

a b c 

I 
I 
I 

q e f g 

Figure 1.4. Symmetry in the properties of the seven dice about die d. 

Before we go on, you should look again at the seven dice of 

Figure 1 . 1 ,  and the seven games we played. You should notice 

an element of symmetry in these games. Look at Table 1 .2 in 
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order to aid you in finding this symmetry. Symmetry in the 

sense that game a is equivalent to g, b is equivalent to!, and c 

is equivalent to e. d is not equivalent to any other game, In 

Figure 1.4 we draw a line passing through d. The games on the 

right-hand side ofthis dashed line are the same as to the games 

on the left- hand side. Note carefully that die a is not the same 

as die g, and die b is not the same as die f When I said 

symmetry, I meant that playing with a requires the same effort 

or judgement as playing with g, and playing with b is the same 

as playing with !, and playing with c is the same as playing with 

e. 

1.2 Uncertainty-sense about the game we played 

This section is actually an introduction to Chapter 2. We use 

the seven games we played in the previous section to study a 

new concept to which we refer to as the "uncertainty-sense." 

In Table 1 .2 we summarize the probabilities involved in 

these games as well as the average probability in each game. 

These are very special averages, where we take the average of 

the probabilities using the same probabilities as the weights for 

calculating the averages, see Note 4. 
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Table 1.2: The probabilities of "blue" and "red," as well as 

the average probability for each of the dice in Figure 1.1 * 

die die Pr(blue) Pr(red) Average Average 

name number of of 1-

Pr(blue) Pr(blue) 

and and 

Pr(red) 1 

- Pr(red) 

die a 1 1 0 1 0 

die b 2 5/6 116 13/18 5/18 

die c 3 4/6 2/6 5/9 4/9 

die d 4 3/6 3/6 Y, Y, 
die e 5 2/6 4/6 5/9 4/9 

die! 6 116 5/6 13/18 5/18 

die g 7 0 1 1 1 

* The reader IS urged to read Note 4 to see how the averages 

were calculated. 

In this section, we also introduce the uncertainty-sense 

(which will be changed to information-sense in Chapter 2). In 

Chapter 2, we shall generalize this concept of uncertainty. Once 

you have grasped this concept, you will understand what 

Shannon's measure of information is, and most importantly, 

once you understand the meaning of SMI, the meaning of 
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entropy will fall right into your hands, ripe and ready for you 

to savor its meaning! 

I therefore, urge you to follow carefully the concept of 

uncertainty with respect to a single event, and the concept of 

uncertai nty with respect to the entire game. 

In Figure 1 .5a (see color centerfold), we plotted the 

probabilities of occurrence of the color blue for the various 

dice, numbered I to 7. The points in this plot are colored blue 

to remind you that these are the probabilities for the occurrence 

of the blue color in each of the dice in Figure 1 . 1 .  As you 

already know, in case a, you were certain that the blue color 

will appear. We denote this certainty by the number 1 .  We can 

also say that probability I is the maximal certainty, or the 

maximal likelihood that the color blue will occur. 

In case b (number 2 in the figure) you were less certain 

about the occurrence ofthe blue. In other words, the likelihood 

of occurrence of blue was less than in case a. We can also say 

that the smaller the probability ofthe occurrence of blue is, the 

more uncertain you are about its occurrence, or that it is more 

unlikely to occur. 

Thus, the decreasing values of the blue dots in Figure 1 .5a 

(see color centerfold) represent either the decreasing values of 
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the probabilities, the extent of certainty, or the likelihood ofthe 

occurrence of blue. When we say that we are "less certain" 

about an event, it is tantamount to saying "more uncertain." 

Similarly, less likelihood is the same as more unlikelihood. 

Please convince yourselfthat this is true. 

In Figure 1 .5b, we plotted the probabilities Pr(red), from 

the fourth colurun in Table 1.2. Here, the red dots increase from 

die a to g (or from I to 7). Figure 1 .5c combines the data from 

both Figures 1 .5a and 1 .5b. Note the symmetry about the center 

of the figure. 

Now, to make sure that you understand the meaning of 

certainty (or uncertainty) and likelihood (or unlikelihood), I 

suggest that you repeat the same discussion of the previous 

paragraph, but with respect to the red color. 

In the fifth colunm in Table 1 .2 we calculated the weighted 

average values ofPr(blue) and Pr(red), see note 4. In Section 

1 .9, we shall define more precisely what we mean by an 

average value. Here, we assume that we have an intuitive 

notion of an average between two numbers Pr(blue) and 

Pr(red) for each die which we write as: 13 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



20 Chapter 1 

Average of probabilities = Pr(blue)Pr(blue) + 

Pr(red)Pr(red) 

.eo-:=1.1 ..... --------...... 
;Q 1.0-� ,Q 0.9 
f: 0.8 

� � 0.7 
�0.6 
� 0.5 

-
- --

-

< 0.4�1-�2-�3!"-- 4�� 5 -�6-�7 
Die Number 

Figure 1.6.  The average probabilities for the dice 1 to 7, 

corresponding to a to g in Table 1 . 2  

Thus, the numbers we wrote in the fifth column are averages of 

the two numbers Pr (blue) and Pr (red) in each row. The 

average being calculated with the weights or the probabilities 

Pr (blue) and Pr (red.)13 As we shall see in Chapter 2, this is a 

very special kind of average. It is special average since we 

calculate the average of Pr (blue) and Pr (red) using the 

"weights," or the probabilities Pr (blue) and Pr (red), see Note 

1 3 ,  Table 1 .2 and Figure 1 .6.  Now, we see that this average 

starts with the value of 1 .  For die a, it is: 

Pr(blue)Pr(blue) + Pr(red)Pr(red) 

= l x l + 0 x O = 1 
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It goes through a minimum value of Y, for die d (or die 

number 4 in Figure 1 .6. For die d, the average is: 

Pr(blue)Pr(blue) + Pr(red)Pr(red) 

1 1 1 1 1 1 1 
= -x-+-x- = -+- = -

2 2 2 2 4 4 2 

Then the value of the average climbs again to 1 .  Thus, for die 

g we have: 

Pr(blue)Pr(blue) + Pr(red)Pr(red) = 0 x 0 + 1 x 1 = 1 

Take note of the symmetry in the curve of the averages 

drawn in Figure 1 .6. This is the symmetry we already saw when 

we played games a to d, then games d to g. 

Note also that the values in the third and in the fourth 

columns measure the extent of certainty (or likelihood) of each 

outcome (blue or red). The values in the fifth column of Table 

1 .2 measure the average extent of certainty (or likelihood) over 

all possi ble outcomes of the relevant die. 

If Pr(blue) is a measure of the extent of certainty of the 

occurrence of blue, then 1 - Pr(blue) is a measure of the 

extent of uncertainty ofthe occurrence of the blue. For instance, 

for case a, the extent of certainty we have about the occurrence 

of blue is 1, and the extent of uncertainty of occurrence of blue 
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is 1 - 1 = O. In the last column in Table 1 .2 we have the 

average extent of uncertainty with respect to the entire 

distribution. Figure 1 .7a. 

a 
=08�-------------, "iii . 
'5 0.6 
u 
;3 0.4 

�0.2 
= � 0.0 � . 

< ��2��3--4--�S --�6�7 

Die Number 

(a) 

1.0 
0.8 

� 0.6 ;" 
rn 0.4 / 

0.2 / 

0.0 / 
2 

, .. -_ ...... .. ... -.-.. 

, , 
'. \ 

\ 

3 4 5 6 

Die Number 

(b) 

Figure 1 .7 .  (a) The average uncertainties for the dice 1 to 7, 

corresponding to a to g in Table 1 .2 .  

\ 

(b) The average uncertainties, as defined by the Shannon Measure 

of information (SMI), for the dice 1 to 7, correspon ding to a to g in 

Table 1 . 2  

This average uncertainty is calculated by: 

The weighted average uncertainty= 

Pr(blue) [1 - Pr(blue)] + Pr(red) [1 - Pr(red)] 
= Pr(blue)Pr(red) + Pr(red)Pr(blue) 
= 2Pr(blue)Pr(red) 

Look carefully on how we calculate this average; it is the 

average of the two numbers: [1 - Pr(blue)] and [ 1-
Pr(red)], using the weights Pr(blue) and Pr(red). 
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This average is equivalent to "inverting" the graph in Figure 

1 .6 so that instead of minimum uncertainty, we get a maximum 

in the uncertainty. We define this "inversion" by: 

1 - [Pr(blue)Pr(blue) + Pr(red)Pr(red)] 

= 1 - Pr(blue)2 - (1 - Pr(blue») 2 

= 2Pr(blue)Pr(red) 

which is the same as the average uncertainty associated with 

the distribution of the two outcomes. Pause and compare the 

definition ofthe average certainty and average uncertainty. 

In Chapter 2, we will generalize the concept of certainty (or 

uncertainty) with respect to games (or any other experiment) 

with many outcomes. You will see that you can estimate in a 

qualitative way the average certainty (or uncertainty) of the 

entire experiment. The quantitative measure of this average 

uncertainty is the Shannon measure of information (SMI). We 

shall discuss this in detail in Chapter 2. Here, these games are 

shown in Figure 1 .7b. Note the similarity of the two graphs in 

Figures 1.7a and 1 .7b, in Chapter 3. We shall see that the same 

quantitative measure of uncertainty, when applied to a specific 

probability distribution is the entropy of a thermodynamic 

system. 
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We shall also learn in this chapter about a measure of 

information. Here, you have noticed that in playing either a, or 

g, you feel that knowing the distribution provides a "lot of 

information," therefore, you could easily choose the right color. 

In case b or f, you feel that the distribution provided "less 

information," therefore it was more difficult to choose the right 

color. 

Similarly, in cases core, you obtained "less information" 

so you were less certain about the choice of color. Finally, in 

case d, you "feel" that you obtained "no information" as to 

which color to choose. I say "feel" because we did not quantify 

the measure of information. This will also be done in this 

chapter. At this stage, you should only reflect about the relative 

difficulty of making a choice of the color in each case. The 

easiest case was a (or g), and the most difficult case was d. 

Now that we know that we have a sense of probability, let 

us discuss some historical notes, and a few elements in the 

theory of probability. 

1.3 The emergence of probability as a branch 

in mathematics 

Probability theory is a branch of mathematics. It has uses in all 

fields of science, from physics and chemistry, to biology and 
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sociology, to economics and psychology; in short, everywhere 

and anytime in our lives. For an elementary discussion of 

probability theory, see Ben-Nairn (20I Sa). We do probabilistic 

"calculations" or "assessments," consciously or unconsciously, 

in many decisions we make, whether it be crossing the street, 

taking medicine, or serious decisions such as getting married. 

In many activities we try to estimate the chances of success or 

failure. Without this kind of probabilistic thinking, a doctor 

could not diagnose a disease from the symptoms, nor can he or 

she prescribe the best medication for the disease that has been 

diagnosed. 

Historically, the theory of probability sprang from questions 

addressed to mathematicians by gamblers, presuming that the 

mathematicians have a better knowledge of how to estimate the 

chances of winning a game. Perhaps, some even believed that 

certain people have a "divine" power and that they could 

predict the outcome of a game. It is interesting to note that the 

Latin word for "guessing" is adivinare, or in Spanish adivinar. 

The verb contains the root "divine." Today, when one says, "I 

guess," or when a Spanish speaking person says ');0 adivino," 

it does not imply that one has some power to "predict" the 

outcome. Originally, the term adivinare probably implied some 
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"divine" power to "predict" the outcome of an experiment, or a 

game. 

Basically, probability is a subjective quantity measunng 

one's degree or extent of belief that a certain event will occur. 

For instance, I may estimate that there is only a 10% chance 

that it will rain in Jerusalem tomorrow. You might say that 

there is a 90% chance that it will rain in Jerusalem tomorrow. 

The reason that such an extreme discrepancy exists is mainly a 

result of different people having different information on the 

weather, and that they have varying assessments of this 

information. 

Even when two people have the same information, they 

might process this information in such a way so as to reach 

different estimates of the chances, or the probability of the 

occurrence of an event (or the extent of plausibility of some 

proposition). Out of this highly vague, qualitative and 

subjective notion, a distilled, refined theory of probability has 

evolved which is quantitative and constitutes an objective 

branch of mathematics. Although it is not applicable to all 

possible events, probability is applicable to a very large body 

of events; for instance, games of chance and many "events" 

which are the outcomes of experiments in physics. 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Probability and Probability Distributions 27 

Figure 1.8. Tossing a coin, having two possible outcomes Hand L. 

When we toss a coin which we have no reason to suspect to 

be unbalanced or "unfair," we believe that the odds for the 

outcomes head (H) or tail (T) are 50%:50%, respectively, 

Figure 1.8. In essence, there is no proof that these are the 

"correct" probabilities. One can adopt a practical 

"experimental proof' based on actual, numerous tossing of a 

coin and counting of the frequencies of the outcomes. Ifwe toss 

a coin a thousand times, there is a good chance that about 500 

outcomes will tum out to be H and about 500 will tum out to 

be T; but there is also a chance that we will get 590 Hs and 410 

Ts. In fact, we can get any sequence of Hs and Ts by tossing 

the coin a thousand times; there is no way to derive or to extract 

the probabilities from such experiments. We must accept the 

existence of probabilities for such well-defined experiments. 

The odds of 50:50 per cent, or probability half for H and half 
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for T, must be accepted as something belonging to the event, 

much as a quantity of mass belongs to a piece of matter. 

Today, the concept of probability is considered to be a 

primitive concept that cannot be defined in terms of more 

primitive concepts. 

Thus, we all agree that if we toss a coin, and we have no 

reason to believe that the coin is unfair, then the chances of 

falling with either Head (H) or Tail (T) up are the same. 

Similarly, when we throw a die, unless we have additional 

information, we assume that each of the possible outcome: 1, 

2, 3, 4, 5, 6  have the same chances of occurring, Figure 1.2a. 

Let us go back to the pre-probability theory era from the 

16th and 17th centuries, when the concept of probabilities had 

just begun to emerge. An example of a question allegedly 

addressed to Galileo Galilei (1 564-1642) was the following: 

Suppose we play with three dice and we are asked to bet on 

the sum of the outcomes of tossing the three dice 

simultaneously. Intuitively, we feel that it would not be wise to 

bet our chances on the outcome of 3, nor on 18;  our feeling is 

correct (in a sense discussed below). The reason is that both 3 

and 18 have only one way of occurring; 1 : 1 : 1  or 6:6:6, 

respectively, and we intuitively judge that these events are 

relatively rare. Clearly, choosing the sum 7, is better. Why? 
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Because there are more partitions of the number 7 into three 

numbers (between 1 and 6), i.e. 7 can be obtained as a result of 

four possible partitions: 

1 : 1 :5, 1 :2:4, 1 :3:3, 2:2:3. 

We also feel that the larger the sum, the larger the number 

of partitions, up to a point roughly at the center between the 

minimum of 3, and the maximum of 1 8. But how can we choose 

between 9 and 10? A simple count shows that both 9 and 10 

have the same number of partitions, i.e. the same number of 

combinations of integers (from 1 to 6), the sum of which is 9 

or 10. Here are all the possible partitions: 

For 9: 1 :2:6, 1 :3 :5, 1 :4:4, 2:2:5, 2:3 :4, 3:3:3 

For 10: 1 :3 :6, 1 :4:5, 2:2:6, 2:3:5, 2:4:4, 3 :3 :4 

At first glance, we might conclude that since 9 and 10 have 

the same number of partitions, they should also have the same 

chances of winning the game. This conclusion is wrong as will 

be discussed below. The correct answer is that 10 has better 

chances of winning than 9. The reason is that, though the 

number of partitions is the same for 9 and 10, the total number 

of outcomes of the three dice that sum up to 9, is a little bit 

smaller than the number of outcomes for 10. In other words, 

the number of partitions is the same, but each partition has a 
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different "weight," e.g. the outcome 1 :4:4 can be realized in 

three different ways: 

1 :4:4, 4: 1 :4, 4:4: 1 

When we count all the possible partitions and all the 

possible weights, we get the following results. We quote here 

the final results. For a more detailed discussion ofthis problem, 

see Ben-Nairn (2007). 

The total number of outcomes for 9 is 25. 

The total number of outcomes for 10 is 27. 

Therefore, the relative chances of winning with 9 and 10, is 

25 :27, i.e. favoring the choice of 10. Thus, the best choice ofa 

winning number, presumably as suggested by Galilei, is 10. 

But what does it mean that l O is the "best" choice and that 

this is the "correct" winning number? obviously, I could choose 

10 and you could choose 3 and you might win the game. Do 

our calculations guarantee that if I choose 10, I will always 

win? 

Obviously not. So what does the ratio 25:27 mean? The 

theory of probability gives us an answer. It is not a precise, nor 

a fully satisfactory answer, and it does not guarantee winning; 

it only says that if we play this game many times, the 

probability that the choice of9 will win is 25/216, whereas the 

probability that the choice of 10 will win is slightly bigger, 
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2712 16 (2 16 being the total number of possible outcomes; 63 = 

2 16). 

How many times do we have to play in order to guarantee 

my winning? On this question, the theory is mute. It only says 

that in the limit of an infinite number of games, the frequency 

of occurrence of 9 should be 2512 16, and the frequency of 

occurrence of 10 should be 2712 16. But an infinite number of 

games cannot be realized. So what is the meaning of these 

probabilities? At the moment, we can say nothing more than 

that the ratio 27:25, reflects our belief or our degree of 

confidence that the number l O is more likely to win than the 

number 9. 

We mentioned this example here because of its historical 

significance in the development of the theory of probability. 

Before we go on, I suggest that you do the calculation on a 

simpler game of two dice rather than three. This is a simple 

game and you should be able to do all the required calculations. 

The problem is simple. We throw two dice simultaneously. We 

record the sum of the two outcomes: The "events" here are: 

2,3,4, . . .  ,12. Can you calculate the probabilities of each of 

these outcomes? See Note 14. 
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1.4 The mathematical approach to probability 

This section is not essential for understanding either the SMI, 

or entropy. The mathematical, or the so-called axiomatic 

approach was developed mainly by Kolmogorov in the 1930s. 

It consists ofthe following three basic concepts: 

1) The sample space 

This is the set of all possible outcomes of a specific, well­

defined experiment. 

Examples: The sample space of throwing a die consists of six 

possible outcomes { I ,  2, 3, 4, 5, 6} ;  tossing a coin has the 

sample space consisting of two outcomes {H: T} (H for head 

and T for tail). Each ofthese outcomes is called an elementary 

event. Note that we cannot write down the sample space for 

every experiment. Some sample spaces consist of an infinite 

number of events (e.g. shooting an arrow at a circular board). 

We are interested only in simple spaces where the counting of 

the outcomes, which are referred to as elementary events, is 

straightforward. 

2) A collection of events 

A compound event, or simply an event, is defined as a union 

(or a sum) of elementary events. 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Probability and Probability Distributions 33 

Examples: (a) The result of tossing a die is "even." This event 

consists of the elementary events {2, 4, 6} ,  i.e. either 2 or 4 or 

6 has occurred, or will occur in the experiment of tossing a die. 

(b) The result oftossing a die is "larger than or equal to 5." 

This event consists of the elementary events {5, 6}, i.e., 

either 5 or 6 has occurred. 

3) Probability 

To each event, we assign a number, which is referred to as 

the probability of that event, which has the following 

properties: 

(a) The probability of each event is a number between zero and 

one. 

(b) The probability ofthe certain event. The certain event is the 

entire sample space. Since the sample space contains all 

possible outcomes, its probability is one. 

(c) The probability of the impossible event IS zero. The 

occurrence of "no event" is assigned the probability zero. 

(d) Iftwo events are disjoint or mutually exclusive (disjoint, or 

mutually exclusive events mean that there are no elementary 

events common to both events), then the probability ofthe sum 

(or union) of the two events is simply the sum of the 

probabilities of the two events. 
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Condition (a) simply gives the scale of the probability. In 

daily life, we might use the range 0-100% to describe the 

chances of, for example, raining tomorrow. In the theory of 

probability, the range [0,1] is used. The second condition 

simply states that if we do perform an experiment, one of the 

outcomes must occur. Therefore, we assign the value of one to 

the sample space, which is the collection of all events. this 

event is called the certain event. Similarly, we assign the 

probability zero to the impossible event. The last condition is 

intuitively self-evident. Mutual exclusivity means that the 

occurrence of one event excludes the possibility of the 

occurrence of the second. In mathematical terms, we say that 

the intersection of the two events is empty (i.e. contains no 

elementary event). 

For example, the two events: 

A � {the outcome of throwing a die is even} � {2,4,6} 

B � {the outcome ofthrowing a die is odd} � { I  ,3 ,5} 

The events A and B are disj oint; the occurrence of one 

excludes the occurrence of the other. If ! threw a die and told 

you that the event "even" occurred, then you know that the 

event "odd" did not occur. 

We define the event: 
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C = {the outcome of throwing a die is larger than or equal 

to 5}  = {5,6} 

Note that A and C, or B and C are not disjoint. A and C 

contain the elementary event 6. B and C contain the elementary 

event 5 .  

The events, "greater than or equal to 4," and "smaller than 

or equal to 2," are disjoint. We can calculate the probability of 

the first event {4, 5, 6} to be 3/6, and the probability of the 

second event { I ,  2} to be 2/6; hence, the combined (or the 

union) event { I ,  2, 4, 5, 6} has the probability 5/6, which is the 

sum of 2/6 and 3/6. 

B 

A 

Figure 1 .9 .  A board of total area of 5 = AxB, and  a circ le with area C. 

A very useful way of demonstrating the concept of probability 

and the sum rule is the Venn diagram. Suppose while 

blindfolded, we throw a dart at a rectangular board having a 

total area of S = AxB. We assume that the dart must hit some 
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point within the board (Figure l .9). We now draw a circle 

within the board, Figure 1 .9, and ask: What is the probability 

of hitting the area within this circle? We assume, by plain 

common sense, that the probability of the event "hitting inside 

the circle" is equal to the ratio of the area of the circle to the 

area of the entire board. (Actually, we are asking about the 

conditional probability that the dart hit the circle, given that the 

dart has hit the board). 

B 

A 
Figure 1 . 10. Two non-over lapping events; X and Y 

Two regions drawn on the board are said to be disjoint if 

there is no overlap between the regions (Figure l . 10). We 

assume that the probability of hitting either one region or the 

other is the ratio of the area of the two regions, to the area of 

the whole board. This leads directly to the sum rules stated 

above. The probability of hitting either one of the regions is the 

sum of the probabilities of hitting each of the regions. This sum 
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rule does not hold when the two regions overlap, i.e. when there 

are points on the board that belong to both regions, like the case 

shown in Figure 1 . 1 l .  

B 

Figure 1 . 11 .  Two over lapping events, X and Y, 
and the  corresponding inte rsection .  

It is intuitively clear that the probability of hitting either of 

the regions is, in this case, the sum of the probabilities of hitting 

each of the regions, minus the probability of hitting the 

overlapping region. Another way of understanding this is to 

think of the area covered by the two regions; it is the sum of the 

two areas of the two regions-minus the area of the 

intersection. 

On this relatively simple (axiomatic) foundation, the whole 

edifice of the mathematical theory of probability has been 

erected. It is not only extremely useful but also an essential tool 

in all the sciences and beyond. As you must have realized, the 
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basics of the theory are simple, intuitive, and require no more 

than common sense. 

In the mathematical theory of probability, the probabilities 

are said to be assigned to each event. These probabilities must 

subscribe to the four conditions a, b, c, and d. The theory does 

not define probability, nor does it provide a method for 

calculating or measuring probabilities. In fact, there is no way 

of calculating probabilities for any general event. It is still a 

quantity that measures our degree or extent of belief of the 

occurrence of certain events, and as such, it is a highly 

subjective quantity. However, for some simple experiments, 

say tossing a coin, throwing a die, or finding the number of 

atoms in a certain region of space, we have some very useful 

methods of calculating the probabilities. They have their 

limitations and they apply to "ideal" cases, yet these 

probabilities turn out to be extremely useful. What is more 

important, since these are probabilities based on common sense 

reasoning, we should all agree that these are the "correct" 

probabilities, i.e. these probabilities turn from being subjective 

quantities to objective quantities. We shall describe two very 

useful "definitions" that have been suggested for this concept 

in the next section. 
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1.5 How do we calculate probabilities? 

I hope that you are comfortable with the intuitive meaning of 

probability. As we have noted earlier, there is no definition for 

the term probability. However, for some simple cases we have 

some methods of calculating probabilities. Two of these are 

discussed in this section. 

1.5.1 The classical "definition" of probability 

Note that I enclosed "definition" in quotation marks. You will 

understand the reason why I did so later. For the moment let us 

"invent" or "discover" this definition by ourselves. 

Example: We throw a fair die in such a way that each outcome 

has the same likelihood of occurrence. What are the 

probabilities of the following events? 

(a) The outcome is {4}. 

(b) The outcome is an even number, i.e. it is one of the 

results {2}, {4} or {6}.  We write this event as {2,4,6}. 

(c) The outcome is greater than 4. This means it is either 

{5}  or {6}. We write this event as {5,6} .  

Note that we use here curly brackets for the event "4", {4} . 

This is consistent with the notation in set theory. In this book, 

we use either {4} or "4" to denote that the result "4" occurred. 
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Write down your answer before you check Note 15 .  

How did we assign probabilities to these events? We 

assumed that the die is "fair," and that we threw it in such a 

way that each single possible outcome (elementary event) has 

the same likelihood. This means that the die is a perfect cube, 

and its mass density is evenly distributed, and that we throw the 

die in such a way that it spins in the air many times before it 

lands on the floor with one of its sides facing upwards. 

For the event (a) in the example above, we reason out that 

since there are altogether six possible outcomes, and we assume 

that each outcome has the same likelihood of occurrence, 

therefore the probability of a single outcome, say, {4}, in case 

(a) is 116. 

If you pause and think about the reasoning that led us to the 

number 116, you will find that we used the phrase "each of the 

outcomes has the same "likelihood," which is tantamount to 

saying that each event has the same probability. Once we also 

fixed the value ofthe certain event to be one, we can calculate 

the probability of each elementary event as being 116. Thus, 

what we have done is not to define the probability of the event 

{4}, but to assume that we know the probability of the event to 

be 116. In other words, this "definition" is circular. It uses the 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Probability and Probability Distributions 41 

concept of probability (or likelihood or chances or odds) to 

"define" the probability. Sometimes an argument based on 

symmetry, or equivalence of all possible results is used to reach 

the conclusion that the probability of each elementary event is 

1/6. 

Let us go to case (b). What is the probability of the 

occurrence of the (compound) event {2,4,6},  i.e. the outcome 

is an even number? 

There are two ways of reasoning. First, we can argue that 

there are altogether six equally likely outcomes (i.e. elementary 

events), each having probability of occurrence 1/6. Therefore, 

the occurrence of either {2} or {4} or {6} must be larger than 

1/6, and most likely to be the sum of these three probabilities, 

. 1 1 1 3 1 
I.e.: - + - + - = - = -. 6 6 6 6 2 

The second reasoning is to divide all possible outcomes into 

two groups of events; "even" and "odd" outcomes. Think of 

coloring all the faces of the die with even number of dots with 

red, and all the faces of the die having an odd number of dots 

with blue. The probability of the event "even" is equivalent to 

the probability of the event "red" face. Since there are two 

possible outcomes either "red" or "blue," and since we believe 
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that the die is fair, we conclude that the probability ofthe event 

"red" (or "even") is Y2. 

Note again that in calculating the probability of the "event" 

we used probabilistic arguments, i.e. we assumed that each 

elementary event has the same likelihood. Therefore, this 

method of calculation cannot be viewed as a bona-fide 

definition ofthe probability ofthe event "even." 

Let us tum to the case (c). The event "greater" than 4 means 

that the outcome is either {5}  or {6}.  We write this event as 

{5,6} .  Using the same type of argument as before we can 

conclude that the probability of the event {5,6} is the sum of 

the probabilities ofthe elementary events {5}  and {6}, i.e. 2c + 6 
1 2 1 
6 6 3 

Exercise: Suppose that the faces of the die are colored as 

follows: 

Faces { I }  and {2}, with red; faces {3} and {4}, with blue, 

and faces {5} and {6}, with green. What is the probability of 

the event "green"? 16 

If you have calculated correctly the probabilities of the 

events in (a), (b) and (c), based on the example above, you have 
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almost discovered the so-called classical definition of 

probability . 

The classical "definition" of probability is: 

For an experiment which has n equally likely outcomes (i.e. 

n elementary events) denoted: Av Az, . . .  , An the probability of 

a compound event B is calculated by the rule: 

Number of outcomes included in B 
PrCB) = ------,:-'-----,.-----:----­

Total number of outcomes 

Remember that we assume that each single possible 

outcome is said to be an elementary event. 

Let us first see that our calculations for the events in (a), (b) 

and (c), in the example given above are consistent with this 

rule. 

In case (a), the event "B" consists of one outcome {4} . 

Applying the rule above, we get: 

1 
PrCa) = "6 

In the case (b), the event "B" contains three outcomes, hence 

3 1 
PrCb) = - = -

6 2 
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In case (c), the event "B" contains two outcomes, hence 

2 1 
Pr(c) = - = -

6 3 

We see that the classical "definition" is intuitively clear. 

You should realize however that this is not a bona-fide 

definition of probability. The "classical definition" already 

assumes that we know the probabilities of each elementary 

event. Therefore, this definition is circular. 

Furthermore, this rule of calculating probabilities does not 

apply in general. First, it is not always clear what the 

elementary events are. For example, for the event: "It will be 

sunny in New York tomorrow," there are no simple elementary 

outcomes. For now, it is sufficient to say that in the case of 

throwing a die we assume that there are six possible outcomes 

(we neglect the possibilities that the die will fall on an edge or 

on a vertex, or perhaps it will fall and break into pieces so that 

no definite outcome is observed). 

More importantly, sometimes the single outcomes are not 

equally probable. Therefore, the classical definition - or rather 

the method of calculating probabilities by the rule given above 

does not apply for all cases. Nevertheless, it is a very useful 

rule for calculating the probabilities of a large class of cases. 
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1.5.2 The relative frequency "definition" of probability 

In all ofthe examples discussed in the previous section, we 

started with the assumption that there exist a finite number of 

elementary events, or elementary outcomes, and that these have 

equal likelihood (or chances, or probability) or occurrence. 

How do we calculate probabilities in cases where there are no 

obvious elementary events? How are the probabilities of such 

events defined? The general and honest answer is that there is 

no bona-fide definition of probability, nor a method of 

calculation which is satisfactory for every event. 

What is the probability that a dormant volcano will erupt in 

the next hour? What is the probability that the sun will explode 

tomorrow? What is the probability that there are intelligent 

beings in some other planets? 

There is no way of defining, let alone calculating the 

probabilities of these events. Yet, people do use the term 

probability in connection with such events. The only meaning 

that "probability" has in such context, is the extent of one's 

belief on the chances of occurrence ofthat event. 

However, there is a large class of events for which one can 

offer an "experimental" way of calculating their probabilities. 

These are the cases when we can repeat an experiment many 
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times, or certain events have occurred many times in the past, 

and we can collect "statistics" on specific events. For example, 

suppose we have a die which is known to be unfair, say a die 

with an asymmetric distribution of mass, or a partially broken 

or twisted die. Obviously, we cannot assume that each outcome 

has the same probability. 

In this particular example, we apply the so-called relative 

frequency "definition" of probability. 17 

We throw the die many, many times, say a thousand times, 

and collect the "statistics" about the frequency of observing the 

result { I } ,  {2}, {3}, . . .  {6} .  By "frequency," we mean the ratio 

of the number of times a specific result occurred and the total 

number of throws. 

Suppose we found that after a thousand throws the following 

results: 

50 results showing { I }  

100 results showing {2} 

100 results showing {3} 

200 results showing {4} 

250 results showing {5} 

300 results showing {6} 
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We might tentatively assume that the probabilities of the 

different outcomes are: 

50 
1000 

100 
1000 

100 
1000 

200 
1000 

250 
1000 

300 
1000 

The relative frequency definition states, that if we throw the 

die infinite number oftimes the fraction oftimes each outcome 

occurs is the "probability" of that event. 17 

This definition is problematic at best. In fact, it is also 

circular in the following sense. We believe that if we do the 

experiment infinite times the fraction of times each outcome 

will occur will tend to some constant value between zero to one. 

Unfortunately, we cannot perform an infinite number of 

experiments. In fact, no one can guarantee that if we calculate 

these fractions for many experiments the fractions will tend to 

some constant values. 

In practice, we take a large but finite number of 

experiments, collect the "statistics," as we did above and 

assume that these results are the approximate probabilities of 

the outcomes. We believe that if we repeat the experiment 

many times (thousands, millions, billions . . .  ) it is highly 

probable that the fractions we get are the "true" probabilities. 

You see that we use the concept of "probable" to define the 
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concept of probability. Therefore, this method cannot be 

considered as a bona-fide definition. 

Yet, we practically use this method with finite number of 

experiments to estimate the most likely probabilities. It is not 

perfect, it does not guarantee that we will get the correct results, 

and it is not always applicable. Yet, this is what we have, and 

in many cases this method is very useful. 

Based on these methods we can determine the approximate 

probabilities of outcomes of an unfair dice as we did before. 

Doctors and pharmaceutical companies determine the efficacy 

of certain drugs. Insurance companies estimate the likelihood 

that a certain person (within a specific age bracket, sex, 

education, marital status, etc.) will be involved in an accident, 

and with this estimate they will calculate the cost of one's  

insurance policy. In all of these cases, and in many others we 

do not have "exact" probabilities, but this is the best we have, 

and we use them because we need to use them. 

Exercises: Suppose I threw an unfair die a thousand times, and 

found the following results: 

The outcome { I }  occurred 600 times. 

The outcome {2} occurred 98 times. 
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The outcome {3} occurred 96 times. 

The outcome {4} occurred 95 times. 

The outcome {5}  occurred 97 times. 

The outcome {6} occurred 14 times. 

Based on the gathering of these statistics, estimate the 

probabilities of each of the outcomes. What is the probability 

ofthe event "even?" What is the probability ofthe event "odd?" 

Can you guess how I prepared this die? 

Based on the given data my estimate ofthe probabilities is: 

Event: { 1 }  {2} {3 } {4} {5} {6} 

Probability: 
600 98 96 95 97 14 

1000 1000 1000 1000 1000 1000 

The probability ofthe event "even" is: 
98+95+14 207 

= --
1000 1000 

. . . 600+96+97 793 
The probabll!ty ofthe event "odd" IS: = --. 1000 1000 

You may guess that I took a regular die, and added a heavy 

metal to the face having six dots so that this face will, with high 

probability, land on the floor, while face "1" will face upwards. 

In this case the probability of the outcome { 1 }  will be the 

largest, the probability ofthe outcome {6} will be the smallest, 
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and all other faces have nearly equal probabilities of about 

1110. 

Note that this method gives only a reasonable estimate of 

the probabilities. It does not guarantee that these are the 

"correct" probabilities. We believe that had we done one 

million throws or one billion throws, we shall get results which 

are closer and closer to the "correct" probabilities. But the truly 

correct probabilities are elusive. Even if we do infinite throws 

(whatever that means) we cannot be assured that we shall get 

the "correct" probabilities (whatever that means too). Yet, in 

spite of this uncertainty, this is the most useful and most used 

method of calculating probabilities. It is useful not because it is 

accurate, but because this is the best method available to us. 

You might wonder how this method compares with the 

classical "definition." The latter sounds more accurate, more 

precise, more reliable, but this is only an illusion. 

First, we can never be sure that the die is perfectly fair 

(whatever that means). If we are not sure, we must use the 

experimental method, and if we find that each outcome occurs 

. h h fr . b 
100 1000 

h Wit t e same equency, I.e. a out -, or --, etc. t en we 600 6000 

can be reasonably sure that it is a fair die, and that the 

probabilities are 1/6. But what if we are (somehow) sure that 
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the die is fair, how do we know that the probabilities of the 

outcome are equal to 1/6? In fact, we do not know. We believe 

that this is a reasonable assumption. If we doubt this 

assumption we can do the experiment, or we can imagine doing 

the experiment many times. Of course, our imagination allows 

us to repeat the same experiment infinite number oftimes, and 

imagine that the relative frequencies will all be equal to 1/6. 

1.5.3 Conclusion 

In this section, we saw that there is no bone-fide definition of 

the term probability. Yet, we also learned that we have some 

kind of a sense-of-probability which guides us in making some 

probabilistic decisions. We also learned that there is absolutely 

no reliable method of calculating probabilities. Instead, we rely 

on, or believe that if we repeat an experiment many times, the 

resulting frequencies will be a reasonable measure ofthe extent 

of certainty or uncertainty regarding the occurrence of one 

outcome or another. We live in a world of uncertainty, this is 

clear. This section taught us that we are also uncertain about 

the extent of our uncertainty of the occurrence of an event. 

Yet, in spite of all these uncertainties, shortcomings, 

limitations and so on, we need probabilities in almost every 

aspect of our lives. Without a knowledge of probability theory, 
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we might not be able to make prudent decisions, or we might 

be led to making the wrong decisions. Probability theory offers 

us the best it can, and in many cases it is extremely useful. It is 

difficult to find even one aspect of our lives which do not 

depend on probabilistic reasoning and decision making. For 

more details and examples, see Ben-Nairn (201 5b). 

1.6 Independent Events and Conditional 

probability 

The concept of dependence between events and conditional 

probability are central to probability theory and have many uses 

in sciences. In this section, we discuss briefly the concept of 

independence between the two events. Two events are said to 

be independent if the occurrence of one event has no effect on 

the probability of occurrence ofthe other. 

For example, if two people who are far apart from each other 

throw a fair die individually, the outcomes of the two die are 

independent in the sense that the occurrence of say, "5" on one 

die, does not have any effect on the probability of occurrence 

of a result, say, "3," on the other, Figure l . 1 2a. On the other 

hand, if each die has a little magnet, then the outcomes of the 

two results would be dependent, Figure l . 12b. Intuitively, it is 

clear that whenever two events are independent, the probability 
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of the occurrence of both events, say, "5" on one die, and 

outcome "3" on the other, is the product of the two 

probabilities. The reason is quite simple. By tossing two dice 

simultaneously, we have altogether 36 possible elementary 

events. Each of these outcomes have equal probability of X'6 
which is also equal to X times X . 

(a )  

(b)  

I 
..... . 
;1'. 

I � . 
• r. 

lkm 

lcm • \� \ 

......- . ...,. \ 

Figure 1 .12 .  (a)  Two independent  outcomes of two dice, 

(b) The same two dice when they are at c losed distance, 

the i r  outcome would be dependent .  

A fundamental concept is the conditional probability. This is 

defined as the probability of the occurrence of an event A given 

that an event B has occurred. We write this as Pr{A IB} (Read: 

Probability of A given B). 18 

Whenever the two events are independent, then the occurrence 

of B has no effect on the probability of the occurrence ofA. We 

write this as Pr(A IB) = Pr(A) .  The interesting cases are when 

the events are dependent, i.e., when the occurrence of one event 
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does affect the occurrence of the other. In everyday life, we 

make such estimates ofthe conditional probabilities frequently. 

Sometimes, the occurrence of one event enhances the 

probability ofthe second event, sometimes it could diminish it. 

Examples: 

1 .  The probability that it will rain this afternoon, given 

that the sky is very cloudy at noon, is larger than the 

probability of "raining this afternoon." 

2. The probability that it will rain this afternoon, given 

that the sky is clear at noon, is smaller than the 

probability of "raining this afternoon." 

3.  The probability that it will rain today, given that the 

outcome of tossing a die is "4," is the same as the 

probability of "raining today." 

We can say that in the first example, the two events are 

positively correlated. In the second example, they are 

negatively correlated, and III the third example, they are 

uncorrelated or indifferent. 

In the three examples gIven above, we feel that the 

statements are correct. However, we cannot quantify them. 

Different persons would have made different estimates of the 

probabilities of "raining today this afternoon." To make things 
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more quantitative and objective, let us consider the following 

events: 

A = The outcome of throwing a die is "4" 

B = The outcome of throwing a die is "even," 

(i.e. it is one of the following: 2, 4, 6) 

C = The outcome of throwing a die is "odd," 

(i.e. it is one of the following: 1 , 3, 5) 

We can calculate the following two conditional probabilities 

1 1 
Pr{of A igiven B} = "3  > Pr{of A} = "6 

1 
Pr{of A igiven C} = 0 < Pr{of A} = "6  

In the first example, the knowledge that B has occurred 

increases the probability of the occurrence of A. Without that 

knowledge, the probability of A is .x (one out of six 

possibilities). Given the occurrence of B, the probability of A 

becomes larger, X (one out of three possibilities). But given 

that C has occurred, the probability of A becomes zero, i.e. 

smaller than the probability of A without that knowledge. 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



56 Chapter 1 

It is important to distinguish between disjoint (i.e. mutually 

exclusive events) and independent events. Disjoint events are 

events that are mutually exclusive; the occurrence of one 

excludes the occurrence of the second. Being disjoint is a 

property of the events themselves (i.e. the two events have no 

common elementary event). Independent events are not defined 

in terms of the elementary events comprising the two events 

but in terms oftheir probabilities. Ifthe two events are disjoint, 

then they are strongly dependent. For more details and 

examples, see Ben-Nairn (201Sb). 

1. 7 Children's perception of probability 

Now that you have a good idea what probability means, and 

how people calculate or estimate probabilities, it is time to relax 

a little bit. In this section I will describe a research which 

examines how children of different ages develop a probability­

sense. 

I will show you only a few examples of experiments 

conducted on children ages 4 to 12. The experiment described 

here is a variation of a similar experiment carried out by Falk 

et al (1980). In the original publication you will find many 

variations of these experiments and many thoughtful and 
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insightful conclusions. There are also some very surpnsmg 

results. 

Figure l . 1 3  (see color centerfold) shows two games denoted 

"easy" and "difficult." 

The "easy" game consists of two urns. One on the left, 

contains four red and four blue marbles. The second on the 

right, contains four red and eight blue marbles. 

(a )  (b)  
(a)  A ch i ld  examin ing the  contents of two urns .  

(b )  A ch i ld  chooses wh i le  b l indfold between two urns  

after examin ing the i r  contents .  

Children aged 4-1 1 were shown two urns and their contents. 

After examining the contents of the two urns they were told to 

close their eyes, choose an urn, and draw a marble from the urn 

they chose. They were also told that if the marble they drew is 
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blue they will be rewarded with a prize (win), while if they 

drew a red marble they will get nothing (lose). 

Which urn do you think did the children choose? Which urn 

will you choose if you were the child asked to draw a marble 

from the urns? Why did you choose that particular urn? 

Suppose you chose urn X and did not win, what urn will you 

choose the next time you play? 

What is the probability of winning in this particular game if 

you choose the urn on the right? 

What is the probability of not winning if you choose the urn 

on the left? 

Write down the answers before you consult Note 19. 

After contemplating the odds in the easy game shown in 

Figure 1 . 13 (see color centerfold), let us go to the more 

"difficult" game shown in Figure 1 . 14  (see color centerfold). It 

is not really difficult, but within the research on children's 

perception of probabilities, it was considered the more difficult 

one. 

In this game, the urn on the left has the same number of blue 

and red marbles (4 and 4) as in the easy game in Figure 1 . 13. 
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The urn on the right contains 8 blue marbles and 12 red marbles 

(Figure 1 . 14). 

Children who were exposed to this game responded 

differently according to their ages. The younger children made 

the wrong choices most ofthe time. They chose the urn on the 

right. When asked why they made that choice they answered 

"because there are more blue marbles in the urn on the right 

than in the urn on the left." Clearly, those children had no 

sense-of-probability. As mentioned in connection with the easy 

game in Figure 1 . 13, young children chose the urn according to 

the absolute number of blue marbles; the more blues, the more 

attractive the urn. In the easy game more blues coincided with 

larger probability. Therefore, the children chose the urn on the 

right for the wrong reason. In the more difficult game the young 

children again chose the one on the right. Here, they chose the 

wrong urn for the wrong reason; the absolute number of blue 

marbles. 

Children aged 10 and above made better choices. Their 

probability-sense told them that the important quantity is not 

the absolute number of blue marbles (eight on right versus 4 on 

the left), but the rather the ratio of the numbers of blues and 

reds. 
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For the game in Figure 1 . 14, the ratios are: 

F or the urn on the left: 

F or the urn on the right: 

Pr(win) 
= � = 1 Pr(lose) 4 

Pr(win) 8 2 
Pr(lose) 12 3 

Clearly, the better choice in this case is the urn on the left. 

Exercise: Calculate the probability of winning if you choose 

the urn on the right, and if you choose the urn on the left. 

Suppose you chose the urn on the left, and you drew a red 

marble, would you change your choice the next time you play 

the game? Note that by playing the game the "second time" we 

mean exactly the same game. This means that whichever 

marble you draw in the first trial, it is returned to the urn before 

you play the next game, and so on. 

Now that you are convinced that not-so-young children have 

a probability-sense, let us test your probability-sense. 

Consider the following simple games: 

I threw a fair die. I hope you remember what a fair die is. Can 

you define a fair die? 

You see that the die in the air whirls before it lands on the floor. 
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Game A 

Choose a number between one and six, say "4." If the die 

falls with the upper face up showing the number "4", then you 

get a dollar. If the outcome is different from "4" you get 

nothing. 

Which number will you choose in the game? 

Why did you choose this particular number? 

How much do you expect to gain if you play this game 1,000 

times? 

Game B 

The same as in Game A, i.e. if the outcome is the same as 

the number you chose (say "4"), then you get a dollar. But if 

the outcome is different, you have to pay 2 1  cents. 

Presuming you want to maximize your eammgs which 

number would you choose in this game? 

How much do you expect to win (or lose) if you play this 

game 1,000 times? 

Answer these questions before you continue. These are easy 

questions. After answering compare your results with Note 20. 
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Now consider a slightly more complicated game. 

You are shown an urn, Figure 1 . 1 5  (see color centerfold) 

containing 4 blue marbles, 6 red marbles and 10 green marbles. 

You know the contents of the urn. You have to choose a 

color (not an urn as in the previous games); either blue, red or 

green. You shut your eyes and draw one marble from the urn. 

If you draw a blue one, you get $2, but you get nothing if it is 

not a blue marble. 

If you choose a red marble and draw a red one, you get $3, 

but you get nothing if it is not a red marble. 

If you choose a green marble and draw a green one, you get 

$1 ,  but you get nothing if it is not a green marble. 

Presuming you want to maximize your earnings, which color 

will you choose? 

Explain why you chose that particular color. 

In order to answer the question above you have to calculate first 

the following probabilities: 

What is the probability of drawing a blue marble? 

What is the probability of drawing a red marble? 
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What is the probability of drawing a green marble? 

After calculating these probabilities, will you change the 

"color" of your choice? 

The probability of drawing a blue is: � = 2c. 20 5 

The probability of drawing a red is: � = 2.. 20 10 

The probability of drawing a green is: ..:£ = 2c. 20 2 

Clearly, the probability of drawing a green is the biggest 

simply because there are more green marbles. The probability 

of drawing a blue is the smallest, simply because there are 

fewer blue marbles. In making a color choice you have to 

consider both the probability ofthe color, and the prize you will 

get if you chose that color. Now, suppose you play the game 

1,000 times. Each time you play you choose the same color, 

and after you draw a marble, and get whatever you earned, you 

return the marble to the urn, and draw a marble again from the 

same urn under the same initial conditions. 

If you chose "blue" your average expected earnmg IS 

2 x � x 1000 = 400 US$. 
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If you chose a "red" your average expected earrung IS 
3 

3 x - x 1000 = 900 US$. 10 

If you chose a "green" your average expected earnmg IS 

1 x 2; x 1000 = 500 US$. 2 

Now you see that in this game, the better choice is the red 

color. Although it has a smaller probability of being drawn 

compared to the green, the average earnings when the red 

marble is chosen is the highest. 

If you chose red then you should stick to this color. 

However, if you chose a green because there is a higher 

probability of picking a green, then you should switch to red, 

which has higher expected earnings. 

Now consider a more challenging problem. Suppose you 

chose red in the previous game, and suppose you picked a red 

and earned $3. Good luck! 

Now you repeat the game but with one difference, you do 

not return the red marble to the urn. Which color will you 

choose next? Note that now, the initial conditions have 

changed, Figure 1 . 16  (see color centerfold). There are four 
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blue, five red and 10 green. Do the calculation before you look 

at Note 21 .  

Let us try the calculation for the next game. Suppose that 

you drew in the second game a "red," and removed it from the 

urn. Which color would you choose now? Note that now the 

initial conditions have changed, Figure 1 . 17  (see color 

centerfold) there are four blue, four red and ten green. Do the 

calculations before consulting Note 22. 

Again, you'd better choose the red. However, be careful in 

the next step. If you drew red in the previous game, and did not 

return it, the urn now contains a total of l 7  marbles, Figure 1 . 1 8  

(see color centerfold), and the expected earnings are: 

For "blue," 

F or "red," 

For " green," 

4
' h  d '  

4 8 Pr = - , WIt expecte eammg - X 2 = -17 17 17 

3 ' h  d '  3 9 Pr = - , WIt expecte eammg - X 3 = -17 17 17 

10 . 
h d '  

10 10 Pr = - , WIt expecte eammg - X 1 = -17 17 17 

In order to calculate the expected earnings for 1000 draws 

under the same condition, you have to multiply these numbers 

by 1000. 
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At this stage you can see that it is better for you to switch to 

the "green." Although the prize for the "red" is bigger, the 

probability of the "green" is now much higher so that the 

expected earning is bigger for the choice of green. 

I hope you did all the proposed calculations and compared 

them with the notes. You will realize that although we did not 

define what probability is, you were able to calculate some 

simple probabilities by relying on your probability-sense. In 

fact you have also calculated some average quantities, even 

though we did not define the term average. We shall return to 

discuss this term in Section 1 .  9. 

1.8 Probability Distributions 

In this section, we discuss some of the most important 

probability distributions. 

Whenever we have an experiment (or a game) which we 

know has n possible outcomes, and that the probability of the 

ith outcome is Pr(i), we say that we know the probability 

distribution of that experiment (or the game). 
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Example 1 :  Tossing a coin 

The two possible outcomes are Head (H) and Tail (T). 

Knowing that PrCH), and PrCT) is equivalent to knowing the 

probability distribution. 

Example 2:  Throwing a die 

The six possible outcomes are: 1 , 2, 3, 4, 5, 6. Normally, we 

assume that the die is fair. This means that the distribution is 

(2):., 2c ,!):. , �), i.e. there is equal probability for each of the 6 6 6 6 6 6  

possible outcomes ofthis die. 

Example 3 :  Throwing a two-color die 

This kind of die was discussed in Section 1 . 1 .  Here, there are 

six faces to the die, but we were interested only in the color of 

the outcomes. Therefore, in this experiment we have only two 

outcomes; blue and red. We discussed various distributions of 

this game in Section 1 . 1 .  

In the rest of this section, we discuss a few more 

distributions which are important in physics in general, and in 

understanding entropy in particular. We shall describe 

qualitatively the various distributions. 
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1.8.1 The uniform distribution 

Have you even wondered how the fragrance from a small drop 

of perfume dropped at the comer of the room will, after a short 

time permeate the entire room. Of course, the reason the 

molecules of the perfume reach all parts of the room is that they 

possess kinetic energy. Indeed, the kinetic energies of the 

molecules propel them to move randomly in all kinds of 

directions and all kinds of velocities. But why do they not stay 

within the drop of perfume, or in its vicinity? The fact is that 

after a very short time the molecules of the perfume will reach 

a uniform distribution throughout the entire room. This means 

that the probability of finding any of these molecules in a small 

region anywhere in the room is the same, Figure l . 19 .  

LJJ dV 

(a )  (b)  
Figure 1.19. (al A drop of perfume is placed initially at the corner of a room. 
(b) After sometime the perfume evaporates and occupies the entire room. 
The density of the perfume at each small element of volume dV, is the 
same at any point in the room. 

\ 
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We take this fact for granted, but understanding it is far from 

trivial. If you ask someone who learned thermodynamics you 

might get an answer that the reason for this uniform distribution 

is the Second Law of thermodynamics. This is true. However, 

underlying the Second Law is a more fundamental principle. 

The uniform probability distribution is the distribution which 

has the largest probability (provided we neglect the interactions 

between particles and the gravitational field). I will explain that 

in the next few pages. I will also return to this aspect of the 

uniform distribution in Chapter 3.  By uniform distribution we 

mean that a molecule can be found in any small element of 

volume with equal probability. More precisely, the probability 

of finding any molecule in the element of volume dVin Figure 

1 . 19  is pdV, when p is the total density of the molecules 

(p = N IV), N is the total number of molecules, and V the total 

volume ofthe room. 

Let us do a simple experiment. Suppose a box is divided into 

say, 10 cells. Within one of these cells we place 10 marbles. 

The partitions between the cells are high enough so that all the 

10 marbles can be contained in one of the cells. Initially, we 

place all the 10 marbles in one cell as shown in Figure 1 .20a. 
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Te n d iffe re nt ma rb les i n  ten ce l l s  

(a)  (b) (c) 
Figure 1 .20.  (a)  T h e  in it ia l  configuration o f  ten marbles i n  ten cel ls .  

(b )  The configuration of the  ten marbles after a short per iod of t ime.  

(c)  The  configuration of the  ten marbles after a long period of t ime.  

We then shake the box vigorously in all directions in such a 

way that the marbles can cross over the partitions between the 

cells. While we shake the box, we take snapshots of the 

distribution of the marbles in the various cells. A distribution 

of the ten marbles in the ten cells is the set of numbers: 

where Nl is the number of marbles in cell " 1", Nz is the number 

of marbles in cell "2," and so on. We sometimes call the 

distribution of the marbles in the cell a configuration. The 

initial configuration is written as: 

Nl = 10, Nz = 0, N3 = 0, . . .  , NlO = ° 
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This means that all the marbles are in cell number "1 ." 

When we start shaking the box we expect that some marbles 

from cell "1" will cross over to cell "2," or "3," and so forth. 

F or instance, after we shake the box a few times we might find 

the configuration: 

This means that two of the marbles have crossed over the 

partitions; one reached cell "2" and one reached cell "3," Figure 

1 .20b. 

Imagine that while shaking the box you took millions of 

snapshots. You will see that in most of these snapshots the 

distribution of marbles in the cells will be uniform or nearly 

uniform, Figure 1 .20c. Note that we use here the term 

"distribution" for the arrangement of the particles. In most 

cases we use the same term as shorthand for probability 

distribution. The same is true when we start with N particles in 

one cell, and remove the partitions between the cells. After 

sometime the distribution of particles will be uniform in the 

entire volume V. As we shall see in Chapter 3, the reason for 

obtaining this particular distribution is because this distribution 

is the most probable one. 23 
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1.8.2 The Bernoulli distribution and the binomial 

distribution 

Consider an experiment for which there are only two possible 

outcomes; H or T in tossing a coin, hitting the right (R) or the 

left (L) area on a board, or finding a molecule in one or the 

other compartments, Figure l .2 l .  We already discussed some 

aspects of this probability distribution in Section 1 . 1 .  

(a )  ( L) (R)  

(b )  
Figure 1 .21 .  Two eq uivalent problems: 

(a)  A particle being in the  left or right com partment, a n d  

(b )  two outcomes o f  a co in .  

We assume that the probability of the occurrence of one of 

the two outcomes is p, and the second, q. Since we always 

assume that the experiment was done, and one of the outcomes 

has occurred, we must have p + q = 1 .  

Now we repeat the same experiment 1 0  times. What i s  the 

probability of the specific sequence of outcomes? 

H H T H T T H T H H 
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given that the probability of H is p, and of T, is q (we use the 

language of H and T, but you can use R or L, or any other 

notation for the two events), and given that the sequence of 

experiments are independent? We have: 

PrCa specific sequence of six Hs and four Ts) 

= p x p x p x p x p x p x q x q x q x q  
= p6q4 

We used here the rule that the probability of the ten 

independent events is a product of all the individual events. 

In general, for N experiments of the same kind as before, the 

probability of obtaining a specific sequence of n outcomes H 

and N - n outcomes T, is: 

PrCa specific sequence of n Hs and CN - n) Ts) = 
(1)  

This is  the Bernoulli distribution. 

Note that we underlined the words specific sequence. There 

is a subtle point to pay attention to before we proceed to the 

next step. A specific sequence is when we specify the first 

outcome, the second outcome, and so on until the Nth outcome. 
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For example, for four experiments the specific example HTTT 

has the probability: 

Pr(HTTT) = pq3 

The specific sequence THTT has also the same probability: 

Pr(THTT) = pq3 

Any specific sequence having one H, and three Ts has the 

same probability pq3 When we say specific sequence, we 

mean we are given the specific order of the events; first T, 

second H, third T, fourth T. We see that for each specific 

sequence having one H, and three Ts, the probability is pq3, 

independently of the specific order. This result follows from 

the assumption of independence of the event, and from the 

application of the multiplication rule for the probabilities of 

independent events. 

Although it sounds a little paradoxical, each specific 

sequence having one H, and three Ts has the same probability 

(pq3) no matter what the specific order is. 

If you are not convinced write down a few specific 

sequences of four results and calculate the probability for each 

sequence. 
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Now, we ask a slightly different question. What is the 

probability of any sequence of four outcomes, one of which is 

H and three of which are Ts? The emphasis is now on the words 

any sequence. We call this a generic sequence of one H, and 

three Ts. To calculate this probability we write first all possible 

specific sequences. These are: 

HTTT, THTT, TTHT, TTTH 

Check that these are all the possible specific sequences with 

one H, and three Ts. The question we ask is about the 

probability of finding either the first, the second, the third or 

the fourth of these specific sequences. To calculate this 

probability, we have to use the rule of summing the 

probabilities of disjoint events. The sequence can either be the 

first, the second, the third, or the fourth. We cannot obtain two 

of these at the same time. Hence, the listed four events are 

disjoint, and the probability of obtaining any of these events in 

this list is: 

Pr(any sequence of one H and three Ts) = 4pq3 

The probability of a generic sequence of n Hs, and N - n, 

Ts is called the Binomial distribution. We shall further study 

the Binomial distribution in Chapter 3.  
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Exerci se: Calculate the probability of the specific sequence 

HHHTTI, and the specific sequence HTHTHT. What is the 

probability of a specific sequence of six outcomes having three 

Hs, and three Ts? What is the probability of the generic 

sequence of six outcomes, having three Hs and three Ts?24 

1.8.3 The normal distribution 

The Normal distribution is a very important distribution. It 

occurs everywhere, not only in physics, but almost anywhere 

where statistics applies. This is why it is referred to as the 

Normal distribution. It is the norm rather than the exception. 

This distribution is referred to by different names, such as the 

bell-shaped function (because of its typical shape), the 

Maxwell-Boltzmann distribution of velocities III one 

dimension, and the Gaussian distribution after Carl Friedrich 

Gauss (1777-1855). This distribution may be obtained from the 

Binomial distribution for large N. We will see this trend in 

Chapter 3.  One can also prove it mathematically. See Ben­

Nairn (201 5b). 

There are many ways of deriving this particular distribution. 

All require some degree of mathematics. However, we shall see 

in Chapter 3 that the probability distribution Pr(n, N - n) of 

finding n particles on the left (or n Hs in N series of coin 
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tossing), and N - n on the right tend to have a bell-shaped 

form. One can prove mathematically that in the limit of very 

large N, the Binomial distribution will tend to the Normal 

distribution. See Ben-Nairn (201 Sb). 

A more elegant derivation based on Shannon's measure of 

information is available, but this again requires some 

mathematics. We shall mention this method in Chapter 3. 

There is also an "experimental" way of obtaining the 

Normal distribution which you can do by either imagining an 

experiment with marbles in cells or simulating the experiment 

on a computer. This is also described in Ben-Nairn (2010). 

The Normal distribution was first discovered in analyzing 

the distribution of errors in an experiment. If you measure any 

quantity, say people's  heights in a given city, the concentration 

of sugar in your blood, or the weights of newly born babies, 

you will find a distribution which is similar to the bell-shaped 

curve. 

The simplest way of visualizing the Normal distribution is 

in the distribution of velocities of particles in a one dimensional 

system. We assume that particles have kinetic energy of motion 

and that the total energy of all the particles is constant. We also 

assume that there are no external fields that will affect the 
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location or the velocities of the particles. Due to random 

collision between the particles, we expect that the motion to the 

right is as probable as the motion to the left, and whatever the 

distribution of the velocities is, it will be symmetrical about the 

value ofv = O. Figure l .22. 

> 
.� '" I: " cu 
"C 
> .� 

:c 0] 

"' ,  .Q 
o 
� 0.. 

T=1 

T=4 

Velocity 

Figure 1 .22 .  Equ i l ibr ium distr ibution of velocities 

i n  one d imension,  at different temperatures.  

The larger the deviation from the center, the lower the 

probability of finding a molecule with such velocity. As we 

have pointed out earlier, the width of the curve as a measure by 

the standard deviation is proportional to the temperature, the 

higher the temperature, the greater the spread of the molecules 

on a larger range of velocities. 

It should be noted that each of the curves shown in Figure 

l .22 is referred to as the probability density. For our purpose 
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we can think of this curve as a series of points. Each point 

represents the probability of obtaining a velocity value in the 

vicinity VX ' 

Finally, it should be noted that so far we have discussed the 

probability distribution of velocities in a one-dimensional 

system. In this case we have a symmetrical Normal curve. In 

Chapter 3, we will discuss the distribution of speeds of the 

particles. The speed is the absolute value of the velocity of the 

particle in any direction in space. This speed is by definition, 

always positive and its distribution can be derived from the 

Normal distribution in one-dimension. In this case the 

distribution is not symmetrical. It has the form as shown in 

Figure l .23, and it is referred to as the Maxwell Boltzmann 

distribution. 
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Figure 1 .23 .  Equ i l ibr ium distr ibution of speeds (abso lute velocities) 

i n  t h ree d imensions, at different temperatures.  
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1.8.4 Conclusion 

In this section, we got acquainted with the most important 

distributions and the most frequently found distributions in 

natural phenomena. We did not provide any proof about the 

attainment of these distributions. However, the "proofs" are 

available both experimentally and theoretically. The experimental 

proof is easy to carry out, whereas the theoretical proof is more 

difficult to obtain. This reqUIres some sophisticated 

mathematics. In Chapter 3, we shall point out that the Uniform 

and the Normal distributions are related to the Second Law of 

Thermodynamics. 

1.9 Average quantities 

Before we define an average quantity, let us see if you have an 

intuitive sense of what an average means. 

Suppose you measure the sizes of ten balls, and you obtain the 

following results: 

4, 6, 6, 4, 3, 4, 4, 4, 6, 6  

The units we chose for these measurements are not 

important, it could be in centimeters, millimeters, or any other 

units. What is the average size of the balls? We have here all 

the outcomes of the ten balls, and we calculate the average as: 
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sum of all results 47 
average size = 

b f b  II 
= 

-
= 4.7 

num er 0 a s 10 

81 

Thus, we say that the average size of the balls is 4.7. Note 

carefully that the average is a property of the entire set of 

results, and not of any particular outcome. 

Now, suppose that we put the balls inside an urn. While we 

are blindfolded, we pick up a ball at random, and ask for the 

probability distribution of this experiment. Looking at the 

sequence of numbers listed above, we can conclude that: 

Probability of size "4" is: :0 = � 

1 
Probability of size "3" is: 10 

4 
Probability of size "6" is: 10 

Note that the sum of these probabilities must be one. Can you 

explain why? 

Now, we can calculate the average size by the formula: 

Pr(4) x 4 + Pr(3) x 3 + Pr(6) x 6 

1 1 4 47 = - x 4 + - x  3 + - x  6 = 
-

= 4.7 
2 10 10 10 
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We can now generalize this definition of the average. 

Suppose we perform an experiment, call it E. We know that 

there are n possible outcomes (size of balls, people's heights, 

temperatures of the day, etc.). We denote these outcomes by 

the sequence of numbers (again, we do not care for the units; 

whatever units we choose, the average will have the same 

units): 

E(1), E(2), E(3), . . .  , E(n) 

where E(i) is the value of the ith outcome. Next, suppose we 

also know the probability distribution: 

Pr(l), Pr(2), . . .  , Pr(n) 

where Pr(i) is the probability of the ith outcome. The average 

of the outcomes of this experiment is defined by: 

average of E 
= sum of the products Pr(i)E(i) 

This sum is written as: 

n 
I Pr(i)E(i) 
i=l 

where the symbol L stands for the "sum over all possible 

indices i." 
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We already encountered an average quantity when we 

played with various dice. We shall encounter a very special 

kind of an average in Chapter 2. This same average will also be 

the basis on which we define and interpret the entropy in 

Chapter 3 .  

To check your understanding of the concept of averages, 

consider the following short stories: 

1.9.1 Can an average Grade be Higher than the Highest 
Grade? 

We are informed that the average grade of all the students in 

the Average-State University (ASU) in 1970 was 83.4 ( 100 is 

the maximal grade). Not bad compared with the grades of all 

the students in the country. In the years that followed, the 

average grade of the students of ASU declined each decade, 

from 83.4 in 1970, dropping down to 82.1 in 1980, and 

dropping further to 79. 1 in 1990. Finally, in 2000 the ASU's 

local newspaper proudly aunounced that grades of all the 

students of ASU were above the average. 

Is that good news for a change?25 
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1.9.2 How can one increase the average IQ 
of the professors in two universities? 

In another publication, it was reported that in Highiq State 

University (HSU), the average IQ of university professors was 

130. In that same publication, it was also reported that the 

average IQ of university professors at the Lowiq State 

University (LSU), which is located in the next town, was only 

80. (Please do not take any offense if you belong to LSU. The 

numbers I quoted here are purely fictitious). 

Two years ago, a professor from the HSU took a position in 

LSU. At the end ofthe academic year, it was published that as 

a result of this transfer of the professor, the average IQ of the 

professors of each ofthe two universities had increased! 

Could this be possible? 

Yes, it is possible. You can easily find an example 26 

Does the increase ofthe average IQ ofthe professors of each 

university imply that the average IQ of all the professors in the 

two universities had also increased? 

No, that is not possible. Can you explain why? 
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1.9.3 Average speed and average of two speeds 

You drive from Jerusalem to Tel Aviv at a constant speed of 40 

km per hour. You drive back from Tel Aviv to Jerusalem at 

constant speed of 100 km per hour. What is the average speed 

in the round trip to Tel Aviv and back? 27 

If you have difficulty in answering the previous question try 

the following "easier" one, but with a surprising result. 

Suppose you travel from Jerusalem to Tel Aviv on a donkey. 

The speed of the donkey is v (disregard the units). On the way 

back you fly with nearly the speed of light, call it c. You know 

that c » v. What is the average speed of the round trip, and 

what is the average of two speeds? A rough estimate will be 

accepted 28 

This section was introduced to "formalize" the concept of 

average (or mean, or expected value). In fact, we have used this 

concept several times in this chapter. We shall further 

encounter average quantities in the next two chapters. 

1.10 Do animals have a probability-sense? 

At this stage of reading the book I am confident that you know 

enough about the concept of probability so that you will be able 

to understand the two concepts of entropy and the Second Law. 
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I am confident because I have taught probability theory for 

many years, and I also know that researchers have come to the 

conclusion that young children aged 12-14 already possess a 

probability-sense. 

During all this time, it never crossed my mind to ask myself 

the question posed in the heading of this section. The purpose 

of this section is to share with you some of my thoughts, as well 

as some of my findings regarding the question posed above. 

You do not need to read this section in order to understand 

the rest of the book. However, if you are curious - as I was, 

please read the rest of the section. I believe that aside from 

satisfying your curiosity, perhaps reading this book will 

prepare you to ask new questions, design experiments, and 

conduct research leading to interesting results. 

Let me suggest three questions for you to ponder about: 

1 .  Do you believe that animals (those which are considered 

intelligent) have a probability-sense? 

2. Can you think of a possible experiment, the results of which 

will provide the answer to the first question? 
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3. Can you design an experiment to measure to what extent 

some animals make probabilistic judgements, or have a 

probability-sense? 

I urge you to pause and think about these questions. Do not 

rush to read the rest of this section, or skip it, and continue to 

the next chapter. I also suggest that you write short answers to 

these questions. This will train you to do original thinking and 

research. You will realize that sometimes asking the right 

questions, and designing the right experiments are the most 

important and exciting activities in any scientific research. 

Before I tell you about an experiment which was actually 

carried out with animals, think of the experiment described in 

Section 1 .7 on children's perception of probability. Can one 

repeat the same experiments with animals instead of young 

children? 

My answer to the first question is that perhaps some animals 

have a certain degree of probability-sense. The reason for my 

belief is that animals, like humans must make probabilistic 

judgements in their search for food (or prey), finding mates, 

etc. A hungry lion who seeks an easy prey "knows," based on 

his prior experience that the chances of finding a deer near the 

lake are much larger than in arid areas. Similarly, a male 
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seeking for a female mate who happens to be close to another 

male must assess his chances of winning in case he has to fight 

the second male. 

The main difficulty in conducting a research to measure the 

extent of having a probability-sense is how to explain to an 

animal the tlrules of the game!! as in the case of children who 

have to choose between two urns having different numbers of 

colored marbles. 

A group of scientists in Germany" did this type of research 

and reported their results in an article entitled: nApes are 

intuitive statisticians. n Of course, apes or any other animals are 

not tlstatisticians,!! in the sense we use them for professional 

statisticians. \\That the researchers did was to design an 

experiment to check the extent of probability-sense of apes. 

(a)  (b) 
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If you tried to answer questions 2 and 3 posed above, you 

might think of a set-up similar to Figure 1 .24(see color 

centerfold) in which an animal has to choose between two urns. 

(Of course, you might have invented a completely different set­

up for such an experiment. Ifthat is the case, I will be delighted 

to hear from you). 

Obviously, it would be difficult to do exactly the same 

experiment with marbles in urns as described in Section 1 .7. It 

would be difficult, though not impossible, to train monkeys to 

choose, say a blue marble which will reward them a prize, and 

to select the urn which has a relatively larger ratio of blue to 

red marbles. The more difficult part would be to train them to 

do the selection of the right urn, i.e. the urn with a better ratio 

of blue to red while blindfolded. 

The researchers have solved this problem in an ingenious 

manner. First, instead of blue and red marbles, they put banana 

pellets and carrot slices in transparent buckets. The banana 

pellets were found to be the preferred food for all the ape 

subjects (chimpanzees, orangutans, and bonobos). 

The replacement of marbles with different appealing pieces 

of food eliminated the need to explain to the subjects that a blue 

marble will reward them, while a red marble would not. Here, 
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the subjects could see directly the rewards, not through the 

intermediate marble. The more clever aspect ofthe experiment 

is to eliminate the need to instruct the animal to choose the right 

urn while it is blindfolded (after seeing the contents ofthe two 

urns). The ape was first shown the two urns, each having the 

same total number of slices of bananas and carrots, but with 

varying ratios. 

After the animals examined the contents of the two buckets 

(you do not need to explain to them which the preferred color 

is, they see the preferred food without explanation). The 

experimenter drew one slice of food from each bucket in such 

a way that the animal could see from which bucket each slice 

was taken, but the slices in the experimenter's hands were not 

visible to the animal, Figure 1 .24c (see color centerfold). 

After the experimenter drew two slices, the subject knew 

which hand drew from which bucket. The subjects were then 

offered closed fists, concealing the contents of the fists to the 

subjects. This brilliant trick removed the necessity of training 

the animal to draw the slice while in a blindfold. Instead, the 

animal had to choose from two closed fists. Sometimes the 

animal pointed to both of the experimenter's hands, but after 

some training they learned to choose only one hand. 
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Once the arumal pointed with their finger as to the hand of 

their choice, they instantly received the food hidden as a reward. 

The results are shown in Figure 1 .25. There are altogether 

seven experiments, and the percentage of trials in which the 
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subjects chose the correct/incorrect buckets (shown in dark and 

light grey, respectively). 

The contents of each bucket is shown below the graphs. The 

numbers refer to the banana to carrot ratio. 

Let us go through the results and see what they imply about 

what the author refers to as "intuitive statistician." 

Experiment 1 :  left 64: 16 right 16 :64 

In this case it is obvious that most subjects chose the left 

bucket; it contains larger, absolute number of banana pellets, as 

well as larger probability of obtaining the banana. About 70% 

got the left bucket (which is the right choice). 

Experiment 2 :  left 64: 16 right 0:86 

Again, this is a simple experiment (for the animal). Indeed, 

over 80% chose the left bucket. Explain why. 

Experiment 3 :  left 80:0 right 64: 16 

This is the simplest case, there are no carrots on the left. 

Experiment 4: left 20:0 right 100:200 

This one is a little more difficult. In all of the previous 

experiments the subject could choose the left bucket for the 
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wrong reason, i.e. because ofthe larger absolute number ofthe 

favored food. In experiment 4, the absolute number of banana 

pieces on the right hand bucket is much larger than in the left 

one. Therefore, those who choose by the absolute number 

would have chosen the right bucket. However, since the left 

bucket contains only banana pellets, it is more attractive to the 

subject. Indeed, most subjects chose the left bucket. 

Experiment 5 is identical to experiment 1 .  This was 

designed to rule out the "clever Hans effect" which we will not 

discuss here. 

Experiment 6 :  left 12 :3 right 100:400 

Again, this is a more difficult choice. The right bucket has 

more banana pellets, but the ratio on the left is overwhelmingly 

larger than the ratio on the right. Therefore, most subjects chose 

the left. 

Experiment 7 :  The two buckets contain equal amounts of the 

two food choices, and we see that on average about 50% chose 

the left, and 50% chose the right bucket. 

Note that while experiments 4 and 6 may be considered 

more difficult relative to experiments 1, 2, and 3, they are not 

as difficult as the ones presented to children as we discussed in 
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Section 1 .7. My suggestion for a more difficult choice IS: 

left 6:4 right 10:9 

Can you explain why I consider this one more difficult than 

either experiment 4, or experiment 6? 

1.11 Summary of Chapter 1 

In this chapter, we discussed the concepts of probability, 

probability distributions, and averages. I hope you were 

convinced that you already possess a probability-sense which 

means that you have an intuitive understanding of these 

concepts even though you might not have learned the theory of 

probability. As you will see in the next chapter, these concepts 

are essential in order to understand the concept ofthe Shannon 

measure of information (SMI) which is discussed in the next 

chapter. The SMI will turn out to be essential in understanding 

entropy, which shall be discussed in Chapter 3. As we shall see, 

entropy may be interpreted as a special case of SMI. However, 

I want to tell you right now that in order to understand the 

Second Law of Thermodynamics, you do not need to know 

anything about either entropy or SMI. The only thing you will 

need to understand the Second Law is probability. 
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CHAPTER 2 

SHANNON'S MEASURE OF INFORMATION 

(SMI) 

In this chapter we shall learn one of the nwst important 

concepts in modern science. I say "nwdern science, " and not 

in any specific science because this concept was developed in 

the "Mathematical Theory of Communication, " but it is 

useful in many branches of science. In this book, we bring 

this concept as the precursor for the concept of entropy. 

Shannon 's measure of 

information (SMI) was developed by 

Shannon in 1948 in connection with 

communications theory. Shannon 

(1916-2001), was an American 

mathematician, electric engineer and 

cryptographer. He is considered as 

the father if information theory. 

Shannon was interested lit 

transmitting information along 

Claude Shannon 
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channels. He sought a measure of the information, and he 

found a specific measure of a specific type of information. 

In this chapter, we shall define the SMI, examine some of 

its properties and interpretations. Two of the central 

interpretations of SMI are: 

A measure of the average uncertainty, and a measure of 

information, both associated with a probability distribution. 

We shall see that even young children have a sense of such 

uncertainty, or of such a measure of information. 

It is my conviction that familiarity with the SMI is 

indispensable for understanding the concept of entropy. As 

we shall see in Chapter 3, the entropy is proportional to a 

special case ofSMI. 

2.1 Your uncertainty-sense 

In Section 1 . 1, we discussed your probability-sense. I hope you 

were convinced that you already have a rudimentary sense of 

probability. In order to calculate probabilities of various events 

you need to learn more about probability theory. However, to 

understand entropy and the Second Law you do not need more 

than the basic concept of probability. 
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In this section, we discuss another intuitive sense that you 

have, which I will refer to as the uncertainty-sense. Of course, 

you are uncertain about many things; about the weather 

tomorrow, or whether or not you will understand this book, or 

your uncertainty could be about the meaning of entropy, or any 

other matter. We shall discuss one specific kind of uncertainty. 

We have mentioned this kind of uncertainty at the end of 

Section 1 . 1 .  I want to emphasize here that when we say that 

the Shannon measure of information is also a measure of 

average uncertainty, we mean uncertainty about a specific 

distribution, not any uncertainty. 

Consider an unfair die. This means that the vanous 

outcomes: 1, 2, 3, 4, 5, 6  have different probabilities. A possible 

probability distribution is: 

Outcomes: 1 ,  2, 

Probabilities: 0.55 0. 1 

3, 

0. 1 

4, 

0. 1 

5, 

0. 1 

6 

0.05 

You noticed that the outcome " 1"  has the largest probability 

of occurrence. The outcome "6" has the smallest probability. 

This can happen if the face having six dots is much heavier than 

all the other faces, as in Figure 1.2b. Therefore, whenever we 

throw this die it will fall with high probability with the number 
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"1" facing upwards. There is a small probability that it will fall 

on all other faces. 

You can say that you have a large degree of certainty about 

the outcome when throwing this die. If I do not show you the 

die you also might have an uncertainty regarding the color, the 

size, the form, and many other properties ofthe die. In this and 

the following sections we shall discuss a very special kind of 

uncertainty; the average uncertainty regarding the occurrence 

of outcomes of the experiment, given the entire probability 

distribution of this die, or any other experiment. 

Remember the games with the seven different dice that we 

played in Section 1 . 1 ?  At the end of Section 1 . 1 ,  we discussed 

very briefly one kind of average uncertainty. In all of those 

dice, we only had two outcomes; blue and red. 

If you do not remember those games we played in Section 

1 . 1 ,  please re-read the section to refresh your memory. Recall 

that I chose a die (a to g), then you had to choose a color. I 

tossed the die a hundred times, and every time the color of your 

choice came up, you gained a dollar. In those games, you 

noticed that there are different degrees of certainty with respect 

to the choice of the color (you had complete certainty in case 

a, or g, less certain in b, or f, and least certain in case d). 
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At the end of Section 1 . 1 ,  we summarized all the 

probabilities and the average certainties (or uncertainties) of all 

the games in a very qualitative way. 

In this chapter we place the concept of uncertainty in the 

focus of our discussion. This will not be done in a qualitative -

intuitive manner, as we did in Section 1 . 1 ,  but rather in a more 

quantitative way. However, before proceeding to the 

quantitative discussion I want to convince you that you already 

have an uncertainty-sense, in the specific sense mentioned 

above. 

We use again the seven dice shown in Figure 1 . 1 .  In Section 

1 . 1 ,  I chose a die and you had to choose a color. By choosing 

the right color in each game in Section 1 . 1, you have shown 

that you have a probability-sense. 

Now we use the same dice as in Figure 1 . 1, but we shall 

modify the games we play. The rules ofthe modified games are 

as follows: 

I choose a color, say blue, and then you choose one oftwo 

dice I select from Figure 1 . 1 .  Then, I (or you, if you wish) throw 

the die you chose a hundred times. Whenever a blue color 

appears you gain a dollar, when red appears you pay a dollar. 

Ready? 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



100 Chapter 2 

First game: 

I choose the blue color, and offer you to choose one of the 

two dice; a or b. Which one will you choose? 

Obviously, you will choose die a. I will not ask you why 

you chose a. Instead, I will ask you to explain in terms of 

certainty (or uncertainty) why you made that choice. 1 

Second game: 

I choose the color blue, and offer you to choose one of the 

two dice; b or c. Which die will you choose? Can you explain 

your choice using the term certainty (or uncertainty)? 

Remember, when we played the games in Section 1 . 1 ,  I chose 

the die, and then you chose the color. The choice you made 

(hopefully, the correct choice) was based on the relative 

probabilities ofthe two events; blue or red for that specific die. 

In that game, your probability-sense guided you in choosing the 

better color. 

Now you have to choose between two dice; b or c. Each of 

these dice has a different probability distribution. See third and 

fourth coluruns in Table 1.2. Therefore, your choice should be 

guided by the entire probability distribution of each die. As we 

noted in the fifth colunm in Table 1 .2, you are more certain (or 
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less uncertain) about your earning in the case of die b, than in 

die c. We can say that the probability distribution of die 

b G, D, provides more certainty (or less uncertainty) than the 

distribution of die c (�, D. 

We can also say that the average uncertainty in die b is  less 

than the average uncertainty in die c. Another way of saying 

the same thing is that the average unlikelihood (about the 

outcomes) in die b is less than the average unlikelihood in die 

c. Later, we shall also say that in case b, you are provided with 

more information than in case c. But now, let us proceed to the 

next game. 

Third game: 

I choose the color blue, and I offer you to choose one ofthe 

two dice; c or d. Which die will you choose? Explain your 

choice in terms of certainty or uncertainty. 

This is an easy choice, however, the implication of this 

choice is most profound in understanding your uncertainty­

sense, as well as the measure of information which will be 

discussed later in this chapter. 
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Clearly, in playing die c you are less certain about your 

earning than in b, and in b less than in G. However, in playing 

with die c, you are more certain than in die d. Of course, you 

can choose die c, and after 100 throws you will lose money. 

Remember, there is a small chance that all throws will result in 

red, and you will lose $ 100.00. You can also choose die d, and 

earn money. You can even earn $ 100.00, ifin each throw the 

outcome will be blue. However, these events have extremely 

low probability. 

By choosing c rather than d, you exercise your uncertainty­

sense. You will on average earn more money by playing with 

the die c, than with the die d. 

We can say that the probability distribution in die c provides 

more certainty (or less uncertainty) than in die d. 

F or the next few games I choose the red color to be the 

gaining one. All the other rules are unchanged. 

Fourth game: 

I choose the red color, and offer you to play either with die 

d, or e. Which die will you choose? 

Remember that the color red is the winning color. Compare 

this game with the third game. 
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Fifth game: 

I choose the red color, and offer you to play either with die 

e, orf Which die will you choose? Explain your choice in terms 

of certainty or uncertainty. Compare with the second game. 

Sixth game: 

I choose the red color, and offer you to play with either die 

for g. I will not ask you which die you will choose, but I will 

ask you to explain your choice in terms of certainty or 

uncertainty. Also, if you wish, compare this with the first game. 

In each of the last three games I asked you to compare the 

game with one of the previous games. We started with die a, 
where we had maximum certainty about the outcomes (or 

minimum uncertainty), then the extent of certainty decreases 

from a to b, to c to d. Once you get to d, you have minimum 

certainty or maximum uncertainty with respect to the outcomes. The 

extent of certainty will now increase from d to e, to f to g. At g, you 

have again maximum certainty or minimum uncertainty. Qualitatively, 

the extent of certainty changes as in the graph in Figure 1 .6. 

If you have correctly chosen the better die in each game, you 

have demonstrated that you have an uncertainty-sense. Let us 

proceed to the related concept of the amount of information 

contained in, or belonging to a probability distribution. 
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2.2 The amount of information contained 

in a probability distribution 

In this section we shall discuss the amount of information one 

gets by asking a binary question. A binary question is 

answerable by Yes, or No. 

For instance: What is your name? This is not a binary question. 

You do not answer this question with a Yes, or a No. At least, 

I never gave this kind of answer. 

Is your name, Dan? This is a binary question. I can answer 

either with a Yes, or a No. Now, we want to quantify the 

amount of information given to a binary question. Consider the 

following questions I ask you, and to which you will answer 

with a Yes, or a No. 

Q I :  Will it rain tomorrow in New York? 

AI :  Yes. 

Q2: Did you enjoy reading this book? 

A2: Yes. 

Q3: Will the sun rise tomorrow morning? 

A3: Yes. 

Q4: Did die a (in Figure 1 . 1 )  fall with the blue face up? 
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Q5: Did die b (in Figure 1 . 1 )  fall with the blue face up? 

A5: Yes. 

Q6: Did die d in Figure 1 . 1  fall with the blue face up? 

A6: Yes. 

105 

Let us assess qualitatively the amount of information I 

obtained from you when I asked you these questions, and your 

answer was a Yes. 

In the first question, I had no previous information (in the 

colloquial sense of the word) what the weather in New York 

will be tomorrow, so I feel that I got a lot of information from 

your answer. 

In the second question, I believe that you have enjoyed 

reading this book (so far, at least), but I am not sure about it. 

Therefore, by answering with a Yes, you have confirmed my 

guess. Therefore, you gave me some information, perhaps less 

than in case of question 1 .  

In question 3,  I am almost sure (not absolutely sure !)  that 

tomorrow morning, the sun will rise. Therefore, with your 

"Yes" answer, you did not give me much new information. 
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So far these estimates ofthe amount of information I got by 

asking a binary question were very qualitative. Let us be more 

quantitative. 

In asking question 4, I already knew that all the faces of die 

a are blue, therefore, by giving me the answer Yes to my binary 

question, you did not provide me with any new information. I 

knew that the answer must be a Yes, therefore, no information 

was given to me by asking question 4. 

In asking question 5, I know with relatively high probability 

that the answer will be a Yes. But I am not totally sure. It might 

also be a No. Therefore, by answering with a Yes, you gave me 

some information. Certainly more than in answer 4. 

What about question 6? Here, I am totally uncertain about 

the outcome by throwing die d. By giving me the answer Yes 

(or No), you gave me the maximum information for a binary 

question. The amount of information given to me in answer 6 

is called one bit of information. 

Exercise: Note that in the list of questions, I skipped die c. As 

an exercise, suppose that I asked the same question, and you 

can answer with a Yes for die c. Can you tell how much 

information was given to me from this answer? 
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Two comments are now in order. First, the term bit is short 

for binary digit. In transmitting message over channels, the 

term bit is defined as either "1" or "0." Thus, if we transmit a 

sequence of zeros and ones such as: 

1, 0, 1 , 1, 0, 0, 1, 0, 1,0, 

we have transmitted 10 symbols (of "Is" and "Os"), and 

therefore we have transmitted ten bits. 

In information theory, and in this book, we use a different 

meaning of the bit. This is the amount of information given to 

a binary question, when we know that the two possible answers 

have equal probabilities. 

The condition of "equal probabilities" is essential. You 

might find in many popular science books a "definition" of the 

bit as the amount of information given to a binary question. 

This definition is obviously incorrect. To understand why 

the qualification of "equal probabilities" is essential, we shall 

consider the following examples of binary questions: 

Table 2. 1 shows seven coins. For each coin, we give its 

probability distribution; Pr (H) and Pr (T) = 1 - PrCH). As you 

will notice, I have chosen the same distribution in Table 2. 1 as 

in Table 1 . 1 .  In fact, I could use the same dice of Section 1 . 1  
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for this discussion. However, I decided to choose the language 

of coin distribution, first; because we had enough of the 

discussion on dice having two colors, and second; to show you 

that the discussion in this section does not depend on the 

particular system we use (game with dice or with coins, or any 

experiment having only two possible outcomes with equal 

probabilities). 

Shannon showed that the amount of information given to a 

binary question about any experiment having two outcomes, 

say H and T with probability Pr (H) and Pr (T), respectively, is 

given by the formula: 

SMI(for binary question) 

= -Pr(H)logzPr(H) - Pr(T)logzPr(T) 

We can denote by p = Pr(H), hence Pr(T) = 1 - Pr(H) = 

1 - p, and this formula is actually a function of one parameter 

p which ranges from zero to one. 

SMI(p) = -plogzp - (1 - p)logzp 

Here, logzp is the logarithm to the base 2. If you do not 

know what logarithm means, you can look at Appendix A, 

Figure A.2. For any p we plot the corresponding value oflogzp . 

For instance, for p = 1, logzp = O. For P = O.5, logzp = -1.  
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1.°r----::::::::=jc==:::::-�-_, 
0.8 
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p 
Figure 2 . 1 .  The values of the  S M I  for the  d ifferent dice in  Table 2 . 1 .  

Some further discussion of the logarithm function i s  given 

in Appendix A. The values of SMI (P) are also shown in Table 

2 . 1 ,  and plotted in Figure 2.12  

Table 2.1: Probabilities and Shannon's measure of 

information for coins with different probability 
distributions 

Coin Pr (H) = p  Pr (T) = 1 -p SMI (P) 

a 1 0 0.00 

b 5/6 1/6 0.65 

c 4/6 2/6 0.92 

d 3/6 3/6 l .00 

e 2/6 4/6 0.92 

f 1/6 5/6 0.65 

g 0 1 0.00 
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We now play a simple game with the coins in Table 2 . 1 .  I 

tell you that I threw one ofthe coins in Table 2. 1 I also tell you 

the probability distribution of this coin, i.e. the corresponding 

Pr (H) and Pr (T). After I threw the coin you have to make a 

guess as to what the result was. If the answer is Yes, you get a 

prize, if the answer is No, you get nothing. 

Now I throw each of the coins in Table 2 . 1 .  What is your 

guess regarding the outcome? Clearly, in case G, your guess 

will be H, and the answer will be a Yes with certainty. In this 

case, you already know the outcome from the knowledge ofthe 

probability distribution of G, therefore by giving you the answer 

Yes, I did not give any information. We can also say that the 

amount of missing information is zero. 

In case b, you should also guess H, and there is a good 

chance that the answer is a Yes. In this case, you "almost" know 

the answer, therefore you get a little more information than in 

case G. The amount of information you get is given in the fourth 

colunm in Table 2 .1 ,  and in Figure 2 .1  In case c, you get more 

information than in case b, and in case d, you get the maximum 

amount of information, which is one bit. We can also say that 

in case d, the amount of missing information is one bit. Once 
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you go to coins e,j, and g, the amount of information decreases 

until you get zero information in case g. 

In the following sections, we shall generalize the concept of 

SMI (as well as the concept of average uncertainty and average 

unlikelihood) for the general experiment with any number of 

outcomes. Before doing so we shall spend some time playing 

the familiar twenty-question (20Q) game. Playing these games 

will convince you that you already have an intuitive sense of 

what the SMI means. Or, if you prefer, you can call it 

informational-measure-sense. 

2.3 Forget about SMI and let's play some 20Q 

game 

In this section, we will play the well-known parlor game of"20 

questions" (20Q), Figure 2.2. This game was very popular on 

radio in the 1940s, and later on, on TV in the 1950s. We begin 

by playing the "Person" version ofthis game. 

I choose a person from a given list, and you have to find out 

who I have chosen by asking binary questions only. Remember, 

a binary question is one which is answerable only with a Yes, 

or a No. Suppose, I chose a person, say Einstein, and you have 

to find out which person I chose. The rules of the games are; 
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you have to pay me $ 1 .00 for each answer you receive. When 

you discover the person I chose, you will get $20.00. 

(a) 

(b) 

Figure 2 . 2 .  Two persons playing t he  20Q game either with, 
(a) 32 peop le, or (b )  32 objects. 

In this game, you know what you do not know; the person I 

have chosen. you also want to acquire that unknown 

information (or the missing information), by asking the fewest 

number of questions. Otherwise, you will be spending more 

than $20.00 to get the $ 20.00 prize when you discover the 

person I chose. Therefore, you have to carefully plan your 

strategy of asking questions. 

You might be wondering why 20Q? Why not 25 questions, 

or 100 questions? The answer will probably surprise you. 
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Twenty questions are more than enough for all practical 

purposes. By "practical purposes" I mean games in which I 

choose an object, a person, an arumal or whatever, from a pool 

of objects that we both know. Obviously, I cannot choose 

someone you never heard of. Therefore, in practice we 

implicitly limit the range of persons to those that we are both 

familiar with. 

Suppose you play this game with me. How many persons do 

you think we could find that we both know, perhaps 1000, 

10,000, or 100,000? I bet you cannot find more than 100,000 

names to choose from. 

If you are convinced that the "size ofthe game" is not larger 

than 100,000, or even 1 ,000,000, then you will be surprised to 

learn that 20 questions are more than enough to win the game 

(i.e. to spend less than $20.00 on questions to get the $20.00 

prize). In order to achieve this, you only have to be smart! If 

you are smart enough to play this game correctly then you will 

also be able to understand the Second Law, as well as entropy. 

Let us go back to the 20Q game. Remember, I chose a 

person, say from a group of persons, such as those in Figure 

2.3. You have to find out which person I chose by asking binary 

questions. 
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Figure 2 . 3 .  (a)  The 20Q game with 32 peop le, and  (b )  with 32 objects. 

There are many possible strategies of asking questions. The 

simplest is to guess the name of the person you believe I have 

chosen. For instance, you can ask: "Is the person Einstein?" 

Another method is to ask if that person has some physical 

features,- say, "does the person have blue eyes?" Another 

strategy is similar to the previous one, but now you divide all 

possible persons into roughly two halves, and ask: "Is the 

person a male?" or "Is the person alive?" 

What strategy will you choose to play this game? 

If you choose the first strategy, you might hit the right 

person on the first question and win. However, since there are 
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so many possible persons to choose from, your winning on the 

first question, although possible is extremely unlikely. This 

means that you can win after one question, but the probability 

of winning is very small. Note also that the larger the group of 

persons that we agreed upon, the harder your task is. Guessing 

the name of the person would be an inefficient way of asking 

questions. The reason is that with each No answer that you get, 

you have eliminated one person. This means you are still left 

with almost the same missing information that you began with 

(i.e. the original number of unknown persons minus one). As 

we shall see later on, very young children do indeed choose this 

strategy as they are apparently impatient to receive the prize 

and they feel that this is the only way a Yes answer will 

terminate the game in their favor and thereby win the prize. 

This "strategy" of asking questions is referred to as the 

"dumbest" strategy. 

However, if you choose the second strategy, you cannot 

possibly win on the first question. If you ask, "Is the person 

living in London?" and you get a Yes answer, you still have to 

continue asking questions until you establish the identity ofthe 

person. If you get a No answer, which is more probable, you 

exclude all people residing in London. This is certainly much 
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better than excluding only one person as done in the first 

strategy. 

At this stage you feel that the best strategy is to divide all 

possible persons roughly into two groups. Again, you cannot 

win on the first question, or on the second, or the third. 

However, at each step of the game, whatever answer you get 

whether it be a Yes, or a No answer, you exclude a very large 

number of people, and you narrow down your range of 

possibilities into almost half of the original number of 

possibilities. 

Intuitively, you feel that in choosing the "smarter strategy" 

you gain more information from each answer you ask. 

Therefore, you get the maximum information for each dollar 

that you spend. It pays to be patient and choose the best strategy 

rather than rushing impatiently to guess the right person. 

Exercise: Look at Figure 2.3. There are some pictures of 

famous people and some not so famous. Suppose that we agree 

that I choose a person only from this collection. Is there a 

smartest strategy in this case? You either say "is there a smart 

strategy in this case," or "What is the smartest strategy in this 

case?" What is the minimal number of questions that you need 

to guarantee that you will get the required information? 
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Remember, this chapter is not about the 20Q game itselfbut 

about a measure of the game. Roughly, the size of the 20Q 

game can be measured by the amount of money you will spend 

in asking questions. Qualitatively, the larger the pool of persons 

from which we agree to choose from, the larger the size of the 

game. If we agree to select only a person from a certain city, 

then the size of the game is smaller compared with the game 

where we agree to choose a person from a country. Ifwe agree 

to choose only persons who are in the same room where we are 

attending the party, then the size of the game is much smaller. 

Now that you know how to play the 20Q game correctly, 

you have implicitly admitted that you know what information 

means, and that this information has some measure or size. The 

"information" in this game is "which person I have chosen." 

You also know that if there are more people from where I 

specifically choose one for the game, it will be harder to find 

that person. 

2.4 Strategies for playing the 20Q game 

We start with the simplest 20Q game. Instead of choosing a 

person from an unspecified number of people, we have eight 

boxes (Figure 2.4). I hide a coin in one of the boxes and you 

have to find where I hid the coin by asking binary questions. 
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8 , 7 , 6 5 4 3 2 1 

(a) The dumbest strategy '---f6""r---<�1 --+_+-+--+--+----' 

7th 6th 5th 4th 3rd 2nd First Q 

8 , 7 , 6 5 4 3 2 1 

( b) Th e sma rt est st rate gy .... 1 ---.jEli>o-;:=:-=!:_...L..---4_-'----'-_'---' 
3rd 2nd First Q 

Figu re 2 . 4 .  Two strategies of asking questions, (a)  The dum best, and 
(b )  The smartest. 

In this game, the information you are seeking to find is 

"where the coin is." What we are interested in is not the 

information itself, but some measure of the size of the missing 

information. Before we choose a measure of the size of the 

missing information, we note that the more boxes there are the 

more difficult it will be to find the missing information. What 

is meant by "more difficult" is that we need more questions to 

ask in order to obtain the missing information. One way to 

measure the size of the game is simply by the number of boxes. 

Clearly, the larger the N, the "bigger" the problem and the more 

questions we shall need to ask. This measure is fine, but it will 
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be difficult to generalize for the case of non-uniformly 

distributed games which we shall discuss in Section 2.6. 

Another measure we can adopt is the number of questions 

we have to ask in order to find where the coin is. However, 

there is a difficulty with this measure. We already know that 

the number of questions depends on the strategy we choose in 

asking questions. 

Because of this difficulty, let us devote some time to playing 

this game with different numbers of boxes. 

We start with eight boxes eN = 8). We can choose many 

strategies in asking questions. Figure 2.4 shows the two 

extreme strategies. We call them "the dumbest" and "the 

smartest" strategies. The dumbest is to make a specific guess 

where the coin is, and ask "Is the coin in box I ?" Is it box 2?" 

and so on. 

I should also mention here that in playing this game, you are 

informed about the total number of boxes, and also that I have 

no preference for any specific box which means that I have 

randomly placed the coin in one ofthe boxes; that is, each box 

has a probability of 1/8 of containing the coin. Note that in this 

game we have completely removed any traces of subjectivity. 

You cannot use any information you might have about me or 
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about my personality to help you in finding or guessing where 

I placed the coin. The information we need here is "where the 

coin is." The "hiding" of the coin can be done by a computer 

which chooses a box at random. 

The strategies here are well defined and precise, whereas in 

the general 20Q game I could not define them precisely. In this 

game, with the dumbest strategy you ask, "Is the coin in box k 
?" where k runs from one to eight. The smartest strategy is 

different: Each time, we divide the entire range of possibilities 

into two halves. 

Note that in this case I use the adjectives "dumbest" and 

"smartest" strategies. The reason is that here one can prove 

mathematically that if you choose the smartest strategy and 

play the game many, many times, you will outperform any 

other possible strategy, including the worst one denoted the 

"dumbest." Since we cannot use the tools of mathematical 

proof, let me try to convince you why the "smartest" strategy 

is far better than the "dumbest" one (and you can also "prove" 

for yourself by playing this game with a friend or against a 

computer) 3 

Qualitatively, if you choose the "dumbest" strategy, you 

might hit upon the right box on the first question. But this could 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Shannon's Measure of Information (SM!) 121 

happen with a probability of Ys and you could fail with a 

probability of Ys .  Presuming you failed on the first question 

(which is more likely and far more likely with a larger number 

of boxes), you will have a chance of a correct hit with a 

probability of y, and to miss with a probability of y" and so 

on. If you miss on six questions, after the seventh question you 

will know the answer; that is, you will have the information as 

to where the coin is. If, on the other hand, you choose the 

"smartest" strategy, you will certainly fail on the first question. 

You will also fail on the second question but you are 

guaranteed to have the required information on the third 

question. 

The qualitative reason for preferring the smartest strategy is 

the same as in the general 20Q game (but now can be made 

more precise and quantitative). By asking, "Is the coin in box 

I ?" you might win on the first question but with very low 

probability. If you fail after the first question, you have 

eliminated only the first box and decreased slightly the number 

of remaining possibilities, from eight to seven. On the other 

hand, with the smartest strategy the first question eliminates 

half of the possibilities, leaving only four possibilities. The 

second question eliminates another half, leaving only two, and 
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in the third question, you get the information! We can also say 

that with the smartest strategy we reduce the "size" ofthe game 

each time by half. 

In information theory, the amount of missing information ­

the amount of information one needs to acquire by asking 

questions - is defined in terms of the probability distribution. 

In this example, the probability distribution is simple: 

{lis , lis , lis , lis , lis , lis , lis , lis}· In asking the 

smartest question, one gains from each answer the maximum 

possible information which is one bit. See Section 2.2. One can 

prove that maximum information is obtained in each question 

when you divide the space of all possible outcomes in two 

equally probable parts 4 

You can check yourself that if at each step of the smartest 

strategy I gain maximum information, then I will get the 

information I want in a minimum number of questions. Again, 

we stress that this is true on average; that is, if we play the same 

game many, many times, the smartest strategy provides us with 

a method of obtaining the required information with the 

smallest number of questions. 

Note also that the amount of information that is required is 

fixed for a given game, and it is independent ofthe strategy you 
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choose, The choice of the strategy allows you to obtain the 

same amount of information with different number of 

questions, The smartest strategy guarantees that you will get it 

on average, with the minimum number of questions, 

� 

,3 

Figure 2 .5 .  A coin h idden in one  of n boxes, with n = 4, 8, 16, 32.  

In Figure 2.5 we have several games with different numbers 

of boxes. Whenever we doubled the number of boxes the 

number of questions one needs to ask in the smartest strategy 

is increased by only one! The average number that one needs 

to ask in the dumbest strategy needs is far larger. 

If you are still unconvinced, think of a game having 

1 ,048,576 boxes. Using the smartest strategy, you are 

guaranteed to find the required information in 20 questions ! 

Can you imagine how many questions you will need, on 

average, in the dumbest strategy?5 
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The important point to be noted at this stage is that the larger 

the number of boxes, the greater the amount of missing 

information, hence the greater the number of questions needed 

to acquire that information. This is clear intuitively. The 

amount of information is determined by the probability 

distribution. 

If you use the dumbest method, with larger N the average 

number of questions increases linearly with N. This means that 

the average number of questions is proportional to the number 

of boxes. One can show that for very large N, the average 

number of questions is about N12, (Figure 2.6). 

On the other hand, if you use the smartest strategy you will 

need only 10gzN questions on the average. Why 10gzN?6 

We have already seen that if we double the number of boxes, 

the number of (smart) questions increases by only one! This is 

a very important observation. This is also the reason why we 

shall adopt 10gzN as a measure of the size of the game, rather 

than N itself. 

Now let us play the 20Q game with money. Suppose that we 

have 16 boxes, and you pay $1 .00 for each question that you 

ask, when you find where the coin is, you get $5.00. Surely you 

would not like to ask specific questions. If you do so, you will 
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have to ask about eight questions on average, which means you 

will be paying $8.00 to earn $5.00. However, if you choose the 

smartest strategy then you will be spending only $4.00 to earn 

$5.00. 

If this game did not impress you, think of having 1 ,000,000 

boxes. You pay $1 .00 per question but you gain $ 1000.00 once 

you find the coin. You would not even dare to use the dumbest 

method in this case, since you will lose on average about 

$500,000.00! However, astonishing as it may sound to you, 

with the smartest strategy you will need to spend less than 

$20.00 to gain the amount of $1000.00. 

If you are astonished by this, do not be intimidated. In fact, 

with 20 questions you can find the coin not in 1 ,000,000 boxes 

but in 1,048,576 boxes. If you do not believe me, try it out 

yourself. It is very simple. Each time, divide the total number 

of boxes into two halves - in 20 questions you are guaranteed 

to find the coin (10g2 1,048,576 = 10g2 2
2
0 = 20) . 

Figure 2.6 shows how the average number of questions 

depends on the number of boxes in the two strategies. Look 

how fast the average number of questions increases when you 

choose the dumbest strategy. Be impressed by the fact that with 

the smartest strategy, when the number of boxes becomes huge, 
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the number of questions you need to ask is large, but still 

manageable. It is impressive that with the smart strategy, as the 

number of boxes become huge, the number of questions you 

need to ask is large, but still manageable. 

-
o � 20 
E = c � 
OD lO � � 

Dumbest .'  

• Smartest 
.' .......... ............. .... . 

.. ... 

W 40 60 80 100 
N 

Figure 2 .6 .  Average n u mber  of quest ions in the  two strategies. 

The number of molecules in a glass of water is about 1023 . 

If you have this number of boxes you will almost never be able 

to find the coin with the dumbest strategy. But with the smartest 

strategy you are guaranteed to find the coin in less than 80 

questions! 

Let us adopt the logarithm to the base 2 of the number of 

boxes as a measure of the size of the missing information in the 

game of the type discussed above. We shall refer to this 

measure as the Shannon Measure of Information and use the 

abbreviation SM!. If you are not comfortable with the concept 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Shannon's Measure of Information (SM!) 127 

oflogarithm, forget it. Just remember that the smartest strategy 

of asking questions is indeed the smartest strategy, and take the 

average number of questions one needs to ask in the smartest 

strategy as a measure ofthe size ofthe missing information. 

You should also take note that the type of information for 

which the SMI is applicable is but a tiny fraction of all possible 

types of information. We cannot apply this measure for most 

types of information. For instance, the probability that "a snow 

storm is expected at 3 p.m. tomorrow in the New York area" 

cannot be measured by the SMI. However, information theory 

can deal with the size ofthis message, regardless of its meaning 

or the information it conveys. This type of SMI is important in 

the field of communication and transmission of information for 

which Shannon constructed his measure. For more details, see 

Ben-Nairn (2017b). 

2.5 How young children play the 20Q game 

In Section 1 .  7, we encountered children who had to decide 

between two possibilities of unequal probabilities. In this 

section, we are interested in the way children ask questions to 

obtain information. This task involves not only a sense of 

probability, but also choosing the best strategy of obtaining the 
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required information in the most efficient manner. This is what 

we refer to as information-sense, or uncertainty-sense. 

Many investigations were carried out on the way children 

play the 20Q game. We shall discuss only a few examples. 

Children aged 6-1 1 ,  in grades 1-6 were shown 42 pictures 

of familiar objects. Each child was first asked to identify the 

pictures to ensure that he or she was familiar with them. The 

following instructions were given to each child: 

"Now, we 're going to play some question-asking games. I 'm 

thinking of one of these pictures, and your job is to find out 

which one it is that I have in mind. To do this you can ask any 

questions at all that I can answer by saying "yes " or "no ", but 

I can't give any other answer but "yes " or "no. " You can have 

as many questions as you need, but try to find out in as few 

questions as possible. " 

The questions asked by the children were classified into two 

groups. The first, where the child asked about a specific object, 

such as: "Is the object the dog?" This is what we have referred 

to as the dumbest strategy. The second, called "constraint 

seeking," is similar to what we have referred to as the smart 

strategy (not necessarily the smartest). In this strategy, the child 

divides the entire range of possibilities into two groups. The 
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best strategy (the smartest) is to divide the entire range into two 

parts of equal number of objects each time. In practice, the 

children used some criterion for grouping, such as, "Is the 

object an animal?" or "Is it food?" Clearly, this is better than 

the dumbest strategy but short of being the smartest. 

As is expected, the first-graders (aged about 6) almost 

always chose the "specific questions." Out of the 30 children, 

only 5 asked some constraint questions. From the third-graders 

(aged about 8), only about one-third asked "specific questions," 

and of the sixth-graders (aged about 1 1), almost all asked 

constraint questions. 

No doubt, the choice of the constraint type of question 

requires some cognitive skills, planning, and patience. Some 

mature thinking is required to invest in questions that certainly 

cannot provide them with the required information 

immediately, but that proves to be more efficient on average. 

Whereas young children are in a hurry to ask specific questions, 

hoping to be instantly successful, the older ones invest in 

thinking and planning before asking. 

In another study, children aged 13-14 were successively 

presented two matrices, each with six rows and four colunms. 
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One matrix contained the nwnbers 1-24, while the other one 

contained letters A-X, Figure 2.7. 

2 3 4 5 6  
7 8 9 1 0  1 1  1 2  

a 1 3  1 4  15 1 6  1 7  1 8  
1 9  20 2 1  22 23 24 

b 

A B C D E F  
G H I J K l 

M N O P Q R  
S T U V W X  

Ordered 

7 12 20 14 21 6 
8 9 1 0  1 1  2 

1 3  1 8  5 1 6  1 7  24 
1 9  3 1 5  22 23 4 

D B U O E C 
V X S T K J  

W l A Q R F  
M I G N P H  

Random 

Figure 2 . 7 .  Several c h oices of 20Q ga mes.  

Although the game with 24 numbers is equivalent to the 

game with 24 letters, the results obtained for the two games 

were different. Also, the results were different when the 

nwnbers (or letters) were arranged in the natural order, or 

randomly. 

Interestingly, the results show that children did 

systematically better (i.e. fewer questions) on the nwnber 

matrix (Figure 2.7a) than on the letter matrix (Figure 2.7b). 

Also, they did better when the nwnbers (or letters) were in their 
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natural order than when the numbers (or letters) were randomly 

placed. Can you think of an explanation to this result? 

Finally, I want to mention an experiment that I did myself 

both on children, as well as on audiences in my lectures (which 

included students and professors). I showed them Figures 2.3a 

and 2.3b. One contained only pictures of people, while the 

other picture contained pictures of simple objects. I offered to 

play the 20Q game on either one of those figures. I told them 

that I would choose a person or an object at random from either 

Figure 2.3a or Figure 2.3b. You have to find out which person 

or object I chose by asking binary questions. You have to pay 

$ 1 .00 for each answer you get. Once you guess the person or 

object I chose, you will get a $20.00 prize. Which game will 

you prefer to play? 

Write your answer before you continue and explain why you 

chose that particular game. 

I was not surprised to learn that young children of any age 

choose preferentially the game in Figure 2.3b. When asked 

why, they simply answered: "I do not know all the persons in 

Figure 2.3a, but I recognize all the figures in Figure 2.3b. This 

is understandable. 
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I was shocked to learn that even in audiences of about 50 

people (students, graduate students, and professors), there were 

always a few people who preferred the game with Figure 2.3b 

rather than that of Figure 2.3a. It is shocking because anyone 

who understands the rules of the games should know that the 

two games are completely equivalent whether or not they 

recognize the people, or the objects. 

Pause and think. In Section 1 . 10, I discussed the experiments 

done on animals to test their sense of probability. While writing 

this chapter, and in particular the section on children playing 

20Q games, I was wondering whether animals can be trained to 

play this game, if not the game itself perhaps to learn whether 

animals have or do not have a sense of uncertainty as discussed 

above. 

I checked in Google and asked researchers in biology who 

do such experiments with animals, but I could not find any 

research which was specifically designed to learn about the 

uncertainty-sense of animals. 

Can you think of an experiment similar to the ones discussed 

in this section, but with animals instead of children? 
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Can you train a n  a n i m a l  to play the 20Q ga me' 

If you have a good idea, I will be glad to hear from you. 

Perhaps, we could convince some biologists to carry out such 

an experiment. 

At this point I would like to emphasize again that when we 

say "uncertainty" in connection with SMI, we mean a very 

specific kind of uncertainty. If I ask you, "Do animals have a 

sense of uncertainty? Your answer should be, "Yes, of course." 

Animals have many uncertainties; they are uncertain about 

almost everything they do. But I was asking a question about 

the average uncertainty in the sense discussed in Section 2.9 . l .  

This kind of uncertainty involves the ability to "calculate" or to 

estimate an average over many different outcomes. I doubt 

whether animals have this kind of uncertainty. When we 
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discuss entropy in the next chapter, we shall see that entropy is 

a very special case of SMI. Therefore, entropy can also be 

interpreted as an average uncertainty. But now the uncertainty 

is even more restricted than the uncertainty involved in the 

interpretation of SMI. 

2.6 The amount of information contained 

in a uniform 20Q game 

Before we discuss the quantitative relationship between the 

number of objects, and the minimum number of questions you 

have to ask in a 20Q game, look again at Figures 2.3a and 2.3b. 

How many questions do you need to ask in order to guarantee 

that you will get the required information?7 

Now, suppose I double the number of objects from 32 to 64. 

How many questions will you need now? 8 

Let us next discuss a simpler example where the meaning of 

the SMI (not the meaning of the information) becomes clear 

and easy to grasp. 

Suppose that I show you a board with four equal areas as in 

Figure 2.8. I throw a dart and I tell you that it hit one of the 

squares on the board. Your task is to find the square in which 

the dart hit by asking binary questions, that is: I can answer 
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with a Yes, or a No. To make the game more dramatic and more 

exciting, and perhaps also to encourage you to think harder, let 

us assume that you pay $1 .00 for each answer you get. When 

you find the square in which the dart hit you get $4.00. 

If you play this game many times you will find that on 

average, you earn more money by adopting the smartest 

strategy instead of any other strategy. In this particular game 

the difference between the two strategies is not too dramatic. 

But when we increase the number of areas, say from 4 to 8 to 

16, and so on, you will find that on average, the number of 

questions you will have to ask using the "dumbest strategy" 

increases with the number of squares roughly as N /2, i.e. 

proporti onal to N. 

On the other hand, adopting the "smartest" strategy of 

asking questions; that is, dividing each time the entire N 

squares into two halves, then again into two halves until you 

find the dart, the number of questions you need to ask is 

approximately 10gzN, which is much smaller than N12. You 

can verify this "law" by checking the number of questions you 

need to ask in the "smartest" strategy for the following cases, 

Figure 2.8. 

N = 4 N = 8 N = 16 N = 32 N = 64 
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The corresponding number of questions are: 2, 3 ,  4, 5, 6, 

respectively. 

1 I I I I I I Ittl l l l i l i  
Figure 2.8.  A d a rt h itt ing a board with d ifferent regio n s .  

Note that in this series of games, when we multiply the 

number of squares by 2,  the number of questions you need to 

ask increases only by one ! In general, for N of the form 2n (n 

integer), the number of questions will be 10gzN = 10gz 2n = n, 

(provided you play the game "smartly.") 

Let us summarize what we have learned so far. You are told 

that a dart has hit one of the N squares. You also know that the 

areas of the small squares are equal. Therefore, the probability 

that the dart hit any specific area is liN. You do not know the 
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information: "Where is the dart?" So you ask questions in order 

to get this information. Here, we are not really interested in the 

information itself, but rather on how to get it by spending less 

as possible; that is, earning the maximum dollars in each game. 

We find that the number of questions you need to ask if you are 

smart enough to adopt the "smartest" strategy is ofthe order of 

As an exercise suppose that you pay 1 US$ for each answer 

you get, and you receive NI2 dollars when you find the 

information (on where the dart hit). How much do you expect 

to gain on average if you play this game 1000 times by adopting 

the "dumbest" strategy (i.e. asking about specific squares), and 

the "smartest" strategy (i.e. dividing each time into two equal 

halves). The games are with the following: 

N = 8 16 3 2 64 210 2100 21000 
, , , , , , 

Up to this point we found the relationship between the 

number N, of equally probable events (the squares in which the 

dart hit) and the number of questions, for N ofthe form N = 2n 

where n is an integer. We found that 

number of smart questions = logzN 
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One can show that this relationship is valid for any N. We 

shall not discuss the proofhere 9 

Now that we know the relationship between the number of 

events N, and the number of questions one must ask to find 

which ofthe N events has occurred (e.g. where the dart hit), we 

can ask what this has got to do with information. 

The information that we do not have is "which event 

occurred?" The number of questions we must ask is a measure 

ofthe size ofthat information. The larger the number of events, 

the larger the number of questions we must ask to obtain this 

information. Hence, we use this number as a measure of the 

size ofthe missing information. 

2.7 The amount of information contained 

in a non-uniform 20Q game 

Before we discuss the general case let me offer you again to 

play the 20Q game, but now with a non-uniform distribution. 

The conditions are the same as before. Which game would you 

prefer to play in Figure 2.9, game a or b? If you have difficulty 

in choosing, try the simpler choice: Which game would you 

prefer to play, a or c? Explain why this choice is simpler. 
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(a) (b) (c) 

Figure 2 ,  g ,  U n iform a n d  non-u n iform ga mes ,  

So far we have discussed events with equal probability, or a 

game with a uniform probability distribution, The next step is 

to study the case of a non-uniform distribution of events, 

Suppose we have an experiment with N outcomes, each with 

different probability, This defines a probability distribution 

Pv Pz, " ' , PN with If=l Pi = L On this distribution we defme 

the SMI as we did above: 

N 
SMI = 

- L Pi 10gPi 
i=l 

One can prove mathematically that for any given 

distribution Pv " ' , PN' the quantity SMI defmed above is equal 

(up to an accuracy of ±1) to the average number of questions 

one has to ask in order to fmd out which event has occurred by 

asking binary questions, 
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Thus, the larger the number of questions we need to ask the 

larger the size ofthe information contained in the game. Again, 

we stress that the information itself is not important. It can be 

the location of a dart on the board, the location of a coin in N 

boxes, or any other experiment havingN outcomes with a given 

probability distribution Pi> . . .  , PN' 

Note that in calculating the SMI ofthe experiment, or ofthe 

game, we used only the given distribution and not any details 

of the experiment or the game. Therefore, it is more appropriate 

to refer to the SMI as a measure of the information contained 

in or belonging to a given distribution, leaving the details ofthe 

experiment unspecified. The distribution can pertain to dice, 

coins or cards. It does not matter. The only thing that matters is 

the probability distribution itself. This is why the SMI is so 

general, as well as being a useful quantity. 

We shall examine here only a few examples. It is convenient 

to use again the dart hitting a board divided by N regions. But 

now the areas of the regions are unequal. The probability of 

hitting the ith region in the board having area Ai is assumed to 

be equal to Pi = AJ A, where A is the total area of the board. 

The information we need is "where the dart hit" or for a more 

general experiment "which event occurred?" The size of this 
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information is measured by the minimal number of questions 

one needs to ask in order to obtain this information. 

Sometimes the SMI is referred to a "measure of 

information," and sometimes as a "measure of the missing 

information." This distinction is not important. In one, we 

assign the "information" to the experiment, in the other we 

assign the "missing information" to the one who has to ask the 

question. Either way this quantity is positive and an objective 

quantity associated with a given experiment with a given 

probability distribution. 

Consider the following two divisions a and b of the same board, 

Figure 2.9. 

Both boards are divided into eight regions. In Figure 2.9a, 

we have eight equal areas, whereas in Figure 2.9b, we have 

eight unequal areas. Which of these games is easier to play? 

Putting it differently, suppose you have to find where the dart 

hit by asking binary questions. Again, assume that you pay 

$ 1 .00 for each question you ask, and you will get $10.00 when 

you find the region in which the dart hit. The question is given 

the two distributions, in which game can we get the information 

on "where the dart hit" with the fewest number of questions? 

The exact answer to this question is contained in the values of 
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SMI for these two cases. The larger SMI, the larger the size of 

the information. 

Intuitively, we feel that in this particular example, playing 

game b requires fewer numbers of questions. The reason is that 

with game a we must ask at least three questions. On the other 

hand, with game b we can ask on average fewer questions. We 

start by asking "is it on the left half?" There is probability of% 

to get a Yes answer on the first question. If we get a No, we 

have to ask on average three more questions. 

The value of SMI for these two cases, are: 

8 

SMI(a) = I �log8 = 3 
i=l 

Finally, consider the game in Figure 2.9c. You have the 

same number of regions but now one area is A1 = 0.999A, and 

all the other areas are within 0.01 ofA. Which game would you 

prefer to play, b or c? This is an easy question. I am sure you 

will choose game c. If you play this game many times you will 

need on average not more than one question to ask. 
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2.8 The birth of Information Theory 

The concept of information is a very general concept. It 

includes subjective ("this book is interesting") and objective 

("this book contains 200 pages") information. Information can 

be either interesting or dull, it can be meaningful or 

meaningless, it can be helpful, beautiful, reasonable - add any 

adjective that pops up in your mind, and you will find examples 

of such information. 

The idea that information is something measurable was not 

widely appreciated until 1948, when Norbert Wiener's  book, 

Cybernetics, was published, and Claude E. Shannon published 

"The Mathematical Theory o!Communication." 

One can think of many measures of information, much like 

there are many measures of physical objects (weight, volume, 

surface-area, etc.), and of events (probability, length of the 

event, the number of objects the event is concerned with, etc.). 

Consider the two following items of information that I have 

heard in the news today: 

"The snow storm that hit New York this morning has left a trail 

of devastation with 60 people injured, 4 dead, and thousands 

left with no electricity." 
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"A bomb in Iraq killed 80 people." 

Clearly, the first is longer than the second. It has more letters 

and more words. It is also about more people affected by the 

snow storm in New York. On the other hand, the second is 

shorter in length, but it reports on a larger number of people 

killed. The second might also be more important and relevant 

for those who live in Iraq, but the first is more important for 

those who live in New York. 

As you must realize, it is even more difficult to assign a 

measure to any information than it is to assign weight to any 

object, or to assign probability to any event. Therefore, we have 

to find a "distilled" form of information on which we can define 

a precise and objective measure. 

In 1948, Shannon published a landmark paper entitled "A 

mathematical theory of communication." In Section 6 of this 

paper, Shannon writes: 

"Suppose we have a set of possible events whose 

probabilities of occurrence are Pi> Pz, . . .  , Pn. These 

probabilities are known but that is all we know concerning 

which event will occur. Can we find a measure of how much 

"choice " is involved in the selection of the event, or how 

uncertain we are of the outcome? 
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1. H should be continuous in the Pi' 
1 2. If all the Pi are equal, Pi = -, then H should be a n 

monotonically increasing function of n. With equally 

likely evens there is more choice, or uncertainty, when 

there are more possi ble events. 

3. If a choice be broken down into two successive choices, 

the original H should be the weighted sum of the 

individual values ofH. 

Then Shannon proved that the only quantity satisfying the three 

assumptions above is ofthe form: 

n 
H = -K l >i 10gPi 

i=l 

Shannon denoted his quantity by the letter H. We shall refer to 

it as SMI. 

Shannon referred to the quantity he found as the amount of 

"choice" or "uncertainty" about the outcome. This quantity 

later became the central concept in Information Theory and was 

sometimes referred to simply as "information." This has caused 

considerable degree of confusion, mainly because 

"information" III general, can have meaning, value, 

importance, etc. but the SMI is a purely objective quantity 
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depending only on the probability distribution and not on the 

specific experiment or game. 

To highlight the gist of Shannon's achievement let us go 

back to the 20-question game. I hid a coin in one of N boxes 

and I tell you that I chose the box where I placed the coin with 

probability distribution Pi> . . .  , PN' If you prefer, think of the 

game with the dart hitting a board having N regions with 

relative areas Pi> . . .  , PN' Suppose that I pay a dollar for each 

answer I get, and when I find the outcome of the experiment 

(where the coin is hidden, or where the dart hit), I get a prize of 

X dollars. 

How should one play this game with a minimum number of 

questions so that one maximizes his/her earnings? Offhand, it 

is not clear that such a "maximizing-earning-method" exists, 

and even if it does, it is not clear how to find out the number of 

questions that will give us the maximum returns in the game. 

Shannon formulated an equivalent problem, having no idea 

if a solution to his problem exists. He further assumed that if 

such a measure exists, it must fulfill some plausible properties. 

With these set of plausible properties he proved that there is 

only one quantity that fulfills these properties, and that was 

how he found the formula for H, which we can now refer to as 
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SMI. The details of the proof are highly mathematical and will 

not concern us here. I wanted to convey to you the flavor ofthe 

type of problem Shannon faced; to find a solution to a problem 

without knowing if such a solution exists. 

Once the SMI was found, people realized that it can be used 

in many other fields of research far from communication 

theory. It was found useful in physics, mathematics, biology, 

psychology, sociology and even in literature, music and other 

arts. This huge scope of applicability is probably the reason 

why this is deemed so powerful, and for some even an awesome 

quantity. 

As we have seen the SMI is purely a probabilistic quantity 

depending only on the given probability distribution, but 

independent of the experiment or the game that provided this 

distribution. 

Notwithstanding Shannon's enormous achievement, he 

committed a small semantic mistake - he called his quantity 

Entropy. Of course, one can call the SMI by any term one 

wants. Unfortunately, the specific choice of the term Entropy 

which was already used in physics has caused great deal of 

confusion, and a vigorous debate ensues on the very meaning 

of the SMI, as well as the meaning of Entropy . We shall see in 
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Chapter 3 that entropy is a particular case of SMI, but the SMI 

in general is not entropy. 

2.9 Interpretations of SMI 

There are several interpretations of SMI. The most important 

and useful ones are: 

1 .  Average uncertainty about all the outcomes of an 

experiment; 

2. Average unlikelihood about all the outcomes of an 

experiment; 

3 .  A measure ofthe amount of information contained in a 

probability distribution, or the amount of missing 

information in playing the 20Q game. 

You might be wondering; the Shannon measure of 

information is, by definition, a measure of information. 

Why does one need to interpret the SMI as a measure of 

information? 

This is indeed a very valid question. As we shall soon see 

the interpretation of SMI as a measure of information is the 

least straightforward compared with the first two 

interpretations. It IS Iromc that the "informational" 

interpretation ofSMI is the most difficult to see, and as a result 
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it is also the one which is commonly misused. Note that the 

SMI has the form of average quantity. However, this is a very 

special average. It is an average of the quantity - log Pi using 

the probability distribution Pi> . . .  , PN' (Note that Shannon used 

the letter n for the total number of outcomes. We shall use the 

letter N instead). 

2.9.1 The uncertainty meaning of SMI 

The interpretation of SMI as an average uncertainty is very 

popular. This interpretation is derived directly from the 

meaning ofthe probability distribution. 

Suppose that we have an experiment yielding N possible 

outcomes with probability distribution Pi> . . .  , PN' If, say, P1 = 

1, then we are certain that the outcome " 1 "  occurred or will 

occur. In general, for any other value of Pi we are less certain 

about the occurrence of the event i. Less certainty can be 

translated to more uncertainty. Therefore, the smaller the value 

of Pb the larger the value of - log Pb the larger the extent of 

uncertainty about the occurrence of the event i. Multiplying 

- log Pi by Pb and summing over all i , we get an average 

uncertainty about all the possible outcomes of the 

experiment. 10 See also Appendix A, Figure A.3. 
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Finally, we note that whenever one says that SMI is a 

measure of uncertainty, we mean uncertainty with respect to all 

the outcomes of an experiment in the sense discussed above. 

For instance, when we throw a die we can talk of many 

uncertainties about the color, the mass, the form, etc. ofthe die. 

Unfortunately, you can find in many popular science books a 

description of SMI (as well as entropy) as "uncertainty," 

without specifying what that uncertainty refers to. 

2.9.2 The unlikelihood interpretation 

A slightly different but still useful interpretation of SMI is in 

terms of likelihood or expectedness. These two are also derived 

from the meaning of probability. When Pi is small, the event i 

is unlikely to occur, or its occurrence is less expected. When Pi 

approaches I, the occurrence of i becomes more likely, or more 

expected. Since log Pi increases when Pi increases, we can say 

that the larger the value of log Pb the larger the likelihood or 

the larger expectedness for the event. Since 0 :::; Pi :::; 1, we 

have - 00  :::; 10gPi :::; O.  The quantity -log Pi is thus a measure 

of the unlikelihood or the unexpectedness of the event i. See 

Appendix A for a plot of - logp as a function ofp. Therefore, 

the quantity SMI = - I Pi log Pi is a measure of the average 
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unlikelihood, or unexpectedness of the entire set of the 

outcomes ofthe experiment. 

2.9.3 The meaning of the SMI as a measure of information 

As we have seen, both the uncertainty and the unlikelihood 

interpretation of SMI are derived from the meaning of the 

probabilities Pi' The interpretation of SMI as a measure of 

information is a little trickier and less straightforward. It is also 

more interesting since it conveys a different kind of 

information on the Shannon measure of information. As we 

already emphasized the SMI is not information. Also, it is not 

a measure of every piece of information, but of a very particular 

kind of information. Confusing SMI with information is almost 

the rule, not the exception by scientists and non-scientists alike. 

Some authors assign to the quantity - log Pi the meaning 

of information (or self-information) associated with the event 

i. This is not a valid interpretation of - log Pi' For details, see 

Ben-Nairn (2017b). 

Both Pi and -log Pi are measures of the uncertainty about 

the occurrence of an event. They do not measure information 

about the events. Therefore, we do not recommend to refer to 
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- log Pi as information (or self-information) associated with 

the event i. 

It is sometimes said that removmg the uncertainty is 

tantamount to obtaining information. This is true for the entire 

experiment; that is, the entire probability distribution, not to 

individual events. 

Suppose that we have an unfair die with probabilities Pi = 
1 1 1 1 1 1 

10 ' pz = 10 , P3 = 10 ' P4 = 10 ' Ps = 10 and P6 = "2 . Clearly, 

the uncertainty we have regarding the outcome i = 6 is less 

than the uncertainty we have regarding any specific outcome, 

say, i = 4. When we carry out the experiment and find the 

result, say i = 3, we removed the uncertainty we had about the 

outcome before carrying out the experiment. However, it 

would be wrong to argue that the amount of information we got 

is larger or smaller than if another outcome had occurred. Note 

also that we talk here about the amount of information, not the 

information itself. If the outcome is i = 3, the information we 

got is: "The outcome is "3." If the outcome is i = 6, the 

information is: "The outcome is "6." The information you 

receive is different in these two cases, but one cannot claim that 

one is larger or smaller than the other. 
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We emphasize again that the interpretation of SMI as 

average uncertainty or average unlikelihood is derived from 

the meaning of each term -logpi' The interpretation ofSMI as 

a measure of information is not associated with the meaning of 

each probability Pb but with the entire distribution Pi> . . .  , PN ' 

As everyone who has played the 20-question game knows, 

the number of questions you need to ask depends on the 

strategy of asking questions. It turns out that the quantity SMI 

to which we referred to as Shannon's Measure of Information 

(SMI) provides us with a measure of this information in terms 

ofthe minimum number of questions one needs to ask in order 

to find the outcome of an experiment, given the probability 

distribution of the various outcomes. 

For a general experiment with N possible outcomes, having 

probabilities Pi> . . .  , PN, the SMI is a measure of how "difficult" 

it is to find out which outcome has occurred given that an 

experiment was carried out, and that we know the probability 

distribution of the outcomes. As we have seen, experiments 

having the same total number of outcomes N but with different 

probability distributions, the amount of information (measured 

in terms of the number of questions) is different. In other 

words, knowing the probability distribution gives us a "hint" or 
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some partial information on the outcomes. This is the reason 

we refer to SMI as a measure of the amount of information 

contained in, or associated with a given probability 

distribution. We emphasize again that the SMI is a measure of 

information associated with the entire distribution, not with the 

individual probabilities. 

2.10 Conclusion regarding "uncertainty" 

and "measure of information" 

In this chapter we introduced the concept of SMI, its 

interpretations, and some of its properties. Once you have 

grasped the meaning of SMI, you will effortlessly understand 

the meaning of entropy - which is nothing but a special case of 

SMI multiplied by a constant. 

Before we discuss entropy and the Second Law in the next 

chapter, we must pause and ponder on the meaning ofthe SMI. 

This is essential since there are many pitfalls lurking along the 

paths leading from SMI to entropy in which many scientists, 

and even Nobel prize winners, no less, have fallen into. You 

will be surprised that some respected authors fill entire books 

with such confusion of information with SMI, and SMI with 

entropy. 1 1  
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The first thing to understand is that the SMI is not 

information, but rather a specific measure of a specific kind of 

information. When I tell you that "today there is a snowstorm 

in New York," I provide you with some information. This 

information can be important to you (if you live in New York, 

and plan to go out today), or totally unimportant and irrelevant 

(if you live in China, and have no plans to visit New York). 

This information could either be exciting, boring, irrelevant, 

and many other attributes you might wish to attach to it. All 

these attributes have nothing to do with the SMI associated with 

this particular message. 

The SMI associated with this message has to do with the 

frequencies of the letters in the English alphabet. It has to do 

with how efficiently you can code this message, transmit it 

through some channels, and decode it. This is exactly what 

Shannon was interested in when he sought a measure of 

information. 

The following three messages carry different information: 

John loves Ruth and Linda 

Linda loves Ruth and John 

Ruth loves John and Linda 
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All ofthese messages are different. However, from the point 

of view of SMI they are identical. In fact, there are many more 

messages, even meaningless messages which have the same 

SMI. You can construct some examples by jumbling the letters 

of these sentences. 

Now let us discuss the relationship between the concept of 

uncertainty and a measure of information. Both of these 

concepts are in the context of this book associated with a 

probability distribution. Some people will tell you that entropy 

(as a special case of SMI) is information, or it is uncertainty. 

This is not the case, either for the SMI, or for the entropy. 

If! hold a die, you might have uncertainties about its color, 

size, weight, number of faces and many more. I can also 

provide you with information about its color, size, or about the 

number of faces, and much more. All these uncertainties and 

all this information are irrelevant to SMI. 

To clarify the meaning of the uncertainty and the meaning 

of the SMI, consider the following three dice with their 

corresponding probability distributions: 
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Table 2.2: Three different dice and the corresponding 
probability distributions 

Face I 2 3 4 5 6 

die a 0.98 11400 11400 11400 1/400 O.oJ 

die b 0.8 1/40 1/40 1/40 1/40 0 .1  

die c 1/6 1/6 1/6 1/6 1/6 1/6 

I show you the three dice and I ask you the following questions: 

I .  In which of these dice are you most certain (or least 

uncertain) about the outcome? 

2. I throw each ofthe three die. I know on which face each 

one fell. You have to ask binary questions to find out 

which outcome occurred. Can you estimate how many 

questions you will need to ask in each case to find out 

in which outcome occurred? 

3 .  I throw each ofthe dice. I tell you the outcome of each 

die. Can you tell in which case you got more 

information, or less information? (Note that the 

information I gave you is about the outcome, or about 

the face on which the die landed). 
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Before answering these questions, you should realize that 

the answers you are going to provide depend on the probability 

distribution of each die. Without having the information on the 

probability distribution there is no way you can answer these 

questions. 

Remember, it is essential to know the distribution before 

you attempt to answer these questions. 

Answers to the questions 

Clearly, for die a you are most certain about the outcome. 

You look at the three distributions, and you can tell that the 

result " I "  has the largest probability in case a. Therefore, you 

are most certain, or least uncertain about the outcome. 

On the other hand, you are most uncertain (or least certain) 

about the outcome in case c. It is also clear that in case a, you 

need to ask fewer questions than in case c. The average 

uncertainty, as well as the average number of questions you 

will need in each case is given by the SMI. One can show that 

for these three dice, we have: SMI(a) < SMI(b) < 

SMI(c) . For details see Ben-Nairn (2017a). 

Regarding the last question, it is often said that by asking 

questions you get information, and getting information 
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removes your uncertainty about the outcomes. Therefore, in 

case G, your uncertainty is the least. Hence, by getting the 

information about the outcomes you did not get much 

information. You got a little more information in case b, and 

you got the maximum information in case c (since your 

uncertainty was maximal for these dice). 

In a more general experiment, when there are N possible 

outcomes the SMI measures the average uncertainty about the 

outcomes of the experiment or about the minimum number of 

questions you need to ask in order to find out which outcome 

occurred. Equivalently, the SMI is a measure of the amount of 

information contained in, or belonging to the distribution. 

The maximum value of the SMI is when all the outcomes 

are equally probable, in which case, the SMI is 10gzN (If you 

know how to handle logarithms you can check that whenever 

all the outcomes are equally probable then the SMI as defined 

by Shannon is equal to 10gzN ). The minimal value ofthe SMI 

is obtained when one outcome has probability I ,  and all others 

have probability zero. In this case you are certain about the 

outcome. Your uncertainty is zero, and you do not lack any 

information about the outcomes. 
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In the above discussion we used the terms "I know," or "I 

have the information" about the outcome. This language might 

lead you to think that the SMI is a subjective quantity. In fact, 

many scientists have reached such a conclusion. However, this 

conclusion is wrong. The SMI is an objective quantity defined 

on any given distribution. It does not depend on who has, or 

does not have information on the distribution. When we 

interpret the SMI as the number of questions one needs to ask 

in order to obtain the information given the distribution, we 

mean anyone who has that distribution, and it can be you, or 

me, or the computer. 

Another very common mistake is the following: Suppose 

there are N equally probable outcomes. In this case, the SMI is 

10gzN. Some people reach the conclusion that if I (or you) 

know the outcome, the SMI you will calculate is 10gzl = 0, 

which means you do not have to ask any question - you already 

know the answer. This conclusion is wrong. The SMI does not 

depend on how much information you have on the outcomes. 

It only depends on the distribution, and it does not depend on 

who has that information. 

This kind of conclusion is also mistakenly reached about 

entropy. If there are W equally probable microstates of a 
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(3) (6,0) (5, 1)(4,2) (3,3) (2,4) ( 1,5) (0,6) 
Figure 1.1.  Seven d ice, each having a different number of blue and red faces. 

Panels (a) and (b) show each die from a different angle. To get the number of blue or 

red faces, you need to count, the number of blue or faces in both panels. 

(a )  
Probabilities: 1/6 1/6 

(b) 

. • • 

1/6 

. . 

1/6 

. . • 

1/6 

� . . � ( . + . ' . ' 

� 

� . 
... . 

Final  outcome : ' • . . 

. . .  

1/6 

Figure 1.2.  (a) A regular fair die with different numbers of dots on its faces. (b) An 

"unfair" die having additional weight on one of its faces. 
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Figure 1.5. (a) Probabilities of occurrence of blue for the dice 1 to 7, corresponding 
to a to 9 in Table 1.2. (b) Probabilities of occurrence of red. (c) Probabilities of 
occurrence of blue and red for the dice 1 to 7. Note the symmetry of the figure. 
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left Urn Right Urn 

Figure 1 .13 .  Easy game; choice between the  two urns .  

left Urn Right Urn 

Figure 1 . 14. Diffi cu lt game; choice between the  two urns .  

Figure 1 .15 .  An urn  contain ing fou r  b lue, s ix  red, and  ten green marb les .  
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Figure 1 . 16. An u rn contain ing fou r  b lue, five red, and  ten green marb les .  

F igure 1 .17 .  An urn  contain ing fou r  b lue, fou r  red,  and  ten green marb les .  

F igure 1 .18 .  An urn  contain ing fou r  b lue, t h ree red,  and  ten green marb les .  
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(b) 

(c )  

(c) 
Figure 1 .24. (a)  A monkey examin ing two u rns, then ;  

(b )  choosing wh i le  b l indfolded between the  two u rns .  

(c )  The actua l  experiment with banana and  carrot pieces. 
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Figure 3.1. Three typical spontaneous processes occurr ing i n  isolated 

syste ms. (a) Expansion of an ideal  gas. (b) Mixing of two ideal gases, 

(c) Heat tran sfer from a cold to a hot body. 
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(a) (b)  
Figu re 3 . 2 .  (a)  A n  artist rendition o f  ( a )  "Water fall," a n d  (b )  "Heat faiL" 

Figure 3 . 5 .  (a) Eight of t h e  12 possible configurations of two 

d iffe rent particles i n  four ce l l s .  These become four configurations 

when the particles are i n distingu i s h a b l e .  

Can y o u  d raw t h e  missing f o u r  configurations? 

See Figure 3.5 (b) below. 

(b )  

Figure 3.5 ( b )  Four  o f  12 possible configurations of two different 

particles in fou r  cel ls .  These become two configurations when the 

particles a re i n d istingu ishable.  
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(a) (b)  (c) 
Figure 3.13. The velocity distribution at a low temperature. 
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Figure 3.14. The velocity distribution a t  a high tem perature. 
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(a)  
t High temperatu re 

Low temperatu re / 
(b)  0:1 i =======:11 ____ -======::::0 

F igure 3 . 1 5 .  Two d ifferent 20Q ga mes with a boa rd 
d ivided into d ifferent n u m bers of regions.  

A qualitative relationship between the "sizes" of  the three concepts: 

General Information, SMI and Entropy. 
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Figu re 3.26. ( a )  Mixing of two diffe rent kinds of molecules.  

(b)  "Mixing" the same k ind of m olecules.  
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Figu re 3 .27.  The i n itial,  t h e  fi n a l, a n d  a n  interm ediate state i n  t h e  
mixing process. Process I is possible, but  h igh ly i m p robab le .  
Process I I  is i m possi b le .  
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Figure 3.28. Mixing of two gases with zero change in entropy. 
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Figure 3 .30.  A possib le distr ibution of ten marbles in ten ce l ls . 

0 0 • • • • 0 c • 

(a )  (b) 
Figure 3 .31 .  Two extreme distr ibutions of ten marbles in ten ce l l s .  

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Shannon's Measure of Information (SM!) 161 

thermodynamic system, the entropy is given by S = kin W. 

Some people say that ifthey know in which ofthe W states the 

system is, then the entropy of the system from their point of 

view would be zero (kin 1 = 0). We shall further discuss this 

case in the next chapter. 

2.11 Summary of Chapter 2 

In this chapter we learned about the Shannon measure of 

information, some of its properties and some of its 

interpretations. We also saw that young children have some 

sense of the average uncertainty, or the measure of 

information, in the sense discussed in this chapter. 

I hope that you now have a qualitative idea of the meaning 

of SMI. In the next chapter, we shall see that the entropy - the 

concept considered to be the most mysterious one in physics -

is nothing but a quantity which, up to a multiplicative constant, 

is a special case of SMI. It is a measure of information 

associated with a very special distribution. 
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CHAPTER 3 

ENTROPY AND THE SECOND LAW 

OF THERMODYNAMICS 

Finally, we arrived at the most important chapter of this book. 

In this chapter we discuss the concept of entropy and its 

association with the Second Law of Thermodynamics (2nd 

Law). We start with some historical notes on the concept of 

entropy and the Second Law. We then outline the derivation 

of the entropy of an ideal gas based on the SMI. We shall see 

that entropy is nothing but a special case of SMI. It turns out 

that this is the simplest and the only valid and proven 

interpretation of entropy. We shall also see that entropy is 

defined for a thermodynamic system only at equilibrium 

states. The Second Law deals with the changes that occur 

when we remove some constraints from a system at 

equilibrium. We shall see that the reason for the seemingly 

one-way processes that we observe is probabilistic. We shall 

also discuss the connection between the varIOUS 

thermodynamic formulations of the Second Law, on one 

hand, and the probabilistic formulation, on the other hand 
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3.1 The birth and the early evolution 

of the concept of entropy 

In most textbooks on thermodynamics one finds that the 

concepts of entropy and the Second Law are intimately 

intertwined. We shall discuss these two concepts separately. 

We shall see that entropy may be defined, interpreted, and 

applied without ever mentioning the Second Law. Likewise, 

one can formulate and understand the Second Law without ever 

mentioning entropy. As we shall see these two concepts are 

related to each other, but this relationship holds only for 

processes occurring in an isolated system. 

Even before the Second Law was enunciated people noticed 

that some processes occur in an apparent one-direction only. 

Look at the three processes depicted in Figure 3 . 1  (see color 

centerfold). We assume that each of these processes occur in 

isolated systems which means that there are no interactions 

between the system and its surroundings. 

In Figure 3 . 1a, we start with a gas initially confined to a 

volume V. For simplicity we assume that the gas molecules do 

not interact between themselves. This is an approximation. Any 

pair of real molecules always interacts with each other. 

However, if the density of the gas is very low we can assume 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



164 Chapter 3 

that the average distance between pairs of molecules is very 

large and hence, the interactions are negligible. We call such a 

gas an ideal gas. 

We remove the partition and we see that the gas expands to 

occupy the entire volume 2 V. This experiment is so obvious 

that you can imagine the outcome even without actually 

performing the experiment. 

We never observe the reverse of this process. If I tell you 

that I started with a gas, which fills the entire volume of some 

container, then suddenly all the molecules moved to occupy 

half of the container, you would not believe me. Right? 

Next, look at the process 3 . lb. We start with two different 

ideal gases separated by a partition. When we remove the 

partition separating the two gases, we will observe mixing of 

the two gases. I We never observe the reverse ofthis process. If 

I tell you that I started with a mixture of two gases as on the 

right-hand side of Figure 3 . lb, then suddenly the two gases 

were separated such as on the left-hand side ofthe Figure 3. lb, 

you would not believe me 2 

Finally, look at Figure 1 .3c. Initially, we have two blocks of 

metals at two different temperatures. We bring them to thermal 

contact and we observe that the temperature of the hot body 
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will go down, while the temperature of the cold body will go 

up. Thermal contact here means that the insulating wall 

separating the two bodies is replaced by heat-conducting walls 

so that heat can flow between the two bodies. 

In this experiment we always observe that heat will flow 

from the higher-temperature body to the lower-temperature 

body. After some time we reach an equilibrium state at which 

the temperature ofthe two bodies will be equal. 

We never observe the reverse of this process. Ifwe start with 

a piece of metal at a uniform temperature, we never observe a 

spontaneous heating of one part (that is, raising its 

temperature), and cooling a second part (that is, lowering its 

temperature). 

These simple processes, as well as many others seem to 

occur in one direction (from left to right in Figure 3 . 1 ), never 

in the reverse direction (from right to left in Figure 3. 1). Why? 

In all of these processes we start with a system at 

equilibrium, we remove a constraint (e.g. a partition), and the 

system evolves into a new equilibrium state. 

In all of these examples we never observe the reverse 

process spontaneously; the gas never condenses into a smaller 
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region in space, the two gases never un-mix spontaneously after 

being mixed/ and heat never flows from the cold to the hot 

body. Note carefully that I italicized the word never in the 

previous sentences. Indeed, we never observe any of these 

processes occurring spontaneously in the reverse direction. For 

this reason, the processes shown in Figure 3 . 1  (as well as many 

others) are said to be irreversible. However, one should be 

careful with the use of the words "reversible" and "irreversible" 

in connection with the Second Law. There are several, very 

different definitions assigned to these words 4 

Here, we point out two possible meanings of the term 

irreversible. 

1 .  We never observe that the final state of any ofthe processes 

in Figure 3 . 1(see color centerfold) returns to the initial state (on 

the left hand side of Figure 3 . 1 )  spontaneously. 

2. We never observe that the final state of any ofthe processes 

in Figure 3 . 1  returns to the initial state, and stays in that state. 

In case 1 ,  the word never is used in "practice." The system 

can go from the final to the initial state. In this case, we can say 

that the initial state will be visited. However, such a reversal of 

the process would occur once in many ages of the universe. 
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Therefore, this is practically an irreversible process; we will 

"never" observe such a reversal in practice. 

In case 2, the word never is used in an absolute sense. The 

system will never go to its initial state and stay there! 

The distinction between these two meanmgs of 

"irreversibility" IS important in connection with the 

formulation of the Second Law. 

In 1 865, the German physicist Rudolf 

Clausius ( 1822- 1 888) introduced a new 

concept which he called entropy. 

Clausius himself did not, and could not 

understand this concept on a molecular 

level. In fact, even the well-known 

concepts of temperature and pressure 

were not understood on a molecular 

level. It was much later that temperature 

was interpreted in terms of the kinetic 
Rudolf Clausius 

energy of the atoms and the molecules. This interpretation is 

far from being trivial. There is nothing in our sense of 

temperature which indicates that it is a result of the molecular 

velocities of the particles. 
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The situation with the molecular interpretation of entropy is 

similar to that of the temperature. However, while everyone can 

feel the temperature of a body, there is no way to perceive 

entropy with our senses (excluding our common sense). This 

has led to many speculations about the meaning of entropy -

speculations that continue to this day. 

Originally, scientists in the 19th century were interested in 

heat engines. Heat engines were supposed to do the work which 

people used to do with their bare hands and raw muscles. 

Basically, you can think of a "heat engine" as an analog of 

waterfall engines. In waterfalls, water cascades from higher to 

lower levels. On its way down, the water can rotate a turbine. 

We can harness this rotation to our advantage like plowing a 

field or generating electricity. Likewise, heat flows 

spontaneously from a high level of temperature to a low level 

of temperature. On its way down, this flow of heat can also be 

harnessed for doing some work, like running a train or lifting 

weights from low to high levels. 

In the 19th century, scientists believed that heat is a kind of 

fluid called caloric that flows from a higher to a lower 

temperature. Today, this "caloric theory" is considered 
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obsolete. We shall still use the term "heat flow" meaning heat 

transferred. 

Qualitatively, think again of a waterfall. You can imagine 

that for some quantity of water falling from h2 to hI you can do 

some useful work. Likewise, for a given amount of heat 

"falling" from the higher temperature T2 to a lower temperature 

TI, you can do some useful work, Figure 3.2 (see color 

centerfold). 

Note, however that "falling of water," and the "flow of heat" 

are governed by very different laws. The first is governed by 

Newton's Gravitation Law, the second, by the Second Law of 

Thermodynamics. 

Traditionally, the birth of the 2nd Law is associated with the 

name Sadi Carnot (1796-1 832). Camot was a French physicist 

and engineer. Although Carnot himself did not formulate the 

Second Law, his work laid the foundations on which this law 

was formulated. Carnot was interested in the efficiency of a heat 

engine; how much useful work one can get from a given 

amount of heat that flows from the higher temperature T2 to the 

lower temperature TI. Carnot found, somewhat unexpectedly, 

that there is a limit on the efficiency of a heat engine operating 

between two temperatures T2 and TI. This finding was not a 
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formulation of the Second Law, but it sowed the seeds for the 

inception ofthe Second Law. 

The seeds sowed by Carnot sprouted in different directions 

which led to the different formulations of the Second Law, as 

well as different definitions of entropy. We shall first discuss 

the different definitions of entropy and then present a few 

formulations ofthe Second Law. 

3.2 Two older definitions of entropy 

In this and in the next section, we present three different 

definitions of entropy. 

3.2.1 Clausius' definition of entropy 

Basically, Clausius observed as every one of us does, that there 

are many processes that occur in nature spontaneously and 

always in one direction. 

Going back to the three processes shown in Figure 3 . 1  (see 

color centerfold), we can ask why these processes always occur 

in one direction. Is there a law of Nature that dictates the 

direction ofthe unfolding ofthese processes? Look again at the 

three processes depicted in Figure 3 . 1 .  Take note that these are 

quite different processes and that it is far from being clear that 

they are all governed by the same law. Perhaps, there is one law 
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for the spontaneous expansion of a gas, another for the 

spontaneous mixing of two gases, and still another for the 

spontaneous flow of heat from the hot to the cold body. 

It was Clausius who realized the common principle 

underlying all these processes, and postulated that there is only 

one law that governs all these processes. Even before 

formulating the Second Law, Clausius' postulate was an 

outstanding achievement considering the fact that none of these 

processes was understood. You watched how a colored gas 

expands and fills a larger volume. You watch a drop of blue ink 

mixing with a glass of water coloring the entire liquid. You 

watch the hot body cooling and the cold body heating. You 

watch all ofthese with your macroscopic eyes, but you have no 

idea what drives these processes, what goes on inside the 

system you are watching. Such an insight was not even possible 

before the atomic nature of matter was embraced by the 

scientific community which allowed us to use our "microscopic 

eyes" to "see" what goes on when such processes occur. 

"Seeing," even with our microscopic eyes, is one thing, and 

understanding what we see is quite another. As we shall learn 

later the explanation of all these processes is probabilistic. This 

is exactly the reason why we dedicated Chapter I to discuss the 

concept of probability. 
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Clausius started from one particular process; the 

spontaneous flow of heat from a hot to a cold body. Based on 

this specific process, Clausius defined a new quantity which he 

called entropy. From here on, I will describe Clausius' 

"definition" of entropy. Nothing in this definition will help 

your understanding of entropy. If you like you can skip this 

part, and continue to Section 3.2.2. Just remember that Clausius 

defined entropy in connection with heat engines, heat transfer, 

and temperature. This definition is important for engineering, 

but it contributes nothing to understanding the meaning of 

entropy. 

Denote by dQ a small quantity of heat flowing into a 

system, being at a given temperature T. T is referred to as the 

absolute temperature. T � 0 K, or zero Kelvin, is the lowest 

possible absolute temperature, which is about -273°C. The 

change in entropy was defined as: 

(Clausius' definition) dS = dQ T 

Q has the units of energy, and Thas the units of temperature. 

Therefore, the entropy change has the units of energy divided 

by units of temperature. The quantity of heat, dQ, must be very 

small, such that when it is transferred into the system, or out of 

the system, the temperature T does not change. If dQ is a large 
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quantity of heat, and you transfer it to a system which is 

initially at a given T, the temperature of the system might 

change, and therefore the change in entropy will depend on 

both the initial and the final temperature of the systemS (As 

you can understand intuitively, suppose you have a pot offood, 

initially at a temperature of say, 30°C. You put it for a very short 

time on the stove. A small amount of heat will flow into the 

pot, but its temperature will not change much. However, when 

you leave the pot for a long period oftime, the pot's temperature 

will change.) Note carefully that this equation does not define 

entropy but only changes in entropy for a particular process, 

i.e. a small exchange of heat (dQ > 0 means heat flows into the 

system, dQ < 0 means heat flows out ofthe system). There are 

many processes, two of which are shown in Figure 3 . 1, which 

do not involve heat transfer. Yet, from Clausius' definition and 

the postulate that the entropy is a state function, one could 

devise a path leading from one state to another, for which the 

entropy change can be calculated. A state function means that 

for any well-defined system at equilibrium the value of its 

entropy is determined. These details are not relevant to us in 

this book. 

It is not uncommon to refer to the equation dS = dQ IT as 

Clausius' definition of entropy. In fact, this equation does not 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



174 Chapter 3 

define entropy, nor changes in entropy for a general process 

(e.g. expansion of an ideal gas). 

Initially, Clausius formulated a "restricted" Second Law, 

namely that heat does not flow spontaneously from a cold body 

to a hot body. However, later he postulated that there exists a 

quantity which he called entropy that is assigned to any 

macroscopic system, such that when a spontaneous process 

occurs the entropy always increases. This was the birth of the 

Second Law of Thermodynamics. This law introduced a new 

quantity to the vocabulary of physics, and at the same time 

brought together many processes under the same umbrella. 

The extraordinary achievement of Clausius was the 

enormous generalization from a few spontaneous processes to 

any spontaneous process. It should be stressed here that the 

formulation ofthe Second Law in terms of entropy is valid only 

for isolated systems, i.e. systems having a constant energy, 

volume and number of particles. For other systems, say, at 

constant pressure and temperature, the entropy can either go up 

or down. 

Look again at the three processes depicted in Figure 3 . 1 .  

These are very different processes, but they are governed by 

the same law, the Second Law of Thermodynamics. Today, we 
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can calculate the change in entropy, and we find that whenever 

a spontaneous process occurs in an isolated system, the entropy 

of the system always increases. We shall discuss the various 

formulations of the Second Law in Section 3.5.  Before we 

continue, we must emphasize that by "entropy changes" we 

mean difference in entropy between two equilibrium states. We 

do not know how to calculate the entropy change for every 

spontaneous process. 

At this point, we pause to discuss the important concept of 

equilibrium state. Experimentally, we know that systems 

consisting of a huge number of particles can be described by a 

few parameters. For instance, a gas consisting of N atoms of 

argon can be described by its pressure and its temperature. This 

description is referred to as the thermodynamic or macroscopic 

state of the system. Obviously, a macroscopic state does not 

specify the microscopic states ofthe system. For these, we need 

to know the locations and velocities of a huge number of 

particles, N "'" 1 023 

We also know that there exist states for which the 

thermodynamic parameters, say temperature, pressure, or 

density do not change with time. These states are called 

equilibrium states. 
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It should be stressed however, that there is no general 

definition of equilibrium which applies for all systems. Callen 

( 1985) introduced the existence of an equilibrium state as a 

postulate. He also emphasized that any definition of an 

equilibrium state is necessarily circular. 

In practice, we find many systems, for which the parameters 

describing the system seem to be unchanged with time. Yet, 

they are not equilibrium states. But for all intents and purposes, 

we assume that every well-defined system, say having a fixed 

energy E, volume V, and number of particles N, will tend to an 

equilibrium state. At this state the entropy ofthe system, as well 

as many other thermodynamic relationships are applicable. 

We mentioned above the entropy for an isolated system. 

There exists no strict isolated system. However, such systems 

are convenient for the construction of thermodynamics, as well 

as for statistical mechanics. 

As for the choice ofthe term "entropy," Clausius 

explained: 

"1 propose, accordingly, to call S the entropy of a body, after 

the Greek word 'transformation. ' 1 have designedly coined 

the word entropy to be similar to energy, for these two 
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quantities are so analogous in their physical significance, that 

an analogy of denominations seems to me helpful, " 

The choice of this term was not entirely appropriate 6 

However, during the time it was chosen the meaning of entropy 

was not clear. It was a well-defined quantity, and one could 

calculate changes in entropy for many processes without giving 

a second thought to the meaning of entropy. Perhaps, there is 

no "deeper" meaning to entropy. Perhaps, entropy is just 

another physical quantity, such as volume and energy which do 

not have any "deeper" meaning. In fact, there are many 

scientists who use the concept of entropy successfully and who 

do not care for the meaning of entropy, that is if it has a 

meaning at all. 

Notwithstanding the enormous success and the generality of 

the Second Law, Clausius made one further generalization of 

the Second Law: 

The entropy of the universe always increases 

This formulation can be said to be an unwarranted over­

generalization. We shall further discuss the fallacy of this over­

generalization in Section 3.5. Here, suffice it to say that even 

Clausius' definition of entropy does not apply to the entire 
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umverse. First, because the universe IS not at constant 

temperature, and second, because the universe does not have an 

"environment," from which heat can be transferred. Similarly, 

in some popular science books you might read that "children's 

rooms tends to be disordered," or that "kitchens tend to get 

messy," and ascribed these phenomena erroneously to the 

Second Law. We shall further discuss such misapplications of 

the Second Law in the Epilogue. 

3.2.2 Boltzmann's definition of entropy 

Towards the end of the 19th century, the atomistic theory of 

matter was firmly consolidated. The majority of scientists 

believed - yes, it was still a belief- that matter consists of small 

units called atoms and molecules. A few scientists persistently 

rejected that idea arguing that there is no proof ofthe existence 

of atoms and molecules; no one has seen any atom or a 

molecule ! Therefore, they justifiably claimed that the existence 

of atoms and molecules was a mere speculation. 

On the other hand, the so-called kinetic theory of heat which 

was based on the assumption of the existence of atoms and 

molecules had scored a few impressive gains. 
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Figure 3 .3 .  Pressu re is a resu lt of particles col l id ing with the  wal l .  

Here we show one particle h itt ing the  r ight wal l  with velocity v; 
and reflected with the  same velocity. 

First, the pressure of a gas was successfully explained as arising 

from the molecules bombarding the walls of the container. 

(Figure 3 .3). Then came the interpretation of temperature in 

tenns of the kinetic energy of the molecules,7 that was a 

remarkable achievement that supported and lent additional 

evidence for the atomic constituency of matter. 

Remember that both pressure and temperature are 

measurable quantities. We can feel both of them on the tip of 

our fingers. Neither the measurements, nor our feelings give us 

any hint that these quantities are manifestations of the motions 

of a huge number of tiny particles. 

Furthennore, the concept of heat which was believed to be 

a kind of fluid that flows from a hot to a cold body was also 

interpreted in tenns of the energies of all the individual 

molecules. 
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Thus, while the kinetic theory of heat was successful in 

explaining the concepts of pressure, temperature and heat, 

entropy was left lagging behind. It was Boltzmann who first 

suggested a new definition of the entropy in terms of the total 

of number microstates of a system consisting of a huge number 

of particles, but characterized by the macroscopic parameters 

of energy E, volume V and number of particles N. 

What are these "microstates," and how are they related to 

entropy? Basically, a microstate of the system is a detailed 

description ofthe locations and the velocities of all the particles 

in the system. Here is a more "technical" description. 

Consider a gas consisting of N simple particles in a volume 

V; each particle may be at some location Rb and have some 

velocity Vb Figure 3.4. By simple particles we mean particles 

with no internal structures or "degrees of freedom." Atoms such 

as argon, neon, and the like are considered as simple. They all 

have internal degrees of freedom, but are assumed to be 

unchanged in all the processes we discuss here. Assuming that 

the gas is very dilute so that interactions between the particles 

can be neglected, then all the energy ofthe system is simply the 

sum ofthe kinetic energies of all the particles. 
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Figure 3.4.  Ten particles in a box of vo lume V. 

Each particle, i has a IDeationa l  and  a velocity vector. 

Imagine that you could have microscopic eyes, and you 

could see the particles rushing incessantly, colliding with each 

other, and with the walls from time to time. You will be 

impressed that there are infinite configurations or 

arrangements of the particles which are consistent with the 

requirements that the total energy is a constant, and that they 

are all contained within the box of volume V. One such 

configuration is shown in Figure 3 .4. Each particle is specified 

by its location R;, and its velocity Vi ' Here, Ri is a vector, 

meaning it consists of the three coordinates (Xi, Yi, Zi) of the 

location of the particle along the three axes. Similarly, Vi 
consists of the three components of the velocities of the 

particles along the three axes. We bring here a simple example 

of calculation of the number of configurations of two particles 

in 4 cells in a two-dimensional system, Figure 3 .5  (see color 

centerfold). There are altogether 12  configurations or 
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arrangements when the particles are different, and six 

configurations when they are identical. 

Without getting bogged down with the question of how to 

define or how to calculate the total number of arrangements, it 

is clear that this is a huge number, far "huger" than the number 

of particles which is of the order N '" 1 02'. Boltzmarm 

postulated the relationship which is now known as the 

Boltzmarm entropy: 

S = kB logW 

where kB is a constant, now known as the Boltzmarm constant, 

and W is the total number of microstates of the system. Here, 

log is the natural logarithm. See Appendix A. This formula is 

inscribed on Boltzmann's tombstone in Vienna. 
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Ludwig Boltzmann ( 1 844-1 906) was an Austrian physicist and 

a philosopher. His ideas were not accepted by his 

contemporaries. 

At first glance, Boltzmann's 

entropy seems to be completely 

different from Clausius ' entropy. 

Nevertheless, it was found that in all 

cases for which one can calculate 

changes of entropy, one obtains 

agreements between the values 

calculated by the two methods. 

Exercise: Remember the definition Ludwig Boltzmann 
of SMI? Look again at Section 2.8.  Suppose you have W 

microstates or outcomes of any experiment. You are told that 

all these microstates have equal probability (1/W). Plug these 

probabilities in the SMI and see what you get. 

Boltzmann's entropy was not easy to accept, not only by 

those who did not accept the atomic theory of matter, but also 

by those who accepted it. The cliticism was not focused so 

much on the definition of entropy, but more on the formulation 

of the Second Law of Thelmodynamics. Boltzmann explained 

the Second Law as a probabilistic law. In Boltzmann's  words: 
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a system . . .  when left to itself, it rapidly proceeds to 

disordered. most probable state . .. 

This statement, especially the phrase "most probable state" 

was initially shocking to many physicists. Probability was 

totally foreign to physical reasoning. Physics was built upon 

deterministic and absolute laws; there were no provisions for 

exceptions. The macroscopic formulation of the Second Law 

was absolute - no one has ever observed a single violation of 

the Second Law. Boltzmann, on the other hand, insisted that 

the Second Law is only statistical; entropy increases most of 

the time, not all the time. The decrease in entropy is not an 

impossibility but is only highly improbable 8 

At the time when Boltzmann proclaimed the probabilistic 

approach to the Second Law, it seemed as if this law was 

somewhat weaker than the other laws of physics. All physical 

laws were absolute and no exceptions were allowed. The 

Second Law, as formulated by Clausius, was also absolute. On 

the other hand, Boltzmann's formulation was not absolute -

exceptions were allowed. It was much later realized however, 

that the admitted non-absoluteness of Boltzmann's 

formulations of the Second Law, is in fact more absolute than 

the absoluteness ofthe macroscopic formulation ofthe Second 
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Law, as well as of any other law of physics for that matter. We 

shall see why this is true in Section 3.5.  At this point, I suggest 

that you pause and try to understand what this last sentence 

means. 

Boltzmann's formulation of the Second Law created two 

"paradoxes," the so-called "reversibility paradox," and the 

"recurrence paradox." We shall not discuss these paradoxes 

here 9 

As we noted in Section 3.2.1,  Clausius did not define the 

entropy function, nor did he provide a method of calculating 

the value of the entropy for any system at equilibrium. This 

could be achieved by using the Third Law of Thermodynamics. 

The application of the Third Law to calculate the absolute 

values of the entropy from experimental data (on heat capacity 

and heat of phase transitions) will not be discussed here. lo 

3.3 The new definition of entropy based 

on Shannon's measure of information 

3.3.1 Introduction 

In this section, we present a new and relatively recent definition 

of entropy. However, it is superior to both the Clausius and the 

Boltzmann definitions. Unlike the Clausius definition which 

provides only a definition of changes in entropy, the present 
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one provides the entropy itself. Unlike the Boltzmann's 

definition which is strictly valid for isolated systems and does 

not provide a simple intuitive interpretation, the present one is 

more general and provides a clear, simple, and intuitive 

interpretation of entropy. It is more general in the sense that it 

relates the entropy to probability distributions, rather than to 

the number of microstates. One final "bonus" afforded by this 

definition of entropy is that it not only removes any traces of 

mystery associated with entropy, but it also expunges the so­

called irreversibility paradox (See Note 9). 

We present here in a very qualitative way, the procedure of 

defining entropy starting with the concept of SMI. If you are 

not sure what the SMI means you should refresh your memory 

by reading Chapter 2. 

Having done with the interpretation of entropy, i.e. 

answering the question: "What is entropy?" we turn to discuss 

the meaning of the Second Law which essentially answers the 

question: Why does entropy increase in a spontaneous process 

occurring in an isolated system? We also show the intimate 

relationship between the "what" and the "why" questions. 

Finally, we discuss the extension of these relationships to 

systems other than isolated ones. 
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Before we describe the procedure for obtaining the entropy 

we have to discuss two principles which will be used in this 

procedure. These are the uncertainty and the indistinguishability 

principles. 

Suppose you have a single atom in a one-dimensional box 

of unit length. The state of the atom can be described by its 

location and its velocity at each instance of time. Let I be its 

location and v its velocity. The pair (I, v) describes the state of 

this atom. It is also clear that there are infinite number of such 

states. Therefore, if! know the exact state ofthe atom, and you 

have to find its state by asking binary questions, you will need 

on average, an infinite number of questions to ask. 

Fortunately, there is the uncertainty principle in physics. 

This principle states that you caunot determine both the exact 

location and the exact velocity of the atom, but there is a limit 

to the "size ofthe box" in which you can determine the state of 

the atom. 

This passage from the infinite number of states in the 

continuous range of locations and velocities to the finite 

number of possibilities is demonstrated schematically in Figure 

3.6. Here, we reduce the infinite number of points in the range 

[0,1], Figure 3.6a, to afinite number of small intervals, Figure 
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3 .6b. Similarly, the state of an atom in terms of its location and 

velocity may be defined in terms of a small box in the (/, v) 

space. 

(a )  
o 1 

( b) I I I 

o 1 

F ig u re 3.6 .  (a )  A dart h its a one-d imens iona l  segm ent of length 1 .  
There a re infi n ite possib le locat ions for t h e  dart . 

( b )  Passage from the i nfin ite to the d iscrete description of the states .  

Now, if I know the state of the atom and you have to ask 

binary questions, you will need to ask only a finite number of 

questions. This game is no different from playing the 20Q game 

that you are familiar with. Next, we move from one atom to a 

huge number of atoms, say 1023 atoms in a cubic box of edge 

length 1 .  The problem is now to find the "state" of this huge 

number of atoms - not the exact state, but an approximate state 

as is imposed by the uncertainty principle. 
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Figure 3.7.  A specific (Iocation al) configuration of ten particles 

in a box of volume V. 

Figure 3 .7  shows a configuration of ten particles. Each atom is 

described by its location and velocity along each of the axes 

(x,y,z) . Such a complete description of the state of all atoms is 

called a microstate. Again, there is a huge number of such 

microstates of the system. We can imagine playing the 20Q 

game on all these microstates. Note that the microstates are 

changing with time. Here, we play the game with all the 
microstates, of the system. There should be no difficulty in 

playing this game on this huge number of microstates .  You will 

need to ask many questions, far too many than you can achieve 

in your lifetime, or during the whole age of the universe. 

However, there is no difficulty in principle in imagining 

playing such a game with such a huge number of ojects (the 

microstates). There will be a finite number of questions - finite, 

albeit a huge number. As we shall soon see, this number of 

questions will be related to the entropy of the system. 
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Next, we need to introduce another principle from physics. 

The particles are indistinguishable. This means that if you 

interchange the locations of two identical atoms, you get the 

same configuration. 

I ®. 
° I I  0. e I 

I eO · 1 1 °e . 1  ) I °
0 

° I 
� �  
� L2..J 

(a )  (b )  
Figure 3 .8 .  (a)  Six d ifferent configurations are reduced to one when the  

particles a become ind istingu ishab le (b ) .  

Figure 3 .8 illustrates this reduction m the number of 

configurations for three particles. As can be seen on the left­

hand side, there are six different configurations. The six 

configurations coalesce to one configuration when the particles 

are indistinguishable. 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Entropy and the Second Law of Thermodynamics 191 

The road leading from the SMI to entropy IS highly 

mathematical. We shall outline here only the general steps in a 

qualitative way. More details on the procedure is available in 

Ben-Nairn (2008, 2012, 20 1 Sa). 

The next few subsections will be the most difficult part of 

this book. They will be "difficult" from the technical, 

mathematical point of view, but will be very simple 

conceptually. If you have followed me in playing the 20Q 

games in Chapter 2, you should not have any difficulty in 

understanding the concept of entropy. Entropy is nothing but a 

special case of SMI. Only the units of entropy are different -

you should multiply the SMI by a constant (kB In 2, where kB 

is the Boltzmann constant, and In 2 is the natural logarithm of 

2). 

Also, the game is the same as the 20Q game except for the 

huge number of objects - which in our case will be the various 

microstates, or configurations ofthe molecules. 

The overall plan of obtaining the entropy of an ideal gas 

from the SMI consists of four steps. First, we calculate the 

locational SMI associated with the equilibrium distribution of 

locations of all the particles in the system. Second, we calculate 

the velocity SMI associated with the equilibrium distribution of 
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velocities (or momenta) of all the particles. Third, we add a 

correction term due to the quantum mechanical uncertainty 

principle. Fourth, we add a correction term due to the fact that 

the particles are indistinguishable. Thus, the final result is an 

SMI based on the probability distribution of all the locations 

and velocities of all the particles in the system at equilibrium. 

Once you understand what this probability distribution is, you 

can define the corresponding SMI, and since you already know 

the meaning of the SMI, you will also know the meaning of 

entropy. The entropy is simply obtained by multiplying this 

SMI by a constant. 

3.3.2 The locational SMI of one particle in one dimension 

Consider first the case of one particle which freely moves in a 

one-dimensional (ID) "box" of length L. There are infinite 

numbers of points in which the center of the particle may be 

found. However, we are never interested in the exact point in 

which the particle is, but rather in which small interval oflength 

dx the particle is. In Figure 3.9, we draw the probability density 

for the uuiform distribution. This means that f(x)dx is the 

probability of finding the particle in a small interval of length 

dx. In Figure 3.9b we divided the entire range [O,L] into 20 

intervals. As we can see the probability of being in any interval 
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dx is simply dx/L. The corresponding SMI is logz 2 0. For the 

continuous case it is logzL. (For details see Note 1 1 , box 3 . 1  

and Ben-Nairn 2017a). 

The equilibrium distribution of locations of one particle 
in a one dimensional system: rex) = ilL 

Hmax (1ocation of one particle along the x - axis) = log L 

The equilibrium distribution of locations of one particle 

in a 3D system of volume V :  f * (x, y, Z) = l/V 
The corresponding S M I  is :  log V 

The SM I for N independent and distinguishable particles is 

SMI,�wx(RN) = NSMlmax (x, y, z) = N log V 

Box 3 . 1  

We note here that log L is to be understood as the SMI 

associated with the location of a particle in the 1D system of 

length L. The larger the L, the larger is the SM!. One should 

keep in mind that the SMI for the continuous case is actually 

infinity. In passing from the continuous case, Figure 3 .9a to the 

discrete case, Figure 3 .9b, we reduce the number of outcomes 

to 20. 
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fix) 

l/L 

(a) , , 

0 dx L 
L-----L...L...----I--_ x 

(b) 'i'11111111111111111111111 
0 dx L 
1ULJI.JL.U..LLII.JL.U..L.U..LLII..l..U ___ , 

X 

Figure 3 . 9 .  {aJ  I he c o n t i n u o u s  u n ltorm d istr ibut ion ot locati o n .  

( b )  T h e  probabi l ity off inding a particle i n  a s m a l l  interval dx, is: dx/L. 

Altoget h e r we have twenty "events" in ( b )  

c o m pared with infinite events i n  ( a ) .  

Note that log here stands for the logarithm to the base 2. We 

shall treat L as a pure number (i.e. dimensionless). We shall 

ignore the units of length, as well as the units of any other 

quantity under the logarithm sign. In the final expression, we 

must have a pure number under the logarithm. To summarize, 

we started with one particle moving in I D  "box" of length L. 

We assume that the probability of finding the particle in any 

small interval is constant. This is actually the equilibrium 

distribution of locations in ID.  For this distribution, we 

calculate the corresponding SM!. You can interpret this SMI as 

the number of questions you need to ask to [md out in which of 

the 20 "boxes" in Figure 3 . 9b, the particle is. We skipped one 
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important mathematical detail. The calculated SMI IS the 

maximum possible SMI for the locations of one particle in the 

ID box. 

3.3.3 The SMI of one particle in a box of volume V 

The generalization of this result to the three-dimensional (3D) 

case is straightforward. Suppose the particle is confined to a 

cubic box of edge L and volume = L3 Because of the 

equivalence of the three axes, the SMI associated with the y­

axis and the z-axis will be the same as the SMI associated with 

the x-axis. Furthermore, we assume that the events "being at a 

location x," "being at a location y," and "being at a location z" 

are independent events. Therefore, the SMI associated with the 

location x, y, z within the cube of volume V is the sum of the 

SMI associated with the three axes,12 see Box 3 . 1 .  

The final result i s  that the probability of finding a particle in 

any small volume dV is the same for any point in the system. 

This is the equilibrium locational distribution of one particle in 

a 3D system of volume V. The corresponding SMI is given in 

Box 3 . 1 .  Again, note that the final SMI is the maximum value 

of the SMI which corresponds to a system at equilibrium. For 

more details, see Ben-Nairn (2017b). 
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3.3.4 Extending to N distinguishable particles 

We next extend this result to the case of N-independent and 

distinguishable (D) particles. We also use the short hand 

notation: Ri = (Xi' Yi' Zi) for the locational vector of particle I 

, and RN = Rv . . .  , RN for the locational vector of all the N 

particles. RN is a shorthand notation for the locations of all the 

N particles. 

Since the particles are assumed to be independent, the SMI 

ofthe N particles is simply the sum ofthe SMI of all the single 

particles. In terms ofthe 20Q game this means that the number 

of questions one needs to ask in order to find the locations of 

all the N particles is simply N times the number of questions 

one needs for one particle in the box. The SMI for N 

independent and distinguishable particles, denoted SMI D, is 

given in Box 3 . 1 .  

Note that we added the superscript D for distinguishable 

particles. We shall soon see that the fact that the particles are 

indistinguishable (ID) causes a reduction in the SMI of N 

particles. 
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ICDI 1(2)1®1 
ICDI I ®1C?51 
I� I®I®I 

ICDI (2)1 1 1(3)1 
ICDI® I@I I 
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1(2)1 I®ICDI 1(2)1 ICDI®I 
[3)1 I 1(1)�1 [3)1 1(1)�1 

Figure 3. 10. A few configurations of three different particles in ten cells. 

Try to draw some more of these configurations. 

Before we continue with the ideal gas we discuss a simpler 

case of three particles in a 2D system of 10  sites, Figure 3 . 10 .  

We assume that each site can accommodate one particle only. 

Therefore, the total number of configurations may be 

calculated as follows: 

To place the first particle we have ten possibilities. To each 

of these possibilities we have nine possibilities for placing the 

second particle. Once we placed the two particles we have eight 

possibilities for the third particle. Altogether, we have: 

number of possibilities 

for three distinguishable particles on 10  sites = l O x 9 x 8 = 
720 
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Now, we introduce the principle of indistinguishability of 

the particles. This reduces the total number of configurations; 

instead of 720, we have 720/6 = 120  configurations. Note, 

that every six distinguishable configurations reduce to one, 

when we remove the labels (numbers, colors, etc .). An example 

is shown on Figure 3 . 1 1 .  

Figure 3 . 1 1 .  Six different configurations 

are reduced to one when the particles 

become in distinguishable, see also Figure 3.8. 

In the case of gas molecules, we have to take into account 

both the locations and the velocities of the particles. Therefore, 

we shall next briefly and qualitatively add the distribution of 

velocities (or momenta, the momentum p is related to the 

velocity by p = mv where m is the mass of the particles). 
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3.3.5 The velocity SMI of an ideal gas 

Again, we start with particles moving along the ID system of 

length L. We are interested in the probability density of finding 

a specific particle with velocity between Vx and Vx + dvx . We 

assume that the particles can have any value ofvx from -00 to 

+00, but we require that the average kinetic energy of the 

particles is constant. Note, the kinetic energy is proportional to 

the square of the velocity, which is always positive, 

independently of the sign of the velocity. We shall skip the 

details of the derivation. We shall refer to [* (vx) as the 

equilibrium density distribution of the velocities in one 

dimension. 

T=1 

""1; I T=3 ?O.l  ? OJ. ... ... 

00 ." 
",  

(a )  (b) 
Figure 3 .12 .  (a)  The velocity distr ibution of particles in one  d imension 

at d ifferent temperatures.  

(b )  The speed (or  the  absolute velocity) distr ibution of part ic les i n  

3D at d ifferent tem perat u res .  
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Figure 3 . 1 2  shows the distribution f* (vx) for various values 

of T (for this illustration we take m = 1, kB = 1). We see that 

the larger the temperature, the larger the spread of the 

distribution of the velocities. Thus, the average "width" of the 

distribution may be described either by the variance (J2 or by 

the temperature T.!3 As we have commented in the case of 

locations, we are not interested in the exact velocity of the 

particle, but only in the probability of finding a velocity in a 

small interval, say dvx ' The SMI associated with the 

equilibrium distribution f* (vx) is given in Box 3.2. 

The equilibrium distribution of velocities of one particle 

in a one dimensional system: 

The corresponding SMI is :  

s�,"xk V"' V, )= S�,"x(VJ+S�,ax(VJ+S�,"x(V, ) 
3 

= 3H m� (v, ) = 2 10g (2lT e k sT / m ) 

The correction due to indistinguishability of the particles is:  

SMI1D (1 ,2 ,  . . .  , N) = SMID (1,2 ,  . . .  , N) - JogN! 
The correction due to uncertainty principle is: 

SMI_ (x,y, z,p" P,. ,p, )=  
Box 3 . 2  SMI_ (x,y, z)+ SMI_ (p" p" pJ-3 Iog h 
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Pause and think: 

Try to understand: Why do we expect the SMI to be larger 

when the temperature is higher? 

Think of the SMI as a measure of information as we 

discussed in sections 2.3 and 2.7. We shall try to understand 

this observation in terms of20Q game. 

In Figure 3 . 13  (see color centerfold), we show the velocity 

distribution at low temperature (T). We approximate the area 

under the curve by drawing a few rectangular bars. In Figure 

3 . 13b, we show only the bars which were removed from under 

the curve. Next we add all the bars and form a single long bar 

as in Figure 3. 13c. We do the same for the distribution of 

velocities at higher temperature, Figure 3 .14 (see color 

centerfold). Note the different numbers of bars in the two 

figures. 

Now consider the two bars in Figures 3 .13c and 3. 14c. 

Think ofthese two bars as two boards on which I throw a dart, 

and you have to find out in which region the dart hit by asking 

binary questions. 
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Which game do you think is easier to play? (by easier, I 

mean a fewer number of questions). See Figures 3 . l 5a and 

3 . l 5b (see color centerfold). 

If you have any difficulty in deciding between games (a) and 

(b) in Figure 3 . 1 5 ,  look at the two extreme cases in Figure 3 . 1 6. 

Normal distribution 
0.8,----,-----, 

Normal distribution 
0.20,--------, 

0.6 Very Low T 0.15 

� O.4 � O. 1 0  Very High T 

0.2 

0.0 10 5 0 5 1 0  
v 

0.00 - 1 0  -5 

/very high temperatu re 
I I I I I I I I I I I I I I I 

Very low temperature 

0 5 
v 

I I I 

/ 
Figu re 3 . 16. The velocity distr ibution at a very low a n d  a 
very high t e m p e rature.  

1 0  

The important result we have obtained is that the larger the 

temperature (or equivalently the average kinetic energy of the 

particles) the larger is the SMI or the uncertainty associated 

with the distribution of the velocities. 

We next assume that the velocities along the three axes 

vx, vY' Vz are independent. Therefore, the SMI for a single 
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particle moving with velocities vx, vy' Vz is given by the sum of 

the SMI for each axis, see Box 3.2. 

For the purpose of constructing the entropy of an ideal gas, 

we need the distribution of the momenta. This is simply 

obtained by the definition of the three components of the 

momentum: Px = mvx, Py = mvy, pz = mvz· We shall skip 

the details here. The interested reader can find the mathematical 

details in Ben-Nairn (2008, 2017b, 201 8). 

3.3.6 A correction due to the indistinguishability 
of the particles 

We have already seen in Figure 3 . 1 1  that indistinguishability 

of the particles reduces the total number of configurations of 

the system. This can be cast in the form of mutual information. 

This term is a measure of the correlation between 

information we have on different experiments. Basically, ifthe 

two experiments are independent, then knowing the result of 

one experiment does not tell us any information on the second 

experiment. When knowing the result of one experiment 

provides information on the probability of the other experiment 

we say that there is correlation between the two experiments. 

In Box 3 . 1  we wrote the SMI ofNparticles as a sum ofthe SMI 

of all the particles presuming that they are independent. For the 
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case of N indistinguishable particles, we have to add a 

correction term, Log NI which is given in Box 3.2. 

We conclude that the indistinguishability of the particles 

introduces a correction which causes a reduction of the SMI. 

The reader should be convinced by checking a few examples, 

that whenever we "un-label" the particles, the number of 

configurations or arrangements is always reduced, and as a 

result the value of the SMI ofthe system is also reduced. 

3.3.7 A correction due to the uncertainty principle 

In Section 3.3.3, we calculated the locational SMI for a single 

particle. In Section 3.3.5, we calculated the velocity or the 

momentum SMI of a single particle. We now wish to find out 

the SMI associated with both the location and the momentum. 

Classical thinking would have led us to conclude that the 

SMI associated with both the location and momentum of a 

particle should be the sum ofthe two SMIs. However, quantum 

mechanics tells us that the accuracies in determining the 

location and the momentum of a particle are not independent. 

This is the well-known Heisenberg uncertainty principle. For 

our case the uncertainty principle states that we cannot 

determine both the location and the momentum within an 

accuracy of the order of h, here h is the Planck constant, h = 
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6.626 X 10-34 Is. Therefore, we must add a correction to 

account for the uncertainty principle. Again, the mathematical 

details are not important, just remember that this correction 

makes the total number of the configuration finite. 

Once we take into account the uncertainty principle, we get 

the SMI for one particle in one dimension. For the three­

dimensional case we have to add the correction term -3 10g h, 
i.e. we subtract log h for each coordinate x, y, z. 

Finally, for N indistinguishable and non-interacting 

particles, we have the final expression for the SMI of N 

indistinguishable particles. 

SMIID (1 2 . . .  N) " , 

= SMI(RN) + SMI(pN) - 10gN! - 3Nlog h 

This is an important result. To obtain the SMI of N particles 

described by their locations (RN), and momenta (pN), we first 

treat the particles as being distinguishable and classical. In this 

case, we can sum the SMI associated with all the locations 

SMI (RN), and all the momenta SMI(pN), of the particles. 

Then, we add two corrections, one due to the 

indistinguishability of the particles, and the other, due to the 

Heisenberg uncertainty principle. These two corrections 
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change the total SMI by the amount log N! + 3N log h . Note 

again that at this stage we consider h to be a pure number. We 

can fix its units in the final expression for the entropy, see 

below. I am well aware ofthe fact that since we skipped all the 

mathematical details, the meaning of the SMI in the above 

formula might not be clear. Therefore, I suggest to the reader 

to think of the total number of microstates or configurations 

and imagine playing the 20Q game on these microstates. The 

SMI will be simply the number of questions you need to ask in 

this game. 

3.3.8 The entropy of a classical ideal gas 

In the previous section, we calculated the value of the SMI of 

a system of N simple, non-interacting, and indistinguishable 

particles at equilibrium. 

Recall that the SMI may be defined for any distribution. It 

can be defined for any distribution of locations and any 

distribution of momenta, not necessarily at equilibrium. It can 

be defined for any number of particles and can be defined for 

distinguishable or indistinguishable particles. All these have 

nothing to do with the entropy. Up to this point you can 

rightfully regard the SMI as a quantity that measures the size 
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of a huge 20Q game about all the locations and the momenta of 

all the particles in the system. 

Here we are interested in very special distributions. These 

are the distributions of locations and momenta that maximize 

the corresponding SMI. We denoted these special distributions 

with asterisks, and the corresponding SMI by 
H
max. However, 

we also know that starting with any arbitrary distribution of 

locations and momenta, the system will tend to a limiting 

equilibrium distribution; the uniform distribution for locations, 

and the Normal distribution for the momenta. Therefore, we 

shall refer to these distributions as the equilibrium 

distributions. We shall soon see that these distributions are also 

the distributions which maximize the super-probability. 14 Later 

we shall see below that maximum SMI is related to entropy, 

and the corresponding maximum super-probability will be 

related to the Second Law. 

In this section we make a huge conceptual leap, from SMI 

to a fundamental concept ofthermodynamics. As we shall soon 

see, this leap is rendered possible by recognizing that the SMI 

associated with the equilibrium distribution of locations and 

momenta of a large number of indistinguishable particles is 

identical (up to a multiplicative constant) with the statistical 
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mechanical or Boltzmann's entropy of an ideal gas. Since the 

statistical mechanical entropy of an ideal gas has the same 

properties as the thermodynamic entropy as defined by 

Clausius, we can declare that this special SMI is identical to the 

entropy of an ideal gas. This is a very remarkable achievement. 

Unfortunately, some people still refer to the SMI as entropy. 

This was (and still is) a mistake. In general, SMI is not entropy. 

Only when you apply the SMI to a special distribution does it 

become identical with entropy. 

We recall that the SMI of a system of N particles at 

equilibrium has two contributions due to location and 

momentum, and two corrections due to the indistinguishability 

of the particles and the uncertainty principle. 

In order to obtain the expression for the entropy of an ideal 

gas, all we have to do is to use the natural logarithm and 

multiply SMI by the Boltzmann constant kB' i.e. S = 
(kBln2)SMI. Thus, we define the entropy of an ideal gas of 

simple particles as the value of the SMI associated with the 

equilibrium distribution of locations and momenta. See Box 

3.3. 
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SM lID (1 ,  2 ,  . . .  , N) 
= SMlmax (locations) + SMlmax Cmomenta) 
- I (uncertainty principle) 
- l (indistingu ishable) 

= Nlo [.:::. (27rmkBT)3/z] + SN 

g N hZ 2 

SC 'd I ) ATk 1 [ v  ( 27rmkB T );I, ] 5NkB 1 ea gas = I V, B n - 2 + ------'''--
N h 2 

Box 3 . 3  

The multiplication by a constant kB' as well as changing to 

the natural logarithm detennines the units in which we measure 

entropy. It does not affect the meaning of entropy, as the SMI 

associated with the location and the momenta of a system of N 

non-interacting particles at equilibrium. We nonnally apply 

this identity between entropy and SMI for a thennodynamic 

system, i.e., when N is very large. This is important when we 

fonnulate the Second Law of Thennodynamics. 

3.3.9 Conclusion: What is entropy? 

Before you read this section remind yourself of the following 

concepts: The SMI, the probability distributions of the 

locations and velocities of all particles at equilibrium and the 

corresponding SM!. To obtain the entropy of a system of non-
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interacting particles we start with the SMI defined on the 

locational and the velocity distributions of all the particles. 

Since the locations and the velocities of all the particles 

determine the microscopic state of the system, we can say that 

the SMI is built on the probability distribution of the 

microscopic states ofthe classical system. 15 

To obtain the entropy of the system from the SMI, we first 

calculated the specific distributions that maximizes the SMI. 

These are referred to as the equilibrium distributions. This is 

done by using the calculus of variations (see Ben-Nairn, 2008). 

In order to obtain the entropy ofthe system, we simply multiply 

the resulting SMI by a constant. This constant consists of the 

Boltzmann constant ekE)' and the conversion from the 

logarithm base 2, to the natural logarithm. Once we do this we 

get the entropy of an ideal gas. 

This is the most amazing result. Starting with a quantity 

defined by Shannon in communication theory, a quantity which 

has nothing to do with physics, we got the entropy of a system 

defined in thermodynamics. 16 
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Figure 3 .17 .  The d ependence of the  entropy on E, V and N. 

In Figure 3 . 17, we show that the entropy as a function of the 

energy E, the volume V, and the number of N particles obtained 

from the SM!. Note that the entropy is an increasing function 

of E, V and N. Also, it has a negative curvature. This means 

that the slope of the curve becomes smaller as E (or V or N) 

increases. This is an important characteristic property of the 

entropy. For more details, see Ben-Nairn (2012, 201 6b). 

After learning about probabilities in Chapter 1 ,  and about 

SMI in Chapter 2, and after deriving the entropy of a classical 

ideal gas of simple particles in this chapter,17 we are ready to 

discuss the meaning of the entropy of the system. Recall that if 

you have an experiment (or a game) with n outcomes having a 

probability distribution Pv . . .  , Pn, the SMI of such a system is 

a measure of the average uncertainty associated with all these 

outcomes. It is also a measure of the average unlikelihood 

associated with all the outcomes. It is also a measure of the 
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amount of information associated with the distribution of the 

outcomes. All these interpretations are equivalent. Also 

remember that the value of the SMI does not depend on who 

plays the game, or who performs the experiment. It is a quantity 

which is associated with, or belongs to the experiment, when 

all we know about the experiment is the distribution of 

outcomes. 

Now, for an ideal gas (of simple particles) the microscopic 

description of the system comprises the sequence of 6N 

numbers. There are three locations ex, y, z), and three 

velocities (vx, vY' vz) for each particle. Therefore, we have six 

numbers to describe the microstate of each particle. For N 

particles we need 6N numbers to describe the microstate ofthe 

entire system. 

We shall call this microstate a configuration of the system. 

Recall that because of the uncertainty principle we have only a 

finite number of configurations. Also, remember that the 

particles are indistinguishable, therefore, the total number of 

configurations is reduced when we erase the labels on the 

particles. 18 

We can calculate the corresponding SMI of the system for 

any distribution oflocations and velocities. This is the average 
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uncertainty, or the amount of information associated with the 

particular distribution of the configurations of the system. In 

order to obtain the entropy we need to calculate the SMI 

associated with the distribution at equilibrium, then multiply by 

a constant factor ekB In 2). The multiplication by a constant 

factor does not affect the meaning or the interpretation of 

entropy as an SMI. However, it is most important to remember 

that the entropy is associated with the equilibrium distribution. 

As we have seen the equilibrium distribution oflocations is the 

uniform distribution, 19 and the equilibrium distribution of 

velocities is the Normal distribution. 

Thus, the entropy of a system is the SMI of the N (simple) 

particles at equilibrium (after multiplications by the constant 

kB In 2). 

If you like you can imagine playing the 20Q game on this 

system. You have 3N boxes (We have altogether 6N 

coordinates, but each "box" consists of one coordinate of 

location and one coordinate of velocity. Therefore, the number 

of "objects" for the 20Q game is 3N). When N is of the order 

of 1023, this is already a huge number, but the number of 

configurations is far greater than 1023 The number of 

configurations is so large that you cannot possibly play this 
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game in your lifetime, nor if you were to live billions and 

billions of years - far longer than the estimated age of the 

universe. However, no matter how big the game is, you can 

always imagine playing it, and you can also imagine how many 

questions you will need in order to find out in which microstate 

the system is, when you are given the distribution of these 

microstates. I should add here that you do not actually need to 

play this huge 20Q game. You only have to know that there is 

a relationship between the distributions of the "objects," and 

the minimal number of binary questions. 

At this point it is important to emphasize again that the SMI 

is defined for any distribution of the microstates. The entropy 

(as an SMI multiplied by a constant) is defined only for the 

equilibrium distribution. 

Exercise: Suppose that I tell you that the distribution of all the 

microstates is uniform (meaning, that each microstate has the 

same probability), and that altogether there are W microstates 

to the system. Can you estimate its entropy? 20 

Note however, that no matter how you calculate the entropy 

ofthe ideal gas it can still be interpreted as an SMI, that is, it is 

still a measure of the average uncertainty (or unlikelihood) 

with respect to the distribution of all microstates. Equivalently, 
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it is  the amount of information associated with the distribution 

of microstates. The amount of information should not be 

confused with information about the state of the system. Such 

confusion is the rule, rather than the exception in many popular 

science books dealing with entropy. 

Pause and think: Are you sure you understand the last two 

sentences? 

Now that you know the difference between "Information" 

and SMI on one hand, and the difference between SMI and 

entropy, on the other hand, it is time to pause and "orient" the 

entropy within the general concept of information. 

A q u alitative relationship between the "sizes" of the three concepts: 

General Information, SMI and E ntropy. 

Look at the schematic diagram above. The outer (yellow in 

the color centerfold) region in this figure represents all possible 

pieces of information, all what you know and what everyone 

knows, all what is written in books or recorded in any device -
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in short, all kinds of information. This is a vast region, whose 

boundaries no one knows. Yet, it does not include all things 

that exist. (I am insinuating here the famous slogan "it from bit" 

meaning that everything, every "it" is information, i.e. bit. For 

criticism ofthis slogan, see Ben-Nairn (2015a, 20 16a). 

Within this vast region denoted "General Information," I 

drew a sub-region (colored red, in the color centerfold) which 

is denoted SMI. This region does not include values of SMI, 

but all possible information associated with well-defined 

probability distribution. In this region you will find the 

information associated with the distribution ofthe outcomes of 

dice, coins, and many more. As we have seen for each ofthese 

distributions one can define a SMI. This is the reason I denoted 

this region by SMI. 

Next, we further narrow the set of all possible types of 

information; information associated with the distributions of 

the locations and velocities of N particles at equilibrium. As we 

have seen on these particular distributions we can define an 

SMI. Therefore, the corresponding information is a subset 

(blue region in the color centerfold) ofthe subset denoted SMI 

(red region, see color centerfold). 
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If we take the distributions included in the blue region and 

the corresponding SMI, then multiply each of these SMI by a 

constant [kB In 2] we get the entropy of that particular 

distribution. This is the reason for denoting the blue region, 

Entropy. 

Thus, entropy is defined on a small subset of all possible 

distributions for which the SMI can be defined. The SMI is 

associated with any well-defined distribution - which is a 

subset of all possible information. 

Until now we have discussed only systems of simple, non­

interacting particles. One can extend the concept of SMI, as 

well as the entropy to also take into account the interaction 

energies among the particles, as well as the internal states of 

each particle. All these are technical details which are not 

relevant here. What is important to remember is that the 

meaning of entropy as a special case of SMI (after 

multiplication by a constant) is unchanged by these 

generalizations. 

Before we turn to the Second Law, we should note that all 

we have said so far is valid for any number of particles N. N 

could be one, ten, one thousand, or 1023 particles. However, if 

we want the system of the N particles to obey the Second Law 
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as described in Section 3.5, we should define the entropy only 

for macroscopic systems, i.e. whenN is a very large number. 

Note carefully that we have discussed the concept of entropy 

and interpreted entropy without any reference to the Second 

Law. It is unfortunate that many authors define entropy in terms 

of the Second Law, and formulate the Second Law in terms of 

the entropy. 

3.4 Examples 

Until now we discussed the entropy of a system at equilibrium. 

Before we discuss the Second Law which applies to processes, 

we discuss in some details a few processes for which we can 

easily calculate the corresponding entropy changes. 

3.4.1 Expansion of an Ideal Gas in an Isolated System 

Consider the simplest spontaneous process. We start with an 

ideal gas confined to a volume V, we remove a partition, and 

observe that the gas will expand and fill the entire new volume 

2V. Figure 3 .18 .  
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Figure 3 . 18. The in itial, the final, an d an intermediate state 

in the expansion process. 

Ask any student who has learned thermodynamics: Why did 

the gas expand from V to 2 V, and why it will never go back to 

the original volume V? The answer you are most likely to hear 

is that the cause of that expansion is the tendency of the entropy 

to increase. Equivalently, one would invoke the Second Law as 

the cause of this spontaneous process . 

If you ask why the entropy tends to increase, the immediate 

answer would be: That is exactly what the Second Law states ! 

Does the tendency of the entropy to increase drive the 

spontaneous process, or does the spontaneous process drive the 

entropy upwards? 

We will answer this question by examining the expansion 

process with different number of particles. In all the following 

examples we shall assume that the particles do not interact with 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



220 Chapter 3 

each other (or that interactions are negligible), and that in each 

case only the locational distribution ofthe particles is changed. 

Each particle is initially located within the boundaries of a 

volume V, and in the final state it is located in the larger volume 

2V. 

There are essentially two questions associated with the 

Second Law that are oftentimes muddled. The first, why a 

system evolves spontaneously from one state to another, the 

second, why entropy increases. Although the answers to these 

two questions are different, they are related to each other. They 

are related only in processes which occur in isolated systems, 

i.e. systems that do not interact with their surroundings. 

The entropy formulation of the Second Law of 

Thermodynamics states that in any spontaneous process 

occurring in an isolated system the entropy increases. We shall 

further discuss this formulation of the Second Law in Section 

3.5.  The Second Law does not state anything as to why the 

entropy increases, nor addresses the question as to why a 

spontaneous process occurs at all. Note again that by any 

"process," we mean a process from an initial equilibrium state 

to a final equilibrium state, e.g. from Figure 3 . 1Sa to Figure 

3 . 1Sb. We shall soon discuss the question of reversing the 
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process from (c) to either (b) (possible but very improbable) or 

to (a) (absolutely impossible). 

Accepting the relative frequency interpretation of 

probability, we can conclude that a system will be found more 

frequently in states which have higher probability. Specifically, 

for a thermodynamic system we will see that the probability of 

finding the system in a state of equilibrium is almost one. Thus, 

we can say that a thermodynamic system at any initial state will 

always evolve towards a state of higher probability, and 

eventually reach a state we call equilibrium state, the 

probability of which is almost one. (For details, see Ben-Nairn, 

2008, 2012). 

Again, we stress here that we are talking about spontaneous 

processes in an isolated system, having a fixed energy, volume, 

and number of particles. 

Answering the question of why the system evolves towards 

the state of equilibrium leaves the question of why entropy 

increases unanswered. Nevertheless, because of the intimate 

relationship between the SMI ofthe system and the probability 

of the state ofthe system, the answers to the two questions are 

also related to each other. This is discussed in the next 

subsections. 
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3.4.2 What drives the system to an equilibrium state? 

In this section, we shall answer the question of what drives the 

system to an equilibrium state by examining a few simple 

examples . 

I ® 

I 
@ ® I 

(D I  
(5) I 

® 

L R 

Figure 3 . 19 .  Specific configuration of eight particles in the two 

compartments. Here, particles 1, 2, and, 7 are in L, and 3,4,5,6, and 8 
are in R. A generic configuration is obtained when we have three 

particles in L and five in R. 

Consider a system of N non-interacting particles (ideal 

gas) in a volume 2V at constant energy E. We divide the system 

into two compartments L and R, each of volume V (see Figure 

3 . 1 9). We define the specific microscopic state of the system 

when we are given E, 2V, N, and in addition we know which 

specific particles are in the right compartment (R) , and which 

specific particles are in the left compartment (L). The generic 

description of the same system is (E, 2V, N; n) where n is the 

number of particles in the compartment L. Thus, in the specific 

description, we are given a specific configuration of the system 
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as if the particles were labeled 1,2, " ' ,  N. Here, by 

configuration we mean only which particles are in R and which 

are in L. (This is different from the more detailed microscopic 

configuration we discussed in terms of all locations and 

velocities). In the generic description, we are given the 

information only on the number of particles in each 

compartment. 

Clearly, if we know only that there are n particles in L. and 

N - n particles are in R, we have many speciji c configurations 

that are consistent with the requirement that there are n particles 

in L 25 

We denote by Wen) the number of specijic configurations 

consistent with n particles in L. The first postulate of statistical 

mechanics states that all specific configurations of the system 

are equally probable. The total number of specific 

configurations is 2N, i.e. each particle can be in either one of 

the two compartments. Using the classical definition of the 

probability, we can calculate the probability of finding n 

particles in L and (N - n) particles in R. We denote this 

probability by PN (n). It is easy to show that both Wen) and 

PN(n) have a maximum as a function of n at the point n' = !:!.. 2 
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(see below). The maximum value of the probability PN (n) 

(obtained at n' = :!:), and is denoted by PN (n'). 2 

Thus, for any given N, there exists an n, such that the 

number of configurations, Wen), or of the probability, PN (n) 

is maximal. Therefore, if we prepare a system with any initial 

distribution of particles n, and N - n in the two compartments, 

and let the system evolve, the system's state will change from 

a state of lower probability to a higher probability. As N 

increases, the value ofthe maximum number of configurations 

Wen') increases with N. However, the value of the maximal 

probability PN (n ') decreases with N. 

To appreciate the significance of this fact, we will examine 

the "evolution" of systems with small numbers of particles. We 

shall soon see in what sense the spontaneous process of 

expansion proceeds in "one direction only," or is "irreversible." 

Later, we shall also follow the changes in the SMI in the 

process of expansion and finally, we shall calculate the entropy 

change for this process. For some simulations, see Ben-N aim 

(2008, 2010). 
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The case of two particles: N = 2 

Suppose we have the total of N = 2 pruticles. In this case, we 

have the following possible configurations and the 

cOlTesponding probabilities: 

n = O  n = l  

�=2 

,., r--�;;"'--' 

" 

II u 

(a)  (b) 

n = 2 ,  

:\"=10 
OJ! ,---r-------, 

O_lO 
?;. 
== t n  
"' 
• 

� 0 1 0  

00' 

o 

(c) 

, .. 

Figure 3.20. Probability of observing n particles in one comp artment 

a n d  N-n in  t h e  other for different n u m b e rs N. 

This means that on the average, we can expect to fmd the 

configuration n = 1 (i.e. one pru1icle in each compartment) 

about half of the time, but each of the configurations n = 0 and 

n = 2 ,  only a quarter of the time (see Figure 3. 20a). Ifwe start 

with all the pa.t1icles in the left compal1ment, and remove the 
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partition between the two compartments, we shall find that the 

system will "expand" from V to 2 V. However, once in a while 

the two particles will be found in one compartment. In this case, 

you will have no sense that the process of "expansion" occurs 

in one direction; if you do this experiment and take a video of 

all the configurations, then run the video either forward or 

backward, you will not be able to tell the difference. 

The case of four particles: N = 4 

For the case N = 4, we have the distribution as shown in Figure 

3.20b. The maximal probability is PN (2) = 
1
6
6 

= 0.375 which 

is smaller than .:c. In this case, the system will spend only :: of 2 8 

the time in the maximal state n' = 2.  Again, if we start with all 

particles in one compartment, the system will "expand" from V 

to 2 V, but once in a while we shall see all the particles in one 

compartment. Again, you will not feel the process ruuning in 

one direction even if you run the video either forward or 

backward, you will not be able to tell the difference. 

The case of ten particles: N = 10 
For N = 10, the distribution is shown in Figure 3.20c. We 

calculate the maximum at n' = 5 which is P10 (n' = 5) = 
0.246. 
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In all of the three examples we examined above, the system 

expands from V to 2 V. However, there is nothing in this process 

which can be termed "irreversible." In each case, the initial 

state will be visited once in a while. 

'" r-----------------, , '" 
,. 

n n 

(a )  (b)  

Figure 3 . 2 1 .  Probabi lity of observing n particles i n  o n e  com partme nt, 

a n d  N-n in the  other. 

Very large number of particles 

Let us proceed with larger N. Figure 3.21 shows the 

probabilities PN (n) for larger number of particles. It is seen that 

the maximum value of PN (n) decreases as N increases.2 1  You 

can skip the next paragraph on the first reading. 
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Figure 3 .22 .  The probabi lity of find ing n particle in the  neighborhood of 

n*= N12, in one  com partment as a function of N. 

In Figure 3 .22, we show the probability of finding n between 

n* - 0.0001 N :s; n :s; n* + 0.0001 N, as a function of N. 

Plotting the probability PN ( n* - 0.0001 N :s; n :s; n* + 

0.0001 N) as a function of N shows that this probability tends 

to one as N increases. When N is on the order of 1 023, we can 

allow deviations of ±0.00001 % of N, or even smaller, yet the 

probability of finding n at or near n* will be almost one. It is 

for this reason that when the system reaches n*or near n*, it 

will stay in the vicinity of n * for most of the time. For N on the 

order of 1 023, "most of the time" means practically always. 

The abovementioned specific example provides an 

explanation for the fact that the system will "always" evolve in 

"one direction," and "always" stay at the equilibrium state once 

that state is reached. The tendency towards a state of larger 
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probability is equivalent to the statement that events which are 

supposed to occur more frequently will occur more frequently. 

This is plain common sense. The fact that we do not observe 

deviations from either the monotonic climbing of n towards n' , 

or staying close to n', is a result of our inability to detect small 

changes in n-( or equivalently small changes in the SMI, see 

below). Note that in this section we did not say anything about 

the entropy changes. Before moving on to calculate the entropy 

changes we repeat the main conclusion ofthis section. For each 

N the probability of finding a distribution of particles; (n, N -

n) in the two compartments L and R has a maximum at n' = !:!... 2 

F or a very large number of particles the probability of obtaining 

the exact value of n' = !:!.. is not very large. However, the 2 

probability of finding the system at a small vicinity of n' = � 

is almost one! 

When we say that the system has reached an equilibrium 

state, we mean that we do not see any changes that occur in the 

system. In this example, we mean changes in the density of the 

particles in the entire system. In other experiments when there 

is heat exchange between two bodies we characterize the 

equilibrium state as the one for which the temperature is 

uniform throughout the system and does not change with time. 
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At equilibrium the macroscopic density we measure at each 

point in the system is constant. In the particular system we 

discussed above the measurable density of the particles in the 

two compartments is p'  == N j2V. Note that fluctuations 

always occur. Small fluctuations occur very frequently, but 

they are so small that we cannot measure them. On the other 

hand, fluctuations that could have been measured are extremely 

infrequent, and practically we can say that they never occur. 

This conclusion is valid for very large N. 

The evolution of the SMI in the expansion process 

Next, we will discuss the relationship between the probabilities 

of finding a particular generic state and the formulation of the 

Second Law in terms of the entropy. We rewrite the essential 

quantities of the example discussed above in a slightly different 

way. Instead of n and N - n, we define the fractions p = 
;;; , q = (1 - p) = !:!..:::!::.. p  is the fraction of particles in the L N N 
compartment and q = (1 - p) is the fraction in the R 

compartment. Clearly, the pair of numbers (p, l - p) is a 

probability distribution. 

We now quote an important relationship between the SMI 

ofthe system and the super-probabilities Prep, q). See Box 3.4 

and Ben-Nairn (2016a, 20 16b, 20 17b, 2017c). 
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_ (�)N 2NxSNfl(p,q) 
Pr(p, q) - � 2 2JrNpq 

Box 3.4 

This is the relationship between the SMI defined on the 

distribution (p, q), and the probability Prep, q) defined on the 

same distribution. We see that there exist a monotonic 

relationship between Pr and SM!. This means that whenever 

SMI increases, the Pr also increases, and at equilibrium both 

SMI and Pr attain a maximal value. We have seen that the 

maximal value of SMI is related to the entropy of the system. 

Therefore, the answer to the question of why the entropy 

increases (in a spontaneous process in an isolated system), is 

the same as the answer to the question of why the state of the 

system evolves towards equilibrium, namely; it is because the 

probability Pr of the equilibrium state is maximum. 

Note carefully the two "levels" of probabilities. One is the 

probability distribution of a state described by (p, q).  Pr is the 

probability of finding a state described by the probability 

distribution (p, q).  To distinguish between the two 

probabilities, I refer to Pr as a super probability. Note also that 

the answer to the question: "Why the system evolves towards 
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equilibrium?" is provided by the probability Pr. Because ofthe 

monotonic relationship between Pr and the SMI the answer to 

the question "why the entropy increases" is also probabilistic. 

It is easy to generalize this conclusion to the case of any number 

of compartments. See Ben-Nairn (2008, 20 12). 

We can calculate the change in the SMI for this process, and 

find that it is N bits. Initially, we were certain that all particles 

are in L. After removing the partition, we lost one bit per 

particle; we know that the particle is in either in L, or in R. 

From this value of the change in SMI, we can calculate the 

entropy change by multiplying N by kB In 2 .  

Summary of facts 

We summarize what we have found so far from the simple 

examples of expansion of N particles from volume V to 2 V. 

For any N, right after removing the partition we follow the 

evolution of the system with time. In all the examples, we 

observed that the particles which were initially confined to one 

compartment of volume V can access the larger volume 2V. We 

can ask the following questions: 
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1 .  Why do the particles occupy the larger volume? 

2. Does the number of particles in the left compartment 

change monotonically with time? (monotonically 

means that the quantity either increases, all the time, or 

decreases all the time) 

3 .  Does the number of particles in the left compartment 

reach an equilibrium state? 

4. How fast does the system reach the equilibrium state? 

5 .  How does the SMI ofthe system change with time? 

6. How does the entropy change with time? 

I urge the reader to try to answer these questions before 

continuing. Note that the answers to all these questions depend 

on N. Here are the answers to the questions: 

1 .  The reason the particles will occupy the larger volume 2V 

rather than V is that the probability ofthe states where there are 

about N /2 in each compartment is larger than the probability 

ofthe state where all the particles are in one compartment. This 

is true for any N. WhenN is very small there is a relatively large 

probability that the particles will be found in one compartment. 

F or these cases we caunot claim that the process is irreversible, 

in the sense that it will never go back to the initial state. For 

large N, even of the order 106, the probability to return to the 
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initial state becomes so small, that it IS practically zero. 

However, there is always a finite probability that the system 

will visit the initial state. For N or the order of 1023, the 

probability of visiting the initial state is so small (but still non­

zero) that we can safely say that the system will never return to 

the initial state. Never, in the sense of billions of ages of the 

umverse. 

2. The number of particles in L, n, does not change 

monotonically from N to N /2 (or from zero to N /2 if we start 

with all particles in the right compartments). Simulations show 

that for large values of N the number n changes nearly 

monotonically towards N /2. The larger the N, the more 

monotonic is the change of n. (For simulated results, see 

arienbennaim.com, books, Entropy Demystified, and simulated 

games.) For N on the order of 106 or more, you will see nearly 

perfect, smooth, monotonic change in n. 

3.  The answer to this question depends on how one defines the 

equilibrium state of the system. If we define the equilibrium 

state when the value of n is equal to N /2, then, when n reaches 

N /2 it will not stay there "forever." There will always be 

fluctuations about the value of n' = N /2. However, if one 

defines the equilibrium state as the state for which n is in the 
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neighborhood of n' = N /2, then, we will find that once n 

reaches this neighborhood, it will stay there for a longer period 

of time than in any other state. For N of the order of 106 or 

more, the system will stay in this neighborhood "forever." 

Forever, again means here many ages of the universe. 

4. The answer to this question depends on the temperature and 

on the size of the aperture we open between the two 

compartments (in the experiment of Figure 3 . 18  we remove the 

partition between the two compartments. However, we could 

do the same experiment by opening a small window. In such an 

experiment, the speed of reaching the equilibrium state would 

depend on the size of the aperture of the window). In any case 

thermodynaruics does not say anything about the speed of 

attaining equilibrium. 

5 .  For each distribution of particles (n, N - n) we can define 

a probability distribution (p, l - p), and the corresponding 

SMI. As the system evolves from the initial to the final state, n 

will change with time, hence, p, as well as the SMII, will also 

change with time. For simulations, see Ben-Nairn, 20 10. 

Can you please explain what this SMI means? 
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For smallN, the SMI will start from zero (all particles being 

in one compartment) and will fluctuate between zero to N bits. 

When N is very large, say 106 or more the value of SMI will 

change nearly monotonically from zero to N bits. There will 

always be some fluctuations in the value of SMI, but these 

fluctuations will be relatively smaller the larger N. Once the 

system reaches the equilibrium state it will stay there forever. 

Note carefully that the SMI is defined here on the probability 

distribution (p, 1 - p). For the initial distribution (1,0) the 

SMI is zero. The SMI defined on the distribution of locations 

and momenta is not zero. 

6. The answer to this question is the simplest, yet it is the most 

misconstrued one. It is the simplest because entropy is a state 

function, it is defined for a well-defined macroscopic (or 

thermodynamic) state of the system. For the expansion process, 

the macro-state of the system is defined initially by (E, V, N). 

The corresponding value ofthe entropy is See, V, N). The final 

macro-state IS characterized by (E, 2V, N), and the 

corresponding value of the entropy is See, 2V, N). In between 

the two macro-states (E, V, N), and (E, 2V, N) the macro-state 

of the system is not well defined. 
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· . . . . · . 

Figure 3 .23 .  The in itial ,  the  fina l, and  some intermediate states 

in  the expansion process. 

A few intennediate states are shown in Figure 3.23. While E 

and N are the same as in the initial state, the "volume" during 

the expansion process of the gas is not well defined. It becomes 

well defined only when the system reaches an equilibrium state. 

Therefore, since the volume of the system is not well defined 

when the gas expands, the entropy is also not well defined. We 

can say that the entropy changes abruptly from SeE, v, N) to 

SeE, 2V, N), and that this change occurred at the moment the 

system reaches a final equilibrium state. This is shown 

schematically in Figure 3 .24a. 
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Entropy, S 

? 
? -­? 

to t1 Time, t 

(a )  

Entropy, S 

to t1 Time, t 

(b)  
Figure 3 .24. Two views of the  entropy change after the  removal of 

the  partition .  

One can also adopt the point of view that when we remove 

the partition between the two compartments, the volume of the 

gas changes abruptly from V to 2 V, although the gas is initially 

still in one compartment, the total volume 2V is accessible to 

all particles. If we adopt this view, then at the moment we 

removed the partition, the volume changes from V to 2 V, and 

the corresponding change in entropy is SeE, 2V, N) -

SeE, v, N) . This change occurs abruptly at the time we remove 

the partition, see Figure 3 .24b. Both of these two views are 

acceptable. Personally, I used to prefer the first point of view. 

Initially, it has the value SeE, V, N) before the removal of the 

partition, and it reaches the value of SeE, 2V, N) when the 

systems reach the new, final equilibrium state. In all of the 

intermediate states the entropy is not defined. Note however, 

that the SMI is defined for any intermediate states between the 
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initial and the final states. However, the entropy is the maximal 

value of the SMI (multiplied by the Boltzmann constant and 

change of the base of the logarithm), reached at the new 

equilibrium state.22 

It should be noted however that we could devise another 

expansion (referred to as quasi-static) process by gradually 

moving the partition between the two compartments. In this 

process the system proceeds through a series of equilibrium 

states, and therefore the entropy is well-defined at each of the 

points along the path leading from (E, V, N) to (E, 2V, N). In 

this process, the entropy of the gas will gradually change from 

SeE, V, N) to SeE, 2V, N), Figure 3.25. The length of time it 

takes to proceed from the initial to the final state depends on 

how fast, or how slow we carry out the process. 

Entropy, S 

to t1 Time, t 

Figure 3 .25 .  The entropy change in a q uasi-static process. 
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Note that the sequences of states in the spontaneous process 

are different from the quasi-static process. In the latter, the 

states as well as the entropy of the gas are well-defined along 

the entire path from the initial to the final equilibrium states, 

whereas in the spontaneous expansion neither the states, nor 

the entropy are defined along the path leading from the initial 

to the final state. 

3.4.3 The spontaneous mixing of two ideal gases 

This example is brought up frequently in textbooks to 

demonstrate that the mixing of two gases is irreversible, and 

that a positive change in entropy corresponds to increase in 

disorder. We shall first analyze this process then we shall see 

that both ofthese contentions are incorrect. 

The process is quite simple. We have two different gases A 

and B in two different compartments, Figure 3.26a (see color 

centerfold). We remove the partition between the two 

compartments and observe mixing. We always observe mixing 

from a to b, to c. We never observe the reversal ofthis process, 

i.e. the ruixture of A and B will never un-ruix. For simplicity, 

we assume that there are N, A-particles in a volume V, and N 

B-particles in volume V. 
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We now redraw Figure 3.26, in Figure 3.27 (see color 

centerfold). and ask the following three questions: 

1 .  Can the system in state c of Figure 3.27 return to state 

b? 

2. Can the SMI in state c attain the value as in state b, or 

a? 

3.  Can the entropy of the system decrease from the value 

it has in c to the value it had in a? 

Although we shall not prove it here, let me tell you that the 

process in Figure 3.26a is nothing but two expansion processes; 

each gas expands from the initial volume V, to the final volume 

2V. 

The answer to the first question is a Yes. The system can 

visit the initial state b, i.e. process c .... b can occur. This will 

occur with so small probability that in practice we can say that 

the process b .... c is irreversible. This is irreversible, in 

practice, not absolute! 

Regarding the change in the SMI, again as we noted in 

connection with the expansion process, since the system can be 

reversed from c to b the SMI can be reduced. Since the mixing 

in the process a .... b .... c involves the expansion of two ideal 

gases from V to 2 V, we can calculate that the change in the SMI 
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will be 2N, i.e. one bit per particle (in the process of expansion, 

we had N particles, here we have 2N particles). Although this 

reversal is extremely improbable, it can occur and the SMI can 

attain its initial value at state b (note that here we refer to the 

SMI based on the distribution of locations and velocities of all 

the 2N particles in the system). The entropy change in this 

process of mixing is the same as the change in the SMI, 

multiplied by kB In 2. 

Again, we emphasize that the entropy change in this process 

(a .... c) refers to the two states a and c, which are equilibrium 

states (in either Figure 3.26a or Figure 3.27 see color 

centerfold). Once we are in state c, the system can return to 

state b (it can, but with a very small probability), but it cannot 

return to state a. For this to occur the system not only has to 

return to b (with negligible probability), but also to stay there 

as in a (which has a zero probability). 

Thus, we see that the mixing in Figure 3.26a between two 

different ideal gases A and B always involves positive change 

in SMI (2N bits, or one bit per particle), and a positive change 

in entropy (2N multiplied by the conversion constant kB In 2). 
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At this stage I would like to comment on two aspects of the 

mixing problem which caused a great deal of confusion in the 

literature. 

First, mlxmg is not always associated with increase m 

entropy. Therefore, the general statement that 1ll1xmg IS 

disordering, and disordering involves positive change m 

entropy is not true. 

Figure 3.28 (see color centerfold), shows a process of 

mixing two different ideal gases. Initially, we have N, A­

particles in volume V, and N, B-particles in volume V. We mix 

the two in the same volume V. One can show that the entropy 

change in this process is O. Thus, although we did mix the two 

gases, and this mixing which can be viewed as disordering of 

the system, the entropy change in this process is O. The reason 

is that neither the locational, nor the velocity distribution of 

each particle changes in this process. Therefore, the change in 

the SMI is O. It follows that the entropy change is also O. 

It can be shown that a spontaneous process of demixing, can 

occur involving a positive change in entropy.23 

Thus, the conclusion that mixing is always an irreversible 

process involving positive change in entropy is, in general, not 

true. 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



244 Chapter 3 

The second, subtler point related to the mixing problem is 

the following: Whenever we have two different ideal gases A 

and B in Figure 3.26a (see color centerfold), we observe mixing 

when we remove the partition, and we can calculate the change 

in entropy (2kBN In 2). This is true for any two different 

particles A and B.  the American chemist Josiah Willard Gibbs, 

a key contributor to the development of statistical mechanics, 

was the first to analyze this process of mixing. He was puzzled 

by the fact that the change in entropy in process of Figure 3 .26a, 

is the same no matter what A and B are, for as long as they are 

different. 

In fact, this is puzzling. However, Gibbs did not realize that 

this process of mixing is equivalent to two processes of 

expansion. Once you realize this equivalence you understand 

that in this process the change in SMI is one bit per particle, 

and therefore 2N bits for all the particles. This is independent 

of the types A and B. It only depends on the "loss of 

information," we initially knew that each particle is confined to 

a volume V, and at the final state it occupies a larger volume 

2V. 

What happens when A and B are the same, i.e. identical 

particles? Figure 3.26b. Here, upon removing the partition we 
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shall not see anything happening, and indeed the entropy 

change is O .  However, from the molecular point of view each 

particle does expand from V to 2 V. Hence, the SMI associates 

with the IDeational distribution changes by 2N bits. So why is 

the entropy change O? This apparent puzzle has something to 

do with the fact that the particles are indistinguishable. The 

analysis of this case is subtler and even Gibbs himself reached 

a wrong conclusion. The analysis involves some mathematics, 

and may be found elsewhere. 24 

3.4.4 Spontaneous heat transfer from a hot to a cold body 

As a final example of a spontaneous process involving a 

positive change in entropy, consider the process shown in 

Figure 3 .29. 

1 400K B-... 4_0_0_K..;!�2_0_0_K...I --+,--::: __ 3_0_0_K_....I 

(a) (c) 
Figure 3.29.  The initial, the final, and a n  intermediate state 

in the heat transfer process. 
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We start with two blocks of the same metal, each at different 

temperatures, say one at 400K, and the second at 200K. 25 The 

two bodies are separated by a partition which is an insulator, 

i.e. a wall that does not allow heat transfer between the two 

bodies. The entire combined system is isolated. 

We now replace the insulator wall by a heat conducting 

wall. This is shown by a dashed line in Figure 3.29. 

After some time, we shall see that the temperature of the 

hotter body will drop from 400K to 300K. The temperature of 

the cold body will rise from 200K to 300K. The process will 

always occur in this direction. We shall never observe the 

reversal (i.e. c .... b) of this process. 

This process was the one in which Clausius first formulated 

the Second Law of Thermodynamics. It states that heat always 

flows from the hot to the cold body - never in the reverse 

direction. 

This formulation of the Second Law is almost correct 

provided that first, we understand the word "always," and 

"never," in a probabilistic sense. "Always" means with very 

high probability, whereas "never" means "never" in many 

billions of years, but not in the absolute sense. Secondly, this 
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formulation of the Second Law is valid only when the process 

occurs in an isolated system. 

As we had done in the previous two examples, we can also 

ask the following three questions: 

1 .  Can the process occur spontaneously III an isolated 

system in the reverse direction (i.e. c --> b)? 

2. Can the SMI decrease from its value in state c to its 

value in either state a, or b? 

3. Can the entropy decrease from its value in state c to its 

value in state a? 

The answers to all these questions are the same as the ones 

we provided for the expansion, and mixing of ideal gases. The 

proof is not straightforward; it requires some mathematical 

arguments.35 

We note that the system can go from the final equilibrium 

state c to the initial state b (but not to a). Regarding the change 

in the SMI in process a to c, it is always positive. This statement 

is not trivial and requires proof. Basically, what happens here 

is that initially we have two different distributions of velocities 

(of all particles). The hotter body has a flatter distribution as 

we have seen in Section 3.3.5. The colder body has a sharper 

distribution of velocities. One can define the initial distribution 
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of velocities in state a as an average distribution of the two 

bodies. After we remove the insulating wall the overall 

distribution of velocities will change. The new distribution of 

velocities corresponds to the final temperature at equilibrium. 

One can prove that the transition from the initial velocity­

distribution to the final velocity-distribution always involves a 

positive change in SMI. Multiplying by the constant (kB In 2) 

we can also calculate that the change in entropy in the process 

a .... c will be positive. For more details, see Ben-Nairn (2008, 

20 17b). 

The interpretation of this positive entropy change is not 

simple. In both the expansion and the mixing processes 

discussed in Sections 3.3 .1  and 3.3.3, the entropy change was 

due to the change in the locati anal distribution ofthe particles. 

In both processes each particle "expands" its accessible volume 

from V to 2 V, and this involves a change of one bit per particle, 

hence, also positive change in entropy. 

In the process of heat transfer, the situation is far more 

complicated. On one hand, the colder body is heated and its 

entropy increases. On the other hand, the hotter body cools 

down, and its entropy decreases. Though it is not trivial, one 

can prove that the total change in entropy must be positive.27 
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3.5 The Second Law of Thermodynamics 

As we have noted in the preface, and as it is written in most 

textbooks, the two concepts of entropy and the Second Law are 

intertwined. You might find a statement of the Second Law as 

"the law of increasing entropy," or "the entropy of the universe 

always increases." 

In this book I have defined and interpreted the concept of 

entropy without ever mentioning the Second Law. Likewise, 

one can introduce, discuss, and understand the Second Law 

without mentioning entropy. We shall see however that in some 

specific processes under specific conditions, the Second Law 

can be related to changes in entropy. 

3.5.1 Thermodynamic and probabilistic formulation 
of the Second Law 

There are many formulations of the Second Law. We have 

mentioned some in the previous sections. In this section, we 

shall formulate the Second Law in terms of thermodynamic 

quantities, as well as in terms of probability. 

Consider the expansion process from V to 2 V described in 

Figure 3 . 18, in an isolated system. We can formulate the 

Second Law for this specific process in the following two, 

almost equivalent forms: 
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a. After the removal of the partition the system will 

"never" return spontaneously to the initial state. 

b. The entropy of the system will never decrease and 

return to the initial value. 

Note that in (a), I enclosed the word "never" in quotation 

marks, but not in (b). The reason is that in (a) we can observe 

the return to the initial state. As we saw, if N is small, then 

returning to the initial state is observable, however, for very 

large N we shall "never" observe such a return, here "never" is 

in practice, not absolute. 

Regarding the entropy-formulation, we can say that the 

entropy will never decrease to its initial value. Here, we mean 

never in absolute sense. Since entropy is defined for 

equilibrium states only, the returning to its initial value means 

that the system must return to the equilibrium initial value, i.e., 

before the partition was removed. This will never occur 

spontaneously in an isolated system. 

Thus, we see that the formulation (b) is absolute; no 

violations are allowed. On the other hand, formulation (a) is 

statistical, and "violations" are allowed. They are extremely 

rare for large N, and therefore any observation of returning to 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Entropy and the Second Law of Thermodynamics 251 

the initial state is not a violation ofthe Second Law but simply 

a rare event. 

When people talk of violation of the Second Law in terms 

of (b), they actually mean SMI not entropy. As we have seen 

the SMI can change continuously after the removal of the 

partition. It also can fluctuate at equilibrium. 

For 10 particles starting with all particles III the left 

compartment, both the number of particles in the left 

compartment, and in the SMI (associated with the distribution 

of particles in two compartments) fluctuates considerably as 

the system evolved after the removal of the partition between 

the two compartments. In fact, you can observe that the initial 

state (i.e. all particles in the left compartment) will be visited 

many times during the run of the simulation. When N is 100, 

the change in the number of particles, as well as the SMI is 

smoother, but there are still noticeable fluctuations. When N = 
1000, we shall see an almost perfect monotonic change in SMI. 

Once the maximum value of the SMI is reached we do not 

observe any deviations. 

When N is of the order of 1023 we observe a perfect 

monotonic change in SMI and we will not observe any 

fluctuation in SMI once it reaches its maximum. 
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In the literature this behavior of the SMI is assigned to the 

entropy. In fact, even Boltzmann himself described this 

behavior of the entropy, i.e. that it increases monotonically 

towards its maximum, and once it reaches its maximum it can 

decrease, "it is not impossible but it is highly improbable." 28 

The apparent monotonic change of SMI with time (or the 

number of snapshots of the system) is the reason that such 

processes are referred to as irreversible, also as one directional 

change in entropy. This is unfortunately not exactly true. Every 

process is in principle reversible. However, when N is very 

large, we never observe the reversal of this process, nor the 

reversal ofthe value ofthe SMI. This apparent irreversibility is 

a result of our extremely short lifetime compared with the time 

it will require for the system to return to its initial state, and the 

SMI to attain its initial value. 

Note however that even when a system visits the initial 

system, the entropy does not decrease. The entropy by 

definition is related to the value of the SMI at equilibrium. In 

order for the entropy to decrease spontaneously in an isolated 

system, it must not only return to its initial state (see I in Figure 

3 . 18) which is highly improbable, but it must return to the 

initial state and stay there which means it will return to the 
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initial equilibrium state, Figure 3 . 18  process II. This will never 

occur; never in its absolute sense. 29 

In the following sections, we shall start with marbles in cells 

and explain the probabilistic nature of the Second Law. Next, 

we shall discuss systems of particles in cells or in 

compartments. Again, we shall see that understanding what 

happens, and why it happens in a preferred direction is based 

on probabilistic arguments. 

Finally, we shall relate the probability interpretation of the 

Second Law to the entropy-formulation of the Second Law. 

After reading this chapter you will see that the Second Law 

is not a mysterious almighty law, but rather as simple as the 

games we played in Section 1 . 1 .  Its understanding requires 

nothing more than plain common sense. 

3.5.2 Let us play the 20Q game with marbles 
distributed in cells 

In the following game we start with 10 marbles in 10 cells. The 

marbles are distinguishable, and they can have different colors, 

or different numbers. For any distribution ofthe marbles in the 

cells we can play the 20Q game as follows: 
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I show you the distribution of the marbles, such as the ones in 

Figure 3.30 (see color centerfold. 

In general, the distribution of marbles is given by 10 numbers: 

[N(l), N(Z), N(3), . . .  , N(lO)] 

where N(l) is the number of marbles in cell 1, N(Z) is the 

number of marbles in cell 2, and so on. In particular, the 

distribution of marbles in Figure 3.30 is (4, 0, 0, 1 , 0, 2, 0, 0, 0, 

3). 

Now the rules of the game are as in the 20Q game. I think 

of a specific marble, and you have to find out in which cell the 

marble is by asking binary questions. You know the total 

number of cells and you also know the distribution of marbles 

in the cells. Your task is to find out where the marble is by 

asking minimum number of questions (if you like we can play 

the game by paying each other for each answer you get, and 

once you find out the marble I chose you get a prize). 

How will you plan your strategy of asking questions? 30 

I hope you find this to be an easy game. Before we continue 

let me ask you a quick question: In Figure 3.3 1 (see color 

centerfold), I show you two different distributions of marbles. 
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In Figure 3.3 la, the distribution ofthe marbles is: 

[ 10, 0, 0, 0, 0, 0, 0, 0, 0, 0]. 

In Figure 3.3 Ib, the distribution of the marbles is: 

[ 1 , 1 ,  1, 1 ,  1 ,  1, 1 ,  1 ,  1, 1 ] .  

Which ofthese two games is  easier to play? By "easier," I 

mean that you can ask fewer questions in order to obtain the 

missing information.3 1  

Now that you can distinguish between an easy and a difficult 

game, let me remind you that the SMI is simply a measure of 

the extent of difficulty of a specific game. It is related to the 

average number of questions you need to ask which guarantees 

that you will find the required information. 

We next use the same system of 10 marbles in 10 cells, but 

now the game will evolve with time. We start with all marbles 

in cell 1 ,  and we start shaking the whole box. If we shake 

vigorously we shall find out that some marbles will jump from 

one cell to the other. For instance, in Figure 3.32, we show a 

series of possible marble-distributions that we will observe 

after some shaking of the system. 
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Te n d iffe rent m a r b l es i n  te n ce l l s  

(a )  (b )  (c) (d) (e) (f) 
Figure 3 .32 .  Starting with ten marbles i n  one  ce l l  (a) ,  after some t ime we 

sha l l  observe the  evo lut ion of the  system, from (a) ,  to (b ) ,  to (c) ,  etc .  

We can also simulate this "shaking" of the system on a 

computer. I start with all 10  marbles in cell 1 ,  choose a specific 

marble and let is "jump" to another cell. While I do the 

"shaking" for a long time, I see that the distribution of marbles 

changes from Figure 3.32 (a), to 3 .32 (b), to 3.32 (c), and so on. 

For each marble distribution [N (1), N(Z), . . .  , N(10)] .  I can 

define a probability distribution [p(l), p (Z), . . .  , p (10)] where 

p (i) = NCO. This is simply the fraction of the marbles in cell i. 
N 

For each marble distribution I can calculate the following 

three quantities, Figure 3 .33 :  

1 .  The number of marbles left in cell 1 .  

2 .  The SMI of the 20Q game based on the marble 

distribution. 

3 .  The probability of finding this particular distribution. 
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Figure 3.33.  (a) Number of marbles in cell i after t steps. 
(b) Logarithm of the probability ratio for the different configurations after t 

steps. (c) The change in the S M I  as a function of the number of steps. 

The [lIst number is easy to calculate and easy to understand. 

We simply look at how many marbles are left in cell 1 .  The 

second number is also easy to calculate. Given the marble 

distribution we can also calculate the probability distribution 

[p(1), p(2), . . .  , p(10)]. On this probability distribution we can 

calculate the SMI if we know how to calculate the logarithm to 

base 2. 32 

If you do not know how to calculate logarithm you can do 

either ofthe following. 
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You can look at the graph oflogz (see Appendix A) for each 

of the probabilities p(i), then calculate the average of the 10 

quantities -logzp(i) with the probabilities p(i). 

The second way is just to estimate the average number of 

smart questions you will need to ask in order to get the required 

information. This will give you a qualitative idea of the value 

of the SMI. Since we started with SMI equal to zero, the SMI 

is the same as the change in the SMI for the process. The third 

way is to look at note 32, and tell yourself what those numbers 

mean. 

The third quantity is a little more difficult to understand. If 

we shake the system for a long time, and take many snapshots 

of the marble-distributions we can calculate the number of 

times each of the possible distributions occurs. There is also a 

way to calculate this number theoretically. 

Once we find out the number of times this distribution of 

marbles occurred we can also calculate the probability (Pr) of 

observing this distribution. Here, we have to be careful with the 

different probabilities I mentioned above. Read the next few 

sentences carefully and make sure you understand what is 

written therein. 
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For each marble-distribution we can construct a probability 

distribution. These two distributions are equivalent. On each 

marble (or probability) distribution we can also define the 

probability of occurrence of that marble (or probability) 

distribution. 

For this reason, I refer to the second probability as the super­

probability and denote it by Pr. This is the probability of 

obtaining a particular probability distribution. 

In Figure 3.33 we plot the three quantities referred to above. 

Details of the calculations are explained in Ben-Nairn 

(20 I 0), Chapter 3.33 Here, I urge you to examine carefully these 

graphs to understand their meaning. The first as noted above is 

simple to understand. We started with all marbles in cell 1 .  

Then we shook the system, and the number of marbles in cell I 

decreases almost monotonically to about 1 .  After a very long 

time you will see that the average number of marbles in each 

cell will be about 1 .  In this particular case we find that the 

number of marbles can also be 2 or 3, or more, but the most 

likely distribution is that shown in Figure 3.32f. 

In Figure 3.33 (b), we also show the logarithm of ratio of 

super probabilities ofthe marble distributions. As we shake the 

system the configurations of the system changes, and the 
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corresponding probability ratio also changes. We plot the 

logarithm of the ration because this ratio becomes very large 

number, and we want to draw the graph within reasonable 

range. 

In Figure 3.33 (c), we show how the SMI changes as we 

shake the system. As you have already understood when we 

began this series of games, initially the value ofthe SMI was O. 

This means that you know where the chosen marble is, 

therefore, you do not need to ask any questions in order to find 

out where the chosen marble is. As the system is being 

continuously shaken, the SMI increases to about 3. This means 

that after a long time the distribution of marbles will be almost 

uniform (i.e. about one marble in each cell). This is the most 

difficult game in this system. You will need on average, to ask 

three questions in order to find out in which cell the chosen 

marble is. 

The most important conclusion from this experiment is that 

starting with any initial state, if we shake the system long 

enough the configuration ofthe system will tend to be uniform 

(about one marble per cell), and the SMI will increase to some 

maximum value. This means that the 20Q game will tend to be 

more difficult to play (i.e. more questions to ask on average). 
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I should also note here that the SMI increases almost 

monotonically to its maximum value. Once it reaches the 

maximum you will find some fluctuations in the SM!. When 

the number of marbles is very large the change in the SMI will 

be steadily upwards, and once it reaches the maximum it will 

stay there, and almost no fluctuations will be observed. 34 

3.5.3 Imagining playing the 20Q game with particles 

distributed in compartments 

We now repeat almost the same experiment as in the previous 

section. This will lead us to fonnulate the Second Law for this 

particular experiment. 

(a )  

(b )  

Figure 3 .34. Ten moles of partic les. (a)  I n it ia l ly, a l l  i n  one  

com partment .  (b )  After a short period of  t ime .  
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Look at Figure 3.34. Instead of marbles in cells we have 

particles in compartments. Instead of N = 10 marbles we have 

N = 10 moles of particles. (Each mole is an Avogadro number 

6.023 X 1023 of particles. This is a huge number, 10 followed 

by 23 zeros. For simplicity we shall refer to one mole as 1023 

particles. 

Remember, when we had 10 marbles in 10 cells we had a 

huge number of configurations. 35 

If you have any doubts about this number try to calculate the 

total number of configurations when you have two particles in 

two compartments, and three particles in two compartments. 

Repeat the same calculation for distinguishable and 

indistinguishable particles. 36 

As in the previous experiment, we also start with all 

10 X 1023 particles in the first compartment. We remove all 

the partitions between the compartments and watch what will 

happen. 
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(d)  

(e)  

Figu re 3.35.  Te n moles of partic les;  

(c )  and  (d) after longe r  periods of t i m e  

( d )  a n d  ( e )  after very l o n g  t i m e  

In Figure 3 .35 ,  we show a few configurations obtained right 

after we removed the partitions. Note that we do not have to 

shake the system in order to achieve transitions of particles 

from one to another. The shaking is done from the "inside." 

The particles are moving at random velocities and directions. 
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These motions are enough to initiate the transitions of particles 

among the compartments. 

Look again at the three quantities ( 1 ,  2, and 3) that we 

followed in the game of Section 3.5.2 and Figure 3.36 (note that 

N � l O in this figure means ten moles of particles). 

( a )  

N" ::  10 N =  10 

s .'--:::::=:=1 

(b) i : 
" 
j 

:10 'II 60 III 100 ��"�".�".�".��,. 
Numbel' of SU'ps, I 

N =  10 

".r-::====I 

(c) 
� 1.0 
� 1 1  
'" 

lG .I0 60 IO IOO 

l\umbro( SI(lPS, I 

Numb!'r of SH'PS, I 

Figure 3 . 3 6 .  (a )  N u mber  of moles of particles in  ce l l l after t steps. ( b )  
Logarith m  of  the probabi lity ratio for the d ifferent configuration after t 
steps. (c )  The change in  the S M I  as a function of the n u mber  of steps (or  
t ime t) . Note that N=lO means ten mo les  of  particles. 

Can you guess how these three quantities will change with 

time after we remove the partitions? 

The answer is easy to guess. We shall observe the same 

trends as we recorded in Figure 3.33,  but the curves will be 
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smoother, so smooth that you get au impression that the process 

is strictly in one direction. Compare the graphs in Figure 3.33 

with those in Figure 3.36. 

First, it is clear that once we remove the partition the number 

of particles in cell I will be reduced. Unlike the curve in Figure 

3.33, the chauge in the number of particles will be very smooth 

as shown schematically in Figure 3.36. 

By smooth, we mean that we shall not observe any 

fluctuations as we observed in the experiment in Section 3.5.2. 

The number of particles in cell I will decrease from lO x 1023 

to 1023 almost monotonically. In reality, we might see some 

very small fluctuations but these are so small that we cannot 

observe them. After some time (the length of time depends on 

the temperature, the higher the temperature the larger the 

average velocities of the particles, and the faster the process). 

We shall reach a point wherein there will be about 1023 

particles in each compartment. Again, we note that fluctuations 

can occur. Small fluctuations (of a few hundreds or thousands 

of particles) are frequent, but they are so small that we can 

hardly notice them. On the other hand, fluctuations (say of102o 

particles, or returning to the initial state) are so rare that we 

shall "never" observe them. This is what the smooth curve 
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means in Figure 3.36. This is also the meaning of the final 

equilibrium state. This means that once we reach this state we 

shall not be able to notice any deviation of the density of the 

particles in each of the compartment. This is also the meaning 

of the term irreversible introduced in thermodynamics. In 

principle the process is reversi ble. The system can return to its 

initial state. However, such a reversal is so rare that you will 

never observe it, not in your lifetime, not in the lifetime of the 

universe, and not in many billions of years. In this sense we can 

say that we shall practically never observe such a reversal, 

hence, the term irreversible process. 

Next, we discuss the change in the SMI in this system. In 

Section 3.5 .2, we saw that the system' s SMI starts from zero 

and reached 3 after a lengthy shaking. We said that the game 

we played with marbles started as a very easy game, and 

became more difficult to play as we shook the system. The 

same will occur here but with two important differences. 

First, the particles are indistinguishable. This affects the 

counting of the number of configurations. Second, the SMI 

depends on how we choose the probability distribution. If we 

are interested only in the locations of the particles in the 

different compartments, then for each particle we know that 
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initially it was in cell 1 ,  and at the end of the process it can be 

in any one of the 10 compartments with equal probability of 

1/10, Therefore, the change in SMI is from the initial value of 

o to the final value ofiogzl0 bits per particle, or N iogzl0 bits 

for the N particles. We see that the value of the SMI at the final 

state of equilibrium is the same as the change in SMI when we 

move from the initial to the final state. 

Change of the SMI for the process 

= SMI(finai) - SMI(initiai) = SMI(finai) - 0 

= SMI (finai) = N iogzl0 bits 

(1) 

Initially, we knew that each particle was in cell 1 ,  hence, 

SMI(initiai) = O.  After the removal of all the partitions we did 

not know in which of the 10 cells the particle was. Therefore, 

we lost iogzl0 bits per particles, and N iogzl0 bits for all the 

N particles. In Figure 3.36 (c), we draw the curve of SMI per 

mole (to compare with Figure 3.33 (c), per marble). 

When we want to calculate the entropy change or the 

entropy difference the situation is different. The entropy in the 

initial state is not O. Let us denote the entropy in the initial state 
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by S(initiai), and the entropy in the final state as S(finai), then 

we obtain the change of entropy in the process: 

Change of entropy in the process = S(finai) - S(initiai) 

(2) 

The entropy S (initial) may be computed from the SMI of 

the initial distribution oflocations and velocities. This is not O. 

The difference between the two SMI in equation (1) takes into 

account only the distribution with respect to the 10 

compartments. Since we know that in the initial state all the 

particles are III compartment 1 ,  we conclude that 

SMI(initiai) = O.  On the other hand, the SMI based on the 

distribution of locations and velocities takes into account all 

possible molecular configurations (oflocations and velocities). 

Thus, the initial entropy in equation (2) is related to the latter 

SMl by: 

S(initiai) = 
(kBln2)SMI(initial, based on the molecular distribution) 

(3) 

Once we know the S(initiai), we can also calculate the 

change in entropy from equation (1)  to (3) as: 
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change in entropy 

= (kBln2) x change in the SMI in the process 

= kB In lOe. u. (4) 

Note that the change in the SMI in equation (1)  is in bits. 

The change in the entropy is in entropy units (e.u.) 37 

Finally, we discuss the probability of the final state 

compared with the probability of the initial state. The general 

relationship for any process, initial .... final, occurring in an 

isolated system is: 

PrCfinal) [SCfinal) -SCinitial)] 
= exp Pr(initial) kB (5) 

It should be stressed that the two states "initial" and "final" 

in this equation are not the same in the two sides of the 

equation. 

On the right-hand side, S(final) refers to the final 

equilibrium state. The quantity S(initial) refers to the initial 

equili brium state. Thus, the difference in entropies on the right­

hand side of Equation (5), is between two equilibrium states. 

On the other hand, the "final" in PrCfinal) refers again to 

the final equilibrium state, but the "initial" in Pr(initial) does 
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not refer to the initial state before removing the partition, but to 

the initial state just after the removal of the partition, this is 

state b in Figure 3.18 .  

Note that the probability of state a, in Figure 3 . 18, is  one. 

Also, the probability of state c is one. These two are 

equilibrium states. However, state b is not an equilibrium state. 

Here, we can ask about the probability of observing the state b 

after we removed the partition, and after we arrived at the new 

equilibrium state c. 

We can now conclude that the ratio of the probabilities on 

the left-hand side ofthe equation is extremely large (roughly of 

the order 10N). This is tantamount to saying that when we 

remove the partition the system will move from the "initial" 

state to the final state with probability nearly 1 .  

At the equilibrium state c, there is an extremely tiny 

probability to observe the state b. This event is so small that we 

can say that the process b --> c is irreversi ble. This is a practical 

irreversibility, not an absolute one. The system will never 

spontaneously visit the initial state a. For this to occur we need 

to observe a system returning to state a, and staying there, as in 

the initial equilibrium state. 
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Before we continue we emphasize again that Equation (5) is 

valid for processes occurring in an isolated system. 

3.5.4 The Entropy formulation of the Second Law 
for an isolated system 

Traditionally, the Second Law for isolated systems IS 

formulated in terms of entropy. You might find statements like: 

1 .  "The entropy always increases and reaches a maximum 

at equilibrium." 

2. "The entropy of the universe always increases." 

3. "The entropy of an isolated system mcreases and 

reaches maximum at equilibrium." 

These statements sound similar, but in fact they are quite 

different, and are all wrong. 

The first is ambiguous. As we have seen, entropy is a 

quantity which is defined for a well-defined system. "Entropy 

increases" is meaningless as much as saying that "beauty 

increases," "wisdom increases," or "volume increases." One 

must specify which entropy is being referred to. 

The second is due to Clausius. Here, it seems that the system 

- the universe - is specified, but in fact it is not. The universe, 

is by definition all that exists. We have a long way to go as far 
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knowing the size, the content, the total energy, etc. ofthe entire 

universe. Therefore, the universe is far from being a well­

defined system. Besides, this formulation does not specify the 

parameter with respect to which the entropy increases. Most 

people believe that "entropy increases" means "increase with 

time." Unfortunately, the entropy in thermodynamics is defined 

for a well-defined system at equilibrium. As such, it is not a 

function oftime. 

Finally, the third formulation does specify the system, but 

does not specify the parameter with respect to which the 

entropy increases. In thermodynamics, entropy is said to be a 

state function. This means that the macroscopic state of the 

system is specified. An isolated system means a system having 

a constant energy (E), constant volume (V), and constant 

number of particles (N) 38 

For such a system, denoted (E, V, N), the value of the 

entropy is fixed, and does not change with time. We denote this 

entropy by SeE, V, N), i.e. the value of S for a system 

characterized by the fixed value of E, V, and N. 

We now state the thermodynamic formulation of the Second 

Law for an isolated system: 
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For any isolated system (E, V, N), at equilibrium, the 

entropy is maximum over all possible constrained equilibrium 

states of the same system. 

Note that this formulation uses only macroscopic quantities. 

Also, it applies only to equilibrium states. A constraint could 

be a partition which separates between one or more subsystems, 

or an inhibitor which prevents the occurrence of a chemical 

reaction. 

The entropy formulation means that if we remove any ofthe 

constraints in any ofthe initial systems, the entropy will either 

increase or remain unchanged. 

Therefore, an equivalent formulation ofthe Second Law is: 

Removing any constraint from a constrained equilibrium 

state of an isolated system will result in an increase of the 

entropy. 

Note carefully that we have defined entropy for equilibrium 

systems. The maximum entropy is also a maximum with 

respect to all constrained equilibrium states. 

In many textbooks and popular science books you might 

come across a statement "that the entropy is the cause of the 

process (sometimes entropy is referred to as the "driving force" 
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for the process). This is not true. The entropy change is a result 

of the process, and not its cause. 

The ultimate cause of any process discussed above is the 

kinetic energy of the particles. If all the particles were at rest 

none of the processes described above would have occurred. 

The specific direction in which the process occurs (expansion 

not contraction, mixing not demixing, heat transfer from the 

hotter to the colder, not the other direction) is explained by the 

ratio ofthe probabilities. Therefore, the probability formulation 

of the Second Law as expressed by the ratio in Equation (5) is 

easier to understand. The fact that the system will move to a 

state oflarger probability is simply a matter of common sense. 

The probability formulation of the Second Law is also more 

general; it applies to processes that do not necessarily occur in 

isolated systems. 

In the next section we state very briefly two more 

formulations ofthe Second Law for processes at constant (T, V, 

N) and constant (T, P, N). Although it is not essential for the 

understanding of the entropy we discuss these two cases in 

order to demonstrate; first, that entropy formulation of the 

Second Law applies only for isolated systems, and second, that 

the probability formulation of the Second Law is much more 
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general and applies to any process of removing constraints in a 

constrained equilibrium state. 

3.5.5 Formulation of the Second Law for processes 
in (T, V, N) and (T, P, N) systems 

In the previous section we formulated the Second Law for 

processes in an isolated system characterized by the constants 

E, V, N. In practice, a truly isolated system does not exist. All 

laboratory experiments are carried out on systems which are 

not isolated. The most frequent parameters used to describe a 

system are either (T, V, N) (i.e. constant temperature T, volume 

V, and number of particles N), or (T, P, N), i.e. at constant 

temperature T, pressure P, and number of particles N. 

In this section we present, very briefly and without proofs, 

two other formulations ofthe Second Law. The reader can skip 

this section ifhe/she is interested only in entropy. 

Before we formulate the Second Law for such a system we 

defined the Helmholtz energy (previously calledfree energy) A 

by: 

A = E - TS 

Here, we have on the right-hand side of the equation the 

energy E, the temperature T, and the entropy S. Remember that 
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S is only defined for equilibrium systems, and so IS the 

Helmholtz energy. 

This definition of the Helmholtz energy is valid for any 

system at equilibrium. In this definition we did not specify the 

independent variables with which we characterize the system. 

We have the liberty to choose any set of independent variables 

we choose, say CE, V, N), CT, V, N) or CT, P, N). However, if we 

want to formulate the Second Law in terms of the Helmholtz 

energy we have no other choice but to choose the independent 

variables CT, V, N). For a (T, V, N) system the Helmholtz 

energy formulation ofthe Second Law is: 

For any CT, V, N) system at equilibrium the Helmholtz 

energy has a minimum over all possible constrained 

equilibrium states of the same system. 

Recall that the entropy formulation of the Second Law was 

valid only for isolated systems, i.e. for CE, V, N) systems. The 

Helmholtz energy formulation is valid only for systems that are 

isothermal (constant T), and isochoric (constant V), as well as 

closed (constant N). 

An equivalent statement of the Helmholtz energy 

formulation is: 
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Removing any constraint from a constrained equilibrium 

state in a CT, V, N) system will result in a decrease in 

Helmholtz energy. 

Note carefully that it is only for a process at constant 

CT, V, N) that this formulation is valid. It is not true that the 

Helmholtz energy decreases for any process occurring in any 

thermodynamic system. 

The relationship between the change III the Helmholtz 

energy and the probability ratio is: 

Pr(finaO [ A(finaO-ACinitiao] = exp -Pr(initial) k8T (6) 

For a CT, P, N) system the formulation ofthe Second Law is 

similar to the one for a CT, V, N) system. Instead of the 

Helmholtz energy defined above, we need to define the Gibbs 

energy by: 

G = E - TS + PV 

We note again that the definition ofthe Gibbs energy applies 

to any thermodynamic system at equilibrium. We have the 

liberty to choose the independent variables characterizing the 

system. However, for the Gibbs energy formulation of the 

Second Law we must choose the specific independent variables 
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(T, P, N). Here is the Gibbs energy formulation of the Second 

Law for the T, P, N system: 

For any (F, P, N) system at equilibrium the Gibbs energy 

has a minimnm over all the possible constrained equilibrium 

states of the same system. 

It is important to emphasize that this formulation of the 

Second Law is valid for a system at constant temperature 

(isothermal), constant pressure (isobaric), and closed (i.e. 

impermeable to particles). 

An equivalent statement ofthe Gibbs energy formulation is: 

Removing any constraint from a constrained equilibrium 

state of a (F, P, N) system will result in a decrease in the Gibbs 

energy. 

We emphasized again that it is not true that the Gibbs energy 

decreases in any process occurring in any system. The 

relationship between the change in the Gibbs energy and the 

probability ratio is: 

PrCfinaO [ GCfinaO-GCinitiao] = exp -Pr(initial) kB T (7) 
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3.5.6 The probability Formulation of the Second Law 

As one can see, by comparing Equations (5), (6), and (7), the 

thermodynamic quantity that has an extremum (max S, min A, 

and min G) is different for different specifications of the 

system. The probability formulation (see the left-hand sides of 

Equations (5), (6), and (7) is the same. This formulation states 

that when we remove a constraint in a well-defined constrained 

equilibrium system, the system will move to a new equilibrium 

state with probability nearly one, or equivalently the ratio of 

the two probabilities is nearly "infinity." This is true for any 

well-defined thermodynamic system. 

For this reason, the probability formulation of the Second 

Law is much more general than the entropy, Helmholtz energy, 

and Gibbs energy formulations. In practical applications the 

Gibbs energy formulation is the most useful, the second is the 

Helmholtz energy, and the last is the entropy formulation. 

3.5.7 Conclusion 

In this chapter, we described three different definitions of 

entropy. All three "converge" to the same value of entropy 

whenever entropy can be calculated either theoretically or 

experimentally 38 My personal preference is in favor of the 

definition based on the SM!. The reasons for this preference are 
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described below. Before doing this, I will briefly describe the 

definition of entropy based on the SMI, and the relationship 

between the SMI, the entropy and the Second Law. 

We start by defining the SMI on the distribution oflocations 

and velocities of a system of simple particles (i.e. having no 

internal degrees of freedom). We can define such a SMI for 

small or large systems, and for systems that are not at 

equilibrium. 

The next step is to apply this SMI to a system of very large 

number of particles, then take the maximal value of this SMI, 

multiply by a constant and get the entropy of an ideal gas. More 

details in Note 39. 

Thus, while entropy is a special case of SMI, the SMI is not 

entropy. Therefore, I suggest refraining from referring to SMI 

as either entropy, informational entropy, or Shannon's entropy. 

In both the preface and the introduction to this chapter, I 

claimed that the definition based on the SMI is superior to the 

other definitions of entropy. Here is my explanation: 

1 .  Since the entropy is a special case of SMI, it follows that 

whatever interpretation you choose for the SMI (average 

uncertainty, average unlikelihood, or a measure of 
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information), it will also apply for the entropy. This is the only 

valid, solid, and proven interpretation of entropy. You must 

also remember that entropy is not just "uncertainty," as many 

authors write; it is the average uncertainty about the 

distribution of locations and velocities of all particles at 

equilibrium. This is the reason I have emphasized several times 

the restricted meaning of uncertainty when applied to either 

SMI or to entropy. 

2. This definition leads to an exact relationship between the 

SMI and the super-probability (Pr), i.e. the probability of 

finding a specific distribution. The same relationship also 

applies for the entropy once we limit ourselves to 

equilibrium 39 

3.  This definition removes any mystery associated with 

entropy. One does not need to "invent" interpretations which 

are based on how the system of particles appears to us (order­

disorder, chaos, spreading energy, etc.). 

4. This definition also shows the limitations on the 

applicability of entropy and the Second Law. Hence, one 

should be careful not to apply entropy to systems for which it 

is inapplicable, such as living systems or the entire universe. 
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5 .  In the procedure of obtaining the entropy from the SMI, we 

saw how the maximum SMI leads to the uniform distribution 

oflocations (in absence of an external field). Also, we saw why 

we get the Maxwell-Boltzmann distribution of velocities at 

equilibrium [for details, see Ben-Nairn (2008, 2012)]. These 

two distributions are also the most probable distributions. 

6. Finally, and most importantly, this definition shows clearly 

why entropy is not a function oftime, and why it is incorrect to 

say that entropy tends to increase. It is the SMI of the system 

that can be a function of time, and can increase with time and 

reach a maximum value at equilibrium. Entropy (up to a 

multiplication constant) is the value of the SMI at equilibrium. 

As such, it is not a function of time, it does not increase with 

time, and it does not reach a maximum value at equilibrium. 

Entropy is the maximum value ofthe SMI of a thermodynamic 

system. 

Having done with the advantages of the SMI-based 

definition of entropy, we turned to the formulation of the 

Second Law based on probability, rather than on entropy. I am 

well aware of the fact that most scientists view the entropy as 

the core concept ofthe Second Law. Moreover, most scientists 

ascribe to entropy itself the power to drive all processes in the 
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universe, not only processes in well-defined thermodynamic 

systems. Therefore, my suggestion is to replace entropy by 

probability in formulating the Second Law. This formulation is 

more general, on one haud, and makes the Second Law a matter 

of common sense, on the other hand. 
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MISINTERPRETATIONS AND OVER 

INTERPRETATIONS OF ENTROPY 

Ever smce the concept of entropy was introduced, people 

sought a simple and intuitive interpretation of its meaning. 

Many interpretations were suggested over the years such as: 

Arrow of time, disorder, mixing, chaos, spreading, ignorance, 

freedom, and many others. Unfortunately, none of these have 

been proven to be a correct interpretation of entropy. 

If you open any dictionary you will find the following 

definitions ofthe word entropy. 

In the Merriam-Webster Collegiate Dictionary (2003), 

"Entropy is defined as; "change," "literary turn," a measure of 

the "unavailable energy" in a closed thermodynamic system . . .  

a measure ofthe system's degree of order. . .  " 

In Yahoo's online dictionary, one finds: 

1 .  The amount ofthermal energy not available to work 

2. A measure ofthe loss of information 

3 .  A measure of disorder or randomness 
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In Merriam-Webster's  online dictionary: 

1 .  A measure of the unavailable energy III a closed 

thermodynamic system 

2. A measure ofthe system's disorder 

3.  The degradation of matter and energy in the universe to 

an ultimate state of inert uniformity 

EV = in 

rpoTrT} = trope = transformation 

Evrpomu = entropy 

= transformation inwards 

In modem Greek, entropy means "turn into," or "turn to be," 

or "evolves into." 

Unfortunately, all these "definitions" or "descriptions" of 

entropy are incorrect! 

I believe that such misinterpretations contribute to the 

deepening mystery associated with entropy. The second 

contribution which enhances the mystery is the fact that many 

writers on entropy and the Second Law ascribe to entropy 

"super natural" powers, which is by far the most potent 

contributor to the mystery associated with it. It is not 
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uncommon to find the expressIOn "ravages of entropy," 

ascribing to it the power of ravaging everything, from the 

spluttering of an egg, to decaying and death of living systems, 

to the eventual "thermal death" of the entire universe. Such 

exaggerated and overrated "powers" ascribed to entropy 

undoubtedly leaves the readers of popular science books with 

an awesome feeling. Not only does entropy possess physical 

powers, it also "controls," and "drives" our thoughts, feelings, 

and creativity. 

In my opinion, the reason why people talk about entropy of 

a living system, entropy ofthe universe, and the arrow oftime, 

is simple: They simply reiterate what other people say, or have 

said about entropy. An erroneous statement by a famous and 

respected scientist will be propagated from generation to 

generation, until someone dares to challenge and question the 

validity of that statement. 

The misunderstanding and misinterpretation of the entropy 

gives people a free hand in assigning to it all kinds of powers; 

"to ravaging everything," "to driving the universe," the "be-all 

and end-all" of everything that happens in the universe, 

including our thinking, feelings, and creation of arts. 
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It is unfortunate that many readers of such popular science 

books believe that the author "knows" what he is writing about, 

but they do not have the tools to examine the truthfulness of 

any ofthe author's  claims. 

Of course, if you believe that entropy is the be-all, and end­

all of everything, how can you expect to ever understand 

entropy? 

As a boy, I learned how God created the world, all its living 

creatures, and his best creation, humans. But God gave us the 

freedom ofthought, feelings, and even the choice to believe, or 

not to believe in Him. 

Now we learn that entropy controls everything. Perhaps, 

entropy also decides whether we can, or cannot understand 

entropy. Perhaps, the very understanding of the Second Law 

violates the Second Law. 

All these nonsenses fill up many popular science books 

written by well-known scientists. One has to be very careful 

when reading any popular science book. If you do not have the 

tools to examine the veracity of the author's claims and 

statements, at least you can see whether the author provides any 

justification for such statements, or simply parrots what others 

have said or written. There are essentially three unjustified 
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"applications" of entropy and the Second Law that have been 

propagated in the literature. 

The most popular application of entropy IS to living 

systems; you, and I, or any animal. 

This application is based on the misconstrued (I would even 

say, perverted) interpretation of entropy as a measure of 

disorder, on one hand, and the view that life is a process 

towards more order, more structure, more organized, etc. on the 

other hand. 

Combining these two erroneous views inevitably leads us to 

the association of life phenomena with a decrease in entropy. 

This in turn leads to the erroneous (perhaps meaningless) 

conclusion that life is a "struggle" against the Second Law. The 

fact is that entropy cannot be defined for any living system, and 

the Second Law, in its entropy formulation does not apply to 

living systems. 

It is difficult to trace the ongm of this misconstrued 

conclusion. I will be grateful for any information on this which 

the reader might be able to provide. There is no doubt however, 

that the most prominent and influential scientist who was 

responsible for much of the nonsensical writings in textbooks, 

as well as popular science books was Schriidinger himself. 
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Schriidinger, who contributed significantly to the development 

of quantum mechanics failed when he discussed entropy of 

living systems. 

In his famous and widely praised book "What is Life," he 

expressed several times the erroneous idea that the Second Law 

is the "natural tendency" of things to go from order to 

disorder," and in addition: "Life seems to be orderly and lawful 

behavior of matter, not based exclusively on its tendency to go 

over from order to disorder." 

From these two assertions, Schriidinger reached the most 

absurd conclusion to the question: "What then is the precious 

something contained in our food which keeps us from death?" 

His answer: "What an organism feeds upon is negative 

entropy . . .  the essential thing in metabolism is that the 

organism succeeds in freeing itself from all the entropy it 

cannot help producing while alive." 

Thus, Schriidinger not only adopted the misinterpretation of 

entropy as a measure of disorder, and not only expressed the 

misconception regarding the role of entropy in living systems, 

but also "invented" a new concept of "negative entropy" to 

explain how a living system "keeps aloof of death." 
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We emphasize again that entropy is not definable for a 

living system. Any statement about the entropy change in a 

living system is therefore, meaningless. This is a fortiori true 

when we use the meaningless "negative entropy" in connection 

with living systems. I hope that the reader of my book knows 

by now that entropy is a positive number. It is defined for well­

defined systems at equilibrium. Next time you read a statement 

about the entropy of a living system, ask the author to explain 

how he/she calculated, or measured that entropy. 

The Second Application of entropy and the Second Law is to 

the entire universe. 

In this case, I can easily pinpoint the culprit for the misuse 

- no other than Clausius himself. As is well known, Clausius 

formulated one version of the Second Law (heat flows from a 

hot body to a cold body). Clausius also defined the change in 

entropy for the transfer of a small quantity of heat into, or out 

from a system at a constant temperature. Clausius' ideas 

constituted the basis on which the whole science of 

thermodynamics was built upon, including the most general, 

and most powerful, and useful Second Law of 

Thermodynamics. For all these achievements Clausius 

deserved the highest scientific credit. Unfortunately, Clausius 
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failed in over generalizing the Second Law. His well-known 

and well quoted statement: 

"The entropy of the universe always increases. " 

I do not know how Clausius arrived at this formulation of 

the Second Law. I can only guess what has motivated him, as 

well as the many others who followed him to conclude that the 

entropy of the universe always increases. And "always 

increases," always means increases with time. This brings me 

to the final, and most common misconception about entropy 

and the Second Law. 

The third miss-application is the Association of Entropy with 

the Arrow of Time. 

The association of entropy with the Arrow of Time has been 

discussed in great detail in my book "The Briefest History of 

Time," Ben-Nairn (2016a). Here, I will make only a few 

comments. The association of entropy with the so-called Arrow 

of Time is probably due to Eddington. 

There are two very well-known quotations from 

Eddington's (1928) book, "The Nature ofthe Physical World." 

The first concerns the role of entropy and the Second Law, and 

the second introduces the idea of "time's  arrow." 
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1 .  "The law that entropy always increases, holds, I think, the 

supreme position among the laws of Nature, 

2. " Let us draw an arrow arbitrarily. If as we follow the 

arrow we find more and more of the random element in the 

state of the world, then the arrow is pointing towards the 

future; if the random element decreases the arrow points 

towards the past. That is the only distinction known to physics. 

This follows at once if our fundamental contention is admitted 

that the introduction of randomness is the only thing which 

cannot be undone. I shall use the phrase 'time 's arrow ' to 

express this one-way property of time which has no analogue 

in space. 

In the first quotation Eddington reiterates the unfounded 

idea that "entropy always increases." Although I agree that the 

Second Law of thermodynamics is unique compared with other 

laws of physics [see also Ben-Nairn (2008, 201 5a)], I do not 

agree with the statement that "entropy always increases." 

Although it is not explicitly stated, the second quotation 

alludes to the connection between the Second Law and the 

Arrow of Time. This is clear from the association of the 

"random element in the state of the world" with the "arrow 

pointing towards the future." 
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In my view it is far from clear that an Arrow of Time exists. 

It is also clear that entropy is not associated with randonmess, 

and it is meaningless to say that entropy always increases. 

Therefore, my conclusion is that entropy has nothing to do with 

time! Unfortunately, many scientists even to this day still 

maintain that "entropy changes with time," "entropy explains 

time," and that entropy is the Arrow oftime."40 

I hope that by following the steps in defining entropy you 

can judge for yourself why entropy cannot be used for any 

living system to the entire universe, and why entropy is not a 

function oftime. 
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Chapter 1 

Note 1 :  Suppose we play with one die having six faces, 

numbered 1 to 6. We play the following game. I choose a 

number, say "1," and you choose any other number, say "4." I 

throw the die many times. Whenever it falls with its face " 1" 

upward, you give me $ 1 .00, and when it falls with "4" upwards, 

I will give you $ 1 .00. If there is no reason to believe that any 

face has a preference to show up, then the game is fai r, and the 

die is called a fair die. It is afair game because both outcomes 

have the same chances of winning, or losing. 

Now, suppose I know that the face with six dots is heavier 

than all the other faces, Figure 1 .2b. Therefore, in each throw 

the face opposing the six dots, i.e. with one dot will show up 

more frequently. In this case, if I choose "1" and I let you 

choose any other number between "2" and "6," then this game 

is unfair. In this case the die will be described as an "unfair" 

die. Can you explain why this game is unfair? Remember, that 

I know that the face "6" is heavier, but you do not know this 

fact. 
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Note 2:  In case a, the probability ofthe occurrence ofthe blue 

outcome is 1, or 100%. This means that in each toss, you are 

certain that the blue color will appear, therefore, you will win 

in each toss with certainty, or with probability one! 

Note 3:  Since there are five blue faces, and one red face, the 

relative chances of the occurrence of the blue and red outcomes 

are 5 to 1 .  In terms of probability, we can say that the 

probability of "blue" is five times larger than the probability of 

"red." This qualitative answer is enough for the moment. Later, 

you will say that the probability of the event "blue" is 5/6, and 

the probability of the event "red" is 116. Therefore, it is 

advantageous for you to choose blue. 

Note 4: The average net earnings are calculated as follows: 

When "blue" appears you get (+ 1) $ with probability 5/6. When 

"red" appears you pay one $ (- 1) with probability 116. 

Therefore, the average expected earning on one toss is: 

� (+ 1) + � (-1) . The average expected earnings on 100 tosses 

. 4 400 
ls:100 X - = - "'" 66.66 . . .  6 6 

This means that "on average" you are expected to earn about 

$ 67.00 after 100 tosses. We shall learn more about averages in 

Section 1 .9. 
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Footnote: To Table 1.2. 

In the fifth column in Table 1.2, we record the "weighted 

average." In Section 1 .  9 we will discuss the concept of an 

average. Here, if you are given two numbers, say 1 5  and 17, 

and you are asked to calculate the average of these two 

numbers, you are most likely to answer that the average is 

(15 + 17)/2 = 32/2 = 16. In this calculation, you implicitly 

assumed that the "weight" or the probability of each number is 

�. However, in general, if the number 15, which may be an 

outcome of an experiment occurs with probability (or with 

relative frequency) of say, 0.25, and the number 17 occurs with 

probability of 0.75, then the weighted average of the two 

numbers is calculated as: 

0.25 x 15 + 0.75 x 17 = 3.75 + 12.75 = 16.5 

This is slightly larger than your previous result of 16. The 

reason for this larger average is that we are giving larger 

"weight" to the number 17 than to the number 15 .  

Now, if  I ask you to calculate the average of the two 

numbers ':: and ':, the "arithmetic" average would be: 6 6 
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This average is not what we calculated in Table 1 .2. Here, 

we calculate the "weighted" average of � and �, using the 

weights ':: and 2c, respectively. Thus, the average given in the 6 6 

fifth column is this weighted average of the two numbers 

Pr(blue) and Pr(red). As we shall see in Chapter 2, this 

special kind of average, is similar to the Shannon's measure of 

information. 

Note 5 :  The probability of the "blue event" is '::. Assuming 6 

that all the tosses are independent (see Section 1 .6), we 

calculate the probability of earning $100.00, by multiplying ':: 
6 

by itself hundred times: 

Probability of 100 blues 

5 5 5 (5)100 
= - x - x . . .  hundred times . . .  x - = - "'" 0.000000012 6 6 6 6 

This is a very small number. However, the probability ofthe 

outcome "red event" in 100 tosses is obtained by multiplying 2c 6 

by itself hundred times: 

Probability of 100 blues 

1 1 1 (1)100 = ;; x ;; x . . .  hundred times . . .  x ;; = ;; "'" 1.5 X 10-87 
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This is a far smaller number. The ratio between the two 

numbers is: 

Probability of 100 blues (5)100 
69 -::----:---:-::-:-'--,...,..,:-::-----:- = - "'" 8 x 1 a 

Probability of 100 reds 1 

This is a very large number, about 1 followed by seventy 

zeroes! 

Note 6: Qualitatively, it is clear that the probability of the 

occurrence of blue is larger than the probability of red. The 

relative chances are 4 to 2 (or 2 to 1). In terms of probabilities: 

4 2 
The probability of blue = "6  = "3  

2 1 
The probability of red = "6 = "3 

Note 7:  The average (or the expected) earning in 100 tosses in 

case C, IS: 

[4 2 1 (4 2) 100 
100 - (+1) + - (-1) = 100 - - - = - = 33.33 

6 6 6 6 3 

This means that on average, if you play 100 times with die 

C, your net earnings will be about $33.33. Not bad, yet not as 

good as in case b. 
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Note 8: The calculations of the probabilities is as follows: The 

probability of getting a blue in one toss is � = �, therefore, 6 3 

assuming that the tosses are independent (see Section l .6), the 

probability of getting a "blue" in all of the 100 tosses is 

obtained by multiplying � by itself hundred times: 3 

2 2 2 2 100 
3 X 3 X " , hundred times " , X 3 = (3) 

"'" 2,4 x 10-18 

This is a very small number, about 0.000 · · · 18 zeros · · ·  24 

The probability of getting all "red" outcomes in all 100 tosses 

IS:  1 1 1 (31)100 
- X - X . . .  hundred times X - = 

3 3 
. . . 

3 
� 2 X 10-48 

which is a far smaller number than the probability of getting all 

"blues. " 

The ratio of these two probabilities is: 

Probability of 100 blues = 2100 '" 1030 
Probability of 100 reds 
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This is one followed by 30 zeros. This is a huge number, yet 

it is far smaller than the number we obtained for this ratio in 

the case of die b, see note 4. 

Note 9:  There are three red, and three blue faces. Therefore, 

the chances of either the red or blue outcomes are equal. The 

probability of the outcome red is .:: = �, and the probability of 6 2 

the outcome blue is also .:: = �. 6 2 

Note 10: The probability of occurrence of 100 blue outcomes 

in case d is: 

1 1 1 1 100 
2 X 2 X . . .  X 2 = C) ::::; 8 X 1 0-3 1 

This is the also probability for the occurrence of 100 red 

outcomes. The ratio of these two probabilities is: 

Probability of 100 blues 
Probability of 100 reds 

Note 1 1 :  In table 1 . 1 1  we list all possible specific sequences of 

blues (B), and reds (R), and their probabilities. We group the 

sequence according to the number of Bs in each sequence, and 

calculate the corresponding probabilities of the generic 
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sequence. Note that the probability of each specific sequence is 

the same 1116. 

Note 12: To calculate the probability of a specific sequence, 

say, RBRB, we assume that the tosses are independent (see 

Section 1.6). Therefore, the probability ofthis sequence is: 

1 1 1 1 1 
- x - x - x - = -2 2 2 2 16 

However, in order to calculate the probability ofthe generic 

sequence; i.e. a sequence of two Rs, and two Bs, we have to 

sum over all possible specific sequences oftwo Rs, and two Bs; 

these are: 

BBRR 

BRBR 

RBBR 

RBRB 

RRBB 

BRRB 

Each of these have the same number of Rs, and Bs. Since 

these are disjoint events (see Section 1 .3), the probability ofthe 
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generic sequence is the sum over all the probabilities of these 

specific sequences, i.e. 

1 4 
6 x (2) 

6 3 

16 8 

Note 13 :  Note that in general, the average for two numbers 

Ai and Az is defined by: 

Average of A = Pr(l)Ai + Pr(2)Az 

See also Note 4. 

We multiply each number by the probability of occurrence 

of that number, and then sum over all possible "events." Here, 

we have only two events "blue" and "red," and the average is 

over the probabilities themselves. 

Average of probabilities 

= Pr(blue)Pr(blue) + Pr(red)Pr(red) 

This can be referred to as the average probabilities of the 

die, or the average uncertainties, or the average likelihood over 

all possible outcomes. 

Note that the fifth column in Table 1.2, we record the 

"weighted average." In Section 1 .9 we will discuss the concept 

of an average. Here, if you are given two numbers, say 15 and 
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17, and you are asked to calculate the average of these two 

numbers, you are most likely to answer that the average is 

(15 + 17)/2 = 32/2 = 16. In this calculation, you implicitly 

assumed that the "weight" or the probability of each number is 

2c. However, in general, if the number 1 5, which may be an 2 

outcome of an experiment, occurs with probability (or with 

relative frequency) of say, 0.25, and the number 17 occurs with 

probability of 0.75, then the weighted average of the two 

numbers is calculated as: 

0 .25 x 15 + 0.75 x 17 = 3.75 + 12.75 = 16.5 

This is slightly larger than your previous result of 16. The 

reason for this larger average is that we are giving larger 

"weight" to the number 17 than to the number 15 .  

Now, if  I ask you to calculate the average of the two 

numbers ':: and 2c, the "arithmetic" average would be: 6 6 

This average is not what we calculated in Table 1 .2. Here, 

we calculate the "weighted" average of ':: and 2c, using the 6 6 

weights ':: and 2c, respectively. Thus, the average given in the 6 6 
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fifth column is this weighted average of the two numbers 

Pr(blue) and Pr(red). As we shall see in Chapter 2, this 

special kind of average is similar to the Shannon's measure of 

information. 

Note 14: The eleven events and the corresponding probabilities 

are: 

Event: 2 3 4 5 6 7 8 9 10 1 1  12 

Probability: 
1 2 3 4 5 6 5 4 3  
36 36 36 36 36 36 36 36 36 

Note 15 :  The answers are: 

1 
For (a): 6' 1 

For (b): 2' 1 
For (c): -3 

Note 16: The probability is 1/3. 

2 1 
36 36 

Note 17: The general "definition" is as follows: We make N 

experiments. We record the number of times the outcome "B" 

occurred. We define the probability of "B" as the limit of the 

ratio NB/N when N is very large (infinity). 

Note 18 :  Note that the conditional probability is defined only 

for a condition, the probability of which is not zero. In the 
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abovementioned example, we require that the event B is not an 

impossible event. 

Note 19 :  Younger children chose the urn on the right which is 

the correct choice, but for the wrong reasons. Furthermore, 

young children who chose the urn on the right and did not win 

switched to the urn on the left on the next game. When asked 

why they changed the urn they simply said: "The first choice 

was not good, it did not deliver the expected prize." Older 

children, aged nine years and above chose the urn on the right 

on the first game. They continued to choose the same urn on 

the second and third games even if they did not win on some of 

the games. Somehow they sensed that even if the urn on the 

right did not win, this urn was still the better choice. Better, 

does not guarantee that one wins every game. It means that on 

average you will win with higher probability. Therefore, if you 

choose the urn on the right-hand side, and do not win, you 

should not be discouraged. Be patient, continue to play and 

stick to the same urn. In the long run you will be winning. 

Now for the probability of winning or losing: 

F or the urn on the left: 

Pr(win) = 2c 2 
1 Pr(lose) = -2 
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For the urn on the right: 

PrCwin) = � = � 12 3 

Notes 

4 1 Pr(lose) = - = -12 3 

Here, Pr is a shorthand for "Probability of." Thus, PrC win) 

means the Probability of winning. 

You can see that the urn on the right has higher probability 

or likelihood of winning, and therefore it is advantageous to 

choose this urn in this "easy" game. It is advantageous not 

because this urn has more blue marbles, but because the ratio 

of the number of blue marbles to red marbles is larger in the 

urn on the right than in the urn on the left. 

Note 20: In game A, we assumed that the die is "fair," which 

means that all outcomes are equally likely to occur. There is no 

preferred outcome. Therefore, you cannot "explain" why you 

have chosen any particular number between 1 and 6. In this 

game, whatever outcome you choose, say 4 or 6, you can expect 

to "win," on average, one in six throws. If you play 1000 games, 

you can expect to "earn" 
1 1000 x - "'" 167 dollars, 6 

independently of the number you have chosen. 

In game B, again your earnings are independent of the 

choice of a particular number. On average, you will earn 

 EBSCOhost - printed on 2/13/2023 8:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Entropy for Smart Kids and their Curious Parents 307 

1000 X 2; "'" 167 dollars if the outcome coincides with the 6 

b h b '11 1 5 21 
num er you c ose, ut you WI ose 1000 x - x - = 6 100 
175 dollars. In this case, you will be losing, on average, about 

175 - 167 = 8 dollars after 1000 games. 

Note 2 1 :  The probabilities are expected earnings are: 

For "blue": 

4 
' h  d '  f

4 8 Pr = 19' WIt expecte earrungs 0 19 X 2 = 19 

For "red" : 

5 Pr = -19' . h d '  f 5 15 WIt expecte earrungs 0 - x 3 = -19 19 

For "green": 

Pr = 10 
. h d '  f

lO 
1 

10 
19' WIt expecte earnmgs 0 19 X = 19 

Thus, although the probability of "red" has decreased (since 

you removed one "red" from the urn), your expected earnings 

are still larger when you choose red again. (These are the 

expected earnings per one draw. If you play the same game 

1000 times you have to multiply these expected values of 

1000). 
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Note 22: The probabilities and expected earnings are: 

For "blue": 

4 Pr = -18' ' h  d '  f
4 8 

WIt expecte earnmgs 0 - x 2 = -18 18 

For "red" : 

4 
. h d '  f 

4 12 Pr = 18' WIt expecte earnmgs 0 18 X 3 = 18 

For "green": 

Pr = 10 . h d '  f
lO 1 10 

18' WIt expecte earnmgs 0 18 X = 18 

Note 23: The last sentence might sound awkward. We are 

talking about the probability of finding a specific probability 

distribution. We shall further discuss this idea in Chapters 2 

and 3.  

Note 24: The generalization for a sequence of N throws with 

n Hs, and (N - n) Ts is straightforward: 

Pr(any sequence of n Hs and (N - n) Ts) = (�) pnqN-n 

where the symbol (N) is ( N! ) and NI means the product of 
n n! N-n ! 

all numbers from one to N, i.e. 1 x 2 x . . . x N. 
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Note 25:  Even without having a definition of an average 

quantity, it is clear that the statement made by ASU in 2000 is 

meaningless. The grades of all the students cannot be above the 

average. What the writer of this statement probably wanted to 

say is that the average in 2000 was above the averages of all 

students in the country. The average grade of the students in a 

given university is a number between the lowest and the highest 

grade. 

Note 26: Yes, it is possible. It is easy to construct an example. 

Suppose HSU has seven professors with the following IQs: 

100, 1 10, 120, 130, 140, 1 50 and 160; the average is 130. LSU 

has also seven professors with IQs: 50, 60, 70, 80, 90, 100 and 

1 10; the average is 80. 

Now, if the professor of the lowest IQ from HSU moves to 

LSU, the new situation is: 

In HSU, there are six professors with IQs 1 l0, 120, 130, 

140, 1 50 and 160. 

In LSU, there are eight professors with IQs 50, 60, 70, 80, 

90, 100, 100 and 1 l0. 

Check the average IQ in HSU increased from 130 to 135, 

and also the average IQ in LSU increased from 80 to 82.5. 
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Of course, you cannot increase the average IQ of all of the 

professors in two universities. It was 105 before the move and 

105 after the move. Explain why. 

Note 27: Note that the average of the two speeds is 
140 

= zo 
70kmlh. However, in order to calculate the average speed on 

the round trip, you take the tota1 1ength and divide it by the total 

time of travel. In our examples, let the distance between 

Jerusalem to Tel Aviv be a. The travel time to Tel Aviv is tl = 
.!!:... = ..!!:...., and the travel time from Tel Aviv to Jerusalem is tz = Vi 40 

a a - = -. Therefore, the average speed in the round trip is 
Vi 100 
� 

= 
z: 

= 
1800 

"'" S7kmlh. 
tl +tz 40 140 

In general, ifthe first speed is v1 and the second is vz, then 

the average ofthe two speeds is always larger than the average 

speed on the round trip, i.e. 

Note 28: The average ofthe two speeds is approximately half 

the speed of light. The average speed of the entire trip is half 

the donkey's speed. 

29. Rakoczy et al (2014) 
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Notes to Chapter 2 

Note 1 :  In die a, I am certain (or least uncertain) that I will 

earn more money than if ! choose die b. 

Note 2: Note that 0 10gzO is equal to zero. One can take this 

as a definition of x log x , when x = 0, or prove that in the 

limit of x .... 0, the function x log x .... O.  The logarithm can be 

to any base. 

It should be noted that the general behavior of the function 

SMI (P) is similar (but not identical) to the one constructed in 

Figure 1.7. The reason is that the quantity SMI (p) can also be 

interpreted as average uncertainty with respect to the 

probability distribution. If you look at Figure A. l (Appendix 

A), you will notice that for each value of 0 < p < 1, logzp is 

a negative number. Therefore, -logzp is a positive number 

when p changes between 0 and 1 ,  -logzp changes between 00 

to zero, Figure A.3. Thus, the larger p is, the larger the 

certainty, or the smaller the uncertainty ofthe occurrence ofthe 

event H. Also, -logzp is larger, the larger the uncertainty. 

Therefore, SMI (p) may also be interpreted as a measure ofthe 

average uncertainty regarding the game with two possible 

outcomes. 
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Note 3 :  See simulated games at my site http://www. 

ariehbennaim.com. 

Note 4: For more details, see Ben-Nairn (2017b). 

Note 5 :  It i s  about half a million questions! For details, see 

Ben-Nairn (2017b). 

Note 6 :  This follows from the property of the logarithm 

fuuction. If we double N, we get logz (2 x N) = 10gzN + 

10gz2 = logz (N) + 1 .  

Note 7 :  The number of questions is  5.  You first divide the total 

objects or persons into two groups of 16. Ask whether the 

person or the obj ect is on the right or the left. Then divide into 

two groups of8, then into two groups of 4, then into two groups 

of 2, then you will have a choice between two possibilities. 

Therefore, in five questions you will find the required 

information. 

Note 8 :  In this case you will need one more question, i.e. 6 

questions. Explain why? 

Note 9: For details, see Ben-Nairn (2017b). 

Note 10: We should add here that when Pi = 0, we are certain 

that the event i will not occur. It would be awkward to say in 
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this case that the uncertainty in the occurrence of i I S  zero. 

Fortunately, this awkwardness does not affect the value ofSMI. 

Once we form the product Pi log Pb we get zero when either 

Pi = 1, or when Pi = O.  

Note 1 1 :  For specific examples, see Ben-Nairn (20 1 5, 2018). 

Notes to Chapter 3 

N ote l :  This is the same process of mixing that we observe 

when we add milk to coffee. However, in case of liquids or 

solids (that is, system with strong intramolecular reactions) the 

mixing is not always the spontaneous process that occurs. 

Note 2 :  Note again that this is  true for ideal gases and many 

liquids. But in some liquids or solids we might observe 

separation into two almost pure substances. 

Note 3 :  This is true when the combined system of the two 

bodies is isolated. 

Note 4: For more details, see Ben-Nairn (20 l l a, 20 1 5a, 

20 16a). 

Note 5: Sometimes you see a slightly different notation, i.e. 

dQrev/T, where "rev" is short for reversible. We will not need 

this notion here. We require that the system is large enough at 
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a specific temperature T, and that dQ is small enough so that it 

does not change the temperature of the system. Some authors 

use the notation 0 Q to emphasize that this quantity is not an 

exact differential. On the other hand, dS is an exact differential. 

This means that there exists a function S, which is a state­

function, i.e. a function of the parameters describing the 

system, say T, P, N, and is differentiable with respect to these 

variables. 

Note 6 :  For more details, see Ben-Nairn (2008, 20 1 5a, 

20 16a). 

Note 7: Higher temperature means larger kinetic energy ofthe 

particles. The relationship between the absolute temperature T 

and the average kinetic energy Ek of the particles is given by: 

k T = 3:. [m(v2)] = 3:. E . B 3 2 3 k 

Note 8: In Section 3.5 we shall see that the Second Law is 

indeed a law of probability. The system can go back to its initial 

state. However, the entropy can never decrease spontaneously 

in an isolated system. 

Note 9:  Basically, the paradoxes do not stem from Boltzmann's 

definition of entropy as stated above, but from another function 

Boltzmann had defined, and showed that it always decreases 
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with time. This function was known as the H-function and the 

theorem Boltzmann proves was referred to as Boltzmann's H­

theorem. 

In fact, the H-function is a particular case of Shannon's 

measure of information. Indeed, it is true that H decreases with 

time until it reaches a minimum at equilibrium. The function 

-H (t) looks like entropy but it is not the entropy of the system. 

Note 10: See Ben-Nairn (2017, 2018). 

Note 1 1 :  Note that f(x)dx is the probability of finding the 

center of a particle between x and x + dx. r (x)dx has the 

same meaning but at equilibrium. 

Note 12: In one dimension the SMI is 10gzN , and in 3D it is: 

10gz(N x N x N) = 310gzN 

Note 13 :  For details see Ben-Nairn (2008, 2012). 

The ID distribution of velocities is the normal distribution. 

It is also referred to as the Maxwell-Boltzmann distribution. 

This is an exact normal distribution. Sometimes, this ID 
distribution is confused with the distribution of the speeds of 

particles, i.e. the absolute value of the velocity in 3D which is 

defined by v = ..)v} + vi + vl. 
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Note 14: A quick clarification. A distribution is a vector of 

numbers Pv . . .  , PN which are probabilities, i.e. Pi is the 

probability of the event i. The "super-probability" mentioned 

in the text is Pr(pv . . .  , Pn), i.e. the probability of obtaining the 

distribution (Pv . . .  , PN) ' 

Note 1 5 :  In quantum mechanics, the microscopic states are 

defined as the solutions ofthe so-called stationary Schriidinger 

equation. The classical microscopic state is easier to visualize, 

i.e. specifying all the locations and velocities of the particles. 

The quantum mechanical microstates are, in general, not easy 

to visualize. 

Note 16: A comment regarding the size of the system is in 

order. Remember that the SMI is defined for any distribution. 

Therefore, we can also define the SMI for a system of one, two, 

or three particles in a box. We can also proceed to define the 

corresponding entropy of such a system. However, if N is a 

small number, we shall find that the system will not obey the 

Second Law of Thermodynamics. In Section 3.5 we discuss the 

Second Law and relate it to the entropy. We shall see that if we 

expect the system to approach an equilibrium state, and stay 

there "forever," then we need to take the SMI of very large 

number of particles. Indeed, macroscopic systems contain a 
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huge number of particles. This is the reason why we never 

observe large fluctuations from the equilibrium state. 

Note 17 :  "Classical" means that we describe the microstates of 

the system by the locations and velocities (or momentum) of 

all its particles. "Ideal gas" means that the particles do not 

interact with each other. "Simple particles" means that the 

particles do not have any "internal degrees of freedom." This 

means that the ruicrostate of each particle is fully described by 

its location and velocity. A non-simple atom or molecule has 

"internal structure." In addition to its location and velocity, one 

should also specify its internal state, i.e. the particle ruight be 

in different electronic, nuclear, vibrational or rotational states. 

All these are necessary for the description of the microstate of 

the system, and hence also contribute to the entropy. 

Note 18 :  The reduction in the total number ofruicrostates is 

obtained by first counting all the configurations when the 

particles are labeled (say, by numbers: 1, 2, . . . N) then dividing 

by N! = 1 x 2 x 3 x . . .  x N. 

Note 19: This is true for ideal gases. When there are 

interactions among the particles there could be situations of 

equilibrium with a non-uniform distribution of locations. For 

instance, water at O°C can have two phases; liquid and solid 
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(ice) at equilibrium. The locational distribution III such a 

system will not be uniform. 

Note 20: If there are W ruicrostates and the distribution is 

uniform, then the probability of each ruicrostate is l/W' The 

corresponding SMI is thus: 

SMI(for uniformly distributed microstates) 

w 

= - I PilogzPi 
i=l 

1 = W - IogzW = 10gzW 
w 

multiply by kB In 2, and get the entropy which is kB In W . You 

have now discovered the Boltzmann formula for the entropy of 

a system having W uniformly distributed states. One of the 

basic postulates of statistical mechanics is that all the quantum 

mechanical ruicrostates of the system have equal probability. I 

should note here that W is the total number of microstates. 

Sometimes one makes the distinction between equilibrium and 

not equilibrium microstates. Also you might read about the 

entropy associated with equilibrium and entropy associated 

with non-equilibrium ruicrostates. The entropy is defined only 

for equilibrium macroscopic state, and it is related to the total 
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number of microstate. The last statement is true for isolated 

systems. 

Note 2 1 :  It can be shown that the maximal probability 

decreases as N-1/z . In practice, we know that when the system 

reaches the state of equilibrium, it stays there forever. The 

reason is that the macroscopic state of equilibrium is not the 

same as the state for which n' = !:!.. , but it is this state along z 
with a small neighborhood ofn', say n' - EN :::; n :::; n' + EN, 
where E is a small number. For N = 100 and E = 0.01, the 

probability of finding n in the neighborhood of n' is about 

0.235.  For N = 1010 particles, we can allow deviations of 

0.00 1% of N and the probability of staying in this neighborhood 

is nearly one. For more details, see Ben-Nairn (2008, 20 12). 

Note 22: Most people will tell you that after you remove the 

partition, the entropy increases monotonically until it reaches 

its maximal value at equilibrium. This view caunot be justified 

either theoretically or experimentally. Think of the volume of 

the system. Before we remove the partition it is V, after 

reaching a final equilibrium the volume is 2 V. Can you define 

the "volume" of the gas at the intermediate states in Figure 

3.23? 
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Note 23 : More detailed calculations can be found in Ben-Nairn 

(2008, 2010, and 20 16). 

Note 24: See Ben-Nairn (2008, 2010, and 2015a). 

Note 25: K represents the degrees in the Kelvin scale. We 

could also take two liquids or two gases. In the latter, it is easier 

to calculate the change in entropy for the process b --> c. 

Note 26: For details, see Ben-Nairn (2008, 2010, and 20 1 5a). 

Note 27: For a proof and simulation ofthis process, see Ben­

Nairn (2008, 2010, and 2016). 

Note 28: This was essentially Boltzmanu's answer to the 

critiques of his H-theorem. See also Ben-Nairn (2018). 

Note 29: This is different from Boltzmanu's answer to his 

critics. Boltzmanu's answer was correct regarding his H(t) 

function. But Boltzmanu was wrong in identifying the behavior 

of his H(t) function with entropy. 

Note 30: In this particular game it is advisable to ask the first 

question: "Is the chosen marble in the first five cells?" If the 

answer is either a Yes, or a No, with one more question you 

will know which marble I chose. Thus, with two questions you 

are guaranteed to find the missing inforruation. 
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Note 3 1 :  In this particular case the game in Figure 3.3 1a is 

"much simpler." You do not need to ask questions. 

Note 32: The SMI for any probability distribution 

[p(l), p(2), . . .  , p(10)] is given by the formula: 

10 
SMI = - I p(i)log2P(i) 

i= l  

where the sum is  over all the 10 cells. 

Note 33: "Discover Entropy and the Second Law," Ben-Nairn 

(2010). 

Note 34: For more simulations with different numbers of 

marbles and cells, see Ben-Nairn (2010). 

Note 35 :  If the marbles are distinguishable, then the number 

of configurations is 1010. If the marbles are distinguishable 

then there are approximately 1010/10!  (10! = 1 x 2 x 3 x 

. . . x 10). Although this number is smaller than 1010, it is still 

a huge number. 

Note 36: For two particles in two compartments there are 22 = 

4 configurations when the particles are distinguishable, and 

only two configurations when they are indistinguishable. For 

three particles there are 32 = 9 configurations when the 
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particles are distinguishable, and only four when the particles 

are indistinguishable. Note that for large numbers of particles 

the number of configurations is reduced from N N to N N / N!  

You can imagine that when N is of the order of 1023, the 

number of configurations IS about 

10100,000,000,000,000,000,000,000. This is ten followed by more 

than billions, and billions of zeros. 

Note 37: Note the change in the base of the logarithm in 

equation (4). 

change in entropy = kB In 2 x Nlogzl0 

Inl0 
= kB In 2 x -I - = kB In 10e. u. n Z  

Remember the change in entropy for the expansion process 

from V to 2 V, the entropy change was kB In 2. Here, the 

entropy change is due to change of volume from Vto 10V. 

Note 38:  This applies for a one-component system. If there 

are c-components, we denote them by Ni. The number of 

particles of species i, and we assume that all the c numbers Ni 

are constants. 

Note 38: It should be noted here that today any quantity has 

the same mathematical form as the SMI is referred to as 
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"entropy." These entropies have nothing to do with the entropy 

of a thermodynamic system. In fact, even Boltzmann himself 

defined a quantity which we denoted by H, and believed that 

this quantity exhibits the "behavior of entropy."  This is not true. 

For more details, the reader is referred to Ben-Nairn (201 8). 

Note 39: Here is a summary of the relationship between the 

SMI, entropy, and super-probability. 

I will formulate it for classical systems, and for systems 

having a very large number of particles. 

First, we need to distinguish between two "levels" or 

probabilities. The first is the probability of finding a specific 

configuration of all the particles. By configuration, I mean the 

locations and momenta of all the particles in the system. For 

simplicity, we assume that there is a finite number of 

configurations (i.e. we already took into account the 

uncertainty principle and the indistinguishability of the 

particles). A specific configuration is a vector c = 

xv xz, " , XN,PV PZ, " , PN, where Xi is the location vector and 

Pi is the momentum vector of particle i. 
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We define the probability pee) of finding a specific 

configuration e. (In a continuous case, we shall refer to pee) as 

the probability density.) 

For each macroscopic system we define the probability of 

finding the probability distribution pee). We denote this 

probability by Pr [p (e)]. Thus, Pr is a function of the 

probability distribution (for the continuous case Pr is a 

functional ofthe probability density p(e).) 

Starting with a system with any arbitrary distribution pee), 

we can define both Pr and the SMI on this distribution. There 

is one distribution which maximizes both Pr and SMI. This 

distribution is referred to as the equilibrium distribution 

denoted p'(e). 

At this point, we can formulate the Second Law as follows: 

Starting from any constrained equilibrium state of well­

defined macroscopic system, when removing the constraint, the 

system will move to a new equilibrium state having a new 

distribution p" (e). At this new equilibrium state, the 

probability pr[p"(e)] is overwhelmingly larger than the 

probability Pr[p'(e)]. Note that both probabilities: Pr[p' (e)] 

and Pr[p" (e)] pertain to the system after the removal of the 
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constraint. But both p' (c) and p" (c) are the distributions at 

equilibrium; the latter and the former correspond to two 

equilibrium states before, and after the removal of the 

constraint. 

So far we did not mention entropy. Entropy enters into the 

formulation only when the process is carried out in an isolated 

system (E, V, N constants). In such a system, the ratio of 

pr[p"]jpr[p'J is related to the difference in the entropy ofthe 

system in the final and the initial equilibrium states. In this case 

the change in entropy must be positive. 

At this point, we recognize the advantage of the 

probabilistic formulation of the Second Law which is valid for 

processes in any well-defined system. The entropy formulation 

is valid only for an isolated system. 

If the system is characterized by T, V, N then whenever we 

remove a constraint from a constrained equilibrium state, the 

ratio of the probabilities Pr[p"J/Pr[p'J is related to the 

difference in the Helmholtz energy of the system which must 

be negative. 

If the system is characterized by T, P, N then whenever we 

remove a constraint from a constrained equilibrium state, the 
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ratio of the probabilities Pr[p"]/Pr[p'] IS related to the 

difference in the Gibbs energy of the system which must be 

negative. 

Thus, we see that the probabilistic formulation of the 

Second Law is much more general and it applies to any 

thermodynamic system; CE, V, N), CT, V, N) or CT, P, N). The 

"driving force" for moving from one equilibrium state to 

another may be ascribed to the probability ratio. As a result of 

this process, the entropy change will be positive for a CE, V, N) 

system, the Helmholtz energy change will be negative for a 

CT, V, N) system, and the Gibbs energy change will be negative 

for a CT, P, N) system. Thus, we see that the probability Pr is 

the central primary concept in formulating the Second Law. 

The entropy, Helmholtz and Gibbs energy hold a secondary 

importance, and they are relevant to the specific systems 

characterized by specific thermodynamic variables. 

Note 40: For more details, see Ben-Nairn (2018): Time's  

Arrow, and the Timeless Nature of Thermodynamics. 
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ApPENDIX A 

A QUALITATIVE PRESENTATION 

OF THE CONCEPT OF LOGARITHM 

The concept of logarithm is the inverse of the concept of 

exponential. Therefore, we start with the idea of exponentiation. 

The simplest case of exponentiation is to look at the series of 

numbers. 

Explicit numbers Short hand notation for the 

same number 

10 = 10 101 

100 = 10 x 10 102 

1000 = 10 x 10 x 10 103 

10000 = 10 x 10 x 10 104 

X 10 

100000 = 10 x 10 x 10 105 

X 10 x 10 
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Instead of writing such long numbers explicitly, we use a 

shorthand notation; the nth power of l O is written as Ion which 

means multiply 10 by itself n-times. Thus, 102 means simply 

the number 10 x 10, and 104 means multiply 10 by itself four 

times. One can generalize this notation for any number a (not 

necessarily 10) raised to the power y (not necessarily an 

integer). We write this as: 

x = aY (A. 1) 

When y is not an integer, say y = 2.7, we cannot say that we 

multiply a by itself 2.7 times. Instead, one can imagine that 

x = aY is a number in between the two numbers: 

(A.2) 

This means that a
2
.
7 

is somewhere between the two 

numbers a
2 

and a
3
, the latter can be calculated by multiplying 

a by itself 2 and 3 times, respectively. Thus, for any pair of 

numbers a andy, we define the number: 

x = aY (A.3) 

The logarithm is an inverse ofthe exponentiation operation 

in the sense that given x, and a base a, we define the logarithm 

of x to the base a as: 
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y = Jogax (A.4) 

This is easy to understand when a is 10, and y is an integer. 

In this case, the logarithm ofx = 10000 is simply the number 

of times you have to multiply 10 by itself to get 10000. In this 

case: 

y = Joglox = JoglO 10000 = 4 (A.S) 

Similarly, for 8 = 23 = 2 x 2 x 2, the logarithm of 8 to the 

base 2 is Jogz 8 = 3 . this is the number of times you have to 

multiply 2 to get the number 8. 

Figure A. l shows the graph of Joglox for the different 

values ofx. Figure A. l b  shows the graph oflogzx, and Figure 

A. l c  shows the graph oflogex. 

The last one is called the natural logarithm which IS a 

logarithm to the base of the number e which is approximately: 
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This number is called Euler number, and denoted by e. It 

has many interesting properties, and it also arises "naturally" in 
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the sciences. It is the limit of the quantity (1 + ;) n ,  when n 

goes to infinity. Figure A.2 shows this function. It is clear that 

as n increases this quantity tends to a constant which has the 

value show in (A.6). 

e - r-==:::::!:::::::::!:::��=J I:: t 2 .715 
-
-

� 2.710 
-+ 
� 2.705 

o 400 600 800 1000 
n 

Figure A .2 .  Definition of e as the  l imit  of the  { l+ {l/n))" .  as n tends to 

i nfinity (see arrows). 

The natural logarithm is usually written as In x = logex. 

This logarithm is useful in physics and mathematics, and in 

particular in thermodynamics. In information theory the base 2 

is the more useful one. 

If you still have difficulties in grasping the meaning of the 

logarithm, you can just look at the value of log x for any x, in 

either Figures A. I ;  (a), (b) or (c). For instance, for x = 2:. look z 

at the value of IOglO G), or logz G), or loge G) in the 
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respective graphs. Note that log 1 = 0 for the three bases 

discussed above, and log x tends to minus infinity (-00) when 

x tends to zero. 

5 
Q: 4 
"" 3  01 
.3 2 

I 1 

O L-����� __ ��� 0.2 0.4 0. 6 0. 8 1 .0 

p 

Figure A . 3 .  Plot of - Log2 (p) 

In all our applications in this book we use the logarithm of 

p, where p is number between zero and one. Therefore, logp 

will be a negative number (or zero when p = 1). In Figure A.3 

we also draw - log(p) as a function of p. This relationship will 

be useful in our interpretation of - log(pJ as a measure of the 

extent of uncertainty with respect to the occurrence of the event 

i, in Section 2.7. 
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