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Preface

Aided by the availability of vast amounts of data computing resources, machine
learning (ML) has made big strides. The financial industry, which at its heart is
an information processing enterprise, holds an enormous amount of opportunity
for the deployment of these new technologies.

This book is a practical guide to modern ML applied in the financial industry.
Using a code-first approach, it will teach you how the most useful ML algorithms
work, and how to use them to solve real-world problems

Who this book is for

There are three kinds of people who would benefit the most from this book:

* Data scientists who want to break into finance and would like to know
about the spectrum of possible applications and relevant problems

* Developers in any FinTech business or quantitative finance professionals
who look to upgrade their skill set and want to incorporate advanced ML
methods into their modeling process

* Students who would like to prepare themselves for the labor market
and learn some practical skills valued by employers

This book assumes you have some working knowledge in linear algebra, statistics,
probability theory, and calculus. However, you do not have to be an expert in any
of those topics.

To follow the code examples, you should be comfortable with Python and the most
common data science libraries, such as pandas, NumPy, and Matplotlib. The book's
example code is presented in Jupyter Notebooks.

[ix]
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Preface

Explicit knowledge of finance is not required.

What this book covers

Chapter 1, Neural Networks and Gradient-Based Optimization, will explore what kinds
of ML there are, and the motivations for using them in different areas of the financial
industry. We will then learn how neural networks work and build one from scratch.

Chapter 2, Applying Machine Learning to Structured Data, will deal with data that
resides in a fixed field within, for example, a relational database. We will walk
through the process of model creation: from forming a heuristic, to building a simple
model on engineered features, to a fully learned solution. On the way, we will learn
about how to evaluate our models with scikit-learn, how to train tree-based methods
such as random forests, and how to use Keras to build a neural network for this task.

Chapter 3, Utilizing Computer Vision, describes how computer vision allows us

to perceive and interpret the real world at scale. In this chapter, we will learn the
mechanisms with which computers can learn to identify image content. We will
learn about convolutional neural networks and the Keras building blocks we need
to design and train state-of-the-art computer vision models.

Chapter 4, Understanding Time Series, looks at the large number of tools devoted to the
analysis of temporally related data. In this chapter, we will first discuss the "greatest
hits" that industry professionals have been using to model time series and how to use
them efficiently with Python. We will then discover how modern ML algorithms can
find patterns in time series and how they are complemented by classic methods.

Chapter 5, Parsing Textual Data with Natural Language Processing, uses the spaCy
library and a large corpus of news to discuss how common tasks such as named
entity recognition and sentiment analysis can be performed quickly and efficiently.
We will then learn how we can use Keras to build our own custom language models.
The chapter introduces the Keras functional API, which allows us to build much
more complex models that can, for instance, translate between languages.

Chapter 6, Using Generative Models, explains how generative models generate new
data. This is useful when we either do not have enough data or want to analyze our
data by learning about how the model perceives it. In this chapter, we will learn
about (variational) autoencoders as well as generative adversarial models. We will
learn how to make sense of them using the t-SNE algorithm and how to use them
for unconventional purposes, such as catching credit card fraud. We will learn about
how we can supplement human labeling operations with ML to streamline data
collection and labeling. Finally, we will learn how to use active learning to collect
the most useful data and greatly reduce data needs.

[x]
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Preface

Chapter 7, Reinforcement Learning for Financial Markets, looks at reinforcement
learning, which is an approach that does not require a human-labeled "correct"
answer for training, but only a reward signal. In this chapter, we will discuss

and implement several reinforcement learning algorithms, from Q-learning to
Advantage Actor-Critic (A2C). We will discuss the underlying theory, its connection
to economics, and in a practical example, see how reinforcement learning can be
used to directly inform portfolio formation.

Chapter 8, Privacy, Debugging, and Launching Your Products, addresses how there is a lot
that can go wrong when building and shipping complex models. We will discuss how
to debug and test your data, how to keep sensitive data private while training models
on it, how to prepare your data for training, and how to disentangle why your model
is making the predictions it makes. We will then look at how to automatically tune
your model's hyperparameters, how to use the learning rate to reduce overfitting, and
how to diagnose and avoid exploding and vanishing gradients. After that, the chapter
explains how to monitor and understand the right metrics in production. Finally, it
discusses how you can improve the speed of your models.

Chapter 9, Fighting Bias, discusses how ML models can learn unfair policies and even
break anti-discrimination laws. It highlights several approaches to improve model
fairness, including pivot learning and causal learning. It shows how to inspect
models and probe for bias. Finally, we discuss how unfairness can be a failure in the
complex system that your model is embedded in and give a checklist that can help
you reduce bias.

Chapter 10, Bayesian Inference and Probabilistic Programming, uses PyMC3 to discuss the
theory and practical advantages of probabilistic programming. We will implement
our own sampler, understand Bayes theorem numerically, and finally learn how we
can infer the distribution of volatility from stock prices.

To get the most out of this book

All code examples are hosted on Kaggle. You can use Kaggle for free and get access
to a GPU, which will enable you to run the example code much faster. If you do not
have a very powerful machine with a GPU, it will be much more comfortable to run
the code on Kaggle. You can find links to all notebooks on this book's GitHub page:
https://github.com/PacktPublishing/Machine-Learning-for-Finance

This book assumes some working knowledge of mathematical concepts such as
linear algebra, statistics, probability theory, and calculus. You do not have to be
an expert, however.

Equally, knowledge of Python and some popular data science libraries such as
pandas and Matplotlib is assumed.

[xi]
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Download the example code files

You can download the example code files for this book from your account at http://
www . packt . com. If you purchased this book elsewhere, you can visit http: //www.
packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at http://www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the on-screen
instructions.

Ll s

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

*  WinRAR / 7-Zip for Windows
* Zipeg / iZip / UnRarX for Mac
* 7-Zip / PeaZip for Linux

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: http: //www.packtpub.com/sites/
default/files/downloads/9781789136364 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names,
tilenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "Mount the downloaded webStorm-10+.dmg disk image
file as another disk in your system."

A block of code is set as follows:

import numpy as np

x_train = np.expand_dims(x_train,-1)
X test = np.expand dims(x test,-1)
x_train.shape

[ xii]
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Preface

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

from keras.models import Sequential

img shape = (28,28,1)

model = Sequential ()

model .add (Conv2D (6, 3, input_shape=img shape))

Any command-line input or output is written as follows:

Train on 60000 samples, validate on 10000 samples
Epoch 1/10
7707.2773 - acc: 0.6556 - val loss: 55.7280 - val acc: 0.7322

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

% Warnings or important notes appear like this.

a1

Q Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention
the book title in the subject of your message and email us at customercaree
packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http: //www.packt .com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering

the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address or
website name. Please contact us at copyrightepackt . com with a link to the material.

[ xiii ]
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If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http: //authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave

a review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can understand
what you think about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packt . com.

[ xiv]
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Neural Networks and
Gradient-Based Optimization

The financial services industry is fundamentally an information processing industry.
An investment fund processes information in order to evaluate investments,

an insurance company processes information to price their insurances, while

a retail bank will process information in order to decide which products to offer

to which customers. It is, therefore, no accident that the financial industry was

an early adopter of computers.

The first stock ticker was the printing telegraph, which was invented back in 1867.
The first mechanical adding machine, which was directly targeted at the finance
industry, was patented in 1885. Then in 1971, the automatic teller banking machine,
which allowed customers to withdraw cash using a plastic card, was patented. That
same year, the first electronic stock exchange, the NASDAQ, opened its doors, and

11 years later, in 1982, the first Bloomberg Terminal was installed. The reason for

the happy marriage between the finance sector and computers is that success in the
industry, especially in investing, is often tied to you having an information advantage.

In the early days of Wall Street, the legends of the gilded age made brazen use

of private information. Jay Gould, for example, one of the richest men of his time,
placed a mole inside the US government. The mole was to give notice of government
gold sales and through that, tried to influence President Ulysses S. Grant as well

as his secretary. Toward the end of the 1930s, the SEC and CFTC stood between
investors and such information advantages.

[11]
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Neural Networks and Gradient-Based Optimization

As information advantages ceased to be a reliable source of above-market
performance, clever financial modeling took its place. The term hedge fund

was coined back in 1949, the Harry Markowitz model was published in 1953,
and in 1973, the Black-Scholes formula was first published. Since then, the field
has made much progress and has developed a wide range of financial products.
However, as knowledge of these models becomes more widespread, the returns
on using them diminish.

When we look at the financial industry coupled with modern computing, it's
clear that the information advantage is back. This time not in the form of insider
information and sleazy deals, but instead is coming from an automated analysis
of the vast amount of public information that's out there.

Today's fund managers have access to more information than their forbearers could
ever dream of. However, this is not useful on its own. For example, let's look at news
reports. You can get them via the internet and they are easy to access, but to make use
of them, a computer would have to read, understand, and contextualize them. The
computer would have to know which company an article is about, whether it is good
news or bad news that's being reported, and whether we can learn something about
the relationship between this company and another company mentioned in the article.
Those are just a couple of examples of contextualizing the story. Firms that master
sourcing such alternative data, as it is often called, will often have an advantage.

But it does not stop there. Financial professionals are expensive people who
frequently make six- to seven-figure salaries and occupy office space in some

of the most expensive real estate in the world. This is justified as many financial
professionals are smart, well-educated, and hard-working people that are scarce
and for which there is a high demand. Because of this, it's thus in the interest of any
company to maximize the productivity of these individuals. By getting more bang
for the buck from the best employees, they will allow companies to offer their
products cheaper or in greater variety.

Passive investing through exchange-traded funds, for instance, requires little
management for large sums of money. Fees for passive investment vehicles, such

as funds that just mirror the S&P 500, are often well below one percent. But with

the rise of modern computing technology, firms are now able to increase the
productivity of their money managers and thus reduce their fees to stay competitive.

Our journey in this book

This book is not only about investing or trading in the finance sector; it's much more
as a direct result of the love story between computers and finance. Investment firms
have customers, often insurance firms or pension funds, and these firms are financial
services companies themselves and, in turn, also have customers, everyday people
that have a pension or are insured.

[2]
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Chapter 1

Most bank customers are everyday people as well, and increasingly, the main way
people are interacting with their bank, insurer, or pension is through an app on their
mobile phone.

In the decades before today, retail banks relied on the fact that people would
have to come into the branch, face-to-face, in order to withdraw cash or to make
a transaction. While they were in the branch, their advisor could also sell them
another product, such as a mortgage or insurance. Today's customers still want
to buy mortgages and insurance, but they no longer have to do it in person at
the branch. In today's world, banks tend to advise their clients online, whether
it's through the app or their website.

This online aspect only works if the bank can understand its customers' needs
from their data and provide tailor-made experiences online. Equally, from the
customers, perspective, they now expect to be able to submit insurance claims
from their phone and to get an instant response. In today's world, insurers need

to be able to automatically assess claims and make decisions in order to fulfill their
customers' demands.

This book is not about how to write trading algorithms in order to make a quick
buck. It is about leveraging the art and craft of building machine learning-driven
systems that are useful in the financial industry.

Building anything of value requires a lot of time and effort. Right now, the market

for building valuable things, to make an analogy to economics, is highly inefficient.
Applications of machine learning will transform the industry over the next few decades,
and this book will provide you with a toolbox that allows you to be part of the change.

Many of the examples in this book use data outside the realm of "financial data."
Stock market data is used at no time in this book, and this decision was made
for three specific reasons.

Firstly, the examples that are shown demonstrate techniques that can usually easily
be applied to other datasets. Therefore, datasets were chosen that demonstrate some
common challenges that professionals, like yourselves, will face while also remaining
computationally tractable.

Secondly, financial data is fundamentally time dependent. To make this book useful
over a longer span of time, and to ensure that as machine learning becomes more
prominent, this book remains a vital part of your toolkit, we have used some non-
financial data so that the data discussed here will still be relevant.

Finally, using alternative and non-classical data aims to inspire you to think about
what other data you could use in your processes. Could you use drone footage of
plants to augment your grain price models? Could you use web browsing behavior
to offer different financial products? Thinking outside of the box is a necessary skill
to have if you want to make use of the data that is around you.

[31]
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What is machine learning?

"Machine learning is the subfield of computer science that gives
computers the ability to learn without being explicitly programmed."

- Arthur Samuel, 1959

What do we mean by machine learning? Most computer programs today are
handcrafted by humans. Software engineers carefully craft every rule that
governs how software behaves and then translate it into computer code.

If you are reading this as an eBook, take a look at your screen right now. Everything
that you see appears there because of some rule that a software engineer somewhere
crafted. This approach has gotten us quite far, but that's not to say there are no limits
to it. Sometimes, there might just be too many rules for humans to write. We might
not be able to think of rules since they are too complex for even the smartest
developers to come up with.

As a brief exercise, take a minute to come up with a list of rules that describe all dogs,
but clearly distinguish dogs from all other animals. Fur? Well, cats have fur, too.
What about a dog wearing a jacket? That is still a dog, just in a jacket. Researchers
have spent years trying to craft these rules, but they've had very little success.

Humans don't seem to be able to perfectly tell why something is a dog, but they
know a dog when they see a dog. As a species, we seem to detect specific, hard-
to-describe patterns that, in aggregate, let us classify an animal as a dog. Machine
learning attempts to do the same. Instead of handcrafting rules, we let a computer
develop its own rules through pattern detection.

There are different ways this can work, and we're now going to look at three
different types of learning: supervised, unsupervised, and reinforcement learning.

Supervised learning

Let's go back to our dog classifier. There are in fact many such classifiers currently
in use today. If you use Google images, for example, and search for "dog," it will use
an image classifier to show you pictures of dogs. These classifiers are trained under
a paradigm known as supervised learning,.
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Supervised learning

In supervised learning, we have a large number of training examples, such as images
of animals, and labels that describe what the expected outcome for those training
examples is. For example, the preceding figure would come with the label "dog,"
while an image of a cat would come with a label "not a dog."

If we have a high number of these labeled training examples, we can train a classifier
on detecting the subtle statistical patterns that differentiate dogs from all other animals.

‘\‘@ Note: The classifier does not know what a dog fundamentally is. It only

knows the statistical patterns that linked images to dogs in training.

If a supervised learning classifier encounters something that's very different from
the training data, it can often get confused and will just output nonsense.

Unsupervised learning

While supervised learning has made great advances over the last few years, most
of this book will focus on working with labeled examples. However, sometimes we
may not have labels. In this case, we can still use machine learning to find hidden
patterns in data.

r S

Clustering is a common form of unsupervised learning

[51]
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Imagine a company that has a number of customers for its products. These customers
can probably be grouped into different market segments, but what we don't know is
what the different market segments are. We also cannot ask customers which market
segment they belong to because they probably don't know. Which market segment
of the shampoo market are you? Do you even know how shampoo firms segment
their customers?

In this example, we would like an algorithm that looks at a lot of data
from customers and groups them into segments. This is an example of
unsupervised learning.

This area of machine learning is far less developed than supervised learning,
but it still holds great potential.

Reinforcement learning

In reinforcement learning, we train agents who take actions in an environment,
such as a self-driving car on the road. While we do not have labels, that is, we cannot
tell what the correct action is in any situation, we can assign rewards or punishments.
For example, we could reward keeping a proper distance from the car in front.

Action
Observation
Agent < Environment

\M//

Reinforcement learning

A driving instructor does not tell the student to "push the brake halfway down while
moving the steering wheel two degrees to the right," but rather they tell the student
whether they are doing well or not, while the student figures out the exact amount of
brakes to use.

Reinforcement learning has also made some remarkable progress in the past
couple of years and is considered by many to be a promising avenue toward
general artificial intelligence, that being computers that are as smart as humans.

[6]
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The unreasonable effectiveness of data

In 2009, three Google engineers published a landmark paper titled The unreasonable
effectiveness of data. In the paper, they described how relatively simple machine
learning systems that had been around for a long time had exhibited much better
performance when fed with the enormous amounts of data Google had on its
servers. In fact, they discovered that when fed with more data, these simple
systems could master tasks that had been thought to be impossible before.

From there, researchers quickly started revisiting old machine learning
technologies and found that artificial neural networks did especially well when
trained on massive datasets. This was around the same time that computing power
became cheap and plentiful enough to train much bigger networks than before.

These bigger artificial neural networks were so effective that they got a name: deep
neural networks, or deep learning. Deep neural networks are especially good at
pattern detection. They can find complex patterns, such as the statistical pattern

of light and dark that describes a face in a picture, and they can do so automatically
given enough data.

Machine learning is, therefore, best understood as a paradigm change in how we
program computers. Instead of carefully handcrafting rules, we feed the computer
vast amounts of information and train it to craft the rules by itself.

This approach is superior if there is a very large number of rules, or even if these
rules are difficult to describe. Modern machine learning is, therefore, the ideal tool for
combing through the huge amounts of data the financial industry is confronted with.

All models are wrong

There is a saying in statistics that all models are wrong, but some are useful. Machine
learning creates incredibly complex statistical models that are often, for example,
in deep learning, not interpretable to humans. They sure are useful and have great
value, but they are still wrong. This is because they are complex black boxes, and
people tend to not question machine learning models, even though they should
question them precisely because they are black boxes.

There will come a time when even the most sophisticated deep neural network will
make a fundamentally wrong prediction, just as the advanced Collateralized Debt
Obligation (CDO) models did in the financial crises of 2008. Even worse, black box
machine learning models, which will make millions of decisions on loan approval or
insurance, impacting everyday people's lives, will eventually make wrong decisions.

[71
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Sometimes they will be biased. Machine learning is ever only as good as the

data that we feed it, data that can often be biased in what it's showing, something
we'll consider later on in this chapter. This is something we must pay a lot of time
in addressing, as if we mindlessly deploy these algorithms, we will automate
discrimination too, which has the possibility of causing another financial crisis.

This is especially true in the financial industry, where algorithms can often have
a severe impact on people's lives while at the same time being kept secret. The
unquestionable, secret black boxes that gain their acceptance through the heavy
use of math pose a much bigger threat to society than the self-aware artificial
intelligence taking over the world that you see in movies.

While this is not an ethics book, it makes sense for any practitioner of the field

to get familiar with the ethical implications of his or her work. In addition to
recommending that you read Cathy O'Neil's Weapons of math destruction, it's also
worth asking you to swear The Modelers Hippocratic Oath. The oath was developed
by Emanuel Derman and Paul Wilmott, two quantitative finance researchers,

in 2008 in the wake of the financial crisis:

"I will remember that I didn't make the world, and it doesn't satisfy my equations.
Though I will use models boldly to estimate value, I will not be overly impressed

by mathematics. I will never sacrifice reality for elegance without explaining why

I have done so. Nor will I give the people who use my model false comfort about its
accuracy. Instead, I will make explicit its assumptions and oversights. I understand
that my work may have enormous effects on society and the economy, many of them
beyond my comprehension."

In recent years, machine learning has made a number of great strides, with
researchers mastering tasks that were previously seen as unsolvable. From
identifying objects in images to transcribing voice and playing complex board
games like Go, modern machine learning has matched, and continues to match
and even beat, human performance at a dazzling range of tasks.

Interestingly, deep learning is the method behind all these advances. In fact,

the bulk of advances come from a subfield of deep learning called deep neural
networks. While many practitioners are familiar with standard econometric models,
such as regression, few are familiar with this new breed of modeling.

The bulk of this book is devoted to deep learning. This is because it is one of the
most promising techniques for machine learning and will give anyone mastering
it the ability to tackle tasks considered impossible before.

In this chapter, we will explore how and why neural networks work in order
to give you a fundamental understanding of the topic.

[8]
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Setting up your workspace

Before we can start, you will need to set up your workspace. The examples

in this book are all meant to run in a Jupyter notebook. Jupyter notebooks are

an interactive development environment mostly used for data-science applications
and are considered the go-to environment to build data-driven applications in.

You can run Jupyter notebooks either on your local machine, on a server in the
cloud, or on a website such as Kaggle.

Note: All code examples for this book can be found here: https://
github.com/PacktPublishing/Machine-Learning-for-

Finance and for chapter 1 refer the following link: https: //www.

kaggle.com/jannesklaas/machine-learning-for-finance-
chapter-1-code.

Deep learning is computer intensive, and the data used in the examples throughout
this book are frequently over a gigabyte in size. It can be accelerated by the use of
Graphics Processing Units (GPUs), which were invented for rendering video and
games. If you have a GPU enabled computer, you can run the examples locally. If you
do not have such a machine, it is recommended to use a service such as Kaggle kernels.

Learning deep learning used to be an expensive endeavor because GPUs

are an expensive piece of hardware. While there are cheaper options available,
a powerful GPU can cost up to $10,000 if you buy it and about $0.80 an hour
to rent it in the cloud.

If you have many, long-running training jobs, it might be worth considering building
a "deep learning" box, a desktop computer with a GPU. There are countless tutorials
for this online and a decent box can be assembled for as little as a few hundred
dollars all the way to $5,000.

The examples in this book can all be run on Kaggle for free, though. In fact, they
have been developed using this site.

Using Kaggle kernels

Kaggle is a popular data-science website owned by Google. It started out with
competitions in which participants had to build machine learning models in order
to make predictions. However, over the years, it has also had a popular forum,

an online learning system and, most importantly for us, a hosted Jupyter service.

To use Kaggle, you can visit their website at https://www.kaggle.com/. In order
to use the site, you will be required to create an account.

[o]
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After you've created your account, you can find the Kernels page by clicking
on Kernels located in the main menu, as seen in the following screenshot:

@ @ K Kemels | Kaggle * e

« C' @ Secure https:;//www.kaggle.com/kernels w* 0O 2

Search kaggle Ch: Competitions Datasets Kernels Discussion Learn

Kernels

We're awarding $500 to authors of high quality kernels on Datasets each week. @
Click here to learn how to win. %

Public Your Wark Favorites Sorthy Hotness -

Categories +*  Outputs + Languages ~ Types v Search kernels Q

328 _; @ Tltamc 2nd degree families and majority voting - Rmd 151
. 5m age in Titanic: Machine Learning from Disaster ® o.81818 % eda, data visualizati... - o S
.-

Titanic: Machine Learning from Disaster % learning, tutorial, beginner

466 ﬁ @ ﬂead Start for Data Scientist =

-

12 @ Kaggle-runnable version of Baris Kanber's LightGEM . = »

n TalkingData AdTracking Fraud Detection Challenge @ 0.9761

@ S;mpsnns World Revealed

n The Simpsons by the Data % animation, tutorial, beginner, nlp, data visuali...

51
Public Kaggle kernels

In the preceding screenshot, you can see a number of kernels that other people have
both written and published. Kernels can be private, but publishing kernels is a good
way to show skills and share knowledge.

To start a new kernel, click New Kernel. In the dialog that follows, you want to select
Notebook:

[10]
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k Machine Leamlng For Finance - Chapter 1 Code ¢ rddDataset [P 5 N
File Edt lssert Run Help
\ Upload Notebook 1 “
Machine Learning For Finance - Chapter 1 EJ
Publish Notebook s
This Kernel contains the code samples for the chapter 1 of my Machine Le, Finance book. Nete that the criginal text feature far more

text, explanations and figures. This notebook only features the code and some rel ated comments. If you enjoy this content, take a look at the
book Workspace -~

nput

Markdown Cell input
A logistic regressor / o A

B Jannes Kiaas's draft

inds of values into punt to pN‘dICl the I|h|nd of default, the debtor's salary, whether she has a car, the Ve
security of her job, etc.. but the likelihood will always be a value between zero and one. Even the worst debtor ever cannot have a default . v

likelihood abowe 100% and the best cannot go below 0%, . v 13 L

We will use a library called numgy which enables easy and fast matrix operations in Python. To ensure we get the same result in all of our Settings ~
experiments, we have 1o set a random seed,

saport ey 88 np *-'Code Cell

np.randoa.seed(1)

Cansole ® Draft Session

The kernel editor
You will get to the kernel editor, which looks like the preceding screenshot.

Note that Kaggle is actively iterating on the kernel design, and so a few elements
might be in different positions, but the basic functionality is the same. The most
important piece of a notebook is the code cells. Here you can enter the code and
run it by clicking the run button on the bottom left, or alternatively by pressing
Shift + Enter.

The variables you define in one cell become environment variables, so you can access
them in another cell. Markdown cells allow you to write text in markdown format to
add a description to what is going on in your code. You can upload and download
notebooks with the little cloud buttons featured in the top-right corner.

To publish a notebook from the kernel editor, firstly you must click the Commit

& Run button and then set the notebook to Public in the settings. To enable a GPU
on your notebook, make sure to check the Enable GPU button located in the bottom
right. It's important to remember that this will restart your notebook, so your
environment variables will be lost.

Once you run the code, the run button turns into a stop button. If your code ever
gets stuck, you can interrupt it by clicking that stop button. If you want to wipe
all environment variables and begin anew, simply click the restart button located
in the bottom-right corner.

With this system, you can connect a kernel to any dataset hosted on Kaggle, or
alternatively you can just upload a new dataset on the fly. The notebooks belonging
to this book already come with the data connection.

[11]
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Kaggle kernels come with the most frequently used packages preinstalled, so for
most of the time you do not have to worry about installing packages.

Sometimes this book does use custom packages not installed in Kaggle by default.
In this case, you can add custom packages at the bottom of the Settings menu.
Instructions for installing custom packages will be provided when they are used
in this book.

Kaggle kernels are free to use and can save you a lot of time and money, so it's
recommended to run the code samples on Kaggle. To copy a notebook, go to the
link provided at the beginning of the code section of each chapter and then click
Fork Notebook. Note that Kaggle kernels can run for up to six hours.

Running notebooks locally

If you have a machine powerful enough to run deep learning operations, you
can run the code samples locally. In that case, it's strongly recommended to install
Jupyter through Anaconda.

To install Anaconda, simply visit https://www.anaconda.com/download to
download the distribution. The graphical installer will guide you through the steps
necessary to install Anaconda on your system. When installing Anaconda, you'll
also install a range of useful Python libraries such as NumPy and matplotlib, which
will be used throughout this book.

After installing Anaconda, you can start a Jupyter server locally by opening your
machine's Terminal and typing in the following code:

$ jupyter notebook

You can then visit the URL displayed in the Terminal. This will take you to your
local notebook server.

To start a new notebook, click on New in the top-right corner.

All code samples in this book use Python 3, so make sure you are using Python

3 in your local notebooks. If you are running your notebooks locally, you will also
need to install both TensorFlow and Keras, the two deep learning libraries used
throughout this book.

Installing TensorFlow

Before installing Keras, we need to first install TensorFlow. You can install
TensorFlow by opening a Terminal window and entering the following command:

$ sudo pip install TensorFlow

[12]
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For instructions on how to install TensorFlow with GPU support, simply click on this
link, where you will be provided with the instructions for doing so: https: //www.
tensorflow.org/.

It's worth noting that you will need a CUDA-enabled GPU in order to run
TensorFlow with CUDA. For instructions on how to install CUDA, visit https://
docs.nvidia.com/cuda/index.html.

Installing Keras

After you have installed TensorFlow, you can install Keras in the same way,
by running the following command:

$ sudo pip install Keras

Keras will now automatically use the TensorFlow backend. Note that TensorFlow 1.7
will include Keras built in, which we'll cover this later on in this chapter.

Using data locally

To use the data of the book code samples locally, visit the notebooks on Kaggle and
then download the connected datasets from there. Note that the file paths to the data
will change depending on where you save the data, so you will need to replace the
file paths when running notebooks locally.

Kaggle also offers a command-line interface, which allows you to download the
data more easily. Visit https://github.com/Kaggle/kaggle-api for instructions
on how to achieve this.

Using the AWS deep learning AMI

Amazon Web Services (AWS) provides an easy-to-use, preconfigured way to run
deep learning in the cloud.

Visit https://aws.amazon.com/machine-learning/amis/ for instructions

on how to set up an Amazon Machine Image (AMI). While AMIs are paid, they can
run longer than Kaggle kernels. So, for big projects, it might be worth using an AMI
instead of a kernel.

To run the notebooks for this book on an AM], first set up the AMI, then download
the notebooks from GitHub, and then upload them to your AMI. You will have

to download the data from Kaggle as well. See the Using data locally section for
instructions.

[13]
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Approximating functions

There are many views on how best to think about neural networks, but perhaps the
most useful is to see them as function approximators. Functions in math relate some
input, x, to some output, y. We can write it as the following formula:

y=f(x)

A simple function could be like this:

f (x) =4xx
In this case, we can give the function an input, x, and it would quadruple it:
y=r(2)=8

You might have seen functions like this in school, but functions can do more;
as an example, they can map an element from a set (the collection of values the
function accepts) to another element of a set. These sets can be something other
than simple numbers.

A function could, for example, also map an image to an identification of what is in
the image:

imageContent = f (image)

This function would map an image of a cat to the label "cat," as we can see in the
following diagram:

[14]
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Set of images Set of content

imageContent = f(image)

Dog

Cat

Mapping images to labels

We should note that for a computer, images are matrices full of numbers and any
description of an image's content would also be stored as a matrix of numbers.

A neural network, if it is big enough, can approximate any function. It has been
mathematically proven that an indefinitely large network could approximate every
function. While we don't need to use an indefinitely large network, we are certainly
using very large networks.

Modern deep learning architectures can have tens or even hundreds of layers and
millions of parameters, so only storing the model already takes up a few gigabytes.
This means that a neural network, if it's big enough, could also approximate our
function, f, for mapping images to their content.

The condition that the neural network has to be "big enough" explains why deep
(big) neural networks have taken off. The fact that "big enough" neural networks
can approximate any function means that they are useful for a large number of tasks.

[15]
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A forward pass

Over the course of this book, we will build powerful neural networks that are able

to approximate extremely complex functions. We will be mapping text to named
entities, images to their content, and even news articles to their summaries. But for
now, we will work with a simple problem that can be solved with logistic regression,
a popular technique used in both economics and finance.

We will be working with a simple problem. Given an input matrix, X, we want to
output the first column of the matrix, X,. In this example, we will be approaching the
problem from a mathematical perspective in order to gain some intuition for what is
going on.

Later on in this chapter, we will implement what we have described in Python. We
already know that we need data to train a neural network, and so the data, seen here,
will be our dataset for the exercise:

P

—_
¥
w

o Rr R ol
R R o |
==

S R R O |«

In the dataset, each row contains an input vector, X, and an output, y.

The data follows the formula:

y=X,

The function we want to approximate is as follows:
S (X ) =X,

In this case, writing down the function is relatively straightforward. However, keep
in mind that in most cases it is not possible to write down the function, as functions
expressed by deep neural networks can become very complex.

For this simple function, a shallow neural network with only one layer will
be enough. Such shallow networks are also called logistic regressors.

[16]
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A logistic regressor

As we just explained, the simplest neural network is a logistic regressor. A logistic
regression takes in values of any range but only outputs values between zero
and one.

There is a wide range of applications where logistic regressors are suitable. One
such example is to predict the likelihood of a homeowner defaulting on a mortgage.

We might take all kinds of values into account when trying to predict the likelihood
of someone defaulting on their payment, such as the debtor's salary, whether they
have a car, the security of their job, and so on, but the likelihood will always be

a value between zero and one. Even the worst debtor ever cannot have a default
likelihood above 100%, and the best cannot go below 0%.

The following diagram shows a logistic regressor. X is our input vector; here
it's shown as three components, X, X,, and X..

W is a vector of three weights. You can imagine it as the thickness of each of the
three lines. W determines how much each of the values of X goes into the next
layer. b is the bias, and it can move the output of the layer up or down:

X, [2=X W+b
~— A=a(z)
X3 . .

Logistic regressor

To compute the output of the regressor, we must first do a linear step. We compute
the dot product of the input, X, and the weights, V. This is the same as multiplying
each value of X with its weight and then taking the sum. To this number, we then
add the bias, b. Afterward, we do a nonlinear step.

[17]
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In the nonlinear step, we run the linear intermediate product, z, through an
activation function; in this case, the sigmoid function. The sigmoid function
squishes the input values to outputs between zero and one:

The Sigmoid function

Python version of our logistic regressor

If all the preceding math was a bit too theoretical for you, rejoice! We will now
implement the same thing, but this time with Python. In our example, we will be using
a library called NumPy, which enables easy and fast matrix operations within Python.

NumPy comes preinstalled with Anaconda and on Kaggle kernels. To ensure we get
the same result in all of our experiments, we have to set a random seed. We can do
this by running the following code:

import numpy as np
np.random.seed (1)

Since our dataset is quite small, we'll define it manually as NumPy matrices, as we
can see here:

X = np.array([[0,1,0],
[1,0,0],
[1,1,171,
(0,1,111)

y = np.array([[0,1,1,0]]).T

[18]
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We can define the sigmoid, which squishes all the values into values between
0 and 1, through an activation function as a Python function:

def sigmoid (x) :
return 1/ (1+np.exp (-x))

So far, so good. We now need to initialize W. In this case, we actually know already
what values W should have. But we cannot know about other problems where we
do not know the function yet. So, we need to assign weights randomly.

The weights are usually assigned randomly with a mean of zero, and the bias

is usually set to zero by default. NumPy's random function expects to receive the
shape of the random matrix to be passed on as a tuple, so random( (3, 1)) creates
a 3x1 matrix. By default, the random values generated are between 0 and 1, with
a mean of 0.5 and a standard deviation of 0.5.

We want the random values to have a mean of 0 and a standard deviation of 1, so
we first multiply the values generated by 2 and then subtract 1. We can achieve this
by running the following code:

W = 2*np.random.random( (3,1)) - 1
b =20

With that done, all the variables are set. We can now move on to do the linear step,
which is achieved with the following;:

z = X.dot (W) + b

Now we can do the nonlinear step, which is run with the following:
A = sigmoid(z)

Now, if we print out &, we'll get the following output:

print (A)

.60841366]
.45860596]
.3262757 1]
.36375058]1
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But wait! This output looks nothing like our desired output, y, at all! Clearly,
our regressor is representing some function, but it's quite far away from the
function we want.

To better approximate our desired function, we have to tweak the weights, IV, and
the bias, b. To this end, in the next section, we will optimize the model parameters.
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Optimizing model parameters

We've already seen that we need to tweak the weights and biases, collectively
called the parameters, of our model in order to arrive at a closer approximation
of our desired function.

In other words, we need to look through the space of possible functions that can
be represented by our model in order to find a function, 7, that matches our desired
function, f, as closely as possible.

But how would we know how close we are? In fact, since we don't know f, we
cannot directly know how close our hypothesis, 7, is to f. But what we can do is
measure how well 7's outputs match the output of f. The expected outputs of f
given X are the labels, y. So, we can try to approximate f by finding a function, /,
whose outputs are also y given X.

We know that the following is true:
f(X)=y

We also know that:

We can try to find f by optimizing using the following formula:

minimize D (y, )7)
JER

Within this formula, # is the space of functions that can be represented by our
model, also called the hypothesis space, while D is the distance function, which
we use to evaluate how close j and y are.

Note: This approach makes a crucial assumption that our data, X, and

labels, y, represent our desired function, f. This is not always the case.
s When our data contains systematic biases, we might gain a function

that fits our data well but is different from the one we wanted.

An example of optimizing model parameters comes from human resource
management. Imagine you are trying to build a model that predicts the likelihood
of a debtor defaulting on their loan, with the intention of using this to decide who
should get a loan.

[20]
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As training data, you can use loan decisions made by human bank managers over
the years. However, this presents a problem as these managers might be biased. For
instance, minorities, such as black people, have historically had a harder time getting
aloan.

With that being said, if we used that training data, our function would also present
that bias. You'd end up with a function mirroring or even amplifying human biases,
rather than creating a function that is good at predicting who is a good debtor.

It is a commonly made mistake to believe that a neural network will find the intuitive
function that we are looking for. It'll actually find the function that best fits the data
with no regard for whether that is the desired function or not.

Measuring model loss

We saw earlier how we could optimize parameters by minimizing some distance
function, D. This distance function, also called the loss function, is the performance
measure by which we evaluate possible functions. In machine learning, a loss
function measures how bad the model performs. A high loss function goes hand in
hand with low accuracy, whereas if the function is low, then the model is doing well.

In this case, our issue is a binary classification problem. Because of that, we will
be using the binary cross-entropy loss, as we can see in the following formula:

Dy (y,f/) = _%Zi/:[yilog(j}i>+<1_yi>log(l_.)’>i>]

Let's go through this formula step by step:

* D, This is the distance function for binary cross entropy loss.

1 N
. EZ i=1: The loss over a batch of N examples is the average loss of all examples.

*  yxlog(y): This part of the loss only comes into play if the true value, v is 1. If
y,is 1, we want 7, to be as close to 1 as possible, so we can achieve a low loss.

. (1=p)log(l-3) : This part of the loss comes into play if y, is 0. If so, we want
¥, to be close to 0 as well.

In Python, this loss function is implemented as follows:

def bce loss(y,y _hat):
N = y.shape[0]
loss = -1/N * (y*np.log(y hat) + (1 - y)*np.log(l-y hat))
return loss
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The output, &, of our logistic regressor is equal to 7, so we can calculate the binary
cross-entropy loss as follows:

loss = bce loss(y,A)
print (loss)

out:

0.82232258208779863

As we can see, this is quite a high loss, so we should now look at seeing how we can
improve our model. The goal here is to bring this loss to zero, or at least to get closer
to zero.

You can think of losses with respect to different function hypotheses as a surface,
sometimes also called the "loss surface." The loss surface is a lot like a mountain
range, as we have high points on the mountain tops and low points in valleys.

Our goal is to find the absolute lowest point in the mountain range: the deepest
valley, or the "global minimum." A global minimum is a point in the function
hypothesis space at which the loss is at the lowest point.

A "local minimum," by contrast, is the point at which the loss is lower than in the
immediately surrounding space. Local minima are problematic because while they
might seem like a good function to use at face value, there are much better functions
available. Keep this in mind as we now walk through gradient descent, a method for
finding a minimum in our function space.

Gradient descent

Now that we know what we judge our candidate models, /, by, how do we tweak
the parameters to obtain better models? The most popular optimization algorithm
for neural networks is called gradient descent. Within this method, we slowly move
along the slope, the derivative, of the loss function.

Imagine you are in a mountain forest on a hike, and you're at a point where you've
lost the track and are now in the woods trying to find the bottom of the valley. The
problem here is that because there are so many trees, you cannot see the valley's
bottom, only the ground under your feet.

Now ask yourself this: how would you find your way down? One sensible approach
would be to follow the slope, and where the slope goes downwards, you go. This is
the same approach that is taken by a gradient descent algorithm.

To bring it back to our focus, in this forest situation the loss function is the
mountain, and to get to a low loss, the algorithm follows the slope, that is, the
derivative, of the loss function. When we walk down the mountain, we are updating
our location coordinates.

[22]
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The algorithm updates the parameters of the neural network, as we are seeing in the
following diagram:

0.0 —

Gradient descent

Gradient descent requires that the loss function has a derivative with respect to
the parameters that we want to optimize. This will work well for most supervised
learning problems, but things become more difficult when we want to tackle
problems for which there is no obvious derivative.

Gradient descent can also only optimize the parameters, weights, and biases of

our model. What it cannot do is optimize how many layers our model has or which
activation functions it should use, since there is no way to compute the gradient with
respect to model topology.

These settings, which cannot be optimized by gradient descent, are called
hyperparameters and are usually set by humans. You just saw how we gradually
scale down the loss function, but how do we update the parameters? To this end,
we're going to need another method called backpropagation.

Backpropagation
Backpropagation allows us to apply gradient descent updates to the parameters of

a model. To update the parameters, we need to calculate the derivative of the loss
function with respect to the weights and biases.

[23]
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If you imagine the parameters of our models are like the geo-coordinates in our
mountain forest analogy, calculating the loss derivative with respect to a parameter
is like checking the mountain slope in the direction north to see whether you should
go north or south.

The following diagram shows the forward and backward pass through a logistic

regressor:
™ i ™
z=X-W+b A=o0(z)
\ / .
' R 4
dW:% *XT . dz
dz=A -y
- 1 £
db = Ezctz
S/ . /

Forward and backward pass through a logistic regressor

To keep things simple, we refer to the derivative of the loss function to any variable
as the d variable. For example, we'll write the derivative of the loss function with
respect to the weights as dIV.

To calculate the gradient with respect to different parameters of our model,
we can make use of the chain rule. You might remember the chain rule as the
following;:

(£(g(x) =g(x) *1"(g(x))

This is also sometimes written as follows:

dy _ dydu
dx  du dx
[24]
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The chain rule basically says that if you want to take the derivative through
a number of nested functions, you multiply the derivative of the inner function
with the derivative of the outer function.

This is useful because neural networks, and our logistic regressor, are nested
functions. The input goes through the linear step, a function of input, weights, and
biases; and the output of the linear step, z, goes through the activation function.

So, when we compute the loss derivative with respect to weights and biases, we'll
first compute the loss derivative with respect to the output of the linear step, z, and
use it to compute dW. Within the code, it looks like this:

dz = (A - vy)

aw 1/N * np.dot (X.T,dz)

db

1/N * np.sum(dz,axis=0,keepdims=True)

Parameter updates

Now we have the gradients, how do we improve our model? Going back to our
mountain analogy, now that we know that the mountain goes up in the north
and east directions, where do we go? To the south and west, of course!

Mathematically speaking, we go in the opposite direction to the gradient. If the
gradient is positive with respect to a parameter, that is, the slope is upward, then
we reduce the parameter. If it is negative, that is, downward sloping, we increase
it. When our slope is steeper, we move our gradient more.

The update rule for a parameter, p, then goes like this:

p=p—axdp
Here p is a model parameter (either in weight or a bias), dp is the loss derivative with
respect to p, and « is the learning rate.

The learning rate is something akin to the gas pedal within a car. It sets by how much
we want to apply the gradient updates. It is one of those hyperparameters that we
have to set manually, and something we will discuss in the next chapter.

Within the code, our parameter updates look like this:

alpha = 1
W -= alpha * dwW
b -= alpha * db

[25]
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Putting it all together

Well done! We've now looked at all the parts that are needed in order to train
a neural network. Over the next few steps in this section, we will be training
a one-layer neural network, which is also called a logistic regressor.

Firstly, we'll import numpy before we define the data. We can do this by running the
following code:

import numpy as np
np.random. seed (1)

X = np.array([[0,1,0],
[1,0,0],
(1,1,11,
[

0,1,111)

y = np.array([[0,1,1,0]]).T

The next step is for us to define the sigmoid activation function and loss function,
which we can do with the following code:

def sigmoid(x) :
return 1/ (l+np.exp(-x))

def bce loss(y,y hat):
N = y.shape[0]
loss = -1/N * np.sum((y*np.log(y hat) + (1 - y)*np.log(l-y hat)))
return loss

We'll then randomly initialize our model, which we can achieve with the
following code:

W = 2*np.random.random((3,1)) - 1
b =20

As part of this process, we also need to set some hyperparameters. The first one

is alpha, which we will just set to 1 here. Alpha is best understood as the step size.
A large alpha means that while our model will train quickly, it might also overshoot
the target. A small alpha, in comparison, allows gradient descent to tread more
carefully and find small valleys it would otherwise shoot over.

The second one is the number of times we want to run the training process, also
called the number of epochs we want to run. We can set the parameters with the
following code:

alpha = 1
epochs = 20

[26]
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Since it is used in the training loop, it's also useful to define the number of samples in
our data. We'll also define an empty array in order to keep track of the model's losses
over time. To achieve this, we simply run the following:

N = y.shape[0]
losses = []

Now we come to the main training loop:

for i in range (epochs) :
# Forward pass
z = X.dot (W) + Db
A = sigmoid(z)

# Calculate loss

loss = bce loss(y,A)

print ('Epoch:',i, 'Loss:',loss)
losses.append (loss)

# Calculate derivatives

dz = (A - vy)

dw = 1/N * np.dot(X.T,dz)

db = 1/N * np.sum(dz,axis=0,keepdims=True)

+H

Parameter updates
-= alpha * dw
b -= alpha * db

=

As a result of running the previous code, we would get the following output:

out:

Epoch: 0 Loss: 0.822322582088
Epoch: 1 Loss: 0.722897448125
Epoch: 2 Loss: 0.646837651208
Epoch: 3 Loss: 0.584116122241
Epoch: 4 Loss: 0.530908161024
Epoch: 5 Loss: 0.48523717872
Epoch: 6 Loss: 0.445747750118
Epoch: 7 Loss: 0.411391164148
Epoch: 8 Loss: 0.381326093762

Epoch: 9 Loss: 0.354869998127
Epoch: 10 Loss: 0.331466036109
Epoch: 11 Loss: 0.310657702141

[27]
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Epoch: 12 Loss: 0.292068863232
Epoch: 13 Loss: 0.275387990352
Epoch: 14 Loss: 0.260355695915
Epoch: 15 Loss: 0.246754868981
Epoch: 16 Loss: 0.234402844624
Epoch: 17 Loss: 0.22314516463
0.21285058467
0

.203407060401

Epoch: 18 Loss:
Epoch: 19 Loss:

You can see that over the course of the output, the loss steadily decreases, starting
at 0.822322582088 and ending at 0.203407060401.

We can plot the loss to a graph in order to give us a better look at it. To do this,
we can simply run the following code:

import matplotlib.pyplot as plt
plt.plot (losses)

plt.xlabel ('epoch')

plt.ylabel ('loss"')

plt.show ()

This will then output the following chart:

0.8 A

0.7 A

05 1

loss

05

04 4

0.3 4

0.2 1

00 25 50 75 100 125 150 175
epoch

The output of the previous code, showing loss rate improving over time
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A deeper network

We established earlier in this chapter that in order to approximate more complex
functions, we need bigger and deeper networks. Creating a deeper network works
by stacking layers on top of each other.

In this section, we will build a two-layer neural network like the one seen in the
following diagram:

b b, |

Sketch of a two-layer neural network

The input gets multiplied with the first set of weights, W, producing an intermediate
product, z,. This is then run through an activation function, which will produce
the first layer's activations, A.

These activations then get multiplied with the second layer of weights, IV,
producing an intermediate product, z,. This gets run through a second activation
function, which produces the output, A,, of our neural network:

zl = X.dot (W1) + bl
al = np.tanh(zl)
z2 = al.dot (W2) + b2

a2 = sigmoid(z2)

Note: The full code for this example can be found in the GitHub
=" repository belonging to this book.

[29]

EBSCChost - printed on 2/9/2023 5:58 AMvia . All use subject to https://wmv ebsco.coniterns-of-use



EBSCChost -

Neural Networks and Gradient-Based Optimization

As you can see, the first activation function is not a sigmoid function but is actually
a tanh function. Tanh is a popular activation function for hidden layers and works

a lot like sigmoid, except that it squishes values in the range between -1 and 1 rather
than 0 and 1:

&)
n
-
rab

The tanh function

Backpropagation through our deeper network works by the chain rule, too. We go
back through the network and multiply the derivatives:

z=X-W +b Ay = tanh(z;) z=A - W+ by Az = a(z)

fl—\ ' ' 1 s Y
AWy, =—XT - dz, dW, =—A] - dz,
m ‘le m

= dzy - W] = tanh'(4;) dz; = (A = y)

1 1
db; = ;erz, db, = EZdzz

S — . .

Forward and backward pass through a two-layer neural network

The preceding equations can be expressed as the following Python code:

# Calculate loss derivative with respect to the output
dz2 = bce derivative(y=y,y hat=a2)

# Calculate loss derivative with respect to second layer weights
dw2 = (al.T) .dot (dz2)

[30]
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# Calculate loss derivative with respect to second layer bias
db2 = np.sum(dz2, axis=0, keepdims=True)

# Calculate loss derivative with respect to first layer
dzl = dz2.dot (W2.T) * tanh derivative(al)

# Calculate loss derivative with respect to first layer weights
dWl = np.dot(X.T, dzl)

# Calculate loss derivative with respect to first layer bias
dbl = np.sum(dzl, axis=0)

Note that while the size of the inputs and outputs are determined by your problem,
you can freely choose the size of your hidden layer. The hidden layer is another
hyperparameter you can tweak. The bigger the hidden layer size, the more complex
the function you can approximate. However, the flip side of this is that the model
might overfit. That is, it may develop a complex function that fits the noise but not
the true relationship in the data.

Take a look at the following chart. What we see here is the two moons dataset that
could be clearly separated, but right now there is a lot of noise, which makes the
separation hard to see even for humans. You can find the full code for the two-
layer neural network as well as for the generation of these samples in the Chapter 1
GitHub repo:

.
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The two moons dataset
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The following diagram shows a visualization of the decision boundary, that is, the
line at which the model separates the two classes, using a hidden layer size of 1:

-2 -1 o 1 2
Decision boundary for hidden layer size 1
As you can see, the network does not capture the true relationship of the data.

This is because it's too simplistic. In the following diagram, you will see the decision
boundary for a network with a hidden layer size of 500:

-2 -1 0 1 2

Decision boundary for hidden layer size 500

[32]

printed on 2/9/2023 5:58 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use



Chapter 1

This model clearly fits the noise, but not the moons. In this case, the right hidden
layer size is about 3.

Finding the right size and the right number of hidden layers is a crucial part of
designing effective learning models. Building models with NumPy is a bit clumsy
and can be very easy to get wrong. Luckily, there is a much faster and easier tool
for building neural networks, called Keras.

A brief introduction to Keras

Keras is a high-level neural network API that can run on top of TensorFlow,

a library for dataflow programming. What this means is that it can run the
operations needed for a neural network in a highly optimized way. Therefore, it's
much faster and easier to use than TensorFlow. Because Keras acts as an interface
to TensorFlow, it makes it easier to build even more complex neural networks.
Throughout the rest of the book, we will be working with the Keras library in order
to build our neural networks.

Importing Keras

When importing Keras, we usually just import the modules we will use. In this case,
we need two types of layers:

* The Dense layer is the plain layer that we have gotten to know in this chapter

* The Activation layer allows us to add an activation function
We can import them simply by running the following code:
from keras.layers import Dense, Activation

Keras offers two ways to build models, through the sequential and the functional
APIs. Because the sequential API is easier to use and allows more rapid model
building, we will be using it for most of the book. However, in later chapters,

we will take a look at the functional API as well.

We can access the sequential API through this code:

from keras.models import Sequential

A two-layer model in Keras

Building a neural network in the sequential API works as follows.

[33]
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Stacking layers

Firstly, we create an empty sequential model with no layers:

model = Sequential ()

Then we can add layers to this model, just like stacking a layer cake, with
model.add ().

For the first layer, we have to specify the input dimensions of the layer. In our case,
the data has two features, the coordinates of the point. We can add a hidden layer of
size 3 with the following code:

model .add (Dense (3, input dim=2))

Note how we nest the functions inside model.add (). We specify the Dense layer,
and the positional argument is the size of the layer. This Dense layer now only
does the linear step.

To add a tanh activation function, we call the following:
model.add (Activation('tanh'))

Then, we add the linear step and the activation function of the output layer in the
same way, by calling up:

model.add (Dense (1))
model.add (Activation('sigmoid'))

Then to get an overview of all the layers we now have in our model, we can use the
following command:

model . summary ()

This yields the following overview of the model:

out:

Layer (type) Output Shape Param #
activation 3 (Activation) (None, 3) 0
dense 4 (Dense) (None, 1) 4
activation 4 (Activation) (None, 1) 0
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Total params: 13
Trainable params: 13

Non-trainable params: 0

You can see the layers listed nicely, including their output shape and the number of
parameters the layer has. None, located within the output shape, means that the layer
has no fixed input size in that dimension and will accept whatever we feed it. In our
case, it means the layer will accept any number of samples.

In pretty much every network, you will see that the input dimension on the first
dimension is variable like this in order to accommodate the different amounts
of samples.

Compiling the model

Before we can start training the model, we have to specify how exactly we want
to train the model; and, more importantly, we need to specify which optimizer and
which loss function we want to use.

The simple optimizer we have used so far is called the Stochastic Gradient
Descent, or SGD. To look at more optimizers, see Chapter 2, Applying Machine
Learning to Structured Data.

The loss function we use for this binary classification problem is called binary
cross-entropy. We can also specify what metrics we want to track during training.
In our case, accuracy, or just acc to keep it short, would be interesting to track:

model.compile (optimizer="'sgd',
loss='binary crossentropy',
metrics=['acc'])

Training the model

Now we are ready to run the training process, which we can do with the following
line:

history = model.fit (X,y,epochs=900)

This will train the model for 900 iterations, which are also referred to as epochs.
The output should look similar to this:

Epoch 1/900

200/200 [==============================] - 0s 543us/step -
loss: 0.6840 - acc: 0.5900

Epoch 2/900

[35]
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200/200 [==============z=================] - 0s 60us/step -
loss: 0.6757 - acc: 0.5950

Epoch 899/900

200/200 [==============================] - 0s 90us/step -
loss: 0.2900 - acc: 0.8800

Epoch 900/900

200/200 [==============================] - 0s 87us/step -
loss: 0.2901 - acc: 0.8800

The full output of the training process has been truncated in the middle, this is to
save space in the book, but you can see that the loss goes continuously down while
accuracy goes up. In other words, success!

Over the course of this book, we will be adding more bells and whistles to these
methods. But at this moment, we have a pretty solid understanding of the theory of
deep learning. We are just missing one building block: how does Keras actually work
under the hood? What is TensorFlow? And why does deep learning work faster on
aGPU?

We will be answering these questions in the next, and final, section of this chapter.

Keras and TensorFlow

Keras is a high-level library and can be used as a simplified interface to TensorFlow.
That means Keras does not do any computations by itself; it is just a simple way
to interact with TensorFlow, which is running in the background.

TensorFlow is a software library developed by Google and is very popular for deep
learning. In this book, we usually try to work with TensorFlow only through Keras,
since that is easier than working with TensorFlow directly. However, sometimes
we might want to write a bit of TensorFlow code in order to build more advanced
models.

The goal of TensorFlow is to run the computations needed for deep learning as
quickly as possible. It does so, as the name gives away, by working with tensors in a
data flow graph. Starting in version 1.7, Keras is now also a core part of TensorFlow.

So, we could import the Keras layers by running the following:

from tensorflow.keras.layers import Dense, Activation

[36]
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This book will treat Keras as a standalone library. However, you might want to use
a different backend for Keras one day, as it keeps the code cleaner if we have shorter
import statements.

Tensors and the computational graph

Tensors are arrays of numbers that transform based on specific rules. The simplest
kind of tensor is a single number. This is also called a scalar. Scalars are sometimes
referred to as rank-zero tensors.

The next tensor is a vector, also known as a rank-one tensor. The next The next ones
up the order are matrices, called rank-two tensors; cube matrices, called rank-three
tensors; and so on. You can see the rankings in the following table:

Rank | Name Expresses

0 Scalar Magnitude

1 Vector Magnitude and Direction
2 Matrix Table of numbers

3 Cube Matrix Cube of numbers

n n-dimensional matrix | You get the idea

This book mostly uses the word tensor for rank-three or higher tensors.

TensorFlow and every other deep learning library perform calculations along
a computational graph. In a computational graph, operations, such as matrix
multiplication or an activation function, are nodes in a network. Tensors get
passed along the edges of the graph between the different operations.

A forward pass through our simple neural network has the following graph:

Matrix Multiplication Matrix Multiplication

O-0-O-

ivation Functien Activatien Fungtien

A simple computational graph

[37]
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The advantage of structuring computations as a graph is that it's easier to run nodes
in parallel. Through parallel computation, we do not need one very fast machine; we
can also achieve fast computation with many slow computers that split up the tasks.

This is the reason why GPUs are so useful for deep learning. GPUs have many small
cores, as opposed to CPUs, which only have a few fast cores. A modern CPU might
only have four cores, whereas a modern GPU can have hundreds or even thousands
of cores.

The entire graph of just a very simple model can look quite complex, but you can
see the components of the dense layer. There is a matrix multiplication (matmul),
adding bias and a ReLU activation function:

dense_1

kernel

random_uniform

The computational graph of a single layer in TensorFlow. Screenshot from TensorBoard.
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Another advantage of using computational graphs such as this is that TensorFlow
and other libraries can quickly and automatically calculate derivatives along this
graph. As we have explored throughout this chapter, calculating derivatives is key
for training neural networks.

Exercises

Now that we have finished the first chapter in this exciting journey, I've got
a challenge for you! You'll find some exercises that you can do that are all
themed around what we've covered in this chapter!

So, why not try to do the following;:

1. Expand the two-layer neural network in Python to three layers.

2. Within the GitHub repository, you will find an Excel file called 1 Excel
Exercise. The goal is to classify three types of wine by their cultivar data.
Build a logistic regressor to this end in Excel.

3. Build a two-layer neural network in Excel.
Play around with the hidden layer size and learning rate of the 2-layer neural

network. Which options offer the lowest loss? Does the lowest loss also
capture the true relationship?

Summary

And that's it! We've learned how neural networks work. Throughout the rest of this
book, we'll look at how to build more complex neural networks that can approximate
more complex functions.

As it turns out, there are a few tweaks to make to the basic structure for it to work
well on specific tasks, such as image recognition. The basic ideas introduced in
this chapter, however, stay the same:

* Neural networks function as approximators
*  We gauge how well our approximated function, f°, performs through a loss
function

* Parameters of the model are optimized by updating them in the opposite
direction of the derivative of the loss function with respect to the parameter

* The derivatives are calculated backward through the model using the chain
rule in a process called backpropagation

[39]
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The key takeaway from this chapter is that while we are looking for function f, we
can try and find it by optimizing a function to perform like f on a dataset. A subtle
but important distinction is that we do not know whether 7 works like fat all. An
often-cited example is a military project that tried to use deep learning to spot tanks
within images. The model trained well on the dataset, but once the Pentagon wanted
to try out their new tank spotting device, it failed miserably.

In the tank example, it took the Pentagon a while to figure out that in the dataset they
used to develop the model, all the pictures of the tanks were taken on a cloudy day
and pictures without a tank where taken on a sunny day. Instead of learning to spot
tanks, the model had learned to spot grey skies instead.

This is just one example of how your model might work very differently to how you
think, or even plan for it to do. Flawed data might seriously throw your model off
track, sometimes without you even noticing. However, for every failure, there are
plenty of success stories in deep learning. It is one of the high-impact technologies
that will reshape the face of finance.

In the next chapter, we will get our hands dirty by jumping in and working with

a common type of data in finance, structured tabular data. More specifically, we will
tackle the problem of fraud, a problem that many financial institutions sadly have

to deal with and for which modern machine learning is a handy tool. We will learn
about preparing data and making predictions using Keras, scikit-learn, and XGBoost.

[40]
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Structured data is a term used for any data that resides in a fixed field within

a record or file, two such examples being relational databases and spreadsheets.
Usually, structured data is presented in a table in which each column presents

a type of value, and each row represents a new entry. Its structured format means
that this type of data lends itself to classical statistical analysis, which is also why
most data science and analysis work is done on structured data.

In day-to-day life, structured data is also the most common type of data available
to businesses, and most machine learning problems that need to be solved in
finance deal with structured data in one way or another. The fundamentals

of any modern company's day-to-day running is built around structured data,
including, transactions, order books, option prices, and suppliers, which are

all examples of information usually collected in spreadsheets or databases.

This chapter will walk you through a structured data problem involving credit card
fraud, where we will use feature engineering to identify the fraudulent transaction
from a dataset successfully. We'll also introduce the basics of an end-to-end (E2E)
approach so that we can solve common financial problems.

Fraud is an unfortunate reality that all financial institutions have to deal with. It's a
constant race between companies trying to protect their systems and fraudsters who
are trying to defeat the protection in place. For a long time, fraud detection has relied
on simple heuristics. For example, a large transaction made while you're in a country
you usually don't live in will likely result in that transaction being flagged.

[41]
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Yet, as fraudsters continue to understand and circumvent the rules, credit card
providers are deploying increasingly sophisticated machine learning systems to
counter this.

In this chapter, we'll look at how a real bank might tackle the problem of fraud.
It's a real-world exploration of how a team of data scientists starts with a heuristic
baseline, then develops an understanding of its features, and from that, builds
increasingly sophisticated machine learning models that can detect fraud. While
the data we will use is synthetic, the process of development and tools that we'll
use to tackle fraud are similar to the tools and processes that are used every day
by international retail banks.

So where do you start? To put it in the words of one anonymous fraud detection
expert that I spoke to, "I keep thinking about how I would steal from my employer, and
then I create some features that would catch my heist. To catch a fraudster, think like a
fraudster." Yet, even the most ingenious feature engineers are not able to pick up

on all the subtle and sometimes counterintuitive signs of fraud, which is why the
industry is slowly shifting toward entirely E2E-trained systems. These systems, in
addition to machine learning, are both focuses of this chapter where we will explore
several commonly used approaches to flag fraud.

This chapter will act as an important baseline to Chapter 6, Using Generative Models,
where we will again be revisiting the credit card fraud problem for a full E2E model
using auto-encoders.

The data

The dataset we will work with is a synthetic dataset of transactions generated by
a payment simulator. The goal of this case study and the focus of this chapter is to
find fraudulent transactions within a dataset, a classic machine learning problem
many financial institutions deal with.

Note: Before we go further, a digital copy of the code, as well as an
interactive notebook for this chapter are accessible online, via the
following two links:

*  An interactive notebook containing the code for this chapter can
% be found under https://www.kaggle.com/jannesklaas/
’ structured-data-code

The code can also be found on GitHub, in this book's repository:
https://github.com/PacktPublishing/Machine-Learning-
for-Finance

[42]
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The dataset we're using stems from the paper PaySim: A financial mobile money

simulator for fraud detection, by E. A. Lopez-Rojas, A. Elmir, and S. Axelsson. The
dataset can be found on Kaggle under this URL: https://www.kaggle.com/ntnu-
testimon/paysiml.

Before we break it down on the next page, let's take a minute to look at the dataset
that we'll be using in this chapter. Remember, you can download the data with the

preceding link.
step | type amount | nameOrig oldBalance | newBalance | nameDest oldBalance | newBalance | isFraud | isFlagged
Orig Orig Dest Dest Fraud
1 PAYMENT | 9839.64 | C1231006815 | 170136.0 160296.36 M1979787155 | 0.0 0.0 0 0
1 PAYMENT | 1864.28 | C1666544295 | 21249.0 19384.72 M2044282225 | 0.0 0.0 0 0
1 TRANSEFER | 181.0 C1305486145 | 181.0 0.0 (553264065 0.0 0.0 1 0
1 CASH_ 181.0 840083671 | 181.0 0.0 38997010 21182.0 0.0 1 0
ouT
1 PAYMENT | 11668.14 | C2048537720 | 41554.0 29885.86 M1230701703 | 0.0 0.0 0 0
1 PAYMENT | 7817.71 | C90045638 53860.0 46042.29 M573487274 0.0 0.0 0 0
1 PAYMENT | 7107.77 | C154988899 | 183195.0 176087.23 M408069119 0.0 0.0 0 0
1 PAYMENT | 7861.64 | C1912850431 | 176087.23 168225.59 M633326333 0.0 0.0 0 0
1 PAYMENT | 4024.36 | C1265012928 | 2671.0 0.0 M1176932104 | 0.0 0.0 0 0
1 DEBIT 5337.77 | C712410124 | 41720.0 36382.23 C195600860 41898.0 40348.79 0 0

As seen in the first row, the dataset has 11 columns. Let's explain what each one
represents before we move on:

* step: Maps time, with each step corresponding to one hour.

* type: The type of the transaction, which can be CASH_IN, CASH_OUT,
DEBIT, PAYMENT, or TRANSFER.

e amount: The amount of the transaction.

* nameOrig: The origin account that started the transaction. C relates to

customer accounts, while M is the account of merchants.

* oldbalanceOrig: The old balance of the origin account.

* newbalanceOrig: The new balance of the origin account after the transaction
amount has been added.

e nameDest: The destination account.

e oldbalanceDest: The old balance of the destination account. This information
is not available for merchant accounts whose names start with M.

* newbalanceDest: The new balance of the destination account. This
information is not available for merchant accounts.

¢ isFraud: Whether the transaction was fraudulent.

* isFlaggedFraud: Whether the old system has flagged the transaction as fraud.
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In the preceding table, we can see 10 rows of data. It's worth noting that there

are about 6.3 million transactions in our total dataset, so what we've seen is a small
fraction of the total amount. As the fraud we're looking at only occurs in transactions
marked as either TRANSFER or CASH_OUT, all other transactions can be dropped,
leaving us with around 2.8 million examples to work with.

Heuristic, feature-based, and E2E models

Before we dive into developing models to detect fraud, let's take a second to pause
and ponder over the different kinds of models we could build.

* A heuristic-based model is a simple "rule of thumb" developed purely
by humans. Usually, the heuristic model stems from having an expert
knowledge of the problem.

* A feature-based model relies heavily on humans modifying the data to create
new and meaningful features, which are then fed into a (simple) machine
learning algorithm. This approach mixes expert knowledge with learning
from data.

* An E2E model learns purely from raw data. No human expertise is used,
and the model learns everything directly from observations.

In our case, a heuristic-based model could be created to mark all transactions

with the TRANSFER transaction type and an amount over $200,000 as fraudulent.
Heuristic-based models have the advantage that they are both fast to develop and
easy to implement; however, this comes with a pay-off, their performance is often
poor, and fraudsters can easily play the system. Let's imagine that we went with the
preceding heuristic-based model, fraudsters transferring only $199,999, under the
fraudulent limit, would evade detection.

An important heuristic in the field of trading is the momentum strategy. Momentum
strategies involve betting that a stock that's on the rise will continue to rise, with
people then buying that stock. While this strategy sounds too simple to be any

good, it is in fact, a reasonably successful strategy that many high-frequency

trading and quantitative outlets are using today.

To create features, experts craft indicators that can distinguish fraudulent
transactions from those that are genuine. This is often done using statistical data
analysis, and when compared to the heuristic-based model that we proposed early
on, it will take longer, but with the benefit of better results.

[44]
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Feature engineering-based models are a midway between data and humans shaping
rules, where human knowledge and creativity are exploited to craft good features,
and data and machine learning are used to create a model from those features.

E2E models learn purely from collected data without using expert knowledge.

As discussed before, this often yields much better results, but at the cost of taking
a lot of time to complete. This method also has some additional elements worth
considering. For instance, collecting the large amount of data that will be needed
is an expensive task, as humans have to label millions of records.

Though for many people in the industry right now, they take the view that shipping
a poor model is often better than not shipping anything at all. After all, having some
protection against fraud is better than simply having none.

Using a heuristic approach that lets through half of all fraudulent transactions is
better than having no fraud detection at all. The graph shows us the performance of
the three models we introduced earlier on, against the time taken to implement them.

End to end

Feature .-+

Performance

Time

The methods used and the performance of the system during development

The best method is to use a combination of all three. If we deploy a heuristic model
that meets the basic requirements of the task that it set out to achieve, then it can

be shipped. By employing this method, the heuristic then becomes the baseline that
any other approach has to beat. Once your heuristic model is deployed, then all your
efforts should then be directed toward building a feature-based model, which as
soon as it beats the initially deployed heuristic model, can then be deployed while
you continue to refine the model.

As we've discussed before, feature-based models often deliver pretty decent
performance on structured data tasks; this gives companies the time to undertake
the lengthy and expensive task of building an E2E model, which can be shipped
once it beats the feature-based model. Now that we understand the type of models
we're going to build, let's look at the software we need to build them.

[45]
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The machine learning software stack

In this chapter, we will be using a range of different libraries that are commonly used
in machine learning. Let's take a minute to look at our stack, which consists of the
following software:

* Keras: A neural network library that can act as a simplified interface
to TensorFlow.

*  NumPy: Adds support for large, multidimensional arrays as well as
an extensive collection of mathematical functions.

* Pandas: A library for data manipulation and analysis. It's similar
to Microsoft's Excel but in Python, as it offers data structures to handle
tables and the tools to manipulate them.

* Scikit-learn: A machine learning library offering a wide range of algorithms
and utilities.

* TensorFlow: A dataflow programming library that facilitates working with
neural networks.

* Matplotlib: A plotting library.

* Jupyter: A development environment. All of the code examples in this book
are available in Jupyter Notebooks.

The majority of this book is dedicated to working with the Keras library, while this
chapter makes extensive use of the other libraries mentioned. The goal here is less
about teaching you all the tips and tricks of all the different libraries, but more about
showing you how they are integrated into the process of creating a predictive model.

Note: All of the libraries needed for this chapter are installed on Kaggle

kernels by default. If you are running this code locally, please refer to
i the setup instructions in Chapter 1, Neural Networks and Gradient-Based

Optimization, and install all of the libraries needed.

The heuristic approach

Earlier in this chapter, we introduced the three models that we will be using to detect
fraud, now it's time to explore each of them in more detail. We're going to start with
the heuristic approach.

Let's start by defining a simple heuristic model and measuring how well it does at
measuring fraud rates.

[46]
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Making predictions using the heuristic model

We will be making our predictions using the heuristic approach over the entire
training data set in order to get an idea of how well this heuristic model does at
predicting fraudulent transactions.

The following code will create a new column, Fraud_Heuristic, and in turn
assigns a value of 1 in rows where the type is TRANSFER, and the amount is more
than $200,000:

df ['Fraud Heuristic '] = np.where(((df['type'] == 'TRANSFER') &
(df ['amount'] > 200000)),1,0)

With just two lines of code, it's easy to see how such a simple metric can be easy to
write, and quick to deploy.

The F1 score

One important thing we must consider is the need for a common metric on which
we can evaluate all of our models on. In Chapter 1, Neural Networks and Gradient-Based
Optimization, we used accuracy as our emulation tool. However, as we've seen, there
are far fewer fraudulent transactions than there are genuine ones. Therefore a model
that classifies all the transactions as genuine can have a very high level of accuracy.

One such metric that is designed to deal with such a skewed distribution is the F1 score,
which considers true and false positives and negatives, as you can see in this chart:

Predicted Negative Predicted Positive
Actual Negative True Negative (TN) False Positive (FP)
Actual Positive False Negative (FN) True Positive (TP)

We can first compute the precision of our model, which specifies the share of predicted
positives that were positives, using the following formula:

P

precision = ————
TP+ FP

Recall measures the share of predicted positives over the actual number of positives,
as seen in this formula:

TP

recall = ——
TP+ FN
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The F1 score is then calculated from the harmonic mean, an average, of the two
measures, which can be seen in the following formula:

recision x recall
F=2x P

precision + recall

To compute this metric in Python, we can use the metrics module of scikit-learn,
or sklearn for short:

from sklearn.metrics import f1 score

Given the predictions we've made, we can now easily compute the F1 score using the
following command:

fl1 score(y pred=df['Fraud Heuristic '],y true=df['isFraud'])
out: 0.013131315551742895

You'll see that the preceding command outputs a number-starting 0.013131315.. .-
What this number means exactly is that our heuristic model is not doing too well, as
the best possible F1 score is 1, and the worst is 0. In our case, this number represents
the harmonic mean of the share of correctly caught frauds over everything labeled as
fraud and the share of correctly caught frauds over all frauds.

Evaluating with a confusion matrix

A more qualitative and interpretable way of evaluating a model is with a confusion
matrix. As the name suggests, the matrix shows how our classifier confuses classes.

Firstly, let's study the code appendix for the plot_confusion matrix function:

from sklearn.metrics import confusion matrix cm = confusion matrix(
y_pred=df ['Fraud Heuristic '],y true=df['isFraud'])
plot confusion matrix(cm, ['Genuine', 'Fraud'l])

Which, when we run, produces the following graphic:
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Confusion matrix
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So, just how accurate was that model? As you can see in our confusion matrix, from
our dataset of 2,770,409 examples, 2,355,826 were correctly classified as genuine,
while 406,370 were falsely classified as fraud. In fact, only 2,740 examples were
correctly classified as fraud.

When our heuristic model classified a transaction as fraudulent, it was genuine in
99.3% of those cases. Only 34.2% of the total frauds got caught. All this information
is incorporated into the F1 score we formulated. However, as we saw, it is easier to
read this from the generated confusion matrix graphic. The reason we used both the
heuristic model and the F1 score is that it is good practice to have a single number

that tells us which model is better, and also a more graphical insight into how that
model is better.

[49]

EBSCChost - printed on 2/9/2023 5:58 AMvia . All use subject to https://wmv ebsco.coniterns-of-use



Applying Machine Learning to Structured Data

To put it frankly, our heuristic model has performed quite poorly, detecting only
34.2% of fraud, which is not good enough. So, using the other two methods in the
following sections, we're going to see whether we can do better.

The feature engineering approach

The objective of feature engineering is to exploit the qualitative insight of humans in
order to create better machine learning models. A human engineer usually uses three
types of insight: intuition, expert domain knowledge, and statistical analysis. Quite often,
it's possible to come up with features for a problem just from intuition.

As an example, in our fraud case, it seems intuitive that fraudsters will create new
accounts for their fraudulent schemes and won't be using the same bank account
that they pay for their groceries with.

Domain experts are able to use their extensive knowledge of a problem in order

to come up with other such examples of intuition. They'll know more about how
fraudsters behave and can craft features that indicate such behavior. All of these
intuitions are then usually confirmed by statistical analysis, something that can even
be used to open the possibilities of discovering new features.

Statistical analysis can sometimes turn up quirks that can be turned into predictive
features. However, with this method, engineers must beware of the data trap.
Predictive features found in the data might only exist in that data because any
dataset will spit out a predictive feature if it's wrangled with for long enough.

A data trap refers to engineers digging within the data for features forever, and
never questioning whether those features they are searching for are relevant.

Data scientists stuck in to the data trap keep euphorically finding features, only to
realize later that their model, with all those features, does not work well. Finding
strong predictive features in the training set is like a drug for data science teams.
Yes, there's an immediate reward, a quick win that feels like a validation of one's
skills. However, as with many drugs, the data trap can lead to an after-effect in
which teams find that weeks' or months' worth of work in finding those features
was actually, useless.

Take a minute to ask yourself, are you in that position? If you ever find yourself
applying analysis after analysis, transforming data in every possible way, chasing
correlation values, you might very well be stuck in a data trap.
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To avoid the data trap, it is important to establish a qualitative rationale as to why
this statistical predictive feature exists and should exist outside of the dataset as
well. By establishing this rationale, you will keep both yourself and your team alert
to avoiding crafting features that represent noise. The data trap is the human form
of overfitting and finding patterns in noise, which is a problem for models as well.

Humans can use their qualitative reasoning skills to avoid fitting noise, which is
a big advantage humans have over machines. If you're a data scientist, you should
use this skill to create more generalizable models.

The goal of this section was not to showcase all the features that feature engineering
could perform on this dataset, but just to highlight the three approaches and how
they can be turned into features.

A feature from intuition — fraudsters don't sleep

Without knowing much about fraud, we can intuitively describe fraudsters as shady
people that operate in the dark. In most cases, genuine transactions happen during
the day, as people sleep at night.

The time steps in our dataset represent one hour. Therefore, we can generate the time
of the day by simply taking the remainder of a division by 24, as seen in this code:

df ['hour'] = df['step'] % 24

From there, we can then count the number of fraudulent and genuine transactions
at different times. To calculate this, we must run the following code:

frauds = []

genuine = []

for i in range(24):
f = len(df [(df ['hour'] ==
g = len(df [(df ['hour'] ==
frauds.append (£f)

i) & (df['isFraud'] == 1)])
i) & (df['isFraud'] == 0)])
genuine.append (g)

Then finally, we can plot the share of genuine and fraudulent transactions over the
course of the day into a chart. To do this, we must run the following code:

fig, ax = plt.subplots(figsize=(10,6))

ax.plot (genuine/np.sum(genuine), label='Genuine')

ax.plot (frauds/np.sum(frauds) ,dashes=[5, 2], label='Fraud')
plt.xticks (np.arange (24))

legend = ax.legend(loc='upper center',6 shadow=True)
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As we can see in the preceding chart, there are much fewer genuine transactions at
night, while fraudulent behavior continues over the day. To be sure that night is a
time when we can hope to catch fraud, we can also plot the number of fraudulent
transactions as a share of all transactions. To do this, we must run the following
command:

fig, ax = plt.subplots(figsize=(10,6))

ax.plot (np.divide (frauds,np.add (genuine, frauds)), label='Share of
fraud')

plt.xticks (np.arange (24))

legend = ax.legend(loc='upper center', shadow=True)
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Once we run that code, we can see that at around 5 AM, over 60% of all
transactions seem to be fraudulent, which appears to make this a great time
of the day to catch fraud.

Expert insight — transfer, then cash out

The description of the dataset came with another description that explained the
expected behavior of fraudsters. First, they transfer money to a bank account they
control. Then, they cash out that money from an ATM.

We can check whether there are fraudulent transfer destination accounts that are
the origin of the fraudulent cash outs by running the following code:

dfFraudTransfer = df [(df.isFraud == 1) & (df.type == 'TRANSFER')]
dfFraudCashOut = df[(df.isFraud == 1) & (df.type == 'CASH OUT')]
dfFraudTransfer.nameDest.isin (dfFraudCashOut .nameOrig) .any ()

out: False

According to the output, there seems to be no fraudulent transfers that are the origin
of fraudulent cash outs. The behavior expected by the experts is not visible in our
data. This could mean two things: firstly, it could mean that the fraudsters behave
differently now, or secondly that our data does not capture their behavior. Either
way, we cannot use this insight for predictive modeling here.

Statistical quirks — errors in balances

A closer examination of the data shows that there are some transactions where the
old and new balances of the destination account is zero, although the transaction
amount is not zero. This is odd, or more so a quirk, and so we want to investigate
whether this type of oddity yields predictive power.

To begin with, we can calculate the share of fraudulent transactions with this
property by running the following code:

dfodd = df[(df.oldBalanceDest == 0) &
(df .newBalanceDest == 0) &
(df .amount) ]
len (dfodd [ (df.isFraud == 1)]) / len(dfodd)

out: 0.7046398891966759

As you can see, the share of fraudulent transactions stands at 70%, so this quirk
seems to be a good feature at detecting fraud in transactions. However, it is
important to ask ourselves how this quirk got into our data in the first place.
One possibility could be that the transactions never come through.
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This could happen for a number of reasons including that there might be another
fraud prevention system in place that blocks the transactions, or that the origin
account for the transaction has insufficient funds.

While we have no way of verifying if there's another fraud prevention system in
place, we can check to see if the origin accounts have insufficient funds. To do this,
we have to run the following code:

len (dfodd[ (df0dd.oldBalanceOrig <= dfodd.amount)]) / len(dfodd)

out: 0.8966412742382271

As we can see in the output, close to 90% of the odd transactions have insufficient funds
in their origin accounts. From this, we can now construct a rationale in which fraudsters
try to drain a bank account of all its funds more often than regular people do.

We need this rationale to avoid the data trap. Once established, the rationale

must be constantly scrutinized. In our case, it has failed to explain 10% of the odd
transactions, and if this number rises, it could end up hurting the performance of our
model in production.

Preparing the data for the Keras library

In Chapter 1, Neural Networks and Gradient-Based Optimization, we saw that neural
networks would only take numbers as inputs. The issue for us in our dataset is that
not all of the information in our table is numbers, some of it is presented as characters.

Therefore, in this section, we're going to work on preparing the data for Keras so that
we can meaningfully work with it.

Before we start, let's look at the three types of data, Nominal, Ordinal, and Numerical:

* Nominal data: This comes in discrete categories that cannot be ordered. In
our case, the type of transfer is a nominal variable. There are four discrete
types, but it does not make sense to put them in any order. For instance,
TRANSEFER cannot be more than CASH_OUT, so instead, they are just
separate categories.

* Ordinal data: This also comes in discrete categories, but unlike nominal data,
it can be ordered. For example, if coffee comes in large, medium, and small
sizes, those are distinct categories because they can be compared. The large
size contains more coffee than the small size.

* Numerical data: This can be ordered, but we can also perform mathematical
operations on it. An example in our data is the number of funds, as we can
both compare the amounts, and also subtract or add them up.
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Both nominal and ordinal data are categorical data, as they describe discrete
categories. While numerical data works fine with neural networks, only out of the
box, categorical data needs special treatment.

One-hot encoding

The most commonly used method to encode categorical data is called one-hot
encoding. In one-hot encoding, we create a new variable, a so-called dummy
variable for each category. We then set the dummy variable to 1 if the transaction
is a member of a certain category and to zero otherwise.

An example of how we could apply this to our data set can be seen as follows:

So, this is what the categorical data would look like before one-hot encoding:

Transaction Type

1 TRANSFER
2 CASH_OUT
3 TRANSFER

This is what the data would look like after one-hot encoding;:

Transaction Type_TRANSFER Type CASH_OUT
1 1 0
2 0 1
3 1 0

The Pandas software library offers a function that allows us to create dummy
variables out of the box. Before doing so, however, it makes sense to add Type
in front of all actual transaction types. The dummy variables will be named after
the category. By adding Type_ to the beginning, we know that these dummy
variables indicate the type.

The following line of code does three things. Firstly, df ['type'] .astype (str)
converts all the entries in the Type column to strings. Secondly, the Type  prefix

is added as a result of combining the strings. Thirdly, the new column of combined
strings then replaces the original Type column:

df ['type']l = 'Type ' + df['type'l] .astype(str)
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We can now get the dummy variables by running the following code:
dummies = pd.get dummies(df['type'l)

We should note that the get dummies () function creates a new data frame. Next
we attach this data frame to the main data frame, which can be done by running:

df = pd.concat ([df,dummies],h axis=1)

The concat () method, as seen in the preceding code, concatenates two data frames.
We concatenate along axis 1 to add the data frame as new columns. Now that the
dummy variables are in our main data frame, we can remove the original column
by running this:

del df['type'l]

And, voila! We have turned our categorical variable into something a neural network
will be able to work with.

Entity embeddings

In this section, we're going to walk through making use of both embeddings and the
Keras functional API, showing you the general workflow. Both of these topics get
introduced and explored fully in Chapter 5, Parsing Textual Data with Natural Language
Processing, where we will go beyond the general ideas presented here and where
we'll begin discussing topics like implementation.

It's fine if you do not understand everything that is going on just now; this is an
advanced section after all. If you want to use both of these techniques, you will
be well prepared after reading this book, as we explain different elements of both
methods throughout the book.

In this section, we will be creating embedding vectors for categorical data. Before
we start, we need to understand that embedding vectors are vectors representing
categorical values. We use embedding vectors as inputs for neural networks.

We train embeddings together with a neural network, so that we can, over time,
obtain more useful embeddings. Embeddings are an extremely useful tool to have
at our disposal.

Why are embeddings so useful? Not only do embeddings reduce the number of
dimensions needed for encoding over one-hot encoding and thus decrease memory
usage, but they also reduce sparsity in input activations, which helps reduce
overfitting, and they can encode semantic meanings as vectors. The same advantages
that made embeddings useful for text, Chapter 5, Parsing Textual Data with Natural
Language Processing, also make them useful for categorical data.
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Tokenizing categories

Just as with text, we have to tokenize the inputs before feeding them into the
embeddings layer. To do this, we have to create a mapping dictionary that maps
categories to a token. We can achieve this by running;:

map dict = {}
for token, value in enumerate(df['type'l] .unique()) :
map dict [value] = token

This code loops over all the unique type categories while counting upward. The
first category gets token 0, the second 1, and so on. Our map_dict looks like this:

{'cASH IN': 4, 'CASH OUT': 2, 'DEBIT': 3, 'PAYMENT': O,
'"TRANSFER': 1}

We can now apply this mapping to our data frame:
df ["type"] .replace (map_dict, inplace=True)
As a result, all types will now be replaced by their tokens.

We have to deal with the non-categorical values in our data frame separately. We can
create a list of columns that are not the type and not the target like this:

other cols = [c for c¢ in df.columns if ((c != 'type') and (c !=
'isFraud'))]

Creating input models

The model we are creating will have two inputs: one for the types with an
embedding layer, and one for all other, non-categorical variables. To combine them
with more ease at a later point, we're going to keep track of their inputs and outputs
with two arrays:

inputs = []
outputs = []

The model that acts as an input for the type receives a one-dimensional input and
parses it through an embedding layer. The outputs of the embedding layer are then
reshaped into flat arrays, as we can see in this code:

num_types = len(df['type'] .unique())
type embedding dim = 3

type in = Input (shape=(1,))
type embedding = Embedding (num_ types, type embedding dim, input
length=1) (type in)
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type out = Reshape(target shape=
(type_embedding dim,)) (type embedding)

type model = Model (type in,type out)
inputs.append (type in)
outputs.append (type out)

The type embeddings have three layers here. This is an arbitrary choice, and
experimentation with different numbers of dimensions could improve the results.

For all the other inputs, we create another input that has as many dimensions as
there are non-categorical variables and consists of a single dense layer with no
activation function. The dense layer is optional; the inputs could also be directly
passed into the head model. More layers could also be added, including these:

num rest = len(other cols)

rest in = Input(shape = (num rest,))
rest out = Dense(16) (rest_in)

rest model = Model (rest in,rest out)

inputs.append (rest in)
outputs.append (rest out)

Now that we have created the two input models, we can concatenate them. On top
of the two concatenated inputs, we will also build our head model. To begin this
process, we must first run the following;:

concatenated = Concatenate () (outputs)
Then, by running the following code, we can build and compile the overall model:

x = Dense(16) (concatenated)

b'4 Activation('sigmoid') (x)

X Dense (1) (concatenated)

model out = Activation('sigmoid') (x)

merged model = Model (inputs, model out)

merged model.compile(loss='binary crossentropy',
optimizer="'adam',
metrics=['accuracy'])
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Training the model

In this section we're going to train a model with multiple inputs. To do this, we
need to provide a list of X values for each input. So, firstly we must split up our data
frame. We can do this by running the following code:

types = df['type']
rest = df [other cols]
target = df['isFraud']

Then, we can train the model by providing a list of the two inputs and the target,
as we can see in the following code:

history = merged model.fit ([types.values,rest.values], target.values,
epochs = 1,
batch size = 128)

out:
Epoch 1/1

6362620/6362620 [z==============================] - 78s 12us/step - loss:
0.0208 - acc: 0.9987

Creating predictive models with Keras

Our data now contains the following columns:

amount,
oldBalanceOrig,
newBalanceOrig,
oldBalanceDest,
newBalanceDest,
isFraud,
isFlaggedFraud,

type CASH OUT,

type TRANSFER, isNight

Now that we've got the columns, our data is prepared, and we can use it to create
a model.

Extracting the target

To train the model, a neural network needs a target. In our case, isFraud is the
target, so we have to separate it from the rest of the data. We can do this by running;:

y df = df['isFraud']
x df = df.drop('isFraud',axis=1)
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The first step only returns the isFraud column and assigns it to y_df.
The second step returns all columns except isFraud and assigns them to x_df.

We also need to convert our data from a pandas DataFrame to NumPy arrays. The
pandas DataFrame is built on top of NumPy arrays but comes with lots of extra
bells and whistles that make all the preprocessing we did earlier possible. To train
a neural network, however, we just need the underlying data, which we can get by
simply running the following:

y = y_df.values
X = x df.values

Creating a test set

When we train our model, we run the risk of overfitting. Overfitting means that our
model memorizes the x and y mapping in our training dataset but does not find the
function that describes the true relationship between x and y. This is problematic
because once we run our model out of sample - that is, on data not in our training
set, it might do very poorly. To prevent this, we're going to create a so-called test set.

A test set is a holdout dataset, which we only use to evaluate our model once we
think it is doing fairly well in order to see how well it performs on data it has not
seen yet. A test set is usually randomly sampled from the complete data. Scikit-learn
offers a convenient function to do this, as we can see in the following code:

from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, vy,
test size=0.33, random state=42)

The element, train_test_split will randomly assign rows to either the train or test
set. You can specify test_size, the share of data that goes into the test set (which

in our case is 33%), as well as a random state. Assigning random_state makes sure
that although the process is pseudo-random, it will always return the same split,
which makes our work more reproducible. Note that the actual choice of number
(for example, 42) does not really matter. What matters is that the same number is
used in all experiments.

Creating a validation set

Now you might be tempted to just try out a lot of different models until you get a
really high performance on the test set. However, ask yourself this: how would you
know that you have not selected a model that by chance works well on the test set
but does not work in real life?

[60]

EBSCChost - printed on 2/9/2023 5:58 AMvia . All use subject to https://wmv ebsco.coniterns-of-use



EBSCChost -

Chapter 2

The answer is that every time you evaluate on the test set, you incur a bit of
"information leakage," that is, information from the test set leaks into your model
by influencing your choice of model. Gradually, the test set becomes less valuable.
The validation set is a sort of a "dirty test set" that you can use to frequently test
your models out of sample performance without worrying. Though it's key to note
that we don't want to use the test set too often, but it is still used to measure out-of-
sample performance frequently.

To this end, we'll create a "validation set," also known as a development set.

We can do this the same way we created the test set, by just splitting the training
data again, as we can see in the following code:

X train, X test, y train, y test = train test split(X train,
y_train, test size=0.1, random state=42)

Oversampling the training data

Remember that in our dataset, only a tiny fraction of transactions were fraudulent,
and that a model that is always classifying transactions as genuine would have a
very high level of accuracy. To make sure we train our model on true relationships,
we can oversample the training data.

This means that we would add data that would be fraudulent to our dataset until
we have the same amount of fraudulent transactions as genuine transactions.

Note: A useful library for this kind of task is imblearn, which includes
a SMOTE function. See, ht tp: //contrib.scikitlearn.org/
’ imbalanced-learn/.

Synthetic Minority Over-sampling Technique (SMOTE) is a clever way of
oversampling. This method tries to create new samples while maintaining the same
decision boundaries for the classes. We can oversample with SMOTE by simply
running:

From imblearn.over sampling import SMOTE
sm = SMOTE (random state=42)
X train res, y train res = sm.fit sample(X train, y train)
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Building the model

We've successfully addressed several key learning points, and so it's now finally
time to build a neural network! As in Chapter 1, Neural Networks and Gradient-Based
Optimization, we need to import the required Keras modules using the following code:

from keras.models import Sequential
from keras.layers import Dense, Activation

In practice, many structured data problems require very low learning rates. To set
the learning rate for the gradient descent optimizer, we also need to import the
optimizer. We can do this by running;:

from keras.optimizers import SGD

Creating a simple baseline

Before we dive into more advanced models, it is wise to start with a simple
logistic regression baseline. This is to make sure that our model can actually
train successfully.

To create a simple baseline, we need to run the following code:

model = Sequential ()
model .add (Dense (1, input dim=9))
model.add (Activation('sigmoid'))

You can see here a logistic regressor, which is the same as a one-layer neural
network:

model .compile (loss='binary crossentropy',
optimizer=SGD(lr=1e-5),
metrics=['acc'])

Here, we will compile the model. Instead of just passing SGD to specify the optimizer
for Stochastic Gradient Descent, we'll create a custom instance of SGD in which we
set the learning rate to 0.00001. In this example, tracking accuracy is not needed
since we evaluate our models using the F1 score. Still, it still reveals some interesting
behavior, as you can see in the following code:

model.fit (X train res,y train res,
epochs=5,
batch _size=256,
validation data=(X val,y val))
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Notice how we have passed the validation data into Keras by creating a tuple in
which we store data and labels. We will train this model for 5 epochs:

Train on 3331258 samples, validate on 185618 samples Epoch 1/5

3331258/3331258 [==============================] - 20s 6us/step - loss:
3.3568 - acc: 0.7900 - val loss: 3.4959 - val acc: 0.7807 Epoch 2/5
3331258/3331258 [==============================] - 20s 6us/step - loss:
3.0356 - acc: 0.8103 - val loss: 2.9473 - val acc: 0.8151 Epoch 3/5
3331258/3331258 [==============================] - 20s 6us/step - loss:
2.4450 - acc: 0.8475 - val loss: 0.9431 - val acc: 0.9408 Epoch 4/5
3331258/3331258 [==============================] - 20s 6us/step - loss:
2.3416 - acc: 0.8541 - val loss: 1.0552 - val acc: 0.9338 Epoch 5/5
3331258/3331258 [==============================] - 20s 6us/step - loss:

2.3336 - acc: 0.8546 - val loss: 0.8829 - val acc: 0.9446

Notice a few things here: first, we have trained on about 3.3 million samples,

which is more data than we initially had. The sudden increase comes from the
oversampling that we did earlier on in this chapter. Secondly, the training set's
accuracy is significantly lower than the validation set's accuracy. This is because the
training set is balanced, while the validation set is not.

We oversampled the data by adding more fraud cases to the training set than there
are in real life, which as we discussed, helped our model detect fraud better. If we
did not oversample, our model would be inclined to classify all transactions as
genuine since the vast majority of samples in the training set are genuine.

By adding fraud cases, we are forcing the model to learn what distinguishes a fraud
case. Yet, we want to validate our model on realistic data. Therefore, our validation
set does not artificially contain many fraud cases.

A model classifying everything as genuine would have over 99% accuracy on the
validation set, but just 50% accuracy on the training set. Accuracy is a flawed metric
for such imbalanced datasets. It is a half-decent proxy and more interpretable than
just a loss, which is why we keep track of it in Keras.

To evaluate our model, we should use the F1 score that we discussed at the
beginning of this chapter. However, Keras is unable to directly track the F1 score
in training since the calculation of an F1 score is somewhat slow and would end up
slowing down the training of our model.
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Note: Remember that accuracy on an imbalanced dataset can be very
L high, even if the model is performing poorly.

If the model exhibits a higher degree of accuracy on an imbalanced validation set
than compared to that seen with a balanced training set, then it says little about the
model performing well.

Compare the training set's performance against the previous training set's
performance, and likewise the validation set's performance against the previous
validation set's performance. However, be careful when comparing the training set's
performance to that of the validation set's performance on highly imbalanced data.
However, if your data is equally balanced, then comparing the validation set and the
training set is a good way to gauge overfitting.

We are now in a position where we can make predictions on our test set in order to
evaluate the baseline. We start by using model.predict to make predictions on the
test set:

y_pred = model.predict (X test)

Before evaluating our baseline, we need to turn the probabilities given by our model
into absolute predictions. In our example, we'll classify everything that has a fraud
probability above 50% as fraud. To do this, we need to run the following code:

y _pred[y pred > 0.5] 1
y pred[y pred < 0.5] = 0

Our F1 score is already significantly better than it was for the heuristic model,
which if you go back, you'll see that it only achieved a rate of 0.013131315551742895:

fl1 score(y pred=y pred,y true=y test)

out: 0.054384286716408395

By plotting the confusion matrix, we're able to see that our feature-based model has
indeed improved on the heuristic model:

cm = confusion matrix(y pred=y pred,y true=y test)
plot confusion matrix(cm, ['Genuine', 'Fraud'], normalize=False)

This code should produce the following confusion matrix:
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Confusion matrix
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A confusion matrix for a simple Keras model

But what if we wanted to build more complex models that can express more subtle
relationships, than the one that we've just built? Let's now do that!

Building more complex models

After we have created a simple baseline, we can go on to more complex models.
The following code is an example of a two-layer network:

model = Sequential ()

model .add (Dense (16, input _dim=9) )
model .add (Activation('tanh'))
model.add (Dense (1))

model.add (Activation ('sigmoid"'))

model.compile (loss='binary crossentropy',
optimizer=SGD(lr=1e-5),
metrics=['acc'])

model.fit (X train res,y train res,
epochs=5, batch size=256,
validation data=(X val,y val))

y_pred = model.predict (X test)
y_pred[y pred > 0.5] =1
y_pred[y pred < 0.5] = 0
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After running that code, we'll then again benchmark with the F1 score:
fl1 score(y pred=y pred,y true=y test)

out: 0.087220701988752675

In this case, the more complex model does better than the simple baseline created
earlier. It seems as though the function mapping transaction data to fraud is complex
and can be approximated better by a deeper network.

In this section we have built and evaluated both simple and complex neural network
models for fraud detection. We have been careful to use the validation set to gauge
the initial out-of-sample performance.

With all of that, we can build much more complex neural networks (and we will).
But first we will have a look at the workhorse of modern enterprise-ready machine
learning: tree-based methods.

A brief primer on tree-based methods

No chapter on structured data would be complete without mentioning tree-based
methods, such as random forests or XGBoost.

It is worth knowing about them because, in the realm of predictive modeling for
structured data, tree-based methods are very successful. However, they do not
perform as well on more advanced tasks, such as image recognition or sequence-to-
sequence modeling. This is the reason why the rest of the book does not deal with
tree-based methods.

Note: For a deeper dive into XGBoost, check out the tutorials on the
XGBoost documentation page: http://xgboost . readthedocs.

& io. There is a nice explanation of how tree-based methods and gradient
boosting work in theory and practice under the Tutorials section of the
website.

A simple decision tree

The basic idea behind tree-based methods is the decision tree. A decision tree splits
up data to create the maximum difference in outcomes.

Let's assume for a second that our isNight feature is the greatest predictor
of fraud. A decision tree would split our dataset according to whether the
transactions happened at night or not. It would look at all the night-time
transactions, looking for the next best predictor of fraud, and it would do
the same for all day-time transactions.
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Scikit-learn has a handy decision tree module. We can create one for our data by
simply running the following code:

from sklearn.tree import DecisionTreeClassifier
dtree=DecisionTreeClassifier()
dtree.fit (X _train,y_train)

The resulting tree will look like this:

e oo

A decision tree for fraud detection

Simple decision trees, like the one we've produced, can give a lot of insight into data.
For example, in our decision tree, the most important feature seems to be the old
balance of the origin account, given that it is the first node in the tree.

A random forest

A more advanced version of a simple decision tree is a random forest, which is a
collection of decision trees. A forest is trained by taking subsets of the training data
and training decision trees on those subsets.

Often, those subsets do not include every feature of the training data. By doing it
this way, the different decision trees can fit different aspects of the data and capture
more information on aggregate. After a number of trees have been created, their
predictions are averaged to create the final prediction.

The idea is that the errors presented by the trees are not correlated, and so by using
multiple trees you cancel out the error. You can create and train a random forest
classifier like this:

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n estimators=10,n jobs=-1)
rf.fit (X train res,y train res)
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You'll notice that with the code we've just generated, random forests have far fewer
knobs to tune than neural networks. In this case, we just specify the number of
estimators, that is, the number of trees we would like our forest to have.

The n_jobs argument tells the random forest how many trees we would like to train
in parallel. Note that -1 stands for "as many as there are CPU cores":

y_pred = rf.predict (X test)
fl1 score(y pred=y pred,y true=y test)

out: 0.8749502190362406

The random forest does an order of magnitude better than the neural network as its
F1 score is close to 1, which is the maximum score. Its confusion plot, seen as follows,
shows that the random forest significantly reduced the number of false positives:

Confusion matrix
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A confusion matrix for the random forest

A shallow learning approach, such as a random forest, often does better than deep
learning on relatively simple problems. The reason for this is that simple relationships
with low-dimensional data can be hard to learn for a deep learning model, which has
to fit multiple parameters exactly in order to match the simple function.

As we will see in later chapters of this book, as soon as relationships do get more
complex, deep learning gets to shine.
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XGBoost

XGBoost stands for eXtreme Gradient Boosting. The idea behind gradient boosting
is to train a decision tree, and then to train a second decision tree on the errors that
the first decision tree made.

Through this method, multiple layers of decision trees can be added, which
slowly reduces the total number of model errors. XGBoost is a popular library
that implements gradient boosting very efficiently.

Note: XGBoost is installed on Kaggle kernels by default. If you

are running these examples locally, see the XGBoost manual for
s installation instructions and more information: http://xgboost .

readthedocs.io/.

Gradient boosting classifiers can be created and trained just like random forests from
sklearn, as can be seen in the following code:

import xgboost as xgb

booster = xgb.XGBClassifier(n jobs=-1)
booster = booster.fit (X train,y train)
y_pred = booster.predict (X test)

fl1 score(y pred=y pred,y true=y test)

out: 0.85572959604286891

The gradient booster performs at almost the same level as a random forest on this
task. A common approach that is used is to take both a random forest and a gradient
booster and to average the predictions in order to get an even better model.

The bulk of machine learning jobs in business today are done on relatively
simple structured data. The methods we have learned today, random forests and
gradient boosting, are therefore the standard tools that most practitioners use in
the real world.

In most enterprise machine learning applications, value creation does not come
from carefully tweaking a model or coming up with cool architectures, but from
massaging data and creating good features. However, as tasks get more complex
and more semantic understanding of unstructured data is needed, these tools
begin to fail.
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Applying Machine Learning to Structured Data

E2E modeling

Our current approach relies on engineered features. As we discussed at the start of
this chapter, an alternative method is E2E modeling. In E2E modeling, both raw and
unstructured data about a transaction is used. This could include the description text
of a transfer, video feeds from cameras monitoring a cash machine, or other sources
of data. E2E is often more successful than feature engineering, provided that you
have enough data available.

To get valid results, and to successfully train the data with an E2E model it can take
millions of examples. Yet, often this is the only way to gain an acceptable result,
especially when it is hard to codify the rules for something. Humans can recognize
things in images well, but it is hard to come up with exact rules that distinguish
things, which is where E2E shines.

In the dataset used for this chapter, we do not have access to more data, but the rest
of the chapters of this book demonstrate various E2E models.

Exercises

If you visit https://kaggle. com, search for a competition that has structured data.
One example is the Titanic competition. Here you can create a new kernel, do some
feature engineering, and try to build a predictive model.

How much can you improve it by investing time in feature engineering versus model
tweaking? Is there an E2E approach to the problem?

Summary

In this chapter, we have taken a structured data problem from raw data to
strong and reliable predictive models. We have learned about heuristic, feature
engineering, and E2E modeling. We have also seen the value of clear evaluation
metrics and baselines.

In the next chapter, we will look into a field where deep learning truly shines,
computer vision. Here, we will discover the computer vision pipeline, from working
with simple models to very deep networks augmented with powerful preprocessing
software. The ability to "see" empowers computers to enter completely new domains.
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When Snapchat first introduced a filter featuring a breakdancing hotdog, the
stock price of the company surged. However, investors were less interested in
the hotdog's handstand; what actually fascinated them was that Snapchat had
successfully built a powerful form of computer vision technology.

The Snapchat app was now not only able to take pictures, but it was also able to
find the surfaces within those pictures that a hotdog could breakdance on. Their
app would then stick the hotdog there, something that could still be done when
the user moved their phone, allowing the hotdog to keep dancing in the same spot.

While the dancing hotdog may be one of the sillier applications of computer vision,
it successfully showed the world the potential of the technology. In a world full

of cameras, from the billions of smartphones, security cameras, and satellites in
use every day, to Internet of Things (IoT) devices, being able to interpret images
yields great benefits for both consumers and producers.

Computer vision allows us to both perceive and interpret the real world at scale.
You can think of it like this: no analyst could ever look at millions of satellite images
to mark mining sites and track their activity over time; it's just not possible. Yet for
computers, it's not just a possibility; it's something that's a reality here and now.

In fact, something that’s being used in the real world now, by several firms, is
retailers counting the number of cars in their parking lot in order to estimate what
the sales of goods will be in a given period.

Another important application of computer vision can be seen in finance, specifically
in the area of insurance. For instance, insurers might use drones to fly over roofs in
order to spot issues before they become an expensive problem. This could extend to
them using computer vision to inspect factories and equipment they insure.
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Utilizing Computer Vision

Looking at another case in the finance sector, banks needing to comply with
Know-Your-Customer (KYC) rules are automating back-office processes and identity
verification. In financial trading, computer vision can be applied to candlestick charts
in order to find new patterns for technical analysis. We could dedicate a whole book
to the practical applications of computer vision.

In this chapter, we will be covering the building blocks of computer vision models.
This will include a focus on the following topics:

* Convolutional layers.

e Padding.

* Pooling.

* Regularization to prevent overfitting.

*  Momentum-based optimization.

* Batch normalization.

* Advanced architectures for computer vision beyond classification.
* Anote on libraries.

Before we start, let's have a look at all the different libraries we will be using in this
chapter:

* Keras: A high-level neural network library and an interface to TensorFlow.

* TensorFlow: A dataflow programming and machine learning library that we
use for GPU-accelerated computation.

* Scikit-learn: A popular machine learning library with implementation
of many classic algorithms as well as evaluation tools.

*  OpenCV: An image processing library that can be used for rule-based
augmentation

*  NumPy: A library for handling matrices in Python.

* Seaborn: A plotting library.

* tqdm: A tool to monitor the progress of Python programs.

It's worth taking a minute to note that all of these libraries, except for OpenCV,
can be installed via pip; for example, pip install keras.

OpenCV, however, will require a slightly more complex installation procedure. This
is beyond the scope of this book, but the information is well documented online via
OpenCV documentation, which you can view at the following URL: https://docs.
opencv.org/trunk/df/dé5/tutorial table of content introduction.html.

Alternately, it's worth noting that both Kaggle and Google Colab come with OpenCV
preinstalled. To run the examples in this chapter, make sure you have OpenCV
installed and can import with import cv2.
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Convolutional Neural Networks

Convolutional Neural Networks, ConvNets, or CNNs for short, are the driving
engine behind computer vision. ConvNets allow us to work with larger images
while still keeping the network at a reasonable size.

The name Convolutional Neural Network comes from the mathematical
operation that differentiates them from regular neural networks. Convolution is
the mathematically correct term for sliding one matrix over another matrix. We'll
explore in the next section, Filters on MNIST, why this is important for ConvNets,
but also why this is not the best name in the world for them, and why ConvNets
should, in reality, be called filter nets.

Filters on MNIST

What does a computer actually see when it sees an image? Well, the values of the
pixels are stored as numbers in the computer. So, when the computer sees a black-and-
white image of a seven, it actually sees something similar to the following:
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The number 7 from the MNIST dataset

You may be asking, "but why filter nets?" The answer is simply because what makes
them work is the fact that they use filters.

In the next section, we will be working with the MNIST dataset, which is a collection
of handwritten digits that has become a standard "Hello, World!" application for
computer vision.
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The preceding is an example from the MNIST dataset. The handwritten number in
the image has been highlighted to make the figure seven visible for humans, but for
the computer, the image is really just a collection of numbers. This means we can
perform all kinds of mathematical operations on the image.

When detecting numbers, there are a few lower-level features that make a number.
For example, in this handwritten figure 7, there's a combination of one vertical
straight line, one horizontal line on the top, and one horizontal line through the
middle. In contrast, a 9 is made up of four rounded lines that form a circle at the
top and a straight, vertical line.

We're now able to present the central idea behind ConvNets. We can use small filters
that can detect a certain kind of low-level feature, such as a vertical line, and then
slide it over the entire image to detect all the vertical lines in the image.

The following screenshot shows a vertical line filter. To detect vertical lines in our
image, we need to slide this 3x3 matrix filter over the image.

1 0 -1

1 0 -1

1 0 -1
A vertical line filter

Using the MNIST dataset on the following page, we start in the top-left corner and
slice out the top-left 3x3 grid of pixels, which in this case is all zeros.

We then perform an element-wise multiplication of all the elements in the filter with
all elements in the slice of the image. The nine products then get summed up, and
bias is added. This value then forms the output of the filter and gets passed on as

a new pixel to the next layer:

Z =Y Ay*xF +b
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As a result, the output of our vertical line filter will look like this:
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The output of a vertical line filter

Take a minute to notice that the vertical lines are visible while the horizontal lines are
gone. Only a few artifacts remain. Also, notice how the filter captures the vertical line
from one side.

Since it responds to high pixel values on the left and low pixel values on the right,
only the right side of the output shows strong positive values. Meanwhile, the left
side of the line actually shows negative values. This is not a big problem in practice
as there are usually different filters for different kinds of lines and directions.

Adding a second filter

Our vertical filter is working, but we've already noticed that we also need to filter
our image for horizontal lines in order to detect a seven.

[75]

EBSCChost - printed on 2/9/2023 5:58 AMvia . All use subject to https://wmv ebsco.coniterns-of-use



Our horizontal line filter might look like this:

Utilizing Computer Vision

A horizontal line filter

Using that example, we can now slide this filter over our image in the exact same

way we did with the vertical filter, resulting in the following output:
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The output of the vertical line filter

layer? Well, we stack the outputs of both filters on top of each other, creating

the horizontal lines? The question now is what do we now pass onto the next
a three-dimensional cube:

See how this filter removes the vertical lines and pretty much only leaves
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Stacked outputs
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The MNIST convolution

By adding multiple convolutional layers, our ConvNet is able to extract ever more
complex and semantic features.

Filters on color images

Of course, our filter technique is not only limited to black-and-white images. In this
section we're going to have a look at color images.

The majority of color images consist of three layers or channels, and this is commonly
referred to as RGB, the initialism for the three layers. They are made up of one red
channel, one blue channel, and one green channel. When these three channels are laid
on top of each other, they add up to create the traditional color image that we know.

Taking that concept, an image is therefore not flat, but actually a cube, a three-
dimensional matrix. Combining this idea with our objective, we want to apply
a filter to the image, and apply it to all three channels at once. We will, therefore,
perform an element-wise multiplication between two three-dimensional cubes.

Our 3x3 filter now has a depth of three and thus nine parameters, plus the bias:

-1 -1 -1
1 0 -1
1 0 - + bias
1 0 -1
1 0o -1

An example of a filter cube or convolutional kernel
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This cube, which is referred to as a convolutional kernel, gets slid over the image just
like the two-dimensional matrix did before. The element-wise products then again get
summed up, the bias is added, and the outcome represents a pixel in the next layer.

Filters always capture the whole depth of the previous layer. The filters are moved
over the width and height of the image. Likewise, filters are not moved across the
depth, that is, the different channels, of an image. In technical terms, weights, the
numbers that make up the filters, are shared over width and height, but not over
different channels.

The building blocks of ConvNets in Keras

In this section, we will be building a simple ConvNet that can be used for classifying
the MNIST characters, while at the same time, learning about the different pieces that
make up modern ConvNets.

We can directly import the MNIST dataset from Keras by running the following code:

from keras.datasets import mnist
(x_train, y train), (x test, y test) = mnist.load data()

Our dataset contains 60,000 28x28-pixel images. MNIST characters are black
and white, so the data shape usually does not include channels:

x_train.shape
out: (60000, 28, 28)

We will take a closer look at color channels later, but for now, let's expand our data
dimensions to show that we only have a one-color channel. We can achieve this by
running the following;:

import numpy as np

X _train = np.expand dims (x_train,-1)
X _test = np.expand dims(x test,-1)

X _train.shape

out: (60000, 28, 28, 1)

With the code being run, you can see that we now have a single color channel added.

Conv2D

Now we come to the meat and potatoes of ConvNets: using a convolutional layer
in Keras. Conv2D is the actual convolutional layer, with one Conv2D layer housing
several filters, as can be seen in the following code:
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from keras.layers import Conv2D
from keras.models import Sequential

model = Sequential ()
img shape = (28,28,1)

model.add (Conv2D (filters=6,
kernel size=3,
strides=1,
padding="'valid',
input shape=img shape))

When creating a new Conv2D layer, we must specify the number of filters we want
to use, and the size of each filter.

Kernel size

The size of the filter is also called kernel size, as the individual filters are
sometimes called kernels. If we only specify a single number as the kernel size,
Keras will assume that our filters are squares. In this case, for example, our filter
would be 3x3 pixels.

It is possible, however, to specify non-square kernel sizes by passing a tuple to the
kernel size parameter. For example, we could choose to have a 3x4-pixel filter
through kernel size = (3,4).However, this is very rare, and in the majority

of cases, filters have a size of either 3x3 or 5x5. Empirically, researchers have found
that this is a size that yields good results.

Stride size

The strides parameter specifies the step size, also called the stride size, with which
the convolutional filter slides over the image, usually referred to as the feature map.

In the vast majority of cases, filters move pixel by pixel, so their stride size is set to 1.
However, there are researchers that make more extensive use of larger stride sizes in
order to reduce the spatial size of the feature map.

Like with kernel_size, Keras assumes that we use the same stride size horizontally
and vertically if we specify only one value, and in the vast majority of cases that

is correct. However, if we want to use a stride size of one horizontally, but two
vertically, we can pass a tuple to the parameter as follows: strides=(1,2). As

in the case of the filter size, this is rarely done.
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Padding

Finally, we have to add padding to our convolutional layer. Padding adds zeros
around our image. This can be done if we want to prevent our feature map from
shrinking.

Let's consider a 5x5-pixel feature map and a 3x3 filter. The filter only fits on the
feature map nine times, so we'll end up with a 3x3 output. This both reduces the
amount of information that we can capture in the next feature map, and how much
the outer pixels of the input feature map can contribute to the task. The filter never
centers on them; it only goes over them once.

There are three options for padding: not using padding, known as "No" padding,
"Same" padding and "Valid" padding.

Let's have a look at each of the three paddings. First, No Padding:

Input Output

No Padding

Option 1: No padding

Then we have Same Padding:

Input Output

Same padding

Option 2: Same padding
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To ensure the output has the same size as the input, we can use same padding.
Keras will then add enough zeros around the input feature map so that we can
preserve the size. The default padding setting, however, is valid. This padding
does not preserve the feature map size, but only makes sure that the filter and
stride size actually fit on the input feature map:

Input Output

Valid padding

Option 3: Valid padding

Input shape

Keras requires us to specify the input shape. However, this is only required for the
tirst layer. For all the following layers, Keras will infer the input shape from the
previous layer's output shape.

Simplified Conv2D notation

The preceding layer takes a 28x28x1 input and slides six filters with a 2x2 filter size
over it, going pixel by pixel. A more common way to specify the same layer would
be by using the following code:

model .add (Conv2D (6, 3, input shape=img shape))

The number of filters (here 6) and the filter size (here 3) are set as positional
arguments, while strides and padding default to 1 and valid respectively. If this
was a layer deeper in the network, we wouldn't even have to specify the input shape.

ReLU activation

Convolutional layers only perform a linear step. The numbers that make up
the image get multiplied with the filter, which is a linear operation.

[81]

EBSCChost - printed on 2/9/2023 5:58 AMvia . All use subject to https://wmv ebsco.coniterns-of-use



Utilizing Computer Vision

So, in order to approximate complex functions, we need to introduce non-linearity
with an activation function. The most common activation function for computer
vision is the Rectified Linear Units, or ReLU function, which we can see here:

1.2t
1ot
0.8t
0.6t
0.4t

0.2+

=10 -0.5 0.5 1.0

The ReLU activation function
The ReLU formula, which was used to produce the above chart, can be seen below:

ReLU(x) = max(x, 0)

In other words, the ReLU function returns the input if the input is positive. If it's not,
then it returns zero. This very simple function has been shown to be quite useful,
making gradient descent converge faster.

It is often argued that ReLU is faster because the derivative for all values above
zero is just one, and it does not become very small as the derivative for some extreme
values does, for example, with sigmoid or tanh.

ReLU is also less computationally expensive than both sigmoid and tanh. It does not
require any computationally expensive calculations, input values below zero are just
set to zero, and the rest is outputted. Unfortunately, though, ReLU activations are

a bit fragile and can "die."

When the gradient is very large and moves multiple weights towards a negative
direction, then the derivative of ReLU will also always be zero, so the weights never
get updated again. This might mean that a neuron never fires again. However,

this can be mitigated through a smaller learning rate.
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Because ReLU is fast and computationally cheap, it has become the default activation
function for many practitioners. To use the ReLU function in Keras, we can just name
it as the desired activation function in the activation layer, by running this code:

from keras.layers import Activation
model.add (Activation('relu'))

MaxPooling2D

It's common practice to use a pooling layer after a number of convolutional layers.
Pooling decreases the spatial size of the feature map, which in turn reduces the
number of parameters needed in a neural network and thus reduces overfitting.

Below, we can see an example of Max Pooling;:

Input Output
1 2 5 6
3 412 1 4 6
2 1 6 5 2 6

1 1 5 5

Max Pooling

Max pooling

Max pooling returns the maximum element out of a pool. This is in contrast to the
example average of AveragePooling2D, which returns the average of a pool. Max
pooling often delivers superior results to average pooling, so it is the standard most
practitioners use.

Max pooling can be achieved by running the following:

from keras.layers import MaxPool2D

model . add (MaxPool2D (pool size=2,
strides=None,
padding='valid'))

When using a max pooling layer in Keras, we have to specify the desired pool size.
The most common value is a 2x2 pool. Just as with the conv2D layer, we can also
specify a stride size.
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For pooling layers, the default stride size is None, in which case Keras sets the stride
size to be the same as the pool size. In other words, pools are next to each other and
don't overlap.

We can also specify padding, with valid being the default choice. However,
specifying same padding for pooling layers is extremely rare since the point
of a pooling layer is to reduce the spatial size of the feature map.

Our MaxPooling2D layer here takes 2x2-pixel pools next to each other with no
overlap and returns the maximum element. A more common way of specifying
the same layer is through the execution of the following:

model . add (MaxPool2D (2))

In this case, both strides and padding are set to their defaults, None and valid
respectively. There is usually no activation after a pooling layer since the pooling
layer does not perform a linear step.

Flatten

You might have noticed that our feature maps are three dimensional while our
desired output is a one-dimensional vector, containing the probability of each of the
10 classes. So, how do we get from 3D to 1D? Well, we Flatten our feature maps.

The Flatten operation works similar to NumPy's f1atten operation. It takes in a
batch of feature maps with dimensions (batch_size, height, width, channels)
and returns a set of vectors with dimensions (batch size, height * width *
channels).

It performs no computation and only reshapes the matrix. There are no
hyperparameters to be set for this operation, as you can see in the following code:

from keras.layers import Flatten

model.add (Flatten())

Dense

ConvNets usually consist of a feature extraction part, the convolutional layers,

as well as a classification part. The classification part is made up out of the simple

fully connected layers that we've already explored in Chapter 1, Neural Networks and
Gradient-Based Optimization, and Chapter 2, Applying Machine Learning to Structured Data.

To distinguish the plain layers from all other types of layers, we refer to them as
Dense layers. In a dense layer, each input neuron is connected to an output neuron.
We only have to specify the number of output neurons we would like, in this case, 10.
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This can be done by running the following code:

from keras.layers import Dense
model .add (Dense (10) )

After the linear step of the dense layer, we can add a softmax activation for multi-class
regression, just as we did in the first two chapters, by running the following code:

model .add (Activation ('softmax'))

Training MNIST

Let's now put all of these elements together so we can train a ConvNet on the MNIST
dataset.

The model

First, we must specify the model, which we can do with the following code:

from keras.layers import Conv2D, Activation, MaxPool2D, Flatten, Dense
from keras.models import Sequential

img shape = (28,28,1)

model = Sequential ()

model .add (Conv2D (6, 3, input_shape=img shape))
model.add (Activation('relu'))

model .add (MaxPool2D(2) )

model.add (Conv2D (12, 3))

model.add (Activation('relu'))

model .add (MaxPool2D(2))

model.add (Flatten())

model.add (Dense (10))

model.add (Activation ('softmax'))
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In the following code, you can see the general structure of a typical ConvNet:

Conv2D
Pool

Conv2D
Pool

Flatten
Dense

The convolution and pooling layers are often used together in these blocks; you can
find neural networks that repeat the conv2D, MaxPool2D combination tens of times.

We can get an overview of our model with the following command:

model . summary ()

Which will give us the following output:

Layer (type) Output Shape Param #
comv2a 2 (comvz:)  (nome, 26, 26, ) 0
activation 3 (Activation) (None, 26, 26, 6) 0

max pooling2d 2 (MaxPooling2 (None, 13, 13, 6) 0

conv2d 3 (Conv2D) (None, 11, 11, 12) 660
activation 4 (Activation) (None, 11, 11, 12) 0

max pooling2d 3 (MaxPooling2 (None, 5, 5, 12) 0
flatten 2 (Flatten) (None, 300) 0

dense 2 (Dense) (None, 10) 3010
activation 5 (Activation) (None, 10) 0

Total params: 3,730
Trainable params: 3,730

Non-trainable params: 0
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In this summary, you can clearly see how the pooling layers reduce the size of the
feature map. It's a little bit less obvious from the summary alone, but you can see
how the output of the first conv2b layer is 26x26 pixels, while the input images are
28x28 pixels.

By using valid padding, conv2D also reduces the size of the feature map, although
only by a small amount. The same happens for the second conv2D layer, which
shrinks the feature map from 13x13 pixels to 11x11 pixels.

You can also see how the first convolutional layer only has 60 parameters, while
the Dense layer has 3,010, over 50 times as many parameters. Convolutional layers
usually achieve surprising feats with very few parameters, which is why they are
so popular. The total number of parameters in a network can often be significantly
reduced by convolutional and pooling layers.

Loading the data

The MNIST dataset we are using comes preinstalled with Keras. When loading
the data, make sure you have an internet connection if you want to use the dataset
directly via Keras, as Keras has to download it first.

You can import the dataset with the following code:

from keras.datasets import mnist
(x_train, y train), (x test, y test) = mnist.load data()

As explained at the beginning of the chapter, we want to reshape the dataset so
that it can have a channel dimension as well. The dataset as it comes does not have
a channel dimension yet, but this is something we can do:

X _train.shape

out:
(60000, 28, 28)

So, we add a channel dimension with NumPy, with the following code:
import numpy as np
X _train = np.expand dims (x_train,-1)
X test = np.expand dims(x test,-1)

Now there is a channel dimension, as we can see here:

X _train.shape

out:
(60000, 28, 28,1)
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Compiling and training

In the previous chapters, we have used one-hot encoded targets for multiclass
regression. While we have reshaped the data, the targets are still in their original
form. They are a flat vector containing the numerical data representation for each
handwritten figure. Remember that we have 60,000 of these in the MNIST dataset:

y_train.shape

out:

(60000,)

Transforming targets through one-hot encoding is a frequent and annoying task, so
Keras allows us to just specify a loss function that converts targets to one-hot on the
fly. This loss function is called sparse categorical crossentropy.

It's the same as the categorical cross-entropy loss used in earlier chapters, the only
difference is that this uses sparse, that is, not one-hot encoded, targets.

Just as before, you still need to make sure that your network output has as many
dimensions as there are classes.

We're now at a point where we can compile the model, which we can do with
the following code:

model.compile (loss="'sparse categorical crossentropy',
optimizer='adam',
metrics=['acc'])

As you can see, we are using an Adam optimizer. The exact workings of Adam are
explained in the next section, More bells and whistles for our neural network, but for now,
you can just think of it as a more sophisticated version of stochastic gradient descent.

When training, we can directly specify a validation set in Keras by running the
following code:

history = model.fit (x train,
y_train,
batch size=32,
epochs=5,
validation data=(x test,y test))

Once we have successfully run that code, we'll get the following output:

Train on 60000 samples, validate on 10000 samples
Epoch 1/10

60000/60000 [==============================] - 19s 309uS/Step - loss:
5.3931 - acc: 0.6464 - val loss: 1.9519 - val acc: 0.8542
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Epoch 2/10
60000/60000 [==============================] - 18s 297us/step - loss:

0.8855 - acc: 0.9136 - val loss: 0.1279 - val acc: 0.9635

Epoch 10/10

60000/60000 [==============================] - 18s 296us/step - loss:
0.0473 - acc: 0.9854 - val loss: 0.0663 - val acc: 0.9814

To better see what is going on, we can plot the progress of training with the
following code:

import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(10,6))

gen = ax.plot (history.history['val acc'], label='Validation
Accuracy')

fr = ax.plot (history.historyl['acc'],dashes=[5, 2], label='Training
Accuracy')

legend = ax.legend(loc='lower center', shadow=True)

plt.show ()

This will give us the following chart:

09
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The visualized output of validation and training accuracy
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As you can see in the preceding chart, the model achieves about 98% validation
accuracy, which is pretty nice!

More bells and whistles for our neural
network

Let's take a minute to look at some of the other elements of our neural network.

Momentum

In previous chapters we've explained gradient descent in terms of someone trying

to find the way down a mountain by just following the slope of the floor. Momentum
can be explained with an analogy to physics, where a ball is rolling down the same
hill. A small bump in the hill would not make the ball roll in a completely different
direction. The ball already has some momentum, meaning that its movement gets
influenced by its previous movement.

Instead of directly updating the model parameters with their gradient, we update
them with the exponentially weighted moving average. We update our parameter
with an outlier gradient, then we take the moving average, which will smoothen
out outliers and capture the general direction of the gradient, as we can see in the
following diagram:

Momentum

Momentum (Moving Average),

How momentum smoothens gradient updates
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The exponentially weighted moving average is a clever mathematical trick used
to compute a moving average without having to memorize a set of previous values.
The exponentially weighted average, V, of some value, §, would be as follows:

V=BV, +(1-B)*6,

A beta value of 0.9 would mean that 90% of the mean would come from the previous
moving average, v, ,, and 10% would come from the new value, ¢ .

Using momentum makes learning more robust against gradient descent pitfalls such
as outlier gradients, local minima, and saddle points.

We can augment the standard stochastic gradient descent optimizer in Keras with
momentum by setting a value for beta, which we do in the following code:

from keras.optimizers import SGD
momentum optimizer = SGD(lr=0.01, momentum=0.9)

This little code snippet creates a stochastic gradient descent optimizer with a learning
rate of 0.01 and a beta value of 0.9. We can use it when we compile our model, as
we'll now do with this:

model .compile (optimizer=momentum optimizer,
loss='sparse_categorical crossentropy',
metrics=['acc'])

The Adam optimizer

Back in 2015, Diederik P. Kingma and Jimmy Ba created the Adam (Adaptive
Momentum Estimation) optimizer. This is another way to make gradient descent
work more efficiently. Over the past few years, this method has shown very good
results and has, therefore, become a standard choice for many practitioners. For
example, we've used it with the MNIST dataset.

First, the Adam optimizer computes the exponentially weighted average of
the gradients, just like a momentum optimizer does. It achieves this with the
following formula:

Vir =B xVy, +(1_ﬁ1)*dW

It then also computes the exponentially weighted average of the squared gradients:

S =By xSy +(1=8,)xdW?
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It then updates the model parameters like this:

_ Vaw
VSaw +€

Here € is a very small number to avoid division by zero.

This division by the root of squared gradients reduces the update speed when
gradients are very large. It also stabilizes learning as the learning algorithm does
not get thrown off track by outliers as much.

Using Adam, we have a new hyperparameter. Instead of having just one momentum
factor, ﬁ , we now have two, (3, and ﬂ2 . The recommended values for ﬁl and ﬂz
are 0.9 and 0.999 respectively.

We can use Adam in Keras like this:

from keras.optimizers import adam

adam optimizer=adam(lr=0.1,
beta 1=0.9,
beta 2=0.999,
epsilon=1e-08)

model .compile (optimizer=adam optimizer,
loss='sparse categorical crossentropy',
metrics=['acc'])

As you have seen earlier in this chapter, we can also compile the model just by
passing the adam string as an optimizer. In this case, Keras will create an Adam
optimizer for us and choose the recommended values.

Regularization

Regularization is a technique used to avoid overfitting. Overfitting is when the
model fits the training data too well, and as a result, it does not generalize well

to either development or test data. You may see that overfitting is sometimes also
referred to as "high variance," while underfitting, obtaining poor results on training,
development, and test data, is referred to as "high bias."

In classical statistical learning, there is a lot of focus on the bias-variance tradeoff. The
argument that is made is that a model that fits very well to the training set is likely to
be overfitting and that some amount of underfitting (bias) has to be accepted in order
to obtain good outcomes. In classical statistical learning, the hyperparameters that
prevent overfitting also often prevent the training set fitting well.
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Regularization in neural networks, as it is presented here, is largely borrowed from
classical learning algorithms. Yet, modern machine learning research is starting to
embrace the concept of "orthogonality," the idea that different hyperparameters
influence bias and variance.

By separating those hyperparameters, the bias-variance tradeoff can be broken, and
we can find models that generalize well and deliver accurate predictions. However,
so far these efforts have only yielded small rewards, as low-bias and low-variance
models require large amounts of training data.

L2 regularization

One