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Preface

Back in 1905 S.S. Chetverikov (1905) in the Diary of the Zoological 
Department of the Imperial Society of Lovers of Natural Science, Anthropology 
and Ethnography noted that locust invasions into Russia are waves of life, 
thus emphasizing the important property of living matter - the ability to 
spread in waves. The mathematical study of the question of the propagation 
of the waves of biological populations originates from the work of A.N. 
Kolmogorov, I.G. Petrovsky, & N.S. Piskunova (Kolmogorov, Petrovsky, & 
Piskunov, 1937). In this work, the nonstationary diffusion equation with the 
source term modeling the reproduction process of a biological population was 
studied, and the diffusion corresponded to the chaotic mobility of individuals. 
The possibility of applying this work it is limited by the framework of a 
very simple model of the biological population: the process of feeding of 
organisms was not taken into account, the possibility of their directional 
movement (taxis), the patterns of reproduction and dying were taken in the 
simplest form. The formation of the waves of biological populations is the 
result of the manifestation of the important quality of living nature - its self 
- organization. Waves of biological populations can be of two types: a wave 
of territory conquest and a solitary wave (soliton). The wave of conquest is 
necessary for the resettlement of organisms over a large area. A solitary wave 
is the search for food for a multitude of individuals forming a population of 
finite size when it moves across the territory.

A vivid example of a wave of conquest in nature can be the spread of blue 
- green algae over the surface of the Earth several billion years ago when they 
emerge from the ocean (Elenkin, 1936; Zavarzin, 2002). This ensured the 
development of life on Earth. The flight of the gregarious locust is a vivid 
example of a solitary wave of a population.

Mathematical models of wave propagation of the various biological 
populations (communities of biological organisms) were built and studied in 
the number works (Zhizhin & Bolshakova, 2000 a, b, c; Zhizhin, 2004, 2005, 

vii
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Preface

2012, 2014; Zhizhin, & Selikhovkin, 2012). This monograph presents studies 
of stationary waves of conquest and solitary waves in logistic populations and 
populations of Ollie, as well as a study of the flight model of the herd locust.

Nonlinear waves, which include waves of biological populations, are mobile 
dissipative structures (Svirezhev, 1987). The dissipative structures support 
themselves at the expense of energy consumption from the environment. 
Dissipative structures can also be fixed. They can have a different form and 
are called generally attractors. These are the formations that systems seeking 
over time (including stationary standing and traveling waves). The desire for 
living matter to equilibrium is also an important feature of them. An attractor 
can be a special point in the phase space of the system - the equilibrium 
position. It can be a limit cycle on which the trajectories of the phase space 
are wound, and it can be a torus. Attractors can form continuous manifolds 
of dimension n. In 1971 the term strange attractor appeared. They denote the 
attractor, to which the trajectories of the phase space tend in a chaotic way, 
approaching and moving away from it. This is accompanied by bifurcation 
of the special points of the phase space. The system of equations studied in 
1971 was a model of turbulence (the Lorentz equations). With some form of 
functions included in the Lorentz equations, the system describes the dynamics 
of the biological population consisting of predators and preys (Volterra, 
1931). Currently, a large scientific literature is devoted to the mathematical 
study of the strange attractors (see, for example, Marsden, & McCracken, 
1976; Kolmogorov, & Novikov, 1981). Affinity by its nature is affirmed of 
the strange attractors and fractal attractors (Mandelbrot, 2004).

Thus, in the populations of living organisms in which they are born and 
die due to death from other organisms or adverse climatic conditions, an 
equilibrium occurs sooner or later, i.e. the system tends to attractor. In some 
cases, this attractor may be strange. However, what happens in populations 
if conditions are created that significantly reduce the likelihood of death of 
organisms? G. Mendel created such conditions, when in 1865 he conducted 
his experiments on the crossing of plants with different (constant - different) 
characters (Mendel, 1965). Naturally, under these conditions, the number 
of hybrids increases from generation to generation. This was the reason for 
Hardy to believe that there is no equilibrium position in this system. To get 
it, Hardy introduced a number of strong, unsupported assumptions (Hardy, 
1908). It is known that the experiments of G. Mendel became the basis 
for the creation of genetics as a science. In this paper, for the first time, a 
mathematical model of G. Mendel’s experiments on hybridization of plants 
with an arbitrary number of constant - distinct characters for any number of 

viii
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generations was constructed. This greatly expands the ability to determine 
the asymptotic nature of the sequence of experiments that G. Mendel 
could not afford. It has been shown that with an increase in the number of 
generations in a plant population, the number of phenotypes of organisms 
with different sets of genes quickly level up. With the increase in the number 
of generations and the absence of the death of organisms, these quantities 
increase synchronously, remaining almost equal to each other. This can be 
considered as establishing an equilibrium between plant phenotypes. In this 
case, the trajectories of the process in a multidimensional phase space with 
coordinates in the form of inverse quantities of phenotypes tend to an isolated 
stable equilibrium position of the node type at the origin.

If the death of organisms is possible, then equilibrium in general is 
achieved with final concentrations of the organisms. The book considers 
temporal and spatial dissipative structures in the systems of marine and 
oceanic phytoplankton and zooplankton, since plankton has a significant 
impact on the formation of climate on Earth. It is proved that the widespread 
mechanistic models of plankton, equating the mobility of individuals of 
the plankton population with the turbulent diffusion coefficient of seas 
and oceans, do not correspond to reality. It is shown that in violation of the 
processes of self - regulation between plankton populations, caused, for 
example, by eutrophication, the extinction regime of a population begins. 
Bifurcation analysis of the equations describing the spatial distribution of 
the concentrations of plankton components found that the most interesting 
area of the system parameters is a cloud in which the equilibrium position 
of plankton has two pairs of conjugate purely imaginary eigenvalues. See, 
the system of equations even after linearization in the neighborhood of the 
equilibrium position, in contrast to the problem considered by V. I. Arnold 
(Arnold, 1976) does not break up into two systems. There are no methods for 
analyzing such points in the modern theory of dynamical systems (Katok, & 
Hasselblat, 1999). These points were initially excluded from the analysis in 
the works of A. M. Lyapunov (Lyapunov, 1935), A. A. Andronov (Andronov 
and others, 1966, 1967), N. N. Bautin (Bautin, 1984).

A numerical study of trajectories in the four - dimensional phase space 
in a sufficiently large neighborhood of such equilibrium states revealed the 
existence of a strange attractor of previously unknown form (Zhizhin, 2005). It 
is a multilayer attractor, each layer of which is also a strange attractor with two 
characteristic points for a given layer, common to all trajectories of this layer. 
Each layer of the multilayer strange attractor corresponds to the dissipative 
structure of plankton, covering the surface of the aquatic environment.

ix
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It can be said that another important property of living systems, as it was 
established in the last monographs of author (Zhizhin, 2017, 2008), is the 
creation of a space of higher dimensionality due to the higher dimension of 
their constituent molecules. It should be emphasized that here we are not 
talking about Euclidean space, which by definition is infinite and three - 
dimensional. Based on the definition of the dimension of convex polytopes 
using the Euler – Poincaré formula (Poincaré, 1895), one can calculate the 
dimension of a convex body (in this case, a molecule), counting each atom (or 
functional group) as the vertices of the polytope. Then almost all compounds 
formed by chemical elements have the highest dimension (Zhizhin, 2017). 
This is especially important for biomolecules that have a complex structure. 
The geometry of B. Riemann is applicable here. In his famous lecture “On 
the Hypotheses that Lie at The Foundations of Geometry” (Riemann, 1854) 
he introduces the concept of n – extended manifold. It is essential, that n – 
dimensional extension it is determined by Riemann without introduction of 
infinite spaces.

Thus, the existence of closed objects of higher dimension (molecules) in 
a space of lower dimension does not contradict Riemann`s geometry, which 
assumes the boundedness of a space with a given dimension. Therefore, all 
studies in molecular biology in this work take into account this fact. The 
dimensions of the compounds of biogenic elements have been calculated, 
i.e. chemical elements present in living organisms and necessary for them 
to live. The dimensions of various types of biomolecules, including nucleic 
acid molecules, are calculated. A simplified three - dimensional model of 
this molecule and a simplified three - dimensional model of nucleic acids 
were built for the first time on the basis of a five - carbon sugar molecule 
model having dimension 12. This is important for visualizing the structure 
of nucleic acids. The calculations of the basic geometric characteristics of 
nucleic acid molecules according to this model are in good agreement with 
the experimental data obtained by Watson and Crick (1953). It has been 
proven that five - carbon sugar molecules bound by nitrogenous bases and 
located in two helices of one nucleic acid molecule (DNA or RNA) form a 
13 - dimension polytope with anti - parallel edges. Moreover, this polytope 
has exactly 12 free coordinate planes in which exactly 12 possible compounds 
of nitrogenous bases can be located. Thus, the arrangement of nitrogenous 
bases in nucleic acids obtained a geometrical basis and specification. This 
circumstance translates the question of the genetic code into a space of higher 
dimension, which is considered in the last chapter of the monograph.

x
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The concept of Big Data has become widespread in computer science in 
recent times (Kosrapohr, 2003; Hughes, 2011; Rodger, 2015). The higher 
dimensionality of molecules can be considered as an example of Big Data. 
Apparently, a description using spaces of higher dimensionality can be 
considered as an alternative to existing mathematical methods for solving 
problems in a domain Big Data.
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ABSTRACT

On the basis Mendel’s experiments, a mathematical model is constructed that 
describes the results of these experiments in a wide range of parameters. This 
model is compared with the Hardy-Weinberg logistic model based only on 
probabilistic ideas about the presence of dominant and recessive alleles in the 
chromosomes of living organisms. There is shown that in the mathematical 
model of Mendel’s experiments, based on real patterns of plant development, 
there are equilibrium positions between the dominant and recessive forms. 
It consists in the fact that with an increase in the number of generations 
all dominant and recessive phenotypes of organisms, with any number of 
sings, quickly equalize and then synchronously (in the absence of death of 
organisms) increase together, seeking asymptotically to a stable isolated 
equilibrium position of the type of a multidimensional node. This newly 
discovered behavior of the dominant and recessive forms in the vicinity of the 
equilibrium position (true) differs significantly from the logistic equilibrium 
position in the Hardy-Weinberg principle, built without taking into account 
the real patterns in the plant population.

INTRODUCTION

In 1865, Mendel made a presentation at the Society of Naturalists in Brynn 
about experiments on plant hybrids (Mendel, 1965). This presentation gave 
birth to the development of genetics as a science, although not immediately 
the content of the speech became of known to the scientific community and 
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was appreciated (Gaisinovich, 1988). Understanding of its significant results 
took place in the struggle of opposing scientific trends and was accompanied 
by dramatic events in human relations. At different times, scientists have 
seen in these experiments different, sometimes opposite, results. More than 
30 years after this speech, when the results works of Mendel were reopened 
and confirmed experimentally in the works of Correns (Correns, 1900), and 
De Vries (De Vries, 1904).

Over the past 150 years after the speech of Mendel, a chromosome theory 
of heredity was created, which gave a molecular explanation to the results 
of the experiments of Mendel (Weismann, 1885; Johannsen, 1933; Morgan, 
1937; Koltsov, 1935; Chetverikov, 1926; Watson & Crick, 1953; Zhizhin, 
2016, 2017, 2018). The same time after of the second discovery of Mendel’s 
experiments, there appeared works in which it was noted that in Mendel’s 
experiments there was a steady increase in the number of dominant alleles 
in populations, which indicated the absence of equilibrium positions in plant 
populations that obeyed Mendel’s law.

In this regard, Yule (Yule, 1902) purely mathematically proved that in 
the case of free crossing in the population of heterozygous forms, there 
is an equilibrium between the number of dominant and recessive forms. 
Continued these studies Hardy (Hardy, 1908), who derived the formula for 
the distribution of genotypes in freely crossbreeding populations. Regardless 
of him and even earlier, Weinberg (Weinberg, 1908) established the same 
formula. This formula was called as principle the Hardy - Weinberg and 
became widespread. However, for the mathematical derivation of this formula, 
very strong assumptions are used: lack of choice in organisms, infinity of the 
population, accidental crossing of the population’s organisms with each other, 
uniform distribution of male and female individuals, absence of mutation 
and genetic drift. The totality of these assumptions precludes the possibility 
of realizing such populations in nature. Therefore, this principle cannot be 
confirmed experimentally. Its only advantage is that it has equilibrium positions 
(a finite ratio of the numbers of dominant and recessive forms). However, 
these equilibrium positions are formed for any initial contents of these forms. 
Consequently, the set of equilibrium positions is a continuous manifold, 
and therefore they are asymptotically unstable, since any small perturbation 
can translate the system from one equilibrium position to another (Zhizhin, 
1972, 2004a). The combination of necessary mathematical conditions in the 
derivation of the Hardy -Weinberg formula does not alleviate this advantage.
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In this Chapter, a mathematical analysis of the sequences of obtaining the 
values   of the number of phenotypes of organisms in Mendel’s experiments 
was carried out. It is found that the patterns of inheritance of constant - 
differing sings, experimentally established by Mendel, are described by 
special algebraic relations, the basis of which are geometric progressions. 
Mendel and subsequent researchers did not pay attention to this. Naturally, 
Mendel could not trace the patterns of inheritance on experiments with a large 
number of generations. However, the mathematical model obtained in this 
Chapter (Zhizhin, 2019), accurately confirmed by Mendel’s opaque in the 
field of conditions of their conduct, allows one to cram into the inheritance 
processes of sings with a large number of generations. A numerical and 
qualitative analysis of the equations of the mathematical model with an 
increase in the number of generations with an arbitrary number of pairs of 
constant - differing features was carried out.

There is shown that in the mathematical model of Mendel’s experiments, 
based on real patterns of plant development, there are equilibrium positions 
between the dominant and recessive forms. It is shown that with an increase 
in the number of generations of the number all of dominant and recessive 
phenotypes of organisms with any number of sings quickly equalize and 
then synchronously (in the absence of death of organisms) increase together. 
In this case, the system asymptotically strive to achieve an isolated stable 
equilibrium position of the node type in a multidimensional space with 
coordinates in the form of quantities inversely proportional to the number 
of different phenotypes of organisms.

Thus, for finding equilibrium positions there is no need to use such 
stringent conditions which definition of the Hardy – Weinberg principle. 
Moreover, the regularities obtained by Mendel are based on clear biological 
processes in cells, in chromosomes. Moreover, the behavior of the system in 
the vicinity of the equilibrium position of the mathematical model of Mendel’s 
experiments has a clear physical meaning. While one of the authors of the 
Hardy -Weinberg principle wrote that, a purely mathematical probabilistic 
description of random crossing is caused by the impossibility of having any 
physical justification for it (Yule, 1902).

In the experiments of Mendel, the plants were pollinated of the self – 
pollination, since many plants are pollinated by this method (Takhtadzhyan, 
1980). In addition, recently in the neurobiology of plants convincingly shown 
(Mancuso, & Viola, 2013) that even in cross - pollination, for example, bees, 
insects pollinate plants not in a random way. The so - called “law of place” 
appears. The bees pollinate the plants of the species from which they started 
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to pollinate in the early morning. This manifests the intellectual ability of 
plants to manage the surrounding nature for their needs (Pollan, 2001; Pereira 
et al., 2012).

MONO - HYBRID CROSSING

Mendel carefully selected plants so that they consistently had differing signs 
(constant -distinguishing signs) to determine the inheritance patterns of plant 
sings. Now can to say that, in accordance with the chromosome theory of 
heredity, two homozygous organisms were crossed, the homologous 
chromosomes of each of which contain two identical genes. One pair of genes 
(AA) in one organism corresponds to one sing (dominant), and the other pair 
of genes (aa) in another organism corresponds to another sing (recessive). 
This crossing is called monohybrid. In accordance with Mendel’s first law, 
when crossing homozygous parent forms that differ in one pair of sings, all 
hybrids of the first generation will be uniform both in genotype (gene 
composition, Aa) and in phenotype (appearance). When the first generation 
hybrids are crossed in accordance with the second Mendelian law, the 
predominance of the dominant sing over the recessive one in the ratio 3: 1 
for the phenotype and 1: 2: 1 for the genotype will be observed in the offspring. 
This means that organisms of the first generation F

1
 are characterized by a 

pair of Aa genes, and the second generation F
2
 is characterized by pairs AA, 

Aa, aa in the ratio 1: 2: 1. Moreover, organisms with AA and Aa genes have 
the same phenotype, since the influence of recessive genes affects only when 
there are two, and not one, in homologous chromosomes.

Suppose that in the generation of F
1
 there are m organisms and their mean 

fecundity is ν. Then in the generation of F
2
 there are mν organisms. Taking 

into account Mendel’s second law is necessary to conclude that mν is a 

multiple of four. Then in the generation of F
2
 there are mν

4
 homozygous 

organisms with AA genes, as many homozygous organisms with genes aa 

and mν
2

 of heterozygous organisms with genes Aa

F
m
AA

m
Aa

m
aa

2 4 2 4
= + +
ν ν ν

.  

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



5

Equilibrium in the Population of the Plants

Each of the constituent parts of the second generation gives offspring to 
the next generationF

3
. At the same time, homozygous organisms have 

homozygous organisms in the progeny, but the total number of corresponding 
organisms increases by a factor of ν. The heterozygous organisms, which 
have both dominant and recessive genes, also breed homozygous and 
heterozygous organisms. Taking into account the number of heterozygous 
organisms in the generation F

2
 and their fertility, one have

m
Aa

m
AA

m
Aa

m
aa

ν ν ν ν
2 8 4 8

2 2 2

→ + + .  

In sum, homozygous and heterozygous organisms of generation F
2
 give 

the following distribution of organisms in generation F
3

F m AA
m

Aa m aa
3

2
2

21
4

1
8 4

1
4

1
8

= + + + +ν
ν

ν( ) ( ) .  

It is easy to determine that the ratio of the number of organisms of the 
dominant phenotype to the number of organisms of the recessive phenotype 
in this generation is 5: 3. In the generationF

4
, heterozygous organisms also 

breed homozygous and heterozygous organisms

m
Aa

m
AA

m
Aa

m
aa

ν ν ν ν2 3 3 3

4 16 8 16
→ + + .  

Homozygous organisms increase their numbers according to their fertility. 
In the sum in generation four, the following distribution of progeny is obtained

F m AA
m

Aa m aa
4

3
3

31
4

1
8

1
16 8

1
4

1
8

1
16

= + + + + + +ν
ν

ν( ) ( ) .  

The ratio of the numbers of the dominant and recessive phenotypes in 
this generation is 9: 7.

In the n generation, arguing in a similar way, one get the following 
expression for the distribution of organisms
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F m AA
m

Aa m
n

n

n

n

n

n= + + + + + + + +−
−

−
−ν

ν
ν1

2 3

1

1

1

2 3

1

2

1

2

1

2 2

1

2

1

2
( ... ) ( ...

11

2n
aa) .

 

The numbers of the dominant N
df

 and recessive N
rf

 phenotypes in the 
generation n are determined by the following equalities

N n m
df

n
n

n
( )

...
,=

+ + + + +−
−

ν 1
2 21 2 2 2 2

2
 

N n m
rf

n
n

n
( )

...
.=

+ + + +−
−

ν 1
2 21 2 2 2

2
 

The numerator on the right - hand side of the last equality is a geometric 
progression

2 2 11 1

1

1
k n

k

n
− −

=

−

= −∑ .  

It should be noted that in the book A.E. Gaisinovich (Gaisinovich, 1988) 
mistakenly asserted that the numbers of phenotypes of organisms in Mendel’s 
law are expressed in terms of Bin Newton. In accordance with the last equality, 
the numbers of the dominant and recessive phenotype are equal, respectively

N n m N n m
df

n
n

n rf
n

n

n
( ) , ( ) .=

+
=

−−
−

−
−

ν ν1
1

1
12 1

2

2 1

2
 (1)

The ratio of these numbers is

N

N
ndf

rf

n

n
= =

+
−

−

−
δ

1

1

1

2 1

2 1
( ) .  (2)

Equation (2) represents a general expression for the ratio of the numbers 
of the dominant and recessive phenotypes in a mono - hybrid crossing for 
any number of generation n > 1. It depends only on n. When n = 2, the ratio 
(2) is 3: 1, which corresponds to Mendel’s second law. It follows from (1), 

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



7

Equilibrium in the Population of the Plants

(2) when the number of the generation increases, the numbers of the dominant 
and recessive phenotypes quite quickly occur (their ratio tends to unity). 
Absolute values of these numbers grow steadily with increasing number of 
generation. This is natural, since conditions that are not too remote from the 
initial state are considered, when the death of organisms is not taken into 
account due to external influences (aggression of surrounding, climatic and 

seasonal causes (Zhizhin, 2004b, 2005). The number of hybridsm
n
ν
2

1









−

, 

which is a component of the number of dominant phenotypes, also grows 
steadily as the number of the generation increases (ν is usually greater than 
2). Thus, the assertion that with the passage of time there is a restoration of 
parental populations and the disappearance of hybrids is erroneous.

Since the numbers of phenotypes grow with increasing n, it is convenient 
to go over to variables, inverses of the numbers of phenotypes, in order to 
analyze the nature of the desire of the system for the equilibrium position. 
The set of solutions of the system for various initial values of the number of 
organisms m and the constant value of fecundity ν in these variables are 
represented by trajectories in the phase plane (N

df
−1 ,N

rf
−1 ) (Figure 1).

Figure 1. Phase diagram of changes in the numbers of dominant and recessive 
phenotypes in coordinates of inverses numbers of phenotypes N

df
−1 and N

rf
−1
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From which we see that the ratio (2) defines in this plane an intrinsic 
direction, along which the solutions tend to the equilibrium position at the 
origin of coordinates of the phase plane. The equilibrium position is isolated, 
stable and has a node type.

BE – HYBRID CROSSING

Let the organisms have two pairs of constant - differing signs. In one pair, 
the AA

1 1
 genes correspond to the dominant sign, and the genes a a

1 1
 correspond 

to the recessive sign. In another pair, the AA
2 2

 genes correspond to the 
dominant sign, and the genes a a

2 2
 correspond to the recessive sign. In each 

pair of signs, Mendel’s second law is independent and at the same time acts

Aa AA Aa a a

Aa AA Aa a a
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

2

2

→ + +( )
→ + +( ).

 

This corresponds to the product of expansions

AA Aa a a AA Aa a a
1 1 1 1 1 1 2 2 2 2 2 2

2 2+ +( ) + +( ),  (3)

since the probability of the product of independent events is equal to the 
product of the probability of these events. The result of this work are 16 terms

AAAA AAa a a a AA a a a a AAAa a a Aa
1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

2 2+ + + + + +  

+ + +2 2 4
1 1 2 2 1 1 2 2 1 1 2 2
Aa AA Aa a a Aa Aa .  (4)

Therefore, if in the first generation F
1
 there are m hybrid organismsAa Aa

1 1 2 2
, 

then in the second generationF
2
, taking into account their fertility ν, there 

are mν organisms and this number must be a gradual number 16. Consequently, 
the second generation is the sum of the following organisms
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F
m
AAAA

m
AAa a

m
a a AA

m
a a a a

m

2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 216 16 16 16
= + + + +

+

ν ν ν ν

ν
88 8 8 8 41 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
AAa a

m
a a Aa

m
Aa AA

m
Aa a a

m
Aa Aa+ + + +

ν ν ν ν
..  
(5)

One distinguish among the 16 terms in (4) those terms that correspond to 
organisms with the phenotype on the sing of AA

1 1
 genes. Such terms are 12

AAAA AAa a AAAa Aa AA Aa a a Aa Aa
1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

2 2 2 4, , , , , .  

In (4) are terms that correspond to organisms with the phenotype on the 
sing of a a

1 1
genes. This are 4 terms a a AA a a a a a a Aa

1 1 2 2 1 1 2 2 1 1 2 2
2, , .  Thus, the ratio 

of the number of organisms in the second generation (5) with the AA
1 1

 
phenotype and with the phenotype a a

1 1
 is the same as in the mono - hybrid 

crossing 3:1. Obviously, the same 3: 1 ratio of the number of organisms with 
phenotypes of AA

2 2
 and ofa a

2 2
. This manifests the third law of Mendel, 

discovered by him in experiments with bi - hybrid crossing: the law of 
independent splitting of sings in the ratio of 3: 1 in the second generation. 
In this Chapter, this law follows from a mathematical treatment of bi - hybrid 
crossing. From the same consideration follows the second part of the third 
law of Mendel.

Indeed, if one select the terms corresponding to the organisms with the 
phenotype for theAA

1 2
 genes from the sum (4), then there are nine such terms

AAAA AAAa Aa AA Aa Aa
1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

2 2 4, , , .  

The terms in (4) corresponding to the organisms with the phenotype in 
the producta A

1 2
 are threea a AA a a Aa

1 1 2 2 1 1 2 2
2, . The same number of terms in 

(4) for phenotypea A
2 1

. These are the termsAAa a Aa a a
1 1 2 2 1 1 2 2

2, . One term in 
(4), corresponding to the organisms with phenotypea a

1 2
, this isa a

1 2
a a

1 2
. 

Thus, in the second generation (5), the ratio of the number of organisms to 
the simultaneous presence of some two of the four sings is 9: 3: 3: 1. This is 
the second part of the third law of Mendel, observed by him in the experiments 
on bi - hybrid crossing in the second generation.
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Mendel did not succeed in elucidating the regularity of bi - hybrid crossing 
in the following after the second generation. This can be done using a 
mathematical description, the correctness of which has already been proved. 
In the transition to the third generation, heterozygous organisms Aa Aa

1 1 2 2
,  

in (3) are split according to Mendel’s second law. If we focus on the ratio of 
the phenotype counts by the dominant AA

1 1
 gene and the recessive a a

1 1
gene, 

then after splitting the heterozygous organism Aa
1 1

 in the first bracket of the 
product (3), this product takes the form 3 4 3

1 1 1 1 1 1
AA Aa a a f+ +( )  where, for 

brevity, f denotes the second bracket in (3) f AA Aa a a= + +( )2 2 2 2 2 2
2 . It 

follows that the ratio of the number of organisms in the phenotypes AA
1 1

and 
a a
1 1

 in the third generation is 7: 3.
Similarly, in the fourth generation, the product (3) takes the form

7 8 7
1 1 1 1 1 1
AA Aa a a f+ +( ) , that is, in the fourth generation, the ratio of the 

numbers of organisms according to the phenotypes AA
1 1

and a a
1 1

 is 15: 7 and 
so on. Expanding the sequence of the obtained digits in the relationship, one 
conclude that in the generation n the number of organisms according to the 
phenotypeAA

1 1
 in the product (3) is a geometric progression

1 2 2 2 2 2 12 1 1

1

+ + + + = = −− −

=
∑... ,n k n

k

n

 

In addition, the number of organisms according to the phenotype a a
1 1

 is 
a geometric progression

1 2 2 2 2 2 12 2 1 1

1

1

+ + + + = = −− − −

=

−

∑... .n k n

k

n

 

Thus, one obtain that the ratio of the number of organisms in the generation 
n according to the phenotypes AA

1 1
and a a

1 1
 in the bi - hybrid crossing is

δ
2 1

2 1

2 1
( ) .n

n

n
=

−
−−

 (6)

It is clear that this formula is also suitable for the ratio of the numbers of 
organisms according to the phenotypesAA

2 2
and a a

2 2
in the bi - hybrid crossing 
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in the generation n, in view of the equality of rights of brackets in the product 
(3).

If it is necessary to consider the ratio of the number of organisms to 
phenotypes with the simultaneous presence of two pairs of sings in the 
generation after the second, then it is necessary to split both brackets in the 
product (3) sequentially. Denote the organisms by the phenotype AA

1 1
 by the 

symbolϕ
A1

. These organisms include organisms with AA
1 1

 and Aa
1 1

genes. 

Similarly, ϕ
A2

 denotes the organisms according to the phenotype ofAA
2 2

, ϕ
a1

 

- organisms according to the phenotype of a a
1 1

, ϕ
a2

 - organisms according 

to the phenotype of a a
2 2

. The number of organisms with a phenotype AA
i i

 
is equal to the sum of the number of organisms with genes AA

i i
 and the 

number of organisms with genes Aa
i i

, (i = 1, 2). Then, expression (3) in the 
third generation takes the form

7 3 7 3 7 7 3 7 3 3
1 1 2 2 1 2 1 2 1 2 1

2 2ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
A a A a A A a A A a a
+( ) +( ) = + ⋅ + ⋅ +

aa2
.  

From this it follows that the ratio of the number of organisms according 
to the phenotypes AA

1 1
 andAA

2 2
, a a

1 1
 and AA

2 2
, a a

2 2
 and AA

1 1
, a a

1 1
 and a a

2 2
 

in the third generation is 7 7 3 7 3 32 2: : :⋅ ⋅ .
In the fourth generation, the ratio of the number of organisms by the same 

phenotypes is obtained similarly when the brackets are split in expression (3) 

15 7 15 7

15 15 7 15 7 7
1 1 2 2

1 2 1 2 1 2

2

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ
A a A a

A A a A A a

+( ) +( ) =
+ ⋅ + ⋅ + 22

1 2
ϕ ϕ
a a

.
 

From this it follows that the ratio of the number of organisms according 
to the phenotypesAA

1 1
 andAA

2 2
, a a

1 1
andAA

2 2
,a a
2 2

and AA
1 1

,a a
1 1

 and a a
2 2

in 
the fourth generation is

15 15 7 15 7 72 2: : :⋅ ⋅ . 

The construction of these relations continues in the next generation. The 
numbers participating in the relationships (1, 3, 7, 15,...) are numerators 
and denominators (6) for the corresponding values of n. The indicators and 
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the number of repetitive products in the relationship indicate the number of 
independent feature pairs (in this case 2). This leads to the following ratios of 
the number of organisms according to the phenotypes, with the simultaneous 
presence of two pairs of characters for an arbitrary generation number n

( ) : ( )( ) : ( )( ) : ( ) .2 1 2 1 2 1 2 1 2 1 2 12 1 1 1 2n n n n n n− − − − − −− − −  (7)

We introduce the notation of the absolute numbers of organisms in the 
generation n and phenotypes with two dominant genesN

d d1 2
, with one dominant 

and one recessive gene N
d r1 2

andN
d r2 1

, and with two recessive genesN
d r1 2

 . 
These numbers, according to (7), are equal

N m N N

m N

d d
n

n

n d r d r

n
n n

n

1 2 1 2 2 1

1
2

2

1
1

2

2 1

2
2 1 2 1

2

=
−

=

=
− −

−

−
−

ν

ν

( )
,

( )( )
,

rr r
n

n

n
m

1 2

1
1 2

2

2 1

2
=

−−
−

ν
( )

.
 

For large values of n, these numbers tend to the same valuem nν , that is, 
there is an alignment of the number of organisms with purely dominant genes, 
purely recessive genes and hybrid genes. Just as with mono - hybrid crossing 
in the case of bi - hybrid crossings, solutions with an increase in the number 
of generations can be represented in space with coordinates in the form of 
inverse numbersN N N N

d d d r d r r r1 2 1 2 2 1 1 2

1 1 1 1− − − −, , , . In this case, there are four such 

coordinates. The equilibrium position of the given system is the origin of the 
coordinates of the four - dimensional space. This is a special point of the 
type of a considerate four - dimensional node. The solutions of the system 
enter into a position of equilibrium in its own direction, defined by the equality 
of a unit of relation pairwise coordinates of space.

POLY-HYBRID CROSSING

If organisms with more than two pairs of characteristics are crossing, for 
example, t pairs, then the distribution of organisms in the progeny can be 
obtained from the product of t factors

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



13

Equilibrium in the Population of the Plants

AA Aa a a AA Aa a a AA Aa a a
t t t t t t1 1 1 1 1 1 2 2 2 2 2 2

2 2 2+ +( ) + +( ) + +( )... .  (8)

If the ratio of the numbers of phenotype organisms according to the 
dominant and recessive members of one of the i pairs of sings is of interest
( )1≤ ≤i t , then in the second generation the product (8) can be written in 
the form AA Aa a a f

i i i i i i
+ +( )2 , where f includes all the other factors of the 

product (8). From this expression, it follows that in the second generation 
the ratio of the numbers of organisms according to the dominant and recessive 
members of the pair i is a ratio of 3: 1. When splitting heterozygous organisms 
Aa
i i

with formed of a third generation the ratio of the number of organisms 
to phenotypes AA

i i
 and a a

i i
 is 7: 3 and so on. Therefore, the ratio of the 

numbers of organisms in the generation n to the phenotypes AA
i i

 and a a
i i

in 
the case of poly - hybrid crossing has the same form as in the mono - hybrid 
crossing

δ
t

n

n
n( ) .=

−
−−

2 1

2 11
 (9)

This ratio is valid for any pair of sings i from t pairs due to their independence.
If it is necessary to consider the ratio of the number of organisms to a 

phenotype with the simultaneous presence of several pairs of sings, then it is 
necessary to split all the brackets in the product (8) sequentially. For example, 
in the case of three pairs of sings (t = 3), using the notations introduced in 
the previous section, product (8) takes in this case the form

3 3 3 27 9 9
1 1 2 2 3 3 1 2 3 1 2 3 1
ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
A a A a A a A A A a A A A
+( ) +( ) +( ) = + + ϕϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
a A

A A a A a a a A a a a A a a

2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2
9 3 3 3

+

+ + + + ϕϕ
a3
.

 

(10)

It follows from equality (10) that in the case of crossing with three pairs 
of characteristics in the second generation, the ratio between the numbers of 
organisms according to the phenotypes of different possible pairs of genes 
has the form

3 3 3 3 3 3 3 13 2 2 2: : : : : : : . 

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



14

Equilibrium in the Population of the Plants

In the third generation, the product (8) is transformed so

7 3 7 3 7 3

7 7 3
1 1 2 2 3 3

1 2 3 1 2

3 2

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ
A a A a A a

A A A a A A

+( ) +( ) +( ) =
+ ⋅

33 1 2 3

1 2 3 1 2 3

1 2 3

7 3

7 3 7 3

7 3

2

2 2

2

+ ⋅ +

⋅ + ⋅ +

⋅

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

A a A

A A a A a a

a A a
++ ⋅ +7 3 32 3

1 2 3 1 2 3
ϕ ϕ ϕ ϕ ϕ ϕ
a a A a a a

.

 

From the last expression, it follows that the relationship between the 
numbers of organisms with different genes when crossing organisms with 
three pairs of characters in generation 3 has the form

7 7 3 7 3 7 3 7 3 7 3 7 3 33 2 2 2 2 2 2 3: ( ) : ( ) : ( ) : ( ) : ( ) : ( ) :⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . 

In the fourth generation, the product (8) is transformed so
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⋅ + ⋅ +

⋅ ϕϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
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15 7 72 3+ ⋅ + .

 

From the last expression, it follows that the relationship between the 
numbers of organisms with different genes when crossing organisms with 
three pairs of characters in generation 3 has the form

5 15 7 15 7 15 7 15 7 15 7 15 7 73 2 2 2 2 2 2 3: ( ) : ( ) : ( ) : ( ) : ( ) : ( ) :⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

In the same way, it is possible to obtain the corresponding ratios of the 
numbers of organisms in the crossing of organisms with 3 pairs of characters 
in the generation of n

( ) : ( ) ( ) : ( ) ( ) : (2 1 2 1 2 1 2 1 2 1 23 2 1

1

2 1

2

n n n n n n− − −



 − −



 −− − 11 2 1

2 1 2 1 2 1 2 1

2 1

3
1 2

1

1 2

) ( ) :

( ) ( ) : ( ) ( )

n

n n n n

−

− −

−





− −



 − −



 − −



 −− −

2

1 2

3

1 32 1 2 1 2 1: ( ) ( ) : ( ) .n n n
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Here, the subscript in square brackets shows that the number of repetitions 
of identical expressions is equal to the number of pairs of constant - distinct 
characters.

By indexing repetitive products by the number of pairs of attributes, these 
relations take the form

( ) : ( ) ( ) : ( ) ( ) :2 1 2 1 2 1 2 1 2 11 1

1

1 1

2

n t n t n n t n− − −



 − −





− − − − .... : ( ) ( ) :

( ) ( ) : (

2 1 2 1

2 1 2 1 2

1 1

2 1 2

1

n t n

t
n t n

− −





− −





− −

− − nn t n n t n

t
− −



 − −





− − − −1 2 1 2 1 2 12 1 2

2

2 1 2) ( ) : ... : ( ) ( ) : ... ::

( )( ) : ( )( ) : ... : (2 1 2 1 2 1 2 1 21 1

1

1 1

2

n n t n n t− −



 − −





− − − − nn n t

t

n t− −



 −− − −1 2 1 2 11 1 1)( ) : ( ) .

 

(11)

Just as in the case of bi – hybrid crossing, here it is possible to introduce 
inverse numbers of organisms according to phenotypes with different sets of 
genes. As can be seen from the expression (11), the number of these variables 
in the general case is (t - 1) t + 2. Each of the variables is proportional to 
1

1m nν −
 and tends to zero as the number of generations increases. The ratio 

of the pairs of any two variables with increasing n tends to unity. Therefore, 
in poly - hybrid crossing, with increasing n, the number of organisms is 
equalized by phenotypes with different sets of genes. Solutions for different 
values   of m tend in the space of the reciprocal numbers of organisms to the 
proper direction of the equilibrium position at the origin, which has the type 
of an isolated multidimensional stable node.

Thus, it is shown that the patterns of inheritance of features of organisms 
in their crossing are based on a special kind of the mathematical relationships 
that allow us to derive algebraically the experimental patterns studied 150 
years ago by Mendel. The core of these relations are geometric progressions. 
An expression is obtained for the general relationship between the numbers 
of organisms with different phenotypes for any number of pairs of constant - 
distinct characters and any number of generations. Using these relationships 
is possible to predict and investigate the inheritance processes outside the 
intervals of the initial data of Mendel’s experiments (for any number of pairs 
of constant - distinguishing signs and any number of generations). The general 
formulas obtained are transformed continuously into the relations of Mendel 
in the conditions of the experiments carried out by him.

It has been established that with an increase in the number of generations 
in a plant population, the phenotypes of organisms in different gene sets are 
leveled quickly. These numbers, with an increase in the number of generations 
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and the absence of death of organisms, synchronously increase while remaining 
practically equal to each other. Mathematically, this can be represented by 
trajectories in a multidimensional phase space with coordinates in the form 
of inverse numbers of phenotypes of organisms. These trajectories tend along 
their own direction to an isolated stable equilibrium position of the type of 
a multidimensional node at the origin. With the results obtained, based on 
G. Mendel’s experiments, the Hardy - Weinberg principle is fundamentally 
inconsistent, constructed purely logistically without taking into account the 
real laws in living nature.
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KEY TERMS AND DEFINITIONS

Dominant Traits: The traits that predominate in the first generation.
Gene: A hereditary factor; functionally indivisible unit of genetic material; 

section of the DNA molecule encoding the primary structure of the polypeptide.
Genotype: A set of genes of a given cell or organism.
Heterozygous Individuals: The individuals that produce cleavage in the 

offspring.
Homozygous Individuals: The individuals that do not produce cleavage 

in the offspring.
Monohybrid Crossing: A crossing in which the manifestation of only 

one trait is examined.
Phenotype: The totality of all traits and properties of an individual that 

are formed in the process of interaction between its genetic structure and the 
external environment.

Polyhybrid Crossing: A crossing in which explores the manifestation 
of several signs.

Recessive Traits: The traits that do not appear in the first generation.
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ABSTRACT

Self-regulating nonlinear waves in various biological populations are 
considered as moving attractors in excitable media. Mathematically, waves 
in populations are solutions of nonstationary parabolic systems of differential 
diffusion equations with source terms, and the velocity of the wave is an 
eigenvalue of the problem, and its profile is an eigenvalue function of the 
problem. There is no general exact method for solving such a problem. An 
approximate method for its solution is proposed (the semi-infinite reaction 
zone method), which essentially reduces to solving an algebraic system of 
equations. The method is used to calculate the waves in various biological 
populations. It is shown that there are two types of waves: a wave of conquest 
and a solitary wave. In all cases considered, formulas for calculating the 
velocity of the wave and its profile were obtained. One of the important 
examples considered is the analysis of solitary waves in populations of the 
herd locust.

WAVES IN THE LOGISTIC BIOLOGICAL POPULATIONS

To study the waves of biological populations, one will use the semi - infinite 
reaction zone method developed by the author in the study of the polymerization 
waves and combustion waves (Zhizhin, 1982, 1988, 1992, 1997 a, b, 2004a,b, 
2008; Zhizhin, & Poritskaya, 1994; Zhizhin, & Larina, 1994).

Waves in Biological 
Populations
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The nonstationary equation for the change in the concentration N of 
individuals in the logistic population in a one - dimensional range, taking into 
account the chaotic mobility μ of individuals, has the form (Svirezhev, 1987)

∂
∂
=
∂
∂
+

N
t

N

x
F Nµ

2

2
( ).  (1)

Here F (N) is the function describing the local law of the population 
growth, and

F N B D N( ) ( ) ,= −  (2)

where B and D are the fertility and mortality functions.
Equation (2) describes the fact that the local law of the population growth 

is determined by two processes — birth and death. In the model of the logistic 
population it is assumed, that mortality D is a linearly increasing function of 
the concentration of individuals

D N N( ) , , .= + > >α α α α
1 2 1 2

0 0  

Here α
1
 is natural mortality. Increase in mortality with increasing 

concentration N is due to increased competition with limited resources (food, 
space, etc.). In addition, it is assumed that the fertility function B it is 
determined only by the physiological limits of fertility and is independent of 
N, i.e. B = m = constant, where m is the so - called natural fertility or fecundity. 
Given these assumptions and equation (2), equation (1) takes the form

∂
∂
=
∂
∂
+ − +

N
t

N

x
N N Nµ α

2

2
1( / ).  (3)

Here α α= −m
1
 is Malthusian parameter, and N m+ = −( ) /α α

1 2
 is the 

capacity of the medium, i.e. maximum possible concentration of individuals 
in the environment.

If the competition between individuals of the population is completely 
absent ( ),α

2
0= N+ = ∞  , then the law of the local population growth takes 
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a simple formF N N( )= α  . In this case, the population density increases 
indefinitely (the Malthus model of exponential growth) and the wave solution, 
as a transition from one equilibrium position to another, does not exist ( )α > 0  .

To find the stationary wave solution of equation (3), one can introduce 
the wave coordinate z ut x= − , here u is the wave velocity. One also introduce 
dimensionless variables n N N z w u= = =+

−/ , ( / ) , ( ) ./ /ς α µ αµ1 2 1 2  Then 
equation (3) can be written as a system

dp
d

wp F n F n n n
ς
= − = −( ), ( ) ( ) ,1  (4)

dn
d

p
ς
= .  (5)

The solutions of the autonomous system (4), (5) can be represented by 
trajectories in the phase plane( , )p n  . Their locations are determined by the 
zero isocline p n n w= −( ) /1 , on whichdp d/ ς = 0 , the zero isocline p = 0, 
on whichdn d/ ς = 0 , as well as by special pointsa b( , ), ( , )0 0 0 1  . The eigenvalues 
in the special point a (the initial equilibrium position) are equal to the 
eigendirections at this point

λ
1 2

2
1 2

2 4 1
, ,

/ / ( / )= ± − =w w dp dn , (6)

and the eigenvalues at the special point b (the final equilibrium position) are 
equal to the eigendirections at the special point b

λ
3 4

2
3 4

2 4 1
, ,

/ / ( / ) .= ± + =w w dp dn  (7)

Let us consider in more detail than in the well - known work of A.N. 
Kolmogorov, I.G. Petrovsky, N.S. Piskunov (Kolmogorov, Petrovsky, Piskunov, 
1937), the behavior of trajectories in the phase plane, omitting the already 
known details. From (7) it follows that the final equilibrium position is of a 
saddle type, since λ λ

1 2
0 0> <, .

From (6) it follows that the initial equilibrium position can be of the type 
of an unstable node with w ≥ 2  or a focus with w < 2. Since at w < 2 
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trajectories will fall into the region of negative concentrations, this area of 
parameters is not of interest. One confine ourselves to the values of speed
w ≥ 2  . Then the point a has the type of an unstable node, since λ

1 2
0

,
>  and 

has two proper directions, and both are located in the quadrant p n> >0 0,  
. The wave solution leaves the point a and enters point b, i.e. boundary 
conditions must be satisfied p n= = 0  at ς →−∞  and p n= =0 1,  at
ς → +∞ . Obviously, for any value of speed, there is a trajectory emanating 
from point a, and entering point b (Figure 1).

However, with which eigenvaluesλ
1
 or λ

2
 the trajectory leaves point a, if 

it enters point b, is not known in advance, since both options are may be. In 
the first case, the trajectories emanating from point a along its own direction 
2 intersect the zero isocline p n n w= −( ) /1 and, without entering point b, 
intersect the axis p = 0. In this case, one of the trajectories emanating from 
point a along its own direction 1 enters point b. In the second case, the 
trajectories emanating from point a in its own direction 1, not reaching point 

Figure 1. Phase diagram of waves in the logistic population
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b, leave in their own direction3 points b. For w = 2  the eigenvalues of the 
point a coincide; their own directions coincide, and the point a has the type 
of a degenerate unstable node. Figure 1 shows the case when the trajectory 
emanating from point a in its own direction 1 enters the special point b along 
the own direction 4. The corresponding integral curve is shown in Figure 2.

It represents the conquest wave profile since the wave, moving along the 
spatial coordinate x, with a speed u, fills the space with the maximum 
concentration of individuals N+  (according to the introduced wave coordinate, 
the directions x and z are opposite). One divide the wave into three zones 
(Figure 2). In zone 1 ( )−∞< <ς 0 , one consider the solution of the system 
linearized in the vicinity of the initial equilibrium state a to be fair

n n
f

= exp( ).
,
λ ς

1 2
 (8)

Figure 2. Wave profile of conquering the logistic population: n
f
 is the concentration 

of individuals at the wave front ( ς = 0 ),n∆  is the concentration of individuals at 
the bound of zone 2 ( ς = ∆ )
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Here n
f
 is the concentration of individuals at the wave front ς = 0 , λ

1 2,
 

is the eigenvalue at the point a (which of them will be established later).
In zone 2 ( )∆ ≤ < +∞ς , one consider the solution of the system linearized 

in the vicinity of the final equilibrium state b to be valid

n n= − − −1 1
4

( )exp( ( )).∆ ∆λ ς  (9)

The conditions in zone 1 and zone 2 ensure that the approximate solution 
of the system emerges from the initial equilibrium position and enters the final 
equilibrium position with almost the same eigenvalues and proper directions 
as the exact solution of system (4), (5).

In zone 3, one linearize the right - hand side of equation (4) in the vicinity 
of the maximum of the trajectory in the phase plane (expand the right - hand 
side of (4) into the Taylor series in the vicinity of the maximum and limit the 
first nonzero member of the series)

dp
d

n n n
m mς

= − −( )( ).2 1  (10)

Here n
m

 is concentration at maximum of trajectory.
One integrate (10) in view of (5)

( )( ) / sin(( ) )./ /n n n p n A
m m m m

− − = − +1 2 1 21 2 1 2ς  (11)

Here

A n n n p
f m m m

= − −arcsin(( )( ) / ),/1 2 1 2  (12)

p n n w
m m m
= −( ) /1 . (13)

is sense of p at maximum of trajectory
Put in (11) ς = ∆ , then one have

( )( ) / sin(( ) )./ /n n n p n A
m m m m∆ ∆− − = − +1 2 1 21 2 1 2  (14)
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Here n∆  is sense of n at ς = ∆ .
Differentiating (8), (9) once, one equate the first derivatives on the border 

of zones 1 - 3 and 2 – 3

n p n n n
f m m f m
2

1 2
2 2 21 2λ
,

( )( ) ,= − − −  (15)

λ
4
2 2 2 21 1 2( ) ( )( ) .− = − − −n p n n n

m m m∆ ∆  (16)

Differentiating (8), (9) twice, one equate the second derivatives on the 
border of zones 1 - 3 and 2 – 3

n n n n
f m f m
λ

1 2
2 2 1
,

( )( ),= − −  (17)

λ
4
2 1 1 2( ) ( )(n ).− = − −n n n

m m∆ ∆  (18)

So, one have a system of nine algebraic equations (6), (7), (12) - (18) with 
respect to nine unknownsn n n p A w

f m m
, , , , , , , ,

,∆ ∆λ λ
1 2 4

, i.e. system is closed. 
Solving it, can to get the equation to determine the speed of the wave

λ
4
2 2

1 2 1 2
2

1 2 1 2
14 1 1( ( ) ( ) ) .

, , , ,
w K T K T− ± − − − ± =−  (19)

Here

K w w T K w
1 2 4

2
1 2
2 2

1 2
2

4
2

1 2 1 2
2 2

1 2
2

4
0 5 1

, , , , , ,
. ( ), ( ( )= + − + = + −λ λ λ λ λ λ22).  

After finding the velocity in (19), the remaining parameters are determined 
by the equations already obtained.

The results of the calculation of the left side of equation (19) (Y) as 
functions of speed are shown in Figure 3.

The branches of the function Y (w), corresponding to the values ofλ
1
, are 

designated 1. The branches of the function Y (w), corresponding to the values 
ofλ

2
, are designated 2. The signs “+” and “-“at 1 and 2 correspond to the 

signsT
1 2,

 . From Figure 3 it follows that equation (19) satisfies only the branch 
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Y (w), corresponding to the eigenvalue λ
1
 at the sign “+” at T1.The value of 

speed satisfying equation (19) is 2.0015. It is very close to the speed value 
of 2, found by A.N. Kolmogorov, I.G. Petrovsky, & N.S. Piskunov as a result 
of a complex analysis of the nonstationary equation (3).

The main attention in this work was paid to determining the shape and 
velocity of a population wave in a stationary mode. With the help of a 
mathematical study of the nonstationary equation (1), they shown that over 
time the initial perturbation of the concentration of a population in the form 
of a step transforms and the population wave takes a stationary form of a 
hollowed out step. For it the wave propagation velocity tends to a constant 
value — the minimum of all possibility the values of the diffusion coefficient 
and the coefficient of proportionality in the law of reproduction of the 
population. Unfortunately, the possibility of applying the results of A.N. 
Kolmogorov, I.G. Petrovsky, N. S. Piskunov is limited by the framework of 
a very simple model of biological population and accepted form of the initial 

Figure 3. Decision of equation (19) 1 - Y w( , )λ
1

, 2 - Y (w,λ
2
)
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perturbation of the concentration. In the monograph by A.A. Samara et al. 
(Samara, Galaktionov, Kurdyumov, & Mikhailov, 1987) showed that if the 
initial concentration perturbation is different from the step, then the propagation 
velocity of a stationary wave may differ from the minimum. Therefore, it 
should be considered incorrect the assumptions of some authors (for example, 
Svirezhev, 1987; Ivanov, 1984), who consider more modern models of the 
population, that the wave propagation velocity has a minimum value of 2. In 
each case, the wave propagation velocity of the biological population and in 
the study of equations of mathematical physics (Polozhiy, 1964), it must be 
determined on the basis of this particular system of equations, as an eigenvalue 
of the problem. Moreover, this eigenvalue must correspond to the solution of 
the problem of the profile of the population wave, as an eigenvalue function.

Many authors generally do not set the task of determining the wave velocity 
of a biological population (see, for example, Keller, & Segel, 1971; Ivanitsky, 
Medvedinsky, & Tsyganov, 1991; Kerner, & Osipov, 1991), considering it 
to be an unknown parameter, and classify possible solutions (Berezovsky, & 
Karev, 1999) depending on wave velocity values. At the same time, it is as if 
they forget that the speed of wave propagation is a function of the conditions in 
which the population is located and the characteristics of the population itself. 
All these conditions and characteristics should be included in the equations 
of the population under consideration, and thus these equations themselves 
should determine the value of the wave velocity. Only those profiles can be 
considered in the wave, which correspond to the found speed values. The 
reason for this situation is the lack of methods for determining the speed of 
stationary propagation of a wave of a biological population.

The semi - infinite reaction zone method (Zhizhin, 2004), given in this 
section, allows finding the agreed values   of the wave velocity of a biological 
population and its structure. This makes it possible to solve problems on the 
speed and structure of waves of biological populations of various models, 
in essence, by algebraic methods. It should be noted that the solution of the 
question of the velocity and structure of the wave of a biological population by 
the method proposed by A.N. Kolmogorov, I.G. Petrovsky, & N.S. Piskunov. 
However, this method is so complex that so far no one has been able to extend 
it to solve the problems of the population wave with more complex models. 
The theory of autosolitons (Kerner, & Osipov, 1991), which proposed methods 
for finding the speed and structure of autosolitons, does not describe a wave 
of populations of living organisms (Zhizhin, 2004).
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MODEL OF A SOLITARY WAVE OF UNICELLULAR 
ORGANISMS TAKING INTO ACCOUNT THEIR 
NUTRITION, REPRODUCTION AND DEATH

In the mid - 60s of the last century, Adler and his students conducted a 
series of experimental studies of the propagation of waves of a population of 
bacteria in capillary tubes containing a nutrient medium (Adler, 1966; Adler, 
& Templeton, 1967; Adler, & Dahl, 1967). The experiments were carried out 
on bacteria Escherichia coli in a nutrient medium containing various salts. 
When bacteria were launched on one side of the tube, a wave of population 
(wave of conquest) was observed as it ran through the tube. When methionine 
was added to the nutrient medium in experiments, a different mode of wave 
propagation was observed — an antinode of bacterial concentration was 
formed, which moved along the tube. This means that a solitary wave of 
a population of bacteria was observed. The mechanism that leads to the 
formation of a solitary wave of a population in experiments has remained 
unclear. Keller and Segel (Keller, & Segel, 1971) suggested that the cause of 
the formation of a solitary population wave is the chemotaxis of bacteria, i.e. 
directional movement of bacteria towards an increase in the gradient of the 
nutrient resource, which naturally occurs due to the absorption of the resource 
by bacteria in the place of their appearance. The mathematical model of a 
solitary wave constructed by them did not take into account the multiplication 
of bacteria and their death, which contradicts the possibility of a wave being 
formed. An analysis of the possible effects of chemotaxis on the formation 
of a solitary wave conducted by the author (Zhizhin, 2004) showed that the 
established opinion in the scientific literature on the leading role of chemotaxis 
in the formation of a solitary population wave (Ivanitsky, Medvedinsky, & 
Tsyganov, 1991, 1994) is hyperbolized. Kennedy and Aris (Kennedy, & Aris, 
1980) for the first time showed that a solitary population wave can exist without 
chemotaxis, if one take into account the chaotic mobility of individuals, the 
reproduction of the population, the death of individuals, the change in the 
concentration of the resource due to the feeding of individuals. The velocity 
of the wave, however, in this work and in its continuation (Lauffenburger, 
Kennedy, & Aris, 1984) was assumed minimal and the dependence of the 
velocity on the parameters was not established. In this regard, in the book 
consider the population model proposed by Kennedy and Aris, disregarding 
chemotaxis, and apply the semi - infinite reaction zone method to determine 
the wave velocity and its dependence on parameters.
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The system of non - stationary equations describing in a one - dimensional 
formulation the change in the concentrations of unicellular organisms N and 
the resource R will be written as

∂
∂
=
∂
∂
+ +− −N

t
N

x
N

f e
µ ητ τ

2

2

1 1( ),  (20)

∂
∂
= −

R
t

N
f

/ .τ  (21)

Here τ
e
 is the effective lifetime of unicellular organisms, which will be 

considered permanent ( τ τ
e e
=

0
); η is coefficient of resource processing into 

biomass of single - cell organisms; τ τ
f f p

K R R= + −
0

1( )  is effective time for 
feeding unicellular organisms (equation of Manod (Manod, 1950)) ; τ

f 0
is 

characteristic time of food with an excess of resource; resource concentration 
at which the food process time is twice as long τ

f 0
.

In equations (20), (21), the increase in the amount of biomass of a population 
due to reproduction is proportional to the amount of the resource consumed 
by it (proportionality factor η). Thus, it is possible to enter the characteristic 
time of reproduction of the population τ τ η

p f
= /  . One also introduce the 

wave coordinate z = u t - x, dimensionless variables and parameters

r R K n N K w u
p e p p e e

= = = = =− −/ , / , ( ) , ( ) , ( / )/ /ε τ τ ε η ς τ µ τ µ
0 0

1
0

1 2
0

1 2 .  

Then the system (20), (21) is reduced to a system of three ordinary 
differential equations of the first order

dp
d

wp n r r
ς

ε= + − + −( ( ) ),1 1 1  (22)

dr
d

nrw r
ς
= − +− −1 11( ) ,  (23)
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dn
d

p
ς
= .  (24)

Solutions of the autonomous system (22) - (24) can be represented by 
trajectories in a three -dimensional phase space. It has the following four 
zero surfaces (Figure 4)

F p nw r r
1

1 11 1: ( ( ) ),= + −− −ε  

in its points

dp d/ ;ς = 0  

F p
2

0: ,=  

Figure 4. The phase space of the system (22) – (24)
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in its points

dn d/ ;ς = 0  

F
3
 

and

F
4
: n = 0  

and

r = 0 , 

in its points dr d/ .ς = 0
The phase space has a line of equilibrium positions p n= =0 0, , axis r. 

In the neighborhood of each point (r
s
> 0 ) of this line, the trajectories are 

located in a plane. Moreover, depending on the values w, ε, r
s
 there are three 

possible locations of the trajectories. From the discriminant of equations 
(22), (23) can to find that the eigenvalues are equal to their own directions

λ ε
1 2 1 2

2 12 4 1 1
, ,

( / ) / / ( ) .= = ± + − + −dp dn w w r r
s s

 (25)

From (25) it follows that with ε < +( ) /1 r r
s s

 special points of the axis 
are of the saddle type( , )λ λ

1 2
0 0> < , with ( ) /1+ r r

s s
 the special points have 

the type of unstable knot( , )λ λ
1 2

0 0> > , and with ε > + +( / )( ) /w r r
s s

2 4 1 1  
- the focus. The desired wave solution can leave the initial equilibrium position 
only in an unstable proper direction( , , )λ

i
i> =0 1 2  . From the above it is 

clear, that two variants of the wave solution are provided. 1) A trajectory 
emerging from the initial equilibrium position of the saddle type along the 
separatrixS

1
, and entering into the final equilibrium position of the saddle 

type along the separatrixS
2
. 2) Trajectories emerging from the initial 

equilibrium position of a knot type along one of its own directions and entering 
the final equilibrium position of a saddle type along the separatrixS

2
. Since 

at r
s
< − −( )ε 1 1  the equilibrium positions are of saddle type, but the zero 
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surface F
1
 is located in the negative octant (on p) of the phase space, the 

separatrixS
1
, leaving the saddle equilibrium position in the positive octant 

of the phase space, cannot fall into the negative octant of this space. Therefore, 
it cannot enter the saddle position of equilibrium in a stable proper direction, 
located in the negative octant. Thus, the first variant of the wave solution 
cannot be implemented. There is only the second option. Indeed, in the region 
of the existence of a nodal equilibrium position, the zero surface F

1
 is located 

in the positive octant of the phase space and trajectories emerging from the 
initial equilibrium position can first cross the zero surface F

1
 and then the 

zero surface F
2
and get into the negative octant. After that, the trajectories 

can again cross the zero surfaceF
1
, located already in the negative octant, 

and one of them can enter the saddle equilibrium position in a stable proper 
direction.

The integral curves corresponding to this wave solution are presented in 
Figure 5.

As follows from the graphs, the concentration of the population first grows 
along the wave coordinate and then one decreases. Thus, the wave solution 
has the form of a solitary population wave. It should be noted that in this 
case there was no chemotaxis.

Figure 5. The structure of the wave solution in the population with regard to nutrition, 
reproduction, death and the absence of chemotaxis
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To obtain an approximate analytical solution, one apply the semi-infinite 
reaction zone method. Divide the wavelength into three zones (Figure 5). In 
the first zone ( )−∞< <ς 0 , one consider the solution of the system (22) – 
(24) linearized in the vicinity of the initial equilibrium state a to be fair

r r r r
f

= − −− − −( )exp( ),
,
λ ς

1 2
 (26)

n n
f

= −exp( ).
,
λ ς

1 2
 (27)

Here r−  is the initial concentration of the resource, r
f
 and n

f
 are the 

concentration of the resource and population at the wave front at ς = 0 ,

λ ε
1 2

2 12 4 1 1
,

/ / ( ) .− − −
−= ± + − +w w r r  (28)

In the second zone ( )∆ < < +∞ς , one consider the solution of the system 
(22) – (24) linearized in the vicinity of finite equilibrium state b to be fair

r r r r= − − −+ + +( )exp( ( )),∆ ∆λ ς
2

 (29)

n n= −+∆ ∆exp( ( )).λ ς
2

 (30)

Here r+  is concentration of the resource at point b, r∆  and n∆  are the 
concentrations of the resource and the population at the border of zones 2 
and 3 at ς = ∆ ,

λ ε
2

2 12 4 1 1+ + +
−= − + − +w w r r/ / ( ) .  (31)

In the zone 3 ( )0 < <ς ∆ one used of the first integral of the system (22) 
– (24)

dn d wn w r r w r r/ ( ) ( ) ln( / ).ς ε= − − − +− −1  (32)
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One linearize the right - hand side of (32) in the neighborhood of the 
maximum of the trajectory n(r). Expanding the right - hand side of (32) into 
a Taylor series in the vicinity of the maximum (n n r r

m m
= =, ), one confine 

ourselves to the first non - zero term

dn d r r
m m

/ ( ).ς β= −  (33)

Here

β ε
m m

w w r= − − >( ) / ,1 0  (34)

n r r r r
m m m
= − − −− −( )( ) ln( / ).ε 1  (35)

In view of the finiteness of zone 3, one take the linear law of variation 
of r in this zone

r r r r
f f

= − −( ) / .∆ ∆ς  (36)

Then, one integrated (33) with account (36)

n r r r r n
m m f m

= − − − +0 5 2. ( ) / ( ) .∆ ∆β  (37)

Using the condition of continuity of concentrations at the zone boundary 
from (37) can to obtain

n r r r r n
f m f m f m
= − − − +0 5 2. ( ) / ( ) ,∆ ∆β  (38)

n r r r r n
m m f m∆ ∆ ∆∆= − − − +0 5 2. ( ) / ( ) .β  (39)

Using the condition of continuity of the first derivatives on the zone 
boundary from (26), (27), (29), (30), (36), (37) one get

∆ ∆( ) ,
,

r r r r
f f− −− = −λ

1 2
 (40)
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n r r
f f m m
λ β

1 2,
( ) ,− = −  (41)

∆ ∆ ∆( ) ,r r r r
f

− = −+ +λ2
 (42)

n r r
m m∆ ∆λ β

2+ = −( ) .  (43)

One assume that the linear section in the profile r( )ς  is chosen so that the 
sum of the second derivatives d r d2 2/ ς  at ς = 0  on the left and at ς = ∆  on 
the right is zero. Differentiating (26), (29), one have

( ) ( ) .
,

r r r r
f∆ − = −+ + − −λ λ

2
2

1 2
2  (44)

Equate the right side of equation (22) to zero on the border at ς = ∆

w r rλ ε
2

1 1 0+ + − + =∆ ∆/ ( ) .  (45)

So, one have 12 equations (28), (31), (34), (35), (38) - (45) and 12 unknowns

λ λ β
1 2 2,

, , , , , , , , , , , .− + +w n r r r r n n
m m f f m

∆ ∆ ∆  

The resulting system of equations is resolved (Zhizhin, 2004) and leads 
to one equation for the speed

( )( ) / ( ).
,

r r r r r n r r
f m f m m m f
− − − = −− − −2 2

1 2
β λ  (46)

All quantities in the last equation (46) are functions of speed. After 
determining the velocity value by (46), the remaining parameters are 
determined by the already obtained equations.

As rally from (33) with

r r r r w
f− +

−= = = = − =∆ ( ) ,ε 1 01 ,  
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this equation holds. The ratio r−
−= −( )ε 1 1  defines a line in the plane of 

control parameters (r−, )ε  (Figure 6).
This line (1) is the lower boundary of the domain of existence of solutions. 

It corresponds to the complete degeneration of the wave. The upper limit of 
the domain of existence of solutions is line 2 (Figure 6), on which r+ = 0 . 
The equation of this line is obtained after substituting r+ = 0  into the analytical 
solution. It responds to the mode of complete consumption of the resource 
in the wave. On this line, the wave velocity at the given ε is maximum. The 
value of the wave velocity decreases to zero, if one move in a straight line ε 
= constant across the region of existence of solutions, from line 2 to line 1. 
The wave velocity along line 2 smoothly increases with increasing ε. 
Calculations of concentration profiles of a population and a resource with 

Figure 6. Area of existence of a solitary wave of unicellular organisms: 1- the lower 
boundary of the domain of existence of solutions (complete degeneration of the 
wave), 2 - complete consumption of the resource in the wave
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specific values   of control parameters (Zhizhin, 2004) confirmed the appearance 
of the graphs in Figure 5, obtained as a result of a qualitative study of the 
original system of differential equations.

THE WAVES IN POPULATIONS ALLEE

When considering the logistic population, it was assumed that the fertility 
function B in the local law of growth is determined only by the physiological 
limits of fertility and does not depend on the concentration of the population. 
For many species of multicellular organisms that migrate freely across their 
range and reproduce sexually, this is not entirely true. At low population 
densities, reproduction is determined rather by the probability of meeting 
the mating partners, and not by physical fertility. In these cases, the B (N) 
relationship has the form shown in Figure 7 as an example of the butterfly 
population.

In this figure, the number of eggs laid by one butterfly Anagasta kuhniella 
(Svirezhev, 1987; Ullyet, 1945) is plotted on the ordinate axis, depending on 

Figure 7. Dependence of the fertility function on the population concentration in 
the Allee populations
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the concentration of butterflies. Populations with this type of dependence B 
(N) are called Allee populations (Allee, 1951).

The peculiarity of this dependence for such populations is the saturability 
of B with increasing N and the finiteness of B at low concentrations of N. The 
dependence that asymptotically tends to some limiting values for large and 
small values of the argument can be expressed, as in the theory of combustion, 
by an exponential function

B N b b N( ) exp( / ).= + −
0 1 0

α  (47)

Here b b m
1 0
+ =  is physiological birth rate.

Assuming that mortality linearly depends on the concentration of the pupil, 
the function describing the local law of population growth in the nonstationary 
diffusion equation (1) has the form

F N b b N N( ) exp( / ) .= + − −
1 0 2

α α  (48)

Here b b= − >
0 1

0α .

Introducing the scaled concentration of the population n N= / α
0
, related 

to the parameter α
0
, characterizing the rate of increase of B with increasing 

N, as well as the wave coordinate z ut x= − , one write the differential 
equation of diffusion in total derivatives

wdn d d n d a n cn/ / ( exp( / ) .ς ς= + + − −2 2 1 1  (49)

Here ς µ µ α α= = = =z b w u b a b b c b( / ) , ( ) , / , / ./ /1 2 1 2
1 2 0

Equation (49) may be write in form of system

dp d wp F n/ ( ),ς = −  (50)

dn d p/ .ς =  (51)

Here

F n n aexp n cn( ) ( ( / ) ).= + − −1 1  (52)
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It should be noted that the representation of the local law of population 
growth F n( )  in the form of a polynomial of n, proposed in some works 
(Kerner, & Osipov, 1991), does not reflect the main feature of the Allee 
population - the saturability of the birth function at large n. Accounting for 
this feature leads to a function (52) that is not a polynomial.

The solution of system (50), (51) can be represented by trajectories in the 
phase plane( , )p n  . Their location is determined by zero isoclines p = 0, on 
whichdn d/ ς = 0 , and

p a n cn n w= + − −( exp( / ) ) / ,1 1  (53)

on which dp d/ .ς = 0
The equilibrium positions of the system (50) – (52) are the intersections 

of the zero isoclines, i.e. they are the roots of the equation
0 1 1= + − −( exp( / ) )a n cn n . Obviously, one root of this equation is n = 0 . 
Other roots are determined by the equality

a n cnexp( / ) .− = −1 1  (54)

The number of roots of equality (54) depends on the values of the parameters 
a, c. It can be equal to 1 or 3 according to the number of intersections of 
the right and left side of (54). The boundary value of the roots (54) is equal 
to two, one of which corresponds to the touch of the right and left parts of 
(54). Equating the derivatives of the right and left parts of (54) with the 
simultaneous fulfillment of equality (54) itself, one can find an expression 
for the boundary line in the plane (a, c) separating the parameter regions with 
two and four equilibrium positions

a c c c= ± − − ± −− − −( ( . . ) exp( . . ) .0 5 0 25 1 0 5 0 251 1 1  (55)

The graph of this line (l) is presented in Figure 8.
It consists of two branches (l+ andl− ) corresponding to the signs in front 

of the root in (55). In region 1 between of branches of the line l, there are 
four equilibrium positions. In area 2, including the c axis, the system has two 
equilibrium positions. On the line (55) itself, the system has three equilibrium 
positions, one of which is not coarse and disappears with a small wiggling 
of the system. On the axis a, the system has one equilibrium position when 
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n = 0 . The β point with the coordinates a e c= = =2 7 389 4. ,  in which both 
branches of the line are connected is a catastrophe point of the system (50) 
– (52). Since F n( )  is not a polynomial, this point cannot be attributed to any 
of the elemental catastrophe (Breker, & Lander, 1977), but its neighborhood 
is close to a neighborhood of a hyperbolic ombelic catastrophe at a constant 
value of one of the deformation parameters. Of greatest interest is the case 
when the system (50) – (52) has four equilibrium positions, as in this case 
there is the greatest number of solutions (Zhizhin, 2004).

Here there are topologically distinct phase diagrams of the system (50) 
– (52), having as a solution conquest waves, solitary waves and switching 
waves (transitions from one equilibrium position to another, each of which is 
different from the origin) (Zhizhin, 2004). Choose one of them, containing 
waves of conquest and solitary waves (Figure 9).

It contains the equilibrium positionse i
i
, = ÷1 4 . The types of special 

points (equilibrium positions) are determined from the discriminant of the 

Figure 8. Bifurcation system diagram (50)-(52): 1 – region of four equilibrium 
positions, 2 – region of two equilibrium positions
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system in the neighborhood of each of the special points. In the vicinity of 
the point e

1
0 0( , )  one have

λ
1 2

2

1
0 5 0 25 1

,
. . ,

e
w w= ± −  (56)

for w > 2  the point e1 has the type of an unstable node. In the vicinity of 
points e i

i
, , ,= 2 3 4  one have

λ
1 2

20 5 0 25 2 3 4
,

'. . ( ), i , , .
ei

w w F n= ± − =  (57)

Here

F n cn n'( ) ( / )exp( / n).= − + + −1 2 1 1 1  (58)

Since F n'( )< 0 in point e3, so this point has the type of an unstable focus 
or an unstable node.

However, in topological terms, this difference is insignificant, which 
determines the topological equivalence of phase diagrams in these cases. 
Since at points e e F n

2 4
0, ( )' >  these points are of saddle type. To solve the 

problem of the existence of wave solutions, it is necessary to construct the 

Figure 9. Phase diagram of system (50) - (52) with four equilibrium positions
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entire system of trajectories on the phase plane so that the assumed location 
in the neighborhood of a particular point does not contradict the location of 
the trajectories in the neighborhood of other special points. This excludes 
some of the solutions found (Svirezhev, 1987) without considering this 
condition. From the phase diagram in Figure 9 it follows that the trajectory 
that goes from the equilibrium position e

1
 to the equilibrium position e

2
 

corresponds to the wave of conquest. The solitary wave corresponds to the 
trajectory out of the equilibrium position e

2
 and entering the equilibrium 

positione
2
.

Consider the waves of conquest. Using the semi - infinite reaction zone 
method, one divide the wave into three zones. In the first zone( )−∞< <ς 0 , 
one consider the solution of the system in the vicinity of the equilibrium state 
e
1
to be fair

n n
f e

= exp( ).
,
λ ς

1 2 1
 (59)

Here n
f
 is the concentration value of the population at the wave front at 

ς = 0 .
In the second zone( )∆ < < +∞ς , one consider the solution of the system 

in the vicinity of the e
2
 point to be fair

n n n n
e

= − − −
2 2 2 2

( )exp( ( )).∆ ∆λ ς  (60)

Here n∆  is the concentration value of the population for ς = ∆  .
In the third zone, one linearize the right - hand side of (50) in the vicinity 

of the maximum of the trajectory of the phase plane ( , )p n

dp d F n n F F n
m m m n m

/ ( ), ( ).' ' 'ς = − − =  (61)

One integrate (61) with account (51)

( ) ( ) sin(( ) ),' / ' /n n p F F A
m m m m

− − = − +−1 1 2 1 2ς  (62)

A n n p F
f m m m

= − −−arcsin(( ) ( ) ),' /1 1 2  (63)
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p F w
m m
= / .  (64)

One put in (62) ς = ∆

( ) ( ) sin(( ) ).' / ' /n n p F F A
m m m m∆ ∆− − = − +−1 1 2 1 2  (65)

Differentiating (59), (60), (65) once, one equate the first derivatives on 
the border of zones 1 - 3, 2 – 3

n p F n n
f e m m f m
2

1 2
2 2 2

1
λ

,
' ( ) ,= − −  (66)

λ
2
2

2
2 2 2

2e m m m
n n p F n n( ) ( ) .'− = − −∆ ∆  (67)

Differentiating (59), (60) twice taking into account (61), one equate the 
second derivatives on the border of zones 1 - 3, 2 - 3

n F n n
f e m f m
2

1 2
2

1
λ

,
' ( ),= − −  (68)

λ
2
2

22e m m
n n F n n( ) ( ).'− = − −∆ ∆  (69)

Solving the resulting system of algebraic equations, one obtain two 
equations for determining the velocity of the wave w and the concentration 
of the population at the maximum of the trajectory n

m

1 1
1 2
2 2 2 2

1
= −−λ

,
'( / ),

e m m m
w n F F  (70)

F F F w n n n F
m e m m e m m
' ' '( ) ( ( ) ( ) ) .λ λ

2
2 2 1 2

2
2

2 2
2

2 2
1 1− − −= − + − −  (71)

The solution obtained can be considered as a general solution of the 
problem of the conquest wave for an arbitrary function F (n) in equation (50). 
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Similarly, using the semi - infinite reaction zone method, analytical solutions 
can also be obtained for other wave solutions in the Allee populations.

MATHEMATICAL MODEL OF FLIGHT 
OF THE GREGARIOUS LOCUST

The propagation of wave in populations of animal organisms complicated 
by many accompanying processes. Such processes include changes in the 
concentration of the nutritional resource for the organisms of the population, 
environmental pollution with waste products of organisms, the desire for 
the herd of animal organisms, the interaction of animal populations and 
populations of plant organisms. Mathematical models of waves in populations 
of multicellular organisms taking into account changes in the concentration 
of nutrient resources and environmental pollution by products of vital activity 
of organisms are constructed and investigated in the already mentioned 
monograph (Zhizhin, 2004) and in work (Zhizhin, Bolshakova, 2000). The 
influence of the bark beetle herd in the process of attacking the forests in the 
form of a solitary wave has been studied in works (Zhizhin, 2011; Zhizhin, 
& Selikhovkin, 2012). In this section, the flight pattern of the gregarious 
locust will be investigated, since the locust still causes enormous damage to 
vegetation in many parts of the earth.

Many works have been devoted to the description of mass locust breeding 
and migration of its flocks (Bei - Bienko, & Mishchenko, 1951; Kopaneva, & 
Stebaev, 1985; Chetverikov, 1905; Shcherbinovsky, 1952, 1958). Well - known 
entomologist B.P. Uvarov in the 20s of the last century showed (Bey - Bienko, 
1970) that the phenomenon of so - called phase variation is characteristic 
of the locust: depending on the density of the group and the concentration 
of food, either single forms or herd larvae form. A single form of larvae is 
formed when there is enough feed. This form of the locust characterized by 
inconspicuous coloring and calm behavior. With a lack of food and large 
crowding, a gregarious locust form is formed. This form is characterized 
by bright color, great mobility and aggressiveness. Processes, causing the 
dynamics of the number of any insects, associated with the interaction of the 
two kingdoms living organisms: plants and animals. External influences — 
abiotic, biotic, and man - made — are multifaceted, and the response of bio 
– geo – cenosis is difficult to foresee, which requires the use of mathematical 
methods to describe and analyze them.
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Existing work on the mathematical description of the behavior of insects 
includes questions of mathematical modeling of the distribution of locust 
populations over the territory. Topaz et al. (2012) consider a model of the 
locust transition to the active phase. Taylor (1979) assumes that the locust 
migration is completely determined by the flow of air. Topaz et al. (2008) 
raise of a model creeping locust migration.

In this section, a mathematical model of the flight of the gregarious locust 
is built over long distances when the locust is removed from the earth’s surface 
at distances significantly exceeding the size of insects, as this is probably 
the most dangerous option for the environment to spread locusts in space.

This regime is not consistent with the locust migration crawling model. 
A model that considers locusts at the flight stage as inert dust particles 
in an air stream contradicts the established notions of aggressiveness and 
high mobility of the herd locust. Following the concept of S.S. Chetverikov 
(Chetverikov, 1905) one will consider the process of locust propagation as 
the propagation of living matter in space in the form of waves of life. Then, 
to describe the flight of the locust flock, parabolic systems of equations 
can be used, as soon as they describe the propagation of nonlinear waves in 
space in various excitable media (Kolmogorov et al., 1937; Svirezhev, 1987; 
Zhizhin, 2004, 2005, 2008).

The system of non - stationary equations describing in a one - dimensional 
formulation the change in the concentration of the biological population 
N x t( , )  and the food supplyR x t( , ) , averaging the discrete flight process of 
the herd locust in space and time, can be written as

∂
∂
=
∂
∂

∂
∂
+

N
t x

N
x
F Nµ ( ),  (72)

∂
∂
= − −R
t

N
f
τ 1 .  (73)

Here t is a time, x is a spatial coordinate, μ is locust mobility coefficient, 
τ
f
 is characteristic locust feeding time, F N( )  is a function describing a local 

change in locust population concentration.
A local decrease in the concentration of locust individuals in flight occurs 

for various reasons (diseases, their swallowing up by birds and even other 
individuals of the flock). Locusts do not breed during the flight, but locust has 
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another way to combine the natural decline of the flock - this is attracting the 
locust to the flock from the environment through special chemical products 
released by insects.

In connection with this, equation (72) can be rewritten as

∂
∂
=
∂
∂

∂
∂
+ −− −N

t x
N
x

N
c e

µ τ τ( ) .1 1  (74)

Here τ
e
 is the characteristic time of life of individuals of the population, 

τ
c
 is the characteristic time of replenishment of the population due to the 

desire of individuals of the locust to unite in a flock. One assume τ
e
, τ

c
, τ

f
 

as constants. The mobility coefficient of locust individuals increases with a 
decrease in the concentration of food supply (Kopaneva, & Stebaev, 1985). 
This behavior of locusts can be described as a first approximation by an 
inversely proportional relationship, considering the degree of the concentration 
of the food supply to be equal to one, μ∼ A R/  . The coefficient of 
proportionality A in this relationship must have the dimension of the product 
[μ][R]. Therefore, A can be represented as a product of two constants, one 
of which has the dimension of the concentration of food supply, and the other 
has the dimension of mobility of locust individuals, that is,

µ
µ

= 0
K

R
R .  (75)

Let us call K
R

 the unit concentration of the food base andµ
0
 the mobility 

coefficient of the individuals at a single concentration of the food base.
The constants in formulas (73) - (75) obviously depend on the locust 

species, as well as on temperature as a parameter.
One will consider the stationary mode of locust population spread by the 

wave. If to introduce the wave coordinate z ut x= − , where u is the unknown 
wave propagation velocity (determined during the solution of the problem), 
as well as dimensionless variables and parameters

r
R
K
n

N
K

z u
R R

f
c e

e c

= = = = = =
−

, , / , w ( / ) , / ,/ς τ µ τ µ ε τ τ τ
τ τ
τ τ0 0 0 0

1 2
0 0

2 , 
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then equations (74), (73) take the following form

w
dn
d

d
d r

dn
d

n
ς ς ς
= +( ) ,

1  (76)

w
dr
d

n
ς

ε= − .  (77)

Equation (76) with regard to (77) and the boundary condition n dn
d

= =0 0,
ς

 

for r r= −  (the initial concentration of the food supply) has the first integral

dn
d

rw n
r r

ς ε
= −

−−( ).  (78)

The system (78), (77) is autonomous and has in the phase plane (n, r) zero 

isoclines r n
r r

= =
−−0,
ε

, on which dn
dς
= 0 , and n = 0 , on which dr

dς
= 0 , 

as well as two special points α(0,0), β(0, r− ). From the discriminant of the 
system in the neighborhood of a point β one find the eigenvalues of this 
special point

λ
1 2

20 5 0 5
,

. ( . ) .= ± −− − −r w r w r  (79)

From (79) it follows that with ( . )0 5 02r w r− −− >  the point β has the type 
of an unstable node, and with ( . )0 5 02r w r− −− <  an unstable focus. Since we 
are looking for a solution that describes the change in the concentration of 
locust glands along the wave coordinate from zero to zero, one assume that 
the radical expression in (79) is positive. Then the point β will have the type 
of an unstable node, and from it the trajectories emanate from its own directions 

( ) /
, ,

dn
dr

w
1 2 1 2
= −λ ε , one of which corresponds to the desired wave solution.

From the discriminant of system (77), (78) in the vicinity of a point α, it 
follows that a point α has a saddle type with eigenvalues λ

3 4
1 2

,
/= − −r , and 

the proper direction λ
4

1 2= − −r
/  in which the trajectory enters the point α is 
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located in the positive quadrant of the plane. The sought solution leaves the 
point β along one of the separatrices of the node and enters the point α along 

the separatrix of the saddle (Figure 10), crossing the zero isocline n
r r

=
−−
ε

 

.
The arrows at the zero isoclines indicate the regions of positive values   of 

the corresponding derivatives (Figure 10). The integral curves corresponding 
to this wave solution are shown in Figure 11.

It can be seen that the concentration profile of the locust population has 
the form of a solitary wave (soliton), and the concentration profile of the 
food supply has the form of a nonlinear wave. Both proper directions in a 

point β are located above the zero isocline n
r r

=
−−
ε

 and it is not possible 

to decide from qualitative analysis in which proper direction the wave solution 
leaves the special point β.

To solve this question, one apply the semi - infinite reaction zone method. 
Imagine that a wave consists of five zones. In the first zone( )−∞< <ς 0 , 

Figure 10. The phase plane of solitary wave of the locust population
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one consider the solution of the system (77), (78) in the neighborhood of the 
point β to be fair. In the second zone( )∆ < < +∞ς , one consider the solution 
of the system in the neighborhood of the point α to be fair. In the third zone 
( )0 < <ς ∆ , due to its limited nature, one will take a linear dependence of 
the concentration of the food base on the spatial coordinate. Then the equations 
for the concentrations in the first zone have the form

r r r r
f

= − −− −( )exp( ),
,
λ ς

1 2
 (80)

n n
f

= exp( ),
,
λ ς

1 2
 (81)

and in the second zone this form

r r r= − −−∆ ∆exp( ( )),/1 2 ς  (82)

n n r= − −−∆ ∆exp( ( ))./1 2 ς  (83)

Figure 11. Qualitative view of the integral curves of the system (77), (78)
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Here r n
f f
,  are concentrations of the foot base and locust population on 

the front wave for ς = 0 ; r n
f f
, are concentrations of the foot base and locust 

population on the bound second and third zones for ς = ∆ . In the third zone 
equation for concentration of the foot base have form

r r
r r

f

f= −
−( )

.∆

∆

ς
 (84)

In order to obtain an equation for locust population concentration in the 
third zone, expand the right - hand side of equation (78) into a Taylor series 
in the vicinity of the soliton maximum ( , )n n r r

m m
= =  and confine ourselves 

to the first term of the expansion

dn
d

r n
m m mς

ς ς= −( ).  (85)

With (78) one have

n
r r

m
m=

−−
ε

.  (86)

Integrating (84), can to get

n n r n
m m m m

= − −0 5 2. ( ) .ς ς  (87)

The set of boundary conditions includes:

1.  the equalities of concentrations of the locust population on both sides 
of the boundaries of the first and third zones at ς = 0 , as well as the 
boundaries of the second and second and third zones at ς = ∆

2.  n n r n
f m m m m
= − 0 5 2. ,ς             (88)

n n r n
m m m m∆ ∆= − −0 5 2. ( ) ;ς  (89)
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3.  the equalities of the first derivatives of the concentrations of the 
components on ς with both sides of the boundaries of the first and third 
zones, as well as the boundaries of the second and third zones

( ) ,
,

r r
r r

f

f

− − =
−

λ
1 2

∆

∆
 (90)

n r n
f m m m
λ ς

1 2,
,=  (91)

r r
r r
f

∆
∆

∆− =
−

1 2/ ,  (92)

n r r n
m m m∆ ∆− = −1 2/ ( );ς  (93)

4.  the equality of the second derivative to zero of the n on ς in equation 
(76) in point ς = 0 , which leads to equation

w
r r

r

n

r n
f

f

f

m m m

=
−

+∆
∆ 2 ς

.  (94)

In addition, from the equation (84) follows

r r
r r

m f

f m= −
−( )

.∆

∆

ς
 (95)

The system of ten algebraic equations (79), (86), (88) – (95) is closed with 
respect to ten unknown parameters λ ς

1 2,
, , , , , , , , , .w r r n n r n

m m f f m
∆ ∆ ∆  .

Solving this system (Zhizhin, 2014), can to obtain an equation for calculating 
the wave propagation velocity
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[ ( ) ]( / . ) .
, ,

r r r
f f m m m
− − + =− λ ς ς λ ς

1 2 1 2
20 5 1  (96)

Here

ς
λm

b
r b

b r
=

+

+ +
−
−

−
− −

1 2

1 2
1 2

1

0 5/

/
,

.
,  (97)

b
r r r r

r r
f f

f

=
− −

−
− −

−

−

( )

( )
,,

/

,

λ

λ
1 2

1 2

1 2

 (98)

Figure 12. Dependencies of the characteristics of the solitary locust wave on the 
initial concentration of the food supply (𝜀 = 0.1): a) speed, b) own number of the
initial equilibrium position, c) locust concentration at the soliton maximum
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r
r w

wf
=

− + + −

−
−0 5

4 1

11 2

1 2 1 2
2

1 2

1 2

.
( )

.
,

, , ,

,

λ
λ λ λ

λ
 (99)

To calculate the system, it is necessary to set the values of two parameters 
characterizing the initial concentration of the feed base and the ratio of the 
characteristic process times. A well-studied study showed that equation (96) 
has a solution if one of two eigenvalues λ

1 2,
 is chosen λ

2
. Thus, the desired 

wave solution has its own number λ
2
and goes in its own direction n

r r
=

−−
ε

, 

closest to the zero isocline. Figure 12 shows as an example the graphs of the 
functions calculated by the solution obtained.

Figure 13 presents the results of the calculation of locust concentration 
profiles and the food resource in the wave.

It can be seen that the locust concentration profile has the form of a soliton, 
and the food resource concentration profile has the form of a nonlinear 
switching wave from the initial final value to zero. Thus, the resulting solution 
is a solitary wave of the biological population.

Figure 13. Concentration profiles in the secluded locust population wave
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Numerical studies have shown that the rate of a solitary population wave 
of locusts increases dramatically with a decrease in the initial concentration 
of the food supply. While the wave profile is stretched. This effect was also 
observed in other solitary population waves (Zhizhin, 2005).
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KEY TERMS AND DEFINITIONS

Gregarious Locust: The state of the locust in which the locust forms 
large flocks capable of long flights; the gregarious locust is characterized 
by bright coloration and aggressive behavior.

Semi-Infinite Reaction Zone Method: A method that assumes a low 
reaction rate to the reaction front and a significant reaction rate after the 
reaction front to infinity.

Separatrix: A trajectory that separates qualitatively different types of 
trajectories from each other.
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Solitary Wave: Wave motion that at each time instant is localized in a 
finite region of space and rapidly decreases with distance from this region.

Special Point: The point at which the first derivatives of all phase variables 
with respect to the independent variable are equal to zero.

Zero Isocline: The line at the points of which the first derivative of some 
phase variable with respect to the independent variable is zero.
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ABSTRACT

The previously accepted models of plankton consisting of two interacting 
populations—phytoplankton and zooplankton—are considered in a local 
approximation. The analysis of models is carried out with the help of a 
qualitative study of systems of differential equations as a whole (i.e., in the 
entire phase space of systems, not limited to a neighborhood of equilibrium 
positions). Analytical conditions for the occurrence of a Hopf bifurcation are 
obtained for each model using the Lyapunov stability theory. A comparison 
of various models is given, and their shortcomings associated with the 
incompleteness of research are indicated. It has been established that in 
some cases the loss of stability of the equilibrium position does not lead to 
the formation of a limit cycle (Hopf bifurcation) but to the formation of a 
limit continuum with a chaotic behavior of the trajectories in a large part 
of the phase space. It is shown that the parameters significantly influencing 
the dynamics of the development of plankton are the natural mortality of 
populations as an environmental characteristic of the environment.

Plankton Models and 
Its Attractors in a Local 

Approximation
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PLANKTON MODELS

Plankton is a collection of floating organisms belonging to many types and 
living in the oceans, seas, freshwater bodies and major rivers. The functional 
classification of plankton organisms is based on their place in the food chain, 
their size and distribution in nature (Erhard, & Seguin, 1978; Kiselev, 1982). 
By size, picoplankton is distinguished (2 µm), micro - plankton (0.2 - 2 mm), 
macro - plankton (more than 20 mm). Phytoplankton are microscopic plants 
that largely determine the development of all marine communities and the 
life within them. Due to the fact that the growth of phytoplankton is due to 
photosynthesis, the global phytoplankton reserves produce half the amount 
of oxygen that humanity needs to maintain its existence, and absorb half the 
amount of carbon that could trigger global warming. Along with oxygen and 
carbon, there are other elements and substances, which are regenerated by 
phytoplankton. These include, above all, phosphorus and nitrogen - containing 
compounds. Thus, phytoplankton, in general, is one of the main factors for 
the development of climate on Earth. Zooplankton are planktonic animals. In 
the marine zooplankton can be found both herbivores and predators. At the 
same time, herbivores feed on phytoplankton and are food for zooplankton 
predators. In the complex, phytoplankton and zooplankton are the basis of all 
trophic chains and networks in the ocean. In turn, the reproduction of species 
forming plankton is determined by many factors, such as ambient temperature, 
sunlight intensity, availability of nutrients, etc. An increase in the concentrations 
of certain substances (mainly nitrogen and phosphorus), which are a food 
product for algae, leads to a significant increase in the concentration of algae, 
i.e. to eutrophication, and, as a result, to the accumulation of organic matter 
in water, water pollution, the spread of infections and the gradual withering 
away of all life. For this reason, eutrophication should be classified as an 
environmental risk caused by an excessive increase in the concentration of 
nutrients as pathogenic elements (Slepyan, 2002). The increase in nutrients 
in water can be the result of natural processes or targeted actions. In the latter 
case, these actions can be considered as acts of environmental terrorism 
(Slepyan, 2003).

The beginning of the mathematical modeling of the processes underlying 
the formation of plankton was laid in the work of R. Fleming (Fleming, 
1939). He proposed to describe the change in the number of phytoplankton 
by a differential equation
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du dt F R G u
1 1
/ ( ) .= − −  (1)

Here u
1
 is the concentration of phytoplankton in water; F is speed of the 

photosynthesis; R is speed of the breath; G is phytoplankton excretion rate 
by zooplankton.

In the future, this simplest model became more complicated in two 
directions. First, the kinetics of phytoplankton development was refined, 
taking into account its interaction with zooplankton. Secondly, the influence 
of the mobility of the waters of the seas and oceans and the mobility of 
individuals of planktonic populations on the distribution of phytoplankton and 
zooplankton over the space of these waters was considered. Numerous studies 
of the distribution of plankton for a long time discovered the heterogeneity 
(mosaic) of the distribution of plankton in both horizontal and vertical (i.e. 
in depth) directions in lakes, seas and oceans (Beklemishev, 1969; Kiselev, 
1982; Erhard, & Sezhen, 1978; Zenkevich, 1951; Kamshilov, Zelikman, & 
Rouhiyainen, 1958; Morozova - Vodyanitskaya, 1948; Vinogradov, 1968: 
Sirenko, & Gavrilenko, 1978).

Moreover, this heterogeneity (structure) exists in certain seasons long 
enough and steadily. Visually heterogeneity in the horizontal direction 
is expressed in the so - called phytoplankton spotting. The formation of 
phytoplankton spots is primarily associated with transfer processes. Moreover, 
many who study the turbulence of ocean waters believe that turbulence is 
responsible for the appearance of phytoplankton spots, and the intrinsic 
mobility of phytoplankton and zooplankton organisms does not matter in 
the transfer processes (Ozmidov, 1968, 1983, 1998; Petrovsky et al., 1998; 
Medvedinsky et al., 2002; Medvedinskiy et al., 2003). It is difficult to agree 
with this opinion. Firstly, it is not confirmed by anything. Secondly, estimates 
of the velocities of the pulsating motion of moles of water in the turbulent 
regime in the ocean and the pulsations of the proper movement of individuals 
of plankton indicate the opposite. Moreover, this heterogeneity (structure) 
exists in certain seasons long enough and steadily. With developed turbulent 
fluid motion, the velocity of turbulent pulsations is approximately 0.6 m / s 
at the boundary of the jet of a co - current flow striking at a high speed, and 
this velocity rapidly decreases with retreat from this boundary (Loitsyansky, 
1957). Measurements of the velocity of turbulent pulsations, for example 
in the Caspian Sea, are much smaller (approximately 0.2 m / s) (Ozmidov, 
1968). Pulsations of the unicellular ciliated infusoria proper movement, as 
one of the most widespread representatives of zooplankton, can reach 1 m / 
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s (Shmagina, 1948). Extensive scientific literature is devoted to the analysis 
of the movement of various organisms that form plankton (Shmagina, 1948; 
Zaitsev, 1970; Seravin, 1967; Kozlov, 1983; Rudakov, 1972). Such forms of 
movement are distinguished as contractile, rowing, ameboid, flagellate, ciliary. 
A well - known reactive mode of motion jellyfish. I.A. Kiselev (Kiselev, 1982) 
emphasized the huge role of the active movement of almost all representatives 
of zooplankton and the ability of these movements to self - regulate. It is 
known that many representatives of zooplankton can quickly rise from great 
depths to the ocean surface (daily migration of zooplankton). With even greater 
speed individuals descend into the ocean. For example, copepods with the 
onset of darkness rise at a speed of 17–30 m / h, and ephausiids at a speed of 
100 m / h. At dawn, the reverse movement begins. Moreover, the immersion 
rate is even higher: 50 m / h in copepods and 140 m / h in ephausiids (Erhard, 
& Sazhen, 1978). But if there is an ability to move relative to the vertical 
direction, then what prevents zooplankton individuals from using this ability 
to move at a certain angle to the vertical, if this allows them to find better 
living conditions? It is this ability to move allows many representatives of 
zooplankton to withstand the internal waves in the ocean waters (Petrovsky, 
Vinogradov, & Moroz, 1998). All of the above suggests that ignoring the 
mobility of representatives of, at least, zooplankton in the preparation of 
mathematical models of the development of plankton communities should be 
considered as a purely mechanistic approach that does not take into account 
the characteristics of living organisms. These abilities are manifested most 
clearly in the layer of water immediately adjacent to the ocean surface. Living 
organisms in the layer, which is called neuston, are attached to the surface of 
the water, which at the expense of surface tension has viscosity and elasticity. 
The mobility of organisms in this layer is reduced to their movement over 
the surface of the water, and the effect of turbulence on such movements is 
very small. Neuston plays an important role in the formation of plankton 
throughout the ocean (Zaitsev, 1970).

Accounting for transfer processes in the aquatic environment leads to 
mathematical models in the form of systems of parabolic differential equations. 
In a one - dimensional formulation, in each of the equations of the system 
there is a second - order partial derivative with respect to the spatial variable 
of the concentration of the corresponding component of plankton. These 
derivatives contain a multiplier characterizing the mobility of individuals of 
a given population. For two populations of phytoplankton and zooplankton, 
such a system of equations has the form
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∂ ∂ = ∂ ∂ + −u t D u x M u E u u
1 1

2
1

2
1 1 2

/ / ( ) ( , ),  (2)

∂ ∂ = ∂ ∂ + −u t D u x kE u u u u
2 2

2
2

2
1 2 2 2

/ / ( , ) ( ) .µ  (3)

Here u
2
 is concentration of zooplankton; x is a spatial coordinate;

M u( )
1

is a function expressing a change in the concentration of phytoplankton 
due to the reproduction and natural death of individuals;
E u u( , )

1 2
is phytoplankton digestion by zooplankton (trophic function);

µ( )u
2

is zooplankton natural death function; k is phytoplankton biomass 
conversion rate into zooplankton biomass;
D D

1 2
, are mobility coefficients of individuals of phyto - and zooplankton, 

respectively (in the framework of the mechanistic approach, these coefficients 
are assumed to be equal to the coefficient of turbulent diffusion).

To express the functionM u( )
1

 it is used number functions.

1.  The Malthus function (Volterra, 1976; Barbasheva et al., 1991)

M au=
1
.  (4)

There a is a Malthusian parameter, in which the rate of phytoplankton 
deposition can be entered (Barbasheva et al., 1991).

2.  The logistic law ((Petrovsky, Vinogradov, & Moroz, 1998; Medvedinsky 
et al., 2002; Medvedinskiy et al., 2003)

M a b u b u= −( / ) ( ).
1 1

 (5)

Here b is phytoplankton saturability.

3.  The function M u u= α( ) .
1 1

 (6)

There α( )u a bu cu
1 1 1

2= + +  is Allee function (Allee, 1951); a, b, c are 
constants (Svirezev, 1987). In particular, Segel and Levin (1976) suggested 
counting c from zero.
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A number of functions are also used as a functionE u u( , )
1 2

.

1.  Ivlev trophic function (Petrovsky, Vinogradov, & Frost, 1998)

E u G=
2

, (7)

which proportional to Ivlev function (Ivlev, 1945)

G G e u= − −
max

( )1 1ξ . (8)

Here G
max

 is the maximum rate of the consumption of phytoplankton by 
zooplankton,

ξ is a parameter.

2.  Volterra function (Volterra, 1976; Svirezhev, 1987; Segel, & Levin, 
1976)

E u u= γ γ
1 2

, is constant. (9)

3.  The trophic Manod function, proportional to the Manod function 
(Medvedinsky et al., 2002, 2003)

E u u u H= + −γ
1 2 1

1( ) .  (10)

Here H is concentration equal to half the maximum phytoplankton 
concentration.

4.  Modified trophic Manod function, proportional to the modified Manod 
function (Barbasheva et al., 1991)

E u K u H= − + −γ( )( ) .
1 1

1  (11)

Here K is the minimum concentration of phytoplankton, such that at a 
lower concentration there is no digestion of phytoplankton by zooplankton.
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The natural mortality function of zooplankton μ is either considered constant 
(Petrovsky, Vinogradov, & Moroz, 1998; Medvedinsky et al., 2002, 2003), 
or proportional to the first degree of zooplankton concentration (Svtrezhev, 
1987; Segel, & Levin, 1976)

µ =mu
2
.  (12)

In the next paragraphs of the chapter, a number of plankton models will 
be considered in a local approximation, taking into account the fact that the 
variables in equations (2), (3) do not depend on the spatial variable x, since 
the data on the study of such plankton models are either not available or 
contradictory.

Autocatalytic Model With Voltaire Trophic Function

In the work of Segel and Levin (1976), it was stated that the plankton model 
with growth function (6) with c = 0 (the authors called it the autocatalytic 
model) and the Volterra trophic function (9) with different coefficientsD D

1 2
≠  

and µ =mu
2
 describe the plankton blotch, t. e. leads to the existence of a 

spatial dissipative structure. However, Segel and Levin did not provide 
confirmation of this statement. In the section will be consider this model in 
a local approximation (its research in spatial coordinates will be carried out 
in the next chapter).

The equations (2), (3) of the adopted model in the local approximation are

du dt au bu u u
1 1 1

2
1 2

/ ,= + − γ  (13)

du dt k u u mu
2 1 2 2

2/ .= −γ  (14)

System (13), (14) is autonomous, and its solutions can be represented by 
trajectories in the phase plane ( , )u u

1 2
 (there is no such study in Segel and 

Levin (1976)). One introduce dimensionless variables and parameters

x b u x mb k a u at k mb k b
1 1 2

1
2 1

2 1
2

= = = = =− −( / a) , ( ) , , ( ) , / .γ τ α γ α γ  
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Then the system (13), (14) takes the form

dx d x x x
1 1 1 1 2

1/ ( ),τ α= + −  (15)

dx d x x x
2 2 2 1 2
/ ( ).τ α= −  (16)

The system (15), (16) has four zero isoclines on which the derivatives of 
the phase coordinates change sign,

x x x
1 2 1 1

0 1= = +, ( ) / ,α  on them isdx d
1

0/ ;τ =

x x x
2 1 2

0= =, ,  on them isdx d
2

0/ .τ =

Zero isocline separates the phase plane on regions with constant signs of 
derivatives. The regions of positive values of the derivatives are indicated 
by arrows at the corresponding zero isoclines (Figure 1).

Figure 1. Phase portrait of the system (15), (16)
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In the positive quadrant of the plane, there are two intersection points of 
zero isoclines representing equilibrium positions: the origin ( , )x x

1 2
0 0= =  

and the point S with the coordinate x x
s s1 2 1

11= = − −( ) .α
It follows that in order for the system to have equilibrium positions with 

positive concentrations of phytoplankton and zooplankton, the parameter 
value α

1
 must be less than one. From the discriminant of the system (15), 

(16) in the neighborhood of the equilibrium position S one find the eigenvalues 
of this equilibrium position

λ
α
α

α

α
α

α

α1 2
2

1

2
2

1

2 2
1

1
2

0 5
1

1

1

4 1

1

1,
.

( )

( )
.=

+

−
±

+

−( )
−

+

−
 (17)

Based on equation (17), one can construct a bifurcation diagram of the 
equilibrium position S (Figure 2).

The areas of possible values of the parameters are shaded in Figure 2. The 

solid line corresponds to the vanishing of the radicand, on it isα
α α

α1
2
2

2

2

2 1

4
=

− +
. 

Figure 2. Bifurcation diagram of the equilibrium position S: in area 2 the equilibrium 
position S has the type of a stable focus, in areas 1 and 3 the equilibrium position 
S has the type of a stable node
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In accordance with equation (17), in regions 1 and 3 of the bifurcation diagram, 
the equilibrium position S has the type of a stable node, and in area 2 - the 
type of a stable focus. There is no purely imaginary eigenvalue of the 
equilibrium S. Therefore, the possibility of the birth of a limiting cycle 
disappears.

The origin is a complex special point. Qualitatively, the location of the 
trajectories in the vicinity of this equilibrium state can be determined from 
zero isoclines. Until the zero isoclinedx d

2
0/ τ = , the trajectories cannot 

enter or exit the origin. Above the zero isoclinedx d
2

0/ τ = , the existence 
of trajectories emerging from the origin of coordinates is possible. Figure 1 
shows the phase portrait of the system with the values   of the parameters from 
region 2 of the bifurcation diagram. If the values   of the parameters belong 
to areas 1 or 3, then the phase portrait changes slightly, since the stable focus 
and the stable node are topologically equivalent.

Thus, in accordance with accepted assumptions, this model has solutions 
with an increase in phytoplankton and zooplankton concentrations from zero 
and a tendency toward an equilibrium position (attractor S) with final and 
equal phytoplankton and zooplankton concentrations. Moreover, this desire 
may be accompanied by damped fluctuations in the concentrations of both 
populations.

Logistic Model With Trophic Function Ivleva

Petrovsky, Vinogradov, and Moroz (1998) considered the equilibrium positions 
of the logistic model with the Ivlev trophic function in a local approximation. 
Without evidence, the possibility of the formation of a limiting cycle in the 
vicinity of one of the equilibrium positions of this model was asserted. Let 
us check this possibility and conduct a qualitative study of the model as a 
whole, i.e. one will construct a phase portrait of the system, since such a 
study is absent in this work.

Equations (2), (3) under the accepted conditions with the logistic function 
(5), the trophic function (8) and the constant function of mortality µ( )u m

2
=  

are

du dt a b u b u e uu H

1 1 1 2
1 1/ ( / ) ( ) ( ) ,/= − − − −γ  (18)
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du dt k e u muu H

2 2 2
1 1/ ( ) ./= − −−γ  (19)

One introduce dimensionless variables and parameters

x u H x u kH ta H b k a m a
1 1 2 2 1 2 3
= = = = = =/ , / ( ), , / , / , / .τ α α γ α  

Then the system (18), (19) has a form

dx d x x x e x
1 1 1 1 2 2

1 1 1/ ( ) ( ),τ α α= − − − −  (20)

dx d x e xx

2 2 2 3 2
1 1/ ( ) .τ α α= − −−  (21)

Solutions of the system (20), (21) due to its autonomy can be represented by 
trajectories in the phase plane, whose location is determined by zero isoclines

dx d x x x x e x
1 1 2 1 1 1 2

1 10 0 1 1 1/ : , ( ) ( ) ,τ α α= = = − −− − −  (22)

dx d x x
2 2 1 3 2

0 0 1/ : , ln( / ).τ α α= = = − −  (23)

As follows from equations (20) - (23), the coordinate axes of the phase 
plane are simultaneously the solutions of the system (i.e., trajectories) and 
zero isoclines. The zero isoclinex

1 3 2
1= − −ln( / )α α  is present in the positive 

quadrant of the phase plane (representing a straight line) only for α α
3 2

1/ < . 
The zero isocline 

x x x e x
2 1 1 1 2

1 11 1 1= − −− − −( ) ( )α α  

is located in the positive quadrant and passes through the points with coordinates 
x x

1 2 2
0 1= =, / α  andx x

1 1 2
1 0= =/ ,α  . Ifα α

3 2
1/ ≥ , then there is no other 

zero isocline in the open part of the positive quadrant of the phase plane and 
the system has three equilibrium positions on the coordinate axes
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a x x a x x a x x
1 1 2 2 1 2 2 3 1 1 2

0 0 0 1 1 0( , ), ( , / ), ( / , )= = = = = =α α .  

Denoting the right -hand sides of (20) and (21), respectively, Φ
1
andΦ

2
, 

one have

∂ ∂ = − − ∂ ∂ = − −

∂ ∂ =

− −Φ Φ

Φ
1 1 1 1 2 2 1 2 2

2 1 2 2

1 2 1 01 1/ , / ( ,

/

x x x e x e

x x e

x xα α α

α −− −∂ ∂ = − −x xx e1 1

2 2 2 3
1, / ( ) .Φ α α

 (24)

Substituting in (24) the values of the coordinates of the equilibrium 
positions, from the discriminants of the system in the vicinity of the equilibrium 
positions can to find their eigenvalues. Thus, the equilibrium state a

1
 has 

eigenvalues ( ) ,( )λ λ α
a a1 11 2 3

1= = − , this corresponds to the equilibrium position 

of the saddle type. The equilibrium state a
2
 has eigenvalues( ) ,( )λ λ α

a a2 21 2 3
0= = − , 

this corresponds to a degenerate equilibrium position. The equilibrium position 
a
3
 has eigenvalues

( ) ,( ) ( )/λ λ α αα
a a

e
3 3

1

1 2 2

1

3
1 1 0= − = − − <− ,  

this corresponds to the equilibrium position of the type of stable node. The 
corresponding system of trajectories is depicted in Figure 3 (the zero isocline 
(22) is constructed for the valuesα α

1 2
0 2 4= =. , ).

Considering the above, we can conclude that all decisions ultimately lead 
to the disappearance of zooplankton and the desire of the phytoplankton 
concentration to 1/α

1
 .

If α α
3 2

1/ < , then a zero isocline (23) arises in the phase plane, on which

x x
s1 1 3 2

1= = − −ln( / ).α α  (25)

If x
s1 1

1> / ,α  then this leads to arise new equilibrium state a
4
 in which 

x x x
s1 1 2

0= =, .

This is a state of equilibrium, as is easily seen, as is the equilibrium state 
a
2
 degenerate. If x

s1 1
1< / ,α  then two additional equilibrium positions appear 

in the phase plane (Figure 4) a
4
 and a

5
 with coordinates
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Figure 3. Phase portrait of the system (20), (21) for α α
3 2

1/ <

Figure 4. The phase portrait of system (20), (21) forx
s1 1

1< / α , state of equilibrium 
a
5
 is stable node
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x x x x
s s1 1 2 2 3

1
1 3 2 3 2

1 1 1= = = − + − −−, [ ln( / )]ln( / ).α α α α α α  (26)

Thus, the maximum number of equilibrium positions in the system is five, 
not three, as Petrovsky, Vinogradov, and Moroz (1998) claimed. Moreover, 
and this is significant, the equilibrium position a

5
 with the final values of 

the concentrations of populations exists only when the number of equilibrium 
positions is five. It is around him, as will be seen later, that a limiting cycle 
can be formed.

When there isa
5
, then α α

3 2
1/ <  and ( )λ

a3 2
 changed its sign. Therefore, 

the equilibrium position a
3
 has become a saddle. Substituting the coordinates 

of the equilibrium position a
5
 from equations (26), (25) into system (24), 

from the discriminant of the system in the vicinity of this equilibrium position 
we obtain the characteristic equation

λ λ2
0 0 0

0− − =a c b .  (27)

Here

a x x e b e c x e
s s

x x

s

xs s s

0 1 1 2 2 0 2 0 2 2
1 2 11 1 1= − − = − − =− − −α α α α, ( ), .  (28)

By the condition of Routh - Hurwitz, the equilibrium state a
5
is stable if 

a c b
0 0 0

0 0< <, . The second of these inequalities, according to equations 
(24), (25), (28), is satisfied for any values of the parameters within the accepted 
conditions. The boundary of stability, therefore, is equality a

0
= 0. Substituting 

the value x x
s s1 2
, into this equality, one obtain the expression of this condition 

through the parameters of the problem

α
α α α α

α α α α α α1
2 3 3 2

3 2 3 2 3 2

1 1

2 1 1 1
=

− −

− − − −

( / ) ln( / )

[ ( / ) ln( / )]ln( / )
..  (29)

The line graph (29) on the bifurcation diagram (Figure 5) divides the 
parameter plane into two regions.

Under the linea
0

0= , the equilibrium position a
5
 is unstable, and above 

the linea
0

0=  the equilibrium position a
5
 is stable. Point a

0
0= is the dividing 

zero isocline (22) (Figure 3) into two parts. Above this point along the zero 
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isocline (at this pointdx dx
1 2
/ = ∞ )a

0
0< , belowa

0
0>  . Moreover, on the 

part of the zero isocline adjacent to pointa
3
, the equilibrium position a

5
 has 

of the type of stable node (Figure 4). On the remaining part of the zero isocline 
to the pointa

0
0= , the equilibrium position has of the type of stable focus 

(Figure 6), and after the point a
0

0=  - of an unstable focus.
Parameters α α

1 2
, determine the location of the zero isocline (22) on the 

phase plane and this zero isocline does not depend on the parameterα
3
. 

Moreover, moving along the zero isocline, for example, from point a
2
 to 

pointa
3
, the value of parameterα

3
is steadily increasing (line 2 in Figures 4, 

6). The results obtained allow us to give the following interpretation of the 
evolution of the system with a change in the mortality m (since the parameter
α
3
 is the dimensionless characteristic rate of natural death of zooplankton). 

With a high natural mortality of zooplankton (adverse conditions), the process 
of interaction of phytoplankton and zooplankton ends with the complete 
extinction of zooplankton and the passage of some equilibrium phytoplankton 
concentration. With a decrease in the natural mortality of zooplankton in the 
system, a stable equilibrium position occurs with the final concentrations of 

Figure 5. The bifurcation diagram of system (20), (21):1 is region in whicha
0

0< , 
a
5
 is stable; 2 is region in whicha

0
0> , a

5
is unstable

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



74

Plankton Models and Its Attractors in a Local Approximation

both populations. Moreover, the lower the natural mortality of zooplankton, 
the lower the concentration of phytoplankton and the greater the concentration 
of zooplankton in this equilibrium position. A further decrease in the natural 
mortality of zooplankton leads to a change in the type of stable equilibrium. 
Its type becomes a stable focus instead of a stable node. In this case, the 
desire for an equilibrium position is accompanied by damped fluctuations in 
concentrations. A further decrease in the natural mortality of zooplankton 
leads to a loss of steady state of equilibrium. It acquires a type of unstable 
focus and retains this type until the phytoplankton completely disappears, 
while the concentration of zooplankton decreases.

The transition from stable equilibrium to unstable equilibrium states is 
accompanied by the transition of the eigenvalues of the characteristic equation 
(27) through a pair of purely imaginary values of the eigenvalues. Therefore, 
it is necessary to verify the possibility of the formation of limiting cycles 
around the a

5
 equilibrium position after losing its stability. For this one will 

use the method of N.N. Bautin (Bautin, 1984), constructed on the basis of 

Figure 6. The phase portrait of system (20), (21) for x
s1 1

1< / α , state of equilibrium 
a
5
 is stable focus
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the stability theorems of A.M. Lyapunov. One represent the right - hand sides 
of equations (20), (21) in the vicinity of the equilibrium position a

5
as a Taylor 

series, including terms up to terms of the third order of smallness

dx d a x x b x x a x x a x x x x
s s s s1 0 1 1 0 2 2 20 1 1

2
11 1 1 2

/ ( ) ( ) ( ) ( )(τ = − + − + − + − −
22

02 2 2
2

30 1 1
3

21 1 1
2

2 2 12 1

s

s s

s s

a x x a x x

a x x x x a x

)

( ) ( )

( ) ( ) (

+

− + − +

− − + −− − + −x x x a x x
s s s1 2 2

2
03 2 2

3)( ) ( ) ,

 

dx d c x x d x x b x x b x x x x
s s s s2 0 1 1 0 2 2 20 1 1

2
11 1 1 2

/ ( ) ( ) ( ) ( )(τ = − + − + − + − −
22

02 2 2
2

30 1 1
3

21 1 1
2

2 2 12 1

s

s s s s
b x x b x x b x x x x b x

)

( ) ( ) ( ) ( ) (

+

− + − + − − + −− − + −x x x b x x
s s s1 2 2

2
03 2 2

3)( ) ( ) .
 

Here

d e a
i x x

b
i k

x

ik

i k

i k ik

i k

s

0 2 3
1

1 2

21
1 1

1= − − =
∂

∂ ∂
=

∂

∂
−

+ +

α α( ) ,
!k!

,
! !

Φ Φ

xx xi k
1 2
∂

.  

Taking into account that the values of derivatives are taken in the equilibrium 
position a

5
 with a

0
0= , one get

d a x e a a x e a
s

x

s

xs s

0 20 1 2 2 11 30 2 2 21
0 0 5 0 6 0 51 1= = − + = = − =−, . , , / , .α α α α

22

12 03 20 2 2 11 2 02 30

1

1 10 0 2 0

e

a a b x e b e b b

x
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x x

s

s s

−

−= = = − = =

,

, , / , , ,α α ==

= − = =

−

−

x e

b e b b
s

x

x

s

s

2 2

21 2 12 03

1

1

6

2 0 0

α

α

/ ,

/ , , .

 

(30)

According to Bautin’s theory (Bautin, 1984), when passing through the 
value of the parameter a

30
, which meets the condition a

0
0= , the limiting 

cycle will be born in the vicinity of the unstable equilibrium positiona
5
, if 

at this point the first Lyapunov coefficient is negative

L b x e a c a a b a b
s

x s
1 30 0

1
3 2 2

3 2
0 0 11

2
11 02 02

0 25 1( ) . ( ) { (/α π α α= − + +− − −
111 0 0 11

2
20 11 11 20

0
2

11 02 02 02 0 0 0
2 2

) ( )

( ) (

+ + + +

+ −

a b b a b a b

c a a a b a c b
22

2
20 02 0 0 20

2
20 02 0

2
20 20 11 20 0 0

2 2

2

− − − − + + −a a a b a b b b a b b b b c) ( ) ( ) (

aa b b a a a b c c b b a a a b
0
2

11 02 11 20 0
2

0 0 0 02 0 30 0 21 12
3 2)( ) ( )[ ( ) (− − + − + + )) ]}.+ −c a b b

0 12 0 21

 

(31)
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Substituting the coefficients from equations (30) into (31), taking into 
account expressions (24), (25) and the equalitya

0
0= , one obtain after 

transformations

L x e x e x e
s

x

s

x

s

xs s s

1 1 3 2 2
3 2

2
2

2 1 2 1
0 25 0 51 1 1= − −− − − −. ( ) ( ./π α α α α α α α

33
).  (32)

Using the obtained expressions it can be shown that with α α
3 2

1/ <  the 
last bracket in the right side of equation (32) is always negative. This proves 
that when moving from stable equilibrium states a

5
 to unstable equilibrium 

states a
5
a stable limiting cycle (attractor) is formed. Thus, damped fluctuations 

in the concentrations of phytoplankton and zooplankton change to stationary 
fluctuations in the concentrations of populations (Figure 7).

In the system, a stable temporal heterogeneity is formed, i.e. temporal 
dissipative structure (Zizhin, 2005).

Thus, a qualitative study of the system as a whole allowed us to determine 
the evolution of the system depending on the values of the parameters, where 
the parameter characterizing the natural mortality of zooplankton was decisive.

Figure 7. Phase portrait of system (20), (21) with a stable limiting cycle (attractor)
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Logistic Model With Trophic Function Monod

In the works of Medvedinsky, Tikhonov and others (Medvedinsky et al., 
2002, 2003), a plankton model was proposed in which the growth of the 
phytoplankton population was described by a logistic law, and the consumption 
of phytoplankton by zooplankton was taken into account by Mano’s law. It 
was argued without proof that this model leads to the formation of a limiting 
cycle. Let us verify the validity of this statement by conducting a qualitative 
study on the whole of this model in a local approximation, determining the 
sign of the first Lyapunov value. Equations (2), (3) in these conditions with 
the logistic function (5) and trophic function (10) with constant natural 
mortality m

du dt a b u b u u u H u
1 1 1 1 1

1
2

/ ( / ) ( ) ( ) ,= − − + −γ  (33)

du dt k u u H u mu
2 1 1

1
2 2

/ ( ) .= + −−γ  (34)

One introduce dimensionless variables and parameters

x u H x u kH ta H b k a m a
1 1 2 2 1 2 3
= = = = = =/ , / ( ), , / , / , / .τ α α γ α  

Then the system (33), (34) has a form

dx d x x x x x
1 1 1 1 2 2 1 1

11 1/ ( ) ( ) ,τ α α= − − + −  (35)

dx d x x x x
2 2 2 1 1

1
3 2

1/ ( ) .τ α α= + −−  (36)

Solutions of the system (35), (36) due to its autonomy can be represented by 
trajectories in the phase plane, whose location is determined by zero isoclines

dx d x x x x
1 1 2 1 1 1 2

10 0 1 1/ : , ( )( ) ,τ α α= = = + − −  (37)
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dx d x x
2 2 1 2 3

10 0 1/ : , ( / ) .τ α α= = = − −  (38)

Here, as well as in the previous model, there are three equilibrium positions 
in the phase plane( , )x x

1 2
, if α α

3 2
1/ > , and all of them are located on the 

coordinate axes: a a a
1 2 2

1
3 1

10 0 0 0( , ), ( , ), ( , )α α− −  . The equilibrium position α
1
 

has of a saddle type, a
2
 is a degenerate equilibrium position, and α

3
 has a 

type of stable knot. In general, the phase diagram is not very different from 
the phase diagram in Figure 3. All solutions lead to the disappearance of 
zooplankton. There are differences in the zero isocline (37). It becomes 
significant when the zero isocline appears in the phase plane and intersects 
the zero isocline (37), i.e. for α α α

3 2 1
11/ ( )< + −  . In the interval 

( ) /1 1
1

1
3 2

+ < <−α α α  in the phase plane, in addition to a a a
1 2 3
, , , there is 

another degenerate equilibrium state a a
4 2 3

11 0(( / ) , )α − −  . With 
a a

3 2 1
11/ ( )< + −α  the phase plane has five equilibrium positions. An 

equilibrium position of a
5
 is added with the final concentrations of the two 

populations with coordinates 

x x
s s1 3 2 3

1
2 2 1 3 3 2 3

2= − = − − −− −α α α α α α α α α( ) , ( )( ) .  

The eigenvalues of the equilibrium position a
5
 are from the discriminant 

of the system in the vicinity of this equilibrium position

λ λ α α α α α α2
0 3 2

1
2 1 3 3

0− + − − =−a ( ) .  (39)

The Routh – Hurwitz condition in this case reduces to inequality

a a
0 0 3 2

1
2 3

1
2 2 1 3 3 1

0< = − − − −− −, ( ) ( )α α α α α α α α α α ,  

i.e. with α α α α α
3 2 1 1

1
30

1 1< − + =−( )( ) , the equilibrium position becomes 
unstable. The zero isocline (37) is given by the parametersα α

1 2
, , and when 

moving the equilibrium position α
5
 along it, the parameter a

3
 changes. The 

area α α
3 30
>  on the zero isocline is divided into two parts. In the first part, 

adjacent to the equilibrium positiona
3
, the equilibrium position α

5
 is of the 

type of stable knot, and in the second part, adjacent to the point wherea a
3 30
= , 

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



79

Plankton Models and Its Attractors in a Local Approximation

α
5
has type of stable focus. Withα α

3 30
< , the equilibrium position is of the 

type of unstable focus. The transition through a point a a
3 30
= is accompanied 

by the transition of the eigenvalues of the equilibrium position through a pair 
of purely imaginary values. Does this form a stable limiting cycle around an 
unstable focus? The answer to this question is given by the definition of the 
sign of the first Lyapunov value. Performing for the system (35), (36) the 
transformations described in the previous section, one obtain

L A

A
1 30 2 3 1 3 2 3

1 2 3
2

3 2 3
22

( ) ( )( ) ,

[( ) ] [( )

α α α α α α α

α α α α α α α

= − − −

= − − − −
22

2
1 3 2

2
2 3 2 3

21− −− − + −α α α α α α α( )][ ( ) ].
 

(40)

Given that at a pointa a
3 30
=  a

0
0= , can to find the expression for a

1
 and 

substitute it into equation (40). After the transformations, can to get that 

A = − + + + +−α α α α α α
2
2

2 3
1

3 3
2

3
21 2 2 1( ) ,  

then L
1

0<  for 

α α α α α α α α
3 2 3

1
3 3

2
3 3

2
3
30 5 1 2 2 1 4 4 8< < + + + + + +−. ( ).  (41)

In Figure 8 it is presented the calculated (41) area of parameters 2 (hatched), 
in which the unstable equilibrium state is surrounded by a stable limiting 
cycle, is presented.

The phase diagram of the system in this case is close to the phase diagram 
in Figure 7. If the values of the parameters do not belong to this region, then 
the limit cycle in the vicinity of the unstable equilibrium state is not formed. 
In this case, the trajectories do not remain in the neighborhood of thea

5
 

equilibrium position. However, they cannot go to infinity, since the entire 
region of existence of these trajectories is limited by the separatrix of the 
equilibrium positiona

3
 and the axes of coordinates, which themselves are 

composed of trajectories. In this case, the so-called limiting continuum is 
formed (Andronov et al., 1966) (Figure 9).

The limiting continuum (attractor) consists of separatrixes of equilibrium 
positions a a a a

1 2 3 4
, , , ,  located on the axes of the phase plane and going from 

one equilibrium position to another (Figure 9), as well as these same equilibrium 
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positions. This leads to the existence of a temporal dissipative structure with 
chaotic behavior, since the trajectories encounter degenerate equilibrium 
states a a

2 4
,  on their way and for some time the state of the system may linger 

around these equilibria, but any small disturbances deduce the system from 
their neighborhood. Thus, in the works of Medvedinsky et al. (2002, 2003), 
it was erroneously stated that if an unstable equilibrium state of focus type 
is formed in the system, then it is necessarily surrounded in its vicinity by a 
stable limiting cycle (Hopf bifurcation).

Model of Plankton With Phytoplankton 
Subsidence and Explosive Trophic Function

In a local simulation model of the dynamics of the plankton community of 
the Kandalksh Bay of the White Sea (Barbashina et al., 1991), the interaction 
of zooplankton with phytoplankton is considered taking into account the 
increase in phytoplankton biomass under the influence of photosynthesis, 

Figure 8. Parameter domain 2 (hatched), in which the equilibrium position a
5
 of 

the system (35), (36) is surrounded by a limiting cycle

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



81

Plankton Models and Its Attractors in a Local Approximation

solar radiation, temperature, concentration of mineral phosphorus and mineral 
nitrogen. In addition, phytoplankton cell sedimentation and zooplankton 
mortality are taken into account. The release of phytoplankton by zooplankton 
is described by a discontinuous trophic function. It is assumed that when the 
concentration of phytoplankton is less than some critical zooplankton ceases 
to feed on phytoplankton. If the concentration of phytoplankton exceeds this 
critical value, then the consumption of phytoplankton obeys the modified 
Monod equation. The model was identified on the basis of long - term studies 
of plankton in the Kandalksh Bay of the White Sea and is recommended for 
any other ecosystems. However, this model was not investigated even in the 
local approximation using the methods of qualitative study of differential 
equations. According to this model, the function M u( )

1
 in equation (2) is 

expressed as ( )α− s u
1
, where 

α α ϕ ϕ ϕ ϕ=
m
I N P T

1 2 3 4
( ) ( ) ( ) ( )  

Figure 9. Phase portrait of system (35), (36) with a limiting continuum in the absence 
of a limit cycle around an unstable focus equilibrium state a

5
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is the phytoplankton biomass growth rate due to photosynthesis. Here 

ϕ
2
( ) / ( )N N K N

N
= +  

takes into account the effect on the phytoplankton biomass growth of nitrogen 
concentration N; K

N
 is constant. Here ϕ

3
( ) / ( )P P K P

P
= +  takes into 

account the effect on the phytoplankton biomass growth of phosphor 
concentration P; K

P
 is constant. Here 

ϕ σ
4

2( ) exp( ( ) )T c T T d
m

= − − −  

takes into account the effect temperature T on the phytoplankton biomass (c, 
σ, d are constants). Here 

ϕ
1

1( ) ln
exp( )

I
I K

I K
I

I

=
+

− +
−Ω

Ω
 

takes into account the effect on photosynthesis of illumination; Ω = +a bu
1
;

I is average daily solar radiation; s is phytoplankton cell sedimentation rate 
(K a b

I m
, , ,α  are constants).

As follows from the above expressions, ϕ
1
( )I  depends on the concentration 

of phytoplankton u
1
. However, in the event of a final change inu

1
, this function 

is weak and it can be assumed that ϕ
1
( )I  is a variable parameter. According 

to the model in question, in equations (2), (3) μ is constant, and function 
E u u( , )

1 2
 has form γ f u u( ) .

1 2
 Here γ is constant, and K

u
is constant.

f
u u

u u u K u u
u

=
≤
− + ≥








0
1 10

1 10 1 1 10

,

( ) / ( ),
 (42)

The equations (2), (3) under the accepted conditions in the local 
approximation take the form

du dt u s f u u
1 1 1 2
/ ( ) ( ) ,= − −α γ  (43)
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du dt k f u u u
2 1 2 2
/ ( ) .= −γ µ  (44)

One assume thatα > s , since otherwise, the concentration of phytoplankton 
can only decrease, and this is unrealistic.

One introduce dimensionless variables and parameters

x u u x u ku tk

s k k K
u

1 1 10 2 2 10

1 2 3

= = =
= − = =

/ , / ( ), ,

( ) / ( ), / ( ),

τ γ
α α γ α µ γ α // .u

10

 

One rewrite the system (43), (44) with regard to (42) in new variables 
with x

1
1>

dx d x x x x
1 1 1 2 1 1 3

1/ ( ) / ( ),τ α α= − − +  (45)

dx d x x x x
2 2 1 1 3 2 2

1/ ( ) / ( ) .τ α α= − + −  (46)

The same system with x
1

1<  has the form

dx d x dx d x
1 1 1 2 2 2
/ , / .τ α τ α= = −  (47)

Solutions of system (45), (46) are represented by trajectories in the phase 
plane ( , )x x

1 2
 . Their location is determined by zero isoclines (Figure 10)

dx d x x x x
1 2 1 1 1 3 1

0 1/ : ( ) / ( ),τ α α= = + −  (48)

dx d x x
2 2 1 2 3 2

0 0 1 1/ : , ( ) / ( ).τ α α α= = = + −  (49)

The arrows at the zero isoclines indicate regions of positive values of the 
derivatives of the corresponding phase variables. The system (45), (46) has 
one equilibrium position with coordinates

x x x x x
s s s1 2 3 2 1 2 1 1 2 2 2

1 1 1= + − = = = <( ) / ( ) , / ,( ).α α α α α α  
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Linearize system (45), (46) in the vicinity of the equilibrium position

dx

d
x x x x

s s
1 1

2

2 2
2

3

3
1 1 2 2 2

1 2

1τ
α
α

α α α
α

α= −
− −

+
− − −( ) ( ),  (50)

dx

d
x x

s
2

1
2

2

2 3

3
1 1

1 1

1τ
α

α
α

α α
α

=
− +

+
−( ).  (51)

From the discriminant of the system (50), (51) one find the eigenvalues 
of the equilibrium position

λ
α
α

α α α
α

α

α

α α α

α
α

1 2
1

2

2 2
2

3

3

1
2

2
2

2 2
2

3
2

3
2 12

1 2

1 4

1 2

1,

( )

( )
= −

− −

+
±

− −

+
− (( ) .1

1

12
2 3

3

−
+

+
α

α α
α

 

(52)

Figure 10. Faces portrait of the system (45), (46)
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From equation (52) it follows that at α α α
3 2 2

21 2< − −( )  the equilibrium 
position is stable. Moreover, if in this case 

α
α α α α α

α α α
α

1
2 2 3 2

2
3

2 2
2

3
2 0

1 1 4 1

1 2
>

− + +

− −
=

( )( ) ( )

( )
,  

then the equilibrium position has the type of a stable node, and if α α
1 0
< , 

then the equilibrium position has the type of a stable focus. In the neighborhood 
of the zero isocline point (48), in which equality 

α α α α
3 2 2

2
2

1 2 1 2= − <−( ) ,( / )  

takes place and the eigenvalues of the equilibrium position are purely imaginary, 
a transition from a stable equilibrium state of focus type to an unstable 
equilibrium state of focus type occurs. Since the zero isocline is defined by 
parametersα α

1 3
, , the displacement of the equilibrium position along the zero 

isocline (48) can be considered as result of a change in parameterα
2
, which 

characterizes the mortality of zooplankton. It is clear from equation (49) that 
α
2
 (i.e., mortality) grows along the zero isocline (48) with increasing x

s1
 . 

In this case, an analysis of the follow function and determining the sign of 
the first Lyapunov value. Expanding the right - hand sides of equations (45), 
(46) into a Taylor series in a neighborhood of the equilibrium position, limiting 
ourselves to terms of the order of up to the third order of smallness, we 
calculate the value of the first Lyapunov value

L
q1 20

20
3 2 1

2
20 3

20 20
2

3 3
24

1
1 1

1 1
( ) ( )

( )

( )/
α

π
α

α α α
α α

α α
= − +

− −

+ +
















.  (53)

Here α α α
20 3 3

11 1= + + −( )  is value α
2
, at which the eigenvalues (52) are 

purely imaginary, 

q = − + + −α α α α α
1 20 20 3 3

11 1 1( )( )( ) .  

From equation (53) it follows that under the accepted conditions and. 
This proves that when passing eigenvalues through a pair of pure imaginary 
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roots in the vicinity of an unstable equilibrium state, a stable limiting cycle 
(attractor) is born. Figure 10 shows the system of trajectories in the phase 
plane with at, corresponding to this case.

The limiting cycle corresponds to the appearance in the system of a 
temporal dissipative structure — stable fluctuations in time of phytoplankton 
and zooplankton concentrations. Figure 10 also shows the trajectories of 
system (47) in the region. The only equilibrium position of system (47) is the 
origin of the coordinates of the phase plane. This equilibrium position is of 
saddle type with separatrixes coinciding with the axes of coordinates. From 
the qualitative analysis in the phase plane as a whole, it follows that, since 
the asymptote of the zero isocline (48) is the straight line, the trajectories 
of a part of the phase plane when it can neither leave the part of the phase 
plane with nor enter it. Therefore, the condition for the rupture of a trophic 
function (Barbasheva et al., 1991) is impracticable: there is no continuous 
transition of solutions from one area to another.

Comparison of Plankton Models in 
the Local Approximation

Comparing the considered models of plankton in the local approximation, 
it should be noted that the model proposed by Segel and Levin (Segel, & 
Levin, 1976) is the only model that does not take into account a decrease 
in the phytoplankton concentration due to natural death (or subsidence) in 
the growth function . It seems unnatural. In all other models, the growth 
functions contain the terms of phytoplankton loss due to their natural death. 
In this regard, in the model of Segel and Levin, the equilibrium position 
with the final phytoplankton and zooplankton content is always stable (either 
the node or the focus). In all other models, the growth functions of which 
contain the phytoplankton loss terms, under certain conditions, there are 
unstable equilibrium positions (unstable focus) with final concentrations 
of both populations. The transition from a stable equilibrium position to an 
unstable focus equilibrium state is accompanied, as a rule, by the formation 
of a stable limiting cycle in a neighborhood of an equilibrium position (Hopf 
bifurcation). However, from the conducted qualitative research it follows that 
in the logistic model with the Mono trophic function under certain conditions 
(these conditions are determined) there are regimes when the transition to 
unstable equilibrium positions is not accompanied by the formation of a 
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limiting cycle. This is proved using the Lyapunov A.M. stability theory. 
In these cases, in accordance with the Andronov A.A. theory, a limiting 
continuum (attractor) is born, consisting of entire trajectories that limit the 
region of finding the trajectories emerging from an unstable focus. This leads 
to the chaotic behavior of the trajectories in a large part of the phase plane. 
Such behavior should be distinguished from the behavior of trajectories in a 
strange attractor, in which the trajectories randomly tend to the equilibrium 
position. This was established thanks to a qualitative study of systems of 
differential equations as a whole, i.e. in the entire phase plane, in not only 
in the vicinity of the equilibrium position, as it was in the works of previous 
researchers. It was found that in models with trophic functions of Ivlev and 
Monod there are 5 equilibrium positions (and not three, as previously thought). 
It was established that not only the natural mortality of phytoplankton, but 
also the natural mortality of zooplankton have a significant impact on the 
dynamics of plankton. With a high natural mortality of zooplankton (adverse 
conditions) in all models with natural mortality of phytoplankton there are 
no equilibrium positions with the final concentrations of both populations. 
A consistent decrease in the natural mortality of zooplankton leads to the 
appearance of an equilibrium position with the final concentrations of both 
populations (an attractor). At the beginning, the concentration of zooplankton 
in the equilibrium position is close to zero, and with further decrease in the 
natural mortality of zooplankton, its concentration in the equilibrium position 
increases, and the concentration of phytoplankton in the equilibrium position 
decreases. A gradual decrease in the zooplankton mortality, moreover, leads 
to a change in the type of equilibrium position with the final concentrations 
of both populations: from a stable node to a stable focus, and then to an 
unstable focus. This process of evolution is observed in all models with 
natural phytoplankton mortality. The difference in growth laws and trophic 
function affects only quantitative results, in particular, the conditions for the 
occurrence of the Hopf bifurcation. These conditions are defined in the work 
exactly for each model using the Lyapunov stability theory.

It should be noted that the model of plankton with a discontinuous trophic 
function proposed by Barbashev et al. (1991) contradicts the condition for 
the continuous development of plankton, since it was found that there is no 
connection between the solutions before and after rupture of the trophic 
function. Solutions from one area of the gap can not go to another area and 
back.
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KEY TERMS AND DEFINITIONS

Neuston: The layer in the water are attached to the surface of the water 
inhabited by living organisms.

Phytoplankton: A collection of plants inhabiting a series of sea and fresh 
waters passively carried by currents.

Trophic Function: The rate of phytoplankton eating by zooplankton.
Zooplankton: А collection of animals that inhabit the stratum of sea and 

fresh water carried by currents.
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ABSTRACT

A general, the simplest model of a spatial dissipative structure arising in 
an excitable medium is constructed, containing at least two components 
interacting with each other with their own mobility. One of these components 
(active) uses the other component as food. It is shown that such a model leads 
to a stationary stable spatial distribution of the components in the form of 
Liesegang bands. As specific examples of the formation of spatial dissipative 
structures, structures arising in plankton consisting of phytoplankton and 
zooplankton and in the soil containing the bacterial population and the 
nutrient substrate are considered. Bifurcation diagrams are constructed in the 
parameter space, characteristic for each of the considered excitable media, 
which determine the conditions for the formation of dissipative structures in 
these media. The existence in the plankton of a strange attractor of a previously 
unknown shape in four-dimensional phase space has been discovered.

GENERAL FORMULATION OF THE PROBLEM OF SPATIAL 
DISSIPATIVE STRUCTURE IN AN EXCITABLE MEDIUM

The problem of energy dissipation, dissipative structures is one of the 
unconditionally significant fundamental problems of natural science. Of 
paramount importance are the phenomenological special dissipative structures 
arising from the initially uniform distribution of matter. An example of such 

Spatial Dissipative Structures 
in Excitable Media (Plankton, 

Soil Bacteria. . . .)
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structures are the famous Liesegang bands (Liesegang, 1896, 1911a, b, 1923, 
1924). Attempts to explain the Liesegang bands have been undertaken for 
more than 100 years (Ostwald, 1899; Nell, 1905; Hatshchek, 1911, 1914; 
Brandford, 1916; Jablczynski, 1923; Dogadkin, 1928). The establishment 
of physical, chemical, as well as, as it became obvious (Kravchenko et al., 
1998a, b, c) biological mechanisms for the occurrence of Liezegang fields 
and the development of a mathematical apparatus that reflects the essence 
of these mechanisms is extremely important. A convincing explanation for 
the Liezegang bands suggested by G.V. Zhizhin (Zhizhin, 2004a, b, 2005). 
The explanation is based on solutions of systems of parabolic differential 
equations taking into account the provisions of chemical kinetics, diffusion, 
and reversibility of chemical reactions.

It was possible to establish that solutions describing stationary dissipative 
structures comparable to Liesegang bands form a new class of stationary 
composite solutions of differential parabolic equations.

This research direction is connected with the law of V.V. Dokuchaeva on 
the zonality of the distribution of living organisms in nature: plants, animals, 
bacteria in the soil, etc. (Mishustin, 1982). It is significant that the diversity 
of soils and the composition of bacteria in them, even in small areas of 
the earth’s surface, is extremely large (Dobrovolsky, 2001). Zonal (spotty) 
distribution is also characteristic of plankton. It occurs whenever there are 
interacting components in the medium. This interaction excites the system, 
launching self - regulation processes. They lead to the formation of dissipative 
stable systems. In the previous chapter, it was shown on the example of 
plankton consisting of phytoplankton and zooplankton that the interaction of 
these components in the local approximation leads to the achievement of an 
attractor, that is, an equilibrium position as a point in phase space, or a limit 
cycle, or a limit set. If we take into account the distribution of the substance 
(in this case, living matter) in space, then the processes of self - regulation 
lead to the zone distribution of the components.

In the previous chapter, a system of parabolic differential equations 
for phytoplankton and zooplankton was recorded, taking into account the 
mobility of individuals of populations, changes in the concentrations of the 
components in time and spatial coordinate (equations (2), (3) of Chapter 3). 
The source terms in these equations take into account the reproduction of 
phytoplankton and zooplankton individuals, their death and feeding processes. 
Leaving the principal construction of source terms in equations (2), (3) of 
Chapter 3, distracting from their specific type associated with the characteristic 
features of these populations, can to formulate a model problem leading to 
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a rhythmically striped structure of the distribution of the concentrations of 
the components along the spatial coordinate.

One consider stationary solutions and their stability of a system of two 
parabolic equations of second order. Each of the equations describes the 
change in time and space of the concentration of one of the two components 
of the medium. Among these two components one single out the one that 
increases its mass content in the medium by reducing the mass content of the 
other component. The first will be called the active component, the second - 
passive. The active component has a high mobility coefficient compared to the 
passive one. The reduction in the mass content of the second is coordinated 
with the increase in the mass content of the first, so that the source terms in the 
equations for the concentrations of active and passive components differ only 
in sign. They have the form of the product of the concentration of the active 
component on the function of the concentration of the passive component.

This reflects the leading role of the first component in the process of their 
interaction. It is believed that convective motion of the medium is absent, i.e. 
the environment as a whole can be considered stagnant.

The equations describing the changes in the concentrations of active u
1
 

and passive u
2
 components in a one - dimensional space over time, taking 

into account the accepted assumptions, can be written in the following form

∂ ∂ = ∂ ∂ +u t D u x u u
1 1

2
1

2
1 2

/ / ( ),ϕ  (1)

∂ ∂ = ∂ ∂ −u t D u x u u
2 2

2
2

2
1 2

/ / ( ).ϕ  (2)

Here D
i
 is the mobility coefficient (i = 1, 2); t is the time; x is the special 

coordinate; ϕ( )u
2

 is a function of class C 2  which changes sign at a certain 
equilibrium value of u u u

s s2 2 2
0= =,( ( ) )ϕ , and

 ( / ) ,( ( ) , ( ) )d du u u u u
u u s ss

ϕ ϕ ϕ
2 2 2 2 22 2

0 0 0= > < < > > . 

The above conditions for φ are consistent with the equality of the rates of 
increase and decrease in the concentration of the active component at a certain 
equilibrium concentration of the passive component. Moreover, if the 
concentration of the passive component is less than the equilibrium 
concentration, then the rate of decrease in the concentration of the active 
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component exceeds the rate of increase in the concentration of the active 
component. On the functions u t x u t x

1 2
( , ), ( , )  imposed conditions of 

boundedness and continuity. They can vanish for some finite values   of 
independent variables t and x in the domain Ω of the task of equations (1), 
(2). On the boundary of the region Ω, one set the derivatives to zero along 
the normal to the boundary

∂ ∂ = =u x i
i
/ , ,0 1 2 at ∂ × ∞Ω ( , )0 . (3)

System (1) - (3) has two trivial solutions

I: u u u
1 2 20

0= =; - constant, (4)

II: u u u u
s2 2 1 10

= =, - constant. (5)

One investigate the stability of trivial solutions, assuming that the region 
Ω has size l .

Theorem 1: Solution I is the asymptotically stable trivial stationary solution 
of system (1) - (3) if ϕ ϕ π( ) / .u D l

20 0 1
2 2= <

Proof: Consider the solution of system (1) - (3), lying in the neighborhood 
of solution I and differing from it in each of the variables u

1
 and u

2
 by 

a small amount, depending on the variables t and x

u t x
1 1
= ν ( , ),  (6)

u u t x
2 20 2
= + ν ( , ).  (7)

The set of variables ν ν
1 2
,  can be interpreted as a fluctuation around a 

trivial solution I. It is necessary to clarify the temporal evolution of this 
fluctuation, determined by the properties of system (1) - (3). Substitute 
expressions (6), (7) into (1) - (3) and linearize the equations obtained in the 
neighborhood of solution (4)
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∂
∂












=











t
L

ν
ν

ν
ν

1

2
1

1

2

.  (8)

Here linearized operator L
1
 has form

L
D x

D x1
1

2 2
0

0 2
2 2

0
=

∂ ∂ +

− ∂













/ ;

; /
.

ϕ

ϕ
 (9)

To analyze the asymptotic behavior of the solutions of system (8) with

t →∞ , it suffices to find the eigenvalues λ
m

 and the eigenvectors 
g

g
um

mν












 of 

the operator L
1

D x

D x

g

g
um

m

1
2 2

0

0 2
2 2

0∂ ∂ +

− ∂
























/ ;

; /

ϕ

ϕ ν 
=












λ

ν
m

um

m

g

g
.  (10)

The sought solution expresses by the eigenvectors so

ν
ν

λ

ν

1

2












=











∑a e
g

gm

t um

mm

m .  (11)

From boundary condition (3) it is follows, that

g

g

c

c
m x
l
mum

mν

π










=











=1

2

1 2cos ; , ,...  (12)

Included (12) into (10) one obtained the characteristic equation

λ π ϕ
m

D m l= − +
1

2 2 2
0

/ .  (13)

From the characteristic equation (13) it is follows, that if ϕ
0

0< ,  soλ
m
< 0  

and solution (4) is stable. If ϕ
0

0> ,  so λ
m
< 0  at ϕ π

0 1
2 2 2<Dm l/ .

Thus, from (13) it is follows, that if
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ϕ π
0 1

2 2<D l/ , (14)

so all eigenvalues negative and solution (4) is asymptotic stable.
Theorem 1 it is proved.
From the expression (10) it can be seen that in the linear approximation 

the equation for ν
1
 is separated from the equation forν

2
. This reflects the 

decisive role in the evolution of solution (10) of the fluctuations of the active 
component of the mixture.

From Theorem 1 it follows that if the concentration of the passive component 
in the trivial solution (4) is less than or equal to the equilibrium concentration
u
s2
, then the trivial solution is always stable. The instability of the trivial 

solution (4) can occur with large fluctuations, when the concentration u
2
 

significantly exceeds the equilibrium concentrationu
s2
. In this case, the first 

modes become unstable, and the modes with m →∞ stabilize the solution.
Now consider the solution (5).

Theorem 2: Solution II is the asymptotically stable trivial stationary solution 
of system (1) - (3).

Proof: Consider the solution of system (1) - (3), lying in the neighborhood 
of solution II

u u t x
1 10 3
= + ν ( , ),  (15)

u u t x
s2 2 4

= + ν ( , ).  (16)

Substitute expressions (15), (16) into (1) - (3) and linearize the equations 
obtained in the neighborhood of solution (5)

∂
∂












=











t
L

ν
ν

ν
ν

3

4
2

3

4

.  (17)

Here linearized operator L
2
 has form
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L
D x u d du

D x u du
s

s
2

1
2 2

10 2

2
2 2

10 2
0

=
∂ ∂

∂ −












/ ; ( / )

; / (d / )

ϕ

ϕ 
.  (18)

Here ( / )d du
s

ϕ
2

 is value of the derivative d duϕ /
2
 for u u

s2 2
= .

To analyze the asymptotic behavior of the solutions of system (17) with

t →∞ , it suffices to find the eigenvalues λ
n

 and the eigenvectors 
g

g
un

nν












 of 

the operator L
2

D x u d du

D x u d du
s

s

1
2 2

10 2

2
2 2

10 2
0

∂ ∂

∂ −













/ ; ( / )

; / ( / )

ϕ

ϕ

gg

g

g

g
un

n
n

un

nν ν

λ











=












.  (19)

The sought solution expresses by the eigenvectors so

ν
ν

λ

ν

3

4












=











∑b e
g

gn

t un

nm

n .  (20)

From boundary condition (3) it is follows, that

g

g

c

c
n x
l
nun

nν

π










=











=3

4

1 2cos ; , ,...  (21)

Included (21) into (19) one obtained the characteristic equation

λ π ϕ
n s

D n l u d du= − −
1

2 2 2
10 2

/ ( / ) .  (22)

From the characteristic equation (22), given that( / )d du
s

ϕ
2

> 0, it follows 
that λ

n
< 0  for any n, i.e. solution (5) is asymptotically stable. Theorem 2 is 

proved.
As can be seen from expression (18) in the linear approximation, the 

equations of system (17) are divided and the equation for variable ν
4
 does 

not contain variable ν
3
 .These separation of variables in the neighborhood 
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of solutions (4), (5) is a consequence of the orthogonality of these solutions 
(Figure 1).

Nontrivial stationary solutions of system (1) - (3) are from the system

D d u dx u u
1

2
1

2
1 2

0/ ( ) ,+ =ϕ  (23)

D d u dx u u
2

2
2

2
1 2

0/ ( ) .− =ϕ  (24)

Integrating expressions (23), (24) two times, taking into account the 
boundary conditions (3), can to obtain

D u u D u u
1 1 10 2 2 20

0( ) ( ) .− + − =  (25)

Here u u x u u x
10 1 20 2

0 0= = = =( ), ( ).

Express u
1
 through u

2
on the basis (25) and substitute this function in 

equation (24)

Figure 1. Trivial solutions I, II of system (1) – (3)
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D d u dx u D u u D u
2

2
2

2
10 2 2 20 1 2

/ ( ( ) / ) ( ).= − − ϕ  (26)

One write the expression (26) in the form of a system

du dx Y
2
/ ,=  (27)

dY dx D u D u u u/ ( ( )) ( ).= − −− −
2

1
10 1

1
2 20 2

ϕ  (28)

System (27), (28) is autonomous, its solutions can be represented by 
trajectories in the phase plane ( , )Y u

2
 . It has two equilibrium positions

a Y u u

b Y u u

u u u D D

s
: , ;

: , ;

/ .

= =
= =
= +

0

0
2 2

2 200

200 20 10 1 2

 

Linearizing system (27), (28) in a neighborhood of point a, can to find 
the eigenvalues at this point

λ ϕ
a s s

D u D u u d du
1 2 2

1
10 1

1
2 20 2,

( ( ))( / ) .= ± − −− −  (29)

Linearizing system (27), (28) in a neighborhood of point b, can to find 
the eigenvalues at this point

λ ϕ
b

D u
1 2 1

1
200,

( ).= ± − −  (30)

The values of the eigenvalues depend on the relations betweenu u u
s20 2 200

, , . 
Naturally, this ratio:u u u

s200 20 2
≥ ≥ . In this case, the special point a has the 

type of saddle, and the special point b has the type of center. There is no need 
to calculate the follow - up function in this case to clarify the type of the 
special point b (Andronov et al., 1966), due to the symmetry of system (27), 
(28) about the axis u

2
 (Zhizhin, 2004a). The phase diagram of system (27), 

(28) is shown in Figure 2.
Among the trajectories of this figure, by virtue of the set boundary 

conditions, only closed ones located inside the separatrix S, surrounding the 
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special point b, are of interest. In this case, it is reasonable to set u
10

= 0. 
Then u u

200 20
=  and at u u

2 20
=  the system is located a certain time (or on a 

section of a certain length) in the trivial steady state I. The value x = 0 can 
be put at the beginning of this section. Then the trajectory moves to the left 
part of the closed trajectory (to the left of point b in the negative half - plane) 
and moves on. During this movement, the concentration u

2
 first decreases, 

and the concentration u
1
 increases. After reaching the axisu

2
, the concentration 

u
2
 increases, and the concentration u

1
 decreases. To the right of point b in 

the phase plane( , )Y u
2

, the valueu
1
 is negative (see (25)), and the solution 

on a closed sector loses its meaning. Therefore, the motion along a closed 
trajectory occurs until u

2
 reachesu

20
, andu

1
, respectively, becomes equal to 

zero. After that, the system again goes into a trivial steady state I and stays 
in it until the closed trajectory crosses the perpendicular to the axis u

2
 at the 

pointu u
2 20
= . Thus, a nontrivial stationary solution consists of glued pieces 

of solutions I, III, and has the form shown in Figure 3 (one denote this solution 
I-III).

In the plane ( , )u u
1 2

 (Figure 1), this solution corresponds to the movement 
in a straight line from the trivial stationary solution I in the u u

s2 2
>  towards 

the trivial stationary solution II and, without reaching the decision II returning 
along the same straight line to the solution I, as well as repeated movement 

Figure 2. Phase diagram of system (27), (28)
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along the straight line to the solution II . This corresponds to the rhythmically 
- striped concentration distribution in the medium, i.e. spatial dissipative 
structure.

A stationary solution I-III will be called locally asymptotically stable if it 
is asymptotically stable in a neighborhood of each point of this solution. This 
condition of solution I was formulated in Theorem 1. It remains to find the 
condition of locally asymptotic stability of solution III, in order to determine 
the condition of asymptotic stability of solution I-III.

Theorem 3: Solution III is locally asymptotically stable at x = α, if 
( ) ( ) ( ( ) / ) ,D D x u u d du

x1 2
2 2

2 1 2
+ > −−

=π ϕ ϕα α∆  here ∆xα  is fluctuation 
size in the vicinity of a point x =𝛼.

Proof: Choose an arbitrary point on solution III (a point α, see Figure 3). 
Suppose that in a neighborhood of this point there is a fluctuation from 
solution III of size∆xα . Can to present the solution of system (1), (2) 
in a neighborhood of a point α as

u u x t x
III1 1 1

= +α αν( ) ( , ),  (31)

u u x t x
III2 2 2

= +α αν( ) ( , ).  (32)

Figure 3. Integral curves of a nontrivial solution I-III
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And

ν να α1 2
0 0= =,  (33)

on the borders of the site ∆xα  .
Substitute expressions (31), (32) into (1), (2) and linearize the equations 

obtained in the neighborhood of point α of solution III

∂
∂












=











t
L

ν
ν

ν
ν

α

α

α

α

1

2
3

1

2

.  (34)

Here linearized operator L
3
 has form

L
D x u u d du

u D x u du3
1

2 2
2 1 2

2 2
2 2

1 2

=
∂ ∂ +

− ∂ −

/ ( ); ( / )

( ); / (d / )

ϕ ϕ

ϕ ϕ
α α α

α α αα












.  (35)

To analyze the asymptotic behavior of the solutions of system (34) with

t →∞ , it suffices to find the eigenvalues λ
k

 and the eigenvectors 
g

g
uk

kν












 of 

the operator L
k

D x u u d du

u D x u du
1

2 2
2 1 2

2 2
2 2

1 2

∂ ∂ +

− ∂ −





/ ( ); ( / )

( ); / (d / )

ϕ ϕ

ϕ ϕ
α α α

α α α









g

g

g

g
uk

l
k

uk

kν ν

λ











=












.  (36)

The sought solution expresses by the eigenvectors so

ν
ν
α

α

λ

ν

1

2












=











∑d e
g

gk

t uk

kk

k .  (37)

From boundary condition (33) it is follows, that

g

g

c

c
k x
x

uk

kν

π










=











=5

6

1 2sin ;k , ,...
∆

 (38)

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



103

Spatial Dissipative Structures in Excitable Media (Plankton, Soil Bacteria. . . .)

Included (38) into (36) can to obtain the characteristic equation

λ λ ξ ξ ξ ξ ϕ ϕα α αk k
u2

1 2 1 2 1
0+ + + + =( ) .'  (39)

Here

ξ π ξ π ϕ ϕ ϕ ϕα α α α α α1 1
2 2 2

2 2
2 2 2

2 2
= = = =− −D k x D k x u d du( ) , ( ) , ( ), ( / ) .'∆ ∆  

Solving equation (39), one have

λ ξ ξ ξ ξ ϕ ϕα α αk
u

1 2 1 2 1 2
2

1
0 5 0 25

,
'. ( ) . ( ) .= − + ± − −  (40)

From expressions (39), (40) it follows that the term in front of the root in 
(40) is negative if

D D k x u
1 2

2 2 2
1

+ + >−π ϕ ϕα α α α( ) .'∆  (41)

This will be the condition of stability of the mode k. If k = 1 in the 
expression (41), then can to get

D D x u
1 2

2 2
1

+ + >−π ϕ ϕα α α α( ) .'∆  (42)

Condition (42) is a condition for the stability of all modes, which proves 
Theorem 3. It is clear that when the fluctuations ∆xα  tend to zero, the 
condition of local asymptotic stability of solution III is always satisfied.

Thus, the solutions obtained in this generalized model of fixed dissipative 
structures in an excitable medium do not fall into any of the known classes of 
solutions of the parabolic equations of mathematical physics (Ladyzhenskaya 
et al., 1967) and population biology (Fisher, 1937, 1950; Hess, 1991). Since 
these solutions are, firstly, composite, and secondly, one of the component 
parts of solutions drastically goes into the negative range of values   of variables.

However, such solutions correspond to the observed Liezegang bands 
(Auchuty et al., 1986; Ortaleva, & Shmidt, 1988) and the distribution of 
concentrations in populations (Zhizhin, 2005).
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SPATIAL DISSIPATIVE STRUCTURE OF PLANKTON

The considered generalized model of the spatial dissipative structure can be 
considered the simplest model of the spatial dissipative structure of plankton. 
However, the source terms in the generalized model do not take into account 
certain characteristic features specific to plankton. They were discussed 
in detail in the local approximation in the previous Chapter. One take into 
account these features. The equations of plankton consisting of phytoplankton 
and zooplankton, (2), (3) of Chapter 3 in the stationary approximation in the 
absence of convective terms have the form

d u dx D M u D E u u2
1

2
1

1
1 1

1
1 2

/ ( ) ( , ),= − +− −  (43)

d u dx kD E u u D u u2
2

2
2

1
1 2 2

1
2 2

/ ( , ) ( ) .= − +− − µ  (44)

Considering that for all models of plankton considered earlier, the function 
E u u u f u( , ) ( )

1 2 1 2
= , where f u( )

2
 is different functions in different models, 

the system (43), (44) can be written as

du dx
1 1
/ ,= ν  (45)

du dx
2 2
/ ,= ν  (46)

d dx D M u D u f uν
1 1

1
1 1

1
1 2

/ ( ) ( ),= − +− −  (47)

d dx kD u f u D u uν µ
2 2

1
1 2 2

1
2 2

/ ( ) ( ) .= − +− −  (48)

Since the right sides of equations (47), (48) coincide, up to a sign, with 
the right sides of the corresponding equations of local models and do not 
contain variables ν ν

1 2
, , the system (45) - (48) has equilibrium positions in 

four - dimensional phase space ( , , , )u u
1 2 1 2
ν ν  with finite coordinates u u

s s1 2
,  
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that coincide with the coordinates u u
s s1 2
, of the corresponding local models. 

The coordinates ν ν
1 2s s
,  in this equilibrium position are obviously zero. 

Linearizing the right -hand sides of equations (47), (48) in the neighborhood 
of the equilibrium state, can to obtain

d dx A u u A u u
s s

ν
1 1 1 1 2 2 2
/ ( ) ( ),= − + −  (49)

d dx A u u A u u
s s

ν
2 3 1 1 4 2 2
/ ( ) ( ),= − + −  (50)

A D f u dM du A D u df du A kD f u
s s s s1 1

1
2 1 2 1

1
1 2 3 2

1= − = = −− − −[ ( ) ( / ) ], ( / ) , (
22

4 2
1

1 2 2 2 2

s

s s s s s
A D ku df du u u d du

),

[ ( / ) ( ) ( / ) ].= − + +− µ µ
 

The characteristic equation of the system (45), (46), (49), (50) is

λ λ4 2
4 1 1 4 1 2

0− + + − =( ) .A A AA AA  (51)

From equation (51) it follows that the Routh - Hurwitz condition for the 
equilibrium position S is not necessarily fulfilled for any of the plankton 
models. The fact is that the polynomial (51) does not contain the terms of 
the third and first degrees of the eigenvalue, while for the stability of the 
equilibrium position so that all coefficients of the characteristic equation are 
greater than zero.

Since for any considered models of plankton the equilibrium position at 
finite values   of phytoplankton and zooplankton concentrations is unstable 
at any values   of the parameters, there is no loss of stability and there can be 
no limit cycle production. Therefore, Medvedinsky’s claims (Medvedinsky 
et al., 2002, 2003) that there is a Hopf bifurcation in distributed plankton 
models are incorrect. However, this does not mean that in system (45) - (48) 
there can be no dissipative structure at all. In order to be convinced of this, 
one consider a particular model of plankton (with given functions) in a one - 
dimensional approximation. Let us choose for this purpose the most complete 
model of plankton, built according to the study of the Kandolaksha Bay of 
the White Sea.
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Equations (2), (3) of Chapter 3 in the stationary approximation with the 
source terms corresponding to the plankton model with phytoplankton 
sedimentation at x

1
1> :

D d u dx s u f u u
1

2
1

2
1 1 2

/ ( ) ( ) ,= − − +α γ  (52)

D d u dx k f u u u
2

2
2

2
1 2 2

/ ( ) .= − +γ µ  (53)

In the variables of Chapter 3, equations (52), (53) can be written as a system

dx d x dx d x dx d x x x x

dx d
1 3 2 4 3 1 1 2 1 1 3

1

4

1/ , / , / ( )( ) ,

/

χ χ χ α α

χ

= = = − + − +

=

−

−− − + + = =− − −α α α α χ γ α
4

1
2 1 1

1
2 4

1
2 1

1 2
4 2 1

1
3

x x x x x k D D D( )( ) , ( / ) , / ./
 

(54)

The equilibrium positions of system (54) with final values of phase 
variables x x

1 2
,  have coordinatesx x x x x x

s s1 1 2 2 3 4
0 0= = = =, , ,  . Linearizing 

system (54) in the vicinity of this equilibrium state, from the discriminant 
of the system can to obtain the characteristic equation

λ λ α α α α α α4 2
1 4

1
3

1
2 2 3

2 1 1 1 0− + + − + =− −A ( ) ( )( ) .  (55)

Here

A = − − +− −α α α α α α
1 2 2

2
3 2

1
3

11 2 0 5 1( ) . ( ) .  

Since in the equation (55) there are no terms of a polynomial in λ of the 
first and third order the Routh – Hurwitz condition is not satisfied for any 
values of the parameters, i.e. the equilibrium position is always unstable. 
This fundamentally distinguishes the equilibrium position with the final 
values of the phase variables in the stationary model from the specified 
equilibrium position in the local model. Thus, in the stationary model there 
is no bifurcation of the birth of the limit cycle with the loss of stability of 
the equilibrium position.

Solving equation (55) can be obtain

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



107

Spatial Dissipative Structures in Excitable Media (Plankton, Soil Bacteria. . . .)

λ
1 2 3 4, , ,

.= ± ±A B  (56)

Here

B A= − − + +− −2
1 4

1
2 2 3 3

11 1 1α α α α α α( )( )( ) .  

Using equation (56) it is possible to construct a bifurcation diagram of 
the equilibrium state (Figure 4).

Four areas of parameter values in space ( , , )α α α α
2 3 1 4

are formed, which 
are formed by surfaces A = 0 and B = 0 (arrows at the surfaces indicate areas 
of positive values A and B, respectively). In area1 A > 0, B > 0, all eigenvalues 
are real λ λ

1 3 2 4
0 0

, ,
,> <  . Equilibrium positions are of saddle type. The 

Figure 4. Bifurcation diagram of the equilibrium state of system (54): In area 1 
eigenvalues are real λ λ

1 3 2 4
0 0

, ,
,> < , equilibrium positions are of saddle type; In 

areas 2 and 3, the eigenvalues form two pairs of conjugate complex numbers, the 
trajectories have the form of a spiral, emerging from the equilibrium position and 
entering into the equilibrium position; In area 4 are two pairs of conjugate purely 
imaginary eigenvalues; In area 5 the equilibrium position is located in the negative 
part of the phase space.
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trajectories entering and exiting from equilibrium positions form two two-
dimensional surfaces in phase space.

In area 2

 
A B i i i i

B

> < = + = − + = − − = −

=

0 0

2

1 1 2 2 1 2 3 1 2 4 1 2

1

1 2

, , , , , ,
/

λ β β λ β β λ β β λ β β

β −− − −− + + = − + +1 2 2 1 2
2

1 2 2 1 22/ / / /( ) , ( ) .A A B A A Bβ
 

In area 3 

A B i i i i

B

< < = + = − + = − − = −

=

0 0

2

1 3 4 2 3 4 3 3 4 4 3 4

3

1 2

, , , , , ,
/

λ β β λ β β λ β β λ β β

β −− − −+ + = + +1 2 2 1 2
4

1 2 2 1 22/ / / /( ) , ( ) .A A B A A Bβ
 

In regions 2 and 3, the eigenvalues form two pairs of conjugate complex 
numbers. The trajectories in the vicinity of the equilibrium position in these 
cases have the form of a spiral, both emerging from the equilibrium position 
and entering into the equilibrium position.

In area 4 A B i A B i A B< > = ± − = ± +0 0
1 2 3 4

, , ,
, ,
λ λ - two pairs of 

conjugate purely imaginary eigenvalues. 

Area 5 is of no interest, since at α
2

1>  the equilibrium position is located 
in the negative part of the phase space.

Of particular interest is the behavior of the system with the values   of the 
parameters belonging to region 4, since in the well - known classifications 
of singular points in four - dimensional phase spaces (Tondl, 1973) there are 
no singular points with two pairs of pure imaginary eigenvalues. Lyapunov 
stability studies also exclude such points from analysis. A numerical 
investigation of system (54) for the values   of parameters in region 4 revealed 
the existence of a strange attractor of a form that was not previously known. 
It consists of several layers, each of which is an attractor from a set of 
trajectories with two points, characteristic of a given layer, common to all 
trajectories of this layer. When moving away from the equilibrium position, 
the next layer of the general attractor gradually degenerates, turning into a 
single trajectory, which leads to the destruction of plankton. Figures 5 - 10 
show the results of calculating the changes in the concentrations of 
phytoplankton and zooplankton in the layers of the attractor when moving 
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Figure 5. Changes in the concentrations of phytoplankton x and zooplankton y in 
the vicinity of the equilibrium position of system (54) with coordinates at x

s
 = 19 

and y
s
 = 126.66, y(0)=128, x(0)=30

Figure 6. Changes in the concentrations of phytoplankton x and zooplankton y in 
the vicinity of the equilibrium position of system (54) with coordinates at x

s
 = 19 

and y
s
 = 126.66, y(0)=128, x(0)=18
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Figure 8. Changes in the concentrations of phytoplankton x and zooplankton y in 
the vicinity of the equilibrium position of system (54) with coordinates at x

s
 = 19 

and y
s
 = 126.66, y(0)=128, x(0)=16.3

Figure 7. Changes in the concentrations of phytoplankton x and zooplankton y in 
the vicinity of the equilibrium position of system (54) with coordinates at x

s
 = 19 

and y
s
 = 126.66, y(0)=128, x(0)=17
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Figure 9. Changes in the concentrations of phytoplankton x and zooplankton y in 
the vicinity of the equilibrium position of system (54) with coordinates at x

s
 = 19 

and y
s
 = 126.66, y(0)=128, x(0)=16

Figure 10. Changes in the concentrations of phytoplankton x and zooplankton y in 
the vicinity of the equilibrium position of system (54) with coordinates at x

s
 = 19 

and y
s
 = 126.66, y(0)=128, x(0)=15
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away from the equilibrium position with the values   of the parameters 
α α α α

2 3 1 4
0 9 1 6= = =. , ,  belonging to area 4 of the bifurcation diagram 

(Figure 4).
The results of the calculation are presented in the plane ( , )x x y x= =

1 4 2
α  

. Each of the six calculation options differs in valuex( )0 , from which the 
calculation started, and has the same valuey( )0 128= . The chosen value of 
y
s
=126.66 differs slightly from the coordinate of the equilibrium position 

(for given values   of parameters). The coordinate x
s
=19. The selected values 

x( )0    range from 30 to 15. For each of the selected values, the system has a 
solution (layer) in the form of a strange attractor with two characteristic points 
common to all trajectories of the layer. It can clearly see how the attractor 
changes its shape as x( )0 changes. As x( )0  decreases, the attractor shrinks, 
turns into a line segment and then expands again. However, with a further 
decrease inx( )0 , the closure of the trajectories of the attractor is destroyed 
and the solution leads to the destruction of phytoplankton and zooplankton. 
For the given values   of the parameters, this occurs with x( )0 < 4. An increase 
in x( )0  also leads to the destruction of the closedness of the trajectories of 
the layer. When x( )0 > 30 attractor does not exist.

The existence of an attractor corresponds to the existence in the system 
of a spatial dissipative structure occupying the surface of a water body, with 
variations in the phytoplankton and zooplankton concentrations along the 
spatial coordinate.

MOTIONLESS DISSIPATIVE STRUCTURES 
FROM SOIL BACTERIA

Currently, in the study and modeling of the structures of bacteria in the soil, 
the processes of transfer in the soil are not taken explicitly into account. 
Although it is known, that it is the transfer processes that lead to the formation 
of self - regulating (dissipative) structures in various open physicochemical 
and biological systems (Nikolis, & Prigogine, 1971; Polak, & Mikhailov, 
1983; Kerner, & Osipov, 1991; Field, & Burger, 1988; Svirezhev, 1987). Soil 
transport processes are varied. Among them, can to distinguish the filtration 
of the soil solution, the mobility of soil microorganisms, and the diffusion 
of substrate, which is feed on bacteria. Taking into account the diffusion 
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of the substrate and the mobility of bacteria in the mathematical modeling 
of processes in the soil inevitably leads to systems of parabolic equations 
(Zhizhin, 2004; Kolmogorov et al., 1937; Wolpert, 1987). The present 
attempts to take into account the transfer processes in analyzing the structures 
of soil bacteria were reduced only to the simplest differential equations of 
the first order (Kozhevin, 1989; Zelenev et al., 2000), in which there were 
no terms corresponding to the transfer processes. Dissipative structures 
emerging in excitable media under the action of the transfer processes can 
be divided into two classes: various traveling waves (Zhizhin, 2004c) and 
immobile dissipative structures in space, such as Lisegang bands (Lisegang, 
1896). In 1896, Lisegang experimentally detected that the ion - exchange 
reactions to yield a slightly soluble substance in a vertical vessel result in 
the formation of deposit layers alternating in height. The first attempts to 
explain this phenomenon were made in terms of thermodynamics, and the 
effect of the kinetics of chemical reactions was underestimated. Further, it 
was supposed (Fein et al., 1978; Lovett et al., 1978; Ortoleva, & Schmidt, 
1988) that the formation of Lisegang bands is governed by a combination 
of the process kinetics and the transfer processes. A detailed analytical and 
numerical study of Lisegang bands formed has been performed in works of 
Zhizhin (Zhizhin, 2004a, b, 2005a). Such a study is carried out to explore the 
formation of immobile dissipative structures by soil bacteria (Zhizhin, 2005b). 
The data of Dobrovol’skya et al. (Dobrovol’skya et al., 1997) were used, who 
showed that, in marsh ecosystems, structures are formed from bacteria with a 
dominant trophic group of copiotrophs characterized by motility (the bacteria 
have flagella). The numerical study used the values obtaind by Nikolaevskii 
(Zelenev et al., 2000) for the kinetic parameters of the growth of copiotrophs, 
their death, and consumption of a carbon - containing substrate.

The set of unsteady - state equations describing the changes in the bacterial 
concentration n and the nutrient substrate concentration s in the flow of the 
filtering soil solution in a one -dimensional approximation can be written as

∂
∂
= −

∂
∂
+
∂
∂

+ −− −n
t

n
x

n

x
n

r e

ν µ
τ τ

2

2

1 1( ),  (57)

∂
∂
= −

∂
∂
+
∂
∂

− −− −s
t

s
s

D s

x
n

b r s e

ν
η τ η τ

2

2

1 1( ),  (58)
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where t is time, x is the coordinate in the water filtration direction, ν is the 
filtration velocity, τ

r
 is the effective bacterial lifespan, η

b
 is the coefficient 

of conversion of the substrate to the bacterial biomass, η
s
 is the coefficient 

of conversion of the bacterial biomass to the substrate by the cell lysis, μ is 
the bacterial motility, and D is the diffusion coefficient.

In equation (57), the effective bacterial reproduction time τ
r
is given by 

the Monod equation (Monod, 1950)

τ τ
r r

s
K s

s
=

+
0

,  (59)

where τ
r 0

 is the effective bacterial reproduction time in excess of the substrate 
and K

s
 is a constant that is equal to the substrate concentration at which 

τ τ
r r
= 2

0
 .

Let us suppose that the effective bacterial lifespan depends on the substrate 
concentration and that this dependence is describe by the inverse Monod 
equation (Zelenev at al., 2000)

τ τ
e e

d

d

K s

K
=

+
0

,  (60)

where τ
e0

 is the effective bacterial lifespan in the absence of the substrate 
and K

d
 is a constant that is equal to the substrate concentration at which 

τ τ
e e
= 2

0
 .

Of interest is the result of the unsteady - state process, i.e. the formation 
of a non-uniform steady - state distribution of components of the medium 
– a steady - state dissipative structure in the soil. Therefore, to find the 
characteristics of this structure, it is necessary to equate the partial time 
derivatives in equations (57) and (58) to zero and to solve the obtained total 
differential equations. In a steady - state approximation, equations (57) and 
(58) with allowance for equations (59) have the form

ν µ
τ τdn

dx
d n

dx
n
s

K S

K

K S
r

s

d e

d

= +
+
−

+

− −2

2
0
1

0
1

( ),  (61)
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ν
τ η τ ηds

dx
D
d x

dx
n
s

K S

K

K S
r b

s

d e s

d

= −
+
−

+

− −2

2
0
1

0
1

( ).  (62)

Since the conversion of the substrate to the population biomass and the 
conversion of the population biomass to the substrate are opposite process, 
let us assume for simplicity that the product of the corresponding coefficients 
is unity: η η

b s
= 1.  Then, set (61), (62) has the first integral

ν µ η νηn
dn
dx

D
ds
dx

s s
b b

= + − −− −1 1
0

( ).  (63)

The integration constant in expression (63) is determined under the 
boundary condition

n s s
dn
dx

ds
dx

= = = =0 0 0
0

, , , at x = −∞.  (64)

This boundary condition models the ingress of the substrate at initial 
concentration s

0
 to the spatial region under consideration.

Let introduce dimensionless variables and parameters

N h n K c s K K K K z x D e w D
b s s d s e r e

= = = = = =/ , / , / , / , / , ( / ) ./ν τ τ ν τ
0 0 0

1 2  
(65)

In terms of them, equations (61) and (63) take the form

dN
dz D

d N

dz

N

w

c
c

K
K c

= +
+
−

+
µ ε2

2 2 1
( ),  (66)

µ
D
dN
dz

dc
dz

N c c c s K
s

+ = + − =
0 0 0
, / .  (67)

Set (66), (67) has two equilibrium positions: the initial equilibrium position 
A, in which N = 0 and c = c

0
, and the final equilibrium position B, in which 

N c c N= − =+ +0
 and
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c c K K= = − + − ++ ( . ( ) . ( ) / ) /0 5 1 0 25 1 2ε ε ε ε  

is the positive root of the equation εc c K K c/ ( ) / ( ).1+ = +
In the vicinity of the initial equilibrium position A, equation (66) is written as

dN
dz D

d N

dz
N
w

c c K K

c K c
= +

+ − −

+ +

−µ ε ε ε2

2 2
0
2

0
1

0 0

1

1

( ) /

( )( )
.  (68)

Its solution depends on the eigenvalues λ obtained from equation (68) 
after substituting N z∼ exp( ) :λ

λ
µ

µ ε ε ε
( , )

. .
( )

( )( )1 2 0 2
0

1 1
0
2

0 0

0 5 0 25
1

1
= ± +

− + −

+ +





 − −D
D w

c K K c

c K c







. (69)

If 0 25
1

12
0

1 1
0
2

0 0

.
( )

( )( )
+

− + −

+ +

− −µ ε ε ε
D w

c K K c

c K c
< 0, then the eigenvalues are 

complex - valued and the equilibrium position A is an unstable focus. In this 
case, the solution of equation (68) has form

N A z A z= +
1 10 2 20
exp( ) exp( ),λ λ  (70)

where A
1
 and A

2
 are integration constants.

Substitution of solution (70) to equation (67) yields the expression for the 
substrate concentration as a function of the spatial coordinate:

c c A
D

z A
D

z= +
−

−
+

−

−0 1
10

10
10 2

20

20
20

1

1

1

1

λ µ
λ

λ
λ µ
λ

λ
/

exp( )
/

exp( ).  (71)

If 0 25
1

1
0

2
0

1 1
0
2

0 0

.
( )

( )( )
+

− + −

+ +
≥

− −µ ε ε ε
D w

c K K c

c K c
, then eigenvalues (69) are 

real - valued and the solution leaves the point A in the direction corresponding 
to the positive eigenvalue. This solution is written as

N A z=
3 10
exp( ).λ  (72)
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Substitution of solution (72) to equation (67) yields the expression for the 
substrate concentration as a function of the spatial coordinates in this case:

c c A
D

z= +
−

−0 3
10

10
10

1

1

λ µ
λ

λ
/

exp( ).  (73)

In the vicinity of the final position B, equations (66) and (67) have the form

dN
dz D

d N

dz
N
w

c c c c

c K c
= +

− −

+ +
+ + −

+ +

µ ε2

2 2 1

( )( )

( )( )
,  (74)

µ
D
dN
dz

dc
dz

N N c c+ = − + −+ +,  (75)

where c K K− = − − − +( . ( ) . ( ) / ) /0 5 1 0 25 1 2ε ε ε ε  is the negative root of 
the equation εc c K K c/ ( ) / ( ).1+ = +

Representing the solution of the equations in the form

N B z N= ++ +1
exp( ) ,λ  (76)

c B z c= ++ +2
exp( ) ,λ  (77)

and substituting solutions (76) and (77) into equations (74) and (75), one can 
find the eigenvalues in the final equilibrium position:

λ µ λ
ε

1 2 3 2
0 5 0 25

1+ +
+ + −

+ +

= = ± +
−

+ +
D

N c c

w c K c
/ , . .

( )

( )( )
.

( , )
 (78)

Of eigenvalues (78) only λ
3+  is negative. It is this eigenvalues gives the 

solution tending to the final equilibrium position B:

N N B z= ++ +1 3
exp( ),λ  (79)
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c c B
D

z= +
−

−+
+

+
+1

3

3
3

1

1

λ µ

λ
λ

/
exp( ).  (80)

The solution of set (61), (63) consists of the solutions in the vicinities of 
the points A and B, which continuously transform into each other. Obviously, 
solution (72), (73) in the vicinity of the point A with real - valued eigenvalues, 
which continuously transforms into solution (79), (80) in the vicinity of the 
point B, cannot give rise to a dissipative structure, because both solution (72), 
(73) and solution (79), (80) are monotonic. A dissipative structure can result 
only from solution (70), (71) with complex - valued eigenvalues at the point A, 
because a part of the solution is in the negative concentration range. Imposing 
the conditions that, at the boundary between solution (70), (71) and solution 
(79), (80), the values of N, c, and d N / d z should be respectively equal and 
also z = 0, one can find the equations for the remaining integration constants:

A
N

2
10 3 20

20 30 20 10

1
=

−

− −
+ +λ λ λ

λ λ λ λ

( )

( )( )
,  (81)

A A
N

1 2
3 20

10 3

3

10 3

=
−

−
−

−
+

+

+ +

+

λ λ

λ λ

λ

λ λ
,  (82)

B A A N
1 1 2
= + − +.  (83)

The numerical study used the kinetic data on the growth and death of 
copiotrophic bacteria that were obtained in investigating the dynamics of a 
population of these bacteria in the soil near the wheat roots (Zelenev et al., 
2000). Comparing the Monod equation and the inverse Monod equation (59) 
with (60), one can obtain the following values of parameters in equations 
(59) and (60):

τ τ
r e s d

h h K kg K kg
0 0

315 873 3 846 0 69 3 335= = = =. , . , . ( , . (    s)/m   s)//m3.  

Hence, the values of the dimensionless parameters that are necessary for 
the numerical study are found:
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ε = =0 2423 4 833. ; . .K  (84)

As follows from the previous section, to find the conditions for the zonal 
distribution of bacteria in the soil, the following inequality should be valid:

( / ) ( ) ,K c K cε ε+ − − <−
0

1
0
21 0  

where c
0
 is the initial scaled substrate concentration. This inequality implies 

that, at certain values of the parameters ε and K, which are characteristic of 
copiotrophic bacteria, c

0
 should meet the condition c

0
> 16.335. Let c

0
=17. 

Moreover, as follows from the previous, for the zonal distribution of bacteria 
in the soil to take place, it is necessary that

0 25
1

1
0

2

1
0

1
0
2

0 0

.
( ) c

( )( )
.+

+ − −

+ +
<

− −εµ ε ε

Dw

K c K

c K c
 (85)

This inequality at the accepted values of c
0
, ε and K implies that the ratio 

µ / ( )Dw2  should exceed 32.247. Let µ / ( )Dw2 = 500. Let the ratio 
µ /D = 2 (bacteria owing to their inherent motility are more capable of self 
- transfer than molecules). Then, the dimensionless velocity of filtration of 
the soil solution is w = 0.06324. Substitution the obtained parameter values 
into expression (69) gives the eigenvalues of the initial equilibrium position: 
λ

( , )
. . ,

1 2 0
0 25 0 952= ± i  and the eigenvalue and the varying parameter values 

for the final equilibrium position:λ
3

0 975 16 335 0 6646+ + += − = =. , . , . .c N

The parameter values obtained allow one to calculation the change of 
the bacterial concentration along the spatial coordinate in the soil from the 
analytical solution. The calculation results are illustrated in Figure 11 (solid 
line).

It is seen that, under the accepted conditions, which characterize specific 
features of copiotrophic bacteria, there is an alternating-band distribution of 
bacteria in the soil that transforms to a continuous distribution with constant 
concentration. If, at the same c Dw

0
217= , / ( )µ  is decreased so that it 

approaches the limiting value 32.247, provided thatµ /D = 2 , then the 
dimensionless filtration velocity increases. For example, if µ / ( )Dw2 = 
35, then w = 0.239. In this case, the values of c+  and N+  remain the same 
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and the eigenvalues of the equilibr ium positions change: 
λ λ

( , )
. . , . .

1 2 0 3
0 25 0 073 0 12= ± = −+i

The bacterial concentration profile calculated from the analytical solution 
in this case is shown in Figure 11 (dashed line). One can see that, with an 
increase in the velocity of filtration of the soil solution, the dissipative structure 
in the form of alternating bands can vanish, with a single semi - infinite region 
inhabited with bacteria being left.

Let us increase the initial concentration of the nutrient substrate I the flow 
of the filtering liquid. Let, e.g. c

0
 = 32. Let us retain the filtration velocity 

w = 0.239, at which, in the case
c
0
= 17, there is no alternating - band distribution of bacteria. At the same 

ratio µ /D = 2 , this corresponds to µ / ( )Dw2 = 35. Then, the alternating - 
band distribution of bacteria takes place again. In this case, the maximal 
bacteria concentration in the bands increase by more than an order of magnitude 
(Figure 12, solid line).

Figure 11. Soil bacterial concentration distribution along the spatial coordinate at 
c D

0
17 2= =, / ,µ  and w = 0.0632 (solid line) and 0.239 (dashed line)
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The calculated parameter values under these conditions are the following:
c N i+ + += = = ± = −16 335 15 6646 0 25 1 838 1 351

1 2 0 3
. , . , . . , . .

( , )
λ λ

If the filtration velocity is now somewhat increased again, the bacteria 
concentrations in the bands decrease and the non-uniformity of the structure 
is somewhat smoothed. Figure 12 (dashed line) presents the results of the 
calculating the bacterial concentration distribution at the following parameter 
values:

c Dw D w c N
0

2

1 2

32 17 2 0 343 16 335 15 6646= = = = = =+ +, / ( ) , / , . , . , . ,

( , )

µ µ
λ

00 3
0 25 1 23 0 8392= ± = −+. . , . .i λ

 

The calculated bacterial concentration distributions along the spatial 
coordinate in Figures 11 and 12 characterize the bacterial distributions in the 
soil (Dobrovol’skaya et al., 1997). To construct the bacterial distributions in 
the soil in dimensional variables, it is necessary to know specific values of 
the substrate diffusion coefficient, the bacterial mobility, and the filtration 
velocity under actual conditions in the soil of a given land. Here, in particular, 
it should be taken into account that the diffusion coefficients in porous media 

Figure 12. Soil bacterial concentration distribution along the spatial coordinate at 
c D

0
32 2= =, / ,µ  and w = 0.239 (solid line) and 0.343 (dashed line)
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are much lower (Nikolaevskii, 1996), and so may be the bacterial mobility 
in such media. In dimensionless variables, the equation for the boundary of 
the region of the existence of the alternating - band dissipative structure can 
be obtained by zeroing the left - hand side of inequality (85):

w D c c K K

c K c

2
0
2

0
1 1

0 0
4

1

1εµ
ε ε

=
− − −

+ +

− −( )

( )( )
.  (86)

For copiotrophic bacteria, the values of the parameters K and ε are given 
by expressions (84). The calculated boundary is presented in Figure 13; 
i.e. Figure 13 is thus a bifurcation diagram of the considered system of 
copiotrophic bacteria.

The results of the qualitative and numerical study suggest some conclusions 
about the causes of the formation of the immobile dissipative structure in the 
form of the alternating - band bacterial concentration distribution in the 
filtering soil solution. Figures 11 – 13 show that the band (zonal) dissipative 

Figure 13. Bifurcation diagram: (1) region of existence of the alternating - band 
dissipative structure and (2) region of a continuous bacterial concentration 
distribution
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structure emerges at low velocities of the filtering flow, i.e., when the 
contributions of the substrate diffusion and the bacterial mobility to the 
transfer processes are significant. With an increase in the velocity of the 
convective flow, the bands initially (as the boundary of the region of existence 
of the dissipative structure is approached) merge to form a single semi-infinite 
band, which then (as this boundary is crossed) transforms into a continuous 
spatial distribution with the spatial coordinate raging from −∞  to +∞.
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KEY TERMS AND DEFINITIONS

Attractor: A compact subset of the phase space of a dynamic system, all 
trajectories from a certain neighborhood of which tend to it at a time tending 
to infinity.

Copitrophic Bacteria: Bacteria living in water that can grow at low 
nutrient concentrations.

Dissipative Structures: The structures in various mediums that exist in 
nature are stationary due to the consumption (dissipation) of energy from 
the environment.

Separatrix: A trajectory separating from each other the trajectories of 
the phase space of a qualitatively different type.

Strange Attractor: A attracting set of unstable trajectories in the phase 
space of a dissipative dynamical system.
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ABSTRACT

Chemical compounds of biogenic elements are considered (i.e., chemical 
elements present in living organisms and ensuring the successful functioning 
of their various organs and systems). Biogenic elements are divided into s-, p-, 
and d-elements, in which respectively are completed with s-, p-, and d-electronic 
orbitals. In each of these groups, the structure of compounds of biogenic 
elements is investigated, and the dimension of the corresponding molecules 
is determined. It is proved that s- and d-biogenic elements exhibit increased 
chemical activity (higher than the standard valence) due to participation in 
the formation of a chemical bond of electrons of the preceding level. This 
leads to the creation of complex molecules of higher dimension. The chemical 
compounds of biogenic p-elements, which are the building blocks for the 
formation of biomolecules (elements of life), will be specifically investigated 
in subsequent chapters.

BIOGENIC ELEMENTS

In living organisms, one can find almost all the elements that exist in the 
earth’s crust and in sea’s water. Ways of receipt of elements in organisms are 
diverse. According to Vernadsky’s (2012) biogeochemical theory, there is a 
biogenic migration of atoms along a chain of air, soil, water, food, man. As 
a result, almost all the elements surrounding a person in the environment, to 

Dimension of Molecules 
of Compounds of 
Biogenic Elements
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a greater or lesser extent, penetrate into the body. The chemical elements 
necessary for living organisms to build and live the activity of cells and organs 
are called biogenic elements. According to the concentration in the body, 
biogenic elements are divided into macro - elements, micro - elements, and 
ultra - micro - elements. Biogenic elements whose content exceeds 0.01% of 
body weight are called macro - elements. These include 12 elements C, H, 
O, N, P, S, Na, K, Ca, Mg, Cl, and Fe. Biogenic elements, the total content 
of which is about 0.01% of body weight is called micro - elements. The 
content of each of them ranges from 10 3− % to 10 5−  %. The micro - elements 
include, for example, active transition metal atoms in the centers of enzymes 
and hormones. Some micro - elements exhibit affinity for certain tissues 
(iodine - to the thyroid gland, fluorine - to the enamel of the teeth, zinc - to 
the pancreas, molybdenum - to the kidneys, etc.). Elements whose content 
is less than 10 5− % are classified as ultra - micro - elements.

The current state of knowledge about the biological role of elements can 
be characterized as a superficial touch to the problem. A lot of evidence has 
been accumulated on the content of elements in various components of the 
biosphere, the body’s response to their excess and deficiency. Compiled maps 
of biogeochemical zoning and biogeochemical provinces. There is no general 
theory of the examining function of the mechanism of action and the role of 
biogenic elements in the biosphere.

In this Chapter, based on the previous monographs of the author (Zhizhin, 
2017a, 2018), the question is being considered that a possible mechanism 
of the action of biogenic elements is the creation of molecules with higher 
dimension in their neighborhood. What exactly in the space of higher dimension 
the main processes of creation and development of living matter occurs.

It is known that with insufficient intake of one or another biogenic 
element in the body, the growth and development of the organism slows 
down significantly. This happens, for example, by reducing the activity of 
enzymes that contain this biogenic element. With an increase in the dose of 
this element, the response of the body increases and reaches the norm (the 
biotic concentration of the element). The greater the width of the plateau in 
this function, the less toxic the element, since a further increase in dose leads 
to a negative effect of the element due to its taxis. Elements vary in their 
taxing power. The elements Hg, Pb, Be, Cu, Cd, Cr, and Ni differ by special 
taxability and prevalence. They compete with other trace elements and can 
displace them from biological complexes.

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



129

Dimension of Molecules of Compounds of Biogenic Elements

Biogenic elements are divided into three groups: s -, p -, and d - elements, 
i.e. elements in which building s -, p -, and d - are sublevels of the external 
level of the electronic structure of the atom, respectively. The monograph 
(Zhizhin, 2017a) investigated in detail the chemical compounds of almost 
all existing elements and showed that the majority of the molecules of these 
compounds have a higher dimension. Can one now select the compounds 
of biogenic elements from them and some elements with special taxability.

MOLECULES OF CHEMICAL COMPOUNDS 
OF BIOGENIC S – ELEMENTS

S - elements there are in 1A and 2A subgroups of the periodic table. The 1A 
subgroup contains alkali metals, among which potassium and sodium are 
biogenic. These are elements of the electrolyte background in living organisms. 
Alkali metals have an external electron shellns1  . They easily give bake one 
electron exhibiting a degree of oxidation +1. In subgroup 2A are alkaline - 
earth biogenic elements Mg, Ca, Sr, and Ba, as well as the toxic element 
beryllium Be and the radioactive element radium Ra. Alkaline - earth elements 
have an external electron shell ns2 . Alkaline - earth elements can release 
their two external electrons, showing an oxidation state of + 2. This allows 
for the formation of linear molecules. However, alkaline - earth elements 
may exhibit a valence (oxidation state) of a significantly larger group number. 
This happens due to the participation in the formation of chemical bonding 
of electronic pairs of the pre - outer level. This is most pronounced in 
magnesium, whose electrons are closer to the nucleus of the atom, compared 
to other alkaline - earth elements. The pre - outer level of Mg includes two 
s – electrons and six p – electrons. These four electron pairs, starting from 
each other, create tetrahedral coordination around the magnesium atom. 
Taking vacant quantum cells of ligands, they increase the possible value of 
valence of magnesium to six (which in turn leads to the formation of molecules 
of higher dimension (Zhizhin, 2017a). This gives magnesium more chemical 
activity especially important for living organisms. Magnesium is one of the 
main elements of the cell. It is called the structural element of a living 
organism. Magnesium participates in the coordinated work of all body systems, 
especially the work of the central and peripheral nervous systems. It participates 
in more than 300 enzymatic reactions, stimulating the work of enzymes, 
including in energy - saving reactions (ADP). Magnesium is needed for 
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protein synthesis, nucleic acids, for the breakdown of glucose, for elimination 
of toxins from the body. Magnesium regulates the rhythm of the contraction 
of the heart muscle, lowers blood pressure, dilates blood vessels, magnesium 
prevents the occurrence of ischemic disease and thrombosis. Magnesium 
ensures the normal functioning of the brain, respiratory system, hormonal 
system. The absence of magnesium in the body, even for a short time, can 
lead to serious irreversible effects. When there is not enough magnesium in 
the body, it begins to actively take it out of the bone tissue, nerve cells, and 
endocrine glands and send it to the blood where magnesium must be present. 
In many cases, calcium may be involved in reactions instead of magnesium.

Even for the chemical bonds of magnesium with valence 2, compounds 
of higher dimension are formed. Consider a molecule of bis (neopentyl) 
magnesium Mg (C5H11)2 (Gillespie & Hargittai,, 1991). Magnesium in this 
molecule exhibits a valence of 2. In each group С5H11, the carbon atoms form 
the geometric form of a tetrahedron centered. This already gives the dimension 
of this form equal to 4. In addition, around each carbon atom there is also a 
tetrahedral coordination of other atoms (hydrogen and carbon). Each group 
C5H11 can be represented in the form of a tetrahedron with a center in which 
its vertices contain functional groups CH3, and in the fourth (attached to the 
magnesium atom) is a functional group CH2. At the center of the tetrahedron 
is a carbon atom. Then the bis (neopentyl) magnesium molecule has the form 
of two tetrahedrons with a center connected to each other by a magnesium 
atom (Figure 1 ). Functional groups CH3 are located in the vertices 
a c d a c d

1 1 1 2 2 2
, , , , , ; functional groups CH2 are located in the vertices b b

1 2
, ; at 

the points o o
1 2
,  are carbon atoms; at the point o there is a magnesium atom.

Valentine bonds are indicated in Figure 1 with a brown color. The remaining 
edges (black) serve to form a convex figure (polytope), the dimension of 
which must be established.

Theorem 1: The dimension of bis(neopentyl) magnesium molecule equal to 6.
Proof: For proof of theorem 1can one noted that polytope on Figure 1 is 

5 – cross - polytope with centrum Figure 2.

Comparing Figures 1 and 2, can to see that these figures are topologically 
equivalent, that is, in Figure 2, the same vertices are shown as in Figure 1. 
Moreover, each of the corresponding vertices in Figure 2 is incidental to the 
number of edges as in Figure 1 and the connection of vertices by edges in 
Figure 2 is topologically the same as in Figure 1. If one denote in Figure 2 
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Figure 1. The structure of bis(neopentyl) magnesium molecule

Figure 2. The 5 – cross - polytope with centrum
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the edges issuing from vertex O to other vertices in green, the remaining 
figure, as can be seen, is the 5 - cross - polytope, given in the monograph by 
Zhizhin, (2014b). In addition, the vertex O is the center of 5 – cross - polytope. 
As follows from Zhizhin (2014b) 5 – cross - polytope has 10 vertices( )f

0
10= , 

40 edges ( f
1
= 40), 80 triangular faces ( f

2
= 80), 80 tetrahedrons ( f

3
= 80), 

32 4 - cross - polytopes ( f
4
= 32). The introduction of the center into the 5 

– cross - polytope adds, according to Figure 2, 10 edges 

(oa ob oc od oo ob oa oc od oo
1 1 1 1 1 2 2 2 2 2
, , , , , , , , , ),  

24 triangular faces 

{
o b o b a o b oa b od b oc b oc

c d o c od c oa c oo
1 1 1 1 1 2 1 2 1 2 1 1

2 2 2 1 2 2 2

, , , , , ,

, , ,
22 2 2 2 2 2 2 2 2 2 2

2 2 2 1 2 1 1 1

, , , , , ,

, , , ,

o d o o oa o ob b a o b od

b oc b oc b d o c od c
11 2 1 2 1 1 1 1 1 1
od c oa c oo a o o o d o, , , ,

}, 

28 tetrahedrons

(b od a b c oo
1 2 2 1 1 1

, , b d oa b a d o b od a b oa c b od c c oa d
1 1 1 1 1 2 1 1 2 1 2 2 1 1 1 2 1 1

, , , , , , c b oo
2 2 2

,  

c a od c a d o c oa d c od b c oa b

c oa d c a od c
2 2 2 2 1 2 2 2 1 2 1 1 2 2 2

1 2 2 1 1 1 1

, , , , ,

, , dd a o c oa d c od b c od b
1 2 1 1 2 1 2 2 1 1 1

, , , ,
 

o a d o b od a b d oa b a d o b od a b oa c b od c o
1 1 1 2 1 1 2 2 2 2 2 1 2 2 1 2 1 1 2 2 2 2

, , , , , , , dd a o
2 2

), 

18 4-siplexes 

(b a od c b c d a o b o a oc b od o c b od a o c d oa b
1 1 2 2 1 1 1 1 1 1 1 2 1 2 2 2 1 2 2 2 1 1 2

, , , , ,
22 1 1 1 2
, ,c o d b o  

c oa o b c oo d o c b a d o c o d ob c oa o b c oa d o
1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 2 1 1

, , , , ,
11 2 2 1 1 2 1 1 1
, , ,b a od c b od o c  

b od a o o c od a b
2 1 1 1 2 2 2 2 2

, ), 

6 5-siplexes 
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(o b a od c c od a o b c od a o b b oa o d c c od a o b
1 1 1 1 1 2 2 2 2 2 1 2 2 2 2 2 1 1 1 1 2 1 1 1

, , , ,
11 1 2 2 2 2
,b oa o d c ). 

Adding the obtained quantities of geometric figures of different dimensions 
connected with the center of the 5 - cross - polytope to the corresponding 
numbers of figures not connected with the center of the 5 - cross - polytope, 
can to obtain the total number of geometric figures of different dimensions 
in the 5 - cross - polytope with center: 

f f f f
0 1 2 3

11 50 104 108= = = =, , , ,  

f f
4 5

50 7= =, .  

Define dimension polytope in Figure 1 on the Euler- Poincare equation 
(Poincare, 1895)

( ) ( ) ( ) ,− = − −
=

−

∑ 1 1 1
0

1
i
i

i

i

n

f P  (1)

f
i
 is the number of the elements with the dimension i at polytope P; n is 

dimension of the polytope P.
Substituting the values f i

i
( )= ÷0 5  for Figure 1 into equation (1), can to 

find that the Euler-Poincare equation is satisfied for n = 6

11 – 50 + 104 – 108 + 50 -7 =0. 

This proves that a 5 – cross - polytope with center has dimension 6. 
Theorem 1 is proved.

If the electron pairs of magnesium at the second energy level enter into a 
chemical bond, then its valence is more than two. For example, in Grignard 
reagent the magnesium valence is 4 and in the vicinity of magnesium atom 
there is tetrahedral coordination. While the nearest neighborhood of the 
magnesium atom has a dimension of 4, and with the account of the attached 
groups of atoms this dimension is even higher. An interesting example is the 
complex magnesium ion Mg (OAsMe3)5

2+, Me = CH3. In this compound, 
magnesium exhibits a valence of 5. In this case, the nearest environment of 
magnesium is of dimension 5. Indeed, the nearest environment of magnesium 
by oxygen atoms has the form of a 4 - simplex with a center in the magnesium 
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atom (Figure 3). At the vertices a, b, c, d, e of the polytope, in Figure 3, there 
are oxygen atoms, in the vertex o there is a magnesium atom. The valence 
bonds are indicated in Figure 3 with a brown color, the other edges (black) 
are needed to create a convex figure in space. The vertices together with the 
connecting ribs form a 4 - simplex. The addition of a magnesium atom and 
valence bonds converts this polytope into a 4 - simplex with a center.

In Figure 3 can to indicate 6 vertices ( f
0
 = 6); 15 edges ( f

1
 = 15);

20 trigonal faces (abc, aeb, abo, abd, bcd, bco, bce, aeo, aed, aec, edo, 
edc, edb, dco, dca), f

2
 = 20;

15 tetrahedrons (abed, abec, abcd, dbce, aecd, obcd, oecd, aoed, aoeb, 
aobc, boed, coae, doeb, eobc, aocd), f

3
 = 15;

6 4-simplexes (abcde, abedo, abeco, abcdo,dbceo, aecdo), f
4
 = 6.

Substituting values f
i
 into equation (1), can to find that the Euler - Poincare 

equation is satisfied for n = 5

6 – 15 + 20 – 15 + 6 = 2. 

This proves that a 4 - simplex with center has dimension 5. If we take 
into account the presence of other atoms in the ion Mg (OAsMe3)5

2+, then 
its dimension will be even higher.

Figure 3. The 4 – simplex with centrum
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Such compounds can form other alkaline - earth elements, i. e. calcium 
and barium.

Note that the molecules with the participation of the toxic element of 
beryllium, located in the 2A subgroup of the periodic system, also have a 
dimension higher of three (Zizhin, 2017a).

MOLECULES OF CHEMICAL COMPOUNDS 
OF BIOGENIC D – ELEMENTS

In the d – elements are completed d – orbitals of the pre-outer level. All these 
elements form metals. It is electrons of the pre - outer level mainly determine 
properties of the d - elements. In this can to see the total of these elements 
with alkaline - earth metals. Since the d - elements are located in the periodic 
table between the s - elements and the p - elements, the d - elements are called 
transition elements. The valence electrons of d - elements in general can be 
written as ( ) ,n d ns− − −1 1 10 1 2  . Of the 30 d - elements, 12 elements are biogenic 
elements Cu, Zn, Ti, V, Cr, Mn, Fe, Co, Ni, Ag, Mo, and W.

Of the 12 biogenic d - elements of the four elements Cr, Cu, Mo, Ag there 
are violations in the order of filling the electron orbitals in accordance with 
the Hund rule (Hund, 1927) in order of increasing the electron energy. Such 
atoms in literature are called anomalous elements (see, for example, Arkel, 
1931; Karapetyants, & Drakin, 1994). However, in the periodic table of the 
elements of such anomalous elements there are quite a lot - 21 elements (11 
d - elements, 10 f - elements). The first analysis of the structure of filling with 
electrons of energy levels in anomalous elements was carried out in 1998 
(Zhizhin, 1998). In 2017, rules were formulated that govern the distribution 
of electrons in orbitals in all the anomalous elements (Zhizhin, 2017a, b). 
Thus, failures in the filling of the electron orbitals of atoms by the electrons 
are not random. These failures follow a certain order. Moreover, these failures 
lead to an increase in the chemical activity of atoms. This it is especially 
important for biogenic elements, since an increase in the chemical activity of 
elements leads, as a rule, to the formation of molecules of higher dimension. 
To prove this statement, one consider some examples of compounds of 
biogenic elements.

The first anomalous biogenic element is Cr. It in consequence of the 
anomalies have one valence electron on the 4 s - orbital and five of the 
electrons on 3d - orbital. This allows have of chromium a valence equal 6 
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in many compounds. Since crystalline chromium oxide CrO3 consists of 
chains of tetrahedrons CrO4, united in two vertices (oxygen is also a biogenic 
element). Each tetrahedron has located in the center of an atom of chromium 
associated by double bond with each of the four oxygen atoms at the vertices 
of a tetrahedron. All molecules have the form of a tetrahedron with the center, 
as shown in (Zhizhin & Diudea, 2016; Zhizhin, Khalaj & Diudea, 2016), have 
a dimension of 4, i.e., crystalline chromium oxide is a chain of polytopes of 
dimension 4, united in two vertices (Figure 4). If instead of double bonds are 
one-time connection with the chromium atom monovalent groups (such as 
hydroxyl groups), the molecule will be the center of the octahedron, which 
also would have dimension 4.

There are even more complex chromium compounds (see Gillespie, 1972; 
Gillespie & Hargittai, 1991), the dimension of molecules, which is more than 
four. It is clear that all the other anomalous elements with half (or nearly 
half) filled d - orbitals of the subshell will have similar compounds having 
a molecular of higher dimensions.

If the anomalous elements has one electron in the outer orbital s and subshell 
d completely (or almost completely) filled, then the element at the expense 
of s electron forms a linear molecule, such as a linear molecule oxide X2 O, 
where X is the anomalous element (Cu, Ag, Pd, Pt, Au, Rg). The first two of 
these elements are biogenic elements. However, due to the donor - acceptor 
bond linear molecule can form complex structures in the space. We choose 
element Cu from second group of anomalous elements. Figure 5 shows an 
exemplary structure formed by linear molecules Cu2 O

Figure 4. The chain of molecules CrO3
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Each oxygen atom in the structure of Figure 4 bonded to four metal atoms 
(Cu). Two covalent bonds due to the formation of electron pairs divided: 
one s - electron metal atom and a p - electron atom of oxygen. In addition, 
there are two more donor - acceptor chemical bond due to the transfer of 
two electrons from the s - orbital and two electrons from the p - orbitals of 
the oxygen atom to vacant quantum cell of orbital metal. Thus, oxygen atom 
acquires valence equal four. In addition, each metal atom is linearly between 
two oxygen atoms.

In this structure, oxygen atoms (except oxygen atoms located at the vertices 
of a cube) form structure is topologically equivalent to the structure of carbon 
atoms (biogenic element) in the molecule of adamantane. As shown in the 
article of Zhizhin (2014a) on the basis the monograph Zhizhin (2014b), the 
dimension of this molecule is 4. However, the two molecules comprising 10 
oxygen atoms have free unallocated space. Therefore, if we set the task of 
finding the unit cell structure of copper oxide without filling cracks and gaps 

Figure 5. The structure of the compound Cu2O. A black small circle is oxygen atom. 
A brown circle is copper atom.
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to help translation the entire space, we need to build politopic prismahedron 
Zhizhin (2015), with bases in the form polytopes corresponding to these 
molecules. Taking a line segment equal to the length of the edge of the cube, 
in which is inscribed the structure including 10 oxygen atoms, multiply the 
polytope corresponding to this structure for this segment. One obtain politopic 
prismahedron of dimension 5. With this politopic prismaehdron can fill space 
without gaps and clearances.

The various binary chemical compounds have a limited number of typical 
structures (Fersman, 1937). The structures of binary compounds of biogenic 
elements involving transition elements is considered. The simplest compound 
of biogenic elements with three - dimensional structure has a cubic unit cell, for 
example, oxides of transition elements. Since such structures form chlorides, 
bromides and iodides of alkali metals, one will refer to these structures rock 
salt structures (Table 1). Many binary chemical compounds have the structure 
as adamantane molecule. In work of Zhizhin (2014a) it was proved that the 
adamantane molecule consisting of 10 carbon atoms that make up the bulk 
of the unit cell of the diamond has of dimension 4. In compounds Ag2O, 
Cu2O at locations 10 of the carbon atoms are oxygen atoms, and atoms of 
copper and silver are arranged linearly between oxygen atoms. Many drugs 
are also a group of 10 carbon atoms as in the adamantane molecule. Among 
the inorganic and organometallic compounds have a number of structural 
analogues of adamantine (Table 1). All of these compounds of biogenic 
elements have dimension 4 or even higher.

A series of binary compounds have a structure in the form of cube with 
centrum as in titanium chloride at which titanium ions are arranged in the 
centrum of the cube bat chlorine ions are arranged in vertices of the cube. 
One will call these structures titanium chloride structure. How it is shown in 
work of Zhizhin and Diudea (2016) this structure has dimension 4.

Among the transitional elements, the biogenic element titanium is the 
second most abundant in the earth’s crust after iron. The content of titanium 
in fish tissues is 10 4− %; in animals living on land, it is 9 10 4− %. Titanium is 
constantly contained in the human body. Its concentration is within 10 6− %. 
The study of the biological significance of titanium was carried out in a 
chronic experiment on plants and animals by determining the body’s response 
to the addition of titanium. The response curve of the body to the titanium 
dose has a bell - shaped character similar to biogenic elements. The occurrence 
of a number of diseases in violation of the exchange of titanium. In the 
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developed form of acute leukemia, with gastrogenic iron deficiency anemia, 
cancer, gastric ulcer, the content of titanium in the blood decreases. Violation 
of the metabolism of titanium was noted also in the case of Botkin’s disease, 
toxicosis and nephropathy of pregnant women, in patients with microbial 
eczema and neurodermatitis, and in burns. Titan in the body performs certain 
vital functions: it increases erythropoiesis, catalyzes the synthesis of 
hemoglobin, immunogenesis. Phosphorous complexating titanium intensifies 
the growth and development of plants. Titanium compounds accelerates the 
biosynthesis of amino acids, activate lipoxygenase activity. Resistance to 
various diseases increases by two times.

A series of binary compound biogenic elements have a structure of the 
mineral rutile TiO2. In this compound each titanium atom is surrounded by 
six the oxygen atoms in the octahedral coordination. To compounds with 
such structure to concern for example fluorides of copper, zinc, magnesium, 
manganese, cobalt, nickel. One will call these structures rutile structure. In 
work of Zhizhin & Diudea (2016) it is shown that octahedron with centrum 
have dimension 4. Therefore, all these structures have dimension 4. A series 
of binary compounds of biogenic elements have structure of wurtzite - mineral 
ZnS, in which from compound ZnS with the structure of the adamantane 
zinc atom and sulfur atom have the tetrahedron coordination. The centrum 
each tetrahedron is vertex of another tetrahedron. The wurtzite structure 
have compounds ZnO, CdS, ZnS. The dimension of this structure remains 
unknown. It will be defined in the next section. A series of binary compounds 
of biogenic elements have a fluorite structure – mineral CaF2 (fluorspar). 
Each calcium ion in this structure is in cube surrounded by fluorine ions, and 
each fluorine ion is in tetrahedron surrounded by calcium ions. The fluorite 
structure have for example chlorides of transition metals (Table 1).

Table 1. Binary compounds of the biogenic elements

N Type of the structure The compounds biogenic elements with this type of the structure

1 rock salt MnO, FeO, CoO, NiO, CdO

2 Adamantane Ag2O, Cu2O, ZnS, CuCl

3 titanium chloride TiCl

4 Rutile MnF2, CoF2, NiF2, CuF2, ZnF2, MnO2, MoO2

5 Wurtzite ZnO, CdO, ZnS

6 Fluorite CdF2, MnCl2, FeCl2, CoCl2, NiCl2, ZnCl2, CdCl2, Cu2S
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In the structure of wurtzite every atom of one component has a tetrahedral 
environment of the atoms of the other component. This results to arrangement 
of tetrahedrons with center so that vertex one tetrahedron is the center of 
another tetrahedron (Figure 6).

If to carry construction of atoms in Figure 6 on this principle, we obtain a 
spatial lattice, the unit cell the lattice is a convex shape it is shown in Figure 7 .

This figure is the unit cell structure of the wurtzite. In Figure 7, solid lines 
represent chemical bonds of the atoms, and the dotted lines are only geometric 
sense outlining contours of the figure. One define the dimension of this figure 
by the Euler - Poincare equation (1). The number of vertices of this figure is 
equal to 14, i.e. f

0
14= . The number of edges is equal to 29, i.e. f

1
29= . The 

number of two - dimensional faces is the sum of the number of triangles (8) 
and number of quadrangles (13), i.e. f

2
21= . The number of three - dimensional 

faces is equal to 6. This figures are abcghkon, gceruo, cefump, cdfulm, bcdklu, 
and all shape on Figure 7 without inner partitions, i.e. f

3
6= . Substituting 

these values fi , (i , , , )= 0 1 2 3 in the Euler - Poincare equation (1), can to find 
that it is satisfied for n = 4

14 – 29 + 21 – 6 = 0. 

Figure 6. The tetrahedral coordination atoms in wurtzite
A white circle is atom of one component. A black circle is atom of other component
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Thus, the dimension of polytope on Figure 7 is equal to 4, i.e. the unit cell 
structure of the wurtzite has dimension 4.

On example of compound MnCl2 can to look at the structure of fluorite. 
Isolate magnesium atoms lying at the centers of the cube faces (•), and 
chlorine atoms (▲), forming a smaller cube inside the bigger cube, which 
are located at the vertices of magnesium atoms (Figure 8).

From Figure 8 it follows that the number of vertices is 14, i.e. f
0

14= , the 
number of edges is 36, i.e. f

1
36= , the number of flat faces is sum from 

number of triangles (24) and number of rectangles (6) (smaller cube faces), 
i.e. f

2
30= . The number three dimension shape to sum up from smaller cube 

(1), pyramids on its faces (6) and figure (22) without inner parts (1), i.e. f
3

8=  
8. Substituting these values f

i
,(i , , , )= 0 1 2 3  in the equation (1), can to find 

that it is satisfied for n = 4

14 – 36 + 30 – 8 = 0. 

Figure 7. The unit cell of the wurtzite
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Thus, the dimension of polytope on Figure 8 is equal to 4, i.e. the unit cell 
structure of the fluorite has dimension 4.

MOLECULES OF CHEMICAL COMPOUNDS 
OF BIOGENIC P – ELEMENTS

Elements in which the completion of the p - sublevel of the outer valence 
level occurs are called p - elements. Electronic structure of the valence level 
ns p2 1 6−  . Valence are electrons of s - and p - sublevels. Most of the p - elements 

Figure 8. The unit cell of the fluorite
•- magnesium atom
▲- chlorine atom
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- nonmetals are biogenic elements (the exception is noble gases, tellurium 
and astatine). Of the p - elements - metals, only aluminum is considered 
biogenic.

The first element of group 3a of the element table is boron. Like all 
elements of this group, it has two s-electrons and one p - electron on the 
outer layer. Boron does not have vacant d - and f -orbitals, and there are 
not several electron pairs on the pre - existing layer, as, for example, for the 
atoms of alkaline - earth elements. However, the property of the collective 
interaction of electron pairs is manifested here also, but in a slightly different 
way compared to magnesium. Here pairs of electrons of the second energy 
level of several boron atoms interact, creating (repelling from each other) 
tetrahedral coordination of boron atoms. Therefore, in the compound B4Cl4, 
the boron atom has an effective valence of 4, and not three, which would 
correspond to the group number (Figure 9).

At the vertices g, h, f, e in Figure 9 boron atoms are located, and at the 
vertices a, b, c, d chlorine atoms arranged.

Figure 9. The structure of the B4Cl4 molecule
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Theorem 2: The B4Cl4 molecule has dimension 4.
Proof: In Figure 9 there is eight vertices, f0  = 8. The number of edges is 16 

(ab, bc, cd, ad, bd, ac, gh, hf,ef, he, gf, eg, bh, fc, ed, ag), f1  = 16. The 
number of elements of dimension 2 is 14 (triangles abd, bcd, abc, acd, 
ghe, hef, ghf, gfe and quadrangles aghb,aged, hbed, hbfc, efcd, hfbc), 
f2  = 14. The number of elements of dimension 3 is 6 (tetrahedrons 

abcd, ghef and prismatoides abhged, hbedbfc, aghbfc, gefadc), f3  = 6. 
On Figure 9 the edges correspondent of chemical bounds is indicated 
brown, remain edges (black) it is need for creating convex body. 
Substituting the values of the number of elements of different dimension 
in the equation Euler – Poincare (1) can to obtain

8 – 16 + 14 - 6 = 0 . 

One find that it holds for n = 4. This proves that the figure who projection 
is shown in Figure 9 there is polytope of dimension 4. This proves theorem 2.

Due to the interaction of electron pairs of several atoms, formation of 
other compounds is also possible. For example, in Figure 10. The image 
of the B6Сl6 molecule is shown. Here, also, the edges corresponding to the 
chemical bonds is indicated in brown, the remaining edges are necessary for 
obtaining a convex figure.

In the compound, both the boron atoms and the chlorine atoms have 
octahedral coordination. The effective valence of boron in this compound is 
5. In the polytope in Figure 10, boron atoms are located at the vertices 
a b c d e f
1 1 1 1 1 1
, , , , ,  and hydrogen atoms are located at the vertices
a b c d e f
2 2 2 2 2 2
, , , , , .

Theorem 3: The B6Cl6 molecule has dimension 4.
Proof: In this case the number of elements of zero dimension is f

0
 = 12. 

The number of elements of dimension one is f
1
 = 12+ 12+ 6 = 30. The 

number of elements of dimension 2 is sum of the number small triangles 
8 and big triangles 8, add 12 quadrangles, i. e. f

2
 = 28. The number of 

elements of dimension 3 is sum two octahedrons and 8 prism, i.e. f
3
 = 

10. Substituting the values of numbers of elements of different dimensions 
in the equation (1) can to obtain
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12 – 30 + 28 – 10 = 0. 

One find that it holds for n = 4. This proves that the figure 9 is polytope 
of dimension 4. This proves theorem 3.

Elements Al, Ga, In and Tl have vacant d - and f - orbitals and tend to 
supplement their valence shell to 6 electron pairs, and in several compounds 
In and Tl have more than 6 electron pairs. These elements in many compounds 
exhibit tetrahedral coordination in the vicinity of the atom. Taking into account 
the possible addition of other elements to tetrahedral coordination, complex 
compounds with high dimensionality can arise. For example, aluminum (a 
biogenic element) forms a cyclic compound [(CH3)2AlF]4 (Figure 11).

Figure 10. The structure of the B6Cl6 molecule
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If we form a convex figure from Figure 11, one get the polytope shown 
in Figure 12. At the vertices of a a a a

1 4 7 10
, , ,  fluorine atoms are located. At 

the verticesa a a a
13 14 15 16
, , ,  aluminum atoms are located. Functional groups 

CH3 are located in the

a a a a a a a a
2 3 5 6 8 9 11 12
, , , , , , ,  

vertices.

Theorem 4: The polytope of cyclic compound [(CH3)2AlF]4 has dimension 5.
Proof: The polytope in Figure 12 has 16 vertices, f

0
 = 16; 52 edges, f

1
 = 52. 

In addition, it has 4 polytopes of dimension 4 each (tetrahedrons with 
a center) 

a a a a a a a a a a
1 2 3 4 14 4 5 6 7 15

, ,  

a a a a a a a a a
7 8 9 10 16 10 11 12 13

, .  

Figure 11. A cyclic compound [(CH3)2AlF]4
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Each tetrahedron with a center has 10 triangular faces. This gives 40 
triangular faces in the polytope 10. In addition, three triangular faces are 
formed at the vertices a a a a

1 4 7 10
, , ,  with horizontal and vertical sides. This 

gives another 4 ⋅  3 = 12 triangles. There are 4 more rectangular faces 

(a a a a a a a a a a a a a a a a
13 14 15 16 6 2 8 12 11 5 3 9 1 7 10 4

, , , )  

and 12 trapezoids 

(a a a a a a a a a a a a a a a a a a a a a a a
3 5 15 14 3 2 5 6 15 2 6 14 6 8 15 16 6 8 5 9 15 5 9

, , , , , aa
16

,  

a a a a a a a a
11 9 8 12 9 11 13 16

, , a a a a
12 8 13 16

,  

Figure 12. The convex polytope of cyclic compound [(CH3)2AlF]4
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a a a a a a a a a a a a
2 12 14 13 12 2 3 11 3 11 13 14

, , ).  

Thus, the total number of two - dimensional faces 68, f
2
 = 68. Each 

tetrahedron with a center has 5 tetrahedrons. Therefore, the total number of 
tetrahedrons in Figure 10 is 5 ∙ 4 = 20. Each of the vertices a a a a

3 7 4 10
, , ,  is 

the vertex of the three pyramids. The total number of these pyramids is 12: 

a a a a a a a a a a a a a a a a a a a a
5 15 3 4 14 6 2 3 4 5 4 2 6 15 14 1 2 3 12 11

, , , , a a a a a
1 14 3 11 13

,  

a a a a a a a a a a a a a a a a a a a a a a
10 12 11 8 9 10 12 13 8 16 10 11 13 16 9 7 8 9 5 6 7

, , , ,
99 16 5 15
a a a , a a a a a

7 8 16 6 15
.  

There are four triangular prisms:

a a a a a a a a a a a a a a a a a a a a a a a
2 3 14 5 6 15 15 5 6 8 9 16 11 12 13 8 9 16 2 3 14 11

, , ,
112 13
a ,  

and six quadrangular prisms:

a a a a a a a a a a a a a a a a a a a a a
13 14 15 16 3 5 9 11 13 14 15 16 2 6 8 12 13 14 15 16 1

, , aa a a
4 7 10

,  

a a a a a a a a a a a a a a a a a a a a a a a a
2 6 8 12 3 5 9 11 1 2 4 6 7 8 10 12 1 3 4 5 7 9 10 11

, , . 

Than the total number of three-dimensional figures is 42, f
3
 = 42.

In addition to the 4 tetrahedrons mentioned with the center, as four - 
dimensional figures, there are another four - dimensional figures. In particular, 
this is a figure (F), shown in Figure 13. Indeed, this figure has 12 vertices,
f
0
 (F) = 12; 24 edges, f

1
(F) = 24; 19 two - dimensional faces, f

2
(F) = 19; 

and 7 three - dimensional figures, f
3
(F) = 7. Substituting these values into 

the Euler - Poincaré equation (1) can to obtain that it is satisfied for n = 4

12 – 24 + 19 – 7 = 0. 

This proofs that polytope F has dimension 4.
Four identical polytopes of dimension 4 exist in a neighborhood of each 

of the verticesa a a a
1 4 7 10
, , , .  One of these polytopes (L) is depicted in Figure 
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14. It has 7 vertices, f
0
 (L) = 7; 15 edges, f

1
(L) = 15; 14 two - dimensional 

faces, f
2
(L) =14; and 6 3D facets, f

3
(L) = 6. Substituting these values into 

the Euler - Poincare equation (1) can to obtain

7 – 15 + 4 – 6 = 0, 

i.e. the equation (1) hold for n = 4 and all the polytopes L has dimension 4.
Three more topologically equivalent polytopes of dimension 4 can be 

distinguished from Figure 13. Each of these polytopes consists of a rectangular 
prism and four tetrahedrons connected to each other in a cycle along the 
vertices of a a a a

1 4 7 10
, , , . These are polytopes

a a a a a a a a a a a a

a a a a a a a a a a a
1 4 3 14 5 15 7 16 8 10 13 12

1 2 14 4 15 6 7 16 9 10 11

,

aa a a a a a a a a a a a a
13 1 2 3 4 5 6 7 8 9 10 11 12
,

.  

Figure 13. The 4 – dimension polytope F included in Figure 12
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One of them (polytope K) is shown in Figure 15.
The K polytope has 12 vertices, f

0
(K) = 12; 32 edges, f

1
(K) = 32; 31 two 

- dimensional faces, f
2
 (K) = 31; and 11 3D facets, f

3
(K) = 11. Substituting 

these values into the Euler - Poincare equation (1) can to obtain

12 – 32 + 31 – 11 = 0, 

i. e. the equation (1) hold for n = 4 and all the polytopes K has dimension 4.
Thus, the polytope on Figure 12 has 11 polytopes of dimension 4. Therefore, 

for polytope on Figure 12 the Euler - Poincare equation (1) has face

16 – 52 + 68 – 42 + 11 = 2, 

i.e. it hold for n = 5. This proofs theorem 4.

Figure 14. The 4 – dimension polytope L included in Figure 12.
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Most of the compounds known on Earth are compounds of p - elements. 
The five main (macro-biogenic) p - elements (elements of life) O, N, P, C, 
S are the main building material from which molecules of proteins, fats, 
carbohydrates and nucleic acids are composed. The structures and dimensions 
of these molecules will be studied in subsequent chapters.
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Chapter  6
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ABSTRACT

New structures of biomolecules have been constructed: carbohydrates, 
proteins, nucleic acids. It is shown that glucose molecules and ribose molecules 
have dimensions of 15 and 12, respectively. The enantiomorphic forms of 
biomolecules in space of higher dimension make it possible to explain the 
experimentally observed facts of branching of chains of biomolecules in one 
of the enantiomorphic forms and the absence of chain branching in another 
enantiomorphic form. The enantiomorphic forms of the tartaric acid molecule 
in a space of higher dimension reveal the cause of the reversal in different 
directions of the polarization plane of light in two opposite forms.

HIGHER DIMENSION OF POLYATOMIC MOLECULES 
FROM ELEMENTS OF LIVE AS A RESULT 
OF THE INTERACTION OF THE ELECTRON 
ORBITALS OF ATOMS IN A MOLECULES

The most common in biomolecules is a carbon atom, the main role of which 
to be binding in the center of biomolecules. Consider, for example, methane 
molecule CH4. The carbon atom in this molecule binds around four hydrogen 
atoms. Geometrically, this molecule is a tetrahedron, whose vertices are 
located of the hydrogen atoms, and in the center is carbon atom.

Functional Dimensions 
of Biomolecules
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The carbon atom in the center of the methane molecule has the valence 
electrons2 2 3s p . Valence electron orbitals of carbon atoms and hydrogen 
atoms 1s overlap and form four hybrid orbitalssp3 , directed from the carbon 
atom to the hydrogen atoms (Gray, 1965). Let the distance from hydrogen 
atoms to carbon atoms is taken as unity, for the origin of coordinates to take 
the carbon atom, and the directions hybrid orbitals send on four coordinates 
x, y, z, t. Then the coordinates of the hydrogen atoms equal to (0, 0, 0, 1), (0, 
0, 1, 0), (1, 0, 0, 0), (0, 1, 0, 0), and the carbon atom coordinates equal to (0, 
0, 0, 0). So one have the integer coordinates of vertex in the four -dimensional 
space (Figure 1).

This is consistent with the evidence of four - dimensional convex hull of 
the methane molecule on the Euler – Poincare equation (1) in Chapter 5. It 
is easy to see that the body in Figure 1, seen in the four - dimensional space, 
convex, because its edges belong to the body and enter into his boundary 
complex (Grunboum, 1967). Polytope in Figure 1 is a 4 - simplex, since 
each vertex of the polytope associated edges with all the other vertices of 
this polytope (Zhizhin, 2014).

If in the methane molecule a hydrogen atom replaced by a hydroxyl group 
- OH, then can to get the simplest alcohol - methanol. If the hydroxyl group 
considered as the vertex of the polytope, then the dimension of this molecule 
will also be equal to 4. If each atom of the molecule of methanol is considered 
the vertex of the polytope, then connecting each vertex to all other vertices 

Figure 1. The methane molecule (CH4)
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edges, it turns out that it is equal to the dimension of the polytope to 5 and 
one have 5 - simplex. However, here must remember that the accession of 
the hydroxyl group does not change the hybridization of the carbon atom, 
as the binding site as the place of one hydrogen atom took one oxygen atom 
of the hydroxyl group. Therefore, as a separate vertex in methanol molecule 
should take hydroxyl group entirely. Then the dimension of the methanol 
molecules is equal to 4 (Zhizhin, 2017).

In the biomolecules can find a lot of examples of molecules or ions in the 
form of a tetrahedron with the center ( NH

4
, PO

4
, etc.). All of them have 

dimension 4. If the binding site appears d - element it is formed around the 
coordination sphere ligands with more than 4 of the amount due to of d - 
orbitals of the element. One can show that in this case the dimension of the 
molecule is equal to the number of hybrid electron orbitals directed from the 
center to the ligands. The ligand may act as no individual atoms or ions, and 
some functional groups, which may be regarded as corresponding vertices 
of the polytope. This is consistent with the need to describe more convenient 
biomolecules, molecular structures consisting of different complexity. 
Therefore, the dimension of the group of atoms in biomolecules, one call a 
functional dimension. In addition, when such descriptions of specific 
dimensions one will not be considered distances between atoms in molecules. 
Therefore, a certain dimension of the molecules so called topological 
dimension.

In addition, of the tetrahedron with the center in biomolecules there are 
complex structures of higher dimension.

CARBOHYDRATE (“CARBON COMPOUND WITH WATER”)

Carbohydrates are the main source of energy for the body. All carbohydrates 
are made up of units that are saccharides. The simplest saccharide is an aldose 
monosaccharide, which contains three carbon atoms (Figure 2).

The more complex monosaccharides include 4, 5, 6 and 7 carbon atoms. 
Polysaccharides consist of several monosaccharides. Saccharides are part 
of the nucleic acids that are carried out in the cells of protein synthesis and 
the transfer of hereditary traits. One will try to calculate the dimension of 
the simplest aldose monosaccharide saccharide, since the main elements of 
the aldose monosaccharide construction are repeated in the more complex 
saccharides. From Figure 3 it follows that two carbon atoms, connected by 
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Figure 2. Shema of the molecule aldose monosaccharide

Figure 3. Spatial structure of the molecule aldose monosaccharide
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bonds to each other, hydrogen atoms projection onto the plane, this construction 
is shown in Figure 3.

In this figure there is a tetrahedron bcdf with center o and a tetrahedron oahg 
with center f. Each a tetrahedron with a center is a polytope of dimension 4.

The vertex f of the first tetrahedron is the center of the second tetrahedron, 
and the vertex o of the second tetrahedron is the center of the first tetrahedron. 
Hydrogen (H) atoms are located at the vertices a, b, c, hydroxyl groups (OH) 
are located at the vertices g, d, carbon atoms (C) are located at the vertices 
o, f, h. The oxygen and hydrogen atoms following the carbon atom at the 
vertex h are not shown in Figure 3 for simplification. It is necessary to 
determine the dimension of the polytope bcdfahgo. The polytope in Figure 
3 has 8 vertices ( f

0
 = 8), 22 edges (ab, ag, af, ao, ah, gh, gf, go, gd, bf, bo, 

bd, bc, df, do, dc, hc, hf, ho, cf, co, fo). Therefore, f
1
 = 22. The polytope in 

Figure 3 has 29 planar faces, of which 26 are the triangles (aho, afo, ahf, afg, 
ahg, aog, aob, afb, bfo, bco, bod, bfd, bfc, bcd, ghf, gho, gfo, god, gfd, dfo, 
dco, dfc, cof, chf, cho, hfo) and 3 quadrangles (abdg, hcgd, abhc). Therefore, 
f
2
 = 29. The polytope in Figure 3 has 20 three - dimensional figures, of 

which 13 are tetrahedrons (bcfd, ahog, dcfo, bcdo, bfdo, cfdo, ahof, ahgf, 
hogf, aogf, fgod, fohc, foab), 6 pyramids (agbdo, ahbcf, ahbco, agbdf, Chgdf, 
chgdo) and one (ahgbcd) prism. Therefore, f

3
 = 20. It follows from the 

construction of the polytope in Figure 3 that it includes two tetrahedrons with 
the center bcdfo and oahgf. In addition to these two polytopes with dimension 
4, five 4 - polytopes also appear in the polytope in Figure 3. Three of these 
polytopes have as their base three rectangular faces of the prism ahgbcd, 
whose vertices are connected with the vertices f, o located inside the prism. 
To prove their 4 - dimensionality, consider one of these polytopes abhcfo, 
since the proofs for the other two polytopes are similar. This polytope has 6 
vertices ( f

0
 = 6); 13 edges (ab, ah, hc, bc, af, hf, bf, cf, ho, ao, bo, co, fo), 

f
1
 = 13; 13 two - dimensional faces (ahf, aho, abo, abf, afo, bfo, boc, ahbc),
f
2
 = 13; 6 three -dimensional faces (hfoc, abof, bfoc, afho, ahcbf, ahcbo), 

f
3
 = 13. Substituting the obtained values   of the numbers of faces of different 

dimensions into equation (1) in Chapter 5, can to find that equation (1) is 
satisfied for n = 4

6 - 13 + 13 - 6 = 0. 

It is proved by the 4 - dimensionality of the polytope abhcfo.
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The two polytopes of dimension 4 there are formed by the ahgbcd prism 
with the vertex f or o inside its. Consider the prism ahgbcd with the vertex 
f (the proof for the prism with vertex o is similar). The polytope ahgbcdf has 
7 vertices, f

0
 = 7; 15 edges (ah, hg, ag, bd, bc, cd, ab, hc, gd, af, fh, fg, bf, 

fc, fd), f
1
 = 15; 14 two - dimensional faces (ahg, bdc, ahf, hfg, afg, bfc, fcd, 

bfd, fhc, afb, fgd, ahbc, hcgd, agbd), f
2
 = 14; 6 three - dimensional faces 

(ahgbcd, ahgf, bcdf, abdgf, hgcdf, ahbcf), f
3
 = 6. Substituting the values   of 

the numbers of faces of various dimensions obtained for the polytope ahgbcdf 
into equation (1) in Chapter 5, can to find that it is satisfied for n = 4

7 - 15 + 14 - 6 = 0. 

This proves that the polytope ahgbcdf has a dimension of 4.
Thus, for the polytope in Figure 3 are f

0
 = 8, f

1
 = 22, f

2
 = 29, f

3
 = 20, 

f
4
 = 7. Substituting these values   into equation (1) in Chapter 5, can to find 

that it is satisfied for n = 5

8 - 22 + 29 - 20 + 7 = 2. 

This proves that the polytope in Figure 3 has dimension 5. Consequently, 
the main part of the molecule of the aldose monosaccharide also has dimension 
5. Since this basic part enters into all other saccharides in the plural, their 
dimension is more than 5. This gives higher dimension to the molecules 
DNA and all carbohydrates.

There are three main classes of carbohydrates: monosaccharides, 
oligosaccharides, polysaccharides. The basis of the monosaccharide is an 
unbranched chain of the carbon atoms, connected to each other by single 
bonds. One of the carbon atoms has double bond to an oxygen atom to 
form a carbonyl group. All other carbon atoms bonded hydroxyl groups and 
hydrogen ions. The carbonyl group may be at the end of the carbon chain 
(aldose) or elsewhere (ketoses). Monosaccharides depict a Fischer projection 
formula (Metzler, 1980; Lehninger, 1982). For example, the most common 
monosaccharides with five (pentose) and six (hexoses) carbon atoms in the 
form of these formulas are presented in Figure 4 and Figure 5 accordingly.

However, neither the Fischer formula or formula Haworth and their 
modifications (e.g., conformation as a “chair”) may not reflect the spatial 
structure of the monosaccharides. For this target the constructs described in 
the form of convex polytopes with boundary elements which form boundary 
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complex (Grunbaum, 1967). Only when such a representation will be to 
determine the dimension of these molecules. Consider a molecule of α - D 
- glucose. Сlosing unbranched chain of carbon atoms of monosaccharides 
through an oxygen atom, considering functional groups vertices, connect 
the each vertex by edges with each other vertices, get polytope, depicted in 
Figure 6.

Figure 4. The molecule of ribose (in RNA)

Figure 5. The molecule of D - glucose
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Edges marked in red in Figure 6 correspond to the chemical bonds in the 
molecule. The rest of the edges are only geometric sense, as the edges of 
the polytope.

Theorem 1: A molecule of α - D - glucose is a polytope type simplex with 
dimension 15 (Zhizhin, 2016).

Proof
The polytope in Figure 6 contains 16 vertices, i.e.

f n
0

16 1= = + ;  120 edges ( f C
n1 1
2 120= =+ );

560 triangles( );f C
n2 1
3 560= =+  1820 tetrahedrons

( );f C
n3 1
4 1820= =+  4368 4 – simplexes ( );f C

n4 1
5 4368= =+  8008 5 – simplexes

( );f C
n5 1
6 8008= =+ 11440 6 – simplexes ( );f C

n6 1
7 11440= =+ 12870 7 – 

simplexes

Figure 6. The molecule of α - D – glucose
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( );f C
n7 1
8 12870= =+  11440 8 – simplexes ( );f C

n8 1
9 11440= =+  8008 9 – 

simplexes
( );f C

n9 1
10 8008= =+  4368 10 – simplexes ( );f C

n10 1
11 4368= =+  1820 11 – 

simplexes
( );f C

n11 1
12 1820= =+  560 12 – simplexes ( );f C

n12 1
13 560= =+  120 13 – simplexes

( );f C
n13 1
14 120= =+  16 14 – simplexes ( ).f C

n14 1
15 16= =+

Substituting the values f i
i
,( )0 15≤ ≤ in Euler’s – Poincare equation (1) in 

Chapter 5, can to see that it holds for n = 15

f
i

i

i

n

( ) .− =
=

= −

∑ 1 2
0

14 1

 

This confirms that the polytope in Figure 6 has the dimension n = 15.
Theorem 1 it is proved.
High dimension of the molecule α - D – glucose is due to the fact that it 

contains a large number of differently oriented electronic atomic orbitals and, 
consequently, a large amount of energy. This is consistent with the established 
notions of large energy reserves in glucose, necessary for living organisms. 
Such an increase in energy and dimension occurs and other saccharides in 
the formation of closed loops.

In particular, the conformation of the β - D - glucose are interchanged only 
a hydroxyl group and a hydrogen atom bound to a carbon atom of the C (1) 
in Figure 6. Changes in the number of carbon atoms does not fundamentally 
change the picture of the molecule. The dimension of the polytope corresponds 
to the number of vertices of the polytope (not one less than the number of 
vertices).

Representations of the saccharide molecules in the form of polytope 
simplifies the understanding of the formation of polysaccharides. For example, 
if the molecule α - D - glucose, two molecules in accordance with Figure 6, 
are joined by the hydroxyl groups to form a water molecule and an oxygen 
atom, two molecules common α - D - glucose via α - glycoside linkages, as 
in simplified form shown in Figure 7.

Thus, the linear polymer of α - D - glucose has a one - dimensional 
translational symmetry with the translation element of higher dimension, 
just as quasicrystals (Shevchenko, Zhizhin & Mackay, 2013) have a multi - 
dimensional translational symmetry with the translation element of higher 
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dimension. Chains with α - glycoside bond have the opportunity to branch. This 
is evident from Figure 5, as the functional group -CH2OH in each molecule 
can be a chain branch point, to which is attached via an oxygen atom molecule 
of α - D - glucose. In the case of β - glycoside bond molecules β - D - glucose 
(Figure 8) such a possibility is difficult due to a denser arrangement of glucose 
molecules, and proximity to a functional group – CH2OH of oxygen atom.

It seems can serve as an explanation of a chain with β - glycoside linkage 
chain branching is not observed.

Figure 7. The α - glycoside linkage of the molecules α – D – glucose

Figure 8. The β - glycoside linkage of molecules β - D - glucose
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PROTEINS

Monomer units which are built of proteins are the 20 standard amino acids. 
These small molecules containing two different chemical functional groups 
capable of reacting with each other to form a covalent bond. This are amino 
group (-NH2) and a carboxyl group (- COOH). Connection form of protein 
polymer is called a peptide bond. In the formation of such a connection by 
joining - COOH and -NH2 with secretion a molecule of water. Amino acids 
forming two families of D and L, each of which can be represented in the 
form of a tetrahedron with the center in the carbon atom (Figure 9, Figure 10)

According to the ideas of this work, the amino acid is a molecular formation 
with topological and functional dimension of 4, regardless of the structure 
of the side of the functional groups represented by R.

Communication amino acids can be represented as a tetrahedron with the 
center of a peptide bond. Figure 8 shows the peptide bond the D - amino acids.

From geometric images of associated polytopes of dimension 4 in Figure 
11 immediately implies that the peptide chain has the form of a spiral, swirling 
clockwise. Side functional groups R have different chemical nature. Sequence 
arrangement of functional groups and, hence, the sequence of amino acids 
in the chains always accurately defined genetically.

Figure 9. The molecule of D - amino acid
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Figure 10. The molecule of L - amino acid

Figure 11. The peptide chain of amino acids
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The peptide chain may form both parallel and antiparallel structure 
associated hydrogen bond. In addition, the peptide chain may form a compact 
protein globule. This class of proteins known as globular proteins that 
perform complex biological functions. For example, the protein is a globular 
myoglobin – oxygen - binding protein present in the muscles. In the center 
of myoglobin globule is hemo - group containing Fe - porphyrin (iron atom 
surrounded by five nitrogen atoms).

Theorem 2: The dimension of the Fe - porphyrin before joining the oxygen 
atom is equal to 5.

Proof.
Consider the first coordination sphere of the iron atom in the center of 

the porphyrin (Zhizhin, 2015), since only in the first coordination sphere 
of atoms are linked by a covalent bond, and in the following focal areas of 
intermolecular bonds between atoms. Before joining of the oxygen atom the 
first coordination sphere of Fe - porphyrin may be represented as a plane 
projection (Figure 12). There are the vertices a, c, d, f of which the nitrogen 

Figure 12. The first coordination sphere of Fe - porphyrin before binding oxygen
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atoms of the porphyrin are located, an iron atom is located at the vertex g, and 
the nitrogen atom of the nearest histidine residue is located at the vertex b. 
The deflection of vertex g from the center of the rectangle acdf corresponds 
to a certain “dome” character of porphyrin (Steed & Atwwod, 2007; Lehn, 
1998). The projection in Figure 12 represents some polytope (let`s denote 
A - polytope).

The A – polytope has six elements with dimension 0, f A
0

6( )= . There are 
vertices a, c, d, f, g, b. The number of elements with dimension 1 is
f A C
1 6

2 15( ) .= =  It are edges ab, bc, bd, bf, bg, ac, cd, fd, af, fc, ad, ag, gc, 
fg. The number of elements with dimension 2 is f A C

2 6
3 20( ) .= =  It are 

triangles abf, bfg, bgd, dbc, bga, bgc, agc, dfg, adc, acf, fcd, bgd, bcd, agd, 
fgc, fbc, abd, afg, gcd, afd). The number of elements with dimension 3 is
f A C
3 6

4 15( ) .= =  It are tetrahedons abgf, bsgd, abfc, abcd, bfcg, abdg, acfg, 
abdf, acdg, bfdg, abgc, fbcd, fgcd, afgd, afcd). The number of elements with 
dimension 4 is f A C

4 6
4 6( ) .= =  It are simplexes abcdf, adcdg, abdfg, abcfg, 

bcdfg, acdfg. Substituting the received numbers of elements of different 
dimensions in the equation (1) in Chapter 5 at a value of n = 5, can to obtain

6 - 15 + 20 - 15 + 2 = 2, 

i.e. the Euler- Poincare equation is satisfied for A - polytope with n = 5. This 
is a simplex of dimension 5. This proves theorem 2.

Theorem 3: The dimension of Fe - porphyrin after joining of oxygen atom is 6.

Proof
The first coordination sphere after joining oxygen atoms is complemented 

by one vertex e (Figure 13).
“Dome” character of Fe - porphyrin after joining of oxygen atom decreases, 

but it is not possible to affirm that it disappears completely (Steed & Atwood, 
2007). Therefore, the deflection of vertex g from the center of rectangle in 
Figure 13 quality is maintained qualitatively. Taking into account the significant 
difference between the geometry and mass of the groups attached to the iron 
atom at the top and bottom, it is shown in Figure 13 that the vertices e and 
b do not lie on the same line. In the polytope in Figure 13 (B - polytope) the 
number of elements of zero dimension is increased compared with to the 
A-polytope by one vertex e, f B

0
7( ) .=  This leads to the increase in the 

dimension of the polytope by 1, as the number of edges issuing from each 
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top also increases by 1. In the polytope B the number of elements of dimension 
1 is f B C

1 7
2 21( )= =  (edges). The number of elements with dimension 2 is 

f B C
2 7

3 35( )= =  (triangles). The number of three - dimensional figures is
f B C
3 7

4 35( )= =  (tetrahedrons). The number of elements with dimension 4 
is f B C

4 7
5 21( )= = , (simplexes of dimension 4). The number of elements 

with dimension 5 is f B C
5 7

6 7( )= = , (simplexes of dimension 5). Substituting 
the numbers   of the elements of different dimensions in equation (1) in Chapter 
5 with n = 6, can to get

7 - 21 + 35 - 35 + 21 - 7 = 0, 

i.e. the Euler - Poincare equation for B - polytope is satisfied when n = 6. 
Therefore, B - polytope is a simplex of dimension 6. This proves theorem 3.

The dimensions of molecules increase with an increase of its energy 
again. It is shown that myoglobin is associated coil circuit elements of higher 
dimension (4) and, moreover, in the center of the coil is a group of atoms 
even greater dimension.

Figure 13. The first coordination sphere of Fe - porphyrin after joining of oxygen atom
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NUCLEIC ACIDS, ATP

Nucleic acids (DNA and RNA) are polynucleotide. These monomer units 
(nucleotides) consists of pyrimidine and purine bases, D - ribose (or D 
-2-deoxyribose) and phosphoric acid. The bases are virtually flat molecules 
(Metzler, 1980; Lehninger, 1982), one will be denoted R f . As follows from 
the analysis conducted in carbohydrates D - ribose molecule has a higher 
dimension. Phosphoric acid has the structure (Figure 14)

It follows from claim 1, which, apart from a double bond between phosphorus 
and oxygen atoms is edge polytope, phosphoric acid molecule a geometrically 
is tetrahedron with the center, thus it has dimension 4.

Let is present a molecule D - ribose as a polytope (Figure 15).

Theorem 4: The molecule of D - ribose is a convex polytope type simplex 
of dimension 12.

Proof
Polytope in Figure 15 has vertices 13, f n

0
13 1= − + ;  78 edges (

f C
n1 1
2 78= =+ ); 560 tr iangles ( f C

n2 1
3 286 7= =+� );� 15 tetrahedrons

( );f C
n3 1
4 715= =+ 1287 4 – simplexes ( );f C

n4 1
5 1287= =+ 1716 5 – simplexes 

( );f C
n5 1
6 1716= =+ 1716 6 – simplexes ( );f C

n6 1
7 1716= =+  1287 7 - simplexes 

( );f C
n7 1
8 1287= == 715 8 – simplexes ( );f C

n8 1
9 715= =+ 286 9 – simplexes 

( );f C
n9 1
10 286= =+ 78 10 – simplexes ( );f C

n10 1
11 78= =+  13 11 - simplexes 

( ).f C
n11 1
12 13= =+

Figure 14. The structure of phosphoric acid
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Substituting the values f i
i
,( )0 11≤ ≤  in Euler’s - Poincare equation (1) 

in Chapter 5, can to see that it holds for n = 12

f
i

i

i

n

( ) .− =
=

= −

∑ 1 0
0

11 1

 

Theorem 4 is proved.
The polynucleotides molecules D - ribose combined with phosphoric acid 

residues and basesR
f
 development of two water molecules (R

f
 have six 

kinds of alternate bases - pyrimidine, uracil, adenine, cytosine, guanine, 
purine). Thus, the polynucleotide chain is a sequence related to each other 
through oxygen atoms higher dimensional objects (simplexes)

4D - O - 12D - O - 4D - O - 12D - O - ....... 

Nucleotides (12 - simplex) act in some cases as a coenzyme of biochemical 
reactions. For example, nucleotides associated with two extra residues in the 
form of phosphoric acid of polyphosphoric acid to form (Figure 16) adenosine 
triphosphate (ATP)

Compounds of this type are readily cleaved, one or two phosphoric 
acid residue, which is transferred to any other radicals, - the process of so 

Figure 15. The molecule D – ribose
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- called phosphorylation. Bond in the chain polyphosphoric rich in energy, 
so simultaneously with the transfer of phosphorus is carried energy transfer 
from one connection to another. Thus, ATP is also a chain of elements of 
higher dimension (simplexes)

R
f
- 12D - 4D - 4D - 4D. 

In biomolecules are essential sense transition metals. They, being in the 
center of the coordination spheres, provide management role in the living 
organisms. This is achieved due to the presence of these metals in a large 
number of electrons and the quantum of vacant cells in the outer shell of atoms. 
Due to the transition metals carried covalent and donor-acceptor chemical 
bonds with atoms other elements in the living organisms. A significant part 
of the transition metals have a deviation from the rules of filling of electron 
orbitals in order of increasing energy falling on the orbitals of higher energy. 
Currently there is no classification and analysis of the anomalous transition 
metals having such deviations. Considering the importance of these metals 
to the functioning of living organisms, it is of interest for further work to 
examine these anomalies in order to establish operating in these patterns and 
identify opportunities for their practical use.

WINE ACID

Earlier in Chapter 6, structures of two enantiomorphism forms of glucose 
were considered. The construction of images of their molecules in a space 
of dimensionality 15 made it possible to explain why the chain of molecules 
of α -D glucose has branches from the chain, and the chain of molecules of 

Figure 16. The scheme of the ATP
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the β – D glucose molecule does not have a branch from the chain. Earlier in 
Chapter 6, the structure of the aldose monosaccharide in the configuration 
of D is considered (Metzler, 1980). The aldose monosaccharide also has 
an enantiomorphism configuration of L. We will consider the difference in 
these configurations by the example of a closely related tartaric acid, which 
played a major role in the development of biology, starting with Pasteur’s 
well - known works (Pasteur, 1960). However, instead of the known images 
of these molecules in the form of Fisher’s projections (Figure 17, Figure 18), 
we will use images of space of higher dimension for their images.

Comparing Fisher images of aldose monosaccharide (Figure 2) and 
tartaric acid (Figure 17, Figure 18), can to see that these compounds have 
the same main part of the design. It has the form of two tetrahedrons with a 
center, and the center of each of them is simultaneously the vertex of another 
tetrahedron. There is some difference in functional groups of compounds. 
Enantiomorphism forms of tartaric acid differ in the mirror image of hydrogen 
ions and hydroxyl groups in the main part of the molecule’s structure. The 
dimension of this construction how it is shown earlier equal 5. Thus, the 
dimension of the molecules tartaric acid in both forms is 5. Images of polytopes 
corresponding to a molecule of tartaric acid in the form D and form L are 
presented in Figures 19 and Figure 20.

Figure 17. Shema of the molecules D - wine acid
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Figure 18. Shema of the molecules L – wine acid

Figure 19. Spatial structure of the D – wine acid

 *For a more accurate representation see the electronic version.
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The brown color in Figures 19, 20 denotes the edges corresponding to the 
chemical bonds between the atoms. The black color in these figures denotes the 
edges that have values only as the edges of the convex body. The outer contour 
of both molecules in three-dimensional space is a triangular prism. There are 
two carbon atoms within these prisms. These two carbon atoms and lead to 
an increase in the dimension of the molecule to five. On the outer contour, 
two enantiomorphism forms have the opposite arrangement of hydrogen ions 
and a hydroxyl group. The images obtained make it possible to explain the 
main property of tartaric acid - rotation of the plane of polarization of the 
incident light in different directions: in the case of the D form to the right, in 
the case of the L form to the left. It are known devices for rotating the plane of 
polarization of light, having the appearance of two folded triangular prisms, 
the boundary between which serves to reflect light (Wood, 1936). Can to say 
that the molecule of tartaric acid is a natural device for rotating the plane of 
light polarization. Two carbon atoms play the role of the reflecting partition in 
the molecule. The rotation occurs in the forms D and L in different directions 
because of the opposite arrangement of the charges of the hydrogen ions (+) 

Figure 20. Spatial structure of the L – wine acid

 *For a more accurate representation see the electronic version.
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and the hydroxyl group (-) in these forms. Thus, the reason for the different 
rotation of the plane of polarization of light lies not in the different forms of 
the crystals of D - tartaric acid and L-tartaric acid, as Pasteur suggested, but 
in different forms of molecules, clearly visible in the image in the space 5D.

A number of serious works on the use of spaces of higher dimension in 
the analysis of the structure of viruses belongs to the authors Janner and 
Twarock (Janner, 2006, 2008, 2011, 2016; Keef & Twarock, 2009; Twarock & 
Dykeman, 2010). However, it should be noted, that in these works, especially 
in the works of Janner, the notion of polytopes of higher dimension is often 
used incorrectly. The quantities of elements of different dimensions are not 
determined and the feasibility of the Euler - Poincare equation is not checked. 
Therefore, the results of these studies require verification.

REFERENCES

Gray, H. B. (1965). Electrons and chemical bonding. New York: W.A. 
Benjamin INC.

Grunbaum, B. (1967). Convex Polytopes. London: Springer.

Janner, A. (2006). Towards a classification of icosahedral viruses in term 
of indexed polyhedral. Acta Crystallographica. Section A, Foundations 
of Crystallography, 62(Pt5), 319–330. doi:10.1107/S0108767306022227 
PMID:16926480

Janner, A. (2008). Comparative architecture of octahedral protein cages. 
II. Interplay between structural elements. Acta Crystallographica. Section 
A, Foundations of Crystallography, 64(Pt4), 503–512. doi:10.1107/
S0108767308012051 PMID:18560167

Janner, A. (2011). Form, symmetry and packing of biomacromolecules. Shells 
with boundaries at anti - nodes of resonant vibration in icosahedral RNA 
viruses. Acta Crystallographica. Section A, Foundations of Crystallography, 
67(Pt6), 521–532. doi:10.1107/S010876731103577X PMID:22011468

Janner, A. (2016). Symmetry - adapted digital modeling III, Coarse - grained 
icosahedral viruses. Acta Crystallographica. Section A, Foundations of 
Crystallography, 72(Pt3), 324–337. doi:10.1107/S205327331600276X 
PMID:27126109

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



176

Functional Dimensions of Biomolecules

Keef, T., & Twarock, R. (2009). Affine extensions of the icosahedral group 
with applications to the three - dimensional organization of simple viruses. 
Journal of Mathematical Biology, 59(3), 287–313. doi:10.100700285-008-
0228-5 PMID:18979101

Lehn, J. M. (1998). Supramolecular chemistry. Concept and perspectives. 
Novosibirsk: Science.

Lehninger, A. L. (1982). Principles of Biochemistry (Vol. 1-3). New York: 
Worth Publisher, Inc.

Metzler, D. E. (1980). Biochemistry. The Chemical Reactions of Living Cells 
(Vol. 1-3). New York: Academic Press.

Pasteur, L. (1960). Selected works. Moscow: Publishing House of the Academy 
of Sciences of the USSR.

Shevchenko, V. Ya., Zhizhin, G. V., & Mackay, A. (2013). On the Structure 
of Quasicrystals in a Higher - Dimensional Space. In M. V. Diudea & C. 
L. Nagy (Eds.), Diamonds and related nanostructures (pp. 311–320). New 
York: Springer. doi:10.1007/978-94-007-6371-5_17

Steed, J. V., & Atwood, J. L. (2000). Supramolecular chemistry. Chichester, 
UK: John Wiley and Sons.

Twarock, R., & Dykeman, E. C. (2010). Al-atom normal-mode analysis 
reveals an RNA-induced allostery in a bacteriophage coat protein. Physical 
Review. E, 81(3), 1–10.

Wood, R. (1936). Researches in physical optics. Wentworth Press.

Zhizhin, G. V. (2014). On the higher dimensions in nature. Biosphere, 6(4), 
313–318.

Zhizhin, G. V. (2015). The dimensions of supramolecular compounds. 
Biosphere, 7(2), 149–154.

Zhizhin, G. V. (2016). The structure, topological and functional dimension of 
biomolecules. J. Chemoinformatics and Chemical Engineering, 5(3), 44–58.

Zhizhin, G.V. (2017). Dimensions of compounds in supramolecular chemistry. 
International Journal Chemical Modeling, 5(2).

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



177

Functional Dimensions of Biomolecules

Zhizhin, G. V., & Diudea, M. V. (2016). Space of nanoworld. In M. V. Putz 
& C. M. Marius (Eds.), Sustainable nanosystems, development, properties, 
and applications (pp. 214–235). New York: IGI Global.

Zhizhin, G. V., Khalaj, Z., & Diudea, M. V. (2016). Geometrical and topology 
dimensions of the diamond. In A. R. Ashrafi & M. V. Diudea (Eds.), Distance, 
symmetry and topology in carbon nanomaterials (pp. 167–187). New York: 
Springer. doi:10.1007/978-3-319-31584-3_12

KEY TERMS AND DEFINITIONS

Branching of the Chain of the D-Glucose Molecule: The formation of 
branches in a chain of carbon atoms in the molecule of α–D-glucose. Such 
branches in a chain of the carbon atoms of the molecule β–D-glucose are 
impossible. This follows from the representation of glucose molecules in the 
form of a polytope of higher dimension.

Enantiomorphism (Chirality) of Biomolecules: The possibility of 
changing the mutual arrangement of hydrogen atoms and hydroxyl groups in 
biomolecules (polytopes of higher dimension), leading to a change in their 
properties.

First Coordination Sphere of Fe-Porphyrin: A set of nitrogen atoms 
bound by a covalent bond to an iron atom. The dimension of the coordination 
sphere upon addition of the oxygen atom increases from 5 to 6.

Functional (Topological) Dimension of a Molecule: The dimension of a 
convex polytope, as a model of a molecule, at the vertices of which not only 
individual atoms but also functional groups of the molecule can be located.

Hybridization of Electronic Orbitals: This is the interaction of the 
electronic orbitals of atoms entering the molecule, leading under certain 
conditions to the formation of higher dimensionality of molecules.

Spiral Peptide Chain: The formation of a spiral chain of protein molecules, 
as a consequence of the higher dimension of protein molecules.
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Chapter  7
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ABSTRACT

Three-dimensional images of five-carbon sugar molecules and single-stranded 
nucleic acid molecules (DNA and RNA) were obtained. The geometrical 
cause of the formation of different form by molecules nucleic acids (right 
and left spirals with different number of D-ribose and ribose molecules in 
the period, including closed chains) has been determined. Substituting the 
known effective values of the lengths of chemical bonds (carbon-carbon, 
oxygen-oxygen, phosphorus-oxygen) into the structure of polytopes, the 
values of the characteristic geometric parameters of molecules nucleic 
acids were calculated: their effective diameter and period. It turned out that 
the calculated values of these parameters are in good agreement with their 
values, determined earlier experimentally. It is shown that the set of single-
stranded nucleic acids (both DNA and RNA) is broken into two sets of chiral 
forms. Each form in one set contains a chiral form in another set. Moreover, 
in each set there are possible rotation of the spirals both in the right and in 
the left direction.

Three-Dimensional Models 
of a Five-Carbon Sugar 

Molecule and Nucleic Acids

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 179

Three-Dimensional Models of a Five-Carbon Sugar Molecule and Nucleic Acids

THREE-DIMENSIONAL MODEL OF A FIVE-
CARBON SUGAR MOLECULE

Deoxyribonucleic acid (DNA), as a chemical substance, it was isolated by 
Johann Friedrich Micher in 1869 from the remains of cells contained in the 
pus. He singled out a substance that includes nitrogen and phosphorus. When 
Misher determined that this substance has acid properties, the substance was 
called nucleic acid (Dahm, 2005). Gradually it was proved that it was DNA, 
and not proteins, as previously thought, and which is the carrier of genetic 
information. One of the first decisive proofs was the experiments of Oswald 
Avery, Colin MacLeod and McLean McCarthy (1944) on the transformation 
of bacteria.

The structure of the double helix DNA it was proposed by Francis Crick 
and James Watson in 1953 on the base of the X-ray structural data obtained 
by Maurice Wilkins and Rosalind Franklin and the “Chargaff rules” according 
to which in each DNA molecule the strict relationships connecting the 
quantity of nitrogenous bases of different (Watson, & Crick, 1953a, b). For 
outstanding contributions to this discovery, Francis Crick, James Watson 
and Maurice Wilkins were awarded the 1962 Nobel Prize in Physiology or 
Medicine. Deoxyribonucleic acid (DNA) is a biopolymer, the monomer of 
which is the nucleotide (Albert, et al., 2002; Butler, 2005). Each nucleotide 
consists of a phosphoric acid residue attached to sugar deoxyribose, to which 
one of the four nitrogen bases is attached also. The bases that make up the 
nucleotides are divided into two groups: purines (adenine [A] and guanine 
[G]) and pyrimidines (cytosine [C] and thymine [T]) are formed by combined 
five - and six - membered heterocycles.

They managed to show that the DNA isolated from the pneumococci 
corresponds to the so -called transformation (the acquisition of pathogenic 
properties by a harmless culture as result of the addition of dead pathogenic 
bacteria to it). The experiment of American scientists Alfred Hershey and 
Martha Chase (Hershey - Chase experiment, 1952) with radioactively labeled 
proteins and bacteriophage DNA showed that only the phage nucleic acid 
is transmitted to the infected cell, and the new generation of phage contains 
the same proteins and nucleic acid, as the initial phage (Hershey & Chase, 
1952). Deciphering the structure of DNA (1953) has become one of the 
turning points in the history of biology.
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In 1986, Frank - Kamenetskiy in Moscow showed how a double - stranded 
DNA folds into a so -called H - shape, composed not of two but three strands 
of DNA (Frank – Kamenetskiy, 1986, 1988). Deoxyribonucleic acid (DNA) 
is a biopolymer, the monomer of which is the nucleotide (Albert et al., 2002; 
Butler, 2005).

Nucleotides are long polynucleotide chains covalently linked. These chains 
in the overwhelming majority of cases (except for some viruses possessing 
single - stranded DNA genomes) are combined pairwise by means of hydrogen 
bonds into a secondary structure, called the double helix (Watson & Crick, 
1953 a, b; Berg, Tymoczko & Stryer, 2002). Each base on one of the chains 
is connected to one definite base on the second chain. This specific binding 
is called complementary. Purines are complementary to pyrimidines (that 
is, they are capable of forming hydrogen bonds with them): adenine forms 
bonds only with thymine, and cytosine - with guanine. In a double helix, 
chains are also linked by hydrophobic interactions and stacking, which do 
not depend on the DNA base sequence (Ponnuswamy & Gromiha, 1994). 
Complementarity of the double helix means that the information contained 
in one chain is also contained in another chain. Different base pairs form a 
different number of hydrogen bonds. In the future, the existence of nucleic 
acids differing in the length of the period and shape with rotation of the spiral 
both to the right and to the left was experimentally established (Ha, et al., 
2005; Cantor, & Schimmel, 1980; Frank – Kamenetskiy, 2010).

Watson and Crick postulated the spiral form of the DNA molecule, but 
they did not discuss the reasons for the formation of such a DNA molecule. 
Until now there have been no works explaining the existence of a spiral in 
the DNA molecule.

Another nucleic acid (RNA), essential for protein sieve, transferring genetic 
information from DNA to protein, is chemically similar to DNA. There are 
two differences in the RNA chain from a single DNA chain: 1) five - carbon 
sugar (pentose) in RNA is represented by ribose, and in DNA - by D - ribose; 
2) one of the two pyrimidine nucleotides in RNA is represented by the uridyl 
residue (U), instead of its methylated derivative T in DNA. RNA is formed 
as a flexible single - stranded polymer, in contrast to the rigid double helix of 
DNA. In the second half of the 1950 it has already been established (Spirin, 
2019) that the synthesis of proteins in living cells is carried out by ribosome 
and that RNA represents the main part of the ribosomes. At the same time, 
the interaction of nitrogenous bases leads to the fact that the single - stranded 
RNA polymer coagulates onto itself, short double - helix regions, where 
the regions paired with nitrogenous bases are antiparallel. An essential low 
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molecular weight component of ribosomes are divalent metal ions, mainly 
magnesium ions (Spirin, & Gavrilova, 1971). It is they, who ensure the stability 
of the ribosomes by binding together the negative charges of phosphoric acid 
residues in RNA molecules.

In the book (Zhizhin, 2017), the molecules of practically all the elements 
of the periodic system were studied in detail and it was shown that many of 
them, including magnesium and calcium, form compounds of higher dimension 
(see also Zhizhin, 2015 a, b; Zhizhin, & Diudea, 2016; Zhizhin, Khalaj, & 
Diudea, 2016). In the Chapter 6 (Zhizhin, 2016; Zhizhin, 2017), the structures 
of biomolecules, which also form compounds of higher dimension, are also 
studied. It is shown that the molecule of five - carbon sugar in nucleic acids 
has the shape of a polytope of the type simplex of dimension 12. Its image 
is presented in the form of a projection on a two - dimensional plane. A 
simplified image of this projection was used to construct the nucleotide chain 
(Zhizhin, 2019a). It was found that the alternation of this projection with the 
image of a phosphoric acid residue in the form of a polytope of dimension 4 
leads to a geometric proof of the need to form a helix in the nucleotide chain. 
Moreover, depending on the possible location of the phosphoric acid residue 
relative to the ribose molecule (or D - ribose), right - or left - twisted spirals 
are formed. Given the extreme importance of nucleic acids in the processes of 
heredity and the clarity of three - dimensional images of geometric formations, 
it would be useful for further research to obtain three - dimensional images 
of nucleic acids. As noted in the last monography academician A.S. Spirin 
(Spirin, 2019), until now, no one has managed to build a three - dimensional 
image of nucleic acid molecules. An attempt to build such an image was 
undertaken in this Chapter. This will be taken into account (Zhizhin, 2018) 
that, whatever the dimension of the polytope, if it is surrounded by three - 
dimensional space, then the outer boundary of the polytope will be a three 
– dimensional bodies with two – dimensional sides. It should be noted, that 
the existence of polytope of higher dimension inside a three – dimensional 
space does not contradict Riemann`s geometry (Riemann, 1854), which 
assumes the boundedness of a space of higher dimension (Zhizhin, 2014).

The deoxyribose (or the D – ribose) is molecule of carbohydrate with five 
atoms carbon. There are two enantiomer forms of this molecule. Its images 
in the form of Fisher’s formula (Metzler, 1980) are shown in Figure 1 A, B.

In the DNA molecule, D - ribose as a component enters with a closed 
carbon chain. The closed chain of the molecule in Figure 1 is formed due to 
the rupture of the double bond between oxygen and carbon (considering it 
the first in the chain), the liberation of the water molecule, and the addition 
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of this oxygen atom to the penultimate (fourth) carbon atom in the carbon 
chain. The Fischer formula or formula Haworth and their modifications 
(Metzler, 1980; Lehninger, 1982) may not reflect the spatial structure of the 
D – ribose molecule. For this target the constructs described in the form of 
convex polytopes with boundary elements which form boundary complex 
(Grunbaum, 1967). Only when such a representation will be to determine 
the dimension of these molecules (Zhizhin, 2016; 2017). Figure 2 shows 
the result of the closure of a chain of four carbon atoms through an oxygen 
atom correspondent Figure 1 A. Chemical bonds are marked as before with 
red color.

It is easy to see that, in addition to the form of the D - ribose molecule in 
Figure 2 (a form of A), there is another enantiomer form of this molecule. It 
connected by a symmetry transformation with respect to a straight line passing 
through an oxygen atom separating the projection of the form of A in half 
(we shall assume that it is a B shape). Form B of the D - ribose molecule is 
shown in Figure 3.

The ribose is molecule of carbohydrate with five atoms carbon. There are 
two enantiomer forms of this molecule. Its images in the form of Fisher’s 
formula (Metzler, 1980) are shown in Figure 4 A, B.

In the RNA molecule, ribose as a component enters with a closed carbon 
chain. The closed chain of the molecule in Figure 4 is formed due to the 

Figure 1. A, B: Two enantiomer forms of the molecule D – ribose (formulas of Fisher`s)
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rupture of the double bond between oxygen and carbon (considering it the 
first in the chain), the liberation of the water molecule, and the addition 
of this oxygen atom to the penultimate (fourth) carbon atom in the carbon 
chain. Figure 5 shows the result of the closure of a chain of four carbon 
atoms through an oxygen atom correspondent Figure 4 A. Chemical bonds 
are marked as before with red color.

Figure 2. The molecule D – ribose with closed a chain of carbon atoms (the form A)

Figure 3. The molecule D – ribose with closed a chain of carbon atoms (the form B)
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It is easy to see that, in addition to the form of the ribose molecule in 
Figure 4 (a form of A), there is another enantiomer form of this molecule. 
It connected by a symmetry transformation with respect to a straight line 
passing through an oxygen atom separating the projection of the form of A 

Figure 4. A, B: Two enantiomer forms of the molecule ribose (formulas of Fisher`s)

Figure 5. The molecule ribose with closed a chain of carbon atoms (the form A)
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in half (we shall assume that it is a B shape). Form B of the ribose molecule 
is shown in Figure 6.

To determine the dimension of the molecules D - ribose and ribose of both 
enantimorphic forms (A, B), it is necessary to connect each vertex (each atom 
or functional group) with all other vertices of a given molecule. Obviously, 
due to the use of the functional dimension, in all four cases the topological 
view of the resulting polytope will coincide with the topological view of the 
polytope presented in Figure 15 of Chapter 6. Performing the transformations 
carried out in Chapter 6 for the polytope in Figure 15, can to obtain that the 
functional dimension of each of the four polytopes corresponding to D - ribose 
and ribose molecules with closed - chain are equal to 12.

Earlier it was shown that a five - carbon sugar molecule is a polytope of 
type simplex of dimension 12. One of the two enantiomeric forms is presented 
in Figure 7.

The image in Figure 7 is a topological projection of polytope 12 - simplex 
on a two - dimensional plane. If a hydroxyl group OH is attached to the 
carbon atom C (2) on the outer contour of the image, this corresponds to a 
five - carbon sugar molecule (ribose B) in the RNA molecule. If a hydrogen 
atom H is attached to the carbon atom C (2) on the outer contour of the image, 
this corresponds to a five - carbon sugar molecule (D – ribose B) in the DNA 
molecule. If to simplify the image in Figure 7, discard all the blue lines that 

Figure 6. The ribose molecule with closed a chain of carbon atoms (the form B)
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have only the geometric meaning of the edges of the convex polytope, with 
the exception of the outer contour, the image in Figure 8 will be obtained.

Since Figure 8 is a topological projection of a spatial figure, then by this 
projection it is possible to restore qualitatively the corresponding three - 
dimensional figure, the projection of which is Figure 8. If one take the carbon 

Figure 7. The five – carbon molecule sugar

Figure 8. Simplified image of a molecule of five - carbon sugar (ribose B)
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– carbon bond length and carbon – oxygen bond a = 0.15 nm, then the length 
of the edges in the carbon – oxygen pentagonal cycle is equal to a. One can 
assume that the chemical bonds emanating from the four carbon atoms of 
this cycle are spaced symmetrically relative to the chemical bonds of this 
cycle and have a certain angle ϕ  with the plane of the cycle. Since the number 
of valence bonds emanating into the space of four carbon atoms of the oxygen 
- carbon cycle is eight, it should be assumed from the symmetry condition 
that four valence bonds extend into a half space above the cycle plane, and 
four valence bonds proceed into the half space under the cycle plane. Consider 
a half - space above the plane of the oxygen - carbon cycle (Figure 9).

Then the length of the projection of these links on the plane of the cycle 
is equal to a cosϕ , and the height of the figure is equal to h a= sinϕ . In 
Figure 9, the orange segments are solid and dashed are valence bonds, their 
length is assumed to be a. Fat solid black segments together with orange 
segments (dotted and solid) define a part of the three - dimensional shape of 
the sugar molecule.

Figure 9. The half - space above the plane of the oxygen - carbon cycle
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In this figure, the lower pentagonal face and the upper quadrilateral face 
are parallel to each other.

In Figure 9, the angle ϕ  is unknown. One define it from two triangles 
ACB and AKB, equating the length of the segment AB from each triangle. 
Note that the angle ACB linearly depends on the angle ϕ : ∠ACB = αϕ β+ . 
One take into account that the angle KCB = 126�  due to the correctness of 
the lower pentagonal base of the polyhedron and the division of the external 
angle at the vertex C by the segment KC in half. Since ∠ACB = 126�  for 

ϕ = 0  and ∠ACB = 90�  for ϕ = 90� , so ∠ACB = 126
2
5

� = − ϕ  Since ACB 

triangle is isosceles, so

AB a= −










2 63
1
5

sin � ϕ  (1)

From triangle KCB one have KB a= + −1 2 1262cos cos cosϕ ϕ � . Since 
the AKB triangle is rectangular, so

AB a2 22 1 126= −( )cos cosϕ �  (2)

From (1) and (2) one have

1 126 2 63
1
5

2− = −










cos cos sinϕ ϕ� �  (3)

This is the equation for finding the ϕ  angle. The equation (3) have two 
roots: ϕ = 0  andϕ = 90�  . The first root corresponds to the flat shape of the 
sugar molecule. This does not correspond to the earlier proof of the 
multidimensionality of this molecule. One can want to find a three - dimensional 
view of the outer contour of the sugar molecule. This goal corresponds to 
the second root of equation (3), i.e. ϕ = 90� . The second part of the three 
– dimensional figure is under flat of oxygen – carbon cycle. Obviously, here 
also the valence bonds emanating from carbon atoms are located at an angle 
ϕ = 90�  to the cycle plane. The parts below the cycle plane and above the 
cycle plane together form a three - dimensional model of the sugar molecule 
ribose B (Figure 10).

 EBSCOhost - printed on 2/13/2023 1:15 PM via . All use subject to https://www.ebsco.com/terms-of-use



189

Three-Dimensional Models of a Five-Carbon Sugar Molecule and Nucleic Acids

The resulting model of a five - carbon sugar molecule can be viewed as 
a development of the Haworth formula, since in the Haworth formula and 
the resulting sugar model, the valence bonds are perpendicular to the plane 
of the pentagonal cycle. The essential difference from Haworth’s formula, 
however, is that the resulting model of a five - carbon sugar molecule is a 
convex closed polyhedron.

Similarly, three - dimensional models of five - carbon sugar molecules 
can be obtained ribose A (Figure 11), D - ribose A (Figure 12), D - ribose 
B (Figure 13).

The arrangement of atoms in the sugar molecule in Figures 10 - 13 is 
determined by their arrangement in the previously obtained Figures 1 – 9. 
These options for the arrangement of atoms and functional groups in three 
- dimensional models of five - carbon sugar molecules will be taken into 
account when analyzing the possibilities of sequential connection of five - 
carbon sugar molecules and phosphoric acid residues in the formation of a 
chain of nucleic acids.

Figure 10. The three – dimensional model of the sugar molecule ribose B
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Figure 11. The three – dimensional model of the sugar molecule ribose A

Figure 12. The three – dimensional model of the sugar molecule D - ribose A
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THE DIMENSION OF PHOSPHORIC 
ACID AND ITS RESIDUE

The phosphoric acid H PO
3 4

 has the following building (see, for example, 
Karapetians & Drakin, 1994) (Figure 14).

On the Figure 15 is presented Fisher`s formula of phosphoric acid.
It is obvious that, used in the DNA and RNA molecules, the phosphoric 

acid residue obtained by detaching one hydrogen atom from it has the 
building also. In this case, instead of one of the hydroxyl groups attached to 
the phosphorus atom, there will be a negatively charged oxygen atom. To 
determine the functional topological dimension of phosphoric acid and its 
residue, it is necessary to connect the vertices, atoms and functional groups 
entering into these compounds (Zhizhin, 2016, 2017). Then the structure of 
phosphoric acid and its residue is represented in the form of a polytope in 
Figure 16.

Figure 13. The three – dimensional model of the sugar molecule D - ribose B
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In Figure 16 in vertices a dispose atom phosphoric; in vertices c dispose 
atom of oxygen with double bond; in vertices b, d, e dispose atoms of oxygen 
with free bond.

Calculation of the functional topological dimension by the Euler - Poincaré 
equation (Poincaré, 1895) does not require specifying the exact lengths of 
polytope edges, and for a given number of the vertices does not depend on 
the groups of atoms in these vertices (Zhizhin, 2016). In Figure 16, the edges 

Figure 14. Special structure of phosphoric acid

Figure 15. Fisher`s formula of phosphoric acid
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corresponding to the covalent chemical bonds are marked in red, and the 
edges that carry only the geometric function, delineating the closed geometric 
figure, are marked in blue.

It follows from Figure 16 that the polytope of phosphoric acid has five 
vertices (a, b, c, d, e), ten edges(ac, ab, ad, ae, cd, de, be, ce, cb, bd), ten plane 
triangular faces (cbe, cda, cea, dab, dbe, dce, bae, dae, bce, dcb), and five 
three - dimensional faces in the form of tetrahedron (cbae, caed, cbad, abde, 
cebd). These values of elements of different dimensions we must substitute 
into the Euler - Poincare equation

f
i

i i

i

n

( ) ( )− = − −
=

−

∑ 1 1 1
0

1

 (4)

where f
i
 is the number of elements with dimension i in polytope with 

dimension n. In this case there are f f f f
0 1 2 3

5 10 10 5= = = =, , , .
Substituting these values into equation (4), can to obtain

Figure 16. The polytope of the phosphoric acid and its residue
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5 – 10 + 10 – 5 = 0. 

Thus, equation (4) is satisfied for n = 4. This proves that the polytope of 
phosphoric acid and its residue has a dimension of four. It is worth emphasizing 
that the polytope of phosphoric acid and its residue is topologically equivalent 
to a convex polytope of the simplex type with dimension four, since these 
polytopes completely coincide with the values of the numbers of elements 
of different dimensions (Zhizhin, 2014). The origin of the four - dimensional 
space can be placed in one of the vertices with sending coordinates along the 
edges connecting this vertex to other vertices (see Figure 16).

THE THREE – DIMENSIONAL MODEL OF 
THE NUCLEIC ACID MOLECULE

A nucleic acid molecule is a chain of residues of phosphoric acid (a tetrahedron 
with a center) and sugar molecules (a prism with a pyramid). The chain 
(for molecules ribose A and D – ribose A) of successively alternating sugar 
molecules and residues of phosphoric acid in a three - dimensional form is 
shown in Figure 17.

A nucleic acid molecule with sugar molecules ribose B or D – ribose B 
is shown in Figure 18.

At the junctions of the phosphoric acid residue with sugar, due to the 
separation of water molecules, an oxygen atom and the functional group CH2 
are formed (Figure 17, Figure 18). In addition, one of the four nitrogenous 
bases is attached to the C(1) carbon atom instead of the hydroxyl group at 
the C(1) carbon atom (Figure 17, Figure 18). The yellow color in Figure 17, 
Figure 18 indicates the covalent bond lines connecting the phosphoric acid 
residues and the sugar molecules.

Figures 17 and 18 represent two chiral forms of nucleic acids (two chiral 
forms of DNA and two chiral forms of RNA), since not only five - carbon 
sugar molecules participate in them in specular reflections, but also phosphoric 
acid residues are also in specular reflections. Let us consider in more detail 
one of these forms, presented, for example, in Figure 17. It is significant 
that the communication lines connecting the tetrahedron with the sugar 
molecule form, by repulsing the electron pairs, uniform straight segments 
perpendicular to the bases of the prism. In the center of the tetrahedron, the 
chemical bond lines form a kink, since in the center of the tetrahedron there 
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are straight lines connecting the center with the vertices of the tetrahedron. 
Ultimately, this fracture with simultaneous movement along the vertical 
coordinate leads to the formation of a helix of a nucleic acid molecule. In 
the projection on the plane of the figure, the covalent bond segments form a 
broken line close to the circle (polygon). The radius of the circle describing 
this polygon will be determined by the angle between the projections on the 
plane of the chemical bonds of the phosphorus atom with the oxygen atoms 
at its vertices belonging to the polygon. The tetrahedron with the center (the 
residue of phosphoric acid), connecting with the top of the base of the prism, 
has a degree of freedom. It can be rotated relative to the connection between 
the vertex of the prism and the center of the tetrahedron at an arbitrary angle. 

Figure 17. A nucleic acid molecule with sugar molecules ribose A or D – ribose A
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Therefore, even in the projection on the plane perpendicularity to axes of 
rotation, the angle between the chemical bonds emanating from the center 
of the tetrahedron can be arbitrary (Figure 19).

Let this angle be γ. Then the broken line between the centers of the 
tetrahedrons closes when the product of the number of these rotations n and 
the angle π - γ is equal to 2π. (On projection in Figure 19 edge of low bases 
of prism in visible due to the perpendicularity of the generators and bases.) 
You can find the period of the spiral, given that there is still movement along 
a line perpendicular to the projection plane. Thus, to determine the radius of 
a circle, we have the equality

Figure 18. A nucleic acid molecule with sugar molecules ribose B or D – ribose B
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( )π γ π− =n 2  

Since the number of turns equals the number of segments that make up a 
polygon, one have approximately the equality

2 2π
π γ

π
−
=

R
l

 

R is radius of the circle, and l is length of the segment between centers 
of tetrahedrons.

From the last equality can to find the radius of the circle

R
l

=
−π γ

 

Figure 19. The projection of spiral on the plane perpendicularity to axes of rotation
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From Figure 17 and Figure 19 it follows that l a d= +3 2 . Subject to the 
accepted values a and d can to get

R =
−

0 81.
π γ

nm. 

For example, in case γ = 140�  is R=1.16 nm.
This radius value is close to the experimental helix radius of nucleic acids 

measured by Watson and Crick. At this angle between the chemical bonds 
in the projection of the phosphoric acid residue, the number of nucleotides 

in the period 2
9

π
π γ−

= . The number is in satisfactory agreement with the 

experimental number of nucleotides 10, given that the helix of the helix in 
the period is somewhat greater than the circumference of the same radius. 
This confirms the correctness of the three - dimensional model of the nucleic 
acid molecule.

The helix surface is formed due to the fact, that in a tetrahedron with a 
center the valence bonds connecting the center with the vertices do not lie 
in the same plane (Zhizhin, 2019b). Therefore, the valence bonds connecting 
the two sugar molecules do not lie together in the plane passing through the 
edge of the prism. The bond leaving the phosphorus atom, approximately 23 
degrees, retreats from the plane in which the bond lies, which is part of the 
phosphorus atom. This causes a chain to shift along a coordinate perpendicular 
to the circle. The equation of the helix surface in this case can be written as 
h n h h l= =∆ ∆ ∆ ∆, tan( ),α α  is the angle between the previous segment l 
and the subsequent segment l, n is the number of turns, h is the height of the 
period. Thus, ∆h nm h nm= =0 343 3 43. , . . This period height value is close 
to the value found in the Watson and Crick experiments (3.46 nm).

If the valence bond in the tetrahedron connecting its center with the next 
sugar molecule is rejected in the projection to the left of the valence bond 
connecting the center of the tetrahedron with the previous sugar molecule, 
i.e. it is γ > 180�  the nucleic acid is a left - handed helix. If is γ = 180� , then 
the nucleic acid has a linear appearance.

In ribonucleic acids, a helix return in one molecule is observed (Spirin, 
2019). This is possible if the angle γ  is variable, i.e. in the chain, the angle 
γ increases to 180 degrees and the achievement of even larger values   of this 
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angle. This means that along the chain there is a sequential rotation of the 
tetrahedron around the valence bond connecting its center with the previous 
sugar molecule.

Obviously, a similar consideration can be made for the single - stranded 
nucleic acid molecule shown in Figure 18. The difference between Figure 17 
and Figure 18 is that the chain helix in Figure 17 rotates to the right, the chain 
helix in Figure 18 rotates to the left. In this case, the residues of phosphoric 
acid at the corresponding positions in the chains are mirrored to each other. 
Since the phosphoric acid residue has a degree of freedom (rotation around 
the axis connecting it to the five - carbon sugar molecule), with a different 
initial state of the phosphoric acid residue in Figure 17, there will be another 
state of the phosphoric acid residue in Figure 18. This leads to the set of 
single - stranded nucleic acids (both DNA and RNA) is broken into two sets 
of chiral forms. Each form in one set contains a chiral form in another set. 
Moreover, in each set there are possible rotation of the spirals both in the 
right and in the left direction.
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KEY TERMS AND DEFINITIONS

Deoxyribonucleic Acid: A biopolymer, the monomer of which is the 
nucleotide.

Dimension of the Space: The number of independent parameters needed 
to describe the change in position of an object in space.

Nucleotide: A phosphoric acid residue attached to sugar deoxyribose, to 
which one of the four nitrogen bases is attached also.

Polytope: A polyhedron in the space of higher dimension.
Simplex: A convex polytope, any two vertices of which are joined by an 

edge.
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ABSTRACT

Using three-dimensional visualization of nucleic acid molecules, obtained in 
the previous chapter, an analysis of the geometry of nucleic acid molecules in 
the space of higher dimension is carried out. It is shown that phosphoric acid 
residues and five-carbon sugar molecules in a double-stranded nucleic acid 
form polytopes of higher dimension with anti-parallel edges. These polytopes 
are of type n-cross-polytope (n = 5 for phosphoric acid residues, n = 13 for 
sugar molecules). It was found that these n-cross-polytopes located in right- 
and left-twisted spirals are enantiomorphic. It has been found that in cross-
polytopes constructed of two sugar molecules there are 12 coordinate planes, 
each of which may contain a bond of nitrogenous bases (one of the 12 known 
ones). The formation of codons (triplets) corresponds to the separation in 
space of the highest dimension of nucleic acids of three-dimensional regions. 
This also occurs in the ribosomes upon contact with transport and adapter 
RNA during protein synthesis.

The Geometry of the Structure 
of Nucleic Acids With Regard 

to the Higher Dimension 
of the Components
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POLYTOPES WITH ANTIPARALLEL EDGES

In single - stranded and double - stranded nucleic acids (RNA, DNA), the 
constituents of acids (residues of phosphoric acid and sugar molecules) 
interact with each other (Watson & Crick, 1953a, b; Spirin & Gavrilova, 1971; 
Frank – Kamenetskiy, 1986, 1988). Phosphoric acid residues are connected 
by divalent metal ions, mainly magnesium ions, due to the interaction of 
negative charges of phosphoric acid residues with positive charges ions (Spirin 
& Gavrilova, 1971). This interaction is essential for the stability of nucleic 
acid structures, especially in the ribosomes. Sugar molecules interact with 
each other due to the hydrogen bond between the nitrogenous bases attached 
to the sugar molecules. Being geometric forms, the constituents of nucleic 
acids interact with each other to form new geometric forms - new polytopes. 
Nitrogenous bases are known to be flat structures. However, it is not known 
how nitrogenous bases are oriented in space, whether their orientation 
depends on the type of nitrogenous base. Currently there is no information on 
this. There is also no information on how exactly the metal ions are located, 
connecting the phosphoric acid residues. It should be remembered here that 
the adopted three - dimensional model of the components and the nucleic 
acid molecule itself is only a model for visual perception. As it was shown 
earlier, the phosphoric acid residue is a polytope of dimension 4, and the 
sugar molecule has a dimension of 12. When two phosphoric acid residues 
or two sugar molecules are combined, the dimension of formation in each 
case increases by one. In this case, as will be shown, the arrangement of flat 
nitrogenous bases in the space of higher dimension will become clear.

The movement of triangles along a helix leads to the formation of polytopes 
with antiparallel edges. Consider an arbitrary triangle ABC on the plane. 
Choose some point O/ on the plane outside the triangle to his left. Let this 
point be the base of the axis of the helix passing through the triangle. Rotate 
the ABC triangle 180 degrees to the right, moving it up the helix, parallel to 
the initial plane. In the projection on the plane, both triangles ABC and the 
displaced triangle A B C/ / /  will be located as shown in Figure 1.

It is easy to see that the edges of the triangle ABC and A B C/ / / are antiparallel. 
It can now connect in space the vertices of the triangle ABC with the vertices 
of the triangleA B C/ / /  so that there are no connections of the vertices with 
the same letters. In a projection on the plane the connection are represented 
by dotted segments. It can be seen that the connecting segments also break 
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up into pairs of anti - parallel segments. Let us now verify that the image 
ABCA/B/C/ in Figure 1, along with the dotted segments, is a projection of a 
three - dimensional convex polytope. One use the Euler – Poincaré equation 
(Poincaré, 1895) for this aim

( ) ( ) ( ) ,− = − +
=
∑ 1 1 1

0

k
k

k

n
kf n  (1)

f
k
 is the number of elements of dimension k in polytope of dimension n.

The shape ABCA/B/C/ in Figure 1 has 6 vertices, 12 edges, 8 triangular 
faces (rectangles are not faces by construction, since connecting, for example, 
vertex A with vertices B C/ /,  it turns out to be exactly the triangleAB C/ / ). 
Substituting these values of elements of different dimensions into equation 
(4), can to find

6 – 12 +8 = 2, 

Figure 1. Polytopes of dimension 3 with anti – parallel edges
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i.e. the Euler – Poincaré equation holds in this case for n = 3. This proves 
that the resulting figure is a convex polytope of dimension 3 (if the figure 
were not convex, the Euler – Poincaré equation would be violated).

The point O/ in Figure 1 coincides with the center of the three - dimensional 
figure ABCA/B/C/ as diagonal figures pass through it and pointO/ located on 
the axis of the helix. Point O/  can be considered as the origin of three - 
dimensional space. Coordinate axes x, y, z in this direction emanate from 
directionsAA BB CC/ / /, ,  respectively. Three pairs of these axes define the 
coordinate planes of the space of this shape.

Choose some point O// on the plane outside the triangle below it. Let this 
point be the base of the axis of the helix passing through the triangle. Rotate 
the ABC triangle 180 degrees to the left, moving it up the helix, parallel to 
the initial plane. In the projection on the plane, both triangles ABC and the 
displaced triangle A B C// // //  will be located as shown in Figure 1.

It is easy to see that the edges of the triangle ABC and A B C// // // are 
antiparallel. It can now connect in space the vertices of the triangle ABC with 
the vertices of the triangleA B C// // //  so that there are no connections of the 
vertices with the same letters. In a projection on the plane the connection are 
represented by dotted segments. It can be seen that the connecting segments 
also break up into pairs of anti - parallel segments. Let us now verify that 
the image ABCA/B/C/ in Figure 1, along with the dotted segments, is a projection 
of a three - dimensional convex polytope. Obviously, a shape ABCA//B//C// 
has as many vertices, edges, and flat faces as a shape ABCA/B/C/. Therefore, 
it satisfies the Euler – Poincaré equation (4) with dimensionality n = 3, i.e. 
it is a convex three - dimensional polyhedron. The point O// in Figure 1 
coincides with the center of the three - dimensional figure ABCA//B//C// as 
diagonal figures pass through it and pointO// located on the axis of the helix. 
Point O/  can be considered as the origin of three - dimensional space. 
Coordinate axes x, y, z in this direction emanate from directionsAA BB CC// // //, ,  
respectively. The order of the coordinate axes x, y, z in the figures ABCA/B/C/ 
and ABCA//B//C//, as can be seen from Figure 1, coincide. This suggests that 
both figures ABCA/B/C/ and ABCA//B//C//are topologically one and same figure 
- the wrong octahedron.

Interestingly, to transform an arbitrary tetrahedron ABCD  into a tetrahedron 
A B C D/ / / / with anti-parallel edges, it is not enough to rotate it along a helix 
by 180 degrees. To do this, you must turn the helix together with the tetrahedron 
and move the tetrahedron along the helix in the opposite direction, also 
rotating it 180 degrees. In the initial state, the tetrahedron on the initial helix 
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and the tetrahedron on the reversed helix, after its rotation by 180 degrees, 
will have anti -parallel edges. Both tetrahedrons can ABCD and A B C D/ / / /  
be present by the Figure 2 for rotation to the right. On Figure 2 the point O/ 
is the point of rotation.

Now connect the vertices of the tetrahedrons so that the connecting edges 
(dotted segments) do not have the same letters. The resulting figure (along 
with dotted edges) has 8 vertices ( f

0
 = 8), 24 edges ( f

1
 = 24), 24 triangular 

faces ( f
2
 = 24), and 8 tetrahedrons ( f

3
 = 8). Substituting these values   into 

equation (4), can to find

8 - 24 + 24 - 8 = 0. 

Consequently, the Euler – Poincaré equation is satisfied in this case for n 
= 4. Thus, the polytope ABCDA B C D/ / / /  in Figure 2 has dimension 4. It is 
easy to see (Zizhin, 2018) that this is 4 - cross – polytope (Grunbaum, 1967; 
Zhizhin, 2014; Zhizhin & Diudea, 2016).

The point O/ in Figure 2 coincides with the center of the forth - dimensional 
figure ABCDA B C D/ / / /  as diagonal figures pass through it and point O/ 
located on the axis of the helix. Point O/  can be considered as the origin of 
forth - dimensional space. Coordinate axes x, y, z, t in this direction emanate 
from directionsAA BB CC DD/ / / /, , ,  respectively. Six pairs of these axes define 
the coordinate planes of the space of this shape.

Choose some point O// on the plane outside the tetrahedron ABCD below 
it. Let this point be the base of the axis of the helix passing through the 
tetrahedron. Rotate the ABCD tetrahedron 180 degrees to the left, moving it 
up the helix, parallel to the initial plane. In the projection on the plane, both 

Figure 2. Polytope of dimension 4 with anti - parallel edges
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tetrahedrons ABCD and the displaced tetrahedron A B C D// // // //  will be located 
as shown in Figure 2.

It is easy to see that the edges of the tetrahedrons ABCD and A B C D// // // //

are antiparallel. It can now connect in space the vertices of the tetrahedron 
ABCD with the vertices of the tetrahedronA B C D// // // //  so that there are no 
connections of the vertices with the same letters. In a projection on the plane 
the connection are represented by dotted segments. It can be seen that the 
connecting segments also break up into pairs of anti - parallel segments. Let 
us now verify that the image ABCDA B C D// // // //  in Figure 2, along with the 
dotted segments, is a projection of a forth - dimensional convex polytope. 
Obviously, a shape ABCDA B C D// // // //  has as many vertices, edges, and flat 
faces as a shape ABCDA B C D/ / / / . Therefore, it satisfies the Euler – Poincaré 
equation (4) with dimensionality n = 4. Thus, the polytope ABCDA B C D// // // //

in Figure 2 has dimension 4. It is easy to see (Zizhin, 2018) that this is 4 - 
cross - polytope.

The point O// in Figure 2 coincides with the center of the 4 – cross - polytope 
as diagonal figures pass through it and pointO// located on the axis of the 
helix. Point O//  can be considered as the origin of forth - dimensional space. 
Coordinate axes x, y, z, t in this direction emanate from directions
AA BB CC DD// // // //, , ,  respectively. From Figure 2 it follows that the sequence 
of alternation of coordinate axes x, y, z, t in a 4 - cross – polytope ABCD
A B C D/ / / /  differs from the sequence of alternation of coordinate axes x, y, 
z, t in a 4 - cross – polytope ABCDA B C D// // // // . Thus, a surprising fact 
emerged: the figures ABCDA B C D/ / / /  and ABCDA B C D// // // // , being 4 - 
cross - polytopes, are topologically different from each other. It is impossible 
to move from one of them to another by continuous transformation, since 
they have a different order of alternation of vertices.

Let us now consider the figure, which is formed by two tetrahedrons with 
a center, which model the residues of phosphoric acid. Interestingly, to 
transform an arbitrary tetrahedron with a centerABCDF  into a tetrahedron 
with center A B C D F/ / / / / , which has the anti - parallel edges, it is not enough 
to rotate it along a helix by 180 degrees. To do this, you must turn the helix 
together with the tetrahedron and move the tetrahedron along the helix in the 
opposite direction, also rotating it 180 degrees. In the initial state, the 
tetrahedron with a center on the initial helix and the tetrahedron with center 
on the reversed helix, after its rotation by 180 degrees, will have anti -parallel 
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edges. Both tetrahedrons can ABCDF and A B C D F/ / / / /  be present by the 
Figure 3 for rotation to the right. On Figure 3 the point O/ is the point of 
rotation.

Now connect the vertices of the tetrahedrons with center so that the 
connecting edges (dotted segments) do not have the same letters. The resulting 
figure (along with dotted edges) has 10 vertices ( f

0
 = 10), 40 edges ( f

1
 = 

40), 80 triangular faces ( f
2
 = 80), 80 tetrahedrons ( f

3
 = 80) and 32 4 – cross 

– polytopes ( f
4
 = 32). Substituting these values   into equation (4), can to find

10 - 40 + 80 – 80 + 32 = 2. 

Consequently, the Euler – Poincaré equation is satisfied in this case for n 
= 5. Thus, the polytope ABCDFA B C D F/ / / / /  in Figure 3 has dimension 5. 
It is easy to see (Zizhin, 2018) that this is 5 - cross - polytope.

Figure 3. Polytope of dimension 5 with anti - parallel edges
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The point O/ in Figure 3 coincides with the center of the five - dimensional 
figure ABCDFA B C D F/ / / / /  as diagonal figures pass through it and point O/ 
located on the axis of the helix. Point O/  can be considered as the origin of 
five - dimensional space. Coordinate axes x, y, z, t, u in this direction emanate 
from directionsAA BB CC DD FF/ / / / /, , , ,  respectively.

Choose some point O// on the plane outside the tetrahedron with a center 
ABCDF below it. Let this point be the base of the axis of the helix passing 
through the tetrahedron. Rotate the ABCDF tetrahedron with a center on 180 
degrees to the left, moving it up the helix, parallel to the initial plane. In the 
projection on the plane, both tetrahedrons with a center ABCDF and the 
displaced tetrahedron with a centerA B C D F// // // // //  will be located as shown 
in Figure 3.

It is easy to see that the edges of the tetrahedrons with a center ABCDF 
and A B C D F// // // // // are antiparallel. It can now connect in space the vertices 
of the tetrahedron with a center ABCDF with the vertices of the tetrahedron 
with a centerA B C D F// // // // //  so that there are no connections of the vertices 
with the same letters. In a projection on the plane the connection are represented 
by dotted segments. It can be seen that the connecting segments also break 
up into pairs of anti - parallel segments. Let us now verify that the image 
ABCDFA B C D F// // // // //  in Figure 3, along with the dotted segments, is a 
projection of a five - dimensional convex polytope. Obviously, a shape ABCDF
A B C D F// // // // //  has as many vertices, edges, and flat faces as a shape ABCDF
A B C D F/ / / / / . Therefore, it satisfies the Euler – Poincaré equation (4) with 
dimensionality n = 5. Thus, the polytope ABCDFA B C D F// // // // // in Figure 
3 has dimension 5. It is easy to see (Zizhin, 2018) that this is 5 - cross - 
polytope.

The point O// in Figure 3 coincides with the center of the 5 – cross - polytope 
as diagonal figures pass through it and pointO// located on the axis of the 
helix. Point O//  can be considered as the origin of five - dimensional space. 
Coordinate axes x, y, z, t, u in this direction emanate from directions
AA BB CC DD FF// // // // //, , , ,  respectively. From Figure 3 it follows that the 
sequence of alternation of coordinate axes x, y, z, t, u in a 5 - cross – polytope 
ABCDFA B C D F/ / / / /  differs from the sequence of alternation of coordinate 
axes x, y, z, t, u in a 5 - cross – polytope ABCDFA B C D F// // // // // . Thus, also 
as in 4 – cross – polytope, a surprising fact emerged: the figures ABCDF
A B C D F/ / / / /  and ABCDFA B C D F// // // // // , being 5 - cross - polytopes, are 
topologically different from each other. It is impossible to move from one of 
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them to another by continuous transformation, since they have a different 
order of alternation of vertices.

Among the ten coordinate planes in the vicinity center of 5 – cross - 
polytope, only 4 coordinate planes have the opportunity to locate bivalent 
magnesium ions within themselves. These are planes based on coordinate 
axes passing through two vertices of a tetrahedron with a center containing 
an O−  ion. The second pair of vertices coordinate axes is pair of vertices 
coinciding with one of the four remaining vertices of a tetrahedron with a 
center in which there are three oxygen atoms and a phosphorus atom.

CONNECTION OF TWO FIVE – CARBON 
SUGAR MOLECULES IN A DOUBLE –
STRADED NUCLEIC ACID MOLECULE

Let us consider in detail the formation of a polytope of dimension 13 of two 
sugar molecules with anti - parallel edges.

Here, as in the case of the tetrahedron, to form a polytope with antiparallel 
edges from two sugar molecules, you must have one sugar molecule on one 
helix to turn this helix together with the sugar molecule and move the sugar 
molecule along this reversed helix in opposite direction to the original helix 
direction. When the sugar molecule rotates 180 degrees to the right while 
moving, then the original sugar molecule and the sugar molecule on the 
reversed helix are two polytopes with anti - parallel edges. Both of these sugar 
molecules in a simplified form are represented in Figure 4 by black solid lines.

When the five - carbon sugar molecule is rotated to the left by 180 degrees, 
the nitrogenous bases are on opposite sides of both molecules, so that for their 
connection it is necessary to cross the entire set of atoms of two molecules. 
This is unrealistic, therefore this option is not considered. When the sugar 
molecule is rotated 180 degrees to the left, it is possible to connect the sugar 
molecules through nitrogenous bases only between two different chains of 
nucleic acids or in the case of turning the chain itself in the opposite direction.

In full, the sugar molecules have a dimension of 12, in the corresponding 
polytope each vertex must have an edge connection with all the other vertices. 
Knowledge of this now one need. For the formation of a polytope of dimension 
13, it is necessary to connect each vertex of one polytope with the vertices 
of another polytope so that there are no vertex connections with the same 
letters. All connecting edges break into pairs of antiparallel edges. At the 
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same time, a set of coordinate two - dimensional planes emanates from the 
center of the formed polytope as from the origin of coordinates. Their number 
is equal to the number of combinations from 13 to 2, i.e. 48 coordinate planes. 
In order to clarify the possible geometrical circumstances of the connection 
of helices in double - helix nucleic acid molecules with nitrogenous bases, 
we are primarily interested in the coordinate planes containing these 
nitrogenous bases F F

i i
, / . There are exactly 12 such coordinate planes in the 

obtained polytope of dimension 13. They are depicted in Figure 4 by blue 
solid lines and are indicated below by the vertices of the polytopes contained 
in them
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Figure 4. The polytope of dimension 13 with anti – parallel edges
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Other edges of the polytope of dimension 13 are not shown in Figure 4, 
so as not to ignite the figure. In the center of each parallelogram, indicated 
by its four vertices, is the origin of coordinates and the corresponding pair of 
coordinate axes (they are not shown). To identify the different hydrogen and 
oxygen atoms at vertices of polytope, they indicated by numbers in brackets 
at the lower indices.

It is surprising that the number of coordinate planes containing vertices 
is exactly equal to the number of possible compounds of nitrogenous bases 
12 (Spirin, 2019)

A U U AG C C G G U G AU U U C A A A C: , : , : , : , : , : , : , : , , .⋅ ⋅  

Since each coordinate plane designated by the vertices of the parallelograms 
has a specific atomic environment, it can be assumed that each of the 12 
possible compounds of nitrogenous bases is located on one particular coordinate 
plane out of 12 possible. This solves the question of the possible orientation 
of the bond of nitrogenous flat bases in nucleic acids using ideas about the 
high dimensionality of the constituent nucleic acids. It is also surprising that 
in order to create 13 – cross - polytopes, providing the connection with 
nitrogenous basesF F

i i
, / , nature specially created double - stranded nucleic 

acids with oppositely directed spirals. This is realized in DNA and RNA 
when creating regions with inverted helices.

In a variety of nucleic acid molecules, the issue of chain interaction is 
important. In ribosomes, RNA interacts with each other due to bivalent metal 
ions (mainly magnesium ions). Positively charged magnesium ions attract 
negative charges of phosphoric acid residues, ensuring the stability of the 
ribosomes. In double - stranded nucleic acids, the helices are connected 
to each other by means of nitrogenous bases complementarily interacting 
with each other by a hydrogen bond. However, the magnesium ions and 
nitrogen bases in nucleic acids could not be specifically located. It has been 
established that magnesium ions and flat nitrogenous bases can be located 
inside special polytopes of higher dimension. Here knowledge is needed of 
the higher dimension of phosphoric acid residues and sugar molecules. Such 
polytopes are polytopes with anti - parallel edges, i.e. cross - polytopes of 
higher dimension. Binding agents are located on the free coordinate planes 
of these polytopes in the vicinity the center of the polytope.

In this case, the two - dimensional coordinate plane on the boundary of the 
polytope should contain the objects to be joined. In the case of magnesium 
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ions, there are four specific coordinate planes inside the 5 – cross - polytope, 
in which an ion can accommodate, combining negative charges. In the case 
of nitrogenous bases, the existence of 12 coordinate planes inside a cross - 
polytope of dimension 13, in which flat nitrogenous bases can be located, 
connecting the helix of nucleic acids, was discovered. Exactly as much as 
there are options for combining nitrogenous bases. It is given, that each 
coordinate plane of these 12 planes has a specific environment of atoms. It 
should be assumed that only one of the 12 possible compounds of nitrogenous 
bases is placed in each of these planes. It is surprising that the existence of 
higher - dimensional polytopes with anti - parallel edges is possible only in 
the case of the opposite direction of interacting helices, and this is exactly 
what nature provides in the double - helix DNA and in the RNA segments 
with self - inversion of the helix in the opposite direction.

GENETIC CODE IN HIGHER DIMENSION SPACE

The evidence of the higher dimension of biomolecules and nucleic acid 
molecules requires clarification and revision of the adopted laws of the 
transfer of genetic information, taking into account the higher dimension 
of molecules and their components. According to this view, hereditary 
information is encoded in a double - stranded DNA molecule by a sequence 
of nucleotides, more precisely, by a sequence of nitrogen bases attached to 
five - carbon sugar molecules. The sequence of nitrogenous bases of one of 
the chains of the DNA molecule in the process of transcription (or rewriting) 
is repeated in the process of the synthesis of the chemically related polymer 
RNA (single - stranded molecule). The combination of nitrogenous bases 
located in different helices of a double-stranded DNA molecule occurs in 
accordance with the principle of complementarity A (adenine) - T (thymine), 
T (thymine) - A (adenine), G (guanine) - C (cytosine), C (cytosine) - G 
(guanine). The sequence of nucleotides in the DNA molecule encodes the 
sequence of amino acids created in the ribosome protein. But since the number 
of different amino acids is 20, and the number of different nucleotides is 4, it is 
necessary to translate the language of nucleotides into the language of amino 
acids when writing these sequences. The only way of such a translation is to 
assign an orderly combination of several nucleotides to a particular amino 
acid (Gamow, 1954; Gamow et. al., 1956; Crick et. al., 1957; Crick, 1958).

It has been proven experimentally that it is triplets of nucleotides in a chain 
of nucleic acids that solve this problem. These triplets became known as 
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codons. A table of these codons has been established, numbering 64 different 
triplets (Nirenberg et. al., 1963; Morgan et. al., 1966; Brenner et. al., 1961). 
Of the 64 codons, there are semantic codons, i.e. they encode one or another 
amino acid, and the 3 codons do not encode any of the known amino acids. 
The genetic code was thus highly degenerate: most amino acids are encoded 
by more than one codon (Spirin, 2019).

One of the most significant achievements in biology is the experimental 
decoding of the genetic code, i.e. establishing a specific nucleotide composition 
and sequence of nucleotide triplets for all 20 amino acids that make up proteins.

Taking into account the fact of formation in this chapter of dimension 13 
polytopes with antiparallel ribs as a result of the interaction of nitrogenous 
bases in double - stranded DNA, it can be said that each triplet distinguishes 
in this space a three - dimensional region bounded by coordinate planes on 
which are bound flat nitrogenous bases. Moreover, if the DNA molecule in 
the 12 - cross - polytope contains 4 coordinate planes corresponding to the 
standard compounds of nitrogenous bases A: T, T: A, G: C, C: T, then other 
of the 12 possible variants of the connection of nitrogenous bases can be 
found in messenger RNA (Spirin, 2019). The formation of the secondary 
structure of RNA due to paired interactions of adjacent regions of the same 
chain (Spirin, 2019) can be explained by the existence of nitrogenous bases 
in the nucleotide chain, located not in the region adjacent to the center of the 
helix, but in the peripheral region. This was shown in the previous sections 
of the chapter. Such arrangements of nitrogenous bases occur when the 
direction of rotation of the helix changes, in particular, due to the rotation 
of phosphoric acid residues (an object of dimension 4) around its internal 
degree of freedom (Zhizhin, 2019a, b).

The complementary interaction of nucleotides occurs in ribosomes 
during protein synthesis. Here, transport RNA and adapter RNA approach 
each other, and when a three - dimensional space is formed at the point of 
contact, surrounded by three coordinate planes containing the corresponding 
flat nitrogenous bases, the transfer of the corresponding amino acid to the 
protein chain occurs. It should be emphasized that the space in the ribosome 
and due to the presence of adapter RNA in it, and due to their crosslinking 
with divalent magnesium ions, has a sufficiently large dimension, which 
allows placing objects of higher dimensionality (amino acids and all protein 
chains, Zhizhin, 2016, 2017) in the ribosome. Note that, in accordance 
with the ideas of Riemann geometry, space is not infinite (Riemann, 1854). 
Therefore, a combination of objects of different dimensions, separated by a 
boundary, is possible.
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KEY TERMS AND DEFINITIONS

Deoxyribonucleic Acid: A biopolymer, the monomer of which is the 
nucleotide.

Dimension of the Space: The number of independent parameters needed 
to describe the change in position of an object in space.
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N-Cross-Polytope: A convex polytope of dimension n in which every 
two vertices opposite to the center of the polytope have no connection by an 
edges, and the remaining vertices joined by edges.

Nucleotide: A phosphoric acid residue attached to sugar deoxyribose, to 
which one of the four nitrogen bases is attached also.

Polytope: A polyhedron in the space of higher dimension.
Ribosome: The most important non-membrane organelle of a living cell, 

which serves for protein biosynthesis from amino acids in a given matrix 
based on genetic information provided by messenger RNA (mRNA).

Simplex: A convex polytope, any two vertices of which are joined by an 
edge.
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