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Preface

Functional analysis means analysis on function spaces. This is a field of mathematics
that developed in the first half of the 20th century thanks in particular to the work of
M. Frechet, S. Banach, and D. Hilbert. Examples of the efficiency of functional analysis
has been the introduction of Sobolev’s spaces (1935) and L. Schwartz’s invention of the
theory of distributions (1945-1950). These spaces have made great progress in solving
the problems of partial differential equations and provide the main tools still used
today in this field of both theoretical and numerical studies.

Classical analysis focuses on finite dimensional spaces on R or C. This is suitable,
for example, for solving linear differential equations. In order to solve more compli-
cated equations, like nonlinear differential equations, integral equations, and partial
differential equations, the solutions have to be sought a priori in vector spaces of an
infinite number of dimensions. The computation of explicit solutions is often out of
reach and one tries to describe the structure of these solutions by their belonging to
spaces adapted to the problem posed. The study of stability naturally leads to con-
sidering spaces with topologies defined by norms, semi-norms or distances. From a
purely mathematical point of view, functional analysis can also be seen as an exten-
sion to infinite dimensions of Euclidean geometry in finite dimensions. The transition
from finite dimension to infinite dimension is not always easy because we lose a part
of the geometric intuition. Whereas on a finite dimensional vector space there is only
one “reasonable” topology, on a space of infinite dimension we must often consider
several topologies simultaneously.

The main goal, in realizing this textbook, is to present a useful tool to junior re-
searchers and beginning graduate students of engineering and science courses in or-
der to acquire elementary knowledge and solid tools that are fundamental to the un-
derstanding of mathematics and the particular disciplines (geometry, probabilities,
partial differential equations) within physics, in mechanics, or in the applications of
mathematics to the analysis of large systems. It contains ten chapters, and each chap-
ter consists of results with their detailed proofs, numerous examples, and exercises
with solutions. Each chapter concludes with a section featuring advanced practical
problems with solutions followed by a section on notes and references, explaining its
context within existing literature. We will present here in a detailed way the contents
of each of them.

Chapter 1 is entirely devoted to the presentation of definitions and results neces-
sary for proceeding in this work. We first recall a few basic results on the linear, metric,
normed and Banach spaces and its properties. These are used in particular to intro-
duce the various concepts of weak solutions to PDEs. We will see regularly links and
relationships between function analysis and applications on PDEs. Chapter 2 is titled
Lebesgue integration. It is devoted to the study of measure and integration, Lebesgue
measurable functions and general measure spaces, where there are many proved re-
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sults. The purpose of Chapter 3 is to present results according to the L? spaces, which
contains, definitions, separability, duality and general L? spaces with its norms. The
results, presented in Chapter 4, concern linear operators, inverse operators in normed
linear spaces and their properties. Chapter 5 is titled Linear functionals; here we in-
troduce and treat the linear functionals in their general form and related the adjoint
operators. Chapter 6 is reserved for topological studies; it is followed by Chapter 7 ti-
tled Self-adjoint operators in Hilbert spaces. The method of the small parameter will
be the main subject of Chapter 8 and the parameter continuation method will be the
subject of Chapter 9.

So we realize that the fixed-point theorems are essential in the applications of
the function analysis. They are the basic mathematical tools in showing the exis-
tence of solutions in various kinds of equations. Fixed-point theory is at the heart
of nonlinear analysis and provides the necessary tools to study existence theorems
in many different nonlinear problems. The aim of Chapter 10 is the study of some
fixed-point theorems. We start with the simplest and best known of them: Banach’s
fixed-point theorem for contraction maps. Then we address the Brinciari fixed-point
theorem, which is a generalization of this theorem. We will then see more powerful
and somewhat deeper theorems. We can thus study successively the theorem of the
fixed point of Brouwer (valid in finite dimension) and then the theorem of the fixed
point of Schauder (which is the generalization in infinite dimension). Unlike Banach’s
theorem, the proofs of the latter two results are not constructive, which explains why
they require somewhat more sophisticated tools. Many different proofs of these re-
sults exist and one may be interested in one or more of them. We finish this chapter
by giving applications in many problems.

This is the first volume of a series of at least two volumes; the remainder of the
series will be prepared later.

Svetlin G. Georgiev
Khaled Zennir
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1 Vector, metric, normed and Banach spaces

1.1 Vector spaces

With F we will denote the field of real numbers R or the field of complex numbers C.

Definition 1.1. A vector space (also called a linear space) over the field F is a set E with

two operations:

1. Addition: Takes any two elements x and y and assigns for them a third element of
E, which is completely written as x + y and which is called the sum of these two
elements,

2. Scalar multiplication: Takes any scalar a of the field F and an element x of E and
gives another element a - x (shortly ax) of E.

These two operations satisfy the following axioms:
(L1) (Associativity of addition)

X+y+z2)=(x+y)+z

for any elements x,y,z € E.
(L2) (Commutativity of addition)

X+y=y+x

for any elements x,y € E.
(L3) (Identity element of addition) There exists an element O of E, called the zero ele-
ment, such that

x+0=x

for any x € E.
(L4) (Inverse elements of addition) For any x € E there exists an element —x € E, called
the additive inverse of x, such that

X+ (=x)=0.
(L5) (Compatibility of the scalar multiplication with field multiplication)
(ab)x = a(bx)

forany a,b € F and for any x € E.
(L6) (Distributivity of the scalar multiplication with respect to the addition of elements

of E)
ax+y)=ax+ay
foranya € F and for any x,y € E.

https://doi.org/10.1515/9783110657722-001
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2 — 1 Vector, metric, normed and Banach spaces

(L7) (Distributivity of scalar multiplication with respect to field addition)
(a+ b)x = ax + bx,

foranya, b € F and for any x € E.
(L8) 1-x =x, forany x € E.

The elements of E are commonly called vectors. The elements of F are commonly
called scalars. When the scalar field is the field of the real numbers R, then the vector
space E is called a real vector space. When the scalar field is the field of the complex
numbers C, we say that the vector space E is a complex vector space.

Below we will write x — y instead of x + (-y) for any x,y € E.

Example 1.1 (The space m of bounded number sequences). With m we will denote
the set of bounded number sequences x = {¢};cy implying that for every x € m there
exists a positive constant K, such that || < K, for any ! € N. For x = {{};cy € mand
¥ = {Ni}iexy € M, and a € F, we define addition as follows:

x+y ={§ + Mhens (1.1
and scalar multiplication by
ax = {aé}}ien- (1.2)

These operations are well defined. In fact, let x = {&};en, ¥ = {1}ien € mand a € F be
arbitrarily chosen and fixed. Then there exist constants K, and K, such that

I§l <K, and gl <K, for any leN.
Hence,
& +ml < 1&gl +Iml <K, +K, for any leN,
i.e., x +y € m. Also, we have
lag)| = lall§] < lalK,,

i. e., ax € m. Consequently the operations (1.1) and (1.2) are well defined. We will prove
that m is a vector space over F. Suppose that a,b € Fand x = {{}ien, ¥ = (Mihiens
z = {{}};en € m be arbitrarily chosen and fixed.

1. Because

G+m+§{) =(+n)+§ for any leN,
we have

x+y+z)=x+y)+z
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1.1 Vector spaces =—— 3

2. Since
L+m=m+¢& for any leN,
we have
X+y=y+x
3. LetO = {0};cy. Then 0 ¢ mand
X+ 0 ={§}hen + {Ohen = {8 + Ohien = {§1}1en = x.
4. We define —x = {-¢}};cn. Then
X+ (=x) = {§ + (-§}en = {Ohen =
5. We have
(ab)é; =a(bé) for any leN.
Then

(ab)x = {(ab)éi}iey = {a(bé))} ey = albéihien = a(biéhien) = a(bX).

6. We have
a(x +y) = a{§ + nihen = {a(§ + mhey = @&y + anghien
= {a&ihen +{anthien = dléhien + alnihien = ax + ay.
7. We have
(a+b)x =(a+b){&}en = {(@+ b))}y = (aé) + béhien
={adhien + {b&hien = al§ihien + bi§ihien = ax + bx.
8. We have

x={1-§hen = {§thien = x.

Example 1.2 (The space c of convergent number sequences). By ¢ we will denote the
set of all convergent number sequences. For x = {&}ien, ¥ = {Mihieny € €and a € F we
define the operations addition

x+y ={&§ + Nihen (1.3)

and scalar multiplication

ax = {ag}ien- (1.4)
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4 — 1 Vector, metric, normed and Banach spaces

These operations are well defined. In fact, let x = {§{};,c,y € candy = {n;};eny € € be
arbitrarily chosen. Then there exist &, 71 € F such that

limé§=¢ and limn =n.
l—00 -0
Hence,
§+n = lm(G+mn),
whereupon we conclude that x + y € c. Also,
aé = llim (a&§), acekF.

Therefore ax € cfor a € F. Consequently the operations (1.3) and (1.4) are well defined.
Now we will prove that c is a vector space. Take x = {{};cn € €, ¥ = {;}1en € € and

z = {{}}en € € arbitrarily.

1. Since

G+m+=E+m)+§ leN,
we conclude that
xX+(y+z)=x+y)+z.
2. Since
§g+m=m+§, leN,
we get
X+y=y+x.
3. Let O = {0};cn. Then O is the zero element in c. In fact, we have
X +0={§ +O0}en = {§1}1en = X
4. We define —x = {—{j};cn. Note that x € cand
X+ (%) = {§hen + {=&hen = 1§ + (=& }ien = {Oien:
5. Since for any a, b € F we have
(ab)é; = a(bé), 1eN,
we conclude that

(ab)x = a(bx).
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1.1 Vector spaces = 5

6. Foranya € F we have

a(x +y) = a{&§; + nihien = {a§; + amhien = {ahien + {anhien

= a{é}en + alnhien = ax + ay.

7. Foranya,b ¢ F we have

(a+b)x = (a+b){&}en = {(@+ b}y = (aé + bé}ien
={adlien + bSthien = al§ihien + b§ihien = ax + bx.

8. We have
1-x={1- 'fl}leN = {gl}leN =X.

Example 1.3 (The space M[0, 1] of bounded real functions). Consider the set M[0, 1] of
all bounded functions defined on [0,1]. Let f,g € M[0,1] and a € F be arbitrarily
chosen. We define addition in M[0, 1] as follows:

f+8)0)=f(x)+gx) for any xe€[0,1].
We define scalar multiplication in M[0, 1] as follows:
(af)(x) = a(f(x)) for any x € [0,1].

Firstly, we will prove that the operations addition and scalar multiplication are well
defined in M[0, 1]. In fact, let f,g € M[0, 1] and a € F be arbitrarily chosen. Then there
exist positive constants [; and [, such that

f)| <l and |gx)|<l, for any xe€[0,1].
Hence,

|laf ()| < lall;,
lag(0)| < lall,,
[foO +g)| < [f(0)] +|gx)| < + 1
for any x € [0,1].
Now we will prove that M[0, 1] is a vector space. Let f, g, h € M[0, 1] be arbitrarily

chosen.
1. Letx € [0,1] be arbitrarily chosen and fixed. Then f(x), g(x), h(x) € F. Hence,

)+ (g() + h(x)) = (f(x) + g(x)) + h(x). (1.5)

Because x € [0,1] was arbitrarily chosen, we conclude that (1.5) holds for any
x € [0,1].
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Let x € [0,1] be arbitrarily chosen and fixed. Then f(x), g(x) € F. Hence,

fOO) +8(x) =gx) +f(x). (1.6)
Because x € [0,1] was arbitrarily chosen, we conclude that (1.6) holds for any
x € [0,1].
Define

ox)=0
for any x € [0,1]. Let x € [0, 1] be arbitrarily chosen and fixed. Then f(x) € F and
0 +f(x) =f0). (1.7)

Because x € [0, 1] was arbitrarily chosen, we see that (1.7) holds for every x € F.
Define

-H(x) = =(f(x))

for any x € [0,1]. Let x € [0,1] be arbitrarily chosen and fixed. Then f(x) € F and
—f(x) € F. Hence,

fo) +(-f(x)) =0. (1.8)

Because x € [0, 1] was arbitrarily chosen, we see that (1.8) holds for any x € [0, 1].
Let x € [0,1] and a, b € F be arbitrarily chosen and fixed. Let also, a, b € F. Then
f(x) e Fand

(ab)f (x) = a(bf (x)). (1.9)
Because x € [0,1] was arbitrarily chosen, we conclude that (1.9) holds for every

x € [0,1].
Let x € [0,1] and a € F be arbitrarily chosen and fixed. Then f(x),g(x) € F and

a(f(x) +g(x)) = af (x) + ag(x). (1.10)

Because x € [0, 1] was arbitrarily chosen, we see that (1.10) holds for any x € [0, 1].
Let x € [0,1] be arbitrarily chosen and fixed. Let also, a, b € F. Then f(x) € F and

(a + b)f (x) = af (x) + bf (x). (1.11)

Because x € [0, 1] was arbitrarily chosen, we conclude that (1.11) holds for every
x € [0,1].
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8. Letx € [0,1] be arbitrarily chosen and fixed. Then f(x) € F and

1-f(x) = f(0). (1.12)

Because x € [0,1] was arbitrarily chosen, we conclude that (1.12) holds for any
x € [0,1].

Exercise 1.1. Let E, be the set of all n-tuple of elements of F. In E,, we introduce the
operations addition

X+y =G+ 6n + M),
forx = (&,...,¢,),y = (M, ..., n,) € E,, and scalar multiplication,
ax = (aé;,...,a&,) for aecF and x=(&,...,&) €E,

Prove that E,, is a vector space. The space E,, will be called the n-dimensional Euclidean
space.

Exercise 1.2. With C[0, 1] we will denote the set of all continuous functions defined
on [0, 1]. Prove that C[0, 1] is a vector space.

Exercise 1.3. With s we will denote the set of all sequences of elements of F. Prove that
s is a vector space.

Below by E we will denote a vector space.
Corollary 1.1. The zero element is unique.

Proof. Suppose that there are two zero elements 0, and 0, in E. Then
0,+0,=0, and 0,+0;=0;.
Since E is a vector space we have
0;+0,=0,+0;.
Therefore
0, =0,,

which completes the proof. O
Corollary 1.2. Let x € E be arbitrarily chosen. Ify € Eis such thatx+y = O, theny = —x.
Proof. We have

X+(y+(x)=x+y)+(-x) =0+ (-x) = —x
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8 —— 1 Vector, metric, normed and Banach spaces

and
X+y+(x)=x+((0)+y)=(x+(—x)+y=0+y =Y.

Therefore y = —x, which completes the proof.

Corollary 1.3. For every x € E we have
0-x=0.
Proof. We have
x=1-x=1+0)x=1-x+0-x=x+0-x.
Hence,

X+(=xX)=(x+0-x)+(—x)=x+(0-x+(-x)) =x + ((-x) + 0 - x)
=(Xx+(-x))+0-x=0+0-x=0-x.

Because x + (—x) = 0, we conclude O = O - x. This completes the proof.

Corollary 1.4. Forevery x € E we have
(-1)-x = —x.
Proof. Using Corollary 1.3, we have
(-Dx+x=(-1)-x+1-x=(-1+1)-x=0-x=0.

Hence, by Corollary 1.2, we obtain (-1) - x = —x. This completes the proof.
Corollary 1.5. Ifx € E,x + 0, and ax = bx, a,b € F, thena = b.
Proof. From ax = bx and bx — bx = 0, we get

0=ax-bx = (a-b)x.
Assume that a # b. Then

1 1

=—((a-bx)= ——0=0,
X a—b((a ) a-b

which is a contradiction. This completes the proof.

Corollary 1.6. Ifa € F,a # 0,and ax = ay, x,y € E, thenx = y.
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1.1 Vector spaces =—— 9

Proof. We have
ax-ay=ay-ay =0,
whereupon
alx-y)=0.
Hence, using a # 0, we obtain
x-y=(a-y)=10=0.
Therefore x = y, which completes the proof. O

Definition 1.2. The elements x;, ..., x,, of the vector space E are said to be linearly in-
dependent, if any relation

a;x; +---+ayx, =0,
implies thata; =--- = a, = 0.

Definition 1.3. The elements x;, ..., x,, of the vector space E are said to be linearly de-
pendent, if the relation

a;x;+---+ayx, =0,
is possible with at least one of the coefficients qy, ..., a,, is not zero.
Example 1.4. Consider E; and
x =011, %=0222), x=(-3,-3,-3).
Then
X1 +X+x3=0.

Here a; = a, = a; = 1. Therefore the elements x;, x, and x; are linearly dependent in
E.

Example 1.5. Consider the set E[a, b] of all real-valued functions defined on [a, b] and
its elements

L, x, ..., x! peN
Assume that there are constants by, ...,b,_; € F such that
bg+bx+---+ bp_lx‘”_1 =0 in [a,b], (1.13)

and (b, ...,b,_;) # (0,...,0). Hence, equation (1.13) could hold for at most p—1values
of x, whereas it must hold for all x € [a, b]. Therefore the elements 1,...,x" ! of E[a, b]
are linearly independent.

EBSCChost - printed on 2/10/2023 3:54 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



10 —— 1 Vector, metric, normed and Banach spaces

Example 1.6. Consider the set E[a, b] and its elements
0 and sinx.
Then
1-0+0-sinx=0 for all xe€]la,b].

Here a; = 1and a, = 0. Therefore 0 and sin x are linearly dependent.
Exercise 1.4. Consider the set E[a, b]. Prove that e* and e* are linearly independent.

Definition 1.4. The vector space E will be called m-dimensional if in it there are m
linearly independent elements and every m + 1 its elements are linearly dependent.
The dimension of the vector space E will be denoted by dim(E).

Example 1.7. Consider E,,,. Let

X =(1,0,...,0),
X2:(0,1,...,O),
Xy = (0,0,...,1).

Assume that there are a; € F, i € {1,...,m}, such that ", a;x; = 0. Then
(ag,...,ap) =(0,...,0),

whereupon a; = 0, i € {1,...,m}. Therefore x;,...,Xx,, are linearly independent. Let
now

V1=t Ym)

m+1 m+l)

Ym+1:(y1 seo o ¥m

be arbitrarily chosen elements of E,,. Since

1 m+1
rank| : : <m,
1 m+1
Ym - Y

we see that y,,...,y,,,; are linearly dependent. Therefore E,, is m-dimensional.
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Example 1.8. Let n € N. With P" we will denote the set of all polynomials of degree n
with coefficients which are elements of the field F. Consider 1, ¢,..., t". Assume that
therearea; € F,i € {1,...,n+ 1}, such that

n+1 X
Z ait™' =0 for all teR. (1.14)
i=1

Because (1.14) has at most n solutions with respect to t, we conclude that (1.14) holds if
a;=0,i€{l,...,n+1}. Therefore 1, t,..., t" are linearly independent. Let now p; € P",
ie{l,...,n+2}, bearbitrarily chosen and

n+l . .
_ i j— i
p;(t) = 'E1 ajt » o€ F,
]:

iefl,...,n+2},je{l,...,n+1}. Assume that there are b; € F,i € {1,...,n+ 2}, such
that

n+2
Y bpi(t)=0 for all teR.

i=1

Hence,
n+2 .
Y baj=0, jefl,...,n+1}. (1.15)
i=1
Since
1 1
a .
rank : : : <n+1,
n+2 n+2
o Y

we conclude that (1.15) holds if b; + O for some i € {1,...,n + 2}. Therefore every n + 2
elements of P" are linearly dependent. Hence, dim(P") = n + 1.

Exercise 1.5. Let m € N. With M, we will denote the set of all m x m matrices whose
entries are elements of F. Prove that M,, is a vector space and dim(M,,) = m?.

Definition 1.5. Let E be a vector space with dim(E) = m. Then every system of m lin-
early independent elements of E will be called a basis of E.

Theorem 1.1. Let E be a vector space with dim(E) = mand {e,, ..., e,,} be its basis. Then
every x € E can be represented in a unique way in the form

X=oe+ - +anen, o €F, ie{l,...,mh (1.16)
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Proof. Since ey,...,e,, x are linearly dependent, there are &; € F,i € {1,...,m + 1},
such that

5(161 + e+ dmem + dm+1X = 0, (&1, cee ,dm+1) :ﬁ (0, ey O).
Assume that a,, ; = 0. Then
e+ o+ &pe, =0, (&,....&,) #(0,...,0),

which is a contradiction because {e;, . . ., e,,} is a basis in E. Therefore &,,,; # 0. Hence,

a a
X=-—1te—-—Te..
A1 A1
Weset a; = —ai, i €{1,...,m}, and we get the representation (1.16). Now we assume
m+1

that
x=pe;+-+PBuem PicF, ie{l,....m}
Then, using (1.16), we obtain
0= (ay—Br)ey ++ -+ @y — Bm)em

Since {e;, ..., e,} is a basis in E, from the last equality we conclude that o; = §;, 1 €
{1,..., m}. This completes the proof. O

Definition 1.6. A vector space E is infinite-dimensional if for every natural n there is a
system of n linearly independent elements in E.

Example 1.9. Consider C([a, b]). Because for every n € N the elements
1, t .., t"

is linearly independent, we conclude that C([a, b]) is an infinite-dimensional vector
space.

Exercise 1.6. Let k ¢ N be arbitrarily chosen. Prove that Ck([a,b]) is an infinite-
dimensional vector space.

Definition 1.7. Let E be a vector space. Suppose that V € E. If V is a vector space itself
with the same vector space operations as E has, then V is called a linear subspace of E.

Theorem 1.2. Let E be a m-dimensional vector space and V be its linear subspace. Then
dim(V) < m.

Proof. Suppose that dim(V) > m. Then there are dim(V) linearly independent ele-
mentsin V. Since Vis alinear subspace of E, we conclude that in E there are dim(V) lin-
early independent elements, which is a contradiction. This completes the proof. [
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Theorem 1.3. Let E be a vector space and V be a subset of E. Then V is a nonempty
linear subspace if and only if V satisfies the following properties.

1. 0€V,

2. ifx,yeV,thenx+yelV,

3. ifxeVandaeF,thenax € V.

Proof.

1. Let V satisfies (1), (2) and (3). By (1) it follows that V is nonempty. The properties
(2) and (3) ensure closure of V under addition and scalar multiplication. Since the
elements of V are necessarily elements of E, the axioms (L1), (L2), (L3), (L5), (L6),
(L7) and (L8) are satisfied. By the closure of V under scalar multiplication and
Corollary 1.4, it follows that —x = (-1)-x € Vand x + (-x) = O forevery x € V,i.e.,
the axiom (L4) is satisfied.

2. LetVbeanonempty linear subspace of E. Then V is itself a vector space under the
operations induced by E. So, the properties (2) and (3) are satisfied. By property (3)
and Corollary 1.4, we have —x € V for every x € V. Hence, it follows that V is closed
under subtraction as well. Because V is nonempty, there is an element x € V. For
this we have x — x = 0 € V, i.e., the property (1) is satisfied. This completes the
proof. O

Theorem 1.4. Let E be a vector space and V be its nonempty subset. Then V is a linear
subspace of E if and only if every linear combination of finitely many elements of V also
belongs to V.

Proof.
1. LetVbeasubspace. Then the properties (1), (2) and (3) of Theorem 1.3 are satisfied.
Letx;,....x; € Vand a;,...,q; € F be arbitrarily chosen. Then, by the property
(3) of Theorem 1.3, it follows that
ax; eV for any lefl,... .k}
Hence, by the property (2) of Theorem 1.3, it follows that
axy +ayx; e V.
Again, by the property (2) of Theorem 1.3, it follows that
Xy + Xy + asxs € V.

And so on,

axy+ -+ apxg € V.
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2. Let Vis closed under linear combination of finitely many its elements. Then, if
x,y € Vand a € F be arbitrarily chosen, we get

x+yeV and axeV,

i.e., the properties (2) and (3) of Theorem 1.3 are satisfied. Now, using the same
arguments as in the second part of the proof of Theorem 1.3, we conclude that the
property (1) of Theorem 1.3 is satisfied. This completes the proof. O

Definition 1.8. Let E be a vector space and x;, ..., X; € E. The set
Span{x;,....x} ={apx; +--+qx aq € Fle{1,... k}}

will be called the span of the elements x;, ..., x;.

Theorem 1.5. Let E be a vector space and xi, ... ., x; be its elements. Then Span{x;,...,
Xi} 1s a linear subspace of E.

Proof. Note that 0 € Span{x;,...,x;} because
0 =0xq + -+ 0x; € Span{x;, ..., xi}.
Let
X=X+ +aqX, Y=bxi+---+bx, a,beF, le{l,... Kk}
Then, for any a, b € F, we have aqa;, bb; e F, 1 € {1,...,k}, and

ax + by = aa;x; + - -- + aqix; + bbyx; + - - + bbyx;

= (aay + bby)x, +--- + (aay + bby)x; € Span{xy, ..., x;}.

Also, ax € Span{x,...,x}. Hence, by Theorem 1.3, it follows that Span{x;,...,x;}is a
linear subspace. This completes the proof. O

Theorem 1.6. The intersection of any collection of linear subspaces of a vector space E
is a linear subspace of E.

Proof. Let {A,},c4 be a collection of linear subspaces of the vector space E. Here A is
an index set. We set

B=[]A,

ne A

Since 0 € A, for any n € A, we see that 0 € B. Let x,y € Band a,b ¢ F be arbitrarily
chosen. Then x,y € A, for any n € A. Because A, n € A, are linear subspaces of E,
we conclude that ax + by, ax € A, for any n € A. Therefore ax + by, ax € B. Hence, by
Theorem 1.3, we see that B is a linear subspace of E. This completes the proof. O
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Definition 1.9. Suppose that E is a vector space and S is its subset. There exist linear
subspaces A,, containing the set S. For example, the space E is a such subspace. By
B we will denote the intersection of any linear subspaces containing the set S. Then
B contains S and it is the smallest such linear subspace. The subspace B is called the
linear subspace spanned by S or the span of S.

Theorem 1.7. IfSis any set of elements in a vector space E and if Bis the linear subspace
spanned by S, then B is the same as the set of all linear combinations of elements of S.

Proof. Let C be the set of all linear combinations of elements of S. Note that C is a
linear subspace containing S. Therefore

BcC (1.17)

On the other hand, since B is spanned by S it must contain all linear combinations of
elements of S. Consequently

CcB.

From the last inclusion and from (1.17), we conclude that B = C. This completes the
proof. O

Theorem 1.8. Let A and B be linear subspaces of a vector space E and C be the linear
subspace spanned by A and B together. Then C is the same as the set of all elements of
the formx +y withx e Aandy € B.

Proof. Let D be the set of all elements of the form x + y, x € Aand y € B. Then
Cch. (1.18)

Since C is spanned by A and B together it must contain all elements of the form x + y,
x € A and y € B. Therefore

DcC.

From the last inclusion and from (1.18), we conclude that C = D. This completes the
proof. O

Prompted by Theorem 1.8, we shall use the notation A + B for the linear subspace
C spanned by the linear subspaces A and B together.

Definition 1.10. We will say that a linear subspace A of a vector space E is a comple-
ment of a linear subspace B of E if

AnB={0} and A+B=E
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Example 1.10. Let A and B be finite-dimensional linear subspaces of the same dimen-
sion. Suppose that A ¢ B. We will prove that A = B. In fact, let dim(A) = dim(B) = m.
Then there are m linearly independent elements of A, {x;,...,x,,}. Since A ¢ B, we
see that {x;, ..., x,,,} are linearly independent elements of B. Hence, using dim(B) = m,
we conclude that every element of B is a linear combination of {x;,...,x,,}. Therefore
B ¢ A, which completes the proof.

Exercise 1.7. Letx;, x, and x3 be elements of the vector space E for which x; +x,+x5 = 0.
Prove that x; and x, span the same linear subspace as x, and x;.

Exercise 1.8. A polynomial y is called even if y(-x) = y(x) identically in x and odd if

y(—x) = -y(x) identically in x.

1. Prove that the sets P, and P44 of even and odd polynomials, respectively, are
linear subspaces of the space P of all polynomials with coefficients in F.

2. Prove that P, and P44 are each other’s complements.

Definition 1.11. Two vector spaces U and V, over the same field F, are called isomor-
phic if there is a one-to-one correspondence between the elements x of U and the ele-
ments y of V, say y = T(x), such that

T(axy + ayxy) = a;T(x7) + a,T(x,)

for any a;,a, € F and any x;,x, € U. In other words, U and V are isomorphic if there
is an isomorphism between them, where an isomorphism is a one-to-one correspon-
dence that preserves all linear relations.

Theorem 1.9. LetUand V bevector spaces that are isomorphic and T is an isomorphism
between them, T(x) = y,x € U,y € V. Then T(0) = 0.

Proof. For x € Uwe have
TO)=T(x-x)=Tx)-Tx) =0,

which completes the proof. O

Theorem 1.10. Let U and V be vector spaces that are isomorphic and T is an isomor-

phism between them, T(x) =y, x € U,y € V.

1. If{x,...,x,} are linearly dependent, then {T(x;), ..., T(x,)} are linearly dependent.

2. If{x;,...,x,} are linearly independent, then {T(x,), ..., T(x,)} are linearly indepen-
dent.

Proof.
1. Since {xi,...,x,} are linearly dependent elements of U, there are constants a;, ...,
a, € F such that

X+ + X, =0, (ag,...,ay) #(0,...,0).
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Hence,
0=T(ax;+---+apx,) = T(x)) +--- + a,T(xy).

Therefore {T(x;),..., T(x,)} are linearly dependent elements of V.

2. Let {xq,...,x,} be linearly independent elements of U. Assume that {T(xy),...,
T(x,)} are linearly dependent elements of V. Then there are a;,...,a, € F,
(ag,...,ay) #(0,...,0), such that

o, T(x))+ - +a,T(x,) =0.
Hence,
T(ayxg + -+ apx,) = 0.
Therefore, using Theorem 1.9, we get
axy+ -+ ayx, =0,
which is a contradiction. This completes the proof. 0

Corollary 1.7. Let U and V be finite-dimensional vector spaces that are isomorphic.
Then dim(U) = dim(V).

Theorem 1.11. Every n-dimensional vector space U over the field F is isomorphic to E,,.

Proof. Let {x;,...,x,} be any basis in U. Then every x € U can be represented in the
form

X:€1X1+"'+‘{nxn’

where ¢; € F, i € {1,...,n}, are uniquely determined by x. We consider the one-to-one
correspondence

X (&0 8)
between Uand E,,. If
y=mxi++n%, meF, lefl,...,n},
then for any a, b € F we have

ax + by = a(&§x; + -+ + §xn) + b(yxy + -+ + NpXy)

= (a& + bn)xy +--- + (a&, + bny)x,,

this establishes the desired isomorphism. O
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Theorem 1.12. Let U and V be n-dimensional vector spaces. Then they are isomorphic.

Proof. By Theorem 1.11 it follows that there exist isomorphisms T; and T, between U
and E, and E,, and V, respectively. Then T, - T} is an isomorphism between U and V,
which completes the proof. O

Definition 1.12. A linear functional on a vector space E is a scalar-valued function y
defined for every element x € E with the property
y(axy + ayxy) = a1y(x;) + ay(x;)

for any a;,a, € F and any x;,x, € E. The space of all linear functionals on E will be
denoted by E'. We define the zero in E' as follows: y(x) = O for any x € E.If y, and y,
are two linear functionals on E and if a;, a, € F, then a,y; + a,y, is a linear functional
on E. With these concepts (zero, addition, scalar multiplication), the set E’ forms a
vector space, the dual space of E.

Example 1.11. Consider E,.. Let ay,...,a,,8 € F,  # 0, be fixed. Forany x € E,, x =
(&5 -.,&,), we define the scalar-valued function

)/(X) = al'fl +-- +an{n +ﬂ~
Ifx, = (.{11, . .,{,1), X, = ({12, e é,’,f) € E, and a;, a, € F be arbitrarily chosen, then
1 1
axy = (ady,..., a1y),
2 2
ax, = (ad, ..., aé,),
1 2 1 2
alxl + (12X2 = (a1£1 + (12{1 yeees alé'n + azgn),
1 1
ayx) = aoé) +- -+ 0,8, + aip,
2 2
Ay 00) = oyd; + -+ Aendy + AP,

y(ayx + ayx;) = 0‘1(‘115(11 + azflz) Tt an(al'fr{ + aZ'fr%) +B.

Since a;f + a,B # B unless a; + a, = 1, we conclude that y is not a linear functional on
E

ne

Example 1.12. Consider C over R. For every x = a +ib € C, a,b € R, we define the
scalar-valued function y as follows:

y(x) = a.
Let
X;=a,+ib;, x,=a,+ib,, a;,a,b;,b,€R, a4, €R
be arbitrarily chosen. Then

ay0a) =aa;,  ay0) = aa,,
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Xy + axy = (ay + Aray) + i(ayb, + ayb,),
y(@x; + ax;) = aqa; + a4, = aqy(x;) + Y (X,).
Consequently y is a linear functional on C.

Exercise 1.9. Consider C. Forx = a +ib € C, a,b € R, we define the scalar-valued
function y as follows:

y(x) = Va? + b%.
Check if y is a linear functional on C.

Answer. No.

Definition 1.13. Suppose that E is a vector space and E’ is its dual space. We make
correspond [x,y], x € E,y € E, to be the value of y at x. In terms of the symbol [x, y]
the defining property of a linear functional is

[a;x; + ayxy, y] = ai[x1, Y] + ay[x5,y]
and the definition of the linear operations for linear functionals is

[x, aryy + agysl = a1l y1] + @y, y,).

The two relations together are expressed by saying that [x, y] is a bilinear functional
of the elements x ¢ Eand y ¢ E'.

Theorem 1.13. Let E be a n-dimensional vector space and {x;, ..., x,} is its basis. Let
also, {a,, ..., a,} be a set of n scalars. Then there exists a unique linear functional y such
that [x;,y] = a;,1 € {1,...,n}

Proof. For any x € E and any linear functional y € E’' we have
x=&x+---+&x, and [x,y] =&x,yl+--+&xnyl, §€F, le{l,....n}.

We define a linear functional y such that [x;,y] = a;, i € {1,...,n}. Then the value of
[x,¥] is determined by

V] = a1é) + -+ apéy.
Suppose that there are two linear functionals y and y such that
X,y = XYl =a;, ie{l,...,n.
Then y - y is a linear functional and

]1=0.

<n

[X>)7_

Therefore y = y. This completes the proof. O
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Theorem 1.14. Let E be a vector space with a basis {x,,...,x,}. Then there exists a
uniquely determined basis in E', {y,,...,y,}, such that [x;,y;] = 6, 1,j € {L,...,n}. Here
6ij = 1lfl:]and51] = Olfl:/:}, l,} € {1,...,n}.

Proof. By Theorem 1.13, it follows that there are uniquely determined functionals
{y1,-..,yn} such that [x;, y;] = 6;, i,j € {1,...,n}. We will prove that {y,, ..., y,} is a basis
in E'. Suppose that

@y +-+ Y, =0
for some a; € F,i € {1,...,n}. Then for any x € E we have
ay, +--+agy, = a1yl + -+ aulx,y,] = 0.

In particular, if x = x;, i € {1,...,n}, we get
n n
[Xi’ a)y,+---+ anyn] = Z a}- [Xi>yj] = Z 0]51] =4a; ie {1, AN n}.
j=1 j=1

Therefore a; = 0,1 € {1,...,n}, and hence, {y;,...,y,} are linearly independent. Let
y € E' be arbitrarily chosen. We set [x;,y] = ;,i € {1,...,n},and let x = ¥ &x;. Then

[x,y] = [Zfixz'd’] = Z‘fi[xi’Y] = Zaifi-
i=1 i=1 i=1

On the other hand,

n

[xy;] = [Zfixix)’j] = Zfi[xir)’;] = Zfi‘si;‘ =¢, jefl,....,nh
i=1 i=1

i=1

Therefore
n n
oyl =Y aloy] = |:X:zai}/i:|-
i=1 i=1
Consequently y = Y1, a;y; and the proof of the theorem is complete. O

Theorem 1.15. Let E be a n-dimensional vector space. Then, for any x € E, x # 0, there
corresponds any € E' such that [x,y] # O.

Proof. Let{xy,...,x,}beabasisin E. Then, using Theorem 1.14, there exists a uniquely
determined basis in E', {y;,...,y,}. If x = YiL; &x; € E, then [x,y;] = &,j € {1,...,n}.
Hence, if [x,y] = O for any y € E/, then § =0,j €{1,...,n}, and hence x = 0, which
completes the proof. O
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Definition 1.14. If U and V be vector spaces over the same field, their direct sum is the
vector space W, denoted by U & V, whose elements are all ordered pairs (x,z) with
x € Uand z € V, with linear operations defined by

al <X1,Zl> + (12()(2,2'2) = <a1X1 + a2X2, alzl + a222>.

Consider W = Ua V. The set of all elements of the form (u, 0) is a linear subspace
of W. The correspondence (u, 0) — u shows that this linear subspace is isomorphic
to U. It is convenient to identify u and (u, 0), to speak of U as a linear subspace of W.
Similarly, the elements v € V may be identified with the elements of the form (0, v)
in W. In the case in which U and V have no non-zero elements in common, we could
have defined the direct sum of U and V as the set consisting ofallu ¢ Uand allv € V,
and all those pairs (u, v) for whichu # O and v # 0.

Theorem 1.16. IfU and V are linear subspaces of the vector space E, then the following

three conditions are equivalent:

1. E=UaV,

2. UnV={0}andU+V =E,

3. Everyelement z ¢ W may be written in the formz = u + v, withu e Uandv € V, in
one and only one way.

Proof.
1 = 2. We assume that E = U@ V. Suppose that z = (u,v) € U,z = (u,v) € V. Then
u =v =0and z = 0. Therefore Un V = {0}. Since the representation

z =(u,0) +{0,v)

is valid for every z, it follows that U + V = E.
2 = 3. We assume 2. Then for every element z € E we have the representation

Z=Uu+V.
Assume that z = u; + v; foru; e Uand v; € V. Then
U+v=u +Vvy,
whereupon
U-U =V, —V.
Since U and V are vector spaces, we have u — u; € Uand v; — v € V. Hence,

u-u;=0=vi-v or u=u; V=v.
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3 = 1. We form the direct sum U & V and then identify (u, 0) and (0, v) with u and v,
respectively. We committed to identifying the sum

(U, v) = {u,0) + (0, v)

with what we have assuming to be the general element z = u + v of E. From the
hypothesis that the representation of z in the form u + v is unique, we conclude
that the correspondence between (u, 0) and u, also between (0, v) and v, is one-
to-one. This completes the proof. B

Theorem 1.17. Let U and V be vector spaces with dim(U) = m and dim(V) = n. Then
dim(UeV)=m+n.

Proof. Let{xy,...,x,,} beabasisin Uand {y;,...,y,} be abasis in V. Consider the set

{Xl,...,xmyy]w")yn}‘

By Theorem 1.16, assertion (3), it follows that every element z € U & V can be repre-
sented in a unique way in the formu + v, u € U,v € V.Sinceu € Uand v € V, we
have

U=apxq+ -+ Xy, V=Dbyp+--+bpy,, a;,b;€F,
iefl,...,m},je{l,...,n}. Hence,
Z=U+V =X+ + QX + b1y + - + Dpyp.
Consider
Xy + o+ Xy + By + o+ By = 0.
The uniqueness of the representation of O in the form of u + v implies that
Xy + ot WXy = Py + o+ By = 0,

and hence the linear independence of {x;,...,x,,} and the linear independence of
{¥1,...,y,} imply that

==y =p=--=B,=0.

Consequently {xi,...,Xp¥1,...,Y,} are linearly independent. This completes the
proof. O

Theorem 1.18. IfE is a finite-dimensional vector space and if {y,,...,y} is any set of
linearly independent elements of E, then unless y’s already form a basis. We can find
elements yp.1, - .., Ymp SO that the totality of the y, that is,

D’l)'-~’Ym>)/m+1>~-~’Ym+p}»

is a basis.
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Proof. Let {xi,...,x,} be a basis in E. Consider the set

S= {y1>---,ym;xl,...,xn},

Since y’s are linear combination of x’s, the set S is linearly dependent. Hence, some
element of S is a linear combination of the preceding ones. Because {y;,...,y,,} are
linearly independent, this element may be different from y’s. Let this element is x;. We
consider

!
S =i Yo X Xic Xis 1o - - > X}

If §' is linearly independent, then we are done. If it is not, we act as above while we
reach a linearly independent set containing y;,...,y,,, in terms of which we may ex-
press every element in E. This completes the proof. O

Theorem 1.19. Let E be an n + m-dimensional vector space and U be its n-dimensional
linear subspace of E. Then there exists an m-dimensional linear subspace V of E such
thatE=Ua V.

Proof. Let {xq,...,x,} be a basis in U. Because E is m + n-dimensional vector space,
using Theorem 1.18, there is a set {y;,...,y,,} such that {x;,...,x,,¥1,...,¥,,} is a basis
of E. Let V be spanned by {y;,...,¥,,}. Then E = U @ V. This completes the proof. O

Definition 1.15. Assume that A and B be two nonempty sets. The Cartesian product of
A with B, denoted by A x B, is defined to be the collection of all ordered pairs (a, b),
where a € A and b € B. We consider (a, b) = (a’.b") ifand onlyifa = a’ and b = b'. For
anonempty set X, we call a subset R of X x X a relation on X and write xRx’ provided
(x,x") € R. The relation R is said to be

1. reflexive provided xRx for all x € X,

2. symmetric provided xRx’ if x'Rx,

3. transitive provided whenever xRx’ and x'Rx", we have xRx"'.

A relation R on a set X is called an equivalence relation provided it is reflexive, sym-
metric, and transitive. Sometimes, an equivalence relation is denoted by ~.

Definition 1.16. Let E be a vector space and V be its linear subspace. We define an
equivalence relation ~ on E by stating that x ~ y if x — y € V. The equivalence class of
x is often denoted by

[x] =x+V.

We have

[xX]={x+y:y eV}
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The quotient space E/V is often denoted as E/ ~ and defined as the set of all classes
over E by ~. Scalar multiplication and addition are defined on the equivalence classes
by
a[x] =[ax], a€F, xecE, (1.19)
(X]+ [y = [x+yl (1.20)
Exercise 1.10. Prove that the operations (1.19) and (1.20) are well defined, i. e., do not
depend on the choice of representatives.

Exercise 1.11. Prove that E/V is a linear subspace of E.

Theorem 1.20. Let m < n and U is an m-dimensional linear subspace of the n-
dimensional vector space E. Then E/U has dimension n — m.

Proof. By Theorem 1.19, it follows that there exists a linear subspace V of E such that
E = U e V. Then we see that dim(V) = n — m and V is isomorphic of E/U. Hence, by
Corollary 1.7, it follows that dim(E/U) = n — m. This completes the proof. O

1.2 Metric spaces

Definition 1.17. A metric space is an ordered pair (M, d), where M is a set and d is a
metric on M, i. e., a function d : Mx M — R such that for any x, y,z € M the following
holds.

1. d(x,y) = 0 non-negativity or separation axiom,

2. dx,y)=0 << x =yidentity of indiscernible,

3. d(x,y) =d(y,x) symmetry,

4. d(x,z) <d(x,y) + d(y,z) triangle inequality.

The first condition follows from the other three. In fact, for any x,y € M, using the
triangle inequality, we have

d(x,x) <d(x,y) +d(y, x).
Hence, using the symmetry, we have d(x,y) = d(y, x) and
d(x,x) <2d(x,y).
From this, using the identity of indiscernible, we get
2d(x,y) =0 or d(x,y)=0.

The function d is also called the distance function or simply the distance. When it is
clear from the context what metric is used, d is omitted and one just writes M for a
metric space.
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Example 1.13. The real numbers with the distance function
d(x.y) = x -yl

given by the absolute difference, is a metric space.

Example 1.14. The positive real numbers with the distance function

y
d(x,y) = |log| =
) 0g<x>‘
is a metric space. In fact,
1. d(x,y)>O0foranyx,y €R,.
2.
dx,y)=0 <
log<)—/>|:0 =
X
log<)—/>:0 =
X
Y _ _
==1 or x=y, x,yeR,.
X
3.

d(x,y) =

ol ()

4. Forx,y,z € R, wehave

log<§>’ =dy,x), xyeR,.

s o2 )2 e )
< log<¥> + log<§>’ =d(x,y) +d(y,2).

Example 1.15. Let M be any nonempty set. Then M is a metric space with the distance
function

dix,y)=0 if x=y and d(x,y)=1 otherwise,

called the discrete metric.

Exercise 1.12. Prove that

dx,y)= max |x;-yil, x=0&p...%), Y=V, €Ep
ie{l,...,n}

is ametricon E,,.
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If (M, d) is a metric space and X is a subset of M, then (X, d) becomes a metric
space by restricting the domain of d to X x X.

Definition 1.18. An element x of a metric space M is said to be the limit of a sequence
{XuInen Of elements of M, if d(x,,x) — 0 asn — co. In this case, we write x, — x as
n — ocoorlim,_, x, = x.

Theorem 1.21. If a sequence {x,},n Of elements of a metric space M converges to an
element x € M, then every subsequence {x,, }\cn of the sequence {x,},cy also converges
to the same limit.

Proof. Let € > 0 be arbitrarily chosen. Then there exists N = N(¢) > 0 such that
d(x,,x) <€

for any n > N. In particular, when n; > N we get
d(xnk,x) <€,

which completes the proof. O

Theorem 1.22. A sequence {x,} .y of elements of a metric space M can converge to at
most one limit.

Proof. Assume that x, —» xand x,, —» yasn — o0, x,y € M. Let € > 0 be arbitrarily
chosen. Then there exists N = N(¢€) > 0 such that

d(x,, x) < g and d(x,y) <

NI ™

for any n > N. Hence, for any n > N, we get

+

I
o

dix,y) <d(x,x,) + d(x,,y) <

N m
N m

Because € > 0 was arbitrarily chosen, we conclude that x = y. This completes the
proof. O

Theorem 1.23. If a sequence {x,},cn Of elements of M converges to an element x € M,
then the set {d(x,,y) : n € N} is bounded for everyy € M.

Proof. Lety € M and € > 0 be arbitrarily chosen. Then there exists N = N(¢) > 1,
N € N, such that

d(x,, x) < g for any n>N.
Hence, for any n > N we have

d(x,,y) < d(x,,x) +d(x,y) < g +d(x,y).
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We set
K= max{d(xl,y),...,d(xN,y),g + d(x,y)]».
Therefore
d(x,,y) <K for any neN.
This completes the proof. O

Definition 1.19. Let M be a metric space.
1. The set

B.(a)={xeM:d(x,a) <r}(B,[a]l ={x e M:d(x,a) <r})

is called an open (closed) ball with a center a and radius r.
2. Every open ball with center a point x € M is called a neighborhood of the point x.
A set lying in an open ball is called bounded.
4, LetX ¢ M. Then a point a € M is called an accumulation (limit) point of X if

w

B,(a)n (X \ {a}) # 0,

for any r > 0. The set of all points of X plus the limit points of X is called the
closure of X and it is denoted by X. Evidently, X ¢ X. The closure of the empty set
we define as the empty set.

Theorem 1.24. Let M be a metric space and X,Y € M. Then
1. XuY=XUy,
2. XnYcXnY.

Proof.
1. Leta e XuYandr > 0 be arbitrarily chosen.
(a) Letae XuY.Then

aeX or aceV.

Hence,a ¢ Xorac Yandthenae XUY.
(b) Let ais a limit point of X U Y. Then

B (@)n((XuY)\{a})+0.
Lety € B,(a) N (X U Y) \ {a}) be arbitrarily chosen. Then

y+a, yeXuY and d(ay)<r.
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Ify € X, we get
y+#a, yeX and d(ay)<r,
i.e.,y € B,(a) n (X \ {a}). From this, we conclude that
B.(a)n (X \ {a}) # 0.

Because r > 0 was arbitrarily chosen, we obtain a € X. Hence,a € X U Y.
Similarly, ify € Y, we see thata € Y and hence,a e XU Y.
Since a € X U'Y was arbitrarily chosen and for it we see that it is an element of
X UY, we obtain

XuYcXuY. (1.21)

Letnowa € X UY and r > 0 be arbitrarily chosen. Thena ¢ Xora € Y.
(@) Supposethata e X.Ifa e X,thena e XuY anda € XU Y. Assume that ais a
limit point of X. Then

B.(a)n (X\ {a}) 0.
There exists y € B,(a) n (X \ {a}). Hence,
y+#a, yeX and d(ay)<r.
From this,
y+a, yeXuY and d(ay)<r,

i.e,B.(a)n((XUY)\{a}) # 0.Sincer > 0 was arbitrarily chosen, we conclude
thata e XU Y.
(b) Leta € Y. Asabove, wegetac XU Y.
Because a € X U Y was arbitrarily chosen and for it we see that it is an element of
X U'Y, we conclude that

XuYcXuy.

From the previous relation and from (1.21) we obtain X uY = X U Y.

2. LetaeXnYandr > 0 be arbitrarily chosen and fixed.
(@) LetaeXNnY.ThenaeXanda e Y.Hence,ac Xanda e Y.ThenacXnY.
(b) Assume that a is a limit point of X n Y. Then

B.(a)n((XnY)\{a}) #0.
Letz e B,(a) N ((XNnY)\ {a}). Hence,

zeB,(a), zeXnY and z+a,
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whereupon
zeB,(a), zeX, z+a and zeB(a), zeY, z+a

Since r > 0 was arbitrarily chosen, we see that a € X and a € Y. Therefore

aeXnY.
Because a € X n'Y was arbitrarily chosen and we have obtained a € XnY, we
conclude the desired relation. This completes the proof. O

Definition 1.20. Let M be a metric space and X,Y ¢ M.

1. We say that the set X is closed if X = X.

We say that the set X is open if M \ X is closed.

We say that the set X is dense in Yif Y ¢ X.

The set X is said to be everywhere dense in M if M = X.

The set X in M is said to be nowhere dense in M if every ball of M contains a ball
free from points of X.

SEF VIS

Definition 1.21. Let (L, d;) and (M, dy;) be metric spaces. We say that the function f :
L — M s a continuous function at the point x, € L if for every € > O there is a
6 = 6(e) > 0 such that dy (x,xy) < 8, x € L, implies dy (f(x),f(xg)) < €. We say that the
function f is continuous on L if it is continuous at every point of L.

1.3 Useful inequalities

We will give here some important inequalities. These inequalities play an important

role in applied mathematics. Let 1 < p < oo, we denote by g the conjugate of p, i.e.,

1.1
~+>=1
p q

Theorem 1.25 (Young’s inequality). Leta,b > 0, p,q € (1,00), % + % =1. Then

ab< — + —. (1.22)

The equality holds if and only if aP = bA.

Proof. Because the mapping x — €* is convex, we get

1 1 a 1 r 1 a a’ b?
loga+logh _ eploga”+qlogb < _eloga n _elogb -4

p q p g

ab=¢

Now we will prove that the equality holds if and only if a’ = b?. Whena =0orb =0
q q
the assertion is evident. Assume thata # O and b # 0. Wesett = ab » ora = tbr.
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Then
P Ppd  pi Ppd pa -
a—+b——ab=i+b——tbg+1=i+b——tb’1(?+3)
b q
Ppad  ha p
=i+b——tbq=bq<t—+l—t>.
b q b q
Hence,
P
a—+b——ab:0<=>
q
bq<t—+1—t>:0<=>
tP
—+--t=0e=t=1=d =b!
b q

(because, if we take f(t) = % + é —t,wehavef(1) =0, f'(t) =t?1-1,f'(t) > Ofort > 1

and f'(t) < 0 for t € [0,1]) This completes the proof. O
Theorem 1.26 (Young’s inequality with €). Leta,b,e > 0, p,q € (1, 0), % + é =1. Then
ab<ed’ +Ce)b?, Cle)= ! -

q(ep)»
The equality holds if and only if a° = %.
Proof. Let

1 b
a, = (ep)ra, by =—+.
(ep)?
We apply Young’s inequality (1.22) for a; and b, and we get
D
ab< PL 11 b? =ed’ + C(e)b?.
P (ep)rq

The equality holds if and only if & = b?. This completes the proof. O

Theorem 1.27 (Holder’s inequality). Let&,n; € C,j e {1,....1L, p.g > 1, % + [11 =1. Then

1 1 117 1 %
ZI&@IS(ZI&I”) (ZImI") : (1.23)
k=1 k=1 k=1

The equality holds if and only if 1P (Yk_; Ine|?) = In;19(Xk_y 1&IP) for anyj € {1,..., 1.
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Proof. IE Y} _ &P =0 (Zk 11Ml? = 0), then & = 0 (i = 0) forany k € {1,...,l} and
the assertion is evident. Assume that Zk:1 |&IP + 0 and Zk:1 17| # 0. We set

(k= 1861P)» Dkt M)

for somej € {1,...,1}. We apply Young’s inequality. We obtain

151 . &P . ;1
(Chea )7 (T Il )s DTkt P @ By Inil®
whereupon
i |§j'1j < L &P . L ;1

1 1
=EO 1|€klp)1’(zk 1|nk|q)q 1D i 16kP i3 G gy IMil?
O SalP | Ml 11
PYia &P gl Iml? P4

From the previous inequality we get the inequality (1.23). This completes the proof. I

=1

Theorem 1.28 (Minkowski’s inequality). Let &.n; € C, k € {1,...,1}. Then for every

p = 1we have
1 1 1
1 p l p 1 »
(Zlfk*”lﬂp) S<Z|fk|p> +(Z|’1k|p> :
k=1 k=1 k=1

Proof. 1If 25@1 |& + [P = O the assertion is evident. Assume that Zi:l & +nilP # 0.
1. Letp=1.Then

1 1
Y 1&g+ ml < Y (& + Ingl) = z |l + z Il
k=1 k=1

2. Letp > 1. We choose g to be the conjugate of p. Then g(p—1) = p and using Hélder’s
inequality, we obtain

! ! ! !
Z &+ mil” = z &+ P&+l < z & + P& + Z L
k=1 k=1 k=1 k=1
! i/l ;
< <Z 16k + ’1k|(p_1)q) (Z |<fk|p>
k=1 k=1

! i/l ;
+ <Z 16k + ’1k|(p1)q> <Z |’1klp>
k=1 k=1
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1 1 1

(zwoenr) ((ar) < (zmr) )

-1 1 1

l q l » l P
<Z|§k+’1k|p> S<Z|§klp> +<Z|’1klp> ,
k=1 k=1 k=1

which completes the proof. 0

whereupon

1.4 Complete spaces

Let M be a metric space.

Definition 1.22. A sequence {x,},cy Of elements of M is said to be a fundamental se-
quence or a Cauchy sequence if for any € > O thereisan N = N(e) > 0 such that
d(X,, X)) < € whenever m,n > N.

Theorem 1.29. Let {x,},cn be a sequence of elements of the metric space M that con-
verges to x,. Then it is a Cauchy sequence.

Proof. Let € > 0 be arbitrarily chosen. Since {x,,},cx converges to x,, thereisan N =
N(¢) > 0 such that

€
d(x,, Xg) < 5 whenever n= N.
Hence,

d(xy, Xp) < d(Xp, Xg) + d(Xg, Xp) < g + - =€ whenever n,m=>N.

N ™

This completes the proof. O

Definition 1.23. The metric space M is said to be complete if every its Cauchy sequence
is convergent to a limit point in M.

Example 1.16. Consider the space C([a, b]), the space of all continuous functions on
[a, b]. We provide this space with the metric

df.g) = trGI}%(][f(t) -g(t)|, f.g € C(la,b]).

Let {f,,}nen be @ Cauchy sequence of elements of C([a, b)), i. e., d(f,,f) — Oasn,m —
co. Then the sequence {f,},n satisfies the Cauchy condition of uniform convergence
on [a,b]. If f is the limit of this sequence, then f is continuous on [a, b], i.e., f €
C([a, b]). Therefore C([a, b)) is a complete metric space.
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Example 1.17. Consider the space m. In this space we define a metric as follows:
d(x.y) = sup 1§ = nil, X = {§hen>y = (Mihien € m.
1€

Let {x"},cn be a Cauchy sequence in m, i.e., d(x",x™) — 0 asn,m — oo. Let also,
x" = {&'};en- We take € > O arbitrarily. Then there is an N = N(e) > 0 such that

sup|§/' - &"| <e for any mn>N. (1.24)
leN

Since x" € m for any n € N, then for any n € N there is a K,, > 0 such that
|&'| <K, for any leN. (1.25)
By (1.24) we get
|&§'-¢&" <€ for any mn>N (1.26)

and for any [ € N. Therefore for any [ € N the sequence {&]'},cy satisfies the Cauchy
condition. Hence, for any [ € N the sequence {]'},y converges to &. Let m — oo in
(1.26). Then

|&'-¢§|<e for any n>N (1.27)
and for any [ € N. Hence, by (1.25), we get
&= 1&g =& <& - |+ 1&"] < e+ Ky

forany! € N. Consequently the sequence {&;},cy is a bounded sequence. Let x = {&};cn-
Then x € m. From (1.27) we obtain

supl§'-&| <e for any n>N.
leN

Since € > 0 was arbitrarily chosen, we conclude that X" — x as n — oo. Therefore m
is a complete metric space.

Example 1.18. Consider the set Q of rational numbers, in which a metric is defined by
d(r,r) =lrp-nl, rn,rneqQ

Consider the sequence {(1 + %)”}HEN. This sequence is a Cauchy sequence. Its limit is
e, which is not a rational number. Therefore Q is not a complete metric space.

Exercise 1.13. Forp > 1, p < oo, with 1, we denote the set of all sequences x = {{}en;,
¢ € C, 1 € N, such that

o0
Y& < co.
=1
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In 1, we define a metric by
1
(e8] p
dx,y) = (Z 151 —’71|p> o X ={§henY = Mihien- (1.28)
I=1

1. Prove that (1.28) satisfies all axioms for a metric.
2. Prove thatl, is a complete metric space.

Exercise 1.14. For k € N, with Ck([a, b]) we will denote the set of all k-times continu-
ously differentiable functions on [a, b]. In Ck([a, b]) we define a metric by

k
df.g) =Yy m[a’é][f(l)(x) g%, f.g€C(la b)) (1.29)
l:0X€ a,

1. Prove that (1.29) satisfies all axioms for a metric.
2. Prove that C¥([a, b)) is a complete metric space.
Below we will give analogs of Cantor’s lemma for contracting intervals.
Theorem 1.30. Consider the sequence of closed balls
B, [a] > B, [ay] >--- > B, [ay] > -

in the complete metric space M. If r, — 0 as n — oo, then these balls have a unique
common point.

Proof. Consider the sequence {a;};cy of the centers of the considered sequence of
closed balls. Let p € N be arbitrarily chosen. Because B, ., [@nsp] < B, [ay], we have
an,p € B, [ay], whereupon

d(ay,p, ap) <1y

Using thatr, — 0 asn — oo, from the previous inequality we get d(ay,,, a,) — 0 as
n — oo. Since p € N was arbitrarily chosen, we conclude that the sequence {a;},cy is
a Cauchy sequence in the complete metric space M. Therefore it is convergent and let
its limit is a. We have a € M. Let k € N be arbitrarily chosen and fixed. Then

A gy - - - € By, [ar].

Hence, using the fact that B, [a;] is a closed set and a,, — a, asn — oo, we obtain
a € B, [a;]. Because k € N was arbitrarily chosen and fixed, we conclude that a €
B, [q] for any [ € N. Now we assume that b € M is a common point of the considered
sequence of closed balls such that d(a, b) = § > 0. Then

6=d(a,b) <d(a,a,) +d(a,b)<r,+r,=2r, for any neN,

which is a contradiction because r, — 0 as n — co. This completes the proof. O
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Definition 1.24. Let X be a bounded set in a metric space M. The diameter of X is de-
fined by

diam(X) = sup d(x,y).
x,yeX

Using this definition, we can generalize Theorem 1.30 in the following manner.
Theorem 1.31. Let
B, [a,] 5> B, [ay] >--- > B, [ay] > ---

be a sequence of closed balls in the complete metric space M whose diameters tend to
zero. Then these balls have a unique common point.

Proof. Since the diameters of B, [a,] tend to zeroasn — co, wehaver, — Oasn — co.
Hence, by Theorem 1.30, we go to the desired result. This completes the proof. O

Theorem 1.32. Ifin a metric space M any sequence of closed balls
B, [a;]1 > B, [ay] >--- > B, [a,] > ---
whose diameters tend to zero has a nonempty intersection, then the space M is complete.

Proof. Let {x,},cn be arbitrarily chosen Cauchy sequence in M. Let also, € € (0, %) be
arbitrarily chosen. Then there is an N = N(¢) > 0 such that

k
Ad(Xp, 1p>Xn,) < €

for any ny > N and for any p € N. Consider the sequence of closed balls B [x;, ] for
n > Nand k € N. Let k € N be arbitrarily chosen and fixed, and y € Bu[x,, ] be

arbitrarily chosen. Then d(x,, ,y) < " and
d(Xy,,y) <dxy, > X)) +d(Xy, > Y) < ek + ek
=2k < k1,

Therefore y € Bg1[x,, ]. Because y € By [x,, | was arbitrarily chosen and we see that
it is an element of B [xp, 1, we conclude that

I.

B i [xnk] > B [xnkﬂ

Since k € N was arbitrarily chosen, we obtain
By [Xn,] 5 Be[xp,] 5 -+ > Bt [X ] 2.

By the assumptions, we see that there is an x, € Bg1[x, ] for any k € N. We have
Xp, — Xo as k — oco. Forn,n > N, we get

d(xy Xo) < d(Xy, Xy, ) + (X, , Xo) < e+,

Because € € (0, %) was arbitrarily chosen, we conclude that x,, — x; as n — co. This
completes the proof. O
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Definition 1.25. A set M is said to be of the first category if it can be written as a count-
able union of nowhere dense sets. Otherwise, it is said to be of the second category.

Theorem 1.33. A nonempty complete metric space M is a set of the second category.

Proof. Assume that M is a set of the first category. Then

M= X,

neN

where X, n € N, are nowhere dense sets in M. Let € € (0,1) be arbitrarily chosen.
Then there is a ball B.[a;] ¢ M that does not contain any point of X;. There is a ball
B.[a,] c B.[a,] that does not contain any point of X,, and so on. In this way we obtain
the sequence of closed balls

B.[a;] > Ba2[ay] > -+ > Ben[ay] > ---.

Because €" — 0 asn — oo and M is a complete metric space, there is a € B.[ay] for
any k € N. We have a € M. On the other hand, a ¢ X for any k € N. Hence, a ¢ M,
which is a contradiction. This completes the proof. O

Definition 1.26. Let (P, dp) and (M, dy;) be metric spaces. If there is a one-to-one cor-
respondence f between P and M, f(P) = M, and

dp(x,y) = dy(f(x),f(y)) for any x,yeP,

then the spaces P and M is said to be isometric.

Theorem 1.34 (The completion of metric spaces). Let M be a metric space that is non-
complete. Then there is a complete metric space P such that it has a subset L which is
everywhere dense in P and isometric to M.

Proof. Consider all sequences of elements of M which are Cauchy sequences. We asso-
ciate every two Cauchy sequences {X,},en and {x, } ,cy to the same class if d(x,,, x;;) — 0
as n — oo. We consider this class X as an element of a new set P. Let X, y € P and
Xadnen € X, Vntnen € . We have

d(Xy> V) < d(Xps Xpy) + AKXy V) < AKX Xi) + AKXy Vi) + AV s Yi)-
Hence,
d(Xp> V) = AXs Vi) < Ay X)) + AVis V). (1.30)
If the indices m and n are interchanged, then we get

Ad(Xps Ym) = A(Xs V) < (X, X)) + dVs Vig)-
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From the previous inequality and from (1.30), we obtain
|d (s ¥) = Ay Yim)| < Ay Xig) + AV Vin)- (1.31)

Since the sequences {x,,},cnx and {y, },,cn are fundamental sequences, from the inequal-
ity (1.31), we conclude that the sequence {d(x,,y,)}en iS @ Cauchy sequence in R.
Therefore there exists lim,,_, ., d(x,,y,). Using this, we can define a metric in the space
P as follows:

d(x,y) = lim d(x,,yy). (1.32)

We will show that d(x,y) does not depend on the choice of the representatives {x,},cn
and {y, }nen Of the classes % and y, respectively. Let {x)} ,en € X and {y},}nen € 7. Then

A, V) < (X xp) +d(X), ) < Ao X) + d (X0, V1) + AV V)-
From this,

Him d(, ) < lim, d(x x,) + Jim d(x,y,) + lim d(yn.yn) = Jim d(x,y,),

i.e.,
Jim d(x,,y,) < lim d(x), yn)- (1.33)
Also,
(X3 Yy) < A ) + A, V) < At X)) + A0y Vi) + AV V)-
Hence,

lim d(x,y,) < im d(x, %) + im d(xy,) + im d(v,yy) = Hm d(x,, y,)-
From the previous inequality and from (1.33), we obtain
Jlim d(x,,y,) = lim d(x), yn)-
Now we will show that (1.32) satisfies all axioms for a metric. Suppose that X,y,z € P
and {X,}nen € X% Wntnen € ¥ @and {z,}pen € 2.
1. Since d(x,,y,) = 0 for any n € N, we have

d(x,y) = 0.

2. We have d(%,y) = 0 if and only if lim,_,, d(x,,y,) = O if and only if {x,},n and
{Vn}nen belong to the same class, which is possible if and only if X = y.
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3. We have
d(x%,5) = lim dCty,y,) = lim d(yy,x,) = d(7,%).
4. We have
dix,y) = nlLrgO A, yn) < nlLr{}O d(x,, z,) + nllrgo d(zy, Y, = d(X,2) +d(z2,7).
Now we will prove that P is a complete metric space. Suppose that {x""},,y is a Cauchy

sequence in P. Then d(X¥",x™) — 0asm,n — oo. Let {x;}xcn € X". Since {x};cn is @
Cauchy sequence, there exists k,, € N such that

for any p >k, (1.34)

S

d(xy, X, ) <
Now we consider the sequence {Xll(l}leN' We have
dxe X ) < d(xq ,x,) +d(xg,, x ) < d(xg . x) +d(xg, 1) +d0', X ) (1.35)

Let € > 0 be arbitrarily chosen and fixed. Since {x"}, .y is a Cauchy sequence in P, we
have d(x™,X") — 0 as m,n — oco. Therefore there exists n, € N such that

on o €
d(x",x )—plLrglOd(x X)) < 5

whenever m, n > n,. Hence, there is p; € N so that
n _m €
d(x,x,) < > (1.36)

whenever m,n > ny and p > p;. If there is a need we enlarge n, so that % < % Then,
for m,n = ny, p > maxik,, k,,, p;}, using (1.34), (1.35) and (1.36), we get %% < % and

dxg X )< =+ >+ =€ (1.37)

1
m

S
N ™

Therefore the sequence {x,'jn},,eN is a Cauchy sequence. We have

1
d(x", %) = Jim, d(xp, k,,) < lim d(xy, xg.) + Jim, d(x , f(’p) <= + Jim, d(xg » fp)

Hence, by (1.37), for n > n,, we get

d(i("x)<i+e<g+e
ny 4

Consequently the sequence {x"}, .y converges to x € P. Therefore P is a complete met-
ric space.
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Now we consider the set L of all sequences of the form {x,...,x,...}. We see that
if {x,....,x,...} ¢ xand {y,...,y,...} € y, then d(x,y) = d(%,y). Note that there is an
one-to-one correspondence f between L and M, defined by

f)=1{x,...,x%..}, xeM

Also, L and M are isometric. Now we will prove that L is everywhere dense in P. Let X €
P be the class containing the sequence {x,},cn. We choose n € Nsuch thatd(x,, x,,,) < €
for any m > n. We construct the sequence {x,,...,x,,...} and denote by %, the class
containing this sequence. We have X, € L. Also,

d(x,Xc) = lim d(xy,x,) <.

Therefore L is everywhere dense in P.

Now we will prove that the space P is uniquely defined to within isometry. Let Y
be another complete metric space in which M is everywhere dense. Then every j € Yis
the limit of some sequence {x,},cx € M. Since {x,,},cn is @ Cauchy sequence, it defines
some element X € P. We associate the element X with the element j. Let now Z € P be
given and {z,},y be a fundamental sequence in the class Z. Since {z,},cn belongs to
Y, it defines some element Z € Y. Associating this element with Z, we obtain an one-
to-one correspondence between the elements of the spaces P and Y. Also, we have

d(x,2) = lim d(x,,z,) = d,2),

i. e., the correspondence between P and Y is isometric. O

Definition 1.27. The space P, defined by Theorem 1.34, is called the completion of the
space M.

Example 1.19. Let P([qa, b]) be the space of all polynomials defined on [a, b]. We pro-
vide this space with a metric

dp,q) = [rg%%]lp(t) -q(t)|, p.q<P([a,b]).

We see that P([a, b]) is not a complete metric space. Since P([a, b]) is everywhere dense
in C([a, b]) and C([a, b]) is complete, we see that C([a, b]) is the completion of P([a, b]).

1.5 Normed spaces

It is well known that the notion of norm is of fundamental importance in discussing
linear topological spaces. We shall begin with the definition of the semi-norm.

Definition 1.28. A real-valued function v defined on a vector space E is called a semi-
norm on E, if the following conditions are satisfied:
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1. v(x+y) <v(x)+v(y) for any x,y € E, sub-additivity.
2. v(ax) = |alv(x) for any x € E, homogeneity.
3. v(x) = 0 for any x € E, non-negativity.

Theorem 1.35. IfE is a real vector space and v : E — R is a semi-norm, then

v(x —y) = [v(x) - v(y))|,
forany x,y € E.
Proof. We have

v(X) v(x —y) +v(y)

forany x,y € E,

v(x) - v(y) <vix-y) (1.38)
for any x,y € E. Since

v(x —y) = |-1v(y =x) = v(y) = v(x)
for any x,y € E, we have
~(v(x) = v(y) < v(0) - v() (1.39)

for any x,y ¢ E. The inequalities (1.38) and (1.39) give the desired inequality. O

Definition 1.29. A normed space is an ordered pair (E, || - ||), where E is a vector space
over Fand |- | isanormonE,i.e., afunction || - | : E — Rsuch that forany x,y,z € E
the following hold:

1. |Ix|l = O non-negativity,

2. |lx|l = 0 iff x = O separate points,

3. |Ax]l = |Allix|| for any A € F homogeneity of the norm,

4, |x +yl < x|l + lyll triangle inequality.

Note that the first condition follows from the other three. To see this, we take x € E
arbitrarily. Then

011 = [ + (=0 < Ixll + ll=xl = Ixll + || (= Dx|
= lxll + 1=1{lx1l = 2llx]l.

Hence, using the second condition, we see that |x|| > O.
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Example 1.20. In E, we define a norm as follows:

1

n 2
x| = (Z |x,|2> , xeF, le{l,...,n}, x=(x,....x). (1.40)
=1

We will check that (1.40) satisfies all axioms for a norm. Take x,y € F, x = (x;,...,Xy),
y = ¥y, ---,Yn), arbitrarily. Then

1. x| =o0.

2. x|l =0iff (X, I A)? = 0iffx; = 0 foranyl € {1,...,n}.

3.

n P o/n : n :
||M||:<Z|szlz) :<Z|A|2|xl|2> =|A|<Z|xl|2> = Alllx]
1=1 1=1 =1

forany A € F.
4. Applying Minkowski’s inequality, we get

n LI LR H
Ix +yll = (Z Ix; +Y1|2> < (Z |xl|2> + (Z |y1|2) = Ixll + Iyl
1=1 1=1 I=1
Example 1.21. In the space ck ([a, b]) we define a norm
d ! k
Ifl =Y max|fOt), fecC((a,b). (1.41)
=0 tela,b]

We will check that (1.41) satisfies all axioms for a norm. Let f, g € c(la,b]) and A € F
be chosen arbitrarily. Then

1. |fl=o.

2.

k
0= iff max |[fO)| =0 iff
I ,:Zote[a,mlf )|

n}ai(][f(l)(tﬂ:o for any 1€{0,....,k} if f=0 on [a,b].
tela,

k k
M = INRIGIE A0t
IAf1 I:Zogliﬁll( ING] lzzotg%]u ®)|

k
_ 0] _
= Al lzzotgﬁg]v @®)| = AIIFI.
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k k
U] ) )
=Y ma H =Y ma t t
If +gl gote[a’g]l(hg) ()] lgote[a,ff]lf ) +g7 )]

k k
0] o
<Y max|f7 )|+ ) max|g” )| = Il + Igll.
I:Ote[a,b]lf (0 I:Z(;te[a’b”g O = Ifl + ligl

Example 1.22. Withl,, p > 1, we denote the set of all sequences x = {x;};cy for which
Y21 P < co. Note that 1,, is a vector space. In1,, p > 1, p < 0o, we define

00 »
x|l = (Z |x,|P> X ={Xhen €1, (1.42)
=1

We will check if (1.42) satisfies all axioms for anorm. Let x,y € 1,,, x = {X;}ien> ¥ = {Vihens
A € F, be arbitrarily chosen. Then

1. x| =o0.
2.
1
o0 p
0=|x| iff (Zm#’) =0 iff
=1
o0
lel|p:0 iff ;=0 for any leN iff x=0.
=1
3.

o=

=(Z|A|"|xl|"> =|A|<Z|xl|p> = 1AllIx].
=1

=1

e (f |Axl|P>

=1

4. Since for any m € N, using Minkowski’s inequality, we have

1 1 1

m p m p m P
(Z X +)’1|p> < (Z|X1|p> + (Zb’llp) ;
=1 =1 =1

we conclude that

1 1 1

1 1 1

||x+y||=<2|xl+yllp> s(lelV’) +<Z|y,|"> = x|l + Iyl
1=1 =1 =1

Therefore
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Exercise 1.15. Check that

IFIl = |f(@)] + |f' (@] + tg}gg}[f”(t) , feCla,b)),

satisfies all axioms for a norm.
Example 1.23. In C([a, b]) we define
Ifll = é‘}%ﬁvl(t)l'
Since
Ifl=0 iff max|f'®]=0 if
fl(ty=0 for any telab] iff f=const on [a,b],
(1.43) does not satisfy the axioms for a norm.
Exercise 1.16. Check if

IFIl = fgﬁlﬁ]vl(t)' +|f(b) - f(a)]

satisfies all axioms for a norm in C'([a, b]).
Answer. No.
Note that in a normed space, a metric can be defined by
dix,y) = Ix - yl.

It is evident that the defined metric satisfies all axioms for a metric.
Below we will suppose that E is a normed space with a norm || - .

Lemma 1.1. For every x,y € E the inequality

[l = liyll| < Ix =yl
holds.
Proof. We have

Ixl = llx =y +yl < lx =yl + Iyl

Therefore

It = Iyl < lIx = yll.
If we interchange the places of x and y in the previous inequality, we get

Iyl = lxll < lly = xII = llx = yll.

This completes the proof.
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Definition 1.30.
1. Anelement x, € E will be called a limit of a sequence {x,,},cn € E, if

Ix, —xol >0 as n — oo.
n 0

We will write x,, — Xy as n — co or lim,,_, o, X,, = Xo.
2. Forr > 0 the set

S,(xg) = {x € E: Ix —xoll < r}(Sp[xp] = {x € E: Ix —xoll < 1})

will be called an open (closed) ball with a center x,, and radius r. Sometimes, we
will say that S, (x,) is a neighborhood of x,.

3. AsetM c Eis said to be bounded, if there exists a positive constant ¢ such that
[Ix]l < c for any x € M.

Theorem 1.36. Every convergent sequence in E is a bounded sequence.

Proof. Let {x,},cn be a convergent sequence in E to the element x,, € E. Let also, € > 0
be arbitrarily chosen and fixed. Then there exists an N = N(¢) € N such that

I, = Xoll < €
forany n > N, n € N. Hence, by Lemma 1.1, we conclude that
Xl = Ixoll < € or [Ix,l <€+ lIxoll
foranyn > N, n € N. Let
¢ = max{lxl, ..., lIxyl, € + lxol}.
Then
xnll <

for any n € N. This completes the proof. O

Theorem 1.37. Let {x,},n be a convergent sequence in E to the element x,, € E.
Foranyr > O thereis an N = N(r) € N such that x,, € S,(xy) foranyn > N.
Every subsequence {x,, }ien of the sequence {x,} N is convergent to x,.
Ifihen SFand A, — Ay asn — oo, Ay € F, then A,x,, — Ayxy asn — co.

If iynhhen CEandy, — ygasn — oo, y, € E, thenx, +y, — xo +yo asn — oo.
X1l = lIxoll as n — oco.

X, IS unique.

S R o
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Proof.
1. Letr > 0 be arbitrarily chosen and fixed. Then there is an N = N(r) € N such that

Ix, — xoll <1

foranyn > N,ne N,i.e. x, € S,(xy) foranyn > N, n € N.
2. Let e > 0 be arbitrarily chosen and fixed. Then there exists an N = N(¢) € N such
that

Ix, — xoll < € (1.44)

foranyn > N, n € N. Also, there is a K = K(€) € N such that n, > N forany k > K,
k € N. Hence, by (1.44), we get

%, = Xoll < €

forany k > K, k € N.
3. Sincex, — xy and A,, — Ay as n — oo, there exist positive constants c¢; and c such
that

A <c; and x,ll<c

foranyn € N.
(@) LetAy =0.Then

A Xnl = AllIxall € clA,]l = 0 as n— oo.
(b) LetAy # 0. Then

A0 = AoXoll = 1Apxn — AnXo + Anxo = ApXoll < IARX, = ApXoll + IAax0 — AgXol
= Mnl”xn - XO" + Mn - AO|I|X0"

<clix, = xoll + 1A, = Allxpl = O as n — oo.
4. We have
1%+ ¥ = X0 = Yol = (% = X0) + Wn = ¥o)|| < Xy =Xoll + Iy, —¥oll > 0 as n— oco.
5. By Lemma 1.1, we get
[l = Ixoll] < IXy, = Xoll = 0 as  n — co.
6. Assume that there exists y, € E such that x,, — y, asn — co. Then
lyo = xoll = lyg — X + X0 — Xoll < Xy = Yol + IX, — X0l = 0 as n— oco.

Therefore x = y,.

This completes the proof. O
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Definition 1.31. A set M c E will be called open, if for every x, € M there exists r, > 0
such that S, (xo) ¢ M.

Theorem 1.38. Let A;,...,A; c E be open sets. Then ﬂizl Ay is an open set in E.

Proof. Letx € ﬂf(zl A, be arbitrarily chosen. Then x € A; foranyk € {1,...,1}. Since 4,
k €{1,...,1}, are open sets in E, there are r, > 0 so that S, (x) c Ay. Letr = min, 7.
Then S,(x) c A; for any k € {1,...,1}. Therefore S,(x) ¢ ﬂf(zlAk. This completes the
proof. O

Theorem 1.39. Let {A;};cn be open sets in E. Then | J,x Ay is an open set in E.

Proof. Letx € iy Ax be arbitrarily chosen and fixed. Then thereisa k, € N such that
x € Ay, . Since Ay is an open set in E, there is anr, > O such that S, (x) ¢ 4; . From
this, S, (x) ¢ Uken Ax- This completes the proof. O

Definition 1.32. A point a € E will be called a limit point for aset M c Eif foranyr > 0
thereisx € S,(a)N M, x # a.

Theorem 1.40. A point a € E is a limit point for the set M c E if and only if there is a
sequence {x,},en € M that converges to a and x,, # a for any n € N.

Proof.
1. Leta € Ebealimit point for the set M. Then for any n € N therearex,, € S:(a)nM,
X, # a. In this way we get a sequence {x,},y such that !

Ix,—all =0 as n— oo, x,#+a,
n n

i.e., x, > aasn— ocoandx, # a.

2. Let there is a sequence {x,},cy ¢ M such that x,, # aforanyn ¢ Nand x,, —» aas
n — oco. Hence, for any r > O there isan N = N(r) € N such that x,, € S,(a) for any
n> N and x,, + a.

This completes the proof. O
Definition 1.33. A set M ¢ E is said to be closed if it contains all its limit points.
Theorem 1.41. Let A,,..., A, be closed sets in E. Then ULI Ay is a closed set in E.

Proof. Let a € E be a limit point for Ug(:l A;.. Then there exists a sequence {x,},en C
Ui:l A, suchthatx, — aasn — oco.Hence, thereisanm € {1,...,1} and a subsequence
{Xn, }sen Of the sequence {x,},cn such that {x, };en € Ap,. We see thatx, — aass — oo
and x,, # a. Hence, by Theorem 1.40, it follows that a is a limit point for A,,,. Because
A, is a closed set in E, we conclude that a € A,,,. Therefore a ¢ U;<:1 A, and Ug(:1 A, is
a closed set in E. This completes the proof. O

Theorem 1.42. Let {A;},n be closed sets in E. Then (;cx Ay is a closed set in E.
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Proof. Let a € E be a limit point for [,y Ax. Then there exists a sequence {x,,},en C
(ken Ak such that x,, — aasn — co. Hence, {X,},en € Ay, X, — aasn — oo for any
k € N. Therefore a is a limit point of A; for any k € N. Because Ay, k € N, are closed
sets in E, we have a € Ay for any k € N. Therefore a € (x4 and [y Ay is a closed
set in E. This completes the proof. O

Definition 1.34. Let M c E.

1. The set M together with all of its limit points is called the closure of M. It will be
denoted by M.

2. The set E\ M will be called the completion of the set M to E.

3. Apoint x, € Ewill be called an interior point for the set M, if thereisan r > 0 such
that S,(xg) ¢ M.

4. Apoint x, € Ewill be called an exterior point of the set M, if thereisanr > 0 such
that S,(xg) "M = 0.

5. A point x,, € E will be called a boundary point of the set M, if for every r > O we
have

S, (o) "M#0 and S,(x,) N (E\M) # 0.

6. The set of all boundary points of the set M will be called the boundary of the set
M and it will be denoted by oM.

Remark 1.1. Note that we have the following possibilities.
OMcM or oMNM=0¢ or OoMnNnM # oM

Definition 1.35. Two norms | - |l; and || - ||, in E will be called equivalent, if there are
positive constants ¢; and c, such that

cilixlly < lixlly < cllxll;

for any x € E. We will write || - [Il; ~ || - [l5-
Theorem 1.43. In every finite-dimensional vector space every norms are equivalent.

Proof. Let U be a finite-dimensional vector space. With {¢};; we will denote a basis
in U. Then every x € U has the following representation:

m
X= ka¢k, & €eF, kefl,...,m}.
k=1

In U we define a norm

1

Ixll = <i |¢’,|2> for xeU. (1.45)
=1
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We take an arbitrary norm || - |; in U. Let

m 3
¢ = (Zuqblnf) .
=1
Then, forx = Y", &y, & € F, 1 € {1,...,m}, we have

lIxlly =

<3 l&ligl,

1 I=1

s(iw) <§n¢1u5> = ¢yllxll
=1

=1

Y &y

=1

i.e.,
Ixlly < cllx]l. (1.46)
On the other hand, by Lemma 1.1 and (1.46), we get
[Ixlly = Iylh| < Ix =yl < 6lx =y

for any x,y € U. Therefore the function | - ||; is a continuous function in E,,. Hence,
there exists

¢, = inf |x||;.
=R

Consequently

2¢ or |xl;=clx|.
1

x
[l
This completes the proof. O
Exercise 1.17. Prove that (1.45) satisfies all axioms for a norm.

Theorem 1.44. Let L be a linear subspace of E which is a closed set in E. Then
Mgy = inflxl, 1<E/L, (1.47)

isanorminE/L.

Proof. Firstly, we will prove that every [ € E/Lis a closed set. Let {x,},,cx be a sequence
of elements of I such that x, — xy asn — oco. We fix m € N and consider x,, - x,, for
n € N. We have x,,, - x,, € Lforany n € N and x,;, - x,, = X, — Xo as n — co. Hence,
Xm — Xo € L. Because x,,, € [, we see that x, € L.

Let I, m € E/L be arbitrarily chosen.
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L Ilgy > 0.
2. We will prove that ||l|lg, = 0iffI = L.
(@) Let |lllg/, = 0. Then there exists a sequence {x,},cy of elements of I such that
X, — 0asn — oo. Because [ is a closed set in L, we obtain O € [ and hence
=L
(b) Letl=L.ThenO ¢ land ||l]gy, = O.
3. LetA € F be arbitrarily chosen. Then

AMl={Ax:xel}
and
IAllgy, = inf |Ax]| = |A]inf Ix]| = [A[|gy.-
xel xel
4. We have
l+m = inf x| < inf (Jx;+x
1+ migy = inf < inf (I +xl)
X, €lx,em
< x:g(rllfxz (Il + Ixall) < ;lnefl e +X12r€1rfn by
x,€lx,em
= g + Imllg,p.-
This completes the proof. O

Theorem 1.45. Let L be a closed linear subspace of E. Then the sequence {1}y of ele-
ments of E/L is convergent to l if and only if there exists a sequence {x,},cN of elements
X € l, such that x, - xasn — oo, x €l.

Proof.
1. Let {l,},en be a sequence of elements of E/L that converges to I. Then we get

I, = llg, — 0 as n— oo,
that is
I, — gy =€, €, —0 as n-— oo
Hence, there exist y,, € [, and x € l such that
ly, —xIl < 2e,.
Let x, €  be arbitrarily chosen. Then

”yn -x| = ll(yn -X +X0) _X()” < 2e,.
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Since xg, x € I, we have x — x; € L. Therefore
Xp=Yn—X+Xy €l

Consequently for every x, € [ there exists a sequence {x,},cn, X, € 1, such that
X, — Xo asn — oo.

2. Let there exists a sequence {X,,},ens Xn € Iy, such that x,, — xgasn — oo, xy € L.
Then, using (1.47),

1L, = Ul < Xy =%l = 0 as n— co.

This completes the proof. O

Definition 1.36. Let L be a linear subspace of E. We define a distance from x € Eto L
as follows:

dist(x,L) = inf||x — y|.
yeL

By Definition 1.36, we get
1. dist(x,L) >0,
2. foranyy € L we have

dist(x,L) < Ix - yl,
3. forany € > O there exists y, € L such that
Ix -yl < €+ dist(x, L).

Theorem 1.46. Let L be a closed linear subspace of E. If x ¢ L, then dist(x, L) > 0.

Proof. Assume that dist(x,L) = 0. Then there exists a sequence {y,},cy Of elements of
L such that

1
lyn —xIl < "

for any n € N. Since L is closed, we see that x € L, which is a contradiction. This
completes the proof. O

Theorem 1.47. Let L be a finite-dimensional linear subspace of E. Then for any x € E
there exists x* € L such that

dist(x,L) = ||x - x"|.

Proof. Suppose that L is m-dimensional.
1. Ifx €L, thendist(x,L) = 0and x = x".
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2. Letx ¢ L. Thend = dist(x,L) > 0. We take {q,')l};il to be abasisin L. Thenany x € L
can be represented in the following way:

m
y=Zyl¢l, yieF, lefl,....,m}.
I=1

We define a norm in L in the following way:

Iyl = (Z il > for y=>y €L
1=

=1

Because L is finite-dimensional, all norms in L are equivalent. For a norm | - || in
L there exist positive constants a and 8 such that

alzll. < lzll < Blizll.

for any z € L. We take

‘e d+1+|x|
—

Lety € L be arbitrarily chosen. If |ly||. > r, then
Ix =yl > llyll = lIxll > allyllc = lIx] > ar - |Ixll = d + 1.

Therefore d is achieved for |y|. < r. Since |ly||. < r is a closed and a bounded set
in L, and |x - y|| is a continuous function on it, there exists x* € L such that

inf [x -yl = |x - x*|.
||ylﬂgllx vl = |x—x*

This completes the proof. O

Definition 1.37. The normed space E will be called a strongly normed space if the
equality

lx +yll = lxll + Iyl

holds if and only ify = Ax,A > 0, y,x € E.

Theorem 1.48. Let E be a strongly normed space and L be a finite-dimensional linear
subspace of E. If for x € E there exists x* € L such that

-] = infhc -y,

then x* is unique.
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Proof. If dist(x,L) = 0, then x = x*. Suppose that d = dist(x,L) > 0. Assume that there
are x;,x, € Lsuch that

d=|x-xi| = [x-x]
Then
X-x{ +x—x§k
2 2
lailaca
2 2

1 | .
< Shxil e gkl

* %
X +x
P Bk
2

Hence,
|2 = Oq + )] =2d = [|(x = x7) + (x = x3)|
= =]+ = x3 -
Since E is a strongly normed space, we see that there exists A > 0 such that
X-x; =Ax-x3).

If A # 1, then

1 * *
x=r— 04 -Ag) €L,

which is a contradiction. Therefore A = 1and x; = x;. This completes the proof. O

Lemma 1.2 (Riesz’s lemma). Let L be a closed linear subspace of E and L + E. Then for
any € € (0,1) there exists z, ¢ L, ||z || = 1, such that

dist(z,,L) > 1-e.

Proof. Since L # E, there exists x € Eand x ¢ L. Letd = inf ¢ [Ix - y|l. We have d > 0.
Then for any € € (0, 1) there exists y, € L such that

d
d<|lye—xl < —.

1-€
Let
Ye =X
z, = .
€ lye—xI

We have |z,|| = 1. If we suppose that z, € L, then y, — x € L. Hence, x € L, which is a
contradiction. Therefore z,. ¢ L. For y € L we have

-X Ix = (ve = yllye = xIDIl
||Z€_y||:” ye _ “: ye yy€
"ye_X" "ye_X"
> d >1-€.
lye = xI
Therefore dist(z., L) > 1 - €. This completes the proof. O
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1.6 Banach spaces

Definition 1.38. A normed vector space E that is complete in the sense of convergence
in norm is called a Banach space.

Example 1.24. The space E, is a Banach space with a norm

lIxIl = (fo) , x=(&,...,¢) €E,
=1

Example 1.25. The space C([a, b]) is a Banach space with a norm
= t)|.
£l max If()]

Example 1.26. The vector space lp, p € (1,00), is a Banach space with a norm

1

lIxll = <ZIX1Ip>p.

Theorem 1.49. Let E be a Banach space and L be its closed linear subspace. Then E/L
is a Banach space.

Proof. Let {I,},n be a Cauchy sequence in E/L. We take x,, € [, so that

”Xn - Xm” < zllln - lm"E/L'

In this way we get a Cauchy sequence {x,},cn Of elements of E. Because E is a Banach
space, the sequence {x,},,cn is convergent to an element x € E. Let [ be the class con-
taining x. Hence, by Theorem 1.45, we conclude that the sequence {1,;},,cn is convergent
to I. Therefore E/L is a Banach space. This completes the proof. O

Definition 1.39. Let x;,X,,...,X,,... be elements of a Banach space E. An expression
of the form };°, x; is called a series, made up of the elements of the space E. Let s,, =
YL x;. If the sequence {s,,},n converges, then Y% x; is said to be a convergent series.

Theorem 1.50. Let a, € F, n € N, and Y;°, a; be a convergent series. Let also, E be a
Banach space and x,, € E, |x,|l < |a,|,n € N. Then },?; x,, is a convergent series.

Proof. Foranyn,p € N, we have
n+p

> X

I=n+1

n+p n+p

<Y < Y gl

I=n+1 I=n+1

”Sn+p - Sn” =

Therefore {s,,},en is @ Cauchy sequence in E. Because E is a Banach space, we conclude
that the sequence {s,},,n is convergent. This completes the proof. O
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1.7 Inner product spaces

Definition 1.40. An inner product space is an ordered pair (E, (-, -)), where E is a vector
space over F and (;,) is an inner product, i.e., amap (.,-) : E x E — F that satisfies
the following axioms.

1. Positive definiteness.

(x,x)>0 for any xc€E,
and
(x,x)=0 iff x=0.
2. Linearity in the first argument.
Wy) =Alxy) and (x+y,2) = (X,2) +(¥,2)

forany x,y,z € Eand forany A € F.
3. Conjugate symmetry.

x,y) = (1, X)

forany x,y € E.

When it is clear from the context what inner product is used, (-, -) is omitted and
one just writes E for an inner product space.

Below we suppose that E is an inner product space.

By Definition 1.40 we get the following:
1. (x,x) € Rfor any x € E because

(x,x) = (x,X).
2. ForanyA € Rand for any x,y € E we have
6 Ay) = Ay, x) = Ay, X) = A(x,y).

3. Foranyx,y,z € E we have

LYy+2)=+2,x)=0.x)+(z,x) = ¥, xX) + (z,x) = (x,¥) + (x,2).
4, Foranyx,y € E we have

X +y,x+y)=xx+y)+ (¥, x+y) = (6,X) + (6y) + §,%) + (1, y)
= (6X) + (6Y) + (6Y) + (1Y) = (6X) + 2Re(x,y) + (v, ).
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Example 1.27. In E, we define the inner product as follows:
n
xy) = ZX1)71, X=Xy, Y=01-.-Vn) €Ep, (1.48)
I=1

We will check that (1.48) satisfies all axioms for inner product.
1.

n n
(6x)=Y xx = =0
=1 =1
for any x € E,. Also,
n
6x)=0 iff Y =0 iff x=0
=1

foranyle{l,...,n}.
2. letAeFandx,y,z€E,

X=Xy Xy, Y=0p-oVn)r Z2=(21...,2,).

Then

Moy) = Y Ay =AY x7; = Ax.y).
=1 =1

Also,

n n n
(X+y,2)= Y g +Y)F = Y X2+ ) Y21 = (62) + (1,2).
1=1 =1 =1

3. Forx,y €E,

X=Xy Xy)y V=01 Vn)

we have

n n n
oY) =D Xy =Y Xy = Y yix = (1, ).
=1 =1 =1

Exercise 1.18. Inl, we define an inner product as follows:
Y) =) XV X =hen V= Wihen € b (1.49)
I=1

Prove that (1.49) satisfies all axioms for an inner product.
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In E we define a norm as follows:

Ixll = V(x,x), x¢€E. (1.50)

Theorem 1.51. For any x,y € E we have

[0 )] < Ixllyl.

Proof. If x = 0 and y = 0 the assertion is evident. Suppose that x # 0 or y # 0. Without
loss of generality we assume that y # 0. By the axioms for an inner product we have

0<(x+Ay,x +Ay) = (x,x) + 2Re(x, Ay) + (Ay, Ay)

— 2 7, _ 2 =1 2 2 51)
= |x|I° + 2Re(A(x, y)) + (Ay, Ay) = x|~ + 2Re(A(x, ¥)) + Al llyll

xy)

D’ we have

for any A € F. In particular, for A =

_<Ty>(x,y)) [EXDI:
ANkt

[ S S C S0
>+ 5 = IxI" - 3
Iyl llyl Iyl

whereupon we get the desired result. This completes the proof. O

0< ||x||2 + 2Re<

= x| -2

>

Exercise 1.19. Prove that (1.50) satisfies all axioms for a norm.

Theorem 1.52. Let V be a normed vector space over C with a norm | - || that satisfies
Ix +yI? + lx = 17 = 2(Ix17 + lyl1®)
forany x,y € V. Then
1 i . .
06y) = 2 (b +yIP = I =yI%) + 2 (e + iyl = I = i) (1.52)

is an inner product in V.

Proof. We will prove that (1.52) satisfies all axioms for an inner product. Let x,y,z € V
and A € C.
1.

1 i . .
(6, x) = Z(||2x||2) + o+ ix||> - Ix - ix|I®) = Ix|I* = 0.

(x,x) = Oiff x> = 0 iffx = 0.

1 i . .
(0 +2,) = o (Ix ry+zlP —lx +z-ylI%) + 2z iyl” - lIx +z - iyl*),
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i . .
06Y) +(zy) = —(Ix +yI° = Ix = ylI%) + AGE iyll® - lIx - iy]®)

ENJ

1 i . .
+ 5z + yIP = Iz -ylI?) + e+ iyl® - llz - iyl®)
1
= 2 (bx+ YIP+lz +yIP = Ix - yI? = llz - yI?)
i . . . .
+ b+ iyl® + llz + iyl’* - Ix - iyll® - Iz - iyll*)
_ %<§||x vz P4 -2l - Sz - P - Sl —z||2>

i /1 . 1 1 . 1
e 2 (Sherz 2o S 27 - Sheorz- 2 - Jix- 2P
1
= glhrz+ W1 - Ix +z - 2y1°)
i ) .12
+§(||x+z+21y|| = lIx +z = 2iy||)
1
=E(IIX+Z+y+y||2—IIX+Z—y—yI|2)

+ é(||x+z+ iy +iyl? = Ix + 2z — iy - iy[]?)

1
= §(||x+z+y+y||2 +lx+zI? -~ Ix+zI* = Ix +z =y - yI?)

n é(nx +z+iy+iylP + Ix +2)° = Ix +2]° - Ix + z — iy — iy|?)
1
= g @+ z+yI” + 21 - 2 + 2 - yI* - 20y1?)
i . . . .
+g@xrzy iyll? + 2lliyl* - 2lx + z - iy|l” - 2lliy]*)

= %(le +z+ylP—lx+z- y||2) + i(llx tz+iyl - Ix+z - inIz).
Therefore
(x+zy) =06y) +(zY).
(a) LetA eN.
i. A=2.Then

(2%,y) =(x+xy) = (%y) + (6y) = 2(x,y).

ii. Assume that

A y) = Ax,y)

for some A € N.
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iii. We will prove that
(A+Dxy) = A+ D(xy).
In fact,
(A+xy) = M +xy) = (A6y) + (6y) =A0Y) + (6 y) = A+ DX, y).
Therefore for any A € N we have
Ax.y) = Ax, y).
(b) LetA e Nand %x =z.Hence, x = Az and

(Az,y) = Az, y).

Therefore

(x,y) = )l( lx )

)y - A :y

or

(%&y>:%uu&

(c) We have
1 i, . .
(0,y) = l—‘(uyu2 ~ I-yI%) + ;‘(nwn2 ~[-iyl*) = 0.
On the other hand,
(0,y) = (x + (=x),y) = (6. y) + (=X, ).

Therefore

(=xy) =-(xy).
(d) LetAe -N={-1,-2,...}. Then -A € Nand
(-Ax%,y) = (A, y) = -A(x,y),
whereupon

(A, y) = Alx, y).
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(e) LetA =2, wherep,q ¢ N. We have
q
b 1 b
(Ax, )=<—x, >=p<—x, )z—(x, ) =Ax,y).
y q y q y q y y
63) Let)l:—‘a’,p,qu.Then

b 14 14
AX) = T T A == =4 = - > :/1 5 .
Ax,y) < qu> <qu> ‘fxy) xY)

(g) LetA € R. Then there exists a sequence {A, },,cn such that A, e Qforanyn e N
and A, —» Aasn — co. We have

X, y) = 4,06 y). (1.53)
Also,
A(y) = Alx,y) as n— oo. (1.54)
On the other hand,
(o) = Z(AX+YIP = TAx - yIP)
b LR+ TP = T - 1)
— (I - e - yIP)

+ L0+ P o i) = ey,
Hence, by (1.53) and (1.54), we obtain
A y) = A, y).
(h) We have
(ix%y) = —(lix + yI” = llix - yI?) + };(uix + iyl - lix - iy[)

4
1 . . i

Al iyll® - lIx + iyl*) + 4 (Ix +YIP = Ix - yI%)
1

2 - iyll® - lIx + iy||2))

1
(1 2 2
—z(z(nxwu -y +
(1 i . . .
_ z(z(nx YR = b=y PP) (e i = e zy||2)> — ixy).

(i) LetA=a+ib,a,beR.Then

(A, y) = (ax +ibx,y) = (ax,y) + (ibx,y) = a(x,y) +i(bx,y) = a(x,y) + ib(x,y)
= (a+ib)(x,y)
=A(x,y).
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3. We have
xy) = %(||x +yI? = Ix = yI?) + };(ux +iyl? — Ix - iyl)
= %(||y +xI? - lly - xI?) - };(ny +ix]? - lly - ix|?) = (¢, ).
This completes the proof. O

Exercise 1.20. Let E be a normed vector space over R with a norm || - || such that
I+ yIP + I = 12 = 2011 + Iy 1),
Prove that
(63) = 50+ yIP - Ix - yP)

is an inner product in E.

Exercise 1.21. Let E be a normed vector space over R with a norm | - ||. Prove that
I2

Theorem 1.53. The inner product in E is a continuous function with respect to norm con-
vergence.

zZ —

2 2 1 2 X+y
lz - xII” + Iz -yl =§||X—)/|| +2 >

forany x,y,z € E.

Proof. Let {x,},cn and {y,},en be two sequences in E such that
Ix, x| -0 and [y,-yl—0 as n-—oo
for x,y € E. Note that there exists a positive constant M such that
Ix,l <M and |yl <M
for any n € N. Hence, by Theorem 1.51, we get

l(Xn’Yn) - (X)Y)| = |(Xn>yn) - (Xn!y) + (ery) - (X,)’)l
= |(Xn)yrl _y) + (Xn —X>}’)| < l(xn),Vn _J’)l + |(Xn —X)J’)l
< X lllyn = Y1+ I = xHllyll < Mlly, = 1l + Iy llix, — x| — O

as n — oo. This completes the proof. O

Theorem 1.54. For any x,y € E we have

lx + Y11 + lIx = yII* = 2(Ix11* + Iyl1%).
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Proof. We have

lIx +y1I” = IxI* + 2Re((x, y)) + Iyl
lIx = ylI* = IxI* - 2Re((x, y)) + Iyl

whereupon we get the desired result. This completes the proof. O

Definition 1.41.

1. Two elements x,y € E will be called orthogonal if (x,y) = 0. We will write x 1 y.

2. An element x € E will be called orthogonal to a linear subspace L ¢ E if it is
orthogonal to every element of L. We will write x L L.

3. Asystem {e;};cy Of elements of the space E is called orthonormal, if

1 ifl=m,

(e, e,) =
b ém) {0 if14m.

Theorem 1.55 (Schmidt orthogonalization system). Any system of linearly indepen-
dent elements {h;};cy can be converted into an orthonormal system.

Proof. Because {h;};cy is a linearly independent system of elements, we have h; # 0
forany !l € N. We set

81 = i
Il
For k = 2,..., we take
8 =h - C{(& T CII§—1gk—1’
where g,,, = éﬁ forme{1,...,k-1}, c}‘, le{1,...,k -1}, are chosen so that
(88 =0 for le{l,....,k-1}.
We have
0= (E8) = (h8) — ¢
whereupon
cf = (hog), lefl,... k-1
Then
8k = "‘gﬁ keN
This completes the proof. O
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1.8 Hilbert spaces

The most important function spaces in modern physics and modern analysis, are
known as Hilbert spaces. We give some important results on these spaces here.

Definition 1.42 (Hilbert space). An inner product space H will be called a Hilbert
space if it is complete in the sense of the norm

I 1= VG
Example 1.28. The space 1, is a Hilbert space.
Below we will denote by H a Hilbert space.

Definition 1.43. A set Kin a space V will be called convex if
M +(1-x, €K
for any x;,x, € Kand for any A € [0,1].

Theorem 1.56. Let M be a closed convex subset of the Hilbert space H and x ¢ M. Then
there exists a unique element y € M such that

dist(x, M) = [lx - yIl.

Proof. By Theorem 1.46 we have d = distd(x,M) > 0. For every n € N there exists
Vn € Mfor which

1
d<|x -yl <d+H. (1.55)
We have
2 2 2 2
2% = yull® + 21X = Y™ = Iy = Viull” + 12X =y = yll®s, n,m e N. (1.56)

Since M is a convex subset of H we have

YntVm e M.
2

Therefore

2
2=y, -ynl? = -2 s adt, mmen.

Then, using (1.55) and (1.56), we obtain

2
+
W = Vnl2 = 20 = Yl + 2lx = Yyl = 4x - L2tm

1\’ 1\
<2<d+ﬁ> +2<d+ﬁ) —4d >0 as m,n — oo.
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Therefore the sequence {y,},cn is @ fundamental sequence in M. Since M is a closed
subset of the Hilbert space H, we conclude that {y,},cy is convergent toy € M. Hence,
by (1.55), we obtain

d=|x-yl.
Now we suppose that there are two elements y;,y, € M such that
d=lx-yll and d=|x-y,l.

Since M is a convex subset of the Hilbert space H, we have

1772 e M and ”x—)% >d.
Then
Nty ?
4d’ = 2=yl + 2 -yl = 4x - TZ2 )l -yl 2 4d” + v -yl
whereupon
Iy1 =2l = 0.
Therefore y; = y,. This completes the proof. O

Corollary 1.8. Let M be a closed linear subspace of the Hilbert space H and x ¢ H\ M.
Then there exists a unique y € M such that

dist(x, M) = |x - y|..

Proof. Because M is a closed linear subspace of the Hilbert space H, it is a closed
convex subset of the Hilbert space H. Hence, by Theorem 1.56, the desired result fol-
lows. O

Theorem 1.57. Let M be a closed linear subspace of the Hilbert space H, x ¢ H\ M and
Ix — yll = dist(x, M) for somey € M. Thenx -y 1 M.

Proof. Let A € F be arbitrarily chosen and fixed. Then, for any z € M, z # 0, we have
Ix -y +Az| = [Ix -y,
whereupon

Ix =yl < lIx -y + Az|)®
= Ix = yI* + 2Re((x - y,A2)) + IAz]I* = lIx = yII* + 2Re((x - y,A2)) + IAP||zI°.
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_(x=y2)

In particular, when A = Iz >

we get

-y 2)x - y,2) > (CE 7% G (S %]

212

0<-2 Re<
llz12 llzI12

Therefore (x — y,z) = 0. Because z € M was arbitrarily chosen, we conclude that
x —y L M. This completes the proof. O

Corollary 1.9. Let M be a closed linear subspace of the Hilbert space H. Then every
x € H can be represented in an unique way in the following manner:

X=y+z,

wherey e M,z e H\Mandz L M.
Proof. Ifx € M, theny = x and z = 0. Let x ¢ M. By Corollary 1.8 it follows that there
exists a unique y € M such that

Ix -yl = dist(x, M).

Letz = x — y. By Theorem 1.57 we have z L M. This completes the proof. O

Definition 1.44. Let M be a closed linear subspace of the Hilbert space H. The set of
all elements of H which are orthogonal of M is called the orthogonal complement of
M. We will denote it by M*.

Theorem 1.58. Let M be a closed linear subspace of the Hilbert space H. Then M* is a
closed linear subspace of H.

Proof. Letz,,z, € M* and y € M be arbitrarily chosen. Then
Nz1 + M2, y) = A (21,Y) + Ay(2,¥) = O,

i.e., A;z; + A,z, € M™. Note that 0 ¢ M. Hence, by Theorem 1.3, we conclude that M*
is a linear subspace of H. Let {z,},,cy be a convergent sequence of elements of M that
converges to z € H. Then, using Theorem 1.53,

0=1(z,Y) > (z,y) as n— co.

Therefore (z,y) = 0 and z € M*. Consequently M~ is a closed subset of H. This com-
pletes the proof. O

Theorem 1.59. Let M be a linear subspace of the Hilbert space H. Then M is dense in H
if and only if M* = {0}.

printed on 2/10/2023 3:54 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

1.8 Hilbert spaces —— 65

Proof.

Let M be dense in H. Then M = H. Assume that there exists z, ¢ H such that
zg L M. Lety € H be arbitrarily chosen and fixed. Let {y,},.n be a sequence of
elements of M such that y, — y as n — co. Then, using Theorem 1.53,

0=pzy) = 0,29) as n— oo.

Therefore (y,z,) = 0. Because y € H was arbitrarily chosen, we can take y = z,.
Then ||zy|| = 0. Therefore z, = 0.

Let M* = {0}. Assume that M is not dense in H. Then there exists x ¢ H\ M. Hence,
by Corollary 1.9, we conclude that x = y+z,y ¢ Mandz = M . Note that M = M.
In fact, let z; € M be arbitrarily chosen and fixed. Then

(z21,25) =0 (1.57)

for any z, € M. In particular, (1.57) holds for any z, € M. Therefore z, ¢ M™. Since
—1

z; € M was arbitrarily chosen and for it we see that it is an element of M*, we

conclude that

M <Mt (1.58)

Let z; € M* be arbitrarily chosen and fixed. We take z, € M arbitrarily. Then there
exists a sequence {z; },.y of elements of M such that

z, >z, as n-— oo.
Since z; € M+ and zZ’ € M, n € N, we have
(z3.2;)=0 for any neNN.
Hence, by Theorem 1.53, we get
0 = (z3,2,) — (23,24),

i.e., (z3,2,) = 0. Because z, ¢ M was arbitrarily chosen, we obtain z; L M. There-
=, e . ..
fore z; € M. Since z; € M* was arbitrarily chosen and for it we see that it is an
—1
element of M, we obtain

M cM.

From the previous relation and from (1.58), we get M- = Ml. Then z = 0 and
y = x € M, which is a contradiction. This completes the proof. N

Let M be a linear subspace of the Hilbert space H, spanned by the orthonormal

system {¢ }; ey and x € M.
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Definition 1.45.
1. The series

o0
Y & a €F,
k=1

will be called a Fourier’s series with respect to the orthonormal system {¢; };en-
2. The numbers

a = (x,¢y), keN,

will be called the Fourier coefficients for the element x with respect to the or-
thonormal system {¢; };cn-

Let M,, = Span{¢,, ..., ¢,} and u,, = Yy_; k@i € M, for some ¢; € F. Then

(X - z Crdr> X — z ck¢k> = (x%,x) -2 z Re(ci (x, ¢p)) + z el
k=1 k=1

k=1 k=1
Let
A, = lIx = uyll.
Then
2 2 C C 2
Ay = X[ = 2 ) Re(Ce(x, p)) + Y lexl”.
k=1 k=1
Hence,
2 ) v C C 2
A= X% = Y = ) e + Y el
k=1 k=1 k=1
Note that
2 —
oy = cil” = (= cr) (@ =€)
— — — — 2 — — 2
= A — G Cy — Chy + CCp = | |” — € — Cray + ||,
whereupon
— — 2 2 2
-4 Cr — iy + Cil” = lag — ¢l — lag]”.
Therefore

n n
2 2 2 2
Ay = P+ ) g = ¢l = D eyl
k=1 k=1
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Then

and

Theorem 1.60. We have

1.8 Hilbert spaces

d,, = dist(x, M,,).

& = inf |x-u,|? = inf A?
n=inf II all "

u, €M, CpyensCp
n
= Molayzcyy e, = IXI7 = Y lagl?
k=1
n
dy = Ix =Y oy .
k=1

n
> la|” < IIx|I> for any neN.
k=1

and d, < d,, foranym < n.

— 67

(1.59)

Proof. Since d> > 0 for any n € N, we get the inequality (1.59). For m < n we have

m n
2 2 2 2 2 2
dpy = X = D log* > Ixl* = ) leyl” = d,
k=1 k=1

whereupon d,,, > d,,. This completes the proof.

Theorem 1.61 (Bessel’s inequality). We have

N 2 2
D lel® < Ixl”.
k=1

(1.60)

Proof. Since the inequality (1.59) holds for any n € N, we conclude that the series

Y |l |? is convergent and (1.60) holds. This completes the proof.

O

Definition 1.46 (Complete orthonormal system). An orthonormal system {¢;};cn in
the Hilbert space H is called a complete orthonormal system if for any x € H the

representation

holds.
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Theorem 1.62. An orthonormal system {¢; },.y in the Hilbert space H is complete if and
only if

[oe]
2 2
IXI? = Yl o= 06dp), ke,
k=1

forany x € H.

Proof.
1. Let{¢;}ren is a complete orthonormal system. Let also, x € H be arbitrarily chosen
and fixed. Then

(o]
X = z CrPr-
k=1
Hence,
o0
IxI? = 6x) = Y el
k=1

2. Let|x|? = Yo lckl?, ¢ = (X, @), k € N. Hence, using

n

X = ey

’ 2 C 2
= IxI? = > ekl
k=1 k=1

for any n € N, we see that x = )2, ¢, ¢y. This completes the proof. 0

Theorem 1.63. Let {¢;}icn be an orthonormal system in the Hilbert space H and M =
Span{{¢,}xen)- Then {Py}ien is a complete orthonormal system if and only if M = H.

Proof.

1. Let {¢}ren is a complete orthonormal system in H. Assume that M # H. Then
there exists x, € H\ (M), Xo # 0. Hence, (xq, ¢;) = O for any k € N. Since {¢;}xen
is a complete orthonormal system, we have

Xo = ) (X0, i)y = O.
k=1

This is a contradiction. Therefore M = H.
2. Let M = Hand x € H be arbitrarily chosen and fixed. Then for any € > 0 there
exists x, € M such that

Ix - xell < €.

Hence, for any € > O there exists N = N(¢) € N such that

N
Xe = Z Ck¢k’ Cx = (X, ¢k)’ k € {1,,N}
k=1
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Therefore
N
x= Y ey = Ix - xll <e.
k=1
By Theorem 1.60, we obtain
n N
X= Y i <X =Y cudu] = Ix—xell < €
k=1 k=1
for any n > N. Therefore
[ee]
X = Z de)k'

k=1

Since x € H was arbitrarily chosen and fixed, we conclude that {¢;}y is @ com-
plete orthonormal system in H. This completes the proof. 0

1.9 Separable spaces

Definition 1.47 (Separable space). A vector space X is said to be separable if there is
a sequence {x, },en of elements of X such that for any x € X there exists a subsequence
{xn, }ken Of the sequence {x,},cy that converges to x. In other words, a vector space X
is said to be separable if it contains a countable everywhere dense set.

Example 1.29. Consider E,. Let
E) = {(x,....%0) : X € Q k€ {1,...,m}}.

Then Eg is a countable everywhere dense set in E,. Consequently E, is a separable
space.

Example 1.30. Consider the space C([a, b]). By C we will denote its linear subspace of
all polynomials with rational coefficients. Then C is a countable everywhere dense set
of the space C([a, b]). Therefore C([a, b]) is a separable space.

Theorem 1.64. If in the Hilbert space H there exists a finite or a countable orthogonal
basis {f,}, then H is separable.

Proof. The set {a,f, : a, € Q} is a countable everywhere dense set in H. Therefore H is
separable. This completes the proof. O

Theorem 1.65. In every separable Hilbert space H there exists an orthogonal basis.

Proof. Since H is a separable Hilbert space there exists a countable everywhere dense
set A. Lete; € A, e; # 0. Then we take e, € A\ {e;} so that e; and e, are linearly inde-
pendent. Then we take e; € A\ {e;, e,} such that e, e, and e; are linearly independent.
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And so on. In this way we get a linearly independent system {e,}. From this, using
Theorem 1.55, we get a countable orthogonal basis in H. This completes the proof. [

1.10 Advanced practical problems

Problem 1.1. Prove that C* [a, b] is a vector space.

Problem 1.2. Let D[a, b] be the set of all differential operators

m dk m dk
P(D) = gopkmﬂ, QD) = kzzoqk(x)@,

where x € [a, b], py, qx € C([a,b]), k € {1,...,m}, (;1700 = 1, with operations

m k
PD)+ QD) = Y (o) + qu0)-
k=0 X
m dk
aP(D) = Z(apk(x))ﬁ, acF.
k=0 X

Prove that D|a, b] is a vector space.

Problem 1.3. Consider the set E[a, b]. Prove that
2 3
1. xé*,x*¢* and x’¢* are linearly independent.
2. 0,sinx, cosx and sin x + cos x are linearly dependent.

Problem 1.4. Suppose that A, B and C are linear subspaces of a vector space E. Prove
that

An(B+(AnC))=(AnB)+(AnC).

Problem 1.5. Prove that
n
doey) =Y =yl X =00, 0%), V=1 5Vn) € By
i=1
is a metric on E,,.

Problem 1.6. We say that a function f : [a, b] — Ris a function of bounded variation
if there exists a positive constant ¢ such that for every partition P = {a = t; < --- <
tnp = b} of the interval [a, b] we have

=

14

Ift) - f(ti_p)| < c.

=1
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Let P be the set of all partitions P of the interval [a, b]. If f : [a, b] — R is a function
of bounded variation, then its total variation is defined by

b n,
\/f =sup Y|f(t) ~ F(tiy)].
a PeP 151

The set of all functions of bounded variation on [a, b] is denoted by V([a, b]). In
V([a, b]) we define a metric by

b
d(f.g) = |f(@) -g@|+\/(f -2), f.geV(aDb]). (1.61)
a
Prove that (1.61) satisfies all axioms for a metric.
Problem 1.7. Check that

IFIl = [f(@)| + [f(B)| + max If”(t)l f € C(la, b)),

satisfies all axioms for a norm.

Problem 1.8. Check if
Ifl = max |[f(t)| + |f(b) - f(a)]
tela,b]
satisfies all axioms for a norm in C!([a, b]).

Answer. Yes.

Problem 1.9. Prove that the sequence

{Xn+1 Xn+2}
n+l1 n+2

is convergent in C([0, 1]) and C'([0,1]).

Problem 1.10. Let x, ..., X, be an orthogonal system in a Hilbert space H. Prove that

n 2
$x -
k=1

c 2
> .
k=1
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2 Lebesgue integration

Some preliminaries regarding sets and mappings that will be used throughout this
book can be found in the appendix of this book.

2.1 Lebesgue outer measure. Measurable sets

Definition 2.1. Let I be a nonempty interval of real numbers. We define its length I(I)
to be co if I is unbounded and if I is bounded, we define its length to be the difference
of its end points.

Below with {I;};cn we will denote a countable collection of nonempty open,
bounded intervals.

Definition 2.2. Let A be a set of real numbers. Then we define the outer measure of A
as follows:

m*(A) = inf 1@, ).
iheen  \ o
AcUi Ik

By the definition, it follows that m* (@) = 0.
Theorem 2.1. IfA ¢ B, then m*(A) < m*(B).

Proof. We have

m*(A) = inf (OO I(Ik)>
k=1

kI keN
AU I
o0
< inf YUV | =m*(B).
{Vidken =1
AcBcl 2, Vi
This completes the proof. O

Theorem 2.2. The outer measure of an interval is its length.

Proof.
1. LetI= [a,b]. Letalso € > 0 be arbitrarily chosen. Since

[a,b] c (a-€,b+€),
we have

m*([a,b]) <l((a-€,b+€))=b-a+2e.

https://doi.org/10.1515/9783110657722-002
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Because € > 0 was arbitrarily chosen, we conclude that
m*([a,b]) <b-a. (2.1)

Let {V;};en be a collection of open intervals covering the interval [a, b]. By the
Heine-Borel theorem, it follows that there exists a finite subcollection {I; };_; of
the collection {V; };cn that covers [a, b]. There exists | € {1,...,n} such thata € I;.
LetI; = (a;, b;). We have a; < a < b;. If b; > b, then

b-a< ¥ . (22)

k=1

Letb; € [a, b). Then there exists an interval (a,, b,) such that b; € (ay, b,).Ifb, > b,
then (2.1) holds. If b, < b we continue this process while it terminates. Then we
obtain a subcollection {(a;, bk)}ﬁl=1 of the collection {I k}zzr We have

ak+1<bk for 1<k<N-1

and since this process is terminated, we have by, > b. Therefore (2.1) holds. By (2.1)
and (2.2), we see that

m*([a,b]) =b - a.

Let Iis any bounded interval. Then for any € > 0 there exist two closed bounded
intervals J; and J, such that

Ji<I<),
and
IM-e<IJ)<iJy <UD +e.
Hence,
M-e<m*(J) <m™" D) <m*(J,) <) +e.
Because € > 0 was arbitrarily chosen, we see that
m*(I) = L(I).

If I is unbounded interval, then for any n € N there exists an interval J ¢ I such
that I(J) = n. Hence,

m'(D)=m"(J)=10J)=n

for any n € N. Therefore m*(I) = oo.

This completes the proof. O
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Theorem 2.3. m*({y}) = 0 foranyy < R.

Proof. Let € > 0 be arbitrarily chosen and fixed. Then

lcly-ey+e).

Hence,

m*({y}) < 2e.

Because € > 0 was arbitrarily chosen, we conclude that m*({y}) = 0. This completes
the proof. O

Theorem 2.4. For any set A and for any y € R we have
m*(A+y) = m*(A).

Proof. Note that any countable collection {I; };<n of open, bounded intervals covers A
if and only if {I; +y},cn covers A +y. Also, m* (I +y) = m*(I;,) for any k € N. Therefore

m*(A+y)= inf (i 1T, +y)>

{Tx+y}ken =1
A+ycU Lty

= inf (fzak)>=m*(A).

{Idken -
AcU I k=

This completes the proof. O

Theorem 2.5. The outer measure is countable subadditive, i. e., if {E; };.cy iS any count-
able collection of sets, disjoint or not, then

m*<U Ek> < Y m”(Ey).
keN k=1

Proof. Ifthereisak € Nsuch that m*(E;) = oo, then the assertion is evident. Suppose
that m*(E;) < oo for any k € N. We take € > O arbitrarily. Then for any k € N there
exists a countable collection {I ,,},,cn Of open, bounded intervals, such that

o0 . €
I < m*(By) + >

m=1

Note that {I} ;,}x men iS @ countable collection of open, bounded intervals for which

UEc U Lim

keN k,meN
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Hence, by Definition 2.2, it follows that

m*<U Ek> < i (M) = i(i l(lk,m)> < i(m*(Ek) . 2%)

keN k,m=1 k=1\m=1 k=1
[ee] (o] € (oo}
* *
= m(Ek)+Zz—k_Zm(Ek)+e
k=1 k=1 k=1

Because € > 0 was arbitrarily chosen, we get to the desired result. This completes the
proof. O

Corollary 2.1. If{E;}}., is any finite collection of sets, disjoint or not, then
m m
m*<U Ek> < z m* (Ej).
k=1 k=1

Proof. We take E; = ¢ for k > m and we apply Theorem 2.5. This completes the proof.
O

Corollary 2.2. The interval [0, 1] is not countable.

Proof. Assume that [0, 1] is countable. Then there exists a sequence {y;}icn Of ele-
ments of [0, 1] such that

(0,11 = |

keN

Hence, using Theorems 2.3 and 2.5, it follows that

1=m*([0,1]) = m*<U{yk}> <Yy m(vd) =0,
k=1

keN
which is a contradiction. O
Corollary 2.3. The set of irrational numbers in the interval [0, 1] has outer measure 1.

Proof. Let A be the set of irrational numbers in [0, 1] and B be the set of rational num-
bers in [0, 1]. Then

[0,1] =AUB. (2.3)
Since A c [0, 1], using Theorem 2.1, we get
m”*(A) <m*([0,1]) = L (24)
On the other hand, using Theorem 2.5, we obtain

1=m"([0,1]) < m*(A) + m*(B). (2.5)
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Because B is countable, there exists a sequence {y; };cn Of elements of B such that

B = Jinh
k=1

Then, using Theorems 2.3 and 2.5, we obtain

m*(B) = m*(U{yk}> <) m*(iyd) =o.
k=1

k=1

Hence, by (2.5), we find
1< m*(A).
By the previous inequality and (2.4), we obtain
m*(A) = 1.
This completes the proof. O

Theorem 2.6. Let m*(A) = 0. Then
m*(AUB) =m”*(B)

for any set B.

Proof. Since B ¢ A uB, we have

m*(B) < m*(AUB,). (2.6)
On the other hand,
m*(AuB) < m*(A) + m*(B) = m*(B).
Hence, by (2.6), we conclude the desired result. This completes the proof. O

Definition 2.3. Let E be a subset of R. With E we will denote the set
E°={xecR:x ¢E}.

The set E€ will be called the complement of the set E in R.

Definition 2.4. A set E is said to be measurable provided for any set A,
m*(A) = m*(AnE) + m*(AnE°).
Lemma 2.1. For any sets A and E we have

A=(AnE)U(ANE°).
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Proof. Let x € A be arbitrarily chosen and fixed.
1. Ifx € E, then

xcAnE
and
x € (ANE)U(ANE").
2. Ifx ¢ E, then x € E°. Hence,
x e AnES.
Therefore

x e (ANE)U(ANES).

Because x € A was arbitrarily chosen and we see that it is an element of (ANE)U(ANE®),
we conclude that

AcC(ANE)U(ANES). .7
Let x € (AN E) U (A nE®) be arbitrarily chosen and fixed. Then
xeAnE or xeAnE"

1. Letx ¢ AnE.Thenx € A.
2. Letx e ANE‘.Thenx € A.

Because x € (AN E) U (A n E®) was arbitrarily chosen and we see that it is an element
of A, we conclude that

(ANE)U(ANE’) cA.

From the previous relation and from (2.7), we get the desired result. This completes
the proof. O

Remark 2.1. Using Lemma 2.1 and Corollary 2.1, we have
m*(A) <m*(AnE)+m*(AnE°).
Therefore E is measurable if and only if
m*(A) >m*(AnE) + m*(AnE°). (2.8)

This inequality trivially holds if m*(A) = co. Thus it suffices to establish (2.8) for sets
A that have finite outer measure.
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Theorem 2.7. If A is a measurable set and B is any set disjoint from A, then
m*(AuB) =m*(A) + m*(B).
Proof. Since A is a measurable set, using Definition 2.4, we get
m* (AUB)=m*((AUB)NA) +m*((AUB)NA°) = m*(A) + m*(B).

This completes the proof. O

Theorem 2.8. Any set of outer measure zero is measurable. In particular, any countable
set is measurable.

Proof. Let E be a set of outer measure zero and let A be any set. Since
ANECE and ANE‘cA,
we have
m* (ANE)<m*(E)=0 and m"(AnE°) <m*(A).
Thus
m*(A)>2m*(AnNE)=0+m"(ANE") =m"(AnE)+ m"(AnE°)

and therefore E is measurable. Hence, using the fact that every countable set has outer
measure zero, we conclude that every countable set is measurable. This completes the
proof. O

Lemma 2.2. For any sets A, E, and E, we have
(ANE])NE; =An(E UE)" 2.9
and
(ANE)U(ANE{NE,)=An(E, UE,). (2.10)

Proof. Firstly, we will prove equation (2.9). Let x € (A n E{) n ES be arbitrarily chosen
and fixed. Then

xe€AnE] and x€E5.

Since x € ANE{, we get x € Aand x € E{. From x € E{ and x € Ej, we obtain x ¢ E;
and x ¢ E,. Therefore x ¢ E; UE, and x € (E; UE,)°. From x € A and x ¢ (E; UE,)", we
conclude that x € An (E; UE,)". Because x € (A nE{) n E5 was arbitrarily chosen and
we see that it is an element of the set A n (E, U E,)°, we conclude that

(ANES)NES c An(E, UE)". .11)
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Let x € A n (E; UE,)° be arbitrarily chosen and fixed. Then x € A and x ¢ (E; UE,)".
Hence, x ¢ E; UE,. Therefore x ¢ E; and x ¢ E,. From this, it follows that x € E{ and
x € E5. Since x € Aand x ¢ E{, we obtain x € AnE{. Because x ¢ ANE{ and x € ES, we
see that x € (A N E7) N ES. Since x € An (E; UE,)“ was arbitrarily chosen and we see
that it is an element of (A n E{) n ES, we conclude that

An(E,UE) c (AnE])nES.

From the previous relation and from (2.11), we obtain equation (2.9). Now we will prove

equation (2.10). Let x € (AN E;) U (A n E{ n E,) be arbitrarily chosen and fixed. Then

xeAnE orx e AnE{nE,.

1. Letx € AnE;.Thenx € Aand x € E;. Hence, x € E; UE, and x ¢ An (E; UE,).

2. Letx e AnE{NnE,. Thenx € A, x € E{ and x € E,. Hence, x ¢ Aand x € E; UE,.
Therefore x ¢ An (E; UE,).

Becausex ¢ (ANE)U (AN Ef N E,) was arbitrarily chosen and we see that it is an
element of A n (E; UE,), we obtain

(ANE)U(ANE{NE,) cAn(E UE,). (2.12)

Letx € An (E; UE,) is arbitrarily chosen and fixed. Then x ¢ Aand x € E; UE,.
1. Letx € E;.Thenx ¢ AnE, and

xe(AnE)U(ANE NE,). 13)

2. Letx € E,.Ifx € E;, then x € AnE; and we get (2.13). If x ¢ E,, then x € E{ and
x € An ES nE,. Therefore we get (2.13).

Because x € A n (E; U E,) was arbitrarily chosen and we see that it is an element of
(AnE;) U (AnE{NE,), we obtain

ANn(E,UE)) c(AnE)U(ANE{NE,).

From the previous relation and from (2.12), we get equation (2.10). This completes the
proof. O

Theorem 2.9. The union of a finite collection of measurable sets is measurable.

Proof. Let E; and E, be two measurable sets. Then for any set A we have
m*(A) =m*(AnE;) + m*(AnE])
and

m*(ANE]) =m*(AnE; nE,) + m*"(AnE] nE3).
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Therefore
m*(A) =m*(AnE) + m*(AnE{ nE,) + m*(AnE] nE3).
Hence, by (2.9), we obtain

m*(A) =m*(ANE;) + m*(An (E; UE,)°)
+m*"(ANE]NE,) >m*(An (E,UE,)) + m"(An (E; UE,)").

Therefore E, UE, is a measurable set. Assume that | J;_, E, is a measurable set, where
E;, k € {1,...,n}, are measurable sets. Let E,,; be a measurable set. Then, as above,
(Ur_; Ey) U E,, is a measurable set. Therefore | J] E; is a measurable set. This com-
pletes the proof. O

Theorem 2.10. Let A be any set and {E;};_, be a finite disjoint collection of measurable
sets. Then

n n
m*(A n <U Ek>> =) m"(ANE).
k=1 k=1
In particular,
n n
m*<U Ek> = > m"(Ey).
k=1 k=1

Proof. We will use induction.
1. Letn = 1. Then the assertion is evident.
2. Assume that the assertion is valid for some n € N.

3.  We will prove the assertion for n + 1. Because {Ek}’”1 is a disjoint collection, we
have
n+l
An <U5k> NE,; =ANE,,
k=1
and

An (UEk> NE.,, =An (UEk>

k=1 k=1

Hence, by the measurability of E,,;, we get
n+1 n+1 n+1
m*<Am (UEk>> = m*<Am (U Ek> n E,Hl) + m*<Am (U Ek> n Efm)
k=1 k=1 k=1
n
_m(AnEn+1+m< <U ))
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n
=m*(ANEy,)+ Y m"(AnE)
k=1
n+1

=) m"(AnE).
k=1

This completes the proof. O

Lemma 2.3. For any sets A, B and C we have

A\B=AnB", (2.14)
An(B\C)cAn(BNC), (2.15)
(AnB)" = A°UB°. (2.16)

Proof.

1.  We will prove (2.14). Let x € A\ B be arbitrarily chosen and fixed. Then x € A and
x ¢ B.Fromx ¢ B, it follows that x € B°. By x € Aand x € B, we obtain x € AnB°.
Because x € A\ B was arbitrarily chosen and we see that it is an element of ANB,
we get

A\BcANB. 2.17)

Let x € An B¢ be arbitrarily chosen. Then x € A and x € B. From x € B¢ it follows
that x ¢ B. From x € Aand x ¢ B, we get x € A\ B. Because x ¢ A n B¢ was
arbitrarily chosen and fixed and we see that it is an element of the set A \ B, we
obtain

AnB°cA\B.

From the previous relation and from (2.17), we obtain (2.14).

2. We will prove (2.15). Let x € A n (B \ C) is arbitrarily chosen. Then x € A and
x € B\ C. From x € B\ C, it follows that x ¢ Band x ¢ C. By x ¢ C, we get x € C°.
From x € A, x e Band x € C°, we see thatx ¢ An (BN C°). Becausex ¢ An (B\ C)
was arbitrarily chosen, we conclude to equation (2.15).

3. Wewill prove (2.16). Let x € (AnB)° be arbitrarily chosen and fixed. Thenx ¢ AnB.
Hence, x ¢ Aorx ¢ B.

(@) Ifx ¢ A, thenx € A°and x € A UBC.

(b) Ifx ¢ B, then x ¢ B and x € A° UB¢.

Because x € (A n B) was arbitrarily chosen and we see that it is an element of
A€ U B, we obtain

(ANnB)° c A°UB". (2.18)

Let x € A°UB® be arbitrarily chosen and fixed. Then x € A or x € B°. Hence, x ¢ A
or x ¢ B. Therefore x ¢ AnBand x € (AN B). Because x € A° U B¢ was arbitrarily
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chosen and we see that it is an element of (A N B)¢, we obtain
A°UB‘ c (AnB)-.

From the previous relation and from (2.18), we get equation (2.16). This completes
the proof. 0

Theorem 2.11. Let E; and E, be measurable sets. Then E; \ E, is a measurable set.

Proof. Let A be any set. Since E; is a measurable set, then E{ is a measurable set.
Hence, by Theorem 2.9, we see that Ef UE, is a measurable set. Then

m*(A) > m*(An (ESUE,)) + m*(An (ES UE,)"). (2.19)
Using (2.14) and (2.16), we have
(E; \Ey)° = (E; NES) = E{ UE,.
Therefore
AN (E;\E,)" = An(EUE,)

and

m*(An (B, \ Ey)°) = m*(An (ESUE,)). (2.20)
By (2.15) and (2.16), we get

AN (E \E) cAn(E NES) =An(ESUE,)".

Hence, by Theorem 2.1, we obtain

m* (AN (E, \E,)) < m*(An (ES UE,)").
From the previous inequality and from (2.19) and (2.20), we arrive at

m*(An (E; \E,)) + m*(An (B, \ E,)°) < m*(An (ES UE,))
+m*(An (ESUE,)) < m*(A).

Because A was arbitrarily chosen and fixed, we conclude that E,; \ E, is a measurable
set. This completes the proof. O

Theorem 2.12. The union of a countable collection of sets is also the union of a count-
able disjoint collection of sets. In particular, the union of a countable collection of mea-
surable sets is also the union of a countable disjoint collection of measurable sets.
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Proof. LetE = Jp2, E;. We set

E, =E,
k-1
E =E \| JE.
I=1
Suppose that x € E is arbitrarily chosen and fixed. Assume that x ¢ E; for any k € N.
Then x ¢ E; forany k € Nand x ¢ E = |J;2, E;, which is a contradiction. Therefore
x € E; for some k € N and hence, x € | J;2, E;. Because x € E was arbitrarily chosen
and we see that it is an element of | J;2, Ey, we get

Ec|JE. (2.21)
k=1

Let now x € |Ji2; Ey is arbitrarily chosen. Suppose that x ¢ E; for any k € N. Hence,
x ¢ Ei forany k € Nand x ¢ |J;2, E;. This is a contradiction. Therefore x € Ej, for some
k e Nandx € E = |2, E;. Because x € | Ji2; E was arbitrarily chosen and we see that
it is an element of E, we conclude that

fj E, cE.
k=1

From the previous relation and from (2.21), we obtain E = [ J;2; E;. Suppose that there
is x € E such that x € E; and x ¢ E, for some k > . From the definition of the set E;
it follows that x ¢ |J5} E,,.. Therefore x ¢ E,, for any m € {1,...,k - 1}. In particular,
x ¢ E;, which is a contradiction. Consequently {E; };c is a collection of disjoint sets.
Now we suppose that E,’<, k € N, are measurable sets. Then for k > 2, using Theo-
rem 2.9, we see that Uﬁf E{ is a measurable set. Hence, by Theorem 2.11, the sets E,
k € N, are measurable sets. This completes the proof. O

Theorem 2.13. The union of countable collection of measurable sets is measurable.

Proof. LetE = 2, E; be a countable collection of measurable sets. By Theorem 2.12,
it follows that there is a countable disjoint collection {E; };.y of measurable sets such
that E = [z, E. Let A be any set, n € N be arbitrarily chosen and

n
F, = JE
k=1

Then by Theorem 2.9 we see that F,, is a measurable set. Also, F,, ¢ E and F;, 2 E°.
Hence, by Theorem 2.1, we get

m*(ANES) <m*(AnF;).
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Then, using the fact that F,, is a measurable set, we obtain

m*(A) =m*(AnF,) + m*(AnF;)
>m*(AnF,) +m"(AnE°).

By Theorem 2.10, we obtain

m*(AnF,) = m*<An (

Ek>> =Y m"(ANEy).

k=1

=~
N =
[uN

Hence, by (2.22), we get
n
m*(A) > Y m*(AnE)+m"(AnE").
k=1
Because n € N was arbitrarily chosen, from the previous inequality we find
(o]
m*(A) 2 ) m*(AnE)+m"(AnE).
k=1

From Theorem 2.5, we have

m*(AnE) = m*(Am (Ej Ek>> < m*(fj(AnE,J)
k=1 k=1

<) m (ANEy).
k=1

Hence, by (2.23), we find
m*(A) > m*(ANE) + m*(ANE°).

This completes the proof.

Definition 2.5. A collection F of subsets of R is called o-algebra if
1. it contains R,

2. Ac F,thenA° e F,

3. AgeF,keN,thenJ2 Ay € F.

(2.22)

(2.23)

Remark 2.2. Let F be a o-algebra. Let also Ay € F, k € N. Then A} € F, |2, A}, € F.

Hence,

o0 ¢ o0
<UA§> = ﬂAk e F.
k=1

k=1

Therefore every o-algebra is closed with respect to the formation of countable inter-

sections.
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Remark 2.3. By Theorems 2.11and 2.13, it follows that the set M of all measurable sets
is a o-algebra.

Theorem 2.14. If a o-algebra F of subsets of R contains intervals of the form (a, co),
then it contains all intervals.

Proof. Since (a, o) € F and F is a g-algebra, we have
(-00,a] = (a,00)€ € F.
Because
(a,b]° = (—0o0,a] U (b, 0)

and (—oo0, al, (b, 00) € F and F is closed with respect to the formation of finite unions,
we conclude that (a, b]¢ € F. Hence, using the fact that F is closed with respect to
complements, we see that (a, b] € . Now we consider [a, co). We will prove that

[a,0) = ﬁ(a - %,oo). (2.24)

n=1

Let x € [a,00) be arbitrarily chosen and fixed. Then x € (a - % o) forany n € N.
Therefore x € (2;(a - % 00). Since x € [a, c0) was arbitrarily chosen and we see that

it is an element of ﬂ;’il(a - % 00), we obtain the relation

= 1
[a,00) C D(a - H’OO) (2.25)

Let now x € ﬂ;’il(a - % 00) be arbitrarily chosen and fixed. Then

a—-—x< —
n

for any n € N. Hence, a - x < 0, i.e., x € [a,00). Because x € ﬂ;";l(a - %,oo) was
arbitrarily chosen and we see that it is an element of [a, c0), we conclude that

(6]

ﬂ(a - %oo) C [a, 00).

n=1

From the previous relation and from (2.25), we obtain equation (2.24). Since

<a—1,oo> e F
n

for any n € N and F is closed with respect to the formation of countable intersec-
tions, we obtain [a, c0) € F. Hence, using the fact that F is closed with respect to the
complements, we find

(-00,a) = [a,00)¢ € F.
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Note that
[a,b) = ((—co,@) U [b,00))".

Because (-00,a), [b,00) € F and F is closed with respect to the formation of finite
unions and complements, we conclude that [a, b) € F. Also,

[a, b] = (0o, b] N [a, c0).

Since (-0, b], [a, 00) € F and F is closed with respect to the formation of finite inter-
sections, we obtain [a, b] € F. This completes the proof. O

Theorem 2.15. Every interval is measurable.

Proof. We will prove that every interval of the form (a, co) is measurable. Let A be a
set such that a ¢ A. Let also {I, };y be any collection of open, bounded intervals that
covers A. We define

Al =An (—OO, a), A2 =An (a, OO),

I,’( =I; N (o0, a), I,’<’ =T, n(a, o)
for each index k. Then
1T = (L) + ()

for each index k. Note that {I; };cy and {I}};cn are countable collections of open,
bounded intervals that cover A; and A,, respectively. Hence, using the definition for
the outer measure, we get

m*(A) < Y I(I,) and m*(A,) < ) I(I).

k=1 k=1
Therefore
m*(A) +m"(A) < Y UL) + Y I(I))
k=1 k=1
= (1) + (1)) = ) 1),
k=1 k=1
i.e.,

m*(A) + m*(Ay) < Y I(T;).
k=1

Because {I; };cy Was arbitrarily chosen, from the previous inequality we get

m* (AN (a,00)) + m* (AN (a,00)°) < m*(A). (2.26)
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Let now a € A. Then we consider the set B = A\ {a}. As above,
m”* (BN (a,00)) + m*(Bn (a,00)) < m*(B). (2.27)
By Theorem 2.4, it follows that

m”*(B) = m*(A),
m*(Bn (a,00)) = m*(An (a,00)),
m* (BN (a,00)) = m* (AN (a,o0)).
Hence, by (2.27), we get (2.26). Therefore (a, co) is measurable. Because the measur-

able sets are g-algebra and every interval of the form (a, co) is measurable, using Theo-
rem 2.14, we conclude that every interval is measurable. This completes the proof. [

Theorem 2.16. The translate of a measurable set is a measurable set.

Proof. Let Ebeameasurableset. Letalso Abeanysetandy € R. Since E is measurable,
using Theorem 2.4, we have

m*(A)=m*(A-y)=m*((A-y)nE) + m*((A-y) nE)
=m*(An(E+y))+m* (AN (E+y)°).

Therefore E + y is a measurable set. This completes the proof. O

Theorem 2.17. The intersection of an arbitrary nonempty collection of -algebras on R
is a g-algebra on R.

Proof. Let A,, a €1, are g-algebras on R. Here I is an index set. Let also

A=A
acel

1. Since A,, a € I, are o-algebras on R, we have R € A, for any a € I. Therefore
Re A=y Ag-

2. LetA e Abeanyset. Then A € A, for any a € I. Because A,, a € I, are g-algebras,
we have A® € A, for any a € I. Consequently A€ € A.

3. Let {Appen € A. Then {A.},cn € A, for any a € I. Because A,, « € N, are
o-algebras, we obtain | J,2; A, € A, for any a € L. Therefore [ J;2; A, € A.

Consequently A is a o-algebra. This completes the proof. O

Definition 2.6. The intersection of all o-algebras of subsets of R that contain the open
sets is a g-algebra called the Borel o-algebra. It will be denoted by B(R). The members
of B(R) are called Borel sets.

The Borel g-algebra is contained in every g-algebra that contains all open sets.
Since the measurable sets are a o-algebra containing all open sets, every Borel set is
measurable.
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Definition 2.7. A setis said to be a G4 set provided it is the intersection of a countable
collection of open sets.

Exercise 2.1. Prove that the translate of a G set is a G4 set.

Definition 2.8. A set is said to be a F; set provided it is the union of a countable col-
lection of closed sets.

Exercise 2.2. Prove that the translate of an F;; setis a F; set.
Theorem 2.18. Every open set is measurable.

Proof. Note that every open set is a disjoint union of a countable collection of open
intervals. Hence, from Theorems 2.15 and 2.13, it follows that every open set is mea-
surable. This completes the proof. O

Exercise 2.3. Prove that every F; set and every G set is measurable.

Theorem 2.19. Let E be any set of real numbers. Then E is measurable if and only if for
each € > 0 there is an open set 0, containing E, so that m*(0 \ E) < e.

Proof.
1. Suppose that E is measurable. We take € > 0 arbitrarily.
(a) Let m*(E) < co. By the definition of the outer measure, it follows that there is
a countable collection of open intervals {I; };cy Which covers E and

i I(T,) < m*(E) +e.
k=1

We define
(o)
0=JI.
k=1

Then O is an open set that contains E. Hence, by Theorem 2.5, we obtain

m*(0) = m*<fjlk> < 0ZO:m*(Ik) < OZO:l(lk) <m”*(E) +e€.
k=1 k=1

k=1

Therefore
m*(0) - m*(E) < e.
Because
O=(0\E)UE and (O\E)nE=9¢,
using Theorem 2.7, we get

m”*(0) = m*(0 \ E) + m” (E).
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Consequently
m* (0 \E)=m”*(0) -m*(E) < e.

(b) Let m*(E) = co. Then E may be expressed as the disjoint union of a countable
collection {E; }; <y of measurable sets, each of which has finite outer measure.
By the first case, for each k € N there is an open set O, containing E; such
that

* €
m (Ok \ Ek) < Z_k
Let

o0
o-=]o,.
k=1

Then O is an open set that contains E and

m*(0\E) =m*<<U ok> \E> < m*<U(ok \Ek)>
k=1 k=1

o0 N o0 €
<Y m (O \E) <) —=e
k=1 k:12

2. Letfor each € > 0 there is an open set O containing E such that m*(0 \ E) < €. Let
A be any set. Then, since O is an open set, using Theorem 2.18, it is measurable.
Therefore

m*(A) > m*(An0) + m*(AnQ°). (2.28)
Using AN E ¢ An 0 and Theorem 2.1, we have
m*(AnE) <m*(AnO0). (2.29)
Now we will prove that
E=0n(0\E). (2.30)

Let x ¢ E be arbitrarily chosen. Then x € Q0 and x ¢ O \ E. Therefore x ¢ (0 \ E)°.
Because x ¢ O and x € (0 \ E)°, we get x ¢ 0 n (0 \ E)°. Since x ¢ E was arbitrarily
chosen and we see that it is an element of the set 0 n (0 \ E)¢, we conclude that

EcOn(0\EY". (2.31)

Let x € 0 n (0 \ E)¢ be arbitrarily chosen and fixed. Then x € 0 and x € (O \ E).
Hence, x ¢ O \ E and x ¢ E. Because x € 0 n (0 \ E) was arbitrarily chosen and
we see that it is an element of E, we obtain

ON(0\E)cE.

EBSCChost - printed on 2/10/2023 3:54 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

2.1 Lebesgue outer measure. Measurable sets =—— 91

From the previous relation and from (2.31), we get equation (2.30). By (2.30), we
find

E = (0N (0\E)) =0°U(0\E).
Now we will prove
ANE‘c(AnO°)U(O\E). (2.32)
Let x € ANES be arbitrarily chosen and fixed. Then x € A and x € E°. Hence, x ¢ E.
(@ IfxeO° thenxc AnO andx e (ANnO°) U (0 \E).
(b) Ifx ¢ O°, then x € O and hence,x e O\ Eandx ¢ (AnO°) U (O \E).

Because x € A n E€ was arbitrarily chosen and we see that it is an element of
(AN 0% U (0 \E), we get equation (2.32). By (2.32), we find

m* (ANE") <m*(AnO°)uU(0O\E)) <m* (AnO°)+m*(0\E) <e+m"(An0O°).
From the previous inequality and from (2.29) and (2.28), we obtain
m*(ANE)+m*(AnE") <m*(An0)+m* (An0O°) +e<m*(A) +e.
Because € > 0 was arbitrarily chosen, we conclude that
m*(A) > m*(ANE) + m*(AnE°),

i. e., E is measurable. This completes the proof. O

Theorem 2.20. Let E be any set of real numbers. Then E is measurable if and only if
there is a G set G, containing E, such that m*(G \ E) = 0.

Proof.
1. Let E be measurable. By Theorem 2.19, it follows that for any k € N there is an
open set O;, containing E, such that

. 1
m* (0 \E) < .

Let G = (2, Ox. Then G is a G set containing E. Also,
[ee]
G\Ec [0 \E). (2.33)
k=1

Really, let x € G \ E be arbitrarily chosen. Then x € G and x ¢ E. By the definition
of the set G, it follows that x € O for any k € N. Therefore x € O, \ E for any
k € N. Hence, x € mf;l(ok \ E). Because x € G\ E was arbitrarily chosen and we
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see that it is an element of the set [;2,(0; \ E), we get equation (2.33). By (2.33)
and Theorem 2.1, we find

m*(G\E) < m*<fj(0k\E)) <m* (0, \E) < %

for any k € N. Therefore m*(G \ E) = 0.

2. Letthereis a G5 set G containing E such that m*(G \ E) = 0. Since any set of outer
measure zero is measurable, we have G \ E € M. Because M is a o- algebra, we
have (G \ E)° € M and Gn (G \ E)° € M. From this, using E = Gn (G \ E)* (which
one can prove as in (2.30)), we conclude that E is measurable. This completes the
proof. O

Theorem 2.21. Let E be any set of real numbers. Then E is measurable if and only if for
each € > 0 there is a closed set B contained in E such that m*(E \ B) < e.

Proof.
1. Let E be a measurable set. Then E€ is a measurable set. We take € > 0 arbitrarily.
By Theorem 2.19, it follows that there is an open set O containing E€ such that

m*(0\E°) <e. (2.34)
Note that O° is a closed set and O° ¢ E. Now we will prove that
E\0°=0\E". (2.35)

Really, let x € E \ O° be arbitrarily chosen. Then x € E and x ¢ O°. Hence, x € O
and x ¢ E°. Therefore x ¢ 0\ E€. Since x ¢ E \ O° was arbitrarily chosen and we
see that it is an element of O \ E¢, and we obtain

E\O°cO\E". (2.36)

Let now x € O\ E€ be arbitrarily chosen. Then x € 0 and x ¢ E°. Hence, x ¢ O°
and x € E. Therefore x € E\ O°. Because x € 0 \ E€ was arbitrarily chosen and we
see that it is an element of the set E \ O°, we get

O\E°CE\O"

From the previous relation and from (2.36), we obtain equation (2.35). By (2.35),
Theorem 2.1 and (2.34), we find

m*(E\O°) =m*(0 \E°) <e.

We set B = 0.
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2. Letforany e > O thereis a closed set B, contained in E, such that m*(E\B) < €. By
(2.35), we obtain m* (B \ E°) < €. Note that B¢ is an open set and E€ ¢ B€. Hence,
by Theorem 2.19, we conclude that E€ is measurable, i. e., E° € M. Because M is
a g-algebra, we see that E € M, i.e., E is a measurable set. This completes the
proof. 0

Theorem 2.22. Let E be any set of real numbers. Then E is measurable if and only if
there is an F,; set B, contained in E, such that m*(E \ B) = 0.

Proof. By Theorem 2.20, it follows that the set E® is measurable if and only if there is a
G set A, containing E¢, such that m* (A\E®) = 0. Hence, using (2.35) and using the fact
that the complement of a G4 set is an F,, set, we get the desired result. This completes
the proof. O

Theorem 2.23. Let E be a measurable set of finite outer measure. Then for each € > 0
there is a finite disjoint collection of open intervals {Ii};_, for which if O = J;_, I, then

m*(E\0)+m*(0\E) <e.

Proof. By Theorem 2.19, it follows that for each € > 0 there is an open set B, contain-
ing E, such that m*(B \ E) < g Since every open set is measurable, we see that B is
measurable. Also, we have

m*(B) <m*(E) + m*(B\E) < m*(E) + g

Therefore B is a measurable set of finite outer measure. Because every open set of
real numbers is a disjoint union of a countable collection of open intervals, there is a
disjoint countable collection of open intervals {I; }; <y for which

B=JI, LnL=0, k#I kleN
k=1
Since for any n € N we have | J;_, I, ¢ B, using Theorem 2.1, we get
n n n
M) =) m @) = m*(U Ik> <m*(B) < co.
k=1 k=1 k=1

Therefore

i l(Ik) < Q.

k=1

From this, there is an n € N such that

v €
> M) <3

k=n+1
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We define

n
0 = U Ik'
k=1
Using that O \ E ¢ B\ E and Theorem 2.1, we obtain
m*(0\E) <m*(B\E) < g

On the other hand, E ¢ B and

E\OcB\O= fj I.

k=n+1

By the definition of the outer measure, we get

* <= €
m(E\O) < ) 1) < 3.

k=n+1

Thus,

m (O\E)+m*(E\O)< - + - =¢€.

£
2

N ™

This completes the proof. O

Exercise 2.4. Show that a set E is measurable if and only if for each € > 0, there is a
closed set A and an open set B for which

AcEcB and m*(B\A)<e.

Solution. By Theorems 2.19 and 2.21, it follows that the set E is measurable if and only
if for each € > O there are a closed set A and an open set B such that

ACEcCB
and
* € * €
m (E\A)<§, m (B\E)<§. (2.37)
Now we will prove
B\A=B\E)u (E\A). (2.38)

Let x € B\ A be arbitrarily chosen. Then x € Band x ¢ A.
1. IfxeE,thenxcE\Aandxe (B\E)U(E\A).
2. Ifx¢E,thenxeB\Eandxe (B\E)U(E\A).
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Because x € B\ A was arbitrarily chosen and we see that it is an element of (B \ E) U
(E\ A), we get

B\Ac(B\E)u(E\A). (2.39)

Letnow x € (B\ E) U (E \ A) be arbitrarily chosen. Thenx ¢ B\ Eorx € E\ A.
1. Letx e B\E.Thenx e Bandx ¢ E. Hence, x ¢ A and x € B. Therefore x € B\ A.
2. LetxeE\A.Thenx € Eandx ¢ A. Hence, x € Band x ¢ A. Therefore x € B\ A.

Because x € (B\ E) U (E \ A) was arbitrarily chosen and we see that it is an element of
B\ A, we conclude that

(B\E)U(E\A)<B\A

From the previous relation and from (2.39), we get equation (2.38). By (2.38) and The-
orem 2.1, we obtain

m*(B\A)=m"((B\E)U(E\A)) <m*(B\E)+m"(E\A) < §+ =€

NI M

This completes the proof.

Exercise 2.5. Let E has finite outer measure. Show that there is an F,; set A and a Gg4
set B such that

AcEcB and m*(A) =m*(E) = m*“(B).

2.2 The Lebesgue measure. The Borel-Cantelli lemma

Definition 2.9. The restriction of the set function outer measure to the class of mea-
surable sets is called Lebesgue measure. It is denoted by m. In other words, if the set
E is measurable, its Lebesgue measure, m(E), is defined by

m(E) = m* (E).

Theorem 2.24. The Lebesgue measure is countably additive, i. e., if {E; }y¢n i a count-
able disjoint collection of measurable sets, then its union | J;2, E; is also measurable
and

m(U Ek> = z m(Ey).
k=1 k=1

Proof. By Theorem 2.13, it follows that | i, E; is a measurable set. By Theorem 2.5,
we get

m(fj Ek> < i m(Ek). (240)
k=1 k=1
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On the other hand, using Theorem 2.10, we obtain
n n
m(U Ek> = > m(Ey). (2.41)
k=1 k=1

Since g_; Ex € Uiy Ey for any n € N, using Theorem 2.1, we obtain

(0m)<r(0)

for any n € N. Hence, by (2.41), we find
[ee] n
m(U Ek> > )" m(Ey)
k=1 k=1
for any n € N. Therefore
o (e8]
m(U Ek> > ) m(Ey).
k=1 k=1

From the previous inequality and from (2.40), we get the desired result. This completes
the proof. O

Remark 2.4. The set function Lebesgue measure, defined on the o-algebra of
Lebesgue measurable sets, assigns the length to any interval, is translation invari-
ant, and is countable additive.

Definition 2.10. A countable collection of sets {E; };cy is said to be:
1. ascending provided for each k € N, E; € E;;;
2. descending provided for each k € N, E;,; € E;.

Theorem 2.25 (The continuity of measure). The Lebesgue measure possesses the fol-
lowing properties.
1. If{E;}«en IS an ascendent collection of measurable sets, then

m(fj Ek> = I}LIEO m(Ey). (2.42)

k=1

2. If{E;}xen is a descendent collection of measurable sets and m(E;) < oo, then

k=1
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Proof.

Suppose that there is an index ! such that m(E;) = co. Then, using

m(fj Ek> >m(E) and m(E,) > m(E))

k=1

foranyp > I, p € N, we get

m(fj Ek> =00 and m(E,) = co
k=1

forany p > I, p € N. Therefore (2.42) holds. Now we assume that m(E;) < oo for
any [ € N. We set A, = 0 and define the sets

Ak = Ek \ Ek—l’ k € N

We will prove that {A;};cn is a disjoint collection. Assume that there are k,l € N,
k > I, such that there is an x € A, N A;. By the definition of the sets A;, we obtain
x ¢ Ei_;. Since {E; };cy is an ascendent collection, we conclude that x ¢ E,, for any
p <k-1,p e N. Therefore x ¢ A;. This is a contradiction. Consequently {A; };cn is
a disjoint collection. Now we will prove that

(9] o0
A= JEx (2.44)
k=1

k=1

Let x € [Ji2; Ag be arbitrarily chosen. Then there is an ! € N such that x € A; =
E/\E_;. Hence, x € Ejand x € | J;2, E;. Because x € | J;2; A, was arbitrarily chosen
and we see that it is an element of [ J;2; E;, we conclude that

GMQG&. (2.45)
k=1 k=1

Let now x € [ Ji2; Ey be arbitrarily chosen. Then there is an ! € N such that x € E;.
Assume that x ¢ A; for any k € N. Then x ¢ E; for any k € N. In particular,
x ¢ E;. This is a contradiction. Therefore there isa p € N such that x € Ap. Hence,
x € Jpoq Ag- Because x € | Ji2; E; was arbitrarily chosen and we see that it is an
element of | J;2; Ay, we obtain

o0 o0
JEx < A
k=1 k=1

From the previous relation and from (2.45), we get equation (2.44). By the count-
able additivity of m, we have

m(U Ek> = m<U Ak> =Y mAy) = Y mE\Ey)
k=1 k=1 k=1 k=1
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I
D18

(m(Ex) — m(Ey_p)) = lim " (m(Ey) - m(Ey._,))
k=1

=~
I

1

S—

Let
Bk:El\Ek’ k eN.

Since {E; };cn is a descendent collection, we see that {B; }; .y is an ascendent col-
lection. By (2.42), we get

m(fj Bk> = nllrgo m(B,,). (2.46)
k=1

Now we will prove that

fj B, =E;\ <ﬁ Ek>. (2.47)
k=1 k=1

Let x € [Jpy By be arbitrarily chosen. Then there is an ! € N such that x € B; =
E,\E,. Hence, x € E; and x ¢ E,. Therefore x ¢ (2, Ex. From this, x € E;\(No; Ep)-
Because x € |Jio; B, was arbitrarily chosen and we see that it is an element of
E; \ (N2, Ex), we conclude that

LBk gE1\<ﬂ Ek>. (2.48)
k=1 k=1

Let x € E; \ (N Ex) be arbitrarily chosen. Then x € E; and x ¢ (2, E;. Hence,
thereisan! € N, [ # 1, so that x ¢ E;. Therefore x € B; and x € | J;2, B. Since
x € E; \ (Nioq Ex) was arbitrarily chosen and we see that it is an element of the set
(Uk2; By, we conclude that

E1\<ﬂEk> < JBw
k=1

k=1

From the previous relation and from (2.48), we get equation (2.47). By equation
(2.47), we find

()l (i) ) -me-o( )

Hence, by (2.46), we obtain

m(E,) - m(ﬁ Ek> = lim m(B,)
k=1
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= lim m(E; \ E,) = lim (m(E,) - m(E,))
= m(E,) - lim m(E,),

whereupon we obtain (2.43). This completes the proof. ¥

Definition 2.11. For a measurable set E, we say that a property holds almost every-
where on E, or it holds for almost all x € E, provided there is a subset E,, of E for which
m(E,) = 0 and the property holds for all x € E\ E,.

Lemma 2.4 (Borel-Cantelli lemma). Let {E;};.n be a countable collection of measur-
able sets for which Y2, m(E;) < co. Then almost all x € R belong to at most finitely
many of the E;.

Proof. By Theorem 2.5, we have
m<U Ek> < > m(Ey) < co.
k=1 k=1
Note that {2, Ex}nen is @ descendent collection. Hence, by (2.43), we obtain
m(ﬂ(U Ek>> = r}erolom<U Ek> < lim " m(Ey) = 0.
n=1\k=n k=n k=n

Therefore almost all x € R fail to belong to (,2;(Uron Ex) and therefore belong to at
most finitely many E. This completes the proof. O

Exercise 2.6. Show that if E; and E, are measurable, then

m(E; UE,) + m(E; N E,) = m(E;) + m(E,).

2.3 Nonmeasurable sets

Theorem 2.26. Let E be a bounded measurable set of real numbers. Suppose that there
is a bounded countable infinite set \ of real numbers for which the collection of trans-
lates of E, {A + E},¢,, is disjoint. Then m(E) = 0.

Proof. Assume that m(E) > 0. Because E is a bounded set, we have m(E) < co. Since
the translate of a measurable set is a measurable set, we see that A + E is a measurable
set and m(E) = m(A + E) for any A € A. By Theorem 2.24, it follows that

m<U(A+ E)) =Y m(A+E) =) m(E). (2.49)

AeA AeA AeA

Because E and A are bounded sets, we see that | J;., (A + E) is a bounded set. Hence,

m< U A+ E)> < 0. (2.50)

Ael
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Since m(E) < oo and A is countable infinite, we get ) ;., m(E) = co. Hence, by (2.49),
we obtain m(|J;c, (A + E)) = co. This contradicts (2.50). Therefore m(E) = 0. This com-
pletes the proof. O

Definition 2.12. For any nonempty set E of real numbers, we say that two points x
and y of E are rationally equivalent provided their difference x — y belongs to the set
of rational numbers Q. We write x ~q y.

Proposition 2.1. The relation ~q is an equivalence relation.

Proof. Letx,y,z € E.

1. Since 0 € Q, we have x —x € Qand x ~q x.

2. Letx~qy.Thenx -y e Q.Hence,y -x € Qandy ~q x.

3. Letx~qyandy~qz.Thenx-y e Qandy -z € Q. Hence,

x-z=x-y)+(-2) €Q

Therefore x ~q z. This completes the proof. -

For the rational equivalence relation, there is the disjoint decomposition of E into
the collection of equivalence classes.

Definition 2.13. Let 7 be a nonempty family of nonempty sets. A choice function f on
Fis a function f : F + [Jg. » F with the property that for each set F in 7, f(F) is a
member of F.

Zermelo’s axiom of choice. Let F be a nonempty collection of nonempty sets. Then
there is a choice function on F.

Definition 2.14. By a choice set for the rational equivalence relation on E we mean a
set Cg consisting of exactly one member of each equivalence class.

By Zermelo’s axiom of choice there are such choice sets. A choice set Cg has the
following properties.
1. The difference of two points of Cg is not rational.
2. Foreach point x € E thereis a c € Cg such that x = ¢ + g with g a rational number.

Note that for any set A € Q we have {A + Cg})c, is disjoint.

Theorem 2.27 (Vitali’s theorem). Any set E of real numbers with positive outer measure
contains a subset that fails to be measurable.

Proof. Suppose that E is bounded. Let Cg be any choice set for the rational equivalence
relation on E. Assume that Cg is measurable. Let A, be any bounded, countable infinite
set of rational numbers. By Theorem 2.26, we get m(Cg) = 0. Hence,

m(U(A+cE)>= > m@+Cg)=0.

Aely Aelg
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Since E is bounded, there is a b > 0 such that E c [-b, b]. We take
Ao =[-2b,2b] N Q.
Then A, is bounded and countably infinite. We will prove that

Ec |J @+cp. (2.51)
Ae[-2b,2b]NQ

Let x € E be arbitrarily chosen. Then there is ¢ € Cg such that x = c+g with g arational
number. Since E ¢ [-b, b], we have x, ¢ € [-b, b]. Therefore q € [-2b,2b] and x € q+Cg.
Hence, x € [j¢[-2p,20)nq(A + Cg)- Because x € E was arbitrarily chosen and we see that
it is an element of the set [ Jy¢|_520nq(A + Cg), We Obtain equation (2.51). By (2.51), we
get

mE)< )  mA+Cg)=0,
A€[-2b,2b]NQ

which is a contradiction. Therefore Cg is not measurable. If E is unbounded, then it
can be represented as an union of bounded sets E;. Then we take a such set E; and as
above we prove that Cg, is not measurable. This completes the proof. O

Theorem 2.28. There are disjoint sets A and B such that
m*(AUB) < m*(A) + m*(B).
Proof. Assume that for every disjoint sets A and B we have
m*(AUB) = m*(A) + m*(B). (2.52)

Let the set E be arbitrarily chosen set of real numbers. Then for any set A of real num-
bers we have

A=(ANE)U(ANE’) and (ANE)Nn(ANE")=0.
Hence, by (2.52), we get
m*(A)=m*((ANE)U(ANEY)) =m*(AnE)+m"(ANnE°).
Therefore E is a measurable set. Because E was arbitrarily chosen set of real num-

bers, we conclude that every set of real numbers is measurable. This contradicts The-
orem 2.27. This completes the proof. O
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2.4 The Cantor set. The Cantor-Lebesgue function

Consider the interval I = [0, 1]. We subdivide the interval I into three intervals, each
of length 1, and we remove the interior of the middle interval, i. e., we remove the
interval (%, %) from the interval [0, 1]. We set

=)o)

We now repeat this operation “open middle one-third removal” on each of the two
intervals in C; to obtain a closed set, which is the union of 22 closed intervals, each of

length <
9 93 39 9

37 ’

We now repeat the above operation “open middle one-third removal” on each of
the four intervals of C, to obtain a closed set C;, which is the union of 23 closed in-
tervals, each of length 3% We continue this operation countably many times to obtain
the countable collection of sets {C; };cn-

sz

Definition 2.15. We define the Cantor set C by

(6]
C=[)C.
k=1

The collection {C;}cn has the following properties.
1. Itis a descending sequence of closed sets.

Foreach k € N, the set C;, is the disjoint union of 2* closed intervals, each of length

1
3

Theorem 2.29. The Cantor set C is a closed, uncountable set of measure zero.

Proof. Since Cj, are closed sets for any k € N and the intersection of closed sets is
a closed set, we conclude that C is a closed set. By Theorem 2.18 we see that every
open set is measurable. Since the collection of the measurable sets is a g-algebra, we
conclude that every closed set is measurable. Therefore C; are measurable sets for any
k € N. Because the countable intersection of measurable sets is a measurable set, we
obtain C is a measurable set. Also, C < C; for any k € N. Therefore

k

m(C) < m(Cy) = <§>

for any k € N. Consequently m(C) = 0. Now we suppose that C is countable. Let
{ci}ken be an enumeration of C. One of the two disjoint Cantor intervals whose union
is C; does not contain the point c;. We denote it by F;. One of the two disjoint Cantor
intervals in C, whose union is F; does not contain the point c,. We denote it by F,.
Continuing in this way, we get a countable collection of sets {F; };y such that
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F, is closed for any k € N,
F,cC foranyk € N,

Fi .1 cF foranyk €N,
¢y ¢ Fiforany k € N.

O N

From this and from the nested set theorem (see the appendix), it follows that (2, Fy
is not empty. Let x € (2, Fy. From the construction of the collection {F;};.n, we have

o0 (e}
ﬂ Fk C ﬂ Ck =C.
k=1 k=1

Therefore x € C. Hence, there is an ! € N such that x = ¢;. Because x € F for any

k € N, we see that x € F;. Hence, ¢; € F;. This is a contradiction. Consequently C is
uncountable. This completes the proof. O

Now we define the sets

0,=[0,1]\C;, keN,

o=]Jo,.
k=1
We have

01:(1a2>’

3°3

12 12 7 8
0,=(=-,=)ul==ul==)
2 (9 9> <3 3) (9 9>

<1 2 <1 2> <7 8) (1 2) (19 20)
Os=(=. = |)Ulozs Ul = Ul s Ul ==

27 99 27 27 3°3 2727

<25 26>
Ul =, == )
2727

C=1[0,1]\0. (2.53)

O| o

N
~
~

C
—
O

Now we will prove that

Let x € C be arbitrarily chosen. Then x € C; for any k € N. Hence, x ¢ Oy for any
k € N. Therefore x € [0,1] and x ¢ 0. Consequently x € [0,1] \ O. Because x € C was
arbitrarily chosen and we see that it is an element of [0, 1] \ O, we obtain

Ccc[0,1]\0. (2.54)

Let x € [0,1] \ O be arbitrarily chosen. Then x € [0,1] and x ¢ O. Hence, x ¢ O, for
any k € N. Therefore x € C; for any k € N. From this, x € C. Because x € [0,1] \ O was
arbitrarily chosen and we see that it is an element of C, we obtain the relation

[0,1]1\ 0 c C.

From the previous relation and from equation (2.54), we get equation (2.53).
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Definition 2.16 (The Cantor-Lebesgue function). Fix a natural number k. Define ¢ on
0, to be the increasing function on O, which is a constant on each of its 2*_1intervals
and takes the 2X — 1 values

1 2 3 P |
ok k> gk T ok

We extend ¢ to all [0, 1] by defining it on C as follows:

$(0)=0 and ¢(x)=sup{p®t):te0On[0,x)} if xeC\{O}
Thus, on 0; we have

1 12
qb(x):i for xe<§§>

on 0, we have

. 12
ifxe (§»§)>
. 12
ifxe (g,g),

ifx € (5. 5):

P(x) =

W NI= N=

on 0; we have

. 1 2
ifx € (5,5)
ifx e (3,2)
7 ﬁ)
27° 277
ifxe(,2),

. 19 20
ifx e (ﬁ, f),

ifx e (5,9),
25 26

ifXG(ﬁ,ﬁ ,

ifx € (

D) = 1

I~ B W 00U NI— 00w &= o]

and so on.

Theorem 2.30. The Cantor-Lebesgue function ¢ is an increasing continuous function
that maps [0, 1] onto [0, 1]. Its derivative exists on O and

¢ =0 on O while m(0)=1
Proof. Since m(C) = 0, we get
1=m([0,1]) = m(Cu 0) = m(C) + m(0) = m(0).

By the definition, ¢ is increasing on O and ¢(x) > O for any x € [0,1]. Let x;,x, € C,
Xy = x; > 0. Then

0n[0,x) €0ON[0,x;)
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and

P(x;) = sup{p(t) : t € 0N [0,x7)} = sup{ep(t) : t € 0N [0,%)} = P(xy).

Therefore ¢ is increasing on C and it is increasing on [0, 1]. Let now x € O be arbitrar-
ily chosen. Then x belongs to an open interval on which it is a constant. Therefore ¢ is
continuous at x. Because x € 0 was arbitrarily chosen, we conclude that ¢ is continu-
ous on 0. Now we take x, € C, X, # 0, 1. Then x,, is not a member of the 2X — 1 intervals
removed in the first k stages of the removal process, whose union is denoted by 0.
We take k large enough so that x, lies between two consecutive intervals (ay;, a;) and
(bix> by)s ay < by, in Oy. By the definition of ¢ on 0y, it follows that

1
@(by) — dlay) = >x° ai < Xo < by

Hence, if x; < xq, X; € (ay, byy), using the fact that ¢ is increasing,

0 < (o) - () < biby) — play) = zlk (2.55)

If x; > xg, X; € (ay, byy), using the fact that ¢ is increasing, we have

0 < ¢xy) - Plxo) < Plb) ~ Play) = 2lk

By the previous inequalities and the inequalities (2.55), we conclude that ¢ is contin-
uous at x,. Because x, € C was arbitrarily chosen, we see that ¢ is continuous on
C. Therefore ¢ is continuous on [0, 1]. Because ¢(0) = 0 and ¢(1) = 1, and ¢ is in-
creasing and continuous on [0, 1], we conclude that ¢ maps [0, 1] onto [0, 1]. Since ¢
is a constant on each of the intervals removed at any stage of the removal process, its
derivative exists and it is O at each point of Q. This completes the proof. O

Theorem 2.31. Let ¢ be the Cantor—Lebesgue function and define the function Y as fol-
lows:

Yx) =p(x)+x, x€[0,1].

Then:

1. s strictly increasing continuous function that maps [0, 1] onto [0, 2],

2. maps the Cantor set C onto a measurable set of positive measure,

3. Y maps a measurable set, subset of the Cantor set C, onto a nonmeasurable set.

Proof.
1. Because ¥ is a sum of two continuous functions on [0, 1], we conclude that i is
continuous on [0, 1]. Let x;, x, € [0,1], x; > x,. Then ¢(x;) > ¢(x,) and

Y(xp) = p(xq) + X3 2 () + X1 > () + X, = P(xy).
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Consequently  is strictly increasing on [0, 1]. Since (0) = 0, (1) = 2 and P is
strictly increasing continuous function on [0, 1], we conclude that ¢ maps [0, 1]
onto [0, 2].

2. Wehave [0,1] = C U 0. We will prove that

[0,2] = (C) u(0). (2.56)

Let y € [0,2] be arbitrarily chosen. Since ¥([0,1]) = [0, 2], there is an x € [0,1]
such thaty = P(x). If x € O, theny € (0) and y € P(C) U Y(0). If x € C, then
y € Y(C) and y € P(C) U YP(0). Because y € [0, 2] was arbitrarily chosen and we
see that it is an element of (C) U (0), we obtain the relation

[0,2] < P(C) U P(0). (2.57)

Lety € ¥(C) U (0) be arbitrarily chosen. If y € (C), then thereisan x € C
such that y = y(x). Because C c [0,1], we get x € [0,1] and y € ([0, 1]) = [0, 2].
If y € (0), then there is an x € 0 so thaty = y(x). Since O c [0, 1], we obtain
y € P([0,1]) = [0, 2]. Because y € Y(C) U Y(0) was arbitrarily chosen and we see
that it is an element of [0, 2], we get the relation

PY(C)uP(0) < [0,2].

From the previous relation and from equation (2.57), we obtain equation (2.56).
Assume that thereisany € (0) and y € (C). Then there exist x; € O and x, € C
such that

y =9Y(xq) = P(x,).

This is a contradiction because x; # x, and ¥ is a strictly increasing function on
[0,1]. Consequently (C) N YP(0) = 0. Since P is strictly increasing continuous
on [0, 1] it has a continuous inverse. Therefore y(C) is closed and 1(0) is open.
Hence, (C) and ¥(0) are measurable. Let {I; }; .y be an enumeration of the col-
lection of the intervals that are removed in the Cantor removal process. We have
0 = Uy It Since  is one-to-one, the collection {)(I;)}e is disjoint. Because ¢
is a constant on each I;, we have

m(yY@;)) = m(I) = I(Iy).
By Theorem 2.24, we get

m(¢<0))=2 W(1y) = Zl(lk) m(0).
k=1

k=1

Because m(0) = 1, we obtain m()(0)) = 1. Hence, by (2.56), we find

=m([0,2]) = m(1(0) U P(C)) = m(1h(0)) + m(P(C)) = 1+ m(P(C)).
From this, m((C)) =
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3. From Theorem 2.27, it follows that there is a nonmeasurable set W ¢ (C). Be-
cause 1 (W) c C and m(C) = 0, we see that t~!(W) is measurable and has mea-
sure zero. This completes the proof. O

Exercise 2.7. Prove that a strictly increasing continuous function, defined on an in-
terval, maps Borel sets onto Borel sets.

Theorem 2.32. There is a measurable set, a subset of the Cantor set, that is not a Borel
set.

Proof. We take the function 1 described in Theorem 2.31. By Theorem 2.31, i) maps a
measurable set A onto a nonmeasurable set. If we assume that A is a Borel set, then,
using Exercise 2.7, we see that )(A) is a Borel set, which is a measurable set. Therefore
A is not a Borel set. This completes the proof. O

2.5 Lebesgue measurable functions

Lemma 2.5. Let E be a measurable set and f be a function defined on E. Then for any
c € R the following statements are equivalent.

1. Foreachc € R, theset {x € E : f(x) > c} is measurable.

2. Foreachc € R, theset {x € E : f(x) > c} is measurable.

3. Foreachc € R, theset {x € E : f(x) < c} is measurable.

4. Foreachc € R, theset {x € E : f(x) < c} is measurable.

Proof. Since the complement in E of a measurable subset of E is measurable and (1)
and (4), (2) and (3) are complementary in E, we see that (1) and (4), (2) and (3) are
equivalent. Now we assume (1). Let ¢ € R be arbitrarily chosen. We will prove that

o0

{er:f(x)zc}:ﬂ{er:f(x)>c—%]». (2.58)

k=1

Lety € {x € E : f(x) > c} be arbitrarily chosen. Then y € E and f(y) > c. Hence,
fy) > c- % for any k € N. Thereforey € {x ¢ E : f(x) > c - %} for any k € N and
YeNyfx €E:f(x)>c— %}. Becausey € {x € E : f(x) > c} was arbitrarily chosen and
we see that it is an element of ();2,{x € E: f(x) > ¢ - %}, we conclude that

{er:f(x)zc}gfj{er:f(x)>c—%}. (2.59)

Letnowy € (e ix € E: f(x) > ¢ - %} be arbitrarily chosen. Then

ye{er:f(x)>c—%]»
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for any k € N. Hence,y € Eand f(y) > ¢ - % for any k € N. From this, f(y) > cand
ye{xeE:f(x)>c}.Becausey € (2, {x € E: f(x) > c- ,1(} was arbitrarily chosen and
we see that it is an element of {x € E : f(x) > c}, we find

(o8]

ﬂ{er:f(x)>c—l]»g{er:f(x)zc}.

k=1 k

From the previous relation and from equation (2.59), we obtain equation (2.58). We
have {x e E: f(x) > c- %} are measurable sets for any k € N. Since the intersection of
countable collection of measurable sets is a measurable set, we see that (o, {x € E :
fx)>c- %} is a measurable set. Hence, by (2.58), we conclude that {x € E : f(x) > ¢}
is a measurable set. Now we assume (2). Let ¢ € R be arbitrarily chosen. We will prove

0

{er:f(x)>c}:U{er:f(x)zc+%}. (2.60)
k=1

Lety € {x € E: f(x) > c} be arbitrarily chosen. Then y € E and f(y) > c. Hence, there
isanl € Nsuch thatf(y) > ¢ + % Thereforey € {x e E: f(x) > c+ %}, and from this
yeUmxeE: fx)>c+ %}. Becausey € {x € E : f(x) > c} was arbitrarily chosen and
we see that it is an element of | 2, {x € E: f(x) > ¢ + %}, we get the relation

0

{er:f(x)>c}£U{er:f(x)zc+%}. (2.61)

k=1

Letnowy € iy {x e E: f(x) > c+ %} be arbitrarily chosen. Then thereisanl € N
suchthaty e {x e E: f(x) > c+ %}. Hence,y € Eand f(y) > c + % > c. Therefore
yeixeE:f(x)>c} Becausey € [ Ji2;ix € E: f(x) > c+ %} was arbitrarily chosen and

we see that it is an element of the set {x € E : f(x) > c}, we obtain the relation

[ee]

U{er:f(x)zc+1]»g{er:f(x)>c}.

o] k

From the previous relation and from (2.61), we get equation (2.60). We see that {x € E :
fx)=c+ %} are measurable sets for any k € N. Since the union of countable collection
of measurable sets is a measurable set, we see that the set | J;2;{x € E: f(x) > c+ %} is
a measurable set. Hence, by (2.60), we conclude that {x € E : f(x) > c} is a measurable

set. This completes the proof. O
Exercise 2.8. Prove that
1.
xeE:fx)=c}={xeE:f(X)2c}n{xeE: f(x) <c}, (2.62)
2.
{er:f(x):oo}:ﬂ{er:f(x) > k}, (2.63)
k=1
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{x e E:f(x) = 00} = ﬁ{er:f(x) < -k}, (2.64)
k=1

for any c € R. Here E is a set and f is a function defined on E.

Lemma 2.6. Let E be a measurable set and f be a function defined on E. Assume that
one of the sets in Lemma 2.5 is measurable. Then for each extended real number c, the
set {x € E: f(x) = c} is a measurable set.

Proof.

1. Let —oco < ¢ < oo be arbitrarily chosen. By Lemma 2.5, we see that the sets {x ¢
E:f(x) >c}and {x € E : f(x) < c} are measurable sets. Because the intersection
of a finite collection of measurable sets is a measurable set, we see that the set
x €eE:f(x) 2c}n{x € E: f(x) < c}is ameasurable set. Hence, by (2.62), we
conclude that the set {x € E : f(x) = c} is a measurable set.

2. Letc = co. By Lemma 2.5, we see that the sets {x € E : f(x) > k} are measurable
sets for any k € N. Since the intersection of a countable collection of measurable
sets is a measurable set, we see that the set ();2;{x € E : f(x) > k} is a measurable
set. Hence, by (2.63), we conclude that the set {x € E : f(x) = oo} is a measurable
set.

3. Letc =-oco0.ByLemma 2.5, we see that the sets {x € E : f(x) < —k} are measurable
sets for any k € N. Because the intersection of a countable collection of measur-
able sets is a measurable set, we see that the set ﬂﬁl{x € E: f(x) < -k} is a mea-
surable set. From this and from (2.64), we conclude that the set {x € E : f(x) = —oo}
is a measurable set. This completes the proof. 0

Definition 2.17. Let E be ameasurable set. An extended real-valued function f defined
on E is said to be Lebesgue measurable, or simply measurable, if it satisfies one of the
statements of Lemma 2.5.

Theorem 2.33. Let a function f be defined on a measurable set O. Then f is measurable
if and only if for any open set O the set f 1(0) = {x € E : f(x) € O} is measurable.

Proof.

1. Let f be measurable. Let also O be any open set. Then it can be represented as an
union of countable collection of open bounded intervals {I;};y each of which is
in the form I; = A, N By, where A; = (00, a;) and By, = (b, co). We will prove that

F710) = I (A nf ' (By). (2.65)
k=1

Let x € f71(0) be arbitrarily chosen. Then x ¢ E and f(x) € 0. Hence, there is an
l € N such that f(x) € I, = A;n B,. From this, it follows that f(x) € A; and f(x) € B,.
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Thereforex € f *1(A1) andx € f *1(B,). Then we get the relations x € f ’1(A1) nf *I(BI)
and x € [J2,(f (A nf(By)). Because x € f~}(0) was arbitrarily chosen and we
see that it is an element of the set U,ﬁ“;ﬁf "I(Ak) nf "I(Bk)), we conclude that

F710) < I (A nf ' (By). (2.66)
k=1

Let now x € |J2,(f '(Ay) N f~'(By)) be arbitrarily chosen. Then thereisanl € N
such that x € f‘l(Al) nf‘l(Bl). Hence, x € f‘l(Al) and x € f‘l(B,). Then f(x) € A;
and f(x) € B;. From this, f(x) € I, = A;nB; ¢ 0. Consequently x € f’l(O). Because
x € Uy (f “1(A;) nf~1(By)) was arbitrarily chosen and we see that it is an element
of f1(0), we get the relation

[ee]

UG @0 nfBy) < f7(0).

k=1

From the previous relation and from equation (2.66), we have equation (2.65).
Since f is measurable, we see that f ‘1(A1) and f ‘1(B1) are measurable sets. Hence,
f(A)Nf (B is a measurable set and | J;°, (f '(A;) nf (B))) is a measurable set.
From this and from equation (2.65), we conclude that f ~1(0) is a measurable set.
2. Letforany open set O the set f -1 (0) is a measurable set. Since (c, co) is an open set
for any c € R, we see that f ~1((c, 00)) is a measurable set. Therefore the function f
is measurable. This completes the proof. O

Theorem 2.34. Let E be a measurable set and f : E — R be a continuous function.
Then f is measurable.

Proof. Let O be any open set. Since f : E — R is a continuous function, there is an
open set U such that
f10)=EnU.

Because U is an open set, it is measurable. Since the intersection of two measurable
sets is a measurable set, we see that E n U is a measurable set, or the set f‘l(O) isa
measurable set. Hence, by Theorem 2.33, we conclude that f is a measurable function.
This completes the proof. O

Exercise 2.9. Let E be any set of real numbers and f, g, f;, | € {1,...,n}, be extended
real-valued functions on E. Prove
1.

[xeE:gx)>cl={xeA:gx)>ctu(fx e E: f(x) >c}n(E\A)), (2.67)

A={xeE:f(x) +gx)}, foranyc € R,
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xeE:f(x)>cl={xeD:f(x)>clu{x e E\D:f(x) >c},

D cE, foranyc € R,

xeD:f(x)>c}=Dn{xeE:f(x)>c},

D cE, foranyc € R,

fxecE:[f0)|>cl={xeE:fx)>clu{x eE:f(x) < —c}

foranyc >0,

{er:af(x)>c}:{er:f(x)>2}

for any c € Rand for any a > 0,

{er:af(x)>c}={er:f(x)<2}

forany c € Rand forany a < 0,

xeE:f(x)+gx) <c} = U({er:g(x)<c—q}n{er:f(x)<q})
q<Q

foranyc € R,

X €E:(f00) >cl={xcE:f(x)> Vel U fx € E:f(x) < —Vc}

foranyc e R, c > 0,

9.
{x € E: max{fy(x),....f,(x)} > c} = Lnj {x €E:f(x)>c}
k=1
forany c € R,
10.
{x € E: min{fi(x),..., ()} > ¢} = ﬁ {x eE:fi(x)>c}
k=1
foranyc € R.
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Theorem 2.35. Let E be a measurable set and f, g be extended real-valued functions
onE. Iff is measurable on E and f = g a.e. on E, then g is measurable on E.

Proof. Letc € Rbearbitrarily chosen. Letalso A = {x € E : f(x) # g(x)}. Thenm(A) = 0.
Hence, by Theorem 2.8, we see that the set A is a measurable set. Because every subset
of a set of measure zero is measurable, we see that the set {x ¢ A : g(x) > c}lisa
measurable set. Since E and A are measurable sets, using Theorem 2.11, we see that the
set E\ A is a measurable set. Because f is a measurable function on E, we conclude that
the set {x € E : f(x) > c} is a measurable set. Now, using the fact that the intersection
of two measurable sets is a measurable set, we see that the set {x € E : f(x) > c}n(E\A)
is a measurable set. Since the union of two measurable sets is a measurable set, we
see that the set

xeA:gx)>clu({x eE:f(x) > c}n(E\A))

is a measurable set. Hence, by (2.67), we conclude that the set {x € E : g(x) > c}isa
measurable set. Because ¢ € R was arbitrarily chosen, we see that the function g is a
measurable function on E. This completes the proof. O

Theorem 2.36. LetEandD, D c E, be measurable sets and f be an extended real-valued
function on E. Then f is measurable on E if and only if its restrictions to D and E \ D are
measurable.

Proof.
1. Let the restrictions of f to D and E \ D be measurable. We take ¢ € R arbitrarily.
Then the sets

{xeD:f(x)>c} and {xeE\D:f(x)>c}

are measurable sets. Because the union of two measurable sets is a measurable
set, we see that the set

fxeD:f(x)>cluf{x e E\D:f(x)>c}

is a measurable set. Hence, by (2.68), the set {x € E : f(x) > c} is a measurable set.
Because ¢ € R was arbitrarily chosen, we conclude that the function f is measur-
able on E.

2. Now we suppose that the function f is a measurable function on E. We take ¢ > 0
arbitrarily. Then the set {x € E : f(x) > c} is a measurable set. Because D is a
measurable set and the intersection of two measurable sets is a measurable set,
we conclude that the set D n {x € E : f(x) > c} is a measurable set. From this and
from (2.69), we see that the set {x € D : f(x) > c}is a measurable set. As above, one
can prove that the set {x ¢ E\ D : f(x) > c} is a measurable set. Because c € R was
arbitrarily chosen, we see that the restrictions of f to D and E \ D are measurable.
This completes the proof. O
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Theorem 2.37. Let E be a measurable set and f be an extended real-valued measurable
function on E. Then |f| is a measurable function on E.

Proof. Let c € Rbe arbitrarily chosen.
1. Letc<0.ThenE ={x€E:|f(x)| >c}and {x € E: |[f(x)| > c} is a measurable set.
2. Letc > 0. Since f is measurable on E, the sets

{xeE:f(x)>c} and {x€eE:f(x)<-c}

are measurable sets. Hence, using the fact that the union of two measurable sets
is a measurable set, we see that the set

xeE:f(x)>clu{xeE:f(x) < —c}

is ameasurable set. From this and from (2.70), we see that the set {x € E : |f(x)| > ¢}
is a measurable set. Because ¢ € R was arbitrarily chosen, we conclude that the
function |f| is a measurable function on E. This completes the proof. 0
Theorem 2.38. Let E be a measurable set of measure zero. Then every extended real-
valued function on E is measurable.

Proof. Let f be an extended real-valued function on E. We take c € R arbitrarily. Then
{x € E: f(x) > ¢} ¢ E. Hence, using m(E) = 0, we see that the set {x € E : f(x) >
c} is a measurable set. Because ¢ € R was arbitrarily chosen, we conclude that f is
measurable on E. This completes the proof. O

Theorem 2.39. Let E be a measurable set and f be an extended real-valued measurable
function on E. Then af is a measurable function on E for any a € R.

Proof. Let c € R be arbitrarily chosen. We take a € R arbitrarily.
1. Leta=0.Then

E ifc<oO,

{xeE:0>c}=
0 ifc>0.

Since E and ¢ are measurable sets, we see that the set {E : 0 > c} is a measurable
set.

2. Leta > 0.Since f is a measurable function on E, we see that the set {x € E: f(x) >
g} is a measurable set. Hence, by (2.71), we see that the set {x € E : af(x) > c}isa
measurable set.

3. Leta < 0.Because f is a measurable set, the set {x € E : f(x) < g} is a measurable
set. From this and from (2.72), we see that the set {x € E : af (x) > c} is a measurable
set.

Because ¢ € R was arbitrarily chosen and we see that the set {x € E : af(x) > c}isa

measurable set, we conclude that the function af is a measurable function on E. This
completes the proof. O
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Theorem 2.40. Let E be a measurable set and f, g be extended real-valued measurable
functions on E. Then f + g is a measurable function on E.

Proof. Let ¢ € R be arbitrarily chosen. Since f and g are measurable functions on E,
we see that the sets

{xeE:gx)<c—q} and {x<€E:f(x)<gq}

are measurable sets for any g € Q. Because the intersection of two measurable sets is
a measurable set, we see that the set

xeE:gx)<c-gtnixeE:f(x) < q}

is a measurable set for any g € Q. Since the union of a countable collection of measur-
able sets is a measurable set, we see that the set

U(xeE: g0 <c-gln{xeE:f(x) < q})
q<Q

is a measurable set. Hence, by (2.73), we see that the set {x € E : f(x) + g(x) < c}is
a measurable set. Because ¢ € R was arbitrarily chosen, we conclude that f + gisa
measurable function on E. This completes the proof. O

Exercise 2.10. Let E be a measurable set and f, g be extended real-valued measurable
functions on E. Prove that af + g is a measurable function on E for any a, 8 € R.

Corollary 2.4. Let E be a measurable set and fj, | € {1,...,n}, be extended real-valued
measurable functions on E. Then f; + - - - + f,, is a measurable function on E.

Proof. 1f n = 2, then the assertion follows immediately from Theorem 2.40. Let n > 2.
Since f; and f, are measurable functions on E, by Theorem 2.40, it follows that f; + f,
is a measurable function on E. Because f; + f, and f; are measurable functions on E,
by Theorem 2.40, it follows that f; + f, + f; is a measurable function on E. And so on,
fi + -+ +f, is ameasurable function on E. This completes the proof. O

Theorem 2.41. Let E be a measurable set and f be an extended real-valued measurable
function on E. Then f? is a measurable function on E.

Proof. Let c € R be arbitrarily chosen.
1. Letc < 0.Then

{er:(f(x))2>c}:E

and hence, {x € E : (f(x))? > c} is a measurable set.
2. Letc > 0. Since f is a measurable function on E, the sets

{xeE:f(x)>Vc} and {x€E:f(x)<-+c}
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are measurable sets. Hence,
[xeE:f(x)> Vcju{x e E: f(x) < -}
is a measurable set. From this and from (2.74), we see that the set
x €E: (f00) > c}

is a measurable set.

Because ¢ € R was arbitrarily chosen, we conclude that f is a measurable function
on E. This completes the proof. O

Theorem 2.42. Let E be a measurable set and f, g be extended real-valued measurable
functions on E. Then fg is a measurable function on E.

Proof. Note that

fo= 1+~ (-9 @)

Since f and g are measurable functions on E, using Theorem 2.40, we see that f + g is
a measurable function on E. Hence, by Theorem 2.41, it follows that (f + g)2 is a mea-
surable function on E. Because g is a measurable function on E, using Theorem 2.39,
we see that —g is a measurable function on E. From this and from Theorem 2.40, we
see that f — g is a measurable function on E. Hence, by Theorem 2.41, it follows that
(f - g)? is a measurable function on E. Since (f — g)? is a measurable function on E,
using Theorem 2.39, it follows that —(f — g)? is a measurable function on E. Because
(f + g)? and —(f — g)* are measurable functions, by Theorem 2.40, we conclude that
(f +8)* - (f - g)? is a measurable function on E. From this and from Theorem 2.39,
using (2.77), we see that the function fg is a measurable function on E. This completes
the proof. O

Theorem 2.43. LetE be a measurable set and {f; };_, be a finite collection of measurable
functions on E. Then max{f;,....f,} and min{f;, ..., f,} are measurable functions on E.

Proof. Let c € Rbe arbitrarily chosen. Because f;, k € {1, ..., n}, are measurable func-
tions on E, the sets

{x €E: fr(x) > c}

are measurable sets for any k € {1, ..., n}. Hence,
n

U{x €E:fi(x)>c} and ﬁ{x €E: fi(x) > c}

k=1 k=1
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are measurable sets. Hence, by (2.75), (2.76), we conclude that the sets
{x e E: max{fi(x),....f,()} >c} and {x € E:min{fi(x),....£,(x)} > c}

are measurable sets. Because ¢ € R was arbitrarily chosen, we conclude that the func-
tions max{f;,...,f,} and min{f;,...,f,} are measurable functions on E. This completes
the proof. O

For a function f, defined on E, we define
fT(x) = max{f(x),0}, f (x) =max{-f(x),0}, xe€E.

Exercise 2.11. Let E be a measurable set and f be an extended real-valued measurable
function on E. Prove that f* and f~ are measurable functions on E.

Exercise 2.12. Let E be a measurable set and f be an extended real-valued measurable
function on E. Prove that |f|” is a measurable function on E for each p > 0.

Theorem 2.44. Let E be a measurable set, g be an extended real-valued measurable
function on E and f be an extended real-valued continuous function on R. Then the com-
position f - g is a measurable function on E.

Proof. Let O be an open set. We will prove that
fo2)'(0)=g7'(F(0)). (2.78)

Letx € (f o g)‘l(O) be arbitrarily chosen. Then x € E and f(g(x)) € 0. Since g(x) € R
and f(g(x)) € O, we see that g(x) € f~1(0). Because x € E and g(x) € f~1(0), we obtain
x € g Y(f1(0)). Since x € (f - g)"}(0) was arbitrarily chosen and we see that it is an
element of g71(f (0)), we obtain the relation

(fo2)7(0) cg ' (F(0)). 2.79)

Letx € g‘l(f‘l(O)) be arbitrarily chosen. Then x € Eand g(x) € f‘l(O). Hence, g(x) € R
and f(g(x)) € 0. Since x € Eand f(g(x)) € O, we conclude that x € (fog)}(0). Because
x € g7 (f"1(0)) was arbitrarily chosen and we see that it is an element of (f - g)™1(0),
we obtain the relation

(f-2)7(0) < (f - ) (0).

From the previous relation and from (2.79), we obtain equation (2.78). Since f is a con-
tinuous function on R and O is an open set, we see that the set f~1(0) is an open
set. Because g is a measurable function on E, using Theorem 2.33, we conclude that
g Y(f"1(0)) is a measurable set. Hence, by equation (2.78), we see that (f - g)"(0) is
a measurable set. From this and from Theorem 2.33, we see that f o g is a measurable
function on E. This completes the proof. O
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Exercise 2.13. Let Ebeameasurableset. Iff = const on E, prove that f is a measurable
function on E.

Definition 2.18. Let E be any set of real numbers and A < E. Let also {f,},cn be a
sequence of extended real-valued functions with common domain E and f be an ex-
tended real-valued function on A.

1. We say that the sequence {f,},,cn converges to f pointwise on A provided

1111330 ) =f(x) for all xeA.

2. We say that the sequence {f,,},cn converges to f pointwise a.e. on A provided it
converges to f pointwise on A \ B, where B ¢ A and m(B) = 0.

3. We say that the sequence {f, },,cn converges uniformly to f on A provided for each
€ > 0, thereis an N € N such that

If,-fl<e on A for all nx>N.

Theorem 2.45. Let E be a measurable set of real numbers, {f,},cn be a sequence of ex-
tended real-valued measurable functions on E that converges pointwise a. e. on E to the
extended real-valued function f, defined on E. Then f is measurable on E.

Proof. Let A ¢ E be such that the sequence {f,,},cny converges pointwise to f on A and
m(E \ A) = 0. Hence, f is measurable on E \ A. By Theorem 2.36, it follows that the
functions f; are measurable functions on A and E \ A for any j € N. We will prove that
f is measurable on A. Let ¢ € R be arbitrarily chosen. We will show that

xeA:f(x)<c}= U (ﬁ{xeA:fj(x)<c—%}>. (2.80)

1<k,n<co \j=k

Lety € {x € A: f(x) < c} be arbitrarily chosen. Because f;(y) — f(y), asj — oo,
and f(y) < c, there are n,k € N such that for any j > k we have f(y) < ¢ - %, i.e,
ye{xeA :fj(x) <Cc- %} for any j > k. Therefore

X 1
yeﬂ{xeA:fj(x)<c——}
ok "
and from this
X 1
ve U <ﬂ{xeA:fj(x)<c——}>.
1<kn<oo \j=k n

Because y € {x € A : f(x) < c} was arbitrarily chosen and we see that it is an element
of Ulgk,moo(ﬂ}ffk{x €A:filx)<c- %}), we obtain the relation

xeA:f(x)<c}c U (ﬁ{xeA:fj(x)<c—%}>. (2.81)

1<k,n<oo \j=k
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Letnowy € Ulsk‘n <Oo(ﬂ;’=°k{x cA: f]-(x) <Cc- %}) be arbitrarily chosen. Then there are
k,n € Nsuchthaty € {x e A: fi(x) <c- %} for any j > k. Hence,

1
MW<C—;

for anyj > k. Assume that f(y) > c. Then

1
fm—mw>5

for any j > k. This is a contradiction. Therefore f(y) < candy € {x € A : f(x) < c}.
Because y € Ulsk’moo(ﬂ]-ofk{x cA: jj-(x) <Cc- %}) was arbitrarily chosen and we see
that it is an element of {x € A : f(x) < c}, we conclude that

U (ﬁ{XGAifj(X)<C—%}>§{XeA;f(x)<c}.

1<k,n<oo \j=k

From the previous relation and from equation (2.81), we get equation (2.80). Since f;
are measurable functions on A for any j € N, we see that the sets {x € A : fj(x) <c- %}
are measurable sets for any j, n € N. From this, the sets

oo

ﬂ{xeA:fj(x)<c—%}

j=k
are measurable sets for any k,n € N. Hence,
X 1
U (ﬂ{x eA:f)-(x) <c——]»>
1<kon<oo \j=k n

is a measurable set. From this and from equation (2.80), we conclude that the set {x €
A : f(x) < c} is a measurable set. Because ¢ € R was arbitrarily chosen, we conclude
that the function f is a measurable function on A. Hence, by Theorem 2.36, we see that
the function f is a measurable function on E. This completes the proof. O

Definition 2.19. Let E be any set of real numbers. The characteristic function of E, g,
is the function defined by

1 ifxeE,
KE:
0 ifx¢E.

Note that if E is a measurable set, then its characteristic function is a measurable
function on E.

Exercise 2.14. Let A and B be any sets of real numbers. Prove

1. KAﬂB = KAKB'
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2. KAUB = KA + KB - KAKB'
3. KR\A = 1 - KA'

Definition 2.20. Areal-valued function ¢ defined on a measurable set is called simple
provided it is measurable and takes only a finite number of values.

If E is a measurable set and ¢ is a simple function on E and takes the distinct
values cy, ..., ¢,,, then

n
¢=) ckg, on E, (2.82)
k=1

whereE, = {x e E: p(x) = ¢, }, ke {1,...,n}.

Definition 2.21. Equation (2.82) of ¢ as a linear combination of characteristic func-
tions is called the canonical representation of the simple function ¢.

Theorem 2.46. Let E be a measurable set and f be a measurable bounded real-valued
function on E. Then for each € > 0, there are simple functions ¢, and . defined on E
such that

¢.<f<yp, and 0<yYp.-¢p.<e on E

Proof. We take € > 0 arbitrarily. Let (c,d) be an open, bounded interval such that
f(E) c (c,d). Consider a partition

C=Yo <Y1 < <Yp1<Y¥p=d
of the closed bounded interval [c, d] such that y, — y;_; < eforany k € {1,...,n}. Let
L= Weny)s Ee=f"0), 1<ksn

Since f is a measurable function on E, we see that the sets E; are measurable sets for
any k € {1,...,n}. Define the simple functions ¢, and 1. on E as follows:

n n
¢ = Z Yikg, and P = Z VK, -
k=1 k=1

Let x € E be arbitrarily chosen. Since f(E) c (c,d), we have f(x) € (c,d). Hence, there
isak € {1,...,n} such that f(x) € I;. Therefore

¢e(X) =Yk-1 l/)e(x) =Yk

and

¢e(X) Sf(X) < ll)e(x)) l,be(X) - (,be(X) =Yk~ Yk-1 <E.

This completes the proof. O
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Theorem 2.47 (The simple approximation theorem). An extended real-valued function
f onameasurable set E is measurable if and only if there is a sequence {¢,,},cn Of simple
functions on E which converges pointwise on E to f and

p,l <Ifl on E for all neN.
Iff is nonnegative, we can choose {¢,},n to be increasing.

Proof.

1. Let {¢,},en be a sequence of simple functions on E that converges pointwise on E
tof and |¢,| < |f| on E for all n € N. Because ¢,, are measurable functions on E for
each n € N, using Theorem 2.45, we see that f is a measurable function on E.

2. Letfisameasurable function on E. Assume that f > 0 on E. Take n € N and define

E,={xcE:f(x) <n}.

Because f is measurable on E, we have E,, are measurable sets for each n € N. By
Theorem 2.36, it follows that the restriction of f to E, is a nonnegative bounded
measurable function. We apply Theorem 2.46 to the restriction of f to E with the
choice € = % In other words, we may choose simple functions ¢, and i, defined
on E,, such that

0<¢,<f<yp, on E, and OS¢n—¢n<% on E,
Note that
1
05f‘¢n5¢n_¢n<ﬁ on En‘

We extend ¢, to all E by setting ¢,,(x) = nif f(x) > n, n € N. The function ¢, is a
simple function defined on Eand 0 < ¢, < f on E, n € N. Let x € E be arbitrarily
chosen.

(a) Assume that f(x) is finite. Then there exists an N € N such that f(x) < N. Then

Osf(x)—¢n(x)<% for all n>N.

Therefore ¢, (x) — f(x), asn — oo.

(b) Assume that f(x) = co. Then ¢,(x) = n for all n € N. Therefore ¢,(x) — f(x),
asn — oo. By replacing ¢,, n € N, with max{¢,,...,¢,}, we see that the
sequence {¢,},cn is increasing.

In the general case, if f is not nonnegative, we take the representation f = f* — f~

on E and apply the above for f* and f~. This completes the proof. 0

Exercise 2.15. Let E be a measurable set of real numbers and f be a bounded mea-
surable function on E. Prove that there are sequences {¢,,} ..y and {,,},,cn 0of simple
functions on E such that {¢,,},,cy is increasing and {y,,},cn is decreasing and each of
these sequences converges to f uniformly on E.
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Theorem 2.48. Assume that E is a measurable set with a finite measure and {f,},n be
a sequence of bounded measurable functions on E that converges poinwise on E to the
real-valued function f. Then for each € > 0 and § > 0, there are a measurable subset A
of E and an index N for which

fp,-fl<e on A for all n=N and m(E\A)<6é.

Proof. By Theorem 2.45, it follows that f is a measurable function on E. Hence, using
Theorem 2.39, the function —f is a measurable function on E. From Theorem 2.40, it
follows that f,, — f are measurable functions on E for each n € N. From this and from
Theorem 2.37, we see that |f,, - f| are measurable functions on E for all n € N. We take
€ > 0 and 6 > 0 arbitrarily. Note that the sets

E,={xcE:|[fX)-fi(x)|<e for all k=>n}

are measurable sets for all n € N. Then the sequence {E,},y is an ascending col-
lection of measurable sets and since {f, },,cy converges pointwise to f on E, we have
E = |J;2, E,. Hence, by Theorem 2.25, we get

m(E) = nlLIgo m(E,).
Since m(E) < co, we can choose an index N such that
m(Ey) > m(E) - 6.
Let A = Ey. Then
m(E\ A) = m(E) - m(Ey) < m(E) - m(E) + 6 = 6.

This completes the proof. O

Theorem 2.49 (Egoroff’s theorem). Assume that E is a measurable set with finite mea-
sure and {f,},n be a sequence of measurable functions on E that converges pointwise
on E to the real-valued function f. Then for each € > 0, there is a closed set A contained
in E for which f,, — f, as n — oo, uniformly on A and m(E \ A) < e.

Proof. Take € > 0 arbitrarily. By Theorem 2.48, it follows that for each n € N there is a
measurable subset A, of E and an index N(n) such that

€
2n+1 :

Lf,—f|<% on A, for all I>N and m(E\A)) <

Define the set
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Then, using Theorem 2.5, we get

m(E\A) = m(E\ <ﬁ A,,)) = m(fj(E\An))
n=1 n=1

< Zlm(E\An) < Zl_znﬂ ==
n= n=

Now we choose an index n; such that % < €. Then
1
Ifi—fl< o on A, for all I>N(ny).

SincngAn0 and% < €, we get
Ifi-fl<e on A for all 1=N(ng).

Therefore {f, },cny converges uniformly to f on A and m(E \ A) < 5. By Theorem 2.21, it
follows that there is a closed set A contained in A such that m(A\ A) < 5. Thus, {f,}nen
converges uniformly to f on A and

m(E\A):m(E\K)+m(K\A)<§+ — e

N M

This completes the proof. O

Theorem 2.50. Let E be a measurable set, f be a simple function defined on E. Then for
each € > 0, there is a continuous function g on R and a closed set A contained in E for
which

f=g on A and m(E\A)<e.

Proof. Let ay, ..., a, be the finite numbers of distinct values taken by f, and let them
be taken on the sets E;, ..., E,, respectively. Since the a; are distinct, the collection
{E;}k_; is disjoint. By Theorem 2.21, there are closed sets A, ..., A, such that

A, cE, and m(E\Ap < %

for any k € {1,...,n}. Then the set A = (J;_; Ay is a closed set and since {A;}}_, is
disjoint, we get

n n n
€
m(E \ A) :m<U(E\Ak)> =Y mE\A)< ) - =¢
n
k=1 k=1 k=1
Define g on A to take the values a; on Ay, k € {1,...,n}. Since the collection {A;}}_,
is disjoint, the function g is properly defined and continuous. We extend g from a
continuous function on A to a continuous function on all R. This completes the proof.
O
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Theorem 2.51 (Luzin’s theorem). LetE be a measurable set and f be a real-valued mea-
surable function on E. Then for each € > 0, there is a continuous function g on R and a
closed set A contained in E for which

f=g on A and m(E\A)<e.

Proof.

1. Let m(E) < oco. By Theorem 2.47, there is a sequence {f,},cn of simple functions
defined on E that converges to f pointwise on E. Take n € N arbitrarily. By Theo-
rem 2.50, it follows that there is a continuous function g, on R and a closed set A,
contained in E for which

g.=f, on A, and m(E\A)<2n+l

By Egoroft’s theorem, there is a closed set A, contained in E such that {f,,},cn con-
verges to f uniformly on A, and m(E \ Ag) < 5. Define A = (2, A,,. Then

m(E \ A) =m<(E\Ao)U (U(E\An)>> E\Ao)+m<U(E\A ))
n=1

n=1
= € € €
<m(E\Ay)+ ) mE\A,) < -+ =-+=-=¢€
<\o)n;(\,,) > sz S*3
The set A is closed. Each f,, is continuous on A because A ¢ A, and f,, = g, onA,,.
Since the sequence {f,,},,cy converges uniformly to f on A < A,, we conclude that
the restriction of f to A is continuous on A. Let g be the restriction of f to A. We
extend g from a continuous function on A to a continuous function on all R.

2. Letm(E) = co. Then E can be expressed as the disjoint union of a countable collec-
tion {E; };n of measurable sets with finite measure. For each E;, as in the previous
case, we construct a continuous function g on E, and a closed set A; ¢ E; such
that

k €
f=g on Ay and m(E\A) < — ot

The collection {A; }; ¢y is disjoint. Let A = [, n Ax- Then A is closed. We construct

a continuous function g on A such that its restrictions on A; coincide with g;. We

extend g from a continuous function on A to a continuous function on all R. Note

that

E\Ac|JE\A
k=1

and

m(E \ A) < m(U(Ek \Ak)> <) mE\A) <Y 2,(—61 <e.

k=1 k=1 k=1

This completes the proof.
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2.6 The Riemann integral

In this section we recall some definitions to the Riemann integral.

Definition 2.22. Let f be a bounded real-valued function defined upon the closed
bounded interval [a, b]. Let also P = {xq, X3, ..., X,,} be a partition of the interval [a, b],
i.e.,

aA=Xog<X3<--<X,=h.

Define the lower and upper Darboux sums for f with respect to P, respectively, by

L(f, P) = z ml‘(Xl' - Xi—l)

i=1

and

Uf,P) =) Mi(x;—xi4),

n
i=1
where

m; =inf{f(x) : x;_; < x <x;}, M;=sup{f(x):x; <x<x;}, iefl,....,nk

Definition 2.23. We define the lower and upper Riemann integrals of f over [a, b], re-
spectively, by

b
(R)Jf:sup{L(f,P):P is a partition of [a,b]},
—b

(R)J f=inf{U(f,P): P is a partition of [a,b]}.

Note that the lower and upper Riemann integrals are finite. The upper Riemann inte-
gral is at least as large the lower Riemann integral, and if the two are equal we say that
f is Riemann integrable over [a, b] and call the common value the Riemann integral
of f over [a, b]. We denote

b

® |f.

a

Definition 2.24. A real-valued function ) defined on [a, b] is called a step function if
there is a partition P = {xy, xy,...,X,} of [a, b] and numbers ¢, ..., ¢,, such that

Yx)=c¢; if x_<x<x, ie€fl,...,n}
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Suppose that i is a step function on [a, b]. Observe that

L.P) = ) ¢i(%; ~X;.1) = U@, P)

i=1

and

M:

Ci(x; — X;_1)-

b
® [v-,

I
—_

Therefore we may reformulate the definition of the lower and upper Riemann integrals
as follows.

Definition 2.25.

b
(R)J —sup{ R)sz is a step function, ¢<f on [a,b]},

b
(R)Jf 1nf<[(R)Jl/) Y a step function, Y >f on [a,b]}.

2.7 Lebesgue integration

2.7.1 The Lebesgue integral of a bounded measurable function over a set of finite
measure

Suppose that E is a measurable set of finite measure.

Definition 2.26. Let ¢ be a simple function on E,
C 1
¢ = Z aixg, Ej=¢ (a)=1{xecE: () =a},
i=1

a; + aj, E;n E]- =0,1,j € {1,...,n}. We define the integral of ¢ over E by

J ¢ = i;aim(Ei)-

E

Theorem 2.52. Let {E;}\_; be a finite collection of disjoint measurable subsets of E. Let
alsoa; e Ryiefl,...,n}, and

n
¢ = Z aiKEi.
i=1
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Then

J ¢ = iaim(Ei).
E

i=1

Proof.

1. Ifa;,ie€{l,...,n}, are distinct, we get the desired result using Definition 2.26.

2. Assumethata;,i € {l1,...,n}, are not distinct. Let {b,, ..., b,;} be the distinct values
taken by ¢. We define the sets

Bj={x€E:¢p(x)=b}, je{l,....m}.

Hence, by Definition 2.26,

i=1

J ¢ = ibim(Bi). (2.83)
E

Forj € {1,...,m}, with I we denote the set of indicesi € {1,...,n}, such thata; = bj.

Then {1,...,n} = Uj"='1 Land [ nI; = 0,k # I, kI € {1,...,m}. From the finite

additivity of the measure, we have

m(B;) = m(U Ei> = > m(E).

i€l i€l

Hence, using (2.83), we find

gaim(Ei) = i(Z aim(Ei)) = ib;(Z m(E,-)> = é b;m(B;) = J .

j=1‘iel; j=1 i€l E
This completes the proof. 0

Theorem 2.53. Let ¢ be a simple function on E and ¢ > 0 on E. Then IE ¢ >0.

Proof. Since ¢ is a simple function on E, there is a finite disjoint collection {E;}"; of
subsets of E such that E = J, E; and

m
¢= z aKg;>
j=1

forsome g; € R,j € {1,...,m}. Since ¢ > O on E, we have q; > O forany j € {1,...,m}.
Hence,

E

This completes the proof. O
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Theorem 2.54. Let ¢ and  be simple functions on E. Then for any a, 3 € R, we have

[@p+pp=afo+s]v

E E E

£¢sjw

E

Moreover, if ¢ <, then

Proof. Since both ¢ and i take finite values, there is a finite disjoint collection {]:‘.]-}]-’Z1
of subsets of E such that E = | J", E; and

m m
¢ = Z ajkg, and P = Z bjxg,
j=1 j=1
for some a;, b]- eR,je{l,....,m}. Then

m m
ap =a) akg = ) (aq)kg,
st

j=1

Bh=B) bjkg, = Z(ﬁbj)KEi>
j=1 =1

ap + By = Z(aa,-)KEj + Z(ﬁb]-)KEi = Z(aa]- + Bb))Kg,»
j=1 j=1

j=1
[9=) ame.

j=1

E
[ 9= bme,.
E

=

j(wﬁ +BY) = ) (aa; + pb)m(E)),
E

j=1

a

p=a z am(E;) = Z(aaj)m(Ej),
j=1 j=1

E
B[ b= Y bm(E) =) (BbymE),
E j:1 le
afg+8 b= @aymE)+ ) EhymE) = ) (aa + fiym(E).
E E j=1 j=1 j=1

Therefore

[@p+pp=afo+p]v
E E

E
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Let now ¢ < i on E. Then ¢ — ¢ > 0 on E. By Theorem 2.53, we get

J(w -¢)=0.
E
Hence,
[v-[¢-[w-9=0
E E E
This completes the proof. O

Definition 2.27. Let f be a bounded real-valued function defined on E. We define the
lower and upper Lebesgue integral, respectively, to be

l
Jf “gb ¢ is simple and ¢ <f on E}

E

u

Jf: nf“ is simple and f<yY on E}

E

Since f is a bounded function on E, there is a constant M such that f < M on E.

Let ¢ is a simple function on E such that ¢ < fonE.Then¢p <MonEand M - ¢isa
simple function on E. By Theorem 2.54, we get

< [or-¢)= [ M- p=mmm - |4,
E E

E E
whereupon
J ¢ < Mm(E).
E
Therefore
I
J f < Mm(E).

E

Let now ¢ and ¥ be simple functions on E such that ¢ < f < i on E. Hence, by
Theorem 2.54, we find
fo v

E E
Consequently

l

jfsjﬁ

E
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Definition 2.28. A bounded real-valued function f on E is said to be Lebesgue inte-
grable provided its upper and lower Lebesgue integrals are equal. The common value
of the upper and lower integrals is called the Lebesgue integral, or simply the integral,
of f over E. It is denoted by (L) [, f or simply [ f.

Theorem 2.55. Let f be a bounded function defined on a closed, bounded interval I =
[a, b. If f is Riemann integrable over 1, then it is Lebesgue integrable over I and the two
integrals are equal.

Proof. Since f is Riemann integrable over I, we have

(R) Jf = sup{(R) j ¢:¢ is a step function, ¢ sf}
I

I

:inf{(R)J¢:¢ is a step function, fsz/)]».
I

Because every step function is a simple function and every simple function on a
bounded closed interval is a step function, and (R) [[¢ = (L) [, ¢ for any simple
function ¢ on I, we get

sup{(R) J ¢:¢ is a step function, ¢ Sf]»
I

= sup{(L) J ¢:¢ is a simple function, ¢ < f}
I

= inf{(R) J Y:yY is a step function, f< 1/)]»
I

= inf{(L) J Y:y is a step function, f< l,b}.
I

Hence, f is Lebesgue integrable over I and
o[r-®|r
I I
This completes the proof. O

Theorem 2.56. Let f be a bounded measurable function on E. Then f is integrable
over E.

Proof. By Theorem 2.46, it follows that for any n € N there are simple functions ¢,
and ¥, on E such that
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andy, - ¢, < % on E. Hence, by Theorem 2.54, it follows that

0 [n= [ 0= W=t < m®

E E E

for any n € N. From this,

Osinf{Jz/; :¢ simple, i 2f} —sup{qu:cﬁ simple, ¢ sf]»

E E

< [~ [0 < m®

E E

for any n € N. Therefore the upper and lower integrals of f over E are equal. Conse-
quently the function f is integrable over E. This completes the proof. O

Theorem 2.57. Let f be a bounded measurable function on E and m(E) = 0. Then
J f=o.
E
Proof. Let ¢ be an arbitrary simple function on E with canonical representation
n
b= z aiKg,>
i=1

where E = (J, E;, E; NE =0,a; € R,a; # a;,1#j,1,j € {1,...,n}. Then m(E;) = 0,
iefl,...,n},and

J ¢ = iaim(Ei) =0.

i=1

E
Hence,

sz sup“¢ :¢ is simple, ¢ sf} =0.

E E
This completes the proof. O

Theorem 2.58. Let f and g be bounded measurable functions on E. Then, for any a, 3 €
R, we have

J(af+ﬂg) =ajf+ﬁjg.

E E E

12 e

E E

Moreover, if f > g on E, we have
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Proof. Suppose that a > 0. Using that the Lebesgue integral is equal to the upper
Lebesgue integral, we have

Ji=gog J o=t [ =e] 1

E E

Let @ < 0. Then, using the fact that the Lebesgue integral is equal to the upper and
lower Lebesgue integrals, we get

for= g v -esn a5

v
E E :E E

Now we will prove that

[ero=]r+]e (2.84)
E

Let ¢, ¢, P, and ¥, be simple functions on E such that

¢;<f<yY; and ¢,<g<y, on E

Then ¢, + ¢, and P, + Y, are simple functions on E and

b+, <f+g<yP;+y, on E

Hence, by Theorem 2.54, we get

[ero< [wirvn= v+ [

E E E E
Then
}!(f+g)S$g§£¢1+$zrl>gj¢2=!f+£g. (2.85)
On the other hand,
[t [@ron=]o1+ | en
E E E E
Then

j(f+g)zsupj¢1+supj¢z= Jf+Jg.
E ¢ g E

<
$o<g E E
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From the previous inequality and from (2.85), we get (2.84). Hence, since af and g are
bounded measurable functions on E for any a, § € R, we get

j(af+ﬁg) = j(af) + J(Bg) = an+ﬁ Jg-
E E E E E

Now we assume that f > gon E. Then h = f — g > 0 on E. Since 0 is a simple function
on E, we obtain

From this,

This completes the proof. O

Theorem 2.59. Letf be a bounded measurable function on E. Then for any measurable
subset A of E we have

Jf Kp = Jf .

E

A

Proof. Note that ficy isa bounded measurable function on Eand A. Also, f is a bounded
measurable function on A. Then, by Theorem 2.56, we conclude that fk, is integrable
onEand A, and f is integrable on A. Let ¢p be any simple function on E with the canon-
ical representation

n
¢=) axg, a;€R a+a, ije{l,...n}
i-1
E =L E,EnE=0,i#jijell,..n}.Then

n n
¢KA = Z aiKEiKA = Z aiKEiﬂA + OKE\(UL(EI'QA))' (2.86)
i=1 i=1

Hence, ¢k, is a simple function on E with the canonical representation (2.86). Then,
using Definition 2.26, we obtain

J Px, = i a;m(E; n A). (2.87)

E i=1
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Note that A = [JL,(E; n A), (E;nA) N (E; n'A) = 0. Hence, (2.86) is the canonical
representation of the simple function ¢k, on A. Then, using Definition 2.26 and using
the fact that ¢px, is the restriction of ¢ on A, we get

n
J ¢ = J PKp = Za,-m(Ei nA).
A A =1
From this and from (2.87), we obtain
J PKy = J ®.
E A

Next,

JfKA = sup{ ¢:¢ simple, ¢ stA} = sup“ ¢Ky : ¢ simple, ¢ stA}
E

!
= sup“qb : ¢ simple, ¢ stA} = JfKA = Jf.
A

A A
This completes the proof. O

Theorem 2.60. Letf be a bounded measurable function on E. Suppose that A and B are
disjoint measurable subsets of E. Then

[r-fr[r

AUB A B

Proof. Note that fk, g, fka and fkg are bounded measurable functions on E. Since A
and B are disjoint, we have

faus = fica + fg.

Hence, by Theorems 2.58 and 2.59, we get

jf= Jﬁ(AUB: J(fKA+fKB)= JfKA+ JfKB

AUB  AUB AUB AUB AUB
= [fon+ [ Fra= [ 1] r.
A B A B
This completes the proof. O

Theorem 2.61. Let f be a bounded measurable function on E. Then

1]

E
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Proof. By Theorem 2.37, we see that |f| is a measurable function on E. Since f is
bounded on E, the function |f| is a bounded measurable function on E. By Theo-
rem 2.56, it follows that it is integrable over E. Note that

—f<Ifl<f on E.
Hence, by Theorem 2.58, we obtain
- Jf < j Ifl < Jf
E E E
This completes the proof. O

Theorem 2.62. Let {f,},cn be a sequence of bounded measurable functions on E. If f,, —
f, as n — oo, uniformly on E, then

yim, [ = [
E E

Proof. Let € > 0 be arbitrarily chosen. Since {f,},,cy is uniformly convergent to f on E,
thereis an N € N such that

€

If = fal < mE " E (2.88)
for any n > N. In particular,

€

If —le < @ on E.

Hence,
on E,
5 <
or
Iy <f<fy+ on E.

- ﬁ (E)

From the previous inequalities, since fy is bounded on E, we conclude that the func-
tion f is a bounded function on E. Since the sequence {f,},cy is uniformly convergent
tof onE, it is pointwise convergent to f on E. Because f,, are measurable functions on E
for any n € N, using Theorem 2.45, we conclude that f is measurable on E. Therefore f
is a bounded measurable function on E. By Theorem 2.56, it follows that f is integrable
on E. Hence, by Theorem 2.54, Theorem 2.61 and (2.88), we get

\fn f| ](fn nl<| Jin-n< jm(E)

for any n > N. This completes the proof. O
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Theorem 2.63 (The bounded convergence theorem). Let {f,},.x be an uniformly
bounded sequence of measurable functions on E. If f, — f, asn — oo, pointwise
onE, then

-
E E

Proof. Let M be a positive constant such that |[f,,| < M on E forany n € N. Then |[f| < M
on E and

fa = f1 < ful + If]
<M+M=2M on E
for any n € N. We take € > O arbitrarily. By Egoroff’s theorem, Theorem 2.49, it follows

that there exists a closed subset A of E such that f, — f, asn — oo, uniformly on A
and m(E\ A) < 4iM Hence, there is an index N € N such that

€
[fn—f|<m on A

for any n > N. Then, using Theorems 2.58, 2.61, and 2.60, we get

[5=[7)=| -] < 151
E E E E
= [tha=p1+ [ -1
A E\A
€ € €
< 2m(E)m(A)Jrsz(E\A) < 3 + 3 =€
for any n > N. This completes the proof. O

2.7.2 The Lebesgue integral of a measurable nonnegative function

Suppose that E is a measurable set.

Definition 2.29. A measurable function on E is said to vanish outside a set of finite
measure if there is a subset E, of E for which m(E;) < coand f = 0 on E \ E,. We say
that a measurable function f on E which vanishes outside a set of finite measure has
finite support and define its support to be

{x eE:f(x)#+0}.

Definition 2.30. Let f be a bounded measurable function on E that has finite support
Ey, Ey < E. We define its integral over E by

fr-Js

E E,
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The set of all bounded measurable functions on E which have finite support will
be denoted by £.

Definition 2.31. For a nonnegative measurable function f on E we define the integral
of f over E by

jf=sup“¢:¢eg,0§¢>gf on E}

E E

Theorem 2.64 (Chebychev’s inequality). Let f be a nonnegative measurable function
on E. Then for any A > 0 we have

m(EA) <

NN

Jf, (2.89)
E

whereE; = {x e E: f(x) = A}.

Proof.

1. Letm(E,) = co. Define the sets E, ,, = E; n [-n, n] and the functions ¢, = Axg, for
any n € N. Then i, are bounded measurable functions on E with finite support
E, , for any n € N. Hence, by Definition 2.30, we get

[n= [ 2= AmE

E E;,

for any n € N. Note that 0 < i, < f on E for any n € N. From this and from
Definition 2.31, it follows

for any n € N. Also,

o0
E/\ = U EA,n and E/\,n C EA,m

n=1

for any m,n € N, n < m. Hence, by Theorem 2.25, it follows that

0o = Am(E)) = A lim m(E, ,) = lim (Am(E, ,)) = lim J Py < Jf-
E E

Therefore IE f = oo. The equality (2.89) holds since both sides equal to co.
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2. Letm(E,) < oco. Define ¢ = Axg,. Then ¢ is a bounded measurable function on E
of finite support E; and O < ¢ < f. Hence, by Definition 2.31, we get

Am(E,) = J(ﬁs Jf.

E E
This completes the proof. O

Exercise 2.16. Let f be any function on a set A. Prove
(]

{xeA:f(x)>0}=U{xeA:f(x)2%}.

n=1

Theorem 2.65. Let f be a nonnegative measurable function on E. Then jE f =0ifand
onlyiff =0a.e.onE.

Proof.
1. Let jE f = 0. Then for each n € N, using Chebychev’s inequality, we get

m({er:f(x)z%})anfzo

E

for any n € N. Using Exercise 2.16 and Theorem 2.5, we get
< 1
m({x e E:f(x) >0}) < Zm({x cE:f(x) > ﬁ}) =0.
n=1

Because f is nonnegative on E, we conclude that f = O a.e. on E.

2. Letf =0a.e.onE.Let¢beasimple function on Eand i) be abounded measurable
function on E of finite support such that 0 < ¢ < < fonE.Then ¢ = 0 a.e.
on E and IE ¢ = 0. Since this holds for all such functions ¢, we get IE Y = 0.
Because this holds for all such functions ), we obtain jE f = 0. This completes the
proof. O

Theorem 2.66. Letf and g be any nonnegative measurable functions on E. Then for any
a> 0andpf > 0 we have

j(af+ﬁg) =ajf+ﬁjg.
E E

E

Moreover, if f < g onE, then

e
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Proof. Let a > 0 and ¢ be a bounded measurable function on E of finite support such
that 0 < ¢ < f on E. Then O < a¢ < af on E. Hence, using Theorem 2.58, we get

anP = J(wﬁ).

E E

Because this holds for any such ¢, we get

a Jf = J(af). (2.90)
E E
Now we will prove that
J(f+g) = jf+Jg- (291)
E E E

Let ¢ and  be bounded measurable functions on E of finite support such that 0 < ¢ <
fandO0 <y <gonE.ThenO < ¢+ < f + g on E and using Theorem 2.58, we get

[ero=[@spr=[o+ v

E E E E

Hence,

J(f+g)zjf+jg. 2.92)
E E

E

Let h be a bounded measurable function on E of finite support suchthatO <h <f +g
on E. We define the functions

l=min{f,h} and k=h-1 on E.

Let x € E be arbitrarily chosen.
1. Ifh(x) < f(x), then I(x) = h(x) and

k(x) =0 < g(x).
2. Let h(x) > f(x). Then I(x) = f(x) and
k(x) = h(x) - f(x) < f(x) + g(x) - f(x) = glx).

Consequently k < g on E. Because h is a bounded measurable function on E of finite
support, we see that [ is a bounded measurable function on E of finite support. From
this, k is a bounded measurable function on E of finite support. We have

O<l<f and O<k<g on E
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Hence, by Theorem 2.58, we get
Jh:Jl+JI<st+Jg.
Because the previous inequality holds for all such h, we obtain
J(f+g) < Jf+ Jg.

E E E

From the previous inequality and from (2.92), we get (2.91). Since af and g are non-
negative measurable functions on E, using (2.91) and (2.90), we get

J(af +pg) = J(af) + J(Bg) =a Jf +ﬁjg.
E E E E E

Let now f < g on E. Let ¢p be a bounded measurable function on E of finite support
suchthat 0 < ¢ < f on E. Then ¢p < g on E and

[o=]s
E E
Since the previous inequality holds for any such ¢, we conclude that
J f< Jg.
E E
This completes the proof. O

Theorem 2.67. Let f be a nonnegative measurable function on E. If A and B are disjoint
measurable subsets of E, then

jf:Jf+Jf, 2.93)
ALB A B
In particular, if B is a subset of E of measure zero, then
j f= J f. (2.94)
E E\B

Proof. Let ¢ € £ be arbitrarily chosen such that O < ¢ < f and its supportis E, < AUB.
LetEy, =E,UE,,E,nE, =0, E; €A, E, ¢ B. Then, using Theorem 2.58, we get

[=[o- [ o] o[

AUB E, E,UE, E, E, A B
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Hence, using Definition 2.30, we obtain (2.93). Now we will prove (2.94). Since for any
¢ € £ for which 0 < ¢ < f we have [, ¢ = 0and

Jo= | o= ] oe]o= ]
E (E\B)uB (E\B) B (E\B)

Because ¢ € £, 0 < ¢ < f, was arbitrarily chosen, we get (2.94). This completes the
proof. O

Lemma 2.7 (Fatou’s lemma). Let {f,},cn be a sequence of nonnegative measurable
functions on E. If f,, — f, as n — oo, pointwise a. e. on E, then

Jf < liminf]!fn.

E

Proof. By Theorem 2.45, it follows that f is measurable on E. Let E be such thatf,, — f,
asn — oo, pointwise on E; and m(E \ E;) = 0. Let h be any bounded measurable
function on E of finite support such that 0 < h < f on E. Let also M be a positive
constant such that 0 < h < M on E. Define the set

E, = {x ¢ E: h(x) # 0}.
Then m(E;) < co. For any n € N we define the function h, on E by
h, = min{h,f,} on E.

Since h and f,, are measurable functions on E, by Theorem 2.43, it follows that the
functions h,, are measurable on E,, for any n € N. Also,

O<h,<M and h,=0 on E\E,.

Furthermore, for each x € E, we have h(x) < f(x) and h,(x) — h(x) as n — co. Hence,
by Theorem 2.63, we get

lim Jhnz lim jh,,z jh.
n—oo n—oo
E E, E,
However, for each n € N we have h,, < f,, on E;, and using Definition 2.31, we have
J h, < an.
E, E,
Thus,

Jh - liminf J h, < liminf an - limian.fn.
E E, E, E
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The previous inequality is valid for all such h. Therefore
Jf < lim infjf,,.
E E
This completes the proof. O

Theorem 2.68 (The monotone convergence theorem). Let {f,},n be an increasing se-
quence of nonnegative measurable functions on E. If f, — f, asn — oo, a.e. on E, then

-
E E

Proof. By Theorem 2.45, it follows that f is measurable on E. By Fatou’s lemma, we
have

jf < liminf an- (2.95)
E E

On the other hand, using the fact that {f,,},cy is an increasing sequence, we see that
fn <f a.e.onE for each n € N. Hence, by Theorem 2.66, we get

[£o< s
E E
foranyn € Nand
limsup.[fn < Jf.
E E

From the previous inequality and from (2.95), we get the desired result. This completes
the proof. O

Corollary 2.5. Let {f,},,cn be a sequence of nonnegative measurable functions on E. If

f=an a.e. on E,
n=1

then

18

2

E

=
I
—_

Jf -
E
Proof. Let

m
Sm = Zf,,, meN.
n=1
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Then {S, },,cn is an increasing sequence of measurable functions on Eand S, — f, as
n — oo, a. e. on E. By Theorem 2.45, we see that f is measurable on E. By the monotone
convergence theorem, it follows that

Jim [ 5, [ 1.
E E
whereupon we get the desired result. This completes the proof. O

Definition 2.32. A nonnegative measurable function f on E is said to be integrable
over Eif [ f < co.

Theorem 2.69. Let the nonnegative measurable function f be integrable over E. Then f
is finite a. e. on E.

Proof. Note that
{xeE:f(x)=oco} c{x €E:f(x)>n}

for any n € N. Hence, by Chebychev’s inequality (Theorem 2.64), we get

m({er:f(x)=oo})sm({er:f(x)2n})s%jf—>0 as n— oo,
E

because 0 < IE f < co. Consequently m({x € E : f(x) = co}) = 0. This completes the
proof. O

Lemma 2.8 (Beppo Levi’s lemma). Let {f,},cn be an increasing sequence of nonnega-
tive measurable functions on E. If the sequence { jE fulnen is bounded, then {f, },n con-
verges pointwise on E to a measurable function f that is finite a. e. on E and

Jim, [ 1= [ <o

E E

Proof. There exists an extended real-valued nonnegative function f on E such that
fx) = lim f,(x), x¢eE.
n—oo

By Theorem 2.45, we see that f is measurable on E. By the Monotone Convergence
Theorem, it follows that

yim, [ = |1

E E

Since the sequence {IE fnlnen is @ bounded sequence, we see that fE f < co. From this
and from Theorem 2.69, we see that f is finite a. e. on E. This completes the proof. [
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Theorem 2.70. Let f be a nonnegative measurable function on E and A < E be a mea-
surable set. Then

Proof. Let ¢ be any measurable function of finite support on E such that 0 < ¢ < f.
Then ¢x, is a measurable function of finite support on E and 0 < ¢x, < fiku. Then,
using Theorem 2.59, we get

[#a =9

E A
Because this holds for any such ¢, we conclude that
[ fea= [ 1.
E A

This completes the proof. O

2.7.3 The general Lebesgue integral

Suppose that E is a measurable set.

Theorem 2.71. Let f be a measurable function on E. Then f* and f~ are integrable over
E if and only if |f| is integrable over E.

Proof.
1. Assume that f* and f~ are integrable over E. Then

ff=20, f>0 on E,

and
Jf+ < 00, Jf_ < 00.
E E

Hence, using |f| = f* + f~, we get

Jr=]r ] <.

E E E

2. Assume that |f| is integrable over E. We have

O<f"<If, 0<f <|f| on E.
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Hence, by Theorem 2.66, it follows that

This completes the proof. O

Definition 2.33. A measurable function f on E is said to be integrable over E provided
|f| is integrable over E. In this case we define

Jr=]r-]r-
Theorem 2.72. Let f be a measurable function on E. Suppose that g is a nonnegative
function on E that is integrable over E and

fl<g on E

Then f is integrable over E and

[

sjlfl.
E

Proof. By Theorem 2.66, we get
[ri<]e
E E

Hence, using the fact that g is integrable over E, we conclude that |f| is integrable
over E. By Definition 2.33, it follows that f is integrable over E. Also, using Theo-
rem 2.66 and the triangle inequality for real numbers, we obtain

Jr
E

-y = [

E E

<

ufl - IEJf —!f + ifl - Ejf* +}!f

This completes the proof. O

Theorem 2.73. Let the functions f and g are integrable over E. Then for any a, B € R,
the function af + Bg is integrable over E and

[@r+per-afr+p]e.

E E E
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Moreover, if f < g onE, then

e

Proof. Leta > 0. Then

@) =af", (af) =af .

Hence, by Theorem 2.66, we obtain

@)= [(@n - @) = [ - [ = @) [@)

E E E E E E

~aff-a[r=o[£ 4 [c5) a6 -F)=<]r

E E E E E E

Let a < 0. Then

(af)" =-aof , (af) =-af".

Hence, by Theorem 2.66, we obtain

[ @)= [ @ - @) - j(af - [
E

feanfearr=afiryval

E
ol e [r)-efiror-ef
E E
Note that
Ff+e) -(f+g) =f+g=f"-f +g" -g.
Hence,
F+e) +f +g =(f+8) +f +g",
and
[ erre)= [ s e (2.96)
E E
By Theorem 2.66, we have
[rer+ree)=[erer+[r+|g (297)
E E E E
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and

[@reerven=[rrer+[r[s" (2.98)
E

E E E

From (2.96), (2.97) and (2.98), we obtain

J(f+g)++Jf‘+Jg‘ = j(f+g)‘+jf++1g+.

E E E E E E
Hence,
[err-[ere=[r-[r+[e-]e
E E E E E E
or
J((f +8) -(f+g)7) = J(F -f)+ J(g+ -g)
E E E
or
J(f+g)=Jf+jg. (2.99)
E E E

Because af and Bg are integrable over E for any a, 8 € R, using (2.99), we obtain
(@ +per=[@n+ [ -a[r48]s
E E E E E

Now we suppose that f < gon E. Defineh = g — f on E. Then h > 0 on E. By Theo-

rem 2.66, we get
OSJh= J(g—f)= Jg—jf-
E E E E

This completes the proof. O
Theorem 2.74. Let f be integrable over E and A < E be measurable. Then

[ fea= |7

E A
Proof. By Theorem 2.70, we have

[rxa=[r and [rxa=]r

E A E A
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Hence, using Theorem 2.73, we get

[ fea= [0 =y =[x -rxa)
E E E
- [ [ 1= = [ = [0

E A A A

g

This completes the proof. O

Theorem 2.75. Let f be integrable over E. Assume that A and B are disjoint measurable

subsets of E. Then
[1-Jre s

AUB A B

Proof. We have
Ifkal <Ifl and |fkg| <|f| on E.

Then, using Theorem 2.66, we get

[tral < [1 and [ il < [ 11
E

E E E

Hence, ficy and fxg are integrable over E. Because A and B are disjoint, we have
fxaug = fka + fg.

From this, fks g is integrable over E and, using Theorem 2.74, we obtain

J f= J fraum = J (fica + ficg)

AUB  AUB AUB
= J. fra + j fKB:Jﬁ(A+Jﬁ(B:Jf+Jf~
AUB AUB A B A B
This completes the proof. O

Theorem 2.76. Let f be integrable over E. Then f is finite a. e. on E and

Jf:_[f if EcE and m(E\Eg) =0.

E E

Proof. By Theorem 2.69, it follows that f* and f~ are finite a. e. on E. Hence, f = f* —f~
is finite a. e. on E. Let E, be a measurable subset of E such that m(E \ E;) = 0. Hence,
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by Theorem 2.67, we obtain

[r=Jer-r)- }!f* == r

E E E Eo E,
[ =r
EO E0
This completes the proof. O

Theorem 2.77 (The Lebesgue dominated convergence theorem). Let {f,},cn be a se-
quence of measurable functions on E. Let g be a nonnegative function on E that is
integrable over E and |f,,| < g onE for alln € N. Iff, — f pointwise a.e. onE, then f is
integrable over E and lim,,_,,, [ f, = [ f.

Proof. Since || < gonE for all n € N, we see that |[f| < g a.e. on E. There exists a
measurable set E; < E such that |f| < g on E; and m(E \ E;) = 0. By Theorem 2.72, it
follows that f,, are integrable over E for all n € N and f is integrable over E,. Because
m(E\ E,) = 0, the function f is integrable over E. By Theorem 2.76, it follows that f,, f
and g are finite a. e. on E. Therefore by possible excising from E a countable collection
of sets of measure zero and using the countable additivity of the Lebesgue measure,
we can suppose that f,,, f and g are finite on E. The functions g - f, g - f,, are properly
defined, nonnegative and measurable on E. Also, {g — f,},cn @and {g + f,},en COnverge
pointwise a.e. on Eto g — f and g + f, respectively. By Fatou’s lemma, we get

J(g—f)sliminfj(g—fn) and J(g+f)gliminf.[(g+fn).

E E E E

On the other hand,

[g-[7= - <timint [ £ = [ g~ timsup [ £,
E

E E E E E
Therefore
lim sup j f, < J f. (2:100)
E E

Also,

Jg+ Jf: J(g+f) sliminfj(g+fn) = Jg+liminfjfn.

E E E E E E
Hence,

if < liminf]!fn.

EBSCChost - printed on 2/10/2023 3:54 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

2.7 Lebesgue integration =— 149

By the previous inequality and (2.100), we get

[r-m [

E E

This completes the proof. O

Theorem 2.78. Let {f,},n be a sequence of measurable functions on E that converges
pointwise a. e. on E to f. Suppose that there is a sequence {g,},cn Of nonnegative mea-
surable functions on E that converges pointwise a.e. on E to g and |f,| < g, on E for all

neN. Iflimn_,oo JEgn = _[Eg < 0o, then lirnn—»oo JEfn = ,[Ef

Proof. Since lim,,_,,, [ 8, = [ & < 0o, we see that g is integrable over E and there is
an N e N such that g, are integrable over E for any n > N. By Theorem 2.72, it follows
that f,, are integrable over E for any n > N. Because |f,| < g, on E for any n € N, we
conclude that |[f| < g a.e.on E. Therefore f is integrable over E. Note that the sequences
{fn + 8ntneny and {g, — f,}nen cOnverge pointwise a. e. on Eto f + g and g —f, respectively.
Hence, by Fatou’s lemma, we get

Jf+Jg: J(f+g) Sliminfj(fn+gn)

E E E E
- liminfjfn N 1iminfjg,, - limianf,, N Jg,
E E E E
whereupon
j f < liminf j £ 2.101)
E E
Also,
[e-[r=[E-f <timint g, £
E E E E
= liminfjgn —lim sup an = Jg —lim sup jf,,.
E E E E
Therefore
lim sup .[fn < Jf.
E E

By the previous inequality and from (2.101), we get

f1-m [

E E

This completes the proof. O
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Theorem 2.79. Letf be integrable over E and {E, },,x be a disjoint countable collection
of measurable subsets of E whose union is E. Then

[r-2]r

Proof. Letn € N be arbitrarily chosen. Let also k,, be the characteristic function of the
measurable set | J;_, Ey. Define f, = fk,. Then f,, is measurable on E and

Iful <Ifl on E.

Note that f,, — f, as n — oo, pointwise on E. Hence, by Theorem 2.77, we get

tim [£, - [£. (2102)

E E

By Theorem 2.75, we get

Hence, by (2.102), we obtain

This completes the proof. O

Theorem 2.80. Let f be integrable over E.
1. If{E,},en is an ascending countable collection of measurable subsets of E, then

| r=tim |s
Ui Ex E,
2. If{E,},en is a descending countable collection of measurable subsets of E, then
= li .
J £=jim [1
ﬂ/i.; E Ey

Proof.
1. LetAy =0, Ay = E; \ E_, k € N. Then, using the proof of Theorem 2.25,

0 (&) n
UE=UJAw E.={JAw AnA=0, k#l kleN.
k=1 k=1 k=1
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Hence, by the proof of Theorem 2.79, we obtain

Jor= | r=pm | r=pm]r
U Ex Ui2s A U1 Ax E,

2. LetB; = E; \ E, k € N. By the proof of Theorem 2.25, we have

o0 o0
UBk:E1\<ﬂEk>, B, NB; =0, k#1l kleN.
k=1 k=1

Hence, by the proof of Theorem 2.79, we get

f=pm | r
EN(NR2 B E\(Miey B
whereupon
[r= | s=fr-1m | r
E, ﬂizl Ey E, 02:1 Ey
Therefore
= lim J f.
n—.oo
N Ex (k=1 Ex

This completes the proof. .

Theorem 2.81. Let E be a set of finite measure and 6 > 0. Then E is the disjoint union of
a finite collection of sets, each of which has measure less than 6.

Proof. For any n € N we define the sets
E,=En[-nn].

Then {E,} N is a descending collection of measurable sets. Hence, by Theorem 2.25,
it follows that

’}Lrélo m(E\ [-n,n]) = m(ﬁ(E\ [-n, n])) =m(0) = 0.
n=1

Therefore there exists an ny € N such that
m(E\ [-ng, ng]) < 6.

We make a fine enough patrtition of [-ny, ny] so that E N [-ny, ny] we represent as the
disjoint union of a finite collection {E', . .., El} of sets, each of which has measure less
than 6. We have

(E\ [-ng,ny])UE'U---UE' = E.

This completes the proof. O
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Theorem 2.82. Let f be a measurable function on E. If f is integrable over E, then for
each e > 0, thereis a § > O for which

if ACE is measurable and m(A)< 6, then j[f|<e. (2.103)
A

Conversely, in the case m(E) < oo, if for each € > 0, there is a § > 0 for which (2.103)
holds, then f is integrable over E.

Proof.

1. Letf isintegrable over E. Let € > 0 be arbitrarily chosen. Consider f*. We see that
f* is integrable over E. Then there is a bounded measurable function f, of finite
support for which

0<f,<f" on E and Osjf+—jf€<§.
E E

Since f* —f, > 0 onE, if A ¢ E is measurable, then

A
<o -f=[r-[r<s
E

E E

Since f, is bounded, there is a positive constant M for which 0 < f, < M on E.
Therefore, if A ¢ E is measurable, then

Jf+<Jf€+Zst(A)+%.

_ €
We take 6 = Wi Then

As above,

Therefore
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2. Suppose that m(A) < co and for each € > O thereisa 6 > 0 for which (2.103) holds.
By Theorem 2.81, there is a finite disjoint collection of measurable subsets {Ek}l,:’:1
such that E = | J}_, By, m(Ey) < 8, k € {1,...,N}. Then

Hence, if h is a bounded measurable function on E of finite support such that 0 <
h<f*, weget

Jh: J h=élhséjf+<eN.

k k

E Uh=t Bk
Then f* is integrable over E. As above, we conclude that f~ is integrable over E.
Therefore f is integrable over E. This completes the proof. O

Definition 2.34. A family 7 of measurable functions on E is said to be uniformly inte-
grable over E provided for each € > 0, thereisa § > 0, such that for each f € F,

if AcCE is measurable and m(A) <8, then J[f|<e.
A

Theorem 2.83. Let {fi};_, be a finite collection of functions, each of which is integrable
over E. Then {fi}_, is uniformly integrable over E.

Proof. Let € > 0 be arbitrarily chosen. Then for each k € {1,...,n} thereisa §;, > 0
such that

if ACE is measurable and m(A) < §;, then J[fl<e.
A

Take § = max{d,,...,8,}. Therefore {fk}Z:l is uniformly integrable over E. This com-
pletes the proof. O

Theorem 2.84. Assume that E has finite measure. Let the sequence {f,},cn is uniformly
integrable over E. If f, — f, as n — oo, pointwise a.e. on E, then f is integrable
over E.

Proof. Let € > 0 be arbitrarily chosen. Let § > 0 respond to the € challenge in the
uniform integrability criteria for the sequence {f,,},cn. By Theorem 2.81, there is a finite
disjoint collection {E;}Y_, of measurable sets such that E = |JY_, E; and m(E,) < 6 for
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any k € {1,...,N}. Hence,

N

Jlfnl= j lnt:ZjlfnRNe.

k=1
E Ui B Ey

By Fatou’s lemma, it follows that

Jlfl < 1iminfj If,,] < eN.

E E

Therefore f is integrable over E. This completes the proof. O

Theorem 2.85 (The Vitali convergence theorem). Let E be of finite measure. Suppose
that the sequence {f,},cy is uniformly integrable over E. If f, — f, asn — oo, point-
wise a.e. onE, then f is integrable over E and

Jim, = |1
E E
Proof. By Theorem 2.84, it follows that f is integrable over E. Hence, using Theo-
rem 2.76, we see that f is finite a. e. on E. Using Theorem 2.76 once more, by possible
excising from E a set of measure zero, we can assume that f,, — f, asn — oo, point-
wise on all E. Let A ¢ E be arbitrary measurable set and n € N be arbitrarily chosen.

Then
5= 1] =|[ -] [t-r1= [ t-n1+ [1-r
E E E E\A A (2.104)
< vn—f|+jtfn|+jm.
E\A A A

Let € > 0 be arbitrarily chosen. Then thereisa § > 0 such that if A ¢ E is a measurable
set such that m(A) < 6 we have

€
< p—
[iri<s
A
for any n € N. Hence, by Fatou’s lemma, we get

llf|<§

whenever A ¢ E and m(A) < 8. By Egoroff’s theorem, there is a measurable subset E
of E for which m(E,) < § and f,, — f uniformly on E\E,. Hence, thereisan N € N such
that

€
lfn_f|<3m—(E) on E\E,
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foralln > N. Take A = E,, in (2.104) and we get

[

< [ s [ [

E E E\E, Ey E,
€ € € € 2
< MmE\E)+-+=-<-+— =¢€.
3m(E) EVE)+3+3=3+3
This completes the proof. O

Theorem 2.86. Let E be of finite measure. Suppose that {f,} ,cn 1S a sequence of nonneg-
ative integrable functions that converges pointwise a.e. on E to f = 0. Then

lim J f,=0 (2.105)

n—-oo

E
if and only if {f,} en is uniformly integrable over E.

Proof.

1. Let {f,}en is uniformly integrable over E. Then by Vitali’s theorem, we conclude

that (2.105) holds.
2. Let(2.105) holds. Then there is an N € N such that

[£<e

E

foranyn > N. Since f,, > Oon E for any n € N, if A ¢ E is measurable and n > N,
then

J fu<e (2.106)

A

By Theorem 2.83, it follows that {fn}l,;':’l1 is uniformly integrable over E. Let § >
0 respond to the € challenge regarding the criterion for uniform integrability of
{fn}ﬁz_ll. Then, using (2.106), we get the criterion for uniform integrability of {f, },,cn-
This completes the proof. 0
Theorem 2.87. Let f be integrable over E. Then for each € > O there is a set of finite
measure Eq € E such that

J Ifl <e.
E\E,

Proof. Let € > 0 be arbitrarily chosen. Since |f| is a nonnegative function on E that
is integrable over E, there exists a bounded nonnegative measurable function g on E
with finite support E; € E such that 0 < g < |[f| on E and

Jlfl—Jg<e.

E E
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Hence,
= [ wi-e)
E\E, E\E,
< _[([fl -g)<e
E
This completes the proof. O

Definition 2.35. A family 7 of measurable functions on E is said to be tight over E
provided for each € > 0, there is a subset E, of E of finite measure such that

J Ifl <€
E\E,
forallf € F.

Theorem 2.88 (The Vitali convergence theorem). Let {f,},cn iS a sequence of functions
on E that is uniformly integrable and a tight over E. Suppose that f, — f,asn — oo,
pointwise a. e. on E. Then f is integrable over E and

yim, [ 5= |1

E E

Proof. Lete > 0be arbitrarily chosen. Since {f,,},cy is a tight, there exists a measurable
set E, of finite measure such that

€
< p—
| wi<s
E\E,
for all n € N. Hence, by Fatou’s lemma, we get
€
< —.
[t
E\E,

Therefore [f| is integrable over E \ E,. Hence,

| a-nls [ t-ni< | @i
E\E, E\E, E\E,
e e
E\E, E\E,

for all n € N. Since E, has finite measure and {f,,},cy is uniformly integrable over E,
using Theorem 2.85, it follows that f is integrable over E, and there isan N € N such
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that

[-p)

E,

€
< -
2
for all n > N. Therefore f is integrable over E and

[¢u-p|=| [ G2-p+ G-
E E

0 0
€ €
<| | G-pl+|[tn-p|<S+5=e
0 0
for all n > N. This completes the proof. O

Definition 2.36. Let {f,,},,.x be a sequence of measurable functions on E and f a mea-
surable function on E for which f and each f,, are finite a. e. on E. The sequence {f,,} ,cn
is said to converge in measure on E to f provided for each € > 0

nanolo m({x € E: |f,(x) - f(x)| > €}) = 0.
When we write f,, — f, asn — oo, in measure, we are assuming that f and each f,,
are measurable and finite a. e. on E.

Exercise 2.17. Let {f,},cn be a sequence of measurable functions on E and f a measur-
able function on E for which f and each f, are finite a.e. on E. If f, — f, asn — oo,
uniformly on E, prove that f,, — f, as n — oo, in measure.

Theorem 2.89. Let E has finite measure. Let also, {f,},.n be a sequence of measurable
functions on E that converges pointwise a.e. on E to f and f is finite a.e. on E. Then
fn — f,asn — oo, in measure on E.

Proof. By Theorem 2.45, we see that f is measurable on E. Let € > 0 be arbitrarily
chosen. By Egoroft’s theorem, for each § > 0 there is a measurable subset E, ¢ E such
that f, — f, asn — oo, uniformly on E,; and m(E \ E;) < &. Then there is an index
N e N such that

f,-fl<e on E,
for each n > N. Thus, for each n > N, we have
m({x € E: |[f,(x) - f(x)| > €}) <m(E\ Ey) < 6.

This completes the proof. O

Theorem 2.90 (Riesz’s theorem). Letf, — f, asn — oo, in measure on E. Then there is
a subsequence {f,, }ren of the sequence {f,}ncn that converges pointwise a.e. onE to f.
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Proof. There is a sequence {n; };N of natural numbers such that

m({er:[ﬁ(x)—f(x)|>%}><2—lk for any j=n.

Let

E; = {x cE:[fi(x)-f(x)] > %]»

Then m(E;) < zlk and Z,ﬁl m(E;) < oco. By the Borel-Cantelli lemma, it follows that
there is an index K(x) such that x ¢ E; for any k > K(x) and

|f, ) = f(X)] < % for all k> K(>x).
Therefore
]}Lngo o, ) = f(X).

This completes the proof. O

Exercise 2.18. Let {f,},n be a sequence of nonnegative integrable functions on E.
Then lim,,_,, IE fn = 0ifand onlyiff, — 0, as n — oo, in measure on E and {f,},,cy is
uniformly integrable and a tight over E.

2.8 Continuity and differentiability of monotone functions.
Lebesgue’s theorem

Definition 2.37. A real-valued function defined on a set E of real numbers is said to be
increasing if f (x) < f(x') whenever x,x' € E and x < x’, and decreasing provided —f is
increasing. It is called monotone if it is either decreasing or increasing.

Theorem 2.91. Let f be a monotone function on the open interval (a, b). Then f is con-
tinuous except possibly of a countable number of points in (a, b).

Proof. Let f is decreasing on (a, b). Assume that (a, b) is bounded and f is decreasing
on the closed interval [a, b]. Otherwise, we express (a, b) as the union of an ascending
sequence of open bounded intervals such that their closures are contained in (a, b)
and take the union of discontinuities in each of this countable collection of intervals.
For x, € (a, b), we define

f(xp) = lim f(x) = inf{f(x) : a < x < xo},

f(xg) = lim f(x) = sup{f(x) : xo < x < b}.
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Because f is decreasing on [a, b], we see that f(x{) < f (xo)- Not that f is not continuous
at x, ifand only if f (x]) < f(xy). If f is discontinuous at x,, we define the open “jump”
intervals

Joo) =1{y : fxg) <y < fxp)}-
Because f is decreasing on [a, b], we have the inclusion

J(xo) < [f(b).f(a)].

Note thatif xy < x4, thenf(x;) < f (xg ). Therefore

(PO 0q)) 0 (F(xg), £ (%)) = 0.

Then the collection of jump intervals is disjoint. Hence, for each n € N, there are only
a finite number of jump intervals of length greater than % Consequently the set of
points of discontinuity of f is an union of countable collection of finite sets and then
this set is countable. This completes the proof. O

Theorem 2.92. Let A be a countable subset of the open interval (a, b). Then there is an
increasing function on (a, b) that is continuous only at points in (a, b) \ A.

Proof. If Ais finite, then the assertion is evident. Let A be countably infinite. Suppose
that A = {a, },,cn- Define the function

fo= Y =

{neNy:a,<x}

foralla < x < b. Since Yy, zi" < 00, the function f is well defined. Also, for x,y €
[a,b], y = x, we have

fo)-feo= Y zin— > =) >0 (2.107)

{neNy:a,<y} {neNg:a, <x} 2 {neNy:x<a,<y}

Therefore f is an increasing function on (a, b). Let x, = a; for some k € N. Then, using
(2.107), we have

ﬂ%%ﬂMZ%

for all x < x,. Hence, f is not continuous at x,. Let x, € (a,b) \ A. Then there is an
interval I such that x, € Iand a,, ¢ I for any n € N. Then

F00 - F0)] < 55

for all x, x, € I. Therefore f is continuous at x. This completes the proof. O
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Definition 2.38. A closed bounded interval [c, d] is said to be nondegenerate if ¢ < d.

Definition 2.39. A collection F of closed bounded nondegenerate intervals is said to
cover a set E in the sense of Vitali if for each x € E and for each € > 0 there is an interval
I € Fsuchthatx e Iand I(I) < €.

Lemma 2.9 (The Vitali covering lemma). Let E be a set of finite measure and F be a col-
lection of closed bounded intervals that covers E in the sense of Vitali. Then for each
€ > 0, there is a finite disjoint subcollection {I; };_, of F for which

m<E\(’UIk>> ce

Proof. Since m*(E) < oo, there is an open set O, containing E, such that m(0) < co.
Since F covers E, we may assume that 7 < O. If {I; };y < F is a disjoint collection of
intervals in F, then

3 1) < m(o) (2.108)
k=1

;,,={1emn(glk>=@}.

E\<le>g Ur (2.109)
k=1

IeF,

and for n € N we denote

We will prove that

forany n € N. Let x € E\ (Uy, Ij) be arbitrarily chosen. Then x € Eand x ¢ | Ji2; Ii.
Hence, x ¢ I for any k € N. Since F covers the set E in the sense of Vitali and x € E,
then there is an interval I € F such that x € Iand In (Jg_;I) = 0 for n € N. Then
x € Urez, Iforn € N. Because x € E\ (U2, I) was arbitrarily chosen and we see that it
isan element of  Ji , Iforn € N, we obtain equation (2.109). If there is a finite disjoint
subcollection {I; };_, of F that covers E, the assertion is proved. Otherwise, let n € N
and {I; };_, € F be a disjoint collection. Since E \ ({;_; Iy) # 0, we see that 7, # 0. Let
Sp = sup I(I).
IeF,

We have I[(I) < m(0) for any I € F,,. Then s, < co. We takel,,,; € F, such that I(I,,,;) >
%". This inductively defines {I; };<n, @ countable disjoint subcollection of F such that
I,.q) > l(% ifI € Fand In(Jg_; I) = 0. LetJ; be the closed interval that has the same
midpoint as I; and 5 times its length. We will prove

E\(Ulk>g fj Ji (2.110)
k=1

k=n+1
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foranyn € N.Letn ¢ Nand x € E\ (U,'z=1 I,) be arbitrarily chosen. Then there is an
I € Fsuchthatx € IandIn (1) = 0. Assume that In T, = ¢ for any k € N.
Then I(I),) > l% for any k € N. This is a contradiction. Then there is m € N such that
InI, # 0. We take M > n to be the first natural number for which InI;; # 0. Then
In (U],:’IZ"I1 I) = @ and [(Iy;) > l(% Since x € Iand I n 1, # @, the distance from x to the
midpoint of I is at most I(T) + %I(IM). Hence, using I(I) < 2L(I;,), the distance from x
to the midpoint of I is less than %l(IM). Therefore x € Jy; and x € | Ji2,,,;Ji- Because
x € E\ (Ug_, Ir) was arbitrarily chosen and because it is an element of [ Jz2,,,; Jx, we
obtain equation (2.110). Let € > 0 be arbitrarily chosen. Then there is an n € N such
that

(o)
PIRAESS
k=n+1
Hence,
Y g <e
k=n+1

and using equation (2.110), we get

m*(E\ (kUIk)) <e

This completes the proof. O

Definition 2.40. Let f : E — R and x € E. We define the upper derivative Df (x) and
the lower derivative Df (x) of f at x as follows:

< f(X+t)—f(X)>’

sup
0o<|t|<h t

Df(x) = lim< inf M)

h—0\0<|t|<h t

Df(x) = lim

h—0

We have Df (x) < Df (x). If Df (x) and Df (x) are finite and Df (x) = Df (x), we say that f is
differentiable at x and we define f'(x) to be the common value of the upper derivative
and the lower derivative.

Theorem 2.93. Let f be an increasing function on the closed bounded interval [a, b].
Then for each a > 0, we have

m*({x € (a,b) : Df(x) = a}) < i(f(b) -f(@) (2.111)
and

m*({x € (a,b) : Df(x) = co}) = 0. (2.112)
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Proof. Let a > 0 be arbitrarily chosen and
E, = {x € (a,b) : Df(x) > a}.

We take a’ € (0,a) and € > 0 arbitrarily. With 7 we will denote the collection of closed
bounded interval [c, d] ¢ (a, b) such that

f(d-f(c)=ad@d-oc).

Since Df (x) > a for x € E,, we see that F is a Vitali covering of E,. Hence, using the
Vitali covering lemma, there is a finite disjoint subcollection {[cy, dk]}Z:1 of F such

that
m*<Ea \ (U[ck,dk]>> <e.
k=1
Note that
E, (U[ck,dk]> u <Ea \ (U[ck,dk]>>.
k=1 k=1
Therefore

m*(E,) < m*<U[ck,dk]> + m*<Ea \ <U[ck, dk]>>
k=1

< Z(dk —c)te<s — Z(f(dk) fle) +

k=1

= (@) () + [(do) ~ e+ +(d) ~F(e) + €
< (€~ @ +(e) ~f(E) 4+ f(B) - (ey) + e
- ()~ f@) +e

Because € > 0 was arbitrarily chosen, we obtain (2.111). Next, for each natural number
n we have

{x € (a,b) : Df (x) = co} C E,,.
Consequently

m*({x € (a,b) : Df (x) = co}) < m*(E,)
< %(f(b) -f(a@) —0 as n— oo,

i. e., we get (2.112). This completes the proof. O
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Theorem 2.94 (Lebesgue’s theorem). If the function f is monotone on (a, b), then it is
differentiable almost everywhere on (a, b).

Proof. Let f be increasing on (a, b). Assume that (a, b) is bounded. Otherwise, we ex-
press it as the union of an ascending sequence of open bounded intervals contained
in (a, b). Let

E = {x € (a,b) : Df(x) > Df (%)},
Eup= [xe(a,b):Df(x) >a>p>Df(x)}, afeQ a>§p.

Then
E= (] Eu
a,feQ,a>p
Hence,
mE)< Y m(Egp). (2.113)
a,BeQ,a>p

We fixa, € Q, a > . Let € > 0 be arbitrarily chosen. We take an open set O such that
E,3<0¢(ab) and m*(0) < m*(Ea)B) +e€. (2.114)
Let F be the collection of closed bounded intervals [c, d] contained in O for which

f(d) - f(c) < Bd - ).

Since Df (x) < B forx € E,p, we see that F is a Vitali covering of E, z. By the Vitali
covering lemma, there is a finite disjoint collection {[cy, di 1}, of F such that

m*(Ea’ﬂ \ (kul[ck, dk]>> <E. (2.115)

On the other hand, using (2.114), we obtain

Y (F(di) = flc) < B Y. (dy - )
k=1 k=1

< pm*(0) < B(m" (Eyp) +€).

(2.116)

By Theorem 2.93, we get

(f(di) = f(cp))

Q-

m*(Ea’ﬁ n (Ck’dk)) <

forany k € {1,...,n}. Note that

Epp <Ea,/3 n <U(Ck»dk)>> u <Ea,ﬁ \ <U[Ck’ dk]>>~
k=1 k=1
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Therefore, using (2.115), we get

m*(Eqp) <m*( Egpn <U(ck,dk)>> + m*(Emﬁ \ (U[ck,dk]>>
k=1

k=1

< m*(Eaﬁ n <0(ck, dk)>> +€< i m” (Eqp N (cy. dy)) + €
k=1

k=1

S:I'—‘

D (f(dy) - f(cp)) +
k=1

Hence, by (2.116), we obtain
m (Eaﬁ f—i(m*(]:‘.aﬁ) +€)+eE

and

_B* ﬁ

a
Tm (Ea,ﬁ) < ae + €.
Because € > 0 was arbitrarily chosen, we get
m*(Eaﬁ) =0
Hence, by (2.113), we obtain m* (E) = 0. This completes the proof. O
Definition 2.41. Let f be integrable over the closed bounded interval [a, b] and take
value f(b) on (b, b + 1]. For 0 < h < 1, we define the divided difference function Diff,f

and average value function Av,f of [a, b] by

x+h

f>

Diffhf(x):w and Av,f(x) =

S e
[ —

respectively, for all x € [a, b].

Leta <y <z < b and f be as in Definition 2.41. Then

fDiffhﬂx) - jw -1 ff(x oh -y jzﬂx)
y

h
y y y
1 z+h 1 z 1 z+h ) y+h
- jhﬂx) -y yjf(x) - j fo0 -4 yj £
v+ z

= Avpf(2) - Avpf(y).

Theorem 2.95. Let f be an increasing function on the closed bounded interval [a, b).
Then f' is integrable over [a, b] and

b
Jf "<fb) -f(a). (2.117)
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Proof. Let f take value f(b) on (b, b+1]. Then, for 0 < h < 1, f isincreasing on [a, b +1].
Therefore, f and Diff,f are measurable on [a, b]. By Theorem 2.94, it follows that f
is almost everywhere differentiable on [a, b]. Therefore {Diff.f},n is a sequence of
nonnegative measurable functions that converges pointwise"almost everywhere on
la,b] to f'. Hence, by Fatou’s lemma, we obtain

b b

j < liggg)lf< J Dif, f). (2118)

a a

On the other hand, using the fact that f is increasing on [a, b + 1], we have

b b+l a+l
| Dittuf = av.f) - Avif@ =n [ f00-n [ f00 < f0) - f(@.
a b a
Thus
b
1155334 Diff, f < f(b) - f(a).
a n
From this and from (2.118), we obtain (2.117). This completes the proof. O

Definition 2.42. A real-valued function f on a closed bounded interval [a, b] is said to
be absolutely continuous on [a, b] if for each € > 0 there is a § > 0 such that for any
finite disjoint collection {(ay., by )};_, of open intervals in (a, b) for which Yiab—ap) <
8 we have Y;_; If(by) - f(ap)l < €.

Theorem 2.96. Let f be a Lipschitz function on the closed bounded interval [a, b), i. e.,
there exists a constant L > 0 such that

If0) - f(y)] < Lix -yl
forany x,y € [a, b]. Then f is absolutely continuous on [a, b].

Proof. Let € > 0 be arbitrarily chosen and 6 = % We take a finite disjoint collection
{(ay, by)};_, of open intervals in (a, b) such that

n

€
Dby - ay) < I

k=1
Hence,
n n
Zlf(bk) -flap)| <L z |by - ai| < €.
k=1 k=1
This completes the proof. O
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Theorem 2.97. Let f be an absolutely continuous function on the closed bounded in-
terval [a, b). Then f is difference of two increasing absolutely continuous functions on
[a, b].

Proof. Lete = 1and 6 > 0 responds to the criterion for absolute continuity of f. Let
also P be a partition of [a, b] into N closed intervals {[c;, dk]}f(\’:1 each of length less

than 6. Hence, for the total variation of f on [c;, d;] (see the appendix), we have

d
V<1

for each k € {1,...,N}. Therefore

N di

b
ViH =Y\ <N,

k=1 Ck

i.e., f is a function of bounded variation on [a, b] (see the appendix). Hence, by Jor-
dan’s theorem (see the appendix), we have

foo) = (f(X) + \/(f)) - (\/(f)), x € [a,b], (2.119)

where f(x) + \/’;(f )and sz(f ) are increasing functions on [a, b]. Let € > 0 be arbitrarily
chosen and 6 > O responds to % regarding the criterion for absolute continuity of f
on [a, b]. Let also {(cy, di)}}_; be a disjoint collection of open subintervals of (a, b) for
which Y}_,(dy —¢) < 6. Fork € {1,...,n}, with P, we will denote a partition of [c;, d;].

Then
n dy
Y \/(.Po) < g
k=1 Ck
From this,
n dy
Z \/(f ) < g <€
k=1 Ck
Consequently
n [/ di C
Z(\/(f) —\/(f)) <e.
k=1\ a a
Let

X X
A=\, L) =f00)+\/(f), xelab].
a a
Therefore f; is absolutely continuous on [a, b]. Hence, f, is absolutely continuous on

[a, b]. Using (2.119), we conclude that f is difference of two increasing absolutely con-
tinuous functions on [a, b]. This completes the proof. O
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Exercise 2.19. Let f is absolutely continuous on [a, b]. Prove that {Diff: f}, .y is uni-
formly integrable over [a, b]. !

Hint. Use
v ‘ 1 v 1 14
JDﬂJ:EJfa+M—EJﬂO
h v-u
=% J f(t+V)—% Jf(u+t)
u-v+h 0
h 0
=%Jf(t+v)+% J flt+v)
0 u-v+h
h v—u
1 1
-5 [furo - | fuso
0 h
h 0
1 1
=Eof(t+v)+ﬁ th(t+v)
h 0
—%Jf(uﬂ)—% j flt+v)
0 u-v+h

(ft+v)-fu+t)

S o=
Ol— =

forany u,v € [a, b].

Theorem 2.98. Let f be absolutely continuous on the closed bounded interval [a, b].
Then f is differentiable almost everywhere on (a, b), its derivative f' is integrable over
[a, b] and

b

| =1 - (@

a
Proof. By Theorem 2.97, f is difference of two increasing absolutely continuous func-
tions on [a, b]. Hence, by Lebesgue’s theorem, it follows that f is differentiable almost
everywhere on (a, b). Therefore the sequence {Diff: f},.y converges pointwise almost

everywhere on (a, b) to f'. Since {Diff1 f},.y is uniformly integrable over [a, b], using
Theorem 2.85, we get !

b b b
T . _ . . _ 1
£(b) - f(@) = lim | Diffsf = [ tim Diffof = [f'
a a a
This completes the proof. O
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2.9 General measure spaces

Definition 2.43. A collection of subsets of a set X that contains the empty set and it
is closed with respect to the complements in X and with respect to the formation of
countable unions, will be called a o-algebra of subsets of X.

Definition 2.44. A couple (X, M) consisting of a set X and a o-algebra M of subsets
of X will be called a measurable space. A subset E of X is called measurable (or mea-
surable with respect to M) if E € M.

Definition 2.45. Let (X, M) be a measurable space. An extended real-valued function
U : M — [0, co] for which u(@) = 0 and which is countably additive in the sense that
for any countable disjoint collection {E; };y of measurable sets

H(U Ek) = z H(Ep),
k=1 k=1
will be called a measure.

By a measure space (X, M, i) we mean a measurable space (X, M) together with
a measure y defined on M.

Example 2.1. (R, £,m), where L is a collection of Lebesgue measurable sets of real
numbers and m is the Lebesgue measure, is a measurable space.

Remark 2.5. Note that the idea for the proof of the assertions in this section is the
same as in the previous sections. Therefore we leave the proofs of the assertions in
this section.

Theorem 2.99. Let (X, M, u) be a measure space.
1. For any finite disjoint collection {E; }_, of measurable sets we have

uQJﬁ)=Zuwu
k=1

k=1
2. If A and B are measurable sets and A < B, then
J(A) < u(B).
Moreover, if A € B and p(A) < oo, then
U(B\ A) = u(B) - u(A).

3. For any countable collection {E;};cn of measurable sets that covers a measurable
set E, we have

M(E) < ) u(Ey).

k=1
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Theorem 2.100. Let (X, M, u) be a measure space.
1. If{A}ien is an ascending sequence of measurable sets, then

H(UAk> = lim p(Ap).
k=1 k—o00

2. If{Ai}ken is a descending sequence of measurable sets for which pu(A;) < oo, then

y(ﬂAk> = lim p(Ay).
k=1 k—o00

Definition 2.46. For a measure space (X, M, u) and a measurable subset E of X, we
say that a property holds almost everywhere on E, or it holds for almost all x € E, if it
holds on E \ E; and E, is a measurable set for which u(E;) = 0.

Lemma 2.10 (The Borel-Cantelli lemma). Let (X, M,u) be a measure space and
{Ai}ken is a countable collection of measurable sets for which Y2, u(Ay) < co. Then
almost all x € X belong to at most a finite number of the A;.

Definition 2.47. Let (X, M, u) be a measure space. The measure y is called finite if
U(X) < 00, and it is called o-finite if X is the union of a countable collection of measur-
able sets, each of which has finite measure. A measurable set E is said to be of finite
measure if u(E) < oo, and it is said to be of o-finite measure if E is the union of a
countable collection of measurable sets, each of which has finite measure.

2.10 General measurable functions

Definition 2.48. Let (X, M) be a measurable space. An extended real-valued function
f on X is said to be measurable(or measurable with respect to M) if for each ¢ € R, the
set {x € X : f(x) > c} is measurable.

Remark 2.6. Note that the idea for the proof of the assertions in this section is the
same as the idea for the proofs of the assertions in Section 2.5. Therefore we leave the
proofs of the assertions in this section.

Theorem 2.101. Let (X, M) be a measurable space and f is an extended real-valued
function on X. Then the following assertions are equivalent.
1. Foreachc € R, the set {x € X : f(x) > c} is measurable.
2. Foreachc € R, the set {x € X : f(x) > c} is measurable.
3. Foreachc € R, the set {x € X : f(x) < c} is measurable.
4, Foreachc € R, the set {x € X : f(x) < c} is measurable.
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Theorem 2.102. Let (X, M) be a measurable space and f is a real-valued function on X.
Then f is measurable if and only if for each open set O of real numbers, the set f1(0) is
measurable.

Theorem 2.103. Let (X, M) be a measurable space and f and g be measurable real-
valued functions. Then

1. af + Bgis measurable.

2. fgis measurable.

3. max{f, g} and min{f, g} are measurable.

Theorem 2.104. Let (X, M) be a measurable space, f is a measurable real-valued func-
tiononX, ¢ : R — Ris continuous. Then ¢ o f : X +— R is measurable.

Theorem 2.105. Let (X, M, u) be a measure space and {f,},.n be a sequence of mea-
surable functions on X that converges pointwise to f on all of X. Then f is measurable
onX.

Definition 2.49. Let (X, M) be a measurable space and E be a measurable subset of X.
We define its characteristic function kg as follows:

1 ifxeE,
Kg(X) = .
0 ifxeX\E.

Definition 2.50. Let (X, M) be a measurable space. A real-valued function ¥ on X is
said to be simple, if there is a finite collection {E;};_; of measurable sets and a corre-
sponding set of real numbers {c; }_, for which

n
Y= Z Ckkg, on X
k=1

Lemma 2.11 (The simple approximation lemma). Let (X, M) be a measurable space
and f be a measurable function on X such that |f| < M on X for some positive con-
stant M. Then, for each € > 0, there are simple functions ¢, and ., such that

P.<f<p. and 0<yYP.-¢p.<e on X

Theorem 2.106 (The simple approximation theorem). Let (X, M,u) be a measure
space and f be a measurable function on X. Then there is a sequence {¢,},en 0f simple
functions on X that converges pointwise on X to f and

|$ul <Ifl on X

for any n € N. If X is o-finite, then we may choose {¢,},cn S0 that ¢,, vanishes outside
a set of finite measure. If f is nonnegative, we may choose {¢,},cn to be increasing and
Y, >0o0nX.
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Theorem 2.107 (Egoroff’s theorem). Let (X, M, ) be a finite measure space and {f,} nen
be a sequence of measurable functions on X that converges pointwise a.e. on X to a
function f that is finite a. e. on X. Then for each € > 0, there is a measurable subset X,
of X for which f,, — f, as n — oo, uniformly on X, and u(X \ X,) < €.

2.11 Integration over general measure spaces

Definition 2.51. Let (X, M, u) be ameasure space and 1) be a nonnegative simple func-
tion on X. If i = 0 on X, we define

Jl/)dy -o0.
X
Otherwise, let ¢y, .. ., ¢, be the positive values taken by ) on X and

E ={xeX:Ypx)=¢}, kefl...,nk.

We define

[ wau= Y cnce,
X

k=1

using the convention that the right-hand side is co if u(E;) = co for some k € {1,...,n}.
For a measurable subset E of X, we define

[ wau= [ prean

E X

Remark 2.7. Note that the idea for the proof of the assertions in this section is the
same as the idea for the proofs of the assertions in Section 2.7. Therefore we leave the
proofs of the assertions in this section.

Theorem 2.108. Let (X, M, i) be a measure space and ¢ and ) be nonnegative simple
functions on X.

L [y(ad + B)du = a [y pdp + B [ pdy for any a, B € R.
2. If A and B be disjoint measurable subsets of X, then

[ o= [ @ [ gan

AUB A B

3. IfX, is a measurable subset of X and u(X \ X)) = 0, then

| gau= | gan

X X,
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4. Ifp<ipa.e onX, then

P —

ddy < Jl/)dy.
X

Definition 2.52. Let (X, M, u) be a measure space and f be a nonnegative extended
real-valued measurable function on X. We define

X[fdy = supu’ Ydu:yp is simple,0 <y sf}.

For a measurable subset E of X, we define

deu = JfKEdlL
E X

Theorem 2.109. Let (X, M, i) be a measure space, f and g be nonnegative measurable
functions on X.
1. Iff <ga.e.onX, then

J fau < Jgdy.
X X
2. IfX, is a measurable subset of X such that u(X \ X,) = O, then

[ s = | s

X X,

Theorem 2.110 (Chebychev’s inequality). Let (X, M, u) be a measure space, f be a non-
negative measurable function on X and A > 0. Then

Hx X002 A)) < 1 [ fan
X

Theorem 2.111. Let (X, M, u) be a measure space and f be a nonnegative measurable
function on X for which Jx fdu < co. Then f is finite a.e.on X and {x € X : f(x) > 0} is
o-finite.

Lemma 2.12 (Fatou’s lemma). Let (X, M, u) be a measure space and {f,},cn be a se-
quence of nonnegative measurable functions on X for which f, — f, as n — oo, point-
wise a. e. on X. Assume that f is measurable. Then

dey < liminf andy.
X X
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Theorem 2.112 (The monotone convergence theorem). Let (X, M,u) be a measure
space and {f,},en be an increasing sequence of nonnegative measurable functions
on X. Define f (x) = lim,,_,, f,(x) for each x € X. Then

Jim andu = deu-
X X

Theorem 2.113 (Beppo Levi’s lemma). Let (X, M, ) be a measure space and {f,},cx be
an increasing sequence of nonnegative measurable functions on X. If the sequence

s,

is bounded, then {f,},.n converges pointwise on X to a measurable function f that is
finite a. e. on X and

Jim j £y = I fdy < co.
X X

Theorem 2.114. Let (X, M, 1) be a measure space and f be a nonnegative measurable
function on X. Then there exists an increasing sequence {¢,},cn Of simple functions on
X that converges pointwise on X to f and

Jim J $ndy = jfdu-
X X

Theorem 2.115. Let (X, M, i) be a measure space and f and g be nonnegative measur-
able functions on X. Then

| @ + e = a | a4 B | g
X X X

for any positive real numbers a and f3.

Definition 2.53. Let (X, M, i) be a measure space and f be a nonnegative measurable
function on X. Then f is said to be integrable over X with respect to u if Jx fdu < co.

Definition 2.54. Let (X, M, u) be a measure space. A measurable function f on X is
said to be integrable over X with respect to y if |[f| is integrable over X with respect
to u. For such a function, we define the integral of f over X with respect to y by

[ fau= | £~ | ran,
X X X
where f* = max{f, 0}, f~ = max{-f, 0}. For a measurable subset E of X, we define

[ s = | psetu.

E X
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Theorem 2.116. Let (X, M, u) be a measure space and f be a measurable function on X.
If g is integrable over X and |f| < g a. e. on X, then f is integrable over X and

deu < Jlfldu < jgdu-

X X X

Theorem 2.117. Let (X, M, u) be a measure space and f and g be integrable over X.
L [y (af +Bg)du = a [ fdu + B [, gdy for any real numbers a and B.
2. Iff <ga.e.onX, then

J fdu < Jgdy.
X X
3. If A and B be disjoint measurable subsets of X, then

|| s = [ s+ | fau.

AuB A B

Theorem 2.118. Let (X, M, u) be a measure space, the function f is integrable over X,
and {X,}.cn be a disjoint countable collection of measurable sets such that X = | J;2; X,,.
Then

jfdu = i deu-

n:lXi

Theorem 2.119. Let (X, M, u) be a measure space and the function f be integrable

over X.

1. If {X,}en is an ascending countable collection of measurable subsets of X, X =
Unei X,y then

fdu.

—_—

[ i,
X X,

2. If{X,}hen be a descending countable collection of measurable subsets of X, then
| = tim | s
ﬂﬁi] Xn X"

Theorem 2.120. Let (X, M, 1) be a measure space and f be a measurable function on X.
If f is bounded on X and vanishes outside a set of finite measure, then f is integrable
over X.
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Theorem 2.121 (The Lebesgue dominated convergence theorem). Let (X, M,u) be a
measure space and {f,},cn be a sequence of measurable functions on X for which
fn — f,as n — oo, pointwise a. e. on X, and the function f is measurable. Let also there
be a nonnegative function g that is integrable over X and

Iful<g ae on X

forany n € N. Then f is integrable over X and

tim [ fudu = | fan.
X X

Definition 2.55. Let (X, M, i) be a measure space and {f,},cn be a sequence of func-
tions on X, each of which is integrable over X. The sequence {f,},,cy is said to be uni-
formly integrable over X if for each € > 0, there isa § > 0 such that, for any n € N and
for any measurable subset E of X for which u(E) < 6, we have

[ Vi <.

E

The sequence {f,},y is said to be a tight over X if for each € > 0, there is a subset X,
of X that has finite measure and

[ id<e
X\X,

foranyn € N.

Theorem 2.122. Let (X, M, ) be a measure space and the function f is integrable
over X. Then for each € > 0, thereis a 6 > 0O such that, for any measurable subset E of
X for which u(E) < 6, we have

J Ifldu < €.

E

Moreover, for each € > 0, there is a subset X, of X that has finite measure and

Ifldu < €.
X\X,

Theorem 2.123 (The Vitali convergence theorem). Let (X, M, u) be a measure space
and {f,},en be a sequence of functions on X that is uniformly integrable and tight over X.
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Assume that f, — f, asn — oo, pointwise a.e. on X and the function f is integrable
over X. Then

n—-oo

X

lim J £ dy = J fu.
X

2.12 Advanced practical problems

Problem 2.1. Let {E; };y be a countable disjoint subcollection of measurable sets and
A be a measurable set. Prove that

m*<Aﬂ (EOJE](>> = im*(AﬂEk).
k=1

k=1

Problem 2.2. Let f be a continuous function and B be a Borel set. Prove that f }(B) is
a Borel set.

Problem 2.3. Let f be a function with measurable domain E. Prove that f is measur-
able if and only if the function g, defined on R by g(x) = f(x) for x € E and g(x) = 0 for
x ¢ E, is measurable.

Problem 2.4. Letf be a measurable function on the measurable set E that is finite a. e.
on E and m(E) < co. Prove that for each € > 0 there is a measurable set E, contained
in E such that f is bounded on E, and m(E \ E) < €.

Problem 2.5. Prove that the sum and product of two simple functions are simple.

Problem 2.6. Let f be a bounded measurable function on a set of finite measure E.
Assume that g is bounded and f = g a. e. on E. Prove that

Problem 2.7. Let {f,,},,cn be a sequence of nonnegative measurable functions on E that
converges pointwise on E to f. Suppose that f,, < f on E for each n € N. Prove that

-1

E E

Problem 2.8. Let f be a nonnegative measurable function on R. Prove that

R
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Problem 2.9. Let {f, },,cn be a sequence of nonnegative integrable functions on E and
fn — 0, as n — oo, pointwise a. e. on E. Prove that

lim anzo

n—oo

E

if and only if {f,,},en is uniformly integrable and a tight over E.
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3 The L” spaces

3.1 Definition

Let E be a measurable set and F be the collection of all measurable extended real-
valued functions on E that are finite a. e. on E.

Definition 3.1. Define two functions f and g in F to be equivalent, and we write f ~ g,
provided

f(x)=g() for almost all xeE.

The relation ~ is an equivalent relation, that is, it is reflexive, symmetric and tran-
sitive. Therefore it induces a partition of F into a disjoint collection of equivalence
classes, which we denote by 7/ ~. For given two functions f and g in F, their equiv-
alence classes [f] and [g] and real numbers a and 8, we define a[f] + 8[g] to be the
equivalence class of the functions in F that take the value af (x) + fg(x) at points x € E
at which both f and g are finite. Note that these linear combinations are independent
of the choice of the representatives of the equivalence classes. The zero element in
F/ ~ is the equivalence class of functions that vanish a. e. in E. Thus F/ ~ is a vector
space.

Definition 3.2. For 1 < p < oo, we define L”(E) to be the collection of equivalence
classes [f] for which
J IfIP < oo.
E
This is properly defined since, if f ~ g, then
[ = er.
E E
Note that, if [f], [g] € LP(E), then, for any real constants a and 8, we have
[tas + et <2([1arv + [ 1psr”)

E E E

=4MWJW”HMWJEW<m,

E E
i.e., a[f] + Blg] € LP(E).

Definition 3.3. We call a function f € F essentially bounded provided there is some
M > 0, called an essential upper bound for f, for which

If)) <M for almost all xecE.

https://doi.org/10.1515/9783110657722-003
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Definition 3.4. We define L™ (E) to be the collection of equivalence classes [f] for
which f is essentially bounded.

Note that L (E) is properly defined since, if f ~ g, then
[fX)| =|gx)| <M for almost all xecE.

Also, if [f], [g] € L*(E) and &, B € R, there are nonnegative constants M; and M, such
that

If)] <M, |g)| <M, for almost all xe€E.
Hence,
|af (%) + Bg(0)| < lal[f (X)| + IBllg(x)| < lalM, + |BIM,

for almost all x € E. Therefore a[f] + B[g] € L*(E) and hence, L*°(E) is a vector space.
For simplicity and convenience, we refer to the equivalence classes in 7/ ~ as func-
tions and denote them by f rather than [f]. Thus f = g means f — g vanishes a. e. on E.

Definition 3.5. For1 < p < oo, in L?(E) we define

IFl, = (j W’);.

E

For p = 0o, we define |f]|,, to be the infimum of the essential upper bounds for |f].

3.2 The inequalities of Holder and Minkowski

Theorem 3.1 (H6lder’s inequality). Let E be a measurable set, 1 < p < co and q be the
conjugate of p. If f € LP(E) and g € LI(E), then the product fg is integrable over E and

j gl < I Nl (.1)
E

Proof.
1. Letp=1.Thenq = coand

[ 11 = [ i < (j LfI)IIgIIOO ~ IFl g
E E E

2. Letp e (1,00). If I[fllp =0or|gl, =0, then the assertion is evident. Let |[f||p +0
and ||g||q + 0. We set

f g

W= 8 iy
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Then
"fl"p ||g1||q =1
Now, using Young’s inequality, we have
1 1
gl < =il + =1gil?.
151 p 1 q 1

Hence,

1 _ Tew, Lo
”f"p”g”qé[lfﬂ lﬁ§1|3£<pV1| +q|g1| )

1 1 1
- —W’+j—|g|q— jwp+—j|g|q
p! gt pl' Tq)*
E E E
11
= WA+l = o =L
pite g lele =y

From the previous inequality we get the inequality (3.1). This completes the proof.
O

Remark 3.1. When p = g = 2, the Holder inequality is known as the Cauchy-Schwartz
inequality.

Theorem 3.2 (Minkowski’s inequality). Let E be a measurable set,1 < p < co.Iff,g €
L?(E), then

IF +gll, < I, + gl

Proof.
1. Letp =1.Then

IF + gl = j Frgl< j(m +1gl) = j 1+ (1l = 11, + gl
E E

E

[T
)

2. Letp = oco.Then

If + 8lloo < Ifllco + 1810

3. Letp € (1,00) and q be its conjugate. If |f + g =0, then the assertion is evident.
Assume that [ + gl|, # 0. Then, applying Holder’s inequality, we get

IF + I =jlf+g|” - jlf+g|lf+g|’"1

E
j (FIF + 8PP+ 1gllf +gP ™) = jvuf+g|1” ! j|g|v+g|”"1
E E

E
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1

1 1 1 1
p q )4 q
(i) (Jirea) o (Jir) ([v-si)
E E E E
p p
= If + gl Ifll, + IIf + glip gl
Hence,
p_Il
If +gll, * < IF1, + gl
or
If +gll, < Ifll, + lgll,-

This completes the proof.

3.3 Some properties

Theorem 3.3. Let E be a measurable set and 1 < p < oo. Suppose that F is a family of
functions in LP (E) that is bounded in LP(E) in the sense that there is a constant M > 0
such that

Ifll, <M for all feF.
Then the family F is uniformly integrable over E.

Proof. Let € > 0 be arbitrarily chosen. Suppose that A is a measurable subset of E of
finite measure. Let also 117 + % = 1. Define g to be identically equal to 1 on A. Because
m(A) < oo, we have g € LY(A). By Holder’s inequality, for any f € F, we have

Jui=[re<(] lfl’”);ng);.

A A A
On the other hand,
; i 1
(Jur) <m (i)’ - meay:
A A

for any f € F. Therefore

[ 171 < mayem

A

foranyf e F.Letéd = (A%)q. Hence, if m(A) < 8, then

J If < M(m(A))7 < M8+ = MA% _p
A

foranyf € F.Therefore F is uniformly integrable over E. This completes the proof. [
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Theorem 3.4. Let E be a measurable set of finite measure and 1 < p; < p, < co. Then
L2 (E) c LP/(E). (3.2)

Proof. Letp, < oo and f € LP2(E) be arbitrarily chosen. Then p = % > 1. We takeg > 1
such that 11, + [11 =1. Then

(Ej ) =(Ej )" <o

i.e., [fI" € LP(E). Let g = xg. Since m(E) < oo, we have g € LI(E). Hence, using
Hélder’s inequality, we get

1

o o< e )

E E E

= If I (m(E))? < oo.

Therefore f € LP1(E). Because f € LP2(E) was arbitrarily chosen and we see that it is an
element of LP1(E), we obtain equation (3.2). Let p, = co and f € L*(E) be arbitrarily
chosen. Then there is a positive constant M such that

[feo| <M

for almost all x € E. Hence,

J IfIP* < MP'm(E).
E

Then f € LP(E). Because f € L*°(E) was arbitrarily chosen and we see that it is an
element of LP!(E), we obtain equation (3.2). This completes the proof. O

Remark 3.2. Let {f,},,n be a sequence of elements of L”(E) and f € L (E). When ||f,, -
fll, = 0, asn — co, we will say that the sequence {f},y converges to f in LP(E).

3.4 The Riesz—Fischer theorem

Definition 3.6. Let X be a normed vector space. A sequence {f, },,n in X is said to be
a rapidly Cauchy sequence provided there is a convergent series of positive numbers
Yoy € for which

P
Ifier1 = fill < €

forall k € N.
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Lemma 3.1. Let X be a normed vector space and {f,},cn be a sequence in X such that

fir1 = ficll < ay

forall k € N, where a, k € N, are nonnegative numbers. Then

(o]
ke = fall < Z a; (3.3)
I=n
forallk,n € N.
Proof. Forany n, k € N, we have
n+k-1
fask = fo =Fask =k sk =+ o —fa = Z (f;'+l _f])
j=n
Hence,
n+k-1 n+k-1 n+k-1 00
Wik =full =] Y Ga=H| < D Wa-fl< Y a<) a
j=n j=n j=n j=n
for any k, n € N. This completes the proof. O

Theorem 3.5. Let X be a normed vector space. Then every rapidly Cauchy sequence in
X is a Cauchy sequence in X. Furthermore, every Cauchy sequence in X has a rapidly
Cauchy subsequence in X.

Proof.
1. Let {f,},n be a rapidly Cauchy sequence in X. Then there is a convergent series
¥ roq €k Of positive numbers such that

2
fir1 — ficll < €

for any k € N. Hence, by (3.3), we obtain

()
2
Ifasi = fall < Zel -0 as n- oo,
I=n

for any k € N. Here we have used the fact that the series Y%, €7 is a convergent
series. Therefore {f,,},cn is a Cauchy sequence.
2. Let {f,}nen is @ Cauchy sequence in X. Then there are M;, M,, M5 € N such that

1 11
"fmi —fm%II < 3 for any m;,m; > M,

1 22
|[fm§ —fm§|| < %2 for any mj,m; =M,
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1 3 3
Wz = fra Il < > for any mj,m; = M.

In particular, for m}, m}, m3 > max{M;, My, M5}, we have

Ut ~futl < 3 Vg ~Fugh < 350 Ui ~Fgll < 55
We set
n=my ny=m, ny;=m,
for mj, m}, m3 > max{M;, My, Ms}. Then

1 1

1
”fnz _f"1" < E) ”fn3 _fnZH < 2_2> "fmf _fn3|| < 2_3>

for m} > max{M,, M,, M;}. Continuing this process, we obtain a subsequence
{fn, }ken Of the sequence {f,},cy such that

1
Wy = Fa Il < x

forany k € N. Since 22, ﬁ is convergent, we conclude that {f,, }xcn is a rapidly
Cauchy sequence in X. This completes the proof. 0

Theorem 3.6. Let E be a measurable set and 1 < p < oco. Then every rapidly Cauchy
sequence in LP (E) converges both with respect to the LP(E) norm and pointwise a. e. in
E to a function f in LP (E).

Proof. Let1 < p < co. We leave the case p = co as an exercise. Let {f,,},cn be a rapidly
convergent sequence in LP(E). We choose Y2, € to be a convergent series of positive
numbers such that

Wficsr — fillp < € (3.4)
for any k € N. Let
E = (X €E: |[fi (0 - f )| 2 €}, keN.
Then
E'= {x€E: [fi 00 -fi]" =€}, keN.

Hence,

Jlfkﬂ(x) - {0l = 2 m(E").

EX
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Now, using (3.4), we get

m(E") < ilﬁﬂ ~filP = é”fkﬂ ~fily

IN

xﬂsl - »%l -

~y

€

=eb.

Since p > 1, the series Y2, €} is convergent and
(o) 0
Y mE) <Y € < co.
k=1 k=1

Hence, by the Borel-Cantelli lemma, it follows that there is E,, c E such that m(E;) = 0
and for each x € E\ E there is an index K(x) such that

fir1(X) = fi )] < €
for any k > K(x). Let x € E\ E;. Then

n+k-1 0

|fn+k(x) _fn(x)| < Z |f}-+1(X) —f](x)l < Zg].
j=n j

i—n

for all n > K(x) and for any k € N. Hence, the sequence of real numbers {f,,(x)},cy is @
Cauchy sequence in R for any x € E \ E,. Therefore it is convergent for any x € E \ E,
and let lim,,_, ., f,,(x) = f(x) for any x € E \ E,. By (3.3) and (3.4), we obtain

o p
Jlfrwk _fnlpS (Zelz> (3.5)

E j=n

for all n,k € N. Since f,, — f pointwise a. e. on E, we take the limit as k — oo in (3.5)
and using Fatou’s lemma, we get

! If = ful” < <§ef>p

j=n

foralln € N. Hence, f € L?(E) and f,, — f, asn — oo, in LP(E). This completes the
proof. O

Theorem 3.7 (The Riesz-Fischer theorem). Let E be a measurable set and1 < p < oo.
Then L?(E) is a Banach space. Moreover, if f,, — f, as n — oo, in L (E), a subsequence
of {f}nen converges pointwise a.e. onE to f.

Proof. Let {f,},en be a Cauchy sequence in L?(E). By Theorem 3.5, it follows that there
is a subsequence {f;, }ien Of the sequence {f,},cy that is a rapidly Cauchy sequence in
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L?(E). Hence, by Theorem 3.6, it follows that {fn, }ken converges both with respect to
the L” (E) norm and pointwise a. e. on E. Letf, — f,ask — co,in L?(E). Wetakee > 0
arbitrarily. Then there exists K € N such that

€ €
”fnk _f"p < E and "fl _fm"p < E

for any I, m, n; > K. Hence, for any n, n; > K, we have

€ €
”fn _f"p = ”fn _fnk +fnk _f”p < "fn _fnk”p + "fnk _f”p < 5 + E =E€.
Therefore {f, },cn is convergent in LP(E) and LP(E) is a Banach space. This completes

the proof. O

Definition 3.7. Areal-valued function f, defined on a set A, is called convex if for each
pair of points x;,x, € A and for each A € [0, 1], we have

fq + 1 -Axp) < Af () + (1= Af (xy).

Theorem 3.8. Let E be a measurable set and 1 < p < oo. Suppose that {f,},cn IS a
sequence in LP (E) that converges pointwise a.e. on E to the function f € LP(E). Then
fn = f>asn — oo, in LP(E) if and only if

tim [V = [ 1P (36)

n—oo

E E
Proof.

1. Letf, — f,asn — oo, in L?(E). Then, by Minkowski’s inequality, we have

Wfallp = Wl < Wfi = fl, = O as n— oco.

Hence, (3.6) holds.
2. Assume (3.6). Let E; ¢ E be such that m(E,) = 0 and f,,(x) — f(x), asn — oo, for
all x € E\ E,. Take i(t) = |t[P, t € R. Then ) is a convex function and

l/)<a;b>$ l/)(za) +!,b(zb)

for any a, b € R. Hence,

a-blf

2

lal? + |b|P
<
2

for any a, b € R. For each n € N, we define the function

4
h, () = Ol ; FeoP

fu() = f(x)
2
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for any x € E. We have h,(x) — |[f(x)[’, as n — oo, for any x € E\ E;. Hence, by
Fatou’s lemma, we obtain

14 14 _fP
j P < liminfjhn - liminf<j il 2+ U j f“Z f >
E E E
P
= J IfIP —limsupJ f—"z f
E E
Therefore
P
limsupj f"2 f <O.
E

That is f,, — f, as n — oo, in L? (E). This completes the proof. O]

Theorem 3.9. Let E be a measurable set and 1 < p < co. Suppose that {f,} N IS a
sequence in LP (E) that converges pointwise a. e. on E to the function f which belongs to
LP(E). Then f,, — f, asn — oo, in LP(E), if and only if {|f,|"},cn is uniformly integrable
and tight over E.

Proof.
1. Letf, — f,asn — oo, in LP(E). Hence,

lim [ 16~ =0,

E

Therefore {|f,, - f’},cn is uniformly integrable and tight over E. Because
Ifulf < 22(Ify, - fP +IffP), neN,

we conclude that {|f,|P},cy is uniformly integrable and tight over E.

2. Let {|f, [’} en is uniformly integrable and tight over E. Since f, — f, asn — oo,
pointwise a. e. on E, we have |f,[° — |f|P, as n — oo, pointwise a. e. on E. Hence,
by the Vitali convergence theorem, we conclude that |f|” is integrable over E and

tim [ 1507 = [P

E E

This completes the proof. O

Theorem 3.10 (The L” dominated convergence theorem). Let {f, },cn be a sequence of
measurable functions that converges pointwise a.e. onE to f. For 1 < p < oo, suppose
that there is a function g € LP(E) such that |f,| < g a.e. onE foralln € N. Thenf, — f,
asn — oo, in L (E).
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Proof. Since f, — f, asn — oo, pointwise a. e. on E, we have |f, [ — |fIP, asn — oo,
pointwise a. e. on E. Also, |f, [P < g” a. e. on E and g” is integrable over E. Hence, by the
Lebesgue dominated convergence theorem, we conclude that |f|P is integrable over E
and

tim [ 1P = [P,
E E

This completes the proof. O

3.5 Separability

Theorem 3.11. Let E be a measurable set and 1 < p < co. Then the subspace of simple
functions in LP(E) is dense in LP(E).

Proof. Letg € LP(E).

1. Letp = co. Then there is E, c E such that m(E;) = 0 and g is bounded on E \ E,,.
By Theorem 2.46, it follows that there is a sequence {f,},cn Of simple functions on
E \ E, that converges uniformly on E \ E to g and therefore with respect to the
L (E) norm. Consequently the subspace of simple functions in L*(E) is dense in
L (E).

2. Let1l < p < oo. By Theorem 2.47, it follows that there is a sequence of simple
functions {f,,},cx On E such that f,, — g, as n — oo, pointwise on E and

Iful <lgl on E

for any n € N. Since g € LP(E), we have f,, € L”(E) for any n € N. Next,

Ifn =8l < Iful + 181 < 2Igl.

Hence, by Theorem 3.10, it follows that f, — g, asn — oo, in L (E). This completes
the proof. 0

Theorem 3.12. Let [a, b] be a closed bounded interval and 1 < p < oo. Then the sub-
space of the step functions on [a, b] is dense in L?([a, b]).

Proof. Let A be a measurable subset of [a, b]. Let also g = k,. Take € > 0 arbitrarily. By
Theorem 2.23, it follows that there is a finite disjoint collection {Ik},'(’:1 of open intervals
such that if U = (Ji_; I, then

m(A\U) +m(U\A) < €P.

Let f = xy. Then

1

Iy — Kallp = <J Iy - m")ﬂ ~ (m(A\U) + m(U\ &))" <e.
E
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Therefore the step functions are dense in the simple functions with respect to the L?
norm. Hence, by Theorem 3.11, it follows that the step functions on [a, b] are dense in
L?([a, b]). This completes the proof. O

Theorem 3.13. Let E be a measurable set and 1 < p < co. Then LP(E) is separable.

Proof. Let [a, b] be a closed bounded interval and S([a, b]) be the collection of the step
functions on [a, b]. Let also S'([a, b]) be the subcollection of the collection S([a, b])
consisting of the step functions i on [a, b] that take rational values and for which
thereis a partition P = {x,, ..., x,} of [a, b] so that i) is a rational constant on (x;_, X;),
1<k <n,andx, 1<k <n-1, are rational numbers. Using the density of the rational
numbers in the real numbers, we see that S!([a, b]) is dense in S([a, b]) with respect
to the LP(E) norm. Because the set of the rational numbers is countable, we see that
S!([a, b)) is a countable set. We have

S'([a, b]) < S([a, b]) < L”([a, b)).

Since S'([a, b]) is dense in S([a, b]), using Theorem 3.12, it follows that S'([a, b]) is
dense in L?([a, b]). For each n € N, we define F, to be the collection of the functions
that vanishes outside [-n, n] and whose restrictions to [-n, n] belong to S([-n, n]). Let

(e}
F=JFn
n=1

Note that F is a countable collection of the functions that is dense in L? (R). Also, using
Theorem 2.80, we have

tm [y = [y
[-n,n] R

forallf € L”(R). Using the definition of F, we conclude that F is a countable collection
of functions that is dense in LP(R). Hence, the collection of the restrictions on E of
functions in F is a countable dense set of L (E). Consequently L” (E) is separable. This
completes the proof. O

3.6 Duality

Definition 3.8. For a normed vector space X, a linear functional T on X is said to be
bounded if there is an M > 0 such that

|T(H)| < MIfIl (3.7)

forallf e X. The infimum of all such M will be called the norm of T and will be denoted
by [IT,.
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Let T be a bounded linear functional on the normed vector space X. Then, for any
f.g € X, we have

|T(f) - T(g)| < MIf - gl. (3.8)
Hence, iff,, - f,asn — co0,in X, i.e., f,f e X,n €N,
If,—fl -0 as n— oo,
using (3.8), we get
T(f,) —» T(f) as n— oo.

Proposition 3.1. Let T be a bounded linear functional on the normed vector space X.
Then

ITl, = sup|T(f)|. (3.9)
IFl<t

Proof. By the inequality (3.7), we get

[T] < ITIL A

for any f € X. Hence,

sup|T(f)| < |TI,. (3.10)
e

Let € > 0 be arbitrarily chosen. Then there exists g € X, g # 0, such that

IT()] > (ITll, - €)lgl.

Hence,

(g )m

and
sup|T(f)| > ITIl, -e.
Ifll<1
Because € > 0 was arbitrarily chosen, from the previous inequality, we obtain

sup|T(f)| > ITI,.
IFl<t

Hence, by (3.10), we get (3.9). This completes the proof. O
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Theorem 3.14. Let E be a measurable set, 1 < p < oo, ﬁ +
Define the functional T on L? (E) by

1
7-L8¢€ LY(E), Iglg # O.

T¢) - [of
E

for allf e LP(E). Then T is a bounded linear functional on LP (E) and |T|, = Igllg-
Proof. Letf,,f, € LP(E) and a, B € F. Then

Taf, + ) = [ g(a; + B = [(ashi +sf) = [ agh + [ B,

E E E E

=« Jgf1 +BJgf2 = aT(f) + BT().

E E

Therefore T is a linear functional on LP(E). Also, using Holder’s inequality, we have

< j|g|m

E
(j lf|">; = g, Ifl,

< (! 1) |

for all f € LP(E). Consequently T is a bounded linear functional on L?(E). By the pre-
vious inequality, we get

()| = Ugf
E

Q=

Tl < lgll, G.11)
Let
8 = ligll; ¥ sign(g)lgl™".
We have
[t = [ 16117 = 1g1;¢ [ 1917 =1,
E E E

i.e., g, € LP(E) and |g;|, = 1. Next,

Iy

T(g)) - [ 81 - [ glsll sin@lel® = lely* [ 11 = lel,
E E E

Therefore

T = liglly-

From the previous inequality and from (3.11), we obtain |T|, = |g ¢- This completes
the proof. O
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Theorem 3.15. Let T and S be bounded linear functionals on a normed vector space X.
If T = S on a dense subset X, of X, then T = S on X.

Proof. Let g € X be arbitrarily chosen. Then there exists a sequence {g,},cn Of ele-
ments of X, such that g, — g, asn — oo, in X. Hence,

T(g,) — T(g), S(g,) — S(g), as n— oo,
and

T(gn) = S(gn)

for any n € N. Therefore T(g) = S(g). Because g € X was arbitrarily chosen, we obtain
T = S on X. This completes the proof. O

Theorem 3.16. Let E be a measurable set and1 < p < oo, 117 +

E and there is an M > 0 such that
[

E

% =1, g is integrable over

< MIlfl, (3.12)

for any simple function f in LP(E). Then g € LY(E) and |g|, < M.

Proof. Since g is integrable over E, then it is finite a. e. on E. By excising a set of mea-

sure zero from E, we can assume that g is finite on all of E.

1. Letp > 1.Because |g| is a nonnegative measurable function on E, by Theorem 2.47,
there exists a sequence {¢,},,cy of measurable simple functions on E that con-
verges pointwise on E to |g| and 0 < ¢, < |g| on E. Hence, {¢?}, .y is @ sequence
of nonnegative simple functions on E such that

0<¢l<igl? on E

and ¢! — |g|%, as n — co, pointwise on E. Hence, by Fatou’s lemma,

J lgl? < Jd)ﬁ (3.13)

E E

for every n € N. Let n € N be arbitrarily chosen. Then

Pl = Pl < Iglp? " = gsign(g)p?' on E.

Let

f, = sign(g)¢p?" on E.
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Then f, is a simple function. Because g is integrable over E, we see that ¢,, is in-
tegrable over E. Then ¢ is integrable over E and

[t = [ ot

E E

Therefore f,, € L (E). Next, by (3.12), we obtain

[ #=[oust < [te10f = [ gsinry”
E E E E

= [ < M1, = M(j ¢g>';.
E E

From this,
1
q
(o) =m
E
i.e.,
lpnlly < M.
Hence, by (3.13), we obtain
Iglly <M.

2. Let p = 1. Suppose that M is not an essential upper bound for g. Then there is an
€ > 0 such that the set

E.={xeE:|gx)|>M+¢€}

has finite positive measure. Let f = sign(g)xﬁe. Then, by (3.12),

|[52] - || ssien@)| = [ 161> 01 + e (314)

E E, E,

On the other hand, by (3.12),

[
E

which contradicts (3.14). Therefore M is an essential upper bound for g. This com-
pletes the proof. N

< MIfl, = M [|sign(@)xe, | - Mm(E,),
E
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Theorem 3.17. Let [a, b] be a closed bounded interval, 1 < p < oo, 1% + % = 1. Suppose

that T is a bounded linear functional on L? ([a, b]). Then there is a functiong € LI([a, b])
such that

b
1) - | of

forallf e IP([a, b]).

Proof. Let p > 1. We leave the case p = oo as an exercise. For x € [a, b] we define
D(x) = T(Kigy))-

For [c,d] < [a, b], we have

Kie,d) = Kla,d) =~ Kja,e)-

Then

D(d) - P(c) = T(Kq,q) — T(Kig,c) = T(Kig,aq) — Kia,0) = T(Ke,a))-

If {(ay, bk)}Z:l is a finite disjoint collection of intervals in (a, b), then

Y| @by) - Dlay)| = ) sign(Dby) - D(ay))(D(by) - Dlay))
k=1 k=1

= z sign(®(by) — Q(ak))T(K[ak,bk))

k=1
= z "Jr(sign(CD(bk) - (D(ak))K[ak,bk))
k=1
= T( Z sign(@(by) — D(ay))K(q, b, )
k=1

Consider the simple function

f = Z Slgn(q)(bk) - (D(ak))K[ak>bk)'
k=1

Then

1

[T < ITIL NN, = ”T"*<Z(bk - ak)) :

k=1

Consequently

Y |®by) - D) < ||T||*<Z(bk - ak>>

k=1 k=1
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and @ is absolutely continuous on [a, b]. Therefore ® is differentiable a. e. on [a, b],
and if g = @', then g is integrable over [a, b] and

D(x) = fg

for all x € [a, b]. Therefore, for each [c,d] < (a, b),

b
T(k(e,q)) = P(d) - D(c) = JgK[c,d)'

a

Since the functional T and the functional f +— j: gf are linear on the vector space of
step functions in L?([a, b)), it follows that

b
1) - [ of

for all step functions f in L” ([a, b]). By Theorem 3.12, it follows that there is a sequence
{n}en Of step functions that converges to f in L? ([a, b]) and also it is uniformly point-
wise bounded on [a, b]. Hence, by (3.8), we get

lim T(¢,) = T(F).

On the other hand, by the Lebesgue dominated convergence theorem, we obtain

b b
Jim jngn = jgf.
a a
Therefore
b
1) - [ of
a

for all simple functions f in L”([a, b]). Since T is bounded,

b

Jgf‘ = [T(6)| < ITI, Il

a

for all simple functions f in L?([a, b]). From this and from Theorem 3.16, we have
g € LY([a, b]). By Theorem 3.14, the functional f J: gf is bounded on L”([a, b]).
This functional agrees with T on the simple functions in LP([a, b]). Because the set of
the simple functions in L?([a, b]) is dense in L? ([a, b]) (see Theorem 3.11), using Theo-
rem 3.15, these two functionals agree on all of LP([a, b]). This completes the proof. [
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Theorem 3.18 (The Riesz representation theorem). Let E be a measurable set, 1 < p <

00, 1% + é = 1. For each g € L (E), define the bounded linear functional T, on LP(E) by

Ty = | of

E

for all f e LP(E). Then, for each bounded linear functional T on L? (E), there is unique
function g € LI(E) for which

Tg=T and [T, =Ilgl,

Proof. By Theorem 3.14, it follows that T, is a bounded linear functional on L” (E) and
ITgll,. = liglly for each g € LP(E). Also, if g, g, € LY(E), then

Tg,¢,(F) = j(gl -8)f = J(glf -8&f) = ngf— ngf = Ty, (f) - Tg,(f)
E

E E E

for any f € LP(E). Therefore, if Tg =T,, then Tg ¢ =0, and hence, |g; - &l =0,

so that g, = g,. Therefore, for a bounded linear functional T on L (E) there is at most

one g ¢ LP(E) for which T, = T.

1. Suppose thatE = R. Let T be a bounded linear functional on L (R). Forany n € N,
we define the linear functional T,, on L?([-n, n]) by

T,(f) = T(F)
forallf € LP([-n, n]), where f is the extension of f to all of R that vanishes outside
[-n,n]. Then

Ifll, = IF1l,
and

T, ()] = [TF)| < ITIL I, = ITILAf,
for any f € LP([-n, n]). Hence,
Tl < IT,.

By Theorem 3.17, it follows that there is a function g, € LY([-n, n]) for which

T, = | &f

E

for all f € L”([-n, n]) and

Ignllg = Ty Ml < ITY,. (3.15)
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Note that the restriction of g, to [-n, n] agrees with g, a. e. on [-n, n]. Define g to
be a measurable function on R that agrees with g,, a. e. on [-n,n] for each n € N.
Hence, for all f € L”(R) that vanish outside a bounded set,

() - [ .

R

By (3.15),
n
j gl < T
-n

Because the set of all functions of LP(E) that vanishes outside a bounded set is
dense in L”(R), using Theorem 3.15, we conclude that T, agrees with T on all
LP(R).

2. Let E be a measurable set and T be a bounded linear functional on L? (E). Define
the linear functional T on L? (E) by

T() = T(flp), f e LP(R).

Then T is a bounded linear functional on L”(R). Hence, there is a function & €
L?(R) for which

i) - [ of
R

for any f € L’(R). Define g = g|g. Then T = T,. This completes the proof. O

Definition 3.9. Let 1 < p < oo and g is its conjugate. The space L?(-) is called the dual
space of the space LP(-).

Definition 3.10. Let X be a normed vector space. A sequence {f,} ey in X is said to
converge weaklyin X to f € X if

Jlim T(f,) = T()
for any linear functional T on X. We will write
fo—f in X
Remark 3.3. If X is a normed vector space, we will write f,, — f in X if
If,-fl-0 as n— oo.

In this case, we will say that the sequence {f, },,cx converges strongly to f in X.
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Theorem 3.19. Let X be a normed vector space, {f,},en be a sequence in X, f € X. If
fn—ofinX thenf, — finX.

Proof. Since f, — f in X, we have
If,=fl—0 as n— oo.
Let T be arbitrarily chosen linear functional on X. Then
[T - TA| < ITIMfy ~fl -0 as n— co.

Because T was arbitrarily chosen linear functional on X, we conclude that f, — f in X.

This completes the proof. O
Theorem 3.20. LetE be a measurableset,1 < p < co and q is its conjugate. Thenf, — f
in LP(E) if and only if
Jim Jgfn = Jgf (3.16)
E E

forallg € LY(E).
Proof.
1. Letf, — f in L (E). Then for every linear functional T we have

Jim T(f,) = T(f).

Hence, using h +— jE gh, h € LP(E), is a linear functional for each g ¢ LY(E), we
get (3.16).

2. Assume that (3.16) holds. Let T be arbitrarily chosen linear functional on L?(E).
By the Riesz representation theorem, it follows that for any h € LP(E) there is a
unique g € LY(E) such that

T(h) = J gh.

E

Hence, by (3.16), we obtain
lim T(f,) = T().

Because T was arbitrarily chosen linear functional on L?(E), we conclude that
f, — f in LP(E). This completes the proof. m

Theorem 3.21. Let E be a measurable set, 1 < p < oo. Then a sequence in LP (E) can
converge weakly to at most one function in L? (E).
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Proof. Let g be the conjugate of p. Let also {f, } ,cx be a sequence in L? (E) that converges
weakly to f;,f, € LP(E). Then f; - f, € LP(E) and

10~ £l 7 stgnh ~ £1f -7 < s = P [ - 197

E

E
=Sl [ 1 - AP -1
E

i.e,lfy —leli,‘p sign(f, - fL)If; - o7 € L1(E). Hence, by Theorem 3.20, we get

| 1 £l sien - £, - £ = lim [ 1, £l sign - flfy - £y
E

E

= [ U - fll” signthy - flf - o'

E
Therefore
0= [ Iy £ll;” sienCi - F)lf - £~ £
E
W=l [ 1=l = s = ol
E
Consequently f; = f,. This completes the proof. O

Definition 3.11. Let E be a measurable setand 1 < p < co.

1. Let {f, },n be a sequence in LP(E), f € LP(E) and f, — f in LP(E). The function f
will be called the weak sequential limit.

2. Letf e LP(E). The function

£ = IfI, P sign(f)If P

will be called the conjugate function of f. Note that f* ¢ LI(E), where q is the
conjugate of p.

Exercise 3.1. Let E be a measurable set, 1 < p < oo, f € L(E) and f* be the conjugate
function of f. Prove that

Il =1
where q is the conjugate of p.

Remark 3.4. Let X be a linear normed space and f, — f in X. Suppose that the se-
quence {||f, I} en is unbounded. By taking a subsequence and relabeling, we can as-
sume that |f, || > n3". By taking a further subsequence and relabeling, we can assume
that

m—>cxe [1,00), as n — oco.
n3"
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Let T be arbitrarily chosen linear functional. Then there is a constant M > 0 such that
IT(f)| <M, |T(f)|<M

for any n € N. Hence,
(i) (@)= (@) (@) 1)
(i -a ) 2 Ge)

n3" 1 1

< |—=— — —||T(,)| + =|T(,) - T()
1 al T+ [T - T6)
n

S£—1M+1|T(fn)—"ﬂ"(f)|—>0 as n— oo.
Il «a a

Therefore

n3" 1, .
—f,— —f in X
Ilfnllf" o

Theorem 3.22. Let E be a measurable set and 1 < p < co. Suppose that f,, — f inLP (E).
Then {f,},cn is bounded in LP(E) and |If |, < lim inf||f, ||,

Proof. Letqbe the conjugate of p and f* be the conjugate function of f. Then f* ¢ L(E)
and using Holder’s inequality, we get
[ 8 <110, =
E
for any n € N. Since f,, — f in LP(E), by Theorem 3.20, we get
Wlp= [ £F = lim [ £'f, < timinf1f
E E

Now we assume that the sequence {f,},cy is unbounded. Using Remark 3.4 and by
taking scalar multiples, we can suppose that ||f, [, = n3", n € N. Let f{" be the conjugate
functions of f, k € N. Let also €; = % and we define
1 k-1
€= =% if JZelflkaO

k
3 .=

and
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fork e N, k > 2. Then

u(z f; I

k=1

( Y elfilly P sign(flfil” ™! )fn

k=1

-1

=

1- . -1 1-
exlfilly” signGlfl? fo + [ ealfull 1l
=1

E

=~

=
—_

. _ 1
exlfilly ? sign(olfel” fu + €alfully| = S5 ful, = 1.

=1

!
|
!

=

Also,
* 1
lefcly = 5 KkeN.

. . co 1 : . 00 * .
Since the series )2, 7 1s a convergent series, we see that )2, €f; is a convergent
series in LY(E) and let

(o)
§= Z ekfk*-
k=1

For any n € N, we have

[ |- j(zekf,:>fn
E E \k=1
= j(Zekf,:>fn+J< 2. ekfk*)f,,
E \k=1 g \k=n+1
> j(zekf,:)fn - j( > ekfk*>fn‘
E \k=1 g \k=n+l
>n-| Y efi| Wl
k=n+1 q
sne S eIy =1 S Sy =n- — i, =
- o k llgWnlp Ko 3k nilp 23" nip = o

which is a contradiction, because f, — f in L(E) and g € L(E). This completes the
proof. O

Theorem 3.23. Let E be a measurable set, 1 < p < oo and q is its conjugate. Suppose
that f,, — f in LP(E) and g,, — g strongly in LY(E). Then

lim J 8ufa = J gf. (3.17)

n—oo
E E
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Proof. We have
jgnfn - Jgf = J(gn - 8fnt J[g(fn =) (3.18)
E E E E

By Theorem 3.22, it follows that there is a constant M > 0 such that |f;,
n € N. Then, using Holder’s inequality, we obtain

||p < M for any

U(gn -8

E

< J |85 — 8lIfal < 118y - 8llgllfll, < Mlign —8ll; >0 as n— oo. (319)
E

Since f,, — f in L’(E) and g € LY(E), using Theorem 3.20, we obtain

Jg(fn—f)—>0 as n— oo.
E

Hence, by (3.18) and (3.19), we obtain (3.17). This completes the proof. O

Theorem 3.24. Let E be a measurable set, 1 < p < co and q be its conjugate. Let also
F < LY(E) and its span is dense in L4(E). Suppose that {f, },cn is a bounded sequence in
L?(E) andf € LP(E). Then f, — f in LP(E) if and only if

lim [fe = [fe (3.20)

E E
forallg € F.

Proof.

1. Letf, — f in LP(E). Using Theorem 3.20, we conclude that (3.20) holds.

2. Suppose that (3.20) holds. Let g, € L(E) is arbitrarily chosen. For any g € LI(E)
and for any n € N, we have

[ -Peo= [t -Pieo-8)+ [¢2-1g

E E E

and hence, using Holder’s inequality, we obtain

U(fn—f)go - U(f,,—f>(go—g>+j<f —f)gl
E E
< j(fn - )80 - (Fu - f)g‘ (3.21)
E

< I, ~ £l Igo - gl +

gl
!(fn ot
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We take € > O arbitrarily. Since {f, },,cx is bounded in L?(E) and the span of F is
dense in L(E), there is g € F such that

€
”fn _f"p“g _gO”q < E

for any n € N. Hence, by (3.21), we conclude that

jfngo - jfgo as n— oo,
E E

Because g, ¢ LY(E) was arbitrarily chosen, we obtain (3.16). Therefore f, — f in
LP(E). This completes the proof. O

3.7 General L? spaces

Let (X, M, u) be a measure space. F be the collection of all measurable extended real-
valued functions on X that are finite a. e. on X.

Definition 3.12. Define two functions f and g in F to be equivalent, and we write f ~ g,
provided

f(x)=g(x) for almost all xeX

The relation ~ is an equivalent relation, that is, it is reflexive, symmetric and tran-
sitive. Therefore it induces a partition of F into a disjoint collection of equivalence
classes, which we denote by F/ ~. For given two functions f and g in F, their equiv-
alence classes [f] and [g] and real numbers a and 8, we define a[f] + [g] to be the
equivalence class of the functions in F that take the value af (x) + fg(x) at points x € X
at which both f and g are finite. Note that these linear combinations are independent
of the choice of the representatives of the equivalence classes. The zero element in
F/| ~ is the equivalence class of functions that vanish a. e. in X. Thus F/ ~ is a vector
space.

Definition 3.13. For1 < p < oo, we define L?(X, p) to be the collection of equivalence
classes [f] for which

J IfPdu < oo.
X

This is properly defined since, if f ~ g, then

[ vrdu= [ 1gan

X X
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Note that, if [f], [g] € LP(X, ), then, for any real constants a and B, we have
ﬁﬁ+@f@s?(ﬁMWM+ﬁ&Pw)
X X X

=umpjm%m+nmpﬁg%m<ax
X X

i.e., alf] +Blg] € L (X, p).

Definition 3.14. We call a function f € F essentially bounded provided there is some
M = 0, called an essential upper bound for f, for which

[f)) <M for almost all xeX.

Definition 3.15. We define L®(X, u) to be the collection of equivalence classes [f] for
which f is essentially bounded.

Note that L°(X, u) is properly defined since, if f ~ g, then
[fx)| =|gx)| <M for almost all xeX.

Also, if [f],[g] € L®(X,u) and a,8 € R, there are nonnegative constants M; and M,
such that

[f)| <My, |g0)| <M, for almost all xeX
Hence,
|af () + Bg(x)] < lal[f ()| + Bl|g(X)] < lalM; + |BIM,

for almost all x € X. Therefore a[f] + B[g] € L*(X, u) and hence, L (X, ) is a vector
space. For simplicity and convenience, we refer to the equivalence classes in 7/ ~ as
functions and denote them by f rather than [f]. Thus f = g means f — g vanishes a. e.
on X.

Definition 3.16. For1 < p < oo, in L (X, i) we define

|mb=<jvw);

X
For p = oo, we define |f]l,, to be the infimum of the essential upper bounds for f.

Remark 3.5. Note that the idea for the proof of next assertions in this section is the
same as the idea for the proof of the assertions in the previous sections in this chapter.
Therefore we leave the proof of the next assertions in this section.
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Theorem 3.25. Let (X, M, u) be a measure space, 1 < p < oo, and q be the conjugate
of p. Iff e LP(X,n), g € LY(X, ), then fg € LY(X, u) and

j gldy < If I gl

X

Moreover, if f + 0, the function f* = Ilfll;jp sign(f)IfP! e LY(X, ),

[ au=1m1, ana 1), -1

X

Theorem 3.26. Let (X, M, ) be a finite measure space and 1 < p; < p,. ThenLP2(X, ) €
LP1(X, u) and

Ifllp, < clfll,, for feLP(X,p),

where

L [way i, <o,
) ifp, = co.

Theorem 3.27. Let (X, M, u) be a measure space and1 < p < co. If {f, },en is a bounded
sequence of functions in L (X, u), then {f,},,cn is uniformly integrable over X.

Theorem 3.28. Let (X, M, u) be a measure space and 1 < p < oo. Then every rapidly
Cauchy sequence in LP (X, u) converges to a function in L? (X, u), both with respect to the
L?(X, u) norm and pointwise a. e. in X.

Theorem 3.29 (The Riesz—Fischer theorem). Let (X, M, u) be a measure space and 1 <
p < oo. Then LP (X, p) is a Banach space. Moreover, if a sequence in LP (X, u) converges
inL? (X, u) to a function f € LP(X, p), then a subsequence converges pointwise a. e. on X

tof.

Proof. Let {f,},en be a Cauchy sequence of LP (X, u). Then it has a rapidly Cauchy sub-
sequence {f, }ren- By Theorem 3.28, it follows that {f,, };cn converges to a function in
L? (X, u) both with respect to the L? (X, u) norm and pointwise a. e. on X. This completes
the proof. O

Theorem 3.30. Let (X, M, u) be a measure space and 1 < p < co. Then the subspace of
simple functions on X that vanish outside a set of finite measure is dense in LP (X, ).

Theorem 3.31 (The Vitali L” convergence theorem). Let (X, M, u) be a measure space
and 1 < p < co. Suppose that {f,},cn 1S a sequence in LP (X, p) that converges pointwise
a.e.tof € LPX,p). Thenf,, — finLP(X,p), asn — oo, if and only if {|f,,[’},en 1S
uniformly integrable and tight.
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For1l < p < oo, let f € LI(X, ), where g is the conjugate of p. Define the linear
functional Ty : LP(X, p) — R by

Tr(g) = Jfgdy, gel’X,p). (3.22)
X

Theorem 3.32 (The Riesz representation theorem for the dual space of the space
LP(X,w). Let (X, M, u) be a o-finite measure space, 1 < p < oo, and q be the conju-
gate to p. For f € LY(X, ), define Ty € (LP(X,p))* by (3.22). Then Ty is an isometric
isomorphism of LY(X, u) onto the space of the linear functionals on L” (X, u).

Remark 3.6. Let1 < p < co. When it is clear from the context what measure is used, u
is omitted and one just writes L?(X).

3.8 Advanced practical problems

Problem 3.1. Let f € L'([a, b]) and define

b
Il = jx2v<x>|dx.

Prove that this is a norm in L!([a, b]).

Problem 3.2. Forf € L®([a, b]), prove that
Iflloo = min{M : m{x € [a,b] : [f(x)| > M} = 0}.

Problem 3.3. Let

Prove that f ¢ L?((1,00)) ifand only if p = 2.

Problem 3.4. Let f(x) = log(}(), x € (0,1],1 < p < oo. Prove that f € L?((0,1]) and
f ¢ L((0,1]).

Problem 3.5. Let E be a measurable set, 1 < p < oo and q is the conjugate of p, f €
L?(E). Prove that f = 0 if and only if

Jfg=0

E

forany g € LY(E).
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Problem 3.6. Let E be a measurable set of finite measure, 1 < p; < p, < co. Prove that
if f, — f strongly in L”2(E), then f,, — f strongly in L”'(E).

Problem 3.7. Let E be a measurable set, 1 < p < 00, q is the conjugate of p, S is dense
in LY(E). Prove that if g € L’(E) and [ fg = O foranyf ¢ S, then g = 0.

Problem 3.8. Let E be a measurable set, 1 < p < co. Prove that the functions in L?(E)
that vanish outside a bounded set are dense in L? (E).

Problem 3.9. Let [a, b] be a closed bounded interval and f,, — f in C([a, b]). Prove that
{fu}nen converges pointwise on [a, b] to f.

Problem 3.10. Let [a, b] be a closed bounded interval and f, — f in L®([a, b]). Prove
that

i

for any x € [a, b].
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4 Linear operators

4.1 Definition

An operator is generally a mapping that acts on the elements of a vector space to pro-
duce other elements of the same or another vector space. The most common operators
which act on vector spaces are linear operators.

Suppose that X and Y are vector spaces over F.

Definition 4.1. The operator A : X — Y will be called a linear operator, if
1. itis additive, i.e.,

A +Xx) =Ax + Axy, X% €X,
2. itis homogeneous, i.e.,
A(Ax) =AAx, AeF, xeX

Example 4.1. Let K(t,s) be a continuous function on the square 0 < t,s < 1. For x €
C([0,1]) we define the operator

1
y(t) = JK(t,s)x(s)ds, te[0,1], y=Ax.
0

Let X = Y = C([0,1]). It is evident that A : X —— Y. We will prove that it is a linear
operator.
1. Letxy,x, € X be arbitrarily chosen. Then

—

Axy(t) = | K(t,s)xy(s)ds,
0
1

Ax,y(t) = JK(t,s)xz(s)ds,
0

1 1
AQq +x)(t) = | K(t,8)(x1(8) + x5(s))ds = jK(t, S)xy(s)ds + jK(t, S)x5(s)ds
0 0

o

= Ax(t) + Axy(t), te[0,1].

2. LetA € Fand x € X be arbitrarily chosen and fixed. Then

1 1
AAX)(t) = JK(t, s)Ax(s)ds = A j K(t,s)x(s)ds = AAx(t), te€][0,1].
0 0

Therefore A : X + Y is a linear operator.

https://doi.org/10.1515/9783110657722-004
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Example 4.2. Forx € C!([0,1]) we define the operator
y(t) = —x(t) te[0,1], y=Ax.

Let X = C'([0,1]), Y = C([0, 1]). It is evident that A : X — Y. We will prove that itis a
linear operator.
1. Letx;,x, € X be arbitrarily chosen and fixed. Then

Ax(t) = dxl(t) Axy(t) = dxz(t)

Al +1)(8) = %(xl £ )0

d

d —x;(8) + dxz(t) Axq(t) + Axy(t), tel0,1].

2. LetA € Fand x € X be arbitrarily chosen. Then
d d
Ax)(t) = E(Ax)(t) = Aax(t) =AAx(t), te0,1].

Therefore A : X +— Y is a linear operator.

Example 4.3. For x € C([0, 1]) we define the operator

1
= J(x(t))zdt, y = Ax.
0

Let X = C([0,1]), Y = F. Itis evident that A : X — Y. Let

=1 x)=t tel01].

Then
1 t=1
A\xlzjdtzt =1,
t=0
0
1 t=1
1 1
Ax, = J fdt=-£| =<,
) 3 lt=0 3

1 1 1 1 1
A(xl+x2):J(t+1)2dt Jt +2t+1)d Jtzdt+2Jtdt+Jdt
0 0 0 0 0
t=1 t=1 t=1
1
S ! I B
3 =0 t=0  lt=0 3
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Therefore
Al +x5) # Axg + Ax,.
Consequently A : X — Y is not a linear operator.
Exercise 4.1. For x € C([0, 1]) we define the operator
yt) =x(t?), te[0,1], y=Ax

Prove that A : C([0,1]) — C([0,1]) is a linear operator.

4.2 Linear operators in normed vector spaces

In this section we suppose that X and Y are normed vector spaces. The convergence
in X and Y is a norm convergence.

Definition 4.2. We say that the linear operator A : X +— Y is continuous at x € X, if
for any € > O there is a § = 6(€) such that

lAx; — Ax|l <€

whenever |x; — x|| < 6, x; € X. In other words, the linear operator A : X ~— Y is said
to be continuous at x € X if Ax, — AxinY, asn — oo, whenever x, — x in X, as
n — oo, where {x,},,cn is a sequence of elements of X. We say that the linear operator
A : X+ Y is continuous in X, if it is continuous at every point of X.

Example 4.4. Let X =Y = C([0, 1]). Consider the operator

1

Ax(t) = t* Jx(s)ds, te[0,1], xeX

0
Let x € X be arbitrarily chosen and fixed. We take € > 0 arbitrarily and x,, € X such
that

I, — xIl = max |x,(t) - x(t)| < €.
te[0,1]

Hence,

1

£ J(xn(s) ~ x(s))ds

0

1
|Ax, () — Ax(D)] = tzjxn(s)ds ¢ Jx(s)ds -

0

0

1 1

<t J| - x(s)|ds < J Ix, - xllds < e, te[0,1].
0 0

Because € > 0 was arbitrarily chosen, we conclude that A is continuous at x. Since
x € X was arbitrarily chosen, we see that the operator A is continuous in X.
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Now we suppose that A : X — Yisalinear continuous operator. We take x = y+z,
y,z € X. Then

Ax=Aly+z)=Ay+Az=Ay+AXx-y).
Therefore
Ax-y)=Ax-Ay. (4.)
We set x = y in (4.1) and we get
AO=Ax-Ax=0.
We set x = 0 in (4.1) and we obtain
A(-y) = A0 - Ay = —-Ay. (4.2)

Theorem 4.1. Let A : X +— Y be a linear operator which is continuous at a single point
Xy € X. Then it is continuous on the entire space X.

Proof. Let {x,},,cn be a sequence of elements of X such that x, — x,asn — oo, in X,
x € X. Hence,

Xp —X+Xg — Xg, @S N — 0o.
Therefore
A, —X+Xx9) > AXg, as n— oo. (4.3)
Since A : X + Y is a linear operator, we get
A, -x+x) =Ax, - Ax+Axy, neN
Using (4.3), we obtain
Ax, — Ax, as n- oo.

This completes the proof. O

Definition 4.3. Let A, B : X ~ Y be linear operators. We define the addition of the
operators A and B by

(A+B)x=Ax+Bx, xecX,
and the scalar multiplication by

AAXx =AAx, xeX, Ae€F.
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The zero operator O we define by
Ox=0
for any x € X. The identity operator I is defined by
Ix =x
forany x € X. Let A, B : X — X. We define

(AB)x = A(Bx),
A%x = A(AX),
A =AA"), n=3, xeX

Remark 4.1. If A,B,C: X+ Y, then

(AB)C = A(BC),
(A +B)C=AC+BC,
C(A + B) = CA + CB.

In the general case, we have

ADB # BA.

— 213

Definition 4.4. Let A : X — Y be a linear operator. We say that the linear operator

B : X +— Y is a left inverse of the operator A, if

BA =1.

We say that the linear operator C : X — Y is a right inverse of the operator A, if

AC=1

Let B,C : X — Y be left and right inverse, respectively, of the linear operator A :

X +— Y. Then

B =BI = B(AC) = (BA)C=IC=C.

In this case it is said that the operator A has an inverse denoted by A~'. Thus, if A~

exists, we have
ATA=AAT' =T

A linear operator A : X +— Y can have at most one inverse.
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Theorem 4.2. Let A : X +— Y be a linear operator that is continuous at 0. Then A is
continuous in X.

Proof. Let x € X be arbitrarily chosen. Since A is continuous at 0, we get
[AGx, -x)-AO| -0, as |x,—x|—0,
or
lAx, - Ax| - 0, as |[x,—-x|]—O.

Therefore A is continuous at x. Because x € X was arbitrarily chosen, we conclude
that A is continuous in X. This completes the proof. O

Definition 4.5. A linear operator A : X ~— Y will be called bounded if there is a
constant M > O such that

[AX] < Mix]|
forany x € X.

Example 4.5. Let X =Y = C([0,1]), a € X. Consider the operator
t
AX(t) = Ja(s)x(s)ds, te[0.1, xeC(0,1]).
0
We have A : X — Y. In X we define a norm as follows:

Ixll = max|x(t)], xeX.
te[0,1]

Because a € C([0,1]), there is a positive constant M such that
lat)] <M

for any ¢ € [0,1]. Let x € X be arbitrarily chosen. Hence, for any ¢ € [0, 1], we have

|Ax(t)] = ds < M||x||.

t t
Ja(s)x(s)ds < J|a(s)||x(s)|ds < M|x|
0 0

Ot ~

From this,
max |Ax(t)| < M|x|,
te[0,1]
or
lAx| < M|x||.

Because x € X was arbitrarily chosen, we conclude that A : X +— Y is a bounded
operator.
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Theorem 4.3. A linear operator A : X +— Y is bounded if and only if it is continuous.

Proof.
1. Let A : X +— Y be a continuous operator. Assume that it is not bounded. Then
there is a sequence {x, },,cn Of elements of X such that

[AX, ] > nllxull, X, # 0,

for any n € N. We set

X,
= Tl
Then
[AE,l>1, neN. (4.4)
On the other hand,
T i L. LI N,
nlx,ll nlx,l n

Because A : X — Y is continuous, we get
A&l — 0, as n— oco.

This contradicts (4.4). Therefore A : X — Y is bounded.
2. Let A : X — Y be a bounded operator. Then there exists a positive constant M

such that

[Ax]l < Mllx]|
for any x € X. Let x, — x, asn — oo, i.e., |x, - x| = 0, as n — co. Then
IAX, — Ax| = |A(x, - x)| < Mlx, - x| - 0, as n— co.
Therefore A : X +— Y is continuous. This completes the proof. O

The space of all linear bounded operators A : X +— Y will be denoted with
L(X,Y). Note that £(X,Y) is a vector space.

Theorem 4.4. Let X be a Banach space and A : X — Y be a linear operator. By X,, we
denote the set of those x € X for which |Ax|| < n|x||. Then X = |2, X,, and at least one
of the sets X,, is everywhere dense in X.
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Proof. Note that the sets X,,, n € N, are not empty because O € X,, for any n € N. Also,
any x € X, x # 0, occurs in one of the sets X, because it is sufficient to take n as the
least integer, greater than %. Therefore X ¢ | J;2; X,.. By the definition of the sets X,
we have [ J;2; X,, ¢ X. Consequently X = [J;?; X,,. By Theorem 1.33, it follows that a
complete space X cannot be a countable sum of nowhere dense sets. Therefore there
isann, € Nand there is an open ball B, (x,) containing B, (xo) NX,, everywhere dense.

We take x; € B,(xo) N X, and let B, [x;] be a closed ball such that
B, [x1] ¢ B,(xo).
Let x € X be an element for which ||x|| = r;. Since
|04 +x) = x| = lIxll =7y,

we conclude thatx+x; € B, [x;]. Thereis a sequence {z; };¢y of elements of B, [x;]nX,, ,
(this sequence can be stationary if x; + x € X, ) such that z; — x +x;, as k — oo.
Consequently

Xy=2—X —Xx, as k— oo.

Because x; — x, as k — oo, and ||x| = r;, we can assume that r_21 < x|l < ry for any
large enough k € N. Now, using z;, x; € X, , we get

IAX ] = 1Az, — Axqll < Azl + 1Axq] < ng(llziell + lIxql).
Also,
Iziell = i + 210 < Ixpell + gl < 1y + gl

Therefore, for any large enough k € N,

2n0(ry + 2|1x,))

1AXll < mo(ry + 2l < Il

"
Let n be the least integer greater than M Then
1
[Ax ]l < nllx|

for any large enough k € N. Consequently x; € X,, for any large enough k € N. Thus
every element x € X with norm equal to r; can be approximated by elements of X,,.
Let now x € X, x # 0, be arbitrarily chosen. We set ¢ = ’1||§_||- Then ||&] = r;. As above,
there is a sequence {& };cn € X, convergent to &. Then

e Xl
Xg=6—— =%
n
et My CeN
I Xk"_r_" &kl < r—n"‘fk" = nlxl, €N
1 1

Thus, x; € X,,, k € N. Consequently, X,, is everywhere dense in X. This completes the
proof. O
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Definition 4.6. Let A : X — Y be a bounded linear operator. The smallest number M
for which ||Ax|| < M| x| for any x € X, will be called the norm of the operator A. It is
denoted by [|A|.

By Definition 4.6, it follows:
L | Ax] < [|Allx|l for any x € X.
2. Forany € > 0 there is an element x, € X, x,. # 0, such that

IAXN > (IA] - €)lxcll-
Theorem 4.5. Let A : X — Y be a bounded linear operator. Then

[A[l = sup [|Ax]. (4.5)

lIxli<1

Proof. Foranyx € X, |x|| <1, we have

IAX] < Aflx] < [A]. (4.6)
Let € > 0 be arbitrarily chosen. Then there exists x, € X, x, # 0, such that

IAXN > (1A] - €)lxell.

We take & = <. Then ||£,|| = 1and

lIxell *
X, 1
¢ lIxcll Ixl™ ¢
1
= Ax] > (Al - €.
el ™€

Because ||| = 1, from the previous inequality, we get

sup |Ax] = [A] -e.

lIxli<1

Hence, using the fact that € > 0 was arbitrarily chosen, we get

sup [[Ax| = [|A].

Ixli<1

From the previous inequality and from (4.6), we obtain the inequality (4.5). This com-
pletes the proof. O

Remark 4.2. By Theorem 4.5, it follows that

lAx|
Al = sup .
xeXx+0 ||X||
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Example 4.6. Let X =Y = C([0, 1]). Consider the operator
1
Ax(t) = Jx(s)ds, xeX, tel0,1].
0

In X we take the norm x| = max,¢[q;; [x(t)|. We have A : X +— X. We will find [|A]l.
Forany x € X, |lx|| < 1, we have

|Ax(t)] = < J|x(s)|ds

1
Jx(s)ds

1

j [ax [x(s)|ds = lIxll <1, te[0,1].
S€

0

Hence,
max |Ax(t)| < 1
te[0,1]
or
[Ax| < 1.
Therefore
A] < 1. 4.7)

Now we take y(t) =1, t € [0,1]. Then |y|| =1 and

1

Ay(t) = st =1, te]0,1].
0

Hence, using |ly| = 1, we get

sup [[Ax| =1,

lIxli<1

i.e., |A| = 1. From this and from (4.7), we obtain |A| = 1.

Example 4.7. Let K € C([0,1] x [0,1]), X =Y = C([0, 1]). Consider the operator

1
Ax(t) = JK(t, s)x(s)ds, xeX, te]0,1].
0
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In X we take the norm x| = max,cq ) [x(t)|. We have A : X +— Y. We will find [[A[.
Let x € X be arbitrarily chosen. Then

1

J (t,s)x(s)ds

0

|Ax(t)| =

1
< J|K (t,9)||x(s)|ds
0

1
< |Ix|| max J|K(t,s)|ds, t € [0,1].
te[0,1]

0
Hence,
1
max |[Ax(t)| < |x| max J]K(t, s)|ds
te[0,1] te[0,1]
0
or
1
lAx| < |Ix|| max J|K(t,s)|ds.
te[0.1]
0
Then
1
sup | Ax| = sup ( max|Ax(t)]) < sup| || max J|K(t s)|ds
xl<1 lxl<1 t€l0,1] lxl<1 5
1
< max J|K(t, s)|ds.
te[0,1]
0

Therefore

1

|A] < max j|K(t,s)|ds. (4.8)
te[0,1]
0

For each n € N we take a set E, < [0, 1] such that

1
m(E,) < —,
(En) 2Mn
where M = maX ¢ g)¢[0,1jx(0,1] [K(t, S)|. Since t — j; |K(t, s)|ds is a continuous function
on [0, 1], there exists ¢, € [0,1] such that

1 1
J|K(t0,s)|ds = max J|K(t,s)|ds.
5 te[0,1] 5
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Let
zy(s) = signK(ty,s), s € [0,1].

For each n € N we take a continuous function x,, on [0, 1] such that |x,(s)| < 1 for any
s € [0,1] and x,,(s) = z,(s) for s € [0,1] \ E,. We have

[%,(8) = 2o (5)| < [Xu(8)| + |20(s)| < 1+1=2

forany s € E,,. Then

1

1
jK(t, S)zy(s)ds — jK(t S)x,(s)ds| =
0 0

1
JK(t $)(2o(8) — x,(5))ds
0

[K(t,5)||z0(s) — x,(5)|ds

d
]

1
[K(t,5)||z0(S) — X,(5)|ds < 2Mm(E,) < -
Erl
for any ¢ € [0,1] and for any n € N. Therefore
[ i 1 1 1 1
JK(t,s)zo(s)ds < jK(t, S)x,(s)ds + o= Ax,(t) + - < A, I + - <A+ -
0 0

for any ¢ € [0,1] and for any n € N. In particular,
( 1
[ Ko 5120000 < 180+
0
for any n € N. Therefore
1
[ Ko 5120(5)ds < 1AL
0
i.e.,
1

max J|K(t, s)|ds < |A].
te[0.1]
0

From the previous inequality and from (4.8), we get

1
A = max I|K(t s)|ds.
0
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Example 4.8. Let X = Y = C([0, 1]). Consider the operator
t
£
A\.x(t):f Jx(s)ds, te[0,1], xeX.
0

In X we take the norm x| = max,c[q ) [x(t)|. We have A : X +— Y. We will find [[A[.
Let x € X be arbitrarily chosen. Then

¢
P2
|Ax(t)| = ii b[x(s)ds

t
t? 1
< J x(s)lds < S el

forany t € [0,1]. Hence,
1
[Ax|l = max |[Ax(t)| < =[x
te[0,1] 2

Then

IA[ = sup [Ax]| < 5. (4.9)

|x]<1

N[ =

For each n € N we take a set E,, ¢ [0,1] such that m(E,) < % Also, for eachn € N
we take a continuous function x,, on [0, 1] such that |x,(s)| < 1for any s € [0,1] and
Xp(s) =1fors € [0,1] \ E,,. Then

[xX(s) -1 <2

for any s € E,. Hence,

3 o f 2 L 2 L ) 1
t t t t t
373 an(s)ds =15 j(l—xn(s))ds < 3 J]l—xn(s)|ds < 3 J|l—xn(s)|ds

0
P2
=3 J|1 - X,(s)|ds < m(E,) <
ETl

S|

for any t € [0,1] and for any n € N. Hence,

£
—<
2

S

2 1 1 1
+ = an(s)ds ==+ Ax,(t) < = + |Alllx,l £ = + [|A]
2 n n n
0

forany t € [0,1] and for any n € N. In particular, for t = 1, we get

1

< — + Al
n

NI =

for any n € N. Consequently
< [JA].

From the previous inequality and from (4.9), we get [|A| = %
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Exercise 4.2. Let X = Y = C([0,1]), |Ixll = max,c[o4 [x(t)], x € X. Find [|A |, where

t
2
Ax(t) = % jszx(s)ds, xeX, tel01].
0

Answer. é.

Theorem 4.6. Let A : X — Y be a linear operator. Then A is a bounded operator if
and only if there is a constant M > O such that |A| < M.

Proof.
1. Let A be a bounded operator. Then there is a constant M > 0 such that

[Ax| < Ml|x||
for any x € X. Hence,

1Al = sup [Ax] < sup(Mlix]) = M.

Ixl<1 lIxl<1

2. Let there be a constant M > O such that |A| < M. Then
lAx| < [A[lIx| < Mllx|

for any x € X. Therefore A is a bounded operator. This completes the proof.

Theorem 4.7. Let A, B : X +— Y be linear operators. Then
IA + Bl < |All+ Bl and [AA] = |AIIA]

forany A € F.

Proof. We have

IA+Bl= sup [[(A+B)x|= sup [Ax+Bx]|

xeX,|x|l<1 xeX,|Ix|<1
< sup (lAx|l+[Bx[)< sup [Ax[+ sup [Bx|=[A]+][B]
xeX,|lxll<1 xeX,|Ix|I<1 xeX,|x|<1
and
IAAll= sup [AAx] = sup (JAllAx])
xeX,|lx|l<1 xeX,|lxll<1
=|Al sup [Ax] = AllA]
xeX,[Ixl<1
for any A € F. This completes the proof. O
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Definition 4.7. We say that a sequence {A,},cy Of elements of £(X,Y) is uniformly
convergent to A € £(X,Y) if

A, -A] -0, as n— oo.

We will write A, — A, asn — oo, orlim,_,, A, = A.

Theorem 4.8. Let {A }pen € L(X,Y)and A € L(X,Y). Then A,, - A, asn — oo, ifand
only if

|A,x-Ax| -0, as n— oo,
for any x € X such that |x|| < 1.

Proof.
1. LetA, — A,asn — oo, uniformly. Then

A, -All -0, as n-— oco.
Hence, for x € X, ||x|| < 1, we get
[Anx — Ax]| < A, - Alllix]| < |A, - Al - 0, as n— oo.
2. Let]A,x — Ax|| - 0,as n — oo, for any x € X such that ||x|| < 1. Hence,

€
sup ||[Ax - Ax| < 5

xeX,[x|<1

for any n > N. Therefore
lA,-All -0, as n— oo

This completes the proof. 0

Corollary 4.1. Let {A,},n € L(X,Y) be such that A, — A, asn — oo, for A € L(X,Y).
Let also, U be an arbitrary bounded set in X. Then

lA,x-Ax| -0, as n— oo,
forany x € U.

Proof. Because U is a bounded set in X, there is an R > 0 such that ||x| < R for any
x € U. Let € > 0 be arbitrarily chosen. Since A,, — A, asn — co, we have

A, -Al -0, as n— co.
Hence, for x € U, we have
A, x - Ax| < ||A, - Allxll <R|A,-A|| -0, as n— co.

This completes the proof. O
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Definition 4.8. We say that a sequence {A,},,cn Of elements of £(X,Y) is a Cauchy se-
quence, if for any € > 0 thereis an N € N such that

lAnp —Anll <€
foranyn>N,p eN.

Theorem 4.9. Let Y be a Banach space. Then £(X,Y) is a Banach space.

Proof. Let {A,},cn be a Cauchy sequence of elements of £(X,Y). We fix e > 0. Then
thereis an N € N such that

lAnp —Agll <€
foranyn > N, p € N. Let x € X be arbitrarily chosen. We have
1A npx = Ax]l = (A, = A)x|| < A, = Allx]

foranyn > N, p € N. Therefore {A,x},cy is @ Cauchy sequence in Y. Since Y is a
Banach space, we see that there exists lim A, x. We define the operator A : X —» Y
as follows:

n—oo

Ax = lim A x, xeX
n—oo
For any a, 8 € F and x;, x, € X, we have

Aax; + Bx;y) = nlLHSO Aplaxy + Bxy) = nlLrL}O(aAnxl + A LX)

= otnli_{g0 A+ B nllrgo A x, = aAx; + BAX,.
Therefore A : X — Y is a linear operator. Note that
|||An+p” - ”Annl < ”An-{-p - An”

foranyn,p € N. Therefore {|| A, ||} ,cn is @ Cauchy sequence in R. Hence, it is a bounded
sequence in R and there exists a constant ¢ > 0 such that

Al <c
for any n € IN. Hence,
ALXI < clix]l
for any x € X and for any n € N. Consequently
[Ax] < clix]|

for any x € X. From this, A € £(X,Y). This completes the proof. O
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Definition 4.9. Let A, € £(X,Y),n € N.

1. The series )2, A, is said to be uniformly convergent, if the sequence {S, =
ket Aitnen is uniformly convergent.

2. The series Y2, A, is said to be absolutely convergent if the series Y2, |A, is
convergent.

Theorem 4.10. Let £(X,Y) be a Banach space. If the series Y,°, A, is an absolutely
convergent series, then it is uniformly convergent.

Proof. Since the series Y °; A, is absolutely convergent, we see that the series
Yo 1A, Il is convergent. We fix € > 0. Then there is an N € N such that

N+p
Y Al <e
n=N+1
for any p € N. Hence,
N+p N+p
ISwap =Snl = || D Ayl < Y lAul<e
n=N+1 n=N+1

for any p € N. Therefore {S,},cn is @ Cauchy sequence in £(X,Y). Because £(X,Y)
is a Banach space, we see that {S,},cy is uniformly convergent. This completes the
proof. O

Below by £(X) we will denote the space £(X, X).
Exercise 4.3. Let A, B € £(X). Prove that AB ¢ £(X) and Ak e L(X) for any k € N.

Exercise 4.4. For A € £(X), we define
o) Ak
A
roy B
pue} k!

Prove that e® € £(X) and ||e®| < el

Theorem 4.11. Let {A,}ens {Bulnen € £(X), A,B € L£(X). IfA, — A, B, — B, as
n — oo, then A,;,B,, - AB, asn — co.

Proof. Because B, € £(X),n € N, B, — B,asn — oo, we see that the sequence
{IIB,, I} ,cn is @a bounded sequence. Therefore there is a constant M; > 0 such that || B,,|| <
M, for any n € N. Since A € £(X), then there is a constant M, > O such that |A| < M,.
We take € > O arbitrarily. Since A, — A, B, —» B, asn — oo, thereisan N € N such
that

€ €
A, -A|l<— and |B,-B||<—
A, - Al I, 1B, - B 2,
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for any n > N. Hence,

”An]Bn - AB| = ”AnIBn - AB, + AB, - AB| < "(An - A)]Bn” + “A(]Bn - IB)"

€ € € €
<||A, - AllIB,l + B, - BI|Al < —M; + —M, ==+~ =¢
I = AUBI + 1B, ~ BIIAL < Sp-My + 5My = 5+ 2

for any n > N. This completes the proof. O

Definition 4.10. We will say that the sequence {A .}y ¢ £(X,Y) is strongly conver-
gent to the operator A € £(X,Y), if for any x € X we have

lA,x - Ax| — O,

asn — oo.

Theorem 4.12. If {A,},en € L£(X,Y) is uniformly convergent to A € L(X,Y), then it is
strongly convergent to A.

Proof. Take € > O arbitrarily. Then there is an N € N such that
A, -Al <€
for any n > N. Hence,
[Apx = Ax|l < 1A, = Alllix]l < ellx]l

for any n > N and for any x € X. This completes the proof. O

Theorem 4.13. Let {A,},x C L(X,Y) and there exist c > 0 and a closed ball B, [x,]
such that | A x| < c for any x € B,[x,]. Then the sequence {|| A, |} en iS bounded.

Proof. Letx € X, x # 0. Then x, + ";‘(—"r € B,[x,]. Hence,

X r r r
czA(r—+x> =[|-—Ax+ A x| = [[-— A, x| - 1A x] = — A x| -c,
‘ "\l Il O O
whereupon
r A x 2c
— Ax] <2c or 1A < =
(Il [l r
Therefore
2c
ALl < R
This completes the proof. O

Theorem 4.14 (Uniform boundedness principle). Let X be a Banach space and
{Alhen € LXY). If {A,x},en is bounded for any fixed x € X, then the sequence
{lA I} en is bounded.
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Proof. Assume the contrary. Suppose that there is a closed ball B,[x,] such that the
sequences {||A x|}, is unbounded for some x € B,[x,]. Then thereis x; € B,[xy] and
n, € Nsuch that [|[A, x;|| > 1. Since A, is continuous, there is a closed ball B, [x;] ¢
B,[x,] such that A, x| > 1forany x € B, [x;]. By Theorem 4.13, it follows that the
sequences {||A x|}, is unbounded for any x € B, [x]. Then there is x, € B, [x] and
n, > ny, n, € Nsuch that |A,, x|l > 2. Since A, is continuous, there is a closed ball
B,2 [x] c B,l [x;] such that ||An2X|| >2foranyx € B,2 [x,] and so on. In this way get the
sequences {X; }en and {B, [x;]}xen such that

-ee C B,k [x,] c Brkf1 X4l C--- C B,1 [x]

and A, x| > k for any k € N and for any x € B, [x;]. Hence, by Theorem 1.30, it
follows that there is an X € X such thatXx ¢ B, [x] for any k € N. Then 1AL Xl > k
for any k € N, i.e., the sequence {||Ank)_(||}keN is unbounded. This is a contradiction.
Consequently {|| A, ||} ,en is bounded. This completes the proof. O

Theorem 4.15 (Banach-Steinhaus’ theorem). Let {A },en € £(X,Y) and A € L(XY).
Then A, — A, asn — oo, strongly if and only if
(H1) the sequence {|| A ,|l} e is bounded and

|A,x-Ax| -0, as n— oo,

for any x € X', where X' is dense in X.

Proof.

1. LetA, — A,asn — oo,strongly. Then A, x — Ax,asn — oo, foranyx € X. There-
fore {||A x|} cn is @ bounded sequence for any x € X. Hence, by Theorem 4.14, it
follows that the sequence {||A ,||},,cy is @ bounded sequence. As X’ we can take X.

2. Suppose (H1) holds. We set

¢ =sup [|A,[,

neN,

where A, = A. We take x € X, x ¢ X'. Let € > 0 be arbitrarily chosen. Because X'
is dense in X, there is an element x; € X’ such that ||lx - x|| < 3—€C Also, there is an
N € N such that

€
[Ax; — Axql < =
3
for any n > N. From this,

A X — Ax] = A, (x = x7) + (Apxy — Axy) + A(xy — X))
< JAnG =) + 1A - Axyll + A G - X))
< N ARllx =Xl + A zxy = Axqll + [ ANx = x|
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€ €
<2¢lx = x|l + 1A% — Axy]| < 2C3— t3=e€
c

for any n > N. This completes the proof. N

Now we assume that A : D(A) — Y is a linear operator, where D(A) ¢ X. For A
we can define its norm in the following way:

Al = sup [Ax]
xeD(A)
lxlI<1

and we will say that A is bounded if [|A| < co.

Theorem 4.16. LetY be a Banach space and A : D(A) — Y be a linear bounded opera-
tor, where D(A) € X and D(A) is dense in X. Then there exists a linear bounded operator
A : X +—> Y such that Ax = Ax for any x € D(A) and |A| = |A]|.

Proof. For x € D(A) we define Ax = Ax. Let x ¢ D(A) and x € X. Since D(A) is dense
in X, there exists a sequence {x,},y of elements of D(A) such that x,, — x, as n — co.
Then we set

Ax = lim Ax,. (4.10)
n—.oo

We will prove that A is well defined, i. e., we will prove that the limit (4.10) exists and
it does not depend on the choice of the sequence {x,},,cn. Note that

AX, = Axpll < IAlIX, = Xl = 0, as m,n— oo.

Therefore {Ax,},.n is @ Cauchy sequence in Y. Since Y is a Banach space, it is conver-
gent. Consequently (4.10) exists. Suppose that {x,},.y and {x,},cy are two sequences
of elements of X such that x,, — x, x,’1 — X,asn — oo. Let

1 1 !
@ = Jim A f= lim Ax
Then

la = Bll = |la = Ax, + Ax, — Ax; + Ax) — B < lla — Ax,ll + |[Ax, — Axp|| + |B - Ax,|

< |Ax, —all + |All|x, - x| + |Ax;, - B| = 0, as n— oo,
i.e., a = . Next,
IAX, I < 1A ]Ix,.
Hence,

. <1
lim [Ax,[ < lm [[A]lx,l,
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whereupon
IAXI < A Ix].
Consequently
IA] < [A].
On the other hand,

Al = sup [[Ax]|
Ixli<1,
xeX

> sup ||Ax|| = sup [Ax|=[A].

IxlI<1, Ix]<1,
xeD(A) x€D(A)

(4.11)

From the previous inequality and from (4.11), we get |A| = ||A]. This completes the

proof.

4.3 Inverse operators
Suppose that X and Y are normed vector spaces.
Theorem 4.17. Let A : X — Y be a linear operator,

RA) = {A() : x € X}

Suppose that A" exists. Then A™! : R(A) — X is a linear operator.

Proof. Lety,,y, € R(A). Then there exist x;, x, € X such that
Ax; =y, A=Y,
For a, B € F, we have
aAxy = ay;,  PAX, = By,

or

Alaxg) =ay;,  ABxy) = Byy, Al +Bxy) = ayy + Bys.

Hence,

X1 = A_1Yl» X = A_IJ’b axy = A_1(0‘}’1)> Bx; = A_l(ﬁ)’z)>

ax; + Bx, = A7 (ayy + By,),

and

ANy, + Byy) = axy + By = aA Ty, + BAy,.

This completes the proof.
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Theorem 4.18. Let A : X — Y be a linear operator such that
IAX] > milx]| (4.12)

for any x € X and for some constant m > 0. Then A has an inverse bounded operator
A7 :RA) — X.

Proof. Letxy,x, € X be such that x; # x, and Ax; = Ax,. Then, using (4.12), we get
0=Ax; - Axll = ”A(X1 _Xz)” = mlx; — x|,

which is a contradiction. Therefore A has an inverse operator A7':RA) — X. We
have

-1 a1
[A7y] < —[AATY] = Iy

=
m
for any y € R(A). This completes the proof. O

Theorem 4.19. Let X be a Banach space and a bounded linear operator A maps X onto
X and |A| € g < 1. Then the operator 1 + A has an inverse which is a bounded linear
operator.

Proof. Consider the series
I-A+A% -+ (“D)"A" +---. (4.13)
Let
S,=I-A+A*—-- +(-1)"A", neN.
Since ||A"|| < |A|", it follows that

||Sn+p =Sl = ”(—1)"“&”“ et (_1)n+pAn+p||

<JAI 4+ AP < g™+ +¢™P 50, as n—o oo

for any p € N. Therefore the sequence {S,},cn is @ Cauchy sequence in £(X). Since X is
a Banach space, using Theorem 4.9, we see that £(X) is a Banach space. Consequently
the sequence {S, },,cn is convergent. Let

S = lim §,.

n—.oo
Hence,
ST+ A)=lim S,(I+A)
n—.oo

= lim(I-A+A%— + (-)"A")IT + A)

n—oo
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Hm (T- A+ A2 =+ (-D)"A" + A - A%+ oo+ (-D)™TA™MT)

n—-oo

lim (I - A™!) =1L
n—-oo

As above,
I+A)S=1I
Therefore (I + A)™! : X — X exists and
T+A)'=85.

Since I + A is a linear operator, by Theorem 4.17, it follows that (I + A)‘1 : X +— Xis
a linear operator. Besides,

o0 (] o0 1
ISh={ > A" < X IAI"< Y "= —.
n=0 n=0 n=0 -q
Therefore (I + A)™ : X — X is bounded. This completes the proof. O

Theorem 4.20. Let A : X +— Y has an inverse A™! : R(A) — X and there is an
operator B : X — Y such that

_1y-1
IBj < A~
Then C = A + B has an inverse C™' : R(A + B) — X and

- - B| -12
c'-A< "— .
” “ 1- ||A_1||||]B|| ll “

Proof. We have

A+B=A(I+A7'B).
Since

JA7B] < a7 iBI <1,

by Theorem 4.19, it follows that I + A™'B has an inverse and

(I+A7'B)" = f(-A*B)".

Note that

I=A(I+A'B)(I+A'B) A7,
I=(I+A7"B) ATA(I+AB).
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Therefore
(AT+A™B) ' =@+A'B) AT,
i.e.,
cl=1+A'B) AL
Besides,

JA+B) - AT = [(A@+ATB) " - AT = |(T+ATB) AT - A7)
=J(@+ATB) DA < I~ (@ +ATB) A7)

(0]

Y (A7)

n=1

(o)
la7 < Y 1a7B| a7
n=1
_ 1A A B < [N
1-|ATB| ~ 1-|ATBI’

This completes the proof. O

Theorem 4.21. Let A be a bounded linear operator that maps the Banach space X onto
the whole of the Banach space Y in a one-one fashion. Then there exists a bounded linear
operator A™\, inverse to the operator A, which maps Y onto X.

Proof. Since A : X + Y is onto and one-one, there exists A7 that maps Y onto
X. By Theorem 4.17, it follows that A7lis a linear operator. By Theorem 4.4, we see
that the Banach space Y can be represented in the form Y = J;2; Yy, where Y, c Y,
IIAfl)/ || < klly|l for any y € Y, and at least one Y, is everywhere dense in Y. We denote
itby Y,,. Lety € Y be arbitrarily chosen and |y|| = a. Because B,[0] n'Y,, is everywhere
dense in B,[0], there exists y; € Y, such that

and [yl <a.

NI

Iy =yill <

Since B% [0] nY,, is everywhere dense in B% [0], there is y, € Y, such that
a a
0=y -yl <5 Wyall <3
and so on, there exists y,,, € Y,, such that

a a
|0 =y1==ym) =yml < 550 Wall < 57

Thus,

m—oo

m
y = lim Zyk.
k=1
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We set
x, = A7
k= Vk-
Then
na
Xl < nllygell < F
Let
k
Sy = z X
m=1
Then
r+p r+p r+p
1 na
Isrep =Sl =] X x| < X Ixll<na } o < o5
= - S~ 2 2
=r+1 I=r+1 I=r+1

Since X is a complete normed space, the sequence {s;},y is convergent to some ele-
ment x € X. Consequently

k (o)
x= im0k = 2.
i=1 i=1
We have
k k k k
Ax=A( lim ) x; | = lim A x; | = lim ) Ax; = lim =
(k—»ooz l) k—o0 (Z l) k—>ooz ! k—»ooZYI y
i=1 i=1 i=1 i=1
Hence,

k
> %
i=1

|A7ly] = lIxl = lim
k—oo

k k. na
< lim ) x| € lim Y —— =2na = 2n|y]|.
k—o00 Zl’ ! k—o00 ; 2k’1 y

Because y € Y was arbitrarily chosen, we conclude that A™! is bounded. This com-
pletes the proof. O

4.4 Advanced practical problems

Problem 4.1. Let X = Y = C([0, 1]). For x € X we define the operator

1
y(t):tjx(s)ds, te[0,1], y=Ax.
0

Prove that A : X — X is a linear operator.
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Problem 4.2. Let X = Y = C([0,1]), [Ix| = maxc[oq; IX(D)], x € C([0,1]). Find [|A[,
where

t
Ax(t) =t J s*x(s)ds, xeX, tel0,1].
0

Answer. %

Problem 4.3. Let X be anormed vector space, and Y and Z be Banach spaces. Suppose
that B € £(X,Y), A € £(Y,Z). Prove that
IAB < [[A[IB].

Problem 4.4. LetX, Y and Z be normed vector spaces. Suppose that {B,,},n € £(X,Y),
B e £(X,Y), {Apthen € £(Y,Z), A € L£(Y,Z). Suppose that A, — A, B, — B, as
n — oo. Prove that A, B, — AB, asn — oo.

Problem 4.5. Let X be a normed vector space and A € £(X). Define

. o (—1)kA2k+1 (e8] (—1)kA2k
A) = —_— A) = _—,
sin(4) go Qkrnr . COSW) ,ZO 2k)!
. 0 A2k+l 00 Azk
Slnh(&) = I;) m, COSh(A) = I;,) m

Prove that

e* =sinh(A) + cosh(A), |sinh(A)| < sinh(|A]),
|cosh(A)| < cosh(|A[), |sin(A)|| < sinh(]|A]),
[cos(A)| < cosh(JIAll).

EBSCChost - printed on 2/10/2023 3:54 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



5 Linear functionals

5.1 The Hahn-Banach extension theorem

Let X be a normed vector space.
Definition 5.1. A linear operator f : X — R will be called a linear functional on X.

Since the set R of real numbers is a Banach space, all previous definitions and
theorems derived for linear continuous operators are preserved for linear continuous
functionals.

Theorem 5.1 (The Hahn-Banach extension theorem). Every linear bounded functional
f defined on a linear subspace L of X can be extended to the entire space with preser-
vation of the norm, i. e., for every linear bounded functional f on L there exists a linear
functional F, defined on X, such that

1. Fx)=f(x),xel,

2. IFlx = Il

Proof. IfL = X, then the assertion is evident. Let L c X. Let also, x, ¢ L and
Li={x+txg:xeL, teR}

Note that L, is a linear subspace of X. We will prove that each element of L; has a
unique representation of the form x + tx,. Assume the contrary. Lety € L, be such that

y=x;+tx, and y=x,+btx,
where x;,x, e L, t;,t, e R,and t; # t,. If t; = ¢,, then x; = x,. Let t; # t,. We have
X1+ tixg = X3 + LXg,
whereupon
X1 =X, = (- t)xXg,

or

X1 —X

X, = )
" -4

Since L is a linear subspace of X and x;,x, € L, t;,t, € R, t; # t,, we get x; € L. This is
a contradiction. Now we take two elements y; and y, of L. We have

fO) =F2) =Fy1=y2) < Ifllyy = vall = Ifys + X0 = (2 + X0) |
< IFICllys + Xoll + llyz + xoll).-

https://doi.org/10.1515/9783110657722-005
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Hence,

f)) = IFlly; +xoll < £(v2) + If Iy + Xoll.

Since y;,y, € L were arbitrarily chosen, independently of each other, we get

sup{f () — IfllIx + xoll} < ,i(?{{f () + If lllx + xol}-

xeL

Therefore there exists a real constant ¢ such that

sup{f(x) = Ifllx + xoll} < ¢ < j{g{{f ) + Ifllx + xoll}- (5.1)

xeL

We fix such a constant c. Let now y € L; be arbitrarily chosen. Then it has the repre-
sentation

Y =X+ txg,

where x € Land t is a uniquely defined real number. Define the functional ¢ : L; — R
as follows:

Py =fx)-tc, yel;.
Fory € L we have
¢y =fY).
Lety;,y, € Ly and
Vi=X +bXe, Yo=Xp+bXy XxpXxpel, 8,6 €R
Then
Yi+Y2 =X+ X+ (b + )Xo,
Hence,
D1 +Y2) =fl +x) = (ty + B)c = f(xy) + fx) - tic - tyc
= (f0q) - t6) + (FOQ) = £5¢) = d(n1) + (v,
i.e., ¢ : L, — Risadditive. If « € R, then
ay, = ax; + at;c
and
Playy) = f(axy) — atyc = af (x;) — atyc = a(f (%)) - t;¢) = ap(y,).

Therefore ¢ : L; +— Ris a linear functional. Now we will prove that ¢p : L, +— Riis
bounded and ||q,'>||L1 = ||f|l.. Lety € L; be such that

y=x+tx,, xeL, teR
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1. Lett > 0.Then

X X
=fx)-tc<|f(x)—tc|=t|f| - |—c| <t — + X
) = F(0) — te < [f00) ~ te] jf( )=l < armf % +xg )
= [IflllLx + txoll = IF LIyl
2. Lett < 0.Then
X X 1
£(5) - e -0 0] = - e+ ol
t t |£]
1 1
= ;IlfllllLX +txpl = ZIIfIILlIJ/II
and
X
o =(£(3)-c) <nuimn. 53)
Substituting -y for y in (5.2) and (5.3), we get
-dW) < Iyl
or
o) = -IflLlyl.
Therefore
[W)| < If Ll
and
lplly, < Iflly.
Since the functional ¢ is an extension of f from L to L;, we get
lplly, = If .-
Therefore
Il = If ..

If there is a x; ¢ L, x; € X, then we extend the functional f to the functional ¢; on
Ly={x+tx;:xeL;, teR}
such that

$:100=f00), xeL, g, = Ifly.
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Thus proceeding, we construct a linear functional ¢,,, defined on the linear subspace
L,, which is everywhere dense in X and it is equal to the union of all L,,. Moreover,
lpwlly,, = Ifll.. Hence, by Theorem 4.16, we extend ¢,, to a linear functional (i)w on X

such that
¢ 00 =f(0), xel,
and
Ipwllx = If ..
This completes the proof. O

Corollary 5.1. Let x, + O be any fixed element of X. Then there exists a linear functional
f, defined on the entire space X, such that

L oIfl=1
2. f(xo) = lIxol.
Proof. Let

L={txy,:t e R}
Note that L is a linear subspace of X, spanned by x,. Define ¢ : L — R as follows:
o) = tIxll, x = txg.
Then, if x;,x, € L,
X; =Xy, Xy = X,
and a, 8 € R, we have
axy + Bx; = atixy + Btoxg = (aty + Bty)xo,
Plax; + Bxo) = (aty + Bto)Ixoll = altilixol) + B(ElIxoll) = agp(xy) + Bp(x,),
i.e., ¢ : L — Ris alinear functional. Also,
d(xo) = Ixoll,
and, if x = tx,, we get
0O = Itllxoll = lltxoll = lixll.
Hence,
Il = 1.

Now we apply the Hahn-Banach extension theorem and we see that there exists a
linear functional f, defined on X, such that
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1. f(x) = ¢(x), x € L. In particular,

f(xg) = lIxgll.

Ifllx = Il = 1.

This completes the proof. 0
Corollary 5.2. Let L be a linear subspace of X and x,, ¢ L, x, € X. Let also
d = inf ||xy — x||.
x€eL

Then there exists a linear functional f, defined on X, such that
1. f(x)=0,x¢lL,

2‘ f(XO) = 1)
3. Ifl =3
Proof. Let

Li={x+txg:xeL, teR}
Note that every element y of L, is uniquely representable in the form

y=x+tx,, xeL, teR
Define ¢ : L; — R as follows:

dWy)=t, y=x+tx,.
Then, if y;,y, € Ly,
Vi=X+tXg, Yo =X +bXy, XX €L, t,t €R,

a, B € R, then

[Xyl +ﬂy2 = (X(Xl + tIXO) +ﬁ(X2 + t2X0) = (aXl + BXz) + ([th +ﬁt2)XO,

d(ay, + By,) = aty + Bty = ad(y;) + fp(y),

i.e., ¢ :L; — Risalinear functional. Next, if x € L, then
Ppx)=0

and

P(xo) = 1.
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Moreover, fory = x + tx, € L;, we obtain

Iyl Iyl Iyl
)| = Itl = e = It -
o) Il ™ ool 1 4 xol
oyl
o - (-0l = d
Hence,
1
Il < 5.

Let {x,,},cn be a sequence in L such that

Jim lx, - Xoll = d.

Then
|0 = X0)| < Pl X, = XoI-
Since
|p(x, — x0)| = |P(x) — Plxo)| = P(x0) = 1,
we get
1< lllg, lIx, = Xoll.
Hence,
1< gl Jim I, - Xoll = dligl,

or

Il > 3.
Consequently

Il = 3.

By the Hahn-Banach extension theorem, it follows that there exists a linear functional
f, defined on X, such that
1. f(x) = ¢p(x), x € L;. In particular,

fx)=¢px) =0, xe€lL,

and

fxo) = p(xo) = 1.
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e = Il = 5

This completes the proof. O

Theorem 5.2. Let {x,},cn € X. Then, in order for x, € X to be the limit of some sequence
of linear combinations of the form Z}Ll ¢jx; it is necessary and sufficient that f(x,) = 0
for all linear continuous functionals f, defined on X for which f(x,)) = 0,n € N.

Proof. Let L be the vector space spanned by {x,,},cn-
1. Letf be alinear functional on X such that f(x,) = 0 and f(x,,) = 0, n € N. Assume
that

d = inf |x - x, > 0.
xeL

Hence, by Corollary 5.2, it follows that there exists a linear functional f,,, defined
on X, such that

foxy) =0, neN, and fy(xg) =1

This is a contradiction. Therefore d = 0. Hence, x,, € L or x,, can be approximated
by elements of the form Z] 1GiX;-
2. Let x, be the limit of a sequence {3} ;

j=1 Cj X} and let f(x;) = 0, I € N, for some linear
functional f, defined on X. Then

n n
fxo) = f(nli_{glo > Cj"i) = ,}L‘EJ(Z Cj"j)
j=1 j=1
n
- nlLrgo(Zﬂcjx,-)) Jim (Z 6f >) -
j=1 j=1
This completes the proof. O

5.2 The general form of the linear functionals on E, in the case
F=R

Consider the vector space E, onR. Lete,,...,e, be abasis of E,.. Let also, f : E, — R
be an arbitrary linear functional. For

=

1]
—_

x=)¢&e, &eR, iefl,... n}
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we get

fx) =f<Zfiei> =Y f&e) =Y &fe) = ) &y
i1 i1 i=1 i=1

wheref; = f(e;), i€ {1,...,n}. If f : E, — Ris expressed of the form
n n
f) =Y &f, x€E, x=)&e, &eR ic{l,...n}
i=1 i=1

wheref; € R, i € {1,...,n}, are arbitrarily chosen, then it is a linear functional on E,.

5.3 The general form of the linear functionals on Hilbert spaces

Let H be a Hilbert space.

Theorem 5.3. Every linear bounded functional f on the Hilbert space H can be repre-
sented of the form

fO0) = (),
where the element u € H is defined uniquely by the functional f. Moreover,
IFIF = fluall.
Proof. Let f be an arbitrary linear functional on H. Define
L={xeH:f(x) =0}

Note that L is a closed linear subspace of H. If L = H, then f = 0 and we take u = 0.
Let L # H. Then there exists x, € H\ L such that x, L L. Denote

a = f(xg).
By the definition of L, it follows that a # 0. We set
Xo

X1 = —.
! a

Then
Xo 1
f)=f( = )==f(x) =1
a a
Take x € H arbitrarily and set

B =fx).
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Then
0=f() - Bf(x) =fx) = f(Bxy) = f(x = Bxy).
Therefore z = x - Bx; € Land
X =2z +fx.
Also, x; L z and

06x) = (2 + By, x) = (2,3) + (B, X)) = B0, x1) = Blx %,

whereupon
1 X
f(>()=—(x,x)=<x,—1 )
27 Iy 2
Let
_ X
X112
Then
f0) = (x,u).

Assume that there is a v € H such that
f(x)=(x,v) for any xeH.
Then
(x,u-v)=0 for any xeH.
In particular, for x = u — v, we get
u-v,u-v)=0.
Therefore u = v. Next,

IfCol = |0 w)| < Ixlllul,  x € H.

Therefore

WA < Nuall. (5.4)
Also,

@] = w| = lul™

Consequently

IFI = fuall.
Hence, by (5.4), we conclude that

WA= Nuall.
This completes the proof. O
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5.4 Weak convergence of sequences of functionals

Let X and Y be normed vector spaces.

Definition 5.2. A sequence {f,},cn Of linear functionals defined on X is said to be
weakly convergent to the linear functional f, defined on X, if

frx) > f(x) as n— oo,

for any x € X.

Theorem 5.4. Let {x,},cn be a sequence of elements of X that converges weakly to an
element x, € X. Then there exists a sequence of linear combinations {Z’;"Zl c,((")xk}k"EN,
converging strongly to x.

Proof. Assume the contrary. By Corollary 5.2, it follows that there exists a linear func-
tional f, defined on X, such that f(x,) = 1and f(x,,) = O for any n € N. Hence, the
sequence {f(x,)} ey does not converge to f(x,). This is a contradiction. This completes
the proof. O

Theorem 5.5. Let A : X + Y be a linear bounded operator and {x,},.x C X be a
sequence that converges weakly to x, € X. Then {Ax,},cn converges weakly to Ax,.

Proof. Let ¢ be arbitrarily chosen linear functional defined on Y. Define f on X as
follows:

fx) =p(Ax), xeX
Note that f is a linear functional on X. Since

X, — Xg» @S N — 00,

we get
P(Axy) =f(xy) = f(X0) = Pp(Axy), as n— oo.
Therefore
Ax, — Axy, as n— co.
This completes the proof. O

5.5 Advanced practical problems

Problem 5.1. Let X = C([-1,1]). Prove that
L o) =11 +xD), x X,
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2. f(x) =4(x(1) +x(0)), x € X,
3. f00 = [, x(®)dt +x(0), x € X,

4. f00 = [° x(dt -2 [) x(O)dt, x € X,

are linear functionals on X.

Problem 5.2. Let A : L%([0,1]) — L?([0,1]) and
L Ax(D) = [, x(s)ds, x € LX([0,1)),
2. Ax(t) = tx(t), t € [0,1], x € LX([0,1]).

Find [|A[l.
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6 Relatively compact sets in metric and normed
spaces. Compact operators

6.1 Definitions. General theorems

Let X be a metric space.

Definition 6.1. A set K c X is called relatively compact if every sequence of elements
of this set contains a convergent subsequence. If the limits of the sequences belong to
K, then K is called sequentially compact. If the limits belong to X and possibly not to
the set K, then K is called relatively compact in X or relatively compact with respect
to X.

Exercise 6.1. Let K c X. Prove that K is sequentially compact if and only if K is closed
and relatively compact in X.

Definition 6.2. If every infinite subset of the metric space X contains a sequence
which converges to an element of X, then X is called (sequentially)compact.

Theorem 6.1 (Cantor’s theorem). Given a nested sequence
Ki>oK,>---oK,>---

of nonempty sequentially compact sets of X. Then the intersection

is nonempty.

Proof. Let x; € K; be arbitrarily chosen for any i € N. Consider the sequence {x,,} ,en-
We have {x,},,; ¢ K; foranyi € N. Letj € N be arbitrarily chosen and fixed. Since K;
is sequentially compact set in X, there is a subsequence {x; },cy that converges to x,
and x, € K]-. For arbitrary m € N, m > j, since all terms X, jn = m, of this sequence
belong to K,,, and K,, is sequentially compact, we have x,, € K,,. Therefore

o0
Xg € ﬂ K;.
i=1

This completes the proof. O

Theorem 6.2. Let K be a sequentially compact set of X and f be a linear continuous
functional on K. Then:

1. fis bounded on K.

2. f assumes its least upper (supremum) and greatest lower (infimum) bounds on K.

https://doi.org/10.1515/9783110657722-006
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Proof.
1. Assume that f is not bounded above on K. Then there is a sequence {x,},cn of
elements of K such that

f(x,)>n for any neN.

Since K is sequentially compact, there is a subsequence {x,, };cn of the sequence
{X}nen such that

Xp, — X, as k— o0, x5eK

k

Then

f(xnk) > Ny,

Foro) = im o) Jim = o

which is a contradiction. Therefore the functional f is bounded above on K. Now
we assume that the functional f is not bounded below on K. Then there exists a
sequence {y,},en Of elements of K such that

f(y,) <-n for any neN.

Because K is a sequentially compact set, there is a subsequence {y,, }xen Of the
sequence {y, },en such that

Yo, 2 Yo» @ k—ooo, y,eK
We have
f(yo) = lim f(y,) < - lim ny = ~co.
k—o00 k—o0
This is a contradiction. Therefore f is a bounded below functional on K. Conse-
quently f is a bounded functional on K.
2. Let
= inf f(x).

= Inff

Then
fx)>a for any xeK

and there exists a sequence {x,},cy of elements of K such that

f(xn)<a+% for any neN.
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Since K is sequentially compact, there is a subsequence {x,, };cn of the sequence
{X,}nen such that

Xp, — Xo» @S k— 00, Xxo€K

Then
! kenN

asf(xnk)<a+n—k, k € N.
Therefore

a< klin.?of(""k) =fx) < a,
i.e.,

a = f(xp).
Let
B = supf(x).
xeK

Then

fx)<pB for any xeK
and there exists a sequence {y,},cn Of elements of K such that
1
f(yn)>ﬁ—5 for any neN.

Since K is sequentially compact, there is a subsequence {y,, };cn of the sequence
{Yn}neN so that

Yn, =Yoo @ k—ooo, y,eK

Then

1

B-—<fy,)<B keN.

Ny

Hence,
. 1 .
B= klglolo<ﬁ - n_k> <f(yo) = lim f(y,) <.

This completes the proof. O
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6.2 Criteria for compactness of sets in metric spaces

Let X be a metric space with a metric d.

Definition 6.3. Aset Ainthe metric space X is called an e-net for the set Bin the metric
space X if for every x € B there is an element x, € A such that

d(x,x.;) < e.

Theorem 6.3 (Hausdorff’s theorem). For a set K in the metric space X to be relatively
compact, it is necessary, and in the case of completeness of X, sufficient that there is a
finite e-net for the set K for any € > 0.

Proof.
1. Necessity. Let K be a relatively compact set in the metric space X and x; € K be
arbitrarily chosen. Take € > 0 arbitrarily. If

dix,x;) <e for any xcek,

then a finite e-net is already constructed. Otherwise, there is an element x, € K
such that

d(xy,x) > €.
If either
dix,x;) <e or dx,x;)<e for any xek,

then a finite e-net is found. If this does not hold, then there is an element x3 € K
so that

d(x;,x3) 2 € or d(xy,x3) > €.

We continue this process. If this process continues indefinitely, we get a sequence
{X,}nen Of elements of K such that
dx;x) 2€, LjeN, i#].
Hence, there is not any subsequence of the sequence {x,},y that is convergent.
This is a contradiction because K is compact set of X.
2. Sufficiency. Assume that X is a complete metric space and there is a finite e-net

for the set K for any € > 0. We take a sequence {€,,},on Of positive numbers such
that €, — 0, as n — co. For any €, we construct a finite €,,-net

L x,(;l)}
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for the set K. Let L ¢ K be an infinite set. We describe a closed ball of radius ¢,
around each of the points

X0, ,x,(é)}

in the €;-net. Then each of the elements of L belongs to one of these balls. Since
the number of the balls is finite, there is at least one of these balls that contains an
infinite set of elements of L. Denote such a subset by L. Now we describe a closed

ball of radius €, around each of the elements
@ @ ()
7% s Xp }

in the €,-net. Then there is an infinite subset L, of L, lying in a ball of radius ¢,.
Continuing this process, we get the sequence

L>L,>--->L,>---
and each L; is contained in a closed ball of radius €; and if x;, x, € L;, we have
d(x;, x;) < 2€;.
Let
el &Hely &H#&§ .. §ely §#§, je{l....n-1}
and so on. In this way, we get a sequence {¢,},,cy for which
£rip € Lnup C L
for any p € N. Consequently
d(&nip>én) < 2€pyp 0, a8 n—oo, p>0.

Because X is complete, the sequence {¢,},,cn iS convergent to an element & € X.
Therefore K is a relatively compact set of X. This completes the proof. O

Theorem 6.4. For a set K of a complete metric space X to be a relatively compact set in
X, it is necessary and sufficient that there is a relatively compact e-net for the set K for
every e > 0.

Proof.

1. LetL be arelatively compact %-net for the set K. Since L is a relatively compact set
in X, by Theorem 6.3, it follows that there is a finite g-net for the set L, which we
denote by L;. Let x € K be arbitrarily chosen. Then there are x; ¢ Land x, € L;
such that

d(x,x;) < and d(x;,x;) < g

€
2
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Hence,

d(x,x;) < d(x,xp) + d(x3,%5) < g + g =€ (6.1)

Because x € K was arbitrarily chosen and for it there is an element x, € L, so that
(6.1) holds and since X is complete, using Theorem 6.3, we conclude that K is a
relatively compact set in X.

2. Let Kis a relatively compact set in X. Then, by Theorem 6.3, it follows that there
is a finite e-net for K, which is a relatively compact e-net for K. This completes the

proof. 0

Theorem 6.5. A relatively compact space is separable.

Proof. Let Y be a relatively compact metric space. We take a sequence {€,},n Of posi-
tive numbers so that

€,—0, as n—- oo
For every n € N we construct a finite €,,-net
(n) (n)
N, ={x s Xy 1.

We set

We see that N is a countable everywhere dense set in Y. Therefore the metric space Y
is separable. This completes the proof. O

Theorem 6.6. A relatively compact set K of the metric space X is bounded.

Proof. Let L be a finite 1-net for K,
L= {xl,...,xp}.

Let also, a € K be arbitrarily chosen and fixed. We set

r= max d(a,x;).
je{l,...p}

We take x € K arbitrarily. Then thereisaj € {1,..., p} such that
dx,x;) < 1.
Hence,
d(a,x) < d(a,x;) +d(xx) <1+r. (6.2)

Since x € K was arbitrarily chosen, we conclude that the inequality (6.2) holds for any
x € K. Therefore K is bounded. This completes the proof. O
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Theorem 6.7. A closed set K of the metric space X is sequentially compact if and only
if every covering of K of open sets of X contains a covering consisting of a finite number
of these open sets.

Proof.

1. Necessity. Let {G,} be a system of open sets that covers the set K and suppose that
it is not possible to be extracted from it a finite covering. Take a sequence {€,},cn
of positive numbers such that

€,—0, as n— oo

Let

be an €;-net for the set K. Let
1 .
K; =B, VINK, el )

Then

Note that Kj, j € {1,...,k;} is a sequentially compact set. If K cannot be covered
by any finite subsystem in {G,}, then the same is true for some of these sets K;,
j € {L.... Kk}, which we denote by K; . Continuing this process, we extract K; ;
from the sequentially compact set K; if it is not possible to extract from {G,} any
finite covering of K; ; . And so on. In this way, we get the system

Kj1 > Kiljz 22 Kjljz---jn 2

Let x, be an element that belongs to all of these sets. Since x, € K and {G,} cov-
ers K, there is a set G, so that x, € G, . Because G, is an open set, there is a
neighborhood B, (x,) of the element x,, such that

B.(xo) C Gy,
Now we take n € N large enough so that
dx,%) < €

.. Then

foranyx, x € K;;, ;.

K.

Jua-dn c BC(XO) c Gao'

This is a contradiction because it is not possible to extract from the system {G,} a

finite covering of K; ;, ; .
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2. Sufficiency. Suppose that M is a subset of K which has not any limit point. Then
for every x € K there is an €, > 0 so that

B, x)nM={x} or B, (x)nM=90.

Note that the neighborhood B, (x) forms a covering of M. We extract a finite cov-
erings

B;, (), B (), ....Bg ().

Since the entire set M is located in these neighborhoods and each of these neigh-
borhoods cannot contain more than one element of M, then M is finite. Therefore
every infinite subset of K must have a limit point, i. e., K is a relatively compact

set in X. This completes the proof. -

Theorem 6.8. Every continuous image of a relatively compact set K in the metric space
X is a relatively compact set in X.

Proof. LetY be ametricspaceandf : X — Y be a continuous map such that f(K) c Y.
Let also, {y,},cn be an arbitrary sequence of elements of f(K). With x,,, n € N, we
denote the elements of K such that

yn:f(xn)» neN.

Since K is a relatively compact set in the metric space X, there exists a subsequence
{Xn, Jken @and x, € X such that

Xp, — X, @Sk — oo.
Because f : K+ Y is continuous, we get
Yn, =f0,) = f(xg) €Y, as k — oo,

i.e., the sequence {y, },cn contains a convergent subsequence to an element of Y. Con-
sequently f(K) is compact. This completes the proof. O

6.3 A Criteria for relative compactness in the space C([a, b])
Let M be a set of elements of C([a, b]). We provide C([a, b]) with the metric

d(xy, %) = trel%%(”xl(t) -x()|, X3, %, € C([a, b).

Definition 6.4. We say that the set M is uniformly bounded if there exists a constant
¢ > O such that

|x(t)| <c for all tela,b]

and for all x ¢ M.
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Definition 6.5. We say that the set M is equi-continuous if for every € > O there is a
6 = 6(e) > O such that the inequality |t; - t,| < 8, t;,t, € [a, b], implies

[x(t) - x(t)] < €
for any x € M.

Theorem 6.9 (Arzela theorem). The set K < C([a, b)) is a relatively compact set in
C([a, b)) if and only if it is uniformly bounded and equi-continuous.

Proof.
1. Let K be a relatively compact set in C([a, b]). By Theorem 6.6, it follows that it is
uniformly bounded. Let € > 0 be arbitrarily chosen. We construct a finite %-net

X xd

for the set K. Because x;, j € {1,..., k}, are continuous on [a, b], they are uniformly
continuous on [a, b]. For any x;, j € {1,...,k}, we take a positive number §; such
that

€
|Xj(t1) —Xj(tz)i < §,
whenever |t; - t,| < §;, t;,t, € [a,b]. Let
6 = min{é;,..., 6}

Then, if |t; - t,] < 8, t;,t, € [a,b], and x € K, we see that thereisaj € {1,...,k},
such that

€ €
|x;(t)) — x(ty)] < 3 [x;(ty) - x(t,)] < 3
whereupon

[x(t)) = x(ty)] = |x(ty) = x;(t;) + X;(ty) + X;(t5) = X;(t5) + x(ty))]
< [x(ty) - ()| + |x;(t) - (8|

+ |x5(ty) = x(ty)] < Cr8: 8-

Consequently K is equi-continuous.
2. LetK c C([a, b]) be uniformly bounded and equi-continuous. Let ¢ > 0 be chosen
so that

x| <c, telabl,

for any x € K. We take € > 0 arbitrarily. Then there exists a § = §(¢) > 0 such that
if|t; - )| < 8, ;. t, € [a, b], we have

|x(t;) - x(ty)| < €
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for any x € K. Let n € N be arbitrarily chosen so that
(b - a)l < 6.
n

We divide the interval [a, b] into n equal parts

a+(b—a)]r—i,a (b - a)w, k€{0,1,...,n-1}.

Then
|x(t;) = x(ty)| < €
forevery x e Kand t,t, € [a,b], |t; - t,] < (b - a)%, in particular for

t,t, e la+(b- a)—a+(b— )k+l ke{0,1,....,n-1}.

We construct the function x,, to the function x such that

€)] x,,(a+(b—a)§)=x(a+(b—a)’5‘),ke {0,...,n—-1},

(b) x,is alinear function on [a + (b - a) ,a+ (b a) k”] ke{0,1,...,n-1}.
Let x € K be such that

<a+(b a)— ) <a+(b a)’%), ke{0,...,n-1}.

Hence,

xn<a+(b—a)l;(l> < X, (t) <xn(a+(b a)%), ke{0,1,...,n-1},

fort e [a+ (b—a)lﬁ‘,a+ b - a)%], and

I+ 1

—€ < x(t) - <a+ (b - a)T> < x(t) — x,(t) < x(6) —x<a+ (b—a)%() <€

foranyt ¢ [a+(b—a) ,a+ (b- a)k“] kelo,...,n-1},i.e.,
[x(t) - x,(t)| < €
for all t € [a, b]. Therefore
dx,,x) <€
and the set L of functions x,, is an e-net for K. Also,

[X,(O)] < [x(®)] + [x(t) = x,(8)] < c+€, t€[a,b]
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Therefore L is uniformly bounded. Now we associate to every function x,, of L the
points of an (n + 1)-dimensional space X, having as coordinates the ordinates of
the vertices of a polygon, the graph of x,,. This correspondence is one-to-one and
continuous. Therefore if the sequence of functions {x*'} converges to x\*).in the
sense of the metric space C([a, b]), the sequence of points {)”((k)} converges to the
points % in the sense of the metric space E,.;. The set K = {x} is bounded and
consequently it is relatively compact in E,,. Therefore L is relatively compact in
C([a,b]) and for any € > O we construct a relatively compact e-net for K. Since
C([a, b]) is complete, using Theorem 6.4, we conclude that K is a relatively com-
pact set in C([a, b]). This completes the proof. 0

6.4 A Criteria for compactness in the space L([a, b]),p > 1

Consider the space L? ([a, b]). We extend all functions x € L”([a, b]) beyond the interval
[a, b] and put x(t) = 0 if t lies outside the interval [a, b].

Theorem 6.10 (Riesz’s theorem). A set K is the space LP([a, b)) is a relatively compact
set in LP([a, b)) if and only if there exists a constant ¢ > 0 such that

b
J|x(t)|pdt < 63)

a
for every x € LP([a, b)), and for every € > O there exists a § = §(¢) > 0 such that

b
j|x(t +h) —x(t)|pdt <€e? for O0<h<3§, (6.4)

a

simultaneously for all functions of the set K.

Proof.

1. Let K is a relatively compact set in L”([a, b]). Then K is bounded and from this,
the condition (6.3) holds. Now we will check the condition (6.4). Let € > O be
arbitrarily chosen. Since K is a relatively compact set in LP([a, b]), there exists a
finite $-net for K

X, .. X}

Note that, for anyi € {1,...,n}, there exists §; = 6;(¢) > 0 such that

H p
J'Xi(f+h) —x 0 dt < (g) , 0<h<§
a
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Let

Then
b . P
e -xPae<(S). o<h<s
a

foranyi € {1,...,n}. Let x € Kbe arbitrarily chosen. Then there existsj € {1,...,n},
such that

b p
J]x(t) —x(0 dt < (g) ,

a
hence, for 0 < h < 6, we have

b b+h b
J|x(t +h) = x(t + W dt = J () - x;(6)dt < J|x(t) ()t

a+h
p
<<E>, O<h<bé.
3

Then

1

b p
( J|x(t +h)- x(t)|pdt>

b
= (J]x(t +h) =Xt + h) + X5t + h) - X;(t) +x;(¢) - x(t)|pdt>
f

1

1 1

p b p
< ( Px(t + h) - x;(t + h)|pdt> + <J|x]~(t +h) —xj(t)|pdt>
b ’
D € € € _
+<J|xj(t)—x(t)| dt) <§+§+§—e, O0<h<6é.

2. Suppose that all functions of the set K satisfy the conditions (6.3) and (6.4). For
h > 0 and x € K we define

1 t+h
xp(t) = h J x(t)dr, tela,b].
t-h
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Let g be the conjugate of p. Then

1

1 t+h 1 t+h 1 t+h % t+h B
ARG > J x(t)dr| < > J |x(D)|dt < ﬂ( j d‘r) ( J [x(1)] d‘r)
t—h t—h t—h t—h
. t+h H . 1 t+h K
_ 1 . P (1Y P
= (2h) ( J [x(1)] d‘r) <2h> < J [x()] d‘r)
t—h t—h
and
t+y+h t+h
[xXu(t +y) = xp(t)] = % J x(1)dr - J x(T)dt
t+y—h t-h
1 t+h t+h
= J x(T +y)dr - J x(T)dt
t—h t—h
1 t+h
= J (x(T+y) - x(1))dr
t—h
t+h

< ih J- |x(t +y) - x(1)|dr

1

t+h B
< (21 > ( |x(T +y) - X(T)lpd‘l’>

1

(21> ( |x(T+y) x(7)| dr)p.

a

Therefore, for fixed h > 0, the family {x;,} for x € K is uniformly bounded and
equi-continuous. Next,

t+h t+h t+h
[x(t) = xp(t)] = % j x(t)dr - j x(t)dr| = ih J (x(t) - x(1))dt
t“h t=h th
1 t+h h
_h J |x(t) - x(1)|dt = > J|x(t) - x(t +1)|dr
t=h “h
% ’
< (%) (J]x(t) —x(t + ‘r)lpd‘r> )
“h

EBSCChost - printed on 2/10/2023 3:54 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

260 —— 6 Relatively compact sets in metric and normed spaces. Compact operators

Hence,

x(t) — x(t + ‘r)|pdrdt

S
| ——

R o S ——

b
J|x(t) - xh(t)|pdt <

[x(t) = x(t + T)|pdl’d‘l'

S
‘3-'—~.:-

€
< —

h dr=€¢’ if 0<h<é.

N
S
—_—

=

Therefore {x;} is an e-net for K and since it is a relatively compact set in L?([a, b]),
we conclude that K is a relatively compact set in L”([a, b]). This completes the
proof. O

6.5 Compact operators

Let X and Y be normed vector spaces.

Definition 6.6. A linear operator A : X +— Y is called compact if it maps each
bounded set of X into a relatively compact set of Y.

Example 6.1. Let X = Y = C([0, 1]). Suppose that K € C([0,1] x [0,1]) and consider the
operator

1
Ax(t) = JK(t, s)x(s)ds, te[0,1], xeX.
0

Evidently, A : X — Y. We will prove that it is a compact operator. Let K be an arbitrary
bounded set of X. Then there exists a constant r > 0 such that

Ixl <7

for any x € K. Let € > 0 be arbitrarily chosen. Because K € C([0, 1] x [0, 1]), there exists
a constant [ > 0 such that

|K(t,s)| <1, tsel0,1],
and there exists a 6 = 6(¢) > 0 so that

K (t1,5) - K(ty, 5)| < %

, tt,se[0,1], |t-t]<é.
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Hence, for x € K,

1
|Ax()| = < j|1<(t,s)||x(s)|ds <l telo,1].
0

1
JK(t, s)x(s)ds
0

Therefore A (K) is uniformly bounded. Next,

1

1
|Ax(t;) - Ax(t)| = JK(tl, s)x(s)ds — JK(tz,s)x(s)ds
0

0
1
J(K(tl, s) — K(t,,s))x(s)ds

0
€
r

1
< J|K(t1,s) - K(ty, 9)||x(s)|ds
0

<-r=e€¢ for |t,-t]1<8, t,t€[0,1],

and for any x € K. Consequently A (K) is equi-continuous. Because A (K) is bounded
and equi-continuous, we conclude that it is compact. Consequently A : X — Yisa
compact operator.

Lemma 6.1. If a sequence {x,},n C X is weakly convergent to x, € X and a relatively
compact in X, then it is strongly convergent to x,.

Proof. Assume the contrary. Then there exist an € > 0 and a subsequence {x,, };en Of
the sequence {x,,},cn such that

%, —xoll =€, keN.

Because {x,, }ien is a relatively compact set, there is a subsequence {x,, }cn Strongly
1
convergent to y, € X. We have

Ixn,, = Xoll > €. (6.5)
Now, using X, = Xo, We conclude that x; = y,. Therefore

Ix, -xol <e,

lel

which contradicts (6.5). This completes the proof. O

Lemma 6.2. Let A : X — Y be a linear bounded operator. If x, — Xy, as n — oo, then
Ax, — AXxgy, asn — oo.

Proof. Let ¢ be arbitrarily chosen linear functional on Y. Let also,

f(XO) = ¢(AXO)’ f(Xn) = ¢(Axn)r neN.
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Since A : X — Y is a linear operator, f is a linear functional on X. Because x,, — X,
asn — oo, we get

flx,) » f(xg), as n— oo.
Hence,
P(Ax,) - Pp(Axy), as n— oo.
Since ¢ was arbitrarily chosen linear functional on Y, we conclude that
Ax, — Axy,, as n— oco.

This completes the proof. O

Theorem 6.11. A compact operator A : X — Y maps a weakly convergent sequence in
X into a strongly convergent sequence in Y.

Proof. Let {x,},en € X is a weakly convergent sequence to x, € X. Then {||[x,[},cn is @
bounded sequence. Because the operator A is compact, we see that {Ax,},cy is com-
pact. By Lemma 6.2, we see that {Ax,},,cn is weakly convergent to Ax,. From this and
from Lemma 6.1, it follows that {Ax, },,cy is strongly convergent to Ax,. This completes
the proof. O

Theorem 6.12. Let A, : X — Y, n € N, be compact operators, and
A, -Al -0, as n— oco.

Then A : X — Y is a compact operator.

Proof. Let M c X be a bounded set. Then there exists a constant r > 0 such that
Ixl <r for xeM.
We take € > 0 arbitrarily. Then there exists an n € N such that
14, - All < =
foranyn e N, n > n,. Set
AM)=K and A, M)=L
Now, we take y € K arbitrarily. Let x € M be such that y = Ax and set

Yo = Anox.
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Then

ly = Yol = lAx — Ay xIl = [|[(A = Ay x|
€
<A = Apllix]l < Jr=e
Therefore L is an e-net of K. Since A, : X +— Y is a compact operator and M is a

bounded set, we see that L is relatively compact. Hence, A : X — Y is compact. This
completes the proof. O

6.6 Advanced practical problems

Problem 6.1. Prove that the set of all functions x € C'([a, b]) for which
b
X(0)] < ki, Jlx’(t)ldt <y,
1

where k; and k, are positive constants, is relatively compact in the space C([a, b]).
Problem 6.2. Prove that the set of all functions x € C'([a, b]) for which

b
J(I){(t)l2 + X' @Ot < k,

a
where k is a positive constant, is relatively compact in C([a, b]).

Problem 6.3. Prove that every compact set in C!([a, b)) is a relatively compact set in
C([a, b)).

Problem 6.4. Let X, Y and Z are normed vector spaces, A € £(X,Y) is a compact op-
erator and B € £(Y, Z). Prove that BA is a compact operator.

Problem 6.5. Prove that the following operators A : C([0,1]) — C([0,1]) are com-
pact:

1. Ax(t) = fé x(s)ds,

2. Ax(t) = x(0) + tx(1),

3. AX(D) = [, e®x(s)ds.
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7 Self-adjoint operators in Hilbert spaces

7.1 Adjoint operators. Self-adjoint operators

Let H be a Hilbert space and A € £(H). For x,y € H consider a linear functional f,
defined as follows:

fy(X) = (Ax,)’)
As a linear functional on H, fy has the form
fy(X) = (X:y*),

where y* € His uniquely defined by f, for any x € H. Note that f, varies with a change
of y and so does y*. Therefore we get the operator

A'y=y*, yeH,

and A" : H — H. This operator A" is associated with the operator A in the following
manner:

(Ax,y) = (x,A"y). (71)

Definition 7.1. The operator A ™ is called the adjoint operator of the operator A.

Assume that for x,y € H we have
(Ax,y) = (6, A%y) = (x, A]y),
where A*, A] : H+— H are adjoint operators of the operator A. Therefore
Ay =Ajy for all yeH
Thus
A" =AJ,
i. e., the operator A * is uniquely determined by (7.1). From Theorem 5.3, it follows that
1AL = a7,

By (7.1), we get

(A*xy) = (,A*x) = (Ay,x) = (x,Ay), x,y €eH.

https://doi.org/10.1515/9783110657722-007
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Thus
A" = A,
Similarly
AT Z A"
and so on.

Exercise 7.1. Let A, B € £(H). Prove that
1. A+B)*=A"+DB",

2. (AA)" =AA*, A €F,

3. (AB)" =B*A",

4. (A" 1=(A™H* if A exists.

Definition 7.2. An operator A € L£(H) is called self-adjoint, if A = A*.

7.2 Unitary operators

Definition 7.3. A linear operator U : H — H is called unitary if it maps the Hilbert
space H onto all of H with preservation of the norm, i. e.,

IUx] = lIxl,  x eH.
Remark 7.1. If U : H — H is unitary, then it is one-one. In fact, if x;, x, € H, then
Ux; = Ux,
or
Ux; —x3) =0,
and hence
[UG = x)| = Ix; = x,ll = 0,
i.e., x; = x,. Furthermore,
(Ux, Ux) = |Ux]|* = |x]* = (x,x) = (U*Ux,x), xe€H.
Therefore

U'U=1I (7.2)
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and
v'vutl=ur=Ul
Hence,
UU*=UU =1 (7.3)
Consequently
Ut = U

By (7.2), it also follows that
(Ux,Uy) = (x,y), x,y€H.

Conversely, by (7.2) and (7.3), it follows that U is an unitary operator, since these imply
U! = U* exists. Then H is mapped one-one onto H and

IUX|> = (Ux, Ux) = (U*Ux, x) = (x,x) = x|,
whereupon
IUx]l = Ixll, xe€H.

Definition 7.4. Let A : H — H be a linear operator, U : H — H is an unitary opera-
tor. The operator

B=UAU"

is called an operator unitarily equivalent to A.

7.3 Projection operators

Let L be a closed linear subspace of H. Then every element x € H is uniquely repre-
sentable in the form

X=y+z,
wherey € Land z L L. We set
Px =y.
Then
P:H— L.
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Definition 7.5. The operator P : H +— Lis called the operator of orthogonal projection
upon L, or a projection operator, or a projector. It is denoted by P;. The space L will
be called the corresponding space of the projector IP.

Theorem 7.1. The operator Py, : H — L is a linear self-adjoint operator and
Pl =1 Pj =Py
Proof. Firstly, we will prove that P : H +— L is a linear operator. Let x;,x, € Hand
Xp=Y1+zi, X=Y+2Z, VpY2€L z,z LL
Letalso a € F. Then

Py =Yy,
0(X1 = ayl + 0(21,

Pr(ax;) = ay; = aPyx;,
and

X1 +X = +Y) + (21 +22),
Pix; =)

PL(x; +X5) =y1 + Y2 = Prxg + Ppx,.
Consequently the operator P;, : H — L is a linear operator. Furthermore,

(Prxy, %) = (Y1, %) = V1, Y2 + 22) = V1, ¥2) + V1:22) = V1, )2)
=(21,¥2) + V1, Y2) = (21 + Y1, 2) = (X1, ¥2) = (%3, Prxy),

i.e., P : H+— Lis a self-adjoint operator. Note that, for x € H, we have P; x € L and
Pix = P (Pyx) = Ppx,
i.e.,
P; = Py.
Next, forx e H,x =y +2z,y € L,z L L, we have

IxXI> =1y +2I° = Y + 2y +2) = 1Y) + 1,2) + () + (2,2)
=)+ z2) = lyI* + lizI”,

and then

Iyl < llxMl,
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or
PLxll < lIx]l.
Therefore
Pyl < 1. (74)
For x € L, we have Py x = x and
IPLx|l = lxI,
whereupon
Pyl > 1.
Hence, by (7.4), we conclude that
Pyl = 1.
This completes the proof. O

Theorem 7.2. Let P ¢ L(H) be a self-adjoint operator such that P> = P. Then P is an
orthogonal projection on some linear subspace L ¢ H.

Proof. Let
L={y=Px:xeH}
Since P € £(H), we see that L is a closed linear subspace of H. Note that
(x = Px, Px) = (P(x - Px),x) = (Px — ]sz,x) =(Px-Px,x)=0, xeH.
This completes the proof. O

Remark 7.2. By the proof of Theorem 7.2, it follows that I — PP is a projection operator.

Definition 7.6. Two projection operators IP; and PP, are called orthogonal if P; P, = O.
Hence, using (P;P,)" = P,P;, we get P,P; = O.

Definition 7.7. Two linear subspaces L; and L, of the Hilbert space H are called or-
thogonal if

(x1,X%) =0
for any x; € L, and for any x, € L,. We will write L; 1L L,.

Theorem 7.3. Let P; and P, be two projection operators with corresponding spaces L,
and L,. Then P, and P, are orthogonal if and only if L; L L,.
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Proof.
1. LetP; and P, be orthogonal. Then, for x; € L; and x, € L,, we have

(X1, %) = (P1xq, Pyx,) = (P,Pyxq,X,) = 0.

Therefore L; 1 L,.
2. LetL; L L,.Then, forx € H, we have P,x € L,. Hence, P;P,x = 0, x € H. Therefore
P, P, = O. This completes the proof. N

Theorem 7.4. Let P, and PP, be projection operators with corresponding spaces L, and
L,. Then P, + PP, is a projection operator if and only if P; and P, are orthogonal. In this
casePy + Py =P .

Proof.
1. LetP =P, + P, be a projection operator. Then
2_ 2 2
P; + P, = (P; + P,)” = P + PP, + P,P; + IP;
= ]Pl + ]Pllpz + ]P2]P1 + ]Pz,

whereupon

P,P, + P,P, = O. (75)
Hence,

PP, + P,P,P, = O,
or

P,P, + P;P,P; = O,
and

P,P,P, + P,P,P; = O,
or

P,P,P, = O.
From the previous equality and from (7.5), we obtain

PP, + P,P,P; =0 and P,P,P, + P,P: = O,
or

]P1]P2 = (D and ]PZIPI = (D.
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2. Let
P,P, = P,P, = O.
Then
(P, + P,)* = P2 + P, P, + P,P, + P3 = P, + P,
(P +P,)" =P; +P; =P; + P,
Therefore PP, + P, is a projection operator. This completes the proof. O

Theorem 7.5. Let IP; and PP, be projection operators with corresponding spaces L, and
L,. Then P, P, is a projection operator if and only if PP, = P,P;.

Proof.
1. Let IP;IP, be a projection operator. Then

P,P, = (P;P,)" = P;P; = P,P;. (7.6)
2. Let
]PIIPZ = Ipzlpl.
Then, by (7.6), we get
P, P, = (P;P,)"
and
2 P
(]P1]P2) = ]P1]P2]P1]P2 = IplIPZ = ]P1]P2.

Therefore P, P, is a projection operator. This completes the proof. O

EBSCChost - printed on 2/10/2023 3:54 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost - printed on 2/10/2023 3:54 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



8 The method of the small parameter

8.1 Abstract functions of a real variable

Let A ¢ R, X be a normed vector space.

Definition 8.1. Any function f : A — X will be called an abstract function of a real
variable.

Definition 8.2. Suppose that A, € A and the function f is defined in a neighborhood
UofAyandf : U+— X. We will say that a € X is a limit of the function f whenA — A,
and we will write

az}in(A) or fA) »a, as A—-A,
—o
if

IfFA) -a| -0, as A— A,.

Below we suppose that A, € A and U is a neighborhood of A,.

Theorem 8.1. Let¢p : U+— R,f,g: U +— Xand p(A) — a,f(d) - a,gd) — b, as
A — Ay, wherea € R, a,b € X. Then:

1. ¢WfA) - aa,as A — Ay,

2. fA+8A) - a+b,asA— A,

Proof.
1. Becausef(d) — a, as A — Ay, there is a constant r > 0 such that

IF <r
for any A € U. We have
lpf Q) - aa = [|pA)f Q) - af A) + af (A) — aal|
= (¢ - )f A) + a(f ) - a)|
< (@) - )f W) + a(f ) - a)|

= [pW) - a||f V)| + lal|f Q) -
<r|p@) - a| + lal|fA) —a] - 0, as A — A,

2. We have

IfQ) +g@) - (a+b)| = [(f(V) - a) + (g) - b)|
<|f) -a|+|g)-b]| -0, as A— A,

This completes the proof. O

https://doi.org/10.1515/9783110657722-008
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Definition 8.3. Letf : U+ Xandf: A +— X.
1. We will say that f is continuous at A, if

IFA)-fA]| — 0, as A—A,.

2. We will say that the abstract function f is continuous on A if it is continuous at
every point of A.

3.  We will say that the abstract function f is continuous on the right of A, if f(A) —
fAy),as A — Ay+.

4. We will say that the abstract function f is continuous on the left of A, if f(1) —
fAg),asA — Ag—.

Theorem 8.2. Let A be a bounded subset of F, the abstract functionf : A — X be a
continuous function on the set A. Then there is a constant M > 0 such that

[F] < M
forany A € A.

Proof. Suppose that for any n € N thereisa A, € A such that

lF@a] = n
There is a subsequence {A,, }ien of the sequence {A,},y such thatA, — Ay, ask — oo,
Ay € A, and

||f(/lnk)|| > 1. (8.1)
Since f is continuous on A, we have f(A, ) — f(Ay), as k — oo. Hence, by (8.1), we
obtain

If o) = my
for any k € N, which is a contradiction. This completes the proof. O

Theorem 8.3. Let¢ : U+ R, f,g : U — X be continuous at A,. Then:
1. ¢f is continuous at A,
2. f +gis continuous at A.

Proof.
1. Sincef : U+ Xis continuous at Ay, there is an r > 0 such that

[fA)| <r for any AeU.
We have

lpF Q) - FAe)pA)| = |PAFA) = A A) + DA)f A) — p(Ag)f (Ao)|
= [(dQ) = pA))f ) + dA)(fFA) - FAR))|
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< (@) - p))f )| + [[pA) (FA) - F(Ap)))|
= |p) - PA)[IF V|| + [PA|IFA) - F AW
<1jpQ) - p(Ao)| + [pA)|IFA) - FAR)|| = O,

asA — Ag.
2. We have

IF ) +8A) - (FAe) +8A)| = [(FA) - FAy)) + (8A) - g(Ay))|
< F) - FA)] + lg) - g

—0, as A-A,.

This completes the proof. O

Suppose that Y is a normed vector space. For A ¢ A we consider the operator
AQ) € £LXY).

Definition 8.4.
1. Alinearoperator B : X +— Y is said to be a limit of the operator A (A1) whenA — A,
if

”A(A) - B|| -0, as A-A,.

We write A1) - B, as 1 — A,.

2. We say that the operator A (A) is continuous at A, if A1) - A(Ay), as A — A,.

3. We say that the operator A (A) is continuous on A, if it is continuous at every point
of Ay € A.

4. We say that the operator A (A) is continuous on the right of Ay, if A(A) — A(Ay), as
A — Ag+.

5.  We say that the operator A (A) is continuous on the left of Ay, if A(A) — A(Ay), as
A— Ag—.

Below we suppose that A(A), B € L(X,Y),A €A, f:Ar— X, aeX.
Theorem 8.4. Let A(A) — B, f(A) — a,as A — Ay. Then A(A)f(A) - Ba, as A — A,.
Proof. We have
[AWf(A) - Ba|| = |AQ)fA) - Bf(A) + Bf (A) - Bal|
= (AW - B)f ) + B(f D) - a)|

< [(AQ) - B)f W] + | BFFA) - a)|
<A@ - B||fW)] + IBI|f Q) -a]| — 0, as A— A,

This completes the proof. O
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Theorem 8.5. Let A(A) and f be continuous at A,. Then A (A)f is continuous at A,.

Proof. We have

JAQFA) - AR (Ao)| = [ANFA) — A ) + A)f (D) — AA)f (Ao)]|
= [(AG) = A))f ) + AA)(FA) - fFAp))]
< (AQ) - AQAY)F W] + AR FQA) - FAp)|
<[AQ) - AR W + [AQ[If A) - FAg)]| — O,

as A — A,. This completes the proof. O

Exercise 8.1. Let A(A) and f be continuous at A,. Prove that aA (A)+ff(A) is continuous
atA, foranya,p € F.

Definition 8.5. We will say that the abstract function f : A +— X s differentiable at A,
if the limit

f(/1 -f(Ap)

=7y (8.2)

AHAO

exists. In this case, we will say that the limit (8.2) is the derivative of the abstract func-
tion f(A) at Ay and we will write d% f(Ag). We have

‘f(/\)—f(/lo) 4

1 —/10 ﬂf(AO) i 0, as A— /\0.

Theorem 8.6. Suppose that the abstract functions f,g : A — X are differentiable at
Ay € A. Then:
1. af : A— Xis differentiable at A, and

d d
a(af)(/\o) = aaf(/\o),

forany a € F.
2. f+g:A > Xisdifferentiable at A, and

d
a(f+g)(/10) f(}lo) + g(}lo)

Proof.
1. Leta € F be arbitrarily chosen. Then

(@f)) - (af)(Ao)

d -y d
o 0] = |5 ) — i f o
- la R - S0 -0

aS/l - Ao.
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2. We have

‘ f+eN) - +8)A) _f(/lo) g(/lo)

A=A,
0
D -fRy) g g(A) —g(Ao) d
= 21— /\O f(Ao) + 1- /\0 g(Ao)
fAO-f (Ao 8N - g(/\o) d
as A — Ag. This completes the proof. O

Theorem 8.7. Let the abstract function f : A — X and the scalar function ¢ : A — R
be differentiable at A, € A. Then ¢f is differentiable at A, and

d d d
a(‘f’f)(/\o) = ¢(/\o)af(/lo) + a(lb()lo)f(/lo)-
Proof. We have

(@) - @f)(o) d d
‘ T aa, P %) - G39%0)f (o)

_ l PANf ) - p(Ao)f (o)
- A=A

- Bg) o) ~ - 90)f (o)

_ £ ~£00) (£~
- | - g (HEE

) -pAy) d
<W - ﬁ‘lb()‘o))ﬂ/\o)

)f(/l) ALY

d(Ao) - f(Ao>¢(Ao>)

fA) -fAy)

< |(9() - p(Ao) + qu(/lo)(W B %f W)H

-1
H|(PEER) - Spio )
- g - g0 |1+ lpaaol| R 5 - Srrao
e Y BT e
This completes the proof. O

Exercise 8.2. Let the abstract function f : A — X be differentiable at A, € A. Prove
that it is continuous at A,.
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Definition 8.6. We say that the operator A(A) € £(X,Y) is differentiable at A, € A, if

the limit

exists. In this case we call this limit the derivative of the operator A (A) at A,. We will
denote %A(AO). We have

! —(A0) - AG))
— 10

lim
A=Ay

HA_AO

Theorem 8.8. Suppose that the abstract function f : A — X and the operator A(A) €
L(X,Y) are differentiable at Ay € A. Then A(A)f is differentiable at A, and

(Af) (Ao) = A(/\o)f()lo) + A(/\o) f(/\o)'

Proof. We have

ANfA) - AAYfA
I DF Q) - A ( o>_£A(AO>f<AO> Ay~ f(/‘o)

-7

1) - Adg) N - A
:I%(ﬂ/\) f(A)) + Mﬂ/\o)

-0

A)f Q) — AAG)f A
» AT A o) dA(Ao)f(/lo) A0 S5 )

-0
AN -A(y) d

_ ANV = AR 4y AD-Aly) d
- [FEER R - o + (R - FAd) )i

raco( L0 5|
<[ PG rw oo « (G - Fado Jray
(2 20
<[FE e rw ool + [ 2R - Sav ol
+AGo) mj:—ﬁ?") - %f(/lo) ~0, as A A,
This completes the proof. 0

Exercise 8.3. Let the operator A(1) € £(X,Y) is differentiable at A,. Prove that it is
continuous at A,.
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Remark 8.1. Below, for convenience, we will write A '(A) instead of (A (1))~} when
(A(A) ! exists.

Theorem 8.9. Let the operator A(A) € L(X,Y) be differentiable at A, € A and A7)
exists and let it be continuous in a neighborhood of A,. Then A™*(A) is differentiable at
Ay and

d

- d _
STA o) = -7 (h0) 7 AUA™ (o).

Proof. We have

‘ A7) - AT ()

-1 d 1
7y +A (Ao)aA(Ao)A (o)

Ady) -AQ)

A7) + A*l(Ao)iA(AO)A*I(A)
A-1,

= ”Ail(/\o)

A*l(/\o) A(AO)A’l(AHA’l(AO) A(/\O)A 1)

AW - A(dp)

-1
e, )A W)

_ A‘I(Ao)( 4 A -

+ A7) S A G (A ) - A*(A))H

A -AAy) )\, 1
A

IN

A (Ao)( 4 ) -

-1

2 At A ) - A (A))H

AA) - A(Ay)
A=,

< a7 Aol Amo) A~ )|

+AT @) A7) - AT @] -0, as A A,

‘aA(Ao)

This completes the proof. O

Definition 8.7. For an abstract function f : A — X and an operator A(A) € £(X,Y),
defined in a neighborhood of A, € A, we define

d dk—l
dAkf( 0= (o o)
dk

d(d’
A = o ( A)(AO), k=23....

d Ak—l

whenever %f (A) and %A(}l) exist in a neighborhood of A,,.
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8.2 Power series

Suppose that X is a normed vector space. Consider the power series
(o0)
Z Xk/\k» (8.3)
k=0

where x; € X,k e Ny, A € F.

Definition 8.8. Let A be the set of all points A € F for which (8.3) is convergent. The
set A will be called the convergence domain of the power series (8.3).

Note that O € A. The sum of (8.3) for A € A will be denoted by S(A). We will write
o0
S =Y xAS AeA
k=0
The partial sums of (8.3) will be denoted by

n
S,(A) = Z xk/lk, neN.
k=0

Theorem 8.10. Let A, # 0,4, € A. Then By, |(0) € A and for anyr < |A,|, the series (8.3)
is convergent for A € B,[0].

Proof. Since A, € A, we have x,Af — 0, as n — co. Therefore the sequence {x,Aj},en
is bounded. There exists a positive constant M such that

o]l < M

for any n € N. Suppose that |A| < |Ag]. Then

An
bl = et g
AN Al
- 55 el <

Since |A| < |Aql, we see that the series Y2, IAAOI" is convergent. Therefore the series
(8.3) is convergent for A € B 1,1(0). Let |A < r < [Ao]. Then
n

§ r
(Y
ol

Hence, (8.3) is convergent for A € B,[0]. This completes the proof. O

A
b’} < M|

Definition 8.9. The number

R =sup|A|
AeA

will be called the convergence radius of (8.3).
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By Definition 8.9, it follows that:
1. ifR=0,then A = {0};
2. ifR=o00,then A =F.

Theorem 8.11 (Cauchy-Hadamard’s formula). We have

R 1
lim sup,,_, o, VX,

Proof. Let

1
p== .
lim sup,,_,o, VIx,l

We will prove that p = R. By the definition of p, for any € € (0,1), thereisan N € N
such that

(1-€)" < [x,lp" < (1 +€)"
foranyn > N.If |A| > p, we have
A" = I A" > g llp™ = (1 - €)™

for any n > N. Hence, ||x,A"|| > 1for any n > N and the power series (8.3) diverges.
Therefore

p=R. (8.4)
On the other hand, if |A| < p, we have
Pad"[| = IxallAI" = IIXnIIp"%—l: <1+ e)"lz)l—lln (8.5)
foranyn > N. Let
k=0+ e)M—l.
p

We can choose € € (0,1) small enough so that k < 1. Hence, by (8.5), we obtain
A" < K"

for any n > N. Therefore (8.3) is convergent. From this, p < R. From the last inequality
and from (8.4), we get p = R. This completes the proof. O

Theorem 8.12. Suppose that there are constants M > 0,k > 0 and N € N such that
Ix, Il < MK™ for any n > N. ThenR > %
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Proof. Let|A| < % We set g = k|A|. Then g < 1and

(1%
bead = bl = = T q" < Mq"
foranyn > N. Therefore (8.3) is convergent. Thus, R > % This completes the proof. [

Theorem 8.13. Suppose that the power series Y ;2 xk/lk and Y2, yk/\k, XV € X, k €
Ny, A € F, have the same convergence radius R. If

ioz XkAk = 020: yk/lk (8.6)
k=0 k=0

for A € Bg(0), then x;. = y; for any k € N.

Proof. Since A = 0 € Bg(0), we put A = 0 in (8.6) and we obtain x, = y,. Hence, by
(8.6), we get

z XkAk = Z ykAk,
k=1 k=1

whereupon
Z Xk/\k_l = Z ykAk_l. (87)
k=1 k=1

We put A = 0 in (8.7) and we obtain x; = y;, and so on. This completes the proof. [

8.3 Analytic abstract functions and Taylor’s series

Suppose that X is a normed vector spaceand A c F, 0 € A, A # {O}.

Definition 8.10. The abstract function f : A — X will be called analytic at A = 0, if
in a neighborhood U of A = 0 it can be represented as an uniformly convergent power
series

=Y xA% (8.8)
k=0
X € X,keNy,AeU.

Theorem 8.14. Let the abstract function f : A — X be analytic at A = 0. Then it is
continuous in Bg(0), where R is the convergence radius of (8.8).

Proof. Letp € (0,R). Consider the series

o0
Y kil (89)
k=1
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For any p; € (p,R) we see that the series ;2 xkpll‘ is convergent. Therefore |07 —
0, as n — oo. Hence, the sequence {p}||x,[},en is bounded. Consequently there is a
constant M > 0 such that ||x,[|p} <M for any n € N. Furthermore,
n-1 n-1
_ n(p M (p
nwnw1=uxmf—<—) g—m(—) . (8.10)
" " lPl P1 P1 \P1

Letg = %' Since ¢ < 1and the series Y°° ng" ! is convergent, using (8.10), we see
that the series (8.9) is convergent. Let

Sp) =Y klxlp ™.

k=1

Then, for any A;, A, € Bp [0], we have

FAD) - ) = Y Ak = Y x A

k=1 k=1
= YA - 25) = A - A) Y AT AT A -+ ASTY.
k=1 k=1

Hence,

O k-1 k-2 k-1

Y AT AT e AT = Ay)
k=1

< Y AT AT -+ AT - A
k=1

IFA) - f )| =

<Ay =0 Y Il + 1AL+ -+ 1412)
k=1

< =20 Y ko Mgl = Ay - A,IS(0) > 0, as A — Ay,
k=1

because (8.9) is convergent. This completes the proof. O
Corollary 8.1. The series Y 2, kxk/lk‘1 is convergent for A € Bx(0).

Proof. Let |A] < Rand p € (|A|,R). Hence, using the fact that (8.9) is convergent, we get

Y g A < Y Jlog A = Y Kl Ak
k=1 k=1 k=1
<Y klx "™ < co.
k=1
This completes the proof. O
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Theorem 8.15. Let the abstract function f : A — X be analytic at A = 0. Then f is
differentiable for any A € Bg(0), where R is its convergence radius.

Proof. Letp € (0,R). Consider the series

o0

Y k(k = Dlxllp* . (8.11)

k=2
Take p; € (p,R) arbitrarily. Then Y2, xkpll‘ is convergent and hence ||xkp11‘|| — 0, as
k — oo. Therefore there exists a constant M > 0 such that |x,07|l < M for any n € N.
Note that

k-2 k-2

_ MK(k-1) ( P > . 1)

= 1/p
K(k = Dbl = k(k - Dlx ||p"—(—)
k , IP% P1 Pf P1

We set g = [%. Since g < 1and Y2, q""2 is convergent, using (8.12), we conclude that
the series (8.11) is convergent. Let

S(p) = Y kik = Dl I,
k=2

Now we take A # u. Then

1
(-1 [a-2(@- 204 20 "z
0
1
=u-A) J(l -2)A+z(u- }l))k_zdz
0

1-2)A+z(u- )l))k_zd((y -)z)

Ot

1
1 _
=1 J(l —z)d((A + (u - A)Z)k l)

z=1 1
- =20 G227 [ - 2) e
z= 0
Ak_l 1 X z=1
TTk-1 k(k—l)(y—/\)(’1+ (=2z) =0
B At 1 k gk
k-1 k(k—l)(u—A)(” -4
whereupon
k _ pk ‘ k-2
HMT — A = k(k - D) -2) J(l —2)((1-2)A+zn) dz.

0
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Hence, for y,A € Bp(O), we get
[(1-2)A+zu| < 1-2)Al +zlul < 1-2)p+2p=p, z€[0,1],

and
k 3k
)z -A k-1 k-2
B ~Dlu- :
B~ < k- i
Let
g = Y kA, A eB,(0).
k=1
Then
_ [ee) o0 (o]
‘f(u) ) _g(A)H | <Z it = 3 ) = 3 g
H-A K=" \k2o k=0 k=1
1 o0 (o]
= = D =A%) = Y Jog A
p-A k=1 k=1
o) k _ ak
- zxk<" e k}lk‘1>
k=1 p-A
0 k —/\k 1
< Y bad|=— - A"
k=1 -
. k-2
< =AY k(k = Dlxgllp
k=1
=lu-AS(p) —»0, as p—A uAeB,(0).
This completes the proof. O

Corollary 8.2. Let the abstract function f : A — X be analytic at A = 0. Then f is
infinitely many times differentiable in By (0), where R is its convergence radius. Moreover,

dn [ee] n
D = k;k(k ~1)-(k-n+ A", A eB,(0).

Proof. The proof many times invokes Theorem 8.15. O

Definition 8.11. Let the abstract function f : A — X be infinitely many times differ-
entiable at A = 0. The series

® 1 dk k
== f(0)A
go k! dAk

is called the Taylor series of the abstract function f.

If the abstract function f : A — X is analytic at A = 0, using Theorem 8.13, its
Taylor series coincides with (8.8), and hence, it is convergent for A € B(0).
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8.4 The method of the smaller parameter

Suppose that X and Y are normed vector spaces and A,B ¢ £(X,Y). Consider the
equation

Ax - ABx =y, (8.13)

where y € Y is given, A is a scalar parameter, |A| < p, x € X is unknown. Suppose that
A lexistsand A7! € £(X,Y) and

ABIJA™Y < 1. (8.14)

By Theorem 4.20, we see that the operator (A — AB)™! exists and that it belongs to
L(X,Y). Hence, equation (8.13) has a unique solution,

xA) = (A -AB)y, Al <p,

A satisfies (8.14). Assume that the solution x is an analytic function of A. Suppose that
its representation is

x(A) = Ozojxk/\k. (8.15)
k=0

We put (8.15) in (8.13) and we get

A.( i xk/lk> —AIB( i xk)lk> =y,
k=0

k=0
or
(o8] [e9)
D AFAax, - D A4 Bx, =y,
k=0 k=0
or
o0 o
Z KAax, =y+ Z A By,
k=0 k=0
or
Axy +AAx +/\2Ax2+~-~+/\kAxk 4+ =y +ABx, +)l2113x1 +---+)lk+1]Bxk el
Hence,

Axy =Yy, AXxp, =Bx;, keNg.
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Then
Xo=Aly,
X = AT Bxy = AT BA Y,
Xz = A_llel = A_IIB(A_llBA_ly) = A_l(]BA_l)zy_
Suppose that
-1 11k
X =A"(BAT)y.
Then
X = ABx, = ATB(AT(BATY)Y) = a7 (BAT Y.
Therefore
XM = Y A7 (BA Ak,
k=0
Let
c 1 Wk Gk
Xy) = Y ATH(BAT) yA".
k=0
Then
> - Y’
) -] = > A (BAT) A"
k=n+1
S k
< Y AT (BAT) YA
k=n+1
o 1 1 k
< Y [aTdmAT I Iyl
k=n+1
(AlIBA ™!

_ -1
= A

Now we consider the equation

AMx =yQ),

— 287

(8.16)

where x € X is unknown, y(1) € Y is given, A(A) € £(X,Y) is given, A is a scalar pa-
rameter, [A| < p, p > 0. Suppose that A(A) and y(A) are analytic at A = 0 and A10)
exists and it belongs to £(Y, X). Since A (A) and y(A) are analytic at A = 0, they can be
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represented in the form of a power series with convergence radiuses p; and p,, respec-
tively,

AN =Y ANy =Y ik (8.17)
0 =

Since A (A) is analytic at A = 0, there exists an r > 0 such that
(A - A0)AT(0) <1
for |A| < r. Hence, equation (8.16) has an unique solution
x) = A7 QyW), 1Al < min{p,, 1},

and x is analytic at A = O with convergence radius R = min{p,, r}. We will represent the
solution x in the form

x(A) = Z xk)lk for |A| <R. (8.18)
k=0

We put (8.17) and (8.18) in (8.16) and we get

(i Ak)t">< i xk)lk> = i v, <R,
k=0 k=0 k=0

or
o0 m o0
> ( Azxmz>/t’" =Yy, <R
=0\ =0 k=0
Therefore
m
AoXo = Yo Z AXp_ =Ym-
1=0
Let

lyall < My, |ALAGY| < MB™,

for any n € N and for somea > 0, 8 > 0, M; > 0and M > 0. By Theorem 8.12, it follows
1

that p, > é Moreover, for |A] < g We have
(o]
Y A A

n=1

W 1
< Y lanAgiA”"
n=1

(A - A0)A(0)| =
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<MIALY (BIA)"
n=1

= MW <1
=B "

Therefore

R>min{a™, (M +B)7'}.

8.5 An application to integral equations

Consider the Fredholm integral equation of the second kind,
1 s
¢x) = u(x) + g J cos(x —y + xy)p(y)dy, x € [-m, m], (8.19)
-

where u € C([-r,m]) is a given function, ¢ € C([-m, ]) is unknown function, A € F
is a scalar parameter. Suppose that C([-m,]) is endowed with the maximum norm.
Define the operator A (A) : C([-m, 1]) — C([-m, r]) as follows:

(AQ)P)(x) = Pp(x) - % j cos(x -y + Axy)p(y)dy, xe€[-mm], Ae€F.

For ¢;, ¢, € C([-m, 1]) and for a € F, we have

(AN + $2))00) = (g + P - % J COS(X — y + M) (by + ) V)dy

-1
4

= () + Py(x) - % J Cos(x - y + M) (1) + o)) dy

-1

=y (x) - % cos(x -y + Axy) ¢, (y)dy

Je—x

2

o) - j Cos(x — y + Axy),(y)dy
(

= (A1) () + (AN)g,) (),

Sk

(AN (@) () = (@) (x) - j cos(x - y + Axy)(ag)(y)dy

- ag(x) - % j cos(x - y + Axy)(ad(y))dy
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= ag(x) - % J cos(x -y + Axy)p(y)dy

=a(AM)P)(x), xe[-mm], AeF.

Therefore A(A) : C([-m,m]) — C([-m, m]) is a linear operator. Also, for any ¢ €
C([-m, m]), we have

(ANP))| = |p0) - %1 j cos(x -y + Axy)p(y)dy
1 Vs
< [¢00] + o [ leostr -y + |9y
S j Ipldy

-

=gl + gl =2I¢l, A€F,
whereupon
[AP| <2lgll and [AQ@)|<2, AeF.

Consequently A(A) € L(C([-m,])) for A € F. We observe that
d .
a cos(x —y + Axy) = —(xy) sin(x — y + Axy)

:xycos<x—y+/1xy+ %)
2

%cos(x—er/lxy):—(xy)zsin(x—y+/lxy+ g)

=(xy)2cos(x—y+/1xy+n), x,y € [-m,m], AePF.

Assume that

k
;A" cos(x —y + Axy) = (xy)k cos(x -y + My + k§>’ x,y€[-nm], AeF, (8.20)
for some k € N. We will prove that

k+1
k+1 VA
P cos(x —y + Axy) = (xy) cos<x —y+Axy+ (k + 1)5>, x,y € [-m,m], AeF.
Indeed, we have

k1

d Ak“

cos(x —y + Axy) = di<dd—cos(x y+Axy)>
a
dA

= <(xy) cos<x y+Axy+ k= ))
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= —(xy)*! sin(x —y+Axy + kg)
= (xy)<*! cos(x —y+Axy + kg + g)
= ()< cos<x —y+Axy + (k+ 1)%), X,y € [-m,m], Ae€F.

Consequently (8.20) holds for any k € N and A € F. Therefore

cos(x -y + Axy) = z (xy)k cos(x -y+ kg)/&k, X,y € [-m, m],
k=0

which is convergent for |A| < # Note that A (A) is analytic at A = 0. Equation (8.19)
can be rewritten in the form

AN = u. (8.21)
We have
1 n
(A©)B)0) = $0 - 5 | costx - y)gdy
=) - 1 jf(cos x cosy + sinx siny)g(y)dy
2 A
- 900 - X [ cosypndy - X [ sinyp)dy.
Let
1 i 1 T .
A= [ cosypmdy. B= o [ sinypmdy.
Then
(A0)p)(x) = p(x) —Acosx - Bsinx, x € [-m,m].
Let
Y(x) = p(x) —Acosx —Bsinx, x € [-m,m].
Hence,

¢(x) = P(x) + Acosx + Bsinx
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and
1 n
A= o J cosy(Y(y) + Acosy + Bsiny)dy
=
1 [ Al B |
- kel 2 =2 ;
=5 J cosyy(y)dy + I J(cosy) dy + > J cosy sinydy
- - -
1 [ A [ 1+cos(2y)
- A [ 21rcoslyy)
o J cosyply)dy + 2 J 2 dy
- -
B,. ™"
+ 4—n(sm y) o
1 [ Al, AT
= 5. J cos yy(y)dy + = J dy + = J cos(2y)dy
- - -
A 1]
=3t % J cos yy(y)dy,
-
or
é L jfcos Y(y)d
2" o ywwar
-
or
1 n
A= J cosyp(y)dy.
-
Next,

n
B= % J siny(Y(y) + Acosy + Bsiny)dy

-

n n
1 . A .
=5 J sinyy(y)dy + 7 J cosy sinydy
- -
B n
. 2
+ o J(smy) dy
-

. B |
o sinyy(y)dy + i J(l - cos(2y))dy

2n

I
|

. B
sinypy)dy + =
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or
B 1 (.
3= 5 J sinyy(y)dy,
-
or
1 n
B=— | sinypidy.
-
Consequently
cos X 0 sinx r .
900 =900+ =X [ cosypiy)dy + S [ sinypy)dy
- -
1 n
=P(x) + p J cos(x — y)yp(y)dy,
-
whereupon

(AT0)Y)(0) = Yo + % J cos(x —y)p(y)dy, x € [-m,m].

Also, for ¢ € C([-m, ]), we have

T[

1
Yoo+ j cos(x - yn/z(y)dy’

-1

(A7 0)) ()| =

4

1
< o] + — [ eostr - y)lw)ldy

<1l 21l = (142 )i,

Consequently
1 4 - 4
[AT (0] < (1 + ;>||z/;|| and [AT(0)) <1+ . (8.22)

We conclude that A~}(0) exists and it belongs to £(C([-, ])). Since A (A) is analytic
at A = 0, there exists r > 0 such that

(A - A0)AT(0) <1
for |A| < r. Hence, equation (8.21) has an unique solution

dpN) =AMu for A<,
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and ¢(A) is analytic at A = 0 with convergence radius R = r. We have

1 S
P00 - j 3 ot cos(x y+il )A"dJ(y)dy

— 0 -5- Y < J o cos(x-y + 1<§)¢(y)dy>/1k.

k=0
Let
(Ro$)0) = $00 - o [ costx = y)pw)dy,
(A0 =~ [ ) cos(x -y +K3 )y, keN.
Then

(ADP)0) = Y (AP, xe[-mal, <.

k=0

We represent the solution ¢(A) of (8.21) in the form
NS
k=0

Then

(]

u() = Y Pk
k=0

AT T\ \[ v k
- = (xy) Cos<x—y+k—>/1 )( O A )dy
2;1_£<Z 2 go k

k=0

=Y oA
k=0

- 3 i J(X}/)lcos<x—y+lz>¢ (y)dy A, xel-mm
21 & = 7 )Pkt > ,1T).

Hence,

) = o0 - 5. [ costx = Ygo)dy.
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kT

0=g0-—~ Y j(xy)’ cos(x-y+ 13 ) )y, keN, xe[-ma,
”I 0 - 2
and
Po(x) = ulx) + % J cos(x —y)u(y)dy = A(Ou(x), x € [-m,m].
Next,
1< r 1 s
0=¢;(x) - — () COS(X—y+I—>¢_(y)dy
05 %] 2 o
1 n
=, (0) - p J cos(x — y)¢;(y)dy
1 n
- EJ xyco'a‘(x -y+ %>¢0(Y)d)’-
Therefore

1(0) = % Txyc05<x -y+ %)‘Ibo()’)d)’

n T
1 T
+ 22 J cos(x —y) J yz cos(y -zZ+ E)qbo(z)dzdy, X € [-m,m],
-

and so on for ¢,, ¢;3, .... Now we will make an estimate for R. For ¢ € C([-m,7]), we

have

1 n

[(A19)(x)| = o J xycos(x -y + %T><l)(y)dy‘
1 [ 5
= EJ plylcos(x -y + 3 )|[400ldy < 2 a )i,
whereupon
1Al < —( %)l
and
2
1440 < = ().
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Also,
1 n
(Aa9)00] = | | 37 costx -y + mpy)dy
-1
1 2
<5 J xX*y?|cos(x —y + m)||p()|dy < 7_r(ﬂ4)||¢"’
-
whereupon
2, 4
A0l < 7—1(” gl
and
2
A, < ;(n“).
Assume that
2
1Al < ~ (%) (8.23)

for some k € IN. We will prove that
2
Al < Z (7).

Really, for ¢ € C([-m, 71]), we have

|(Ak+l¢)(x)| =

1 T 4
— j ()t cos(x —y+(k+ 2 >¢(y)dy|

1 b
< J |xy|k+1
-1

cos<x —y+(k+ 1)§>l|¢(y)|dy

n
1 ke J < _ E)’
szn(n )< cos| x y+(k+1)2 dy |l
-1
2, k2
Sﬂ(ﬂ il
whereupon
2
1Al < =~ (@ )¢
and

2 k2
Al < ;(” ).
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Consequently (8.23) holds for any k € N. Hence, using (8.22), we get
JAAs] < 1AkAG
< g(712)k<1 + i)
b4 b1
- Qn+ 82 = 2+ 8) ().

Hence,

and

. {1 1 } 1
R > min{ —, = .
2’ m?+2m+8 T +2m+8
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9 The parameter continuation method

9.1 Statement of the basic result

We will start with the following useful lemma which we will use for the proof of the
main result in this section.

Lemma 9.1. Let A be an open and a closed subset of [0,1]. Then A = [0,1].
Proof. Suppose that A # [0,1]. Let

B=[0,1]\ A

We see that B is an open and a closed subset of [0,1] and A n B = @. Because A is a
bounded set, there exist a = sup A and b = inf A. Since A is closed, we have a, b € A.
If a < 1, using the fact that A is an open set, we conclude that there exists x > a, x € A,
which is a contradiction. Then a = 1. If b > 0, using the fact that A is an open set, there
isany € A,y < b, which is a contradiction. Consequently b = 0. As above, we have
0,1 € B. Consequently 0,1 € A n B. This is a contradiction. Therefore A = [0, 1]. O

Remark 9.1. Below, for convenience, we will write A () instead of (A (A))™! when it
exists.

Theorem 9.1. Let X and Y be Banach spaces, A(A) € L(X,Y) and it is continuous with
respect to A, A € [0, 1]. Suppose that there exists y > 0 such that

[AQx] = ylx (9.1)

for any x € X and for any A € [0,1]. Let also A"}(0) exist and belong to £(Y,X). Then
A7Y(1) exists and it belongs to £(Y, X) and

A7) <y

Proof. Let A be the set of all A € [0,1] for which A '(A) exists and belongs to £(Y, X).
Then, using (9.1), we have

A" <y
for any A € A. Note that 0 € A and A + 0. Also, for A, € A,

(A - AA))A™ A < [AN) - AQ|A™ Ao

1 9.2)
<y |AQ) - AR

for any A € [0,1]. Let Ay € A be arbitrarily chosen. Since A(A) is continuous for any
A € [0,1], thereisa 6 = 6(y) > 0 such that
|AQ) - AQ)| <y

https://doi.org/10.1515/9783110657722-009
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300 —— 9 The parameter continuation method

whenever |A — Ay| < 6. Hence, using (9.2), we find
(AL - A)A A < 1

for |1 — Ayl < 6. Therefore A7Y(A) exists and it belongs to £(Y, X) for any A for which
A = Ag| < 6. Because A, € A was arbitrarily chosen, we conclude that A is open. Let
{A}nen be a sequence of elements of A such that A, — uy, as n — oco. Since

A7 <y
we get

J(A@A) - AGo) AT A < AR - Ao |47 A,

1 (93)
<y AR - Ao,

Because A (A) is continuous in A, there exists an N € N such that
[AQ,) - Auo)| <y
for any n > N. Hence, by (9.3), we find

(A - AGe))A™ ()] < 1

for any n > N. Therefore A ~!(u,) exists and it belongs to £(Y, X), i. e., 4, € A. Conse-
quently A is closed. Since A is open and closed, using Lemma 9.1, we have A = [0, 1].
Consequently A '(1) exists and it belongs to £(Y, X). This completes the proof. O

9.2 An application to a boundary value problem for a class of
second order ordinary differential equations

Consider the boundary value problem

"+ b)Yy +ct)y=a(t), 0<t<l, (9.4)
y(0) =y(1) =0, (9.5)

where a, ¢ € C([0,1]), b € C'([0,1]), and
c(t) - 1b'(l‘) >a> —§, t €[0,1],
2 m

a is a given negative constant. Let X = C?([0,1]), Y = C([0, 1]). We endow Y with the
maximum norm and X with the norm

— ! "
Iylx = fé}ﬁl"]ly(t” + g{gfﬁly ]+ max VG
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9.2 An application to a boundary value problem for a class of second order

y € X. Define the operators A, B : X +— Y as follows:

d2
“ae”
2

d d
By = —Ey + b(t)ay +c(t), te[0,1], yeX

Ay =

Consider the boundary value problem

"=z 0<t<]l,
y(0) =y(1) =0,

where z € Y. We integrate (9.6) from O to t and we get
t
' (t)=c, + Jz(s)ds, t €[0,1],
0
where c; is a constant. Again we integrate from O to ¢t and we find
t T t
—y(t)=c, +cit + J Jz(s)dsdr =cy+cpt+ I(t - 5)z(s)ds
00 0
or

t
y(t) = c3+ ¢4t - J(t —s)z(s)ds,
0

— 301

(9.6)
9.7)

where c, is a constant, c; = —c,, ¢, = —c;. We will find the constants c; and ¢, using

(9.7). We have

y(0)=c3=0,
1

1
y)=c3+¢c, - J(l - 8)z(s)ds = ¢, — J(l —-5)z(s)ds = 0,
0 0

whereupon

1
Cy = J(l —S)z(s)ds.
0
Therefore

1 t
y(t) = I t(1-s)z(s)ds — J(t —8)z(s)ds, te][0,1].
0 0
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We have y € X. Therefore the problem (9.6) and (9.7) has a solution in X. Assume that
the problem (9.6) and (9.7) has two solutions y;,y, € X. Let

v=yYi=-Ya
Then
v'=0, 0<t<1, v(0)=v(Q) =0.

Hence,

Vi) =cs, te[0,1],
where c; is a constant, and

v(t) =cst +¢c6, te[0,1],
where ¢ is a constant. Also,
v(0)=¢cs=0, v(1)=¢;=0,

i.e.,

v(t)=0, tel0,1].

Consequently the problem (9.6) and (9.7) has a unique solution in X for any z € Y and
there exists A™! : Y — X for which we have

1 t
(A2 = j(t _ ts)2(s)ds — J(t _s)z(s)ds, te[01], zeY.
0 0
Letz;,z, € Yand a € F. Then

(A’l(z1 +2,))(t) =

O e,

t
(t = t5)(z, + 2)(s)ds — j(t _8)(z, +2,)(s)ds
[0}
1
= j(t — t5)(z,(S) + z,(s))ds
0
t
- J(t = 8)(z1(8) + z5(s))ds
0

1
= I(t —ts)zy(s)ds — | (t — s)z;(s)ds
0

Ot~
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t t
+ J(t — t5)z,(s)ds — J(t —8)z,(s)ds
0 0

= (A7 z))(0) + (AN z) (@)

and

(A (az) () =

Ot—— -

t
(¢ - 5)@z)(@)ds - [ (¢ - 9)az)(s)ds
0

1 t
=a J(t — ts)zy(s)ds — a J(t - 8)zy(s)ds = a(A"l(zl))(t), t € [0,1].
0 0
Therefore A~ : Y — X is a linear operator. Next, for z € Y, we have

(A7 @)(t)| =

0

1 t
J t(1-s)z(s)ds - J(t —8)z(s)ds
t

(t —ts)|z(s)|ds + J(t - s)|z(s)|ds
0

s=1 s=t

)nzn
s=0

C(t-s)’
2

2
t(l S)

1

|
<<t 1- s)ds+ (t—s)ds)llzll
-(-

(5

)uzu

=tlzl < llzll, ¢te[0,1],
whereupon
JA7@)| <lzl and |A7Y <1
Consequently A™! € £(Y, X). Now we define

d2

AN =-45

Ab(t)— +Ac(t), A€][0,1].

Note that A (A) is continuous with respect to A, A € [0,1]. Now we will find an a priori
estimate of the solutions of the following BVP:

—x" + Ab(t)x' + Ac(t)x = y(t), O<t<]1, (9.8)
x(0) = x(1) = 0. (9.9)
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We multiply both sides of (9.8) by x and we get

=x"()x(t) + Ab()x" (E)x(t) + )lc(t)(x(t))2 =x(t)yt), 0<t<l,
which we integrate from O to 1 and we get
1 1 1
Jx(t)y(t)dt =- J’x"(t)x(t)dt +A J b(t)x' (t)x(t)dt
0 0 0
1
A J c()(x()) dt
0
=1 1
=—X (t)x(t) J X (t)
0
A oA 2
E(x(t)) b(t) -5 Jb () (x(t))"at
1 0 (9.10)
A J cO(x(t)) dt
0
1 /1 1
= J(x'(t))zdt -3 J b'(t)(x(t))zdt
0 0
1
A J c()(x()) dt
0
1 1
- J(x’(t))zdt +2 Kc(t) - %b'(t))(x(t))zdt
0 0
We have
[x(s)] = || x'(t)dt
J
J]x (t)|dt
0

1

< dt) ( (x (t))zdt>2

1

1 2
\/§<J(x (t)) ) , sel0,1],
0
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and
1
x(s)| = Jx'(t
1
< jlx'(t)|dt
1 1o :
{J«) (ot
1 ;
<V1 —s([lx'(t)ﬁdt) , se[o,1].
0
Therefore
1
x(s)[* < Vs(1 - s)<J(X'(t))2dt>, s €[0,1], (9.11)
0
and
1 1 1
J(X(S) ) ds < (J x'(t)) dt)J s(1-s)ds
0 0 . 0 (9.12)
VA ] 2
- §<J(x ®) dt), selo1],
0
where we have used
1 3
J Vs(1-s)ds=2 J sin’ t cos? tdt
0 0

(51n(2t))

NIH

Oty O—ua

1- cc2>s(4t) dt

_
t=3

t=0

J dt - = sm(4t)

1
4
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Also,
1 1
j(c(t) - %b’(t))(x(t))zdt >a J(x(t))zdt (9.13)
0 0
and
1 1 1 1
Jx(t)y(t)dt <e J(X(t))zdt + o J(y(t))zdt
0 0 0

for some € > 0, which will be determined below. Now we apply the previous inequality
and (9.12) and (9.13), and we get

1 1 1
1 8
€ J(x(t))zdt e J(y(t))zdt > - jlx(s)|2ds
0 0 0

1

+ A J(X(t))zdt
0
or
1 ( 8 ‘
e J(y(t))zdt > <7_1 -€+ a)l) J(X(t))zdt,
0 0
or
1 1
2 2
-m— t)) dt > t)) dt.
PP J(Y( T J(X( )
Let
4 al
€=—+—.
m 2
Then
1 _ 1
4e(S —e+da) 4+ DE -1 Ay
1
S ran?
We set
PR
R ea?

EBSCChost - printed on 2/10/2023 3:54 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



9.2 An application to a boundary value problem for a class of second order =—— 307

Therefore
1 1
J(x(t))zdt <q J(y(t))zdt.
0 0
Also,
1 1 1 1 1
€ J(x(t))zdt e J(y(t))zdt > J(X'(t))zdt +Aa j(x(t))zdt,
0 0 0 0
whereupon
1 1 1 1
j(x’(t))zdt < (e - ) J(X(t))zdt + o J(y(t))zdt
0 0 0
1 1 1
< ¢;(e - Aa) J(y(t))zdt + o J(y(t))zdt
0 0
1
= (¢165 + C3) J(y(t))zdt,
0
where
1
=€-Aa, c3= e
By (9.11), we obtain
1 ‘ :
IRV
[x(t)| < E((!(x (1) dt)
and by the inequality
1 1
(j(y(t))zdl‘) <lyly,
0
we get

1 ;

1 1 2
[x(6)] < —=(ci6;, + c3)2< (@) dt)
V2 J

€16, + G5
< \/T"an-
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Consequently

€16y + C3
max (x(f)| < \|——— . 9.14
max x(0)] < 2L 2y (9:14)

Since x(0) = x(1) = 0, thereis a £ € (0,1) such that x'(¢) = 0. Note that we can rewrite
equation (9.8) in the form

and integrating from ¢ to ¢, we obtain

t
¢

or

t
X' () = J(/\c(r)x(‘r) —y()e M PO g ¢ e 0,1,

¢

Therefore there exists a constant m > 0 such that

!
ma t)| < m( max |x(t
max|x' (o) (t6[0J><1|x( )| +lylly)
CC, +C
< m( % + 1>||y||Y.

From equation (9.8), it follows that there exists a constant m; > O such that

(9.15)

max |[x" (t)] < ml(max [x' ()| + max |x(8)]
te[0,1] te[0,1] te[0,1]

+ tren[g)l)gly(ﬂl)

CCH + C CCy + C
<my(m((SLTS 1) 4 [9LTE 1)y,

By the previous inequality and from (9.14) and (9.15), we conclude that there exists a
positive constant M such that

Ixllx < Mlylly-

Consequently the problem (9.8) and (9.9) has a unique solution that belongs to X.
Hence, by Theorem 9.1, we conclude that the problem (9.4) and (9.5) has a unique so-
lution in X.
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10 Fixed-point theorems and applications

The aim of this chapter is the study of some fixed-point theorems. We start with the
simplest and best-known of them: Banach’s fixed-point theorem for contraction maps.
Then we address the Brinciari fixed-point theorem, which is a generalization of this
theorem. We will then see more powerful and somewhat deeper theorems. We can thus
study successively the fixed-point theorem of Brouwer (valid in a finite number of di-
mensions) and then the fixed-point theorem of Schauder (which is the generalization
to an infinite number dimensions). Unlike Banach’s theorem, the proofs of the latter
two results are not constructive, which explains why they require somewhat more so-
phisticated tools. Many different proofs of these results exist and one may be interested
in one or more of them.

10.1 The Banach fixed-point theorem

Banach’s fixed-point theorem (also known as the contracting-application theorem)
is a simple-to-prove theorem and applies to complete spaces; it has many applica-
tions. These applications include theorems on the existence of solutions for differen-
tial equations or integral equations and the study of the convergence of certain meth-
ods, like Newton’s in solving nonlinear equations.

Suppose that X is a metric space with a metric d. Let also A ¢ X.

Definition 10.1. We say that a map T : A +— X is a contraction map if there exists
k € (0,1) such that

d(Txy, Tx,) < kd(xq,%;)

for any x;, x, € X.
Exercise 10.1. Let T : A — X be a contraction map. Prove that it is continuous on A.

Definition 10.2. We say that amap T : A — X has a fixed point x, € A if
Txg = Xq.
Theorem 10.1. Let X be a complete metric space and
T:X— X
be a contraction map,
d(Tx;, Txy) < kd(xy, %)

for any x;, x, € X and for some constant k € (0,1). Then T has unique fixed point in X.

https://doi.org/10.1515/9783110657722-010
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Proof.
1.  Firstly, we will prove the uniqueness of the fixed point of the map T. Let x;, x, be
two fixed points of T. Then T'(x;) = x;, T(x,) = x, and

d(Txy, Tx,) < kd(xy, x,),
whereupon
d(xy,x;) < kd(xq, x,).

Hence, d(x;,x,) = 0. Therefore x; = x,.
2.  Now we will prove the existence of a fixed point of the map T. Let x, € X be arbi-
trarily chosen. Define the sequence {x,},,cn as follows:

Xpe1 = Tx,, neNg,

where N, = N U {0}. We will prove that it is a Cauchy sequence in X. Let p,q € N
be such that g > p. Then

d(xp, Xg) < d(Xp, Xpy1) + -+ + d(Xg_15Xg)

Thus,
d(xp, X,41) = d(Tx,_1,Tx,)
< kd(xp_1, Xp)
< kzd(xp,z,xp,l)
<...
< kP d(xg, x1).
Then

d(x,,x,) < (kP + K4 kN d(xg, X))

q-1
= K d(xg, %) Y K
=0

kP
< md(xo,xl).

If d(xg,x;) = 0, then xy = x; = Txy and x is a fixed point of T. If d(xy, x;) # O,
then for any € > O there exists n, € N such that

kP
md(xo,xl) <€

for any p > n,,. Therefore

d(X :Xq) < ed(X0>X1)
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forany p,q € N, g > p > ny. Therefore {x,,},cn is @ Cauchy sequence in X. Because
X is a complete metric space, we conclude that the sequence {x,},cy is convergent
to x € X. Therefore

Xy — X, as n— oo,

and
Tx, - Tx, as n— oo.
Hence,
Tx = x.
This completes the proof. 0

10.2 The Brinciari fixed-point theorem

In this section we present Brinciari’s fixed-point theorem which is a generalization of
the Banach fixed-point theorem. This is done by introducing a full-size contraction. In
2002 Branciari demonstrated the following theorem.

Theorem 10.2. Let X be a complete metric space and let the map

T:X+— X
satisfy
d(Tx,Ty) dixy)
P(6)dt < ¢ j b(6)dt (10.1)
0 0
forx,y € X,0 < c <1, where
¢:R, —R,

is an integrable function in the Lebesgue sense such that
b
J $(tdt >0 (10.2)
0

forany b > 0. Then T admits a unique fixed point z in X. On the other hand, for every
Xy € X, we have

lim T"x, = z.
n—oo
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Proof. Let x € X be arbitrarily chosen and fixed.
Step 1. We will prove that

d(T"x, T™'x) d(x, Tx)
J p(t)dt < c" J P(t)dt
0 0

for any n € N,,. Note that

d(T"x, T™'x) d(T™ ', T"x)

b(t)dt < c J ()t
0

<...
d(x,Tx)
< j b(t)dt.
0
Therefore
AT, T x)
Tim J d(t)dt = 0. (10.3)

Step 2. Suppose that
s n n+l_\ _
lim supd(T"x, T x) =a,
for some a > 0. Let € > O be arbitrarily chosen. Then there exist k, € N and a
sequence (T"x);_such that, for all k > k,, we have
|d(T™x, T""'x) —a| < &
and

d(T™x, T x) > g

Since ¢ is positive, using (10.2) and (10.3), we get

d(T"k x, T"k+1x)

0= lim J d(t)dt

k—00

al2

> J ¢(t)dt.

0

Therefore,

lim d(T"x, T"'x) = 0.

n—oo
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Step 3. Now we will show that the sequence {T"x},.y is a Cauchy sequence in X. As-
sume the contrary. Then there exist € > 0, k. > 0, h € N and two subsequences
{my}en and {ny}ien with my > ny > k. such that

d(T™x, T"%x) 2 &, d(T'x, T"%x) <¢e, for all hem+1,...,my—1.

Note that
€ <d(T™x, Tx)
< d(T™x, T™ 'x) + d(T™ x, T™x)
< d(T™x, T™ 'x) + €.
This gives

d(T™x, T"x) > &, as k — oo. (10.4)
Moreover, there exists u € N such that, for any k € N, k > u, we have
d(T™Hx, T ) < €.
Indeed, if there exists a subsequence {m};cy such that
d(T™a M, T x) > &,
then we have

£ <d(T™x, T x)
< d(T™ ", Tx) + d(T™x, T x) + d(T™ax, T x).

Using (10.3) and (10.4), we find
d(T™*x, T x) - &, as 1— oo. (10.5)

Applying (10.1), we obtain

d(T™ M T+ x) d(T™ x, T" x)
d(6)dt < ¢ J d()dt. (10.6)
0 0

Using (10.4), (10.5) and (10.6), one finds

J d(t)dt < ¢ J b(t)dt, (107)
0 0
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which is a contradiction. Therefore, for some u € N, we have
d(T™*x, T x) < &

for all k > u. Now we will prove that there exist a positive number 6, € (0, €) and
k. € N such that, for every k > k., we have

d(T™ %, T %) < £ - 6,..
Assuming the existence of a sequence {k;};cy € N such that
d(T™x, T ) < &

and using (10.2), we have

™ T x) d(m™ax, T x)
J d(t)dt < ¢ J o(t)dt.
0 0

Let I tend to infinity. Then
&€ &€
j d(t)dt < ¢ j d(t)dt.
0 0

In conclusion of this step, we will prove that the sequence {T"x},,cy is a Cauchy
sequence in X. Indeed, for any k € N, we have

£ < d(T™x, T"x) < d(T™x, T™ " x) + d(T™ ™ x, T x) + d(T™ " x, T"x).
Then
£ < d(T™x, T™x) + (& - 8;) + d(T™"x, T"x).
Passing to the limit when k tends to infinity, we find
e<e-6,,

which is a contradiction. Hence, the sequence {T"x},y is a Cauchy sequence
in X.

Step 4. In this step we will prove the existence and uniqueness of the fixed point of the

map T. Since X is a complete metric space, then there exists a point z € X such
that

z = lim T"x.
n—.oo
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Moreover, z is a fixed point of the map T. Indeed, suppose that

d(z,Tz) > 0.
Then
0 < d(z,Tz) < d(z, T""'z) + d(T""'z, Tz).
Note that
lim d(z, T""'z) = 0.

n—-oo
We will prove that

lim d(T""'z,Tz) = 0.

n—oo
Observe that

d(T™'z,T2) d(T"x,z)
¢(tdt <c j ¢t)dt -0, as n— oco.
0 0

If we suppose that
d(T™'x, Tz)

does not converge to zero when n — oo, then there is a subsequence {T™"x}, .y
such that d(T™*'x, Tz) > ¢ for some ¢ > 0. Hence, we have

&

0 < J(;b(t)dt
0
d(T™%*x, Tz)

P(t)dt

IN

0

d(T"x,Tz)

c j ()t
0

-0, as k— oo,

IN

which is a contradiction.
&
J ¢(t)dt > 0.
0

Therefore z = Tz. The uniqueness of z follows from the condition (10.1). This
completes the proof. O
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Remark 10.1. If one takes ¢(f) = 1 in the Brinciari theorem, then we get the Banach
fixed-point theorem.

Example 10.1. Let

1

X:{—:HGN}U{O}.

n

We provide X with the metric
dx,y)=Ix-yl, xyeX

Since X is a closed subset of R, X is a complete metric space. Consider the map

T:X—X

defined as follows:

- n%l ifx = % neN,
X =

0 ifx =0.
Also, define the function

¢:R, —R,
by

#(0) = t/2(1-1nt) ift € (0,e),
0 if t € {0} U [e, cO].

Note that

e
Jd)(t)dt =e’®, t>o.
0

1. If x = y, we have

d(x,y) =0,
d(Tx, Ty) = 0,
and
d(Tx,Ty) d(xy)
J d(6)dt < ¢ J P(t)dt
0 0

forall c € (0,1).
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2.Ifx=0,y = %,weget

d(Tx,Ty)

P(t)dt

Il
e
-
+ |-
P
——

i)
n+l\n+1

()

S - —

2\n
d(x.y)

-1 j b(t)dt.

1 1 .
3.Ifx = Y=, nme N, we obtain

d(Tx,Ty) Y|-L -1
1 1 n+l  m+1

J b(t)dt =

0

n+l m+1

B < |n _ m| >(n+1)(m+1)/|n—m|
“"\(n+Dm+1)

|n _ m| (n+m+1)/|n-m| nm nm/|n-m| |n _ m| nm/|n-m|
=<(n+1)(m+1)> <(n+l)(m+1)> < nm >

1 |n _ m| nm/|n-m|
(")
2 nm
1 dx.y)
== t)dt.
> | e
0

Hence, by the Brinciari theorem, we conclude that 0 is the unique fixed point of T.
Assume that

d(Tx, Ty) < cd(x,y), ce€(0,1), x,yeX

Then, for x = % andy = L we have

n+l?
d(Tx, Ty) = ;
n+1)(n+2)
d(x,y) = m,
and
d(Tx, Ty)

>

xyeXx#y dx,y)

which is a contradiction.
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10.3 The Brouwer fixed-point theorem

A remark to consider: (three dimensions) the mathematician Luitzen Egbertus Jan
Brouwer remarked, by mixing his coffee with milk, that the central point of the surface
of the liquid, in the midst of the whirlwind created by the rotatory movement of the
spoon, remained motionless. He examined the problem in this way: At any moment
there is a point on the surface which is not changed.

We will examine the problem in n dimensions following Brouwer. Let

B, ={xeR": x| <1} (10.8)
and
s =0B,,
We will use the maximum norm on B,, defined by
IfIl = max{|f(x)] : x € By}, (10.9)

Theorem 10.3. Any continuous mapf : B,, — B,, admits at least one fixed point in B,,.

Proof. We will use the maximum norm on B,, defined by
Ifl = max{|[f(x)| : x € B} (10.10)

Note that for every € > 0 there exists a polynomial P such that

If - Pl <e&.
We have

IPl<1+e.
Let

P(x =
Qx) = %, xeB,.

We have Q : B,, — B,, and

If - Qll < 2e.

Suppose now that x ¢ B,, is a fixed point of Q. Then
|x = f(0)| = |Q(x) - f(x)| < 2e. (10.11)
Thus f admits a fixed point x € B,,. Assume that f € C'(B,,,). Let

PQA) = al’ +2bA+¢c, a>0,
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be a polynomial satisfying the conditions P(0) < 1 and P(1) < 1. Since P is convex we
have exactly two values A, and A, such that P(A;) = P(A,) = 1. More precisely, we have
A <0<1<Aand P(A) <1fordy <A <Ay So0,A =A-VC, A=A+ VCwithA = 2,

C=(2?+ > L because A, - A > 1.

Now we suppose that f does not admit a fixed point. Because B,,, is compact, there
exists ay > 0 such that

Ifoo-x| =y
in B,,. For all x € B,,, the quadratic polynomial
PQ) = |x + A(f () - x)[]
satisfies
2 2 2 2

PO)=c=IxI"<1, PO =|fx)| <1, a=|fx)-x| >y’

and
b = x(f (x) - x).

The function A; = A,(x) is negative and belongs to ct (ﬁm) sinced; = A- VC. We define
the function g € C!(B,,) as follows:

gx) = () (f(x) - x)
and
h(t,x) = x + tg(x)

for 0 < t < 1and consider the integral

V(t) = I det %dx - j det(Id " t%)dx (10.12)

B, B,

here g—ﬁ and g—i are the Jacobians of order n x n of h and g, respectively.
We will show that

V(t) =By, tel0,1],
where [B,,| is the volume of B,,. By the definition, V(0) = |B,,|. Note that we have

InL,x)[* = [x + 4,00 (Fx) - x)[* = P@y) = 1.
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Moreover, h(1,-) = ﬁm forx € S™1 aB . So, forx € Bm, the matrix ah(l X s singular.

Otherwise h(1,0) becomes a bijection and it associates any nelghborhood of x € B,
with a neighborhood h(1, x). Note that the function g of class C! satisfies the condition
of Lipschitz,

lgx) -g(x)| <Llx-x'| in B,

Moreover, g(x) = 0 for x € aﬁm, since in this case P(0) = |x|? = 1 and hence Ax) =
Let Q be the projection on the unit ball

Qx=x, for |x|<1,
X

Qx=—, for |x|>1
|x|

We have

|ox - Qx| <

Then the function g(x) = g(Qx) satisfies the Lipschitz condition in R" with the same
constant L (g is simply an extension of g to R" by 0 outside of B,,). Now we will prove

that for 0 < ¢ < 1, the mapping h(t, ) is a bijection of B,, into B,,,. To show that, write

h(1,t) = x + tg(x),

and let a € R". The equation H(t,x) = a is equivalent to x = a — tg(x). Since the right
hand side is contraction with the Lipschitz constant < 1, there exists a single fixed
point x = x, with h(t,a) = a, so h(t,) is a bijection of R" into itself. However, h(t, x) is
the identity of R"\ B, and equal to h(t, -) in B,,. Then h(t, -) is a bijection of B,,, into B,,.
The substitution rule of the n-dimensional integral means that V(t) = C, since h(t, -) is
a bijection of B,, into B,, and det X > 0. So, there is an interval

1
O<t<e< -,
L

where V is constant, and since V is a polynomial with respect to t of degree N, V(t) =
IB,,|, O < t < 1. This completes the proof. O

Remark 10.2. James Dugundji showed in 1951 that Brouwer’s theorem characterized
normed spaces of finite dimension by proving that every map of the unit ball of a
normed space X in itself has a fixed point if and only if X is of finite dimension.

10.4 The Schauder fixed-point theorem

The Schauder fixed-point theorem and its multiple variants or generalizations are
used daily to study the existence and multiplicity of solutions of nonlinear equations
of all natures, for example the Navier-Stokes equations in hydrodynamics.
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Theorem 10.4. Let E be a Banach space, D c E be a closed convex set. Then any con-
tinuous and compact map T : D — D admits at least one fixed point.

Proof. 1tis sufficient to find a point x € D such that for any € > 0 we have
Ix — Tx|| < €.

Let € > 0 be arbitrarily chosen. The set B = T(D) is compact. Then there exists a finite
covering of balls {S.(b;)}%,. Let

F={b;,....,b,} cB
and C = spanF. Note that C is compact and convex in D. Define the continuous map
®:B—C
as follows:

0, if [x - b;|l > &,
e—|x-bll, ifllx-b <e,

O(x) = {
We can represent the map @ in the form

p
() = Y 4(0b; with  A;(x) = U;(x)

, € B,
i=1 Ux)

and

p
Ux) = Z U;(x), xeB.

i=1

Note that for every x € B there exists a bg € {b;,...,b,} with
Ix = bgll < e.

We have U(x) > 0 for x € B and @ is continuous on B. Also, A;(x) > 0,1 € {1,...,p},
x € B, and

p
ZA,-(X) =1, xeB.
i=1

Therefore ®(B) c C. Moreover, using

P
X= Z/\l-(x)x, x €B,
i=1
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we get
p
[©x) - x|| = ZA,-(X)(bi - X)
:l (10.13)
< ZAi(x)IIbi -x|<e for xeB.
i=1
This shows that

Ib; —xll <&

otherwise, if |b; — x| > €, thenA; = 0. ThenS = ® - T : D + C. Its restriction
on C is a continuous map from C into C. Since it is convex and compact, there exists
Xy = S(xy) = @(Tx,) € C. From equation (10.13), we obtain

Ixo = Txoll = [|P(Txg) — Tx,| < &,

i.e., x, is a fixed point of the map T. This completes the proof. O

10.5 Non-compact Type Krasnosel’skii fixed-point theorems

In [3], Ball studied the propagation of elastic waves generated by an earthquake in the
earth crust modeled by a channel separated from the atmosphere and the mantel by
two horizontal interfaces. Geographical studies have shown the validity of radiative
transfer in this frequency regime to describe the phase space energy density of seismic
waves. For long times and large distances, the radiative transfer in weakly absorbing
media was approximated by a diffusion equation. It is shown in [3] that this diffusion
is valid in the following sense: the radiative transfer solution factors asymptotically in
the limit of vanishing mean free paths as the product of a two-dimensional diffusion
term in the horizontal directions an a one-dimensional transport term in the vertical
direction. A boundary value problem of the obtained model was investigated by La-
trach [19] for the existence of solutions for isotropic scattering kernels on LP-spaces
for p € (0,00). The general problem for the existence of solutions on L!-spaces was
not fully resolved. Some efforts have been made in [2, 20] in some special cases as re-
gards the isotropic scattering kernel. Here, our aim is to represent an existence result
on L!-space in more general situation for the isotropic kernel.

The second source of our consideration stems from a class of Darboux problems.
This type of problems involves a mixed partial derivative. The typical methods to treat
the existence of the solutions for Darboux problems involve functional differential
equations, and the method of upper and lower solutions based on Schauder’s fixed
point theorem; see [14, 25-27] and the references therein. In this section, we propose
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new approaches to dealing with the local and global existence for a class of Darboux
problems.

Many varieties of difference models (with delay) and Volterra integral models de-
scribing physiological processes, production of blood cells, respiration, cardiac ar-
rhythmias etc. were investigated as regards the existence of positive (periodic) solu-
tions using global bifurcation techniques and Krasnosel’skii fixed-point theorems on
cones; see for instance [21, 28] and the references therein. In this section, we will con-
sider a class of nonlinear difference equations and a class of Volterra integral equa-
tions using a new approach for investigating the existence of positive (periodic) solu-
tions and we will give new ranges for the parameters, participating in this class differ-
ence equations, which ensure the existence of positive periodic solutions.

We observe these aforementioned existence problems, arising from integral and
transport equation, and a class of difference equations, can be transformed abstractly
into fixed problems for sum of two operators T + S. A prototype tool to address such
fixed-point problems is the well-known Krasnosel’skii fixed point theorem, which is
a continuation of the Banach contraction mapping principle and the Schauder fixed-
point theorem.

Theorem A (Krasnosel’skii [18]). Let K be a nonempty closed, convex, and bounded
subset of a Banach space E. Suppose that T and S map K into E such that

(i) T is a contraction with constant a < 1;

(ii) $is compact; and

(iii) any x,y € Kimply Tx + Sy € K.

*

Then there exists x* € K with $Sx* + Tx* = x*.

This overarching result has initiated numerous studies and has been extended
in different directions by modifying assumption (i), (ii), (iii) or even the underlying
space. See [9, 11, 30]. It was mentioned in [9] that the condition (iii) is too stringent
and can be replaced by a mild one, in which Burton proposed the following improve-
ment for (iii): if x = Tx + Sy with y € K, then x € K. Subsequently, in [11], Dhage
replaced (i) by the following requirement: T is a bounded linear operator on E, and
T? is a nonlinear contraction for some p € N. More recently, in [30], the authors firstly
replaced the contraction map by an expansion and then replaced the compactness
of the operator $ by a k-set contractive one, and they obtained some new fixed-point
results.

For the sum of two operators, many kinds of generalizations and variants of Kras-
noselskii’s fixed-point theorem have been obtained; see for example [2, 5, 9, 11, 19,
23, 24, 30] and the references therein. It is well known that, in some previous related
work, the compactness of § plays a crucial role in their arguments. The reason is that
their discussions are based on the Schauder fixed-point theorem.

We note that, although there are so many theoretical generations, those with
practical applications are infrequent [2, 19, 22, 23]. From application point of view,
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Sadovskii’s fixed-point theorem associated with measure of non-compact and some
of the above-mentioned work, we first explore several further extensions of the Kras-
noselskii Theorem in the direction of [30]. It is shown that the Krasnoselskii fixed-point
theorem can be expressed as quite general forms; see Theorems 10.7, 10.8 and 10.9 and
their corollaries. Furthermore, these abstract results not only lead us to define further
generalized contractions and expansions, but they also facilitate the application of
dissipative operators; see Theorem 10.10.

Next, more importantly, it is shown that the generalized formulations of these
Theorems are applicable to a large class of problems. To exhibit the power of them, we
study the existence and uniqueness of solution for some kind of perturbed Volterra-
type integral equation in Section 10.4, the existence of solutions for a class transport
equations, for a class of difference equations and for a Darboux problem in Sections
10.5, 10.6, and 10.7, respectively.

The central point of this section is to address some practical problems arising from
integral and transport equation, and a class of difference equations. To this end, we
appeal to extended fixed-point theorems of Krasnosel’skii type. These extensions en-
compass a number of previously known generalizations or modifications of the Kras-
nosel’skii fixed-point theorem or the Sadovskii fixed-point theorem. Lots of practical
applications are provided to illustrate the theories. Of course, the abstract techniques
and results of this section can be applied to various kinds of other problems which are
not investigated here.

Let E be a Banach space and Qg the collection of bounded subsets of E.

Definition 10.3. The Kuratowskii measure of non-compactness is the map ag : Qp —
[0, 0o) (or simply &) defined by

ag(A) = inf{& >0 ‘ there is a finite number of subsets A; c A

suchthat Ac UAi and diam(A;) <6 }
i

where A € Q, diam(A;) denotes the diameter of the set A;.

For convenience, we list some properties of a which we will tacitly use in the se-
quel. Let A, B € Qg. Then
(1) a(A) = 0 if and only if A is relatively compact;
(3) IfA c B, then a(A) < a(B);
(4) a(AuB)=max{a(A),a(B)};
(5) a(AA) = |A|a(A) for A € R, where AA = {Ax : x € A};
(6) a(A+B) <a(A)+a(B), whereA+B={x+y:xeA,yeB};

Let X, Y be two Banach spaces and Q be a subset of X.
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Definition 10.4. A continuous and bounded map N : Q + Y is k-set contractive if for
any bounded set A ¢ Q we have ay(N(A)) < kax(A). N is strictly k-set contractive if N
is k-set contractive and ay (IN(A)) < kax(A) for all bounded sets A c Q with ax(A) # 0.
N is a condensing map if N is strictly 1-set contractive.

Notice that N is a compact map if and only if N is a 0-set contractive one.

Remark 10.3. In the literature, a continuous and bounded map N : Q — Y is called
strict-set contraction if IN is k-set contractive with k < 1. Obviously, a strict-set contrac-
tion is a condensing map. The concept of (strictly) k-set contractive map with k < 1 or
not is useful, see Proposition 10.1.

Theorem B (Sadovskii [1, 4, 12]). Let K be a closed, bounded and convex subset of a
Banach space E and N : K — K be a condensing map. Then N has a fixed point in K.

10.6 Fixed-point results for the sum T + §

Throughout this section, we always denote by E a Banach space. This section is de-
voted to the study of the fixed point problem of the sum operators T + S or the exis-
tence of solution of the abstract operator equation Tx + $x = x in some subset of E
required in the sequel. Let us begin with some preliminary definitions and lemmas.

Definition 10.5. Let (X, d) be a metric space and M be a subset of Xand T: M +— X a
map. Assume that there exists a constant § > 0 such that

d(Tx, Ty) > Bd(x,y), Vx,y € M.

Then we say that T is weakly expansive. In particular, we call T expansive if § > 1.
Remark 10.4. We note that a (weakly) expansive map T : M +— X may not be contin-
uous. If T : M ¢ X — X is a weakly expansive map, we will denote

lip(T) = max{B > 0 : d(Tx, Ty) > Bd(x,y),x,y € M}.

As usual, Lip(T) is the Lipschitzian constant for T if T is a Lipschitzian map.

In what follows we shall employ Lemmas 10.1 and 10.2, which have been estab-
lished in [30].

Lemma 10.1. Let X be a complete metric space and M a closed subset of X. Assume that
the mapping T : M — X is expansive and T(M) > M. Then there exists a unique point
X" € M such that Tx* = x".

Lemma 10.2. Let (X, | - ||) be a linear normed space, M c X. Assume that the map T :
M +— X is expansive with constant h > 1. Then the inverse of F :=1-T : M +—
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(I - T)(M) exists and
_ _ 1
[E"x— By < 5=yl xy € B,

Lemma10.3. Let T : E — E be Lipschitz with constant § > 0. Assume that for each
y € Ethemap T, : E +— E defined by T\, x = Tx +y satisfies that T{f is expansive for
some p € N and onto. Then (I — T) maps E onto E, the inverse of F :=1-T : E +— E
exists and

"IF_lX - lF_1y|| <Ypllx-yl, xye€E, (10.14)

where

_ B -1
~ (B-D[lip(T?) - 1]’

Yp
Proof. Lety € E be an arbitrary point. Since "JF‘;’ is expansive it follows
ITVx - Thz|| = lip(T))lIx -z, Vx,z € E.

We now claim that both (I - T) and (I - T”) map E onto E. Indeed, notice that T} is
onto, thus Lemma 10.1 ensures there is a unique x* € E such that Tﬁ,’x* = x". It then
follows readily that T,x" is also a fixed point of "Jl"‘;’. In view of uniqueness, we obtain

T,x" = x" and x" is the unique fixed point of T . Hence, we have

(H_T)X* :ys

which implies that I-T : E — Eis onto. The assumption implies that T is expansive
and onto. Then an application of Lemma 10.1 to Tfyx = TPx +y shows there is a unique
x* so that TFyx* = x*, implying I - T? : E — E is onto. So the claim is proved. Next,
for each x,y ¢ E, by the expansiveness of T?, one easily obtains

(T -T7)x - (1 - TP)y| = [lip(T?) - 1]Ix -yl > 0,

which shows that (I — T?) is one-to-one. Summing the above arguments, we derive
that (I - T?) ! exists on E. Therefore, we infer that (I - T) ! exists on E due to the fact
that
-1 p-1
@-m7'=a-17)" Yy T (10.15)
k=0

From Lemma 10.2, it follows

-T2 "x - (@-17) Yy < Ix=yl, Vxye(I-T")E),

1
lip(T?) - 1
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that is,
Lip(1-T7) )« — 1 (10.16)
lip(TP) -1°
A series of induction calculations show that
[T - T*y| < B¥Ix - yI, ¥x,y e Eandk €N, (10.17)

and
lip(T?)Ix -yl < |TPx - TPy|| < BFlx -yl, Vx,y €E.

Recalling lip(T?) > 1, we get 8 > 1. So we conclude from (10.15), (10.16) and (10.17) that

Lip((T - T)™") < Lip((1 - T?)" z Lip(T

Zﬁ ol
hp(TP) - (B-1)(lip(TP) - 1)

This proves the lemma. O

Corollary 10.1. Let T : E — E be a bounded linear operator. Assume that T? is expan-
sive for some p € N and onto. Then the conclusion of Lemma 10.3 holds. In such a case,
Lip(T) = |IT].

Proof. Lety € E be fixed. Notice that T is linear, therefore Lip(T) = |'T|. By induction,
one easily deduces that

T;ﬁx = Tkx+1Fk_ly+--~+”le+y, forall k € N.
This shows
||”ll"l;x - le‘z” = ||1Tkx - Tkz", forallk e Nand x,z € E.

Consequently, TI;’ is expansive and onto, so Lemma 10.3 holds. This completes the
proof. O

A standard argument yields the following result.

Lemma 10.4. Let M be a subset of E. Assume that T : M — E is k-Lipschitzian map,
i.e,

ITx - Tyll < kllx -yl, x,y € M. (10.18)

Then, for each bounded subset Q of M, we have a(T(Q)) < ka(Q).
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Now we are ready to state and prove the first main abstract result of this section.

Theorem 10.5. Let K c E be a nonempty, bounded, closed convex subset. Suppose that
T:E+—> EandS : K — E such that:

(i) T fulfills the conditions of Lemma 10.3;

(ii) Sis a strictly Yp L_set contractive map (or a y-set contractive map withy < Yp s

(iii) [x = Tx + Sy,y e K] = x ¢ K.

Then there exists a point x* € K with $x* + Tx* = x*.

Proof. Since T : E — E satisfies all conditions of Lemma 10.3, I - T maps E onto E.
Because K c Eand § : K +— E, it follows that for every x € K there exists y € E such
that

y-Ty=8x & I-T)y==Sx.

By Lemma 10.3 again, there exists (I — T)™!, and thus from (iii) and the above
equality, we gety = (I - T)"'Sx € K.
Now, let A be a subset of K. From (10.14) and (10.18), one can easily infer that

a(((1-T)7'S)(A)) < y,a(S(A)),

which, together with (ii), implies that (I-T)'$ : K — K is a condensing map. Apply-

ing Sadovskii’s Theorem B, we see that there exists x* € K such that (I-T) '$x* = x*.
This is the same as Sx* + Tx* = x*. The proof of the theorem is thus complete. O

An easy consequence of Corollary 10.1 and Theorem 10.5 is the following.

Corollary 10.2. In Theorem 10.5, if only (i) is replaced by that (i'): T : E — E is a linear
and bounded operator, and T? is expansive for some p € N and onto. Then there exists
a point x* € Kwith $x* + Tx* = x*.

We will naturally consider the case when T (for some p € N) is a contractive map.
For this purpose, the following well-known result, which is analogous to Lemma 10.2,
is a basic tool.

Lemma 10.5. Let (X, | - |) be a normed vector space, M c X. Assume that the map T :
M — X is contractive with constant y < 1, then the inverse of F :=1-T : M —
(I - T)(M) exists and

IE'x-Fy| < ﬁ”x -yll, xy e FM). (10.19)
The following notion of nonlinear contraction will also be used in the sequel.

Definition 10.6 (Boyd and Wong [8]). Let M be a subset of E. The map T : M — E is
called a nonlinear contraction, if there exists a continuous and nondecreasing func-
tion ¢ : R, — R, satisfying ¢(r) < r forr > 0, such that

ITx - Tyl < ¢(Ix - yl), Vx,y e M.
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Of course, every contraction is a nonlinear contraction, the converse is not true.
Nonlinear contractions play essential role in various generalizations of the Banach
fixed-point theorem. Based on the fact that every nonlinear contraction T : E +— E
has a unique fixed point [8], we give the following lemma and present all the details
for convenience.

Lemma 10.6. Let T : E — E be Lipschitz with constant § > 0.

(@) Assume that for eachy € E the map T, : E +— E defined by T, x = Tx +y satisfies
the requirement that T‘;’ is contractive for some p € N. Then (I - T) maps E onto E,
theinverse of F :=1-T : E — E exists and

IF"% -y <pylx-yl, xyeE (10.20)
where
p e _
TTip(T?)° ifg=1,
1 .
Pp = 1B’ lfﬁ <1,

p-1 .
oy YB> 1

(b) Inparticular, if T : E — E is linear, bounded and T? is a nonlinear contraction for
somep € N. Then F! : E — E is continuous and bounded. Moreover, the spectral
radius of T, r(T), is smaller than [¢(1)]P.

Remark 10.5. In the case of (b), we are unable to obtain an estimate similar to (10.20).

Proof. (a) Based on the Banach contraction mapping principle, using similar argu-
ments to Lemma 10.3, one can easily deduce that both (I — T) and (I - TP) map E
onto E. Now, for any x,y € E, since T? is contractive it follows from the triangle in-
equality that

(T = TP)x = (1= TP)y|| > [1 - Lip(T")]lx - yll,

which illustrates that (I — T?) is one-to-one. Hence (I — T?)™! exists on E, and con-
sequently, (I — T)! exists on E due to (10.15). From (10.15), (10.17) and (10.19), one
concludes that

1—Li§(TP)’ ifg=1,
Lip(I-T)7) < { 25 if g <1,
i) iff>1.

(B-D[1-Lip(TP)]”

This proves (10.20).
(b) By invoking a fixed-point result of Boyd and Wong [8], together with the argu-
ments just presented, one derives that F':E — Eis continuous and bounded. Now,
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since T? is nonlinearly contractive, it follows that | T?x|| < ¢(||x||) and so

[T?|| = sup ITPx|l < sup p(lx) < p(D).
Ixfl<1 [Ixll<1

Observe that lim,, ., |T"|"/" exists and is equal to r(T). Thus, we obtain

Ak

(1) = lim [T < [17)7 < [p0)]".

The lemma is completely proved. O

Corollary 10.3. Let T : E — E be a linear and bounded operator. Assume that T? is
contractive for some p € N. Then the conclusions of (a) in Lemma 10.6 hold.

Making use of Lemma 10.4 and Corollary 10.3, we shall see that a k-set contractive
map with k > 1 defined on E may have a fixed point. Such an interesting phenomenon
is exhibited in the following proposition (For an exact and concrete example, we refer
to Section 10.4).

Proposition 10.1. Let T be as in Corollary 10.3. Then T has a unique fixed point in E and
T is a |'T||-set contractive map. Obviously, the number | T|| may not be small than 1.

Together with Lemmas 10.6, 10.4 and the ideas to prove Theorem 10.5, one can
easily derive the following result.

Theorem 10.6. Let K c E be a nonempty, bounded, closed convex subset. Suppose that
T:E+— EandS$ : K — E such that:

(i) T satisfies the conditions (a) of Lemma 10.6;

(i) Sis a strictly p;l-set contractive map (or a p-set contractive map with p < p;l );

(i) [x =Tx+Sy,y e K] > x e K.

Then the sum S + T possesses at least one fixed point in K.

Remark 10.6. Theorems 10.5 and 10.6, in a certain sense, develop the corresponding
theorems 2.7 and 2.12 in [30], respectively.

Corollary 10.4. In Theorem 10.6, if only (i) is replaced by (b) of Lemma 10.4, then S + T
has at least one fixed point in K.

Remark 10.7. Corollary 10.4 extends a variant of Theorem A in Nashed and Wong [22].

Corollary 10.5 (Dhage [11]). Let K, T, S and (iii) be the same as Theorem 10.6. In addi-
tion, assume that (i'), T : E — E satisfies the conditions (2) of Lemma 10.6, and that
(ii"), $ : K — E is compact. Then S + T has at least one fixed point in K.

Inspired by the proofs of Theorems 10.5 and 10.6, we now can formulate an ab-
stract existence theorem, which summarizes Theorems 10.5 and 10.6.
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Theorem 10.7. Let K c E be a nonempty, bounded, closed convex subset. Suppose that
T:E+— EandS$ : K+ E such that

(i) (I - ') is Lipschitz invertible with constant y > 0;

(i) S is a strictly y'-set contractive map (or a p-set contractive map withp < y™');

(iii) S(K) ¢ I - T)(E) and [x = Tx + Sy,y e K] = x ¢ K.

Then the equation Sx + Tx = x has at least one solution in K.

Remark 10.8. Clearly, one of the advantages of Theorem 10.7 is that the compactness
of § is not necessarily required. Moreover, the number y~' may not be small than 1.
Therefore, it extends essentially a number of previously known generalizations of
Theorem A, such as those due to Burton [9], Nashed and Wong [22], Dhage [11, Theo-
rem 1.5], and some results in [30].

Observe that, in Krasnoselskii’s theorem, the operator T is contractive and hence
uniformly continuous. We dedicate our work in the sequel to relaxing such a restric-
tion. In the case when I - T is one-to-one, these generalizations complement and re-
fine non-compact-type Krasnoselskii fixed-point theorems in [31]. Thus, they encom-
pass and extend a lot of existing Krsnoselskii-type fixed-point theorems in the strong
topology setup. The proofs are based on the technique associated with measures of
non-compact type. For convenience and completeness, we will provide all the details
here. To achieve this, the following notation will be necessary.

Let M, K be two subsets of E, T : M +— Eand $ : K — E two maps. We shall
denote by F = F(M, K; T, S) the following set:

F={xeM:x=Tx+ Sy forsomey € K}.

Theorem 10.8. Let K be a nonempty, bounded, closed convex subset of E with K ¢
D(T) c E,and T : D(T) ~— E a map. Suppose that S : K — E is continuous such
that

(i) (I-T)is one-to-one;

(i) a(T(A) + S(A)) < a(A) for all A c K with a(A) > 0;

(iii) if {x,,} < F(D(T),K; T, S) with x,, — x and Tx,, — y, then x € D(T) and y = Tx;

(iv) S(K) ¢ I-"T)(D(T)) and [x = Tx + Sy,y e K] = x e K.

Then the sum S + T has at least one fixed point in K.

Proof. Since (I - T) : D(T) ~ E is one-to-one, the inverse of (I — T)! exists on
(I-T)(D(T)).From S : K +— E and S(K) ¢ (I-T)(D(T)) we conclude that the operator
N = (I -T)'S : K — D(T) is well defined and that F is nonempty.

For each x € F, by the definition of F, there exists y € K such that x = Tx + Sy,
i. e., x = Ny. This shows F ¢ IN(K).
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On the other hand, if x ¢ IN(K) then there exists y € K so that Ny = x or x =
(I - "Jl")‘l$y or (I - T)x = Sy. Consequently x € F, from which N(KK) ¢ F and then
F = N(K).

Let x € F. Then there exists y € K such that x = Tx + Sy. The second part of (iv)
then gives x € K. Therefore, 7 ¢ K and thus IN maps K into itself.

Let now x, € Kand

A=1{A:xy € AcK Aisaclosed convex set and N(A) c A}.

Since x, € K, K c K, Kis a closed convex set and 7 = N(K) c K, weobtainK € A4, i.e.,
A+ .
Moreover, for any A € A we have

(I-T)'S$A) = (I - T + T)(I - T) 'S(A) = S(A) + T(I - T)"'S(A).

The definition of A gives (I — T)"!S(A) = N(A) ¢ A, and so we get from the above
equality

I-T)'S(A) c T(I - T)'S(A) + S(A) ¢ T(A) + S(A).
This fact, together with (ii), yields
a(N(A)) < a(T(A) + S(A)) < a(A) for all A € A with a(A) > 0. (10.21)

Put Ay = (ac4 A. Then xy € Ay C K, Ay is a closed convex set and N(Ag) c A, and
therefore A, € A. Notice that span{IN(A,), xo} ¢ Ay. Hence, we have

N(span{N(A,), Xo}) € N(A,) ¢ 5pan{N(Ao), xo},

which implies that span{IN(A,), xo} € A. It then follows from the definition of A, that
span{IN(A,), xo} = A,. Thus, by the properties of a, we obtain

a(Ao) = a(m{N(Ao), Xo}) = a({N(Ao), Xo}) = a(N(Ao)) (10.22)

Recalling that A, € A, we the deduce from (10.21) and (10.22) that a(A,) = 0. Conse-
quently, A, is a nonempty compact convex subset of K and N(A,) ¢ A,.

We next examine that N : Ay — A is continuous. Indeed, let {x,} be a sequence
in A, with x,, — x. Sety, = (I - T) 'Sx,, and y = (I - T) '$x (this is well defined since
x € Ay ¢ K). Then (I - T)y,, = Sx,, and (I — T)y = Sx. Hence y,,y € Ay N F, and so {y,}
has a subsequence {y,, } converging to somey, € A,. Evidently, by the continuity of S,

Typ, =Vn, — A =Typ, — Yo —Sx =y, - (I -Ty. (10.23)

It follows from (10.23) and (iii) that y, — (I - T)y = Ty, and thusy, =y = (I - T) 'Sx
since I - T is injective. Summing up the above arguments, we have derived

(I-T)"'$x, — (I-T)"'Sx.
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We next claim that
I-T)"sx, — I -T)'sx.

Assume the contrary case; then there exists a neighborhood U of (I - T)‘le and a
subsequence {Xn],} of {x,} such that (I - T)*leni ¢ Uforallj > 1. Naturally, {Xn]-}
converges to x; then reasoning as before we may extract a subsequence {x,,]_k} of {xn}_}
so that (H—T)‘1anik — (I-T)"'Sx. But this is a contradiction, since (K—T)’lenj ¢ U for
allj > 1. The claim is hence confirmed, and finally (I-T) 'S : A, — A, is continuous.

The Schauder fixed-point theorem guarantees that N = (I - T)~!S has at least one
fixed point in A,. This ends the proof. O

Remark 10.9. Itis easy to see that various kinds of generalized contractions verify con-
ditions (i) and (iii); if T is a contraction, then Theorem 10.8 extends Theorem 10.7. Es-
pecially, if T is the zero operator on E, then Theorem 10.8 is the well-known Sadovskii
fixed-point theorem.

The (closedness) condition (iii) is much weaker than the condition that T is con-
tinuous. Clearly, if T is continuous then it is closed. Conversely, this may not be true,
as can be seen from the fact that a closed linear operator is not necessarily contin-
uous. If (I — T)™! exists and it is continuous, then the condition (i) is fulfilled, and
more importantly the condition (iii) is totally redundant. This shows that Theorem 10.8
holds irrespective of the continuity of T in such a case. Furthermore, instead of the re-
quirements of (ii) and K ¢ D(T), we can impose conditions on (I — T)! and § so that
a((I - T)'S(A)) < a(A) for all A ¢ K with a(A) > 0 as was done previously in the
proof of the theorem. These observations lead to the following consequence of Theo-
rem 10.8.

Corollary 10.6. Let K be a nonempty, bounded, closed convex subset of E and T :
D(T) c E — E a map. Suppose that S : K — E is continuous such that

(i) (1-T)" exists and it is continuous;

(i) a((I-T)'S$(A)) < a(A) for all A c K with a(A) > 0;

(iii) S(K) ¢ (I - T)(D(T)) and [x = Tx + Sy,y e K] = x ¢ K.

Then the sum S + T admits one fixed point in K.

Although Theorem 10.8 includes the case that S is compact, we will revisit it for
such a particular case. It turns out that the boundedness of K and that the requirement
of K c D(T) are not needed, if we impose a compactness condition on 7(D(T), K; T, S).

Theorem 10.9. Let K c E be a nonempty, closed convex subset and T : D(T) c E — E
a mapping. Suppose that S : K — E is continuous such that

(i) (I-T)is one-to-one;

(ii) the set F(D(T),K; T, S) is relatively compact;
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(iii) if {x,,} ¢ F for which x,, — x and Tx,, — y, thenx ¢ D(T) and y = Tx;
(iv) S(K) ¢ (I-T)(D(T)) and [x = Tx + Sy,y € K] = x e K.

Then the sum S + T has one fixed point in K.

Proof. 1t is sufficient to show that the operator (I - T)"'$ : K — K is compact and
continuous. Thanks to the fact 7 = (I-T) '$(K) and (ii), we see that (I-T)'$ : K —
K is compact. For the continuity, let y,,y € Kwithy, — y, and letx, = (I - ']F)‘lSyn
and x = (I - T)'Sy. The definition of 7 implies that X, € F and (I - T)x,, — Sy by the
continuity of S. In view of x,, € F and F is pre-compact, {x,} has a subsequence {x,, }
converging to some x,. Accordingly Tx,, — X, —Sy. The closedness of T in 7 (cf. item
(iii)) therefore tells us that x, — Sy = Tx,, i. e., X, = (I - T)"'Sy. Since I - T is injective
it follows x, = x.

The same argument as at the end of Theorem 10.8 shows x,, — x, and consequently
(I - T)‘lS : K — Kis continuous. O

Corollary 10.7. The conclusion of Theorem 10.9 continues to be valid, if only the condi-

tion (ii) is replaced by the following assumptions.

(ii') S(K) resides in a compact subset of E;

(ii") if {x,,} is a sequence in F(D(T),K; T,S) and (I - T)x,, — y, then {x,} possesses a
convergent subsequence {x,, };

If (I - T)! exists and it is continuous, then the conditions (i) and (ii”") are ful-
filled, and as noted before, the condition (iii) is unnecessary. Thus, Theorems 10.8
and 10.9 and their corollaries facilitate the application of another kind of operator,
namely, dissipative operator. Here, we provide an application of Corollary 10.6, which
complements the result in [29].

For x ¢ E, define the duality set of x, a subset of the dual space E* of E, by

J(x)={x" eE": ||x*||i5 = |Ixlig = {(x*,x)}.

Let T : D(T) ¢ E — E be a (possibly) nonlinear operator. Then T is said to be dissipa-
tive if for each x,y € D(T) there exists x* € J(x —y) such that Re(x", Tx - Ty) < 0. This
notion is a nonlinear version of linear dissipative operators, introduced in [7] and [16]
independently. For a Hilbert space H this is equivalent to Re(x — y, Tx — Ty) < O for
all x,y € D(T). Using this equivalent characterization, the Laplacian operator, A, de-
fined on the dense subspace of compactly supported smooth functions on the domain
Q c R, is a dissipative operator.

Proposition 10.2. AssumethatT : D(T) c E — Eis a dissipative operator. Then (I-T)
is invertible on (I - T)(D(T)) and its inverse is non-expansive, and the condition (i) is
satisfied. Additionally, if S : B(0,p) — B(-T0, p) is a mapping for some p > 0, where
B(xg,p) = {x € E: |x - x,| < p}, then

[x = Tx + Sy,y € B(0,p)] = x € B(0,p). (10.24)
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Proof. Since T : D(T) ¢ E — E is a dissipative operator, we obtain (cf. [16,
Lemma 1.1])

Ix -yl < |x-y-A(Tx - Ty)| forallA>0 andx,y eD(T). (10.25)
Setting A = 1in (10.25), we see that (I — T) is injective and that
[@-T)'w-@-T)"z| <llw-zl, Vw,ze @-T)(D(T)), (10.26)

which says exactly that (I - T)™! is non-expansive on (I — T)(D(T)).

Now, suppose x = Tx + Sy with y € B(0,p). It then follows from (10.25) and the
assumption that S(Bp) c B(-TO,p) that ||x]| < [x — (Tx - TO)| = [Sy — (-T0)| < p; that
is, x € B, and (10.24) is verified.

Finally, let x,, ¢ F(D(T),K; T, S) with (I - T)x,, — y. Putting y,, = (I - T)x,,, we
deduce from (10.25) that

”Xn _Xm” < ||Xn _Xm - (Txn - Txm)“ = "yn _Ym”>

which illuminates that {x,} is a Cauchy sequence, because {y,} is a convergent se-
quence in E. Therefore, {x,} converges in E. The condition (ii"") is thus proved. O

Theorem 10.10. Let T : D(T) c E — E be dissipative and let S : B(0, p) — B(-TO, p)
be condensing for some p > 0. If S(B(0,p)) c (I — T)(D(T)), then the sum S + T has at
least one fixed point in B(0, p).

Proof. Because T is dissipative, (I - T) " exists and it is continuous. Because $ maps
B(0, p) into B(-TO, p), equation (10.24) implies [x = Tx+Sy,y € B(0,p)] = x € B(0, p).

Next, we will show that a((T - T)"'S(A)) < a(A) for all A ¢ Bp with a(A) > 0. To
see this, take any A ¢ Bp with a(A) > 0, it follows from (10.26), Lemma 10.4 and the
assumption § is condensing that

a((I-T)'S(A)) < a(S(A)) < a(A).

By the use of Corollary 10.6 one achieves the proof. O

Remark 10.10. The closed ball B(0, p) can be replaced by a nonempty, closed, convex
and unbounded subset of E. In this case, a Leray—Schauder type of condition should
be satisfied; see [29]. Here, we note there is a typo in the condition (ii) of [29, Theo-
rem 2.2], it suffices that “T is nonlinear and S(K) ¢ R(I - T) = (I - T)(K)”.

In what follows, we consider the case when T € £(E) and |T?| = Lip(T?) < 1 for
some p € N. Clearly, the above arguments cannot be applied in such case. Thus, in
order to study such cases some additional assumptions should be imposed. We first
investigate the case when T? is a non-expansive mapping on E, i. e., it satisfies

[TPx = TPy| < |TP|llx -yl forallx,y €E. (10.27)
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Theorem 10.11. Let K c E be a nonempty, compact, convex subset. Suppose that T €
L(E) and satisfies (10.27) with constant | TP| < 1and $ : K — E is continuous. In
addition, assume also the following condition holds:

there is a sequence A, € (0,1) with A, — 1such that [x = A, Tx + Sy,y e K] = x ¢ K.

Then T + S has a fixed point in K.

Proof. LetT, = A, T : E — E. Then we have
[T0x - T2y| = | 0Px - Ty < BTl -yl vy €E.

Therefore, T? : E +— E is contractive since AZ|T?|| < A < 1for all n € N. By Corol-
lary 10.3, we see that (I - T,,) maps E onto E, the inverse of (I - T,) exists on E, and

J@-T) % - @-T) Y] < p@.mlx -yl xy€E, (10.28)
where
m) ifAn"T” = 1:
pp,n) = m> if AT < 1,
ATt if AT > 1.

A TI-D-A1TP 1]

It follows from (10.28) that (I — T,,) is Lipschitz invertible with constant p(p,n) > 0.
Since K is compact, S : K — E is compact] or 0-set contractive. Now, applying Theo-
rem 10.7 to A, T and $ for each n > 1, one sees that there is x;, € K such that

Sx,, + A, Tx, =x,,. (10.29)

By the compactness of K, up to a subsequence we may assume that x, — x* in K.
Passing to the limit as n — oo in (10.29) we complete the proof. O

We next consider the particular case when T ¢ £(E) and T? is non-contractive,
i.e.,

|TPx - T?y| > Ix -yl forallx,y € E. (10.30)

Theorem 10.12. Let K c E be a nonempty, compact convex subset. Suppose that T €
L(E), TP maps E onto E and satisfies (10.30) and that S : K — E is continuous. In
additional, assume also the following condition holds.

there is a sequence A, > 1 with A, — 1such that [x = A, Tx + Sy,y e K] = x ¢ K.
(10.31)
Then T + S has a fixed point in K.
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Proof. Notice that A, T : E — E fulfills all the requirements of Corollary 10.1. Arguing
as in the proof of Theorem 10.11 by using (10.31) and then applying Theorem 10.5 or
10.7, one can easily derive the desired result. O

At the end of this section, we shall see that Theorems 10.8 and 10.9 and their corol-
laries will motivate us to define a large class of contractions and expansions. Let ®
denote the class of all functions ¢ : [0, c0) — [0, co) fulfilling:

(i) ¢ iscontinuous, and ¢(r) < r forall r > 0; or
(i) ¢ is nondecreasing, and lim,_, . ¢"(r) = 0 for eachr > 0.

Let ¢ € @. Then it is an easy matter to show that ¢(0) = 0 and ¢(r) < r for everyr > 0.

Let X be a complete metric space, M ¢ X, and T : M — X a mapping. T is called a
p-®-contraction if there are an integer p and ¢ € ® such that d(T?x, T?y) < ¢(d(x,y))
for all x,y € M; T is called a p—®-expansion if there are an integer p and ¢ € @ such
that ¢(d(TPx, TPy)) = d(x,y) for all x,y € M.

These definitions differ from and extend those of Garcia-Falset [13]. Fixed-point
results for such generalized contractions and expansions are collected in the following
proposition. Hence, the above established Krasonselskii fixed-point theorems may be
adapted to them.

Proposition 10.3. Let M be a closed subset of a complete metric space X, and let T :
M — X be a mapping. Then T has a unique fixed point in M if either one of the following
conditions is satisfied.

(i) T is a p-D-contraction and TP (M) c M.

(ii) T is a p-®-expansion and TP (M) > M.

Moreover, in each case, one sees that (I - T)‘l exists and it is continuous.

Proof. (i) Since T is a p-®-contraction and TP(M) ¢ M, by the monograph [17], we
know that T? has a unique fixed point x* € M. Thus, TP(Tx*) = Tx*, and so Tx* = x*
by the uniqueness.

If thereis z* € M such that Tz* = z*, then

TPz* = TP (Tz*) = TP 2" = ... = Tz* = 27,

which shows that z* is also a fixed point of T in M. Because the fixed point in M is
unique, it follows x* = z*. Consequently x* is the unique fixed point of T. Using es-
sentially the same reasoning as Lemma 10.6, one can readily infer that (I — T)" is
exists and it is continuous.

(i) Since T is a p-®-expansion and TP(M) > M, we get ¢p(d(T?x, Ty)) = d(x,y)
for all x,y € M. This shows that T’ : M +— TP(M) > M is one-to-one. Therefore,
(T?)™' : M — M exists, and

d((TP)"'x, (TP)'y) < ¢(d(TP((TP) %), T((TP) 'y))) = p(d(x.y))
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for all x,y € TP(M) and so for all x,y € M. The previous paragraph says there exists
a unique y* € M such that (T?)"'y* = y*, i.e., T’y* = y* and y* is the unique fixed
point of T. A similar proof to that of Lemma 10.3 shows that (I — T) ! exists and that
it is continuous. O

10.7 Fixed-point results to one parameter operator equations and
eigenvalues problems

As applications to some of the main results, the purpose of this section is to present
some existence results for the following nonlinear abstract operator equation in Ba-
nach space:

ATx + Sx = x, (10.32)

where T, S : E — E and A > 0 is a parameter. In order to do this, we first establish
some local version of the above results. Then we consider the eigenvalue problems of
Krasnosel’skii type in the critical case, that is, we investigate the mapping T : M ¢
E — E is non-expansive. The first result concerning equation (10.32) is as follows.

Theorem 10.13. Let K c E be a nonempty, bounded, closed convex subset, S : K — E
amap and T : E — E a Lipschitz with constant 1 > 0. Suppose there is A, > 0 such that
(i) Sis a p-set contractive map with u < 1 (a condensing map);

(i) x=ATx+Sy,y e K] = x e Kforall A <A,.

Then there exists A; > 0 such that equation (10.32) is solvable for all A € [0,A;] (A = 0).

Proof. Choose A; > OsothatA]l <landu <1-AlforallA < A;. Now, AT : E +— E
is a contraction with constant Al < 1 for A < A;. It is straightforward to see that all the
conditions of Theorem 10.7 or 10.11 are satisfied A < A;. O

Next we shall modify some assumptions to study equation (10.32).

Theorem 10.14. Let K c E be a nonempty, bounded, closed convex subset, S : K — E
amap and T : E — E a weakly expansive with constant 8 > 0. Suppose there is A, > 0
such that

(i) Sis a k-set contractive map;

(i) S(K) c MI-AT)(E)and [x =ATx + Sy,y € K] = x € Kforall A = A,.

Then there exists A; > O such that equation (10.32) is solvable for all A > A;.

Proof. ChooseA; > O0sothatA;f >1andk < AB—1forallA > A;.Now, AT : E +— Eisan
expansion with constant A > 1 for A > A,. This says the condition (i) of Theorem 10.7
holds. From k < A —1for all A > A, it follows that the condition (ii) of Theorem 10.7
holds. The result then follows from Theorem 10.7. O

printed on 2/10/2023 3:54 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

10.8 Application to perturbed Volterra integral equation =——— 339

Let us now begin to consider the eigenvalue problems of Krasnosel’skii type. We
obtain the following results.

Theorem 10.15. Let K c E be a nonempty, bounded, closed convex subset, S : K — E
amap and T : E — E a non-expansion. Suppose that there exists A > 1 such that

(i) Sisastrictly (A - 1)-set contractive map (or a k-set contractive map withk < A —1);
(ii) [Ax =Tx+Sy,y e K] = x e K.

Then there exists x* € K with Sx* + Tx* = Ax".

Proof. Let u = 1/A. Then uT : E — E is a contraction with constant y € (0,1) and
uS : K — Eis a strictly u(A — 1)-set contractive map. One can easily verify that all
the assumptions of Theorem 10.7 or 10.8 are satisfied for T and uS. Hence the result
follows. O

In the end of this section, we investigate the case when T is a non-contractive
mapping on M c E, i. e., an operator which satisfies | Tx - Ty| > |x-y| forall x,y € M.

Theorem 10.16. Let K c E be a nonempty, bounded, closed convex subset, S : K — E
amap and T : E — E a non-contractive one. Suppose that there exists A € (0,1) such
that:

(i) Sisastrictly (1-A)-set contractive map (or a p-set contractive map with u < 1-2);
(ii) S(K) c (A - T)(E) and [Ax = Tx + Sy,y € K] = x ¢ K.

Then there exists x* € K with Sx* + Tx* = Ax*.

Proof. This is a direct consequence of Theorem 10.5 or 10.7 or 10.8. O

10.8 Application to perturbed Volterra integral equation

Let E = C([a, b]) with the usual supremum norm |\x|| = max;(, ) [X(t)|. We also de-
note by By the set {x € E : ||[x|| < R}. In the present section, our main objective is to
prove some existence and unique (in a special case) results for the following perturbed
Volterra integral equation of the form:

t
u(t) = jk(t, syu(s)ds + f(t,u(t)), telabl,uck, (10.33)

where the kernel k defined on A = {(¢,s) : a < t < b,a < s < t} is essentially bounded
and measurable and f : [a, b] x R — R is continuous. When f(t,u) = g(t), equation
(10.33) is the classical linear Volterra integral equation of the second kind. It is well
known that the theory of equations of such a case is very developed both theoretically
and numerically. For a comprehensive theory of linear Volterra integral equation, we
refer to the monograph [15]. Nevertheless, for the purpose of illustrating the power
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of our abstract results established in Section 10.2, we would like to address the solv-
ability and uniqueness (in a special case) of equation (10.33) in a generalized form.
To perform such a task, we shall introduce the definition of the special measure of
non-compactness in E which was introduced and studied in [4]. To do this let us fix a
subset X € Qg. For € > 0 and x € X denote by w(x, €) the modulus of continuity of x,
i.e.,

w(x, €) = sup{|x(t) - x(s)| : t,s € [a,b], |t-s|<E€}.
Further, put

w(X, €) = sup{w(x,€) : x € X},

wo(X) = 21_1)1(1) w(X, ).

It may be shown [4] that w,(X) is a measure of the non-compactness in the space E.
Let us now introduce the operators T, S : E — E as follows:

t
(Tx)(t) = J' k(t,s)x(s)ds, (10.34)

(Sy)(t) = f(t, y(t)). (10.35)

Then one can easily show that § : E +— E is continuous and bounded since f is
continuous.
For each x, y € E, one readily derives from (10.34) that

t
(Tx)(t) - (Ty)(t) < Jlk(f, s)|llx = yllds < c(t - a)lx - yl, (10.36)
a
where ¢ = esssup; sea [k(£,s)| < co. By induction, one can deduce from (10.34) and
(10.36) that
ct-a)"
(150 - (T)0] < XDy,
Hence
cb-a)"
T"x - T < % Ix - yl. (10.37)
Notice that
_ n
lim [ed-a))" _ 0.
n—co  pl

It follows from (10.37) that there exists p € N such that T? is a contraction. On the
other hand, one can also obtain from (10.34)

ITx - Ty| < Mlx - yl, (10.38)
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where
t
M = max J|k(t, s)|ds.
a<t<b
a

Together with (10.37), (10.38) and Corollary 10.3, we see that (I - T) maps E onto E, the
inverse of I - T : E — E exists and

[@-T) "% - @-T)"y| <p,lx-yl. VxyeE, (10.39)
where
p : —
m, ifM = 1,
Py =1 itM <1, (10.40)
MP-1 ifM>1.

(M-1)[1-Lip(T?)]”

In this section, we shall study equation (10.33) by considering three cases: M < 1,
M = 1and M > 1. Our strategy is to apply Theorem 10.5 or 10.7 or 10.8 to derive the
fixed point of the sum T + S.

Case of M < 1. We obtain the existence of one and only one positive solution of
equation (10.33) in this case. In order to do so, assume that the functions involved in
equation (10.33) fulfill the following conditions:

(H1) kis nonnegative on A;
(H2) there are two constants B > A > 0 such that

(1-M"NA<f(t,x) <(1-M)B, VY(tx) € [a b]x[A,B],

where M’ = min,,_, jat k(t,s)ds;
(H3) for each fixed t € [a, b], x,y € [A, B] with x # y, we have

If(t,x) - f(t,y)| < d(Ix - yI),

where ¢ : R, — R, is a nondecreasing continuous function satisfying ¢(r) <
(1-M)rforallr > 0.

Theorem 10.17. Suppose that the conditions (H1)-(H3) hold. Then equation (10.33) has
one and only one positive solution u € C([a, b]) satisfying A < u(t) < Bfor allt € [a, b].

Proof. Define first the set

K={xeE:A<x(t)<B, te¢labl}.
Then K is a closed, convex and bounded subset of E. Let x, y € K. We have from (10.34),
(10.35) and (H3)

t
(Tx)(t) + (Sy)(t) = f(t,y(t)) + Jk(t, s)x(s)ds. (10.41)
0
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On the other hand,
t
(TX(E) + (Sy)(E) = J K(t,s)x(s)ds + F(6y(0) > AM' + A(1-M') = A, (10.42)

It follows from (10.41) and (10.42) that Tx + Sy € K for all x, y € K. Hence, the condition
(iii) of Theorem 10.7 is satisfied.

To prove that T satisfies the hypothesis (i) of Theorem 10.7. It follows from (10.38)
that T : E + E is a contraction with constant M < 1. We see from (10.39) that (I — T)
is Lipschitz invertible with constant (1 - M )7L, i.e., the assumption (i) of Theorem 10.7
is fulfilled.

Next, we show that S is a strictly (1 — M)-set contractive map. To this end, let X be
a subset of K and x € X. Then, for a given € > 0 and t,s € [a, b] such that |f - 5| < €,
without loss of generality, assume that x(t) # x(s). Therefore, one derives that

|(Sx)(t) - (Sx)(5)| = |f (¢, x(t)) - f (s, X(5))|
< |f(tx(t)) - f(t. x(s))| + |[f(t. x(5)) = f (s, x(5))| (10.43)
< ¢(lx(t) - X(S)l) + Wf(e) ')’

where
we(e,-) = sup{|f(t,r) —f(s,7)| : t,s € [a,b], |t — 5| < eand r € [A, B]}.
Notice that ¢ is continuous and nondecreasing. Thus, it follows from (10.43) that
w(Sx, €) < p(w(x, €)) + (e, ). (10.44)

Taking into account that the function f(t, x) is uniformly continuous on [a, b] x [4, B],
we conclude that ws(e,-) — 0 as € — 0. Consequently, one deduces from (10.44) that

Wo(SX) < Pp(wo(X)),

which illustrates that § is a strictly (1 — M)-set contractive map. Now, invoking Theo-
rem 10.7 we see that equation (10.33) has at least one solution in K.

Finally, let u, v € K be any two solutions of equation (10.33). Then it follows from
(10.38) that

t
[u(t) - v(t)| < J k(t,s)[u(s) - v(s)]ds| + |f(t,u(t)) - f(t,v(D))]

(10.45)
< Mllu—v] + [f(t, u(®)) - f(t,v(t))).

Suppose now that there exists ¢, € [a, b] such that u(t,) # v(ty). One infers from (10.45)
and (H3) that

lu—vll <Mlu-vl+¢(lu-vl),

which is a contradiction. This accomplishes the proof. O
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Corollary 10.8. In Theorem 10.17, if only (H3) is replaced by a generalized assumption
(H3"): Sis a strictly (1-M)-set contractive map or a y-set contractive map withy < (1-M).
Then equation (10.33) has at least one solution u € C([a, b]) satisfying A < u(t) < B for
allt € [a, b].

Corollary 10.9. Suppose the condition (H3) holds, in addition, if f is bounded on [a, b] x
R, then equation (10.33) has a unique solution in C([a, b]).

Let us now investigate the case when M > 1. To this end, we set

_ n
p:min{neN: M <1}.
Then one has from (10.40)
pp! ;
B ifM=1,
py= {p!_[C((b}V_I’(’lz]lp)pI ‘ (10.46)
MDp -y LM > 1

We now assume that the functions concerning equation (10.33) satisfy the following

hypotheses:

(H4) there exists R > 0 such that p,fp < R, where fp = sup{lf(£,y)| : (t.y) € [a,b] x
(=R, Rl};

(H5) for each fixed t € [a, b] we have

If(txx)_f(t’,V)l S¢p(|X—Y|)> VX>y€ [_R’R]:

where ¢, : R, +— R, is a nondecreasing continuous function satisfying ¢,(r) <
p;,lr forall r > 0 and p,, is defined in (10.46).

By invoking Theorem 10.7, we derive the following result.

Theorem 10.18. Suppose that the conditions (H4) and (H5) hold. Then equation (10.33)
has at least one solution in C([a, b]).

Proof. For eachy € E, one can see from the above arguments that the equation
x=Tx+y
has a unique solution in E. Now, if x = Tx + Sy with y € Bg, then one has
x(t) = T -T) f(ty(t)). (10.47)
From (10.39), (10.46), (H4) and (10.47), one can easily deduce that [|x|| < p,fg <R, i.e.,

x € Bg. The remained arguments are similar to that of Theorem 10.17 and are therefore
omitted. O
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Corollary 10.10. If only the condition (H5) is interchanged by a generalized assumption
(H5'): S is a strictly p;,l-set contractive map or a yy,-set contractive map with y,, < p;,l,
then the conclusion of Theorem 10.18 is also valid.

Corollary 10.11. The conclusion of Theorem 10.18 also holds true if instead of (H4) we
see that f is bounded on [a, b] x R.

Remark 10.11. Theorem 10.17 or Corollary 10.9 implies that the Volterra integral equa-
tion

¢
u(t) = J k(t, s)u(s)ds + g(t) (10.48)

has a unique solution in E. Thus, under the conditions of Theorem 10.17 or Corol-
lary 10.9, equation (10.33) is a “harmless perturbation” of equation (10.48). However,
in other cases, it is not known by the authors whether or not equation (10.33) is still
a “harmless perturbation” of equation (10.48). It should be mentioned that the con-
clusion of Theorem 10.18 might not be obtained by many previously known results
because of the condition M > 1. It might also be noticed that the operator S defined
above, generally, is not compact.

Having arrived at the end of this section, it is worthwhile to point out that the ab-
stract techniques and results of the previous sections can be applied to various kinds
of other problems which are not investigated here. In particular, by employing Theo-
rem 10.5 or 10.7 or 10.8 or 10.9 or 10.10, the nonlinear integral equation

¢
u(t) = Jk(t, s)g(s, u(s))ds + f(t,u(t)), te€la,b],

where u takes values in a Banach space E, can be studied totally analogously to The-
orems 10.17 and 10.18.

10.9 Application to transport equations

The main aim of this section is to propose an existence result for the radiation transfer
equations in channel on L! spaces

Vsz—l)/:(x, V) + 006 V)P, V) — AP(x,v) = J r(6v, v, P(x,v'))dv', inD, (10.49)
K

where D = (0,1)xK, Kis the unit sphere of R%, x € (0,1),v = (v;,V,, v3). Equation (10.49)
describes the asymptotic behavior of the energy distribution inside the channel in the
variables x and v. The unknown function i represents the energy density.
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The boundary condition
Y° = PO,v), = H WL V) )9 = pAv), =HWPO,v), ), (10.50)

describes how the incident energy at the boundary is reflected back inside the domain.
Our assumptions are as follows:

(H1) H': C(K) — C(K), H'(0) = 0, [H'(¢)-H'(})| < ql¢—p| on K for every ¢, ) € C(K),
i=1,2, qis a fixed positive constant,

(H2) r € C((0, 1) xKxKxC), [r(, v, v, ) —=r(x, v, V', )| < a(x,vV))|p—pl, Ir(x, v, v, )| <
qa(x,v') for every x € (0,1), v,v' € K, ¢, € C, a,0 € C(D), o(x,v) = O for every
(x,v)eD:v; < %, ry,v,v',) = 0 for every (y,v,v', 1) € (0,1) x K x K x C such
thatv; < %,

1 1
(H3) g+ sup,ex [, lo@,v)ldy + Al + [ i av,vidvdy < 3,
A € Cand y is a complex valued unknown function.

The problem for existence of L! solutions of (10.49) and (10.50) was open. For a
first time there was found an answer to it in [2] in the particular case

(CAARTCADIER{CAAD(CARCAD)!

wheref : [0,1]xKxC — C, ¢ : [0,1] x KxK — R are measurable functions. In [2] are
given conditions for & and f so that the problem (10.49) and (10.50) has an L!-solution.
Here we propose a solution of this problem in a more general situation than in [2].
Our result can be considered as an improvement of the result in [2].
To find the answer of the considered problem we will consider the problem

V3 g_f(a, X, V) + 006 V)P(a, X, v) — Ap(a, X, v) = J r(ov, v (e x,v'))dv'
) (10.51)

in [0,1] xD,
Y(a, x,v) is an unknown complex function,
Y, a,v) =9*(v) Vae[0,1],veKk, (10.52)

where

P (v) = 1-P(0,0,v), +ah(1,1,v),
= (1-a)H'(Y(1,1,v), ) + aH*(P(0,0,v), ).

Since every solution of equations (10.51) and (10.52) is a solution of equations
(10.49) and (10.50), we will work on (10.51) and (10.52) instead of (10.49) and (10.50).

Theorem 10.19. We suppose (H1), (H2) and (H3) hold. Then the problem (10.49) and
(10.50) has a solution Y € C(D).
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Proof. Let q; > q be arbitrarily chosen and fixed. Let also b € (0,1) be arbitrarily
chosen and fixed.

LetE = {t € C([0,1] xD) : (a,x,v) = 0 forv; < %} be endowed with supremum
norm, and letK; = {u € E: |u| < ¢;}.

For i € E we define the operators

T(a, x,v) = 1+ bv3)p(a, x,v),

X

SY(a,x,v) = -bvsyp® + b J o(y,V)Y(a,y,v)dy — Ab J Y(a,y,v)dy

a

X
-b J J r(y,v,v', (a,y,v'))dv'dy.
aK

If Y € K; is a fixed point of T + S, putting x = ain i = Ty + S we see that i satisfies
(10.52); and differentiating with respect in x the equality i = Ty + Sy we conclude
that the function i is a solution of equation (10.51). In particular, it is a solution of the
problem (10.49) and (10.50) because 1(0,0,v) = ° and 1(1,1,v) = ! for v € K. For
Y, ¢ € E we have

|Ty(a, x,v) - Tp(a, x,v)| = |1+ bv3)(P(a, x,v) — p(a, x,v))|
<1+ b)|Y(a,x,v) - p(a,x, V)|
<(1+b) sup |P(a,x,v) - dp(a,x,v)|
[0,1]xD

=1+b)y -l
from which
Ty - Tl < A+ b)Y - .

Therefore T : E — Eis a Lipschitz operator with a constant 1+ b. Also, for every ¢ € E
for the operator T, = T + ¢ we have

[Ty - Tyl = |(1+ bvs)(P(a, x,v) - pa, x,v))]|
> (1 s g)]w(a,x,v) - pl@axv),
forp,y € E,and
b
IT ~ Tyl = (1+ 3 1o~ .
Consequently T, : E — Eis an expansive operator with a constant 1 + 1—2’. For any

given v ¢ E, if we put ¢ = 1:;‘/’3 ¢ E, then T3 = v. This shows that T, : E — Eis
onto.
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For the operator S, we have $ : K; — E, and for ¢, ¢ € K, using (H2) we deduce
that

|St(a, x,v) - Sp(a, x,v)]|

= |bv3(¥* - ¢°)

b | o, V)(W(a,y,v) - p(at,y,v))dy + Ab J(lll(a,y, V) - p(a,y,v))dy

+b | | (rp vV P(ay, V) - (v v, (e y,v’)))dv’dy‘

R Re—
R—

1 1
< b<qlll.b - ol + Jla(y, V)|[Y(a,y,v) — (e, y, v)|dy + |A| Jll.b(a,y, V) - d(a,y,v)|dy
0 0
1
+
J

1 1
< b<qll¢ -yl + Jla(y, V)|[Y(a,y,v) — d(a,y, v)|dy + |A| Jllli(a,y, V) - p(a,y,v)|dy
0 0

J|r(y, vV Y(ay, V")) -r(y, v, v, ¢(a,y,v’))|dv'dy>
K

K

+ Jl Ja(y, N(ay, V') - dp(ay,v')|av' dy)

0K
1
<b(q+ |a<y, V)dy + 1Al + j j a(y, v’)dv’dy)||¢ - ¢l
0K

from which it follows
1

IS¢ — SY| < b<q + sulp() lo(y,v)|dy + Al + J J a(y,v’)dv’dy>||¢ -y
ve 0K

O — =

This, combined with (H3), asserts that $ : K;, — Eisa strlctly =- set contractive
operator.

Let ¢ € K be fixed. We will show that the equation 1) = T + S¢p has a solution
P, € K;. Indeed, let i, (a,x,v) = 0 forv; < % and forv; > %

Py(ax,v) = p” - %(J o(y,v)$(a,y,v)dy - A J d(a,y,v)dy

3

—j(Jr vV, p(ay,v ))dv'dy).
a K
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It follows readily from (H1), (H2) and (H3) follows that Y, € E We will show actu-
ally that y; € K;. By definition ;(a,x,v) = 0 for v; < 2, forv; > 2, using (H1)-(H3) we
infer that

I’wbl(a>x> V)l =

% - l(J oy, V(e y, v)dy + A J P(ay,v)dy
V3 a a

+j(er,vv d(a,y,v ))dvdy)'
a K

1

1
i(|¢“| v j|o(y, v)|lg@y,v)|dy + Al j|¢(a,y, v)|dy
0

Vv
0

IN
w

1
+ J J|r(y,v v p(ay,v'))|av' dy)
0 K

Ja v dy>

An application of Theorem 2.1 shows the existence of a i € K; such that p = Ty +
Si. Consequently, the problem (10.51) and (10.52) and hence (10.49) and (10.50) has a
solution ¥ € K;. O

O%._\

1
< 2<QQ1 +4q; J|0(y,v)|dy+ Alg; + g
0

< q.

Corollary 10.12. Let (H1), (H2) and (H3) hold. Then the problem (10.49), (10.50) has a
solution 1 € L}(D).

Proof. The previous theorem ensures that the problem (10.49) and (10.50) has a solu-
tion i € C(D). Since || < g, in D it follows trivially that ¢ € LY(D). O

10.10 Application to a class of difference equations
Here we will consider the difference equation
Au(n) = a(n)u(n) - Ab(n)f (u(n - 1(n))) + g(n), nelZ, (10.53)

where A is the difference operator defined by Au(n) = u(n + 1) — u(n),
(H1) a:Z — [0,00) and b : Z — (0, 0o) are w-periodic functions for some w > 0,
(H2) f : R+— Ris onto and, there exist 0 < d; < d, such that

dilu-v| <|fw) -f(v)| <dylu-vl, Vu,veR,

(H3) T :Z — Zis w-periodic function, I - 7 : Z — Z is onto and (I - 7) ! exists.

Here and below we will suppose that the period w > 0 is arbitrarily chosen and fixed.

EBSCChost - printed on 2/10/2023 3:54 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



10.10 Application to a class of difference equations = 349

We will prove that equation (10.53) has an w-periodic solution. Our main result is
as follows.

Theorem 10.20. Suppose (H1)-(H3) hold. Then equation (10.53) has a unique w-periodic
solution whenever

2(1 + sup,ez a(n))

A
> = nE_, b(n)

In addition, if -Ab(n)f (0) + g(n) is not identically equal to zero, then equation (10.53) has
an w-periodic solution which is not identically equal to zero.

Remark 10.12. Equation (10.53) is investigated in [28] (and the references therein)
in the case when g = 0 and it is proved that if f € C([0, ), [0,00)), f(s) > O
fors > 0, Y a(n) > 0, Y, b(n) > 0 and there exist f, = limyg_o @, fo =
@ and ﬁ <A< Alfo ﬁ <A< Ii,A = max,cz Y G(n,s)b(s),
B = min, Z‘S":"(} G(n,s)b(s), o = [],(1+ a(i))™!, equation (10.53) has a positive peri-
odic solution. Here G(n, s) is the corresponding Green function of equation (10.53).

Here we propose new conditions, new range of A and new approach for investigat-
ing of this problem.

limyg_, o, or

Proof. Equation (10.53) can be rewritten in the form

f(u(n-1t(n)) - 8@

Ab(n)
un+1)+ Tran)

u(n) = L
" 1+a(n) 1+a(n)

We will work on the periodic function spaceE = {u : Z — R,u(n+w) = u(n)}, endowed
with supremum norm. For u € E, we define the operator

1 Ab(n) ~ )
Tu(n) = n a(n)u(n +1)+ n a(n)f(u(n 7(n))) Tsam)
ThenT:E+ E, and foru,v € E
[Tu(n) - Tv(n)|
[Alb(n)

[un+1) -v(n+1)|+

1+ a(n) |f (u(n - 7(m)) - f(v(n—1(n))|
< suplu(n) - v(n)| + d,|A| sup b(n)|u(n - t(n)) - v(n - t(m))|

neZ

<
1+a(n)

< |lu - vl + d,|A| sup b(n) sup|u(n) - v(n)|
nezZ nezZ
- (1 +d,)A| sup b(n))nu v,
nezZ

and so

1T =T < (1+ dylAl sup b(m) )u - vI.
neZ
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Now, let y € E be fixed. For u € E, we define the operator

f(u(n - t(n))) - s +y(n).

un+1)+ Ab(n) T+ at)

1
1+a(n) 1+a(n)

ThenTy:EHEandforu,veE

Tyu(n) =

d,|A| inf, ez b(n)

T,u(n) - T,v(n)| >
| yu(m) = Ty¥( ) 1+ sup,cz a(n)

lu(n - 1(n)) - v(n - t(n))| - lu -vl,
i.e.,

diAlinfyez b(n) suplu(n - t(n)) - v(n-1(n))| - lu - vl.

T, u(n) - T, v(n)| >
Tyt =TVl 2 G g at) o5

Recalling that I — 7 : Z — Z is onto, we obtain

ITyu - Tyvll > (d;|A| inf,czb(n)

(10.54)
1+ suppez a(n) — Diju - v|.

d,|Alinf,cz b(n)
1+sup,,cz a(n)

Lety, € E be fixed. We consider the equation

Because —1> 1, we conclude that T,:E—E is expansive.

g(n)
1+a(n)

Ab(n)
1+ a(n)u(n th+ 1+ a(n)

fu(n-1(m)) - +y(n) = y,(n)
or

u(n) = -Ab(n)f(u(n-1-t(n-1))) +g(n-1)
-(1+am-D)yn-1+1+an-1)y(n-1).

For u € E, we define the operator

T,u(n) = -Ab(n - Df (u(n-1-1(n-1))) +g(n-1)
-(l+am-D)yn-1)+(1+an-1)y;(n-1).

Then for u, v € E we have

[Tyu-T,v| < IAld, sup b(m)|u - vI.
ne

Consequently T}l, : E — Eis |A|d, sup,. b(n)-Lipschitz operator.
Let y, € E be fixed. For u € E we define the operator

"ﬂ‘)l,yzu =-Ab(n-Df(u(n-1-1(n-1))) +gn-1)
-(1+am-D)y(m-1)+1+an-1)y(n-1) +y,(n).
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Then as above one has

1 1 .
||'Jl“yy2u - ']Fyyzv” > d|A| '111;15 bn)lu - vl,

which implies that T}’}’z : E — E is expansive since d;|A|inf,.z b(n) > 1.
We now claim T)l,yz : E — Eis onto. To see this, for any y; € E, we consider the
equation

-Ab(n-Vf(u(n-1-1(n-1))+gn-1)
-(Q+an-D)y(n-1)+ (1 +an-1))y;(n-1) +y,(n) = y;(n),

or

f@@—l—nn—n»=—aﬁjﬁgm—n

-(1+an-D)(y(n-1) -y;(n-1)) + y,(n) - y3(n)).

By the assumptions (H2) and (H3), this equation is solvable and its unique solution is
given explicitly by

1
Ab((I - 7)7'(n))

(-7 M) +y(d 1) 'n+1) —y5(d —7) 'n+ 1)))) €E,

mm=r( (g(-1)7'm) - 1 +a(d -7) "' ) ((I -1 (n))

proving the claim. From this and Lemma 10.3 it follows that T — T)l, : E — Eisonto. In
particular, ”IF; has a fixed point u, in E; the definition of T; then gives u, is a solution
of Ty u = y;. This implies that T), : E +— E is onto. Now, Lemma 10.3 again shows that
the operator I - T : E — E is onto. Therefore, there exists u; € E such that

(H - T)u3 = 0,

and thus equation (10.53) has a solution u; € E. The uniqueness of solution (10.53)
follows from (10.54). Finally, assume that -Ab(n)f (0) + g(n) is not identically equal to
zero. If we suppose that u; = 0 then

-Ab(n)f(0) +g(n) =0 for VnelkZ,

which is a contradiction. O

Now we will consider the case when g = 0, more precisely we will consider the
problem

Au(n) = a(n)u(n) - Ab(n)f (u(n - 1(n))), neZ,

(10.55)
un+w)=u(), Vnel,

where a and b satisfy (H1), 7 satisfies (H3) and f satisfies
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(H4) f:E+— E,f : K+ K, is onto and
[fw) - fW)| = dslu-vl VuveE,

for some positive constant dj.

Here
K={ueE:0<q <u(n<q, vnell}

/P 29, }
K, = ceE:-——————<u(n)s ———=—— VnelZ,
1 {“ it o0 = V= E by
for some positive constants g; and g, ¢; < q,.

Theorem 10.21. Suppose (H1), (H3) and (H4) hold. Then there exists A; = O such that
the problem (10.55) is solvable for all A > A,.

Remark 10.13. We note that here in our result we have not condition for f to be con-
tinuous function as in [28].

Proof. For u € E we define the operators

1
Su(n) = T am u(n+1),
_ _bm _
Tu(n) = " a(n)f(u(n 7(n))).

Firstly we will note that if u € E is a fixed point of the operator $ + AT then u is a
solution of the problem (10.55). Indeed,

u(n) = Su(n) + ATu(n) <

_u(n+1) b(n) B
u(n) = T+ a) + Al . a(n)f(u(n (n)) e

(1+am)u(n) =u(n +1) + Ab(n)f (u(n - 7(n))) <
amu(n) =u(n +1) —u(n) + \b)f (u(n - (n)) <
Au(n) = a(n)u(n) — Ab(n)f (u(n - 7(n))).

Also, S : K+— E, T : E — E and for u;, u, € E we have

b b
|Tuy(n) - Tuy(n)| = %:()n)f(ul(n -1(n))) - ] +(:()n)f(u2(n - T(n)))l
b
2 ) - s - )|
b(n)

1+ a) If (uy(n = 7(n))) - f(up(n - 7(m)))|

inf,ez b(n)

2y (= )~y - T)|, vn e
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i.e.,

inf, .z b(n)

T -T dy———————
[T =Tl = > 1+ suppez a(n)

[uy(n—1(n)) —uy(n—t())|, Vnek,

from this

nf b
sup|Tuy (n) — Tuy(n)| > dBM

neZ

+SUp,,z a(n) i‘:gul(" -1(n) — uy(n - 1())|,

and since T satisfies (H3) from the previous inequality we get

inf, .z b(n)

Tu, - Tu,| > d U, — Us|. 10.56
[Ty ol 31+supneza(n)”1 ll ( )

Consequently T : E — E is a weakly expansive operator with constant

B inf, .z b(n)
37 1+suppgan)

For uy, u, € Kwe have

uy(n+1) - ;uz(n +1)

1+ a(n)

luy(n+1) —uy(n +1)|

1
|Suy () - Suy(n)| = Tram

1 +a(n)
<|u(n+1)-uy(n+1)| Vnel,

whereupon
sup|Su; (n) — Su,(n)| < supluy(n +1) — uy(n + 1))
neZ neZ
or
[Su; — Su, |l < fluy —usl,

therefore S : K — E is a 1-set contractive operator.
Let now A, > 1 be fixed so that

inf, 7 b(n)

—=  dy>1
01+ sup,cz a(n) 3

and A > A, be arbitrarily chosen and fixed.
We fix v € K and we consider on K the equation

u(n) = ATu(n) + Sv(n).
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Let
Tiu(n) = ATu(n) + Sv(n), uek
We have T, : K — E and for u;, u, € K, using (10.56),

[Tu; — Tyuy|l = IATy; — ATu,|
= A Tuy — Tu,|
inf, .z b(n)

> Agds —————|luy — us||,
o ap 1~ 4

from this and our choice of A, we conclude that T; : K — E is an expansive operator,
also we will note that K is a closed subset of E.
Let v; € K. For u € K we will consider the equation

vi(n) = Tun)
vi(n) = Ab()f (u(n - t(n))) + Sv(n) <
vi(n) = Sv(n) = Ab(n)f (u(n - 1(n))) <

fu(n-1(n)) = %MS)V(M

vi(@-1)"'n) - sv(@-1)"n)
Ab( - 1) 1n) '

f(un) = (10.57)

For

vi(@-1)'n) - sv(@-1)"n)
Ab((I - 1) n)

we have the following estimates
_ _ (-1 (m+1)
n@-o ' -sv(@-n)"n) DY TraQi=n T0n)
Ab((I - 17)71n) = Ayinf,z b(n)
< 2q, < 2q, ,
Ay infyez b(n) ~ inf,cz b(n)
vi(T-7)"n) = Sv(@ - 1)7'n) L _Sv(@- 7)7'n)
Ab((I - 17)1n) ~ AT -1)1n)
s D
Ao inf, .z b(n)
a9
inf, .z b(n)

therefore

vi(I-1)"'n) - Sv((I - 1) 'n) ;
Ab((I - 1)~ 1n)

Ky
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and since f : K — K| is onto, there exists u € K so that (10.57) holds. Consequently
there exists u € K such that v;(n) = T u(n) € T,(K) for every n € Z. Since v; was
arbitrarily chosen we conclude that K ¢ T (K). From this and Lemma 10.1 follows that
T, has unique fixed point u; € K, u; = T;u; or

us(n) = ATus(n) + Sv(n) Vne Z.

Because A > A, was arbitrarily chosen, then from Theorem 3.2 we conclude that there
exists A; > 0 such that the problem (10.55) is solvable for every A > A;. O

Now we will consider the problem

{Au(n) = a(n)u(n) - Ab(n)f (u(n — t(n))) + pu(n), neZ, (1058)

u(n+ w) = u(n) Vn € Z,

where a and b satisfy (H1), 7 satisfies (H3) and f satisfy
(H5) f:E+— E, |f(u)| < Qforeveryu € E,

Ifw) - f(v)| <djlu-v| for Vu,veeE,

for some positive constants Q and d,,
(H6) A > 0 is a parameter for which

Ad, supb(n) <1,

neZ

J is a positive parameter.

Theorem 10.22. Suppose (H1), (H3), (H5) and (H6) hold. Then there exists p; > 1 such
that for every u > y; the problem (10.58) is solvable for every p > y;.

Proof. We define the set
K,={ueE:|un|<Q for vnelZ}
For u € E we define the operators

Su(n) =u(n +1) - (1 + a(n))u(n),
Tu(n) = Ab(n)f (u(n — 7(n))).

We will note that S : K, — E, T : E — E and for u;, u, € E we have

|Tu;(n) — Tuy(n)| = [Ab(0)f (uy(n — T(n))) — Ab(n)f (uy(n — T(n)))|
— b (f (- 7)) - F s - 7))
A (ay(n — 7)) - Fluo(n - ()
<Adyb()|uy(n - t(n)) —uy(n-1(n))| for vnelk
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from this

sup|Tu(n) — Tu,(n)| < Ad, sup b(n) sup|u;(n — (n)) — uy(n — (n))|
€eZ

neZ neZ n

or

Ty, — Tu,|l < Ad, sug bm)lluy — uyll < lluy — w,ll.
ne

Therefore T : E — E is a non-expansive operator.
Let y; > 1 be chosen so that

Uy >3+supa(n), p;> (2 + sup a(n) + Asup b(n)).

neZ neZ neZ

Let also p > p; and v € K, be fixed.
We consider the equation

uu(n) = Tu(n) + Sv(n)
foru € K, or

u(n) = I%ilb(n)f (u(n-1(n)) + I%Sv(n)

for u € K,.
Let

T,u(n) = —(Ab(n)f (u(n — t(n))) + Sv(n))

1
U
for u € K,. Then

|Tu(n)| < pll(/l sug b(n)|f (u(n - ()| + [v(n+ 1| + (1+ a(n))|v(n)|)

< Hll(/l s;ltg) b(n)Q + (2 + snLelg a(n))Q>

1
= —(/1 sup b(n) + (2 + snlg) a(n)))Q

H neZ

<Q

therefore T, : K, — K,.
Also, for u;,u, € K,

[Ty (n) - Tyuy(n)| = %Ab(n)lf(ul(n -1(n))) - f(uy(n - 7(m)))|

< ]%/Ib(n)d4|u1(n -1(n)) —uy(n-1(n))| for vnez,
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consequently
A
sup|Tyu;(n) - Tyuy(n)| < dy— sup b(n)|uy(n - 7(n)) — uy(n — 7(n))|
nez M1 nez

or

A
[Ty — Tyl < —dj, sup b(n)|luy — u, ||
Hi neZ

1
< —lluy - wyl.
i

In other words the operator T, : K, — K, is a contractive operator. Therefore there
exists a unique u € K, such that u = T,u or there exists a unique u ¢ K, so that
uu(n) = Tu(n) + Sv(n).

Let u;, u, € K,. Then

|Suy(n) — Suy(n)] = |uy(n+ 1) = (1+ a(m)uy(n) — uy(n + 1) + (1 + a(n))uy(n)|

= |(w(n+1) —uy(n+1)) = (1 + a(m)(uy(n) - uy(n))|
<|uy(n+1) —up(n+ )| + (1 + a(m))|uy (n) — uy(n)|

< (2 + sup a(n))llu1 - Vnel,
Z

ne

from which

ISu, - Syl < (2+ sup am )lu; - |
ne

and since 2+ sup,,cz a(n) < p; —1then the operator § : K, — Eis k = 2+sup,z a(n) <
M1 — 1-set contractive operator.

From this and Theorem 3.3 follows that for every y > y; the problem (10.58) is
solvable. O

Now we will consider the problem (10.58) in the case when
(H7) a,b:Z+— (0,00),a(n+w) = a(n), b(n+w) = b(n) foreveryn € Z,inf,; a(n) > 1,
(H8) f:E+—E,0<f(u) <Qforeveryu ¢cE,

[fw)-f(v)| < dslu-v| for Vu,veE,

for some positive constants Q; and ds,
(H9) A > 0is a parameter for which

Asupb(n)d; <1, Asupb(n)Q; < g3 inzfa(n),
ne

neZ neZ

for some positive constant gs,
(H10) 1: Z+— Z, 7(n + w) = 7(n) for every n € Z.
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Theorem 10.23. Let (H7), (H8), (H9) and (H10) hold. Then there exists u € (0,1) for
which the problem (10.58) is solvable.

Proof. Let
K;={ueE:0<u(n)<q; for vnelZ}
For u € E we define the operators

Su(n) = Ab(n)f (u(n - (n))),
Tu(n) =u(n+1) - (1+a(n))un).

We note that S : K3 — E, T : E +— E.
For u;, u, € E we have

|Tuy(n) - Tuy(n)| = [uy(n + 1) = (1 + a(n))uy (n) — uy(n+1) + (1 + a(n))uy(n)|
= |-(1+ a(m)(uy(n) - uy(n)) + (uy(n+ 1) —uy(n + 1))
> (1+a(m)|uy(n) — uy(n)| - [uy(n+ 1) — uy(n + 1)

> (1 + infa(n))|u1(n) —u,(n)| - lluy —w,ll for VnelZ
neZ
i.e.,
[Tuy(n) - Tuy(m)] = (1+ in%a(n))|u1(n) —w)| - luy —wy]l for VneZ
ne.
from this

sup|Tu, (n) - Tuy(n)| > (1 + infa(n))|u1(n) —u,(n)| - lu; —w,ll for VnelZ,
nez nez

or
Tu; — Tu,| = (1 + in{a(n))|u1(n) —uy(n)| - lluy —upll for VneZ
ne
Therefore
ITuy = Ty | > (1+ inf a(n) ) supluy () - u(m)] - lu; - wyll
neZ neZ
or

ITuy - Tu, |l > (1 + infa(n))llul =Wl = luy — uy|l = inf [luy - uy|l
neZ neZ

and since inf, .z a(n) > 1, from the previous inequality we conclude that the operator
T : E — E is a non-contractive one.
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Let u € (0,1) be fixed so that

U <1-Asupb(n)ds.

neZ

Also, for u;, u, € K5 we have

|Suy (n) — Su,(n)| = Ab()|f (uy(n — 1(0))) - f(uy(n - 7(n)))|
< Asug b(n)ds|u,(n - 7(n)) — uy(n — 7(n))|

<Asupb(n)ds|u; —u,| for vnelZ,
neZ

from which
sup|Su, (n) — Suy(n)| < Asup b(n)dsllu; — uy||
neZ neZ

or

Su; — Su,|| < A sug b(n)dslluy — u|.
ne

Therefore S : K5 +— Eis ap; = Asup,ez b(n)ds < 1 - p-set contractive map.
Let v € K; be fixed. We consider the equation

uu(n) = Tu(n) + Sv(n) for uekK; or
uun) =u(n+1) - (1+ an))u(n) + Ab()f (v(n - 7(n))) for uekK; or
(1+u+am)um) =un+1) + Abn)f(v(n-1(n))) for uekK; or

u(n) = m(u(n + 1)+ Ab()f(v(n-1(n)))) for ueks.

For u € K; we define the operator

Tyu(n) = (u(n+1) + Ab(n)f (v(n - T(n)))).

1+u+a(n)

For u € K; we have

To,u(n) >0 for VnelZ

and
A b
THu(n) < EER Su,p”EZ W for vVnelZ (10.59)
1+ u +inf, .z a(n)

We have

g5 +Asup,ez b(M)Q

31+)1+inf,,€zz a(n) t<q3 =
g3 + Asuppez b(N)Q; < g5 + g3p + gz infrza(n) (10.60)

Asuppez b(M)Q; < gsp + g5 infyez aln),
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which is true because (H9). From this and (10.59) follows that
T,u(n) <q; for Vnel

Therefore T, : K3 — K.
For u;, u, € K5 we have

1
Tou(n) — Tou,(n)| = ———— u;(n+1) —u,(n+ 1
|Tuy (n) — Tou,(n)| 1+y+a(n)l 1( ) — uy( )|
1
<——-——Ju -u for vnelZ,
1+y+infneza(n)||1 2
from which
1
sup|THru,(n) — Tou,(n)| € ————————|lu; — ||
neZl U U | 1+ p +inf,5 a(n) 17 W
or
1
[Tyu; - Tou,|l < luy - us,l.

1+ u +inf, .z a(n)

Consequently T, : K3 +— Kj is a contractive operator and therefore there exists a
unique u, € Kj such that T,u, = u, or there exists a unique u, € K; such that

uu,(n) = u,(n+1) — (1+ a(n))u,(n) + Ab(n)f (v(n — 7(n))).

From this and Theorem 3.4 it follows that there exists u € (0, 1) for which the problem
(10.58) is solvable. O

10.11 Application to a Darboux problem

Here we consider the following Darboux problem:

Uy, (%,y) = Au(x,y) + ug(x,y,u(x,y)), x=0,y =0, (10.61)
u(x,0) = p(x), u(0,y)=yy), x=0,y=0, (10.62)

where
¢, € C'([0,00)), $(0) = Y(0), (10.63)

g € C([0, 00) x [0,00) x R) and there exist M > 0 and R, > O such that
for any R > Ry, |g(x,y,2)| < MR, uniformly for bounded, x,yand |z| <R. (10.64)

From the assumption (10.64), we infer there exist A; € (0,1) and y; > O such that, for
any given A > O there exists g = g(A) > R, so that

A+ ulg(x,y,2)| < 1-A;)g, uniformly for bounded, x,y and |z < q. (10.65)

Indeed, for any given A; € (0,1), pick an €; > 0 so that1-A; — €; > 0. Then (10.65) will
be satisfied for u; = (1-A; — €;)/M and g > max(4/e;, R,) by (10.63).

printed on 2/10/2023 3:54 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

10.11 Application to a Darboux problem — 361

Remark 10.14. In particular, if g(x,y,0) = 0 and g(x,y, u) is Lipschitz in u uniformly
for bounded x and y, then it satisfies (10.64).

Remark 10.15. Here we propose a new approach for investigating of the problem
(10.61) and (10.62), different from the approach which is used in [6, 10, 25, 27], where
the corresponding local problem is investigated. Our approach is more universal than
the well-known present approach.

Theorem 10.24. Let the functions g, ¢ and y satisfy the conditions (10.63) and (10.64).
Then the problem (10.61) and (10.62) has a solution u € C}([0, c0) x [0, c0)), Uy, exists
and u,, € C([0, c0) x [0, 00)), for every A € [0,A;] and for every u € [0, ], where A, and
U, are determined by (10.65).

In the case whenA =0, u =1, g = g(u(x,y)), ¢ = = 01in [26] a local existence re-
sult is proved of C!-solutions. Evidently our result is connected with the more general
case and our result ensures global and local existence.

The proof of our result is broken into a series of lemmas and propositions. The
main idea of the proof is as follows: Firstly, we prove the existence of a solution on
[0,1] x [0,1], say u'; secondly, the existence of a solution on [0,1] x [1,2], say u’?,
then to build a solution on [0, 1] x [2, 3]-u® etc.; in this way, the existence of a solution
on [0,1] x [0, c0)-ii'; then the existence of a solution on [1,2] x [0,1], say u?l, after
which a solution on [1, 2] x [1, 2] is obtained, say u?, in this way we build a solution on
[1,2] x [0, 00), say %, etc., and inductively the solution on [2, 3] x [0, co), the solution
on [3, 4] x [0, c0) etc. Initial data of every next part of the solution will depend on the
previous constructed part. As the schematic figure shows:

Yy
3
u13
2 12 22
u u
1
ull u2l
0 1 2 X

Firstly, we will show that the Darboux problem

Uy, () = Aux,y) + ug(x,y, u(x,y)), x €[0,1],y € [0,1], (10.66)
u(x,0) = ¢x), u(0,y) =), xec[0,1]y«[01], (10.67)

has a solution u € C([0,1] x [0,1]), u,, exists and u,, € C([0,1] x [0,1]), for every
A € [0,A] and every u € [0, 1y].

printed on 2/10/2023 3:54 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



362 —— 10 Fixed-point theorems and applications

To this end, for A = max g j)x[0,1] YY) + P(x) - H(0)| = 0, according to (10.65), we
can find a g;; > R, so that

"4 )8 (10,11, 10,11, [-q1, qu])| < A - Ay, (10.68)

where we will use the following notation:

,bl,[c,d), [-1,1])| = 3.2,
lg([a, b], [c,d], [-T.1])]| 3 d]xHr]lg(X ¥,2)|

Then we let E! = C([0,1] x [0,1]), K" = {u ¢ E" : |u| < q; in [0,1] x [0,1]},
endowed with the maximum norm. We note that E! is a completely normed space,
K" is a closed, bounded, convex subset of EL,

Given an €, € (0,1). For u € K" we define the operators

Xy
=(1-€e)u+ el<lp(y) +¢p(x) - ¢((0) + J Jg(z, s, u(z, s))dsdz),
00

Ty = €

O

y
Ju(z s)dsdz.
0

Lemma 10.7. Ifu € K" is a fixed point of the operator S' + AT" then u is a solution of
the problem (10.66) and (10.67).

Proof. We have

u=stu+ 1Ty =
XYy xYy
€u= el<1/)(y) + ¢(x) — p(0) +yj Jg z,S,u(z, s))dsdz) + ¢ J Ju(z s)dsdz =
00 00
y
|

b'e XYy
= <1p(y) + ¢(x) — p(0) +y_[ g(z,s,u(z,s) dsdz> /1_[ Ju(z s)dsdz.
0 00

Differentiating the previous equality in x and y we get

Uy, = Aux,y) + ug(x,y, u(x,y)),

i. e, u(x,y) satisfies equation (10.66).
After we put x = 0 in the equality

Xy
ux,y) = (ll'(y) +¢(x) - $(0) + J Jg(z, s,u(z, s))dsdz)

00 (10.69)

+A

Ot— %

y
J u(z,s)dsdz,
0
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we obtain u(0,y) = Y(y) for every y € [0,1]; and we put y = 0 in (10.69) and use
¢(0) = P(0) to get u(x,0) = ¢(x) for every x € [0,1]. Consequently, u satisfies the
boundary conditions (10.66). O

Lemma 10.8. The operator $" : K'! +— E' is a1 - ¢, < 1-set contractive.

Proof. Foru € K we clearly have $'u € E!. Therefore ! : K!! +— E!. Also, foru € K
we decompose $!! as

Xy
Siu=(1-¢e)u+e(Py)+dx) — P0), Su=ep j Jg z,5,uU(z,s))dsdz.
00

Then$" = §,+$, and [|S$;u—S$,v| = (1-€,)|u-v|, and so S, is 1 - €;-set contractive. To
achieve the proof of the lemma, we just need to show that $, : K"* — E! is compact.
To see this, for any bounded set B ¢ E!M with |lu|| < M for all u € B, we have

IS,ul < eu|g([0,1],[0,1], [-M, M])|,

which shows that S,(B) is uniformly bounded; also

|(Sou), | < €1M(|¢'(X)| +

y
Jg(x, s,u(x, s))ds > <eu(|¢'| + |g(10,1],[0,1], [-M, M])|)
0

and

X

jg(z,y,u(z,y))dz ) < ep(|[Y'] + (10,11, (0,1, [-M, M]))).
0

|(S2u)y| < €1F<|¢’(Y)| +

These two inequalities say that $(B) is equicontinuous in E'. Now, a standard appli-
cation of the Ascoli-Arzela theorem shows that S, : K'! — E is compact. 0

Lemma 10.9. The operator T : E"' +— E! is an e,-Lipschitz operator.

Proof. Letu,v € E. Then

T - T < &

O t—x

y
J|u(z, s) — v(z,s)|dsdz; < €;lu - v|;
0

from this it follows readily that
T - T < €llu - vi. O

Lemma 10.10. Let A;, u; and qy; satisfy (10.68) and let v € K" be fixed. Then for every
A € [0,A] and p € [0, 4] we see that the equation

u=AT" + sy

has a unique solution u € K.
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Proof. Foru e K", define
Tyu = AT u + $'v.

Then it follows from (10.68) that

I'T ul <Aey

O t—x

y
J|u(z, s)|dsdz + (1 - €)|v|
0

XYy
¥ el(hb(y) + 00 - O] + j j|g(z, sz, s))|dsdz)
00

< /\elqll + (1 - e])qll + el(All + "l|g([0’ 1]’ [O’ 1]> [_q11> qll])l)
<A€gy + (1 -e€)qy + el(Au + 11|g([0,11, [0, 1], [-q13 411])|) < qus-

Therefore T, : K!' — K", Also, for u;, u, € K!' we have

[T uy — Tiu,l < A

O e

y
(2.9 - otz )ldsdz < ey -
0

and then
Ty = Tyl < Ayeqlluy = wyl.

From our choice of €; and A, it follows that T; : K" +— K" is a contractive map.
Therefore, there exists a unique u € K" so that T,u = u. O

Proposition 10.4. The Darboux problem (10.66) and (10.67) has a solution u'' «
c'([0,1] x [0,1]), ug, exists and ug, € C([0,1] x [0,1]), for every A € [0,A] and ev-
ery u € [0, u,], where i, are determined in (10.68) or (10.65) above.

Proof. From Lemmas 10.7-10.10 and Theorem 3.1, it follows that for every A € [0, ;]
and u € [0, ] the problem (10.65), (10.66) has a solution u' € k™. Then u" satisfies
(10.67), therefore u!! € C!([0,1] x [0,1]). In the light of (10.69), there exists u}fy and

ugeCﬂQmeJD. O

Now, we will prove that the problem

Uy, (x,y) = Au(x, y) +ug(x,y,u(x,y)), xel[0,1],y €[1,2], (10.70)
u(x,1) =u(x, 1, u©,y)=py), xel0,1],ye(1,2], (10.71)

has a solution u € C'([0,1] x [1,2]), Uy, exists and u,, € C([0,1] x [1,2]), for every
A € [0,A;] and every u € [0, 4]. A; and y, are as in (10.68) above.
Evidently we have

u(0,1) = u'(0,1) = Y(1).
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For A = max [WY(y) + u'(x,1) - u'*(0,1)] > 0, according to (10.65), we can find
[0,1]x[1,2]
a gy > Ry so that

A” 4 018(10,11, [1,2], g2 @1])| < (1 = Ao, (10.72)

Then we let E” = C([0,1] x [1,2]), K = {u ¢ E® : |u| < g, in [0,1] x [1,2]},
endowed with the maximum norm. We note that E" is a completely normed space,
K" is a closed, bounded, convex subset of E'2.

For u € K'? we define the operators

Xy
SPu=(1-¢€)u+ el<¢(y) +ulo 1) —ut0,1) + J Jg(z, s, u(z,s))dsdz),
01
Xy
Ty = € J J u(z,s)dsdz.
01

Lemma 10.11. Ifu € K" is a fixed point of the operator $*> + AT then u is a solution of
the problem (10.70) and (10.71).

Proof. We have
u=SPu+iT?u =

xYy xy
u= <1/)(y) +u 1) - u0,1) + J Jg(z, s, u(z, s))dsdz> +1 J J u(z,s)dsdz.
01 01

Differentiating the above equality in x and y we obtain

Uy = Auly) +ug(xy, u(x,y)),

i.e., u(x,y) satisfies equation (10.70).
After we put x = 0 in the equality

Xy
u(x,y) = (l,b(y) +ul(x,1) - u(0,1) +u J jg(z, s, u(z, s))dsdz)
. o1 (10.73)
+A u(z, s)dsdz,
/]

we obtain u(0,y) = Y(y) for every y € [1,2], and we put y = 1in (10.73) and use (1) =
u“(O, 1) to obtain u(x, 1) = u(x,1) for every x € [0,1]. Hence, u satisfies (10.71). O

Lemma 10.12. The operator S? : K — E2 is a 1 - ¢; < 1-set contractive.

Lemma 10.13. The operator T™ : E*? — E' is an e,-Lipschitz operator.
1
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Lemma 10.14. Let A;, p, and qy, satisfy (10.72) and let v € K* be fixed. Then for every
A € [0,A] and u € [0, u;] we see that the equation

u=ATu + $"%v
has a solution u € K*2.
Proof. Foru € K, let
Tou = AT u + $%.
Then by (10.72) it follows

ITul < A|Tu] + |$™v|

Xy
< g J J|u(z, s)|dsdz + (1 - €y)|v|
01

Xy
+ el<|¢(y) +ul'(x, 1) - u'(0, D|+u J J|g(z,s, u(z,s))|dsdz>
01

< /161%2 + (1 - €1)Q12 + el(Alz + V|g([0> 1]) [1> 2]) [—Q12) Q12] |)

< Merdy + (1- €)qp + € (A% + py1g([0,1], [1,2], [~415. q1o1) < G-
Therefore T, : K*? — K. Also, for u;, u, € K> we have

|T2u1 - T2u2| = |T12u1 - leuzl < €1||u1 - u2||
and thus
5wy - Tousll < AerAlluy — .

The choices of €; and A, imply that T, : K> — K" is a contractive map. Consequently
there exists a unique u € K* so that T}?u = u. O

Proposition 10.5. The Darboux problem (10.70) and (10.71) has a solution u? e
cY([0,1] x [0,1]), ug, exists and ug € C([0,1] x [0,1]), for every A € [0,A;] and ev-
ery u € [0, 4,1, where p, are determined in (10.72) or (10.65) above. Furthermore,

Py < |10, Xy el01, (10.74)
’ u(6y), xe€[0,1],y € [1,2],
is a solution of the Darboux problem
Uy, = AU(x,y) +ug(x,y,u(x,y)), xe€l[0,1],y €[0,2], (10.75)
u(0,y) = ¥(y),u(x,0) = p(x), x €[0,1],y €[0,2], (10.76)

for which i € €'([0,1] x [0,2]), &y, exists and iy, € C([0,1] x [0,2]).
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Proof. In view of Lemmas 10.11-10.14 and Theorem 3.1, for every A € [0,A;] and u €
[0, 14;] the problem (10.70), (10.71) has a solution u'* € K. Then u'? satisfies (10.73),
and therefore u' € C'([0,1] x [1,2]), uy, exists and w,y € C([0,1] x [1,2]).

From (10.71) it follows that

uu(x, 1) = ulz(x, 1),u,1(1(x, 1) = u)l(z(x, 1) Vxe[0,1].
This, coupled with (10.70), gives
1 12
uxy(x, 1) = uxy(x, 1) Vxe][O0,1].

Thus, one can easily see that i'! defined in (10.74) solves the Darboux problem (10.75)
and (10.76). O

Now, we will prove that the problem

Uy (x,y) = Ag(x,y,ulx,y)) + pu(x,y), x €[0,1L,y € [2,3], (10.77)
u(x,2) =u(x,2), u©,y)=9py), xe[0,1],ye€[23], (10.78)

has a solution u € C!([0,1] x [2,3]), u,, exists and u,, € C([0,1] x [2,3]), for every
A€ [0,A] and every u € [0, 44]. A; and y; are as above.
Evidently we have

u(0,2) = u*%(0,2) = Y(2).

For AV = maxg 152,31 1Y) + u(x,2) - u'2(0,2)| > 0, thanks to (10.65), we can choose
a g3 > Ry so that

1413 + }11|g([0> 1]) [2) 3]) [_q13’ q13])| < (1 - Al)q13’

Thenwelet E® = C([0,1]x[2,3]),K® = {u ¢ EP : [u| < q;3 in [0,1]x[2,3]}, endowed
with the maximum norm. Performing a similar analysis to above, one obtains a fixed
point u® of $¥ + AT® in K® for every A € [0,A,] and every u € [0, ], which is a
solution of (10.77) and (10.78). Here

Xy
sBu=(1- e u + el<1/)(y) +u?(x,2) - u'%0,2) + u j Jg(z, s, u(z, s))dsdz),
02

T13u = 61

Ot—x

y
J u(z,s)dsdz.
2

By (10.78), this solution u® fulfills

uP(x,2) = uP(x,2,u(6,2) = u (x,2)  Vx € [0,1],
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and so from (10.77) it follows
ug,(x, 2) = u)l(f,(x, 2) Vxe][O0,1].
Therefore

u'(x,y), xyel01],
a2 (x,y) = u?(x,y), xe€[0,1],y €[1,2],
uB(x,y), xe[0,1],y € (23],

is a solution of the problem

Uy, = Aux,y) +ug(x,y,u(x,y)), xe€l[0,1],y €[0,3],
u(0,y) = (), u(x,0) = p(x), x€[0,1],y € [0,3],

for which @'? € €!([0,1] x [0,3]), ﬂg, exists and ﬂg € C([0,1] x [0, 3]).
Continuing the above process, we obtain the following proposition.

Proposition 10.6. The solution

u(x,y), xyelo1],
ulz(x,y), x €[0,1],y € [1,2],

~1
u(xy) =
uPxy), xel0,1],y € [23],

is a solution of the problem

Uy, = Au(x,y) + ug(x,y,u(x,y)), x€[0,1],y € [0,00),
u(O,y) = l/)(y),u(x, 0) = ¢(X)) X € [0: 1]>J’ € [O’ 00))

forwhichit' € C'([0,1]x[0, 00)), &ty exists and ity, € €([0,1]x[0,00)) for every A € [0,A;]

and u € [0, u;], where p, are determined in (10.68) or (10.65) above.
Now we will prove that the problem

Uy (x,y) = Au(x, y) +ug(x,y,ux,y)), xe€[12],ye€[0,1], (10.79)

u(x,0) = p(x), u(l,y)=u"@1,y), xe[1,2,ye[0,1], (10.80)

has a solution u € C!([1,2] x [0,1]), Uy, exists and u,, € C([1,2] x [0,1]), for every
A € [0,A] and every u € [0, 4], where A; and y, are as above.

To see this, for A”' = max(; 5,01 U (1Y) + $(x) - (1)| > 0, thanks to (10.65), one
can select a g5 > R, so that

A21 + U |g([1: 2]: [0: 1]> [_QZI’ qu])l < (1 - Al)qZI‘
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We let E*' = C([1,2] x [0,1]), K = {u € E® : Ju| < gy in [1,2] x [0,1]}, endowed
with the maximum norm.

Since u'(1,0) = ¢(1), the problem (10.79) and (10.80) is addressed by seeking a
fixed point of the sum $* + AT? in K*, where

Xy
sPu=01- e u + el(un(l,y) +¢d(X) - Pp1) + J Jg(z, s, u(z, s))dsdz),
10

x Yy
Ty = € J J u(z,s)dsdz.
10

Lemma 10.15. Ifu € K* is a fixed point of the operator $** + AT?' then u is a solution of
the problem (10.79) and (10.80).

Proof. One has

u=S"u+ A1y =
XYy Xy
(u”(l V) + o) - (1) +yJ’ jg Z,S,U(z,S) dsdz) +AJ Ju(z,s)dsdz.
10 10

Differentiation of the previous equality in x and y shows

Uy = A%, y) + ug(%,y, u(x, ),

i.e., u(x,y) satisfies equation (10.79).
After we put x = 1in the equality

Xy
u(x,y) = (uu(l,y) +Px) - Pp(1) + J Jg(z, s, u(z, s))dsdz)
1o (10.81)
+A

e )

y
J u(z,s)dsdz,
0

we obtain u(1,y) = u''(1,y) for every y € [0,1], and we put y = 0 in (10.81) and use
u''(1,0) = ¢(1) to see that u(x, 0) = ¢(x) for every x ¢ [1,2]. Hence u satisfies (10.80).
O

Lemma 10.16. The operator $* : K*' — E”' isa1- ¢, < 1-set contractive.
Lemma 10.17. The operator T? : E*' — E*! is e,-Lipschitz operator.

Lemma 10.18. Let A,, u; and g, satisfy (10.81) and let v € K** be fixed. Then for every
A€ [0,A] and y € [0, uy] we see that the equation

u=AT"u+s*v

has a solution u € K.

EBSCChost - printed on 2/10/2023 3:54 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



370 —— 10 Fixed-point theorems and applications

Proof. Let
T 'u = AT u + $7'v

for u € K. From (10.81) we have

Xy
|Tf1u| < Ag J Jlu(z, s)|dsdz + (1 - €)v|
10

Xy
+ el<|u”(1,y) +P00) - ()| +p J J]g(z, s, u(z,s))|dsdz>
10

<Aeiqy + (1-€)gy + el(Azl +u|g((1,21, [0, 1], [-g2, gx])]|)
SA€gy + (1 -€))qy + 61(1421 +1y)8([1,21,[0,1], [-g21> 42 1)|) < q1-

This shows T3 : K*' — K. Also, for uj, u, € K*' we have
21 21
Ty uy = T | < Areqlluy - s

and thus "ll"f1 : K? — K%' is a contractive map. Consequently there exists a unique
u € K so that T?'u = u. O

Proposition 10.7. The Darboux problem (10.79) and (10.80) has a solution u”' «
CY([1,2] x [0,1]), u)z(; exists and uf{; € C([1,2] x [0,1]) for every A € [0,A;] and every
M€ [0

Proof. Applying Lemmas 10.14-10.18 and Theorem 3.1, we know that AT + S has a fixed
point u?! € K for every A € [0,A,] and u € [0, ], which is a solution of the problem
(10.79) and (10.80). Since u?' satisfies (10.81), u* € C!([1,2] x [0,1]), and there exists
u, and uj, € C([1,2] x [0,1]). O

From (10.79) it follows that
wl(1Ly) = Ly Ly) =)' (Ly) vy e[0,1],
from this and from (10.79) it follows that
wy,(Ly) =1, (Ly) ¥y € [0,1].
Now we will prove that the problem

Uy, () = A, y) + ug(x,y,u(xy)), x €12y €[1,2], (10.82)
uix1) =u?(x,1), u@y) =u?1y), xel[1,2,yel12], (10.83)

has a solution u? € C'([1,2] x [1,2]), u)zgz/ exists and ufqz, € C([1,2] x [1,2]), for every
A € [0,A] and every u € [0, 44]. A; and y; are as above.
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To this end, for AZ = max; 5x1,2) u?(1,y) + u(x,1) - u?'(1,1)| > 0, due to (10.65),
we choose a g5, > R, so that

A”+ 11g(11,2], [1,2], [~q2 420])| < (1= A1) (10.84)
Then welet EZ = C([1,2]x[1,2]), K2 = u e E? : [u| < g5, in [1,2]x[1,2]}, endowed
with the maximum norm.

Since u?(1,1) = u?(1,1) = u'(1,1), as above, the problem (10.82) and (10.83) is
addressed by looking for a fixed point of AT? + $? in K**, where

Xy
$2u=(1- € U + el<u12(1,y) 0o - uP(1,1) + u J Jg(z, s, u(z, s))dsdz),
11
Xy
T?u = € J .[ u(z,s)dsdz.
11

By (10.83) this solution u* satisfies
wP(Ly) =u?1Ly), wiLy) =uwiLy), Vyell2],
from which with (10.84) it follows that
wy(Ly) =ugLy), VyelL2],
and
u?(6,1) =1 (6 1), 1?26 1) =1t (1), Vxe (1,2
Then by equation (10.83)
ui}z,(x, 1= uf‘;(x, 1) Vxell2].
In this way, we construct a solution

2 [wieey), xe2Lyeol,
u?(xy), xy€l1,2],

of the problem

Uy () =AU, y) + pg (6 y,u(xy)),  x €[1,2l,y €[0,2],
u(x,0) = p(x), u(Ly)=u'(Ly), xe1,2)yel0,2].

Moreover, i € C'([1,2] x [0,2]), a,z(i exists and af; € C([1,2] x [0,2]).
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Inductively, the function

u21(x,y), x € [1,2],y € [0,1],
u?(x,y), xye[1,2],
uB(x,y), xel1,2,ye[23],

is a solution of the problem

Uy (%,y) = Aux, y) + pg(x,y,u(x,y)), x €(1,2],y 20,
u(x,0) = p(x), u(l,y)= ﬂl(l,y), x€[1,2],y >0,

for which & € €'([1,2] x [0, 00)), there exists ity, and i, € C([1,2] x [0, 00)).
Repeating the process again and again, we obtain a solution to our original prob-
lem (10.61) and (10.62).

Proposition 10.8. The function

a'(x,y), x€[0,1],y =0,
u(y) = 1t (x,y), xe[1,2,y=0,

is a solution of the problem (10.61) and (10.62) for which it € C}([0, 00) x [0, o)), there
exists i, and i, € C([0, 00) x [0, 00)).

Remark 10.16. For the solution u™ ™!, m > 1, n > 1, we see that it solves the problem

Uy (X,y) = Au(x,y) + ug(x. y,u(x,y)), x e [mm+1l,y € [nn+1],

m,n+1 m+1,n

u(m,y)=u (m,y), u(x,n)=u (x,n), xe[mm+1],yenn+1],

E™Y = c(mom + 1] x [nn +1]), K™ = fu e B [y < gqny in €

[m,m + 1] x [n,n + 1]}, endowed with the maximum norm. We note that E™™* js a
completely normed space, K™**"*! is a closed, bounded, convex subset of E™*"*1,

Gm+1.n+1 1S determined by

AL Hllg([rm m+1], [n,n + 1], [~G 410415 Qm+1,n+1])| <(1- Al)qm+l,n+1

where

m+1,n+1 m,n+1 m+1,n m+1,n
A = |u

max (my)+u x,n) —u (m,n)|.
(xy)elmm+1]x[n,n+1]
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The solution is a fixed point of AT 4 gm+lntl jp KMALH for every A € [0,4,] and
every u € [0, )4], where

Sm+1,n+1u _ (1 _ €1)u

xy
+ €1<um,n+l(m’y) + um+1,n(x’ n) - u"’”’"(m, n) +u J Jg(z, s, u(z, S))deZ>,
m n

Xy
Ty = ¢ J J u(z,s)dsdz.
n
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A Sets and mappings

A.1 Union and intersection of sets

A set is a collection of distinct objects, considered as an object in its own right. The
objects that make up a set (also known as the set’s elements or members) can be any-
thing: numbers, people, letters of the alphabet, other sets, and so on. Sets are conven-
tionally denoted by capital letters. For a set A, the membership of the element x in A
is denoted by x € A, and the nonmembership of x in A is denoted by x ¢ A. We will
call a member of the set A a point of A. Two sets are the same if they have the same
memberships. Let A and B be two sets. We say that A is a subset of the set B if each
member of A is a member of the set B. We denote this by A ¢ B. Also, we say that the
set A is contained in the set B or the set B contains the set A. A subset A of the set Bis
called a proper subset of the set B if A # B. We will write A ¢ B. The union of the sets
A and B is the set

AuUB={x:xeA or xeB}
The intersection of the sets A and B is the set

AnNnB={x:xe¢A and xeB}.
The complement of the set A in the set B is the set

B\A={x:xeB and x¢A}.

The set that has no elements is said to be the empty set and it will be denoted by 0. A
set that is not equal to the empty set is called nonempty. A set that has a single element
is called a singleton set. For a given set A, the set of all subsets of A is denoted by P(A)
or 2% and it is called the power set of A. We will use often the words “collection” and
“family” as synonymous to the word “set”. Let F be a collection of sets. We define the
union of 7, denoted by | Js. » A, to be the set of points that belong to at least one of the
sets in 7. We define the intersection of 7, denoted by (5. = A, to be the set of points
that belong to every set in F. The collection of sets F is said to be disjoint provided
the intersection of any two sets in F is empty.

Theorem A.1 (De Morgan’s identities). Let X be a set and F be a family of sets. Then
X\<UA>=ﬂ(X\A) (A1)
AeF AcF

and

X\<ﬂA>= L x\A). (A2)

AcF AcF

https://doi.org/10.1515/9783110657722-011
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Proof. Letx € X\ (Upcr A) be arbitrarily chosen. Then x € X and x ¢ 5. » A. Hence,
x e Xand x ¢ Aforany A € 7. Therefore x e X\ Aforany A € Fand x € [, (X \A).
Because x € X\ (| JycrA) was arbitrarily chosen and we see that it is an element of
NaecrX\ A), we conclude that

X\<UA>g [ X\ A). (A.3)
AcF AcF
Let x € (aer(X \ A) be arbitrarily chosen. Then x € X\ A for any A ¢ F. Hence,
x € Xand x ¢ Aforany A € F. Therefore x ¢ (Jyc A and x € X\ ([JpcrA). Because
x € [\acr(X\A) was arbitrarily chosen and we see that it is an element of X\ (s 7 A),
we conclude that

ﬂ(X\A)gX\<U A).

AcF AcF

From the previous relation and from (A.3), we get equation (A.1). Now we will prove
equation (A.2). Let x € X\ (ac A) be arbitrarily chosen. Then x € Xand x ¢ (5. A.
Hence, there is A € F such that x ¢ A. From this, x € X\ Aand x € [Jy. (X \ A).
Because x € X\ ((scr A) was arbitrarily chosen and we see that it is an element of
Uaer(X\ A), we obtain the relation

X\<ﬂA>g Jx\A). (A4)
AcF AcF
Let x € Jper(X \ A) be arbitrarily chosen. Then, there is A € F such that x € X\ A.
Hence, x € Xand x ¢ A. Therefore x € X and x ¢ (). A. From this, x € X\ ((acr A)-
Since x € |y #(X \ A) was arbitrarily chosen and we see that it is an element of X \
(NaerA), we conclude that

Agr(X\A) <X\ (A@A)

From the previous relation and from (A.4), we obtain equation (A.2). This completes
the proof. O

For a set A, assume that for each A € A, a set E, is defined. Let F be the collection
of sets Ej,A € A. We write 7 = {E;},c, and we will say that this is an indexing or
parametrization of 7 by the index set or the parameter set A.

A.2 Mappings between sets

Let A and B be two sets. A mapping or a function from A into B is a correspondence
that assigns to each member of A a member of B. If B is a set of real numbers, we will
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use the word “function”. We denote a mapping by f : A — B and, for each x € A, we
denote by f(x) the member of B to which x is assigned. The set f(A) = {f(a) : a € A}
is called the image of A under f. The set A is called the domain of f and the set f(A)
is called the image or range of f. If f(A) = B, then the mapping f is said to be onto.
If for each member b of f(A) there is exactly one member a of A for which b = f(a),
the mapping f is said to be one-to-one. A mapping f : A — B that is one-to-one
and onto is said to be invertible. Let f : A — B be invertible. Then for each b € B
there is exactly one member a € A for which f(a) = b and it is denoted by f ~1(b). This
assignment defines the mapping f ' : B — A and itis called the inverse of f. Two sets
A and B are said to be equipotent provided there is an invertible mapping from A and
B. Consider the sets A, B, C and D, and the mappingsf : A+— Band g : C — D such
that f(A) ¢ C. Then the composition g - f : A +— D is defined by (g - f)(x) = g(f(x))
for each x € A. For a set A, we define the identity mapping Id : A — A as follows:
Id(x) = x for each x € A. Sometimes we will denote it by Id,.

Theorem A.2. A mapping f : A — B is invertible if and only if there is a mapping
g : B — A for which

gof=Idy and fo-g=Idg. (A.5)

Proof.
1. Letf : A+~ Bbeinvertible. Then f is one-to-one and onto. Define the mapping
g:B— Aby

gb)=a if f(a)=>b.

Then
fogb)=f(gb) =f(a) =b,
ie.,
fog=1dg.
Also,
g-f(a)=g(f(@)=g(b) =a,
ie.,

gof =1d,.

2. Let there be a mapping g : B — A such that (A.5) holds. Let b € B be arbitrarily
chosen. Then g(b) € A and f(g(b)) = b. Since b € B was arbitrarily chosen, we
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conclude that f : A — B is onto. Let now b € f(A) be arbitrarily chosen. Assume
that there are a;, a, € A such that

b=f(a) and b=f(ay.
Then

gb) =g(f(a)) = ay,
gb) =g(f(ay) = aj.

Hence, a; = a,. Consequently f : A +— B is one-to-one. This completes the
proof. O

Letf : A — B. For a set E we define the set
fYE)={acA:f(a) €E}.

Theorem A.3. Letf : A — B. Then for any sets E, and E, we have

FUE UEy) = f (B UfU(Ey), (A6)
FUE NEy) = f (B nfU(Ey), (A7)
FUEN\Ey) = FE) \ fUEy. (A.8)

Proof.

1. We will prove (A.6). Let x € f~'(E, UE,) be arbitrarily chosen. Then f(x) € E, UE,.
Hence, f(x) € E; or f(x) € E,. Therefore x € f‘l(El) orx € f‘l(Ez). From this,
x € fY(E;) Uf\(E,). Because x € f '(E, UE,) was arbitrarily chosen and we see
that it is an element of f ‘1(E1) uf ‘1(E2), we get the relation

f (B UE,) < f T (E) Uf T (Ey. (A.9)

Let x € f'(E;) U f (E,) be arbitrarily chosen. Then x € f~(E,) or x € f™(E,).
Hence, f(x) € E; orf(x) € E,. Therefore f(x) € E;UE, and from thisx € ffl(EluEz).
Sincex € f ‘I(El) uf ‘I(EZ) was arbitrarily chosen and we see that it is an element
of f}(E, UE,), we obtain the relation

FEDUF(E,y) < f(E; UE,).

From the previous relation and from (A.9), we get equation (A.6).

2. Now we will prove (A.7). Let x € f™'(E, n E,) be arhitrarily chosen. Then f(x) €
E, N E,. Hence, f(x) € E, and f(x) € E,. From this, x € f'(E,) and x € f(E,).
Consequently x € f ‘l(El) nf ‘I(Ez). Sincex € f ‘l(El N E,) was arbitrarily chosen
and we see that it is an element of the set
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f *1(E1) nf *1(E2), we obtain the relation
fHE NEy) < fE) nfTH(Ey). (A.10)

Letx € ffl(El) nffl(Ez) be arbitrarily chosen. Then x € f*I(El) and x € f’l(Ez).
Hence, f(x) € E; and f(x) € E,. Therefore f(x) € E; n E,. Consequently x ¢
ffl(E1 NE,). Because x ¢ f*I(El) n ffl(Ez) was arbitrarily chosen and we see that
it is an element of the set f (E, N E,), we get the relation

fFUE)NfUE,) < fH(E NEy).

From the previous relation and from (A.10), we obtain equation (A.7).

3. Now we will prove equation (A.8). Let x € f"!(E, \ E,) is arbitrarily chosen. Then
f(x) € E;\E,. Hence, f(x) € E; and f(x) ¢ E,. Thereforex ¢ f‘l(El) and x ¢ f‘l(Ez).
Consequently x € f'(E,) \ f}(E,). Because x € f (E, \ E,) was arbitrarily chosen
and we see that it is an element of the set f ‘1(E1) \f _1(E2), we get the relation

FHEN\Ey) < f T E) \fUE). (A1)

Let x € f‘l(El) \f‘l(Ez) is arbitrarily chosen. Then x € f‘l(El) and x ¢ f‘l(Ez).
Hence, f(x) € E; and f(x) ¢ E,. From this, f(x) € E; \ E; and x € f’l(E1 \ E)).
Sincex € f ‘1(E1) \f ‘1(E2) was arbitrarily chosen and we see that it is an element
of f}(E, \ E,), we obtain the relation

FUEN\F(Ey) < f (B \Ey.

From the previous relation and from (A.11), we obtain equation (A.8). This com-
pletes the proof. 0

For amapping f : A+ Band A; € A, the restriction of f to A;, denoted by fly , is
the mapping from A, to B which assigns f(x) to each x € A;.

The sets A and B are said to be equipotent provided there is an invertible map-
ping from A to B. Sets which are equipotent are, from the set-theoretic point of view,
indistinguishable.

A.3 Countable and uncountable sets

A set A is said to be finite provided either it is empty or there is a natural number n for
which A is equipotent to the set {1,...,n}. We say that A is countably infinite provided
A is equipotent to the set N of natural numbers. A set that is finite or countably infinite
is said to be countable. A set that is not countable is called uncountable.

Theorem A.4. A subset of a countable set is countable.
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Proof. Let B be a countable set and A be a nonempty subset of B.

1. Suppose that B is finite. Assume that there is a natural number n such that B and
{1,...,n} are equipotent. Let f be a one-to-one correspondence between B and
{1,...,n}. Let g(1) be the first natural number I, [ € {1,...,n}, for which f(I) € A. If
A = {f(g(1))}, then f - g is a one-to-one correspondence between {1} and A. Oth-
erwise, we define g(2) to be the first natural number I, | € {1,...,n}, such that
f() € A\ {f(g(1))}. This inductive selective process terminates after at most N se-
lections, N < n. Therefore f o g is a one-to-one correspondence between {1,..., N}
and A. Therefore A is finite.

2. LetBbe countablyinfinite. Assume that f is a one-to-one correspondence between
N and B. Define g(1) to be the first natural number [ for which f(I) € A. Arguing
as in the first case, if this selection terminates, then A is finite. Otherwise, this
selection process does not terminate and g is properly defined on all of N. Note
that f o g is a one-to-one correspondence between N and a subset of A. Observe
that g(I) > I for all 1 € N. For each x € A, there is some natural number k such
that x = f(k). Hence, x € {f(g(1)),...,f(g(k))}. Thus the image of f - g is A and A is
countably infinite. This completes the proof. B

Exercise A.1. Prove that the set Q of the rational numbers is countably infinite.

Exercise A.2. Prove that the union of a countable collection of countable sets is count-
able.

A set O of real numbers is called open provided for each x € O, thereisanr > 0
for which (x — r,x + r) is contained in O.

Theorem A.5. The intersection of any finite collection of open sets is an open set.

Proof. Let 0y, ..., O; be open sets and

We take x € O arbitrarily. Then x € O, forany! € {1,...,k}. Because O;, I € {1,...,k},
are open sets, therearer; > 0,1 € {1,..., k}, such that

x-r,x+nr)cO.
1 1 1

Let
- ler{Ill,.iA.,k} !
Then
(x-r,x+r)cO.
This completes the proof. O
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Exercise A.3. Prove that the union of any collection of open sets is an open set.

Theorem A.6. Every nonempty open set is the disjoint union of a countable collection of
open intervals.

Proof. Let O be a nonempty open subset of R and x € 0. There are y and z such that
y >xandz < x, and

xy)cO0, (z,x)cO.
Define
a, =inf{z: (z,x) 0O}, b, =supfy:(x,y) c O}.
We set
L = (a,b,).
Then I, is an open set that contains x. We will prove that
I,cO, a,¢0, b, ¢O0. (A12)

Letw € I, say x < w < b,. By the definition of b,, it follows that there is a number y
such that w € (x,y) and (x,y) ¢ 0. Then w € O. Since w ¢ I, was arbitrarily chosen
and we see that it is an element of O, we conclude that I, ¢ 0. Assume that b, € O.
Then there is an r > 0 such that (b, — r,b, +r) c 0. Thus (x,b, +r) c O, which is a
contradiction. Therefore b, ¢ 0. As above, we see that a, ¢ 0. Consider the collection
of open intervals {I,},¢q. Since x € O is a member of I, and each I, is contained in O,
we conclude that

0-JIL.

xe0

By (A.12), it follows that {L,},.q is disjoint. Because each of the intervals I, contains a
rational number, there is a one-to-one correspondence between {I,},.o and a subset
of the set of the rational numbers. Therefore {I},g is a countable disjoint collection
of open intervals. This completes the proof. O

A set of real numbers is called closed if its complement in R is open.
Exercise A.4. Prove that the union of any finite collection of closed sets is closed.
Exercise A.5. Prove that the intersection of any collection of closed sets is closed.

A collection {E;},¢, is said to be a cover of the set Eif E < [ ;.5 E;. If each of the
sets Ej, A € A, is open, we say that {E,},c, is an open cover of the set E. If each of the
sets E;, A € A, is closed, we say that {E,},c, is a closed cover of the set E. A nonempty
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set of real numbers is said to be bounded above if there is a real number b such that
x < b for any x € E. The real number b is called upper bound of E. A nonempty set of
real numbers E is said to be bounded below if there is a real number a such that x > a
for any x € E. The real number a is called the lower bound of the set E. A nonempty
set E of real numbers is said to be bounded if it is bounded below and it is bounded
above.

Theorem A.7 (The Heine—Borel theorem). Let B be a closed and bounded set of real
numbers. Then every open cover of B has a finite subcover.

Proof.

1. LetB = [a, b] and F is an open cover of B. Define the set E to be the set of numbers
x € [a, b] such that [a, x] can be covered by a finite number of the sets of F. Since
a € E, we see that the set E is nonempty. Also, E is a bounded above set by b.
Hence, E has a supremum. Let ¢ = sup E. Because ¢ € [a,b], thereisan O € F
such that ¢ € 0. Since O is open, there is an € > 0 so that (c — €,c + €) c 0. Note
that ¢ — € is not a supremum for E. Then there is an x € E such that x > ¢ - €.
Since x ¢ E, there is a finite collection {0y, ..., 0} of sets in F that covers [a, x].
Consequently {0y, ..., 0, O} covers the interval [a, ¢ + €). If ¢ < b, then c is not an
upper bound for E. Therefore ¢ = b. Thus [a, b] can be covered by a finite number
of sets from 7.

2. Let B be any closed and bounded set and F be an open cover of B. Since B is
bounded, it is contained in some interval [a, b]. Note that O = R\ B is an open set.
Let 7* be the collection of open sets obtained by adding O to F. Since F covers B,
we see that 7~ covers [a, b]. By the previous case, it follows that there is a finite
subcollection of F* that covers [a, b] and hence B. By removing O from the finite
subcover of B, if O belongs to the finite subcover, we have a finite collection of sets
in F that covers B. This completes the proof. O

Theorem A.8 (The nested set theorem). Let {F, },n be a descending countable collec-
tion of nonempty closed sets of real numbers for which F, is bounded. Then

o0
[F, # 0.
n=1

Proof. Assume the contrary. Then for each real number x there is a natural number
n for which x ¢ F,. Then x € 0, = R\ F,. Therefore R = [J;2; O, i.e., {0} e is
an open cover of R and hence also of F;. By the Heine—Borel theorem, it follows that
there is a natural number N for which F; ¢ Uﬂ’zl 0,,. Because {F},cy is descending,
the collection {0, },,cn is ascending. Therefore

N
JO, =0y.
n=1
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Hence, F; ¢ R\ Fy. This is a contradiction because Fy c F;. This completes the proof.
O

A.4 Continuous real-valued functions on a real variable

Let f be a real-valued function defined on a set E of real numbers. We say that f is
continuous at x € E if for each € > 0 there is a § > 0 for which

if xX'€¢E and |x'-x|<8, then |f(x')-f(x)|<e.

The function f is said to be continuous on E if it is continuous at each point in its
domain E.

Theorem A.9. Let f be a real-valued function defined on a set E of real numbers. Then
f is continuous on E if and only if for any open set O there is an open set U such that
fHo)=Enu.

Proof.
1. Let there for any open set O exist an open set U such that f1(0) = E n U. We take
x € Eand € > 0 arbitrarily. Because the interval

I=(f(x)-e,f(x)+¢€)
is an open set, there exists an open set U such that
i = qeE:fx)—e<flx) <f(x)+e}=EnU.

Hence, x € EnU. Since U is an open set, thereisa § > 0 such that (x-6,x+6) c U.
Thus, if x; € E; and |x; — x| < §, then |[f(x) — f(x;)| < €. Therefore f is continuous at
x. Because x € E was arbitrarily chosen, we conclude that f is continuous on E.

2. Let f be continuous on E. We take an open set O arbitrarily and x € f~1(0). Then
f(x) € 0. Because O is open, there is an € > 0 such that

(foo-ef(x) +€) cO.

Because f is continuous at x, thereis a § > O such that if [x—x;| < §, then f(x)-€ <
fOx)) < f(x) + €. Define I, = (x - §,x + §). Then f(E N L) € 0. Define

u= (J L.

xef1(0)

Because I, are open sets for any x € f~!(0) and the union of open sets is open, we
see that U is an open set. Now we will prove that

EnU=f0). (A.13)
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Let y € E n U be arbitrarily chosen. Then y € E and y € U. Hence, there is an
X € f‘l(O) such that y € L. Therefore y € E nI,. From this, f(y) € f(ENnL,) < O.
Theny € Eandf(y) € 0.Consequentlyy € f}(0). Becausey ¢ EnUwas arbitrarily
chosen and we see that it is an element of f }(0), we obtain the relation

EnUcfY0). (A.14)

Letnowy € f'(0) be arbitrarily chosen. Theny € Eand f(y) € O.Sincey € f1(0),
it follows that y € I, and from this y € U. Thereforey ¢ EnU. Becausey ¢ 10
was arbitrarily chosen and we see that it is an element of the set EnU, we find the
relation

f(0)cEnU.

From the previous relation and from equation (A.14), we obtain equation (A.13).
This completes the proof. 0
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B Functions of bounded variation

Definition B.1. Let f be a real-valued function on the closed bounded interval [a, b]
and P = {x,,...,x;} be a partition of [a,b], a = xy < x; < ... < x; = b. Define the
variation of f with respect to P by

k

b
\(E.P) = Y F () - FOy)|

=1

and the total variation of f on [a, b] by

b b
\/(f)zsup{\/(f,P):P is a partition of [a,b]}.

Definition B.2. A real-valued function f on the closed bounded interval [a, b] is said
to be of bounded variation on [a, b] provided

b

\/(f) < 00.

a

Theorem B.1. Let f be a Lipschitz function on the closed bounded interval [a, b], i. e.,
there exists a constant L > 0 such that

IfoO) -fy)| < Lix -yl
forany x,y € [a, b]. Then f is of bounded variation on [a.b].

Proof. For an arbitrary partition P = {x,, ..., x;} of the interval [a, b], we have
b k
VP = Y IF o) - foy))|
a I=1

k

<L) (q-x4)
=1

=L(b - a).

Because P was arbitrarily chosen partition of the interval [a, b], we conclude that
\/2 (f) < co. This completes the proof. O

Theorem B.2. Let f be a monotonic function on the closed bounded interval [a, b]. Then
f is of bounded variation on [a, b].

Proof. Let f be an increasing function on [a, b]. The case when f is a decreasing func-
tion on [a, b] we leave to the reader as an exercise. Take a partition P = {x, ..., x;} of
the interval [a, b]. Then

b k k
VP = Y IF0q) = Foas)] = Y (Foq) = f(xy) = f(b) - f(a).
a =1 =1

https://doi.org/10.1515/9783110657722-012
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Because P was an arbitrarily chosen partition of [a, b], we conclude that \/Z (f) < oo.

This completes the proof. O
Theorem B.3. Let [a, b] be a closed bounded interval and f be of bounded variation on
[a, b]. Then
c b
VO <\/h
a a

forany c € (a, b].

Proof. For any partition P of [a, c] we have

c b
V@R < /().
a a
Hence,
c b
\/ &) < \/().
a a
This completes the proof. O

Theorem B.4. Let f be a function of bounded variation on [a, b]. Then, for any c € [a, b],
we have

b c b
V@ =\ +\/ ). (B.1)

Proof. LetP; and P, be arbitrary partitions of [a, c] and [c, b], respectively. Then P, UP,
is a partition of [a, b] and

b b c b
V) = \/(F.PUuPy) =\/(F,P) + \/(f. Py).

Hence,
b c b
VO =\ +\/h. (B.2)
a a c
Let P be a partition of [a, b] and P’ be a refinement of P obtained by adjoining c to P.
Then
b b c b
V&P < \/(F.P) < \/(h) + /().
a a a (o}
Hence,
b c b
VO <\ +\ .
a a C
From this and from (B.2), we get (B.1). O
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Theorem B.5 (Jordan’s theorem). A function f is of bounded variation on the closed
bounded interval [a, b] if and only if it is difference of two increasing functions.

Proof.
1. Letf is of bounded variation on [a, b]. Using Theorem B.3, we see that \/%(f) is an
increasing function on [a, b]. Let

X
g0 =f0+\/(), xelabl.
a
Take x;, x; € [a, b] and x; > x,. Hence, using Theorem B.4, we get
foq) - flx) < [f(X1) —f(X2)|
X; X; X,
<\ =\/O -\,
X, a a
whereupon
X, X
f06) +\/() < f0) + \/ (),
a a
i.e.,
80x) < 8(xy).
Consequently the function g is an increasing function on [a, b]. Hence,
X
foo =gx)-\/(f), xelab]
a
2. Let

f(X) :fl(X) —fz(X), X € [a’b]’

where f; and f, are increasing functions on [a, b]. Then, for any partition P =
{xo, ..., x;} of [a, b], we have

b k
/P = YIF(x) - Foqy)|
a =1
k

= Y 100) - Al - (0 - H00-0)|

=1

k k

< 1A - i) + Y IH00) - fr0q)]
=1 =1

= fi(b) - f,(a) + f(b) - (@) < 0.

Consequently \/2 (f) < 00. This completes the proof.
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