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Preface

Historically, most of the turbulence studies were concerned with nonconductive flu-
ids, described by the Navier–Stokes equations. This is because most fluids present
on Earth are nonconductive. In the context of a larger Cosmos, this situation is not a
rule but rather an exception. Indeed, space is filled with ionizing radiation and only
the protection of our atmosphere, which is very dense by astronomical standards, al-
lows us to have a big volumes of insulating fluids, such as the atmosphere and the
oceans. In contrast, most of the ordinary matter in the universe is ionised, that is, in a
state of plasma. The description of ionized, well-conductive fluids must include mag-
netic Lorentz force and the induction equation for themagnetic field. As it turned out,
turbulent conductive fluids tend to quickly generate their own magnetic fields in the
process known as dynamo. On the other hand, the presence of the dynamically im-
portant magnetic field could be considered an observational fact. In spiral galaxies,
the magnetic field has a regular component, usually along the arms and a random
turbulent component of the same order. The value of the magnetic field, around 5 µG,
roughly suggests equipartition between magnetic and kinetic forces. The excitation
of magnetic turbulence is thought to be the main cause of accretion, because hydro-
dynamic thin disks are stable. Accretion onto black holes is estimated to be the most
potent source of energy in Cosmos, exceeding thermonuclear burning in stars. Closely
related to this problem are widely observed astrophysical jets, which are highly col-
limated flows perpendicular to the accretion disks in which the magnetic field plays
an important role in collimation and energy transfer. Understanding shear-driven dy-
namo and its nonlinear evolution is of high astrophysical importance. Direct obser-
vation of magnetic turbulence is the interstellar medium, galaxy clusters, solar wind
have confirmed earlier claims that turbulence is inevitable in high-Reynolds’ number
flows, even though astrophysical flows are characterized by fairly small number den-
sities. Through the book we mention various examples of astrophysical turbulence as
well as turbulence in our solar system, the heliosphere, while the observational tech-
niques to study, specifically, astrophysical turbulence are reviewed in the last chapter.

Observations of magnetized turbulence in the interstellar medium, galaxy clus-
ters and the solar wind have confirmed that turbulence is indeed ubiquitous in astro-
physical flows and has been detected in almost all astrophysical and space environ-
ments; see, e. g., [173, 11, 76]. The Reynolds’ numbers of astrophysical turbulence are,
typically, very high, owing to astrophysical scales which are enormous compared to
dissipative scales. Recent years have been marked by a new understanding of the key
role that turbulence plays in a number of astrophysical processes [90, 129]. Most no-
tably, turbulence has drastically changed the paradigms of interstellar medium and
molecular cloud evolution [408, 343, 431]; see also [311].While small scale, kinetic tur-
bulence has been probed by a variety of approaches such as gyrokinetics, Hall MHD
and electron MHD [196, 381, 84], this book is mostly concerned with so-called mag-

https://doi.org/10.1515/9783110263282-201
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VI | Preface

netohydrodynamics of MHD, which is a simple one-fluid description, similar to the
Navier–Stokes equation. It could be thought as a 2ndNewton’s law for conductive fluid
and also could be derived systematically from kinetic theory. The conventional con-
dition of the applicability of the fluid approach, namely that a mean-free path of the
particle due to particle-particle collisions must be much smaller than gradient scales
of the problem (the so-called Knudsen number much smaller than unity) seems to be
too restrictive inmost plasmas, especially astrophysical plasmas. Indeed, plasmas are
often collisionless, i. e., the effects of collisions could be neglected compared to collec-
tive effects, as charged particles are capable of long-range interactions. Inmany cases,
such as the star’s interiors, plasma could be considered highly collisional. In other
environments, such as solar wind or galaxy clusters, pair collisions will be inefficient
and collective interactions must play their own dissipative role. The observations of
inertial range fluctuations way below pair collision mean-free path in the solar wind
support this idea. Although this book is mostly focused on standard nonrelativistic
MHD, in Chapter 5 we mention some relativistic MHD studies, which are relevant for
relativistic astrophysical sources such as gamma-ray bursts and active galactic nuclei
(AGN) jets. Relativistic force-free MHD is an important limit applicable to relativistic
electron-positron jets close to the central engine of AGN, where the energy density of
matter is negligible compared to electromagnetic energy density.

Turbulence is a common phenomenon, a time-dependent, quasi-stochastic flow,
associated with nonlinearities present in fluid equations. Dissipation in fluids is often
associated with microscopic phenomena and dissipation scales are typically much
smaller than the scales of the problem. Physically, the development of turbulence
could be seen as exciting many degrees of freedom present in a fluid system. Tur-
bulence has been observed since long time ago, as evidenced by Leonardo sketches.
A major role in turbulence research is played by invariants of the “ideal” equations
free of dissipation, examples of which are energy conservation or the circulation of
velocity frozen into a fluid. The way these invariants are broken by turbulence could
be insightful for understanding observable physical phenomena. Some of the con-
served quantities form a “cascade” through scales, which could be understood quan-
titatively by scaling arguments. In the context of magnetized fluids turbulence breaks
an ideal frozen-in condition formagnetic field lines and facilitatesmagnetic reconnec-
tion. As stochastic phenomenon turbulence is best studied with statistical methods,
the quantities averaged over ensemble play amajor role. These include power spectra
and structure functions. Turbulence theory produced a number of analytically derived
relations for certain structure functions, which allows for cross-checks for consistency
with observation and experiment.

Lately, the theory and experiment has been complemented by a newmethod, nu-
merical simulations that we often call “numerics” in this book. One example of the
type of numerical simulations, direct numerical simulations (DNS), are prominently
presented in this book. DNS refers to a “fully resolved” numerical experiment, where
numerics faithfully reproduce properties of the original equations of fluid dynamics.
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An opposite of DNS, Implicit Large Eddy Simulations (ILES), are also very common
in astrophysics. These are not attempting to archive high accuracy at all scales, but
instead aim to reproduce large-scale and intermediate-scale dynamics correctly. Nu-
merics stand in between theory and experiment. On one hand, numerics solve MHD
equations directly, without regard to doubt whether MHD is applicable. The simula-
tion setup is often abstract, such as using a periodic box, attempting to emulate in-
finite space and/or statistically homogeneous turbulence. In nature, e. g., in the so-
lar wind, homogeneity is rather an exception. In this aspect, numerics are close to
theory. On the other hand, numerics are often called a “numerical experiment,” as it
measures the relevant physical quantities of the phenomena without invoking much
of the theoretical assumptions or prerequisites. Compared to a real-life experiment,
in numerics it is easier to study statistically homogeneous or statistically stationary
state cases and it is possible to measure statistical quantities very well, in principle
with arbitrary precision. Progress in computing allowed us to use grid sizes of around
40003 nowadays, and Reynolds’ numbers in these experiments started approaching
those encountered in space physics.

Chapter 2 overviews the origin of astrophysical magnetic fields, a problem which
is known as turbulent dynamo. This problem can be roughly subdivided into the so-
called large-scale dynamo, a generation of magnetic fields on scales larger than the
outer scale of turbulence and small-scale dynamo, which generates small-scale tur-
bulent magnetic perturbations. On some level, MHD equations seem to suggest that
magnetic field is “frozen” intowell-conducting fluids, and as it is being carried around
by the fluid magnetic field it is amplified by stretching and folding. This process has
been extensively studied since the 1960s. In this book, we decided that it would be im-
possible to cover such a broad topic as turbulent dynamo; instead, wewrote Chapter 2
intending to demonstrate that turbulent dynamo is generic, i. e., given kinetic mo-
tions dominate over magnetic stress the dynamo will continue to increase magnetic
energy. We restrict ourselves to small-scale dynamo, which is more generic. Also we
discuss mostly “nonlinear dynamo,” the situation in which magnetic forces cannot
be ignored, albeit often on fairly small scales, which is universally applicable to most
observed objects.

Similar to hydrodynamic turbulence, most of the theoretical progress on MHD
turbulence has been made in the so-called incompressible limit, which is covered in
Chapter 3. The physical justification of this limit in hydrodynamics was the fact that
sound waves could often be ignored in turbulent dynamics and the solenoidal turbu-
lent motions have their own dynamics, which are well-described by incompressible
equations, at least on small scales. Similar notion is used in MHD where it is often
possible to assume that the MHD fast mode splits from an incompressible cascade of
Alfvenic and slowmodes. It turns out that another split is possible due to the extreme
anisotropy in the inertial range of MHD turbulence when the slowmode becomes pas-
sive and does not contribute to essential nonlinearity, its cascade being slaved to the
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Alfvenicmode. The cascade of Alfvenicmode is often called Alfvenic turbulence or re-
ducedMHDandcontains all necessary statistical properties of small-scaleMHD turbu-
lence. It turns out that thisMHD turbulence in a strongmeanfield (strong localB0 com-
pared to perturbations) is essentially three-dimensional, and not two-dimensional as
was thought before.

Iroshnikov and Kraichnan first pointed out that the magnetic field cannot be ex-
cluded by the choice of reference frame, therefore, in every parcel of the fluid a mean
magnetic field will remain, which would be much stronger than small-scale perturba-
tions. This naturally lead to further studieswhich took into account anisotropyofMHD
turbulence in a strong mean field namely the work of Goldreich and Sridhar which
used an uncertainty relation between the wave frequency and the cascade timescale
to formulate the so-called “critical balance.” Later we show how this picture is con-
nected to the modern view of MHD turbulence. Chapter 3 describes a special case of
MHD turbulence without cross-helicity. Physically, this means that the amount of per-
turbations propagating in one direction along mean magnetic field is perfectly statis-
tically balanced by perturbations moving in the opposite direction; this case being
called “balanced turbulence.” However, in real systems, MHD turbulence is often im-
balanced, because there are sources and sinks of energy and these are rarely homo-
geneous in space. Also, due to fluctuations of all quantities in time, conceptually, one
will have to understand the most general imbalanced case in order to create a the-
ory for the specific balanced case. Unlike hydrodynamics, where the introduction of
fluctuations of dissipation rate ϵ in the theory was rather obvious, e. g., Kolmogorov–
Obukhov extension of the Kolmogorov model or the She–Leveque model, in MHD the
introduction of imbalance significantly complexifies theory. In Chapter 4, we discuss
some new ideas which lead to creation of imbalanced turbulence models and their
numerical testing.

Chapter 5 is devoted to compressible MHD turbulence and various approaches
in the weakly compressible, as well as supersonic limit. In MHD, the decomposition
into four basic linear modes has been insightful for describing strongly compressible
turbulence. The study of supersonic ISM turbulence is important for understanding
the structure of molecular clouds and subsequent star formation. In this respect, the
studies of density scalings and thermal instability in DNShave become commonplace.
The solar wind, a MHD flow emitted from the sun at speeds 400–800 km/s is also
compressible and its properties and the transition to dispersive regime at small scales
is a large part of MHD turbulence now, due to availability of in-situ measurements.

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



Contents

Preface| V

1 Introduction into MHD turbulence| 1
1.1 Turbulence around us| 1
1.2 Kolmogorov scaling| 4
1.3 Compressible MHD equations and simulated turbulence| 6
1.4 How MHD cascade is different from hydro cascade?| 7
1.5 Turbulent dynamo| 9
1.6 Magnetohydrodynamics and reconnection| 9
1.7 Observing MHD turbulence| 10
1.8 Applications of MHD turbulent theory| 10
1.9 Cosmic ray transport and acceleration| 11

2 Astrophysical dynamo| 13
2.1 Nonlinear small-scale dynamo| 14
2.1.1 Linear growth stage| 14
2.1.2 Locality of the small-scale dynamo| 16
2.1.3 Numerical results| 17
2.1.4 Efficiency of nonlinear dynamo| 18
2.1.5 Dynamo simulations with intermittent driving| 19
2.2 Dynamo in galaxy clusters| 20
2.2.1 Physical conditions in galaxy clusters| 20
2.2.2 Limitation of dynamo simulations| 22
2.2.3 Analysis of cluster simulations| 24
2.2.4 Cluster magnetic fields| 26

3 Incompressible MHD turbulence| 29
3.1 Equations of incompressible MHD and conservation laws| 31
3.2 From weak to strong turbulence| 33
3.3 Reduced MHD approximation| 35
3.4 Strong turbulence: phenomenology| 36
3.4.1 Dissipation scales| 37
3.4.2 Anisotropy from phenomenological viewpoint| 37
3.4.3 Modifications of GS95| 39
3.5 Anisotropy from Lagrangian viewpoint| 39
3.6 Parallel spectrum: numerics| 41
3.7 Parallel spectrum observations versus numerics| 43
3.8 Statistical indicators of turbulence| 45
3.9 The scaling convergence argument| 48

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



X | Contents

3.10 Numerical studies of the spectral slope| 50
3.11 Dynamic alignment models| 55
3.12 Anisotropy scaling study| 58
3.13 Summary of balanced driven MHD turbulence| 59
3.14 Turbulence driven by external current| 59
3.14.1 MHD equations with external current and conservation laws| 60
3.14.2 Linear and nonlinear stages| 61
3.14.3 Empirical findings| 64
3.14.4 Applications of current driven turbulence to astrophysical

systems| 65

4 Imbalanced MHD turbulence| 67
4.1 Theoretical considerations| 69
4.1.1 Lithwick, Goldreich, and Sridhar (2007) model, [295] LGS07| 70
4.1.2 Beresnyak and Lazarian (2008) model, [30] BL08| 70
4.1.3 Perez and Boldyrev (2009) model, [356] PB09| 71
4.2 Empirical study in MHD simulations with stochastic driving| 72
4.2.1 Establishment of the stationary state| 75
4.2.2 Parallel structure function| 76
4.2.3 Spectra and anisotropies| 79
4.2.4 Comparison with models| 84
4.3 Empirical study in reduced MHD simulations with energy-controlled

driving| 86
4.3.1 Nonlinear cascading and dissipation rate| 86
4.3.2 Imbalanced spectra| 87
4.3.3 Imbalanced anisotropies| 88

5 Compressibility in MHD turbulence| 91
5.1 Decomposition into fundamental modes| 91
5.2 Other ways of decomposition into fundamental modes| 95
5.3 Decomposition into solenoidal and potential modes| 97
5.4 Density scalings| 98
5.4.1 Theoretical considerations| 99
5.4.2 The code| 100
5.4.3 Results| 101
5.4.4 Implications| 102
5.5 Viscosity-dominated regime of MHD turbulence| 103
5.6 Applying results to collisionless fluids| 106
5.7 Toward understanding of relativistic turbulence| 106
5.7.1 Fully relativistic MHD turbulence| 109
5.7.2 Relativistic compressible turbulence: mode decomposition| 110

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



Contents | XI

6 Intermittency of MHD turbulence| 117
6.1 General considerations| 117
6.2 She–Leveque model of intermittency| 118
6.3 Intermittency of incompressible turbulence| 118
6.4 Intermittency of compressible turbulence| 119
6.5 Intermittency of viscosity-damped turbulence| 121

7 Turbulence and charged particles| 123
7.1 Particle diffusion due to stochastic fields| 124
7.1.1 Richardson’s picture of diffusion| 124
7.1.2 Field line diffusion| 125
7.1.3 Limiting cases: very small and very large distances| 126
7.1.4 Intertial range distances – hand-waving derivation| 126
7.1.5 Inertial range distances – Richardson–Alfvén diffusion| 127
7.1.6 Numerical results, asymmetric diffusion| 127
7.1.7 The model of asymmetric diffusion| 130
7.1.8 Implications of asymmetric field line wandering for particle

transport| 130
7.2 Turbulence and particle acceleration| 131
7.2.1 Observational evidence for acceleration different from classic

DSA| 131
7.2.2 Statistics of general MHD flows and energy transfer| 134
7.2.3 Acceleration by curvature drift| 135
7.2.4 Numerical case study of two types of turbulence| 137
7.2.5 Expected picture for turbulent acceleration in reconnection| 138

8 Reconnection in the presence of MHD turbulence| 141
8.1 The problem of reconnection| 141
8.1.1 Flux freezing and magnetic topology changes| 141
8.1.2 Sweet–Parker model and its generalization to turbulent media| 141
8.1.3 Temporal and spatial Richardson diffusion| 145
8.1.4 Turbulent reconnection and violation of magnetic flux freezing| 145
8.1.5 Turbulent reconnection in compressible media| 145
8.1.6 Turbulent reconnection in partially ionized gas| 146
8.2 Testing turbulent reconnection| 149
8.3 Understanding turbulent relativistic reconnection| 152
8.4 Generation of turbulence by reconnection| 156
8.4.1 Early-time turbulence in the planar current layer| 157
8.4.2 Compressible simulations with inflow and outflow of turbulence in the

current layer| 159
8.5 Observational testing of turbulent reconnection| 161
8.5.1 Solar turbulent reconnection| 161

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



XII | Contents

8.5.2 Solar wind, Parker spiral, heliospheric current sheet| 162
8.5.3 Indirect observational evidence| 163
8.5.4 Flares of magnetic reconnection and associated processes| 164
8.6 Comparison of approaches to magnetic reconnection| 165
8.6.1 Turbulent reconnection and numerical simulations| 165
8.6.2 Turbulent reconnection versus tearing reconnection| 166
8.6.3 Turbulent reconnection: 3D reality versus 2D models| 167
8.6.4 Turbulent reconnection versus turbulent resistivity| 168

9 Turbulent transport of magnetic field and heat| 171
9.1 Important motivation: star formation problem| 171
9.2 Diffusion in magnetized turbulent fluid| 173
9.2.1 Physical picture of reconnection diffusion in the absence of

gravity| 176
9.2.2 Reconnection diffusion in the presence of gravity| 179
9.3 Reconnection diffusion and the identity of magnetic field lines| 180
9.3.1 Explosive diffusion of magnetic field lines in turbulent flows| 180
9.3.2 Spontaneous stochasticity of magnetic field lines and reconnection

diffusion| 183
9.3.3 Reconnection diffusion in partially ionized gas| 184
9.4 Theoretical expectations and numerical simulations of reconnection

diffusion| 185
9.4.1 Limitations of numerical simulations| 185
9.4.2 Reconnection diffusion in circumstellar accretion disks| 187
9.5 Predictions and tests for reconnection diffusion| 188
9.5.1 Reconnection diffusion in interstellar diffuse gas| 188
9.5.2 Reconnection diffusion and extreme cases of star formation| 190
9.5.3 Intuitive understanding of reconnection diffusion| 191
9.5.4 Reconnection diffusion and alternative ideas| 192
9.5.5 Transport of heat in magnetized fluid| 194
9.5.6 MHD and plasma-based descriptions of reconnection diffusion| 199

10 Extracting properties of astrophysical turbulence from
observations| 203

10.1 Studying turbulence with spectral lines| 204
10.1.1 Statistics of the PPV: velocity channel analysis and velocity coordinate

spectrum| 205
10.2 Synchrotron fluctuations| 219
10.2.1 Numerical testing of the synchrotron-based techniques and the

application to observations| 225
10.3 Observational signatures of MHD turbulence modes| 226

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



Contents | XIII

10.3.1 Anisotropy arising from Alfvenic turbulence: obtaining magnetic field
direction andMA | 226

10.3.2 Contribution of different MHD turbulence modes| 227
10.4 Relation to CMB foreground studies| 228
10.4.1 Polarized CMB foreground| 228
10.4.2 MHD turbulence for foreground studies| 229
10.5 Gradient technique: utilizing the turbulence knowledge to study

magnetic fields| 235
10.5.1 Velocity gradients| 235
10.5.2 Synchrotron intensity gradients| 239
10.5.3 Synchrotron polarization gradients| 240
10.5.4 Intensity gradients| 241
10.5.5 Dispersion of gradient directions: obtaining magnetization of the

media| 243
10.5.6 Probing magnetic fields with different types of gradients| 244
10.6 Synergy of different approaches| 245

Bibliography| 247

Index| 269

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



1 Introduction into MHD turbulence

Our goal in this section is to highlight various directions in MHD turbulence research,
which will be explored in more detail later in the book. We also discuss the relevance
of these studies to space physics and astrophysics in general.

1.1 Turbulence around us

We live in a turbulent world. Air in the atmosphere, jets of water from a tap, even our
blood in the large arteries is turbulent. Observations of magnetized turbulence in the
interstellar medium, galaxy clusters and the solar wind have confirmed that turbu-
lence is indeed ubiquitous in astrophysical flows and has been detected in almost all
astrophysical and space environments; see, e. g., [173, 11] (see Figure 1.1).

Turbulence is a direct consequence of large-scale fluid motions experiencing low
friction. To characterize the relative influence of viscosity, we use a dimensionless
Reynolds number, Re = LV/ν, where L is the scale of the flow, e. g., the diameter of a
jet, V is its velocity, and ν is fluid kinematic viscosity. Flows with Re ≫ 1 are typically
turbulent, with the degree of chaos increasing with the increase of Re.

The Reynolds’ numbers are usually very large in astrophysical flows, because the
scales and velocities are large, determined by the size and themotions of astronomical
objects, whereas viscosity and magnetic diffusivity are defined by microphysics.1 For
instance, Re numbers of 1010 and larger are common for astrophysics. For so large
Re, the inner degrees of fluid motion get excited, and a complex pattern of motion
develops.

The notion of turbulence is associated with chaos and unpredictability; however,
turbulencehas its order. It is a sort of “ordered chaos” that allows for a remarkably sim-
ple statistical description (see, e. g., [324]). If the injections and sinks of the energy are
correctly identified, we can try to describe turbulence statistically for arbitrary Re. The
range of scales between the injection scale and the dissipation scale is called the in-
ertial range. Turbulence often allows a simplified statistical treatment over its inertial
range. For instance, the spatial variations of any physical variable, X(r), is related to
the difference of X between points separated by a distance l. If averaged over different
realizations of the process or, in practice, averaged over the entire turbulent volume,
this provides a valuable measure of X variation with l. The result can also be given in

1 Often one can express kinematic viscosity as proportional to vl, where v is the microscopic, e. g.,
thermal velocity and l is the collisional mean-free path, also a microscopic quantity. We discuss how
this simple picture is modified in the so-called collisionless plasmas in Section 2.2.1.

https://doi.org/10.1515/9783110263282-001
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2 | 1 Introduction into MHD turbulence

Figure 1.1: Big power law in the sky from [11] extended to scale of parsecs using WHAM data
from [76]. Reproduced from [76] with permission of AAS.

terms of the Fourier transform of this average, with the displacement l being replaced
by the wavenumber k parallel to l and |k| = 1/|l|. For example, for the isotropic hy-
drodynamic turbulence kinetic energy spectrum, E(k)dk, describes howmuch energy
resides at the interval k, k + dk. At large scale L (i. e., small k), one expects to observe
features reflecting energy injection. At small scales, energy dissipation takes place.
Between these two scales, one expects to see a power-law scaling reflecting the self-
similar process of nonlinear energy transfer.

In other words, in spite of its complexity, the turbulent cascade is self-similar
over its inertial range and allows a rather simple description, which is very advan-
tageous for many applications. For this range, the physical variables are proportional
to the power of the eddy size over a range of scales, leading to scaling laws expressing
the dependence of certain nondimensional combinations of physical variables on the
eddy size. The scaling relations can predict turbulent properties on the whole range
of scales, including those, that are out of reach of large-scale numerical simulations.
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1.1 Turbulence around us | 3

Figure 1.2: Simulated MHD turbulence visualized by magnetic field magnitude shown in grayscale.
Left: statistically homogeneous and isotropic turbulence with zero net flux through the volume,
driven by volumetric force. Right: MHD turbulence driven by the instability in the current layer
from [27]. Reproduced from [27] with permission of AAS.

These scaling relations are very valuable for obtaining an insight of the processes at
the inertial range.

Turbulence can be driven by the variety of mechanisms. Simulated turbulence is
often driven by applied volumetric force; see the left side of Figure 1.2. Turbulence can
also be driven by cosmological flows, as we discuss, see Section 2.2. One interesting
source of turbulent energy release is the instability of the thin current sheet; see the
right side of Figure 1.2, which is an example of the self-driven reconnection that we
discuss in Section 8.4. Another generic way to induce turbulence and convert gravita-
tional energy into heating and particle acceleration is the so-calledmagnetorotational
instability (MRI). Astrophysical flows have a relatively large Reynolds’ number, and
since hydrodynamic Keplerian flows are stable, this presents a problem for explain-
ing astrophysical accretion. If magnetic fields are sufficiently weak, they can induce
MRI the essence ofwhich is easy tounderstand—consider perturbations of the toroidal
field within a thin Keplerian highly conductive disk. Themagnetic field line perturbed
in the plane of the diskwill be subject to further instabilities. Indeed, the plasmas that
get closer to the gravitational source are going to get larger angular velocity, while a
more distant part is going to get a smaller velocity. The tension of the magnetic field
that connects these two parcels of plasmas is going to increase the angular momen-
tum of the more distant parcel and decrease the angular momentum of the closer to
the center parcel. As a result, the perturbation is the magnetic field is going to grow,
inducing angular momentum transport.
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4 | 1 Introduction into MHD turbulence

Figure 1.3: Left: Spectrum of hydrodynamic turbulence compensated by Kolmogorov scaling to give
approximate constant function versus wavenumber. Right: The conceptual subdivision of a large
datacube into 8 smaller cubes having similar statistics as the large cube but missing largest scale
perturbations. From [21].

1.2 Kolmogorov scaling

Turbulent spectrum has a beginning and the end. Outer scale or integral scale L is the
scalewheremost energy resides,2 usually this is also a scale where energy is injected.3

The energy “cascades” down to smaller scales until it hits the so-called Kol-
mogorov scale, where dissipative processes overcome nonlinear transfer of energy.

The Kolmogorov scale can be expressed as a combination of viscosity/diffusivity
and energy dissipation rate, which gives a unit of length,

η = (ν3n/ϵ)
1/3(n+i+1)

, (1.1)

where n is the order of the diffusivities, e. g., 2 for classic diffusivity, i is the spectral
index, e. g., −5/3 in case of classic Kolmogorov theory, νn is viscosity or magnetic dif-
fusivity, so that the dissipation operator looks like −νn(−∇2)n/2 and ϵ is the energy dis-
sipation rate.

Dimensionless ratio L/η could serve as a “length of the spectrum.”
In hydrodynamic turbulence, a popular starting point is the Kolmogorov model,

which assumes a self-similar cascade of energy through scales [224]. Cascade means
that the energy is being transferred from one scale to another locally in scale without
dissipation so that the energy rate is constant for all scales:

ϵ ≈ u2l /tcas = ϵ, (1.2)

where ul is a characteristic velocity and tcas is the cascading timescale. For the hydro-
dynamic cascade, [224] assumes tcas ≈ l/ul, which results in

ϵ ≈ u3l /l = ϵ. (1.3)

2 Can be defined formally through integral over the spectrum, e. g., L = 3π/4E ∫∞0 k−1E(k) dk.
3 Inverse cascade in two-dimensional hydrodynamic turbulence is one counterexample of this.
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Going further and formally defining ul through structure functions (see Sec-
tion 3.8), and assuming that all structure functions are “self-similar,” this model
predicts that the spacial power spectrum of turbulence, E(k), will be a power-law
function of wavenumber,

E(k) = CKϵ
2/3k−5/3, (1.4)

where CK is a Kolmogorov constant. The limitations of this formula are well known
and typically corrected by the “intermittency correction” (kL)α, where L is an outer
scale and α is a small number, around 0.035 [392]. In simulations or measurements
with small inertial range, this correction can often be neglected. In particular, a com-
pilation of experimental results for hydrodynamic turbulence [404] suggests that a
Kolmogorov constant is universal for a wide variety of flows. High-resolution numer-
ical simulations of isotropic incompressible hydrodynamic turbulence [179] suggest
the same value for the Kolmogorov constant, around 1.6. See also Figure 1.3 which rep-
resents statistically homogeneous, isotropic simulations with two different Reynolds
numbers indicating how “inertial range” of k−5/3 scaling broaden with Re. Once we
subscribe to the notion of self-similarity, simulation with higher numerical resolution
can be considered both as a simulation resolving smaller physical scales and as a sim-
ulation of a larger volume of turbulence and containing many turbulent realizations.
The statistics will be similar in cases with small or large Re; see Figures 1.3, 3.8.

Total energy dissipation in turbulence can be empirically expressed as

ϵ = C󸀠Kδv
3/L, (1.5)

which resembles Equation (1.3) written for the outer scale. This relation has been
known as the zeroth law of turbulence and can be experimentally or numerically
validated by changing viscosity, the scale of the system or perturbation velocity while
keeping the structure of the turbulence approximately the same. For example, one can
study grid-generated turbulence with different fluids and vary the scale of the system
as well as flow speed. The same type of turbulent flow results in approximately the
same dimensionless coefficient C󸀠K . This expression represents a connection between
outer scale Lwhich feature almost inviscid flow that injects energy and the dissipative
scales, which actually dissipate this injected energy. More detailed statistical studies
of turbulence benefits from using such quantities as spectra, correlation functions,
and structure functions.

Turbulence is neither completely homogeneousnor exactly self-similar. It features
“structures,” i. e., spacial locations where the fluctuations are enhanced compared to
their surroundings. This, in particular, can result in places where the energy release
is enhanced. Unlike the Kolmogorov description of the two-point correlations, so far
we do not have a similar accepted theory of intermittency even in the case of hydrody-
namic incompressible turbulence, not to speak about MHD turbulence theory.
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6 | 1 Introduction into MHD turbulence

In the book, we analyze some results related to the structure of the intermittent
turbulent flows, and analyze higher order statistics of fluctuations. This part of the
book has less rigorous physics-based justification, but it reflects the state of the field
as we see it.

1.3 Compressible MHD equations and simulated turbulence

Ideal MHD equations describe the dynamics of ideally conducting inviscid fluid with
themagnetic field and can bewritten in Heaviside units, redefining the electric charge
with a factor of 1/4π getting rid of 4π factors in Maxwell’s equations as

𝜕tρ + ∇ ⋅ (ρv) = 0, (1.6)
ρ(𝜕t + v ⋅ ∇)v = −∇P + j × B, (1.7)

∇ ⋅ B = 0, (1.8)
𝜕tB = ∇ × (v × B), (1.9)

P = P(ρ, s) (1.10)

with current j = ∇×B andvorticityω = ∇×v,P(ρ, s) is an equation of state. Introducing
sound speed c2s = 𝜕P/𝜕ρ, linearized MHD equations reveal four perturbation modes:

1) Alfvén mode – transverse waves with v and B perturbations along k × B and
dispersion relationω = (vA ⋅ k), where vA = B/√4πρ, so-called Alfvén velocity = mag-
netic field B in velocity units introduced earlier. The phase velocity of Alfvén mode is

uA = ω/k = ±(vA ⋅ k̂) = ±vA cos θ, (1.11)

while its group velocity 𝜕ω/𝜕k = ±vA, hence the term Alfvén velocity.
2,3) Fast and slow modes – compressible waves with perturbations in the k,B

plane propagating correspondingly faster and slower than vA, with the dispersion re-
lation

u2f ,s = ω
2/k2 = 1

2
[(v2A + c

2
s) ± √(v2A + c2s)2 − 4v

2
Ac2s cos2 θ] . (1.12)

4) Entropy mode – non-propagating passive scalar perturbations of specific en-
tropy [251, 44].

In this book, we use several tools related to numerical computations, among them
compressible and incompressible MHD codes. We use pseudospectral code [33, 32] for
the incompressible calculations and the so-called finite volume codes for compress-
ible cases. The pseudospectral code solves above equations as an ordinary differen-
tial equation in time for each spacial Fourier harmonic, the “pseudo” coming from
the fact that nonlinear term is calculated in real space, and then converted back to
Fourier space. Unlike finite difference schemes, the pseudospectral scheme does not
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suffer from either dispersion of dissipation errors. The dissipation is explicit, and the
divergence-free condition for velocity and magnetic field are done with simple alge-
braic operations in Fourier space. For time integration, we use leapfrog which is time-
reversible and numerical dissipation is absent, since the nonlinear term, calculated
in this manner, preserve both energy and cross-helicity. These simulations are “fully
resolved,” i. e., the viscosity andmagnetic diffusivities are explicit, and all scales of in-
terests are represented in these highly precise calculations. This comes at a limitation
of relatively low Re.

1.4 How MHD cascade is different from hydro cascade?

An initially unmagnetizedwell-conductive turbulent fluid generates its ownmagnetic
field, which becomes dynamically important on almost all relevant scales. The pres-
ence of the large-scale field, however, is qualitatively different from the presence of
large-scale flows in hydrodynamics. The large-scale flow can be eliminated by the
proper choice of a reference frame, but magnetic field cannot be eliminated like this.
The inertial range motions of MHD turbulence, therefore, exist on the background of
the large-scale mean magnetic field. This is known as a “strong field limit.” Initial
investigations of the strong field limit by Iroshnikov and Kraichnan [201, 236] con-
cluded that inertial-range MHD turbulence has to be weak turbulence. However, the
subsequent analytic work [158] demonstrated that MHD turbulence tends to become
stronger and not weaker during the cascade. In fact, similar arguments lead Goldre-
ich and Sridhar [172] (thereafter GS95) to the conclusion that there is a different regime
of turbulence, strong MHD turbulence, which is associated with the so-called strong
critically-balanced anisotropic cascade.

The properties of the anisotropic cascade can be rigorously argued to be governed
by the Alfvenic part of MHD perturbations. This regime has been dubbed Alfvenic tur-
bulence. The Alfvenic component evolves according to the so-called reduced MHD;
see, e. g., [206], which has been known in plasma physics for a long time and can
be justified based on plasma drift approximation alone, without resorting to colli-
sions; see, e. g., [382]. The incompressible case has only the Alfven and pseudo-Alfven
modes. The latter is the incompressible limit of the usual slow MHD modes. Both
modes exhibit the same relations between the parallel and perpendicular scales of the
turbulent perturbations. The full compressible MHD also includes fast mode cascade
[83], which develops independently of the Alfven and slowmodes. Reduced MHD has
an inherent scaling symmetry, similar to the symmetry of hydrodynamic equations,
which allows building a model of self-similar turbulence with the power-law scalings
of spectra. This is only possible in the so-called strong mean field limit and strong
anisotropy limit; however, this does not seems to be a big limitation, because in tur-
bulence with large inertial range these conditions are always satisfied in the middle
of the inertial range; see, e. g., [22].
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8 | 1 Introduction into MHD turbulence

The theory of strong turbulence formulated in [172] predicts the Kolmogorov scal-
ing in terms of the dominant perpendicular motions, i. e., E(k) ∼ k−5/3 and the scale-
dependent anisotropy with the perpendicular scales l⊥ and the parallel scales l‖ re-
lated through the critical balance condition l‖ ∼ l2/3⊥ , which testifies that the smaller
eddies are significantly more elongated than their large-scale counterparts. We use l⊥
and l‖ as these are quantities defined in respect to the local direction ofmagnetic field.
This is paramount for our understanding of this parallel spectrum and considered in
great detail in Chapter 3.While [172] suggested a closuremodel predicting the k‖ ∼ k2/3⊥
anisotropy in the frame associated with the global mean field, it was not observed in
first numerical simulations of strong three-dimensional MHD turbulence in [92]. In-
stead, this anisotropywas observed in the structure functionmeasurement performed
in the frame associated with the local magnetic field. Similarly, space physics mea-
surements in the solar wind [195] observed the k−2‖ parallel scaling using the wavelet
technique and associating parallel direction to the direction of the local field. Given
the importance of the parallel spectrum for a variety of phenomena, e. g., resonant
scattering of solar energetic particles, the measurements and theories of the parallel
spectrumandanisotropy attracted considerable attention; see, e. g., [342, 443, 300]. In
this book, we also strongly argue in favor of the scale-dependent anisotropy in the lo-
cal frame. We show that it can be obtained not only through phenomenological hand-
waving critical balance argument, but also by considering the Lagrangian frequency
spectrum of the Alfven wave propagating along the field line [26]. In this case, the fa-
mous k‖ ∼ k2/3⊥ anisotropy is the result of the interplay betweenEulerianperpendicular
spectrum and Lagrangian parallel spectrum.

The precise value of the spectral slope of the perpendicular spectrumwas amatter
of debate. As earlier simulations [303, 330] reported slopes shallower than the stan-
dard GS95’s −5/3, some adjustments have been proposed to accommodate this differ-
ence [159, 48, 170]. Amodelwith the so-called “dynamic alignment” [48, 49] got a lot of
publicity. In the book, we will provide arguments suggesting that the discrepancy be-
tween the GS95 expectations and the results of low-resolution MHD turbulence simu-
lations can arise fromMHD turbulence being less local compared to the hydrodynamic
turbulence [32]. Indeed, the higher resolution simulations [25, 26] show consistency
with the GS95 spectral slope and the anisotropy scalings. Additional facts, e. g., the
difference in kinetic andmagnetic energies in the strong field limit, with, is also prob-
lematic to explain in the framework of a completely local cascade. The reader has a
chance to study these arguments in more detail in Sections 3.10 and 3.11 .

Another layer of complexity is added to the MHD turbulence theory when we
remember that MHD has more invariants than hydrodynamics. Apart from energy,
there is also energy-like pseudoscalar named cross helicity. In the incompressible
case, this creates two independent energy cascades. Basically, the amount of per-
turbations propagating in one direction along mean magnetic field is different from
the amount of perturbations in the opposite direction. This “imbalanced turbulence”
is prominently known in the solar wind community as cross-helical turbulence. Not
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surprisingly, there are more perturbations propagating away from the sun than prop-
agating toward the sun in the solar wind. Imbalancemakes GS95 theory inapplicable,
and in Chapter 4, we argue that the critical balance must be completely abandoned
for the strongest wave component for the theory to make any sense. The anisotropy
for this component has to be argued based on a new principle [30].

Compressible MHD turbulence is even more complicated. Weakly compressible
turbulence can be considered along the same lines as incompressible, and fast mode
its own separate cascade [293, 82]. Numerical studies of weakly compressible as well
as incompressible cases include [81, 82, 37, 231, 239]. We return to the issue of com-
pressible turbulence in Chapter 5.

1.5 Turbulent dynamo

When turbulence takes place in conducting fluids, and the magnetic energy is less
than the kinetic energy of turbulent motions, the turbulence induces magnetic field
generation, which is frequently referred to as “turbulent dynamo.” This process has
been studied both analytically and numerically. One can distinguish two distinct
regimes: (1) the magnetic energy is less than the kinetic energy of driving eddies at all
scales down to the dissipation scale and (2) the kinetic and magnetic energies come
to the equipartition at some scale. The first regime is called “kinematic” or “linear”
dynamo, referring to the induction equation being linear with respect to the magnetic
field. The kinematic dynamo, which ignores magnetic field back-reaction is of little
astrophysical importance, because it takes incredibly short time, by astrophysical
standards to generate sufficiently strong fields violating this condition (for specific
estimates refer to Section 2.2.1). The second regime, when the magnetic back-reaction
is important on some scale is termed “nonlinear dynamo.” Despite that kinematic
dynamo studies were favored due to their simplicity, it turns out that nonlinear dy-
namo can often be described statistically by very basic means. The lessons that we
learned in turbulence theory, and in particular, the concept of the scale-local cas-
cade of energy can be applied to dynamo as well, which will result in a surprisingly
simple description. One broad conclusion from such a theory, which we describe in
Section 2.1, is that a certain constant fraction of the kinetic energy around 6% is being
converted into magnetic energy.

1.6 Magnetohydrodynamics and reconnection

Magnetized turbulence involves both the motion of the fluid and magnetic fields. The
magnetic fields embedded in a highly conductive fluid retain their topology due to
the magnetic fields being frozen-in. This notion is based on the Alfven theorem [7].
This concept of frozen-in magnetic fields is a basis of many theories, e. g., presented
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in the textbooks theory of star formation in themagnetized interstellar medium. How-
ever, this notion of flux freezing is somewhat difficult to reconcile with the picture of
freelymoving turbulent eddies. In fact, in the absence of means of changingmagnetic
field topology, one may expect the development of the very chaotic felt-like structure
of the magnetic field. In the book, we show that this is not what is happening in the
real world as magnetic fields in turbulent fluids do not obey the Alfven theorem and
demonstrate the ability to change their topology and connectivity due to the process
of magnetic reconnection [278, 232, 143, 142, 267]. The corresponding process of tur-
bulent reconnection dramatically changes many astrophysical phenomena and has
many implications that we briefly discuss in Chapter 9. We show that turbulent recon-
nection is a natural ingredient of turbulent motions in the magnetized fluid.

1.7 Observing MHD turbulence

Significant progress has been achieved in understanding MHD turbulence due to the
advances of numerical computations. In particular, some earlier studies of magne-
tized turbulence were guided mostly by observations of magnetic fluctuation of the
outer heliosphere and solar wind [462]. Controlled experiments, in this case, were not
easy, which resulted in theories of MHD turbulence which were not confirmed by sub-
sequent numerical simulations. The synergetic use of numerical simulations and ob-
servational data is advantageous, however.

A significant progress in theoretical understanding ofwhat information about tur-
bulence can be obtained from observing Doppler-broadened spectral lines originat-
ing in turbulent volumes [271, 272, 258, 274] as well as synchrotron-emitting turbulent
volumes [276] provides new ways of utilizing the observational data for obtaining tur-
bulence spectra (see [269, 74, 465, 290, 212]). The understanding of the anisotropies
induced by Alfven, slow and fast modes provide a new way of studying these modes
using spectroscopic [208] and synchrotron data [275, 276], while the fundamental fact
that turbulent eddies are aligned with the direction of magnetic field opened a new
way of tracing magnetic field with spectroscopic data [174, 460, 286] as well as syn-
chrotron data [286]. We cover this topic in Chapter 10.

1.8 Applications of MHD turbulent theory

While the statistical theory ofMHD turbulence is an exciting research avenue by itself,
the interest of a broad astrophysical community to the theory arises from its astrophys-
ical implications. As theMHD turbulence is ubiquitous in astrophysical environments,
it modifies, if not radically changes most of the astrophysical processes. For instance,
thepresenceof amagnetic fieldmakesMHD turbulence anisotropic [325, 393, 194, 172].
As we will show below, the relative importance of inertia and magnetic force changes
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with scale, so the anisotropy of MHD turbulence changes as well. Many astrophys-
ical processes, e. g., related to the dynamics of dust, scattering, and acceleration of
energetic particles, thermal conduction, can be obtained if the turbulence spectrum
and its anisotropy are known. Also, important insights can be obtained if we know
turbulence intermittency, e. g., related to the concentration of energy in the spatially
distinct region; see, e. g. [264, 36].

As charged particles are bound to followmagnetic field lines, the famous theorem
by Alfven [7] mathematically proving the concept of flux freezing seems very natural.
This concept states that plasma and magnetic fields are well coupled. This served as
the foundation for many astrophysical theories, from the theory of star formation and
evolution of accretion disks [408, 343, 431]; see also the review [311] to the theories
of heat transfer in magnetized plasmas. However, as we mentioned in Section 1.6 the
classical flux freezing is only valid in laminar conductive fluids and is grossly violated
in turbulent ones. This calls for significant modifications of the textbook theories, in
particular, the star formation theory. For the latter theory, the concept of “reconnec-
tion diffusion” was introduced by the improved understanding of MHD turbulence
and turbulent reconnection [256, 281, 262]. The star formation driven by reconnection
was explored in [377, 376, 288].

Similarly, magnetic field wondering that naturally happens in turbulent con-
stantly reconnecting magnetic field lines changes dramatically the heat transport of
the particles moving along these magnetic field lines [336, 257]. This process com-
petes with the heat transport by the eddies that are induced reconnection diffusion of
plasmas of different temperatures. Depending on the turbulence parameters, one or
the other process dominates [257].

1.9 Cosmic ray transport and acceleration

Cosmic rays are charged energetic particles, and they are expected to followmagnetic
field lines. Turbulent perturbations of the magnetic field lines were expected to pro-
duce scattering of cosmic rays. Nevertheless, an ad hoc approach to treating turbu-
lence present serious problems when the expectations are confronted with observa-
tions. The most dramatic of them is related to the transport of cosmic rays perpen-
dicular to mean magnetic field. Even the maximum scattering of particles that cor-
responds to the scattering every period is producing perpendicular diffusion that is
many orders of magnitude less than the one required by the galactic cosmic ray obser-
vations. [204, 399] suggested the approach to handling this problem, and it is related
to magnetic field line wandering.

Another problem of the energetic particle dynamics is related to the efficiency
of scattering by MHD turbulence. The theoretical calculations based on the assumed
isotropic theory of magnetic turbulence were inconsistent with available observa-
tional data and this induced the appearance of ad hocmodels consisting of slabwaves
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that scatter particles and rather esoteric 2D perturbations, which are inefficient in the
scattering of particles. More recent studies in [453, 454] identified fast MHD modes
as the primary scattering agent within galactic MHD turbulence while demonstrating
that the contribution of Alfvenic and slowmodes for scattering is significantly reduced
[70, 453, 41]. As the turbulence scattering is associated with stochastic acceleration of
cosmic rays, the fast modes happen to be effective in inducing such an acceleration. A
similar conclusion was obtained in [58]. The efficiency of such acceleration increases
if MHD turbulence decreases cosmic ray mean-free path.

Turbulent acceleration of energetic particles is an example of the stochastic or
second-order Fermi acceleration. The energy gain in such acceleration is relatively in-
efficient as it is proportional to (v/c)2, where v is the turbulent velocity at the scale that
interacts with cosmic rays and c is the speed of light. A much more efficient process
is happening in shocks, where the energy gain is proportional to Vshock/c [241, 18, 45].
The turbulent dynamo in the shock precursor was identified in [28] as a promising
way of enhancing of the magnetic field in front of shocks. This, in its turn, makes it
possible to accelerate protons to energies to 1015 eV, which is higher than the shock
acceleration in the traditional treatment can provide.

Another process of the first-order Fermi acceleration happens within regions of
turbulent reconnection [111]. Shrinking of themagnetic field lineswithin the extended
current sheets associated with the reconnection in turbulent fluids provide the accel-
eration that the cosmic ray constantly gain energy as quantitatively discussed in [38].
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2 Astrophysical dynamo

One of the main questions of MHD dynamics is how conductive fluid generates its
magnetic field, a process known broadly as “dynamo.” Turbulent dynamo is known as
“large-scale/mean-field dynamo” and “small-scale/fluctuation dynamo,” in the first
case magnetic fields are amplified on scales larger than the outer scale of turbulence
in the seconds on smaller scales.

Although several “no-dynamo” theoremshave been proven for flowswith symme-
tries, a common turbulence, which possesses no exact symmetries, was expected to
amplifymagnetic field by stretching, due to the particle separation in a turbulent flow.
For the large-scale dynamo, a “twist-stretch-fold”mechanismwas introduced [428]. If
the turbulent flow has exact statistical isotropy, it cannot generate a large-scale field,
so the observed large-scale fields, such as fields in the disk galaxies, are generated
when statistical symmetries of turbulence are broken by large-scale asymmetries of
the system. These asymmetries may include stratification, rotation, and shear; see,
e. g., [435, 215]. One can study large-scale dynamo using the so-called mean field the-
ory (see, e. g. [238]), where themagnetic and velocity fields are decomposed intomean
and fluctuating part. The equations for the mean field are closed using statistical or
volume averaging over the fluctuating part. The traditional theories of mean field dy-
namo, however, often fail due to issues related to magnetic helicity [435, 437]. The
study of the large-scale dynamo is complex due to the variety of conditions in astro-
physical flows in different objects. One ambitious goal of large-scale dynamo theory
is to explain the solar cycle. In this book, we do not consider large-scale dynamo, in-
stead referring the reader to the review [56]. In this chapter, we concentrate on the
small-scale dynamo as it is more universal, generic, and crucial to understand the
level of magnetization in astrophysical environments. Small scale dynamo often gen-
erates magnetic fields with an energy of the order of the kinetic energy, the so-called
equipartition. Magnetic perturbations can subsequently be ordered by slower large-
scale dynamo and produce large-scale magnetic fields. Some objects, such as galaxy
clusters, are dominated by the small-scale dynamo, however.

The kinematic regime of small-scale dynamo was historically the most studied.
It ignores the backreaction of the magnetic field [217, 235, 245]. However, from these
models, itwasnot clearwhethermagnetic energywill continue to growafter the endof
the kinematic regime. In astrophysical objects with very large Re, it becomes inappli-
cable very quickly. Also, the magnetic spectrum of the kinematic dynamo, possessing
positive spectral index, typically 3/2, is incompatiblewith observations in galaxy clus-
ters [248]; see Figure 2.1. These observations indicate a steep spectrumwith a negative
power index at small scales. In fact, from a theoretical viewpoint, kinematic dynamo
is inapplicable in most astrophysical environments because the Alfvén speed is typi-
cally many orders of magnitude higher than the Kolmogorov velocity (Section 1.2).

https://doi.org/10.1515/9783110263282-002
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Figure 2.1: Evidence of small-scale dynamo action in clusters of galaxies. The figure shows the Fara-
day rotation measure maps of radio sources within a galaxy cluster from [150, 118]. The cluster elec-
trons act as a foreground for the radio source. These maps indicate magnetic fields in the cluster on
scales of 10–40 kpc and strength of several µG.

2.1 Nonlinear small-scale dynamo
2.1.1 Linear growth stage

Nonlinear small-scale dynamo models developed slowly and were influenced by an-
alytical studies of kinematic regime. It was believed for some time that after going
nonlinear, the small-scale dynamo will saturate. If we agree to this proposition and
assume that the magnetic energy indeed saturates as soon as the dynamo becomes
nonlinear, then the saturation level, in this case, will be of order ρv2η/2, where vη is
a Kolmogorov velocity scale. This is a factor of Re−1/2 smaller than the kinetic energy
density and will be completely dynamically unimportant in high Re astrophysical en-
vironments. In fact, observations clearly indicate the opposite—a sizable energy den-
sity of themagnetic field in large-scale systems; see Figure 2.1 (for the estimate of Re in
galaxy cluster environments see the subsequent subsection). Understanding the non-
linear regime which is dominant in astrophysical environments was, therefore, very
important. The early work by Schlüter and Bierman [387] suggested that the dynamo
will not stop andwill continue to grow, saturating on each subsequent scale after a dy-
namical time. Recently, small-scale dynamo underwent revival due to the availability
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of direct numerical simulations. Simulations of the dynamo saturated state produced
steep spectra and significant outer-scale fields. The saturated state was only weakly
dependent on Re and Pr as long as Re was large; see, e. g., [188]. Furthermore, it was
suggested in [381, 93, 373, 28, 23] that there is a linear growth stage. In subsequent
sections, we will follow the argumentation of [23], which supplied analytical and nu-
merical arguments in favor of the universality of the nonlinear small-scale dynamo.

We will assume that the magnetic and kinetic spectra at a particular moment of
timeare similar towhat is presented inFigure 2.2.Magnetic andkinetic spectra cross at
some “equipartition” scale 1/k∗, below which both spectra are steep due to MHD cas-
cade [172, 21]. This assumption is suggested by both numerical evidence [32, 93] and
observations of magnetic fields in clusters of galaxies [248]. Starting with very small
magnetic energy and following standard kinematic dynamo calculations, e. g., [245],
themagnetic energywill grow exponentially until themagnetic spectrum intersect ki-
netic spectrumat the viscous scales (assuming Pr = 1). Thiswill roughly correspond to
the beginning of the nonlinear regimewith equipartition scale equal to the dissipation
scale.

Figure 2.2: A cartoon of kinetic and magnetic
spectra in small-scale dynamo, at a partic-
ular moment of time when equipartition
wavenumber is k∗. From [23].

At large scales, themagnetic spectrum is shallow, kα,α > 0,while the kinetic spectrum
is steep due to the hydrodynamic cascade. Most of themagnetic energy is contained at
the scale of 1/k∗.We designateCK andCM as Kolmogorov constants of hydro andMHD,
respectively. The hydrodynamic cascade rate is ϵ and the MHD cascade rate as ϵ2. Due
to the conservation of energy in the inertial range, magnetic energy will grow at a rate
ϵ−ϵ2.Wewill designateCE = (ϵ−ϵ2)/ϵ as an “efficiency of the small-scale dynamo” and
will argue that this is a true constant since (a) turbulent dynamics is local in scale in
the inertial range; (b) idealMHDor Euler equations do not contain any scale explicitly.
Magnetic energy will grow linearly with time if ϵ = const. The equipartition scale 1/k∗

will grow with time as t3/2 [28]. Alternatively, one can say that small-scale dynamo
saturates at several dynamical times at scale 1/k∗ and proceeds to a twice larger scale
[381]. If magnetic energy grows approximately until equipartition [188, 93], the whole
processwill take around several outer timescales of the system, ormore quantitatively,
(C3/2K /CE)(L/vL).
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2.1.2 Locality of the small-scale dynamo

We will use the “smooth filtering” approach with dyadic-wide filter in k-space [9]. We
designate a filtered vector quantity as a[k] where k is a center of a dyadic Fourier fil-
ter in the range of wave numbers [k/2, 2k]. The actual logarithmic width of this filter
is irrelevant to further argumentation, as long as it is not very small. We will assume
that the vector field a is Hölder-continuous, i. e., |a(x) − a(y)| < |x−y|h with exponent
0 < h < 1 and designate ak = ⟨|a[k]|3⟩1/3 (angle brackets are averages over ensem-
ble), which is expected to scale as ak ∼ kσ3 , e. g., k−1/3 for velocity in Kolmogorov
turbulence. The energy cascade rate is ϵ = C−3/2K kv3k, where we defined Kolmogorov
constant CK by third order, rather than second-order quantities. We will keep this
designation, assuming that traditional Kolmogorov constant could be used instead.
We use spectral shell energy transfer functions such as Tvv(p, k) = −⟨v[k](v ⋅ ∇)v[p]⟩,
Tw+w+ (p, k) = −⟨w+

[k](w− ⋅∇)w+[p]⟩ [6], applicable to incompressible ideal MHD equa-
tions, where w± are Elsässer variables and v, b, and w± are measured in the same
Alfvénic units. Using central frequency k and studying “infrared” (IR) transfers from
p ≪ k, and “ultraviolet” (UV) transfers, from q ≫ k, we will provide absolute bounds
on |T|, in units of the energy transfer rate as in [9, 138], and relative volume-averaged
bounds which are divided by the actual energy rate and are dimensionless. We will
consider three main k intervals presented in Figure 2.2: k ≪ k∗ (“hydro cascade”),
k ∼ k∗ (“dynamo”), and k ≫ k∗ (“MHD cascade”).

MHD cascade, k ≫ k∗ The only energy cascades here are Elsässer cascades and,
by the design of our problem, w+ and w− have the same statistics so that we will
drop ±. For an exchange with the p ≪ k band, for |Tww|, using Hölder inequality and
wavenumber conservation, we get an upper bound of pwpw2

k and for the q ≫ k band,
it is kw2

qwk; these bounds are asymptotically small. For the full list of transfers and
limits, refer to Table 2.1. This bound is relative to C−3/2M kw3

k, where CM is a Kolmogorov
constant forMHD, fromwhichwe get thatmost of the energy transferwith the [k] band
should come from the [kC−9/4M , kC

9/4
M ] band; see [21]. The global transfers between ki-

netic and magnetic energy must average out in this regime. Nevertheless, the point-
wise IR and UV transfers can be bounded by pbpvkbk and kb2qvk and are small [138].

Table 2.1: Transfers and upper limits.

Transfers p ≪ k q ≫ k

Tvv (p, k) = −⟨v[k](v ⋅ ∇)v[p]⟩ pvpv2k kvkv2q
Tbb(p, k) = −⟨b[k](v ⋅ ∇)b[p]⟩ pbpvkbk kbkvqbq
Tvb(p, k) = ⟨b[k](b ⋅ ∇)v[p]⟩ pvpb2k kbkvqbq
Tbv (p, k) = ⟨v[k](b ⋅ ∇)b[p]⟩ pbpvkbk kvkb2q

Tw+w+ (p, k) = −⟨w+[k](w− ⋅ ∇)w+[p]⟩ pwpw2
k kwkw2

q
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Hydro cascade, k ≪ k∗ Despite having somemagnetic energy at these scales,most
of the energy transfer is dominated by the velocity field. Indeed, |Tvv| is bounded by
pvpv2k for p ≪ k and by kv2qvk for q ≫ k. Compared to these, |Tbv| transfers are negli-
gible: pbpvkbk and kb2qvk . For magnetic energy in the p ≪ k case, we have |Tvb| and
|Tbb| transfers bounded by pvpb2k, pbpvkbk, and for the q ≫ k case, |Tvb| and |Tbb| are
bounded by kbkvqbq. Out of these three expressions, the first two go to zero, while the
third goes to zero if α− 2/3 < 0 or have a maximum at q = k∗ if α− 2/3 > 0. This means
that for the transfer to magnetic energy we have IR locality, but not necessarily UV
locality. Note that magnetic energy for k ≪ k∗ is small compared to the total, which
is dominated by k = k∗. We will assume that α − 2/3 > 0 and that the spectrum of bk
for k < k∗ is formed by nonlocal |Tvb| and |Tbb| transfers from k∗, namely magnetic
structures at k are formed by stretching of magnetic field at k∗ by velocity field at k.
Magnetic spectrumbefore k∗ is, therefore, nonlocal andmight not be a power-law, but
our further argumentation will only require that bk < vk for k < k∗.

Dynamo cascade k = k∗ In this transitional regime, our estimates of Elsässer UV
transfer and kinetic IR transfer from two previous sectionswill hold.We are interested
how these two are coupled together andproduce observedmagnetic energy growth. IR
p ≪ k∗ |Tvb| and |Tbb| transfers will be bounded by pvpb2k∗ and pbpvk∗bk∗ , which go to
zero, so there is a good IR locality. Ultraviolet transfers will be bounded by k∗bk∗bqvq.
This quantity also goes to zero as q increases, so there is an UV locality for this regime
as well. Let us come up with bounds of relative locality. Indeed, the actual growth of
magnetic energy was defined as ϵB = ϵ − ϵ2 = CEC

−3/2
K kv3k . So, the p ≪ k∗ IR bound is

k∗C3/2E C−9/4K and theUVbound is k∗C−3/2E C9/4M .We conclude thatmost of the interaction,
which results in magnetic energy growth, must reside in the wavevector interval of
k∗[C3/2E C−9/4K ,C

−3/2
E C9/4M ]. Numerically, if we substitute CK = 1.6, CM = 4.2, CE = 0.05,

we get the interval of k∗[0.004, 2000]. So, despite being asymptotically local, small-
scale dynamo can be fairly nonlocal in practice.

Summarizing, the kinetic cascade at large scales and the MHD cascade at small
scales are dominated by local interactions. The transition between the kinetic cascade
and the MHD cascade is also dominated by local interactions, and since ideal MHD
equations do not contain any scale explicitly, the efficiency of small-scale dynamo CE
is a truly universal constant. Note that CE relates energy fluxes, not energies, so this
claim is unaffected by the presence of intermittency. Magnetic spectrum at k ≪ k∗ is
dominated by nonlocal triads that reprocess magnetic energy from k = k∗, but since
this part of the spectrum contains negligible magnetic energy, our universality claim
is unaffected by this nonlocality.

2.1.3 Numerical results

Numerical simulations of statistically homogeneous isotropic small-scale dynamo in
[23]were performedby solvingMHDequationswith stochastic non-helical driving and
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explicit dissipationwith Prm = 1.We ran several statistically independent simulations
in each group and obtained growth rates and errors from sample averages. The energy
injection rate was controlled. Figure 2.3 shows the sample-averaged time evolution of
magnetic energy. Growth is initially exponential and smoothly transitions into the lin-
ear stage. Note that scatter is initially small, but grows with time, which is consistent
with the picture of themagnetic field growing at progressively larger scales andhaving
progressively less independent realizations in a single datacube.

Figure 2.3:Magnetic energy growth versus time in code units, observed in simulations with Rem =
1000 (τη = 0.091 in code units), Rem = 2600 (τη = 0.057), and Rem = 6600 (τη = 0.036). We used
sample averages which greatly reduced fluctuations and allowed us to measure CE with sufficient
precision. From [23].

2.1.4 Efficiency of nonlinear dynamo

Our CE is much smaller than unity. One would expect a quantity of order unity be-
cause this is a universal number, determined only by strong interaction on equiparti-
tion scale. If we refer to the ideal incompressible MHD equations, written in terms of
Elsässer variables, 𝜕tw± + Ŝ(w∓ ⋅ ∇)w± = 0, the dynamo could be understood as decor-
relation ofw±,which are originally equal to each other in the hydrodynamic cascade.
In our case, this decorrelation is happening at the equipartition scale 1/k∗. Being time-
dependent, it propagates upscale, while, ordinarily, energy cascade goes downscale.
The small value of CE might be due to this. As opposed to picture with multiple rever-
sals and dissipation due to microscopic diffusivity, typical for the kinematic case, in
our picture we appeal to turbulent diffusionwhich helps to create the large-scale field.
Both stretching anddiffusiondependon turbulence at the samedesignated scale 1/k∗,
so, in the asymptotic regime of large Re, one of these processes must dominate. As CE
is small, stretching and diffusion are close to canceling each other.
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A better studied and understood kinematic dynamo might shed some light on
the problem of small CE . In the kinematic regime, when we neglect Lorentz force in
the MHD equation, the growth is exponential, and the rate is expected to come from
the fastest shearing rate of smallest turbulent eddies. Observed rates, however, are
smallerwhichwas interpreted as a competition between stretching and turbulentmix-
ing [139]. In our simulations, in the kinematic regime of M7-9, we observed growth
rate γτη = 0.0326, where τη = (ν/ϵ)1/2 is a Kolmogorov timescale, which is consistent
with [188, 384]. In terms of a minimum timescale, τmin ≈ 9τη, γτmin = 0.3, which is
still small. The Kazantsev–Kraichnan model [217, 245] predicts γτmin ∼ 1. This model,
however, uses ad hoc delta-correlated velocity, which does not correspond to any dy-
namic turbulence and its statistics are time-reversible, as opposed to time-irreversible
real turbulence. Time irreversibility of hydro turbulence mandates that fluid particles
separate faster backward in time, since ⟨v3‖l⟩ = −4/5ϵl is negative.

In [23], the interplay of stretching and diffusion was studied by simulations of
kinematic dynamo forward and backward in time. The backward dynamo was faster
by a factor of 2.0 ± 0.1, which is roughly consistent with the ratio of particle diffusion
forward and backward in time. This result hints that the dynamo is a result of com-
peting mechanisms of turbulent stretching and turbulent diffusion and the outcome
depends on statistics of velocity other than just velocity spectrum.

2.1.5 Dynamo simulations with intermittent driving

We have extended the study of statistically homogeneous isotropic small-scale dy-
namo simulations in [23] with a series of simulations with intermittent energy injec-
tion into the velocity field, with the period 1, 2, 4, and 8 self-correlation timescales of
velocity, τc. All simulations have a magnetic Prandtl number Prm = 1. We limited driv-
ing to lower harmonics in Fourier space, |k| < 2.5. We started each MHD simulation
by seeding the low-level white noise magnetic field into the dataset obtained from the
driven hydrodynamic simulation which reached a statistically stationary state. This
dataset was further evolved by full incompressible MHD equations. Figure 2.4 shows
the evolution ofmagnetic energy in time. Thepreviouslymeasurednormalized growth
rate CE = 0.05 is roughly consistent with most of the data. An important prediction of
[23] was also that the magnetic outer scale is proportional to v3A/ϵ and grows in time
as t3/2. We are using this conjecture to estimate the outer scale of cluster magnetic
fields, and we plotted the v3A/ϵ versus the magnetic outer scale, which we determined
from the peak of the magnetic spectrum. The simulation with constant driving, the
upper panel of Figure 2.4, showed good agreement with the proposed scaling and we
have determined the dimensionless coefficient cl in the relation LB = clv3A/ϵ around
0.2, with best fit 0.18. The intermittently driven simulation have demonstrated large
scatter, which is because turbulence spectra do not depend instantaneously on the
energy injection rate, but have amemory spanning around about one dynamical time.
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Figure 2.4: Left: The magnetic energy in Alfvén units, divided by the energy driving rate, ϵ, result-
ing in B2/2ϵ (simulation time units) versus time (simulation time units), similar to results reported
in [23]. Different curves correspond to intermittent driving with the period of driving varied from 1 to
8 τc. The half of the period the driving was on, while the other half it was off. We also put a simula-
tion with constant driving for comparison. Two thin lines correspond to the efficiencies of nonlinear
dynamo CE of 0.045 and 0.05 (dimensionless). Right: The relation between magnetic energy and
the outer scale during the time evolution in the simulation of the nonlinear small-scale dynamo. The
upper plot corresponds to the case with constant driving, reported earlier in [23], while the lower
plot has been produced in an otherwise similar simulation with intermittent driving with the period
of 8τc. In the case of intermittent driving, we used the dissipation rate ϵ averaged over 2τc like the
analysis of cluster data. We determined outer scale of magnetic field by its peak wavenumber of
the spectrum LB = 2π/kmax. The best fit corresponds to the coefficient cl ≈ 0.18 in Equation (2.5).
Reproduced from [39] with permission of AAS.

Also, the cascade rate at the equipartition scale is delayed compared to the injection
rate. We found that averaging cascade rate over 2τc and introducing phase delay of
π/2 will work the best to reproduce the LB relation and we presented the plot of such
constructed LB–v3A/ϵ on the lower panel of Figure 2.4. The scatter was significantly
reduced and the derived cl coefficient is also the same as for the constant driving case.

2.2 Dynamo in galaxy clusters

2.2.1 Physical conditions in galaxy clusters

Galaxy clusters (GC) are filled with hot intracluster medium (ICM), which is known
to be magnetized from radio observations. These observations reveal both the occur-
rence of Faraday rotation effect on polarized radiation from background quasars [98,
99] and of diffuse synchrotron emission [152] from the ICM. The magnetic field esti-
mated based on these observations range between a fraction and several µG. Mea-
surements on the structural and spectral features are sparse and more difficult but
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indicate steep power-laws below few tens of kpc [248, 242]. For massive clusters, tur-
bulence in the ICM ismainly drivenby structure formation [338, 373, 433, 319, 320]. The
most important magnetic field amplification mechanism in the ICM is the small-scale
or fluctuation dynamo (SSD), which operates on scales smaller than the turbulence
outer scale (see Section 2.1). In kinematic regime, themagnetic energy grows exponen-
tially, until the approximation breaks down, roughly in a dynamical time multiplied
by Re−1/2, where Re is an effective Reynolds’ number. The extremely hot and rarefied
plasma of the cluster have very large collisional mean-free paths, around

λ ≈ 103 pc(n/3 × 10−3 cm−3)−1(T/10 keV)3/2, (2.1)

at the same time, given that the observed magnetic field is around 3 µG, the Larmor
radius is smaller by many orders of magnitudes:

rL ≈ 10
−9 pc(T/10 keV)(B/3 µG)−1. (2.2)

Collisional transport, described by Braginsky viscosity and magnetic diffusivity does
not terminate turbulent cascade before plasma scales di and rL and the cascade con-
tinues as plasma turbulence, which is evidenced in another case of tenuous andmag-
netized plasma—the solar wind [289]. This is called collisionless plasma. It is chal-
lenging to understand from the theoretical viewpoint since nonlinear plasma effects
are dominating the transport. This has been known since early laboratory plasma ex-
periments when it became clear that collisional “classic transport” is grossly insuffi-
cient to explain cross-field diffusion [155]. Normally, the effective parallel mean-free
path is smaller than the one obtained by collisional formula but larger than the Bohm
estimate (λeff ∼ rL). The search for this “mesoscale” for cluster conditions resulted in
estimates for themean-free path of the proton in the ICM of around 10−3–10−6 pc [380,
29, 383, 60]. From these estimates, we expect clusters to be turbulent with Reynolds’
numbers Re exceeding 1012. If we combine this estimate with the above estimate of the
kinematic SSD growth rate, for a dynamical time ∼ eddy turnover time ∼ 1 Gyr [319],
the exponentiation timescale is smaller than 1Gyr (Re)−1/2 ≈ 1 kyr.

The kinematic approximation of small-scale dynamo breaks down very quickly,
and the dynamo spends most of the time in the nonlinear regime. In this regime, the
magnetic energy continues to grow as it reaches equipartition with the turbulent ki-
netic energy cascade at progressively larger scales [387]. At this stage, the magnetic
energy is characterized by a steep spectrum and an outer scale, LB, a small fraction of
the kinetic energy outer scale. This picture has been advocated for any high-Re flow,
with the argument relying on the locality of energy transfer functions (Section 2.1). It
also follows that the magnetic energy growth rate corresponds to a certain fraction of
the turbulent dissipation rate,with this fraction being auniversal dimensionless num-
ber around 0.05, and that themagnetic outer scale LB growswith time as LB ≈ t3/2 [23].
Magnetic energy finally saturateswhen LB is a substantial fraction of the outer scale of
the turbulence. However, thismay never happen in galaxy clusters, aswe showbelow.
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2.2.2 Limitation of dynamo simulations

An important consequence of the above picture is that the memory of the initial seed
field is quickly lost. We expect magnetic field in clusters to depend only on the cluster
turbulent history. While this theoretical insight was certainly useful, its applications
to cluster formationwas not immediately realized. There are twomain reasons for this.
First, despite considerable progress in modeling of structure formation and GCs, the
dynamic range of spatial scales achieved so far was considerably below the threshold
necessary for the turbulent dynamo to operate efficiently. Second, given the current
understanding of MHD dynamo (Section 2.1), lack of detailed knowledge about the
ICM turbulence precludes accurate estimates of both magnetic energy, and in partic-
ular, the outer scale of the magnetic spectrum. MHD numerical models of GCs often
report rather weak magnetic field amplification roughly by factors ≲ 30 [321, 117, 126,
432], this including sizable contribution from compression, see Figure 2.5. As alluded
above, the reason is the low Re of the simulated flows. The kinematic growth rate is
γ ≈ Re1/2/30τL [188, 384, 23], where τL is the turnover time of the largest eddy. So
even with Re ∼ several ×102, typical for cluster simulations, the dynamo will be stuck
for several dynamical times in a kinematic regime, i. e., several Gyr, while in nature
this stage will bemany orders of magnitude quicker than the dynamical time (see Sec-
tion 2.2.1). Figure 2.6 demonstrates the difference between themagnetic energy growth
between the casewith hugeRe (straight line) andRe that are availablewith current nu-
meric capabilities (actual growth obtained in simulations with Re = 1000 and 3300).
The growth observed in simulations is delayed due to the grossly prolonged kinematic
stage. Figure 2.7 shows structure functions from MHD simulations of clusters in fully
cosmological context. From this figure we see that magnetic and kinetic energies are
close on equipartition scales on dissipation scales or below, which is the evidence
that the transition to fully nonlinear dynamo have not yet happened, therefore these
simulations were under-resolved, as far as dynamo is concerned. Given the above ar-
gumentation, fully resolving dynamo would require much higher effective Re.

Figure 2.5: Cluster simulated in a fully cosmological context: a slice through the center (3Mpc
across) – log density log10(ρ g−1 cm3) (left), RMSmagnetic field, µG (middle) and RMS velocity,
108 cm/s (right). Typical sound speed cs ∼ 108 cm/s, typical Alfven speed vA ∼ 107 cm/s. Repro-
duced from [40] with permission of AAS.
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Figure 2.6: The growth of dynamo can be significantly delayed in simulations, compared with the
actual high-Re flows. We compare magnetic energy growth from 4 × 10−4 below equipartition in
Re = 103 and Re = 6.6 × 103 simulations (solid) from [23] and the hypothetical Re = ∞ case, which
is represented by linear growth CEϵt (dashed). If we stop simulation around the dashed line, which
roughly corresponds to the duration of cosmological simulation ∼ 11 dynamical times, magnetic
energy will be grossly underestimated. Its value will depend on the seed field as well as the effective
Reynolds’ number of the simulation. From [39].

Figure 2.7: Left: Second-order structure functions, characterizing kinetic (solid), and magnetic
(dashed) energy density in a simulated cluster. Here, ρa, ρb, va, vb, Ba, Bb are the quantities taken at
points a and b, separated by the distance l. Middle point between a and b lies within a shell, whose
number is indicated on the plot. The radius of nth shell is n ⋅ 300 kpc. We used structure functions to
calculate these quantities in shells around the cluster center because all quantities depend strongly
on the distance to the center. Right: Dissipation/cascade rate in the cluster, calculated by the third-
order SFs in three shells. This allows estimating dynamic lifetime of turbulence in cluster, which is
3 ⋅ 109 years in shells 2–3 and 8 ⋅ 109 years in shell 5. Reproduced from [40] with permission of AAS.

Below we report on the progress with the approach which is different from direct ap-
proach of cosmological MHD simulation, which given the present state of our numer-
ical capabilities, as we argued above is completely inadequate. We have recently em-
ployedanovel technique tomodel the formationof amassiveGCwith sufficient resolu-
tion to resolve the turbulent cascade [319, 320].We have extracted the time-dependent
properties of the turbulence and used this information in combination with indepen-
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dent results on turbulent dynamo obtained from high-resolution periodic box sim-
ulations. The novelty and advantage of our approach is that the turbulence is self-
consistently estimated through a numerical hydrodynamic model of structure forma-
tion, while the magnetic field evolution is estimated based on theory, which was con-
firmed in large-scale homogeneous dynamo simulations, robustly tested by studying
low Re effects in a scaling study. Importantly enough, such dynamo simulations, un-
like cosmological cluster models, are not limited in the number of dynamical times
one can simulate.

2.2.3 Analysis of cluster simulations

Details of the cluster simulation called the Matryoshka run can be found in [225, 319,
320].

Between 60 and 90% of the kinetic energy of the cluster turbulence is in the
solenoidal component [320]. This is the relevant component for the discussed small-
scale dynamomechanism, and the key question iswhether it resembles homogeneous
isotropic turbulence in the inertial range.

We checked statistical isotropy of the cluster turbulence by comparing the longi-
tudinal velocity SF with the analytical expression that presumes statistical isotropy:
⟨(δv‖l)2⟩ = (2/l2) ∫

l
0⟨(δv⊥x)

2⟩xdx. Statistical isotropy seems to be satisfied quite well
[40]. Amore critical test is provided by the relation between structure functions of dif-
ferent orders. For example, the dimensionless ratio −⟨(δvl)2⟩3/2/⟨(δv‖l)3⟩ is of interest
to relate the energy cascade rate with the energy content of the cascade. We looked
at this ratio in the cluster simulation and the homogeneous incompressible driven
turbulence [40]. For the latter, we used data from fully resolved direct numerical sim-
ulation of incompressible hydrodynamic driven turbulence in a periodic box. From
the comparison, we concluded that the second-order structure function of the cluster
simulations in the range of scales 0.14–0.4Mpc could be reliably used to estimate the
turbulent dissipation rate, ϵturb, associated with the incompressible velocity compo-
nent and necessary to evaluate dynamo action in the ICM. The turbulence dissipation
rate is then estimated as follows:

ϵturb = (c1/c2)(5/4)⟨(δvl)
2⟩

3/2
/l, (2.3)

where c2 ≈ 27 is the ratio of the structure functions (second order to 1.5 power and
third order, see above) and c1 ≈ 1.17 is a factor to correct for dissipation effects, as in our
finiteRe simulations theKolmogorov’s−4/5normalization slightlyunderestimates the
turbulent dissipation rate.

As expected, at a given time ϵturb is a rather constant function of lwithin the iner-
tial range. The observed deviation was used to estimate the error of the measurement
of ϵturb. We plotted the dissipation rate determined in this manner on the top panel of
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Figure 2.8: The evolution of the
turbulent dissipation rate (upper
plot), Alfvén speed (middle), and
the outer scale of the magnetic field
(bottom) inferred from the cosmo-
logical cluster simulation by using
self-similar laws for turbulence and
dynamo tested and normalized in
well-resolved high-Re DNS. In ob-
taining vA, we divided the magnetic
energy EB from Equation (2.4) to the
average density within 1/3 of the
virial radius. Reproduced from [39]
with permission of AAS.

Figure 2.8. We used the velocity structure function calculated within 1/3 of the virial
radius of the simulated cluster for each data-cube. Aswe see from this figure, the dissi-
pation rate varies nonmonotonically over roughly an order of magnitude in scale over
the lifetime of the cluster. The errorbars defined above indicate the deviation fromKol-
mogorov’s self-similarity andwere rather small, except for the time intervalswhere the
rate was changing rapidly, i. e., the cluster was either relaxing of experiencing a fresh
injection of kinetic energy.

We then estimated magnetic energy density as [23]

EB =
t

∫
0

CEρϵturbdt (2.4)

with CE = 0.05. This equation originally described averagemagnetic energy density in
a statistically homogeneous case, as in simulations from Section 2.1.3. Whenwe apply
it to the cluster simulation, we have to take into account that both ρ and ϵ depend
on the distance to the cluster center (radius) and on time. As we found, ϵ have only
modest dependence on the radius, however, ρ is highly peaked around the center,
so EB will exhibit similar behavior. The cluster’s density profile is almost invariant in
time if expressed in virial units, i. e., ρ(r, t) = ρ(t)f (r/Rvir) and the radial dependence
can be pulled in front of the time integral in Equation (2.4). If at any given time, we
are interested only in Alfvén speed vA = (2EB/ρ)1/2, this quantity will have only weak
dependence on radius andmaywell be characterized by the averagewithin the radius
of Rvir/3. We plotted such averaged Alfvén velocity on the middle panel of Figure 2.8.
Furthermore, aswas shown in [23], for statistically stationary turbulence themagnetic
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energy containing scale could be estimated as

LB = clv
3
A/ϵturb, (2.5)

where cl ≈ 0.18 is a universal coefficient, which could be determined in DNS; see Fig-
ure 2.4. Our cluster turbulencewas rather nonstationary, however, as discussed in Sec-
tion 2.1.5, the estimate Equation (2.5) can also be applied to non-stationary driven tur-
bulence as long as thedissipation rate is averagedover a timescale aroundonedynam-
ical time; see below. This is because hydrodynamic cascadehas amemory over around
one dynamical time and the changes in the driving rate do not instantaneously affect
turbulent rate on small scales (Section 2.1.5). So, in using Equation (2.5) we used the
ϵturb averaged over 2 Gyr, which approximately corresponds to two dynamical times.

The middle and bottom panels of Figure 2.8 show time evolution of the average
RMS Alfvén speed, vA = (2EB/ρ)1/2 and the magnetic outer scale LB. Note that while vA
grows monotonically, LB can decrease somewhat during a prolonged increase of the
turbulent activity, such as during several major mergers.

Our estimates for z ∼ 0 characteristic values of Alfvénic speed vA ∼ 107 cm/s and
the outer scales LB ∼ 30–50 kpc, are consistent with the observed values reported
in the literature [313, 128, 50, 181, 180]. This indicates that the type of nonlinear dy-
namo described in [23] is consistent with what we observe in clusters, irrespective of
the initial conditions. On the other hand, kinematic models, as well as ad hoc MHD
simulations with limited Re, e. g., [14], would require fine-tuning of initial conditions
to achieve this.

One interesting conclusion from our results on Figure 2.8 is that the outer scale of
the magnetic field grows relatively quickly after the beginning of the simulation. This
is different from the direct MHD cluster simulations where we had mostly kinematic
growth with a magnetic spectrum peaked on numerical dissipation scale, e. g., [447].
Note that the scale of themagnetic field plays a crucial role in cosmic ray escape times,
therefore correctly estimating magnetic outer scale is essential for models of particle
acceleration in clusters [58, 59, 40, 320].

2.2.4 Cluster magnetic fields

Similar idea based on post-processing of hydrodynamic data was also employed
in [373], but with substantial differences. The turbulence in these early calculations
was not as resolved as in ours, and the growth of magnetic energy and Alfvén scale
were not estimated from the turbulent dissipation rate and the precise estimate of CE,
as we did here.

One of the differences between cluster turbulence and the statistically stationary
turbulence studied in [23]was the strong variations of the cascade rate over timescales
of 1–2 dynamical timescales of the cluster. Our estimates of the efficiency in the case of
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intermittent driving from this work are roughly compatible with CE = 0.05 and further
work with higher Re is expected to clarify whether the differences between constant
and intermitted driving are significant. We concluded that the effects of intermittent
driving could probably be ignored at the level of precision of the ϵturb measurement.
Note that although Section 2.1.5 simulations were insightful in understanding basic
physics behind high-Re small-scale dynamo, we did not use them directly as a sub-
grid model for Section 2.2.3 simulations. Instead, we used Equation (2.4), which is a
closer approximation for the astrophysical cases with Re > 1012, this difference be-
ing especially critical for the cluster case, which had only several dynamical times to
evolve (see Figure 2.5 and corresponding discussion).

All basic properties of the cluster, such as its mass, size, and thermal energy
continue to grow along with its magnetic energy and magnetic outer scale. The de-
tailed comparison between thermal, turbulent, and magnetic energy components
of the cluster has been performed in [318]. There it is found that the fraction of the
thermal energy arising from the turbulent dissipation rate changes relatively little
over the cosmological time and the turbulent Mach number is also rather stable.
Since the magnetic energy is also a fraction of the accumulated turbulent dissipation
rate, the plasma β in our cluster fluctuates around a constant value ∼ 40 for the past
10Gyr [318].

The treatment of cluster turbulence with ILES, as well modeling the evolution
of the magnetic energy with the model from [23] relies on the assumption that the
Reynolds numbers in clusters are high. For example, our comparison of the cluster
simulation and the DNS leads to an estimate of an effective Kolmogorov (dissipation)
scale for the cluster simulation of η ≈ 2.7 kpc, corresponding to an effective Re around
3000.We expect clusters to have higher Re, as briefly discussed in Section 2.2.1, due to
the collective microscopic scattering in the high-β ICM plasma [380, 263, 383, 60]. An
important observational test to the problemof the ICMviscosity are themeasurements
of Faraday rotation in AGN sources located in clusters, which allowed to probe sub-
kiloparsec scales due to the relatively high resolutionof radiomaps [242, 248, 180]. The
inferred magnetic spectrum in these measurements is negative and steep, typically
around Kolmogorov in the range of scales below five kpcs and down to the resolution
limit. Such amagnetic spectrum is expected fromMHD turbulencewith small dissipa-
tion scales. It would be grossly inconsistent with magnetic spectra obtained in either
kinematic dynamo models, due to their positive spectral indexes, or with MHD mod-
els using Spitzer viscosity, which would typically give a rather shallow spectrumwith
the index around −1; see, e. g., [88]. Complementary to this observational constraint
is the theoretical estimates leading to the “mesoscale,” i. e., the scale above which
one can apply ordinary MHD. We discussed these estimates in the Introduction. How-
ever, some additional explanation may be in order. The estimates mentioned above
assume that plasma is already magnetized to some degree (not necessarily strongly,
e. g., a ∼ 1 nG field still gives rL ∼ 10−6 pc ≪ λ and the instability mechanisms should
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still work). Themost agnostic and practical approach to this bootstrap problem is say-
ing that ICM could obtain this tiny initial field through a variety of mechanisms, such
as plasma turbulence, primordial field compressed into ICM, or the AGN fields being
mixed by turbulence. A more minimalistic approach is to rely on plasma turbulence
alone in the various mechanisms of plasma dynamo. One estimate [380] suggests that
the plasma dynamo grows on timescales of ∼1 year. Similar work on small-scale dy-
namos based on closures for pressure-anisotropic plasma was done in [229, 374, 146]
and also indicates fast growth. Once the magnetic field reaches the values such that
Alfven speed is comparable to the turbulent velocity perturbation on the mesoscale,
themore generic and simplemechanism of nonlinear local MHDdynamo described in
[23] will start taking place. The outer scale of themagnetic fieldwill start growing from
mesoscale up to the approximate values we derive in this chapter. For example, if the
mesoscale is 10−4 pc, and the density is 10−3 cm−3, such an initial field is around three
nG. The particular mechanism of the bootstrap makes little difference as far as our
calculations are concerned, because either the timescale of 1 year predicted by the
above plasma dynamo theories or the estimate for the maximum kinematic growth
timescale of 1 kyr we mentioned in the Introduction, all could be considered essen-
tially zero, i. e., the bootstrap happens “instantly,” as far as cosmological timescales
are concerned. From either observations alone or theory alone, the effective viscosity
seems not to be large enough to affect magnetic spectrum above 1 kpc. Therefore, we
expect the Re in clusters to be at least 104 and likely much higher. Our calculations
relied on this fact and the results, grossly consistent with the current observational
properties of clusters, provide another support for the picture of a turbulent ICM, as
opposed to an earlier view of a viscous and laminar ICM.
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3 Incompressible MHD turbulence

In this chapter, we will consider the inertial range of incompressible MHD turbulence
with zero cross helicity. The relation between studies of compressible and incompress-
ible regimes is complex. The key issues in the study of the compressible case are:
(a) a phenomenon of shocks, (b) the inherently compressible mode (the fast mode in
MHD), and (c) a new dimensionless numberMs = δv/cs, the Mach number. The latter
number could be considered scale dependent by introducing Ms,l = δvl/cs. Since δvl
rapidly decay with l, we might consider the motion “subsonic” on small scales. The
phenomena (a)–(b), however, can be manifested on any scale.

The most general compressible case, therefore, can be simplified assuming no
shocks, this is called the weakly compressible case, or also getting rid of essentially
compressible mode—fast mode and assuming that velocity field is purely solenoidal
(vortical). These simplifications are similar to one proposed in hydrodynamics and
are motivated by a low Mach number on small scales and the relative absence of the
interaction between sound waves and turbulence. Likewise, we are motivated by the
relatively minor interaction of fast mode and the rest of MHD turbulence. The latter
will be further quantified in Chapter 5.

Themotivationbehindworkingwith the incompressible case is that inmost useful
cases it can be shown to be free of the characteristic length scale, velocity scale, and
time scale. This makes general qualitative and dimensional arguments traditionally
used in turbulence theory especially powerful.

The critical difference between incompressible hydrodynamics and incompress-
ible magnetohydrodynamics is that the latter indeed has a designated velocity scale.
Local Alfvénic velocity vA = B/√4πρ can play a role of such a velocity scale, and it
seemingly complicates the theory leading to the dimensionless number called’ Alfven
Mach number MA = δv/vA. Later in this chapter, however, we will show that the in-
ertial range of incompressible MHD turbulence corresponds to the limit of MA → 0
and can be described using two sets of equations—reduced MHD and the mixing of
the slow mode which, as it turns out, no longer possesses designated velocity scale
and possesses the same symmetry as incompressible magnetohydrodynamics.

The key to understanding the inertial range of MHD turbulence lies in a fact that
turbulent perturbations of v and B will be much smaller (in proper units) than the
local mean B field, e. g., MA,l ∼ l1/3 if we use Kolmogorov scaling. Also, local mean
field cannot be excluded by choice of reference frame. This makes local mean field
to dominate the dynamics, which was realized by [201, 236]. This dominant contribu-
tion, however, is just a wave propagation and hopefully can be trivially described. It
is worth noting that most astrophysical environments are indeed somewhat strongly
magnetized, typically withMA ∼ 1 on the outer scale. This is a consequence of small-
scale dynamo being always fast as we showed in Section 2.1. Also, on cosmological
timescales, large-scale dynamo will be able to operate in such objects as spiral galax-

https://doi.org/10.1515/9783110263282-003
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ies and rotating stars and provides the mean field with scales much larger than turbu-
lent outer scales.

In other words, in all cases of astrophysical turbulence that we know, including
turbulence driven by MRI, the large-scale field will be dominant compared to fluctua-
tions. This limit is also known as “strongmean field case.” As we will show below, the
dynamics in this regime is dominated be Alfvenmode. Thus it is often called “Alfvenic
turbulence.”

We will delay the discussion of the compressible modes and perturbations of
density until Section 5 only saying that it is often that dominant Alfven mode pro-
vides shearing that often also govern some of the aspects of the dynamics of density,
e. g., [37].

The interaction of wavepackets, propagating in a strong mean field is unusual
due to a dispersion relation of the type ω = k‖vA, where k‖ is a wavevector parallel to
the mean magnetic field. Such a highly anisotropic dispersion relation results in an
anisotropic turbulence. Qualitatively, this has been pointed out in [325, 393, 194] and
has been an improvement compared to the isotropic Iroshnikov–Kraichnan picture.
The quantitative picture did not arrive until much later. As we will show below, an
important robust prediction of theory is that in the case of weak interactionmean field
turbulence creates “perpendicular cascade,” with the perpendicular wavenumber k⊥
increasing while k‖ staying constant. This enhances the nonlinearity, described by
ξ = δvk⊥/vAk‖, which is the ratio of the mean-field term to the nonlinear term. When
turbulence becomes marginally strong, ξ ∼ 1, the nonlinear timescales become close
to the dynamical timescales τcasc ∼ τdyn = 1/wk⊥.

In this situation, a “critical balance” of ξ ∼ 1 has been suggested by Goldreich and
Sridhar [172] as a condition which is statistically maintained in the further marginally
strong cascade. Since “critical balance” eliminates the dimensionless number ξ from
the theory, the cascading model becomes the Kolmogorov model. It is worth noting
that “critical balance” works well only in a “balanced” case with a single amplitude
of perturbation anda single parameter ξ . In amore complex imbalanced case, an extra
argument needs to be in place to close the theory, namely the influence of directional
uncertainty of the vA, first described in [30], which we will return to in Chapter 4.

An important experimental verification of MHD turbulence theories is provided
by the solar wind—tenuous magnetized plasma emitted from the sun and propagat-
ing outwards, this region of magnetized plasma is also called heliosphere. Ion coun-
ters andmagnetometers providedmeasurements of the solarwindparameters roughly
from0.3 to 5 AU distance to the sun. These in-situmeasurements are valuable because
they lack uncertainties of astrophysical measurements associated with projection on
the line of sight. Solar wind density and speed widely vary depending on the flow an-
gle with respect to ecliptic; see Figure 3.1. Solar wind fluctuations measured by a sin-
gle spacecraft represent time-sequence, which can be analyzed with Fourier series.
These time sequences demonstrate fluctuations on timescales from days to seconds.
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Figure 3.1: Density and speed of the solar wind recorded by ULYSSES/SWOOPS from [310]. Repro-
duced from [310] with permission of Wiley.

Given that velocity of the solar wind, 300–800 km/s, is much larger compared to typi-
cal Alfvén speed of 30 km/s, this is interpreted as the spectrum of spacial fluctuations
with scales from 1 AU to hundreds of km. Figure 3.2 shows characteristic spectra ob-
tained by Helios 2 spacecraft. The f −1 part of the spectrum corresponds to perturba-
tionswith the shot-noise statistics emitted by the sun,while the f −5/3 part corresponds
to the perturbations that were well-evolved dynamically, i. e., their own characteristic
timescales aremuch shorter than the flight-time from the sun to the observer-satellite.
Recently, multi-spacecraft measurements (see, e. g., [342]) have improved the mea-
surements further by allowing better coverage of wavenumber space, as well as quan-
tifying the time evolution of perturbations in the frame of the flow.

3.1 Equations of incompressible MHD and conservation laws

Ideal MHD equations introduced in 1.3 can be simplified into their incompressible
form, assuming velocity is purely solenoidal, ∇ ⋅ v = 0. This makes the density equa-
tion and the equation of state irrelevant and only dynamical equations for velocity
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Figure 3.2: Left: A sample of fast solar wind at distance 0.9 AU measured by the Helios 2 spacecraft.
Right: Power density spectra of magnetic field fluctuations observed by Helios 2 between 0.3 and
1 AU. The spectral break shown by each spectrum, moves to the lower frequency as the distance
from the sun increases from [61]. Reproduced from [61] with permission of authors.

and magnetic field remain:

𝜕tv = −∇P/ρ −ω × v + j × b, (3.1)

𝜕tb = ∇ × (v × b), (3.2)

∇ ⋅ v = 0, (3.3)

∇ ⋅ b = 0, (3.4)

note howwe define current j = ∇×B and vorticityω = ∇×v in the c = 1 units. We also
got rid of density completely by expressing magnetic field to velocity units b = B/ρ1/2
(the absence of 4π is due to Heaviside units).

In these equations, the pressure term −∇P/ρ acts only to impose the ∇ ⋅ v = 0
constraint, i. e., P is not a dynamic variable. This could be further made clearer by
introducing solenoidal projection operator Ŝ = (1 − ∇Δ−1∇) and rewriting equations
without explicit constraints as

𝜕tv = Ŝ(−ω × v + j × b), (3.5)

𝜕tb = ∇ × (v × b). (3.6)
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Now if the initial conditions for v and b satisfy divergence-free condition the fur-
ther evolution will preserve this constraint. We will use these two equations until the
end of the next chapter.

We also introduce Elsässer variables w± = v ± b so that equations above can be
rewritten as

𝜕tw
± + Ŝ(w∓ ⋅ ∇)w± = 0. (3.7)

This pair of equations resembles incompressible Euler’s equation, which is not
surprising since hydrodynamics is a case of b = 0whenw+ = w−. The deeper analogy,
however, is missing because w± are not transformed similar to v. Nevertheless, the
strong mean field case in the weak turbulence regime (ξ ≪ 1) certainly benefits from
this approximate analogy between v and b as will follow below.

It is now easy to see that the general conservation laws of ideal MHD (see Sec-
tion 1.3) are now being reduced only to energy, 1/2∫ v2 + b2d r and cross-helicity
∫ v ⋅ bd r conservation in this incompressible formulation. By taking the sum and
difference of these quantities, we obtain Elsasser energies 1/2∫(w±)2d r conservation.

Before proceeding further, a comment is necessary regarding the analogy between
vorticity andmagnetic field.Aswe sawabove, themagnetic field andvelocity fieldplay
a similar dynamical role. However, their dynamical equations are somewhat different.
On the other hand, the vorticity andmagnetic field are evolved by the same dynamical
equation. If at some initial point of time, the weak magnetic field is aligned with vor-
ticity everywhere, its evolutionwill be precisely described by vorticity. Fromaphysical
standpoint, there is no reason to expect such a peculiar initial condition, however.

3.2 From weak to strong turbulence

Let us explicitlywrite down the localmeanfield asvA, andperturbations δw± = w±vA:
𝜕tδw
± ∓ (vA ⋅ ∇)δw± + Ŝ(δw∓ ⋅ ∇)δw± = 0. (3.8)

Note that (vA ⋅ ∇)δw± are divergent-free. From now on, we denote ‖ and⊥ as direc-
tions parallel andperpendicular tovA and the subscript to the vectormeans projection
to vA or the perpendicular plane, respectively.

In the limit of small δw’s, they represent perturbations, propagating along B or in
the opposite direction, with the nonlinear term describing their interaction. Note that
“self-interaction” of δw+ or δw− is absent, both being an exact solution in the absence
of another. The largest nonzero contribution to nonlinear interaction is a three-wave
process, with one opposite wave; however, ω = k‖vA dispersion relation results in the
degeneracy of the two conservation laws

±ω1 = ±ω2 ± ω3, (3.9)
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k‖1 = k‖2 + k‖3, (3.10)

and dictates that one of the frequencies and parallel wavenumbers have to be zero.
Thus the interaction is mediated by the evanescent zero-frequency wave, and the ab-
solute magnitudes of the parallel wavenumbers must be equal. This is known as fre-
quency resonance and results in a cascade that increases only k⊥.

Furthermore, the cascading rate δwk⊥, the inverse of cascade time,will be reduced
by a factor of ξ , weakness of interaction, that we introduced before. Finally, applying
cascade phenomenology, we can write for the energy cascade rate, which is expected
to be constant through scales:

ϵ = δw2δwk⊥ δwk⊥vAk‖ = const. (3.11)

Note k‖ here is constant, so the phenomenological cascade spectrum is determined by
δw2 ∼ k−1⊥ , which corresponds to a one-dimensional perpendicular spectrum E(k⊥) ∼
δw2k−1⊥ ∼ k−2⊥ . This argument can be supplanted by the rigorous perturbation collision
integral approach, used in wave turbulence and solved exactly by Zakharov transfor-
mation, which was done in [158].

One interesting consequence of this exact solution is that turbulence quickly
grows very anisotropic, with k⊥/k‖ ∼ k⊥. Even more interesting is that this weak wave
turbulence becomes stronger and not weaker on smaller scales—quite the opposite to
the Iroshnikov–Kraichnan picture. Indeed, in the Iroshnikov–Kraichnan picture, the
artificially introduced isotropy, i. e., k⊥/k‖ ∼ 1 results in the interaction strength

ξ = δwk⊥
vAk‖ ∼ δw ∼ k−1/4 󳨀󳨀󳨀󳨀→k→∞ 0, (3.12)

while the correct theory, maintaining k‖ constant will result in
ξ = δwk⊥

vAk‖ ∼ k1/2⊥ 󳨀󳨀󳨀󳨀󳨀→k⊥→∞ ∞. (3.13)

Two lessons that we learn from this simple perturbation study is that (1) the reso-
nance condition of Alfvénic perturbations result in “perpendicular cascade,” quickly
makingMHD turbulencemore anisotropicwith eddies elongated along themeanfield.
The anisotropy of MHD turbulence has been known since long time ago empirically
from tokamak experiments and has been a motivation for the so-called reduced MHD
approximation [206, 409], which will be considered in the next subsection.

The second lesson is that the “perpendicular cascade” tends to become strong
with ξ ∼ 1. Does the situation with ξ ≪ 1, e. g., weakMHD turbulence, ever realized in
nature? It is certainly possible in strongly magnetized cases with weak driving, e. g.,
magnetospheres of stars, planets, neutron stars, etc. The experimental evidence for
the weak MHD turbulence is still lacking, however. Typically, in the ISM the perturba-
tions δw are of the same order as themean field vA and ξ ∼ 1 to beginwith. This results
in MHD turbulence being strong to begin with and it remains such along the cascade.
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3.3 Reduced MHD approximation

Further simplifications to Equation (3.8) are possible when taking into account
anisotropy k⊥ ≫ k‖ and the fact that δw ≪ vA. This could be done by neglecting
parallel gradients in the nonlinear term. Indeed, taking these conditions into ac-
count, the mean field term (vA∇‖)δw± is always much larger than similar contribution
from the nonlinear term, (δw∓‖ ∇‖)δw± and the latter could be ignored. This will result
in three components of Equation (3.8) being split into interdependent equations for
the scalar δw±‖ and vector δw±⊥:

𝜕tδw
±‖ ∓ (vA ⋅ ∇‖)δw±‖ + Ŝ(δw∓⊥ ⋅ ∇⊥)δw±‖ = 0, (3.14)

𝜕tδw
±⊥ ∓ (vA ⋅ ∇‖)δw±⊥ + Ŝ(δw∓⊥ ⋅ ∇⊥)δw±⊥ = 0. (3.15)

Note that Equation (3.14) depends on Equation (3.15), but not vice versa. Strong mean
field limit with δw ≪ vA and, possibly marginal, anisotropy with k⊥ ≥ k‖ is enough to
make this approximation.

SinceEquation (3.14) represent passive dynamics anddoesnot have essential non-
linearity, the nonlinear cascade is completely governed by Equation (3.15). This latter
equation is known as reduced MHD.

We have to note that the in the anisotropic limit the δw±⊥ is purely the Alfvénmode
and δw±‖ is the amplitude of the slow mode. The turbulent dynamics resulting from
reduced MHD is also called Alfvénic turbulence for obvious reasons.

Slow mode has an interesting passive dynamics, with δw+‖ being a passive scalar
to δw−⊥ motions and δw−‖ is a passive scalar to δw+⊥ motions. For practical purposes, it
is sufficient to study Alfvénic dynamics. The slow mode will have the same statistics.
The amplitude of slowmode is not determined in this ansatz, so the Kolmogorov con-
stant for Alfvénic component may in principle be determined numerically, while the
total Kolmogorov constant will depend on a slowmode content. Later in the book, we
will show that in some important idealized cases, such as statistically isotropic MHD
turbulence, the slow mode content can be determined from numerical simulations.

Finally, it is worth noting that reduced MHD may be applied beyond the incom-
pressible MHD description of this chapter. The truth is that Alfvénic perturbations are
transverse and rely only on the tension of the magnetic field line as a restoring force,
not requiring pressure support. The charged particles tied to thismagnetic field line in
a strongly magnetized case provide inertia. The [E × B] drift waves with wavelengths
much smaller than the ion skin depth are indeed just Alfvén waves, and they exist re-
gardless of the collisionality of the plasma [382]. One important application of reduced
MHD is the description of the dynamics in the solar wind, which is almost completely
collisionless.

The reduced MHD or RMHD has a remarkable two-parametric symmetry: w →
wA, λ → λB, t → tB/A, Λ → ΛB/A. Here, λ is a perpendicular scale, Λ is a paral-
lel scale, A and B are arbitrary parameters of the transformation. This is exactly the
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symmetry of the Euler equation except for the parallel scale Λ transforms similar to
time, not to length. As we will show below, such property is not coincidental and lead
to several deep analogies between dynamics in time and parallel structure in space.
This symmetry as we alleged above hints to the absence of designated length- and
time-scale, and can be used to furnish Kolmogorov-style [224] arguments and expect
power-law spectra. In nature, this regime for MHD can be achieved deeply within the
inertial range where δw± ≪ vA. In numerical simulations, it would be challenging
to reach these universal dynamics by driving turbulence strongly on the outer scale.
Instead, one can directly solve RMHD equations, with symmetry already built in. As
practice shows, the statistics from the full MHD with δw± ∼ 0.1vA is very close to
RMHD; see [33].

Another, not dynamical, symmetry is present inRMHD—it is related to the value of
the vA, which is a parameter in the equation. Indeed equations are unchanged under
transformation vA → vAA, Λ → ΛA, i. e., parallel scale and the Alfvén speed can be
rescaled simultaneously without changing the dynamics.

3.4 Strong turbulence: phenomenology

Aswe showed in the two sections above, the dynamics naturally leads to strong turbu-
lence,where ξ will try to increase by theperpendicular cascade. Goldreich andSridhar
[172] suggested that this process will be limited by the uncertainty relation between
the cascading timescale and the wave-packet frequency τcascω > 1. While τcasc is not
immediately known, it can be taken as a dynamical timescale δw−1k−1⊥ , in which case
the above condition turns into ξ < 1. Since ξ wants to increase along perpendicular
cascade, the competing processeswill lead to ξ ∼ 1, introduced by Goldreich and Srid-
har as “critical balance.” From the cascade viewpoint, we can now regard turbulence
as “strong” and apply standard Kolmogorov phenomenology assuming local-in-scale
energy transfer. Now we have two Elsasser energies as conserved variables, and the
cascade timescale is determined by the shear rate of the opposite wave:

ϵ+ = (δw+λ )2δw−λ
λ
, ϵ− = (δw−λ )2δw+λ

λ
. (3.16)

Wedesignated ϵ± as an energyfluxof eachof the Elsässer variables; these fluxes donot
interchange energy in the ideal case. δw±λ is a characteristic perturbation amplitude
on a perpendicular scale λ. This is a real-space analog of Fourier wavepacket with a
central wavenumber of 2π/λ and of wavenumber width around the same quantity.

Such a theory is valid only in a balanced case with both w’s around the same,
which was properly noted in [172]. In the imbalanced case, such theory would break
down due to the absence of resonantly interacting eddies and will come to a contra-
diction, which will be explained in detail in the chapter dedicated to imbalanced.
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In the balanced case, we assume δw+λ = δw−λ and one of Equations (3.16) is suffi-
cient. This gives scaling δw ∼ λ1/3 or, in terms of energy spectrum E(k),

E(k) = CKϵ
2/3k−5/3⊥ , (3.17)

where CK is a Kolmogorov constant.

3.4.1 Dissipation scales

So far, we dealt with the ideal MHD equations. The cascade picture, however, im-
plicitly assumes that the cascade terminates at a certain scale. In astrophysical set-
tings, these scales are usually minuscule. In numerical simulations and experiments,
Reynolds’ numbers are not that high, however. We will need dissipation scales later
in this chapter for the method of scaling study, which allows for precise estimation
of power scaling and other quantities. Here, we will derive dissipation scales corre-
sponding to scalar diffusivities, keeping in mind that (a) the actual break in the spec-
trummay be a constant factor away from this scale and (b) astrophysical fluids rarely
have scalar diffusivities; so in real plasmas, one should includemore physics to obtain
break of the fluid spectrum.

Here, we introduce an scalar dissipation term to the RHS of Equation (3.7) as
−νn(−∇2)n/2w±, where n is an order of viscosity, e. g., n = 2 corresponds to normal
Newtonian viscosity, while for n > 2 it is usually called hyperviscosity. The dissipa-
tion scale for the GS95 model is the same as the one for Kolmogorov model, i. e.,

η = (
ν3n
ϵ
)
1/(3n−2)
. (3.18)

This could be obtainedwith phenomenological argumentation, such as local Re ∼
1, or from dimensional argument: it is easy to check that the above expression is a
unique combination of νn and ϵ that of units of length. Since we know that ϵ ∼ v3/L,
we can derive for the length of the inertial range:

L/η = (L
n−1v
νn
)
3/(3n−2)
= Re3/(3n−2)n , (3.19)

where Ren = Ln−1v/νn is a generalization of the Reynolds’ number for the arbitrary
order of diffusivity.

3.4.2 Anisotropy from phenomenological viewpoint

Our assumption of critical balance ξ = 1 allow us to directly estimate anisotropy of
the perturbations. A different measure of anisotropy is possible, one of the easiest
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and descriptive is called “wavevector anisotropy.” It relates two wavevectors at which
the one-dimensional spectrum along the field and perpendicular to the field have the
same power. Likewise, the same measurement can be done with second-order struc-
ture functions and the relation obtained between parallel and perpendicular scales.
These relations will be identical as long as we convert the perpendicular scale to per-
pendicularwavenumbers as k⊥ = 2π/λ andparallel scales toparallelwavenumbers as
k‖ = 2π/Λ. This comes from the duality of one-dimensional power spectra and second-
order structure function.

Using ξ = 1, from Kolmogorov scaling δw ∼ λ1/3, we obtain k‖ ∼ k2/3⊥ , which is
known as GS95 anisotropy. This result, however, is deeper than just phenomenology,
as we will show in subsequent chapters.

This can be obtained dimensionally from the Λ ∼ vA symmetry of RMHD we
demonstrated in Section 3.3. Indeed, the only sensible law respecting RMHD vA sym-
metry must have Λ ∼ vA. The rest of the expression must have units of time, which is
uniquely obtained from λ and ϵ as λ2/3ϵ−1/3:

Λ = CAvAλ
2/3ϵ−1/3, (3.20)

where we introduced a dimensionless “anisotropy constant” CA. Here, we of course
assumed that turbulence is local in scale, e. g., the dynamics of each given scale have
no knowledge of other distant scales, but only of the local dissipation rate ϵ. The
intermittency-corrected model will have this corrected by a particular power of Re,
which explicitly contains outer scale and dissipation coefficients.

We designate the value of the structure function along the λ axis as the perpen-
dicular structure function. The perpendicular second-order structure function which
correspond to k−5/3⊥ spectrum will have the scaling

SF⊥ ∼ λ−1+5/3 = λ2/3. (3.21)

From the definition of wave-vector anisotropy, the same value should appear at the Λ
axis when Λ ∼ λ2/3, i. e., the parallel structure function will be expressed as

SF‖ ∼ λ2/3 ∼ Λ. (3.22)

The parallel spectrum, which corresponds to such SF is E(k‖) ∼ k−2‖ and from dimen-
sional arguments, we can also recover the prefactor as

E(k‖) = C‖ϵv−1A k−2‖ , (3.23)

where we introduced the dimensionless C‖ – parallel Kolmogorov constant. Such a
spectrum was indeed found in observations of the solar wind turbulence; see, e. g.,
[195] and Section 3.7.
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Equations (3.17) and (3.20) (or, alternatively (3.23)) roughly describe the spectrum
and anisotropy ofMHD turbulence, whichmay be corrected for intermittency. The cor-
rection to power slope is usually negative due to three facts: (a) the pure intermittency-
free measure is of third order (see exact scaling laws for the inertial range of MHD
turbulence), (b) the power spectrum is of lower, second order, and (c) power-law ex-
ponents of different order are a concave function of their order [153]. The correction
for hydrodynamic turbulence was found around −0.03. We will show below that MHD
numerics converges to approximately the same number. This deviation is rather small
and maybe not relevant even in astrophysical context.

3.4.3 Modifications of GS95

Amore radical modification which leads to a shallower and not steeper spectrumwas
proposed by Boldyrev (2005, [48], 2006 [49], henceforth B06) who suggested that the
original GS95 scalings can bemodified by a scale-dependent factor that decreases the
strength of the interaction, so that the RHS of Equation (3.16) is effectively multiplied
by a factor of (λ/L)1/4, where L is an outer scale. Different arguments to the same effect
were proposed by Gogoberidze [170]. In this case, the spectrum will be expressed as
E(k) = CK2ϵ2/3k−3/2L1/6. The nonlinear strength ξ in their argument is modified by the
same factor of k−1/4⊥ L, so that anisotropy follows modified critical balance with k‖ ∼
k1/2⊥ . The dissipation scale of B06 model is different from that of the GS95 model and
can be expressed as η󸀠 = (ν3n/ϵ)1/(3n−1.5)L0.5/(3n−1.5). We will show below that numerics
disfavor −3/2 spectra and 1/2 anisotropy scalings.

3.5 Anisotropy from Lagrangian viewpoint

The studies of hydrodynamic turbulence have benefitted from Lagrangian measure-
ments: measurements that are performed by following a fluid element. Often, the La-
grangian viewpoint offers a simpler conceptual picture than the Eulerian viewpoint.
The example of this is Lagrangian frequency spectrum, which statistically evaluates
the properties of the velocity of a given fluid element.

The Kolmogorov theory is conceptually simpler in Lagrangian formulation. The
Euler’s equation using Lagrangian derivative is simply a third Newton’s law for the
fluid element:

dv
dt
= −
∇P
ρ
. (3.24)

The work per unit mass, done upon a fluid element by pressure of surrounding
fluid elements will be expressed, therefore, as v ⋅dv/dt. The Kolmogorov theory would
therefore assume that, given a characteristic time interval τ, the work done per unit
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mass upon a fluid element during this interval, δvτ ⋅ δvτ/τ, will be constant when τ
corresponds to inertial-range timescales and equal to the turbulence energy cascade
rate per unit mass ϵ.

More formally, in stationary turbulence the second-order Lagrangian structure
function of velocity should satisfy:

SF(τ) = ⟨(v(t + τ) − v(t))2⟩ ≈ ϵτ (3.25)

in the inertial range, where v(t) is a velocity as a function of time for a given fluid ele-
ment. Likewise, the time structure functionwill correspond to the frequency spectrum
of

E(ω) = CLϵω
−2, (3.26)

which was first noted soon after the publication of Kolmogorov theory and appeared
in [250] (see also [101, 422]). The remarkable properties of this spectrum is a simple
power scaling (−2 versus −5/3) and the fact that it is proportional to the first power
of ϵ, i. e., the energy spectrum is proportional to energy injection rate and it probably
does not need intermittency correction.

This spectrum has a dissipation timescale associated with the lifetime of critically
damped eddies, also called the Kolmogorov timescale:

τη = (ν/ϵ)
1/2. (3.27)

It is easy to see that while the break of Eulerian spectrum behaves like η ∼ ν3/4,
the break in Lagrangian spectrum τη ∼ ν1/2.

In MHD, the Lagrangian formulation becomes more involved since there are now
several local propagating wave characteristics. Following a fluid element, we will find
oscillations associated with the wave-train that propagates through, which would
make the classic Lagrangian measurement of limited value.

In the incompressible MHD, the Lagrangian evolution becomes somewhat sim-
pler, as all modes propagate in the same direction with the same speed, modulo, the
sign of the speed. Namely, the Elsässer components propagate either along or against
the local magnetic direction, i. e., along themagnetic field line. Such propagation will
be described by the functional form f (s ∓ vAt), where s is a distance along the field
line. The nonlinear interaction will contribute to a slower time evolution of f and the
trajectory s = ±vAt will be analogous to following hydrodynamic fluid element.

The ersatz of the following wave characteristic ofw+ andw− would be recording
the data along the field line in fixed time. The positive direction s will be equivalent
to the following evolution ofw+ backward in time andw− forward in time. This is re-
lated to thediscussionof field line diffusion [24]whichwewill return to inChapter 7. In
measuring the frequency spectrum, the sign of time is unimportant. So the measure-
ment of the power spectrum along the field line will be analogous to the Lagrangian
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frequency spectrum with frequency ω replaced by the wavenumber k‖ = ω/vA [25]:
E(k‖) = E(ω) dωdk‖ = CLϵ(vAk‖)−2vA = CLϵv−1A k−2‖ (3.28)

This is the same expression as obtained in Section 3.4.2 from phenomenological con-
siderations, assuming CL = C‖. Likewise, the parallel structure function will be ex-
pressed as

SF‖(l) = ϵlv−1A . (3.29)

The dimensional argument involving Alfvén symmetry of reduced MHD arrive at the
same result [23]. Indeed, the symmetry allows only dependence on the combination
k‖vA, so, one must keep energy E(k‖)dk‖ constant under such transformation, which
requires that E(k‖) ∼ v−1A . The rest is due to units of ϵ and k giving the dimension of the
wavevector power spectrum. This parallel second-order spectrum scales linearly with
ϵ, similarly to the third-order Eulerian scaling.

3.6 Parallel spectrum: numerics

Full MHD has no exact Alfvén symmetry, which reduced MHD has. Using Alfvén sym-
metry in the inertial range, however, can be argued based on the high anisotropy and
small amplitude of the perturbation as we demonstrated above (see also [23]). Below
we will check if the parallel spectrum still follows Equation (3.23) not only in Alfvénic
MHDbut in the general MHD case aswell. Especially interesting is the casewith a zero
mean magnetic field, where the vA will be determined only by local fluctuations.

The numerical data is from DNS of strong reduced MHD turbulence [25], which
are the well-resolved driven statistically stationary simulations intended to precisely
calculate averaged quantities.1

See RMHD simulation parameters in code units in Table 3.1 under rows M1–3 and
M1H–3H. The only difference between M1–3 and M1H–3H was that the latter were per-
formed with higher order diffusivities.

For comparison,weperformed simulationswith zeromeanfield described in rows
MHD1–2. We have calculated the spectra along the magnetic field line, and for the re-
ducedMHD cases we additionally have calculated the one-dimensional spectra along
the x direction, which was the global mean field direction.

Three-dimensional numerics are affected by the finite Re effects, so the use of the
rigorous scaling studymethod, described inmore detail in Section 3.9, is warranted. It
is fairly common in the analysis of experimental data and DNS [404, 179, 213, 22, 25],
which compares spectra from simulationswith several different Re values on the same

1 Reduced MHD, as we demonstrated above, describe Alfvén dynamics, which does not depend on
plasma parameters, such as the ratio of plasma pressure magnetic pressure β.
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Table 3.1: Three-dimensional MHD and RMHD simulations.

Run N3 Dissipation vA ϵ η kmaxη vAτη

MHD1 15363 −5 ⋅ 10−10k4 0.73 0.091 0.0021 1.08 0.026
MHD2 15363 −6.2 ⋅ 10−10k4 1.53 0.728 0.0018 0.92 0.025
M1 10243 −1.75 ⋅ 10−4k2 1 0.06 0.0031 1.05 0.044
M2 20483 −7 ⋅ 10−5k2 1 0.06 0.00155 1.06 0.028
M3 40963 −2.78 ⋅ 10−5k2 1 0.06 0.00077 1.06 0.017
M1H 10243 −1.6 ⋅ 10−9k4 1 0.06 0.0030 1.04 0.045
M2H 20483 −1.6 ⋅ 10−10k4 1 0.06 0.00152 1.04 0.029
M3H 40963 −1.6 ⋅ 10−11k4 1 0.06 0.00076 1.04 0.018

plotwith dimensionless axes. Theparallel spectrumwasplotted versus dimensionless
wavenumber kvAτη and compensated by k2ϵ−1vA to see how the scaling is consistent
with (3.23). This measurement is presented in Figure 3.4. For the reduced MHD case,
the spectra collapsed on the dissipation scale, corresponding to an overall scaling
of k−2.

Reduced MHD can be performed with a choice of the mean field strength, which
implies a particular choice of ϵ to generate strong turbulence from the outer scale. The
precise Alfven symmetry ensures precise linear scalingwith ϵ in Equation (3.23). How-
ever, statistically isotropic MHD simulations with zero mean field MHD1–2, for which
Alfvén symmetry is absent, and the inertial range scaling (3.23) cannot be rigorously
argued based on units, can be used to verify this scaling.

This is based on an idea introduced by [201, 236] that the RMS magnetic field
can play the role of the local mean field and this could still be regarded as the strong
mean field limit. Our test of Equation (3.23)will, therefore, test not only the Lagrangian
spectrum idea itself, but also the hypothesis mentioned above. In the MHD case, we
used simulations with different ϵ and substituted the RMS field instead of vA in Equa-
tion (3.23). Figure 3.4 demonstrates that there is an inertial range convergence to k−2
even in this zero mean field case. The linear scaling with ϵ, not ϵ2/3, which would be
Eulerian spectrum scaling, is also confirmed.

Based on this evidence, we can reasonably argue that even MHD turbulence that
lacksmeanor backgroundfield behaves similar to theMHD turbulencewith the strong
mean field in the inertial range.

Another possible spectral measurement is with respect to the global mean field.
We do not expect such scalings to deviate significantly from the perpendicular scal-
ings for the following reason: Alfvén waves propagate along the local field direction
which deviates by an angle of δBL/B0 from B0, while the angular anisotropy in this
frame is δBl/B0, with inertial range values of δBl much smaller than the outer scale
value of δBL. It follows that the anisotropy will be washed out. Figure 3.5 presents a
measurement of the spectrum along the x – global mean field direction. It is grossly
consistent with −5/3, i. e., the perpendicular spectral scaling observed in [25].
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Figure 3.3: Different structure functions versus the distance l, measured in hydrodynamic (left) and
MHD (right) simulations. Solid lines show −SF3‖/lϵ. The influence of driving and dissipation is min-
imized in the point where −SF3‖/lϵ is closer to its theoretical value. The dashed line indicates the
ratio of the third-order SF, defined in the text to the parallel third-order SF. This ratio is a test for tur-
bulence self-similarity, as long as this ratio is constant, the turbulence is well self-similar. Finally,
dotted and dash-dotted lines indicate the same second-order structure functions, compensated by
l1/2 and l2/3 correspondingly, in arbitrary units. Here, l2/3 is the Richardson–Kolmogorov scaling and
l1/2 is the scaling that appears in Kraichnan DIA model for hydrodynamics, Iroshnikov–Kraichnan
model for MHD and B06 model. From [36].

3.7 Parallel spectrum observations versus numerics

Critical balance refers to the interaction parameter ξ = δvλ‖/vAλ⊥ being around unity
in strong MHD turbulence. It has been argued as an uncertainty relation between the
wave frequency and the cascade timescale in [172]. This was useful in the qualitative
understanding of strong turbulence, but the generality of this argument results in ap-
parent paradoxes in cases with pure propagating solutions with ξ ≫ 1, i. e., strong
Alfvénic waves. This is because the decorrelation argument does not explicitly refer to
nonlinear interaction.

More importantly, the application of the uncertainty relation argument fails in
the imbalanced turbulence, where it predicts that the anisotropy of the stronger El-
sässer component should be higher than the anisotropy of the weaker component,
while in reality, the opposite is true (see Section 4 and [30, 33]). The Lagrangian argu-
ment, more rigorous andmature, circumvents this problem.We notice that the energy
cascade is manifested both in space and time domains, with the parallel direction is
equivalent to the time domain. It follows then that the anisotropy relation k‖ ∼ k2/3⊥
is the correspondence between space domain (Eulerian) and frequency domain (La-
grangian) spectra. While the critical balance argument requires that the average ξ
must be close to unity, the new argument only requires that the average ξ is a scale-
independent quantity, a dimensionless constant derived from scale-free nonlinear dy-
namics.
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Observational data from the solar wind points to the k−2 parallel spectrum,
e. g., [195] used a wavelet technique to follow the local field direction, Figure 3.6.
This has been further improved in [443] and compared with the global Fourier spec-
tra. [359] obtained similar results with wavelets and demonstrated scale-dependent
anisotropy. [300] used the structure function measurement and observed the same
scaling. Multi-spacecraft measurements in [342] allowed better coverage of k-space
and also pointed to k−2. Some of the earlier measurements, however, reported scale-
independent anisotropy these measurements in the global frame (e. g., [306]), as we
argued above, are not indicative of contradiction with the k−2 result, due to these
spectra being dominated by contamination from perpendicular spectrum due to field-
wandering effect (Section 3.6). Numerical studies overwhelmingly support k−2, as long
as themeasurementswere along the local fielddirection (see, e. g., [92, 303, 33, 32, 22]),
while the measurements in the global frame usually demonstrate scale-independent
anisotropy; see, e. g., [183] or our Figure 3.5. Lagrangian frequency spectrum has been
measured in hydrodynamic simulations (see, e. g., [456]) and showed correspondence
with the theoretical ω−2, while the measurement in statistically isotropic MHD turbu-
lence [65] also tentatively confirmed ω−2.

From the convergence study in Figure 3.4, we found scaling of k−2. The deviation
in visible slope of around 0.1 is evident on this figure and an example of a long-range
finite-Re effect. These deviations were discussed in detail in [32, 21, 23]. The devia-

Figure 3.4: Energy spectrum along the magnetic field line compensated by the theoretical scaling
ϵk−2‖ (3.23). Solid, dashed, and dash-dotted are spectra from 40963, 20483, and 10243 simulation
correspondingly on the upper plot. The M1–3H has been multiplied by a factor of two to separate the
curves. On the lower plot, dashed and solid are MHD1 and MHD2, correspondingly. Reproduced from
[26] with permission of AAS.
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Figure 3.5: The spectra along the global mean field in M1–3, M1–3H. The M1–3H spectra have been
multiplied by a factor of two. This plot demonstrates that this energy spectrum scaling is consis-
tent with −5/3, i. e., the same as the perpendicular scaling. Reproduced from [26] with permission
of AAS.

Figure 3.6: Slopes of the spectra of fluc-
tuations at different angles with respect
to the local magnetic field measured in
the solar wind from [195]. Reproduced
from [195] with permission of APS.

tion from the expected perpendicular −1.7 slope is around ∼ 0.2 in the intermediate
scales but disappeared when higher Re are achieved. Normally, the deviations had
been observed within around an order of magnitude in scale from the driving scale.
Further solarwindmeasurements or larger scale numericswill help to rectify the prob-
lem.

3.8 Statistical indicators of turbulence

Statistical measurement normally involves averaging over many realizations of the
same randomprocess, i. e., statistical averaging. Turbulence is often seen as a volume-
filling and persistent process, so its statistical measurements may be replaced with
averaging over volume and time, using so-called ergodic hypothesis. While theory
usually relies on ensemble averaging, numerical experiment uses volume and time
averaging. In the course of this book, we use averaging signs <> for both statistical
and volume averaging. A good overview of statistical measures can be found in [324].
Among most popular measures, structure and correlation functions of various orders
have been used in turbulence research for some time. Belowwe denote structure func-
tion as SF. While in theory, these are quantities statistically averaged over ensemble
in numerics, the averaging is usually over time and volume using homogeneity and
stationarity.
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In isotropic hydrodynamics, we often use isotropic second-order structure func-
tion of velocity:

SF2(l) = ⟨(v(r − l) − v(r))2⟩r. (3.30)

This is a difference in velocity between two points separated by the vector l, squared
and averaged over the volume, i. e., the vector r. This quantity could be represented
by the sum of the longitudinal and transverse components with velocity decomposed
into a direction perpendicular and parallel to l. The longitudinal structure function is
important in experimental research of hydrodynamic turbulence because this is the
primary quantity measured by the heated wire technique.

MHD turbulence is not isotropic, however, so there is a wider variety of structure
functions that one can possibly measure. However, in the reduced MHD limit, there
is a particular structure function, which plays the similar role as the isotropic SF in
hydrodynamics, the perpendicular SF

SF2⊥(l) = ⟨(w±(r − ln) − w±(r))2⟩r, (3.31)

where n is a vector perpendicular to the magnetic field. Power spectra, on the other
hand, are produced by obtaining a Fourier transform v̂(k) of original quantity v(r) and
taking the product 12vi(k)v

∗
i (k), where ∗ is a complex conjugate. Spectra and structure

functions have one-to-one correspondence by various Fourier transforms; see [324].
Some exact relations for structure functions in turbulence are known both for

hydro and MHD; see, e. g., [44]. The famous Kolmogorov −4/5 law relates a parallel
signed structure function for velocity in the inertial range with the dissipation rate:

SF3‖h(l) = ⟨(δvl‖)3⟩ = −45 ϵl. (3.32)

Another exact relation, similar to the Yaglom’s −4/3 law for incompressible hydro ex-
ists for axially symmetric MHD turbulence:

SF3‖(l) = ⟨δw∓l‖(δw±l )2⟩ = −2ϵl, (3.33)

where l is taken perpendicular to the axis of statistical symmetry—the direction of the
meanmagnetic fieldB [360]. One canmeasure SFs above and argue about influence of
dissipation and driving in each particular simulation. Figure 3.3 shows several struc-
ture functions, compensatedby variouspowers of l and the ratio of parallel third-order
structure function and full third-order SF, SF3 = ⟨|v(r − l) − v(r)|3⟩.

The inertial range in a simulation is often defined as a range of scales where
−SF3‖/l is closest to its theoretical value, i. e., where the influence of energy injection
from driving and energy dissipation from viscous term is minimized. Turbulence self-
similarity can be tested by the ratio of different structure functions. If this ratio is
dimensionless, it is supposed to be constant through scales. For example, we can take

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.8 Statistical indicators of turbulence | 47

the ratio of the unsigned and signed third-order SFs. This ratio must be constant as
long as turbulence is self-similar. Figure 3.3 shows that hydrodynamic turbulence is
rather self-similar at the same time the scaling of the second-order structure function
in the inertial range is around l0.7, i. e., close to the Kolmogorov scaling.

In the MHD simulation in Figure 3.3, the self-similarity is not so good. One can ar-
gue, however, that the scaling is closer to the l2/3 in the point where −SF3‖/lϵ is closest
to its theoretical value of 2. Using these arguments, however, have a great deal of sub-
jectivity to them. A better, more rigorous method, which tests self-similarity as well as
derives asymptotic scalings is described in the next section, it is called scaling con-
vergence study, and it is based on a convergence or a comparison of simulations or
experiments, which have a different value of the outer scale, e. g., simulations may be
presented in a series with varying Reynolds’ number.

Power spectra are the measures complementary to second-order structure func-
tions. In particular, so-called one-dimensional power spectrum Pk is a Fourier trans-
form of the SF2.

This particularmeasure is popular in the satellitemeasurements of the solar wind
turbulence, where the quantity of interest, e. g., v or B is measured as a function of
time. It is then interpreted as a measurement in space as if turbulence was frozen dur-
ing satellite fly by. This is known as Taylor hypothesis and is generally applicable if
the fly by speed is much higher than evolution speed of the turbulence, e. g., group
velocities of the perturbations involved. Each measurement is obtained along a line
in a turbulent realization. The power spectra from many samples like this are aver-
aged to obtain Pk for either velocity or magnetic field. Another experimental measure
is the so-called parallel power spectrum P‖k . It is obtained in the measurements of hy-
drodynamic turbulence by a heated wire technique. A scalar quantity is measured in
this technique, which is the velocity perturbation parallel to the average flow veloc-
ity. Similarly, this is interpreted as ameasurement in space by using Taylor frozen flow
hypothesis. The third type of power spectrum,which is favored by numerics is a three-
dimensional spectrum E(k). This spectrum is calculated from a full three-dimensional
power spectrum 1

2v(k) ⋅ v
∗(k) by integrating over the solid angle in k space, so that

E(k) is only a function of scalar k. In statistically isotropic turbulence, the integration
is in spherical shells, while in reduced MHD, the parallel wavenumber is infinitely
small compared to other wavenumbers, so the integration is, effectively, along all k‖
and the circle in k⊥ space so that the isotropic spectrum is equivalent to the perpen-
dicular spectrum. Three spectra, P(k), P‖(k), and E(k), of the solenoidal vector field
are related by the following expressions (see, e. g., [324]):

P(k) =
∞
∫
k

E(k1)
dk1
k1
, (3.34)

P‖(k) = ∞∫
k

E(k1)(1 −
k2

k21
)
dk1
k1
. (3.35)
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Figure 3.7: Three types of spectra from a numerical simulations R1, R4. Ek – solid, Pk – dashed,
P‖k – dash-dotted. In a simulation with limited resolution, all three spectra have different shapes.
From [36].

From these relations, it is clear that power law in one of the spectra will be the same
power-law in others. However, in practice spectra are never exact power laws over all
range of scales, so the shape of different spectra may be different. Figure 3.7 shows
three types of spectra from a simulation. The primary spectrum here was Ek, and the
two other spectra were calculated by the above formula.

Interesting to note that three spectra havedifferent shapes. This gets us back to the
discussion of the subjectivity of the power law exponent: if one would want to claim a
particular scaling by estimating the scaling from thenumerical spectrum, the estimate
will likely depend on the type of the spectrum and the range of k used for fitting the
exponent. Visually, based on Figure 3.7 one can claim any spectral slope between −5/3
and −1.4. This reinforces the need for rigorous quantitative measurement based on
scaling convergence, presented in the next section.

3.9 The scaling convergence argument
Turbulence with a very long range of scales is common in astrophysics. Three-
dimensional numerics, on the contrary, is unable to reproduce such range, and strug-
gles to obtain a good inertial range. In this situation, rigorous quantitative arguments
were invented to investigate asymptotic scaling.

Imagine we performed several simulations with different Reynolds’ numbers. If
we believe that turbulence is universal, and the separation of scales between forcing
scale and dissipation scale is large enough, the properties of small scales should not
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depend on how turbulence was driven and also on the scale separation itself. This
is because MHD or hydrodynamic equations do not explicitly contain any designated
scale, so the simulation with a smaller dissipation scale could be considered, because
of the symmetry from equations, as a simulation with the same dissipation scale, but
larger driving scale.

For example, the small-scale statistics in a 10243 simulation will look similar to
small-scale statistics in 5123 simulation, if we keep physical sizes of the grid cell and
the dissipation scale the same.

Figure 3.8 shows convergence of many turbulence experiments as well as numer-
ical experiments onto the same curve after the scale and the power spectrum were
made dimensionless using the Kolmogorov scale and Kolmogorov velocity scale.

Figure 3.8: Left: The spectra from hydrodynamic simulations illustrate the numerical scaling argu-
ment. As long as turbulence is scale-local, simulations with different Re will exhibit similar statis-
tics, as evident from the convergence of dimensionless spectra. Right: Similar convergence study
with experimental data points on top of the simulation (solid line) from [179]. Reproduced from [179]
with permission of AIP.

The scaling argument in numerics in practice require that not only the geometry of the
elementary cells are the same but the actual numerical scheme used to solve the equa-
tions is the same. The numerical formulations should not contain any scale explicitly
as well, which is typically satisfied.

It is interesting that in the case of numerics the scaling argument does not require
that discretized formulation exactly follows continuous formulation on grid scales,
e. g., it does not require numerical results to be well resolved and precise of grid scale,
but as long as the grid scale is the fixed fraction of the dissipation (Kolmogorov) scale,
it would still work. This is because the statistics on small scales is similar in two sim-
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ulations as long as numerical effects are the same, which is the case when numerical
effects are the same on the dissipation scale. At the same time, the influence of the
changing outer scale should be small by the assumption of turbulence locality.

In practice, the scaling argument or a resolution study is done in the following
way: the spectra from two or more simulations are expressed in dimensionless units
corresponding to the expected scaling, e. g., a E(k)k5/3ϵ−2/3 is used for hydrodynam-
ics, and plotted versus the dimensionless wavenumber kη, where dissipation scale
η corresponds to the same model of dissipation scales, e. g., η = (ν3/ϵ)1/4 is used
for scalar second-order viscosity ν and Kolmogorov phenomenology. On the plot, the
two spectra should collapse onto the same curve on the viscous scales; see, e. g., Fig-
ure 3.8. The method has been used in hydrodynamics since a while ago, e. g., in refer-
ences [457, 179, 213]. For hydrodynamics, good convergence on the dissipation scale
has been observed starting with rather moderate resolutions indicating that hydrody-
namic cascade is very local in scale.

While experimental data suffer from systematic uncertainties on small scales,
high-resolution numerical simulations allow to collect tremendously large and pre-
cise statistics on small scales, driving statistical error virtually to zero. The scaling
study based on numerics, when done properly, allows for a very precisemeasurement
in scaling, e. g., in simulations in reference [213], which had a resolution up to 40963

and even the intermittency correction to the Kolmogorov scaling has been captured.
This correction is only around 0.04 in the spectral slope.

3.10 Numerical studies of the spectral slope

We add to the RHS of Equation (3.15) an explicit dissipation term of n-th order
−νn(−∇2)n/2w± and forcing term f. Diffusive terms with n = 2 are referred to as normal
viscosity and with n > 2 are referred to as hyperviscosity. We solve these equations by
pseudospectral dealiased code [33, 32, 34, 21, 22].

The seminal paper by Kolmogorov [224] suggested that if strong turbulence is uni-
versal and its scaling is only determined by the dissipation rate and viscosity, the dis-
sipative range would have certain spacial-, velocity- and time-scales, known as Kol-
mogorov scales. This has been tested with a number of experimental and/or numeri-
cal data being expressed in units of these scales and presented on the same plot; see,
e. g., [404, 179]. This method shows remarkable collapse of all data on the same curve
(see Figure 3.8), validating Kolmogorov’s conjecture. Technically, the scaling study
investigates the scaling of the Kolmogorov dissipation scale and velocity scale with
Reynolds’ number. For example, in the presence of normal viscosity, the Kolmogorov
velocity should scale as Re−1/4 for the −5/3 power law, while for the −3/2 model it will
scale as Re−3/8. The scaling study method becomes especially powerful in numerics,
where all the data are available at all times for averaging.
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Given a characteristic eddy scale l, the number of eddies in a datacube goes as
l−3, while the number of correlation timescales for strong turbulence goes as l−2/3, so
the statistical error due to volume and time-averaging goes as l−11/6, which is about
a factor of 10−4 between outer scale eddies and viscously damped eddies in highest
resolution simulations. The dissipation scale, therefore, is not only the most sepa-
rated from the driving scale and the least affected by driving, but also has the smallest
statistical error. In combination with the very low numerical error of the pseudospec-
tral method (see below), the Kolmogorov amplitude of spectra is one of the most ro-
bust and best-measured quantities in numerics. In particular [213], using a simulation
group up to 40963 resolution, has been able to estimate the power slope of hydrody-
namic turbulence within tiny error and differentiate between −5/3 ≈ −1.667 slope and
intermittency-corrected −1.7. We aim to distinguish between the −3/2 and −5/3 slope,
which are different by ≈ 0.167, much higher than the precision of the method, ≈ 0.02.
This is much better than using subjectively perceived flatness of the spectra to deter-
mine the asymptotic scaling, as it could easily fail, e. g., due to the transitional scalings
that look subjectively flat.

Checking the hypothesis that the Kolmogorov scale and the Kolmogorov veloc-
ity scale correctly with the Reynolds’ number requires plotting the spectrum in Kol-
mogorov units, i. e., making the x and y axes dimensionless. The x axis is expressed
in kη, where η is not necessarily the classic Kolmogorov scale, corresponding to −5/3
slope, but defined by Equation (1.1), i. e., different for each spectral slope. The y axis
is usually expressed in units of E(k)k5/3+αLαϵ−2/3, where α is the correction to the −5/3
slope and L is an outer scale, which is normally kept constant in a scaling study. This
is, in fact, the only dimensionless expression for the spectrum that does not contain η
explicitly. If onewants tomultiply the above expression by some power of (L/η), or the
Reynolds’ number, this would introduce explicit η dependence and would violate the
so-called zeroth law of turbulence that claims that large-scale properties are largely
independent of viscosity. We also note that the scaling study works perfectly well not
only with spectra but with other measures. In particular, we reproduced the results
reported below by using the second-order perpendicular structure function.

Two series of reduced MHD driven simulations are described in Table 3.1 as M1–3
and M1–3H. These are simulations with a strong mean field that we denote B0, RMS
fields vrms ≈ Brms ≈ 1, perpendicular box size of 2π and parallel box size of 2πB0.
The driving was correspondingly anisotropic with anisotropy B0/Brms, so that turbu-
lence starts being strong from the outer scale. Technically,B0 is arbitrary.However, the
RMHD limit is only applicable to very large B0 [22]. Our previous simulations showed
a rapid decrease of parallel correlation length right after the driving scale, which indi-
cates the efficiency of nonlinear interaction and the regime of strong turbulence. The
correlation timescale for v and B was around τ ≈ 0.97, so the box contained roughly
6.5 parallel correlation lengths in the parallel direction and about 3–5 in the perpen-
dicular direction. Each simulation was started from long-evolved low-resolution sim-
ulation and was subsequently evolved for Δt = 13.5 in high resolution. We used the
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last 7 dynamical times for averaging. In our previous work [21, 22], we found that av-
eraging over ∼ 7 correlation timescales give a reasonably good statistic on outer scale
and excellent statistics on smaller scales. Numerically, we used kmaxη > 1 resolution
criterion,with η being classic Kolmogorov scale. For the hyperdiffusive series, we used
the same criterion. Additionally, we checked the numerical precision of the spectra by
performing a resolution study on lower resolutions. In particular, we saw spectral er-
ror lower than 8 × 10−3, up to kη = 0.5 when increasing resolution from 5763 to 9603

and the spectral error lower than 3 × 10−3 when we increased parallel resolution in a
11523 simulation by a factor of two. We did not use any data above kη = 0.5 for fitting
as the spectrum sharply declines after this point and contains negligible energy. We
conclude that for our purposes, using kmaxη = 1 is sufficient, and using cubic reso-
lution, i. e., parallel resolution equal to perpendicular resolution is also sufficient or
even somewhat excessive. Note that increasing resolution while keeping kmaxη > 1
with η corresponding to −5/3 slope is a conservative choice for all types of turbulence
with slope shallower than −5/3, including the −3/2 model.

Figure 3.9 presents a convergence test for the −5/3 model, and the convergence is
reasonable, while the best convergence is reached at the −1.7 scaling. Figure 3.10 has
a test for the −3/2 model and the convergence is poor in either low or high wavenum-
bers. The former is due to the scaling being actually quite shallower than −1.5 at low
wavenumbers. Figure 3.11 shows a convergence study for the residual energy spec-

Figure 3.9: Checking −5/3 hypothesis with the scaling study. Solid, dashed, and dash-dotted are
spectra from 40963, 20483, and 10243 simulation, correspondingly. The upper plot shows normal
diffusion M1-3 simulations, and the lower plot shows hyperdiffusive M1–3H simulations. The conver-
gence is reasonable around the dissipation scale. The scaling that achieves the best convergence is≈ −1.70 [21]. From [25].
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Figure 3.10: Checking −3/2 hypothesis with the scaling study. The convergence is poor. Convergence
is not visible at the dissipation scales, meaning that Kolmogorov scales defined by −3/2 model are
inconsistent with the measurement. From [25].

Figure 3.11: Residual energy convergence. Best convergence is k−1.70 scaling for M1–3 and k−1.69
scaling for M1–3H. From [25].
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trum (magnetic energy minus kinetic energy). The best convergence is, again, near
−1.7 slope. Note that in all three cases the convergence or the lack of convergence is
consistent across two simulation groupswith different dissipation prescriptions,M1–3
and M1–3h. This is expected as different dissipation schemes only affect the shape of
the dissipation range, while the nature of the convergence argument has nothing to
do with a particular shape of the dissipation range.

The flat part of the normalized spectrumwas used to obtain Kolmogorov constant
of CKA = 3.3 ± 0.1, which was reported in [21]. The total Kolmogorov constant for both
Alfvén and slow mode in the above paper was estimated as CK = 4.2 ± 0.2 for isotrop-
ically driven turbulence with a zero mean field. This was obtained using empirical
energy ratio between a slow and Alfvén mode, Cs which is between 1 and 1.3. This
larger value of Kolmogorov constant, CK = CKA(1 + Cs)1/3 is due to slow mode being
passively advected and not contributing to nonlinearity. Themeasurement of CKA had
relied on the assumption that the region around kη ≈ 0.07 represents an asymptotic
regime. We performed simulations with resolution up to 40963, which also confirmed
the −5/3 spectrum [25]. It was also obtained from these simulations that the residual
energy, EB−Ev have the same spectral slope as the total energy, i. e., there is a constant
fraction of residual energy in the inertial range. This fraction was measured in [25] to
be around 0.15. Previously, the most popular model [330] suggested that the spectrum
of the residual energy follows k−2 scaling, which is problematic both conceptually and
theoretically. We confirmed that the residual energy is a fraction of the total energy in
the inertial range and made explanations suggesting different scalings for magnetic
and kinetic energies unnecessary.

Our results suggest that the residual energy scales as the total energy and is sim-
ply a constant fraction of the total energy. Our best estimate for this fraction is σr =
0.15 ± 0.03. More commonly used in the solar wind community, the Alfven ratio is
rA = Ev/EB = (1 − σr)/(1 + σr) ≈ 0.74. The discussion of the fraction of the resid-
ual energy and its scale-dependence dates back a couple of decades and has recently
been connected to other dimensionless measures called alignment measures in simu-
lations [32] and in solar windmeasurements [445, 73]. Explaining previously reported
−2 scaling [330] for the residual energy is challenging from the theoretical standpoint.
Indeed, if we assume a particular residual energy fraction on the outer scale, and the
−2 scaling its valuewill depend on the separation from the outer scale, whichwill sug-
gest nonlocal dynamics of this quantity. Our simulations, confirming that the residual
energy is likely to be just a fraction of the total energy in the asymptotic regime, resolve
this conceptual difficulty andmake theories suggesting different scalings formagnetic
and kinetic energies obsolete. The solar wind spectra often feature different kinetic
and magnetic scalings; see Figure 3.12. Furthermore, the amount of residual energy
is not stable from measurement to measurement and is different for the fast and the
slow solar wind [445, 73]. Such deviations from idealized numerical experiments will
be investigated in the future.While we believe that reducedMHD is a good description
for low-frequency solar wind fluctuations, themismatch between simulations and the
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Figure 3.12: Power spectra of magnetic field, velocity, and residual energy measured in the solar
wind. Alfven ratio was strongly fluctuating, and the average was around 0.71 from [73]. Reproduced
from [73] with permission of AAS.

solar wind could be due to the latter having significant deviations from homogeneity,
anisotropy with respect to the sunward direction [184], the presence of large amounts
of discontinuities [53], or the fact that, unlike simulations, solar wind may be driven
on various scales.

To summarize, the highest resolution MHD simulations to date, with Re up to
36000 exhibit asymptotic spectral scaling of around −1.7, slightly steeper than Kol-
mogorov. The residual energy and also kinetic and magnetic energies separately ex-
hibit the same scaling.

3.11 Dynamic alignment models

Having sizable number of degrees of freedom, MHD turbulence can, in principle,
have nontrivial scalings of dimensionless quantities in the inertial range. One of
these quantities, Alfven ratio, has been discussed in the previous section and had
been found, within errors of our measurement, not scale-dependent.

Another important dimensional quantity is the MHD turbulence imbalance, i. e.,
the ratio of upward and downward propagating waves, which will be considered in
Chapter 4.
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Recently, somemodels have been suggesting that various local alignment effects,
i. e., local variations of dimensionless combinations of B and v will result in a gross
modification of the energy cascade itself, due to the systematic scale-dependentweak-
ening of nonlinear interaction [48], [170]. For example, in [48] it was proposed thatw+
andw− eddies are scale-dependently aligned and, therefore, the GS95 model should
be modified.

A sizable confusion ensued, however to which alignment measure represent the
interaction weakening more accurately. The original [48] idea was analyzed in [29]
and no significant alignment was found for the averaged angle between w+ and w−,
AA = ⟨|δw+λ ×δw−λ |/|δw+λ ||δw−λ |⟩, but when this anglewasweightedwith the amplitude
PI = ⟨|δw+λ × δw−λ |⟩/⟨|δw+λ ||δw−λ |⟩, some alignment was found.

Later [49] proposed the alignment between v and b, and subsequently [304] sug-
gested a particular amplitude-weightedmeasure, DA = ⟨|δvλ ×δbλ|⟩/⟨|δvλ||δbλ|⟩, that
was claimed to depend of perpendicular scale as λ1/4. In a sense, DA is very similar to
PI but uses B and v instead ofw±.

The measure for local imbalance can be introduced as IM = ⟨|δ(w+λ )2 − δ(w−λ )2|⟩/
⟨δ(w+λ )2 + δ(w−λ )2⟩, [32].

Our analysis has shown that the numerical claims of DA scale dependency have
been ill-founded. More importantly, as we will show below: (a) the choice of DA as
a measure exclusively responsible for interaction weakening is arbitrary and not
founded in theory, and (b) the explanation of DA scale-dependency from [49] are at
odds with the symmetries of MHD equations as well as empirical evidence.

Figure 3.13 studies scale-dependency ofDA and IM by themethod of scaling study.
The asymptotic scale-dependency slope for DA is around 0.06, which is comparable
to intermittency corrections and way below 1/4 suggested in [49].

Figure 3.13: Scaling study of alignment measures DA = ⟨|δv×δb|⟩/⟨|δvδb|⟩ and IM = ⟨|δ(w+)2 −
δ(w−)2|⟩/⟨δ(w+)2 + δ(w−)2⟩ from M1–3H (top) and M1–3 (bottom). The alignment slopes converge
to relatively small values, e. g., 0.06 for DA which is smaller than 0.25, predicted by [49]; see also
[32, 21, 22]. Reproduced from [26] with permission of AAS.
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Let us critically review physical argumentationwhy alignment should be a power-
law of scale in [49]. The argument is thatDAwill tend to increase, but will be bounded
by field wandering, i. e., the alignment on each scale will be created independently
of other scales and will be proportional to the relative perturbation amplitude δB/B0.
But this violatesAlfvén symmetry of RMHDequations (see Section 3.3),which suggests
that B0 can be factored out. A perfectly aligned state, e. g., with δw− = 0 is a precise
solution of MHD equations and it is not destroyed by its field wandering. Empirically,
the alignment measured in simulations of strong MHD turbulence with different val-
ues of δBL/B0 showed very little or no dependence on this parameter [32].

Scale-dependency ofDA seems to be tied to the outer scale, i. e., nonuniversal and
related to the fact that MHD turbulence is less local than hydro turbulence [32, 34, 21],
and that the driving used inmost simulationsMHD turbulence is statistically different
thanperturbations in the inertial range.Namely, theperfect randomness of thedriving
scale has to transition to the asymptotic alignment of the inertial range about a factor
of 0.5. This transition takes about 1.3 orders ofmagnitude in scale. An analytical upper
bound on the cascade locality suggests that the width of the energy transfer window
canbe as large asC9/4K [23]. The observation of [32] thatMHDsimulations normally lack
bottleneck effect, even with high-order dissipation, while hydrodynamic simulations
always have the bottleneck, which is especially dramatic with high-order dissipation
is consistent with MHD being less local than hydro (by a factor of ∼ (3.3/1.6)9/4 ≈ 5).

The papers [49, 304] and subsequent papers assert that the particular measure of
alignment, DA in our notation, is weakening interaction scale-dependently, so that
the energy spectral slope is modified. In particular, the above papers claim that if
DA ∼ λα, then the spectrum E(k) ∼ k−5/3+2/3α which, in the case of α = 1/4 will result in
E(k) ∼ k−3/2. Let us critically examine the claim E(k) ∼ k−5/3+2/3α from the theoretical
viewpoint. The exact relation describing energy flux through scales is given by Equa-
tion (3.33). Let us analyze this statistical average for a “+” component at a particular
value of l: ⟨δw−l‖(δw+l )2⟩. Indeed, it appears that the anticorrelation of δw−l and δw+l
could result in a reduction of the above statistical average. DA, however, does not de-
scribe such an anticorrelation. Furthermore, DA is based on a second-order measure,
while ⟨δw−l‖(δw+l )2⟩ is third order. Most importantly, no rigorous argumentation could
suggest that the discussed anticorrelation necessarily reduces the above statistical av-
erage. Indeed, the δw−l‖ is a signed quantity, and so is the whole expression under the
statistical average. Therefore, the value of the statistical average is not necessarily re-
lated to the RMS values of the expression, but rather depend on the skewness of the
PDF of the expression. This is most obviously indicated by Figure 3.3, where the ratio
of unsigned to signed statistical average is about 10. This ratio can be arbitrarily large,
e. g., in weak MHD turbulence, where taking larger B0 will result in decreased energy
rates, the above PDF becoming closer to Gaussian and its skewness going to zero. It is
only the Kolmogorov similarity hypothesis for the case of strong MHD turbulence that
asserts that the skewness is independent on scale, and allows us to derive the k−5/3
spectrum. When one wants to explore different similarity relations, it is necessary to
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argue in favor of the new scale-independent skewness based on a different argument.
This so far has not been accomplished. To summarize, the assertion that theDA factor
weakens the interaction is not theoretical but rather heuristic is based on empirical
scalings in a backward logic type of connection.

3.12 Anisotropy scaling study

In the theoretical sections, we alluded that anisotropy should be universal in the iner-
tial range due to the connection between Lagrangian spectrum and parallel spectrum.
The relation between parallel and perpendicular scales is expected to have a form
Λ = CAvAλ2/3ϵ−1/3, where CA is an anisotropy constant to be determined from the nu-
merical experiment or observation. Note that both Alfvénic and slow modes should
have the same anisotropy. This is because they have the same ratio of propagation
to nonlinear timescales. It is interesting to repeat the convergence argument now for
anisotropy relation, which is what we did in Figure 3.14. We used the so-called mini-
mum parallel structure function, described in detail in [33]. From this scaling study,
we obtained CA = 0.63. Note, that the conventional definition of critical balance in-
volves the amplitude, rather than (ϵλ)1/3, so the constant in this classical formulation
will be CAC

1/2
K ≈ 1.1, which is closer to unity. Together with energy spectrum, this is

a full description of the universal axisymmetric two-dimensional spectrum of MHD
turbulence in the inertial range.

Figure 3.14: The scaling study for anisotropy shows moderately good convergence to a universal
anisotropy Λ = CAvAλ2/3ϵ−1/3 with anisotropy constant CA of around 0.63. From [22].
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3.13 Summary of balanced driven MHD turbulence

In this chapter, we argued that the properties of Alfvén and slow components of in-
compressible MHD turbulence in the inertial range will be determined only by the
Alfvén speed vA, dissipation rate ϵ, and the scale of interest λ. The energy spectrum
and anisotropy of Alfvén mode will be expressed as

E(k) = CKϵ
2/3k−5/3, (3.36)

Λ/λ = CAvA(λϵ)
−1/3, (3.37)

with CK = 3.3 and CA = 0.63 (modulo small intermittency corrections to power in-
dexes). If the slow mode is present, its anisotropy will be the same, and it will con-
tribute to both energy and dissipation rate. Assuming the ratio of slow to Alfvén ener-
gies between 1 and 1.3, the latter was observed in statistically isotropic high-resolution
MHD simulation with zero mean field, we can use CK = 4.2 for the total energy spec-
trum [21].

Furthermore, we argued theoretically and found numerically that the ratio of ki-
netic to magnetic energies in the inertial range is constant, rA = Ev/EB ≈ 0.74, consis-
tent with the latest measurements in the solar wind [73].

Anisotropy of MHD turbulence is an important property that affects such pro-
cesses as interaction with cosmic rays. Since cosmic ray pressure in our galaxy is of
the same order as dynamic pressure, their importance should not be underestimated.

Fully compressible MHD equations contain extra degrees of freedom, which, in a
weakly compressible case, entails the additional cascade of the fast MHD mode, pos-
sibly of weak nature. This is the subject of Chapter 5.

3.14 Turbulence driven by external current

Cosmic rays (CRs) contribute significantly to the overall energetics of the ISM. While
being produced in supernova remnants, CRs stream around interacting with the ISM
magnetic fields creating CR-induced turbulence. One of the simplest approaches is to
treat CRs as an external current acting on the dynamic MHD fluid. In this section, we
will study MHD turbulence driven in such a way and derive basic scaling laws.

This problem is also related to the issue of acceleration of CRs themselves, namely
that to be accelerated efficiently, CRs must self-scatter, i. e., induced MHD perturba-
tions that result in their own scattering. Furthermore, to guarantee acceleration to the
observed “Knee” of the spectrum at 1015 eV, this also must be a dynamo process, in
which average magnetic field is significantly increased. Evidence of field amplifica-
tion has been found in the Cassiopeia A SNR [434] and in Tycho’s SNR [69].

The reader should keep in mind that the simplified approach, assuming that cos-
mic rays are acting on MHD plasma as an external current and that the bending of
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cosmic rays is small, is essentially a limit of infinite energy of CRs and is certainly not
applicable to realistic SNRs. The discussion of this simple problem, well described
within the realm of MHD theory and numerics, can be a good starting point in the
search for a more realistic particle-MHD dynamo.

3.14.1 MHD equations with external current and conservation laws

The portion of the Lorentz force, associatedwith the cosmic ray current should be sub-
tracted from the total Lorentz force, as this portion is not applied directly to the fluid.
The induction equation, however, is unchanged, as it is the consequence of the Ohm’s
law. The resulting equations are MHD equations with an external current, which we
call Bell-MHD equations after [19]. Again we are using Heaviside–Alfvén units with
j = ∇ × B, which helps to avoid having factors of √4π, ρ and c in the MHD equations
and also expresses the magnetic field in velocity units, as the density assumed to be
unity. It is easy to go back to CGS units remembering that energy density in Heaviside–
Alfven units is ρ(B2 + v2)/2. Also, the current density j = (jCGS/c)(4π/ρ)1/2,

(𝜕t + v ⋅ ∇)v = −∇P + j × B − je × B, (3.38)
𝜕tB = ∇ × (v × B). (3.39)

The equations above are basically MHD equations with an extra “force” −je × B.
Physically, this extra term means that the MHD fluid has external current embedded
in it, which has an electric connection with a fluid but does not apply any force to the
fluid.

A certain insight into the dynamics could be obtained by reviewing conservation
laws for the above system. Originally, MHD equations have five basic conservation
laws for scalar or pseudoscalar quantities: mass m, momentum p, energy E, cross-
helicity Hc, and magnetic helicity HM . As the continuity equation is unchanged, con-
servation of mass still holds. Furthermore, as induction equation is unchanged, the
magnetic helicity conservation still holds and multiplying Equation (3.38) by B one
can verify that cross-helicity is also conserved. The energy and momentum conser-
vation are the two conservation laws that are broken by the Bell-MHD system. The
average extra momentum per unit time is related to the average magnetic field B0 as
−je × B0. This extra momentum has to be provided by external current. In the case of
supernova remnants, the amount of momentum carried by high-energy cosmic rays is
small compared to the inflowing fluid momentum, therefore, the component of exter-
nal currents which is perpendicular to B0 will be suppressed in one gyration for the
current-carrying cosmic rays. Keeping in mind of this, we will consider only the case
when je‖B0 and the global momentum conservation holds true. Multiplying Equa-
tion (3.38) by v,we see that the extra energy per unit time is −v ⋅ (je × B) = je ⋅ (v × B),
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i. e., it is associated with the electromotive force (EMF) of the fluid, ℰ = v × B, ap-
plied to the external current. As we will see below for the unstable modes, MHD fluid
applies such an EMF as to extract energy from the external current. Obviously, this
results in the energy loss in the loop of the external current. In the case of the external
current provided by cosmic rays, they are being slowed down byMHD fluid’s EMF.We
can also write down Equation (3.38) in Fourier space and investigate energy injection
as a function of scale. In order to do this, the equations for the time derivative of the
Fourier-transformed velocity ̂vk have to be multiplied to ̂v∗k , a complex conjugate. The
result is the energy injection with the rate of je ⋅ (vk × B∗k), or je ⋅ ℰk, where ℰk is the
power spectrum of EMF, vk × B∗k.
3.14.2 Linear and nonlinear stages

The linear phase of Bell’s instability can be investigated by applying small perturba-
tions to the initial state B = B0. This initial state corresponds to plasma current com-
pletely canceling out the external current, i. e., the total current of zero. The mutual
repulsion of external and plasma current results in an unstable situation which will
grow exponentially from small perturbations of B1 and v1. Using linear analysis of
the equations above, one can verify that the fastest growing mode has a wavenumber
kd = je/2B0 parallel to B0, while the perturbations B1 and v1 are perpendicular to B0
and have a certain sign of circular polarization, corresponding to the sign of current
helicity je ⋅ B0 [19]. Energy is equipartitioned between v and B. The fastest growing
mode of field perturbations grows at the rate2 of je/2, while the energy grows at a rate
je. It is also worth noting that in the presence of scalar viscosity ν and magnetic diffu-
sivity νm this growth rate will be decreased by −(ν + νm)j2e/4B

2
0.

The nonlinear stage takes over when nonlinear terms of Equations (3.38)–(3.39)
become comparable with linear terms. This will happen when energy density exceeds
characteristic initial energy density B20/2. Note that in the limit of ideal incompress-
ible MHD statistically homogeneous system described by Equations (3.38)–(3.39) has
a single characteristic energy density scale, B20, timescale 1/je, which corresponds to
the linear growth rate, and length scale B0/je, which corresponds to the wavelength
of the most unstable mode. If we conjecture that B0 will become unimportant later
in the nonlinear evolution, the system will only have a characteristic timescale 1/je.
It also turns out that dissipative effects can be neglected as long as B0/je is above all
dissipative scales.

Suppose at somemoment of time during nonlinear evolution the spectrum of per-
turbations has an integral (outer) scale L. We will argue that perturbations on this
scalewill be able to freely expand due to the Lorentz force, just like an unstable helical

2 In CGS units, kd(CGS) = 4πje(CGS)/(2B0c) and the growth rate is (je(CGS)/2c)(4π/ρ)1/2.
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mode in the linear regime. We will also conjecture, by analogy with linear stage, that
the product je ⋅ (v × B), i. e., the work of external current onto the fluid, will be propor-
tional to energy. The difference with the linear stage is that the EMF spectrum will no
longer be proportional to the energy spectrum, rather it will peak at the integral scale.
The result will be the growth of energy at the integral scale, the growth of the integral
scale itself and the direct energy cascade on scales below integral scale. From here
on, we introduce two dimensionless constants that describe this process: the ratio of
EMF to total energy (which conventionally have the same Heaviside–Alfven units) CE
and the fraction of energy that goes into the direct cascade CD. We expect CE and CD
to be below unity. The whole spectrum of perturbations at anymoment of time will be
determined only by the total energy E and the integral scale L. The time evolution for
these will be determined by

dE
dt
= (1 − CD)CE jeE. (3.40)

At the same time, at the sufficiently high Reynolds’ numbers, the dissipation will
only depend on large-scale quantities, as is typical for turbulence. This is satisfied as
long as the dissipation scales aremuch smaller than all relevant scales of the problem,
including 1/kd = B0/je. It is possible to verify that if the linear instability is growing,
i. e., ν, νm < B20/je, the dissipation scale will be smaller than 1/kd(B0/B)1/2, so this con-
dition is always satisfied as long as there is a growth of instability. For the dissipation
rate, we can take a classic large-scale expression δv3/L:

E3/2
L
= CKCDCE jeE. (3.41)

Here, we have introduced Kolmogorov constant CK . This will eventually give us
the relation between the integral scale and the energy density:

L = E3/2/(CKCDCE jeE) = E1/2/(CKCDCE je). (3.42)

We expect approximate equipartition betweenmagnetic and kinetic energies and
Equation (3.42) has a simple physical meaning. Since E1/2 ∼ B, the fluctuations of the
magnetic field are such that the fluctuations of the total current density (plasma plus
external) are of the order of the external current density itself, on the outer scale of
turbulence. In otherwords, collisions of expanding spirals fromBell instability almost
fully randomizes total current, but its RMS value always stays around je.

The scalings above could be verified in numerics, in particular, we observe that
the energy density continues to grow exponentially in the nonlinear stage, Figure 3.15.
And the outer scale L indeed follows the above scaling (see Figure 3.17). We can also
directly verify that EMF drives turbulence mostly on the integral scale.
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Figure 3.15: Energy grows exponentially in both linear and nonlinear regime of Bell’s instability.
While the linear growth rate is, approximately, je, the nonlinear growth rate is reduced by a factor
of 0.132. From [35].

Figure 3.16: Energy spectra (solid) and EMF spectra (dashed) at several moments of simulation time.
We only take the vector component of EMF, which is parallel to je, therefore the dashed spectrum is
also the energy injection spectrum. The first two spectra feature linear mode growth with EMF spec-
trum proportional to the energy spectrum. Later, nonlinear stages show EMF driving dominant at the
largest, energy containing scale of the spectrum. Below energy-containing scale the energy injection
becomes negligible and the spectrum exhibiting an “inertial range” k−5/3 scaling. Reproduced from
[35] with permission of AAS.
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Figure 3.17: Left: Anisotropy of Bell-MHD turbulence below the energy containing scale at t = 0.49.
In this plot, we show second-order structure functions of density parallel (dashed) and perpendic-
ular (solid) to the local mean magnetic field. The scalings of l1 and l2/3 are expected from inertial
range of strong MHD turbulence [172]. Our measurement is grossly consistent with the Goldreich–
Sridhar anisotropy. Right: The dependence of energy containing scale L on energy density E. The
linear growth regime features constant L, corresponding to the wavelength of the fastest growing
mode. The nonlinear regime is characterized by the l ∼ E1/2 law, with both E and l growing exponen-
tially in time. Reproduced from [35] with permission of AAS.

3.14.3 Empirical findings

We performed a series of six incompressible numerical experiments changing the
value of initial magnetic field B0 between values of 0.5, 1.0, and 2.0 and changing
current between 40 and 20. Due to the symmetries of the dynamical equations, we
expected simulations with the same je/B0 ratio to exhibit the same behavior, assum-
ing that the timescale was appropriately rescaled to 1/je. This was indeed the case.
Also, as long as the scale 1/kd was well separated from both dissipation scale and
the cube size scale, the behavior was similar for all simulations, assuming the same
rescaling. Since incompressible MHD is scale-free, the only true physical parameter of
the problem is je, and since it has units of 1/s, it simply designates the only available
timescale for the problem. In other words, the evolution is expected to be universal as
long as the dissipation coefficients are small and the box size is large enough.

Keeping this in mind, we performed a single 11523 large-scale simulation to verify
the scaling in Equation (3.42). In this simulation, we chose je = 120, B0 = 1, so that
kd = 60 and is well separated from the dissipation scale at around k = 300. Figures
present measurements from this simulation. The total energy evolution is presented
in Figure 3.15, while spectra of total energy and the EMF along je are presented in
Figure 3.16. The nonlinear regime exhibits a pure exponential growth, over at least a
couple of the order of magnitude in energy, which is fully consistent with our model
and implicitly verifies that the external current density je determines the only relevant
timescale of the problem. The coefficient of reduction of the growth rate, 0.132, that we
conjectured to be equal to the (1− CD)CE product indeed seems to be universal among
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several simulations with different je, B0, and numerical resolutions. We observe the
transition to nonlinear stage at the level of Brms/B0 ∼ 10 similar to previous research,
e. g., [371].

Furthermore, the spectra of energy and EMF, Figure 3.16, seem to support our con-
jectures about the scales at which the Bell-MHD turbulence is driven. For the linear
growth regime, represented in Figure 3.16 by spectra at t = 0.1 and t = 0.14, the driving
EMF spectrum is basically proportional to the energy spectrum, while for nonlinear
growth regime at t = 0.2, 0.33, and 0.49 the EMF is peaked on the outer scale, support-
ing our conjecture about large-scale driving. In fact, to be important on smaller scales
l, and to interfere with the energy cascade through scales, the EMF has to be at least
scale-independent or to grow with smaller scales, which is clearly not the case. From
the reduced ratio of EMF to energy in the nonlinear regime, we derive CE ≈ 0.58 and
using (1 − CD)CE = 0.132 we have the fraction of energy captured by the direct cascade
and dissipated as CD = 0.77.

It is also interesting to study the statistical properties of the nonlinear Bell-MHD
turbulence and see if they are similar to the ordinary direct-cascade MHD turbulence
drivenon large scales.Wemeasured second-order structure function SF(l)parallel and
perpendicular to the local magnetic field, which is supposed to scale as l and l2/3 cor-
respondingly, according to the standard model of strong MHD turbulence by [172]. We
found that the structure functionmeasurement grossly consistent with the theory; see
Figure 3.17. One of the important consequences of this is that due to local anisotropy,
the Bell-generated turbulence will be inefficient at scattering particles with gyroradii
much smaller than the outer scale L, similar to the driven MHD turbulence.

As the instability enters the nonlinear stage, the outer scale also quickly grows, in
fact, exponentially in time. Figure 3.17 investigates the dependence of the outer scale
on themean energy density and finds that indeed outer scale grows as the square root
of energy density as Equation (3.42) suggests.We found that L ≈ 0.97E1/2/je. Assuming
equipartition between magnetic and kinetic energies, which is indeed approximately
satisfied, and going back to CGS units in the above relation, we obtain Brms(CGS) ≈
4πje(CGS)L(CGS)/c.

3.14.4 Applications of current driven turbulence to astrophysical systems

The key properties of the Bell-MHD turbulence we have uncovered, such as Equa-
tion (3.42) suggests that, when considering including the feedback on cosmic rays and
making conjectures about their possible roles in cosmic ray acceleration, one has to
be very careful in adopting the spectrumand amplitude of such turbulence. This is be-
cause this turbulence will strongly affect the properties of lower-energy CRs, i. e., the
same particles that mostly contribute to current. Another source of uncertainty would
be understanding possible effects of compressible turbulence. Our picture of growing
magnetic helixes on the outer scale L due to interaction with local external current
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does not explicitly depend on fluid pressure, however, and the zeroth law of turbu-
lence. Equation (3.41), to the best of our knowledge, is supposed to be correct even in
supersonic turbulence. Furthermore, since our results indicate that the CD fraction of
total energy goes into the direct cascade anddissipates into heat, the sonicMachnum-
ber of Bell-MHD turbulence can be estimated asMs ≈ √(1 − CD)/2CD ≈ 0.4. Although
qualitatively the picture of nonlinear stage is not supposed to change,wemight expect
the coefficients CD, CE, and CK to somewhat vary in the compressible case.

Our results are applicable not only to supernova remnants problembut to any con-
ductive fluid with external current, e. g., plasma with rigid wires embedded in it and
the current driven by an external voltage. The quick exponential growth of both en-
ergy and fluid EMF suggests that external energy source will only be able to maintain
such current for a limited amount of time.

Several pathways are available to study back-reaction to cosmic rays. One of the
approaches is the bottom-up plasma simulations, e. g., by [370]. Another alternative
is the study of nonlinear streaming instability [113] and long wavelength dynamics
[66, 371]. A different way to generate turbulence is by cosmic ray pressure, turbulence
driven on large scales by interaction of density gradients and nonbarotropic cosmic
ray pressure generating vorticity by baroclinic term,whichwas suggested in [28]. Mag-
netic energy density EB is bound on energetic grounds, and also constrained by ob-
servations [434, 69, 440], so we can compare the outer scale growth as a function of
magnetic energy density EB and find L ∼ E

1/2
B dependence for the Bell’s mechanism,

while the small-scale dynamo has L ∼ E3/2B dependence. For these two mechanisms,
the product of LB, which determines the scattering of highest energy particles, will be-
have as E1B and E

2
B, correspondingly. More accurate estimates involving conditions in

the supernova remnants seem to indicate that dynamomechanism is more important
for particle scattering [28].
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4 Imbalanced MHD turbulence

While hydrodynamic turbulence have only one energy cascade, the incompressible
MHD turbulence has two, due to the exact conservation of the Elsässer (oppositely go-
ing wave packets’) “energies.” This can be also formulated as the conservation of total
energy and cross-helicity.1 The situation of zero total cross-helicity, which we consid-
ered in previous sections has been called “balanced” turbulence as the amount of op-
positely moving wavepackets balance each other, the alternative being “imbalanced”
turbulence.Most of the above studies concentrated on the balanced case, andwithout
exception, the GS95model, which is the strong cascadingmodel with critical balance,
can only be kept self-consistent assuming balanced case.

The real MHD turbulence, however, is often imbalanced, such as in situations
when the mean magnetic field is present and we have a strong localized source of
perturbations. The perfect example is the solar wind, where satellite measurements
discovered strong correlations between v and B since long time ago. These correla-
tions actually correspond to the imbalanced turbulence with the dominant compo-
nent propagating away from the sun; see Figure 4.2. If the mean magnetic field of the
Parker spiral is directed locally outwards, the sun then the dominant component will
bew−, otherwise it will bew+.

Certainly, we expect similar phenomena to happen in the active galactic nuclei
(AGN), where the jet has a strong large mean magnetic field component and the per-
turbations will propagate primarily away from the central engine. Another example is
the interstellar medium (ISM) turbulence in spiral galaxies. Indeed, in spiral galaxies,
due to the action of the large-scale dynamo there is a average component of the mag-

Figure 4.1: The slices of w+ = v + B/√4πρ (left) and w− = v − B/√4πρ (right) from the three-
dimensional MHD simulation with strong mean magnetic field and imbalance. From [36].

1 The latter, ∫ v ⋅ B d3x is a quantity conserved in the absence of dissipation.

https://doi.org/10.1515/9783110263282-004
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Figure 4.2: Spectra of imbalanced turbulence measured in the solar wind. Trace of the Fourier and
wavelet power spectra of (w+)2 (black line and red symbols) and (w−)2 (gray line and blue symbols)
parallel and perpendicular to the local magnetic field. The bottom panel shows the ratio (w+/w−)2

from [444]. Reproduced from [444] with permission of APS.

netic field, spanning the radius of thedisk itself. The ISM turbulence, however, is inho-
mogeneous, due to the energy sources for turbulence (supernovas and stellar winds)
distributed unevenly in the disk. This will create imbalanced turbulence, whichmight
have properties different from the balanced one, which has implications for ISM heat-
ing, cosmic ray propagation, and many other physical processes in the ISM.

Finally, from the theoretical viewpoint, it is impossible to fully understand bal-
anced turbulence by itself, if the more general imbalanced case is not treated. This is
due to the fact that turbulence is a stochastic phenomena with all quantities fluctuat-
ing and every piece of turbulence at any given time can have imbalance in it. In this
respect, while the mean-field Kolmogorov model can be expanded to include fluctua-
tions of the dissipation rate in the volume, the mean field GS95 model cannot.

Imbalanced turbulence or “turbulence with nonzero cross-helicity” has been dis-
cussed long ago by a number of authors [116, 309, 182, 362]. This work testified that
the nonzero cross-helicity modifies the turbulence. Although these studies correctly
reproduced separate cascades for energy and cross-helicity, they were based on then-
popularmodels ofMHD turbulence and later it becameevident that these are problem-
atic. For example, the closure theory of isotropic MHD turbulence [361], which repro-
duced Iroshnikov–Kraichnanmodel can be criticized on the basis that the ad hoc term
for “relaxation of triple correlations,” happen to be larger than real physical nonlin-
ear interaction andmakes MHD turbulence, effectively, isotropic. Numerics, however,
show that strong MHD turbulence is locally anisotropic, as we demonstrated in pre-
vious sections. Another class of models were based on the so-called two-dimensional
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MHD turbulence that, aswedemonstrated in previous sections, is unable to reproduce
basic properties of the real three-dimensional turbulence, such as strong interaction
and critical balance. Figure 4.1 visualizes Elsassër variables in a 3D simulation with
strong mean field.

4.1 Theoretical considerations

As we explained in the previous sections, the MHD cascade is primarily perpendic-
ular and as it proceeds to small scales, the applicability of weak interaction breaks
down, and Alfvénic turbulence becomes strong. In this situation, GS95 assumed that
the frequency of the wavepacket cannot be smaller than the inverse lifetime of the
wavepacket, estimated from nonlinear interaction. In the GS95 closure model, there
is an explicit ad hoc term that allows for the increase of the wave frequency. Unlike
previous models, this term is scale-dependent and is based on the assumption of tur-
bulence locality, i. e., that there is one characteristic amplitude of perturbation per-
taining to each scale and that this perturbation determines the strength of the inter-
action and finally renormalization of frequencies. However, as was realized as early as
in the original GS95 paper in the imbalanced case we have two characteristic ampli-
tudes, w+, w−, and the choice for frequency renormalization becomes unclear.2 Any
theory of strong imbalanced turbulence must deal with this difficulty.

Let us first demonstrate that a straightforward generalization of GS95 for the im-
balanced case does not work. If we assume that the frequency renormalization for
onewavepacket is determined by the shear rate of the oppositelymovingwavepacket,
the wave with small amplitude (say, w−) may only weakly perturb large amplitude
wave w+ and the frequency of cascaded w+ will conserve. On the other hand, w+ may
strongly perturb w− and w−’s frequency will be determined as w+l /l.

3 This mismatch
in frequencies creates an inconsistency in the paradigm of scale-local cascade where
bothwavepacketsmust have both parallel and perpendicularwavenumbers compara-
ble. As the cascade proceeds to smaller scales, this mismatch only increases, making
the cascade nonlocal and inefficient. Such shutdown of the cascade on small scales is
self-contradictory, since in the stationary case it must carry a constant energy flux for
both components. In order to deal with this fundamental difficulty, one must assume
something extra to the original GS95 critical balance.

2 We assume that imbalanced turbulence is “strong” as long as the applicability of weak Alfvénic
turbulence breaks down. This requires that at least one component is perturbed strongly. In the im-
balanced turbulence, the amplitude of the dominant component is larger, so that in the transition to
strong regime the applicability of weak cascading of the subdominant component breaks down first.
3 Throughout this book, we assume that w+ is the larger-amplitude wave. This choice, however, is
purely arbitrary and corresponds to the choice of positive versus negative total cross-helicity.
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Currently, there were several propositions how to deal with strong anisotropic im-
balanced MHD turbulence. In [295], which we designate below as LGS07, the authors
proposed that the parallel scale for both components is determined by the shear rate
of the stronger component. This model predicts the same anisotropy for both compo-
nents. In [30], which we designate below as BL08, the authors proposed a new formu-
lation for critical balance for the stronger component. In [71], which we designate be-
low as C08, an advection-diffusionmodel of cascading was adopted, where advection
was describing perpendicular cascade and diffusion was describing the increase of
frequencies. These three models clearly state the difficulty described above and try to
resolve itwith the newphysical argumentation that goes beyond the original GS95 crit-
ical balance. These threemodels smoothly transition to the balanced theory of GS95 in
the limit of small imbalance. Several other models have been suggested, advocating a
different picture, in particular the influence of so-called dynamic alignment. In [356],
which we designate below as PB09, the authors argued that the dynamic alignment
will effectively lead to the same nonlinear timescale for both components. This has
been criticized as grossly inconsistent with numerics [33, 34] and having nomeaning-
ful physical limit for large imbalances.

4.1.1 Lithwick, Goldreich, and Sridhar (2007) model, [295] LGS07

LGS07 argue that the strong wave w+ is also cascaded strongly and its frequency is
equal to the frequency of the weakwave, i. e., the critical balance for strongwave uses
the amplitude of the strong wave itself (w+Λ = vAλ). In this case, the anisotropies
of the waves are identical. The formulas for energy cascading are strong cascading
formulas, i. e.,

ϵ∓ = (w
∓(λ))2w±(λ)

λ
. (4.1)

This lead to the prediction w+/w− = ϵ+/ϵ−. In terms of energy spectra, the model pre-
dicts

E±k = CK(ϵ
±)

4/3
(ϵ∓)−2/3k5/3, (4.2)

where the Kolmogorov constant CK must be the same for the theory to have a limit of
standard balanced MHD turbulence.

4.1.2 Beresnyak and Lazarian (2008) model, [30] BL08

BL08 relaxes the assumption of local cascading for the strong component w+, while
saying the w− is cascaded in a GS95-like way. In the BL08 picture, the waves have dif-
ferent anisotropies (see Figure 4.3) and the w+ wave actually have smaller anisotropy
than w−, which is opposite to what a naive application of critical balance would pre-
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Figure 4.3: Upper: a w+ wavepacket, produced by cas-
cading by w− wavepacket is aligned with respect to w−

wavepacket, but misaligned with respect to the local
mean field on scale λ1, by the angle θ. Lower: the lon-
gitudinal scale Λ of the wavepackets, as a function of
their transverse scale, λ; Λ+, Λ−, λ1, λ2 are the nota-
tion used in this book from the Beresnyak and Lazarian
model [30]. Reproduced from [30] with permission of
AAS.

dict. The anisotropies of the waves are determined by

w+(λ1)Λ
−(λ1) = vAλ1, (4.3)

w+(λ2)Λ
+(λ∗) = vAλ1, (4.4)

where λ∗ = √λ1λ2, and the energy cascading is determined by weak cascading of the
dominant wave and strong cascading of the subdominant wave:

ϵ+ = (w
+(λ2))2w−(λ1)

λ1
⋅
w−(λ1)Λ−(λ1)

vAλ1
⋅ f (λ1/λ2), (4.5)

ϵ− = (w
−(λ1))2w+(λ1)

λ1
. (4.6)

One of the interesting properties of the BL08 model is that, unlike LGS07 and C08, it
does not produce self-similar (power-law) solutions when turbulence is driven with
the same anisotropy for w+ and w− on the outer scale. BL08, however, claim that, on
sufficiently small scales, the initial nonpower-law solutionwill transit into asymptotic
power law solution that has Λ−0/Λ

+
0 = ϵ
+/ϵ− and λ2/λ1 = (ϵ+/ϵ−)3/2. The range of scales

for the transition region was not specified by BL08, but it was assumed that larger
imbalance will require larger transition region.

4.1.3 Perez and Boldyrev (2009) model, [356] PB09

Unlike the models described above, PB09 employs dynamic alignment, which de-
creases without limit to smaller scales as l1/4 and claims the 3/2 spectral slope for
both components. In this respect, it is similar to [48, 49]. It is, however, a big step
beyond these papers by claiming that alignmentwill effectively result in the samenon-
linear timescales for both components, which effectively lead to (w+)2/(w−)2 = ϵ+/ϵ−.
It could be rephrased that PB09 predicts turbulent viscosity, which is equal for both
components. It is not clear, however, how this could bemade consistent with the limit
of large imbalances, where the weak component will not be able to produce any siz-
able turbulent viscosity.
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4.2 Empirical study in MHD simulations with stochastic driving

The sub-Alfvénic turbulence, where the perturbation strengths w± are smaller that
vA is either weak or strong but anisotropic. The critical anisotropy is determined by
the breakdown of the applicability of weak MHD turbulence which happens when
k‖vA/k⊥δv ∼ 1; see Chapter 3. In most of our simulations, we drive turbulence on outer
scalewith the sameanisotropy for bothwave species, so this breakdown is determined
by δv of the strong wave. We drive turbulence on outer scale in such a manner that
the strong interaction establishes on the outer scale. Also, we provided driving for
k = 2..3.5, which means that the maximum eddy size is several times smaller that the
box. This is to ensure that the first turbulent scales k ≈ 4 havemore than enough space
in parallel direction in case that we did not estimate the transition into strong interac-
tion regime correctly and the parallel scale of the cascaded eddies is longer than we
expected. The results from Chapter 3, however, suggest that our choice was correct,
with the largest coherent eddy size being around 1/4 of the box size in both parallel
and perpendicular directions. We used fully predetermined stochastic driving in both
Elsasser variables4 with a certain amplitude of the force (f ±, see Table 4.1), so the en-
ergy input was not strictly controlled by the forcing, but rather was calculated during
the simulation. In addition, we developed a driving which ensures constant energy
input for both components, these tests confirm properties of the imbalanced turbu-
lence that were obtained with fully stochastic driving. We used the latter for most of
our simulations.

In studying sub-Alfvénic turbulence, we adopted the approach to increase vA
by increasing B0 and increase the parallel physical size of the box L by the same
factor 1/MA without changing the equilibrium value of δv, so that strong interaction
timescale λ/δv stays constant, and similarly the eddy transverse time Λ/vA also stays
constant. Alternatively, one can keep B0 constant, but decrease δv, but in this case the
timescales of sub- and trans-Alfvénic turbulence will be different. Also it is harder to
tune the equilibrium δv, rather than B0 and L. Note, that one can naively assume that
due to GS95 anisotropy one needs lower numerical resolution in the parallel direction,
approximately by the ratio of the anisotropies on the driving scale and on the dissipa-
tion scale, which is (k⊥diss/k⊥driv)1/3 in the GS95 model, and can be a number between

4 Elsasser driving is a preferred way to study inertial range of sub-Alfvenic turbulence as it simulates
the supply of Elsasser energies from larger eddies of a realistic turbulence. It is important to remember
that kinetic and magnetic energies are not separately conserved by MHD equations. So when one has
a pure velocity driving in a simulation with mean field, he will generate approximately as much mag-
netic perturbations due to the Alfven effect, the result being two Alfven or pseudo-Alfven waves prop-
agating in opposite directions. These waves, however, would have an artificial correlation (reflected
by the fact that at t = 0 b = 0). In order to use all degrees of freedom and have better stochasticity, one
has to drivew+ andw− independently. The mechanisms by which the outer scales of a realistic, say,
ISM turbulence are driven are discussed in Chapter 5.
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Table 4.1:MHD simulations of strong sub-Alfvénic (B0 = 10) and trans-Alfvénic (B0 = 1) turbulent
flows with fully stochastic driving. Δt0 is the duration of prior low resolution run in code units, Δt is
the duration of the high resolution run, interval Δt1 in the end of high-resolution run was used for
data analysis.

Run nx ⋅ ny ⋅ nz x:y:z B0 f + f − Δt0 Δt Δt1 ϵ+/ϵ− (w+)2/(w−)2
A1 512 ⋅ 7682 10:1:1 10 0.4 0.4 186 10 4.0 1 1
A2 7683 1:1:1 1 0.44 0.44 186 10 4.0 1 1
A3 7683 10:1:1 10 0.34 0.255 500 26 8.0 2.0 5.5 ± 1.0
A4 7683 1:1:1 1 0.4 0.3 180 22 8.0 1.7 3.9 ± 0.3
A5 7683 10:1:1 10 0.16 0.08 154 33 12.0 7.4 145 ± 10
A6 7683 1:1:1 1 0.19 0.095 40 33 12.0 5.4 90 ± 10
A7 7683 10:1:1 10 0.06 0.02 204 63 21.0 16 1150 ± 100
A8 7683 1:1:1 1 0.075 0.025 160 63 21.0 12 1100 ± 100

2 and 4 in a high resolution MHD simulation. On the second thought, this approach
is not evident, since the highest values of k‖ in the global reference frame will be de-
termined by field wandering on the outer scale. In other words, the anisotropy in the
global frame will be approximately scale-independent and the ratios of k⊥diss/k⊥driv
and k‖diss/k‖driv will be almost equal, which necessitates the use of NxNxN numerical
resolution, i. e., cubes, for both elongated (MA < 1) and cubic (MA ≈ 1) physical boxes.

We confirmed this by plotting the parallel and perpendicular spectra in the global
frame and saw that the parallel spectrum protrude to almost as far as k⊥max/MA. Fig-
ure 4.4 shows how energy is distributed on the two-dimensional k‖, k⊥ plane (global
reference frame). We see that while most of the energy is in a GS95 cone, and there is
also plenty of energy outside of it, especially in the upper right corner which corre-
spond to maximum space frequencies in both parallel and perpendicular direction. If

Figure 4.4: Two-dimensional energy spectrum in sub-Alfvénic and trans-Alfvénic case. For the sub-
Alfvénic case, the abscissa kx is scaled with a 1/MA factor. The dashed line indicates GS95 k‖ ∼ k

2/3
⊥

anisotropy. Reproduced from [33] with permission of AAS.
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one decides to significantly cut the numerical resolution in parallel direction he/she
would incorrectly describe the dynamics on small scales. In only one of our simula-
tions, A1 (see Table 4.1), wewere able to cut parallel resolution by amoderate factor of
1.5 without sacrificing small parallel scales, due to the relative lack of energy in a par-
allel direction in this particular balanced sub-Alfvénic case. In all other simulations,
such a reduction was not possible because most of the k-space was filled with energy.

For all simulations A1–A8, we used hyperviscosity and hyperdiffusivity of 6th or-
der (k6). This choice was necessitated by the nature of imbalanced turbulence which
has shorter inertial range for dominant wave due to fairly large cascading timescale
of this wave (see Section 4.2.1). With currently available numerical resolutions, one
cannot see an inertial interval of the strongwave in a simulation with large imbalance
and real (k2) diffusivity. Unfortunately, due to the bottleneck effect, hyperdiffusion
have affected spectral slopes, although the effect on anisotropy was much less. We re-
fer to [32] for a comparison of turbulent simulations with normal and hyperviscosity.
Due to hyperviscosity, the dissipation scalewas fairly small, the dissipation cutoffwas
around k = 200 (with Nyquist frequency of 384) for balanced simulations and about
the same for weak component in imbalanced simulations. The strong component for
themost imbalanced simulations A7 andA8 had a cutoff around k = 100 (Figure 4.10).
Due to hyperviscosity, we cannot uniquely define a Reynolds’ number of our simula-
tions, however, viscous simulations with Re = Rem ≈ 6000 could provide turbulence
inertial ranges that are similar to ours.

Once we have chosen the geometry of our simulation and figured out the extend
of the perturbations on the spectral plane, the choice of timestep becomes evident.
On one hand, for the dissipation term we use the integration technique [92, 303], and
sincewe do not worry toomuch about the precision of the dissipation term, it does not
limit the timestep. On the other hand, the general nonlinear term, containing both B0
and δv can be seen as the sum of linear advection termwith velocity vA and nonlinear
advection with δv, δb, etc. In turbulence, that is driven to be strong on the outer scale,
these termswill be of the same order if we refer to the outer scale, i. e., the termswill be
vAδvk‖driv and δvδvk⊥driv. On the dissipation scale, these terms will be determined by
vAδvk‖diss and δvδvk⊥diss, which are, by the argument in the above paragraph, again of
the same order. So we can just use linear advection behavior to estimate the timestep.
This behavior in k-space is, essentially, a rotation of the phase of thewave, in amanner
of exp(ik‖vAt). In order to reproduce this rotation numerically, we need k‖maxvAδt to be
smaller than unity, such as around 0.1, so that the code stays stable, since we do not
need good precision beyond the dissipation scale where there is no energy.

The average dissipation rates ϵ± reported in Table 4.1 were calculated using a sum
of the work done to the Elsasser fields, i. e., we summed (w± + f±dt) ⋅ f±dt at every
timestep. As our code (its nonlinear part) was energy conserving, we assume that the
same amount of energy was, on average, lost to the dissipation term.
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4.2.1 Establishment of the stationary state

One of the goals of this section is to demonstrate that a stationary state exists for im-
balanced turbulence with rather high degree of imbalance. Note that the local model
of weak Alfvénic turbulence work for imbalances of nomore than ϵ+/ϵ− = 2 [158, 294],
and the model of strong imbalance turbulence of C08 also requires similar limitation.

The highest imbalance we attempted in our simulation of ϵ+/ϵ− = 16 was es-
sentially limited by the long times of establishment of the stationary state. Note that
according to BL08 the dominant wave is cascaded weakly and its cascading times
could be very large. Figure 4.5 shows the total energy evolution for both modes for
the ϵ+/ϵ− = 16 case.5 The full relaxation toward stationary state required around 300
Alfvén times or 50 crossing times.

Figure 4.5: Left: energy relaxation toward stationary state for ϵ+/ϵ− = 12. Right: spectrum relaxation
toward stationary state. The resolution of the experiment was increased from 1283 to 2563. Only the
spectrum of the dominant wave is shown. The lines corresponds to t = 15, 30,60, 150. Reproduced
from [33] with permission of AAS.

As high imbalanced simulations proved to be so computationally expensive, wemade
a second experiment, which was to take the initial state that was already stationary
and to increase the numerical resolution, which allows the spectrum to extend to
larger wavenumbers. Note, that our forcing, although stochastic, was predetermined
for each particular simulation and did not depend on numerical resolution. Now the
question was how fast the spectra will relax to their stationary states. It turned out
that the spectrum of the subdominant wave relaxed almost instantly, in a one dynam-
ical time, which is consistent with BL08, while for the dominant wave the relaxation
time was long. Note the dynamic (kinetic) timescale l/v for this region of k-space for
the strong wave was rather small, around 0.3. The relaxation process is shown on Fig-
ure 4.5. It took δt ≈ 60 to get reasonably close to the stationary state. We considered

5 Time was measured in Alfvénic units, but the size of the box was 2π, thus 2π was the time for an
eddy to cross the box. The time for the largest turbulent eddy to cross itself, and also the largest eddy
dynamical time (L/v) was around unity, because the size of the largest eddy was a fraction of around
0.2 or 0.3 of the cube size (see Figures 4.8 and 4.9).
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this experiment a success andused the technique of increasing resolution to save com-
putational time.

We also studied long-term evolution of nearly-balanced casewhenwe allowed the
low-resolution version of A3 to evolve for 500 time units. We did not notice any long-
term trends either in the three-dimensional spectrumor in any other quantities during
this run.

4.2.2 Parallel structure function

Unlike perpendicular structure function which is largely insensitive to the direction
of the local field, the definition of the local field strongly affect the parallel structure
function, which, in turn, determines the shape of the turbulent eddy. Since the latter
is the major object of study in this section, we feel that the proper explanation of this
point is due.

The simplest way to define parallel structure function, SF‖, is to take samples
along the global mean field. This definition is, however, fairly bad, as it does not take
into account field wandering. We expect SF‖, defined in such way, along with per-
pendicular structure function to reflect the anisotropy in the global frame, which, by
the effects of field wandering, as we argued in Chapter 3, will be similar to the outer
scale anisotropy. Therefore, such definition will effectively erase scale-dependent
anisotropy which is the property of GS95-type models.

Another way is to define local magnetic field by averaging over some scale λ. In
this way, the parallel structure function become a function of two scales, such as

SF2‖(w
±,Λ, λ) = ⟨(w±(r − Λbλ/bλ) − w

±(r))2⟩r,

where bλ is the magnetic field averaged over scale λ. We use Gaussian averaging de-
fined as bλ = 1/λ√2π ∫b(r − R) exp(−R2/2λ2) dR. In order to reduce such a SF to a
function of only Λ one can introduce a dependence between Λ and λ, and plug in
the λ = f (Λ) in the above equation. This definition of SF‖ will be a model-dependent
though,

SF2‖model(w
±,Λ) = SF2‖(w

±,Λ, f (Λ)).

For the balanced turbulence, the anisotropy was measured to be close to the one
predicted by GS95, i. e., Λ ∼ λ2/3. One can, therefore, introduce a reasonable model-
dependent SF‖ as taking f (x) = const ⋅ x3/2, where the constant depend on the outer
scale of the simulation. As we show below, this definition is almost perfect for bal-
anced turbulence, but the question is whether it does equally well for the imbalanced
case.

Let us consider some model-independent ways to determine SF‖. Apparently, the
first definition using global field is model-independent, but fairly bad, it correspond
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to taking averaging λ = ∞. One can also take λ = 0, i. e., always use local field without
any averaging. An interesting model-independent method was used in [303], where
two points were chosen to lie on the samemagnetic field line. The distance Λwas also
calculated along the line.

When we look for anisotropy, we normally want to obtain lower values of SF‖.
According to the eddy ansatz, outlined in Section 4.1,we receive lower values of |w±(r−
Λn(r)) − w±(r)|, where n is a unit vector along the eddy. Therefore, the averaging of
the field that providesminimum values of SF‖ approximates the direction of the eddy
alignment better, provided that there is a connection between the field direction and
eddy alignment (if there is no such connection, there will be no dependence on the
averaging scale λ).

So, another model independent way to define SF‖ will be

SF2‖min(w
±,Λ) = min

λ
SF2‖(w

±,Λ, λ).

This definition not only provides us with the value of SF‖, but, giving λ at which
minimum is achieved, gives us a hint to how eddies are aligned with respect to the
magnetic field.

Figure 4.6 shows a comparison between different methods to calculate parallel
SF. We plotted them relative to SF2‖min. In the balanced case, the three methods, “min-
imal”, “following the field line” and “model-dependent” work very well, while the
“global field” method does not work. The latter confirms that turbulent eddies are
alignedwith respect to local field, not the global field (ChoandVishniac (2000)). In the
imbalanced case, the situation ismore complicated. For theweak component, all three
“good” methods work very well, while for the strong wave there is a systematic error
for allmethods, except “minimal.” This is due to the fact that in the imbalanced turbu-
lence the strong component (w+) eddies are alignedwith respect tomuch larger scales
of the magnetic field (see Section 4.2). Since most magnetic field perturbation is pro-
vided by the strong wave, it follows that the strong field eddies are aligned with their
own field on a larger scale. This directly confirms the prediction of BL08model. On the
bottom panel of Figure 4.6 the “field line” method gives values that are smaller than
“minimal” method. This is due to the fact that in the field line method we measured
the distance alongmagnetic field, and the physical distance was actually shorter, this
allowed for smaller than SF2‖min values on the outer scalewhere the difference between
straight-line distance and along-the-field-line distance is significant.

It turns out (Figure 4.7) that the averaging scale at which minimum of parallel
structure is reached for weak wave approximately corresponded to its anisotropy,
which is consistent with strong cascading hypothesis. But for a strong wave, this av-
eraging scale is larger than the perpendicular scale dictated by anisotropy. In other
words, the eddies of the strong wave are aligned with respect to the magnetic field
which is averaged on larger scale than the eddy’s own perpendicular scale. This is
consistent with the BL08 model.
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Figure 4.6: The ratio between parallel SFs calculated with different definition of the local field. Up-
per plot is for balanced simulation, while two lower plots are for strongly imbalanced simulation.
The reference SF is “minimum” one described in the text. The dotted line is “model-dependent” SF,
dashed line is for “following a field line” method, and the dotted-dashed line is for constant global
mean field. Reproduced from [33] with permission of AAS.

Figure 4.7: This plot shows values of
λavr at which the minimum of the par-
allel structure function is reached. Tri-
angles show perpendicular scales λavr
at which the minimum of SF2‖ (w

−, Λ)
is reached, while squares show per-
pendicular averaging scales at which
the minimum of SF2‖ (w

+, Λ) is reached.
Solid and dotted lines indicate w+ and
w− eddies’ anisotropy which are de-
fined in Section 4.2.2 and presented in
Figure 4.12. Reproduced from [33] with
permission of AAS.
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4.2.3 Spectra and anisotropies

We calculated two-dimensional (depending on parallel and perpendicular distances)
second-order structure functions with respect to the local field using “model depen-
dent” definition of the local field from previous section. Although thismethod slightly
underestimates anisotropy, according to Figure 4.6, it works fairly well. The structure
functions were calculated using all available “stationary state” datacubes, i. e., were
averaged over time. The contours of these SFs for balanced simulations A1 and A2 are
presented in Figure 4.8 and for imbalanced simulation A7 in Figure 4.9. Figure 4.8

Figure 4.8: Comparison of the SFs from trans-Alfvénic (left) and sub-Alfvénic (right) balanced simu-
lations. Note the difference in the x axis between two plots which indicates that A1 is approximately
10 times more anisotropic. Contours indicate SF levels, solid line is a demonstration of GS95 Λ ∼ λ2/3

law. Reproduced from [33] with permission of AAS.

Figure 4.9: Comparison of the SFs from dominant (left) and subdominant (right) Alfvénic waves from
ϵ+/ϵ− = 16 imbalanced simulations. The anisotropies of components are notably different. The solid
line is the GS95 Λ ∼ λ2/3 law. Reproduced from [33] with permission of AAS.
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shows SFs for total energy, i. e., it is summed over w+ and w−. These figures basically
validate our assumptions from Section 4.2 regarding physical and computational di-
mensions of the box. We see that, according to expectations, trans-Alfvénic A2 is al-
most isotropic on the outer scale but becomes progressively anisotropic toward small
scales, while, as we expected, sub-Alfvénic A1 has approximately 10:1 anisotropy on
outer scale, and increases toward small scales. If we decrease anisotropy of A1 by a
factor of 10 by rescaling the x-axis, we almost reproduce A2, the difference is mostly
being on the outer scale (this difference is easier to see in Figure 4.11). Figure 4.9 shows
SFs for two separate componentsw+ andw− in the strongly imbalanced case of A7. The
anisotropy on outer scale is approximately 10:1 for both components, which validates
our choice of computational box. This anisotropy increases toward small scale, but in
a different fashion for each component.We see the anisotropy of strongwave is almost
5 times smaller on dissipation scales.

Figure 4.10 shows the so-called three-dimensional angle-summed spectra for both
components in all simulations. These spectra are obtained by summation of spectra
over solid angle for all wavevectors with the same magnitude k. It can be related to
three-dimensional angle-averaged spectra by dividing by k2. In the sub-Alfvénic cases
A1, A3, A5, and A7, this spectrum is almost identical to the so-called perpendicular
spectrum, which takes into account only structures perpendicular to the magnetic
field and is the main target of prediction of the GS95 model. As they are almost identi-
cal, we did not have to plot perpendicular spectrum separately. Another definition of
spectrumwhich depend only on themagnitude of thewavevector is the so-called one-
dimensional spectrum (see, e. g., [324]). This spectrum is less sensitive to the bottle-
neck effect.We refer to [32] for amore thorough comparison between one-dimensional
and 3D spectra and discussion on bottleneck effect.

In Figure 4.10, the two bottom plots have relatively large variation (gray areas) on
the end of the w+ spectra. This is due to the fact that in A7 and A8 we barely reached
stationary state (for more discussion, see Figure 4.5 and Section 4.2.1) in the high-
resolution run.

Figure 4.10 shows spectral slopes between −1.12 and −1.93 with balanced simula-
tions having slopes as flat as−1.37.6 TheGS95prediction is Kolmogorov’s−5/3 ≈ −1.67,
while Boldyrev 2006 prediction is −1.5. The flat slopes observed in real data are most
certainly due to rather strong bottleneck effect seen in simulations with hypervis-
cosity. In the imbalanced case, the predictions are following: LGS07 predicts −1.67
slopes for all 8 cases; C08 predicts −1.67 for balanced cases A1 and A2, A5–A8 are
outside of the applicability of his model, A3 and A4 must show very different slopes-
approximately−1 forweak component and−3 for strong component, also C08 predicts

6 The slopes for one-dimensional spectra are steeper, with a balanced slope of −1.45 and the most
imbalanced slopes −1.97 for strong wave and −1.22 for a weak wave.
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Figure 4.10: Spectra for all data, gray shows mean-square fluctuations in time. Reproduced from [33]
with permission of AAS.

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



82 | 4 Imbalanced MHD turbulence

pinning on dissipation scales, i. e., spectra should converge on dissipation scale.7 The
ratios of the total energies (see Table 4.1) are predicted as following: C08 – A5–A8 are
outside of applicability of his model, A3 and A4 should have a very large imbalance
(w+)2/(w−)2 of at least a 1000, while 4–6 is actually observed; LGS07 predicted/ob-
served – A3: 4/5.5, A4: 3/3.9, A5: 55/145, A6: 30/90, A7: 260/1150, A8: 144/1100. We see
that in this respect deviations from LSG07 predictions are small for small imbalances
but fairly large for large imbalances. BL08 argues that if one drives turbulencewith the
same anisotropy on outer scale (as in these simulations) the anisotropies of the com-
ponentswill diverge toward small scales, and this solutionwill not be self-similar (and
not power-law). However, BL08 makes predictions regarding local slopes even in this
case. This can be seen from (1), which is a classic critical balance between weak wave
anisotropy and strong wave amplitude and (4), which is strong cascading of the weak
wave. We do not expect relations between slopes based on (4) to hold, because it is
strongly influenced by bottleneck effect (BL08 also predicts −1.67 slopes for balanced
case).However, there is somedependencebetweenenergy slopeandanisotropy slope,
similar to what BL08 predicts. Namely, it follows from (1) that shallower anisotropy
slope for w− means steeper spectral slope for w+, which is observed. Also, from (4),
steeper spectral slope forw+ alsomeans shallower spectral slope forw−, which is also
observed.

The anisotropywasmeasured in the followingmanner. First, the parallel and per-
pendicular second-order structure functions were calculated, then we found equal
values of parallel and perpendicular SFs and in this way the mapping or function be-
tween independent variables, parallel or perpendicular scaleswere created. This func-
tion is plotted on Figures 4.11, 4.12 with shades of gray indicating RMS fluctuations in
time. This definition of Λ(λ) mapping can be understood from two-dimensional plot
of SF, e. g., Figure 4.8, when one follows a contour of SF and finds which parallel scale
corresponds to a particular perpendicular scale. We see that for the imbalanced case
anisotropy curves have different slopes and diverge from outer scale where they are
equal (this is dictated by driving) to smaller scales where they are different.

We devoted Section 4.2.2 to the discussion of the measurements of the parallel
structure function, which was used in the above definition of the anisotropy curves.
Although itmight appear that each and every definition produce a different anisotropy
curve, the major difference is between global and local definition of the field direc-
tion, while all local methods (“field line,” “model-dependent,” and “minimal”), also
dubbed “good” in Section 4.2, give very similar results. In fact, these is no perceivable
qualitative difference between anisotropy curves obtained by either local methods.
This could be explained by Figure 4.6 middle and bottom panels where the quantita-

7 LGS07 does not discuss transition to viscous scales, but as a model of local cascading, it must have
pinning on viscous scale. The pinning, however, is impossible within the framework of LGS07, as the
latter predicts w+/w− = ϵ+/ϵ−.
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Figure 4.11: Anisotropies for balanced simulations. Reproduced from [33] with permission of AAS.

Figure 4.12: Anisotropies for imbalanced simulations. The mapping of Λ(λ) is explained in Sec-
tion 4.2.2. The difference in anisotropy between w+ and w− increases with increasing imbalance.
Reproduced from [33] with permission of AAS.

tive differences between methods are small, but on the other hand, the dependence
of SF‖ on scale is strong (∼ l‖). Also, in the middle panel, the difference is mostly by a
constant, which will only give a slight shift of the anisotropy plot. All in all, the claim
that anisotropy curves will diverge by a factor of 3 to 4 in strongly imbalanced simu-
lations stay true regardless of the “local” method used. We rejected the “global field”
method as it does not reveal scale dependent anisotropy—a groundbase of the GS95
model. It is worth noting that LGS07, C08, and BL08 use GS95 as a basis and smoothly
transit to GS95 in the balanced limit. There is a wealth of theoretical arguments why
the SFs have to be measured with respect to the local field ([92, 303], etc.). We also
would like to note that aside from driven simulations described in this section we also
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observed a significant difference in w+ and w− anisotropies in a decaying imbalanced
simulations.

C08 and LGS07 both predict identical GS95 anisotropy for both modes, which is
inconsistent with simulations. BL08 predicts diverging anisotropy,most notably, with
a stronger wave having smaller anisotropy, which is consistent with simulations. The
value of the differences, however, do not reach the asymptotic value of ϵ+/ϵ− which
may be attributed to the short inertial range.

4.2.4 Comparison with models

Numerics can only tentatively confirm a model, however, numerics is able to reject
some models if the numerical quantity is robust, e. g., does not depend that much on
Re. Although a theory can make a wide variety of predictions, only few of those can
be effectively addressed by numerics. One of the quantities that is notoriously hard
to measure in DNS is the spectral slope of turbulence. A difference between the −3/2
slope and −5/3 can bemasked by a variety of effects such as bottleneck effect, driving,
and so on. In contrast, the quantities such as Kolmogorov constant are fairly easy to
obtain and quickly converge with increasing resolution. In fact, modest resolutions
such as 1283 give reasonably precise estimates of this constant. This is due to the fact
that the total energy and the total dissipation rate are easy to measure, to get a statis-
tical average, and also are free of uncertainties of interpretation. What sort of models
can be judged on the basis of these quantities? Such are the models of local cascading
where the cascade rate depends only on the characteristic quantities of, say, w±l on a
particular scale l (and, possibly, weakly depend on the spectral slope). In this case,
numerics only have to reproduce a one or two steps of such cascading to obtain a rea-
sonable dissipation rate based on a particular total energy. In this sense, our testing
does fairly well, as we mostly consider models of local cascading (LGS07, C08, PB09,
[359]), and at the same time, with 7683 numerical resolution we reproduce five to six
binary steps in k-space.

Our numerical data strongly contradict to threemodels of imbalanced turbulence,
namely LGS07, C08, and PB09. In particular, two of thesemodels, C08 and PB09, show
gross inconsistencies between observed and predicted energy ratios versus dissipa-
tion ratios. Indeed, C08 must have a huge energy ratio (of around a 1000) in simula-
tionswith ϵ+/ϵ− close to two (A3andA4),while amodest ratios of 4 and6are observed.
PB09 does extremely bad in cases with large imbalances. A7 and A8 have energy ra-
tios of around a 1000, while predicted quantities are 16 and 12. LGS07 does a much
better job on energy ratios, but still fails the A7 and A8 (large imbalance) tests; see
Figure 4.13.

Furthermore, LGS07 and C08 have predictions regarding eddy anisotropies. Both
of these models predict equal anisotropies for w+ and w− while different anisotropies
are observed. Aside from these inconsistencies, we also note that C08 predicts pinning
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Figure 4.13: Total energy ratio versus dissipation rate ratio (see also Table 4.1). Diamonds: sub-
Alvénic simulations, stars: trans-Alvénic simulations, solid line: LGS07 prediction, dashed line:
PB09 prediction. There is no simple formula for the C08 model, but the energy ratio is expected
to become very large when the dissipation rate ratio approaches the critical value of around two.
Reproduced from [33] with permission of AAS.

at the dissipation scale, which is not observed. C08 also predicts that the strong wave
has to have steeper spectral slope than the weak wave. This corresponds to numerics
qualitatively, but not quantitatively, indeed, according to C08; A3 and A4must have a
huge slope difference of around 2, while the real difference is around 0.12.

Although it is harder to confirm a model rather than to reject a model by direct
numerical simulations, we see that there is a qualitative agreement between BL08
and numerics. Most of the features predicted by BL08 are observed in simulations,
namely (a) the anisotropies of the waves are different and strong wave anisotropy is
smaller, (b) while the weak wave eddies are aligned with respect to the local field
on the same scale as the eddy, the strong wave eddies are aligned with respect to a
larger-scale field (Figure 4.7), (c) the energy imbalance is higher than in the case when
both waves are cascaded strongly (Table 4.1), which suggest that the strong wave is
cascaded weakly, (d) the dissipation scales for the weak and the strong waves are
different, namely the inertial range for weak wave is longer (Figure 4.10), which is
what predicted by BL08, and (e) there is no “pinning” at the dissipation scale, which
suggests nonlocal cascading.

We note that there is no quantitative agreement between the difference in aniso-
tropies in the “asymptotic power-law solutions” of BL08 and simulations (cf. Sec-
tion 4.2 and Figure 4.12). This is probably due to the fact that asymptotic power-law
solutions have not been established within our inertial range.
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4.3 Empirical study in reduced MHD simulations with
energy-controlled driving

Table 4.2 summarizes our reducedMHDsimulationswith imbalanceddriving. In these
simulations, we kept energy injection rate constant. All experiments were evolved
to stationary state. We started our high-resolution simulations with earlier lower-
resolution runs that were evolved for a long time, typically hundreds of Alfvénic times
and reached stationary state. The imbalanced runs were evolved for longer times, up
to 40dynamical times, due to longer cascading timescales for the stronger component.

Table 4.2: Three-dimensional RMHD imbalanced simulations.

Run Resolution f Dissipation ϵ+/ϵ− (w+)2/(w−)2
I1 512 ⋅ 10242 w± −1.9 ⋅ 10−4k2 1.187 1.35 ± 0.04
I2 7683 w± −6.8 ⋅ 10−14k6 1.187 1.42 ± 0.04
I3 512 ⋅ 10242 w± −1.9 ⋅ 10−4k2 1.412 1.88 ± 0.04
I4 7683 w± −6.8 ⋅ 10−14k6 1.412 1.98 ± 0.03
I5 1024 ⋅ 15362 w± −1.5 ⋅ 10−15k6 2 5.57 ± 0.08
I6 1024 ⋅ 15362 w± −1.5 ⋅ 10−15k6 4.5 45.2 ± 1.5

4.3.1 Nonlinear cascading and dissipation rate

Compared to spectral slopes, dissipation rates are robust quantities that requiremuch
smaller dynamical range and resolution to converge. Figure 4.14 shows energy imbal-
ance (w+)2/(w−)2 versus dissipation rate imbalance ϵ+/ϵ− for simulations I2, I4, I5,
and I6.Wealsouse twodatapoints fromour earlier simulationswith large imbalances,
A7 and A5 from Section 4.2. I1 and I3 are simulations with normal viscosity similar to
I2 and I4. They show slightly less energy imbalances than I2 and I4. We see that most
data points are above the prediction of LGS07, which is consistent with BL08. In other
words, numerics strongly suggest that

(w+)2

(w−)2
≥ (

ϵ+

ϵ−
)
2
. (4.7)

Although there is a tentative correspondencebetweenLGS07 and thedata for small de-
grees of imbalance, the deviations for large imbalances are significant. The important
lesson, however, that in the case of small imbalances the cascading smoothly tran-
sition to the balanced case, i. e., the prediction of GS95 model. This is an important
verification that the exactly balanced case is not a special case, in a sense.

In the case of strong imbalance, it suggests that the strong component cascading
rate is smaller thanwhat is expected from strong cascading. As to the PB09 prediction,
it is inconsistent with data for all degrees of imbalance including those with small
imbalance and normal viscosity, i. e., I1 and I3.
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Figure 4.14: Energy imbalances versus dissipation rate imbalance. Lower panel shows a magnified
portion of the upper panel. Solid line: LGS07 prediction, dashed line: a formula from PB09, this also
is a prediction for purely viscous dissipation. The point indicates measurements from simulations,
where error bars indicate fluctuation in time. I1 and I3 are simulations with normal viscosity, which
have a slightly lower energy imbalance than I2 and I4. This is an indication that in these simulations
viscosity was affecting outer scales. Two high imbalance points are taken from [33]. For a fixed dissi-
pation ratio, the energy imbalance has a tendency to only increase with resolution. Reproduced from
[34] with permission of AAS.

4.3.2 Imbalanced spectra

Figure 4.15 shows spectra from low-imbalance simulation I2, compensated by the pre-
dictions of PB09 and LGS07. We see that the collapse of two curves for w+ and w− is
much better for the LGS07 model; the perceived deviation of spectral slope from −5/3
as we discussed extensively in Chapter 3.

Figure 4.16 shows spectra fromall I1-6 simulations, compensatedby theprediction
of LGS07. For lower imbalances, the collapse is reasonably good and becomes progres-
sively worse for larger imbalances. This deviation, however, does not fully follow the
prediction of the asymptotic power-law solutions from BL08, which will predict that
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Figure 4.15: Energy spectra for w+ (solid) and w− (dashed) from simulation I2, compensated by fac-
tors that correspond to PB09 (left) and LGS07 (right). For this low-imbalanced case, spectra are con-
sistent with LGS07 but grossly inconsistent with PB09. From [36].

Figure 4.16: Energy spectra for w+ (solid) and w− (dashed) for simulations I1–I6, compensated
by factors that correspond to LGS07. The thin solid line corresponds to Kolmogorov constant for
Alfvénic turbulence CKA = 3.27. The factor 5/3 is introduced due to the difference between Pk and Ek .
From [36].

the solid curve will go above CKA and the dashed curve—below it. This is possibly ex-
plained by the fact that asymptotic power law solutionswere not reached in these lim-
ited resolution experiments; this is also observed for anisotropies which we consider
in the next section.

4.3.3 Imbalanced anisotropies

We measured parallel and perpendicular structure functions in simulations I1–I6 in
order to quantify anisotropies of eddies. The perpendicular structure function was
defined in a conventional way. In the RMHD case which physically corresponds to
the case of infinitely strong mean field, the perpendicular structure function is cal-
culated with respect to this mean field. The same does not hold true for the parallel
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structure function. Indeed, measuring parallel SF with respect to the global field will
destroy scale-dependent anisotropy, even in the case of a very strong field. If we have
δBL/B0 ≪ 1, the field line wandering will be of the order of B0/δBL, while the GS95
anisotropy on the scale l will be much higher, ∼ B0/δBl, by a factor of BL/Bl. The di-
rection of the mean field will deviate from the direction of the local field by the angle,
which ismuch larger than the angle of GS95 anisotropy. This will result in an incorrect
estimation of the parallel structure function, whichwill be contaminated by contribu-
tion from perpendicular direction.

For the parallel structure function, we will use the model-independent method
suggested Section 4.2 or “minimummethod.” It turns out that this method gives very
close results to the previously suggested methods of choosing the local mean field,
most prominently in the balanced case. We choose this method as it does not contain
any arbitrary assumptions as previous methods.

As longasweknow,bothparallel andperpendicular structure functions, themap-
ping Λ(λ) is obtained from the equation SF2‖(w

±,Λ) = SF2⊥(w
±, λ). Physically, this cor-

respond to measurement of the parallel eddy size Λ, whose energy is concentrated on
scales λ.

Figure 4.17 shows anisotropies for I1–6 simulations. All simulations were driven
by the same anisotropies on the outer scale, which is unfavorable for obtaining the
asymptotic power law solutions of BL08, which have an anisotropy ratio which is con-

Figure 4.17: Anisotropies for w+ (solid) and w− (dashed), simulations I1–I6. The relation between
parallel scale Λ and perpendicular scale λ is obtained by second-order structure functions, as ex-
plained in the text. The small upper inset shows the ratio of anisotropies on smallest scales versus
the prediction of BL08 for the asymptotic power-law solution, which is ϵ+/ϵ−. From [36].
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stant through scales and equal to ϵ+/ϵ−. It is, however, favorable to the LGS07 model,
whichpredicts the samew+ andw− anisotropies for all scales. Therefore, these simula-
tions are a sensitive test between LGS07 and BL08 models, both of which are roughly
consistent in terms of energy ratios and spectra for small imbalances. If LGS07 was
true, starting with the same anisotropies on outer scale, this should be preserved by
the cascade on smaller scales, but this is not what is observed in Figure 4.17, where
anisotropies start to diverge on smaller scales. The ratio of anisotropies is roughly con-
sistentwith BL08 asymptotic power-law solutions for small imbalances and falls short
for larger imbalances. This is explained by the fact that it is harder to get to the asymp-
totic power-law solutions for larger imbalances, as was also observed for the case of
power spectra. Our overall conclusion is that the anisotropy test is the experimentum
crucis to differentiate between LGS07 and BL08 and based on Figure 4.17 this experi-
ment clearly favors BL08.
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5 Compressibility in MHD turbulence
Our discussion so far was centered at the incompressible MHD turbulence. Real as-
trophysical fluids are compressible. This poses a question to what extend our earlier
description survives in realistic set ups and what additional properties are gained by
compressible MHD turbulence. Historically, astrophysicists usually considered theo-
ries of incompressible turbulence to be something very academic and not relevant.We
will show that there is a deep connection between the compressible and incompress-
ible MHD turbulence.

Kolmogorov turbulence is applicable to realistically compressible nonmagnetized
fluids, e. g., to turbulence in the Earth’s atmosphere. Therefore, one should expect
that some properties of GS95 model should be relevant at least for low Mach number
magnetic turbulence. At the same time, additional compressible modes are excited
in MHD in the presence of compressibility. In particular, while MHD turbulence in the
incompressible limit can be decomposed into Alfvén and pseudo-Alfvénmodes, in the
case of compressible MHD turbulence, threemodes, namely, Alfvén, slow and fast are
excited. The pseudo-Alfvénmodes are a limiting case of the slowmodes in a situation
of vanishing compressibility, the fast modes are a new type of motion intrinsic for
compressible media.1

5.1 Decomposition into fundamental modes

To study the fundamental modes one has to decompose turbulence into Alfven, slow
and fastmodes. The original procedure of decomposition ofMHD simulations into dif-
ferent modes proposed by Cho and Lazarian ([81, 82] henceforth CL02, CL03, respec-
tively) was elaborated further in Kowal & Lazarian [231] where wavelets rather than
Fourier modes were used. Unlike earlier studies which dealt with small perturbations
(see [116]) the aforementioned papers demonstrated the decomposition of the trans-
Alfvénic turbulence, i. e., the turbulence with substantial amplitudes. Decomposition
is performed in the Fourier space by a simple projection of the velocity Fourier com-
ponents û on the direction of the displacement vector for each mode (see Figure 5.1).
The directions of the displacement vectors ̂ξ s, ̂ξ f , and ̂ξA corresponding to the slow
mode, fast and Alfvén modes, respectively, are defined by the unit vectors,

̂ξ s ∝ (−1 + α − √D)k‖k̂‖ + (1 + α − √D)k⊥k̂⊥, (5.1)
̂ξ f ∝ (−1 + α + √D)k‖k̂‖ + (1 + α + √D)k⊥k̂⊥, (5.2)

̂ξA = −φ̂ = k̂⊥ × k̂‖, (5.3)

1 In the limiting case of zero compressibility, the fastmodes are soundwaves propagatingwith infinite
velocities.

https://doi.org/10.1515/9783110263282-005
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Figure 5.1: Schematic representation of the mode separation technique. The Alfvén, slow and fast
modes are separated by the projection of the velocity Fourier component vk on the bases ̂ξ A, ̂ξ s, and
̂ξ f of the fundamental modes from CL03. Reproduced from Figure 1 from [82].

where k‖ and k⊥ are, respectively, the parallel and perpendicular to Bext components
of wave vector; D = (1 + α)2 − 4α cos2 θ, α = a2/V2

A. In addition, θ is the angle between
k and Bext, and φ̂ is the azimuthal basis in the spherical polar coordinate system.
The Fourier components of each mode can be used to calculate spectra. To obtain
other measures, such as structure functions, transforms back to the real space were
used.

The results of CL02 and CL03 revealed important properties of compressible MHD
turbulence. In particular, they revealed that GS95 scaling is valid for Alfvén modes:

Alfvén: EA(k) ∝ k−5/3, k‖ ∝ k2/3⊥ .

Slow modes also follow the GS95 model for both plasma pressure dominated me-
dia, i. e., high β, and mildly supersonic magnetic pressure dominated media, i. e.,
low β, cases:

Slow: Es(k) ∝ k−5/3, k‖ ∝ k2/3⊥ .

For the highly supersonic low β case, the kinetic energy spectrum of slow modes be-
comes steeper, which is indicative of the formation of shocks.

Fast mode spectra were suggested in CL03 to be compatible with acoustic turbu-
lence scaling relations:

Fast: Ef (k) ∝ k−3/2, isotropic spectrum.

Steeper spectrum ∼ k−2 was reported in [231] for fast modes with a different set of sim-
ulations obtainedwith a different code. Therefore, while the isotropy of the fastmodes
has been established, the exact value of the spectrum is still somewhat controversial.
This calls for more research with higher resolution simulations.

For super-Alfvénic turbulence, the picture above is applicable at scales l < lA =
LM−3A . The scale lA can be considered as the scale of the trans-Alfvenic turbulence in-
jection.
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Figure 5.2: Highly supersonic low β (β ∼ 0.02 andMs ∼ 7). VA ≡ B0/√4πρ = 1. a (sound speed)
= 0.1. δV ∼ 0.7. Alfvén modes follow the GS95 scalings. Slow modes follow the GS95 anisotropy.
Fast modes exhibit isotropy. Reproduced from Figure 3 from [82].

Figure 5.2 illustrates the fact that even in highly supersonic regime, the decompo-
sition reveals a regular structure of MHD modes that corresponds to the expectation
of the compressible extension of the GS95 theory. The customary claim that themodes
in compressible MHD are completely blended and strongly interact is not right.

One can wonder whether the adopted statistical technique is reliable. That is, we
separate each MHD mode with respect to themeanmagnetic field B0. This procedure
is affected by the wandering of large scale magnetic field lines, as well as density in-
homogeneities. Nevertheless, CL03 demonstrated that the technique provided statis-
tically correct results. For instance, in low β regime, the velocity of a slow mode is
known to be nearly parallel to the local direction of magnetic field. Therefore, for low
β plasmas, it is possible to obtain velocity statistics for slow modes in real space. To
do this, one first should define the direction of the local mean magnetic field. Then
the calculations of the second-order structure function for slow modes can be done:
vSF2(r) = ⟨|(v(x + r) − v(x)) ⋅ B̂l|2⟩, where B̂l is the unit vector along the local mean
field.

Figure 5.3(a) presents the contours obtained by the method for the high sonic
Mach number run. Figure 5.3(b) presents the result obtained the aforementioned way
(dashed lines) and using the CL03 technique. A similar plot for the mildly supersonic
case is presented in Figure 5.3(c).
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Figure 5.3: Comparison between Fourier space method and real space method of obtaining slow
modes. (a) left: From real space calculation.Ms ∼ 7. (b)middle: Solid: Fourier space. Dashed: real
space.Ms ∼ 7. (c) right: Similar plot forMs ∼ 2.3. From [232].

If the coupling between themodeswere strong inMHD turbulence, onewould not
be able to talk about three different energy cascades. However, this is not true and one
may wonder why the interactions are not strong.

A remarkable feature of the GS95 model is that Alfvén perturbations cascade to
from one scale to a smaller one over just one wave period, while the other nonlinear
interactions requiremore time. Therefore, onemight expect that thenonlinear interac-
tions with other types of waves only marginally affect Alfvénic cascade. Besides this,
being incompressible, Alfvén modes do not depend on the sonic Mach number.

Howmuch energy in compressiblemotions is drained fromAlfvénic cascade is an
important question the answer to which makes a lot of difference for various astro-
physical problems. The question was discussed earlier for hydro turbulence. Accord-
ing to closure calculations [462], the energy in compressible modes in hydrodynamic
turbulence scales as squared sonic Mach number, i. e., ∼ M2

s ifMs < 1. CL03 extended
this relation can be extended to MHD turbulence by using ∼ (δV)2A/(c

2
s +V

2
A) instead of

M2
s . Note, that in the expression above the Alfven velocity is defined asVA ≡ B0/√4πρ,

where B0 is themeanmagnetic field strength. Since the Alfvénmodes are anisotropic,
CL03 introduced an additional factor. Indeed, it is known that the compressiblemodes
are generated inside the so-called GS95 cone, which takes up ∼ (δV)A/VA of the wave
vector space. The ratio of compressible to Alfvénic energy inside this cone is the ratio
given above. If the fast modes are isotropic (see below), the diffusion or, “isotropiza-
tion” of the fast wave energy in the wave vector space increase their energy by a factor
∼ VA/(δV)A. This results in

δEcomp

δEAlf
≈
δVAVA
V2
A + c2s
, (5.4)

where δEcomp and δEAlf are energy of compressible and Alfvén modes, respectively.
An important feature of Equation (5.4) suggests that the drain of energy from

Alfvénic cascade is marginal when the amplitudes of perturbations are weak, i. e.,
(δV)A ≪ VA. Numerical calculations in CL02 support these theoretical considera-
tions. This justifies our treating modes separately. We note that a strongly entrenched
claim that a strong coupling of incompressible and compressible motions is required
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to explain simulations that show fast decay of MHD turbulence is wrong. Indeed, the
incompressible motions decay themselves in just one Alfvén crossing time.

5.2 Other ways of decomposition into fundamental modes

Kowal and Lazarian (2010, [231] henceforth KL10) extended the CL03 decomposition
into modes by introducing an additional step before the Fourier separation, in which
we decompose each component of the velocity field into orthogonal wavelets using
discrete wavelet transform:

U(a,wlmn) = a
−N/2∑

xijk
ψ(

xijk −wlmn

a
)u(xijk)Δ

Nx, (5.5)

where xijk andwlnm are N-dimensional position and translation vectors, respectively,
while a is the scaling parameter. In addition, u(xijk) is the velocity vector field in the
real space, U(xijk) is the velocity vector field in the wavelet space, and ψ is the orthog-
onal analyzing function called wavelet. The sum is taken over all position indices.
KL10 uses the Daubechies wavelet as an analyzing function and fast discrete version
of the wavelet transform and they obtained a finite number of wavelet coefficients. Af-
ter the wavelet transform of the velocity, the Fourier representation of each wavelet
coefficient was calculated. The separation into the MHD modes was performed in the
Fourier space using the CL03 method and then iteration procedure for the Fourier co-
efficient was performed.

After KL06 obtained a Fourier representation of the Alfvén, slow and fast waves
the final step was the inverse Fourier transform all wave components.

Thismore elaborate approach improves the original CL03 technique, namely, it al-
lows for the local definition of themeanmagnetic field and density used to calculate α
andD coefficients. Due to the fact that the individual wavelets are defined locally both
in the real and Fourier spaces, the averaging of themean field and density is done only
within the space of each wavelet. The utility of this approach is particularly obvious
when the magnetic fluctuations are of high amplitude and, therefore, the direction of
the local magnetic field varies significantly about the direction of the mean magnetic
field.

Thewavelet-based study inKL10provided results consistentwith that in CL03. For
instance, Figure 5.4 shows the anisotropy for sub-Alfvénic turbulence which agrees
well with that obtained in CL03.

Another way to decompose into modes using structure functions has been re-
cently proposed and tested by one of the authors (AB). In this method, the separa-
tion vector ⃗l of the structure function plays the role of the wavenumber, because there
is a correspondence relation between one-dimensional structure function along the
certain line and the power spectrum along the same line. Figure 5.5 shows the con-
tours of the structure function corresponding to each mode obtained in datacubes

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



96 | 5 Compressibility in MHD turbulence

Figure 5.4: Anisotropies of the Alfvén, slow and fast modes. To depict the anisotropy the second-
order total structure functions, parallel and perpendicular to the local mean magnetic field were
used. Points correspond to the structure function data averaged over several snapshots. The gray ar-
eas under points correspond to the degree of variation of the structure functions in time from KL10.
Reproduced from [231] with permission of AAS.

Figure 5.5: Anisotropy of the Alfvén, slow and fast modes as evidenced by the contours of the
second-order structure function. Here, we used the new SF decomposition method. The Alfvén and
slow mode exhibit scale-dependent anisotropy, while the fast mode is almost isotropic. From [36].

from Ms = 10 supersonic simulations used earlier in [37] (see also Section 5.4). The
anisotropies of each mode show the same behavior as in the earlier discussed global
decomposition method; see Figure 5.2. There are two advantages in using the new de-
composition method. First, it is computationally efficient, as the structure functions
can be calculated by the Monte-Carlo method, which samples only a fraction of data
points. This way, the very high resolution simulations can be processed in a reason-
able time. The second advantage is that the structure function is a localmeasurement,
so we can measure spectral characteristics of the modes in a highly inhomogeneous
situations. Thismethodhas been applied to the decomposition ofMHD turbulence ob-
tained in high-resolution cosmological simulation of a galaxy cluster [40]. The cluster
environments has been notoriously difficult to analyze due to the strong dependence
of all quantities on the distance to the center. The new method was used to calcu-
late the SFs in concentric shells around the cluster center. Among other things, the
aforementioned paper estimated the fraction of the fast mode to around 0.25, which
is fairly high for subsonic to trans-sonic cluster environment. We hypothesized that
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this is due to the way the cluster turbulence is driven—through mergers, which are
essentially compressible trans-sonic motions.

5.3 Decomposition into solenoidal and potential modes

To distinguish compressible and incompressible motions, KL10 also used a different
decomposition of the velocity field. Using the Hodge generalization of the Helmholtz
theorem, one can split an arbitrary vector field u into three components:

u = up + us + ul, (5.6)

where components have the following properties:
a) The potential component (up) that describes the compressible part of the velocity

field is a curl-free component, i. e., ∇ × up = 0. It stems from a scalar potential ϕ:

up = ∇ϕ. (5.7)

The scalar potential ϕ is defined up to a arbitrary constant.
b) The solenoidal component (us) that describes incompressible part of the veloc-

ity field is a divergence-free component, i. e., ∇ ⋅ us = 0. It stems from a vector
potential𝒜:

us = ∇ ×𝒜. (5.8)

The vector potential𝒜 also defined up to a gradient of the field.
c) The third component is the Laplace one, i. e., (ul). It is both divergence-free and

curl-free. Laplace component comes from a scalar potential and satisfies the
Laplace differential equation Δϕ = 0.

As a result the decomposition can be rewritten in the form:

u = ∇ ×𝒜 + ∇ϕ + ul. (5.9)

The results of this decomposition are illustrated in Figure 5.6.
One can see that the compressible components of velocity correspond to shocks,

while the incompressible part is dominated by GS95-type motions.
Table 5.1 illustrates how turbulent driving changes the distribution of energy for

different components of the flow. One can observe that even for highly compressible
magnetized supersonic flowsmost of the energy is residing in the incompressible mo-
tions, in particular in Alfvén modes. At the same time, the role of the fast modes in-
creases with the increase of the sonic Mach number.
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Figure 5.6: Spectra of the solenoidal and potential parts of velocity field for subAlfvénic turbulence
from KL10. Reproduced from [231] with permission of AAS.

Table 5.1: Percentage amount of the kinetic energy contained within each velocity component. Errors
correspond to a measure of the time variation.

ℳs ℳA Vincomp. Vcomp. VA Vs Vf

∼ 0.7 ∼ 0.7 96.5±0.8 3.3±0.8 58±4 37±3 4.8±0.7

∼ 2.2 ∼ 0.7 93±2 7±2 58±5 33±4 9±2

∼ 7.0 ∼ 0.7 92±2 7±2 56±4 36±4 8.0±0.7

∼ 0.7 ∼ 7.4 95±2 5±2 52±4 42±4 6.2±0.8

∼ 2.3 ∼ 7.4 86±1 14±2 47±3 37±4 16±2

∼ 7.1 ∼ 7.1 84±2 16±2 47±4 33±4 20±2

5.4 Density scalings

The properties of random density in supersonic ISM turbulence is of prime interest
to astronomers due to its relation to star formation. In view of our earlier decom-
position into fundamental MHD modes, the density is related primarily to the slow
mode, since this is the mode that perturb density the most in low-beta supersonic
fluid. At the same time, the statistics of density is very different from the statistics of
the slowmode velocity. In particular, while slowmode exhibit well-pronounced scale-
dependent anisotropy (GS95, see also CL03) (see Figure 5.2), the structure function of
density at high Mach numbers are almost isotropic; see Figure 5.8.

This puzzling properties of density were first addressed in [37], which shed the
light on the dynamics of density in supersonic MHD. It turned out that for density
which is distributed approximately log-normally and has high-density tail, the statis-
tics of the second-order structure function is dominated by the contributions from
high-density regions or clumps. The measured isotropy, therefore, is the result of this
bias. Furthermore, the flat spectrumof density in highMachnumber turbulence arises
from the same effect, i. e., high-density clumps act as a delta-functions and produce
flat spectrum. If we use log-density instead of density, the spectra become steeper and
the second-order structure function exhibitswell-defined scale-dependent anisotropy
as it illustrated in Figure 5.8. In other words, taking logarithm suppresses high peak
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Figure 5.7: Probability density function for a den-
sity in direct numerical simulation with Alfvénic
Mach number around unity and various sonic Mach
numbers. From [37].

Figure 5.8: Contours of the structure function of density (left), log-density (center), and the
anisotropy of log-density (right), solid line representsMs ∼ 10, dashed –Ms ∼ 3 from [37].

contributions and provides quantitative insight into the density distribution that fill
most of the volume. Thus way filtered density field has properties similar to the GS95
predictions for velocities corresponding to slowmodes. Thismeans that while the per-
turbations of density, e. g., its log-normal PDF, are created by random slow shocks, the
structure of density has an imprint from Alfvénic driving, the same imprint the struc-
ture of slow mode velocity has.

5.4.1 Theoretical considerations

It is natural to expect that an analogy exist between the subsonic (M < 1) MHD tur-
bulence and its incompressible counterpart, namely, GS95 model. It could be seen,
that in the low beta case, i. e., for Pmag > Pgas, density is primary perturbed by the
slow mode (CL03). As discussed in GS95, slow modes are sheared by Alfvén turbu-
lence and, as a result, they exhibit Kolmogorov scaling and GS95 anisotropy for low
Mach numbers. However, for highMach numbers shocks are expected to strongly per-
turb the density.

The problem can be approached by analyzing the underlying hydrodynamic
equations. Indeed, there exists a multiplicative symmetry with respect to density
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in the ideal flow equations for an isothermal fluid (see, e. g., Passot and Vazquez-
Semadeni [353]; henceforth PV98). Therefore, a stochastic process disturbing the
density is multiplicative with respect to density, rather than additive. As a result, the
distribution for density becomes lognormal, rather that normal. 1D numerical simu-
lations of high-Mach hydrodynamics confirmed that the distribution is approximately
log-normal for an isothermal fluid (PV98).

The aforementioned symmetry in the case of magnetized fluid is broken by the
magnetic tension. Physically, this corresponds to the higher density regions having
lower Alfvén speed, provided that there is no significant correlation between density
and magnetic field.2

For turbulence with low Mach turbulence, the perturbations of density evolve
with the sound speed. For low beta media, such evolution is slow in comparison with
shearing induced by Alfvén waves. For turbulence with high sonic Mach number, one
expects a considerable amount of shocks to be formed in the fluid. In a sub-Alfvénic
case, the turbulent velocities are smaller than the Alfven speed and, therefore, we ex-
pect oblique shocks to be disrupted by Alfvénic shearing. The evolution of the weak
shocks is also governed by the sonic speed, and structures from shearing as in low
Mach case should arise.

We note that shearing does not affect Probability Density Function (PDF) of the
density,makingmagnetized and nonmagnetized turbulence similar as far as the PDFs
are concerned. However, this significantly modifies density spectra and structure
function scaling. In other words, two distinct physical processes act simultaneously
and affect different statistical measures of turbulent density field. The random mul-
tiplication of density induced by shocks, affect the PDFs, while the other, Alfvénic
shearing, affects anisotropy and scaling of the structure function of the density.

5.4.2 The code

The testing of the theoretical ideas above was performed in BLC05 with data cubes
from the 3-dimensional MHD numerical simulations (see CL03). To study highly su-
personic turbulence, we performed simulations using a periodic 5123 Cartesian grid
with the average sonic Mach numbers of ∼ 10 and ∼ 3. It was found that effects of
numerical diffusion were significant at the scales of less than 10 grid points. In partic-
ular, parallel to the magnetic field, velocities stayed supersonic down to 8 grid units
for Mach 10, and 20 grid units for Mach 3. The isothermal equation of state was em-
ployed in the simulations and to control the effects of boundaries the turbulence was
randomly driven on the scale about 2.5 times smaller than the box size. The driving

2 The case of no density-magnetic field correlation can emerge both to the compression of matter
along magnetic field lines and due to reconnection diffusion (see Chapter 9).
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corresponded to the Alfvénic Mach number of the order of unity, i. e., the Alfvén ve-
locity was roughly the same as the rms velocity.

5.4.3 Results

In Figure 5.7, we plot the distribution for log-density for various Mach numbers. In all
cases, except for the subsonic one, the Alfvénic Mach numberMA is slightly less then
unity. This wasmotivated by the fact, that in a strongly super-Alfvénic fluid, magnetic
field will grow through turbulent dynamo (see Chapter 2), eventually approaching the
equipartition.

We found that the distribution shows a significant deviation from a lognormal
law. The rms deviation of density for a subsonic case is consistent with predicted de-
pendences Mach number for the case of low beta (CL03), and the rms deviation of
log-density for supersonic case is around unity independent of the Mach number. The
distributions are significantly broader for higher Mach numbers, in agreement with
the PDFs observed in hydrodynamic supersonic simulations (see, e. g., [354]).

The dimension of the high-density structures were found to be between 1 and 2,
being viewed as a flatted filaments or elongated pancakes. While the lower density
structures tend to align alongmagnetic field, the higher density structures, on the con-
trary, align perpendicular to magnetic field. The maximum density value in a Mach
10 data cube was ∼ 3 × 103ρ0. Naturally, the density clumps with values of 3–4 or-
ders of magnitude of mean density severely distort power spectrum. Therefore, these
clumps with low filling factor can, nevertheless, overshadow small amplitude density
structures that fill most of the volume. The spectrum of density for high-Mach is shal-
low and, unlike the velocity spectrum, it does not follow a well-defined power-law. It
is obvious that the randomly distributed high-density clumps dilute any anisotropy
originating from small-scale motions.

To overcome the effect of high density clumps and reveal an underlying density
scalings of volume-filling fluctuation, we used a logarithm of density normalized den-
sity fluctuations instead of normalized density fluctuations.3 This way we suppress
the influence of the high peaks to the spectrum or structure function. Other filtering
procedures, e. g., cutting off peaks at some level, gives similar results, but structure
function are more distorted, as the procedure of cutting off, or restricting density to
some level, introduces artificial structures in the real space.

We know that magnetic field, being perturbed mostly by the Alfvén mode, ex-
hibit anisotropy. While the anisotropy of the density structure function (SF) is not
noticeable, SF for log-density exhibit conspicuous anisotropy. In order to test scale-
dependent anisotropy of the GS95 type (r‖ ∼ r2/3⊥ ), we plotted values of r‖ and r⊥ with

3 Normalization is achieved by dividing by the mean density.
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equal structure function on Figure 5.8. We observe that magnetic field SF is described
by GS95 anisotropy for scales from the driving scales up to 8 grid units. This is con-
sistent with the results of CL04 and the notion that in a sub-Alfvénic case (MA < 1)
strong Alfvénic turbulence is marginally affected by compressible motions, despite
high sonic Mach number. As to the log-density, its anisotropy is of GS95 type just be-
low the outer scale and it becomes distorted when numerical effects get important,
i. e., at the scales around 10 grid units. Incidentally, at the same scales we expect that
theAlfenMachnumberwill be of the order of unity and therefore our simplifiedmodel
may not be applicable.

We also checked for correlation between density and magnetic field magnitude
which was expected from a models of external compression of an ideal MHD fluid.
We have not found any significant correlation of this type. Two effects can account for
this. One is the compression along the magnetic field lines, another is reconnection
diffusion that we discuss in Chapter 9.

5.4.4 Implications

It is a well-known notion that a supersonic turbulence exhibits a lot of shocks. Our
driving is incompressible, but the compressible and incompressible motions are ex-
pected to be partially coupled at the injection scale when Alfvénic Mach number is of
the order of unity (CL03). Therefore, we expect that the driving excites some amount
of compressible motions. In fact, our testing showed that the rms velocity, associated
with slow mode was of the same magnitude as the rms velocity of the Alfvén mode.
Therefore, the resulting flat power spectrum of density is associated with very large
perturbation of density from compressible motions that naturally arise at the driving
scale. Shocks in isothermal fluid can have very large density contrasts, up to sonic
Mach number squared and they can compress density the same was as supernova
remnants do in the snowplow phase, namely, they collect matter keeping the total
momentum of the shock constant (see [403]). Nevertheless, as we do not see strong
shocks near density clumps we believe that in magnetically dominated medium that
we deal with the corresponding shocks move material along magnetic field lines the
same way that the slow modes do in subsonic case. As the shocks are randomly ori-
ented, the clumpy structure thatwe observe does not reveal anynoticeable anisotropy.
The density perturbations associated with such shocks is not correlated with themag-
netic field strength enhancement which is analogous to the case of density fluctua-
tions induced by slow modes (see CL03). Our analysis of the data is consistent with
this mental picture. At the same time, significant correlations between density and
the magnitude of magnetic field were observed in many super-Alfvénic simulations;
see, e. g., [347] (compare with 2D sub- and super-Alfvénic simulations by [354]).

If we associate the clumps in simulations with interstellar clouds, in ISM with
random driving we would expect the clouds not to have any preferential orientation
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in respect tomagnetic fields at least until self-gravity does get important.We observed
the substantial variation of the gas pressure, up to three orders of magnitude which is
consistent with findings in [202]. Flat spectrum of density fluctuations is roughly con-
sistent with some observational data. Needless to say, that a more systematic analysis
of data is required and it is interesting, for instance, to test the change of the density
spectrum with the Mach number. Testing the anisotropy of density is another inter-
esting direction of study, even though one cannot directly observe log-density and the
effects associated with the projection along the line of sight must be considered care-
fully (see discussion of this in [136]).

Surely, for realmolecular clouds self-gravity is important. This effect shouldmake
theobserved spectrumevenflatter, as thedensity peaks are expected tobecomehigher
and more delta-function-like. In addition, cooling should make interstellar gas more
pliable to compression compared to the isothermal gas that is studied used in our sim-
ulations. This, should result in more density contrast when the original gas is warm.
However, in interstellar warmmedium the gas has Mach number of the order of unity.
At the same time, for molecular clouds for whichMach number can be substantial our
isothermal calculations seems to be adequate.

We interpreted the unusual behavior of density fluctuations generalizing theGS95
model of MHD turbulence by considering strong compressions. We used filtering to
mitigate the effect of rare strong compression, and succeeded in showing that volume-
filling density fluctuations are anisotropic. We found that the range of scales where
incompressible turbulent theory is applicable is shortened in numerical simulation
with supersonic driving. However, between sub and supersonic scales, there is a re-
gion where compressible motions cascade in a way that is yet to be understood.

5.5 Viscosity-dominated regime of MHD turbulence

In hydrodynamic turbulence, energy is injected at a scale L, and cascades down to
smaller scales without significant energy losses until it reaches the viscous damping
scale ldv. TheKolmogorov energy spectrum is valid for the inertial range, i. e., all scales
between L and ldv.

This simple picture above should bemodifiedwhenwe deal withMHD turbulence
because there are two dissipation scales—the velocity damping scale ldv and the mag-
netic diffusion scale ldm, wheremagnetic structures are dissipated. In fully ionized col-
lisionless plasmas (e. g., the hottest phases of the ISM), ldv is approximately an order
of magnitude larger than ldm. However, in partially ionized plasmas (e. g., the warm
or cold neutral phase of the ISM), the two dissipation scales are very different and
ldv ≫ ldm. In the cold neutral medium (see [120] for a list of the ISM phases) neutral
particle transport leads to viscous damping on a scale which is a fraction of a parsec.
In contrast, in these same phases ldm ∼ 100 km.
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This has a significant effect on the energy cascade model in a partially ionized
medium. When the energy reaches the viscous damping scale ldv, kinetic energy dis-
sipates there, but the magnetic energy does not. In the presence of a dynamically im-
portant magnetic field, Cho, Lazarian, and Vishniac ([88]; hereafter CLV02b) reported
a completely new regime of turbulence below the scale ldv. CLV02b showed that at
these small scales magnetic fluctuations form a shallow spectrum Eb(k) ∼ k−1. This
spectrum is similar to that of the viscous-convective range of a passive scalar in hy-
drodynamic turbulence, but a significant difference between the two processes is that
magnetic field is far from being passive. In fact, it is dynamically important and at the
scales less than ldv its energy is orders of magnitude exceed the kinetic energy.

A higher resolutions numerical study of the viscosity-damped MHD turbulence
was presented in CL03 and [91]. The regime was shown to be present in compressible
MHD turbulence as well and Figure 5.9 illustrates the results for this regime obtained
for compressible and incompressible MHD turbulence.

Figure 5.9: Viscous damped regime (viscosity >magnetic diffusivity). Due to large viscosity, velocity
damps after k ∼ 10. (a) Left: Incompressible case with 3843 grid points. Magnetic spectra exhibit a
shallower slope (Eb(k) ∝ k−1) below the velocity damping scale. From CLV02b. (b) Right: Compress-
ible MHD 2163 simulations. Magnetic and density spectra demonstrate structures below the velocity
damping scale at k ∼ 10. The structures are less obvious than the incompressible case as it is harder
to achieve small magnetic diffusivity in compressible runs from CL03. Reproduced from [88] with
permission of AAS.

Figure 5.10 exhibits structures and spectra in supersonic viscous MHD simulations,
emulating conditions in the molecular clouds, where high ambipolar diffusion could
result in drag and damping of kinetic motions. Remarkably, the kinetic and magnetic
spectra are similar to the incompressible and weakly compressible cases. Neverthe-
less, the structures, observed in the simulated data are very different. The supersonic
structures are dominated by the current sheets,which are also density places of higher
density. This is a result of currents sheets having lowmagnetic pressure which results
in gas compression.

Lazarian, Vishniac, and Cho ([280], henceforth LVC04) suggested a theoretical
model for viscosity-damped MHD turbulence. In this model, it is taken into account
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Figure 5.10: Simulations of supersonic, viscously damped MHD turbulence, with high viscosity em-
ulating high drag from ambipolar diffusion in molecular clouds. Left: Filaments of density created
by magnetic compression of the gas in this regime. Darker regions correspond to higher density.
The viscous damping scale lc is much larger than the current sheet thickness d. This creates large
observed density contrasts. Right: The spectra of density, velocity, and magnetic field in this case.
While the density and magnetic spectra are similar, the velocity spectrum has a cutoff due to high
viscosity. Note that the resistive scale in this regime is not L/Rm but LRm−1/2. From [36].

that there is no significant velocity fluctuation below ldv, so the time scale for the en-
ergy cascade below ldv is fixed at the viscous damping scale. Consequently, the energy
cascade time scale tcas is scale-independent below ldv. The requirement for a scale in-
dependent energy transfer rate b2l /tcas provides

bl ∼ constant, or Eb(k) ∼ k
−1, (5.10)

where kEb(k) ∼ b2l .
The curvature of the magnetic field lines is assumed to change slowly in the cas-

cade:

k‖ ∼ constant. (5.11)

This is due to the fact that the cascade is driven by repeated shearing at the same large
scale. It is also corresponds to the numerical finding in CLV02b that k‖ is constant
throughout the viscously damped nonlinear cascade. The wavevector component in
the direction of the perturbed field is also approximately constant, so that the increase
in k is entirely in the third direction.

The observed structures are intermittent and, therefore, the kinetic spectrum de-
pends on the scaling of intermittency.
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5.6 Applying results to collisionless fluids

Some astrophysical magnetized plasmas are collisionless, meaning the typical col-
lision frequency is lower than the gyrofrequency. Therefore, it is important to under-
stand towhat extend the results obtainedwithinMHD can also be applied to collision-
less environments. The effective collisionality of the medium depends on the collec-
tive effects of magnetic scattering of ions. Different instabilities, e. g., mirror, firehose,
and gyroresonance instability, induced by large scale compressions produces small
scale perturbations that induce efficient scattering of charged particles [380, 263, 383].
This decreases the mean-free path of particles and makes plasmas, effectively, much
more collisional. This is not desimilar to the case of a collisionless shock which excite
plasma waves and lead to effective particle thermalization.

Furthermore, some subsets of MHD equations, such as reduced or Alfvénic MHD,
which we studied in great detail in Sections 3 and 4, are actually applicable to fully
collisionless plasmas, because Alfvénic motions are essentially [E × B] drift motions,
rely only on magnetic tension and do not require collisions; see, e. g., [382].

A recent study in [374], using a closure for anisotropic plasma pressure, showed
that for a reasonable choice of the relaxation term the collisionless fluids behave simi-
lar toMHD. The aforementionedworkwas done in the context of intracluster dynamo.
However, similar approach can be applied to other collisionless fluids. More theoret-
ical studies of the problem are given in [378]. Therefore, we expect that both MHD
turbulence scaling relations and the results of turbulent dynamo that we discussed in
above are applicable to collisionless turbulent astrophysical plasmas above the effec-
tive collisional scale. The measurements in the solar wind indicate that the effective
MHD scales could be as low as the ion skip depth or the ion Larmor radius.

5.7 Toward understanding of relativistic turbulence

High energy phenomena is frequently associated with astrophysical fluids with rel-
ativistic motions. Naturally, the interest to MHD turbulence in relativistic fluids has
been growing. Due to advances in numerical techniques, it is now possible to numer-
ically investigate fully relativistic MHD turbulence [468].

When electromagnetic energy density significantly exceeds the rest mass energy
density of matter, the electromagnetic fields become essentially force-free, which is
described with the so-called relativistic force-free approximation. The examples of
such environments include electron-positron pulsar magnetospheres and the inner
parsec-scale AGN jets.

MHD turbulence in relativistic force-free regime has been studied first numeri-
cally. The calculations are applicable to amany important astrophysical settings, e. g.,
to the magnetosphere of a pulsar or a black hole. For such systems, the Alfvén speed
approaches the speed of light, and we the set of relativistic equations is required to
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describe the media. In the flat geometry, this set is

𝜕μ(ρu
μ) = 0, (5.12)
𝜕μT

μν = 0, (5.13)
𝜕tB = ∇ × (v × B), (5.14)

∇ ⋅ B = 0, (5.15)

where uμ is the fluid four velocity and Tμν is the stress-energy tensor of the fluid and
the electromagnetic field. This reduces to

𝜕Q
𝜕t
+
𝜕F
𝜕x1
= 0, (5.16)

where

Q = (S1, S2, S3,B2,B3), (5.17)
F = (T11,T12,T13, −E3,E2), (5.18)

Tij = −(EiEj + BiBj) +
δij
2
(E2 + B2), (5.19)

S = E × B, (5.20)

E = − 1
B2

S × B. (5.21)

Here,E is the electric field andS is the Poyntingflux vector. Note thatweuseunits such
that the speed of light and π do not appear in the equations [226]. Solving equations
first along x1 direction, one then does this for x2 and x3 directions with appropriate
rotation of indexes.

Scaling of relativistic Alfvenic turbulence coincides with the GS95. It was pro-
posed by Thompson & Blaes [423] and later numerically tested by Cho [78]. In par-
ticular, [78] performed numerical simulations of a decaying relativistic force-free4

MHD 5123 cube turbulence and obtained both energy spectrum and, importantly, the
anisotropy of eddy structures.5 The simulation were initiated with only Alfvén modes
being present. The left panel of Figure 5.11 shows the evolution of energy spectrum of
magnetic field at two different times. Although only large-scale (i. e., small k) Fourier
modes were excited at t = 0 (not shown), the turbulent cascading produced small-
scale (i. e., large k) modes at later times. After t ∼ 3, the energy spectrum evolves by

4 To obtain the force-free condition from Maxwell’s equations and the energy-momentum equation:
𝜕μT

νμ
(f ) = −FνμJ

μ = 0, where Fνμ is the electromagnetic field tensor.
5 We feel that anisotropy is frequently ignored in numerical studies. For instance, as we mentioned
earlier, attempts to modify the GS95 theory were motivated by the discrepancy between the expected
spectrum and its value in numerical simulations. At the same time, the fact that the GS95 was provid-
ing the right scaling of anisotropy, which the theories that were developed to substitute it were failing
to reproduce the observed anisotropies was mostly ignored.
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Figure 5.11: Decaying relativistic force-free MHD turbulence. (Left) Energy spectrum is consistent
with the GS95 one. (Middle) Eddy shapes, represented by contours, demonstrate scale-dependent
anisotropy: smaller eddies are more elongated. (Right) The anisotropy of eddy shape corresponds to
GS95 anisotropy. Reproduced from [78] with permission of AAS.

changing the amplitude by not changing its slope. The spectral slope at this stage is
very close to a Kolmogorov/GS95 value:

E(k) ∝ k−5/3. (5.22)

Contours of magnetic field iso-correlation in themiddle panel of Figure 5.11 depict the
shapes of eddies revealed by the second-order structure function. Similar as in non-
relativistic studies of reconnection the shape of eddies is measured in a local frame,
which, as we discussed earlier, is aligned with the local magnetic field [89, 92, 231].
The contour plot reveals the GS95-type anisotropywith the relation between the semi-
major axis (∼ l‖ ∼ 1/k‖) and the semi-minor axis (∼ l⊥ ∼ 1/k⊥):

k‖ ∝ k2/3⊥ (5.23)

(see the right panel of Figure 5.11). These results confirm the theoretical predictions in
[423]. Driven turbulence simulations in [80] provide similar results. Similar to the case
of nonrelativisticMHD turbulence the turbulence scaling does not depend onwhether
the turbulence is decaying or driven turbulence.

As we discussed in Chapter 4, in general the MHD turbulence is at least slightly
imbalanced. Our discussion of theories of imbalanced turbulence suggests that the
most promising in view of the existing numerical nonrelativistic data is the theory in
[30] (henceforth BL08). There is at the moment no theory of relativistic imbalanced
MHD turbulence, but appealing to the coincidence of the predictions of GS95 and
the theory in [423] the predictions in BL08 should be applicable to the imbalanced
nonrelativistic turbulence. This type of turbulence was studied in Cho and Lazarian
(2014, [87], henceforth CL14). In fact, those simulations can also be viewed as the
test of nonrelativistic theories using relativistic turbulence simulations that we dis-
cussed in Section 5.7.1 as the simulations are performed with a completely different
code.
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Figure 5.12: Imbalanced relativistic force-free MHD turbulence. (Left) A factor of 4 difference in en-
ergy injection rates results in much larger imbalance in energy densities. (Middle) The spectral
slopes for the dominant and the subdominant waves are different: the dominant waves have a
steeper slope. (Right) The degrees of anisotropy for the dominant and the subdominant waves are
different: the dominant waves exhibits weaker anisotropy. Reproduced from [87] with permission of
AAS.

The results of the CL14 simulations for 5123 resolution is presented in Figure 5.12. In
the adopted set up, the energy injection rate for Alfvén waves moving in one direc-
tion (dominant waves) is 4 times larger than that for waves moving in the other di-
rection (subdominant waves). The left panel of Figure 5.12 demonstrates that, even
although the ratio of the energy injection rates is about ∼4, the ratio of the energy
densities is about significantly larger, i. e., ∼100. Themiddle panel of the figure shows
that the spectrum for the dominant waves is a bit steeper than the GS95 one, while
that for the subdominant waves is shallower. Figure 5.12 at its right panel shows that
the anisotropy of the dominant waves is a weaker than the GS95 prediction, while that
of the subdominant waves is stronger. These results can be compared with the BL08
theory in Chapter 4, in particular Figure 4.17 Indeed, it is BL08prediction that themag-
netic spectrum of dominant waves should be steeper than that of subdominant waves
and thedominantwaves should exhibit anisotropywhich isweaker than theGS95one,
while the subdominant waves should exhibit the anisotropy stronger than GS95 one.
Thus CL14 concluded that the relativistic imbalanced turbulence corresponds to the
BL04 theory. CL14 also showed that the energy density ratio of the dominant to sub-
dominant waves scales in proportion to the ratio of the energy injection rates to the
power of n, i. e., (ϵ+ϵ−)n, where n > 2, which is also consistent with the BL08 expec-
tations. Naturally, higher resolution simulations of relativistic imbalanced turbulence
would be very advantageous to further testing BL08 theory.

5.7.1 Fully relativistic MHD turbulence

Fully relativistic MHD turbulence has been studied performed in a number of papers
[467, 200, 15, 468, 469, 160]. The results in [468, 469] corresponding to the mean lab-
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frame Lorentz factor of ∼1.67 and performed in 20483 cubes confirm that the existence
of an inertial spectrum of relativistic velocity fluctuations with a −5/3 spectral index.
They also studied the intermittency and found that the scaling exponents of the lon-
gitudinal velocity structure functions are consistent with the [392] model. The latter
result is not trivial as the simulations for unmagnetized relativistic turbulencewith the
Lorentz factors up to ∼1.7 indicate that the relativistic effects enhance intermittency,
and, as a result, the scaling exponents for high-order structure functions notably de-
viate from the prediction of the She–Leveque model [365].

5.7.2 Relativistic compressible turbulence: mode decomposition

The work on imbalanced and balanced relativistic turbulence strongly indicate that
the nature of turbulence does not significantly change with the transfer to the rela-
tivistic regime. This conclusion is suggestive that the models based on the Goldreich–
Sridhar turbulence, e. g., the turbulent reconnection model [278] can be extended to
relativistic phenomena (see discussion in [301]).

To what extent compressible relativistic MHD turbulence is different from its non-
relativistic counterpart was tested in Takamoto and Lazarian (2016) [419] henceforth
TL16. The procedure adopted for the decompositionwas analogous to [81]. Since there
is no average velocity in the background flow, the displacement vectors are

̂ξslow ∝ k||k̂|| + [
u2slow
c2s
(
k
k||
)
2
− 1][

k||
k⊥
]
2
k⊥k̂⊥, (5.24)

̂ξfast ∝ [u
2
fastk

2(1 + σ) − c2sk
2
⊥ − k

2σ][ 1
csk||
]
2
k||k̂|| + k⊥k̂⊥, (5.25)

where cs is the relativistic sound velocity, k is the magnitude of the wave vector k,
and ufast/slow are the phase velocities of fast and slow modes [10]. As everywhere in
the book, k||, k⊥ are, respectively, wavevectors the parallel and perpendicular to the
magnetic field.

As in the nonrelativistic case, Equations (5.24) and (5.25) provide us with the way
to obtain fast and slow mode velocity components by projecting the velocity field on
the displacement vectors ̂ξfast/slow. Thus the displacement vector of the Alfvén mode
velocity component is given as ̂ξA = k̂|| × k̂⊥ [303].

We can write the velocity projection onto ξ{A,fast,slow} as δv{A,f,s}. Since the form
of the linearized mass conservation law and induction equation are the same in
relativistic and nonrelativistic cases, the Fourier components of density andmagnetic
field can be obtained by exactly the same procedure in the non-relativistic case given
in [81, 82].

In the nonrelativistic case, the transfer of energy between the modes is marginal
and the mode decomposition reveals the distinct cascades of Alfvén, fast, and slow
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mode [81]. We will show below that in the case of relativistic turbulence, the coupling
increases the decomposition reveals the transfer of energy between the cascades.

The left panel of Figure 5.13 is the ratio of fast to Alfvén mode velocity power at
2 eddy-turnover time in terms of the fast Mach number of the Alfvén component of
velocity. In the plot, the fast velocity cf,⊥ in the horizontal axis is taken as that in the
perpendicular direction to the background magnetic field. The linear increase of the
fast mode power with the Mach number corresponds to the non-relativistic case [81,
82]. On the other hand, there is an increase of power with σ.

Figure 5.13: Left: The ratio of fast to Alfvén mode velocity power as a function of the Mach number of
the Alfvén mode component obtained using 3-velocity. Evidently, the compressible modes become
more important with increasing σ-parameter. Right: The ratio of fast to Alfvén mode velocity power
in terms of the background σ parameter at t = 2teddy and δvA/cf,⊥ = 0.16. The ratio is proportional to
√1 + σ for σ > 1 from TL16. Reproduced from [419] with permission of AAS.

The right panel of Figure 5.13 shows the ratio of fast to Alfvén mode velocity power
as a function of the σ value at t = 2teddy and δvA/cf,⊥ = 0.16. This ratio is nearly in-
dependent of the σ-parameter for σ < 1 in agreement with [81]. On the other hand, it
increases approximately by (1 + σ)1/2 when σ > 1. Therefore, the ratio can be written
as

(δvf)
2/(δvA)

2 ∝ (δvA)/cfast,⊥ (when σ ≪ 1), (5.26)

∝ (1 + σ)1/2(δvA)/cfast,⊥ (when σ ≳ 1). (5.27)

This indicates the exchange of energy between Alfvén and fast mode increases as the
electromagnetic field becomes relativistic. This increase of coupling was explained in
TL16 by the effect of electric field |E| = |−(v/c)×B| ∼ |B|.Within the quasi-linear theory,
that is, taking into account the second-order terms in equations assuming first-order
Alfvén mode perturbation, the force term in the equation of motion of RMHD is

Fx ≡ −∇x[
B20
2
(1 +

c2A
c2
)(

δvA
cA
)
2
], (5.28)
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Fy ≡ −∇y[
B20
2
(1 −

c2A
c2
)(

δvA
cA
)
2
], (5.29)

Fz ≡ −B0∇xδBA, (5.30)

where the background magnetic field is B0 = B0ex and the Alfvén mode direction
in z-direction. It is easy to observe that the z-component drives the usual Alfvén
mode, while the anisotropic nature of the electric field gives the weaker force in
the y-direction and the stronger force in x-direction, or the parallel direction of the
background magnetic field. In the Poynting-dominated regime, cA ∼ c, the force is
only in the direction parallel to the magnetic field direction, and gives rise to better
Alfven-fast mode coupling.

Extrapolating our dependences cannot be done for arbitrary large σ and more
study of such regime is necessary. One can expect that at σ ∼ 24 the saturation in the
exchange of the energy betweenmodes is expected. In this regime, significant changes
of Alfvenic turbulencemay be expected. In fact, for such strong coupling it may not be
possible to talk about separate Alfvenic cascade obeying GS95 relations, but the new
regime of coupled Alfven-fast turbulence emerges.

It is important to stress that results in TL16 show that the fast to Alfvén mode
power ratio depends on a 3-fast Mach number, not the relativistic 4-fast Mach num-
ber. Therefore, in pointing-dominated plasma the transfer of energy to the compress-
ible modes becomes important even for small magnetic field perturbations, which is
very different from the nonrelativistic case for which the kinetic energy of turbulence
should be comparable to the background magnetic field energy for the conversion to
be tangible.6

Belowwe summarizewhatwe know about the relativisticMHD turbulence regime
so far:

Alfvén Mode–The top-left panel of Figure 5.14 shows the kinetic energy spectrum
of Alfvénmode in terms of the wave vector perpendicular to the backgroundmagnetic
field.

It is suggestive that for the explored ranges of coupling the spectrum has the
Kolmogorov-like slope in the inertial range:

EA(k⊥) ∝ k−5/3⊥ , (5.31)

which is consistent with the predicted of the nonrelativistic Alfvenic turbulence the-
ory [172].

This result is also consistent with the findings in [468, 469, 365] who performed
the Helmholtz decomposition of velocity and showed the Kolmogorov scaling of the
incompressible part of the spectrum. The bottom-left panel of Figure 5.14 shows the

6 The enhancement of compressibility effects was mentioned in [365] in the case of relativistic tem-
peratures, but TL16 quantified this effect covering the Poynting-energy dominated regime.
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Figure 5.14: Top: Kinetic energy spectra of Alfvén, fast, and slow modes. Bottom: Eddy-scale of
Alfvén, fast, and slow modes obtained by a second-order velocity structure function. All the data
are measured at 1 eddy-turnover time. The initial Alfvén mode turbulence is injected at wavenumber
k/2π = 3/L and the velocity dispersion at the injection is δv/cA = 0.6 for σ = 0.2, 1 and δv/cA = 0.5
for σ = 3 from TL16. Reproduced from [419] with permission of AAS.

values of r|| and r⊥ with the same second-order structure function for the velocity. The
distance r|| and r⊥ is determined using the local magnetic field direction following the
procedure in [92]. The use of the local system in the relativistic case is as essential as in
the nonrelativistic case seemore in [278, 92, 303, 89]. The relation between the parallel
and perpendicular scales of the eddies correspond to the theoretical expectations of
the original Alfvenic turbulence theory [172], and its relativistic counterpart [423].

Fast Mode–The top-middle panel of Figure 5.14 illustrates the kinetic energy spec-
trum of fast mode. It indicates that the energy spectrum of their inertial region can be
written as

Ef(k) ∝ k−3/2 (when σ < 1), (5.32)

∝ k−1.86 (when σ > 1). (5.33)

The value of the spectrum index 1.86 is similar to that for the potential component
up = ∇ϕ where ϕ is a scalar function obtained through the Helmgoltz decomposition
in [468, 469]. This is not surprising as the fast modes are compressible.

The anisotropy of the fast modes as shown in Figure 5.14 is marginal, i. e., similar
to the nonrelativistic modes. An interesting point here is that due to aforementioned
Alfven-fast mode coupling, potentially the properties of fast modes can change signif-
icantly.
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Slow Mode–The top-right panel of Figure 5.14 illustrates the kinetic energy spec-
trum of slow modes.

The spectrum exhibits the nonpower law behavior even as the resolution is in-
creased from L/512 to L/2024. If we try to fit the power law, it will be k−5/3 as in the
nonrelativistic case. The deviation from the power law may signify that the energy
exchange between slow mode and Alfven that makes the turbulence of the slow
mode not self-similar. Further research should clarify this. The correspondence of the
anisotropy to that of Alfvenic turbulence indicates that Alfven modes slave and shear
the slow modes, exactly as in the nonrelativistic case.

The above study in TL16 was done using adiabatic simulations and, therefore, the
temperaturewas increasing in the simulations. However, the results obtained are sim-
ilar to the more recent results obtained the same authors with the isothermal code
in [420]. The strong coupling of fast and Alfven modes in the relativistic Pointing-
dominated plasma was confirmed. However, stronger anisotropy of fast modes was
reported. Figure 5.15 shows that the anisotropy of Alfvenic modes is also get modi-
fied which means that relativistic turbulence enters a new regime where the fast and
Alfven modes cannot be treated separately due to their strong interactions. This sug-
gests that the theory of the Alfven-fast coupled turbulence should be constructed in
future to understand turbulence in Pointing-dominated plasmas.

In the relativistic case, we see a more significant change of the properties of the
fast modes compared to those of Alfven modes. Therefore, we expect that the theory
of Alfvenic modes can stay approximately true even for the relativistic case.

Figure 5.15: Anisotropies of Alfven and fast
modes in the case of σ = 5 and T = 0.1mc2

at t = 1.4teddy. The case with no mode de-
composition is also plotted, which shows
an intermediate region between isotropic:
r‖ ∝ r⊥ to critical balance case r‖ ∝ r2/3⊥ .
The power law index of the anisotropy
of MHD turbulence is approximately 0.7
from [420]. Reproduced from Figure 7
from [420].

Unlike Alfven modes, fast modes are likely to create fast shocks and, therefore, the
energy transfer in the case pointing-dominated turbulencemay be presented as in the
schematic in Figure 5.16.

The above results for relativistic turbulence have important astrophysical conse-
quences. For instance, the increase of energy in the form of fast modes means that
the second-order Fermi acceleration is expected to become more important. Indeed,
fast modes have been identified as the major scattering agent as well as the agent for

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.7 Toward understanding of relativistic turbulence | 115

Figure 5.16: A schematic picture of the
energy transfer in relativistic Poynting-
dominated turbulence from [420]. Repro-
duced from Figure 8 from [420].

stochastic particle acceleration (see [453]). The insignificant change of the properties
of the Alfven modes in relativistic and nonrelativistic turbulence mean that the theo-
ries based on the nonrelativistic scaling, e. g., theory of turbulent reconnection [278],
are expected to be relevant in the relativistic environments.
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6 Intermittency of MHD turbulence

6.1 General considerations

So far, our focushasbeenon the turbulence self-similarity. This property,which is also
called scale-invariance, implies that fluid turbulence is similar at all scales within the
inertial range and it can be reproduced by the magnification of some part of it.

At the dissipation scales, the self-similarity fails with turbulence forming non-
Gaussian dissipation structures as exemplified, e. g., in [44]. Interestingly enough,
self-similarity is not exactly true even along the inertial range. Instead, both numer-
ical simulations and experiments show that the fluctuations tend to get increasingly
sparse in time and space at smaller scales. This property is termed intermittency. Note
that the power-law scaling does not by itself guarantee the scale-invariance or absence
of intermittency.

One way study intermittency is to investigate the scaling powers of longitudinal
velocity fluctuations, i. e., (δV)p, where δV ≡ (V(x + r) − V(x))r/r. The infinite set of
powers of Sp ≡ ⟨(δV)p⟩, where ⟨. . .⟩ denote ensemble1 averaging, is equivalent to the
p.d.f. of the velocity increments.

For the powers of velocity increments, one can write Sp(r) = apr
ξ
p to character-

ize the isotropic turbulent field in its inertial range. While the scaling coefficients ap
are related to the values of the function Sp, e. g., at the injection scale, the scaling
exponents ξp is more involved. It is possible to show that for a self-similar flow the
scaling exponents are linear function of p, i. e., ξp ∼ p. This for Kolmogorov model,
S1 ∼ vl ∼ l1/3 gives the relation ξp = p/3. Experimental studies, however, give different
values which signifies that the Kolmogorov model does not cover all the complexity
of incompressible hydro turbulence.

MHD turbulence, unlike hydro turbulence, deals with both velocity andmagnetic
fluctuations. The intermittencies of the two fields are not necessarily the same. In ad-
dition, MHD turbulence is anisotropic as magnetic field affects motions parallel to the
local direction of B. This all makes it important to understand the properties of MHD
turbulence intermittency.

An interesting and yet not well understood property of structure functions helps
to extend the range over which Sp can be studied. Benzi et al. [20] reported that for hy-
drodynamic turbulence the functions Sp(S3) exhibit a broader power-law range com-
pared to Sp(r). Rather mysteriously, while for the inertial range a similarity in scaling
of the two functions stem from the Kolmogorov scaling S3 ∼ r, the power-law scal-
ing of Sp(S3) protrudes well beyond the inertial range into the dissipation range.2 In

1 In astrophysics, spatial or temporal averaging is used.
2 In practical terms, thismeans that instead of obtaining Sp as a function of r, one gets Sp as a function
of S3, which is nonlinear. This, however, corrects for the distortions of Sp.

https://doi.org/10.1515/9783110263282-006
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a way, this shows that the dissipation “spoils” different orders of S in the same man-
ner. Therefore, one can use any moment Sm ∼ rm and obtain a good power law of the
function Sp ∼ (Sm)ξp/ξm (see [44]).
6.2 She–Leveque model of intermittency

A successful model that reproduces both experimental hydro data and numerical
simulations is the She–Leveque model (1994, [392]). Dubrulle [127] derived the corre-
sponding law assuming that the energy from large scale is being transferred to f < 1
less intensive eddies and 1 − f of more intensive ones. The scaling relations suggested
in [392] relates ζp to the scaling of the velocity Vl ∼ l1/g , the energy cascade rate
t−1l ∼ l−x, and the codimension of the dissipative structures C:

ζp =
p
g
(1 − x) + C(1 − (1 − x/C)p/g). (6.1)

For hydrodynamic incompressible turbulence, these parameters are g = 3, x = 2/3,
and C = 2, implying that dissipation happens over 1D structures (e. g., vortices). The
She–Leveque scaling was a success in reproducing the intermittency of incompress-
ible hydrodynamic turbulence.

6.3 Intermittency of incompressible turbulence

Muller et al. [329] applied the She–Levequemodel to incompressibleMHD turbulence.
They used Elsässer variables and claimed that their results are indicate that the dissi-
pation happens within 2D structures (e. g., 2D current sheets). The subsequent study
in [89] used velocities instead of Elsässer variables and it provided a different answer.
In fact, [89] found that the dimension of dissipation structures is the same as in incom-
pressible hydro, i. e., the dissipation structures are 1D. The controversy was addressed
in Cho, Lazarian, andVishniac (2003, [91] henceforth CLV03), where it was noted that,
first of all, the measurements in [329] were done in the reference frame related to the
meanmagnetic field, while the measurements in [89] were done in the frame related
to the localmagnetic field. As it follows from our discussion in the previous chapters,
the latter is more physically motivated frame, as it is the local magnetic field is the
field that is felt by the eddies. Computations in CLV03 confirmed that the dissipation
structures that can be identified as velocity vortices in the local magnetic field ref-
erence frame look like two-dimensional sheets in terms of Elsässer variables in the
mean magnetic field reference frame. This confirms a mental picture where motions
perpendicular tomagnetic field lines are similar to hydrodynamic eddies. In addition,
this sends a warningmessage about the naive interpretation of the She–Leveque scal-
ings in the MHD turbulence.
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6.4 Intermittency of compressible turbulence

The discussion of intermittency above dealt with incompressible fluids; however, this
effect carries over to compressible media.

First intermittency studies in compressible MHD turbulence were discussed in
Boldyrev (2002 [47]) who assumed that the dissipation there happens in shocks3 and,
therefore, the dimension of the dissipation structures is 2. This does not agree well
with the numerical simulations in CL02, CL03, where the dominance of the vortical
motions and, therefore, 1D dissipation structures in sub-Alfvénic turbulence (i. e.,
magnetic pressure is larger than the gaseous one) was reported. Nevertheless, nu-
merical simulations in Padoan et al. [344] showed that for super-Alfvénic turbulence
(i. e., magnetic pressure is less than the gas pressure) the dimension of the dissipation
structures changes from one to somewhat higher than two as the Mach number was
increasing from 0.4 to 9.5. The very fact that the super-Alfvénic turbulence is different
from sub-Alfvénic is not surprising. The difference between the results obtained in
[344] at low Mach number and the obtained in incompressible runs in Muller et al.
[329] deserves a discussion, however. First of all, the results in [344] are obtained for
the velocity, while the results in [329] are obtained for the Elsässer variables. Indeed,
CLV03 has shown that the magnetic field and velocity have different intermittencies.
It is clear from Figure 6.1 that ζmagnetic < ζ velocity which means that magnetic field is
more intermittent than velocity. An conspicuous feature of super-Alfvénic simulations
in Figure 6.1 is that the velocity follows the She–Leveque hydro scaling with vortical
dissipation, while magnetic field exhibits a pronounced dissipation in current sheets.
Both features are expected if magnetic field is not dynamically important and the tur-
bulence stays essentially hydrodynamic. We also see that the dynamically important
magnetic field changes the intermittency. In particular, the flattening of magnetic
field scaling can be seen in Figure 6.1.

Another study of intermittency of the velocity field of compressible turbulence
was performed in KL10 [231]. In Figure 6.2, we show scaling exponents for the veloc-
ity calculated in the mean field reference frame. In the top left plot of Figure 6.2, we
see that for the sub-Alfvénic turbulence the scaling exponents of velocity follow the

3 The paper by [47] introduces the model of compressible turbulence which it terms Kolmogorov–
Burgers model. Within the model that is suggested in the aforementioned paper, the turbulence goes
first along the Kolmogorov scaling and then, rather counterintuitively, at small scales forms shocks.
The model was motivated by the low resolution numerical measurements of the turbulence spectrum
that indicated the index of supersonic turbulence close to−5/3. This spectrum, however, was shown to
be an artifact of numerical simulations. Higher resolution simulations in [240] showed that the slope
with −5/3 is the result of the numerical bottleneck and the actual slope of the highly compressible
turbulence is getting closer to −2 with the increase of the sonic Mach number, as was expected earlier.
In a sense, we claim that the situation is similar with another suggestion in [48, 49], where as we
discussed earlier, a theory of MHD turbulence motivated by low resolution numerical simulations is
suggested.

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



120 | 6 Intermittency of MHD turbulence

Figure 6.1: Left panel: Intermittency exponents for incompressible MHD turbulence in perpendic-
ular directions in the local frame. While the velocity exponents show scalings similar to the She–
Leveque model, the scalings of magnetic fields are different. Central panel: Intermittency exponents
for incompressible MHD turbulence in the frame of the mean magnetic field. The result for z± is very
similar to the Müller–Biskamp model [329]. Right panel: Intermittency exponents for super-Alfvénic
compressible turbulence in the mean magnetic field frame from CLV03. Reproduced from [91] with
permission of AAS.

Figure 6.2: Intermittency of compressible turbulence. Scaling exponents of the velocity (left col-
umn) and its incompressible and compressible parts (middle and right columns, respectively) for
experiments with different sonic Mach numbers in two regimes: sub-Alfvénic (upper row) and super-
Alfvénic (lower row) from KL10. Reproduced from [231] with permission of AAS.

She–Lévêque scaling with D = 1. This means that most of the dissipative structures
are one dimensional. Even though the scalings are not perfectly independent of the
value of ℳs, since we see somewhat lower values of ζ for higher p, the differences
between these values for models with different sonic Mach numbers are within their
error bars. Thus the scalings at most only weakly dependent of the values of ℳs. At
the same time, in the corresponding plot for models with a weak magnetic field we
clearly see that the spread of curves for different sonic Mach numbers is much higher
than in the previous case. For subsonic simulations, the scaling exponents of velocity
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follow well the theoretical curve corresponding to the S-L scaling of one-dimensional
dissipation structures. The simulations with ℳs ∼ 2.3, however, correspond to the
S-L scaling of two-dimensional dissipative structures. One can also see that simula-
tions with even higher values of the sonic Mach number have the scaling exponents
for p > 3 somewhat below the S-L scaling with D = 2. These studies suggest that the
scaling exponents of the velocity do change with the sonic Mach number in the case
of weak magnetic field turbulence. However, the presence of a strong magnetic field
significantly reduces these changes and preserves the generation of the dissipative
structures with the dimension higher than one.

The scaling exponents can also be calculated after the decomposition of velocity
into its incompressible and compressible parts. In the middle and right columns of
Figure 6.2, the incompressible and compressible parts of the velocity field are shown,
respectively. The incompressible part contains most of the energy and its scaling ex-
ponents are very similar to those observed in velocity. This is definitely true in the
case of sub-Alfvénic models, and all curves in the middle left plot in Figure 6.2 corre-
sponding to the S-L scalingwithD = 1. The similarity between the total velocity and its
solenoidal part is also evident in the case of super-Alfvénic models for subsonic case,
when the role of shocks is strongly diminished. Two sets of supersonic simulations
exhibit exponents following a scaling close to the S-L one with D = 1, yet still with
lower values for p > 3.

6.5 Intermittency of viscosity-damped turbulence

In the viscously-damped case, it was proposed in LVC04 [280] that the higher mo-
ments of structure functions will scale as l1/2 for the first moment and zero for larger
moments. In Figure 6.3, we see this general tendency for high p. The correspondence
is not precise however the model strongly argues in favor of k−1 (which correspond to
ξ (2) = 0). However, in numerics the spectra are slightly steeper.

Figure 6.3: The incompressible viscously damped turbulence. Left: Magnetic reversals in the plane
perpendicular to mean field ⟨B⟩ create current sheets and makes turbulence highly intermittent.
Darker regions correspond to higher magnetic field. Right: Intermittency indexes in theories SL and
MB and numerical data. Reproduced from [91] with permission of AAS.
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7 Turbulence and charged particles

One of the consequences of turbulence, whether in laboratory, astrophysical, or lab-
oratory plasmas, is the magnetic field line stochasticity, which plays a crucial role in
most key physical processes, such as thermal conduction, reconnection and particle
transport. Speaking of laboratory plasmas, the self-excited turbulence in tokamaks
results in anomalous transport of particles perpendicular to the field and prevents
reaching higher temperatures and densities. MHD turbulence also plays an impor-
tant role in scattering and accelerating particles in astrophysics as well. The second-
order Fermi acceleration can arise directly from the scattering of particles by turbu-
lence because the elementary acts of scattering are produced by MHD waves, which
act as a moving scattering centers required for Fermi’s second mechanism; see, e. g.,
[314]. This process is relatively inefficient, being proportional to (v/c)2, compared to
first-order’s v/c, e. g. diffusive shock acceleration [241, 18, 45]. Properties of MHD tur-
bulence that we discussed above are essential to understanding this process. We re-
fer the reader to [385] for an excellent reading on quasilinear theory (QLT) of parti-
cle scattering by stochastic fields. Note that the routine result of the QLT calculation
is the second-order particle acceleration coefficient. The second-order process was
thought to dominate in turbulence, as opposed to first-order acceleration on discon-
tinuities. As we will show in subsequent sections of this chapter, this may not be nec-
essarily true, i. e., there is an inherent first-order acceleration in turbulent fields as
well.

If turbulence is injected at large scales, the anisotropy of Alfvénic modes at small
scales makes them inefficient for scattering and acceleration of cosmic rays [70, 453].
In this situation, fast modes were identified as the major scattering and acceleration
agent for cosmic rays and energetic particles in the ISM [454]. Turbulentmagnetic field
in the pre-shock and post-shock environment are important for the first-order Fermi
acceleration associated with shocks. In particular, magnetic field enhancement com-
pared to its typical interstellar values is important in the preshock region for the ac-
celeration of high energy particles. Turbulent dynamo that we discussed in Chapter 2
can provide a way of generating magnetic field in the precursor of the shock. In [28],
it was shown that the interactions of the density inhomogeneities preexisting in the
interstellar medium with the precursor generate strong magnetic fields in the shock
precursor. Similarly, magnetic reconnection can act as a converging flow and induce
the first-order Fermi acceleration [111, 256].

While particles dynamics in turbulence is a large topic, in this chapterweoverview
a recent progress on two topics related to particle transport: (1) field line diffusion,
in particular diffusion in imbalanced turbulence and (2) first-order acceleration in
turbulent fields.

https://doi.org/10.1515/9783110263282-007

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



124 | 7 Turbulence and charged particles

7.1 Particle diffusion due to stochastic fields

7.1.1 Richardson’s picture of diffusion

Turbulence is nowunderstood as amultiscale phenomenon, by large owing to the pio-
neering paper of Richardson [369],who studied turbulent diffusion and suggested that
for scales less than the injection scale, the diffusion coefficient depends on the scale
as D ∼ l4/3. This is known as Richardson’s law. Indeed, if two particles are separated
by a distance l, the typical separation speed corresponds to the typical turbulent ve-
locity on scale l, which is, approximately, δv ∼ l1/3 [224]. This suggests that separation
between particles grow as δl ∼ t2/3. If turbulence is uniform and characterized only by
the dissipation rate per unit mass, ϵ, which has units of cm2/s3, it is natural that the
separation between two particles moving with the fluid, Δr, conforms to (Δr)2 = g0ϵt3,
where g0 is a dimensionless number known as Richardson’s constant. Richardson’s
diffusion has been studied extensively by experimental, theoretical, and numerical
means [379].

The turbulent diffusion of particles embedded in theMHDfluid received relatively
less attention, however, the same type of diffusion is expected in perpendicular direc-
tion due to the same scaling δv ∼ l1/3 of strongMHD turbulence [172, 21, 22]. A different
and very interesting question is how themagnetic field lines separate from each other
in such an environment. This question is crucial because well-magnetized plasmas
are often poorly collisional, with the ion Larmor radius being many orders of magni-
tude smaller that the mean-free path from Coulomb collisions. In particular, the mag-
netized solar wind features mean-free paths, which are comparable to the distance
from the sun. In galaxy clusters, the Coulomb mean-free path is around 10–100 kpc.
In most astrophysical environments, there is also a high-energy component, called
cosmic rays, for which Coulomb collisions are essentially negligible. Charged parti-
cles will, therefore, move along magnetic field lines for great distances and scatter
mostly by magnetic perturbations. This will result in parallel diffusion being much
larger than the perpendicular diffusion. In the absence of perpendicular momentum,
particles will move along magnetic field lines and diffuse only due to the magnetic
field line diffusion. The motion of the bulk of the plasma δv that causes ordinary dif-
fusion could be neglected if the ion speed vi is much larger than δv.1 For cosmic rays
this condition is also very well satisfied, because they move along field lines with the
speed comparable to the speed of light c. In other words, at least for short timescales,
the fluid is frozen from most particles’ perspective.

1 This is equivalent to the condition that themotions in the inertial range are subsonic.While some of
the astrophysical turbulence feature supersonicmotions on the outer scale, the inertial rangemotions
are normally subsonic.
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7.1.2 Field line diffusion

Despite being collisionless, plasmas in many circumstance can be described as flu-
ids on scales larger that the ion Larmor radius [382]. The inertial range of MHD turbu-
lence feature strongly anisotropic perturbationswhich aremuch smaller in amplitude
that themeanmagnetic field. The key component of this turbulence is Alfvenic mode,
which iswhy it is often calledAlfvenic turbulence. Due to the fact that theAlfvenmode
is driven bymagnetic tension, not pressure, it is relatively unaffected by the lack of col-
lisions. Thepresence of slowmode in suchhighly anisotropic turbulenceneither affect
dynamics [172, 22], nor influences magnetic field lines, as the anisotropic slow mode
perturbation is mostly along the mean field. Therefore, the equations for the Alfvenic
components, which are conventionally called reducedMHD (RMHD), are sufficient for
studying field lines.

Perturbations in a strong mean magnetic field could be decomposed into back-
ward and forward propagating eigenmodes w± = v ± b/√4πρ called Elsässer vari-
ables. Since perturbation sources are not uniform, MHD turbulence is naturally im-
balanced, i. e., the amplitudes of w+ and w− are not equal. This is verified by direct
observations in the solar wind, where the dominant always propagates away from the
sun [444]. Other astrophysical sources are expected to have strong imbalance, e. g.,
stellar winds and jets will emit predominantly outward-propagating component. Sim-
ilarly, AGN jets are expected to have Alfvén perturbations propagating away from
the central engine, e. g., due to the black hole spin [46]. The theories of imbalanced
Alfvenic turbulence are fairly young and have been verified mostly by comparison
with simulations [33, 21], although the solar wind measurements also show some
promise. So far, the model most consistent with the data is [30], which correctly
explains the ratio of anisotropies and the ratio of energies, given a certain ratio of en-
ergy fluxes. Imbalanced relativistic force-free MHD turbulence, supposedly existing
in such objects as parsec-scale jets and GRB engines has been simulated recently by
[87] and seem to exhibit properties consistent with the [30] model. Since we expect
Alfvén mode to survive in low-collisional environments such as jets, pulsar winds,
etc., we are particularly interested in the properties of magnetic field line diffusion
of Alfvénic turbulence. The study of magnetic field diffusion is also equivalent to the
study of charged particle diffusion in the limit of negligible pitch angle scattering,
e. g., due to zero perpendicular momentum.

Assuming very strong mean field B0 pointing in the x direction, the equation for
the magnetic field line is

dr
dx
=

b
B0
, (7.1)

where themagnetic perturbationb = B − B0 is perpendicular to themeanfield (Alfvén
mode), so that the displacement vector r will only have perpendicular components.
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Similarly, particles moving along such a field in one direction will only experience
perpendicular diffusion, as dx ≫ |dr|.

7.1.3 Limiting cases: very small and very large distances

The nonlinear system’s stochasticity is often characterized in terms of the so-called
Lyapunov exponents, the separation rates, which are experienced by two close trajec-
tories. It is clear that in the case of field line diffusion the separation on small distances
could be obtained by Taylor expansion of the magnetic field, keeping only the linear
terms. And the Lyapunov exponents, i. e., the λ in the r ∼ exp(λx) law, will be defined
by the diagonal components of the matrix describing perpendicular gradients of the
field,

1
B0
𝜕Bi
𝜕rj
. (7.2)

After statistical averaging over different initial separations, the positive Lyapunov
exponent will dominate, resulting in the growth of separations as

⟨Δr2⟩ ∼ exp(2λ|x|). (7.3)

Note that this formula is exactly symmetric with respect to the sign of x.
If magnetic field lines separate for a distance much larger than the outer scale of

turbulence L, the δb becomes truly random and independent of the separation. In this
limit, the magnetic field lines experience random walk, i. e., ordinary diffusion

⟨Δr2⟩ = Brms|x|
LB0

(7.4)

This limit is known as field line random walk (FLRW) and has been used to de-
scribe perpendicular diffusion in [204]. Note that the random walk depends only on
the RMS of magnetic field and must also be symmetric with respect to the sign of x.

7.1.4 Intertial range distances – hand-waving derivation

Now imagine that we would like to see perpendicular diffusion again as a random
walk, i. e., a Markovian process, but now the characteristic RMS would itself depend
on the separation distance r. Let us say that we determine such an RMS by calculating
first-order perpendicular structure function of B, designate it Br and assume that it
follows Kolmogorov scaling δBr = Cr1/3; see, e. g., [25]. By solving dΔr/ds = Br/B0, we
will find that

⟨Δr2⟩ = 8
27
C3 |x|

3

B30
. (7.5)
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Here, the diffusion is also symmetric with respect to x. The important limitation
of this derivation is that we imagined Markovian process where each step does not
depend on the previous steps. In the turbulent diffusion, this is normally not satisfied.

7.1.5 Inertial range distances – Richardson–Alfvén diffusion

Suppose we follow magnetic field lines started from two points, separated by a small
initial distance r0. As the difference between B scales as δBl ∼ l1/3, we would expect a
stochastic separation of the magnetic field lines in to follow the law:

⟨(Δr)2⟩ = gmϵv
−3
A |x|

3, (7.6)

where ϵ is the dissipation rate per unit mass, as defined above, and vA = B0/√4πρ
is the Alfvén speed. This expression can be obtained by replacing t in Richardson’s
formula with the time variable for the Alfven wave, x/vA − t with t = 0.

For the lack of a better term in the literature, we will designate this Richardson–
Alfvén diffusion and term the dimensionless constant gm Richardson–Alfvén con-
stant. Although we call this diffusion by analogy with physical diffusion in time, this
is rather a stochastic separation in space. Nevertheless, the term diffusion seems ap-
propriate due to similarity with physical diffusion and relevance of this problem to
perpendicular diffusion of particles.

If magnetic field lines separate for a distance much larger than the outer scale
of turbulence L, the δb becomes truly random and independent of the separation. In
this limit, the magnetic field lines experience random walk, i. e., ordinary diffusion
⟨(Δr)2⟩ ∼ |x|. This limit is known as field line randomwalk (FLRW) and has been used
to describe perpendicular diffusion in [204]. Note that the randomwalk must be sym-
metric with respect to the sign of x.

7.1.6 Numerical results, asymmetric diffusion

We used magnetic field snapshots obtained in simulations of Alfvénic turbulence.
These simulations solved the reduced MHD equations with explicit dissipation and
driving to achieve statistically stationary state. Further details behind the RMHD ra-
tionale, simulation setup, driving, numerical scheme, etc., can be found in [22]. Each
simulation represents stationary, strong MHD turbulence with strong mean field. The
balanced simulation B1 has been previously reported in [21] and imbalanced simula-
tions I1–6 has been reported in [34]. More details concerning these simulations can be
found in the above references. The parameters of the simulations are summarized in
Table 7.1, with the defining feature of each imbalance simulation being the ratio of the
dissipation rates ϵ± for Elsässer componentsw±.

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



128 | 7 Turbulence and charged particles

Table 7.1: Simulation parameters.

Run Resolution ϵ+/ϵ− w+/w− ℓ−‖∗/ℓ
+
‖∗ g+m/g

−
m

B1 15363 1 1 1 1
I1 512 ⋅ 10242 1.19 1.16 1.07 1.03
I3 512 ⋅ 10242 1.41 1.37 1.15 1.15
I5 1024 ⋅ 15362 2.00 2.36 1.36 1.31
I6 1024 ⋅ 15362 4.50 6.70 1.78 1.71

Figure 7.1: Diffusion of magnetic field lines. With initial separations r0 (0.2η ÷ 3.3η) two field lines
start diffusing apart at r ∼ 12η by Richardson–Alfvén law with gm = 0.14 and transition to ordinary
diffusion with coefficient 0.3Lbox at separations around outer scale of turbulence from [24]. Repro-
duced from [24] with permission of AAS.

Wewere tracking the pairs ofmagnetic field lines started at randompositions through-
out the box and initially separated by distance r0 by Equation (7.1). Figure 7.1 shows
the tracking results for theB1 simulation. The transition toRichardson’s diffusionhap-
pens when particles are separated by around twelve Kolmogorov (dissipation) scales
η. We chose five initial separations, fractions of η. At large distances, they seem to
converge toward Richardson–Alfven diffusion with gm = 0.14. At sufficiently large dis-
tances, the field lines started experiencing randomwalk, i. e., ordinary diffusion with
diffusion coefficient of 0.3Lbox. We typically used 4 ⋅ 105 field line pairs for statistical
averaging.

The next tracking experiment involved simulations I1–I6. These also experienced
Richardson–Alfvén diffusion, but now the diffusion speed was different depending
on whether we track magnetic fields forward or backward (negative or positive dx).
We plotted the ratio of forward to backward separations from the simulation I5 on
Figure 7.2. It turned out that this ratio is fairly insensitive to the initial separation r0,
when r0 was varied by a factor of around 16, with most difference being due to sta-
tistical error. Different snapshots of the same simulation showed more variation. We
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Figure 7.2: The ratio of forward to backward diffusion in datacubes from simulation I5. Upper plot
shows five curves from the same datacube with different initial separations, same as on Figure 7.1.
Lower plot shows time variability of the ratio. Reproduced from [24] with permission of AAS.

used this variation in time to estimate the error in the diffusion ratio. In the large x
limit, this ratio went to unity, consistent with the symmetry of random walk. We esti-
mated the ratio of Richardson–Alfven constants by taking the maximum of the ratio
curves, which was also somewhere around the middle of the inertial range in terms
of perpendicular separation. The measurements of the ratio g+m/g

−
m are presented in

Table 7.1 and Figure 7.3.

Figure 7.3: The ratio of forward to backward diffusion as a function of imbalance in energy fluxes.
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7.1.7 The model of asymmetric diffusion

Hydrodynamic turbulent diffusion forward and backward in time is known to be dif-
ferent by a factor of a ≈ 2 [42], which is due to fundamental nonreversibility of tur-
bulence. In our case, the diffusion of magnetic field lines comes from the w+ com-
ponent, which propagates against mean field and w− component which propagates
along mean field. The diffusion of field lines along the field will be “forward in time”
for w− and “backward in time” for w+ and vice versa for the opposite direction. As-
suming that the diffusion from b± is proportional to the energy flux ϵ±, we can write
for the diffusion asymmetry:

g+m
g−m
=
ϵ− + amϵ+

amϵ− + ϵ+
, (7.7)

where am is the time-asymmetry in MHD turbulence. Figure 7.3 indicates that this
model agrees with data reasonably well, as long as am = 2.2÷ 2.5, which is compatible
with hydrodynamic time-asymmetry. From the balanced value of gm = 0.14, we can
also derive Richardson–Alfven constants forward and backward in time: gt+ = 0.084,
gt− = 0.196.

Equation (7.6) looks similar to the critical balance of [172]. Introducing anisotropy
constant CA, critical balance can be written as ℓ‖ = CAvAℓ2/3⊥ ϵ−1/3 [22], where ℓ‖ is the
distance parallel to the field, i. e., analogous to x and ℓ⊥ is a perpendicular distance.
This is indeed the same functional dependence as Equation (7.6). However, if the as-
sume that these relations are identical, this would imply that CA = g−1/3m . This is not
satisfied, however. The difference is that the measurement of the diverging magnetic
fields is quasi-Lagrangian, while the measurement of structure function that lead to
anisotropy constant is Eulerian. This difference becomes even more pronounced in
the imbalanced case, where each of the w± components has its own anisotropy. The
analogy betweenRichardson–Alfven diffusion and critical balancewould suggest that
g+(ℓ+‖ )

3 = g−(ℓ−‖ )
3. We presented the ratio of parallel scales in the middle of the iner-

tial range in Table 7.1. As we see, the expression above is not satisfied and the ratio
of magnetic diffusions cannot be explained by the anisotropy difference. So, despite
the similar functional form, Richardson–Alfvén diffusion has no direct relationship to
Goldreich–Sridhar anisotropy.

7.1.8 Implications of asymmetric field line wandering for particle transport

Our measurement is the first demonstration of the x3 superdiffusion of magnetic field
lines in simulations of MHD turbulence. Superdiffusion of fast particles in the solar
wind has been argued based on observational data [357]. Diffusion of field lines as-
suming arbitrary scaling of the magnetic spectrum has been first discussed in [204],
however derived using Markovian delta-correlated field structure producing exactly
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symmetric diffusion, as in Section 7.1.4. Subsequentwork employedGoldreich-Sridhar
scaling to predict superdiffusion of particles based on superdiffusion of field lines
[336, 257]. The reconnectionmodel [278] also used the same scaling for field line diffu-
sion. All of this work predicted summetric diffusion, while the asymmetric superdif-
fusion was discovered only later in [24]. The earlier measurement of perpendicular
diffusion using MHD simulations [41] has beenmade in the large separation limit and
reproduced FLRW, which is symmetric. The measurements of cosmic ray propagation
in artificial random fields, such as [163] can, in principle, reproduce superdiffusion,
but since artificial fields lack the time-asymmetry of turbulent fields, they cannot
reproduce asymmetric diffusion. Based on the similarity between Goldreich–Sridhar
anisotropy and Richardson’s diffusion [336] suggested that magnetic field lines sepa-
rate within the Goldreich–Sridhar cone, however, according to the section above, this
analogy is misleading, especially in the imbalanced case. Time-asymmetry of turbu-
lence, that we confirmed in this article, have consequences for small-scale dynamo
as well [23].

One of the consequences of asymmetric perpendicular diffusion is an induced
streaming. Indeed, if we consider two closemagnetic field tubes, one of which is filled
with isotropically distributed particles and another empty, the asymmetric diffusion
into the empty tube will result in an average streaming ∼ (1 − g+/g−) of the particle’s
velocity. In particular, for relativistic particles, such as cosmic rays, this will result
in streaming velocity of 2c(1 − g+/g−)/π, which could easily exceed the threshold for
streaming instability, vA as long as imbalance amplitude 1−w−/w+ exceeds (3π/2)vA/c,
which is around 10−4 in the WISM. Therefore, the induced streaming will be coun-
teracted by streaming instability [244]. Above the threshold for turbulent damping
[148, 31, 276], streaming instability will be suppressed and, it can be shown that the
weak large-scale streaming should reappear at energies 1011 eV and strong streaming
is expected above 3 ⋅ 1013 eV, although such energies are already heavily influenced by
pitch-angle scattering. The net effect of the streaming instability from particles with
energies below 3 ⋅ 1013 eV will be a flux of slab waves which will increase the rate of
pitch-angle scattering for these particles.

7.2 Turbulence and particle acceleration
7.2.1 Observational evidence for acceleration different from classic DSA

Magnetically-dominated environments are fairly common in Astrophysics and a siz-
able fraction of astrophysical objects are made of rarefied plasma. These objects are
only visible because they contain a nonthermal particle population, which dominates
emission across most of the spectrum. The basic idea that nonthermal emission re-
quire particle acceleration has been around for some time. One of the main elements
of the explanation of how energy is being transferred to particles is the mechanism of
energy dissipation. Indeed, if astrophysical fluids may be considered almost inviscid
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and perfectly conducting, how large-scale energy can be lost to thermal and nonther-
mal particles. Few mechanisms has been suggested: (a) discontinuities in the fluid
motion, e. g., shocks, (b) turbulence, and (c) discontinuities in themagnetic field, i. e.,
current sheets. Following the idea of [151] that collisionless particles can get energy
by scattering in fluid motions, especially converging motions, the diffusive shock ac-
celeration (DSA) mechanism has been proposed [241, 18, 302] and has become rather
popular in explaining nonthermal electromagnetic emission, as well as cosmic rays—
energetic charged particles, detected at Earth. In the DSA, however, the acceleration
rate is related to the scattering rate, with the latter being importantly bound by the
so-called Bohm limit, which assumes that scattering rate must be lower than Larmor
gyration frequency. This makes acceleration progressively slower at higher energies.
On the other hand, the observations of many variable astrophysical objects suggested
extremely fast acceleration timescales, incompatible with DSA. Few blazar jets pow-
ered by supermassive black holes exhibit ∼ 10 min variations in TeV emissions, e. g.,
[2, 5]. Such fast time variabilities, along with other emission region constraints, have
been suggested as evidence for mini-jets generated by reconnection [166]. Recent ob-
servations of gamma-ray flares from Crab [1] revealed that the impulsive nature of the
energy release and the associated particle acceleration might need an alternative ex-
planation as well [100]. It has also been suggested that reconnection plays a crucial
role in producing high energy emissions from gamma-ray bursts [464].

In the environments which are known to be magnetically dominated, e. g., the
solar corona or the pulsar wind nebula, it is natural to expect the magnetic energy
to be the main source. The global energetics of the powerful X-ray flares confirm this
natural assumption. Reconnection and associated phenomena has been a active field
of study; see, e. g., [425] for a review. It would be interesting to find if there a generic
mechanism to transfermagnetic energy into particles and to conceptually understand
the nature of recent numerical results that demonstrated that in both MHD fluid sim-
ulations [227] and ab-initio plasma simulations [397, 186, 427] of reconnection there
is a regular acceleration of particles

Particle acceleration is often classified into “first-order Fermi” mechanism where
particles are gaining energy regularly, e. g., by collidingwith convergingmagneticmir-
rors and “second-order Fermi” where particles can both gain and lose energy [151].
These two are not mutually exclusive and represent two different terms in the equa-
tion for the evolution of the distribution function: the terms describing advection and
diffusion in energy space correspondingly. In practical terms, the first-order mecha-
nism usually dominates, if present, as the acceleration rate is proportional to the first
order of u/v, where u is the typical velocity of the scatterer and v is the particle veloc-
ity. The outcome of the first-order acceleration can be described in terms of the rate
at which particle gain energy, acceleration rate, racc, and the rate of particle escap-
ing from the system, resc. If escape is negligible and racc is constant with energy, the
energy of each particle grows exponentially. Also, if resc/racc does not depend on en-
ergy, the stationary solution for the particle distribution is a power-law,with the power
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law index determined by −1 − resc/racc; see, e. g., [125]. Various environments, such as
supernova shocks, were thought to satisfy this condition and produce power-law dis-
tributed cosmic rays, which become consistent with observations after beingmodified
by diffusion. Accelerationwithinmany orders ofmagnitude in energywas regarded as
a result of a large-scale physical layout of the acceleration site, e. g., the planar shock
can be thought of as a set of large-scale converging mirrors. The very same picture
could also be applied to the large-scale reconnection site, where the two sides of the
inflow effectively work as converging mirrors [111]. In this chapter, we deviate from
this mindset of the problem that achieve scale-free acceleration just because there is
only a single scale—the scale of the system. Insteadwewill try to find regular accelera-
tion over large energy ranges in systems that do not necessarily possess global regular
structure; however, they could still be scale-free in statistical sense, such as turbulent
systems. Normally, turbulent environments are expected to be regions of second-order
acceleration; see, e. g., [385, 85]. In this section, we point to the different mechanism
of regular or first-order acceleration. This mechanism is inherently related to a certain
statistical measure of energy transfer in turbulence and, therefore, does not rely on a
particular geometry and is very robust. As we will show below, the direction of energy
transfer frommagnetic field to kinetic motions and the sign of curvature drift acceler-
ation are inherently related, so that in systems with the average positive energy trans-
fer frommagnetic energy to kineticmotions there is an average positive curvature drift
acceleration, while in the opposite case, there is an average curvature drift cooling.

One of the commonly considered cases of magnetically-driven flows is magnetic
reconnection. A significant effort was put into understanding on ideal plasma effects
that couldboth cause reconnection and create nonzeroparallel component of the elec-
tric field [364, 154]. In this section, we apply our model to reconnecting layers which
are large-scale in a sense that the current layer is many orders of magnitude thicker
than the ion skin depth di. In this case, the reconnecting layer may have multiple X-
points and while nonideal effects are indeed required for the individual field lines to
break and reconnect, their influence is limited to fairly small scales, typically around
the ion skin depth di. In this section, we instead focus on larger scales and ignore non-
ideal effects for the following two reasons. First, it has beenargued that understanding
of global energetics of large-scale reconnection, such as the amount of magnetic en-
ergy dissipated per unit time, does not require detailed knowledge on how individual
field lines break and reconnect; see Chapter 8 and [278, 143, 297, 27]. These global en-
ergetic parameters, aswewill showbelow, could bemore important for acceleration to
high energies than local nonideal effects. Second, in order to understand high energy
particle acceleration, one normally has to consider plasma dynamics on scales much
larger than di, that is onMHD scales. We do not address here the problem of the accel-
eration from the thermal pool, for which plasma effects are important. While modern
simulations such as [397, 186, 427], are able to reach box sizes of several hundred di,
some theory work is needed to disentangle acceleration from MHD and the nonideal
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Figure 7.4: Several acceleration
mechanisms in the case of magnetic
relaxation and/or dissipation The
upper panel – reconnection with
inflow and outflow. The middle
panel – spontaneous reconnection
with negligible inflow. The bottom
panel – homogeneous decaying
MHD turbulence. Reproduced from
[38] with permission of AAS.

effects. The particle acceleration produced in the convergent flow of MHD-scale re-
connection was discussed in [111, 256] and tested in [227]. This case is conceptually
similar to shock acceleration [124]. Belowwe discuss an alternative mechanism based
on curvature drift acceleration which is expected to be efficient in reconnection, as
well as other types of magnetically-driven turbulence. Figure 7.4 shows a cartoon of
several acceleration mechanisms in magnetized environments. The upper panel de-
picts reconnection with inflow and outflow where particles can be accelerated regu-
larly due to the gradient drift and the large-scale electric field. The acceleration term is
dominated by vz and Ez . Themiddle panel depicts initial stages of spontaneous recon-
nection, which has negligible inflow, therefore, the gradient drift term averages out.
In this case, acceleration is mostly driven by contracting field lines which drive fluid
motion and at the same time cause the curvature drift of particles. Note that the direc-
tion of drift is typically perpendicular to the fluid motion. The dominant acceleration
term is associated with Ex and the field curvature of By component. The bottom panel
depicts the samemechanism in a more homogeneous and isotropic setup of decaying
MHD turbulence, which also has contracting field lines. In this situation, all vector
components contribute equally.

7.2.2 Statistics of general MHD flows and energy transfer

Well-conductive plasmas can be described on large scales as inviscid and perfectly
conducting fluid (ideal MHD). The ideal MHD equations allows for exchange between
kinetic and magnetic energies. The Lorentz force density, multiplied by the fluid ve-
locity,u ⋅ [j × B]/c is the amount of energy transferred frommagnetic to kinetic energy.
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While macroscopic (i. e., kinetic plus magnetic) energy is expected to be conserved in
the ideal MHD, it is not the case in real systems which have nonzero dissipation coef-
ficients. This is qualitatively explained by the nonlinear turbulent cascade that brings
macroscopic energy to smaller and smaller scales until it dissipates into thermal en-
ergy. One of the important examples of this is the spontaneous reconnection where
the thin current layer becomes turbulent and starts dissipating magnetic energy at
a constant rate. The small scales of these turbulent flows resemble “normal” MHD
turbulence, which has equipartition between magnetic and kinetic energies [27]; it is
also true that kinetic and magnetic part of the cascade each contribute around half
of the total cascade rate. Therefore, if we assume that the turbulent cascade is being
fed with magnetic energy, approximately half of the magnetic energy has to be trans-
ferred into kinetic energy before equipartition cascade sets in. It follows that theB to v
energy transfer must be positive on average and could be approximated by one half of
the volumetric energy dissipation rate ϵ, the main parameter of turbulence. The term
u ⋅ [j × B]/c is the Eulerian expression for the work done by magnetic tension upon
the fluid element. This term can be rewritten as the sum of −(u ⋅ ∇)B2/8π, advection of
magnetic energy density by the fluid, and

𝒯bv = u ⋅ (B ⋅ ∇)B/4π, (7.8)

the actual energy transfer between B and v. For the purpose of future calculations, we
will separate the 𝒯bv in the following way:

𝒯 =
1
4π

u ⋅ (B ⋅ ∇)B

=
1
4π
(u ⋅ B)(b ⋅ ∇)B + B

4π
u ⋅ (B ⋅ ∇)b = 𝒳 +𝒟, (7.9)

wherewe designatedb = B/B, a unitmagnetic vector. The term𝒳 contains cross helic-
ity densityu ⋅ B.We argue that in those systemswhere ⟨u ⋅ B⟩ = 0,which includemany
physically relevant cases, such as spontaneous reconnection, the whole𝒳 term could
average out (see also Figure 7.5). The second term𝒟 contains magnetic field curvature
(B ⋅ ∇)b and will be important for subsequent calculation of curvature drift.

7.2.3 Acceleration by curvature drift

To explore the implications of magnetic energy transfer in nonthermal particle accel-
eration, it is instructive to consider the particles motion in slowly-varying electric and
magnetic field, which can be described in the so-called drift approximation. The lead-
ing drift terms are known as electric, gradient, and curvature drifts. While electric
drift, proportional to [E × B], cannot produce acceleration, the other two drifts can.
For example, imagine the configuration of the reconnection with the inflow, Figure 7.4
top panel. The gradient drift ∼ [B × ∇B] is along −z, and so is the electric field in the
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Figure 7.5: A case study of terms related to curvature drift acceleration and energy conversion in
spontaneous reconnection and decaying MHD turbulence. Left panel: Case A, volumetrically aver-
aged energy conversion rate 𝒯 and curvature acceleration rate𝒟 in MHD simulation with turbu-
lent current layer produced by spontaneous reconnection with setup described in [27]. Right panel:
Case B, the same for decaying turbulence generated by random initial field. On both panels, we also
show cumulatives ∫ {𝒯 ,𝒟}dt. The reconnection case (left panel) is characterized by approximately
constant turbulent dissipation rate and it also shows a stable rate of energy conversion 𝒯 , while𝒟
closely follows 𝒯 . The decaying turbulence (middle panel) shows a burst of energy conversion rate
within a few dynamical times (Alfvénic times). In both cases, the gradient drift acceleration term (not
shown) is relatively negligible. Bottom panel shows the scale-dependency of the𝒟 term, by plot-
ting𝒟l, which is obtained by calculating𝒟 with a coarse-grained dynamical quantities v,B (Gaus-
sian low pass filter in Fourier space with a cutoff wavenumber k = 2π/l).𝒟l has a physical meaning
of all energy transfer B to v accumulated down to scale l, for which reason it asymptotes to a con-
stant at small l or large cutoff wavenumbers. The inset in the right panel shows kinetic and magnetic
spectra in case A to demonstrate the range of scales within which magnetic energy is transferred to
kinetic—down to k ≈ 30 with thick arrows depicting the energy transfer. Reproduced from [38] with
permission of AAS.

ideal case E = −[u × B]/c. Their product will be positive and will result in accelera-
tionwhich is due to particles being compressed by the converging inflow. Thismecha-
nism does not work in the initial, most energetic stages of spontaneous reconnection,
which has negligible inflow, Figure 7.4 middle panel [27]. It is this initial stage that
has the highest volumetric dissipation rate, however. Figure 7.4 illustrates why curva-
ture drift acceleration is important in this configuration. It also turns out that in any
magnetically-driven turbulent environment, such as depicted on the bottom panel of
Figure 7.4, curvature drift acceleration will accelerate particles on average.

Let us look carefully at the termwhich is responsible for acceleration by curvature
drift,

dℰ
dt
= −2

ℰ‖
B
[u × B] ⋅ [b × (b ⋅ ∇)b], (7.10)

(see, e. g., [398]), where ℰ‖ = v‖p‖/2 = γmv2‖/2 is a particle’s parallel kinetic en-
ergy. With some manipulation, this expression could be equivalently transformed as
2(ℰ‖/B)u ⋅ (B ⋅ ∇)b. It now becomes clear that this term is related to the transfer rate
between magnetic and kinetic energies, in particular it is a fraction of𝒟:

dℰ
dt
= ℰ‖

8π
B2

𝒟. (7.11)

The physical meaning of this equation is that, given efficient particle scattering,
so that ℰ‖ = ℰ/2, the acceleration rate is determined by the half of the local energy
transfer rate 8π𝒟/B2, not including the 𝒳 term.
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7.2.4 Numerical case study of two types of turbulence

We can test the general ideas outlined above in two physical cases that feature turbu-
lent energy transfer from magnetic to kinetic energies. Using spontaneous reconnec-
tion and the decaying MHD turbulence simulated numerically, we can directly calcu-
late the discussed terms and compare them. The spontaneous reconnection numeri-
cal experiment was started with thin planar current sheet and small perturbations in
u and B and was described in detail in [27], while the decaying MHD turbulence was
similar to our previous incompressible driven simulations in [32], except that there
was no driving and the initial conditions were set as a random magnetic field with
wavenumbers 1 < k < 5 and zero velocity. Both simulations developed magnetically-
driven flows, from which we calculated the average 𝒯 ,𝒟, and 𝒳 terms and presented
them in Figure 7.5.

The spontaneous reconnection case had fairly stable reconnection rate, this also
corresponded to the approximately constant𝒟 integrated over the volume. The𝒳 term
did not seem to be sign-definite and contributed relatively little. Gradient drift acceler-
ation was also negligible, possibly due to the absence of global compression. Keeping
in mind that all the energy had to come frommagnetic energy, and given that the dis-
sipation rate was approximately constant, it was no surprise that the average 𝒟 term
evolved relatively little. It should be noted, however, that in the spontaneous recon-
nection experiment the width of the reconnection region was growing approximately
linear with time [27], so the 𝒟 term magnitude, pertaining to the reconnection region
itself was much higher than that of an averaged𝒟 over the total volume. Given the re-
connection layer thickness l(t), the local 𝒟 could be estimated as (1/2)vr(B2/8π)/l(t),
where vr is a reconnection rate, which was vr ≈ 0.015vA in [27] and the 1/2 comes from
only half of magnetic energy being transferred into kinetic energy before physically
dissipating on very small dissipation scale η ≪ l(t). This would correspond to accel-
eration rate of (1/4)vr/l(t) and can be very high, because the l(t) could be as small as
the Sweet-Parker current sheet width or the ion skin depth.

The decaying MHD turbulence experienced two regimes: (1) the initial oscillation
when excessive amount of magnetic energy was converted into kinetic energy and the
bounce back and partial inverse conversion afterwards, and (2) the self-similar decay
stage of MHD turbulence. The first stage had the strongest conversion termwhich was
dominated by 𝒟. All terms integrated over time were mostly accumulated within the
first 1–2 Alfvénic times.

It is known from turbulence theory that the energy transfer rate 𝒯 can be demon-
strated to be local in scale, under relatively weak assumptions [9, 23]. The scale-
locality means that each scale contributes to the transfer independently. We also
know empirically that most of the transfer between magnetic and kinetic energies
happens on relatively large scales which are comparable to the outer scale of the
system, while below outer scale there is little average transfer due to an approximate
equipartition between kinetic and magnetic energies. For example, the reconnecting
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turbulent current layer hasmost of its 𝒯 transfer within a factor of a few of the scale of
the layer thickness, while in the decaying turbulence problem it is within a factor of a
few from the outer scale of the system. Let us designate 𝒯l as a transfer calculated from
quantities which were filtered by low-pass Gaussian filter with a cutoff wavenumber
of 1/l. Keeping in mind of locality, we will conclude that only scales larger than l will
contribute to 𝒯l. This means that 𝒯l will be constant for small l and will start decreas-
ing when l approaches the outer scale of the problem L. In general, we cannot deduce
the same for𝒟l and 𝒳l, but keeping in mind that 𝒳l contributes relatively little in two
cases that we considered,𝒟l ≈ 𝒯l in those cases. Figure 7.5 demonstrates this behavior
on the bottom panel, where energy transfer is operating between wavenumbers 2 and
20 in the reconnection case (1/20 is approximately the layer width at this point), and
the𝒟l mostly changes within the same range of scales. The decaying turbulence case
has the transfer more localized around the outer scales.

In terms of drift, the particle with Larmor radius rL will “feel” magnetic and elec-
tric fields on scales larger than rL, while the scales smaller or equal to rLwill contribute
to particle scattering. It follows that the “effective”𝒟 will be𝒟rL , an implicit function
of energy. Combining this with the result obtained above that 𝒟l goes to a constant
for small l, we conclude that the acceleration rate will also go to a constant for parti-
cles with rL smaller than the system size. A similar, more hand-waving argument, is
that the term𝒟l could be roughly approximated as B2l vl/l, resembles turbulent energy
transfer rate, which is scale-independent. Interestingly, starting with scale indepen-
dent energy transfer in turbulence we arrived at the energy-independent acceleration
rates. Given the generality of the arguments presented above, it is not surprising that
energy-independent rates were indeed observed in simulations [186].

7.2.5 Expected picture for turbulent acceleration in reconnection

The development of the thin current sheet instability results in turbulence and recon-
nection in a sense of dissipated magnetic energy. This process will come through two
distinct regimes, the regime without significant outflow for times smaller than L/vA
[27] and the stationary reconnectionwith outflow for larger times [278]. Let us consider
the first regimewhich has larger dissipation rate per unit volume, because the current
layer thickness l(t) = vrt is relatively small. We use vr for the reconnection rate and t
as the time since the beginning of spontaneous reconnection. Let us assume that the
current layer thickness is limited frombelow by the ion skin depth.Wewill have accel-
eration rate of 1/(4t) for all times larger than di/vr but smaller than L/vA. The solution
for energy, therefore, will be ℰ = ℰ0(tvr/di)1/4 where ℰ0 is the initial energy, e. g., the
thermal energy. The particle’s energy will be ℰmax = 0.35ℰ0(L/di)1/4 given the recon-
nection rate vr = 0.015vA. This, however, is only the maximum energy of accelerated
particles, as only a tiny fraction of particles were contained in the original thin current
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sheet and started accelerated from initial time di/vr [186].With proper stochastic treat-
ment and assuming that the escape rate resc is negligible compared with acceleration
rate in this no-outflowproblem,we expect to see the power lawparticle spectrumwith
the −1 slope and a cutoff at ℰmax.

The subsequent development of an outflow will do three things: first, it will en-
able the inflow and, therefore, the extra acceleration term associated with gradient
drift or convergingmagneticmirrors [111]. Second, it will stabilize acceleration rate for
the curvature drift acceleration at vA/4L, as the current layer is no longer expanding.
Third, it will enable particle escape through the outflow. In this regime, the spectrum
will extend from ℰmax to higher energies, up to Larmor radii of the large scale of the
current sheet L. The spectral slope of this extensionwill be determined by−1−resc/racc,
where racc should account for all acceleration and cooling mechanisms, such as gra-
dient drift acceleration and outflow cooling. The detailed analysis of this stage will be
the subject of a future work.

The electron spectra observed in solar X-ray flares are fittedwith the thermal com-
ponent with temperature of several keV and the steep power law component. This is
consistent with our picture, as the rather shallow −1 slope, containing most of its en-
ergy near ℰmax, is likely to thermalize. Also, the outflow phase will extend this distri-
bution as a power-law to higher energies.

Magnetic configurations that relax to the lower states of magnetic energy will also
regularly accelerate particles, on timescales which are, typically, Alfvénic, but can be
much shorter, e. g., in the beginning of spontaneous reconnection. Thismechanism of
acceleration of collisionless nonthermal particles by MHD electric field should not be
confusedwith the acceleration of the bulk of the plasma bymagnetic tension. Indeed,
for particles with low energies the drift terms could be neglected, i. e., Equation 7.10
RHS will be trivially zero. In the bulk fluid acceleration, the energy gained by each
particle does not depend on its initial energy, while for drift acceleration scenario it
is proportional to the particle energy. Another way to understand the difference be-
tween plasma heating and our acceleration mechanism is to consider turbulent dy-
namowhere kinetic energy of fluidmotions is partially converted intomagnetic energy
and partially dissipated by the turbulent cascade. In this case, plasma will be heated
due to the turbulent cascade, while we expect energetic particles to be cooled or de-
celerated by the curvature drift, since the 𝒯 termwill be negative. This means that the
relation between energy dissipation and acceleration of particles is not trivial.

Some recent observations, e. g., [2, 1, 5] suggested high energy emission variability
could be as fast as variability at lower energies, which is at odds with DSA, which
predicts acceleration timescale proportional to diffusion coefficient which is typically
a positive power of energy. This has been pointed out as amotivation for reconnection
scenario [100, 166, 464].

Particle acceleration during reconnection is a topic under intense study, but the
mechanism discussed in this section is distinctly different from the direct accelera-
tion by the reconnecting electric field at the X-line. In fact, we completely ignore non-
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ideal effects which produce local E‖B. Also, our mechanism is not tied to a special
X-point, but instead volumetric. An interesting first-order acceleration mechanism in
idealMHD turbulence related to imbalanced turbulence and convergent field lines has
been suggested recently by [386].

The regular acceleration due to converging field lines have been suggested in [111],
later it was pointed by [124] that an outflow cooling should also be included. In this
section, we do not rely on simple transport equation, such as Parker’s, therefore, we
relax the above approach’s requirement that particles need to be almost isotropic. The
acceleration in turbulent reconnection has been further numerically studied in [227].
Plasma PIC simulations has also been increasingly used to understand particle ac-
celeration. The emphasis was mostly on the nonideal effects near X-line regions and
interaction with magnetic islands [463, 364, 154, 122, 341, 197, 105]. The change of
energy due to curvature drift in a single collision of a particle with magnetic island
was estimated analytically in [122]. An important question that was left out in that
study was whether this term will result in acceleration or cooling, on average. With-
out understanding this, it was not clear whether this process results in acceleration
or deceleration or the second-order effect. In this section, we unambiguously decide
this by relating the answer to a certain well-known statistical measure in turbulence—
the direction of transfer between magnetic and kinetic energies. We also showed that
the curvature drift acceleration does not require particles to be trapped in contracting
magnetic islands, so their energy is not limited by this requirement, meaning that the
energy cutoff is not related to the island size, instead it is related to the system size;
see also [427].

PIC simulations are limited in the range of scales and energies they cover. Recent
simulations in [397, 186] demonstrated acceleration up to 100 MeV in electron ener-
gies, which is below maximum energy in most astrophysical sources. Theory, there-
fore, is necessary to supplement conjectures based on the observed PIC distribution
tails, explaining the underlying physical mechanism and making predictions for as-
trophysical systems which often feature gigantic scale separation between plasma
scales and the size of the system. The feedback from simulations, nevertheless, was
very useful, in particular the recent simulations [186] that reached MHD scales and
confirmed the prediction that the curvature drift accelerationwill dominate compared
to the nonideal electric field acceleration.
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8 Reconnection in the presence of MHD turbulence

8.1 The problem of reconnection

This is a chapter that dealswithmagnetic reconnection in astrophysical environments
that are generically turbulent. We discuss how turbulence makes reconnection fast
and what this means for many astrophysical systems.

8.1.1 Flux freezing and magnetic topology changes

Magnetic reconnection is a fundamental process that necessarily takes place in tur-
bulent fluids. Indeed, the turbulent fluid motions move magnetic field lines and it is
natural question to ask what happens when field lines intersect each other.

It is generally believed that magnetic fields both modify fluid dynamics and be-
ing embedded in a highly conductive fluid retain their topology for all time due to the
magnetic fields being frozen-in [7, 352]. At the same time, highly conducting astrophys-
ical objects, like stars and galactic disks, show evidence of changes in topology, i. e.,
“magnetic reconnection” that take place on dynamical time scales [351, 299, 363]. His-
torically, magnetic reconnection research was motivated by observations of the solar
corona [199, 458, 305] and this resulted in attempts to find peculiar conditions con-
ducive for flux conservation violation. Such studies included the search for special
magnetic field configurations or special plasma conditions. However, it is clear that
reconnection is a ubiquitous process taking place in various astrophysical environ-
ments. It is evident that without fast magnetic reconnection, magnetized fluids would
behave like Jello or felt, rather than as a fluid.

What makes reconnection enigmatic is that observations indicate that reconnec-
tion can be sometimes fast and sometimes slow. Therefore, magnetic reconnection
should have some sort of trigger. In what follows, we argue that the trigger is turbu-
lence.

8.1.2 Sweet–Parker model and its generalization to turbulent media

To understand turbulent reconnection, it is a good start with the classical Sweet–
Parker model of reconnection depicted in Figure 8.1.

The Sweet–Parker model is first successful analytical model for magnetic recon-
nection. It was proposed by Parker [349] and Sweet [412].1 The Sweet–Parker model

1 The basic idea of the model was first discussed by Sweet and the corresponding paper by Parker
refers to the model as “Sweet model.”

https://doi.org/10.1515/9783110263282-008
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Figure 8.1: Sweet–Parker reconnection. Simulations of laminar reconnection from [233] are used.
The current sheet has Lx extension, while the ejection of matter and shared component of magnetic
field happens through Δ. The cross-section of the reconnection is shown. Generically, the shared
component of magnetic field is directed perpendicular to the picture plane. This component should
be also ejected through Δ.

relies on a robust and straightforward geometry (see Figure 8.1). Two regionswith uni-
form laminar magnetic fields are separated by thin current sheet. The speed of recon-
nection is given roughly by the resistivity divided by the sheet thickness Δ, i. e.,

Vrec1 ≈ η/Δ. (8.1)

One might think that by Δ it is possible increase the reconnection rate. In fact, for
steady state reconnection the conservation of mass should be fulfilled and the plasma
in the current sheet must be ejected at the edge of the current sheet. This enaction
happens at the Alfvén speed, VA and, therefore, the resulting reconnection speed is

Vrec2 ≈ VAΔ/Lx , (8.2)

where Lx is the length of the current sheet. The latter equation requires Δ to be large for
a large reconnection speed. But at large Δ the rate annihilation of magnetic field lines
prescribedbyEquation (8.1) is small. As a result of the twocontradictory requirements,
the overall reconnection speed is reduced from the Alfvén speed by the square root of
the Lundquist number, S ≡ LxVA/η, i. e.,

Vrec,SP = VAS−1/2. (8.3)

This reconnection speed is a compromise between the fast outflow rate and slow
Ohmic diffusion rate. For astrophysical S that can be larger than 1016, the correspond-
ing Sweet–Parker reconnection speed is absolutely negligible.

The Sweet–Parker model is an idealization, as real astrophysical fluids are turbu-
lent. Therefore, it is essential to explore how the Sweet–Parker reconnection is mod-
ified in the presence of turbulence. Figure 8.2 illustrates the modification that was
suggested in Lazarian and Vishniac (1999) [278]; henceforth, LV99. It is evident from
the figure that in the turbulent case in contrast to the Sweet–Parker case, the outflow
is not limited by themicroscopic region determined by resistivity, but is determined by
magnetic wandering. The latter depends on the level of turbulence, e. g., themagnetic
Mach numberMA = uinj/VA, where uinj is the turbulence injection velocity. Therefore,
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Figure 8.2: Upper plot: Sweet–Parker model of re-
connection. The outflow is limited to a thin width δ,
which is determined by Ohmic diffusivity. The other
scale is an astrophysical scale Lx ≫ δ. Magnetic field
lines are laminar. Modified from [280]. Reproduced
by permission of the AAS.

there is no disparity between Lx and Δ, e. g., for trans-Alfvénic turbulence, i. e., for
MA = 1 the two scales can be comparable.

To generalize the Sweet–Parker model for the case of turbulence, it is natural to
considerMA which are smaller than one. If the turbulence is injected isotropically at
scale Li with the velocity uinj < VA gets into the regime of strong turbulence starting
with the scale,

ltrans ∼ Li(uinj/VA)
2 = LiM

2
A, MA < 1. (8.4)

The relation between parallel and perpendicular scales in GS95 turbulence in the case
ofMA < 1 were obtained in LV99:

l‖ ≈ Li(l⊥/Li)2/3M−4/3A (8.5)

Adopting that the field wandering is the cause of the reconnection zone broaden-
ing, it is easy to calculate Δ in the regime when the turbulence injection scale Li is less
than Lx. Adopting l‖ = Li in Equation (8.5), one finds that the perpendicular extend of
the eddy at the injection scale is LiM2

A. The transverse contributions from different ed-
dies at the injection scale are not correlated and, therefore, the growth of Δ is random
walk with a step of LiM2

A. The number of the steps along Lx is Lx/Li, and thus

Δ ≈ (Lx
Li
)
1/2
LiM

2
A, Li < Lx , (8.6)

and, therefore,

vrec,LV99 ≈ VA( LiLx )1/2M2
A, Li < Lx , (8.7)

which coincides with the LV99 result in this limit.
LV99 obtained also the result by calculating magnetic field wandering for Li > Lx.

The same result can be also obtained using the concept of Richardson dispersion that
we have already discussed for MHD turbulence in Chapter 7.

Below we base our presentation on the approach in presented in [143]. Richard-
son diffusion/dispersion can be illustrated with a simple hydrodynamic model. Con-
sider the growth of the separation between two particles dl(t)/dt ∼ v(l), which for
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Kolmogorov turbulence is ∼ αt l1/3, where αt is proportional to the energy cascading
rate, i. e., αt ≈ V3

L/L for turbulence injected with super-Alvénic velocity VL at the scale
L. The solution of this equation can be easily obtained:

l(t) = [l2/30 + αt(t − t0)]
3/2
, (8.8)

which at late times leads to Richardson dispersion or l2 ∼ t3 compared with l2 ∼ t for
ordinary diffusion. This superballistic behavior, i. e., l2 increases faster than t2, follows
from the simple fact that for points separated by the distance less than turbulence
injection scale, the larger the separation of the points the larger the eddies that induce
the point separation.

To obtain the reconnection rates, we consider again the Sweet–Parker reconnec-
tion in its original form. In the Sweet–Parker reconnection, magnetic field lines are
subject to Ohmic diffusion that induces themean-square distance between oppositely
directed magnetic field lines across the reconnection layer to change with the time

⟨y2(t)⟩ ∼ λt, (8.9)

where λ = c2/(4πσ) is the magnetic diffusivity. The plasma is advected out of the sides
of the reconnection layer of length Lx at a velocity of order VA. Thus, the time that the
lines can spend in the resistive layer is the Alfvén crossing time tA = Lx/VA. Therefore,
field lines that reconnect are separated by a distance

Δ = √⟨y2(tA)⟩ ∼ √λtA = Lx/√S, (8.10)

where S is Lundquist number. Combining Equations (8.2) and (8.10), one gets again
the Sweet–Parker reconnection scaling, vrec = VA/√S.

In the turbulent case instead of Ohmic diffusion, one should use the Richardson
dispersion [143]. In this case, the mean squared separation of particles changes as
⟨|x1(t) − x2(t)|2⟩ ≈ ϵt3, where t is time, ϵ is the energy cascading rate, and ⟨. . .⟩ denote
an ensemble averaging [246]. For sub-Alfvénic turbulence ϵ ≈ u4L/(VALi) (see LV99)
and, therefore, analogously to Equation (8.10), one can write

Δ ≈ √ϵt3A ≈ Lx(Lx/Li)
1/2M2

A, (8.11)

where it is assumed that Lx < Li. Combining Equations (8.2) with (8.11), one obtains

vrec,LV99 ≈ VA(L/Li)1/2M2
A, Li > Lx , (8.12)

that if combined with Equation (8.7) provides the description of the reconnection for
turbulent reconnection in the presence of sub-Alfvénic turbulence.
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8.1.3 Temporal and spatial Richardson diffusion

The two formally differentways of obtainingLV99 reconnection rates are verymuch re-
lated. In both cases,we are dealingwithmagnetic field lines stochasticity, but the case
of Richardson dispersion considers the time evolution of magnetic fields lines in tur-
bulent fluids, whilemagnetic fieldwandering presents the spatial distribution ofmag-
netic field lines for a givenmoment of time. Because of this connectionwemay call the
dispersion field lines that was quantified in LV99 was termed in [143] the Richardson
dispersion in space. In Chapter 7 we termed this phenomenon Richardson-Alfvén diffu-
sion. As none of the terms is generally accepted for the rest of the presentation we will
use a shortcut name “Richardsondispersion”whenever this does not cause confusion.

While it is the incompressible Alfvénic motions that are used to describe the
physics of Richardson dispersion, the process also takes place in compressible MHD
turbulence. This is due to the fact that Alfvénic turbulence is a part and parcel of com-
pressible MHD turbulence [82]. However, even for turbulence of shocks, i. e., Burgers
turbulence, the phenomenon of Richardson diffusion is present, although the exact
scaling is different [137].

8.1.4 Turbulent reconnection and violation of magnetic flux freezing

Magnetic flux freezing is a concept that is widely used in astrophysics. It is based on
the Alfvén theorem, the proof of which is rather trivial for perfectly conductive lami-
nar fluids. For laminar fluids of finite conductivity, the violation of the Alfvén theorem
becomes negligible as fluid conductivity increases. This, however, is not true for tur-
bulent fluids. Turbulent reconnection as we discussed above induces reconnection
diffusion. Mathematically, the failure of the flux freezing is discussed in [266]. The
numerical proof based on demonstrating of Richardson dispersion of magnetic field
lines is in [137].

8.1.5 Turbulent reconnection in compressible media

Compressible turbulence is a rich physical phenomenon. For instance, twoneweffects
become important in compressible media as compared to its incompressible counter-
part that we discussed above. The first obvious effect is that the density of plasmas
changes in the reconnection region and, therefore, the conservation of mass dictates

ρivrec,compLx = ρsVAΔ, (8.13)

where ρs is the density of plasma in the reconnection layer and ρi is the density of the
incoming plasma far from the reconnection layer.

Another difference arises from the fact that compressible MHD turbulence
presents a superposition of three distinct cascades of Alfvenic, fast and slow modes,
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while our derivation of the magnetic field wandering rate utilizes only the Alfvénic
component of MHD turbulence. As we discussed earlier, the Alfvénic component de-
velops independently from the compressible MHD components in agreement with
theoretical considerations in GS95. Therefore, one can estimate the amplitude in in-
compressible Alfvénic perturbations by subtracting the contribution of the slow and
fast modes from the total energy of the turbulent motions

u2L ≈ V
2
total − V

2
comp. (8.14)

Using both Equation (8.13) and Equations (8.6) and (8.11), one can obtain the ex-
pression for the reconnection rate (compare to Equations (8.12), (8.7)):

vrec,comp ≈ VA
ρi
ρs

min[( Li
Lx
)
1/2
, (

Lx
Li
)
1/2
]
V2
total − V

2
comp

V2
A
, (8.15)

that can be applied to a compressible fluid.
For the incompressible driving, another form of presenting the reconnection rate

is useful. Taking into account the relation between the Alfvénic modes and the gener-
ated compressible modes obtained in [81] it is possible to write

V2
comp

V2
Alf
≈ C1

vinj
VAlf
, (8.16)

where C1 is a coefficient which depends on themedia equation of state. Using the rela-
tion between the injection velocity and the resulting velocity inweak turbulence given
by Equation (8.16), one can rewrite Equation (8.15) as

vrec,comp ∼ VA
ρi
ρs

min[( Li
Lx
)
1/2
, (

Lx
Li
)
1/2
]
v2inj(1 − C1(vinj/VA))

V2
A

, (8.17)

which presents another form of the expression for the reconnection rate.

8.1.6 Turbulent reconnection in partially ionized gas

If gas is partially ionized, it represents a complexmediumwhere ions coexistwithneu-
trals. However, in view of turbulent reconnection, the distinct feature of the partially
ionized gas is that the turbulent motions can be truncated at relatively large scale.
Indeed, in partially ionized gas turbulence is subject to damping which arises from
both neutral-ion collisions and the viscosity associated with neutrals [280, 451, 449].
Figure 8.3 illustrates the damping of Alfvén modes in a typical environment of molec-
ular cloud. The corresponding damping scales are substantially larger than those in
the fully ionized gas. Therefore, it is important to understand how turbulent recon-
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Figure 8.3: Damping of Alfvénic turbulence in
low beta partially ionized gas corresponding
to molecular cloud conditions. The damping of
turbulence happens when the rate of damping
(solid line) intersects the dashed line corre-
sponding to the cascading rate from [451].

nection is being modified. This s very practical question, as in many astrophysical
settings, e. g., in the case of star formation, one deals with the partially ionized gas.

The reconnection in partially ionized gas can be approached using the concept
of the Richardson dispersion in [267]. The essence of such an approach is that on the
scales at which Richardson dispersion is applicable, themagnetic fields are not frozen
in. This, as we discussed earlier, makes magnetic reconnection fast. As a result, the
issue atwhich scale the reconnection is fast boils down todetermining the scale for the
onset of the magnetic field wondering that is governed by the Richardson dispersion.

It is easy to see that the magnetic field lines are subject to the Richardson disper-
sion as soon as the separation of the lines exceeds the size of the smallest turbulence
eddy, i. e., the size of the critically damped eddy; what we should find out is when the
two essentially coinciding magnetic field lines get separated by this distance.

It is generally accepted that in partially ionized gas the ion-neutral damping or
viscosity determines this size. With the eddies are anisotropic, one can associate the
damping scale with the parallel scale of the critically eddies l‖,crit. Due to the shear in-
duced by the perpendicular motions associated with such eddies, the magnetic field
lines which at the initial separation rinit are getting separated further and further from
each other. This process can be viewed as the evolution in time or in space, similar to
the Richardson diffusion. Below we consider this as the evolution in terms of separa-
tion growing as we follow the magnetic field lines.

The rate of line separating dr/dl of field lines with the distance l traced alongmag-
netic field lines is proportional to the r/l⊥,crit. The latter is the shear induced by the
smallest turbulent eddies of l⊥,crit. Obviously, this provides an exponential rate of sep-
aration. It is easy to show that separation becomes equal to l⊥,crit after the field lines
are traced over a distance of

LRR ≈ l‖,crit ln(l⊥,crit/rinit), (8.18)

which was introduced by [366] in the framework of “turbulence” with a single scale
of driving. In a realistic turbulence with the range of scales, this type of exponential
separation is dominated by the smallest eddies which have the greatest shearing rate.
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For the partially ionized gas,magnetic field lines do not get dissipated at the scale
l⊥,crit. However, ion-neutral interactions damp all the kinetic motions. In this sense,
the description ofmagnetic fields in such amediamay be analogous to the description
of the media in the high Prandtl number turbulence, i. e., in the turbulence in the
fluid with Ohmic resistivity much less than fluid viscosity. For the sake of simplicity,
we consider reconnection in such a fluid instead of a more complex realistic partially
ionized gas.

In this case, it is natural to associate rinit length with the separation of the field
lines arising from the action of Ohmic resistivity on the scale of the critically damped
eddies

r2Ohm = ηl‖,crit/VA, (8.19)

where η is the Ohmic resistivity coefficient. If this scale is less that the Larmor radius
of an ion rL,ion, then instead of rOhm the value of rL,ion should be used. In other words,
rinit = min[rL,ion, rOhm]. For our simplified considerations, we shall assume that rOhm >
rL,ion. This does not change much in our conclusions.

Taking into account Equation (8.19) and the relation

l2⊥,crit = νl‖,crit/VA, (8.20)

where ν is the viscosity coefficient, one can rewrite Equation (8.18) as

LRR ≈ l‖,crit ln Pt, (8.21)

where Pt = ν/η is the Prandtl number. This equation reflects the fact that for the cur-
rent sheets much longer than LRR, magnetic field lines are subject to the Richardson
dispersion. This, according to [143] means that the reconnection follows the fast re-
connection laws established in LV99. At the same time for scales less than LRR, the
magnetic reconnection may be stagnating, e. g., follow Sweet–Parker reconnection
laws. Incidentally, this can explain the formation of current sheets with the length
less than LRR. The compression of matter within these current sheets can explain the
density fluctuations on scales of thousands of AU that are observed in the ISM.

There are additional effects, e. g., diffusion of neutrals perpendicular to magnetic
field that might potentially influence the reconnection rate [436]. The ions can recom-
bine in the reconnection zone and this can allow the matter to outflow as a flow of
neutrals that is not directly constrained by magnetic field. Using this idea, [436] ob-
tained large reconnection rates for laminar magnetic fields provided that magnetic
fields are perfectly antiparallel and astrophysical medium for the media of pure ion-
ized hydrogen (see also a numerical study by [190]). The reconnection rates plummet,
however, in the presence of the guide field and heavy ions (“metals”). The latter are
subject to ionization by the ambient radiation field and, therefore, do not recombine.
As a result, the effect of “ambipolar reconnection” is of marginal importance for most
of the settings involving realistically turbulent media [280].
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8.2 Testing turbulent reconnection

Figure 8.4 presents results of numerical simulations of turbulent reconnection. The
turbulence was driven both using wavelets in [233] and in real space in [234] with the
results not depending on the driving.

Figure 8.4: Visualization of reconnection simulations in [233, 234]. Left panel: Magnetic field in
the reconnection region. Central panel: Current intensity and magnetic field configuration during
stochastic reconnection. The guide field is perpendicular to the page. The intensity and direction of
the magnetic field is represented by the length and direction of the arrows. The color bar gives the
intensity of the current. Right panel: Representation of the magnetic field in the reconnection zone
with textures. Reproduced from [233] by permission of the AAS.

As it is shown below, simulations in [233, 234] confirmed the LV99 prediction that tur-
bulent reconnection is a fast reconnection, i. e., its rate does not depend on resistivity.
The results provided a good correspondence with the LV99 predictions of the depen-
dence of the reconnection rate on the turbulence injection power.

It is important to explain that in the simulations sub-Alfvénic turbulence was in-
duced, i. e., with the energy of kinetic motions less than the energy of magnetic field.
Indeed, according to Equation (8.7), vrec,LV99 ∼ u2l . At the same time for the weak tur-
bulence, the injected power

Pinj ∼ v
2
inj/Δtinj (8.22)

is equal to the cascading power given by Equation (1.2). This delivers a relation

vrec,LV99 ∼ u2l ∼ vinj ∼ P1/2inj . (8.23)

The predicted dependence corresponds well to the testing results, as it is illustrated
in Figure 8.5, left panel.

While there exists a good correspondence between the theory and testing, one can
also observe some differences from the idealized theoretical predictions. This stems
from the idealization in the theoretical constructions. For instance, the injection of
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Figure 8.5: Left panel: The dependence of the reconnection velocity on the injection power for dif-
ferent simulations with different drivings. The predicted LV99 dependence is shown by dashed line.
Pinj and kinj are the injection power and scale, respectively, Bz is the guide field strength, and ηu is
the value of uniform resistivity coefficient. Right panel: The dependence of the reconnection velocity
on the injection scale. The LV99 prediction is shown by the dashed line. Dotted line in both panels
correspond to the initial laminar Sweet-Parker reconnection. From [234].

energy in LV99 is assumed to happen at a given scale and the effects of the inverse
cascade are not considered. Therefore, it is not unexpected that the measured depen-
dence on the turbulence scale differs somewhat from the predictions. In fact, it is a bit
more shallow compared to the LV99 predictions (see Figure 8.5, right panel).

Some of the measurement may be seen as intriguing. For instance, the left panel
of Figure 8.6 shows the dependence of the reconnection rate on the uniform viscosity
obtained from the isothermal simulations of the magnetic reconnection in the pres-

Figure 8.6: Left panel: The dependence of the reconnection velocity on uniform viscosity in the 3D
isothermal models of Sweet–Parker reconnection (open symbols) and reconnection enhanced by
the presence of turbulence (closed symbols) from [234]. Right panel: The reconnection rate in mod-
els with anomalous resistivity for the Sweet–Parker case (filled circles) and in the presence of tur-
bulence (filled diamonds). We observe no dependence of the reconnection rate on the strength of
anomalous effects. Reproduced from [233].

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.2 Testing turbulent reconnection | 151

ence of turbulence [234]. The open symbols show the reconnection rate for the laminar
case, i. e., with no turbulence driving, while closed symbols correspond to the mean
values of the reconnection rate in the presence of turbulence. All parameters in those
models are the same, except the uniform viscosity which varied from 10−4 to 10−2 in
the code units. We believe that the dependence on viscosity can be explained as the
effect of stemming from the finite inertial range of turbulence. Indeed, for numerical
simulations the range of turbulentmotions is very limited and any additional viscosity
decreases the resulting velocity dispersion and the field wandering. This is expected
to affect the reconnection rate.

LV99 predicted that in the presence of turbulence, plasma effects should not play
a role, provided that the turbulence is sufficiently strong. One can simulate plasma ef-
fects within MHD code by using anomalous resistivity. The results of the correspond-
ing simulations of reconnection are shown in the right panel of Figure 8.6. They con-
firm that the change of the anomalous resistivity does not change the reconnection
rate.

Any numerical study has to address the issue of the numerical effects. The de-
pendence of the reconnection rate on the numerical resolution is shown in Figure 8.7.
We observe that the reconnection rate increases with the increase of the resolution.
This testifies that the fast reconnection is not due to numerical effects. Indeed, higher
numerical diffusivity and, therefore, reconnection would be expected for lower reso-
lution simulations, if the numerical effects rather than turbulence were the cause of
fast reconnection.

Figure 8.7: Dependence of the reconnection
rate on the numerical resolution. If the fast
reconnection was due to yet unclear numeri-
cal effects on small scales, we would expect
to see the increase of the reconnection rate
with the decrease of the numerical box. If
anything, the actual dependence of the re-
connection rate on the box size shows the
opposite dependence from [234].

Aswediscussedabove, the LV99expressions for the reconnection rate canbeobtained
by applying the concept of Richardson dispersion to amagnetized layer. Therefore, by
testing theRichardsondiffusionofmagnetic field, one canalsoprovide tests of the the-
ory of turbulent reconnection. A successful direct testing of the temporal Richardson
dispersion of magnetic field lines was performed in [137]. The study confirmed that
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magnetic fields are not frozen in highly conducting fluids providing a strong support
for the LV99 theory.

In the LV99 model, current sheets are broad with individual currents distributed
widely within the entire three-dimensional volume. The turbulence within the recon-
nection region is assumed to be similar to the turbulence within a statistically homo-
geneous volume. Numerically, the structure of the reconnection region was analyzed
by [438] using the numerical simulations produced by [233]. The results supported the
LV99model, in particular, that the reconnection region is broad; themagnetic shear is
more or less coincident with the outflow zone, and the turbulence within it is similar
to turbulence in a homogeneous system.

In the simulations presented above, the turbulence is driven solenoidally to min-
imize the effects of compression, which does not play a role in the LV99 model. This
turbulence driving in a volume corresponds to the case of astrophysical turbulence,
which is also volume-driven. An alternative possible driving could be driving at the
boundaries. However, the case of the turbulence driven at the box boundaries would
produce spatially inhomogeneous imbalanced turbulence [33]. This turbulence does
not have a good analytical description and, therefore, predictions of the reconnec-
tion rates with the driving of turbulence at the boundaries are problematic. In view of
this, it is important to stress that it is not the size of our numerical simulations, but
the correspondence of the observed scalings to those predicted in LV99 that makes us
confident that the 3D reconnection gets fast in the presence of turbulence.

8.3 Understanding turbulent relativistic reconnection

Recently, it has been recognized that the magnetized relativistic plasmas, i. e., so-
called Poynting-dominated plasmas, play an important role for a number of high en-
ergy astrophysical processes, e. g., for pulsar winds, relativistic jets, and gamma-ray
bursts. The correspondingphenomena are frequently related to a fast rotating strongly
magnetized compact object. The energy stored in the magnetic field initially is con-
verted into kinetic and radiation energy to explain the observations. Relativistic tur-
bulent magnetic reconnection is the most probable mechanism for the energy conver-
sion. Then the natural question is whether turbulence in relativistic case also makes
magnetic reconnection fast and whether the approach advocated in LV99 for turbu-
lent reconnection can be generalized for getting the understanding of how magnetic
fields reconnect in relativistic flows.

As properties of Alfvénic turbulence dominate the LV99 reconnection, it is natu-
ral to focus on Alfvenic component for the relativistic case as well. As we discussed
above, the properties of relativistic and nonrelativistic MHD turbulence are similar.
Therefore, one can hope that the LV99 reconnectionmodel can be generalized to cover
the relativistic case. However, it is obvious that effects of compressibility are likely to
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be more important in relativistic reconnection compared to its nonrelativistic one. In-
deed, the Poynting-flux dominated plasmas, the magnetic field can induce a relativis-
tic velocity in current sheets but the Alfvén velocity is limited by the speed of light,
which makes the induced turbulence to stay a trans-Alfvénic one.

The comparison between the theoretical expectations based on the LV99 theory
and numerical simulations was performed in [418]. The simulations are performed
using the relativistic resistive MHD code developed in [417]. For the initial conditions,
the Harris current sheet was adopted with uniform temperature kBT/mc2 = 1 where
kB, T, m, c are the Boltzmann constant, temperature, rest mass, and light velocity,
respectively. The parameters of the relativistic ideal gas, h = 1 + (p/ρc2)(Γ/(Γ − 1))
with Γ = 4/3 where h, p, ρ are the specific enthalpy, gas pressure and rest mass den-
sity were adopted. The simulations follow the setup in [233], in particular they use
the open boundary in the direction perpendicular to the current sheet and parallel to
the magnetic field, which corresponds to the x and z direction. Similarly, the periodic
boundary is used in the y direction. The guide field was zero in some runs and not
zero in other runs (see Figure 8.11). Turbulence was driven by injecting a randomly
determined turbulent flow at a fixed time step. The injected flows had a flat kinetic
energy spectra and a characteristic wavelength is distributed around the inverse of
sheet width scale (see more in [418]). To quantify the reconnection rate, the approach
based on the measurements of the changes of the absolute value of magnetic flux was
used. This is the way of the measurements first used in [233]. In the simulations, tur-
bulent reconnection in plasmas with the magnetization parameter from 0.04 (matter
dominated) to 5 (Poynting dominated) was investigated.

Figure 8.8 depicts the magnetic field structure and gas pressure profile obtained
by the simulations in [418]. The magnetization parameter was chosen to be σ = 5 and
no guide field was used in this particular set-up. The turbulence was induced around
the central current sheet region. The figure also illustrates that the magnetic field un-
dergo field wandering that is similar to the nonrelativistic case. This wandering deter-
mines the size of outflow region, and thus the reconnection rate in the LV99 theory.

Figure 8.8: Visualization of relativistic reconnection
simulations in the case of the magnetization parame-
ter σ = 5 from [418]. The lines describe the magnetic
field lines relating magnetic reconnection. The back-
ground plane shows the gas pressure profile in the
unit of the upstream magnetic pressure. Similar to
the nonrelativistic case, the magnetic field lines are
wandering due to the injected turbulence, even in a
Poynting-dominated plasma, which results in a wider
reconnection exhaust region and large reconnection
rate.
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Note that the injected turbulence is sub-Alfvénic velocity but it still induces the mag-
netic field stochasticity.

Simple arguments in [418] provide

ρs
ρi
=

1
(1 + σ − γs)γs

[2σγ2s − (1 + σ)
ϵinj
√ϵt3A

lxlz
vsc2
]. (8.24)

This shows that the density ratio decreases as ϵ1/2 ∝ vinj, indicated as Figure 8.9 (left
panel). The change of the density is a significant factor to account for the turbulent
reconnection rate (see Equation (8.15)).

Figure 8.9: Left panel: Variations of plasma density in relativistic reconnection. Right panel: Genera-
tion of compressible modes in relativistic reconnection from [418].

The other factor to account for is the decrease of the energy in Alfvénic turbulence. In-
deed,more energy is getting transferred to compressiblemodes for highlymagnetized
plasmas as illustrated by Figure 8.9 (right panel). Note that the compressible compo-
nent is determined there through the Helmholtz decomposition into solenoidal and
compressible part. One can observe that the compressible component increases with
the increase of the σ-parameter.

Accounting for both effects and guided by the LV99 approach, [418] obtained a
good correspondence between the theoretical expectations andnumerical results. Fig-
ure 8.10 illustrates the dependence of reconnection rate on the power of the injected
turbulent energy for different magnetization cases. It shows that the maximal recon-
nection rate increases with the intensity of driving (cf. Figure 8.5 (left panel)) in the
sub-Alfvénic Mach number region. This corresponds to the expectation of the LV99
theory. However, as the injected Alfvén Mach number approaches to trans-Alfvénic
region, the turbulence driving gets different, as we discussed. In response to this, the
reconnection rate reaches a maximum value and even decreases with injected power.
This stems from the fact that the injected turbulence becomes compressible.
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Figure 8.10: Reconnection rate in terms of various magnetization parameters: σ = 0.04,0.5, 1, 5. The
green dashed curves are the modified turbulent reconnection law taking into account the effect of
density decrease and compressible turbulence effects.

Figure 8.11: Left panel: Dependence of the reconnection rate on the guide field. Right panel: Depen-
dence of the reconnection rate on resistivity from [418].

The guiding magnetic field is an important parameter in magnetic reconnection. Its
effect is depicted in the left panel of Figure 8.11. Similar to [233, 234], we increased the
guiding field while fixing the strength of reconnecting the magnetic field component,
which resulted in the total σ-parameter increasing with increase of the guide field.
Our simulations reveal that the reconnection rate does not depend on the guide field,
which is in agreement to the non-relativistic results obtained in [233, 234] presented
in Figure 8.5. Thus we conclude that turbulent reconnection in relativistic and non-
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relativist cases is rather similar and a compressible generalization of the LV99 theory
representing the main features of relativistic reconnection.

Finally, to show that the reconnection is fast, at the right panel of Figure 8.11 the
dependence of the reconnection rate on the resistivity is presented. No significant
dependence is seen, in agreement with our expectations and non-relativistic simu-
lations.

The obtained results show that the reconnection rate can approach 0.3c if we as-
sume a sufficient injection scale l. It is important that this is enough to explain most
cases of relativistic reconnection [301]. Note that this result is obtainedwith pureMHD
without appealing to complicated collisionless physics. This manifests that fast rela-
tivistic reconnection is a robust process that takes place in various environments irre-
spectively on the plasma collisionality.

8.4 Generation of turbulence by reconnection

The model of LV99 was formulated assuming that turbulence properties are deter-
mined by the external driving. However, magnetic reconnection can also drive turbu-
lence through converting some of the free energy of the reversing magnetic field into
turbulentmotions. In the context of developed turbulence, this processwas discussed
in LV99 and [279]. Turbulence in reconnection can appear as a result of instabilities,
e. g., resistive tearing [43, 297], the latter demonstrated that the instability becomes
faster and not slower with decreasing resistivity above a critical Lundquist number
around 104. Plasma simulations demonstrated that thin current layers are also un-
stable [107]. Observing effects of the feedback of the release of magnetic energy in
numerics is challenging because currently available 3D MHD numerics are limited
by the minimal reconnection rate provided by relatively high resistivity or artificial
resistivity of the simulation (which corresponds to Ludquist numbers of several of
104). An early work by [252] showed a transfer to fast reconnection in the MHD regime
that be interpreted as a process of the transfer from the Sweet–Parker reconnection to
the spontaneous turbulent reconnection. The generation of turbulence was also ob-
served in PIC simulations; see, e. g., [108, 216]. In this book, however, we deal with the
MHD case and below we will present the results of incompressible simulations [27]
and compressible simulations [228]. Similar simulations have also been performed
by [340].

Physically, periodic box simulations in [27] correspond to early times in the cur-
rent sheet disruption when the outflow did not develop. Importantly enough, it did
demonstrate fast (resistively-independent) reconnection rates. Simulations with open
boundaries in [228] have been performed for a sufficiently long time to allow for the
establishment of stationary state. Physically, they correspond to later times in the cur-
rent sheet evolution, the stationary inflow/outflow reconnection.
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8.4.1 Early-time turbulence in the planar current layer

One of the simplest setups to study the development of turbulence in the thin current
layer is a periodic setup with the mean field Bz0 threading the box, reconnecting field
±By0 changing sign in the x direction; see Figure 8.12. Here, we consider the incom-
pressible case, in which case the dimensionless parameters of the problem are the
Lundquist number S and the ratio By0/Bz0. The logic behind using the planar sheet
is the attempt to simulate a zoomed-in portion of a very large and unstable Sweet–
Parker current layer. We define Lundquist number using the box size, as S = vAyL/η,
however,we imagine that this is a part of a bigger systemwith larger systemsizeLglobal.
This setup aims to simulate earlier times, t < Lglobal/VA, when the global outflow did
yet develop. Our setup also assumes that the global Lundquist number determined by
the larger system is asymptotically large, so we can ignore gradients from the large-
scales. The end time of the simulation is determined by the development of structures
with the size comparable to the box size atwhichpoint our artificial periodic boundary
starts influencing the result.

Figure 8.12: Left: The setup of all-periodic reconnection with two current layers. The magnitude of
the magnetic field is shown in grayscale. Right: The evolution of the layer width Δ (bottom) and the
reconnection rate as a function of the Lundquist number S (top left) and the ratio of Bz0/By0 (top
right) from [27]. Reproduced from [27] with permission of AAS.

The free energy in the system is the energy density of the opposing fields B2y0/8π,
which we observe to decline in the turbulent current layer due to dissipation, after
t ≈ 0.3L/vAz the fraction of dissipated energy wd becomes approximately constant,
around wd ≈ 0.4. We inferred the reconnection rate as the speed of growth of the
turbulent current layer width Δ, i. e., we define Vr = dΔ/dt. The evolution of d and
the inferred reconnection rate are shown on Figure 8.12. Vr was around 0.015vAy for
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high Lundquist numbers and is rather insensitive to the imposed mean field Bz0 (Fig-
ure 8.12). The dissipation rate per unit area from both sides of the current sheet can be
calculated from wd and vr as

ϵS = 2wdvr(1/2)ρv
2
Ay ≈ 0.006ρv

3
Ay . (8.25)

Note that we arrived at the expression not only for “fast reconnection” (independent
on resistivity and viscosity), but also for “fast dissipation,” the above expression could
be obtained by dimensional analysis using basic properties of the layer ρ and vAy.

The field in the current layer can be analyzed statistically, e. g., with power spectra
and structure functions as we demonstrated in Chapter 3. We show the spectrum for
one particular simulation at a certain point in time on the left-hand side of Figure 8.13.
It should be noted that the peak of the spectrummoves toward smaller wavenumbers,
i. e., the outer scale of this turbulence is growing in time, while in the driven turbu-
lence we described in Chapter 3 this scale was fixed and determined by the scale of
the outside driving force. Another difference with driven turbulence is that magnetic
spectrum dominates over kinetic on large scales, but tend to go to equipartition on
smaller scales. This is similar to decayingmagnetic turbulence; see, e. g., [44]. We can
say that qualitatively reconnection turbulence is very similar to decaying turbulence
created by the initial random magnetic field. The scale-locality is an important com-
ponent of the turbulent reconnection scenario, and these spontaneous reconnection
experiments tend to corroborate scale-locality due to the spectral slope of perturba-
tions being within the range between −1 and −3. In real systems, we expect the re-
connection rate to be independent of system size as long as ion Larmor radius rL and
ion skip depth di are much smaller than the layer width Δ. On the right-hand side, Fig-
ure 8.13 shows anisotropy expressed as a ratio of parallel to perpendicular scale λ‖/λ⊥,
obtained by a method we explain in Chapter 3. We can also estimate the interaction
strength parameter ξ = δvλ‖/vAλ⊥ introduced in Chapter 3 and see that for this case

Figure 8.13: Left: The y-z power spectra of velocity and magnetic perturbations of turbulence in the
current layer. Right: Anisotropy from the ratio of parallel to perpendicular scales obtained from
equating second-order SFs (see Section 3.12). We used simulations with the second as well as
fourth-order diffusivities (hyperdiffusitities) to evaluate the effect of the dissipation on the statis-
tics of turbulence in the layer from [27]. Reproduced from [27] with permission of AAS.
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it is around unity, i. e., we are dealing with critically balanced strong turbulence. The
anisotropy of developed turbulence, k‖/k⊥ ∼ 1/20 is different from the tangent of the
angle of the fastest growing oblique tearing modes (k‖/k⊥ = Bz/By = 1) which initi-
ate current layer disruption. So turbulence effectively forgets properties of the oblique
tearing that started it. From simulations with higher Bz, one can also confirm Alfvén
symmetry (see Section 3.3): increasing Bz only increases parallel lengthscale while
keeping dynamics essentially unchanged (see also [27]).

8.4.2 Compressible simulations with inflow and outflow of turbulence in the current
layer

The simulations in [228] were performed in the presence of initial noise that con-
tributed to the of instabilities of the current sheet layer. This injection was stopped
and the later development of the reconnectionwas going on its own. Nevertheless, the
deformation of the current sheet layer were growing, being fed by the continuous en-
ergy ejection from the local reconnection events. Those local outflows were estimated
to have speeds comparable to the local Alfvénic speeds. The corresponding bending of
magnetic field lines is shown in Figure 8.14. In the initial configuration, the magnetic
field lines in the upper and bottom half of the domain are antiparallel with a small in-
clination due to the presence of the guide field. Later a turbulent region is developing
around themidplane of the computational box due to the stochastic reconnection tak-
ing place there. This region exhibits themagnetic line topology change. In Figure 8.14,
the color coding reflects the degree of line alignmentwith −1 (blue) being perfectly an-
tiparallel and 1 (red) being perfectly parallel to the X direction.

Figure 8.14: Visualization of the magnetic field lines in the reconnection with self-generated turbu-
lence as seen from the below of the current sheet plane. The colors correspond to the line orienta-
tion with respect to the X direction with red and blue being parallel and antiparallel to the X axis,
respectively. We can recognize the organized field above and below the reconnection region and
strongly turbulent flux tubes within the reconnection region from [228].
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In the next figure, Figure 8.15, the velocity power spectrum is calculated in two dif-
ferent ways for the snapshot shown in Figure 8.14. The blue line shows the spectrum
calculated with the Fourier transform. Since the domain is not periodic (periodicity is
enforced only along the Z direction, otherwise the boundaries are open), the other plot
is obtained using the second-order structure function. The latter is calculated in the
real space and is insensitive to the adopted boundary conditions. Figure 8.15 shows
that the power spectrum obtained from the structure function is more regular and ap-
proaches the expected GS95/Kolmogorov (dashed lines) slope better. This proves that
turbulence is being developed in the setup.

Figure 8.15: Velocity power spectra obtained in a few different ways corresponding to the simulation
snapshot shown in the previous figure. We show the power spectrum of the velocity obtained using
the fast Fourier transform and the second-order structure function (blue and green lines, respec-
tively). The spectrum from the structure function approaches the Kolmogorov slope (dashed line)
better, most probably because it is not sensitive to the type of boundary conditions. For comparison,
we show the power spectrum of Z-component (red line) from [228].

For comparison, the red line in Figure 8.15 shows the Fourier power spectrum of the Z-
component of the velocity, i. e., in the direction where we impose the periodicity. The
power spectrum of this component is has smaller amplitude.

Some other features of the self-generated turbulence like the growth of the tur-
bulence region were presented in [267]. For a more detailed description of these mod-
els we refer to [228]. More recent study by Kowal et al (in preparation) based on the
8192× 2048× 2048 simulations testify that the tearing instability is mostly suppressed
in the 3D reconnection. Instead, the Kelvin-Helmholtz instability was identified as the
major source of turbulence in the reconnection layers. These results and conclusions
are in agreement with conclusions in [27] and [340].

The spectrumobtained in both in [27] and [228] agreeswith theGS95 expectations.
This, however sharp contrasts to conclusions in [198] where a much steeper spectrum
of magnetic fluctuations EB(k) ∼ k−2.2 was reported. A possible cause of this spectrum
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could be insufficient time for the turbulence to develop fully. At earlier times of the
simulations the spectrum in [230] was also different from that of GS95 theory.2

The shortcoming of all the present simulations of reconnection with the self-
induced turbulence is that they do not achieve a stationary state with balanced ou-
flows and inflows. These is due to the act that these simulations, except for [230], used
closed or periodic boxes. Themost advanced simulations, i. e. those in [230] used open
boundary conditions in one direction, the axis along which the field lines are anni-
hilated in reconnection. All simulations are high β ones and reconnection velocities
measured in the simulations ∼ 10−2 are expected to grow with the decrease of β.

8.5 Observational testing of turbulent reconnection

LV99 theory is formulated in the MHD regime, which means that the outflow region
should be much larger than the ion Larmor radius Δ ≫ ρi. This condition is satisfied
for solar atmosphere, solar wind, but is not satisfied for the magnetosphere. In the
latter case, the corresponding scales are comparable and plasma effects are important
for reconnection. As a lot of measurements are done in situ for magnetospheric plas-
mas, this tends to bias the field towards studies of reconnection dominated by plasma
physics. At the same time, magnetospheric reconnection is a very peculiar case of re-
connection. Below we discuss the situations of reconnection where MHD regime is
appropriate.

8.5.1 Solar turbulent reconnection

Solar reconnection was studied by [94] in order to test LV99 theory, in particular, the
prediction of thick outflow regions. As we discussed earlier, the driving by magnetic
reconnection is not isotropic and, therefore, the turbulence should be accepted to be
strong starting from the injection scale. In this case,

Vrec ≈ Uobs,turb(Linj/Lx)1/2, (8.26)

where Uobs,turb is the spectroscopically measured turbulent velocity dispersion. Simi-
larly, the thickness of the reconnection layer is

Δ ≈ Lx(Uobs,turb/VA)(Linj/Lx)1/2. (8.27)

2 Note, that the steep power spectrum reported in [198] does not preclude the turbulent reconnection
from happening. In fact, it was shown in LV99 that turbulent reconnection is possible in turbulence
with the wide range of spectral indexes.
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The results given by Equations (8.26) and (8.27) should be compared with observa-
tions in [94]. There, the widths of the reconnection regions that measured was in the
range from 0.08Lx up to 0.16Lx while the observed Doppler velocities in the units of
VA were of the order of 0.1. These values are in a good agreement with the predic-
tions given by Equation (8.27). We note that the original comparison by [94] employed
the expressions in LV99 derived in the assumption of isotropic driving. This driving
would induce weak turbulence and somewhat different estimates for the widths of
the reconnection regions. Thus the authors concluded that both LV99 and Petschek X-
point reconnection are potentially acceptable solutions. In view of our present better
understanding of turbulence generation in reconnection layers, the correspondence
with LV99 is much better.

We note that the triggering of magnetic reconnection by turbulence generated in
adjacent sites is a prediction of LV99 theory. This prediction was successfully tested
in [414]. There the authors explained quasi-periodic pulsations in observed flaring en-
ergy releases at an active region above the sunspots as being triggered by the wave
packets arising from the sunspots.

8.5.2 Solar wind, Parker spiral, heliospheric current sheet

Solarwind reconnection present the case of Δ ≫ ρi and, therefore, themagnetic recon-
nection there is expected to happen in MHD turbulent regime. The evidence support-
ing this conclusion was obtained by comparing the solar wind and MHD turbulence
reconnection data in [249]. There it was concluded that the solar wind reconnection
agrees with the predictions of LV99 theory (see Figure 8.16). The general features of
the turbulent reconnection observed in MHD simulations were shown to correspond
to the features of solar wind reconnection [178].

Similarly, [141] discussed the implications of turbulent reconnection for helio-
spheric reconnection, in particular the deviations of interplanetary magnetic field
from the Parker spiral that is expected in the case of the perfect flux freezing. The
deviations were reported by different authors. For instance, [64] found “notable devi-
ations” from the spiralmodel usingVoyager 1 and 2 data at solar distancesR = 1–5AU.
These conclusions were substantiated by [219], who presented evidence on the break-
down of the Parker spiral model for time- and space-averaged values of the magnetic
field from several spacecraft (Helios 2, Pioneer Venus Orbiter, IMP8, Voyager 1) us-
ing the measurement from the inner heliosphere at solar distances 0.3–5AU. In fact,
the latter authors interpret their results as the consequence of “a quasi-continuous
magnetic reconnection, occurring both at the heliospheric current sheet and at local
current sheets.” [141] estimated the magnetic field slippage velocities and obtained
good quantitative correspondence between measured the deviation and the expec-
tations based on the LV99 reconnection theory. In addition, [141] analyzed the data
relevant to the region associatedwith the broadenedheliospheric current sheet (HCS),
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Figure 8.16: Candidate events for turbulent reconnection.MHD turbulence simulation (top panels)
and high-speed solar wind (bottom panels). The left panels show magnetic field components and
the right panels show velocity components, both rotated into a local minimum-variance frame of
the magnetic field. The component of maximum variance in red is the apparent reconnecting com-
ponent, the component of medium variance in green is the nominal guide-field direction, and the
minimum-variance direction in blue is perpendicular to the reconnection layer. Reprinted figure with
permission from [249]. Copyright (2015) by the American Physical Society.

and provided arguments in favor of the applicability of LV99 magnetic reconnection
model to the HCS.

8.5.3 Indirect observational evidence

Magnetic reconnection is an intrinsic process that is difficult to observe directly in
generic astrophysical situations. In fact, the observations of the sun and direct mea-
surements of the solar wind are notable exceptions. However, turbulent reconnection
is a generic process takingplace in turbulent astrophysical plasmas and it opens apos-
sibility to test the properties of reconnection by comparing the theoretical predictions
with observations.

For instance, one can argue that the spectrum of turbulent fluctuations observed
in astrophysical settings, e. g., in molecular clouds, galactic atomic hydrogen [260] is
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indirect evidence in favor of turbulent reconnection. Indeed, the observed statistics is
consistent with numerical simulations [231], which are performed in situations when
turbulence induces fast reconnection.

Similarly, the processes of efficient magnetic diffusion in turbulent fluids that are
mediated by turbulent reconnection presents an indirect, but convincing evidence in
favor of the model of turbulent magnetic reconnection. Below we discuss additional
examples of processes that are based on turbulent reconnection.

8.5.4 Flares of magnetic reconnection and associated processes

It is evident that the reconnection can make the magnetic field turbulent and turbu-
lence can increase the rate of reconnection. As a result, one gets a reconnection in-
stability. A simple quantitative model for the process based on the LV99 model was
presented in [279], where it is assumed that since stochastic reconnection is expected
to proceed unevenly, with large variations in the thickness of the current sheet, one
can expect that some fraction of this energy will generate waves and add energy to the
local turbulent cascade.

The possible applications of the theory cover a wide range from solar flares to
gamma ray bursts (GRBs). For instance, a model for GRBs based on LV99 reconnec-
tion was suggested in [270]. The model was elaborated in [464] and compared with
GRB observations in the model where collisions of magnetic slabs were considered.
A different version of gamma ray bursts powered by turbulent reconnection proposed
by [268] is based on kink instability. It is illustrated in Figure 8.17. The model appeals
to the relativistic turbulent reconnection that we described above. Compared to other
kink-driven models of GRBs [123, 167, 164, 312], this model takes into account that the
kink drives the turbulence [157, 161] and this accelerates the reconnection.

Figure 8.17: In the model by [268, 287], magnetized jet with spiral magnetic
field is being ejected. The spiral undergoes kink instability, which results in
turbulent reconnection.
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The numerical testing of turbulent reconnection within the jets was also attempted in
[323]. There 3D relativistic MHD simulations of rotating jets subjected to the kink in-
stabilities were performed for a parameter space that included different density ratios
between the jet and the environment, different angular velocities, etc. The simula-
tions show that a complex structure develops in the helical magnetic field developing
several regions with large current densities, which are suggestive of intense turbulent
reconnection.

Turbulent reconnection is a volume-filling reconnection. The magnetic energy is
being released in the volume and can be transferred to energetic particles via both the
first- and the second-order Fermi acceleration. Therefore, we believe that magnetic
reconnection in the case of AGN jets (see [165]) can be a strong source of high energy
particles. This conclusion agrees with the results of numerical simulations in [110].

Particle acceleration induced by magnetic reconnection can take place in the
vicinity of black hole of active galactic nuclei (AGNs). In particular, [111], henceforth
GL05 proposed that fast turbulent reconnection events could accelerate the particles
and produce the observed core radio outbursts in GBHs and AGNs. This model was
elaborated in [207] and applied to explaining the gamma-ray flares. This study re-
ported the existence of the correlation between the energy release and the black hole
mass that follows from the model of turbulent reconnection. This correlation spans
over an enormous range of scales of 1010. This correlation can potentially explain
not only the observed radio, but also the gamma-ray emission from GBHs and low
luminous AGNs (LLAGNs). For observational testing, 230 sources were used.

The correlations found in [207] as well as in a related study by [396] have mo-
tivated further studies of the astrophysical consequences of turbulent reconnection.
For instance, [222] have computed the spectral energy distribution (SED) of several
GBHs and LLAGNs and found that these match well with the observations, especially
at the gamma-ray tail. Importantly, the model also naturally explains the observed
very fast variability of the emission. The same model was also applied to explain the
high energy neutrinos observed by the IceCube as originating due to LLAGNs [221].

8.6 Comparison of approaches to magnetic reconnection

8.6.1 Turbulent reconnection and numerical simulations

WhetherMHDnumerical simulations reflect the astrophysical reality dependsonmag-
netic reconnection being correctly presented within these simulations. The problem
is not trivial. The astrophysical Lundquist number can be larger than 1015 orders than
the Lundquist numbers in simulations. Therefore, direct numerical simulation canpo-
tentially be completely misleading.

One way to deal with the high Reynolds’ numbers in simulations is to use Large
EddySimulations (LES) [316]. Theuse of LES formagnetizedfluids requires the explicit
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parametrization of reconnection rates. For instance, if following the ideas of tearing
research we adopt a particular maximal value of reconnection speed is 0.01VA. This
means that the motions where eddies are moving with velocities larger than this re-
connection speed will be constrained by magnetic tension of magnetic field, which
cannot reconnect with the speed higher than the given one. In trans-Alfvénic turbu-
lence, this means constraining the motions of eddies on the scales [10−6L, L] if we
adopt the usual Kolmogorov v ∼ l1/3 scaling. If, however, turbulent reconnection pro-
vides fast reconnection at all turbulent scales the results of numerical simulations
obtained with the above tearing reconnection constraint and astrophysical reality are
radically different.

It is possible to claim that from the point of view of the turbulent reconnection
theory, a normal MHD code reproduces magnetic reconnection correctly for turbulent
regions. Indeed, as for turbulent volumes the reconnection rate does not depend on
resistivity and varies with the level of turbulence. In view of the fact that turbulence is
the generic state of astrophysical fluids, the regions that are turbulent within numeri-
cal studies are correctly represented as far as themagnetic reconnection is concerned.
On the contrary, the regions where the turbulence is damped due to numerical diffu-
sivity fail to magnetic reconnection correctly.

8.6.2 Turbulent reconnection versus tearing reconnection

It has been known for a while that Sweet–Parker current sheet is unstable to tearing
and this changes the rate of reconnection [415]. This became much more appreciated
recently when it was shown numerically that 2D current sheet develops tearing in-
stability starting with a Lundquist number larger than ∼ 104 and this results in re-
connection that does not depend on the fluid resistivity [297, 426]. This study of tear-
ing momentarily eclipsed the earlier mainstream research of the reconnection com-
munity aimed at explaining fast reconnection through appealing to the collisionless
plasma effects stabilizing the Petschek-type X point configuration for reconnection
[391, 121, 122]. For most of astrophysical applications, the existence of the X point con-
figurations in the presence of realistic astrophysical forcing was very doubtful (see
discussion in LV99). Thus the tearing reconnection is definitely preferred compared to
the X-point reconnection. Nevertheless, it is unlikely that tearing provides a generic
solution for the astrophysical reconnection.

It is easy to provide arguments suggesting that tearing inevitably transfers to tur-
bulent reconnection for sufficiently large Lundquist numbers S. Indeed, from themass
conservation constraint requirement it follows that in order to have fast reconnec-
tion, one has to increase the outflow region thickness Δ in proportion to Lx, as Vrec ≈
VAΔ/Lx. While S grows in proportion to Lx, the Reynolds’ number Re of the outflow
grows as VAΔ/ν, where ν is viscosity. Thus Re ≈ (Vrec/VA)(η/ν)S. For Vrec ∼ 0.01VA and
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η ∼ ν, the increase of S inevitably increase of Re. The outflow gets turbulent for suf-
ficiently large Re. Once the shearing rate introduced by eddies is larger than the rate
of the tearing instability growth, the instability should get suppressed. Fortunately,
the reconnection, as we showed above become turbulent one with no dependence on
tearing.3

In addition, the rate prescribed by tearing is incompatiblewith the requirement of
models ofMHD turbulence (e. g., GS95), which are based on unconstrainedmotions of
turbulent eddies. Tearing reconnection with its prescribed reconnection rate cannot
explain why magnetic reconnection can be sometimes slow and sometimes fast.

8.6.3 Turbulent reconnection: 3D reality versus 2D models

A lot of physical phenomena are very different in 3D and 2D. For instance, 2D turbu-
lence cascade transfers energy to large scales as opposed to the 3D turbulence cas-
cade. In general, whether the physics in the system of reduced dimensions is repre-
sentative of the physics of the 3D system in such situations is a priori unclear. The
correspondence of the physics in the system with reduced dimensions must be the-
oretically justified and tested. For magnetic reconnection, such a justification faces
serious difficulties, e. g., the differences between 2D and 3D magnetic reconnection
are stressed, e. g., in Priest (this volume) and also in publications by [51, 52]. There it
is shown that an extrapolation from reconnection physics obtained in 2D to 3D is not
justified. Below, we provide additional arguments why 2D turbulent reconnection can
be a guide for our understanding of the 3D astrophysical reconnection.

[307, 308] studied numerically turbulent reconnection in 2D. The authors empha-
sized analogies between the magnetic reconnection layer at high Lundquist numbers
and homogeneous MHD turbulence. They pointed out various turbulence mecha-
nisms that can enhance reconnection rates in a turbulent fluid, e. g., multiple X-points
as reconnection sites, compressibility effects, andmotional electromotive force (EMF)
of magnetic bubbles advecting out of the reconnection zone. Dealing with 2Dmodels,
the authors, however, did not realize the importance of stochastic magnetic field wan-
dering and they did not arrive at an analytical prediction for the reconnection speed.
Although they reported the enhancement of the reconnection rate in their numeri-
cal study, their setup precluded the calculation of a long-term average reconnection
rate. While their study was important in attracting the attention of the community
to the possible effects of turbulence, the relation of this study with the LV99 model

3 If one assumes that tearing is the necessary requirement for fast reconnection, this entails the con-
clusion that tearing should proceed at the critically damped rate, which implies that the Re number
and, therefore, Δ cannot increase. This entails, however, the decrease of reconnection rate driven by
tearing in proportion Lx ∼ S. As a result, the reconnection gets dependent on S and, therefore, stops
being fast.
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is not clear, as the nature of MHD turbulence in 2D is different. In particular, shear-
Alfvén waves that play the dominant role in 3D MHD turbulence according to GS95
are entirely lacking in 2D.

The question whether turbulent reconnection is fast in 2D has not been resolved
yet if one can judge from the available publications. For instance, in a more recent
study by using the approach in [307], i. e., in [442] foundno significant effects of turbu-
lence on reconnection. In another study, [389] studiedOhmic electric fields at X-points
in homogeneous, decaying 2D MHD turbulence. However, they investigated a case of
small-scale magnetic reconnection and their results are not directly relevant to the re-
connection of large-scale flux tubes corresponding to high S. Numerical simulations in
[298] and [243] came to different conclusions on whether 2D turbulent reconnection is
fast in 2D. Irrespectively of the solution of this particular controversy, the results for 2D
turbulent reconnection are not likely to be relevant to the understanding of magnetic
reconnection in the realistic 3D astrophysical systems.

8.6.4 Turbulent reconnection versus turbulent resistivity

Attempts to describe turbulent reconnection by introducing some sort of turbulent
resistivity have been numerous. However, these attempts are misleading. Indeed, it is
possible to show that “turbulent/eddy resistivity” descriptionhas fatal problems of in-
accuracy and unreliability, and this stems from its poor physical foundations. It is true
that coarse-graining the MHD equations by eliminating modes at scales smaller than
a given length l introduces a “turbulent electric field.” This is an effective field acting
on the large scales induced bymotions of smaller size magnetized eddies. However, it
is well known in the fluid dynamics community that the resulting turbulent transport
is not well represented by an enhanced diffusivity. Indeed, turbulence lacks the sep-
aration in scales to justify such an “eddy-resistivity” description. As a consequence,
energy is often not absorbed by the smaller eddies, but supplied by them. The turbu-
lent electric field both creates magnetic flux through turbulent dynamo and destroys
it through reconnection. The two processes are not separable in turbulent fluid. The
eddy resistivity misses this.

If the turbulent reconnection rate is defined, e. g., by LV99, thenaneddy-resistivity
can always be tuned to achieve that rate, but this does not have much physical mean-
ing. While the tuned reconnection rate will be correct by construction, other predic-
tions will be in error. The required large eddy-resistivity is expected to smooth out all
turbulence magnetic structure below the coarse-graining scale l. In reality, the tur-
bulence will create strong small-scale inhomogeneities, such as current sheets, from
the scale l down to the actual microscale. In addition, field-lines in the flow smoothed
by eddy-resistivity will not exhibit Richardson-type separation at scales below l and
the list of the inconsistencies can be extended. All of this stem from the erroneous
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ad hoc concept of “eddy resistivity” being adopted. Note that the aforementioned ef-
fects are essential for understanding particle transport/scattering/acceleration in the
turbulent reconnection zone. The turbulence with fluid having resistivity correspond-
ing to the value of “turbulent resistivity” must have magnetic field and fluid decou-
pled on most of its inertia range turbulent scale. In other words, the MHD turbulence
should not be affected by magnetic field in gross contradiction with theory, observa-
tions and numerical simulations. Magnetic helicity conservation which is essential
for astrophysical dynamo is incompatible with the “eddy diffusivity.”4 We can also
point out that in the case of relativistic reconnection, turbulent resistivity introduces
unphysical noncausal, faster than light propagation effects. The worst feature of the
“eddy-resistivity” parametrization is its unreliability: because it has no scientific jus-
tification, it cannot be applied with any confidence to astrophysical problems.

The approach that is discussed in this chapter is quite different. It is not based on
coarse-graining. The stochasticity of magnetic field-lines is a real and verified phys-
ical phenomenon present in magnetized turbulent fluids. Whereas “eddy-resistivity”
ideas predict that magnetic flux should be destroyed by turbulence, in fact, turbu-
lent motions constantly change connectivity of magnetic field lines without dissipat-
ing magnetic fields. As for relativistic reconnection, being moved by fluid motions
the stochastic world-lines in relativistic turbulence remain within the light-cone with
no noncausal effects such as produced by “eddy-resistivity” being entailed (see also
ELV11).

4 Increasing the resistivity to the values required by LV99 model would make astrophysical dynamos
resistive or slow, in gross contradiction to the fact that astrophysical dynamos are know to operate in
fluids with negligible resistivity and, therefore, can be only modeled by “fast dynamo” [352].
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9 Turbulent transport of magnetic field and heat
Turbulence is known to dramatically change transport processes. In this chapter, we
consider how it changes the transport of magnetic field and heat in magnetized plas-
mas. We consider two problems of astrophysical importance, namely, transport of
magnetic field in the problem of star formation in interstellar environments and the
problem of heat transport in turbulent plasmas of galaxy clusters. In both cases, the
traditional research was based on the implicit assumption that magnetic field are
frozen in highly conducting astrophysical fluids, which are the consequences of the
Alfven 1942 theorem [7]. With the LV99model and subsequent studies (e. g., [140, 137,
142]) proving that the magnetic fields are not frozen in turbulent media, the changes
of the paradigms of the two aforementioned processes, as well as many other astro-
physical processes, are inevitable.

9.1 Important motivation: star formation problem

Star formation is known to be an inefficient process. Indeed, the mass of molecular
clouds in our Milky Way galaxy is MMW ≈ 109 solar mass. For the typical interstellar
medium (ISM) density of the gas of 50 cm−3, the free fall time is τff ≈ (3π/32Gρ)1/2 ≈
6×106 years, which provides a “natural” star formation rateMMW/τff of 200 solarmass
per year. At the same time, themeasured star formation rate is only≈ 1.3 solarmass per
year [332]. A textbook way of explaining this inefficiency appeals to magnetic forces
significantly impeding the gravitational collapse (see [326]).

The importance ofmagnetic fieldswas suggested as the corner stone of star forma-
tion theory (see [315]). While star formation happens due to gravity, but if the matter
is strongly magnetized, the magnetic field can prevent such a collapse. If the ratio of
the magnetic flux to mass is larger than the critical one,

(Φ/M)crit ≈ 1.8 × 10
−3 gauss cm2 g−1 (9.1)

magnetic field blocks the cloud collapse (see [119]). Such strongly magnetized clouds
are termed subcritical and to collapse they have to lose a part of their magnetic flux.
As the magnetization of diffuse gas in the Milky Way and in other spiral galaxies cor-
responds to subcritical value, the compression of matter together with frozen-in mag-
netic field is expected to result in the formation of subcritical molecular clouds. This
is the essence of the magnetically controlled star formation.

The change of the magnetic flux can happen due to the process termed ambipolar
diffusion (see [315, 394]). The idea of the ambipolar diffusion can be easily exemplified
in the case of gas collapsing to form a protostar. The magnetic field acts on charged
particles and it does not directly affect neutrals. Neutrals moving under the gravita-
tional pull get scatteredby collisionswith ions and chargeddust grains. These charged

https://doi.org/10.1515/9783110263282-009
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species are coupled with the magnetic field and this transfers the magnetic forces to
neutrals. The relative motion of magnetic fields with frozen-in ions in respect to neu-
trals constitutes the process of ambipolar diffusion. This process gets faster when the
ionization ratio drops and, therefore, it is important in weakly ionized cloud cores. As
the theory of star formation based on ambipolar diffusion (see [327]) predicts low star
formation rates in agreement with observations, it became the textbook theory.

In the opposite case, i. e. when the gravity dominates the magnetic field, i. e., the
cloud is supercritical, the gravity induces a collapse dragging magnetic flux with en-
trainedmatter into the forming star on the timescales of the free fall. The clouds can be
formed supercritical or transfer to the supercritical state via the ambipolar diffusion
process. In any case, the magnetic field frozen in the cloud presents a problem. First
of all, it is possible to show that if all the magnetic flux is brought together with the
material that collapses to form a star in molecular clouds, then the magnetic field in a
protostar gets several orders of magnitude higher than the one observed in stars (this
is the “magnetic flux problem”, see [156] and references therein). For instance, young
stars, e. g., T-Tauri stars have a magnetic field ≈ 2 × 103 Gauss (see [203]), which cor-
responds to (Φ/M) ≈ 3 × 10−8 Gauss cm2 g−1. This, however, is a million times smaller
that the flux to mass ratio estimated for one solar mass clump in a cloud of density
104 cm−3 (see [119]). Thus one has to identify ways of efficient magnetic flux removal.
A similar problem is present with themagnetic flux through the accretion disk around
a forming star. Aswe discuss later, too strongmagnetization is expected to prevent the
accretion disks from forming.

We mentioned on several occasions that turbulence is an essential process for
interstellar media. Numerical simulations have shown that turbulence can play the
dominant role for the formation of the molecular clouds [13]. Moreover, numerical
simulations have indicated the ability of turbulence to change the flux to mass ratio
within one fluid codes, i. e., with the codes that do not have any ambipolar diffusion
effects. These, puzzling from the point of view of the traditional theory, facts were in-
terpreted within the scenario in which compressible turbulence collects matter along
magnetic field lines and induces supercritical star formation [430]. A number of re-
searchers claimed that this approach does not requiremagnetic flux diffusion and that
the collapse can be strictly one dimensional. We believe that this scenario is unreal-
istic (see a discussion in [281]). Instead the role of turbulence for magnetic diffusion
must be reevaluated on the basis of the improved understanding of magnetic field dy-
namics in turbulent medium that we covered in the previous chapter. Indeed, in the
presence of turbulent reconnection one cannot assume flux freezing.

As we discuss below, turbulence induces magnetic field diffusion and this dif-
fusion radically changes the star formation paradigm. Because of the important role
played by reconnection for the turbulent diffusion in magnetized conducting fluids,
the corresponding process introduced in Lazarain (2005) [256] and elaborated in sub-
sequent publications [377, 261, 281] was termed reconnection diffusion.
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9.2 Diffusion in magnetized turbulent fluid

Turbulent diffusion in hydroturbulence is a well-known process. The examples range
from the diffusion of volcanic ashes in atmosphere to mixing sugar in a coffee cup. In
all of the cases, the diffusion get incomparably faster compared to the case where only
molecular diffusivity takes place.

In MHD turbulence, the magnetic field affects the process of diffusion as the back
reaction of magnetic field gets important. The latter was a hotly debated subject in
the theory of magnetic field generation, i. e., the dynamo theory (see [352]). There the
problemwas tackled successfully in the astrophysically meaningless case of infinites-
imally weakmagnetic field for which backreaction is completely negligible. Evidently,
the turbulent eddies can easily bend suchmagnetic fields at all scales up to the Ohmic
dissipation one. This removes the disparity of scales present in the problem of mag-
netic reconnection thatwediscussed earlier. In this approximation themagnetic fields
are totally passive and dissipate at the small scale without any consequence for the
turbulent diffusion processes. This way of reasoning gave rise to the concept of mag-
netic turbulent diffusivity within kinematic dynamo theory. According to this concept,
the diffusion of magnetic field is similar to the diffusion of passive scalar in hydrody-
namic turbulence. Needless to say that this regime of dynamically unimportant mag-
netic field is only of academic interest and does not address the actual problem of
diffusivity of astrophysical magnetic fields.

The problem of diffusion for dynamically importantmagnetic fields demands that
the magnetic reconnection process should be addressed properly.

As we discuss in the next chapter, the GS95 theory can be viewed as a trubu-
lence of elongated eddies aligned with magnetic field. Indeed, such eddies depend
on mixing motions perpendicular to the local direction of magnetic field (see LV99)
and the process takes place requires reconnection events happen through every eddy
turnover. The latter agrees well with the expectations of the turbulent reconnection
theory. Indeed, for small scale eddies magnetic field lines are nearly parallel. There-
fore, when they intersect, the pressure gradient is not V2

A/l‖ but rather (l
2
⊥/l

3
‖ )V

2
A. This

happens since only the energy of the component of the magnetic field that is not
shared is available to drive the outflow. At the same time, the characteristic length
contraction of a given field line due to reconnection between adjacent eddies is l2⊥/l‖.
Taken together, this gives an effective ejection rate of VA/l‖. Since the width of the
diffusion layer over the length l‖ is l⊥, one can write the mass conservation in a form
by Vrec ≈ VA(l⊥/l‖). This provides the reconnection rate VA/l‖, which coincides with
the nonlinear cascade rate on the scale l‖. In fact, if not for the turbulent reconnec-
tion, the buildup of unresolved magnetic knots would be unavoidable, significantly
flattening the turbulence spectrum compared with the GS95 predictions. This would
contradicts both to Solar wind measurements and to all numerical calculations avail-
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able.1 Therefore, we claim that the process of reconnection diffusion (see [256]) is a
process that takes place in MHD turbulence.

We first consider the maximal rate allowed by the reconnection diffusion pro-
cess, i. e., evaluate the diffusivity arising from the eddies at the largest scales. We
shall consider all regimes ofMHD turbulence, i. e., super-Alfvenic, trans-Alfvenic, and
sub-Alfvenic. We start with a super-Alfvenic regime, i. e., MA > 1. Magnetic field be-
comes dynamically important as soon as its energy density exceeds the kinetic energy
of eddies at the Ohmic dissipation scale. In other words, Alfvenic velocity gets larger
than the velocity of eddies at the Ohmic dissipation scale or the ion Larmor radius,
whichever is larger. For the velocity in Kolmogorov turbulence scaling as vl ∼ l1/3, and
it is clear that even a weak magnetic field can make a significant difference for the
dynamics of sufficiently small eddies. In view of that it is advantageous to introduce
a scale at which the magnetic field is dynamically important and the nature of the
turbulence changes from hydrodynamic to MHD (see [257]), namely,

lA = L(VA/VL)
3 = LM−3A (9.2)

where L and VL are the injection scale and injection turbulent velocity, respectively.
Interestingly enough, if the mean-free path of particles is larger than lA, the scale lA
may act as an effective mean-free path in terms of particle diffusion along magnetic
fields. The corresponding diffusion coefficient coincides with its hydrodynamic coun-
terpart, i. e.,

κsupA = 1/3VLL (9.3)

This happens as the largest eddies of super-Alfvenic turbulence are marginally af-
fected by the magnetic field.

For sub-Aflvenic turbulence, i. e., for low Alfvenic Mach numbers, at large scales
∼ L the turbulence is weak (see LV99, [158])) and magnetic fields are only slightly
perturbed by propagating Alfven waves. The wave packets in weak turbulence evolve
changing their perpendicular scale l⊥, while their scale l‖ along the magnetic field
stays the same. The diffusion that is being induced by weak turbulence is substan-
tially reduced compared to the case of hydrodynamic turbulence. It is possible to get
thediffusion coefficient for theweak turbulence ([257], see also [143] henceforthELV11)

κweak ∼ LVL(VL/VA)
3 ≡ LVLM

3
A (9.4)

which is smaller than its hydrodynamic counterpart by the factorM3
A ≪ 1.

For sub-Alfvenic turbulence, the additional contribution to diffusivity comes
from scales at which magnetic turbulence gets strong. As we discussed earlier, (see

1 If magnetic reconnection were slow then, as was correctly claimed by Don Cox (private communi-
cation), the interstellar medium would behave not like a fluid, but more like felt or Jello. This also
contradicts to observations.
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also [257]) at the scale

ltrans ∼ L(VL/VA)
2 ≡ LM2

A (9.5)

the critical balance condition l‖/VA ≈ l⊥/Vl is getting satisfied making turbulence
strong. One can see that the velocity corresponding to ltrans is Vtrans ∼ VL(VL/VA). For
strong turbulence, the diffusion

κstrong ∼ Vtransltrans ∼ LVL(VL/VA)
3 (9.6)

which coincides with Equation (9.4), indicating that the diffusivity of smaller eddies
in strong MHD turbulence regime can produce is as strong as the diffusivity induced
by weak turbulence at the injection scale.

Dealing with sub-Alfvenic turbulence, it is necessary to distinguish between the
diffusivity parallel and perpendicular to magnetic field. Magnetic field in a turbulent
fluid changes the diffusion of plasma particles moving along magnetic field lines. At
the same time, turbulent eddies in the direction perpendicular to the local direction
of magnetic field are similar to eddies within the Kolmogorov picture. Indeed, in the
presence of fast reconnection magnetic mixing is not inhibited for motions perpen-
dicular to the direction of magnetic field. Note, that in MHD turbulence we deal with
motions perpendicular to the local direction of magnetic field. Therefore, for the ex-
ternal observer, the diffusion is isotropic at large scale of super-Alfvenic turbulence.

The trans-Alfvenic case of MA = 1 is the case that the GS95 model in its original
formulation deals with. It is the limiting case of both sub-Alfvenic and super-Alfvenic
turbulence.

The diffusion at scales less than the injection scale is different. In fact, the dif-
fusion of magnetic field and plasmas at scales smaller than the scales of injection L
is subject to Richardson diffusion (see Section 7.1). This is the type of diffusion that
gets accelerated with time as well as with scale involved, i. e., “superdiffusion” with
superbalistic behavior.2

For the sake of simplicity, we discuss the diffusion ofmagnetetic field from a given
clump or a cloud. In this case, one can use the scale and velocity dispersion of the
cloud as the proxies of L and VL. For sub-Alfvenic turbulence, the diffusion coefficient
can be approximated as

κcloud ∼ vcloudlcloud(vcloud/VA)
3 (9.7)

while for the case of turbulence being trans-Alfvenic or super-Alfvenic the same esti-
mate but theM3

A factor is absent.
3

2 For ordinary diffusion δr2 ∼ t, for ballistic behavior δr2 ∼ t2, for the Richardson diffusion δr2 ∼ t3.
3 One should be careful with the application of Equation (9.7), however. When the dynamics of mag-
netic fields is studied at scales less than the injection scale, the magnetic fields obey the Richardson
diffusion law and superdiffusion law δr ∼ t3/2 is applicable and the diffusion gets faster with the in-
crease of scale.
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9.2.1 Physical picture of reconnection diffusion in the absence of gravity

The description above provides an introduction to themathematical framework of tur-
bulent diffusivity in a homogeneous magnetized fluid.

The standard theory of star formation is based on the assumption that magnetic
field lines preserve their identify and the diffusion of charged particles perpendicular
to magnetic field lines is restricted. As a result, the mass loading of magnetic field
lines does not change. However, LV99 model and subsequent studies e. g. [143], [137],
[142] suggest that the standard assumptions are not applicable if magnetized fluids
are turbulent. As a result, in the presence of MHD turbulence, the diffusion of plasma
perpendicular to magnetic field is inevitable.

We shall illustrate the reconnection diffusion process by demonstration how it al-
lows plasma to move perpendicular to the mean magnetic field (see Figure 9.1). This
is relevant to star formation. Consider two magnetic flux tubes with entrained plas-
mas that intersect each other at an angle. Due to reconnection the identity ofmagnetic
field lines changes. Consider a situation that before the reconnection event the plasma
pressures Pplasma in the tubes are different, but the total pressure Pplasma +Pmagn is the
same for two tubes. This is a situation of a stable equilibrium. If plasmas are partially
ionized then ambipolar diffusion, i. e. slowdiffusion of neutrals in respect tomagnetic
field canmake gradually smoothen the magnetic field pressure gradients. In the pres-
ence of turbulence, a different faster process takes place.

Figure 9.1:Motion of matter in the process of reconnection diffusion. 3D magnetic flux tubes get
into contact and after reconnection plasma streams along magnetic field lines. Left panel: XY projec-
tion before reconnection, upper panel shows that the flux tubes are at angle in the X-Z plane. Right
panel: after reconnection.

Magnetic field lines in the presence of turbulence are not parallel. Such field lines
reconnect all the time in a turbulent flow. The process of reconnection connects mag-
netic fields with different mass loading and plasma pressures. As a result, plasmas
stream alongmagnetic field lines to equalize the pressure. In the process, the portions
of magnetic flux tubes with higher magnetic pressure expand as plasma pressure in-
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creases due to the flow of plasma alongmagnetic field lines. The entropy of the system
increases as magnetic and plasma pressures become equal through the volume. As a
result a process of the diffusion driven by turbulent reconnection takes place and it
is easy to see that this process does not depend on the degree of the ionization of the
matter. In the absence of gravity, the outcome of the reconnection diffusion is to make
magnetic field and plasmas more homogeneously distributed. Both motions of plas-
mas along the flux tubes and the exchange of parts of the flux tubes between different
eddies contributes to the diffusion.

To get a clear mental picture of what is going on, consider a toy model of two ad-
jacent magnetized eddies (see Figure 9.2). Magnetic flux tubesmoving with the eddies
reconnect and exchange plasmas and magnetic fields. This induces turbulent diffu-
sion of bothmagnetic field andplasmas. In the case illustrated by Figure 9.1, the densi-
ties of plasmawithin the flux tubes can be different and the reconnection in Figure 9.2
creates a new flux tubes along which plasma redistributes due to the pressure differ-
ence. This process induces the diffusion of plasma perpendicular to the mean mag-
netic field. In reality, the process above happens at every scale. Therefore, for turbu-
lence with the extended inertial range, the shredding of the columns of plasmas with
different density proceeds at all turbulent scales. This makes speed of plasma motion
along the magnetic field lines not essential for the diffusion. For the case of strong
turbulence, the diffusion of matter and magnetic field is given by Equation (9.6).

Figure 9.2: Reconnection diffusion: exchange of flux with entrained matter. Illustration of the mixing
of matter and magnetic fields due to reconnection as two flux tubes of different eddies interact. Only
one scale of turbulent motions is shown. In real turbulent cascade, such interactions proceed at
every scale of turbulent motions.

The efficiency of reconnection diffusion depends on the scale of themotions. The pro-
cess of reconnection diffusion can be illustrated with the diffusion of impurity from a
blob of the size a (Figure 9.3). This set up allows us to consider homogeneous turbu-
lence, which simplifies the analysis. Turbulence is characterized by its injection scale
Lmax, its dissipation scale Lmin with the inertial range between these scales. Consider
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Figure 9.3: Reconnection diffusion depends on the size a of the zone from which the diffusion hap-
pens. Different regimes emerge depending on the relation a to the sizes of maximal and minimal
eddies present in the turbulence cascade. Eddies perpendicular to magnetic field lines correspond
to Alfvenic turbulence. The plots illustrate heat diffusion for different regimes. Upper plot corre-
sponds to a being less than the minimal size of turbulent eddies;Middle plot corresponds to a being
less than the damping scale of turbulence; Lower plot corresponds to a within the inertial range of
turbulent motions. This is the case of Richardson diffusion.

Alfvenic eddies perpendicular to magnetic field lines. If turbulent eddies are much
smaller than a, i. e., a ≫ Lmin, they expand the blob acting in a randomwalk fashion.
At the same time, the eddies much larger than the blob, i. e., a ≪ Lmin mostly advect
the spot.4 If a is within the inertial range of turbulent motions, i. e., Lmin < a < Lmax
then a more complex dynamics of turbulent motions is present. This is the case of
Richardson diffusion of superballistic expansion of the blob.

If the blob a is not just an impurity, but its density is different from the density of
the surrounding flow, the process of reconnection diffusion depends on the properties
of turbulence within and outside the blob. Nevertheless, we may use the idealized
schematic in Figure 9.3 to get a qualitative insight. If the blob self-gravitating, as this
is relevant to star formation, and is turbulent up to the largest scale the diffusivity of
magnetic field from the blob can be roughly estimated as ava, where va is the velocity
at the scale a. This estimate assumes that scale a is within the range of strong MHD
turbulence. Then the expected diffusion from the volume scales as a4/3. If a is in the
range of weak turbulence, the reconnection diffusivity is given by Equation (9.7).

The example in Figure 9.3 illustrates the diffusion perpendicular tomagnetic field.
As wementioned above, the Alfvenic motions are the most efficient in mixing magne-
tized fluid perpendicular to the local direction of magnetic field. This direction, as
we discussed earlier, differs from the mean magnetic field direction. Therefore, in the
global system of reference related to the mean magnetic field (and to the external ob-

4 There is also the expansion of the blob arising from the Lyapunov deviation of the flow lines.
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server) the diffusion ofmagnetic field and plasmas is expected to happen both parallel
and perpendicular to themeanmagnetic field direction. However, the weaker the per-
turbations of the magnetic field, i. e., the smaller the Alfven Mach number MA, the
more anisotropic the reconnection diffusion is.

9.2.2 Reconnection diffusion in the presence of gravity

In the presence of the gravitational force, the diffusion will also increase the entropy
of the system, allowing the “heavy fluid,” i. e., gas, to be concentrated and “weight-
less fluid,” i. e., magnetic field, to leave the the gravitational potential. Consider, for
instance, the idealized system of plasmas and magnetic field in a uniform directed
downwards gravitational field with the acceleration g. In the thermodynamic equilib-
rium, the plasmas will have the Boltzmann-type distribution with ρ exp[−migz/kTeff],
where the effective “temperature” for supersonic turbulence can be roughly estimated
from kTeff ∼ mdomV2

L/2, where mdom is the mass of dominant species in the flow. As a
result, the weightless fluid, namely, magnetic field, will tend to fill the entire volume
to the same pressure. Therefore, the magnetization of the volume in terms of mag-
netic flux to plasma mass ratio is the lowest at the bottom and highest at the top of
the system.

The astrophysical systems the redistribution of the magnetic field is induced by
the process of reconnection diffusion. If we have spherical density inhomogeneities,
the diameter of these inhomogeneities is acted upon by the parallel scale of Alfvenic
eddies Λ‖. Themotions that induce reconnection diffusion are associatedwith the per-
pendicular scale of the corresponding eddies Λ⊥.

The removal of magnetic field from the cloud is a complex process that for scales
less than the injection scale is governed by the law of Richardson diffusion. However,
to illustrate the process we consider a toy model of small scale turbulence with the
scale of turbulent motions L much smaller than the size of the cloud Lcloud. For this
set-up, the reconnection diffusion process is governed by an ordinary diffusion law.
Thus one can obtain the rate of removal of the flux from the gravitational potential U
in the simple way. Indeed, the force is given by F = −dU/dx and the diffusion velocity
Vdiff = μF. Thus one can write the drift flux as

Jdrift = −ρμdU/dx. (9.8)

This flux is counteracted by the diffusion flux given by the following relation:

Jdiffusion = −Ddρ/dx. (9.9)

For a steady state situation, one gets the total flux being equal to zero and ρ =
ρ0 exp(−U/mv2L). Thus

0 = −ρdU/dx(μ − D/(mv2L)), (9.10)

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



180 | 9 Turbulent transport of magnetic field and heat

which results in μ ≈ l/(mvL), which gives result

Vdiff ≈ l/vL(F/m). (9.11)

If magnetic field counteracts to gravity F ∼ B2/(Lcloudn), where n is the density of
particles, which combines with Equation (9.11) gives

Vdiff ∼ LB
2/(mvLLcloudn) = LV

2
A/(vLLcloud), (9.12)

and the diffusion time for the magnetic field is

tesc ∼ L
2
cloudmvLn/(LB

2) = L2cloudvL/(V
2
AL) (9.13)

Note, that in the case of sub-Alfvenic turbulence, we should associate the injection
scale L with the perpendicular size of eddies at which MHD turbulence gets strong
(see Equation (9.5)).

9.3 Reconnection diffusion and the identity of magnetic field lines

The discussion above considered large scale flux tubes. Belowwe consider the process
of reconnection diffusion microscopically, at the level of individual field lines.

9.3.1 Explosive diffusion of magnetic field lines in turbulent flows

A textbook description of magnetic field lines in perfectly conducting fluid assumes
that the line always preserves its identity. This is impossible in a turbulent fluid (see
ELV11). We shall start by showing how the Richardson diffusion produces rather non-
trivial results. Consider the problemof separating particles in hydrodynamic Kolmoro-
gov turbulence that we discussed in Chapter 8. The separation between two particles
obeys the equation dl(t)/dt ∼ v(l) ∼ αl1/3, where α is proportional to a cubical root
of the energy cascading rate. The solution of this equation is l(t) = [l2/30 + α(t − t0)]

1/3

describes the Richardson diffusion of l2 ∼ t3. However, the interesting feature of this
solution is that the provides the type of fast separation even if the initial separation of
particles is zero. This means the violation of Laplacian determinism. Mathematically,
the above paradox is resolved by accounting to the fact that turbulent field is not dif-
ferentiable5 and, therefore, it is not unexpected that the initial value problemdoes not
have a unique solution. In physical settings, the turbulence gets damped at a nonzero
scale, which makes the paradox less vivid.

The essential features of the example above carry over to the case of MHD turbu-
lence, as in the plane perpendicular to the local direction of magnetic field, strong

5 The Kolmogorov velocity field is Hölder continuous, i. e., |v(r1) − v(r2)| ≤ C|r1 − r2|1/3.
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Figure 9.4: Particle tracing magnetic field lines may start at
different initial locations shown as coaxial ellipsoids. However,
after a period of time the field line spread over a larger volume
and the final position of the field lines does not correlate with
their initial position.

MHD turbulence satisfies the Kolmogorov description. Figure 9.4 illustrates the loss
of the Laplacian determinism for magnetic field lines. In analogy with the example
above, the final line spread l⊥ does not depend on the initial separation of the field
lines. This is a remarkable effect that provides a microscopic picture of reconnection
diffusion based on the description ofmagnetic field lines rather than on the reconnec-
tion of well-organized flux tubes.

We shall trace magnetic field lines in the realistic turbulence with the dissipation
scale lmin,⊥, where, ⊥ denotes the scale perpendicular to the local magnetic field. A
couple relevant points were discussed in ELV11. First of all, resistivity, whatever its na-
ture, introduces stochastic forcing of magnetic field line dynamics. Indeed, the induc-
tion equation with the resistive term ηΔB induces stochasticity associated with Ohmic
diffusion. Therefore, the definition of the magnetic field line on scales affected by re-
sistivity gets not deterministic. In fact, the magnetic field line motion is a concept de-
fined mostly by convention and not testable experimentally (see [337, 429, 8], ELV11).
Thus magnetic field lines may be traced by ions that start at the same field line (see
Figure 9.5) For a smooth laminarmagnetic field and idealMHD equations, themotions
of ions will reveal magnetic field lines as two ions on the same field line will always
remain on the same line. However, the situation is radically different in the presence
of turbulence.

In our thought experiment, we shall trace ionsmovingwith the same velocity and
separated perpendicular to magnetic field by a Larmor radius ρ0. Let us assume that
the minimal scale of turbulence lmin,⊥ > ρ0. For this case, the dynamics of ions can
be approximated by the dynamics of charged particles of “a single scale MHD tur-
bulence” discussed in [366]. Indeed, the turbulent motions at the critically damped
scale lmin,⊥ are dominant for shearing and steering matter and magnetic field on the
smaller scales. The Rechester and Rosenbluth (1978) theory [366] predicts the Lya-
punov growth of the perpendicular separation of ions

l⊥ ≈ ρ0 exp(l/lmin,‖), (9.14)

where l is the distance traveled by ions along magnetic field and lmin,‖ is the scale par-
allel scale of the critically damped eddies with the perpendicular scale lmin,⊥ (see also
[336, 257]). For ions to find themselves in different eddies, theymust be separated by l⊥
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Figure 9.5: Upper plot: Ions tracing the same magnetic field line. The
diffusion and decorrelation arises from plasma or Ohmic effects as well
Rechester–Rosenbluth effect.Middle plot: Ions separated by scales
much larger than the ion Larmor radius are further separated by the
Rechester–Rosenbluth effect. Lower: At scales larger than the turbu-
lence damping scale, the Richardson diffusion takes over resulting in
explosive separation of field lines.

equal to the perpendicular size of the critically damped eddies lmin,⊥. Substituting this
in Equation (9.14), one easily finds that the ions must travel the so-called Rechester–
Rosenbluth distance

LRR ≈ lmin,‖ ln(lmin,⊥/ρ0), (9.15)

to get into different eddies.
The anisotropic character of turbulence results in the difference between lmin,⊥

and lmin,‖ which is a point different from the original Rechester–Rosenbluth theory
formulated for the idealized toymodel of isotropic turbulence. Note, that the distance
given by Equation (9.15) is just a few times larger than the scale lmin,‖. As soon as
ions get separated over lmin,⊥, they get into different eddies as their trajectories di-
verge fast as a result of the Richardson diffusion. Thus after a relatively short period
during which ions move in a correlated manner remembering their original position,
a stochastic regime takes place. At the latter phase, the initial positions of the ions is
completely forgotten. We remind the reader that we used the ions as tracers of mag-
netic field. Thus we can talk about the stochasticity of magnetic field lines as they
these lines are traced by ions.

The smaller the turbulence scale, the larger the effects of stochasticity. For in-
stance, if the turbulence proceeds to the scale ρ0, the arguments above only get
stronger, as from the very beginning the ions may experience stochastic turbulence
driving and get uncorrelated. In many cases, for instance, in fully or mostly ionized
ISM, the Alfvenic turbulent cascade at ρ0 gets continued as a whistler cascade involv-
ing only electrons. Such cascading provides stochasticity below ρ0. With the whistler
scaling as vl ∼ l2/3 (see [86] and references therein) the “whistler-induced” Richardson
diffusion should go as l2 ∼ t6, inducing fast separation of magnetic field lines. In this
case, the magnetic field lines can be traced by electrons and this induces stochastic
perturbations on ion trajectories. If one argues that it is electrons that are current
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carrying agents, this does not alter our arguments above. Indeed, one would use the
Larmor radius of electron ρelectron instead of ρ0 in Equation (9.15) and this changes the
result by an insignificant factor.

9.3.2 Spontaneous stochasticity of magnetic field lines and reconnection diffusion

The process of magnetic field lines becomes stochastic in turbulent fluids this effect is
termed “spontaneous stochasticity” (see ELV11). The commonwisdom underlying the
star formation research, for instance, is based on the picture of laminar field lineswith
no spontaneous stochasticity.With such fields, nearby ions stay all the time entrained
on the samefield line provided that the nonideal effects, e. g., resistivity, are negligibly
small. Naturally, this set up is unrealistic for any turbulent astrophysical environment,
including star forming molecular clouds.

To proceed with our discussion of the physics of reconnection diffusion, consider
two separated turbulent volumes (see Figure 9.6). Each of the volumes has its own
set of magnetic field lines. However, as the field lines wander due to the Richardson
diffusion, they overlap in the volume Δint and their identity as associated with the
particular volume is lost (Figure 9.6, left). Magnetic field lines reconnect and the newly
formed lines allow plasma exchange between the volumes. If plasma and magnetic
field pressures in the volumes were different, this picture based on the diffusion of
magnetic field lines is very similar to the picture describing the exchange of plasmas
between magnetic flux tubes in Figure 9.1.

Dealing with magnetic reconnection we have discussed the separation of mag-
netic field lines. Figure 9.6, left, illustrates the spread of magnetic field lines in the

Figure 9.6:Microscopic physical picture of reconnection diffusion. Magnetized plasma from two
regions is spread by turbulence and mixed up over Δint. Left panel: Description of the process in
terms of field wandering in space. Right panel: Description of the spread in time.
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perpendicular direction in the situation when magnetic field lines are traced by par-
ticles moving along them. Using Equation (7.1), one can get the RMS separation of the
magnetic field lines (LV99)

δl2⊥ ≈
l3‖
L
(
VL
VA
)
4
, (9.16)

i. e., l2⊥ is proportional to l
3
‖ . This regime is the Richardson diffusion in terms of mag-

netic field lines. The numerical testing of this prediction of LV99 is shown in Figure 7.1.
This is the diffusion in space and Equation (9.16) provides the distance l‖ at which the
magnetic field lines of regions separated by l⊥ start overlapping.6

For the partially ionized gas, the following question is important. Does the
Rechester–Rosenbluth lengthgivenbyEquation (9.15) present abottleneck forRichard-
son diffusion on the larger scales? There has not yet been a numerical study of the
Richardson diffusion in a partially ionized gas. However, one can argue that the
Richardson diffusion makes the latter irrelevant if one considers magnetic diffusion
on scales significantly larger than the turbulence damping scale.

We note that magnetic field wandering described in LV99 is an implementation of
Richardson diffusion (ELV11). A similar process of field wandering in space has been
then used to calculate perpendicular diffusion of CRs and heat transport (see [336,
256, 455]). We considered this important process in the Section 7.1.

9.3.3 Reconnection diffusion in partially ionized gas

Star formation happens in partially ionized gas. It is known that partial ionization
does as strong affect fluid conductivity as it affects the damping of the turbulent mo-
tions [280, 450]. The analogy between the turbulence and dynamo in partially ionized
gas and in fluids with viscosity much larger than resistivity, i. e. with high Prandtl
numbers, was discussed in [448].

In high Prandtl numbermedia the GS95-type turbulentmotions decay at the scale
l⊥,crit, which is much larger than the scale of at which Ohmic dissipation gets impor-
tant. Thus, over a range of scales less than l⊥,critmagnetic fields preserve their identity
and are being driven by the shear on the scale l⊥,crit as it is the case in numerical sim-
ulations in [88] and the theory in [280]. In view of the findings in ELV11 one should
establish the range of scales at which magnetic fields are subject to Richardson diffu-
sion. It is obvious that the transition to the Richardson diffusion happens when field

6 Thus for sufficiently large l‖ all parts of the volume of magnetized plasmas get connected. In other
words, the entire volume becomes accessible to particlesmoving alongmagnetic field lines. Naturally,
in this situation the customary for the star formation community notion of flux to mass ratio does not
have much meaning.
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lines get separated by the perpendicular scale of the critically damped eddies l⊥,crit.
The separation in the perpendicular direction starts with the scale rinit follows the
Lyapunov exponential growth with the distance l measured along the magnetic field
lines. Therefore, rinit exp(l/l‖,crit), where l‖,crit corresponds to critically damped eddies
with lperp,crit. It seems natural to associate rinit with the separation of the field lines
arising from Ohmic resistivity on the scale of the critically damped eddies, i. e.

r2init = ηl‖,crit/VA, (9.17)

where η is the value of Ohmic resistivity.
Thus we as in Section 9.3.1 get to the Rechester–Rosenbluth scale,

LRR ≈ l‖,crit ln(l⊥,crit/rinit) (9.18)

Accounting for Equation (9.17) and that

l2⊥,crit = νl‖,crit/VA, (9.19)

where ν is the viscosity coefficient. One can rewrite Equation (9.18)

LRR ≈ l‖,crit ln Pt (9.20)

where Pt = ν/η is the Prandtl number.
If the current sheets are much longer than LRR, then magnetic field lines undergo

Richardson diffusion and, according to ELV11, the LV99 turbulent reconnectionmodel
is applicable. At the same time, on scales less than LRR magnetic reconnection can be
slow.7

9.4 Theoretical expectations and numerical simulations of
reconnection diffusion

9.4.1 Limitations of numerical simulations

Thedifferencebetween reconnection in astrophysical situations and innumerical sim-
ulations stems from the fact that the Lundquist number.8 Because of the huge astro-
physical length-scales Lx involved, the astrophysical Lundquist numbers are huge,

7 Incidentally, this can explain the formation of density fluctuations on scales of thousands of Astro-
nomical Units, that are observed in the ISM [189].
8 It is different from the magnetic Reynolds’ number which is the ratio of the magnetic field decay
time to the eddy turnover time. It is defined using the injection velocity vl as a characteristic speed
instead of the Alfvén speed VA, which is used in the Lundquist number.
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e. g., for the ISM they are about 1016. In contrast, present-day MHD simulations cor-
respond to S < 104. As the numerical efforts scale as L4x , where Lx is the size of the
box, it is not feasible at present or in the foreseeable future to have simulations with
realistic Lundquist numbers. Therefore, the numerical studies of reconnection diffu-
sion in [377, 375] as well as in [176] deal with a very different range of Lundquist num-
bers. As a result, the theoretical justification why for a given problem the difference
in the Lundquist numbers is not essential is mandatory. For the case of reconnection
diffusion, the turbulent reconnection theory theory (see Chapter 8), predicts that the
dynamics of reconnection is independent of the Lundquist number. As a result, one
comes to an important conclusion that the reconnection diffusion in the computer
simulations in the presence of turbulence adequately represents the reconnection dif-
fusion in the astrophysical settings.

Understanding of the nature of reconnection diffusion allows one to simulate this
process using the existing 3D MHD codes. Some results of such a simulation is shown
in Figure 9.7. We observe that in the absence of ambipolar diffusion, the magnetic field
escapes the gravitational potential, thus allowing the matter to become concentrated
in the center. This process is the essence of star formation. The simulations in [377]
were performed for different settings, e. g. starting from equilibrium configurations
representing subcritical clouds as well as for collapsing clouds, representing super-
critical clouds. In all the cases studied, the efficient removal of magnetic flux from
clouds was reported.

Figure 9.7: Removal of magnetic field via reconnection diffusion from cylindrical models of molecular
clouds. In the process of simulations, the density is accumulated at the center of the potential well
(upper raw), while the magnetic field leaves the center (lower raw) from [377].
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9.4.2 Reconnection diffusion in circumstellar accretion disks

Circumstellar accretion disks are known to play a fundamental role at the late stages
of star formation (see [3]). Observations revealed that embedded magnetic fields in
molecular cloud cores are high enough to inhibit the formation of rotationally sup-
ported disks. This problem is also known as “magnetic breaking catastrophe.” It is
established that ambipolar diffusion is not powerful enough to induce the removal of
magnetic fields fast enough. This motivated [395] to suggest the effects of enhanced
resistivity that can explain the observational data. More recent elaborations of this
idea of microscopic resistivity can be found in [237] and [292]. On the contrary, it was
argued in [269] that the removal of magnetic field is due to reconnection diffusion.

The numerical studies of reconnection diffusion in disks are similar to the numer-
ical studies of the process in themolecular clouds. Figure 9.8 shows results of the sim-
ulations in [375] which, indeed, support the notion that reconnection diffusion is the
process responsible for the removal of magnetic fields. The turbulence level within
the simulated molecular cloud turbulence is chosen to correspond to observations.
The turbulence is not driven during the disk formation process.

The benchmark simulations testify, in agreement with earlier studies, that with-
out turbulence the formation of disks is suppressed as the angular momentum of the
forming disk is tranformed to the ambient medium. On the contrary the simulations

Figure 9.8: Formation of circumstellar disks (from left to right): in hydro simulations, MHD simu-
lations without turbulence, MHD simulations with unrealistically high resistivity and MHD simula-
tions with turbulence at the start of simulations. Reconnection diffusion produces realistic disks
from [375].
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performed in the presence of turbulence in the initial stage of disk formation estab-
lished the correspondence of the properties of the disks to observations. The reconnec-
tion diffusion was identified as the source of the magnetic field loss. While additional
processes may also be present during the simulations, see [388], it is well established
that the reconnection diffusion is the process that is definitely present and important.9

More recent simulations of the accretion disks in [176] provided additional quan-
titative evidence in favor of the reconnection diffusion. They also identified turbulent
reconnection as the process that converts the initial “split monopole” magnetic field
configuration into the dipole configuration. While the initial magnetic field configu-
ration attaches the disk to the surrounding medium, the dipole magnetic field essen-
tially decouples the disk from the surrounding molecular cloud. The corresponding
topology change significantly helps in solving the notorious problem of “magnetic
breaking catastrophe.” These results are illustrated in Figure 9.9.

Figure 9.9: Change of the magnetic field configuration from the split monopole on the left to the
dipole configuration on the right decreases the degree of coupling of the disk with the surrounding
ISM without removing magnetic field from the disk from [68].

9.5 Predictions and tests for reconnection diffusion
Reconnection diffusion is a physical process very different from the textbook-accepted
process of ambipolar diffusion. Thus it is not surprising that the star formation con-
trolled by reconnection diffusion is very different from the traditional one. Below we
outline a few predictions that the reconnection diffusion entails.

9.5.1 Reconnection diffusion in interstellar diffuse gas

A naive interpretation of magnetic fields frozen in interstellar plasmas suggests that
fluctuations of magnetic field and density should be correlated. More considerations

9 The models with enhanced resistivity require resistivities that are not motivated by the known
physics. Thus we do not consider them as a solution.
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suggest that these correlations may not be perfect, as motions along magnetic field
lines that compress only gas are also present, e. g., slowmodes in themediawithmag-
netic pressure larger than the pressure of the ionized gas (see [88, 354]). However, ob-
servations by [424] demonstrated a very poor correlation between the magnetic field
strength and density, which was rather unexpected for many researchers. Indeed, the
degree of ionization of the diffusemedia is sufficiently large to make the effects of am-
bipolar diffusion negligible.

At the same time, in view of our earlier discussion, the above result is expected.
Indeed, we stressed that the reconnection diffusion tends to make the magnetic en-
ergy density uniformly distributed in the volume. In other words, in the presence of
reconnection diffusion mixing of density fluctuations by turbulent eddies takes place
and this destroys any density-magnetic field correlations arising from simultaneous
compression of magnetic field and conducting gas.

Reconnection diffusion can also account for the results of other observations. For
instance, [104] analyzed an extensive set of Zeeman measurements and showed that
cloudswith column densitiesNH less than 1021 cm−2 are subcritical, i. e., magnetically
dominated,while at higher densities they get supercritical, i. e., gravity dominated.He
noted, that for cold HI clouds withNH < 1021 cm−2 the magnetic field is approximately
∼ 6 µG, which coincides with the value of magnetic field strength in a much more
rarefied warm neutral media. On the basis of our study, we claim that reconnection
diffusion presents an appealing solution. Indeed, the efficient diffusion of magnetic
field is expected make magnetic field strength the same in cold dense clouds and sur-
rounding warm rarefied medium.

In addition, [104] notes that the kinetic and magnetic energies of low density
clouds are approximately in equipartition and larger that the thermal energy. This
means that the turbulence is trans-Alfvenic supersonic turbulence and this turbulence
is expected to be efficient in driving reconnection diffusion. From the plot presented
in [104] (see Figure 9.10), it is evident that the majority of the clouds preserves the
magnetic field strength of the order of 6 µG even as the column density gets as high as
1023 cm−2. This is the likely consequence of the reconnection diffusion being efficient
at those densities. A tendency of the increase of the mean magnetic field for densities
larger than 1023 cm−2 was explained in [281] as the consequence of self-gravity getting
dominant. In this situation, the reconnection diffusion fails to remove magnetic field
from the contracting clouds fast enough.

In addition, [281] pointed out that the aforementioned independence of magnetic
field strength on the cloud density can be related to the empirical Larson relations
[253] obtained for interstellar turbulence. Indeed, [253] found that the velocity disper-
sion is proportional to the square root of the cloud size, i. e., σV ∼ R1/2 and that the 3D
density of cloud is inversely proportional to cloud size, i. e., ρ ∼ R−1. For instance, one
can assume a rough equality between the kinetic energy and magnetic energy

B2

8π
∼ ρσ2v , (9.21)
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Figure 9.10: HI, OH, and CN Zeeman measurements of line of sight component of magnetic field
versus the total column density NH of atomic and molecular hydrogen. The straight line is the critical
mass/fluxM/Φ = 3.8 × NH/B with subcritical clouds above the line. The two molecular clouds near
N = 1022 have OH maser contamination in their spectra and the corresponding Zeeman results are
not reliable from [104].

which is natural for trans-Alfvenic turbulence. If one also assumes the virialization of
a cloud

GM
R
∼ σ2v , (9.22)

then, combining Equations (9.21) and (9.22) with an estimate of the cloud mass M ∼
ρR3 one gets

σv ∼ B
1/2R1/2 (9.23)

and

ρ ∼ BR−1, (9.24)

which reproduces the [253] relations, provided that the reconnection diffusion keeps
magnetic field uncorrelated with density. For cloud cores where reconnection diffu-
sion is not sufficiently fast to remove magnetic field on the time of the dynamic col-
lapse [416, 368], the Larson relations fail. This failure at higher densities agrees well
with observations and simulations [333].

9.5.2 Reconnection diffusion and extreme cases of star formation

Testing ideas is good in extreme environments, where alternative processes are ex-
cluded. For instance, ambipolar diffusiondefinitely cannotwork in thehigh ionization
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media. It was found, for instance, that reconnection diffusion concept provides new
ways of approaching the challenge explaining star formation in environments of high
ionization, i. e., for instance, in galaxies emitting more than 1012 solar luminousities
in the far-infrared. These ultra-luminous infrared galaxies or ULIRGs present physical
conditions with very high density of cosmic rays [348]. Ambipolar diffusion in these
environments is expected to be marginal due to high ionization by cosmic rays. Con-
trary to the expectations of the star formation theory based on ambipolar diffusion,
these environments provide the highest star formation rate which is suggestive of a
process which removes magnetic fields irrespectively of the level of ionization. At the
same time, reconnection diffusion is such a process.

Similarly, the formation of early stars [77] is a great problem for which the effects
of magnetic fields are hotly debated. Reconnection diffusion mitigates the cloud sup-
port bymagnetic fields and, therefore, decreases the uncertainties associatedwith the
presence of magnetic fields for star formation in early Universe [448].

9.5.3 Intuitive understanding of reconnection diffusion

The idea of magnetic flux freezing is so deeply rooted in astrophysics, that any at-
tempts to challenge it sound heretical. At the same time, we would like to stress that
fast reconnection in turbulent magnetizedmedia is very natural. Moreover, a lot of ac-
cepted astrophysical ideas implicitly rely on the ability of magnetic field to reconnect
fast in turbulent media and, therefore, not to be frozen in the turbulent fluids. Indeed,
without turbulent reconnection the intersectingmagnetic field flux tubes do not cross
each other creating the felt-like strucute. Thus the magnetized turbulent fluid would
not behave like a fluid. This automatically would mean that the numerical simula-
tions of interstellar media that show fluid-like behavior are irrelevant to describing
the actual interstellar medium dynamics. In other words, unless turbulent reconnec-
tion and reconnection diffusion concepts are accepted, all the crop of the present and
future numerical simulations of magnetized ISM and other magnetized astrophysical
media should be accepted completely irrelevant and useless.

At the same time, if turbulent magnetized fluids preserve fluid-type behavior as
it required by GS95 theory of turbulence, one has to accept that turbulent reconnec-
tion and reconnection diffusion takes place. In addition, the ideas of magnetic field
meandering that have been invoked for decades to understand the observed diffusion
of cosmic rays perpendicular to magnetic field (see [350, 204]) are naturally related
to the reconnection diffusion concept. The latter is evident from the analysis of the
numerical simulations in [137].

The failure of flux freezing in turbulent fluids has important astrophysical conse-
quences for star formation and beyond it. The generic flux freezing violation in turbu-
lent fluids contradicts to the customary accepted point of view that in astrophysical
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situations the flux freezing is “nearly” fulfilled and the violations are due to the ex-
isting finite nonideal effects. Turbulence makes violates the flux freezing through the
entire volume.However, turbulence, unlike resistivity, does not destroymagnetic flux,
but makes the magnetic field stochastic. As a result, the charged particles get the pos-
sibility of exploring the entire volume, which also means that magnetic field get the
ability to diffuse through the volume.

9.5.4 Reconnection diffusion and alternative ideas

Reconnection diffusion is a numerically confirmed and theoretically justified concept.
In terms of astrophysical applications, in many cases there is no real alternative way
of explaining many existing observations but to appeal to reconnection diffusion. For
instance, an alternativeway for changing locally the value of themagnetic field flux to
mass ratio is to allow the conducting matter to be accumulated along magnetic field
lines. This process definitely takes place, but the requirement of one dimensional mo-
tion of matter is very restrictive and requires collecting the matter from enormous dis-
tances. Indeed, it requires ∼ 1 kpc collection of interstellar gas to create an individual
star (see [430]). This is definitely not feasible in turbulent environments, as magnetic
field wandering is ought to interfere with the required one-dimensional motion. Esti-
mates in [281] show that for typical interstellar medium conditions the spread of mag-
netic field lines over the distance for the material collection is expected to be so large
that only a fraction of matter ∼ 10−4 could be viewed as collected along the mean
field. As for simulations that “supported” the idea forming the clouds by collecting
the material along magnetic field lines to form stars, we believe that we deal with the
misinterpretation of the numerical results. Indeed, reconnection diffusion is an in-
trinsic part of the simulations of the turbulent interstellar medium and it should be
accounted for in interpreting the results of numerical simulations.

The approach based on reconnection diffusion should also be distinguished from
the research on the decorrelation of magnetic field and density within compressible
turbulent fluctuations. This decorrelation naturally takes place within the theory of
compressible MHD turbulence. Indeed, as follows from 3D numerical simulations in
[81, 83] there exist separate turbulent cascades of Alfven and fast modes in strongly
driven turbulence as well as a cascade of slow modes driven by Alfvénic cascade. For
instance, slow modes in magnetically dominated plasma are associated with density
perturbations with marginal perturbation of magnetic fields, while the same is true
for fast modes in weaklymagnetized or high beta plasmas. Naturally, these compress-
ible modes decorrelate magnetic fields and density on the crossing time of the wave.
This was the effect studied in more detail in a one-dimensional setting both analyti-
cally and numerically by [354], who pointed out that the enhancements of magnetic
field strength anddensitymay correlate and anti-correlate in turbulent interstellar gas
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within the fluctuations and this can introduce the dispersion of the mass-to-flux ra-
tios within the turbulent volume. The fluctuations provide a varying in time changes
and predict that the decorrelation should vary with the driving compressibility, e. g.,
related to the Mach number. We are not aware of such a dependence, but instead the
decorrelation looks to be complete. This can be explained by the reconnection dif-
fusion which deals with the permanent decorrelation of magnetic field and density
making magnetic field-density decorrelation irreversible.

Finally, we would like to compare the concept of reconnection diffusion with that
of “turbulent ambipolar diffusion” [149, 470]. The latter concept is based on the idea
that turbulence can create gradients of neutrals and those can accelerate the overall
pace of ambipolar diffusion. The questions that naturally arise are (1) whether this
process can proceed without magnetic reconnection and (2) what is the role of am-
bipolar diffusion in the process. [191] performed numerical simulations with 2D tur-
bulent mixing of a layer with magnetic field perpendicular to the layer and reported
fast diffusion that was of the order of turbulent diffusivity number VLL, independent
of ambipolar diffusion coefficient. However, this sort of mixing can happen without re-
connection only in a degenerate case of 2D mixing with exactly parallel magnetic field
lines. In any realistic 3D case, turbulence will bend magnetic field lines and the mix-
ing process does inevitably involve reconnection. Therefore, the 3D turbulent mixing
in magnetized fluid must be treated from the point of view of reconnection theory. If
magnetic reconnection does not happen within one eddy rotation time, the process
in [191] should come to holt due to the inability of magnetic field lines to freely cross
each other. This is in contrast to the 2D casewhere no such constraints are present. In-
deed, slow magnetic reconnection should arrest the 3D mixing and this should make
the conclusions obtained in the degenerate 2D case inapplicable to the 3D diffusion.
If, however, reconnection is fast as predicted in LV99, thenmixing and turbulent diffu-
sion are expected to take place. The resulting turbulent diffusion rate is independent
from on the rate of the ambipolar diffusion processes, which is, incidentally, in agree-
ment with results in [191]. The process will proceed with the same rate in partially
ionized gas as in fully ionized plasmas.10

The previous discussion provide the answers to the questions that we posed in
the paragraph above. One has to conclude that turbulent diffusion in partially ionized
gas is (1) impossible without fast turbulent reconnection and (2) independent of am-
bipolar diffusionphysics. In this situation,webelieve that it ismisleading to talk about
“turbulent ambipolar diffusion” in any astrophysical 3D setting. In fact, the actual dif-
fusion in turbulent media is controlled by magnetic reconnection and is independent
of ambipolar diffusion process.

10 The 2D toy model in [191] does not require reconnection as the magnetic field lines are strictly
parallel to each other and perpendicular to the motions of the fluid. The obtained results coinside
with the expectations for the reconnection diffusion as LV99 reconnection does not constrainmotions
of magnetized eddies.
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9.5.5 Transport of heat in magnetized fluid

The issue of diffusion in magnetized plasma is also relevant to heat transfer. This
process which is relevant to the wide variety of circumstances from mixing layers in
the Local Bubble [400] and Milky Way [16] to cooling flows in an intracluster medium
(ICM) [144]. The latter issue is related to the absence of evidence of plasma cooling
(see [145]). This suggests the existence of heating that replenishes the energy lost via
X-ray emission. Heat transfer from hot outer regions is a process to consider in this
context.

[336], henceforth NM01, obtained estimates of thermal conductivity by electrons
using the GS95 model of MHD turbulence with the velocity VL at the energy injection
scale L that is equal to theAlfven velocityVA, i. e., the turbulencewith theAlfvenMach
numberMA ≡ (VL/VA) = 1. While the work was done in the context in ICM, for actual
ICM MA > 1. There are other plasmas, e. g., parts of the interstellar media, for which
MA < 1. Below we discuss turbulence for both MA > 1 and MA < 1 and compare the
particle diffusion to that by turbulent fluid motions. For heat transfer, we refer to our
results in [257, 259].

Let us follow the traditional way of reasoning and initially disregard the dynam-
ics of fluid motions on diffusion, i. e., consider diffusion induced by particles mov-
ing along static magnetic fields. As we discussed, magnetized turbulence in the GS95
model is anisotropic with eddies elongated along (henceforth denoted by ‖) the direc-
tion of local magnetic field. Consider isotropic injection of energy at the outer scale
L and dissipation at the scale l⊥,min, where ⊥ denotes the direction of perpendicular
to the local magnetic field. At smallest scales, less than l⊥,min the separations of mag-
netic field lines for r0 < l⊥,min are mostly influenced by the motions at the scale l⊥,min,
which results in Lyapunov-type growth: ∼ r0 exp(l/l‖,min). This growth is similar to
that discussed in toy models of “turbulence” with a single scale of turbulent motions
[366, 72]. Indeed, the largest shear that causes field line divergence is provided by the
marginally dampedmotions at the scale around l⊥,min. r0 can be of the size of the cloud
of electrons of the electron Larmor radius rLar,particle. To get to the scale of l⊥,min and
get into the regime of the Richardson diffusion, the electrons should travel over the
distance

LRR ∼ l‖,min ln(l⊥,min/rLar,particle). (9.25)

Wemaymention thatwithin the single-scale “turbulence”modelL = l‖,min = l⊥,min
and the scale LRR is called Rechester–Rosenbluth distance. For the ICM parameters,
the logarithmic factor in Equation (9.25) is of the order of 30, and this causes 30 times
decrease of thermal conductivity for the single-scale models.11 In realistic turbulence

11 If for the single-scale “turbulence” model, LRR ∼ 30L [72], the diffusion over distance Δ takes LRR/L
steps, i. e., Δ2 ∼ LRRL, which decreases the corresponding diffusion coefficient κparticle,single ∼ Δ2/δt by
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with a limited (e. g., a few decades) inertial range, the logarithmic factor stays of the
same order but it marginally affects the thermal conductivity, provided that L ≫ l‖,min.
Note that the GS95 model of turbulence takes into account that at small scales with
field lines that are sufficiently stiff, i. e., the deviation of the field lines from their orig-
inal direction is of the order unity at scale L and less for smaller scales.

Diffusion forMA > 1
Consider first the diffusion forMA > 1. We know that turbulence withMA > 1 evolves
along hydrodynamic isotropic Kolmogorov cascade, i. e.,Vl ∼ VL(l/L)1/3 over the range
of scales [L, lA], where

lA ≈ L(VA/VL)
3 ≡ LM−3A . (9.26)

Making use of the relations between parallel and perpendicular scales

l‖ ∼ L(l⊥/L)
2/3M−1A , MA > 1, (9.27)

it is possible to calculate heat diffusion arising from electrons streaming along mag-
netic field lines.

If the mean-free path of particles, e. g., electrons satisfy λ ≫ lA, they stream freely
over the distance of lA.12

For particles initially at distance l⊥,min to get separated by L, the required travel is
the random walk with the step lA, i. e., the mean-squared displacement of a particle
until it enters an independent large-scale eddy Δ2 ∼ l2A(L/lA), where L/lA is the number
of steps. These steps require time δt ∼ (L/lA)lA/C1vparticle, where vparticle is electron
thermal velocity and the coefficient C1 = 1/3 reflects the 1D character of motion along
magnetic field lines. Thus the electron diffusion coefficient is

κparticle ≡ Δ
2/δt ≈ (1/3)lAvparticle, lA < λ, (9.28)

which for lA ≪ λ reflects a substantial reduction of diffusivity compared to its unmag-
netized value κunmagn = λvparticle. We note, that we assumed in Equation (9.28) that
L ≫ 30l‖,min.

For λ ≪ lA ≪ L, κparticle ≈ 1/3κunmagn as both the LRR and the additional distance
for electrons todiffusedue to the fact thatmagnetic field is stiff at scales less than lA are
negligible compared to L. For lA → L, when magnetic field is dynamically important
up to the scale L, it gets around 1/5 of the value in unmagnetized medium, according
to NM01.

the factor of 30. This is a significant decrease of thermal conductivity. This is, however, an artifact of
the use of unrealistic model that disregards the existence of the turbulent cascade.
12 Mean-free path in turbulent collisionless plasmas is modified as we discuss in Section 2.2.1.
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Note that even dynamically unimportant magnetic fields can influence heat
conductivity over short time intervals. For instance, over time interval less than
l2A/C1κunmagn the diffusion happens mostly along magnetic field lines and the dif-
ference between parallel and perpendicular diffusivities is large. This gives ⟨y2⟩1/2 ∼
x3/2

33/2L1/2M
3
A. This allows for the transient existence of sharp small-scale temperature

gradients in galaxy clusters.

Diffusion forMA < 1
ForMA < 1, turbulence is anisotropic from the injection scale L. In fact, at large scales
the turbulence isweak13 (see LV99). For scales less than ltrans, the turbulence is strong,
i. e., the relations in LV99 provide Vl ∼ VL(L/l⊥)−1/3M

1/3
A and

l‖ ∼ L(l⊥/L)
2/3M−4/3A , MA < 1. (9.29)

ForMA < 1, magnetic field wandering in the direction perpendicular to the mean
magnetic field (along y-axis) can be described by d⟨y2⟩/dx ∼ ⟨y2⟩/l‖ (LV99), where l‖
is expressed by Equation (9.29) and one can associate l⊥ with 2⟨y2⟩,

⟨y2⟩1/2 ∼ x3/2

33/2L1/2
M2

A, l⊥ < ltrans (9.30)

For weak turbulence, d⟨y2⟩/dx ∼ LM4
A (LV99) and, therefore,

⟨y2⟩1/2 ∼ L1/2x1/2M2
A, l⊥ > ltrans. (9.31)

Equation (9.30) has the factorM2
A, which reflects the suppression of thermal con-

ductivity perpendicular to themeanmagnetic field as themagnetic field gets stronger.
Physically, this means that for MA < 1 the magnetic field wonders around the well-
defined direction. Thus the diffusivity gets anisotropic with the diffusion coefficient
parallel to the mean field κ‖,particle ≈ 1/3κunmagn being larger than coefficient for diffu-
sion perpendicular to magnetic field κ⊥,particle.

Consider the coefficient κ⊥,particle forMA ≪ 1. As NM01 showed, particles become
uncorrelated if they are displaced over the distance L in the direction perpendicular
to the magnetic field. To do this, a particle has first to travel LRR (see Equation (9.18)),
where Equation (9.29) relates l‖,min and l⊥,min. In most cases, the additional travel aris-
ing from the logarithmic factor is negligible compared to the overall diffusion dis-
tance L. At larger scales, the electron has to diffuse ∼ L in the direction parallel to
magnetic field to cover the distance of LM2

A in the direction perpendicular to mag-
netic field direction. The diffusion over a distance R is randomwalkwith the step LM2

A.
Therefore, one requires R2/L2M4

A steps. The time of the individual step is L2/κ‖,particle.

13 The terms “weak” and “strong” turbulence are accepted in the literature, but can be confusing. As
we discuss later at smaller scales at which the turbulent velocities decrease, the turbulence becomes
strong. The formal theory of weak turbulence is given in [158].
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Therefore, the perpendicular diffusion coefficient can be estimated as

κ⊥,particle = R
2/(R2/[κ‖,particleM

4
A]) = κ‖,particleM

4
A, MA < 1. (9.32)

An essential assumption above is that the particles donot trace theirwayback over the
individual steps alongmagnetic field lines, i. e., LRR << L. Note that forMA of the order
of unity this is not accurate and one should account for the actual 3D displacement.
This introduces the change by a factor of order unity.

Turbulent diffusivity
Turbulent motions themselves can induce advective transport. In [82], we dealt with
the turbulence withMA ∼ 1 and estimated

κdynamic ≈ CdynLVL, MA > 1, (9.33)

where Cdyn ∼ 0(1) is a constant. This constant for hydro turbulence is around 1/3
[291]. If we deal with heat transport in plasmas, we can assume Cdyn ≈ 2/3 to ac-
count for the advective heat transport by both protons and electrons.14 Thus Equa-
tion (9.33) is relevant for the cases ofMA > 1 up toMA ∼ 1. For weak turbulence, there
is diffusivity arising from eddies of strong turbulence at scales less than ltrans, i. e.,
κstrongdynamic ≈ CdynltransVtrans and the weak turbulence eddies. Both have the same func-
tional form [257], [143] and the total diffusivity is the sum of the two, i. e., for plasma
one can write

κdynamic ≈ (β/3)LVLM
3
A, MA < 1, (9.34)

where β ≈ 4.

Relative importance: parameter space
It is important to define the parameter space for which electron conduction or tur-
bulent heat advection dominates. The corresponding plot for κparticle < κdynamic is
shown in Figure 9.11, where the Mach number Ms and the Alfven Mach number MA
are the variables. For MA < 1, the ratio of diffusivities arising from fluid and parti-
cle motions is κdynamic/κparticle ∼ βαMSMA(L/λ) (see Equations (9.32) and (9.34)), the
square root of the ratio of the electron to proton mass α = (me/mp)

1/2, which pro-
vides the separation line between the two regions in Figure 9.11, βαMs ∼ (λ/L)MA.
For 1 < MA < (L/λ)1/3, the mean free path is less than lA which results in κparticle
being some fraction of κunmagn, while κdynamic is given by Equation (9.33). Therefore,
κdynamic/κparticle ∼ βαMs(L/λ), i. e., the ratio does not depend onMA (horizontal line in

14 This gets clear if one uses the heat flux equation q = −κc 󳶚 T, where κc = nkBκdynamic/electr, n
is electron number density, and kB is the Boltzmann constant, for both electron and advective heat
transport.
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Figure 9.11: Parameter space for particle diffusion or turbulent diffusion to dominate: application
to heat transfer. Sonic Mach numberMs is plotted against the Alfven Mach numberMA. The heat
transport is dominated by the dynamics of turbulent eddies is above the curve and by thermal con-
ductivity of electrons is below the curve. Here, λ is the mean-free path of the electron, L is the driv-
ing scale, and α = (me/mp)

1/2, β ≈ 4. The panel in the right upper corner of the figure illustrates
heat transport for the parameters for a cool core Hydra cluster (point “F”), “V” corresponds to the
illustrative model of a cluster core in [130] from [259].

Figure 9.11). WhenMA > (L/λ)1/3, the mean-free path of electrons is constrained by lA.
In this case, κdynamic/κparticle ∼ βαMsM3

A (see Equations (9.33) and (9.28)). This results
in the separation line βαMs ∼ M−3A in Figure 9.11.

Heat transfer in intracluster medium
It is accepted that Intracluster Medium (ICM) is turbulent. In unmagnetized plasma
with the ICM temperatures T ∼ 108 K and density 10−3 cm−3, the kinematic viscosity
ηunmagn ∼ vionλion, where vion and λion are the velocity of an ion and its mean-free
path, respectively. This results in the Reynolds’ number Re ≡ LVL/ηunmagn of the order
of 30. This is barely enough for the onset of turbulence. For the sake of simplicity, we
assume that ion mean-free path coincides with the proton mean-free path and both
are λ ≈ 3T23n

−1
−3 kpc, where the temperature T3 ≡ kT/3 keV and n−3 ≡ n/10−3 cm−3. This

provides λ of approximately 0.8–1 kpc for the ICM (see NM01).
It is known, however, that magnetic fields decrease the diffusivity. Assuming the

maximal scattering rate of an ion, i. e., scattering every orbit (the so-called Bohm dif-
fusion limit) one gets the viscosity perpendicular to magnetic field η⊥ ∼ vionrLar,ion,
which is much smaller than ηunmagn, provided that the ion Larmor radius rLar,ion ≪
λion. For the parameters of the ICM, the viscosity is negligible15 of magnetic lines par-
allel to each other, e. g., Alfven motions.

15 A regular magnetic field Bλ ≈ (2mkT)1/2c/(eλ) that makes rLar,ion less than λ and, therefore, η⊥ <
νunmagn is just 10−20 G. Turbulent magnetic field with many reversals over rLar,ion does not interact
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Below we will use the parameters of the ICM presented in the literature (see
Enßlin, Vogt, and Pfrommer (2005), [130] henceforth EVP05, [131], henceforth EV06
and references therein). The estimates of injection velocity VL varies in the literature
from 300 km/s to 103 km/s, while the injection scale L varies from 20 kpc to 200 kpc,
depending whether the injection of energy by galaxy mergers or galaxy wakes is
considered. Let us estimate the minimal boundary for the Reynolds’ number. EVP05
considers a model in which the magnetic field with the 10 µG fills 10% of the volume,
while 90% of the volume is filled with the field of B ∼ 1 µG. Using the latter number
and assumingVL = 103 km/s, L = 100 kpc, and the density of the hot ICM is 10−3 cm−3,
one gets VA ≈ 70 km/s, i. e.,MA > 1. Using these numbers, one can get lA ≈ 30 pc for
the 90% of the volume of the hot ICM, which is much less than λion. The diffusivity of
ICM plasma gets η = vionlA which for the parameters above provides Re ∼ 2×103 at the
outer scale L. However, as lA increases as∝ B3, Re gets around 50 for the field of 4 µG,
which is at the border line of exciting turbulence. However, the regions with higher
magnetic fields (e. g., 10 µG) can support Alfvenic-type turbulence with the injection
scale lA and the injection velocities resulting from large-scale shearVL(lA/L) ∼ VLM−3A .

If B ∼ 1 µG, the value of lA is smaller than the mean free path of electrons λ. Equa-
tion (9.28) testifies that the value of κelectr is 100 times smaller than κSpitzer. On the
same time, κdynamic for the ICM parameters adopted will be ∼ 30κSpitzer, which makes
the dynamic diffusivity the dominant process. This agrees with the observations in
[439]. Figure 9.11 shows the dominance of advective heat transfer for the cool core of
Hydra A (B = 6 µG, n = 0.056 cm−3, L = 40 kpc, T = 2.7 keV according to EV06),
point “F”, and for the illustrative model in EVP05, point “V”, for which B = 1 µG.

We note that our stationary model of MHD turbulence is not directly applicable
to transient wakes behind galaxies. The ratio of the damping times of the hydro tur-
bulence and the time of straightening of the magnetic field lines is ∼ M−1A . Thus, for
MA > 1, the magnetic field at scales larger than lA will be straightening gradually after
the hydro-like turbulence has faded away over time L/VL. The process can be viewed
as the injection of turbulence at velocity VA but at scales that increase linearly with
time, i. e., as lA + VAt.

9.5.6 MHD and plasma-based descriptions of reconnection diffusion

In the previous section, we proved that LV99 ensures efficient diffusion of matter and
magnetic fields in turbulent fluids. One may wonder whether other models of fast re-
connection, e. g., collisionless reconnection, can also induce reconnection diffusion.

efficiently with a proton. As a result, the protons are not constrained until lA gets of the order of rLar,ion.
This happens when the turbulent magnetic field is ∼ 2 × 10−9(VL/103 km/s)G. At this point, the step
for the random walk is ∼ 2 × 10−6 pc and the Reynolds’ number is of the order of 5 × 1010.
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First of all, we would like to stress that the LV99 model is not in conflict with
the studies of magnetic reconnection in collisionless plasmas that have been a major
thrust of the plasma physics community [390, 109]. Unlike latter studies, LV99 deals
with turbulent environments. It shows, as we discussed in Section 4.1 that local recon-
nection rates are influenced by plasma effects, e. g., kinetic effects of Hall effects, but
the overall or global reconnection rate, i. e., the rate at which magnetic flux tubes re-
connect, is determined by the turbulent broadening of the reconnection region. Thus,
in the turbulent astrophysicalmedia the rate of reconnection is not going to be affected
by additional mechanisms. As a result, the reconnection diffusion will proceed with
its maximal rate limited by turbulent motions only.

If, on the contrary, the media that we deal with is not turbulent, reconnection dif-
fusion does not take place even in the presence of fast reconnection. Turbulentmixing
is a necessary condition for reconnection diffusion to exist. If other mechanisms of re-
connection induce turbulence, this turbulencewill induce reconnection diffusion and
we return back to the case above.

Plasma effect might be potentially important on a more subtle level, however. As
field wandering is essential for reconnection diffusion, one may wonder to what ex-
tend the plasma effects can be neglected while describing field wandering. Indeed,
the nonideal terms in the Ohms law provide the stochasticity of charge carriers and,
therefore, of the magnetic field lines that these charges trace. Consider, for instance,
Hall term which is most commonly invoked in the literature of fast reconnection. Hall
term was also invoked in a studies of magnetic field loss by circumstellar accretion
disks16 (see [237]). The usual criterion for the Hall term to dominate is that the elec-
tron flow velocity is dominated by the current. However, to dominate magnetic field
stochasticity the criterion shouldbedifferent as the correlations of theHall velocity are
short ranged. Assuming the small-scale equipartition of velocity and magnetic field,
B(r)2/4π ∼ ρv(r)2/2 and turbulent correlation of velocities ⟨vivj⟩ ∼ Crγ, one gets for the
Hall velocity VHall = J/ne = c∇ × B/4πne correlations

⟨VHall,iVHall,j⟩ ∼ (
c

4πne
)
2
Δ⟨BiBj⟩ (9.35)

The right-hand side of Equation (9.35) can be estimated as ( c
4πne )

24πnρCrγ−2, which is
much smaller than the correlation of the turbulent velocities if the distance between
point of correlation r ≫ c2mi/4πne2 = δi, where δi is the ion inertial skin depth. This
estimate is consistent with a more elaborate one in ELV11. Therefore, even large Hall
velocities do not affect meandering of magnetic field lines on the scale much larger
that the inertial skin depth. The reconnection diffusion applicable to star formation
deals with scales≫ δi.

16 To see the effect, the authors had to adopt the Hall termmuch larger than its value for the adopted
parameters of the media.
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We shouldmention that theHallMHD (HMHD) is frequently presented as a proper
way to describe reconnection in astrophysical systems. However, it is shown in ELV11
thatHMHD is rarely applicable to the actual astrophysical plasmas. Indeed, thederiva-
tionofHallMHDbasedoncollisionality requires that the ion skin-depthδimust satisfy
the conditions δi ≫ S ≫ ℓmfp,i, where S is the scale of large-scale variations of mag-
netic field. The second inequality is needed so that a two-fluid description is valid at
the scales of interest, while the first inequality is needed so that the Hall term remains
significant at those scales. However, substituting δi = ρi/√βi into the expression for
the Coulomb collisional frequency yields the result

ℓmfp,i
δi
∝

Λ
lnΛ

vth,i
c
, (9.36)

where Λ = 4πρnλ3D is the number of particles in the Debye sphere. For weakly coupled
astrophysical plasmas, Λ is really large (see the table in EVL11) and, therefore, ℓmfp,i ≫
δi, unless the ion temperature is extremely low. Thus, Hall MHD is valid only for cold,
dense plasmas, e. g., that produced by the MRX reconnection experiment [452], but
not in the conditions of the diffuse ISM and molecular clouds where star formation
takes place.

A more general discussion of the relative importance of plasma effects and tur-
bulent reconnection is given by Eyink in [142]. There a Generalized Ohm’s Law that
includes the effects of turbulence was formulated. The analysis has proven that the
turbulent reconnection dominates that arising from plasma effects for typical astro-
physical situations. An importnant point advocated in [142] is that for the turbulent
self-similar cascade the scale-length of the smallest eddy resolved by the observer is
completely arbitrary and no objective physics can depend on it. At the same time, the
description of the physics must be renormalized by unresolved physics and this ef-
fect must be accounted for. In other words, at very small scales, i. e. resistive scales
of scales at which plasma effects induce reconnection the traditional Ohm’s law is
valid. A “blurred” picture of the reconnection at larger scales requires the use “coarse-
grained” equations. For these equations the contribution of the traditional Ohm’s law
terms responsible for microscopic resistivities and plasma effects is negligible and,
instead, additional terms related to turbulent motions below the “coarse-graining”
scale are dominant. The corresponding formalism provides a mathematical formula-
tion of the concenpt of reconnection diffusion and it explicitly shows that turbulent
reconnection is taking place on all scales of turbulent cascade.

The aforementionednotion of the reconnection taking place at every scale ofMHD
turbulent cascade is in contrast with the one suggested in a series of papers where it is
suggested that flux freezing is valid on large scale of turbulentmotions and it is only in
the vicinity of dissipation scale that the tearing modes induce magnetic reconnection
(see, e. g., [297], [296]. The original LV99 model, subsequent publications (see [143])
as well as the latest study in [142] disagree with the notion of flux freezing at any scale
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of strong turbulent MHD turbulence cascade. In fact, turbulent reconnection taking
place over all scales rather than just the smallest ones is the only viable explanation
of the numerical simulations in [137] that demonstrated strong violation of magnetic
flux freezing in a turbulent fluid.

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



10 Extracting properties of astrophysical turbulence
from observations

Attempts to study interstellar turbulence from observations date as far back as the
1950s (see [441, 331, 446]). In fact, the initial success of different directions of research
was far fromuniform (see [214, 115, 254, 11]). Supported by the theoretical understand-
ing of scattering and scintillations (see [177, 335]) the studies of turbulence statistics of
ionizedmediawere successful (see [402, 334]) with the discovery of the Big Power Law
in the Sky by Armstrong, Rickett, and Spangler (1995) [11] which was the Kolmogorov-
type spectrum of plasma density at scales 108 − 1015 cm. Later using the Wisconsin
Hα mapper data, Chepurnov & Lazarian [76] extended this spectrum even further (see
Figure 1.1).

Other types of astrophysical turbulence studies were limited to intensities either
integrated along the line of sight or within velocity channel maps. The latter type of
measurements were erroneously associated with the studies of the density statistics.
The effect of mapping of spectral line information to the Position-Position-Velocity
(PPV) space as well as the interfering effects of self-absorption, absorption, geome-
try of observations were not theoretically described and, therefore, the observational
studies [102, 185, 406] could not be correctly interpreted in terms of the properties of
the underlying ISM turbulence.

For studies of turbulent velocities, a frequently used approach employed veloc-
ity centroids, which are first moments of spectral line (see [331, 223, 339, 317]). Later
research, in particular, in [132, 134] showed serious problems with using the VC for
recovering velocity statistics in supersonic turbulence.

A significant progress in theoretical understanding of the nonlinear mapping of
the turbulence statistics from the real space to the PPV space that was initiated by the
analytical study in [271] as well as the subsequent studies in [272–274]. The analytical
predictions were numerically tested in [75, 62] and productively applied to observa-
tions (see [260] for a review) clarifying the meaning of the earlier data and interpret-
ing the new data in terms of the underlying velocity and density statistics of turbulent
flows.

The studies of turbulence using synchrotron provided anything, but a universal
value of the spectral index ofmagnetic turbulence. For instance, the angular spectrum
of the 408MHzHaslammaphas a slope close to−3:Cl ∝ l−3 [421, 55]. [247] performeda
comprehensive angular power spectrum analysis of all-sky total intensitymaps at 408
MHz and 1420 MHz. They found that the slope is close to −3 for high Galactic latitude
regions. Other results also show slopes close to −3. For example, using Rhodes/Har-
tRAO data at 2326 MHz [205, 168] obtained a slope of ∼ 2.92 for high Galactic latitude
regionswith |b| > 20∘. [169] obtained a slope of∼ 3.15 for highGalactic latitude regions
with |b| > 20∘ from the [367] survey at 1420MHz. [54] also obtaineda slopeof∼ l−3 spec-
trum from the 1420 MHz map. [79] showed that these results are compatible with the

https://doi.org/10.1515/9783110263282-010

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



204 | 10 Extracting properties of astrophysical turbulence from observations

Kolmogorov/GS95 spectrum if a realistic structure of the synchrotron-emitting galactic
disk and halo is taken into account.

New ways of study MHD turbulence using fluctuations of polarized synchrotron
emission were suggested by Lazarian & Pogosyan [276] on the basis of the analytical
description of the statistics of polarized synchrotron affected by the Faraday rotation
of the polarized radiation. A way of separating of the contribution of the fast, Alfven
and slow modes was suggested in [275] employing the difference of the anisotropies
that these modes induce. This opens new ways to study MHD turbulence.

More recently, the approaches to separating turbulent modes in synchrotronwere
applied to separate the contribution from the fast, Alfven and slowmodes using spec-
tral lines. In [208], extended the theory of the PPV statistics to include the effects of
anisotropy produce by different modes. In the subsequent publications, this theory
was applied for studies using the Velocity Centroids [210] and for studies at optical
lines for which dust absorption is important.

Belowwediscuss these advances inmore detail aswe believe that a lot of informa-
tion about realistic interstellar turbulence will be obtained in near future using these
techniques.

10.1 Studying turbulence with spectral lines

Several decades ago measurements of spectral profiles were rather challenging. The
situation is radically different these dayswhere the challenge is to use productively the
enormous wealth of spectroscopic surveys. Naturally, these surveys provide a reliable
and cost-effective way of probing interstellar turbulence, provided that we know how
to relate the observables, i. e., the Doppler-shifted emission and absorption lines and
the underlying turbulence velocity and density statistics.

Traditionally, the information on turbulence spectra is obtainedwith themeasure
termed velocity centroids, ∼ ∫VzρsdVz, where the integration is taking place over the
range of the velocities relevant to the object under study. Usually, the velocity cen-
troids are normalized by the emission intensity at the point (see [407]), but our study
in [132] shows that this normalization does not improve the ability of centroids to re-
flect the velocity statistics. It is easy to see that the velocity centroids are proportional
to ∫Vzρds, where ρ is an actual three dimensional density and the integration is per-
formed along the line of sight (see [265]).

The numerical and analytical analysis in [132] and [134] showed numerically that
the velocity centroids fail for studying supersonic turbulence. This provides bad news
for the studies of velocity statistics in molecular clouds and diffuse cold ISM (see
[115, 317, 322]). The studies for HII regions [339] are less affected, as in most cases,
the turbulence there is subsonic. The analytical progress of the information that the
velocity centroids can bring was achieved only recently in [210] and on the basis of
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the theory of the PPV statistics the foundations of which were laid in [271], henceforth
LP00. Therefore, we will start with discussing this study which resulted in the devel-
opment of two new ways of studying turbulence with spectral lines.

10.1.1 Statistics of the PPV: velocity channel analysis and velocity coordinate
spectrum

The most detailed information on turbulent velocity that is observationally available
from an emitting or absorbing turbulent volume is a PPV data cube. Evidently, the
resolution in the P-P plane is provided by the spatial resolution of the telescope or an
interferometer, while the V-resolution requires an adequate spectroscopic resolution.

Astronomers analyzed the distribution of PPV intensities within a particular ve-
locity range or a channel map. This velocity range may be the minimal interval corre-
sponding to the maximum of spectral resolution (see [185] or chosen to be wider, e. g.,
in order to decrease the noise [406]). In the aforementioned papers, spatial spectra
were obtained by taking Fourier transform of channel maps had been used to study
HI. The relation of the power spectra to the underlying velocity fluctuations was a
subject of speculation with claims that the spectral index of channel maps coincides
with the spectral index of velocity fluctuation in 2D slices of the actual turbulent vol-
ume (see [185] and references therein). It was shown by Lazarian & Pogosyan (2000,
[271], henceforth LP00) that the latter claim, as well as other folklore speculations re-
lated to the interpretation of the spatial intensity variations within channel maps, are
not correct. The analytical relation between the statistics of the intensity fluctuations
within the channel maps and the statistics of the underlying velocity and density was
established in LP00.

The nontrivial nature of the mapping into the PPV space is illustrated in Fig-
ure 10.1. The figure demonstrates the mapping of 3 equal size and equal density
eddies, the one with the smallest velocity provides the largest contribution to the PPV
intensity.1 It is also clear that if the channel map or velocity slice of PPV data gets
thicker than the velocity extent of the eddy 3, all the eddies contribute to the intensity
fluctuations the same way, i. e., in proportion to the total number of atoms within the
eddies.

To understand the essence the Velocity Channel Analysis (VCA) formulated in
LP00, consider a PPV cube arising frommeasuring Doppler shifted spectra from a tur-
bulent volume (see Figure 10.2). The channelmaps in Figure 10.2 are the velocity slices
of the PPV cube. If the medium is optically thin and the velocity is integrated over the

1 Incidentally, this explains the scalings of power spectra in Table 10.2, which indicates that a spec-
trum of eddies that contain the most of turbulent energy at large scales induce the spectrum of thin
channel map intensity fluctuations having most of the energy at small scales.
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Figure 10.1: An illustration of the mapping from the real space to the PPV space. In the real space,
the 3 eddies above have the same spatial size, but different velocities. They are being mapped to
the PPV space and there they have the same PP dimensions, but a different V-size. The larger is the
velocity of eddies, the larger the V-extent of the eddies, the less density of atoms over the image of
the eddy. Therefore, in terms of the intensity of fluctuations in the velocity channel Δv, the largest
contribution is coming from the least energetic eddy, i. e., eddy 1, while the most energetic eddy,
i. e., eddy 3, contributes the least from [260].

Figure 10.2: Left panel: VCA technique. Illustration of the thick and thin velocity slices. The slices
are thin for the PPV images of the large eddies, but thick for the images of small ones. Right panel:
VCS technique. For a given instrument resolution large eddies are in the high resolution limit, while
small eddies are in the low resolution limit from [260].

entire spectral line, the fluctuations can depend only on density inhomogeneities. It
is also suggestive that the contribution of the velocity fluctuations may depend on
whether the images of the eddies under study fit within a velocity slice or if their ve-
locity extent is larger than the slice thickness (see Figure 10.2, left). In the former case,
the slice is “thick” for eddies and in the latter case it is “thin.” According to LP00, the
spectra of fluctuations that correspond to “thin” and “thick” slices are different with
the fluctuations inducedby turbulent velocity beingprominent in thin channels. LP00
shows that by varying the channel thickness it is possible to disentangle the spectra of
underlying velocities and densities in a turbulent volume. Note that before the LP00
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study spectra were compared for the channel maps of different thickness, which in
incorrect claims in the literature.

LP00 dealt with optically thin data. Optically, thick CO data was traditionally delt
with by studying total intensities (see [147] with frequently quoted measured spec-
trum K−3, where K is the plane of sky 2D wavenumber. The origin of such a spectrum
and its relation to the underlying velocity and density fluctuations was established in
Lazarian and Pogosyan (2004, [272], henceforth LP04) where it was shown that the
observed K−3 spectrum is universal, i. e., does not depend on the underlying velocity
and density spectra of turbulence. Numerically, this prediction in LP04 was first con-
firmed in [62]. In terms of the techniques of turbulence study, LP04 extends the study
of the VCA technique in LP00 to the case of studying turbulence within an emitting
turbulent volume in the presence of absorption. Intuitively, results of LP04 are easy to
understand. In turbulence, there is a unique statistical relation between the physical
scales and the turbulent velocities. LP04 proved that if the thickness of a velocity slice
is larger than the dispersion of velocities of the eddies which get optically thick, the
effects of self-absorption should be taken into account

A radically new way of analyzing spectroscopic data is presented in Lazarian and
Pogosyan (2006, [273], henceforth LP060). There the spectra of intensity fluctuations
along the V-axis of the PPV cube are studied (see Figure 10.2, right). Themathematical
foundations of the technique we first discussed in LP00, but there the high potential
of the new technique which was termed Velocity Coordinate Spectrum (VCS), as the
techniquewas later termed in [255], required further studies. Indeed, it took some time
to understand the advantages that the VCS provides for the practical handling of the
observational data. The VCS technique was successfully tested in [75]. Note that the
VCS techniquewas extended in Lazarian andPogosyan (2008, [274], henceforth LP08)
to deal with the studies of turbulence using saturated absorption lines. LP08 showed
that the saturation of the line acts as a sort of window function in the velocity space.
In the presence of this window function, one can still use the unsaturated wings of
the line to study turbulence for large wavenumbers.

The VCS technique has a number of advantages. For instance, the VCS allows
one to analyze turbulence when spatial information is either not available or sparse.
For instance, one can also study turbulence having just a couple of absorption lines,
which corresponds to sampling of the PPV volume along a fewdirections only (see Fig-
ure 10.4). Naturally, this stems from the fact that the fluctuations along the V-axis are
studied by the VCS. Thismakes the VCS technique really unique for the velocity turbu-
lence studies. For instance, it allows probing turbulence in the intracluster medium
as discussed in [260].

For practical studies of interstellar turbulence, we do not need the lengthy ana-
lytical derivations in LP00, LP04, LP06, and LP08, but the summary of the results.
The underlying statistics of turbulence are determined by the velocity structure. As
only the line of sight component of the velocity is measurable, the z-component of the

 EBSCOhost - printed on 2/13/2023 9:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



208 | 10 Extracting properties of astrophysical turbulence from observations

turbulent velocity field (i. e., u), we use the structure function

Dz(r) = ⟨(u(x + r) − u(x))
2
⟩, (10.1)

which for a self-similar power-law turbulent motions provide

Dz ∼ D(L)(r/L)
m, (10.2)

where L is the turbulent injection scale, Dz(L) is the variance of velocity at this scale,
m is the scaling exponent, which ism = 1/3 for the Kolmogorov turbulence.

The observed signal also may depend on the correlation function of over-density.
This function has a constant part that depends on the mean density, as obviously,
the fluctuations in the PPV space arising from the effect of velocity crowding should
be present even for turbulence with constant density. For instance, for the power-law
density spectrum the correlation functions of over-density take the form (see LP06 for
the discussion of cases of γ < 0 and γ > 0):

ξ (r) = ⟨ρ⟩2(1 + [ r0
r
]
γ
), (10.3)

where r0 has the physical meaning of the scale at which fluctuations are of the order
of the mean density (see more in LP06). Obtaining of the values of the indexesm and
γ from the analysis of the PPV data was the goal addressed in LP00 and subsequent
publications.

To get a feeling how the statistics of velocity and density influence the statistics
of intensities in the PPV cubes, one may consider one of the observables, e. g., the
structure function of the intensity of emission IX(v),

𝒟(X, v1, v2) ≡ ⟨[IX(v1) − IX(v2)]
2
⟩, (10.4)

where the z-axis component velocity v is measured in the direction defined by the
two-dimensional vector X. We distinguish the 2D and 3D vectors by denoting by the
capital bold letters the two-dimensional position-position vectors that specify the line
of sight. Small bold letters are reserved to describe the vectors of three-dimensional
spatial position. The z-axis is chosen to be along the line of sight.

In the case of no absorption, the density of energy in the PPV space

ρs(X, v) ∼
S

∫
−S

dzρ(X, z)ϕvz(X, z) (10.5)

where the emission is coming from the cloud of the 2S size and the intensity of emis-
sion is assumed to be proportional to the density ρ. The distribution function of the
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z-component of velocity is given byϕvz . The latter for a z-components of the turbulent
u velocity for a finite temperature T gas is

ϕvz(x)dv =
1
(2πβ)1/2

exp[−(v − u(x))
2

2β
]dv, (10.6)

where β = κBT/ma,ma being themass of emitting atoms/ions. For T → 0, the function
ϕv converts into a delta-function that depends on regular gas flow and the turbulent
velocity u.

Several things follow from Equation (10.5). First of all, both densities and veloc-
ities contribute to the energy density in the PPV space, but the velocity and density
statistics enters the expression in different ways. Therefore, the final expressions for
the statistics of ρs will depend differently on the statistics of ρ and u. For instance, the
correlation function of the PPV densities ρs is (see LP06)

ξs(R, v) ≡ ⟨ρs(X1, v1)ρ(X2, v2)⟩ (10.7)

∝
S

∫
−S

dz(1 − |z|
S
)

ξ (r)
D1/2
z (r)

exp[− v2

2Dz(r)
],

where the correlation function ξs is defined in the PPV space, where R is the spatial
separation between points in the plane-of-sky and v is the separation along the V-axis.
The velocity structure functionDz(r) = ⟨(vz(x1−vz(x2))2⟩ carries the information about
the correlations of the z-component of velocity.

Taking Fourier transform of ξs, one gets the PPV spectrum Ps, which is a sum of
two terms Pρ and Pv, namely

Ps = Pρ + Pv , (10.8)

and the dominance of the first or the second term depends on how the spectra are
obtained. Indeed, the PPV space presents inhomogeneous statistics, which is different
along the V-axis and in the PP plane. The analysis of the fluctuations along the V-axis
is what the Velocity Correlation Spectrum (VCS) is about, while the analysis of the
fluctuations in the PP plane is the domain of the Velocity Channel Analysis (VCA).
Different asymptotics of Ps spectrum are presented in Table 10.1.

VCA
The interpretation of the channelmaps is the domain of theVCA. Table 10.2 showshow
the power spectrum of the intensity fluctuations measured within channels depends
on the thickness of the velocity channel. Below we provide quantitative discussion of
the VCA. As we mentioned earlier, the notion of thin and thick slices depends on the
turbulence scale under study and the same slice can be thick for small scale turbulent
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Table 10.1: The short-wave asymptotical behavior of power spectra Ps in PPV space. Results are
presented for one-dimensional spectrum of fluctuations along the velocity coordinate Ps(kv ), two-
dimensional spectrum of fluctuations Ps(K), three-dimensional anisotropic spectrum of PPV fluc-
tuations Ps(K , kv ). We use the convention that capital letters denote 2D vectors in PP-plane. The
adopted convention is that the variables related to spatial coordinates are denoted with capital let-
ters. The component of Ps arising from pure density fluctuations is Pρ, while the component affected
both by the density and velocity fluctuations is Pv . The power-law underlying statistics of density
and velocity are assumed: γ is the spectral index of the density correlation function,m is the spec-
tral index of the velocity correlation function. The size of the turbulent cloud is S from LP06.

1D: Ps(kv )
kvD

1/2
z (S) ≫ 1

2D: Ps(K)
KS ≫ 1

3D: Ps(K , kv )
k2v Dz(S) ≫ (kS)m

Pρ: (r0/S)γ[kvD1/2z (S)]
2(γ−1)/m (r0/S)γ[KS]γ+m/2−3 (r0/S)γ[kvD1/2z (S)]

−2(3−γ)/m

Pv : [kvD1/2z (S)]
−2/m [KS]m/2−3 [kvD1/2z (S)]

−6/m

Table 10.2: The VCA asymptotics. Thinmeans that the channel width < velocity dispersion at the
scale under study; thick means that the channel width > velocity dispersion at the scale under
study; very thick means that a substantial part of the velocity profile is integrated over from [260].

Slice thickness Shallow 3-D density
Pn ∝ k−3+γ , γ > 0 Steep 3-D density

Pn ∝ k−3+γ , γ < 0
2-D intensity spectrum for thin slice ∝ K−3+γ+m/2 ∝ K−3+m/2

2-D intensity spectrum for thick slice ∝ K−3+γ ∝ K−3−m/2

2-D intensity spectrum for very thick slice ∝ K−3+γ ∝ K−3+γ

fluctuations and thin for large scale ones (see Figure 10.2). With this remark in mind,
we can consider thin and thick slices.

It is easy to see that the power law index steepens with the increase of velocity
slice thickness. In the thickest velocity slices, the velocity information is averaged out
and we get the density spectral index −3 + γ. The velocity fluctuations dominate in
thin slices, and the indexm that characterizes the velocity fluctuation can be obtained
using thin velocity slices (see Table 10.1).

Note that the spectrum of intensity in a thin slice gets shallower as the underly-
ing velocity get steeper. This is easy to understand if one considers turbulence in an
incompressible optically thin medium. The intensity of emission in a velocity slice is
proportional to the number of emitting atoms per velocity interval. The latter is given
by the thickness of the slice. Thin slice means that the velocity dispersion induced by
the eddies under study is larger than the thickness of a slice. The increase of the veloc-
ities of the eddies means that less and less energy is being emitted within the velocity
interval corresponding to the slice (see Figure 10.1). Mathematically, this effect results
in the dependences in Table 10.2.
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VCS
Unlike studies of the fluctuations within channel maps that the observers were do-
ing prior to LP00, the analysis of the fluctuations along the V-axis was first proposed
within the Velocity Correlation Spectrum (VCS) technique that was suggested in LP00
and extended and elaborated in LP06.

In the VCS, the spectrum measured is a function of the wave number kv ∼ 1/v
along the V-axis. This means that large kv correspond to small velocity differences,
while small kv correspond to large velocity differences.

The theoretical predictions of the asymptotics of the VCS on the velocity and den-
sity spectra are far from being trivial.

Assume that the maximal resolution of a telescope corresponds to resolving the
turbulent eddies at scale ΔB of a cloud at the distance Lcloud ≫ S. At this scale, the tur-
bulent velocity isVΔB ≡ √D(S)(ΔB/S)m. It is easy to see thatwhen k−1v > VΔB the beam is
resolves the eddies and, therefore, is narrow, while for observations of smaller scales
its width is important. The spectrum of fluctuations along the V-coordinate at the
scale kv depends on whether the instrument resolves the correspondent spatial scale
[k2vDz(S)]−1/mS. If this scale is resolved, then Pv(kv) ∝ k−2/mv and Pρ(kv) ∝ k−2(1−γ)/mv . If
the scale is not resolved, then Pv(kv) ∝ k−6/mv and Pρ(kv) ∝ k−2(3−γ)/mv . These results
are presented in a compact form in Table 10.3.

Table 10.3: Scalings of VCS for shallow and steep densities for measurements taken with the tele-
scope with a finite beam size from LP06.

Spectral term ΔB < S[k2v Dz(S)]− 1m ΔB > S[k2v Dz(S)]− 1m
Pρ(kv ) ∝ (kvD1/2z (S))

−2(1−γ)/m ∝ (kvD1/2z (S))
−2(3−γ)/m

Pv (kv ) ∝ (kvD1/2z (S))
−2/m ∝ (kvD1/2z (S))

−6/m

The transition from the low to the high resolution regimes happens as the velocity
scale gets of the order of the turbulent velocity at theminimal spatially resolved scale.
As the change of slope is a velocity-induced effect, it is not surprising that the differ-
ence in spectral indexes in the low and high resolution limit is 4/m for both the Pv and
Pρ terms, i. e., it does not depend on the density. This opens another way of separating
the velocity and density contributions. Incidentally, in the situation where the avail-
able telescope resolution is not sufficient, i. e., in the case of extragalactic turbulence
research, the high spatial resolution VCS can be obtained via studies of the absorption
lines from point sources.

Figure 10.3 illustrates that in the case of shallow density both the density and
velocity spectra can be obtained. There the left panel corresponds to high amplitude
of the density correlations, r0 > ΔB, i. e., when density effects become dominant at
relatively long wavelengths for which the beam is narrow. In the middle panel, the
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Figure 10.3: Illustrations of the VCS technique. In every panel, light lines show contributions from
the ρ-term (density modified by velocity, dashed line) and v-term (pure velocity effect, solid line)
separately. The dark solid line shows the combined total VCS spectrum. The dotted line depicts the
boundary of the thermal suppression of fluctuations. For the left andmiddle panels, the density
power spectrum is taken to be shallow, i. e., γ > 0 from LP06.

amplitude of density correlations is low r0 < ΔB and they dominate only the smallest
scales which results in the intermediate steepening of the VCS scaling. The right panel
illustrates the case of the steep density spectrum. Evidently, in this case the density
contribution is always subdominant.

Effects of self-absorption
A study of absorption effects in is presented in LP04 and LP06. For the VCA, it was
found that for sufficiently thin slices the scaling relations obtained in the absence of
absorption still hold provided that the absorption on the scales under study is negligi-
ble. Note that the thermal broadening limits to what extent the slice can be thin. This
means that in some cases that the underlying turbulent velocity spectrummay not be
recoverable. In terms of the VCS, the absorption limits the range of kv for which the
turbulence can be explored. In other words, only measurements for sufficiently large
kv reflect the true turbulence spectrum. The problem is that the thermal dispersion
determines the upper range of kv < 1/Vth. In terms of practical studies, it means that
to get the information in the presence of self-absorption one has to use heavy species
in astrophysical flows, e. g., heavy molecules.

The intensities IX(v) can be affected by absorption. The latter can be studied on
the basis the standard equation of radiative transfer

dIν = −gνIνds + jνds, (10.9)

where, for absorption and emissivity coefficients α and ϵ̃, gν = α(x)ρ(x)ϕv(x), jν =
ϵ̃ρ(x)ϕv(x), x is a three-dimensional position vector (X, z), ρ(x) is the density, and
ϕv(x) is the velocity distribution of the atoms.
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The criterion for the absorption to be important is α2⟨(ρs(X, v1) − ρs(X, v2))2⟩ ∼ 1,
which for γ < 0 results in the critical size of the slice thickness Vc given by (LP06)

Vc/Dz(S)
1/2 ≈ (αρ̄s)

2m
m−2 , m > 2/3

Vc/Dz(S)
1/2 ≈ (αρ̄s)

−1, m < 2/3, (10.10)

where ρ̄s is the mean PPV density.
As we mentioned earlier, the absorption dominates for the slices thicker than Vc.

The difference with the case of γ > 0 is that, in the latter case, one should also con-
sider the possibility that the density contribution can be important (see Table 10.4).
The criterion above coincides with one for the VCS, if we identify the critical kv with
1/Vc. If the resolution of the telescope is low, another limitation applies. The resolved
scale should be less than the critical spatial scale that arises from the condition
α2⟨(ρs(X1, v) − ρs(X2, v))2⟩ ∼ 1 which for γ < 1 results in Rc/S ≈ (αρ̄s)

2
m−2 (LV06). If only

scales larger thanRc are resolved, the information on turbulence cannot be recovered.
Note that a few nontrivial effects take place. For instance, it is common knowl-

edge that for optically thin medium the spectral line integration results in intensity
fluctuations that reflecting the underlying density statistics. However, LP04 showed
that this may not be true for lines affected by absorption. When velocity is dominant,
as we mentioned earlier, a new very interesting regime for which intensity fluctua-
tions exhibit the power spectrum P(K) ∼ K−3 emerges. On the contrary, when density
is dominant (see Table 10.4), the spectral index of intensity fluctuations is the same as
in the case of an optically thin cloud integrated through its volume. This means that
for γ > 0, i. e., for the shallow spectrum of density, in the range of parameter space
defined inTable 10.4 themeasurements of intensity fluctuationsof the integrated spec-
tral lines reflect the actual underlying density spectrum in spite of the absorption ef-
fects.

Table 10.4: Conditions for the impact of density inhomogeneities to the PPV statistics exceeds the
velocity contribution. Spectral index of density fluctuations γ must be larger than 0, i. e., the inten-
sity of fluctuations increases with the decrease of scale. For γ < 0, the velocity fluctuations always
dominate in creating small-scale ripples in the PPV space from LP06.

Condition γ > 0
m ≥ max[ 23 ,

2
3 (1 − γ)] v2 < Dz(S)(r0/S)m

2
3 (1 − γ) < m <

2
3 v2 < Dz(S)(r0/S)

2/3γm
m−2/3(1−γ)

m ≤ min[ 23 ,
2
3 (1 − γ)] r0/S > 1

VCS with absorption lines
Strong absorption lines, which are in a saturated regime, can be used for probing tur-
bulence spectra. This problem was addressed in LP08, who analyzed optical depth
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fluctuations that correspond to the logarithms of the measured intensities. The analy-
sis was made for the VCS technique and numerical simulations in [75] proved that the
sampling along from 5 to 10 directions to absorbing sources, e. g., stars, is enough to
recover properly the underlying spectrum of turbulent velocity (see Figure 10.4).

Figure 10.4: Illustration of VCS absorption studies of turbulence. Left panel: Schematic of measur-
ing turbulence with absorption lines from point sources, e. g., stars, and extended source, e. g.,
a galaxy. Right panel: Spectrum of turbulence recovered from synthetic observations when the sig-
nal is sampled along 10 absorption lines. The solid line corresponds to the underlying spectrum and
points correspond to the recovered spectrum from [75].

LP08 study shows that for the range of optical depth less than 103, the width of a typ-
ical interstellar line is determined by Doppler shifts rather than the atomic constants
and this makes the study feasible. In reality, the flat saturated part of the profile is not
useful for any statistical study of turbulence and, therefore, the wings of saturated
absorption lines should be used for turbulence studies.

The effect of saturation of the absorption line results in limiting the range of kv at
which the information on turbulence is available. If the effect of saturation is approx-
imated with a Gaussian mask of width Δ, that is centered in the middle of the wing,
Δ measures the fraction of the line that is available for studies of turbulence. LP08
demonstrated that the recovery of the turbulent spectrum with the VCS was possible
for kv > 3Δ−1, where all the quantities are normalized over the total turbulent velocity
dispersion. Naturally, thermal effects provide additional limitations for the range of
scales to study. In fact, the range of kv for studies of asymptotic power-law solutions
is limited to 3Δ−1 < kv < 1/(3β), where β represents thermal broadening. For kv beyond
this range, the recovery of the turbulence spectrum is still possible, but fitting of the
integral expressions, rather than the use of the asymptotical solutions is necessary.

Studies of turbulence with absorption lines can be applied to clusters of galaxies,
where the absorption from quasars and distant galaxies can be used. The technique
canbeappliedalso to thenearbygasof the local interstellarmedium. In the latter case,
the lines of sight coming from the telescope are converging. This effect is important for
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the VCA rather than to the VCS. For the latter the aforementioned asymptotics of the
VCS techninique are applicable.

Synergy of the VCA and the VCS
The VCA and the VCS have their own advantages and, therefore, it is important to
search for the synergy of the two techniques. For instance, the VCS is a unique tool
that allows studies of astrophysical turbulence even when the instrument does not
resolve spatially the turbulent fluctuations. This means that for a turbulent volume
with marginal spatial resolution but good spectral resolution, studies of turbulence
with the VCS are possible using Doppler shifted spectral lines.

The finite gas temperature affects the techniques differently. For the VCA, gas tem-
perature acts in the same way as the finite width of a channel. Within the VCS, the
term with temperature gets factorized and it influences the amplitude of fluctuations
as discussed in LP06. One can correct for this term which can provide a new way of
estimating the interstellar gas temperature.

Another advantage of the VCS compared to the VCA is that it reveals the spec-
trum of turbulence directly, while using the VCA the slope of the spectrum is inferred
from varying the thickness of the channel. A simultaneous use of the VCA and the VCS
makes the turbulence spectrum identification more reliable.

At the same time, the spectral range for the VCS for Kolmogorov-type turbulence
is significantly reduced. This calls for fitting of the VCS spectra rather than using the
asymptotic solutions (see below).

Interstellar turbulence spectra obtained with the VCA and the VCS
VCA applications
Aswe discussed earlier, a number of observations that analyzed the statistics of chan-
nelmaps had been done before the understandingwhat the statistics of channelmaps
mean was obtained. Table 10.5 illustrates the results obtained with VCA by different
groups. The studies of spectra in channel maps predated VCA (see lines 1, 8, 9 in Ta-
ble 10.5 as well as [102, 406], but researchers were choosing Δv arbitrarily, making
comparisons impossible. For those LP00 and LP04 performed the VCA analysis us-
ing the published data. For instance, as we mentioned earlier, LP04 predicted that
self-absorption can produce a universal spectrum ∼ K−3, where K is the observational
analog, in the 2D plane of the sky, of the wavenumber k. If this spectrum dominates
in both thin and thick slices, the only conclusion that can be made is that the den-
sity spectrum Eρ ∼ k−α corresponds to α > 1 (see lines 3, 6, 7), while the details of
the velocity and density spectra are not available. When the spectrum of intensities
from absorbing gas in a thick slice is different from K−3, the information about the
underlying densities is available (see lines 8, 9). It is encouraging that the observed
spectral indexes correspond to those in simulations (see [37, 232]), which show a ten-
dency of having the spectrum of density becoming flatter as the spectrum of velocity
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Table 10.5: Selected VCA results from [260]. Superscript “g” denotes galactic objects, “e” – extra-
galactic. PthinPPV and PthickPPV are the power law spectrum in thin and thick PPV slices, respectively. “Ref.
obs.” and “Ref. theor” correspond to papers where the measurement were done and interpreted
using VCA, respectively. Indexes in round brackets correspond to substantial observational errors
correspond to consistency only.→ CygA is used to denote material toward Cygnus A.

N data Object PthinPPV PthickPPV depth Ev Eρ Ref. obs. Ref. theor.

1 HI Anticenterg K−2.7 N/A Thin k−1.7 N/A [185] [273]
2 HI → CygA K−(2.7) K−(2.8) Thin N/A k−(0.8) [112] [112]
3 HI SMCe K−2.7 K−3.4 Thin k−1.7 k−1.4 [405] [405]
4 HI Centerg K−3 K−3 Thick N/A N/A [114] [272]
5 HI B.Mag.g K−2.6 K3.4 Thin k−1.8 k−1.2 [328] [328]
6 HI Armg K−3 K−3 Thick N/A N/A [220] [258]
7 HI DDO 210e K−3 K−3 Thick N/A N/A [17] [17, 258]
8 12CO L1512 N/A K−2.8 Thick N/A k−0.8 [410] [114]
9 13CO L1512 N/A K−2.8 Thick N/A k−0.8 [410] [17]

10 13CO Perseus K−(2.7) K−3 Thick k−(1.7) N/A [411] [411]
11 13CO Perseus K−2.6 K−3 Thick k−1.8 N/A [345] [345]
12 C18O L1551 K−2.7 K−2.8 Thin k−1.7 k−0.8 [413] [413]

gets steeper. A good quantitative correspondence between theVCA analysis of Perseus
data and their numerical simulations was also obtained in [345] as well as in [240].

The LP00 and LP04 theory resolve many otherwise puzzling facts. For instance,
studies of turbulence aremore involved for the inner parts of the galaxy, where (a) two
distinct regions at different distances from the observer contribute to the emissivity for
a given velocity and (b) effects of the absorption may be important. Nevertheless, the
analysis of the data in Dickey et al. [114] showed that important progressmay bemade
even in those unfavorable circumstances. In particular, [114] reported the steepening
of the spectral index with the increase of the velocity slice thickness. They found that
the spectral index for strongly absorbing direction to be approaching−3 in accordance
with the predictions in LP04. Note, that the effects of optical depths can also explain
another set of observations for which the spectral index stayed the same, e. g., −3,
while the thickness of the slice was varying (see [220]).

21-cmabsorptionprovides anotherway of probing turbulence on small scales. The
absorption depends on the density to temperature ratio ρ/T, rather than to ρ as in
the case of emission. However, in terms of the VCA this change is not important and
one would expect to see the emissivity index steepening as velocity slice thickness in-
creases, provided that velocity effects are present. Nevertheless, [112] did not see such
steepening. This can be interpreted as the evidence of the viscous suppression of tur-
bulence on the scales less than 1 pc. The fluctuations in this case can be due to density
and their shallow spectrum ∼ K−2.8 either related to damped magnetic structures be-
low the viscous cutoff (see [280] or due to density fluctuations in high Mach number
compressible MHD, see [37].)
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Historically, the CO data was analyzed after integration over the entire emission
line rather thanusing channelmaps. Stutzki et al. [410] presented the power spectra of
12CO and 13CO fluctuations obtained via integrating the intensity over the entire emis-
sion line for L1512 molecular cloud. The study found for both isotopes the power spec-
trum of intensity fluctuations with a similar spectral index. According to LP04, this
may correspond to optically thick asymptotics. If the velocity fluctuations dominate,
the expected universal spectrum is K−3, while if the density fluctuations dominate the
expected spectrum is K−3+γ. The index measured in [410] is ∼ 2.8, which may either
correspond to −3 within the experimental errors, or more likely indicate that γ ≈ 0.2,
i. e., the density spectrum is shallow. The latter possibility is indirectly supported by
18CO measurement for L1551 cloud by Swift in [413]. The latter study used the VCA
and obtained the shallow density spectrum with γ ≈ 0.2, while his measured velocity
spectrum was approximately Kolmogorov (the index is −3.72). Padoan et al. [345] suc-
cessfully tested the VCA with numerical simulations that included radiative transfer
and applied the technique to Five College Radioastronomy Observatory (FCRAO) sur-
vey of the Perseus molecular cloud complex. The obtained turbulence spectral index
for velocity is ∼ −3.8.

VCS applications
The direct application of the asymptotic solutions was performed in [346] for the 13CO
data. Amore sophisticated approach was employed in Chepurnov et al. [76] where the
fitting of the data by the integral expressions in LP06 was used. Below we discuss the
latter approach.

Figure 10.5 (left) shows the results of our VCS-analysis of galactic high latitude
data. Rather than first correcting for the gas thermal broadening, then fitting the

Figure 10.5: Fitting of turbulent models and observational data for different resolutions. Left panel:
Application of the VCS high latitude HI Arecibo data. The energy injection scale is 94 pc from [76].
Right panel: Application of the VCS to Small Magellanic Cloud HI data. The spectral index for velocity
is a bit more shallow. The model corresponds to the energy injection at 3 kpc from [74].
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asymptotic expressions from LP06 into the observed VCS spectrum as was done in
[346, 76] used the analytical expressions analytical expression in LP06 to find the
model that fits the data at different spatial resolutions. Thus in this approach the
resolutions played for the VCS a role similar to the thickness of slices Δv for the VCA.

An important advantage of the approachbased onfitting data to themodels is that
it opens ways of studying nonpower law turbulence, e. g., turbulence at the injection
scales. It allows also studies of turbulence when thermal broadening is important.
The application of the technique to GALFA galactic HI data is illustrated in Figure 10.5
(left). Our results show that the model of turbulence with spectrum steeper than Kol-
mogorov, i. e., with Ev ∼ k−3.9, the temperature2 of gas around 130K and a single in-
jection scale of 100 pc. The density spectrumwas estimated to be at the border-line of
shallow and steep, i. e., Eρ ∼ k−3.

The application of the VCS to HI of the Small Magellanic Cloud (SMC) (see line 3 in
Table 10.5) is illustrated in Figure 10.5 (right). The results of the VCS are the following:
the spectrum of velocity is similar to the one in the MilkyWay, i. e., Ev ∼ k−3.85, but the
density spectrum is steeper than in the Milky Way HI, i. e., Eρ ∼ k−3.3, the turbulent
velocity is ∼ 7 km/s, the sonic Mach number in the cold HI is ∼ 6 and the injection
scale of around 3 kpc. The latter corresponds to the ideas of exciting turbulence in the
SMC during its encounter with its neighbor, the LMC. The offset of the points at small
kv was explained by the regular shear velocity in the SMC that was estimated to be
around 50 km/s.

The studies above show a big promise of the VCS technique in obtaining param-
eters of the turbulent interstellar gas both for Milky Way and neighboring galaxies.
Similar analysis is applicable tomolecular clouds and individual galactic regions, e. g.
supernovae remnants.

Application of the theory to velocity centroids
The analytical machinery developed for statistics spectral line fluctuations in PPV
space is at the core of the VCA and the VCS techniques. Recently, it has been applied
[210] to obtaining the statistics of velocity centroids. The latter are defined as

C(X) = ∫ dvvIv(X), (10.11)

where Iv(X) is the intensity of emission of Doppler broadened line in the direction X
and at velocity v. The centroids are more affected by density fluctuations, which lim-
its their applicability to studies of supersonic turbulence [132, 134]. However, they can
efficiently probe turbulence when the thermal line broadening exceeds the turbulent
one. In the latter case, the statistics measured by the VCA and the VCS are strongly

2 The analysis in LP06 shows that the contribution of turbulence in warm gas to fluctuations in PPV
is exponentially suppressed compared to that in cold gas.
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contaminated by the thermal effects, which gives centroids an edge for studying sub-
sonic turbulence.3

The effects of absorption also limit the studies of turbulence with centroids. For
instance, the universal spectrum K−3 is also expected in the presence of strong self-
adsorption.

Effects of dust absorption and collisionally excited emission lines
The effect of dust absorption limits the depth towhich the turbulence is sampled along
the line of sight. This can be described by introducing the length Δ(X) along the line
of sight corresponding to dust optical depth equal unity, i. e., to τ(Δ) = 1 as discussed
in Kandel et al. [210]. In the aforementioned paper, extending the results in LP04 and
LP06, a new asymptotic regime was predicted for the spectrum of fluctuations for the
scales larger than Δ(X). The spectrum was shown to be shallower by unity in this
regime. This result can be physically understood as the sampling the a thin layer of
a turbulent volume.

In addition, the dust absorption was shown to remove the degeneracy inducing
the universal K−3 spectrum of intensity fluctuations of self-absorbing medium re-
ported in LP04. The effect is easy to understand. The dust absorption limits the depth
over which one can sample the turbulent volume. Thus, paradoxically, this decreases
the effects of self-absorption.

When emission lines are collisionally excited, the emissivity is proportional to
density squared. However, the study [210] showed that this does not change the
asymptotic regimes for obtaining the power spectra from observations.

The application of the VCA to the emission data from HII regions in [12] is shown
in Figure 10.6. Indeed, it is easy to see that the change of the observed spectral index in
channel maps is consistent the theoretical expectations, in particular with the change
of the power spectrum by unity at large scales arising from the dust extinction.

10.2 Synchrotron fluctuations

Inmany instances, the distribution of relativistic electrons ismuchmore uniformcom-
pared to magnetic field. Therefore, the fluctuations of the synchrotron emission may
be related in many instances directly to the fluctuations of magnetic field.

The first complication in terms of studying turbulence with synchrotron emission
arises from the complicated dependence of synchrotron emissivity on the magnetic
field. Indeed, if the distribution of relativistic electrons is

Ne(ℰ)dℰ ∼ ℰ
αdℰ (10.12)

3 The VCA and the VCS can also be used to study subsonic astrophysical turbulence if heavy
atoms/molecules with reduced thermal broadening are used to sample the volume observationally.
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Figure 10.6: Power spectra K3P(K) of intensity fluctuations for data from HII regions [12] for the thin
velocity slice case for different spectral lines. The two regimes with different slopes are observed,
with corresponding best-fitting lines. The difference between the slopes is close to the theoretical
expectations from [210].

then the intensity of the synchrotron emission is

Isync(X) ∝ ∫ dzH
γ
⊥(x) (10.13)

where X = (x, y) is the 2D position vector in the plane of the sky and H⊥ = √H2
x + H2

y
is the amplitude of the perpendicular to the line of sight component of the magnetic
field. Note that the index γ = (α + 1)/2 is generally a fractional power that changes in
the range from 1 to 4.

The measures available from observations is the correlation function of the syn-
chrotron intensity

ξsync(R) ≡ ⟨Isync(X1)Isync(X2)⟩ ∝ ∫ dz1dz2⟨H
γ
⊥(x1)H

γ
⊥(x2)⟩ (10.14)

that can be obtained by averaging over an ensemble of the pairs for themeasurements
at the fixed two-dimensional separation R = X1 − X2. This function is the projection
of the three-dimensional correlation of synchrotron emissivity

ξHγ
⊥
(R, z) = ⟨Hγ

⊥(x1)H
γ
⊥(x2)⟩, (10.15)

which depends on three dimentional separationx1−x2 = (R, z). The accepted assump-
tion is that the turbulence is homogeneous.

The problems of averaging correlations of the fractional power ofmagnetic field is
intrinsic to dealing with other combinations of the Stocks’ parameters and, therefore,
presented a challenge for turbulence studies using both intensities and polarization.
This challenge was addressed in Lazarian and Pogosyan (2012 [275], henceforth LP12)
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Figure 10.7: Dependence on the power-law index γ. Here, the synchrotron emissivity depends on Bγ⊥
and γ = (p+1)/2, (a) The 1D spectrum of synchrotron emission for 1.5 ≤ γ ≤ 4. (b) The comparison be-
tween the measured amplitudes of synchrotron emission normalized by E2D,γ=2 and the theoretical
prediction in LP12.

where the formalism of calculating the correlations of the fractional powers ofH⊥ was
developed.

The analytical predictions in LP12 were successfully tested numerically in [290]
and the results are shown in Figure 10.7. The expressions in LP12 allowed to relate the
statistics of fluctuations for arbitrary γ to the statistics of fluctuations for γ = 2, which
simplifies further analytical studies. Figure 10.7 confirms LP12 conclusions that the
change of γ affects the amplitude of the synchrotron spectrum rather than its slope.

Synchrotron polarization provides more ways to probe magnetic field. Lazarian
and Pogosyan (2016, [276], henceforth LP16) considered the fluctuations of the linear
polarization

P ≡ Q + iU . (10.16)

In case of an extended synchrotron source, the polarization of the synchrotron emis-
sion at the point of emission can be characterized by the polarized emission density
Pi(X, z), where X marks the two-dimensional position of the source on a sky and z is
a line-of-sight distance. This is different from the polarized intensity detected by an
observer performing measurements at wavelength λ:

P(X, λ2) =
L

∫
0

dzPi(X, z)e
2iλ2Φ(X,z). (10.17)

is a line-of-sight integral over emission subject to the Faraday rotation of the polariza-
tion plane (see [57]). Above L denotes the extent of the source along the line-of-sight
and the Faraday rotation measure (RM) is given by

Φ(z) = 0.81
z

∫
0

ne(z
󸀠)Hz(z

󸀠)dz󸀠 rad m−2, (10.18)
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where ne is the density of thermal electrons in cm−3, Hz is the strength of the parallel
to the line-of-sight component of magnetic field in µGauss, and the radial distance is
in parsecs.

One can easily see that the polarizationmeasured by the observer is affected both
by the structure of the perpendicular to the line of sight component of magnetic field
that induces the synchrotron emission as well as the parallel to the line of sight com-
ponent of magnetic field that affects thermal electrons and induces Faraday rotation.
The problem is how to separate the statistics of these contributions.

Correlation properties of the RM density at two points in space can be described
by the correlation or structure functions

ξϕ(X1 − X2, z
󸀠 − z󸀠󸀠) ≡ κ2⟨Δ(neHz)(X1, z

󸀠)Δ(neHz)(X2, z
󸀠󸀠)⟩ (10.19)

To obtain the spectra of fluctuations, LP16 used the power-law correlation model

ξϕ(X1 − X2, z
󸀠 − z󸀠󸀠) = σ2ϕ

rϕmϕ

rϕmϕ + (R2 + Δz2)mϕ/2
(10.20)

Dϕ(X1 − X2, z
󸀠 − z󸀠󸀠) = 2σ2ϕ

(R2 + Δz2)mϕ/2

rϕmϕ + (R2 + Δz2)mϕ/2
(10.21)

wheremϕ is the scaling slope and rϕ is the correlation length of RM density, R = |X1 −
X2| and Δz = z󸀠 − z󸀠󸀠.

LP16 showed that models withmϕ > 1 produce the similar asymptotical behavior
asmϕ = 1 model, thus the following notation was introduced:

m̃ϕ = min(mϕ, 1). (10.22)

The emitted polarized radiation can be described by polarized emission density
Pi. The polarized emissivity depends on magnetic field component H⃗⊥ and the wave-
length λ, j(λ,x) ∝ λγ−1|H⃗⊥|γ. LP16 defined Pi(x) ∝ λ1−γj(λ,x) to be wavelength inde-
pendent.

As we mentioned before, the fractional power dependence on the magnetic field
∝ |H⃗⊥|γ is the same for the intensity andpolarized intensity. The corresponding results
γ dependence in LP12 are applicable and the fluctuations of the polarized intensity for
the arbitrary index γ can be expressed using the fluctuations of the polarized intensity
for H⃗2
⊥:

[⟨Pi(x1)P
∗
i (x2)⟩ − ⟨Pi⟩⟨P

∗
i ⟩]γ ≈ A(γ)[⟨Pi(x1)P

∗
i (x2)⟩ − ⟨Pi⟩⟨P

∗
i ⟩]γ=2, (10.23)

where A(γ) is a factor given by the ratio of the variances A(γ) = ⟨P2⟩γ/⟨P2⟩γ=2 (see
LP12).
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In terms of Q and U Stokes’ parameters, the correlation of emitted polarized radi-
ation at two points is, in general,

ξi ≡ ⟨Pi(x1)P
∗
i (x2)⟩ = ⟨Q(x1)Q(x2) + U(x1)U(x2)⟩ + i⟨U(x1)Q(x2) − Q(x1)U(x2)⟩

(10.24)
Two parts of the correlation, real and imaginary, are invariants with respect to rota-
tion of the observers frame. The real part is the trace of the polarization correlation
matrix obtained in LP12 and imaginary part is the antisymmetric contribution to the
correlation. LP16 studied the real part in detail.

The main parameters of the correlations of the emitted synchrotron radiation is
the correlation length ri, the characteristic scaling slopem of its fluctuations, and the
relative contribution from themean andfluctuating polarization. To perform the study
of the power spectra, it is convenient to present ξi using a power law form

ξi(X1 − X2, z
󸀠 − z󸀠󸀠) = P̄2i + σ

2
i

rim

rim + (R2 + Δz2)m/2
(10.25)

Above the mean, polarization dominates on all scales if P̄2i ≡ ⟨Pi⟩⟨P
∗
i ⟩ > σ2i . Oth-

erwise, the mean contribution can be neglected for relatively small separations R <
ri(σ2i /P̄

2
i − 1)

1/m.
After defining separately the statistics of the Faraday rotation and emitted polar-

ized radiation, one can deal with the statistics of the observed polarization. The ob-
served correlation defined in LP16 is

⟨P(X1, λ
2
1)P
∗(X2, λ

2
2)⟩ =

L

∫
0

dz1

L

∫
0

dz2

× ⟨Pi(X1, z1)P
∗
i (X2, z2)e

2i(λ21Φ(X1 ,z1)−λ22Φ(X2 ,z2))⟩ (10.26)

With the mean effect separated, one can write

⟨P(X1, λ
2
1)P
∗(X2, λ

2
2)⟩ =

L

∫
0

dz1

L

∫
0

dz2 e
2iϕ(λ21z1−λ

2
2z2)

× ⟨Pi(X1, z1)P
∗
i (X2, z2)e

2i(λ21ΔΦ(X1 ,z1)−λ22ΔΦ(X2 ,z2))⟩ (10.27)

which represents the general expression for the correlation function in the Position-
Position-Frequency (PPF) data cube.

Observable correlation function in terms of the Stokes’ parameters is split again
into real and imaginary parts that are separately invariant with respect to frame rota-
tion

⟨P(X1)P
∗(X2)⟩ = ⟨Q(X1)Q(X2)+U(X1)U(X2)⟩+i⟨U(X1)Q(X2)−Q(X1)U(X2)⟩ (10.28)
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In this section, we focus on the symmetric real part ⟨Q(X1)Q(X2) +U(X1)U(X2)⟩which
is easier to determine and which carries the most straightforward information about
the magnetized turbulent medium.

The problem of obtaining underlying turbulence spectra using synchrotron po-
larization is pretty complex. There are several important dependences, for instance,
the correlation length of the Faraday rotationmeasure rϕ, the correlation length of the
transversemagnetic field ri, the line-of-sight size of the emitting region L aswell as the
separation between two line-of-sight R. In addition, the scaling slopes for RM mea-
suremϕ and intrinsic correlationsm, amplitude of fluctuations in RM σϕ and intrinsic
correlations σi, possible mean rotation ϕ̄ and mean polarization P̄i of the radiated
emission, and the wavelength of observations λ. Among these values, the magnitude
of RM, either random σϕ ormean ϕ̄ together with observationwavelength λ determine
the characteristic distance ℒσϕ ,ϕ̄

over which Faraday effect rotates the polarization by
one radian. As a result, LP12 dealt with five scales, ℒσϕ ,ϕ̄

, rϕ, ri, L, R, and two scaling
slopesmϕ andm, which provided a variety of regimes of turbulence studies.

LP16 introduced two techniques that have similarities with the VCA and the VCS
that the authors introduced for studying velocity fluctuations. The Polarization Spa-
cial Analysis (PSA) is an analog of the VCA technique. It correlates the polarization at
different spacial points of the PPF space, the latter being an analog of the PPV space
wediscussed earlier. The other technique is the Polarization FrequencyAnalysis (PFA)
which in some sense is analogous to the VCS, as it analyzes the information along a
single line of sight. Unlike the VCS, it is the dispersion of the signal rather than the
VCS correlation of intensities at different frequencies that is analyzed.

PSA
The starting equation for the PSA study is

⟨P(X1)P
∗(X2)⟩ =

L

∫
0

dz1

L

∫
0

dz2 e
2iϕλ2(z1−z2)⟨Pi(X1, z1)P

∗
i (X2, z2)⟩e

−2λ4⟨(ΔΦ(X1 ,z1)−ΔΦ(X2 ,z2),)2⟩

(10.29)
which provides different regimes depending on the parameters of the media.

PFA
The expression that is employed for the PFA analysis is the one for the dispersion of
polarization

⟨P2(λ2)⟩ =
L

∫
0

dz1

L

∫
0

dz2 e
2iϕλ2(z1−z2)⟨Pi(z1)P

∗
i (z2)e

2iλ2(Φ(z1)−Φ(z2))⟩, (10.30)

which also provides a variety of regimes.
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Table 10.6: Different regimes of synchrotron polarization correlations in Position-Position-Frequency
studies from LP16.

PSA, ξP(R)
ℒσϕ ,ϕ̄
< ri ℒσϕ ,ϕ̄

> ri

ℒσϕ < ℒϕ̄ R < rϕ ∼ ℒ2
σϕξi(R,0)ℒσϕ r

m̃ϕ
ϕ /R

1+m̃ϕ reflects spectrum H⊥
R > rϕ ∼ ℒ2

σϕ ξi(R,0)
ℒσϕ > ℒϕ̄ ∼ L ℒϕ̄ ξi(R,0) reflects spectrum H⊥
PFA, ⟨P2(λ2)⟩
ℒσϕ < ℒϕ̄ ∝ λ−2 ∝ λ−2−2amϕ+2m

ℒσϕ > ℒϕ̄ ∝ λ−2−2m ∝ λ−2+2m

Table 10.6 summarizes different regimes of turbulence studies with the PSA and the
PFA. As we see different regimes emerge when the correlation scale of the magnetic
field ri is larger or smaller, then the characteristic scale over which the Faraday decor-
relation happens. The latter is denoted as ℒϕ̄ when the effect is induced bymean field
acting onmean density of thermal electrons andℒσϕ when turbulent effects dominate
the depolarization. Additional differences in the regimes arise dependingwhich of the
latter scales is smaller.

Naturally, the study of synchrotron polarization are not limited to the correlations
of polarization only. For instance, LP16 introduced a measure that is more sensitive to
the fluctuations of Faraday rotation:

⟨
dP(X1)
dλ2

dP∗(X2)
dλ2
⟩ =

L

∫
0

dz1

L

∫
0

dz2e
2iϕλ2(z1−z2)

× ⟨Pi(X1, z1)P
∗
i (X2, z2)ΔΦ(X1, z1)ΔΦ(X2, z2)e

−2λ2i(ΔΦ(X1 ,z1)−ΔΦ(X2 ,z2))⟩

(10.31)

Numerical calculations in [290] confirm that the measure given by Equation (10.31)
can recover the spectrum of Faraday rotation in agreement with the LP12 analytical
predictions.

10.2.1 Numerical testing of the synchrotron-based techniques and the application
to observations

The theoretical constructions in LP12 and LP16 relate the synchrotron statistics and
the underlying turbulence. They were tested in numerical simulations. A number of
the theoretical conclusions related to synchrotron intensity fluctuations, i. e., those
in LP12, were tested in [192]. In [290] and [466], the LP16 predictions for the PSA tech-
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niquehavebeen successfully tested. The LP16predictions related to the PFA technique
have been confirmed in [465].

With themachinery of description of turbulence statistics in both the PPV and the
PPF cubes, one can expect a lot of progress in getting the turbulence spectra from ob-
servations. Asmore established the VCA and the VCS techniques have already brought
a number of valuable results. The PSA and the PFA techniques are more recent devel-
opments. They, nevertheless, already have already resulted in a number of interesting
observational studies. For instance, Xu et al. [448], using the machinery in LP16 ex-
plained the broken power law corresponding to the structure functions of the galactic
Faraday rotationmeasures. In [187], the techniquewas successfully applied to explain
the depolarization of the optical blazar emission.

10.3 Observational signatures of MHD turbulence modes

10.3.1 Anisotropy arising from Alfvenic turbulence: obtaining magnetic field
direction andMA

The first demonstration to magnetic field direction can be revealed statistically mak-
ing use of the anisotropy of correlation functions was made by Lazarian in [282]. This
was the start of the Correlation Function Analysis (CFA) that employs the Doppler
broadened emission lines for magnetic field studies. The first study was performed
with synthetic observations obtained with 3D MHD turbulence simulations and it an-
alyzed anisotropies of intensities in channelmaps. Later the possibility of determining
the magnetic field direction using the CFAwas explored with velocity centroids by Es-
quivel & Lazarian [132]. Further work in [133] revealed that the degree of anisotropy of
velocity centroid correlations can be used to determine the Alfven Mach number MA
(see also a more extensive study in [63]). A similar study with the anisotropy of the
intensities of thin channel maps was performed in [135]. As we discussed earlier, the
statistics of thin channelmaps ismostly affected by velocities (LP00) and this explains
the similarity of the results obtained with velocity centroids and thin channel maps.

The theoretical foundation of the CFA technique is the anisotropic nature of
MHD turbulence. As a result, the correlations of the fluctuations of velocity are also
anisotropic. The measurements of 3D velocities are not directly available, but the
statistics of the line of sight velocities can be obtained either with velocity centroids
or with thin channel maps (see LP00). The turbulence anisotropies are aligned with
the magnetic field direction. Therefore, the correlations that are available with the
CFA are anisotropic with correlations stronger along the line of sight projected mag-
netic field. As the distribution of wavevectors in Alfvenic turbulence depends onMA,
the degree of the observed correlation anisotropy also depends onMA.

Apart fromcorrelation functions,more sophisticatedwaysof analysis canbeused.
For instance, [193] proposed to study the anisotropies using the Principal Compo-
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nent Analysis (PCA). The comparison of the latter suggestion with the CFA is provided
in [461].

10.3.2 Contribution of different MHD turbulence modes

Studies of observational anisotropies is the most evident way of utilizing the aniso-
tropic nature ofMHD turbulence. Amore sophisticatedway of analysis involves study-
ing the contributions arising from fundamental MHD modes, i. e., slow, Alfven and
fast. The corresponding analytical study was first performed in LP12 for the case of
synchrotron emission. Figure 10.8 illustrates how the properties of turbulent modes
change for the case of synchrotron intensities. The ratio of the quadrupole moment
of the structure function to the monopole moment is shown. The LP12 shows that the
signatures of fast and Alfvenmodes can be very different, which provides a possibility
of distinguishing the contribution ofmodes using observations. This is very important
in view of a radically different effect that fast and Alfven modes have on cosmic ray
propagation (see [453]) and on star formation (see [311]).

Figure 10.8: The quadrupole to the monopole ratio change versus the angle θ that the mean mag-
netic field makes with the line-of-sight angle. Left: fast-mode contribution shown in bands, decreas-
ing in magnitude with increased field wandering. Each band corresponds to the range of different
plasma β. Right: the same ratio for the mix of Alfven and slow modes in the regime of strong incom-
pressible turbulence. The curves from lower to upper ones correspond toMA = 0.1,0.4,0.7, 1, 2 from
LP12.

Similar to the synchrotron intensity, the anisotropy of the synchrotron polarization
statistics (LP16), aswell as the anisotropy of the emission line statistics (see [208, 210])
can be analyzed. The advantages of these compared to the synchrotron intensity in-
clude the ability of studying 3D structure of the turbulent mode distribution. Indeed,
if synchrotron polarization is used, the Faraday depolarization provides a way to to-
mographic sampling of the emitting volume along the line of sight ([284]).

Using different spectral lines, one can also sample turbulence at different optical
depth. In addition, the use of the galactic rotation curve provides another way to get
3D probing of turbulence at different distances from the observer.
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10.4 Relation to CMB foreground studies

The study of dust and synchrotron polarization fluctuations is essential in the context
of CMB foregrounds. At angular scales between 10󸀠 and a few tens of degrees, cos-
mological B-mode polarization fluctuations created during the epoch of inflation are
expected [171]. The gravitational waves produce these modes during the stage of cos-
mological inflation and the detection of a primordial B-mode polarisation signature is
one of the major scientific goals of many CMB experiments. Since the E and B mode
signals from inflation are expected to be significantly smaller in amplitude than the
fluctuations of foregrounds, accurate modeling of foreground contamination is vital
for the reliable measurement of the primordial E and B modes

10.4.1 Polarized CMB foreground

The dominant cosmic microwave background (CMB) foreground at frequencies ≲ 100
GHz comes from synchrotron radiation, which is produced by the interaction of rela-
tivistic electrons with the Galactic magnetic field lines, and its polarisation is orthog-
onal to the plane of sky (POS) magnetic field direction (Ribicki & Lightman 1979). On
the other hand, at frequencies ≳ 100 GHz, the dominant CMB foreground is thermal
emission from oblate dust grains, aligned with their longest axes perpendicular to the
magnetic field. As the dust emission is higher along its longest axes, a linear polar-
isation orthogonal to the POS magnetic field direction is produced. The distribution
of relativistic electrons is smooth and isotropic compared to that of magnetic field.
Therefore the fluctuations of polarised synchrotron emission arise from the magnetic
field fluctuations. At the same time the fluctuations of polarised dust emission depend
on both the magnetic field and gas dust density fluctuations. The origin of magnetic
field and gas density fluctuations is the interstellar MHD turbulence.

To study polarisation properties, it is convenient to decompose a polarisationmap
into two rotational invariant modes, namely, E, B, as well as T (temperature) modes.
The measurements of polarization arising from E and B modes of cosmological ori-
gin is the problem of outmost importance. The removal of the polarized galactic fore-
grounds is essential for the success of such studies, especially for the measurements
of elusive B-modes that originate from the gravitational waves in the early universe
(see [106]). To know the relative contribution of the foregrounds to the E and B cosmo-
logical modes, it is useful to separate the foreground into its own E and B modes. The
T (temperature) mode is also important.

For a randomly oriented map, E and B modes are expected to be of equal power.
However, observations of dust polarization in the intermediate to high latitude of our
galaxy revealed that the power in B mode was half of that in E mode ([358]).
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10.4.2 MHD turbulence for foreground studies

As we discussed earlier, the properties of MHD turbulence depend on the degree of
magnetization, which can be characterized by the Alfvén Mach number. For super-
Alfvénic turbulence, i. e. MA ≫ 1, magnetic forces are not important in the vicinity
of injection scale, thus at these scales, turbulence statistics are effectively isotropic.
For sub-Alfvénic turbulence, i. e. MA < 1, magnetic forces are dominant, and turbu-
lence statistics is highly anisotropic. The compressibility of plasma is described by the
plasma β (≡ Pgas/Pmag) parameter. Naturally, β → ∞ corresponds to incompressible
regime

The turbulent mode decomposition developed in LP12 can be employed for un-
derstanding the nature of the polarized foreground fluctuations arising from dust and
synchrotron. In particular, in an important study Caldwell et al. [67] used this decom-
position and concluded that there was a problem in describing statistical properties
of CMB polarized foregrounds from dust using the accepted MHD turbulence models.
In addition, the recent paper [4] suggested the detection of positive value ∼ 0.36 for
the TE cross-correlation in Planck dust emission maps.

This problem of decomposing foregrounds into modes was revisited in [209, 211]
and the conclusion different from that in [67] was reached. In what follows we discuss
the approach in [218] as it illustrates how our knowledge of MHD turbulence and de-
scription of MHDmodes in the global system of reference presented in LP12 can solve
problems of understanding the CMB foreground statistics.

For the calculations we assume that the line of sight (LOS) is along the z axis,
and the mean field H0 = H0(sin θ,0, cos θ) is aligned in the x − z plane making an
angle θ with the LOS. We describe perturbations using two-dimensional wavevector
K = K(cosψ, sinψ,0) in the x − y plane of the sky. The angle α between wavevector
and magnetic field is defined by cos α = sin θ cosψ.

On the basis of the study [81] of the power-spectrum of magnetic field turbulence
for Alfvén, slow and fast modes it is possible to write expressions for them (LP12, [67])

Pa,H (k, α) =
1
a2
Fa(α)Pa(k) , (10.32)

Ps,H (k, α) =
2

a2D−+
Fs(α)Ps(k)

(1 + D2
++/D2
−− tan2 α)

, (10.33)

and

Pf ,H (k, α) =
2

a2D++

Ff (α)Pf (k)
(1 + D2

−+/D2
+− tan2 α)

, (10.34)

where we use the notations adopted in the series of foreground studies e. g. [67, 209],
namely, a ≡ H0/√4πρ0 is the Alfvén velocity and D±± = 1 ± √D ± β/2 , and D =
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(1 + β/2)2 − 2β cos2 α . This is intended to help the reader to get more details from the
aforementioned papers.

In Eqs. (10.32), (10.33) and (10.34), P(k)F(α) describes anisotropic power, which
contains factorized scaledependentpart andanangledependentpart. Theanisotropic
dependence of the power spectrum applicable for Alfvén and slow modes is given by
(see LP12)

Fa,s(α) = exp[−
M−4/3A |cos α|
(sin2 α)1/3

] . (10.35)

The power spectrum of fast mode is isotropic and we write use Ff(α) = 1.
To study dust polarization, we define the power spectrum of the density fluctua-

tions. Alfvén modes do not induce density fluctuations and the only contribution to
density fluctuations comes from fast and slow compressible modes. On the basis of
the [81] study, the power spectrum of fractional density fluctuations for slow and fast
modes can be written as (see [209])

Ps,ρ(k, α) =
2

a2D−+
sin2 2α Fs(α)Ps(k)
(D2
−− cos2 α + D2

++ sin
2 α)
, (10.36)

and

Pf ,ρ(k, α) =
2

a2D++

sin2 2α Ff (α)Pf (k)
(D2
+− cos2 α + D2

−+ sin
2 α)
. (10.37)

To study dust polarization it is natural to adopt the assumption of magnetic field
and density not being correlated. This follows from the theory of turbulent reconnec-
tion in LV99 and agrees well with the observations of diffuse media at high galactic
latitudes [103].

10.4.2.1 E and B modes arising from dust and synchrotron polarization
Belowwe present the statistical description of dust and synchrotron polarization fluc-
tuations in terms of E and Bmodes. Synchrotron emission arises from relativistic elec-
trons moving in magnetic field. due to the motion of relativistic electrons in magne-
tized regions. The polarized emissivity can be written

ϵsync = ϵQ + iϵU = AsyncH
γsync
⊥ (Hx + iHy)

2 , (10.38)

where Async is a normalization constant that depends on the number density of rela-
tivistic electrons,H⊥ is the plane-of-skymagnetic field that varies with the 2D position
vector on the sky X = (x, y), and γsync is, generally, a fractional power. For the galactic
synchrotron emission, γsync is found to take anapproximate valueof 0 (see [162]; [277]).
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Since the synchrotron polarisation axis is perpendicular to the sky projectedmagnetic
field [372], we take Async < 0, and as we will see later, this sign is important for TE
cross-correlation.

Dust emission, one the other hand, is thermal emission from aligned dust grains.
The direction of polarization is determined by the grain longest dimension that is per-
pendicular to the magnetic field. The linear polarization from dust emission can be
written in a form similar to the one for synchrotron emission

ϵP = ϵQ + iϵU = AdndH
γd (Hx + iHy)

2 . (10.39)

For γd = −2, the polarized emission is independent ofmagnetic field strength. In equa-
tion (10.39), nd is dust density which we take to be proportional to gas density (see
[282]), and Ad0 is a constant.

The expressions for E and B synchrotron powers both for dust and synchrotron
contributions are presented in [218]. For synchrotron emission and Alfvén modes, we
have

⟨Ẽ2⟩sync,a ∝ (sin θ)
2γsync+2 cos2 θ sin2 ψ

× (
2 − γsync cos 2ψ

sin α
)
2

Pa,H (α) , (10.40)

and

⟨B̃2⟩sync,a ∝ (sin θ)
2γsync+2 cos2 θ cos2 ψ

× (
2 + 2γsync sin2 ψ

sin α
)
2

Pa,H (α) , (10.41)

wherePa,H (α) is defined inEq. (10.32). Similarly, the synchrotron emission arising from
slow and fast modes results in

⟨Ẽ2⟩sync,i ∝ (sin θ)
2γsync+4 sin4 ψ

× (
2 − γsync cos 2ψ

sin α
)
2

Pi,H (α) , (10.42)

and

⟨B̃2⟩sync,i ∝ (sin θ)
2γsync+4 sin2 ψ cos2 ψ

× (
2 + 2γsync sin2 ψ

sin α
)
2

Pi,H (α) , (10.43)

where Pi,H (α) denotes the power spectrum of magnetic field of slow and fast modes,
defined in Eqs. (10.33) and (10.34). These expressions get more simple for γsync = 0,
which, incidentally, is close to what is expected for Galactic synchrotron emission.
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Similarly, for dust polarization, the contribution to the E and B powers arising
from Alfvén modes are

⟨Ẽ2⟩d,a ∝ sin2 2θ sin
2 ψ

sin2 α
Pa,H (α) , (10.44)

and

⟨B̃2⟩d,a ∝ sin2 2θ cos
2 ψ

sin2 α
Pa,H (α) . (10.45)

Similarly, for slow and fast modes, with the assumption of uncorrelated density and
magnetic field, we have

⟨Ẽ2⟩d,i ∝
sin4 θ(1 − cos 2ψ(1 + γd sin2 α))2

sin2 α
Pi,H (α)

+ sin4 θ cos2 2ψPi,ρ(α) , (10.46)

and

⟨B̃2⟩d,i ∝
sin4 θ sin2 2ψ(1 + γd sin2 α)2

sin2 α
Pi,H (α)

+ sin4 θ sin2 2ψPi,ρ(α) , (10.47)

wherePi,ρ(α) indicates density power spectrumof slow and fastmodes, defined in Eqs.
(10.36) and (10.37).

The quantity of interests in terms of CMB polarization studies is the ratio of B to E
power. Since Planck studies of both dust and synchrotron foregrounds reveal a rather
uniform B/E ratio across the sky, it is meaningful to calculate the angle averaged B/E
ratio [67]:

R =
∫dΩ⟨B̃2⟩
∫dΩ⟨Ẽ2⟩

, (10.48)

where dΩ = sin θ dθ dψ.
Since fast and slowmodes have different spectra, formally, one has to use the full

expressions that are provided in [218]. However, the dependence of the B/E ratio on
the wavenumber ℓ is weak, and therefore, one can write

R ≈
Pa,B + Ps,B + Pf ,B
Pa,E + Ps,E + Pf ,E

, (10.49)

where Pa,E ,Pa,B are the amplitudes of power of E mode and B mode that arise from
Alfvén, fast and slow modes, respectively.
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10.4.2.2 TE cross-correlation for synchrotron and dust
The correlation of temperature and E mode, i. e. TE correlation, is another important
measure for CMB studies. The fluctuations of brightness temperature of the polarized
emission arise from the fluctuations of the magnetic field strength for synchrotron
emission. At the same time both fluctuations of the magnetic field strength and the
dust density contribute to the fluctuations of , temperature arising from dust.

The results for correlations arising from both aligned dust and synchrotron are
provided in [218]. The fluctuation of temperature arising from dust is given by

δTdust = cdustδn , (10.50)

where cdust is a constant. In the assumption of nomagnetic field – density correlations
the cross correlation arising from dust is

⟨TE⟩d,i ∝ sin2 θ cos 2ψPi,ρ(α) . (10.51)

The contribution comes from compressible fast and slow modes, while Alfven modes
do not induce the cross-correlation.

For the synchrotron fluctuations, all three MHDmodes contribute to the TE cross-
correlation. The calculations in [218] provide:

⟨TE⟩sync,a ∝ (sin θ)
2γsync+2 cos

2 θ sin2 ψ
sin2 α
× (2 − γsync cos 2ψ)Pa,H (α) , (10.52)

while for compressible fast and slow modes

⟨TE⟩sync,i ∝ (sin θ)
2γsync+4 sin

4 ψ
sin2 α
× (2 − γsync cos 2ψ)Pi,H (α) . (10.53)

The normalised cross-correlation coefficient ri can be written as

ri =
∫dΩ ⟨TE⟩

√∫dΩ ⟨TT⟩√∫dΩ ⟨EE⟩
. (10.54)

and its values can be compared with observations, e. g. by Planck.

10.4.2.3 Comparison with observations
The ratio of the B to Emodes is shown in Figure 10.9 for the case of an equalmixture of
Alfven and slow modes. This provides a reasonable approximation to the turbulence
at high galactic latitudes. For both dust and synchrotron the fluctuations of polariza-
tion observed by Planck can be explained if the Alfven Mach numberMA is less than
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Figure 10.9: Ratio of B to E power for the equal mix of Alfvén and slow modes for: Left panel. Syn-
chrotron polarization fluctuations for γsync = 0. The dotted line corresponds to the Planckmeasured
value ≈ 0.35. Right panel. Dust polarization fluctuations.

unity, i. e. turbulence is subAlfvenic. The exact valueofMA is difficult todeterminepre-
cisely butMA < 0.5 seem to satisfy the existing constrains. Note that it is subAlfvenic
turbulence that is expected above the plane of the galaxy.

As for the TE cross-correlation from dust, the positive values shown for slow and
fastMHDmodes in Figure 10.10 correspond to observations. More details can be found
in [218], but here we would like to stress the practical utility of the quantitative ana-
lytical treatment of MHD turbulence that we strongly advocated in this book.

Figure 10.10: Dust TE cross-correlation for fast
and slow modes for different values of plasma β.

As for the practical consequences of the study we can state that using the approach in
LP12, Kandel et al. [209, 211] established that to account for the measured E/B ratio,
the MHD turbulence at high galactic latitudes should have the subAlfven, which is
rather natural from what we know about the distribution of turbulent motions in the
galactic disk. The TE positive correlation follows naturally if the density andmagnetic
field are not correlated. The latter is the natural consequence of flux freezing violation
in turbulent fluids that we have discussed extensively in this book. This decorrelation
is also confirmed by observations by Crutcher [103].
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10.5 Gradient technique: utilizing the turbulence knowledge to
study magnetic fields

The anisotropic properties of MHD turbulence give rise to the CFA technique that al-
lows one to get magnetic field direction in a statistical way. The required averaging
does not allow studies of detailed structure of magnetic field. To address the latter
problem, a new technique that we describe below was suggested. This technique uti-
lizes our understanding of MHD turbulence and turbulent reconnection.

10.5.1 Velocity gradients

Basic technique
As we discuss in this book, the velocity fluctuations arising fromMHD turbulence are
anisotropic. Figure 10.11 shows iso-contours of velocity for sub-Alfvenic turbulence. It
is obvious that these contours are elongated alongmagnetic field. Thismeans that the
spatial changes of the velocity amplitude, i. e., velocity gradients are perpendicular to
the magnetic field.

The question of how accurate is the tracing of magnetic field can be addressed
through recalling the properties of MHD turbulence. Indeed, can recall that the pic-
ture of strong Alfvenic turbulence can be presented as the turbulence of magnetized
eddies. This wave-eddy dualism is a remarkable feature of MHD turbulence that fol-
lows from the model of turbulent reconnection. Indeed, LV99 turbulent reconnection
theory predicts that the reconnection of magnetic field associated with the eddy takes
place within one eddy turnover time. Therefore, magnetic field does not constrain tur-
bulent motions if these motions are happening perpendicular to the magnetic field.
Naturally, this magnetic field should be local to the eddy. Therefore, from the perspec-
tive of the turbulent reconnection the concept of localmagnetic field (whichwasmiss-
ing in the original formulation of the GS95 theory) is pretty trivial. Indeed, the path of

Figure 10.11: 3D velocity iso-contours (red struc-
tures) from a sub-Alfvénic simulation aligned
with the magnetic field direction (blue arrow
shows the mean magnetic field direction). The
gradients of velocity amplitude is perpendicular
to magnetic field from [285].
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least resistance for the turbulentmotions correspond to eddies thatmixmagnetic field
lines with the minimal deformation of magnetic field. Incidentally, the Kolmogorov
spectrum of perpendicular motions in this picture is a consequence of the aforemen-
tioned mixing that is identical to hydrodynamic motions. It is easy to check that the
condition of critical balance within this picture is the consequence of finite rigidity
of magnetic field lines. Indeed, an eddy creates an Alfven wave with the period equal
to its turnover time, i. e., for the l⊥/v⊥ ≈ l‖/VA and this provides the relation between
parallel and perpendicular scales of the eddy, i. e., between l‖ and l⊥.

The above physical picture of MHD turbulence and turbulent reconnection that is
an inseparabel part of the MHD turbulent cascade helps us to explain why gradients
of velocities are reliable tracers ofmagnetic fields in turbulent plasmas. Indeed, as the
eddies trace local directions of magnetic field, the velocity gradients associated with
them are perpendicular to the magnetic field. For the expected Kolmogorov scaling
of perpendicular motions v⊥ ∼ l2/3⊥ , the velocity gradients scale as v⊥/l⊥ ∼ l−1/3⊥ , i. e.,
the smallest eddies are producing the largest velocity gradients. These smallest eddies
are well aligned with the magnetic field and their gradients well trace the local mag-
netic field. Detailed analysis in Lazarian & Yuen ([285]) shows that the eddies at the
resolution of a telescope provide the largest contribution to the observed gradients. In
other words, velocity gradients carry the information about the small-scale projected
magnetic field.

For practical studies of velocity gradients, either calculating of gradients of ve-
locity centroids [174, 460] and their modifications [285] or calculating of intensities
within thin channel maps [285] can be used. Figure 10.12 illustrates the comparison of
the magnetic field structure obtained with Velocity Channel Gradients (VChGs) with

Figure 10.12:Magnetic field textures are created by the line integral convolution method. Left pan-
els: VCG technique (gradients are turned 90 degrees) applied to GALFA-H I data (upper panel) and
Vela C 13CO data (lower panel). Right panels: polarimetric studies of the same regions with PLANCK
and BLASTPOL (Fissel et al. (2016)) from [285].
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that obtained with dust polarimetry. The

AM = ⟨cos2 ϕ − 1/2⟩, (10.55)

where ⟨. . . ⟩ denote averaging and ϕ is the angle between the velocity gradients and
the direction given by polarization. Both from the value of the AM and visually we see
that the VCG technique provides a good correspondence to the polarimetric studies
of magnetic fields. This is also true for the projected magnetic field in the synthetic
observations obtainedwith 3DMHDsimulations and velocity gradients (see [460, 459,
285]). We note that an additional value of velocity gradients that they change their
direction 90 degrees in the regions of gravitational collapse. This provides a unique
way to study star formation processes.

The practical calculations of gradients are done using Gaussian fitting into the
distribution of gradient directions calculated over given block of points [460]. This
way provides the gradient direction over the block and the statistical error. Blocks of
20pixels are frequently sufficient for obtaininga reliable determiningofmagnetic field
with the statistical error less than 10 degrees.

The subblock averaging may be seen like a constrain limiting the resolution of
the magnetic field maps. Indeed, this type of averaging is not necessary for polari-
metric studies. However, one should keep in mind that the spectral line observations
can be donewithmuch higher resolution using ground based intruments. In addition,
[285] demonstrated that the direct interferometric output can be successfully used for
gradient studies. It is important that the velocity gradient maps can be constructed
with interferometer output without the requirement of the single dish input. There-
fore, even with the subblock averating, the velocity gradients can provide higher res-
olution maps as compared with the far infrared polarimetry.

In comparison to far infrared polarimetry the velocity gradient technique can
make use of the wealth of spectroscopic surveys. In many cases the corresponding
data is already publicly available. In any case, obtaining such data does not require
expensive space of balloon-borne missions. Moreover, using velocity gradients it is
possible to study magnetic fields both in dense and the surrounding diffuse media,
which is not feasible for the present generation of the far infrared polarimeters.

We also note that due to the property of velocity gradients to increase their value
with the decrease of the scale, the contribution of the velocity gradients arising from
the large scale astrophysical flows is not important. At the same time, in the presence
of gravitational collapse the direction of velocity gradients changes by 90 degrees (see
[460, 285]). This change is easy to understand in the two limiting cases. In the case of
very strong magnetic field, the free fall happens only along magnetic field lines and
the velocity gradients get aligned along magnetic field. The latter alignment is also
present for the case of a weak magnetic field that is taken for a ride by the collapsing
matter.
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The effect of velocity gradient directionflip provides a unique possibility of detect-
ing the regions of gravitational collapse. It is important that for this purpose the use
of polarimetry is not required. The properties of velocity gradient distribution change
at the boundary of the collapsing region and this provides an observational signature
of the transition from the turbulence-dominated to collapse dominated regions. The
pilot studies (Hu et al. 2018, in progress) show that the regions of molecular clouds
undergoing the gravitational collapse subtend a small part of the cloud volume. This
can be viewed as an indication that the gravitational collapse cannot be the driver of
turbulence in molecular clouds.

Obtaining 3D distribution of magnetic field
Galactic rotation curve provides a way to map the distribution of magnetic fields at
different distances from the observer if velocity gradients are used. This is an impor-
tant bonus compared to the far infrared polarimetry which samples magnetic field
along the entire line of sight. If applied to 13CO and other molecular species, velocity
gradients allow to study magnetic fields within molecular clouds in the galactic disk.
For most of these clouds, far infrared polarimetry is useless due to the effect of confu-
sion. Moreover, using different molecular species that exist at different optical depth
one can provide tomographic studies of the magnetic field distribution within a given
molecular cloud.

The first study of the 3D distribution of magnetic field using velocity gradients
was performed in [175]. To test the obtained 3D distribution of magnetic fields, this
distribution was used to predict the expected polarization toward a number of stars
to which both the distance and polarization were known. A good correspondence4 of
the predicted and measured polarization was obtained (see Figure 10.13. The use of a
larger sample of stars with known distances and polarization that is getting available
due to GAYA satellite (http://sci.esa.int/gaia/) is going to provide a better testing of
the 3D magnetic field structure available with velocity gradients.

Obtaining 3D magnetic field distribution is also important for accounting of the
CMB polarized foregrounds. We note that the structure of velocity channel maps aris-
ing from MHD turbulence can be studied in different ways. For instance, Clark (see
[96]) suggested an empirical technique for tracing magnetic field in diffuse media
based on the alignment of intensity filaments in channel maps and the magnetic
fields. This alignment was discussed as a way of predicting the foreground polar-
ization from dust in high latitude HI ([97]). From the point of view of theory of PPV
statistics the filaments in thin velocity channels should be interpreted as velocity

4 The perfect correspondence of the magnetic field direction obtained with polarimetry and velocity
gradients is not expected due to the difference of summing up the Stokes parameters and gradients
along the line of sight. This difference is small for subAlfvenic turbulence, but it gets more and more
significant as the Alfven Mach numberMA increases.
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Figure 10.13: Testing of the 3D galactic magnetic field distribution obtained with the VChGs using
polarization to the stars with known distances. The white points correspond to the perfect corre-
spondence.

caustics (see [285]). The velocity gradients have better theoretical description and jus-
tification compared to filaments. Both numerical research and observations show that
the correspondence between the direction of velocity gradients and that determined
by polarization is better than the the correspondence between the direction of fila-
ments and the polarization. Therefore it is advantageous to use the velocity gradients
to predict the expected foreground polarization from dust.

10.5.2 Synchrotron intensity gradients

It follows from the theory of Alfvenic turbulence that magnetic field fluctuations and
velocity fluctuations enter in a symmetric way. Therefore, the magnetic field gradi-
ents are expected to trace local direction of magnetic field in a way similar to velocity
gradients. LP12 described how synchrotron intensity fluctuations reflect the magnetic
field fluctuations. It follows that Synchrotron Intensity Gradients (SIGs) are perpen-
dicular to the projected direction of magnetic field. This conclusion was supported by
numerical simulations in [286]. Figure 10.14 shows the comparison of the SIGs direc-
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Figure 10.14: SIGs (red) and the B-field traced by synchrotron polarization (blue) from the full-sky
PLANCK synchrotron data. The background is the synchrotron intensity map with darker tones cor-
responding to higher intensity. Seven distinct regions that are away from the galactic plane are
zoomed in to show the relative alignment between the SIGs and the magnetic fields from [286].

tions (rotated 90 degrees) and the projected magnetic field directions as revealed by
PLANCK map of polarized synchrotron.

The measurements using synchrotron polarization are usually have to be cor-
rected for the Faraday rotation. This requires polarization measurements at multiple
frequencies. On the contrary, the SIGs provide magnetic field direction using the
measurement of intensity at a single frequency. This discovery opens an avenue for
mapping magnetic fields using both existing and future synchrotron intensity maps.
If polarisationmeasurment at low frequency is available, the comparison of the direc-
tion of magnetic field obtained with the SIGs and the the polarimation measurement
allows one to construct detailed Faraday rotation maps.

10.5.3 Synchrotron polarization gradients

It was shown by Lazarian & Yuen ([283]) that the gradient technique is also applicable
to synchrotron polarization, namely, to the measure:

P(X, λ) = ∫
S

dzP(X, z)e2iλ
2Φ(X,z) (10.56)

where S is the size of the emitting region along the line of sight, λ is the wavelength
and the Faraday rotation measure is given (see [57])

Φ = 081
z

∫
0

dz󸀠ne(z
󸀠)Hz(z

󸀠) radm2, (10.57)
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where ne is the electron density and Hz is the z-component of magnetic field.
The Faraday rotation effect causes Faraday depolarization. For the combination

of the regular and random field, the effect is described in LP16. Using this theory [285]
showed that Synchrotron Polarization Gradients (SIGs) and Synchrotron Polarization
Derivative Gradients (SPDGs), i. e., the gradients of dP/dλ2 can be used to study 3Ddis-
tribution ofmagnetic fields. The corresponding procedure is illustrated in Figure 10.15.
Indeed, the measurements of polarization at two sufficiently low radio frequencies
sample polarization up to the different physical boundaries L1 and L2. This is the con-
sequence of Faraday depolarization effect which for turbulent field is quantified in
LP16. As a result one can sample the distribution of plane-of-skymagnetic fields along
the line of sight. In particular, by calculating the difference in polarized signal one
can get polarized intensity arising from the volume limited by [L1, L2] boundaries. The
gradients of this polarized intensity provide the direction of the plane-of-skymagnetic
field within the volume with [L1, L2] boundaries. Combining this information with the
Faraday polarizationmeasurements one can obtain the thrue 3D structure ofmagnetic
field as was demonstrated using numerical simulation in ([283]).

Figure 10.15: An illustration of using SPDGs to map the 3D magnetic field structure. The differences
of the gradients and two neighboring frequencies allow the mean magnetic field structure between
the slice [L2, L1] to be evaluated from [283].

The direction of the SPGs and the SPDGs is perpendicular to the magnetic field direc-
tion and it is not affected by the Faraday rotation. Therefore, a reliable 3D restoring
of magnetic field structure is possible. This was illustrated in [283] using numerical
simulations.

10.5.4 Intensity gradients

As we discussed earlier the statistics of turbulent density does not exhibit robust uni-
versal scaling relations [37, 232]. Nevertheless, our study in [37] demonstrated that the
change of the density spectra and anisotropy at high sonic Mach numbers Ms hap-
pens due to the fact that dense compressed clumps appear in the turbulent volume.
At the same time, for the densities in the most of the volume the GS95 scalings are ap-
proximately valid. Thus one can expect that within a significant part of the turbulent
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volume the density gradients can trace the magnetic field in a way similar to other
gradient techniques that we described above. At the same time, density gradients are
expected to be much more sensitive to shocks, which provides a way of identification
shocks through observations. Indeed, numerical simulations in [459] demonstrated
that while the direction of velocity gradients does not change in the presence of the
shocks, the density gradients turn from being perpendicular to the magnetic field to
being perpendicular to the shock front. This effect is illustrated by Figure 10.16 where
bothmagnetic field and high contrast density enhancements obtained in 3DMHD nu-
merical simulations are shown. It is easy to observe that the density structures are
mostly perpendicular tomagnetic field. As a result, the density and therefore observed
intensity gradients tend to be parallel to magnetic field in supersonic subAlfvenic tur-
bulence.

Figure 10.16: Illustration of the structure of magnetic field (black dotted lines) and high contrast
density enhancements (red features) within subAlfvenic supersonic 3D MHD turbulence simulations.

In strongly magnetized media, the shocks are formed preferentially perpendicular to
magnetic field lines. Thus the 90-degree change of the density gradient directions is
expected. This effect is seen in the analysis of theHI observational data in Figure 10.17.

Both density and velocity gradients change their direction ∼ 90 degrees in re-
spect tomagnetic field in the presence of gravitational collapse. Nevertheless, density
gradients quicker react to the gravitational collapse [459]. This shows the synergy of
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Figure 10.17: Velocity (red) and density (green) gradients obtained using GALFA-HI survey are com-
pared with the Planck polarization data (blue). It is suggestive that the regions corresponding to
strong deviations of density gradients from the direction given by velocity gradients correspond to
shocks.

the velocity and density gradient studies. In some situations, e. g., in the case of dust
emission, density gradients provide the only type of gradients that are available.

Due to the fact that shocks can easily distort the direction of density gradients, in
terms of magnetic field tracing we view the Intensity Gradients (IGs)5 as a suplimen-
tary way ofmagnetic field tracing in the galactic diffuse and densemedia. However, in
combinationwith velocity gradients the IGs provide a powerful way to identify shocks
in galactic environments.

10.5.5 Dispersion of gradient directions: obtaining magnetization of the media

As we discussed earlier, the direction of gradients is obtained via the block averaging
procedure ([460]). The properties of the Gaussian that is used for fitting the distri-
bution of gradients within the block depend on the Alfven Mach number MA of the
turbulence (see the upper panel of Figure 10.18). The power law dependences of the
dispersion of the distribution of gradient orientations were obtained by Lazarian et al.
([285]) and used there to determine the distribution ofMA from observations. The re-
sults of the analysis of the GALFAHI data are shown in the lower panel of Figure 10.18.
This is the first application of the technique and we expect that the accuracy of it will
increase. For instance, the variations of the galactic magnetic field directions that are
not arising from turbulence can increasemeasuredMA as compared to its actual value.
This effect can be taken into account to increase the accuracy of the technique.

5 The IGs should be distinguished from the Histograms of Relative Orientation (HRO) technique (see
[401]). The latter statitically quantifies the relative alignment of density gradients and polarization
and does not present a new way of tracing either magnetic fields of shocks.
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Figure 10.18: Upper panels: The panels here show the velocity channel gradients (VChGs) distri-
bution for three numerical cubes with differentMA. Both the angle dispersion of gradients and the
top/base, i. e. T /B, ratio are changing withMA. Lower panel: MA distribution obtained by applying
the gradient dispersion technique to HI data from [95, 355]. Reproduced from [285].

The physical basis of the velocity and synchrotron gradient techniques are the same.
Therefore the approaches proven with velocity gradients can be applied to syn-
chrotron gradients. Threfore the procedure of using the distribution of velocity gra-
dient to determine MA can be successfully applied to find the magnetization using
distribution of synchrotron intensities and synchrotron polarization gradients. At the
same time, we expect the distribution of density gradients to depend both onMA and
on the sonic Mach numberMs.

In the situations when both MA and the turbulent velocity dispersion δV are
known, it is possible to obtain magnetic field strength from the relation MA = δB/B.
For Alfvenic motions δV = δB/(4πρ)1/2, one can express the plane of the sky magnetic
field as B ≈ √4πρδV/MA.

10.5.6 Probing magnetic fields with different types of gradients

The gradient technique that we have discussed above is a good illustration of the util-
ity of both understanding the basic properties of MHD turbulence and the ability to
describe the observable fluctuations that MHD turbulence induces. Figure 10.19 illus-
trates the relation between the fundamental MHD theory and the gradient technique.

Interstellar media is complex and the interrelation of magnetic fields in different
phases of the ISM is far from trivial. Different types of gradients are biased to pref-
erential probing turbulence and magnetic fields in particular ISM phases. Therefore,
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Figure 10.19: The theoretical foundations of the gradient technique. The advances of MHD turbu-
lence theory and understanding of turbulent reconnection as well as the statistical description of
observable turbulent fluctuations provide the solid foundations for tracing magnetic fields with ve-
locity and synchrotron gradients.

combining the different types of gradients we expect to get an outlook on magnetized
ISM in its complexity.

It is important that both velocity and synchrotron polarization gradients can pro-
vide the information about the 3D magnetic field structure. This opens a unique pos-
sibility of obtaining the 3D map of galactic magnetic field and explore its role in the
galactic ecosystem.

10.6 Synergy of different approaches

We have discussed the ways of studying turbulence spectra, turbulence magnetiza-
tion, composition of turbulentmotions in termsofAlfven, slowand fastmodes, aswell
as the ways of using MHD turbulence properties for mapping magnetic field distribu-
tion. Each of these ways provides important information and combining those we can
get a global picture how the turbulent ISM works. Correlating properties of magnetic
turbulence with other types of data, e. g., the data on the star formation activity, one
can address long standing puzzles of astrophysical research. At the same time, obtain-
ing the statistics of astrophysical turbulence from observations can test the properties
of MHD turbulence at the extremely large Reynolds and Lundquist numbers that will
not be available for numerical simulations in the foreseeable future.

Wenote that unlike the studies of turbulence in solarwind,which requires very ex-
pensive space missions, the analysis of the data that we described in this chapter may
employ ground based observations and in many cases can be based on the existing
archival data. One should also remember that the observations can probe turbulence
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at much larger variety of conditions and scales compared to the in-situmeasurements
with spacecrafts.

Observational studies of turbulence is an essential component of the efforts to
understand astrophysical MHD turbulence and its consequences. Other components
include theoretical and numerical efforts as it is illustrated in Figure 10.20. We want
to stress the importance of numerics for testing both turbulence theory and simulat-
ing observational settings. At the same time, numerics is not a substitution for theory.
For instance, a tremendous progress that was initiated by GS95 theory would not be
possible using just brute force numerical efforts. Similarly, the understanding of tur-
bulent reconnection, as we discussed earlier, allows to understand what features of
numerical simulations correspond to astrophysical reality and what features are just
a numerical artifact.

Figure 10.20: Big picture: interrelation between the ap-
proaches to studying astrophysical turbulence from [260].

We believe that the synergetic use of theoretical, observational, and numerical ap-
proaches in dealingwith the complexity of astrophysical turbulence can bring success
in this important direction of astrophysical research.
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