
C
o
p
y
r
i
g
h
t

2
0
1
9
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 6:32 AM via
AN: 2206051 ; Luis Weir, Zdenek "Z" Nemec.; Enterprise API Management : Design and Deliver Valuable Business APIs
Account: ns335141

Enterprise API Management

Design and deliver valuable business APIs

Luis Weir

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enterprise API Management
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Acquisition Editor: Dominic Shakeshaft
Acquisition Editor – Peer Reviews: Suresh Jain
Project Editor: Kishor Rit
Development Editor: Joanne Lovell
Technical Editor: Aniket Shetty
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Sandip Tadge

First published: July 2019

Production reference: 4091019

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78728-443-2

www.packtpub.com

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Foreword
Do you remember the days when businesses were considering whether they should invest
in a website? Would building an online presence have any impact on their bottom line?

Getting on the web merely involved moving from the Yellow Pages and printed
advertisements to a new channel. But this still left the potential of offering every business
capability digitally untapped.

The web revolution was a kick-start for the next era for businesses – digital transformation.
And APIs are the connective fabric of this much-debated digital transformation. Under API
transformation, you deliver your organizational capabilities – your products – via APIs.
Your communication, information exchange, innovation, and adaptation to ever-changing
market conditions happens through well-laid-out APIs. The APIs become the backbone of
your company. You can even leverage your partner sales channels with the right APIs!

API transformation does not start with building APIs, which were previously the technical
creations of engineers. It begins with changing the mindset of the entire organization. It
means embracing the culture of API first.

API first implies that everything produced and consumed in the organization is, and has,
an API. Companies such as Adidas, DHL, or Volkswagen have already embarked on the
API-first journey. Do you ever wonder whether there is an API for Adidas Stan Smith
Sneakers? There is, and not just one! Adidas product, order, inventory, and other APIs are
all about physical products. Every product has an API!

And we are still only scratching the surface. APIs no longer live isolated in silos; they are
forming landscapes on every level: team, organization, domain, and even cross-domain. In
the coming years, autonomous APIs will completely change how we discover, close, and
implement deals. How do you find the best logistics service to ship a container from
Wakkanai Port every month? What if you can perform this search and make the order in a
fraction of a second? What if you can look for and close better deals a thousand times a
day? Do you still think that, in 10 years' time, businesses will be asking whether they
should invest in APIs?

Of course, embarking on an API journey requires preparation, learning new skills, and
avoiding roadblocks. Many organizations naively start with the purchase of an expensive
API solution in the hope of getting on the right track, only to later find themselves in a
vendor lock-in trap, with a lack of product ownership and the infamous pitfall of "build it
(an API), and they will come."

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Executing a successful API transformation is a matter of building upon the three pillars:
business, organization, and technology. Ignore one of them, and the project will fail. Each
pillar has to understand the role and importance of APIs, rally under the API-first flag and
carefully plan the API strategy. Only when all three elements are acting together can you
hope for a prosperous API landscape.

This book will take you on an API journey that avoids common traps. It is the handbook for
every API program owner, enterprise architect, and forward-thinking business person.
Wherever you are, I am sure this book will prove to be an excellent companion.

The author (Luis) does an incredible job of explaining the business aspects of APIs in
chapters one, three, and eight, while providing a great deal of technical background in
chapter two, and then building on these foundations with architectural and technological
concepts in the subsequent sections. The learning process then culminates in chapter seven,
which presents the framework for the API life cycle process before closing with the grand
finale on API products, business, and organizational impacts.

This book is the missing API manual for everybody interested in executing API
transformation. It provides a holistic, concise look at the business, organization, and
technical aspects of APIs like no other book before it.

API styles, tools, and vendors come and go. However, the concepts as presented in this
book will help you to create a culture and values that last.

Good luck on your API journey!

Zdenek "Z" Nemec

Founder of Good API Consulting, and the author of API Blueprint and supermodel.io

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Contributors

About the author
Luis Augusto Weir is a director of software development at Oracle and a former chief
architect at Capgemini, Oracle Ace Director, and Oracle Groundbreaker Ambassador. An
API management and microservices evangelist, Luis has over 17 years' experience in
implementing complex distributed systems around the world.

Having always had a natural talent for software, computers, and engineering in general,
Luis' career in software began from an early age. Even before starting university, Luis'
entrepreneurial spirit led him to start several ventures, including one of the very first social
media websites in his country of origin (Venezuela), as well as a small software
development firm. Although none of these ventures turned into multi-million
dollar corporations, the experience and knowledge gained during this period led him to
develop a passion for distributed software computing that inevitably led to service-oriented
architectures (SOA).

In recent years, Luis has been helping some of the largest Fortune 500 companies in
industries such as retail, the supply chain, and agriculture to define and implement their
API and microservice strategies, his experience of which served as a foundation for this
book.

A co-author of three other books as well as numerous articles and white papers, Luis has
been a frequent speaker at events such as CodeOne, Devoxx, Gartner AAD&I, Oracle
OpenWorld, Java2Days, and many user groups and meetups.

Luis holds an MS in corporate networks and systems integration from the Universitat
Politecnica de Valencia (UPV) and a BS in electronics engineering from the Universidad
Nueva Esparta.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

I want to dedicate this book to my beautiful family: my wife, Elena, and my three gorgeous
daughters, Helena, Clara, and Alicia. Thank you once again for allowing dad to be stuck at
a computer when I could have been spending time with you. I would also like to give
special thanks to all the co-authors and editors of this book.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewers
Phil Wilkins has spent over 30 years in the software industry, acquiring a wealth of
experience in different businesses and environments, from multinationals to software start-
ups, and from customer organizations to specialist consulting. He started out as a
developer on real-time, mission-critical solutions, and has worked his way up through
technical and development leadership roles, primarily in Java-based environments.

He now works for Capgemini's multi-award-winning team specializing in cloud integration
and API technologies and, more generally, with Oracle technologies.

Phil has contributed his knowledge and experience by providing input and support to the
development of technical books (particularly with Packt Publishing), including co-
authoring Implementing Oracle Integration Cloud Service, and Implementing Oracle API
Platform, as well as online training on API best practices.

In addition to this, he has also had articles published in technical journals and is an active
blogger. He has presented at a broad range of industry events, from large conferences
around the world to user group and developer meetups. Phil’s expertise and contributions
to the Oracle community have been acknowledged by Oracle by accrediting him as an
Oracle Ace.

I would like to thank Luis Weir for the opportunity to contribute to this book, and for the
time we spent working and presenting together at Capgemini. I would also like to take this
opportunity to thank my wife, Catherine, and our two sons, Christopher and Aaron, for
their understanding, given that many of the contributions I make to books and other
activities mean spending extra hours in front of a computer.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Kshitij Mehrotra is an expert and thought leader in "digital transformation" with extensive
experience in APIs, cloud applications, SOA, analytics, security, business activity
monitoring (BAM), and business process management (BPM). He has helped several
customers and employers to define and execute transformation and growth strategies by
recommending the right architecture and validating strategic investment in a variety of
technologies most relevant to customers' requirements.

Kshitij shares his experience with customers, helping them to shape digital initiatives and
highlighting pitfalls that could affect implementation, as well as identifying the digital tools
and technologies designed to ensure that the program is aligned with the businesses'
strategy.

A blogger and speaker, he is Axway’s chief architect for platforms and products. He has
more than 19 years' experience of implementing solutions across the world and has
successfully delivered large and complex digital and SOA solutions to Fortune 500
companies.

He has led middleware programs for renowned organizations, including Oracle
Consulting, Wipro, and HCL Axon.

Thanks to everyone who inspired me to contribute to this book. And special thanks to my
parents and family.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Rolando Carrasco is an Oracle Groundbreaker and Oracle ACE specializing in API
management, service orientation, digital transformation, and microservices. He has over 19
years' experience and has worked for companies including HP and Oracle. Currently, he is
the CTO of a Mexican consulting firm by the name of S&P Solutions, which has a very solid
foothold in the Latin-American market.

He has been a constant Oracle Open World speaker and ongoing contributor within the
community with blogs, videos, webinars, podcasts, presentations, and event coordination.

Rolando is a certified instructor for Arcitura, in particular providing content around service
orientation and microservices. He is both a certified SOA architect and a microservices
architect.

Rolando specializes in modern architecture, as well as high-demand and mission-critical
applications.

He is a co-author of the book Oracle API Management 12c Implementation, published by Packt
in 2015, and has contributed as a technical reviewer for at least three books during the last
three years.

I thank God for giving me the direction, time, and knowledge to deliver my work. I also
wish to thank my wife, Cristina, and my daughter, Constanza, as well as my mom, dad,
and my brother, Manuel. These are the most important people in my life.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents
Preface 1

Chapter 1: The Business Value of APIs 9
Change or die 9

What does this hyperconnectivity tell us? 10
The digital dilemma 12
Access to enterprise information and functionality is king 12

What are APIs and why should a business care? 14
APIs as an enabler for innovation and bimodal IT 18
APIs to monetize on information assets 21
APIs for regulatory compliance 23

GDPR 23
PSD2 23
Fast Healthcare Interoperability Resources (FHIR) 24

APIs for the reuse of business capabilities 25
Avoiding a hyperconnectivity mess 26
The API value chain 30
APIs as a driving force for many large acquisitions in the software
industry 35
Summary 36

Chapter 2: The Evolution of API Platforms 38
The journey of API platforms - from proxies to microgateways 38

Generation zero 44
First generation 46
Second generation 49

Application Services Governance 53
Third generation 54

Cloud adoption 54
Digital transformation 54
Customer-centricity 55
Common denominators 56

Summary 60

Chapter 3: Business-Led API Strategy 62
Kick-starting a business-led API initiative 62

Defining the business drivers 64
Defining the goals and objectives 70
Defining the API strategy 72

Summary 85

Chapter 4: API-Led Architectures 86

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

What is API-led? 86
Architecting API-led 87

Conceptual architecture view 89
Technical capability view 91

Management and operations 92
API life cycle 93
API design and mocking 94
Policy definition and implementation 96
API pages, developer portal, and marketplaces 96
API runtime operations and analytics 100
API monetization and billing 101

API exposure 102
Authentication (AuthN) and authorization (AuthZ) 103
Access control 104
API key validation 104
CORS 104
OWASP Top 10 protection 105
API composition 105
Redaction 105
Format conversion 106
Header handling 106
Fault handling 106
Routing 106
Rate limits 107
Throttling 107
Caching 107
Push notification 108
API load balancing 108
Quotas and plans 109
Versioning and deprecation 109
Custom policies 109

Business capability services 109
Semi-decoupled services 111

Orchestration 111
Data validation 111
Data transformation 111
Connectivity 111
Protocol conversion 112
Shared runtime 112

Fully decoupled services 112
Choreography 112
Data validation 113
Processing logic 113
Polyglot programming 113
Independent runtime 114
Service mesh 114
Event Hub 116
Service registry 116
Non-shared storage 118

Identity and access 118
Users and roles management 119
Identity federation 119
Access management 120

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Summary 120

Chapter 5: API-Led Architecture Patterns 122
Patterns in the context of APIs 122
API-led architecture patterns described 124

API resource routing 126
API content-based routing 128
Payload pagination 130
CRUD API service 131
CQRS API service 133
API aggregator 136
API orchestration service 138
API microgateway 140
Sidecar API gateway 142
Webhook 144
API geo-routing 146
API firewall 148
API basic authentication 150
API bearer of token 152
API bearer of obscure token 155

Summary 157

Chapter 6: Modern API Architectural Styles 158
A brief history of interfaces 158

The rise of RPC 159
RPC and object-oriented programming 162
XML to the rescue 162
Latest trends 164

What does this trend analysis really tell us? 165
REST 166

Architecture 166
Interface definition 171

OAS 171
API Blueprint 173
RAML 174

Transport and payloads 175
Usage flow 175

GraphQL 177
Architecture 178

Architectural principles 181
Interface definition 182

Types that define operations 183
Types that define data 184

Transport and payloads 185
Usage flow 185

gRPC 187

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Architecture 189
Interface definition, transport, and payload 191
Usage flow 192

Comparing the options 194
Summary 203

Chapter 7: API Life Cycle 204
The full API development life cycle 204

API life cycle 206
API ideation and planning 207
Design 211
Mock and try 217
Create/configure 220
Deploy 221
Promote, deprecate, and retire 224
Observe 226

The API design-first life cycle 231
Service life cycle 232

Scaffold/refactor 233
Build and unit test 234
Contract test 235

Customer life cycle 237
Implementation and use 238
Feedback 239

Summary 239

Chapter 8: API Products' Target Operating Model 240
Products in the real world 240
APIs as products 243

The implications of treating APIs as products 244
What is a TOM? 249
Defining the model 250
Organization 251

Central organization 251
Federated organization 253
A platform-based approach 254

Roles and responsibilities 257
API product teams 257
API platform team 261

Communication and collaboration model 265
Transition approach 267
Summary 269

Index 270

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
Application Programming Interfaces (APIs) can be compared to doors: their main purpose
is to provide access to something. Doors come in different shapes, sizes, colors, and
materials, and offer different levels of security to protect whatever is behind them.

Figure 1: Different types of door

In the case of APIs, however, that something is digital assets such as raw and cleansed
data, images, videos, documents, and even functionality that performs complex
calculations or data processing based on inputs.

Sometimes, doors are wrongly designed or built:

Figure 2: Real-life door design errors
Source: http://www.constructionhunter.com.au/blog/industry-news/20-photos-that-will-make-you-question-your-faith-in-humanity

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

The same is also true with APIs. API management is a discipline that has evolved to deliver
the processes and tools required to discover, design, implement, use, or operate enterprise-
grade APIs. Most importantly, the discipline is responsible for managing the communities
around APIs. Such communities may consist of developers building and/or using APIs in
their apps, but there are also communities of business and IT executives looking to speed
up innovation at a lower cost.

We can conclude that API management's true objective is to deliver value. This could be
valuable to the business in the form of reducing development effort by using existing APIs
(internally developed ones or external ones developed by third parties). Value could also
come from monetizing APIs that offer intangible products (digital assets) that developers
and/or executives alike would be willing to pay for.

Figure 3: The API management cycle

Value can only be truly delivered when the full cycle of delivering something, in this case
APIs, is fully understood, optimized, and overseen. The creation of an API strategy with a
clear purpose and objectives is followed by the inception of an API through innovation
workshops. Next is planning, design, implementation, deployment, operations, and
monitoring, until the eventual retirement of the API.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

API management is no longer just about implementing APIs. Thousands of public APIs
(with more being added by the day) are listed in API marketplaces, such as
programmableweb.com, and RapidAPI.com, each representing a digital door to an
organization's digital product offerings. Thinking that all APIs need to be internally
developed is a huge fallacy.

To summarize, API management must be as much about providing the means to discover
and use public APIs as it is about implementing new ones. At the epicenter of any API
management initiative must be the creation of value for the business but also for the users
of an API.

APIs at the center of digital ecosystems

As organizations embrace the adoption of public APIs and/or create new API products,
there is an interesting effect. The creation of new ecosystems, all enabled through APIs,
starts to happen as value comes from adopting and combining someone else's digital assets
in the creation of new products.

Figure 4: New ecosystems being created

In fact, a study conducted by Mckinsey predicts that by 2025, digital ecosystems will
account for 30% of global revenues, which according to the firm is about 60 trillion US
dollars.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.programmableweb.com/
https://rapidapi.com/

Preface

[4]

The study is referenced in the following link:

https:/ /www. mckinsey. com/industries/ financial- services/ our-
insights/ insurance- beyond- digital- the- rise- of- ecosystems- and-
platforms

Not only this is huge, but it shows that being part of this digital ecosystem will be a matter
of survival for some organizations.

APIs as an evolving paradigm

APIs are not new. In fact, they are far from it. The use of the term API can be traced back to
1968 to a publication titled Data Structures and Techniques for Remote Computer Graphics by I.
W. Cotton and F. S. Greatorex, Jr. Since then, we've seen the term being born and re-born in
proprietary protocols such as Sun Microsystems' Remote Procedure Call (RPC), Common
Object Request Broker Architecture (CORBA), and Distributed Component Object
Model (DCOM). We've also seen it in public standards, such as XML-RPC, which then
evolved to become Simple Object Access Protocol (SOAP), which then, along with the
Web Services Description Language (WSDL), became the foundation for Web Services
and service-oriented architecture (SOA).

There was then a shift of paradigm into resource-centric and more lightweight APIs based
on the REST architectural style. We are now back to RPC with emerging technologies such
as GraphQL and gRPC, both of which are rapidly increasing in popularity.

The evolution of APIs is described in more detail in Chapter 6, Modern
API Architectural Styles.

However, what we see today is not just a technological shift of API technologies. The
emergence of APIs as the means to enable digital ecosystems has created an economy of its
own, an API economy, which has a more fundamental impact on how businesses organize
their teams.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms
https://www.mckinsey.com/industries/financial-services/our-insights/insurance-beyond-digital-the-rise-of-ecosystems-and-platforms

Preface

[5]

Figure 5: APIs as business products
Source: http://www.apisindia.com/

As businesses realize that APIs can truly be business products in their own right, the teams
that deliver these products will no longer be simply considered IT teams or, to put it
bluntly, cost centers. For businesses to succeed in the API economy, they need to shift away
from traditional ways of delivering IT to a product-centric approach whereby the main goal
is to make an API product successful and profitable.

Technical capabilities, especially with cloud computing now being the new normal, must
too evolve in order to give these teams all of the tools they need to produce products that
are innovative and competitive in the marketplace.

Who this book is for
This book will be of great benefit to developers, architects, and even IT/Digital executives
looking for sources of inspiration when defining and implementing:

Business-led API strategies
API-led architectures and patterns
API architectural styles to use (for example, REST, GraphQL, or gRPC)

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[6]

The full API life cycle, including related cycles such as the service and API
consumer cycles
Target operating models suitable for API products.

Lastly, as the book is technology-agnostic and doesn't offer strong views on tools, it can
also be used as a reference to compare different products, whether they are commercial or
open-sourced.

What this book covers
Chapter 1, The Business Value of APIs – this chapter gives context to the rest of the book by
elaborating on what APIs mean to a business and why they should be embraced. It also
talks about business drivers for APIs and how to determine their value based on an API
value chain.

Chapter 2, The Evolution of API Platforms – this chapter takes a step back to look in detail at
how technologies and platforms have evolved from traditional middleware and enterprise
service bus-centric SOA architectures to fully federated, multi-cloud, and microservices-
based architectures that enable APIs to exist and be managed wherever information resides.

Chapter 3, Business-Led API Strategy – the main focus of this chapter is to deliver a
comprehensive approach to defining API strategies that have clear, concise, and business-
centric goals and objectives.

Chapter 4, API-Led Architectures – this chapter walks through a reference architecture and
all of the capabilities required to implement modern APIs and fully decouple
(micro)services. The chapter is a great reference for what modern stacks should look like.

Chapter 5, API-Led Architecture Patterns – this chapter extends Chapter 4 by walking
through how the different capabilities described in the reference architecture can be
combined in order to deliver sound solutions to common problems.

Chapter 6, Modern API Architectural Styles – this chapter gives a detailed overview of the
trendiest API architectural styles (at the time this book was written). The chapter is a great
source of inspiration for anyone looking for a point of view on different API styles and their
pros and cons.

Chapter 7, API Life Cycle – this chapter walks through the full API life cycle and also
related ones, such as the service and API consumer life cycles. The chapter is a great
reference for those wishing to implement end-to-end API processes and tools from scratch
or anyone looking for inspiration on how to enhance existing ones.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[7]

Chapter 8, API Products' Target Operating Model – as the name suggests, the chapter walks
through what it really means to treat APIs as products and the implications this has for
organizations. From core concepts to different operating models with their pros and cons,
this chapter elaborates on a topic that is rarely discussed in the world of APIs.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781787284432_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

Bold: Indicates a new term, an important word, or words that you see on the screen, for
example, in menus or dialog boxes. For example: "Modern APIs are broadly considered to
be an evolution of the Remote Procedure Call (RPC) protocol."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit http:/ /www. packt. com/submit- errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781787284432_ColorImages.pdf
http://www.packt.com/submit-errata
http://www.packt.com/submit-errata
http://www.packt.com/submit-errata
http://www.packt.com/submit-errata
http://www.packt.com/submit-errata
http://www.packt.com/submit-errata
http://www.packt.com/submit-errata
http://www.packt.com/submit-errata
http://www.packt.com/submit-errata
http://www.packt.com/submit-errata
http://www.packt.com/submit-errata
http://www.packt.com/submit-errata
http://www.packt.com/submit-errata

Preface

[8]

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com/
http://www.packt.com/

1
The Business Value of APIs

This chapter focuses on the value that Application Programming Interfaces (APIs) bring to
the business. It begins by describing how digital disruption is forcing organizations to
change in order to innovate and therefore avoid being disrupted. To this end, I explain how
APIs enable digital strategies and digital transformation by unlocking key enterprise
information assets and functionality, which are typically locked in systems of record, many
of which are legacy. The chapter continues by elaborating on the value chain of APIs and
how each level of maturity delivers new capabilities to the business.

Change or die
The world has changed. Information technology has changed every aspect of our lives:
from fundamental things, such as how we purchase goods, interact with brands, and even
do our jobs, to how we communicate with each other. In fact, a study by British
psychologists suggests that around two billion people use smartphones across the globe,
with over half the population in developed countries relying on them on a daily basis.
That's over half a billion people worldwide using their phones to do all sorts of things, 85
times on average each day, according to the same study.

Refer to the study Beyond Self-Report: Tools to Compare Estimated and Real-
World Smartphone Use for further information on the research mentioned.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone
.0139004#pone.0139004.ref001

However, the aforementioned study only focuses on smartphone usage. If you factor in
interactions with other devices, such as tablets, personal computers, wearables, and even
machines (that is, smart cars and voice assistants such as Alexa), the number of interactions
is huge.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139004#pone.0139004.ref001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139004#pone.0139004.ref001

The Business Value of APIs Chapter 1

[10]

What does this hyperconnectivity tell us?
For a start, it is pushing the boundaries of what we thought was possible and making
science fiction seem real. Most importantly, it has opened up new avenues for businesses to
innovate and disrupt the market, which is exactly what the so-called "digital disruptors,"
such as Google, Apple, Facebook, Amazon, and Netflix, in fact did, and continue to do.
Established businesses, such as Blockbuster and Kodak, couldn't cope with the (digital)
innovation introduced by Netflix and Apple, and ended up filing for bankruptcy.
Traditional industries, such as the taxi industry and hospitality, are also being severely
disrupted by Uber and Airbnb.

Figure 1.1: Apple digitally disrupted Kodak

These companies are just the obvious examples that everyone talks about. With over 100
million new start up businesses launched every year, even if only 10% (as analysts predict)
are successful, we are talking about 10 million new companies with the potential to become
the new Netflix or Uber, but for different industries.

Further reading: Shocking Number of Worldwide Business Start-Ups Each
Year?
http://www.lerumba.com/Directory/shocking-number-of-worldwide-bu
siness-start-ups-each-year-article-39.aspx#.WTfmxRPytE5

Now, because of this, it's no wonder that most organizations globally have embarked on
digital transformation initiatives in order to avoid being (further) disrupted. As Harvard
Business Review (HBR) nicely put it:

"Digital is no longer the shiny front end of the organization - it's integrated into every
aspect of today's companies."

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.lerumba.com/Directory/shocking-number-of-worldwide-business-start-ups-each-year-article-39.aspx#.WTfmxRPytE5
http://www.lerumba.com/Directory/shocking-number-of-worldwide-business-start-ups-each-year-article-39.aspx#.WTfmxRPytE5

The Business Value of APIs Chapter 1

[11]

According to the same article by HBR, the most disrupted industries are those that relate to
Business to Consumer (B2C), with media and telecom at the top of the list, closely
followed by financial services and retail:

Figure 1.2: Disruption according to industry

However, these figures should not come as a surprise. A closer look shows that there is a
direct correlation between the disrupted B2C organizations and the fact that 2 billion
individuals are using their smartphones and other devices frequently. Put simply, B2C
organizations that haven't been able to innovate and engage customers in different ways,
and through digital channels, are more susceptible to being disrupted by newer and more
agile businesses:

"The most disrupted industries typically suffer from a perfect storm of two forces. First,
low barriers to entry into these sectors lead to more agile competition. Secondly, they have
large legacy business models which often generate the majority of their revenue. These
organizations, therefore, have embedded cultural and organizational challenges when it
comes to changing at the pace required."

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[12]

Further reading: The Industries That Are Being Disrupted the Most by Digital
https://hbr.org/2016/03/the-industries-that-are-being-disrupted-
the-most-by-digital

The digital dilemma
These organizations that are more exposed to digital disruption are therefore faced with a
dilemma. In order to remain relevant and stay in business, they must create a digital
strategy that allows the business to innovate and be more agile. However, in order to do so,
they can't simply get rid of old systems of record, most of which are legacy and contain
critical information assets that support day-to day-operations.

Figure 1.3: The digital dilemma

Bearing in mind that most of these organizations can't afford to start from a white sheet of
paper, the digital strategy must therefore cater to the transformation of hundreds (if not
thousands) of existing systems, many of which are considered legacy.

Such an undertaking can be huge, not only in terms of costs to the business, but also in
terms of the risks. This is exactly where the dilemma lies: do nothing and save costs/avoid
risks, and most likely end up being disrupted, or become a disruptor by taking the business
on a digital transformation journey, which could be risky and costly.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://hbr.org/2016/03/the-industries-that-are-being-disrupted-the-most-by-digital
https://hbr.org/2016/03/the-industries-that-are-being-disrupted-the-most-by-digital

The Business Value of APIs Chapter 1

[13]

Access to enterprise information and
functionality is king
Is it really that risky and costly to take the business on a digital transformation journey?
Well, as with everything, it depends. Organizations that perceive digital transformation as
merely an exercise to adopt omnichannel strategies, without first understanding "why" they
are doing it, or "what" they are trying to accomplish, will most likely fail to realize any
business benefits. For these organizations, such an undertaking will have plenty of
unknowns and will therefore be perceived as risky and costly.

Figure 1.4: An accidental multichannel strategy

Organizations that start off with the creation of a digital strategy to articulate the targeted
business goals, and also identify what business and technical capabilities are required in
order to achieve this, will most likely perceive the digital journey as a key enabler for the
business strategy, rather than just another expensive IT project. For such organizations,
digital transformation represents a justifiable and calculated risk.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[14]

It's no wonder that Forbes listed digital transformation as the #1 priority for Chief
Information Officer's (CIO) in 2017:

"Either companies figure out how to outsmart, outpace, and outmaneuver their
competitors with the clever, customer-focused deployment of digital technologies, or they
will be marginalized-sooner rather than later."

Further reading: Top 10 Strategic CIO Priorities For 2017
https://www.forbes.com/sites/oracle/2017/01/17/top-10-strategic-
cio-priorities-of-2017/

However, in order to achieve this, the devil is in the detail. The "how" question should not
be forgotten and must be thoroughly addressed while defining the strategy. For example,
one of the biggest challenges faced by organizations undertaking digital transformation is
around how to get access to core enterprise information assets, most of which are typically
locked in hundreds of systems of record. Therefore, without unrestricted, secured, and
reliable access to such systems, introducing any sort of innovation will be nothing more
than a prototyping exercise.

A system of record (SOR) is a data management term for an information
storage system (commonly implemented on a computer system running a
database management system) that is the authoritative data source for a
given data element or piece of information. Source:
https://en.wikipedia.org/wiki/System_of_record

What are APIs and why should a business
care?
APIs are like doors that provide access to information and functionality to other systems
and/or applications. APIs share many of the same characteristics as doors:

Most of them have locks and, without the key, they can't be opened.
They come in different types (size, color, material, type of lock, and so on).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.forbes.com/sites/oracle/2017/01/17/top-10-strategic-cio-priorities-of-2017/
https://www.forbes.com/sites/oracle/2017/01/17/top-10-strategic-cio-priorities-of-2017/
https://en.wikipedia.org/wiki/System_of_record

The Business Value of APIs Chapter 1

[15]

They can serve different purposes. For example, they can be public-facing or just
internally accessed.
They are located in a specific location: an address.
They can be as secure and closely monitored as required.
If they don't work, it will affect the experience of their users.

APIs, however, are not new. In fact, the concept goes back a long time and has been present
since the early days of distributed computing (some argue even before then). However, the
term as we know it today refers to a much more modern type of API, known as REST or
Web APIs.

The term REST APIs was first introduced in the year 2000 by Roy Fielding
in his PhD dissertation Architectural Styles and the Design of Network-based
Software Architectures. In his dissertation, Roy presented Representational
State Transfer (REST) as a way for computer systems to interoperate over
the internet, by making correct use of the already available Hypertext
Transfer Protocol (HTTP).
For further information, refer to the following link:
https://en.wikipedia.org/wiki/Representational_state_transfer#Hi
story

Modern APIs started to gain real popularity when, in the same year of their inception, eBay
launched its first public API as part of its eBay Developers Program. eBay's view was that
by making the most of its website functionality and information also accessible via a public
API, it would not only attract, but also encourage communities of developers worldwide to
innovate, by creating solutions using the API. From a business perspective, this meant that
eBay became a platform for developers to innovate on and, in turn, eBay would benefit
from having new users that perhaps it couldn't have reached before.

eBay was not wrong. In the years that followed, thousands of organizations worldwide,
including known brands, such as Salesforce.com, Google, Twitter, Facebook, Amazon,
Netflix, and many others, adopted similar strategies. In fact, according
to programmableweb.com (a well-known public API catalogue), the number of publicly
available APIs has been growing exponentially, reaching over 20k as of August 2018:

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Representational_state_transfer#History
https://en.wikipedia.org/wiki/Representational_state_transfer#History
https://www.programmableweb.com/

The Business Value of APIs Chapter 1

[16]

Figure 1.5: Public APIs as listed in programmableweb.com in August 2018

It may not sound like much, but considering that each of the listed APIs represents a door
to an organization's digital offerings, then we're talking about thousands of organizations
worldwide that have already opened their doors to new digital ecosystems, where APIs
have become the products these organizations sell and developers have become the buyers
of them.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[17]

Figure 1.6: Digital ecosystems enabled by APIs

In such digital ecosystems, communities of internal, partner, or external developers can
rapidly innovate by simply consuming these APIs to do all sorts of things: from offering
hotel/flight booking services by using the Expedia API, to providing educational solutions
that make sense of the space data available through the NASA API.

There are ecosystems where business partners can easily engage in business-to-business
transactions, either to resell goods or purchase them, electronically and without having to
spend on Electronic Data Interchange (EDI) infrastructure. Ecosystems where an
organization's internal digital teams can easily innovate as key enterprise information
assets are already accessible.

So, why should businesses care about all this? There is, in fact, not one answer, but multiple
answers, as described in the subsequent sections.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[18]

APIs as an enabler for innovation and bimodal IT
What is innovation? According to a common definition, innovation is the process of
translating an idea or invention into a good or service that creates value, or for which
customers will pay. In the context of businesses, according to an article by HBR, innovation
manifests itself in two ways:

Disruptive innovation: Described as the process whereby a smaller company
with fewer resources is able to successfully challenge established incumbent
businesses.
Sustaining innovation: When established businesses (incumbents) improve their
goods and services in the eyes of existing customers. These improvements can be
incremental advances or major breakthroughs, but they all enable firms to sell
more products to their most profitable customers.

Further reading: What is disruptive innovation?
https://hbr.org/2015/12/what-is-disruptive-innovation

Why is this relevant? It is well known that established businesses struggle with disruptive
innovation. The Netflix versus Blockbuster example reminds us of this fact. By the time
disruptors are able to catch up with an incumbent's portfolio of goods and services, they are
able to do so with lower prices, better business models, lower operating costs, and far more
agility and speed to introduce new or enhanced features. At this point, sustaining
innovation is not good enough to respond to the challenge.

With all the recent advances in technology and the internet, the rate at which disruptive
innovation is challenging incumbents has only grown exponentially. Therefore, in order for
established businesses to endure the challenge put upon them, they most somehow also
become disruptors. The same HBR article describes a point of view on how to achieve this
from a business standpoint. From a technology standpoint, however, unless the several
systems that underpin a business are "enabled" to deliver such disruption, no matter what
is done from a business standpoint, this exercise will likely fail.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://hbr.org/2015/12/what-is-disruptive-innovation

The Business Value of APIs Chapter 1

[19]

Perhaps by mere coincidence, or by true acknowledgment of the aforesaid, Gartner
introduced the concept of bimodal IT in December 2013, and this concept is now
mainstream.

Gartner defined bimodal IT as the following:

"The practice of managing two separate, coherent modes of IT delivery, one focused on
stability and the other on agility. Mode 1 is traditional and sequential, emphasizing safety
and accuracy. Mode 2 is exploratory and nonlinear, emphasizing agility and speed."

Figure 1.7: Gartner's bimodal IT

According to Gartner, Mode 1 (or slow) IT organizations focus on delivering core IT
services on top of more traditional and hard-to-change systems of record, which, in
principle, are changed and improved in longer cycles, and are usually managed with long-
term waterfall project mechanisms. Whereas, for Mode 2 (or fast) IT organizations, the
main focus is to deliver agility and speed, and therefore they act more like a start-up (or
digital disruptor in HBR terms) inside the same enterprise.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[20]

Further reading: Bimodal IT: Business-IT alignment in the age of digital
transformation
https://www.researchgate.net/publication/287642679_Bimodal_IT_Bu
siness-IT_alignment_in_the_age_of_digital_transformation

However, what is often misunderstood is how fast IT organizations can disruptively
innovate, when most of the information assets, which are critical to bringing context to any
innovation, reside in backend systems, and any sort of access has to be delivered by the
slowest IT sibling. This dilemma means that the speed of innovation is constrained to the
speed by which the relevant access to core information assets can be delivered.

Figure 1.8: Bimodal IT - is it really?

As the saying goes, "Where there's a will, there's a way." APIs could be implemented as a
means for the fast IT to access core information assets and functionality, without the
intervention of the slow IT. By using APIs to decouple the fast IT from the slow IT,
innovation can occur more easily.

However, as with everything, it is easier said than done. In order to achieve such
organizational decoupling using APIs, organizations should first build an understanding
about what information assets and business capabilities are to be exposed as APIs, so the
fast IT can consume them as required.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.researchgate.net/publication/287642679_Bimodal_IT_Business-IT_alignment_in_the_age_of_digital_transformation
https://www.researchgate.net/publication/287642679_Bimodal_IT_Business-IT_alignment_in_the_age_of_digital_transformation

The Business Value of APIs Chapter 1

[21]

This understanding must also articulate the priorities of when different assets are required
and by whom, so the creation of APIs can be properly planned for and delivered.

Luckily, for those organizations that already have mature service-oriented architectures
(SOA), some of this work will probably already be in place. For organizations without such
luck, this activity should be planned for and should be a fundamental component of the
digital strategy.

Then, the remaining question would be: which team is responsible for defining and
implementing such APIs; the fast IT or the slow IT? Although the long answer to this
question is addressed throughout the different chapters of this book, the short answer is
neither and both. It requires a multi-disciplinary team of people, with the right technology
capabilities available to them, so they can incrementally API-enable the existing technology
landscape, based on business-driven priorities.

APIs to monetize on information assets
Many experts in the industry concur that an organization's most important asset is its
information. In fact, a recent study by Massachusetts Institute of Technology (MIT)
suggests that data is the single most important asset for organizations:

"Data is now a form of capital, on the same level as financial capital in terms of generating
new digital products and services. This development has implications for every company's
competitive strategy, as well as for the computing architecture that supports it."

Further reading: The Rise of Data Capital
http://files.technologyreview.com/whitepapers/MIT_Oracle+Report-
The_Rise_of_Data_Capital.pdf

If APIs act as doors to such assets, then APIs also provide businesses with an opportunity
to monetize them. In fact, some organizations are already doing so. According to another
article by HBR, 50% of the revenue that Salesforce.com generates comes from APIs, while
eBay generates about 60% of its revenue through its API. This is perhaps not such a huge
surprise, given that both of these organizations were pioneers of the API economy.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://files.technologyreview.com/whitepapers/MIT_Oracle+Report-The_Rise_of_Data_Capital.pdf
http://files.technologyreview.com/whitepapers/MIT_Oracle+Report-The_Rise_of_Data_Capital.pdf

The Business Value of APIs Chapter 1

[22]

Figure 1.9: The API economy in numbers

What's even more surprising is the case of Expedia. According to the same article, 90% of
Expedia's revenue is generated via APIs. This is really interesting, as it basically means that
Expedia's main business is to indirectly sell electronic travel services via its public API.

Further reading: The Strategic Value of APIs
https://hbr.org/2015/01/the-strategic-value-of-apis

However, it's not all that easy. According to the previous study by MIT, most of the CEOs
for Fortune 500 companies don't yet fully acknowledge the value of APIs. An intrinsic
reason for this could be the lack of understanding and visibility over how data is currently
being (or not being) used. Assets that sit hidden on systems of record, only being accessed
via traditional integration platforms, will not, in most cases, give insight to the business on
how information is being used, and the business value it adds. APIs, on the other hand, are
better suited to providing insight about how/by who/when/why information is being
accessed, therefore giving the business the ability to make better use of information to, for
example, determine which assets have better capital potential.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://hbr.org/2015/01/the-strategic-value-of-apis

The Business Value of APIs Chapter 1

[23]

APIs for regulatory compliance
Another challenge that is increasingly being faced by organizations concerns compliance
and regulation. Let's take, for example, the introduction of the General Data Protection
Regulation (GDPR), which, as of May 2018, regulates how organizations worldwide are
expected to handle the customer data of European Union (EU) citizens, with the risk of
being exposed to eye-watering fines. Similarly, the second payment service directive by
the EU, otherwise known as PSD, has introduced important regulations to open up core
banking transactions and information.

GDPR
Superseding the EU Data Protection Directive, GDPR has the objective to give individuals
(EU citizens) more control, protection, and privacy over how their personal information is
used and by whom.

The regulation is quite extensive and, for many organizations, achieving
GDPR compliance will be (or has been) an expensive and long process.
The full GDPR regulation is available at
https://www.itgovernance.eu/en-ie/eu-general-data-protection-reg
ulation-gdpr-ie

With personal data being at the heart of GDPR, how can APIs help with complying with
the GDPR regulation? Although APIs may not be the only answer, a good API management
solution will introduce strong access control over who can access what information via
APIs, therefore ensuring that personal data is not misused or accessed without prior
consent. In addition to these controls, the solution should also provide full visibility and
auditability over data access, meaning that any data breach can be notified to customers
and authorities as soon as possible, or within the 72-hour period, as indicated in the
regulation.

PSD2
PSD2 aims to stop financial institutions' monopoly over the use of customer data and
payment services.

By the end of 2018 (when the directive first came into effect), financials institutions in the EU should have
opened the doors of their customers' data and payment services to third-party providers.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.itgovernance.eu/en-ie/eu-general-data-protection-regulation-gdpr-ie
https://www.itgovernance.eu/en-ie/eu-general-data-protection-regulation-gdpr-ie

The Business Value of APIs Chapter 1

[24]

The full PSD2 directive is available at
https://ec.europa.eu/info/law/payment-services-psd-2-directive-e
u-2015-2366_en

In practical terms, what this means is that in the near future, you might be using Facebook,
for example, to check bank account balances, do bank transfers, and pay bills.

Another example, in the same industry, is the Open Banking initiative being introduced in
the United Kingdom as a result of the Retail Banking Market Investigation report produced by
the Competition and Markets Authority (CMA). In a nutshell, the initiative aims to
promote increased competition and consumer choices in the banking industry by forcing
banks to securely share their data via an Open Banking API.

For further reading on the Open Banking initiative, refer to the following
link:
https://www.gov.uk/government/news/open-banking-revolution-moves
-closer

However, this is easier said than done. According to research, over 75% of financial
institutions in Europe still run on outdated systems. Worldwide, the figure is similar, if not
more.

Further information on this research is available at
http://www.computerweekly.com/news/2240150122/Banks-still-handic
apped-by-IT-legacy

Bearing in mind that making changes to these systems won't be a trivial task, the
expectation is that software vendors and system integrators alike will come up with pre-
built solutions, which will make the process of creating APIs on top of systems and
complying with regulations, such as PSD2 and CMA Open Banking, a lot easier.

Fast Healthcare Interoperability Resources (FHIR)
It is not just the financial industry that's embracing the use of APIs. In healthcare, for
example, a newer version of the widely adopted health-level 7 (HL7) international
standard, known as the Fast Healthcare Interoperability Resources, or FHIR (pronounced
"fire"), defines, in fact, a REST API.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://www.gov.uk/government/news/open-banking-revolution-moves-closer
https://www.gov.uk/government/news/open-banking-revolution-moves-closer
http://www.computerweekly.com/news/2240150122/Banks-still-handicapped-by-IT-legacy
http://www.computerweekly.com/news/2240150122/Banks-still-handicapped-by-IT-legacy

The Business Value of APIs Chapter 1

[25]

Further information on FHIR is available at
https://www.hl7.org/fhir/http.html

In the USA, for example, the healthcare industry is this a step further and introducing a
rule to promote the use of standard APIs to access patient records.

Recommend reading: A Brief Summary of the CMS Meaningful Use Final
Rule
http://geekdoctor.blogspot.co.uk/2015/10/a-brief-summary-of-cms-
meaningful-use.html

Although it is still very early days, the expectation is that this trend will continue, and that
more regulation will be introduced that promotes the use of APIs as the means to provide
open access to information and enable interoperability.

APIs for the reuse of business capabilities
Just as is the case in traditional SOA, whereby one of the key principles is to build reusable
web services and not just to avoid duplication of functionality, but also to reduce
development costs, in the case of web APIs, the same principle can apply.

It is possible, and, in fact, recommended, that business APIs are created internally, so
business functionality that needs to be commonly accessed is then made available as an
API. This will not only allow such functionality to be accessed in real time and in a
standard, controlled, and secure way, but it is also a much better alternative to data
replication techniques that risk losing visibility and control over who by/why/when/how
information is being accessed.

By creating a common business API layer, not only does innovation and bimodal IT become
possible (as described previously), but other business benefits can be realized, such as
lower development costs by reusing already available APIs, reduced duplication of system
functionality, and increased visibility and analytics around the usage of data, which can
provide the business with meaningful business insights.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.hl7.org/fhir/http.html
http://geekdoctor.blogspot.co.uk/2015/10/a-brief-summary-of-cms-meaningful-use.html
http://geekdoctor.blogspot.co.uk/2015/10/a-brief-summary-of-cms-meaningful-use.html

The Business Value of APIs Chapter 1

[26]

Avoiding a hyperconnectivity mess
With an increased number of public and internally developed APIs offering a wide range of
functionality (that is, access to Software as a Service (SaaS applications), bank transactions,
artificial intelligence, and address services, to name a few), it can be quite tempting for
developers to quickly incorporate the use of all sorts of APIs within their applications.

However, doing so in an uncontrolled manner can, and will most likely, result in what
some call a hyperconnectivity mess. This is when IT systems are interconnected and
dependent on APIs, but no one within the enterprise really has visibility and/or
understanding of this. Not only can this result in a serious gap in accountability when
issues occur, but, in an even more complex IT landscape, systems can have real exposure to
issues outside of the control of enterprise IT.

Figure 1.10: Hyperconnectivity can also create an ad hoc mess

A hyperconnectivity mess occurs as a result of APIs being used in an ad
hoc manner and without proper governance. At this point, the business
benefits that APIs have to offer can be countered by the risks they can
introduce to core enterprise systems, and thus business operations
themselves.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[27]

This is the reason that the management of APIs has become so critical, and this does not just
apply to the APIs being internally developed within enterprise IT, but also to the use of
public APIs within enterprise systems.

Figure 1.11: API management

API management, therefore, is born as a discipline to manage APIs (both internal and
external), meaning establishing the processes, roles, and responsibilities, and the tools
required to govern APIs throughout their full life cycle.

API management differs from related disciplines, most notably SOA
governance, in that it is much more lightweight and a lot more focused on
making the lives of the API consumers (developers) easier, by providing
the right tools for the design and run aspects of APIs, and making
processes simple to follow. SOA governance, on the other hand, is fine-
grained, with detailed processes and complex tools. Chapter 2, The
Evolution of API Platforms, covers this in more detail.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[28]

Any API management initiative should focus on at least the following aspects of the life
cycle:

Planning: Provides the required facilities (tools) to plan in advance for the1.
creation and/or modification of APIs. Regardless of the methodology used to
deliver the APIs or whether there is one or multiple teams implementing it, there
should be a common approach, and ideally tooling to capture which APIs are the
priority, and who is responsible for delivering them. This is important as it will
provide visibility to any relevant party of the capabilities being delivered, and
therefore encourage coordination/collaboration over the duplication of work. The
tools used to ensure tracking/status of the teams implementing APIs should also
be addressed.
Design: Design-first thinking is fundamental in any API management initiative.2.
Tools and processes that enable API-first design (covered in detail in subsequent
chapters), and that encourage API designers and API consumers to interact
during the design of an API, will shorten the development life cycle and
therefore reduce costs, as the actual product produced will most likely meet the
requirements from the get-go, without having to iterate several times through the
entire implementation process to get it right.

An important consideration during the design phase is around
what level of security controls are to be adopted in the API.
Authentication and authorization, for example, should not be
an afterthought, as they will have considerable impact on API
usability. Therefore, rather than doing this later in the life cycle,
security should also be part of the API design.

Implementation: The actual implementation of the APIs requires adequate3.
processes and tools to be in place, such that developers can focus their efforts on
producing actual code and not on sorting out life cycle concerns, such as code
coverage, continuous integration, regression testing, and deployment. For this
reason, automating and streamlining the implementation cycle of the API, by
creating development pipelines that make it very easy for developers to move
code from development all the way to production, will deliver considerable
results for the business.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[29]

It's worth highlighting that development pipelines do not mean
bypassing quality gates. It is still possible, in fact recommended,
to also introduce quality gates. However, if the same can be
automated (that is, verifying that the results of code coverage
and regression testing are adequate), quality assurance can still
be introduced, but without the burden and costs of manually
testing the API.

Publication: Making APIs discoverable is fundamental in API management.4.
Providing the facilities to easily deploy and version APIs, but most importantly
to publish them along their relevant (consumer-oriented) documentation in a
developer portal, ensures that developers can reuse APIs, rather than reinventing
wheels, and ultimately reduces development and operations costs.
Operation: Runtime operations is as much about "keeping the lights on" as it is5.
about providing meaningful analytical insight to both the business and IT, so
they, too, can make the most out of the operational data being generated. From
simple capabilities, such as central operations, API statistics, gateway stats, user
management, and system management, to more sophisticated ones, such as
application performance monitoring (APM), SLA management, rule-based
alerting, predictive analytics, self-healing, and API metering, operations is,
without a doubt, a first-class citizen in API management.
Consumption: API management is not just about designing and building APIs,6.
but also about consuming them. With the number of public APIs growing
exponentially, the expectation is that some organizations will be consuming more
public APIs than they will end up building them. The problem is that without
proper controls and visibility over who by/why/which/when public APIs are
being used and the associated costs, organizations can easily end up in the
hyperconnectivity mess described previously. To prevent this pitfall, API
management must equally focus on providing the means and facilities for public
APIs to be consumed in a controlled and governed manner. In other words,
developer portals should not only allow for internally developed APIs to be
published, but also external ones.
Maintenance: In API management, the life cycle doesn't end when an API goes7.
live. In fact, it only gets started. As it will be better described in the next section,
APIs should be treated as products and, as such, the product must be
continuously evolved by taking into account evolving consumer needs and
expectations. For an API to become a good product, it must undertake a series of
iterations and changes. API management should therefore make it easier to do
so.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[30]

Retirement: When an API has served its purpose and there is a need to8.
decommission it, it should not be the case that doing so is complex and
cumbersome. API management should also take care of the process and
capabilities needed to retire an API and handle (minimize) the impact that this
may cause to any existing consumers.
Community management: As previously described, APIs also open the door to9.
new digital ecosystems. In such ecosystems, the main actor is the developer. With
thousands of developers worldwide, managing communities of internal (known)
developers, partner developers, and external (unknown) developers is another
fundamental aspect of API management. Self-service facilities for development
onboarding and developer portals, whereby developers can search for APIs,
subscribe to them, read their documentation and even comment and rate them,
are some of the capabilities that API management should offer.

The API value chain
Realizing the benefits that APIs have to offer to a business can't be completed in a day, and
organizations that think that monetizing their information assets will be a simple and
straightforward exercise are going to be in for a surprise. Rome wasn't built in a day, or so
it goes.

Like most things, there is always a journey and a path that, when followed, will guide us
toward getting to an end goal or a target. It will not necessarily be quick, as that pretty
much depends on the pace an organization can deliver, but at least there will be the
certainty of avoiding common pitfalls. That is not to say that some organizations might not
opt for a different (and perhaps shorter) path.

That said, the following API value chain illustrates both a path and a maturity model to
help organizations of all sizes to embark on the journey of API management maturity:

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[31]

Figure 1.12: The API value chain

The value chain classifies APIs into five main groups. Each group is determined based on
the business value it adds, which, in turn, also dictates maturity according to this business-
led model:

API group Description API maturity Business value

APIs for
system
connectivity

The most basic group
of APIs, as their aim is
to provide access to
core enterprise
information assets,
such as systems of
record. Could be an
on-premise system or
SaaS applications.

Level 1 –
tactical

Access to core information assets is
the main business value. The
benefit that can be realized from
such access pretty much depends
on the solutions built on top.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[32]

APIs for
enterprise
mobility

APIs created in
support of mobility
solutions, meaning that
they are not just about
access to information,
but rather they provide
access to business
processes and other
business capabilities.

Level 1 –
tactical

This group of APIs has a more
direct and measurable impact on
the business, which can result in
optimization of business processes
and effectiveness gained by
allowing employees to interact with
systems in different ways and
digital channels.

APIs for
enterprise
mobility and
productivity

APIs that enable a
business to offer goods
and services to
customers via multiple
digital channels. In
other words, B2C. APIs
in support of Internet
of Things (IoT)
solutions also fall
within this group.

Level 2 –
strategic

This group of APIs is fundamental
for any B2C digital initiative as it
enables omnichannel strategies by
making information and
functionality accessible through
multiple channels, for example,
web, mobile apps, bots, kiosks, and
social media, to name a few. Now,
because of this, their business value
is evident and easier to quantify or
measure.
APIs that enable the IoT also fall
within this group. These APIs
provide IoT devices with access to
enterprise information assets and
functionality, though it is worth
nothing that IoT is a much broader
topic and these APIs only represent
one element of it.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[33]

APIs for
partner
collaboration

APIs that enable
partner collaboration
and Business to
Business (B2B) by
optimizing and
simplifying business
transactions. In other
words, an API (and
much cheaper)
alternative to
traditional EDI-style
integrations.

Level 2 –
strategic

B2B transactions is a complex topic
for many reasons, with integrations
and the infrastructures required to
do so being a major one. APIs for
B2B and partner collaboration can
hugely simplify the cost of
integration but will also open the
door for new ways to engage
businesses of all sizes. The business
value is considerable, especially for
organizations that don't deal with
direct sales, but rather indirect
ones, and therefore rely on third
parties to sell their products and/or
services.

APIs for
monetization

APIs offered as
commercial products
in their own right. As
such, their usage also
entails a form of fee.
The fee does not
necessarily have to be a
monetary one. As
Mark O'Neill, a key
integration and API
consultant from
Gartner, said:
"API monetization
doesn't just mean
charging for API calls."

Level 3 –
differentiation

By APIs becoming a saleable
product, they also become a new
source of direct revenue for the
business, where the actual product
offered in the form of an API is
access to either information and/or
business functionality.
Therefore, the business value
delivered by these products will be
directly proportional to the success
of the product itself, which also
means that other business
functions, such as marketing, sales,
and finance, should play a role in
making a success of the product.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[34]

According to Mark,
organizations seeking
to monetize APIs
should first identify
their monetization
strategy and, from that,
derive a charging or
pricing model.
Further details on how
to monetize APIs are
provided in Chapter
3, Business-Led API
Strategy.

For this reason, although this group
of APIs has the highest potential
business value, realizing its full
potential also requires more
maturity, discipline, and alignment
with the rest of the business.
It must be a business-driven
initiative.

Businesses that want to realize the full business benefits that APIs have to offer, for
example, as part of their digital transformation initiatives, should first consider what would
be their entry point and, based on that, determine a roadmap to get to the next levels.
Details on how to define such a roadmap are described in Chapter 3, Business-Led API
Strategy.

There is another well-known and publicly available API maturity model,
known as the Richardson Maturity Model. However, this model focuses
more on the technical aspects of APIs, rather than the business and
organizational aspects of an API management initiative. Therefore, both
models can be complementary and can be used in conjunction to evaluate
business, organizational, and technical aspects of APIs and their
management.

Further information on the Richardson Maturity Model is available
at https://martinfowler.com/articles/richardsonMaturityModel.html

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://martinfowler.com/articles/richardsonMaturityModel.html

The Business Value of APIs Chapter 1

[35]

APIs as a driving force for many large
acquisitions in the software industry
The value and potential that APIs bring to a business haven't gone unnoticed. Many of the
largest software vendors worldwide have made considerable investments to strengthen
their API management portfolios in a relatively short period of time. In less than three
years, six major acquisitions have taken place:

TIBCO acquired Mashery from Intel, which was perhaps expected, as TIBCO, a1.
well-known player in the integration space, did not really have a strong (or at
least popular) API pure-play capability.
Red Hat acquired 3scale, which was expected to an extent, as the move was2.
perceived as complementary to Red Hat's Fuse and OpenShift offering, the latter
also a recent acquisition.
Next was the very surprising acquisition of Apigee by Google, which was3.
considered by many as a sound and strategic move by Google to more rapidly
penetrate the enterprise cloud software market.
More recent acquisitions started with Oracle acquiring the API-design pure-play4.
Apiary, a move also considered interesting and strategic, as Oracle had been
investing, and continues to invest, heavily in strengthening its Platform as a
Service (PaaS) offering.
The Salesforce.com acquisition of MuleSoft was also broadly expected, as both5.
companies had enjoyed a strong partnership for a few years and the MuleSoft
Anypoint offering is also seen as complementary to the Force.com platform.
Most recently (at least at the time this chapter was written), there was the highly6.
unexpected acquisition of CA Technologies (also a leader in the API space) by
Broadcom, which is traditionally a semi-conductor manufacturer.

Figure 1.13: Recent acquisitions in the API market

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[36]

So, what can be deduced from all of these acquisitions? First of all, of the six acquirers
mentioned, three are actually major players in the enterprise cloud space. Therefore, their
investment in the API space can be seen as a move to strengthen their PaaS portfolios,
which is a multi-billion dollar market on its own. Furthermore, when it comes to cloud,
APIs are considered the main means to get access to information and functionality
electronically, so offering strong API management capability as part of an SaaS, PaaS, or
even Infrastructure as a Service (IaaS) offering is a clear value add.

Secondly, the acquisitions made by TIBCO, Red Hat, and perhaps even Oracle, can be seen
as an indication that the integration market is shifting and that more traditional integration
capabilities (traditionally based on large-footprint integration middleware backboxes) are
being superseded by API-led architectures, where the integration middleware is either very
thin or non-existent (as is the case in Microservices Architectures, where event-driven
interoperability is favored).

Lastly, although the acquisition by Broadcom was highly unexpected, the market is no
stranger to such moves. The purchase is, in fact, comparable to the one made by Intel in
2013, when Mashery was acquired, in theory to strengthen Intel's play in the IoT. However,
it's questionable whether the move paid off, as Intel soon after sold Mashery to TIBCO.

However, this last acquisition raises an important point: APIs being an enabler for the IoT.
As devices and machines of all sorts, from wearables, to home appliances, vehicles and
industrial machines, to name a few, all become smarter and more capable of storing and
processing data, the need and demand to access information in real time can only increase.
This means that APIs will also (if not already) be implemented to enable IoT. For
companies such as Broadcom, and/or many others in the manufacturing/industrial space,
this represents a huge opportunity, as they'll be able to expand their existing offerings to
also offer digital services (for example, real-time monitoring and alerting, remote and real-
time management of infrastructure, predictive maintenance and analytics, to name a few).

Summary
This chapter delivered a comprehensive and business-oriented explanation on the value of
APIs, and the reasons why they are a must in any digital strategy.

The chapter started by describing why and how digital disruptors are taking the industry
by surprise, and the impact this is having on more established and traditional
organizations, many of which are struggling to cope with the pace of change, and the level
of innovations being introduced.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Business Value of APIs Chapter 1

[37]

To this end, the chapter explained the true meaning of disruption and why understanding
it is extremely important for successfully creating a digital strategy, and then embarking on
a digital transformation journey.

In this same context, it was highlighted that gaining real-time access to an organization's
enterprise information assets (many of which are locked in legacy systems) holds the key to
success and, without this, a digital strategy's chances of success will be minimal.

The chapter continued by describing and positioning APIs as the means to deliver such
access, and thus act as an enabler to digital strategies. It was described in great detail how
APIs can add value to a business, for example, by allowing the business to monetize
information assets, comply with new regulations, and also enable innovation by simply
providing access to business capabilities previously locked in old systems.

Subsequently, an API value chain was introduced, illustrating a business-centric API
maturity model suitable for use as reference when embarking on an API implementation
initiative.

The chapter concluded by describing how the software industry is reacting as some of the
largest software vendors in the world make major acquisitions in the API space.

In the next chapter, a more technical point of view will be described, which explains how
and why the technologies and platforms used to implement APIs have evolved from simple
web proxies to third-generation API platforms.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
The Evolution of API Platforms

The purpose of this chapter is to go beyond the business value of APIs (explained in detail
in Chapter 1, The Business Value of APIs) and walk through the evolution of software
architecture as a consequence of digital disruption and cloud adoption. The chapter
describes in detail why and how different (middleware) technologies have evolved in order
to cope with emerging requirements derived from cloud adoption and digital
transformation, for example, the need to access information in real time via APIs, regardless
of where data resides (for example, cloud and/or on-premise systems).

The journey of API platforms - from proxies
to microgateways
As organizations continue to embrace cloud computing as the means to realize business
benefits, for example, TCO reduction, business agility, and digital transformation, an
inevitable side effect also takes place: information becomes more and more federated.

The rationale is simple and we will take a look at a typical on-premise system: Enterprise
Resource Planning (ERP). A typical ERP system encompasses not one, but several business
capabilities (often referred to as modules, for example, finance, HR, SCM, and so on.) all
supported by a single infrastructure (a monolith).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Evolution of API Platforms Chapter 2

[39]

Figure 2.1: Monolithic systems

Now, because of this, all modules within the same monolith are integrated out of the box,
mainly because they all share a single database. Therefore, this simplifies (at least a bit) the
integration landscape. This also means, though, that if the common infrastructure is
affected, all business capabilities will be too (all eggs in one basket). Customizing,
extending, patching, and scaling a monolith, therefore, has to be done extremely carefully,
as the entire system could be affected, impacting business operations heavily.

When it comes to the cloud (either Software as a Service (SaaS), Platform as a Service
(PaaS), or Infrastructure as a Service (IaaS)) however, business and technical capabilities
don't have to reside in a single cloud application. In fact, in most cases they don't. Instead,
capabilities are scattered across distinctive (smaller) cloud "services," all of which can be
implemented individually.

Please refer to the following document for the official National Institute
of Standards and Technology (NIST) definition of cloud computing
(Saas, PaaS, and IaaS):
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublicatio
n800-145.pdf

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

The Evolution of API Platforms Chapter 2

[40]

Figure 2.2: Capabilities scattered among cloud services

Given the practical and granular nature of cloud services, hundreds, if not thousands, of
cloud vendors (especially in SaaS) have emerged, therefore giving organizations several
options to choose from. This has (fortunately or unfortunately, depending from what angle
you look at it) led to many organizations adopting multi-vendor cloud strategies, in many
cases without actually even realizing it, as the adoption is driven at a
departmental/business unit level, and not as a corporate-wide IT initiative.

Recommended reading: The future isn't cloud. It's multi-cloud.
http://www.networkworld.com/article/3165326/cloud-computing/the-
future-isnt-cloud-its-multi-cloud.html

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.networkworld.com/article/3165326/cloud-computing/the-future-isnt-cloud-its-multi-cloud.html
http://www.networkworld.com/article/3165326/cloud-computing/the-future-isnt-cloud-its-multi-cloud.html

The Evolution of API Platforms Chapter 2

[41]

Figure 2.3: Global public cloud growth
Source:

https://www.zdnet.com/article/forrester-public-cloud-market-will-reach-191b-by-
2020

Unavoidably, information assets also become scattered (federated) across different cloud
services. The more diverse and distinct an organization's cloud adoption is, the more
federated the information becomes.

Moreover, in a highly competitive market, arguably dominated by digital disruptors (as
mentioned in Chapter 1, The Business Value of APIs), such as Amazon, eBay, and Netflix,
more traditional organizations are forced to also come up with innovative digital,
customer-centric, and multichannel strategies in order to remain relevant and competitive.
Needless to say, access to information (now federated) in a standard, consistent, and secure
way, across all digital channels, is a key requirement of any digital strategy.

Organizations that rush into creating multichannel strategies, without first defining a
solution to provide access to key information assets, will most likely end up with lots of ad
hoc solutions that will not only complicate the architectural landscape, but ultimately
prevent the company from realizing the promised goals of the digital strategy.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.zdnet.com/article/forrester-public-cloud-market-will-reach-191b-by-2020
https://www.zdnet.com/article/forrester-public-cloud-market-will-reach-191b-by-2020

The Evolution of API Platforms Chapter 2

[42]

Figure 2.4: Accidental cloud architecture (cloud spaghetti)

In order to address this, a generally accepted approach is to implement a hybrid
Integration Platform as a Service (iPaaS) solution, capable of providing access to
information assets regardless of where they are. The iPaaS platform should be capable of
connecting to any cloud service and/or on-premise system, and delivering access to APIs.

The use of APIs as the means to deliver standard, secured, and real-time access to
information enables multichannel applications to consume the assets as and when they
need them.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Evolution of API Platforms Chapter 2

[43]

Figure 2.5: iPaaS solution with API management capabilities

Recommended reading: iPaaS, what is it exactly?
http://www.soa4u.co.uk/2017/03/ipaas-what-is-it-exactly-is-it-on
.html

Although this may seem like the obvious answer, the truth is that unless the hybrid iPaaS
solution delivers robust API management capabilities, it will struggle to address the
aforementioned needs. An API has to be as close as possible to the source of information.
This not being the case can cause unforeseen issues, such as latency and higher exposure to
network problems, and even security threads, such as man-in-the-middle attacks. If
information is federated among many different clouds and on-premise applications, so
must the APIs be.

To put things into perspective, it is important to understand the main motivations leading
to the evolution of (integration) middleware technologies into what this book refers to as
third generation.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.soa4u.co.uk/2017/03/ipaas-what-is-it-exactly-is-it-on.html
http://www.soa4u.co.uk/2017/03/ipaas-what-is-it-exactly-is-it-on.html

The Evolution of API Platforms Chapter 2

[44]

Generation zero
Remember when the first Enterprise Service Bus (ESB) came out? Although the term was
first used in 2002, it wasn't until a few years later that their adoption and popularity began,
eventually overtaking the proprietary-based Enterprise Application Integration (EAI)
solutions.

Recommended reading: Enterprise service bus history.
https://en.wikipedia.org/wiki/Enterprise_service_bus#History

One of the key reasons that ESBs became so popular is because of their relation to service-
oriented architectures (SOAs) and the view that implementing an ESB was fundamental to
realizing SOA.

The ability of ESBs to adopt open standards, such as web service standards (WS-*), and act
as integration hubs capable of connecting to multiple systems and exposing Simple Object
Access Protocol (SOAP) web services, differentiated them from traditional Enterprise
Integration Architecture (EIA) solutions.

For a full list of WS-* you may refer to the following link:
http://servicetechspecs.com/ws

Additionally, for a simple definition of SOAP web services, refer to:
http://servicetechspecs.com/xml/soap2

During this period, if a web service had to be accessed from outside the internal networks,
typically web proxies would be implemented in Demilitarized Zones (DMZs), to proxy
the HTTP traffic to the ESB, and also implement transport security (HTTPS). Web proxies,
however, offered very basic capabilities.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Enterprise_service_bus#History
http://servicetechspecs.com/ws
http://servicetechspecs.com/xml/soap2

The Evolution of API Platforms Chapter 2

[45]

Figure 2.6: Generation zero – it all starts with ESBs

ESBs offered many capabilities, of which it is worth highlighting basic security, message
routing, data transformation, and protocol translation, along with adapters to connect to
multiple backend system using different protocols (for example, SQLNET, HTTP, FTP, and
SMTP). ESBs also allowed exposing functionality and access to information as standard
SOAP web services. ESBs were able to receive HTTP/SOAP requests, transform the message
payloads, perform message validations, and then route the calls to a given backend in the
required protocol.

During this period, most ESB implementations were pretty straightforward. As the
following diagram suggests, the amount of business logic implemented in an ESB was
limited and constrained by the previously mentioned capabilities. The majority (if not all)
of the business logic (for example, orchestration, content validation, business rules, and so
on) resided in the client side or the backend system that the ESB was connecting to.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Evolution of API Platforms Chapter 2

[46]

Figure 2.7: Logic distribution in generation zero

At a time when the industry lacked open standards for integration and the majority of
products implemented proprietary protocols, ESBs were widely used.

First generation
As SOAs became more prevalent in enterprises and ESB technologies continued to mature,
several new capabilities were also added to ESBs, mainly in support of SOAs. For example,
the adoption of Service Component Architecture (SCA) as a standard and the introduction
of gateways as a more robust capability, to securely expose web services to external
networks.

For details on SCA refer to: http://www.oasis-opencsa.org/sca

Gateways manifested themselves as either XML accelerators (running as black-box
appliances) or add-ons to existing SOA/ESB infrastructure (commonly known as service
gateways).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.oasis-opencsa.org/sca

The Evolution of API Platforms Chapter 2

[47]

XML accelerators were ideal for DMZs because of their robust capabilities to secure SOAP
web services and protect against external threads, such as the ones listed in the OWASP
Top Ten Project. This made these appliances perfect as a form of first-line defense.

Recommended reading on the OWASP Top Ten Project:
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Service gateways, on the other hand, were well-suited to securing services internally
(second-line defense) and supported the implementation of standards such as WS-Security,
WS-Trust, and WS-Policy.

Figure 2.8: First-generation XML appliances

SCA introduced the concept of composite applications. In a nutshell, a composite
application is a piece of software that assembled multiple web services together into a
single deployment unit, in order to deliver a specific business solution, which was also
exposed as a web service. Composite applications ran in specific integration middleware
that extended the ESB. Although SCA is a standard, in practice, each software vendor
implemented its own flavor of it.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

The Evolution of API Platforms Chapter 2

[48]

Although, as a concept, adopting composite applications seemed like a sound idea, in
practice, the implementation of business logic, either as complex business process
execution language (BPEL) orchestrations, as human workflows, or even as business
rules, became common. It goes without saying that the footprint of underlying integration
middleware platforms increased exponentially, in order to cope with the amount of
processing logic introduced in the composite applications.

Figure 2.9: Logic distribution in first generation

As the number of web services increased, as well as the underlying technology footprints,
so did the amount of people required to keep the initiative going. As the complexity and
cost of SOA solutions continued to increase, SOA governance emerged as "the" discipline
that could bring back control and maximize the chances of success, by aligning people,
process, and tools toward commons goals, typically centered around key business benefits.
Backed by specialized software, SOA governance became a big trend and thousands of
organizations worldwide attempted its adoption.

For further information on SOA governance, concepts, and principles
please refer to:
http://www.soa4u.co.uk/2013/11/oracle-soa-governance-for-busines
s.html

Towards the end of the period, an inflection point occurred that completely changed the
ball game in the entire IT industry. The first wave of cloud computing, combined with the
launch of smart devices, such as the iPod and soon after the iPhone, completely disrupted
the market and the IT industry. Thousands of mobile apps could now be easily found and
installed via incorporated app stores, creating a huge marketplace, which is worth billions
of dollars.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.soa4u.co.uk/2013/11/oracle-soa-governance-for-business.html
http://www.soa4u.co.uk/2013/11/oracle-soa-governance-for-business.html

The Evolution of API Platforms Chapter 2

[49]

Now, because the mobile apps ran natively inside the mobile device, a new form of remote
access to information and/or functionality available in backend systems was required. It
had to be simple, lightweight, and secure given the constraints in terms of compute
capacity of such devices.

Broadly based on the Representational State Transfer (REST) architectural style, a new
flavor of APIs emerged.

Recommended reading: History of APIs.
http://history.apievangelist.com/

These APIs (referred to as either REST or web APIs) offered a much simpler and
lightweight alternative to SOAP-based web services, especially when combined with
JavaScript objects based on JSON to handle data payloads.

JavaScript Object Notation (JSON) is a lightweight data-interchange
format. It is easy for humans to read and write, and easy for machines to
parse and generate. It is based on a subset of the JavaScript programming
language. For further information, refer to: http://www.json.org/

In no time, REST APIs became the main and most popular mechanism to implement
backend code, and deliver remote access to information and functionality.

Second generation
As the number of smartphones rocketed, so did the number of mobile apps. Organizations
of all sizes – many of which, at this point, were now rushing to have a mobile presence –
had to quickly come up with solutions to deliver the so-called "APIs" and therefore give
mobile apps access to information, either locked in backend systems and/or only accessible
via SOAP web services.

It is worth noting that most organizations, having already made
considerable investments in the adoption of traditional SOA solutions,
understandably were (and many still are) keen to leverage their existing
capabilities (not just in terms of technology but also in terms of people) in
order to also satisfy these emerging requirements.

The reality was that, at the time, the vast majority of traditional SOA middleware, although
very rich in capabilities to handle XML/SOAP-based payloads, lacked basic capabilities to
handle REST/JSON services.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://history.apievangelist.com/
http://www.json.org/

The Evolution of API Platforms Chapter 2

[50]

Figure 2.10: Second-generation API management is born

Another important difference that started to emerge was around governance. For mobile
app developers, speed was the main factor. Their approach to governance (if any) was
lightweight. Emphasis was given to adopting techniques to produce code quickly and
encouraging developers to collaborate among themselves, as opposed to introducing heavy
processes requiring a lot of policing in order to ensure that standards were adhered to.

SOA governance, on the other hand, backed by specialized (and expensive) software that
was difficult to implement, didn't really stand to its promise, inevitably leading to criticism
industry-wide. At this point, SOA governance, both as a discipline and specialized
software, was deemed a failure.

Recommended reading: SOA is Dead; Long Live Services.
https://web.archive.org/web/20170823183641/http://apsblog.burton
group.com/2009/01/soa-is-dead-long-live-services.html

As the industry's interest in API-related capabilities increased, software vendors in
response rapidly adapted/enhanced their traditional SOA stacks (for example, ESBs) to add
RESTful/JSON processing capabilities.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://web.archive.org/web/20170823183641/http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html
https://web.archive.org/web/20170823183641/http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html

The Evolution of API Platforms Chapter 2

[51]

Furthermore, as API management started to develop as a discipline, to manage APIs across
their full life cycle, new technical capabilities were required in order to make this task a lot
simpler. To this end, many SOA governance vendors also quickly adapted and/or
simplified heavily their offerings, in order to make them suitable to manage APIs.

Some vendors went beyond adapting their SOA stacks to even changing
their brand names to reflect this change of direction:
https:/ /sdtimes. com/ akana/ soa-software- changes- name- akana/

The adaptation of first-generation ESBs, XML gateway appliances, and SOA governance
tooling in support of API-specific capabilities, including their management, is referred to as
second-generation API platforms. Now, because of this, second-generation API platforms
can be easily identified, as API capabilities tend to be just add-ons on top of the vendor's
existing ESB and/or XML gateway offering.

Figure 2.11: First- and second-generation API platforms' architectures compared

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/
https://sdtimes.com/akana/soa-software-changes-name-akana/

The Evolution of API Platforms Chapter 2

[52]

Another point worth highlighting is the definition of services as semi-decoupled.
According to the diagram, a service is where business-logic-related capabilities, such as
orchestration and business rules, are implemented. APIs, on the other hand, are the
interface of such a service (which could be in any protocol, for example, SOAP or REST)
and where policies, such as authentication and authorization, are applied. In first and
second generation, APIs and services are coupled as one thing and deployed into the same
stack. An API and a service tend to be a single deployment unit.

For further information on the semi-decoupled service definition, refer to
the Open Modern Software Architecture Project (OMESA):
omesa.io

At this point, the tendency to implement business logic across the different layers of the
integration middleware continued. Multiple reasons can be blamed for this. Sometimes, it
was because it was simpler to just use the integration layer as a sort of "hammer for all
nails," and other times, it was because of lack of best practice and architecture governance.
Note that during this period, the word "governance" was sort of prohibited, given the bad
reputation that SOA governance had earned.

Figure 2.12: Logic distribution in second generation

This tendency of integration stacks becoming thicker and thicker was being heavily
criticized by the then rapidly emerging communities of developers promoting microservice
architectures. Challenges in horizontally scaling integration platforms, complex inter-
dependencies when releasing software into production, a lack of flexibility when selecting
technologies; and last but not least, a common practice of making the middleware fat by
implementing business logic in the integrations were some of the most notable criticisms
raised.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://omesa.io

The Evolution of API Platforms Chapter 2

[53]

Recommended reading: Microservices, a definition of this new architectural
term with emphasis on section Smart endpoints and dumb pipes:
https://martinfowler.com/articles/microservices.html

Application Services Governance
Towards the end of this period, Gartner came up with the concept of Application Services
Governance. Gartner's view was that API management would eventually become part of
SOA governance. The combination of the two is what Gartner named Application Services
Governance.

Further details on Application Services Governance is available in the
following link:
https://www.akana.com/solutions/application-services-governance

Figure 2.13: Gartner's Application Services Governance

In practice, instead of API management and SOA combining, the traditional way of
realizing SOA was, as mentioned earlier, heavily challenged by the emerging communities
promoting the microservices architectural style. These communities did not just put into
question the use of traditional (monolithic) SOA stacks (for example, ESBs) but, broadly
speaking, also regarded their use as a bad practice.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://martinfowler.com/articles/microservices.html
https://www.akana.com/solutions/application-services-governance

The Evolution of API Platforms Chapter 2

[54]

Third generation
What we see today, in the majority of organizations worldwide, is a big push to adopt
cloud, achieve digital transformation, and also become customer-centric. Businesses are
taking serious steps in order to achieve these goals. At this point, it starts to become evident
that (monolithic) second-generation API platforms aren't suitable for, or capable of,
delivering the capabilities required to achieve such goals.

To elaborate further, the following is an explanation of what these goals actually mean to IT
and why/how they relate to API platforms.

Cloud adoption
Cloud adoption means moving on-premise applications into the cloud (IaaS, PaaS, or SaaS)
or simply building applications directly into and for the cloud (a term known as cloud-
native). As mentioned earlier, some of the drivers could be lowering operations costs, but
also gaining more flexibility and agility. To this end, most organizations have taken (or are
taking) a best-of-breed (multi-vendor) approach to cloud, as opposed to moving all of their
applications to a single cloud provider.

Cloud adoption manifests itself in three ways:

Workload migration: Lifting and shifting an on-premise workload (for example,
databases, Java applications, or packaged applications) into an IaaS or PaaS
cloud.
Cloud transformation: Adopting one or many SaaS applications as a
replacement for an on-premise one. It also means using cloud-native capabilities
(typically PaaS) to extend the SaaS application when applicable. In this case,
there is no lift-shift, but rather data migration and integration.
Cloud reengineering: When a monolithic system is rewritten from scratch in the
cloud using cloud-native capabilities (typically in PaaS).

Digital transformation
In plain English, digital transformation means enabling the business to offer its products
and services through as many digital channels as applicable (web, mobile apps, kiosks,
partner online stores, bots, and so on). However, in order to do so, access to up-to-date
information in real time (information which now happens to be federated across multiple
cloud data centers and/or on-premise systems) becomes absolutely critical. Without this
access, a digital strategy will simply not succeed.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Evolution of API Platforms Chapter 2

[55]

For example, a basic requirement for organizations undergoing digital transformation is
mobility. Mobility means many things, but for some organizations it could be just giving
co-workers the ability to execute business processes while on the move – via multiple
devices. For this to work, access to multiple systems of records via APIs must be in place.

Another key requirement that arises in digital transformations is the need to give
businesses the agility and speed for new products and services, to be taken to market
quicker and cheaper, but also the ability to fail fast, and fail cheaply, so new concepts can
be tried without spending millions.

As Adrian Cockcroft during his time at Netflix said, "Speed wins in the
marketplace."
https://www.nginx.com/blog/adopting-microservices-at-netflix-les
sons-for-team-and-process-design/

However, the majority of systems (especially monolithic ones) aren't suited to handling the
load (or unpredictable peaks) that accessing information in real time demands. Also,
changing these systems is complex, time-consuming, and risky.

This is where microservice architectures become so compelling and this is one of the
reasons why they have become so popular. In short, they offer an approach to both
software engineering and software architecture that enables the (end-to-end)
implementation of business capabilities in a fully decoupled manner. This is not only in
terms of the software development life cycle, but also in terms of technology, as each
microservice is completely independent at runtime, and implements mechanisms to
decouple itself from other systems and/or microservices that it may need to interact with.
However, the proliferation of microservices also means that information becomes even
more federated and is at a more granular level.

Recommended reading: Microservices and SOA.
https://www.slideshare.net/capgemini/microservices-and-soa

Customer-centricity
This means collecting, consolidating, and analyzing information about a customer's brand
interactions/behavior, interests, purchasing patterns and history, personal details, and
others, in order to create personalized, rich, and positive experiences for them. In turn, the
expectation is that by delivering better and more tailored experiences, customer loyalty will
increase and so will sales.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.nginx.com/blog/adopting-microservices-at-netflix-lessons-for-team-and-process-design/
https://www.nginx.com/blog/adopting-microservices-at-netflix-lessons-for-team-and-process-design/
https://www.slideshare.net/capgemini/microservices-and-soa

The Evolution of API Platforms Chapter 2

[56]

Although the concept is easy to understand, achieving it is a different story. This is because
in the majority of organizations, customer information doesn't reside in one system but is
scattered among several systems (many of which are legacy), which can be internal,
external, or, often, belonging to business partners.

Common denominators
In order to provide the capabilities needed to achieve the aforementioned goals, a more
sophisticated API platform (a third generation) is required. It must be one that:

Allows the implementation of APIs everywhere (any cloud and/or on-premise),
yet without introducing an operations nightmare and huge costs.
Empowers communities of developers by letting them discover and subscribe to
APIs via a self-service developer portal.
Gives developers the tools they need to rapidly design and create APIs that are
well-documented and easy to consume – API first.
Gives information owners full visibility and control over their information, by
letting them decide who by and how their information assets, exposed via APIs,
are accessed.
Delivers strong security to protect information assets against all major threats
(for example, OWASP Top Ten).
Is lightweight, appliance-less/ESB-less and suitable for microservice
architectures.
Is elastic, meaning that gateways can:

Scale in or out without manual intervention.
Integrate with registries to dynamically determine active service
endpoints.

Is centrally managed, regardless of the number of gateways, APIs, and their
location.
Enables meaningful collection and use of statistics, so operations data can be
used to gain business insight and not just for monitoring and troubleshooting
purposes.
Is consumption-based, typically with no CPU-based licensing.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Evolution of API Platforms Chapter 2

[57]

Figure 2.14: Third-generation APIs are everywhere

As the monoliths are broken down into smaller pieces and reimplemented as discrete cloud
applications, either in SaaS or PaaS, the business logic and information contained in such
monoliths also gets distributed. The tendency of integration middleware to become bigger
and bigger seems to be reversing, almost like a big bubble that bursts into many smaller
ones.

Recommended reading: An Ode to Middleware.
http://www.openlegacy.com/blog/an-ode-to-middleware/

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.openlegacy.com/blog/an-ode-to-middleware/

The Evolution of API Platforms Chapter 2

[58]

Figure 2.15: Logic distribution in third generation

Third-generation API platforms truly mark an inflection point for software architecture.
Unlike their predecessors, because of the federated nature of such platforms, it is difficult to
depict them in architectural layers. This is better appreciated by looking at the following
diagram.

Figure 2.16: Second- and third-generation API platforms' architectures compared

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Evolution of API Platforms Chapter 2

[59]

Although further architectural details will be covered in subsequent chapters, there are
some fundamental characteristics that set the third generation apart from previous
generations:

The management of APIs is fully decoupled from the service implementation
itself; hence, by design, there is a separation of concerns.

At this point, it is very important to apprehend how to
distinguish an API from a service, as although they complement
each other, they are also distinct
A service is an independently deployable software unit (an
application) that encapsulates business logic and can be
accessed via a standard interface, for example, via a REST or
SOAP endpoint. Services can be fully decoupled (a
microservice) or semi-decoupled (implemented in a common
integration stack).
A service endpoint(s), managed through an API platform is
referred to as a managed API.
Therefore, a service endpoint that is not managed through an
API platform is an unmanaged API.
To avoid confusion, this book refers to managed APIs as simply
APIs.

APIs, just like the information itself, are also federated. Therefore, APIs are
implemented as close as possible to the source of information, regardless of
where it resides (cloud and/or on-premise). Not doing so means that APIs could
be exposed to latency and other network problems, including increased exposure
to security threats.
Even with APIs being federated, full control and visibility over who can
access/when they can access the APIs is possible.
APIs are discoverable via a developer portal. Through the portal, developers can
search and subscribe to the APIs to which their role allows them to.
The entire API platform operations are centralized and cloud-based. Therefore,
this allows administrators to deploy APIs to multiple locations from a central
location and with little effort.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Evolution of API Platforms Chapter 2

[60]

APIs are managed via lightweight (meaning small footprint), independently
deployable, and scalable API gateways that can run anywhere. Therefore, these
are not ordinary gateways. They can handle extremely large volumes, as they run
on highly scalable platforms that support asynchronous, non-blocking I/O
threading models, for example, NGINX, Vertx, Netty, Grizzly, Node.js/Express,
to name a few.

A term that is becoming increasingly popular when referring to
this specific type of gateways is API microgateways.

In summary, API are:

Non-monolithic, appliance-less, and ESB-less. They should be lightweight and
very easy to implement (anywhere) – ideally using containers.
Self-sufficient and should be responsible for retrieving APIs, policies, and even
system patches from a central management unit.
Stateless: no state should be managed for any transaction.
Capable of rapidly scaling in and out dynamically, without manual intervention.
Limited in their functionality by only delivering capabilities expected of a
gateway, therefore preventing them from becoming fat, as experienced in second
generation.

Summary
This chapter explained in detail how requirements derived from cloud adoption, digital
transformation, and customer-centricity all demand a new set of capabilities that can't be
simply satisfied by the adaptation of monolithic integration stacks, such as ESBs and XML
appliances. To this end, the chapter walked through the evolution of API platforms, from
generation zero to the third generation, in a chronological way, and also highlighted key
events in the industry that notably contributed to this progression.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Evolution of API Platforms Chapter 2

[61]

In summary, third-generation API platforms are all about delivering capabilities that
facilitate the adoption of modern architectures, which in turn enables businesses to
innovate and deliver new products, and offerings, quicker and cheaper, therefore helping
them to remain relevant in a highly digitalized world.

For digital giants, such as Google, LinkedIn, or Amazon, this is old news. However, for the
majority of organizations worldwide, the journey to cloud, digital transformation, and
customer-centricity is just getting started. For such organizations, the content of this
chapter will be useful, as it can, at the very least, serve as inspiration when defining new
integration strategies.

The chapter also heavily emphasized the tendency of information to become more and
more federated. This is a pattern that is only just getting started. With analysts consistently
predicting that by 2020 the number of connected devices will reach up to 21 billion, the
Internet of Things (IoT) has huge potential. However, devices also require and produce a
vast amount of information.

For further information refer to Gartner Reveals Top Predictions for IT
Organizations and Users in 2017 and Beyond:
http://www.gartner.com/newsroom/id/3482117

Without a doubt, businesses of all sorts will make use of the IoT to engage even closer with
their customers, and completely change the way that customer interactions occur. A fourth-
generation platform, one that goes beyond cloud and on-premise data centers, will be
required so that access to billions of connected devices is provided but also managed.

The next chapter will deep dive into the architectural implications and the capabilities
required in order to implement modern, third-generation API platforms enterprise-wide.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.gartner.com/newsroom/id/3482117

3
Business-Led API Strategy

This chapter builds on Chapter 1, The Business Value of APIs, and Chapter 2, The Evolution
of API Platforms, by providing an approach for creating API strategies that are business-
driven and have the main target of delivering direct or indirect business value.

I illustrate the activities that should be undertaken to successfully kick-start an API
initiative. Next, the chapter explores in detail how business needs can be translated into
drivers, and from them derive goals and objectives that aim toward the realization of
business benefits. It also sets the scene for the rest of the book by presenting a framework in
the form of a train map that illustrates all of the activities required in order to successfully
deliver a business-led API strategy in the form of train stops and lines.

This chapter will be particularly useful for organizations that wish to kick-start an API
initiative but don't know where to start, and thus are looking for sources of inspiration.
Likewise, the chapter will also be useful to organizations with on-going API initiatives that
wish to review the approach taken to ensure that such initiatives have greater chances of
success.

Kick-starting a business-led API initiative
For an API initiative to be successful and long-lasting, it goes without saying that business
benefits must be targeted and realized sooner rather than later. However, doing so is easier
said than done and far too often, the adoption of not just APIs, but technology in general
results in expensive IT or business endeavors that never get to see the light of day. Some
obvious reasons for such a fate include:

Solely IT-driven initiatives that aim to solve a technology problem and lack
business context, requirements, and buy-in. They can't be justified against
business metrics.
Solely business-driven technology initiatives that lack adequate input from IT
and thus can be very badly scoped, estimated, and planned.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[63]

Initiatives that engage with end users way too late (or not at all). Even though the
project might be successfully delivered, it fails to meet the end users'
expectations (for example, an API that developers struggle to understand and
use) and thus there is a huge amount of resistance to shifting to the new solution.
Poor quality data. If the data offered by the API is either outdated or (worse)
incorrect, consumers of the API will deem it as poor, regardless of how well
designed or easy to use an API is.
Lack of consensus, dependencies and/or stakeholder management, which can
ultimately halt the entire initiative or dramatically delay it, causing a loss of
momentum.
Let's not forget the usual suspects: bad scope and project management, wrong
methodology, and lack of testing, to name just a few.

API initiatives are, in fact, even more exposed to the aforesaid challenges, as APIs don't
really have a business-user frontend that can be seen and touched; instead, the assets
produced in an API initiative (for example, APIs themselves, but also their underpinning
platform and developer portals) are technical in nature and the consumers (customers) of
such assets will be application developers. For this reason, it is extremely important to have
a clear understanding of what it actually means for an API initiative to be successful. For
example, from a business standpoint, success would probably mean things like:

New business applications with rich user interfaces that leverage the APIs
created, and that expose information and functionality that perhaps was
inaccessible before (for example, locked in legacy systems).
Decoupling of backend systems from user interfaces, therefore reducing the
impact of change and enabling the modernization and/or upgrades of systems.
More business transactions being processed quicker and with fewer technical
issues.
Existing and/or new partners are able to better do business-to-business
transactions as a consequence of easy-to-use APIs.
An increase in the partner ecosystems through partner APIs, resulting in an
indirect increase in market share.
The holy grail of APIs: information assets being monetized, thus resulting in
revenue generation.

The truth is, unless it is well understood what success actually means for the business, the
chances are that an API initiative (or any IT initiative, for that matter) will just fail to meet
expectations.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[64]

To prevent this from happening, an API initiative should not be initiated without first
understanding what is in it for the business; in other words, what is the business problem
being solved, what business benefits will be delivered, and how will they be measured?

At this point, it's important to understand that APIs are the means to
reaching a goal and not the goal itself. If an API solution is not driven by
the business and is therefore not aimed at solving a business problem,
business value can't be measured, and the chances are, the initiative will
be perceived as just another expensive IT-led project and will likely be
considered a failure. Alternatively, it will never actually start.

Therefore, before any work is expended on defining API reference architectures, or worse,
selecting products to deliver API management, it is best to start thinking about:

The business drivers for implementing an API solution. For example, should
you enable some sort of omni-channel strategy, or perhaps just provide access to
information locked in legacy systems or other information assets? Should you
consider the monetization of information assets via APIs?
If an API initiative is to be kick-started, what would be the goals and objectives?
In other words, what are the broad ambitions and what can be realistically
achieved as first steps?
Just as importantly, what is the strategy to accomplish the set goals and
objectives? In other words, how would the strategy be delivered? What would be
the approach? How much effort and funding would be required? Who would
need to be involved? How long would it take?
How success will be measured; for example, what business key performance
indicators (KPIs) can be used to track success?

The following is a more detailed explanation on how to overcome each of these points.

Defining the business drivers
It is not always clear how an API initiative (which from the outset seems quite technical)
can be related to the business, let alone what/how business benefits can be realized and
measured. Though the API value chain, described in Chapter 1, The Business Value of APIs,
helps by illustrating how different types of APIs within the chain incrementally deliver
more business value from bottom (connectivity) to top (revenue generation), what it does
not describe is how to determine the business requirements that ultimately drive the need
for the APIs.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[65]

To do this, an understanding of the technology alone won't be enough; rather an
understanding of the business domain, the business problem(s) being solved, and how the
business will perceive and measure success become imperative.

The closer an API relates to the actual business problem being solved, the higher the
perceived business value will be. For example, an API that provides backend connectivity
to a key system of records will likely be used by many business applications. This is
certainly important, as it enables access to key information assets perhaps not previously
accessible. However, the perceived business value will likely be against the applications
using the APIs and not the APIs themselves. This is because in business terms, it is the
application using the APIs that solves a business problem, which in turn delivers value that
can be measured against specific KPIs. In this example, APIs will be considered an IT
enabler.

KPIs are measurable values that show how effectively a business is
performing against its goals within a specific time frame. KPIs exist for
many areas of the business. For example, in sales, an obvious KPI can be
monthly sales growth or monthly net new customers. In marketing, for
example, a KPI could be increased monthly traffic in a digital channel (for
example, the company's website). In project management, the KPI could
be the percentage of projects completed on budget.

Therefore, in order to ensure that an API initiative is not seen as merely an IT enabler, but
rather as a business-driven initiative, it is crucial to identify where and why APIs can be
applied as the main means to satisfying business-driven requirements, especially those that
can have clear KPIs associated with them. By spotting such requirements and deriving from
them their business drivers, it will be a lot easier and more effective to articulate the
business benefits behind APIs.

The following table illustrates a few examples whereby APIs are adopted as the main
means to addressing different use cases. The table also indicates the potential business
drivers behind the creation of APIs and the benefits that could be expected.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[66]

Business driver Use case API fitness Business benefit

Allow new
business
applications to be
implemented
quicker by
facilitating access
to key reference
data.

A new application
requires reference
data from another
system(s) on a
periodic basis.

APIs created to deliver
the access to reference
data.

Benefits can be realized
if the same API is
reused by many
applications, thus
reducing the number of
integrations required to
access the same
reference data.
Additionally,
abstraction through
APIs can reduce the
impact of change.
Indirect benefits can be
measured by
calculating costs saved
by not having to build
multiple point-to-point
integrations or having
to rework end-to-end
solutions.

There is a need to
speed up the
realization of the
digital strategy to
ensure the
business remains
competitive and
relevant in the
digital
marketplace.

The business can't
wait until a legacy
modernization
strategy is delivered in
order to digitalize key
processes, products,
and offerings. The
business desires to
start digitalization as
soon as possible while
the modernization of
legacy systems occurs
in parallel.

APIs as the means to
gain access to key
information assets
locked in the legacy
systems and required
by the digital solutions.

Benefits can be
calculated indirectly as
a result of improved
KPIs, resulting from the
digitalization itself. For
example, customers
now can access their
account online (which
was previously paper-
based) and even create
orders online, resulting
in increased customer
satisfaction and sales.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[67]

This could also be
derived from an
organization's
marketing strategy
towards being
perceived as a modern
and digital company.

APIs designed in such
a way that they enable
a smooth transition
from legacy to the
target architecture.

The quicker a
SaaS application
can be adopted,
the sooner the
total cost of
ownership (TCO)
can be reduced
and other benefits
realized.

The business has
decided to move some
on-premise
applications to cloud
SaaS applications.
However, there are
many concerns
around data migration
and especially
integration; for
example, how will
integration be
supported knowing
that many systems
will remain on-
premise?

The cost/effort of
migration and
integration will be
considerably lower if
the SaaS application
comes with well-
documented and
matured APIs.
Therefore, SaaS
applications that come
with such APIs should
be favored over those
that don't.

The complexity and cost
of migrating data and
integrating with the
SaaS application should
be lower than
traditional on-premise
systems, so benefits can
be calculated by
comparison.

There is a desire
to optimize
business
processes and
thus gain
efficiencies as a
direct result of
introducing
enterprise
mobility.

A new mobile
application is being
created that will allow
staff to do certain
business tasks while
on the move; for
example, sales reps
being able to access
orders and place
orders via a mobile
app.

APIs created to access
information assets and
to implement common
business logic
(functionality) required
by the mobile
application.

Any benefits resulting
from introducing
enterprise mobility
could be indirectly
linked to the APIs built
in support of the mobile
apps; for example, an
increase in sales and
customer satisfaction as
a result of sales reps
using the mobile app.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[68]

The business
realizes that the
market is shifting
more and more
towards digital
channels. Thus,
the business sets
an ambitious
digital strategy to
shift products
and offerings to
the digital
marketplace.

As part of a new
digital strategy, the
organization wishes to
start offering products
and services through
new digital channels
and even beyond
traditional mobile
apps, such as chatbots
(for example,
Facebook Messenger
or WhatsApp), and
virtual assistants (for
example, Siri, Alexa,
or Echo).

APIs are required to
consistently offer access
to all functionality and
information that is to
be accessible through
these new digital
channels.
Most likely, new APIs
will be required in
order to deliver a true
omnichannel
experience.

Any benefits resulting
from the adoption of
the digital strategy
could be indirectly
linked to the APIs built
in support of it. Now,
because APIs are the
main and most
important enabler for
the strategy, it could be
said that without the
use of APIs, achieving
such benefits could not
have been possible.

The business feels
that the time and
cost to create new
custom digital
solutions is too
high. There is a
desire to find
ways to reduce
the cost of custom
development and
decrease the time
to market.

An organization
wishes to reduce the
cost of custom
development by
adopting commercial
off-the-shelf (COTS)
functionality, while
remaining in control
of the user experience
(the frontend/user
interfaces).

Publicly available APIs
are adopted as the
means to rapidly
implement new
backend functionality
without having to build
the solution from
scratch.

The cost of developing
backend functionality is
reduced. Likewise,
speed to market is
increased by not having
to build new
functionality from
scratch.
Also, innovation is
perceived as increased,
as new features that
would've been
otherwise near
impossible to
implement are now
incorporated to deliver
better user experiences.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[69]

The business
realizes that the
most valuable
asset in the digital
economy is
information, and
therefore there is
a wish to
monetize it.

An organization
wishes to offer certain
products and services
completely
electronically and in
the simplest possible
way.

APIs are created as the
main means to offer
such products and
services electronically.
Communities of
developers can gain
access to the API via a
self-service developer
portal. The portal
provides the means to
register, instructions on
how to make use of
different API features,
and payment plans.

APIs are the main
means of enabling such
new capabilities
electronically. Benefits
realized can be
measured directly as a
result of adopting APIs.
At this point, APIs
become a business
product in their own
right and business KPIs
could even be defined
against them, such as
the number of API calls
per month, number of
orders processed, and
so on.

The business has
to comply with
new regulation.

The business complies
with regulation such
as the General Data
Protection Regulation
(GDPR), or the second
Payment Service
Directive 2 (PSD2)
introducing new
requirements to
organizations on how
data and functionality
is accessed.

APIs act as the main
means not just to access
information assets and
functionality, but also
to introduce fine-
grained controls over
who and how (and
even which)
information assets
(especially customer-
related) are accessed.

Prevention of not just
substantial fines as a
result of non-
compliance, but also the
brand impact this may
carry.

Because of the generic nature of the preceding mentioned drivers, the recommendation is
not to use them as is, but rather to use them as inspiration when identifying and creating
drivers that are contextualized to an organization and also well founded. Failing to do this
may result in lack of buy-in.

It's important to acknowledge that not all companies are Netflix or
Amazon. The vast majority of organizations worldwide still rely on many
legacy systems and outdated processes to run their businesses. As
described in Chapter 1, The Business Value of APIs, businesses know that
in order to remain relevant, not only do they have to modernize their IT
landscape but most importantly, the way they do business.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[70]

APIs are perhaps the most important business enabler to adopting digital
strategies, therefore identifying relevant business drivers and use cases
should really not be like finding needles in a haystack. The preceding
table only aims to make this process even simpler.

Defining the goals and objectives
Once it becomes clearer what some of the main driving forces are behind the definition of
an API strategy, the next step is to put together goals and objectives that can ensure the
initiative remains on track and doesn't derail as it progresses.

The idea is that it should be routine to, at any point in time, take a step back and verify that
goals and objectives are (or are on the right path to) being met, and if not, something
somewhere could've gone wrong and a review of the initiative should take place in order to
prevent further derail.

At this point, it's important to understand the difference between goals
and objectives in this context. Whereas goals define primary outcomes
that the initiative should focus on, they tend to be broad and thus difficult
to measure. Objectives, on the other hand, are more specific steps
targeting the delivery of the goals, and because they are more specific,
they can be measured.

Looking at the previously mentioned business drivers, we can therefore say that the main
goals of the API initiative is to deliver an API foundation capable of:

Providing access to core information assets currently locked in the organization's
many legacy systems via APIs.
Introducing APIs as the in-support of a legacy modernization transition
architecture to smoothly move from the old architecture to the target
architecture.
Enabling the adoption of SaaS or COTS by using APIs as the main means to
migrate data and integrate with cloud applications.
Adopting APIs to enable the creation of enriched user experiences beyond the
traditional mobile apps into areas such as bots and virtual assistants.
Delivering APIs that are discoverable and easy to use, thus reducing the time to
market and complexity (hence costs).
Allowing the use of public APIs to accelerate the speed of implementing new and
innovative functionality.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[71]

Monetizing the organization's information and functional assets by allowing
products and services to be offered electronically as APIs.
Helping to comply with regulation such as GDPR or PSD2, to name a couple, by
introducing better controls and visibility over how and who can access customer-
related information.

As it can be interpreted, the goals are very broad, though they do relate to previously
mentioned business needs, and therefore in a real-world scenario, getting consensus from
both business and IT stakeholders should be feasible and in principle not a huge
undertaking.

Objectives, on the other hand, have to be more specific and as opposed to goals, they must
be measurable and bounded to a timeframe and thus can be trickier to define. For this, it is
important to have enough context and understanding of what the business is trying to
accomplish and what other initiatives have been kick-started in support of this. Then it is a
matter of collecting enough data points that can help to define some realistic objectives that
are specific enough that they can be measured. Ideally, such data should already be
available if enough understanding was developed during the process of defining the
business drivers.

Following are some example objectives, taking into account that many questions can't yet
be answered.

The short-term objective (next eight to 12 weeks) for the API initiative is to deliver an API
strategy that defines:

The main business drivers, functional requirements, and use cases for APIs
across all major business units.
A catalog of APIs required to deliver the different requirements and use cases
identified.
A target API reference architecture including:

API architectural principles.
Core building blocks of the solution.
API taxonomies.
API integration patterns.
API platform capabilities required.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[72]

An API design-first software development life cycle for the creation of APIs.
An automated and continuous process for the delivery of APIs.
The technology of choice (vendor and/or open source) to be implemented in
support of the reference architecture.
Delivers a proof of concept for an API based on real requirements and
implemented using a sub-set of the technologies chosen.
A new operating model including how to transition from the current
organization to the target operating model.
A business value-driven implementation roadmap illustrating:

What business benefits are expected and by when.
What platform capabilities will be delivered and when.
What APIs will be delivered and when.
Key dependencies and when they should be delivered.

Notice from the above that all objectives have two main characteristics: first of all, they are
all bound to a specific time frame (eight to 12 weeks). Secondly, they are specific enough so
that proper actions and deliverables can be derived. This is important so that progress can
be tracked.

Having said that, it can also be noticed that the objectives don't commit to delivering any
specific business benefit. This is because at these early stages, there won't be enough
information to commit to specifics. Rather, one of the objectives is in fact to come up with
such an understanding and provide a clear view as to what business benefits will be
delivered, by when, and what APIs have to be delivered to achieve this.

Defining the API strategy
A strategy defines the approach and steps to be taken in order to deliver the set objectives.
In other words, whereas the objectives define the what, the strategy defines the how. The
scope of the strategy should go well beyond technology and also cover architectural (for
example, overarching architectural principles, reference architectures, and capability
models), organizational (people, roles, and responsibilities) and process-related (software
development life cycle, continuous delivery, and so on.) concerns. It should also aim to
align with other initiatives and identify key dependencies that may alter the timelines
and/or order of delivery.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[73]

As with everything, there are no silver bullets, so there are no exceptions here. However,
steps can be taken in order to prevent common pitfalls from happening, most notably:

Lack of business context, such as a proper understanding of functional needs and
use cases. APIs should be seen by the business as products, meaning they serve a
purpose, solve a problem, and deliver business value. Therefore, delivering an
API without founded business context is risky and may result in failure from a
business standpoint.
Focusing too early on API vendor solutions, rather than identifying what
technical capabilities are really required and which are more important.
Introducing new technologies without first understanding what's already
available.
Lack of buy-in from important stakeholders by not getting them involved early
and considering their feedback.
Forgetting to solve the organizational problem and focusing just on technology.
Setting wrong expectations by promising outcomes to the business without
properly understanding scope and costs.

Although the list is by no means complete, it does provide a good indication of what
symptoms can be expected should the creation of an API strategy de-rail.

In order to avoid such pitfalls, the following train map illustrates an approach to delivering
an API strategy. The map illustrates the main phases of the strategy as train lines, each with
a different color, and the activities within each phase as train stops, being the final
destination for a given line as the main objective of the phase.

Just like a typical train journey, there isn't just one route (way) to get from
point A to point B. Some journeys might require getting off at every single
stop within a train line (for example, business case) and might even
require iterating several times through the same line as feedback is
collected. Other journeys might be smoother and require fewer iterations.
The point being, the journey should be iterative and not waterfall-like.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[74]

Figure 3.1: Business-led API strategy train map

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[75]

As it can be seen, the train map aligns quite well to the objectives set, and assuming all
stops are visited, the short-term objectives for the initiative should be accomplished in no
more than 12 weeks. The exact elapsed time, however, will depend on how many iterations
are executed per phase. Typically, one or two should do; however, this will depend heavily
on the feedback collected along the way and how many loops will have to occur per phase
in order to ensure that the feedback is reflected in the outcomes, which is extremely
important to ensure stakeholders feel they too contributed and influenced the outcomes.

Note that in practice, the exact time frame will vary from organization to
organization, depending on numerous factors (for example, objectives set,
size, and culture of the organization, to name a few). As a rule of thumb, it
is recommended that the elaboration of the strategy does not extend
beyond 12 weeks, as otherwise it will be difficult to create momentum and
ensure that all main stakeholders remain engaged.

The following is a brief description of each train line and its stops.

1. Business case

The objective of this train line is to collect enough business context, such as meaningful
business drivers being identified, thus ensuring that goals and objectives that mean
something for the business are defined. The final stop (outcome) of this line is to deliver a
clear directive that articulates in business language what the API initiative aims accomplish
(the goals and objectives), how (the strategy), and what would be the effort of doing so.

Business drivers

Business drivers are the main motivations behind the implementation of APIs and the
creation of an API strategy. They should, therefore, be derived from real business needs
that when addressed, a positive impact on the KPIs of the business can be expected.

Goals and objectives

As previously described, goals define primary outcomes that the initiative should focus on.
They tend to be broad and thus difficult to measure. Objectives, on the other hand, are
more specific steps targeting the delivery of the goals. So, because they are more specific,
they can be measured.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[76]

Effort and cost

No business will embark on an API initiative without first having an indication of effort
and costs. As during early stages there won't be enough understanding of the medium term
and long-term objectives (and scope), the recommendation is to deliver a view of short-
term effort and costs to deliver a comprehensive strategy (as defined in the train map). One
of the outcomes of the strategy will indeed be a view of subsequent steps for the medium
term and long term (including a view of effort and cost).

API initiative directive

The directive is nothing but the consolidation of the drivers, goals, objectives, and approach
taken to deliver the strategy into a comprehensive pack that can be presented to the
business.

In order to move to the next train line, the expectation is that the business will endorse the
goals, objectives, and approach, and thus support is provided (funding and resources) to
kick-start the creation of an API strategy.

Without completing the stops of this line, the chances are the initiative will lack business
context and buy-in.

2. Discovery

As its name suggests, this train line has a core objective to gather information, and gain a
proper understanding of the current technical and organizational landscape in relation to
APIs. To this end, relevant stakeholders are identified and working sessions planned, and
executed, with the aim to attain such knowledge. In doing so, however, an opportunity
presents itself to share inspiring content on the topic of APIs but most importantly, sell the
vision and motivations behind the API initiative. This, in turn, will help in getting support
and buy-in from the workshop participants, which is important if the initiative is to be
successful.

Stakeholder mapping, workshops planning, and collateral preparation

Workshops should be as much about selling an idea (in this case selling the API initiative)
as they are about gathering information, aligning to other initiatives, and identifying
dependencies. Making sure that adequate and inspiring content is prepared ahead of the
workshops is therefore key and so should be identifying and mapping key stakeholders,
and other relevant participants.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[77]

Some of the key activities that should happen in the planning and preparation phase are as
follows:

Identify the right stakeholders and audiences according to the organizational
scope of the initiative. Make sure relevant stakeholders from the different
business units/departments and related initiatives (for example, digital or
mobile) are identified, as this will be crucial in identifying dependencies, and
getting consensus and alignment. Typically, this involves identifying
stakeholders representing the core business, different functional domains, digital
IT, traditional infrastructure, cloud, security, and even procurement.
Don't just focus on management roles, but ensure that practitioners (for example,
developers or engineers) are identified as well. The industry is moving more and
more towards self-service and federated (as opposed to centralized) operating
models, meaning that developers and platform engineers are becoming more
influential and empowered. Getting them on board and getting their feedback is
therefore equally crucial, perhaps even more so than management, as the latter
will likely only get on board if developers and engineers do as well.
Prepare a questionnaire suitable for different audiences from different
backgrounds/domains and different levels of knowledge. Questions should be
simple but aimed at gathering meaningful and relevant information that can help
the initiative to move forward. As an example, you might want to find out what
the main information assets are that other parts of the organization want access
to (as these could be potentially good API candidates), or how far the
organization is in the cloud adoption journey, how many data centers there are,
where the main systems of record are located, and what the main security
requirements to comply with are.
Create meaningful and relevant content describing the "why" of the initiative.
Don't just assume that everyone knows what an API is, let alone API
management or the fact that some APIs can be monetized, effectively becoming
business products. Create content appropriate for all audiences and then tailor it
(even if it has to be on the fly) accordingly. Key in this presentation will be a
good articulation of business drivers, goals, and objectives, and some inspiring
(not to say cool) content on APIs (for example, what are they? What's the fuss
about?).
During the workshops, some participants will likely highlight the fact that
they've already built some APIs and thus implemented some technical
capabilities, whereas other teams might just share requirements for new APIs
and underlaying platforms. For the former, ensure information is collected
around what capabilities the APIs offer and their business context, what API
documentation that is available, consumers, usage data, sources of information,
and external versus internal use.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[78]

For the latter, capture as many business requirements as it is possible to, as this
will help to determine what capabilities the APIs need to offer and what technical
capabilities might be required in order to deliver that. In both cases, always try to
capture what business benefits are offered.
Plan with enough time in advance, as people will likely be busy. Try and keep
the size of the workshop as small as possible to avoid people getting intimidated
and thus not giving enough feedback, or the other way around: a chaos meeting
that turns into a talking shop. In person, workshops should be favored over
conference calls or video conferences; however, this may not always be viable
(especially in global organizations), so be pragmatic and find the right balance.
In terms of workshop duration, typically anything over two-three hours will lose
the audience at some point. So, it's better to keep it short but interesting, but with
enough time so that all points of the agenda are addressed.

Workshops execution

Once the planning and collateral preparation is done, the next step is to execute the
workshops, collect as much inputs and feedback as it is possible to, then distribute all
content gathered, thus ensuring everyone is on the same page and that nothing was missed.

In order to ensure that workshops are a success and positive noise is generated on the back
of them, the following should be considered:

Great content is important but not enough. As previously mentioned, getting key
people together represents an invaluable opportunity to promote (sell) the API
initiative. Therefore, make use of the opportunity accordingly by delivering the
presentation in a way that is inspiring and educational for all audiences. As this
is easier said than done, consider alternatives such as engaging external thought
leaders (if budget allows) to help deliver the workshops.
Avoid the workshops becoming a monologue. Encourage interaction by asking
some of the pre-arranged questions to the audience. Also use whiteboards and
interactive techniques to make the workshops engaging and dynamic. As
audiences are different, the same technique might not work for all audiences. For
example, for IT audiences, whiteboarding an as-is architecture might be a good
way to understand the current landscape and also identify existing APIs. With
business/functional audiences, look for better understanding of business
capabilities, and what functionality and information they offer, which could be
accomplished by whiteboarding domain models.
Once the workshop takes place, ensure that there is the means to interactively
continue to engage with the audience. To this end, consider adopting tools like
Slack or HipChat.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[79]

Consider using modern documentation tools like Confluence or modern Wikis to
document, and distribute, workshop notes and actions.

API catalog

The catalog is nothing but a well-structured document listing existing and/or desired APIs,
which would have been captured during the workshops and/or other meetings. It's very
important, though, to keep track as to where an existing and/or desired API comes from
(meaning how was it identified), what the API does or is meant to do, who uses it and why,
what potential business value it brings, and so on.

As described in Chapter 1, The Business Value of APIs, not all APIs are the same. Some APIs
might be great at connectivity, whereas others represent an opportunity to generate
revenue.

Regardless of the type, capture enough metadata on all APIs identified, as this will not just
follow up on the discussion, but also prioritize desired APIs based on factors such as
business value and complexity. In the future, this document can be replaced by modern
tooling (for example, an enterprise-wide API developer portal), but to start with, this
approach should be enough.

API requirements

As the workshops are executed and more knowledge is gained on the current landscape in
relation to APIs, it becomes possible to start creating a proper understanding, not just on
the as-is, but on what the actual future needs are. This understanding can only be evolved
as more and more feedback is collected through each iteration. The end result should be a
comprehensive document listing the numerous API requirements captured through the
phase, including, but not limited to:

Functional requirements:
Business capabilities that could be exposed as APIs and
resources/operations that could potentially be offered.
Business context such as drivers, use cases that can be addressed
by using APIs, and business benefits that could be realized.
APIs that are candidates for monetization and therefore will
almost certainly require further analysis in terms of product
packaging, monetization strategies/billing, marketing, and
customer service.

Non-functional requirements:
Service-level agreements (SLAs) and other availability
requirements that might apply (for example, 99.98%).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[80]

Assuming some APIs are candidates for monetization, what API
monetization strategies could be adopted (for example, pay per
call, or freemium)? There is more on this in the next chapter.
Volumes and throughput: high-throughput platforms will require
different architectural decisions than low-throughput ones.
Authentication and authorization requirements.
Security requirements.

As not all requirements are the same and some will be more critical to the business and/or
IT than others, it is highly recommended to conduct MoSCoW analysis of the requirements.
This is crucial, as it can help to prioritize some requirements over others and even serve as
the input for a Minimum Viable Product (MVP).

More on the MoSCoW method on:
https://en.wikipedia.org/wiki/MoSCoW_method

More on MVPs:
https:/ /en. wikipedia. org/wiki/ Minimum_ viable_ product

3. Reference solution

This train line is all about determining what the future solution looks like, with the scope
not limited to architecture and technology, but covering processes and organizational
aspects, such as the API life cycle, roles, responsibilities, and the target operating model (for
example, center of enablement versus center of excellence). Based on these outcomes, a
comparative analysis of as-is versus to-be can take place, which in turns enables the
evaluation of the different technology choices available in the market based on a well-
defined criterion.

API-led target architecture

Building on top of all of the as-is knowledge/understanding gained during the workshops,
this train stop translates the API initiative's goals and objectives into a set of assets that
outline what the future API architecture looks like. It is not one asset per se, but rather a
combination of core architectural assets that when combined, vital elements of the solution
can be articulated. The core assets are the following:

Architecture principles: The definition of the core principles that all API-related
assets should be based upon. It's a critical deliverable and each principle should
be justified and its implications explained.
Conceptual architecture: Defines the core building blocks, core concepts, and
API taxonomies that form the basis for the target API solution.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/MoSCoW_method
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product

Business-Led API Strategy Chapter 3

[81]

API implementation patterns: Design patterns define common and reusable
solutions that can be adopted to address different requirements. In the context of
APIs, this is critical, as an API solution consists of multiple elements and
depending on the style of architecture adopted (for example, microservices
architectures), the way to implement APIs to solve different problems can vary
significantly. API implementation patterns help by defining standard ways to
solve multiple problems based on a given criteria.
Technical capability model: Derived technical capabilities needed in order to
satisfy the identified technical requirements. All identified capabilities will be
described and should map to all components of the conceptual architecture.

The target architecture must be technology- and vendor-agnostic, as the
assets produced within will, in fact, be used to evaluate the different
options available in the market and identify those that best fit the
requirements.

The creation of a target architecture will be covered in more detail in Chapter 4, API-Led
Architectures.

API life cycle and operational model

This train stop covers the process and organizational aspects of the target API solution
including:

API life cycle: The definition of an API design and development approach
focused on ensuring that the APIs delivered are not just fit for purpose, but also
usable and well documented. The cycle also defines the roles and responsibilities,
as well as tools involved throughout the cycle.
Continuous Integration and Continuous Deployment (CICD) framework:
Related to the API life cycle, the CICD framework focuses on defining what tools
to use and how they will be implemented, in order to automate and streamline
the management of source code, unit and regression testing APIs, and also their
release process across environments.
Target operating model: Defines the modus operandi of the API solution, not in
terms of technology, but in terms of organization (roles and responsibilities) and
related processes. It should also define how API capabilities will/should be
offered to the rest of organization as an enterprise service.

As the outcomes of this deliverable will most likely have a direct impact on people (for
example, new or changed roles and responsibilities) it can very easily become political if
stakeholders feel that way.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[82]

Gap analysis

A key outcome of the reference solution is a comparative analysis of the current
technological and organizational landscape against the API-led target architecture, and API
life cycle and operational model defined in previous stops.

The analysis is a key outcome, as it will determine what gaps should be addressed and thus
require the evaluating of different technologies and/or vendor products. Furthermore, the
activities that are to be executed in order to address the gaps will constitute the basis for
creating new objectives and defining an implementation roadmap.

Technology evaluation and prototypes

Making the right technology choices, especially when it comes to evaluating different
vendor options, can be very tricky and can often result in controversy. To avoid such a
critical task being overshadowed by polemics, the advice is to create well-defined criteria
weighted in accordance to what matters most from a business value standpoint, but also
covering the following:

Reference solution fitness: Ensures that the gaps identified in the analysis can
all be addressed either out of the box, or by extending the baseline technology
and/or vendor product with additional capabilities. As an example, if a given
vendor product fills 70% of the gaps identified, but addressing the remaining
30% may result in a very difficult undertaking (for example, because of lack of
extensibility options), then perhaps favoring an option that has less of a fit (for
example, addresses 50-60% of the gaps) is the right thing to do, provided it
comes with very rich extensibility features (in other words, a much more flexible
solution).
Developer experience: Evaluates the usability of a technology and/or vendor
product against features that boost the productivity of API developers and API
consumers alike. For example, some vendor options might come with rich self-
service capabilities and thus will likely score higher over those that don't deliver
such features.
Operational experience: Similar to developer experience, operational experience
is adopting a technology and/or vendor product that makes it easier for platform
teams to operate an API platform. This is about evaluating capabilities around
managing the platform (for example, rich logging, runtime analytics, and even
troubleshooting capabilities).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[83]

Infrastructure footprint and deployment models: Even when a
product/technology is a great fit in terms of reference solution and
developer/operational experience, there are no guarantees that it will be easy to
implement, or scale, or even if it can be deployed in hybrid (multi-cloud and on-
premise) topologies. In order to ensure that the technologies and/or vendor
products evaluated can satisfy modern API requirements, criteria can be derived
from the third-generation API platform concept described in detail in Chapter 2,
The Evolution of API Platforms.
Licensing model and costs: Last but not least, careful consideration should be
made around how different API vendors license their products and what model
best suits your organization. As an example, whereas some vendors license their
API products based on the number of API calls, others may do so based on the
number of CPU cores used to run the API gateways. Each approach has pros and
cons but generally speaking, CPU-based models tend to be more restrictive,
inflexible, and expensive. This, of course, highly depends on the requirements
and size of implementation.

Also, bear in mind that some vendors might offer open-source flavors of
their products; however, these offerings typically come with many
restrictions and will require a license fee in order to extend the
capabilities.

As the evaluation process matures and more understanding is gained from the different
options considered, implementing a prototype API based on two, or perhaps three, of the
preferred options will help to further refine the selection. This is highly recommended, as
the insight that will be acquired from experimenting with the different technologies and/or
vendor products considered will make the evaluation process less theoretical and instead,
more practical and accurate.

The prototype API should be based on a realistic need (for example, one of the APIs
identified during the discovery phase) and it should ideally be low in complexity but high
in business value. That way, the API can be delivered relatively quickly and the benefits it
delivers can too be explained.

Note that the majority of vendors do provide trial versions of their
products, which can be used to implement an API prototype.

As an additional step, the API vendors could be invited to showcase how they would
approach the implementation of the API prototype and also answer some of the questions
in the criteria. This will require further preparation and planning.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[84]

In Chapter 8, API Products' Target Operating Model, it is explained in detail how to create
the evaluation criteria based on what is discussed at this train stop.

4. Roadmap

This train line is all about defining a new set of objectives and an implementation roadmap
to deliver them. The roadmap should illustrate what activities are to be executed, when/in
what order, and what/when business benefits are delivered, so expectations can be set for
the business and further funding justified.

Objectives

These are a new set of objectives aimed at delivering not just the reference solution, but also
the APIs identified throughout the journey. Objectives should be grouped in such a way
that they can be delivered in multiple milestones, ideally not too far apart from each other,
so business benefits can be demonstrated periodically. As an example, the first set of
objectives could be to stand up an API platform foundation so that a second set of
objectives, the delivery of the first APIs, can subsequently take place.

Solution sizing

As new objectives are defined, it should be possible to define finer-grained tasks required
to deliver them. Such tasks when qualified/quantified in terms of complexity and effort can
be used to calculate costs. This is important, as without an indication of effort and costs, it
will not be possible to go back to the business and ask for more budget.

5. Feedback loops

Feedback loops ensure that inputs from different stakeholders are captured throughout all
train lines and their stops. The idea being that by having feedback regularly retro-fitted into
the strategy outcomes, consensus from different stakeholders will be easier, as they too will
have contributed towards the final outcomes. The importance of this last point cannot be
overstated, as many strategies fail not because they lack thought and substance, but
because they lack buy-in from key stakeholders.

6. Execution

As the name suggests, the execution is the actual implementation of the strategy. It is at this
point that the initiative moves away from being a relatively small (and even perhaps under
the radar) undertaking, into a more substantial, well-funded, but also more visible activity.
At this point, the business will expect results to be delivered and accountability to be
clearly defined.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Business-Led API Strategy Chapter 3

[85]

Note that as technology is moving so fast, the strategy does not end once the reference
solution and all APIs have been implemented. In fact, the strategy should be revisited on a
periodic basis (once or twice a year preferably) to ensure that newly arising requirements
can be satisfied and also to ensure that the technology choices made are kept relatively up
to date.

Summary
This chapter described in a great degree of detail how to define an API strategy driven by
business needs, and with business goals and objectives in mind. To this end, the chapter
started by providing guidance on how to map the different APIs of the value chain
(described in Chapter 1, The Business Value of APIs) to typical business drivers and sample
use cases that can be seen in the majority of organizations.

The chapter then continued by illustrating what would constitute a good set of goals and
objectives suitable for underpinning an API initiative.

Subsequent to this, the main highlight of the chapter, the API strategy train map, was
introduced as the means to illustrate the different activities and phases that should take
place in order to deliver a strategy that results in the actual implementation of an API
reference solution, including the delivery of APIs discovered throughout the journey. The
chapter concluded by describing each of the train lines and their stops.

The next chapter will focus on API-led architectures, including what they are and how a
reference solution can be based on them.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
API-Led Architectures

This chapter elaborates on the core concepts and capabilities required to implement API-led
architectures. From architectural building blocks to listing out individual capabilities, this
chapter delivers a comprehensive and practical explanation as to why and how API-led
architectures can be implemented to deliver business benefits. The content within this
chapter serves as a strong foundation to help you define a target architecture, as explained
in the previous chapter.

The API-led architecture described in this chapter takes inspiration from OMESA.IO.

What is API-led?
As APIs continue to open doors to information and functionality, they move well beyond
being merely technical interfaces to becoming central actors in new digital business models.
However, for such business models to be effective and successful, technical teams are
confronted with the unique challenge of API-enabling systems that weren't necessarily built
to provide real-time access. Because of this, there are several implementations beyond the
obvious that must be catered for in order to create APIs that are easy to use and can truly
scale to handle the sort of volumes expected from real-time systems.

API-led is therefore an architectural approach that puts APIs at the epicenter of
communications between applications and the business capabilities they need to access, in
order to consistently deliver seamless functionality across all digital channels. The
following diagram, for example, illustrates how an API exposure capability, such as an API
gateway, can provide access to APIs that can be consumed to leverage different business
capabilities.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://omesa.io/

API-Led Architectures Chapter 4

[87]

Figure 4.1: API exposure

Furthermore, because APIs can directly and/or indirectly drive revenue generation, the
department that delivers them can evolve from being a cost center to potentially becoming
a profit center. In other words, an API becomes a first-class business citizen, as opposed to a
necessary evil, which is often how integration is perceived by businesses. Long story short,
APIs become products in their own right and thus require the same level of design
thinking, ongoing attention, and evolution as other business products.

Architecting API-led
In Chapter 1, The Business Value of APIs, doors were used as a metaphor to articulate the
role of APIs in delivering access to enterprise information assets and functionality, or in
business terms, business capabilities. However, just like doors, which come in different
types, materials, and sizes, often determined by what sort of access they provide, APIs too
can be classified in different types.

For example, some APIs might be built with a specific use case in mind and in support of a
specific application. Because of this, such APIs can be quite specialized and tailored for the
purpose they were built to serve. In order words, they are single purpose and are not
suitable for reuse outside the context they were built for.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[88]

A common term used to refer to these types of (single-purpose) APIs is
Experience APIs, mainly because of their role in enabling applications
that humans directly interact with (for example, mobile apps, web apps,
and so on). However, not all applications that require specialized-purpose
APIs have to interact with humans. For example, in Industry 2.0, APIs
may be built in support of modern industrial lines, or in farming and
agriculture, drones are being used to scan soil conditions across large
areas of land, and APIs are used to obtain and send data in real time.

This is why this book favors a more generic term: single-purpose APIs.

Other APIs, however, might be built specifically with reuse in mind. Such APIs will be
more generic in nature and won't be tied to a particular use case. Therefore, these APIs are
multi-purpose, meaning they can be used in a variety of scenarios and thus should be able
to serve many applications. The following diagram illustrates that APIs that don't provide
access to tailored business capabilities can be consumed by many applications to address
different use cases.

Figure 4.2: API-led communication

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[89]

Just understanding the different types of APIs isn't enough to architect API-led solutions. A
robust architecture must always be reflective of a solid understanding of the business
domain in question and the capabilities required in order address it. In the context of
enterprise-grade APIs, at the most basic level, API-led architecture should address things
like:

Securing APIs from unauthorized access and major security threats.
Ensuring that consuming applications can always find the right API endpoint.
Throttling and/or limiting the number of calls made to an API to ensure
continuous availability.
Supporting capabilities such as API design, testing, continuous integration, life
cycle management, monitoring, and operations, to name a few.
Error handling and preventing error propagation across the stack.
Real-time monitoring of APIs with rich analytics and insight.
An approach for implementing scalable and flexible business capabilities, for
example, in support of microservices architectures.

In the subsequent sections, a top-down approach for elaborating an API-led architecture is
presented. We start by first defining conceptually the core building blocks of the
architecture and describing their purpose. We then continue by defining in more detail the
individual capabilities required by each block in order to accomplish its purpose. Finally,
the section illustrates how all the capabilities hang together cohesively as a single, but
modular, platform.

Conceptual architecture view
The conceptual API-led view defines the main building blocks of the architecture, along
with their purpose and responsibility. As in Figure 4.3, the conceptual API-led architecture
consists of four main building blocks, plus the consuming applications. Horizontal blocks
represent core runtime capabilities, without which implementing APIs would not be
possible. Vertical blocks represent important supporting capabilities geared towards life
cycle support, management, operations, and analytics.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[90]

Figure 4.3: Conceptual API-led architecture

Consuming applications are considered as any computer program capable of calling and
making use of an API. In real-world terms, these may vary from traditional commercial off-
the-shelf applications (for example, commerce systems) to web applications, mobile
applications, wearable devices, and even more sophisticated things such as drones and
smart cars.

The API exposure building block, as its names implies, is responsible for securely and
reliably exposing access to API endpoints.

Services are units of software that deliver a well-defined and bounded functionality. Such
functionality is referred to as a business capability because it means something to the
business and the function the service delivers can be mapped to a business process.
Therefore, in order to deliver such functionality, a service must be capable of implementing
business logic, data transformation and validation, business rules, and orchestrations
and/or choreographies, to name a few. Services expose their functionality via API
endpoints that are not accessed directly but mediated via the API exposure layer.

The management and operations block consists of capabilities in aid of the end-to-end life
cycle management of APIs, including, but not limited to, API design and mocking, policy
implementation, deployment, promotion, runtime operations and analytics, and
deprecation and retirement.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[91]

Developer-centric capabilities such as API pages, a developer portal for API discoverability
and subscription, and application keys management also form part of this building block.
This building blocks acts as an aid when monetizing APIs, as it's responsible for collecting
important metrics that might be required when billing APIs based on usage.

Lastly, the identity and access block refers to capabilities in support of user, roles, and
access management features. For example, from a life cycle and operations perspective, this
block enables different users (API product owners, administrators, designers, and
developers) to seamlessly logon to the API management console and/or API developer
portal using existing enterprise credentials. It also restricts access to different areas
depending on the user role. From an API exposure perspective, this block aids
authentication and authorization policies by, for example, enabling tokens (for example,
OAuth 2.0, OpenID, and/or even Security Assertion Markup Language (SAML)) to be
generated and enforced at runtime.

Technical capability view
This view extends the conceptual architecture by defining the main technical features
expected of each building block.

Note that the business capability block is not to be confused with the
technical capability model. The latter refers to technical features that are
expected of each building block. The former refers to services that offer
access to business functionality equally implemented using platform
features.

Defining technical capabilities and segmenting them by building blocks is very important
because it enables:

The visualization of the responsibilities expected of each block, or in other words,
clear understanding what a building block should and should not do.
Evaluating/comparing technology choices, for example, by comparing how a
specific vendor and/or product satisfies the capability view and/or a part of it.
Conducting gap analysis by identifying what capabilities might or might not be
available within an existing technology landscape.
Defining patterns on how certain capabilities can be used in conjunction, in order
to address a common problem.

In the following sections, the individual capabilities within each building block are defined.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[92]

Management and operations
The API management and operations block delivers critical capabilities in support of the
full API life cycle, including runtime operations and analytics. This capability is typically
delivered in the form of a central web application(s) from which the following functionality
is accessible:

Self-service onboarding.
API discovery and subscription.
API design and mocking.
API creation and configuration of API exposure policies.
API documentation and content management.
API web pages, developer portals, and marketplaces.
API deployment and publishing.
API versioning, deprecation, and retirement.
API exposure infrastructure configuration and management.
Real-time monitoring and analytics of APIs and API exposure infrastructure.
Management APIs and control planes.
API monetization and billing.

This block, together with API exposure (returned to later in this chapter),
conforms to what vendors typically refer to as API management platforms.

Figure 4.4: Management and operations

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[93]

The capabilities expected of this block are described in the following sections.

API life cycle
The section describes capabilities required exclusively in support of the life cycle of
individual APIs.

Figure 4.5: API life cycle

This typically involves having the ability to:

Identify new APIs and subsequent planning.
Design and mock APIs.
Create and configure API exposure policies, including policies related to access
and monetization.
Create and publish API web pages either standalone, as part of a developer
portal, or using a public marketplace.
Deploy APIs to the API exposure infrastructure, which typically involves several
API gateways.
Manage API versions, including deprecating and retiring older versions.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[94]

API design and mocking
Although part of the API life cycle sub-block, this capability can also exist on its own and
therefore it has been separated to give it more emphasis and a detailed overview. A robust
API design capability should enable API designers and developers to take part in what is
known as the API design-first cycle, as illustrated in Figure 4.6.

Figure 4.6: API design-first cycle

The idea behind this concept is to not just allow API consumers and producers to work on
client and service implementations in parallel, but even more importantly, to enable both
parties to engage in feedback loops as early as possible in order to iteratively evolve the
design of the API. This is as opposed to having to wait until an API has been implemented
(typically involving the creation of a service) only to find out that the API didn't fully meet
needs, or it was too difficult to use. Instead, an API design-first cycle enables API designers
to quickly design and mock API resources so consumers of the API can quickly try it out
and feedback can be provided. This process continues until it is felt that the API satisfies
consumer needs.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[95]

There are tools on the market dedicated to the API design-first cycle, the
most popular ones being Apiary.io and SwaggerHub (swagger.io);
however, the latter only supports the OpenAPI Specification (OAS),
whereas Apiary offers OAS in addition to API Blueprint.

The expectation is that this capability will offer a self-service functionality that will allow us
to:

Quickly design APIs with any of the main specifications available, such as OAS,
API Blueprint, RESTful API Modeling Language (RAML), or even GraphQL-
based APIs.
Automatically generate API mocks directly from the API specification without
having to write any code. The idea is that the API mock, its specification, and any
relevant documentation can be shared with the API's consumers for feedback.
Monitor the API mock usage, including successful and failed tests.
Carry out API specification compliance checks (typically referred to as
stylesheets) in order to automatically verify consistency and compliance in the
way APIs are being designed. Ideally, it should be possible to create custom
stylesheets based on one's specific needs and desires.

Further functionality includes:

A templating engine, so the process of designing an API can be aided with pre-
created sample API specifications.
An API catalogue, so available designs can be found and reused if desired.
Integration with version control systems (for example, GitHub), so the API
specification and associated documentation can be version controlled and
managed just like another piece of code.
A rich CLI, so API specifications can also be found and tried via command lines.
Scaffolding of server and client code (in multiple languages) generated directly
from the API specification. This feature is important, as it can seriously speed up
the process of consuming and implementing APIs and associated services.
A runtime API specification validation tool, so it's possible to verify the
compliance of a running service against its specification.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://apiary.io/
https://swagger.io/

API-Led Architectures Chapter 4

[96]

As you can see, the API design-first cycle does imply a rich set of
additional capabilities that are not always offered out of the box within a
vendor's API management offer. Therefore, it is important to fully
understand this cycle in order to identify any potential gaps in the
product and determine how such gaps can be complemented by, for
example, adopting some of the aforementioned API design-first tools.

Policy definition and implementation
API policies are a crucial piece of capability that enable the change of behavior of an API
through configuration. Policies are collections of statements that are executed sequentially
on the request or response of an API.

The API exposure block defines several types of policies that can be used
to address different types of requirements. For example, policies can be
applied to protect against common security threats, to implement
authentication and authorization, to route and load balance incoming calls
to multiple backend services, and even to enforce monetization plans.

This capability in particular refers to having the ability to apply to individual APIs, through
a central management capability, policies that are to be enforced in the API exposure
infrastructure (typically an API gateway).

API pages, developer portal, and marketplaces
Once an API reaches the point where it can be made available for use, be it in beta or
general availability, it is empirical for the success of the API that comprehensive and rich
documentation is also made available. Equally important is to ensure that the developer
experience (DX) is also considered, thus ensuring that APIs are easy to find, understand,
subscribe to, and use (regardless of whether the API is external or internal).

The one thing that most API practitioners agree upon is that an API is only
as good as its documentation. Therefore, an API should not be considered
done until documentation is also made available.

However, what does comprehensive and rich documentation mean and how can a good
DX be achieved?

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[97]

A common misconception is that an API specification (for example, OAS or API Blueprint)
is enough and also caters for the documentation aspects of an API, whereas certainly the
API specification should be part of its documentation, but by no means is it enough.

Figure 4.7: API channels and documentation

As depicted in Figure 4.7, there are several aspects that this capability should be able to
address, with the aim of delivering comprehensive and rich API documentation that
delivers great DX and makes it very easy for consumers to find, enroll, and start using
APIs.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[98]

To elaborate further on the features that are expected within this capability:

First of all, it should be possible for APIs to be published in a variety of channels (also
offered as part of this capability), mainly, but not limited to:

An organization's API developer portal, where all APIs belonging to the
organization are listed, and internal or external developers can find, subscribe,
and use the APIs.

Note that vendors tend to offer API developer portal
capabilities within their standard API management offers.
Some vendors charge for this capability as an add-on, while
others just include it in their offering.

An API directory, where APIs are listed along with key metadata and
documentation, but, with a link to the API page in the organization's
developer portal.

programmableweb.com and apilist.fun are both good
examples of API directories.

A public marketplace, where APIs belonging not just to a single organization,
but multiple organizations, are also listed. A marketplace differs from a
directory as from here it is also possible to subscribe and use APIs, as opposed
to API directories, which only offer limited information.

rapidapi.com is probably the best example of a good API
marketplace. However, it has become common for API
management vendors to also offer their own API
marketplaces, for example market.mashape.com.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.programmableweb.com/
https://apilist.fun/
https://rapidapi.com/
https://rapidapi.com/?utm_source=mashape&utm_medium=301

API-Led Architectures Chapter 4

[99]

Other channels where it should be possible to publish the APIs to are the so-
called API hubs. An API hub is typically a form of self-service integration
platform that (in principle) enables techno-functional developers to create
integration flows orchestrating one or multiple public APIs published in the
hub.

ifttt.com and elastic.io are both good examples of API
hubs.

Creation of API pages. An API page delivers comprehensive and detailed
documentation describing all the features of the API, including, but not limited to:

A getting started section describing things such as:
The process of onboarding to start using the API. This may involve a
registration process, which may include steps to capture the user
details, selecting the monetization scheme and payment options when/if
applicable, and obtaining user credentials and an application key.
A comprehensive overview of the API's functionality and different
features available.
Details on how the API handles authentication and authorization, and
other aspects of security.

As authentication and authorization tends to be a
complicated topic, it's extremely important to make
the documentation around this topic as simple as
possible.

How the API handles errors and what error codes can be expected.
Description of any constraints.
A section dedicated to versioning, describing things such as current,
future, and previous versions (basically a change log) and how
switching between versions is to be handled, especially from a
consumer standpoint.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://ifttt.com/
https://www.elastic.io/

API-Led Architectures Chapter 4

[100]

A comprehensive description of all available resources (or operations in the case
of GraphQL), their parameters, and HTTP verbs supported, including plenty of
interactive sample request/response payloads.

Interactive means that the samples can be tried directly from
the API page itself.

Details of the API mock (for example, the URL) and ideally an embedded online
console could be used to try out different API calls directly from the API page.
Just like in the case of API design, an API page should also offer capabilities to
scaffold server and client code in multiple languages, directly from the API
specification.
Any other additional pages, such as information on the payment options,
subscriptions, and terms and conditions, to name a few.

API runtime operations and analytics
The capabilities in this block serve two main objectives.

This first one is to ensure that the "lights are always on" by providing capabilities1.
that aid the real-time monitoring of APIs and their underlying runtime
infrastructure (for example, API gateways). Ideally, this should include the
ability to configure SLAs.
The second one relates to real-time analytics. The focus is to provide2.
comprehensive data visualizations and reports around API usage patterns and
DX, transaction throughput, success/failure rates, response times, and/or other
interesting information that enables architects and designers to make design
decisions on how to improve an API. This same information can also be used
when considering if certain APIs are candidates for retirement and
decommissioning.

Note that the vast majority of commercial API management solutions do
offer broad capabilities to monitor, visualize, and analyze APIs, and their
underlying infrastructure.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[101]

However, such offers won't typically cover the independent runtimes (for
the service infrastructure) and additional tooling, such as the popular
prometheus.io, datadoghq.com, and elastic.co or the equivalent, may be
required.

API monetization and billing
The monetization of APIs is perhaps the most important promise of the so-called API
economy. However, before it is possible to charge on the functionality offered by APIs, it is
important to understand what API monetization actually means.

It's important to acknowledge that API monetization means far more than just charging for
API calls. A better and more commonly accepted definition is that API monetization refers
to having the ability to drive revenue through the use of APIs. This definition differs from
the former as it is much broader and in addition to charging for API calls, other forms of
revenue generation can be defined, as illustrated in Figure 4.8:

Figure 4.8: API monetization plans

Having said that, monetization won't happen on its own and therefore a set of capabilities
is required, most notably:

API plans: The ability to define different monetization plans based on direct or
indirect schemes, such as the ones mentioned earlier (for example, pay per call,
freemium, and so on), or custom ones.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://prometheus.io/
https://www.datadoghq.com/
https://www.elastic.co/

API-Led Architectures Chapter 4

[102]

API monetization policies: The ability to implement and enforce a monetization
plan to any given API or group of APIs (this capability is also explained in the
subsequent chapter).
API billing: The ability to bill based on the implemented plan. When the scheme
is based on a direct monetization plan, then this capability should also offer
either basic finance capabilities, such as the ability to bill and invoice based on
the scheme selected, or a pre-built integration with any of the popular billing
systems.

API exposure
As stated earlier, this block is responsible for securely and reliably exposing access to API
endpoints. The typical means to deliver the set of capabilities within the block is by
implementing an API gateway.

An API gateway is a runtime component that handles incoming requests, which are then
mediated (also known as routed) to the individual services that are responsible for
delivering the business capability that a consuming application is after. During the
mediation process, different actions (commonly referred to as policies) may be executed in
order to perform common tasks that don't really belong to the business capability.
Examples include, verifying the identity of a caller and the rights to call the API, redacting
the payloads, throttling traffic, and/or limiting the number of calls based on different rules,
or split-joining calls to multiple services, to name a few.

In Chapter 2, The Evolution of API Platforms, it was explained in detail how modern API
gateways have evolved from traditional (and heavy) XML appliances and/or ESBs into
more lightweight and microservice-oriented API microgateways, which are suitable to be
executed in highly scalable and containerized environments such as Kubernetes.

In the future, it is likely that even API gateways will be offered as a serverless capability of
some sort.

Serverless computing is a cloud-computing execution model in which the
cloud provider acts as the server, dynamically managing the allocation of
machine resources. Applications built based on the serverless computing
model only concern themselves with the code required to deliver the
specific functionality expected of the application, and not on how or
where the code itself is executed at runtime. For further information,
please refer to https://en.wikipedia.org/wiki/Serverless_computing.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Serverless_computing
https://en.wikipedia.org/wiki/Serverless_computing

API-Led Architectures Chapter 4

[103]

Figure 4.9: API exposure building block

As illustrated, the capabilities expected of the API exposure block can be summarized as
follows.

Authentication (AuthN) and authorization (AuthZ)
This refers to having the ability to enforce authentication and authorization policies against
API endpoints. Authentication refers to having the ability to verify a caller's identity based
on the credentials (typically just username/password) supplied as part of a call. For
example, the simplest type of authentication is HTTP basic authentication, where
credentials are provided by the caller in the HTTP header and validated against a
Lightweight Directory Access Protocol (LDAP) server. More complex authentication
capabilities can be based, for example, on client certificates and/or tokens as opposed to a
username/password.

Authorization, however, refers to having the ability to verify that a (valid) caller has
adequate rights to access a given resource (for example, a specific API endpoint). Given that
authentication precedes authorization, major protocols, most notably OAuth 2.0, define
flows as how to handle the authentication and subsequent authorization enforcement for a
given caller. OAuth is a good example but not the only one; other protocols, such as
OpenID and SAML, should also be supported by this capability.

It’s important to highlight that both SAML and OpenID Connect are
meant to be used as an Authentication protocol rather than API
Authorization. For example, both protocols are commonly used to
implement Single-Sign On (SSO) across different applications.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[104]

However, once a user has been authenticated, authorization protocols
such as OAuth 2.0, require a type of token, commonly refer to as an access
token, to be obtained and passed around by API consumers when
accessing protected resources. Furthermore, as an access token contains
authorization grants, API servers (aka resource servers) can use it to
enforce rightful access to resources. Authorization related patterns will be
covered in the next chapter.

Access control
Just like access control lists (ACLs) in networking, this capability refers to having the
ability to define access rules at transport level, for example, defining an access rule that
only allows calls to an API that come from a specific IP range, or the opposite: allowing all
callers but those coming from a specific range.

This capability can be useful, for example, in scenarios where it's required to restrict access
to an API based on a given region (for example, only calls originating from IPs belonging to
EU countries are allowed). Because there are ways to get around IP restrictions, this
capability should not be used as the only means to control access to an API.

API key validation
This refers to having the ability to validate the presence of a valid application API key in
API calls (for example, as part of the HTTP header or URI). Application keys are commonly
issued via self-service capabilities in the API developer portal for registered consuming
applications.

This capability can be extremely useful when wanting to understand who the consumers of
a given API call are. This, in turn, is critical in change control as it, for example, enables us
to gain a better understanding of who the impacted audience for a given API change may
be.

CORS
User agents commonly apply same-origin restrictions when making requests to different
URLs. These restrictions can prevent client-side applications (for example, an AngularJS
application running on a browser) from calling API endpoints from domains different to
the one used to access the application itself.

Cross-Origin Resource Sharing (CORS) is a W3C standard for allowing user agents (for
example, a browser) to enable different-origin requests to take place in a secure way,
therefore allowing user agents to securely get by restrictions.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[105]

Further information can be found at https://www.w3.org/TR/cors/.

This capability refers to having the ability to apply cross-domain checks to, for example,
enable CORS on certain API endpoints.

OWASP Top 10 protection
The Open Web Application Security Project (OWASP) Top 10 delivers an industry-
recognized awareness document for the most common web application security threats.

As APIs make use of web protocols (most notably HTTP and HTTPS), they too are exposed
to such threats. Therefore, capabilities that help to prevent such threats are important,
especially for APIs that are exposed to the general public via the internet.

API composition
API composition refers to the ability of an API exposure block to perform split joins against
one or many downstream service endpoints. The idea is that instead of an API consumer
having to make multiple API requests, for example, to perform multiple queries, a single
request payload can be split into multiple downstream calls. The responses can then be
joined into a single payload before the response is sent back to the consumer.

This capability can be very useful, for example, when it is required to optimize the number
of API calls made by a mobile device, as network bandwidth is often a premium resource,
or when the number of API calls required would end in too much chattiness between the
API consumer and API exposure, therefore affecting the overall user experience.

API composition differs from orchestration in that there is no (or should
not be any) business logic implemented in the composition, for example,
if/then/switch conditionals, for/while loops, or complex data
transformations. If business processing logic is required, then this should
be implemented as a service in the business capability block.

Redaction
Redaction refers to having the ability of removing, masking, and/or limiting the presence of
fields within request/response payloads and/or headers. Such a capability can be useful; for
example, when it is required to completely remove sensitive data from payloads (for
example, credit card data) and thus comply with regulation such as GDPR in the EU.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/

API-Led Architectures Chapter 4

[106]

Format conversion
This refers to having the ability to convert payloads from one format to another over the
same transport. For example, from XML/SOAP over HTTPS to JSON over HTTPS and vice
versa.

Note that in certain scenarios, such as in the case of the Internet of Things (IoT), some
specialized API gateways may also support, in addition to payload conversions, transport
conversions. For example, converting from Message Queuing Telemetry Transport
(MQTT) over TCP (a very popular transport in IoT) to JSON over HTTPS.

This capability can be useful, for example, when it is required to repurpose existing APIs
built in less popular protocols (for example, SOAP) as rewriting or refactoring them (for
example, to support REST) may not be an option. It can also be useful to expand the
audience of an API so it can be used, for example, in support of IoT.

When implementing format conversations, be aware that not all APIs will
convert well. For example, when converting SOAP/WSDL-based web
services into REST, not all SOAP operations may convert into fully
compliant REST endpoints, and this is simply because the way SOAP
operations and REST resources are modeled is fundamentally different.

Header handling
Header handling refers to being able to propagate, add, rename and/or remove transport
headers. This capability can be useful when there is a requirement to propagate or modify
transport headers in support of downstream service invocations.

Fault handling
As the API exposure block handles incoming calls and enforces policies such as
authentication/authorization, API key validation, and routing, errors might occur, which
will result in exceptions being thrown back to the caller.

This capability is about being able to handle faults, such as adequate and standard error
codes, and ensuring messages can be sent back to the callers, as opposed to just relying on
the underlying infrastructure to do this, which typically is the default position.

Routing
Routing refers to the ability of mediating HTTP(s) calls received on a specific resource (for
example, /myapi) to different downstream service endpoints, ideally based on different
conditions.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[107]

The conditions, for example, could be static, meaning a one-to-one mapping of an URI to a
corresponding service endpoint, or dynamic-based information, such as application keys,
headers, and even originating geography. API gateways are known for implementing such
capabilities. More mature gateways provide rich options to define how mediation should
occur.

Rate limits
This allows for the implementation of hard limits in the number of calls that can be made to
a given API resource. Limits could be applied to specific applications, users, or just overall
without distinction. This capability is very useful to protect against unexpected peaks (for
example, by setting a limit to the maximum number that the system can handle) or even to
protect against denial of service attacks.

Throttling
This capability offers the ability to limit or regulate the maximum throughput that can be
handled at a given timeframe. Being able to statically and/or dynamically control the
throughput (for example, 100 transactions per second) ensures that downstream services
won't have to handle a larger number of requests than they physically can. It also helps to
prevent a given API from overusing the capacity of the underlying infrastructure, thus
degrading the performance of all APIs.

Caching
In simple terms, caching refers to being able to cache API response data. In the most basic
scenario, this is the ability to cache the response of a downstream service call. For example,
when a second (similar) call occurs, the downstream service won't have to be invoked as
the response is already cached. This known as a Response Cache.

This capability can be extremely useful when preventing a large number of similar calls
translating to an even larger number of downstream service calls. Caching response data
means not only faster response times, but also avoiding unnecessary downstream service
calls. However, conditions will be required in order to prevent consumers from receiving
outdated/irrelevant data.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[108]

Push notification
Typically, the communication between an API consumer and the API originates from the
former and occurs in one direction. In this approach, when the most recent data (for
example, changes made to a record) is required, it is the API consumer's responsibility to
poll for changes (meaning constantly calling an API). Not only does this result in chatty
interactions, but it is also highly inefficient from a transport use perspective. It can also
result in poor user experience (for example, users having to refresh application screens so
that data updates).

An approach to get around such limitations is to adopt a capability that enables bi-
directional communication, such that the API itself can initiate a request to the API
consumer(s). This would not only allow API consumers to be notified when certain events
occur at the server side (for example, a change in a customer record) but would prevent the
constant polling of an API.

The most common way to implement this capability is via Webhooks. Webhooks enable
API consumers to subscribe to specific API events, for example, changes in data for a
specific resource, and during the subscription process (which is typically just an API POST
request), API consumers provide a call-back URL that is subsequently used by the server to
push the events.

Webhooks will be explained in greater detail in chapter 5, API-Led
Architecture Patterns.

API load balancing
In traditional API gateway implementations, there tends to be a load balancer situated in
between the gateway and the service endpoints. The problem with this architecture is that
unless the load balancer itself is capable of automatically detecting added and/or removed
service endpoints (for example, during a service scale up or down), customizations are
required in the load balancer infrastructure in order for it to be dynamically configured for
such rapid and sudden changes.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[109]

Instead, this capability refers to the ability of an API gateway to also act as a client-based
load balancer, thus removing the need for a load balancer in between. The consequence of
this is that the API gateway should have the ability to introspect a service registry in order
to dynamically determine the active endpoints of a service at any given point in time.
Therefore, when a request does come in, the gateway itself can load-balance to all active
endpoints.

The following article authored by Phil Wilkins explains in a great level of
detail how this capability could be implemented:
https://paascommunity.com/2018/03/25/registries-use-cases-for-ap
i-management-and-microservices-by-phil-wilkins/

Quotas and plans
A capability in support of API monetization, quotes, and plans refers to having the ability
to define and enforce quotas and/or plans to a given API, against a well-defined audience.
For example, user Luis is subscribed to the Gold Plan of the Orders API. The Gold Plan
defines a quota of 10k API calls per day. Exceeding that quota may result in additional
charges and/or simply a blockage of the service for the rest of the day.

Versioning and deprecation
This refers to having the ability to define and run multiple concurrent versions of an API.
This is particularly important as APIs will evolve over time, and having the ability to
manage concurrent versions of an API will enable API consumers to incrementally switch
to newer versions of an API, so older versions can be deprecated and ultimately retired.

Custom policies
This is the ability to implement custom policies either via scripting languages, such as
JavaScript or Groovy, or by means of an SDK. Regardless of the approach, this capability is
about enabling the creation, deployment, and enforcement of bespoke policies.

Business capability services
As previously mentioned, business capabilities are delivered in the form of services, which
in themselves are units of software that encompass a well-defined and bounded
functionality.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://paascommunity.com/2018/03/25/registries-use-cases-for-api-management-and-microservices-by-phil-wilkins/
https://paascommunity.com/2018/03/25/registries-use-cases-for-api-management-and-microservices-by-phil-wilkins/

API-Led Architectures Chapter 4

[110]

In domain-driven design, such functionality is referred to as bounded
context. The following book by Eric Evans describes this in a great deal of
detail:
https://www.oreilly.com/library/view/domain-driven-design-tackli
ng/0321125215/

A service can (and should) therefore implement business logic in support of things such as
data transformation and validation, service orchestrations (in short, a single service that
implements a process flow that involves calling other services to either enrich or validate
payloads), or service choreography (communication with other services via events), to
name a few.

Services should not be accessed directly but mediated via the API exposure layer, as this
one extra layer of abstraction allows for common policies to be applied (for example,
authentication, throttling, and so on), thus preventing the need to replicate policy
functionality across services.

The following diagram illustrates the technical capabilities expected of the business
capability services block:

Figure 4.10: Business capability services building block

As you can see, the capabilities are sub-divided into two main groups of capabilities: semi-
decoupled and fully decoupled services.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.oreilly.com/library/view/domain-driven-design-tackling/0321125215/
https://www.oreilly.com/library/view/domain-driven-design-tackling/0321125215/

API-Led Architectures Chapter 4

[111]

Semi-decoupled services
These are services that don't deliver enough isolation because they either share a common
runtime, share common metadata, or simply are tightly coupled to each other (meaning
that a service binds to another without any sort of runtime decoupling). Because these
services typically share a common runtime, they can't really scale independently of each
other and faults have the potential to propagate across the system.

The capabilities expected of this sub-block typically include:

Orchestration
Service orchestration, a well-known capability in traditional service-oriented architectures,
typically refers to the ability of a service to coordinate multiple calls to other services in
order to deliver a pre-defined process. As the orchestration itself happens within another
service, such functionality is also accessible via well-defined interfaces (for example, via a
REST endpoint).

Data validation
As the name suggests, data validation refers to the ability to validate data that is structural
(for example, compliance with pre-defined schemas), semantic (for example, consistent use
of terms), or functional (for example, verifying that payloads conform to business rules).

Note that this capability does not imply having to implement business
rules in the form of a rules engine; however, this may be an additional
capability that's needed depending on the type of validation required.

Data transformation
This refers to the process of converting data payloads from one structure (for example, a
JSON schema) to another. Data transformation is typically combined with an orchestration
capability in order to transform payloads resulting from the orchestration itself into a
common data object, which is then sent back to the consumer of the service.

Connectivity
A core capability within any service infrastructure, connectivity refers to the ability of a
service to connect to multiple backends (for example, databases, ERP systems, messaging
systems, and others), using a variety of protocols.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[112]

For example, it should be possible to establish connectivity with sources such as Oracle
databases, NoSQL databases such as MongoDB or Cassandra, SOAP endpoints, REST
endpoints, Kafka Brokers, and JMS topics/queues, to name a few.

Protocol conversion
This is the ability to convert between the underlying protocols used to transport data, for
example, converting from HTTPS to SQLNET or vice versa. This capability is commonly
used along with connectivity, as in many cases this implies converting between protocols.

Shared runtime
Shared runtime refers to allowing (but not restricting) one or more services to share a
common runtime. For example, this could be two Spring services running on a single
application server, or multiple containers running as a single POD in the case of Kubernetes
infrastructure.

Fully decoupled services
Otherwise known as microservices, these are highly autonomous and self-contained
services built in compliance with the microservices architecture patterns and that deliver a
well-defined and bounded business capability. Therefore, they offer a much higher degree
of isolation, flexibility, and scalability. For example, faults typically won't (or shouldn't)
propagate outside of a service-bounded context. Also, these services can scale
independently of each other, as they don't share a common runtime.

Each service is responsible for its own data and only interacts outside its bounded context
via events. A service mesh (described subsequently) is typically implemented as a means to
isolate faults within a bounded context, so services can bind to one another but still achieve
runtime decoupling. By definition, these services can be implemented in a variety of
programming languages and typically run independent runtimes (later described).

The capabilities expected of this sub-block are therefore as follows:

Choreography
This refers to a style of interaction whereby services interact without the need for a central
coordinator (also known as orchestration engine). Instead, participants of a choreographed
process consume and react to events that are relevant and also produce events other
participants (services) can be interested in.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[113]

The natural implication is that each service must be capable of consuming and producing
events in addition to being smart, as it becomes a service's responsibility to execute any
business logic as a result of a given event.

As with choreographies, a service doesn't bind directly to another. Instead, all interactions
are event-driven and asynchronous, and this capability is typically supported with the use
of an Event Hub as the core infrastructure where events are published and consumed from.

Data validation
This is similar to the previous description; however, in this case, if the execution of business
rules is required, it must either be self-contained within the logic of the service itself or as a
sidecar.

Sidecar is a pattern typically adopted in container orchestration
environments (for example, Kubernetes clusters) whereby a container is
attached to another (like a sidecar attached to a motorbike) in support of
specific functionality. The following article describes this pattern in great
detail:
https://docs.microsoft.com/en-us/azure/architecture/patterns/sid
ecar.

Processing logic
In microservices architectures, a service should be self-sufficient and self-contained. In
architectural terms, this means that all logic that belongs to a given bounded context should
sit within a service boundary itself. In practical terms, it means that the service implements
all of the business logic that's within the scope of its own context.

This capability aligns well to the generally accepted notion that in
microservices architectures, it is the endpoints that should be smart and
not the transports used to get access to them (the pipes).

Polyglot programming
This is a key principle in microservices architectures to enable services to be developed in a
variety of languages and technologies. This capability therefore refers to having the ability
to write and execute programs written in a variety of languages, for example, Java,
JavaScript, or Python, without any major restrictions. In other words, it allows the best tool
for the job to be adopted.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

API-Led Architectures Chapter 4

[114]

Although in theory the idea is to be able to run programs written in any
language, in practice, the industry seems to be favoring the use of some
languages, especially in combination with the use of microservices
frameworks as aids. For example, Spring Boot in the case of Java,
Node.js/Express in the case of server-side JavaScript, and Flask in the case
of Python.

Independent runtime
In microservices architectures, services should be fully decoupled, not just in terms of
specific business functionality (bounded context) but also with regard to where they run.
For example, if all services share a single monolithic runtime (for example, an ESB), then in
order to scale a single service, the entire monolith has to be scaled. Likewise, if the common
runtime (the ESB) goes down, then all services are equally affected.

This problem becomes even more obvious when services from different bounded contexts
share the common runtime. In order to separate concerns and avoid putting all eggs in one
basket, each service must therefore run in its own runtime, thus allowing services to be
independently:

Scaled or shrunk
Deployed or undeployed
Restarted or stopped
Monitored

Kubernetes.io is an open-source container orchestration platform
originally developed by Google, and is fast becoming the technology of
choice for running fully decoupled services.

Service mesh
Having services that run independently of each other is undoubtably an important and
fundamental capability within a Microservices Architecture. However, having an all-
encompassing and single executable unit in support of a service bounded by a context can
also be limiting and in many cases undesirable, as it couples different aspects of a service
that may have to undergo change and deployments at a different pace, or might even have
different scalability requirements, as is the case between reads and writes, where reads
often have a much more dependent scalability need.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/

API-Led Architectures Chapter 4

[115]

For this and many other scenarios, a service within a single-bounded context might have to
be broken down into smaller (executable) pieces that bind directly to each other to
collectively deliver the bounded-context functionality. For example, a subscriber agent
responsible for consuming events from an Event Hub might not implement the event
processing logic. Instead, it might bind to another service to dispatch the event for further
processing. To this end, a bounded context may have many physical services that together
form the bounded-context logical service.

However, a service that directly binds to another service is also hard-coupling to it. This
introduces notable downsides, as it not only becomes difficult to evolve the software (as all
inter-dependencies need to be considered), but it also introduces more risk to the solution,
as faults can easily be propagated across services, thus bringing down the entire
functionality of the context.

In order to overcome the preceding issues and others, a mechanism to decouple inter-
service communication is needed, one that introduces a reliable, secure, fast, and scalable
inter-service communication channel (the transport), but that can also prevent faults from
being propagated. This smart inter-service communication infrastructure is referred to as a
service mesh.

A service mesh should deliver the following capabilities:

A reliable, efficient, secured, and fast transport infrastructure that ensures that
services can always reach one another.
Dynamically discover new services and their active instances through the use of
a service registry (later described).
Dynamically route and load-balance requests to all or specific active instances of
a service (especially as instances are added or removed on the fly). For example,
it might be desired to incrementally introduce a new version of a service by only
routing a certain percentage of its traffic to a newly deployed version.
Prevent faults from being propagated by implementing bulkheads and circuit
breakers so service instances that are underperforming and/or malfunctioning
can be isolated, thus preventing faults from spreading to all services in the
bounded context.

Note that a service mesh is typically delivered as part of an independent runtime and a
service registry (described subsequently).

A popular choice for implementing a service mesh in Kubernetes
infrastructures is Istio.io. Another popular choice for a Java-based
service mesh is Hystrix, which was originally developed by Netflix but
also open sourced.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://istio.io/

API-Led Architectures Chapter 4

[116]

Do note, however, that this is an evolving market with several options
available, and many others being created by the day.

Event Hub
As previously described, fully decoupled services interact via asynchronous events
(choreographies). An Event Hub delivers the infrastructure capabilities required to publish
and subscribe to events. Such a capability ensures that events can be reliably sent and
received by one or many subscribers.

An Event Hub should offer the following capabilities:

Event store: The ability to persist events, permanently if desired, as a series of
immutable logs organized over time.
Reliable messaging: Guarantees that a message has been successfully dispatched
from the source to all targets.
Publish and subscribe to events: This capability refers to the general availability
of client libraries (in multiple programming languages) that can be adopted and
bundled within an application (for example, a microservice) to publish and
subscribe events using the Event Hub.
Connectors: The ability to natively connect multiple sources or targets, in a
variety of protocols (for example, SQLNET, JMS, or AMQP, to name a few),
directly into the Event Hub. This capability is typically used, for example, when
implementing a Change Data Capture pattern, whereby it is possible to detect
and propagate to multiple target changes in a source database.
Event processing: The ability to introspect in real time the inflow of data, using
predefined queries in order to detect patterns in the data that can be acted upon.

Apache Kafka, originally developed by LinkedIn and now also open
sourced, is by far the most popular technology used to implement an
Event Hub.

Service registry
This is a form of key/pair storage typically used in fully decoupled service infrastructures
to store runtime (for example, active service endpoints and status) and configuration
metadata (for example, environment variables and other application properties).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[117]

There are many use cases for such a capability. However, in the context of fully decoupled
services, a registry can be used by a service to obtain configuration metadata during startup
and to register its runtime metadata (for example, HTTP endpoints) once it is up and
running. The registry can also be used by other infrastructure components (for example,
API gateways or a service mesh) to dynamically determine the status of a service and
dynamically route requests to active and healthy service endpoints.

Note that service registries are not to be confused with UDDI registries.
Although there is a level of similarity, the former can be considered legacy
and never really enjoyed the popularity or level of adoption as modern
registries, which are simpler and more straightforward to adopt.

There are some of the capabilities expected of a service registry:

Resource registration: Refers to the ability to register a service/API endpoint in
the service registry by calling a registry's management REST API.
Resource discovery: Refers to the ability to dynamically discover what services
are registered in the registry, including their status and active endpoints. This
capability is critical to implementing application-based client load balancing.
K/V storage: A key-value store is collections of arbitrary name/value pairs
(entries) that can be accessed at runtime by API proxies or load balancers.
K/V replication: The ability to replicate the key-value store across different
instances of a service registry. This is specifically important not just for highly
available deployments, but also deployments whereby service endpoints exist in
multiple geographies and thus a registry must be deployed in multiple data
centers.
Resource health-check: The ability to allow services to provide continuous status
checks and the ability for service consumers to query the status of services and
their endpoints.
Secret vault: The capability to securely store and access secrets. A secret is
anything that requires tightly controlled access, such as API keys, passwords,
and certificates, among others. The vault provides a unified interface to any
secret, while providing tight access control and recording a detailed audit log.
Note that a secret vault can be (and typically is) considered a capability in its
own right.

Service registries have become very common as a fundamental and
internal component of modern infrastructures. For example, Apache
Kafka uses Apache Zookeeper as its internal registry. Kubernetes makes
use of ETCD as its internal registry.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[118]

There are many popular open source registries (such as the ones earlier
mentioned) and commercial options too, such as HashiCorp's Consul.

Non-shared storage
In microservice architectures, by definition, each service owns its data. The implication of
this is that each service therefore requires some form of persistence. This form of storage,
typically a database or an in-memory cache, is effectively part of the service infrastructure
and only directly accessed by the service itself, meaning that it is inaccessible by outside
consumers. As is the case in programming languages, there are also several types of
persistence options, therefore this capability should also be polyglot, meaning that it should
be possible to, for example, adopt:

A relational database (for example, Oracle, MySQL, and PostgreSQL) when it is
desired to persist structured data and/or provide support for transactional
workloads.
A document store (for example, MongoDB, Couchbase, and even Elasticsearch)
when the desire is to persist and access semi-structured data as documents, for
example, in JSON format.
An in-memory cache (for example, Redis, Memcached, and Hazelcast) when the
need is to serve data faster directly from memory and without having to hit the
database.
A graph database (for example, Neo4j and Neptune) when the need is to store
and access data as a collection of nodes (an entity, for example, a person,
business, or a thing) and edges (connections and relationships between nodes).
A data lake (for example, based on Hadoop) when the data accessed is
unstructured and/or exists in vast volumes.

Note that many other forms of persistency exist. However, the ones
mentioned here provide a summary of the most common ones.

Identity and access
This block refers to capabilities that aid the creation, management, auditing, and
verification of user identities, their roles, and the associated user rights.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[119]

In the context of the API-led architectures, the block ensures that only genuine,
authenticated, and authorized users can interact with any of the capabilities available in all
blocks.

Figure 4.11: Identity and access

The main capabilities that are offered by the block are:

Users and roles management
This refers to having the ability to create, change, and manage user accounts and their
respective roles and responsibilities. In some cases, this capability also requires users to be
synchronized from external corporate directories.

Identity federation
When the requirement is to allow seamless access to users whose accounts reside in an
outside security domain to that of the application (meaning that synchronizing identities
using LDAP, for example, is not an option), other protocols come into play, most notably
SAML, which allows trust to be established with an external identity provider. Once the
trust is configured (in short through a process of exchanging security certificates), then it is
possible for users whose accounts reside in the identity provider to also be granted access
to the main application in question.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[120]

Access management
In the context of API-led architectures, the main access management capability required is
having the ability to issue, revoke, validate, and introspect user tokens (for example, based
on JSON Web Tokens) and adopt open standards, such as OAuth 2.0 (including all of its
grants) and OpenID. For this to be possible, then this capability must offer an authorization
server that takes in the different authorization flows.

Summary
This chapter started by delivering a comprehensive overview of what API-led architectures
actually are, including a detailed explanation of the fact that there isn't one, but at least two
main types of API: single-purpose, focused on delivering tailored functionality in support
of a specific and well-known digital experience, and multi-purpose, a more generic
functionality aimed at solving many use cases (most of which are probably not known at
the time the API is conceived).

The chapter then continued to explain that APIs are like doors but to information and
functionality, and that these doors (the APIs) are accessible through a set of API exposure
capabilities, responsible for providing fast, secure, and reliable access to such assets.

It was later explained, however, that the heavy lifting doesn't (and shouldn't) happen in the
API exposure block, and that any business functionality offered by the API should be
implemented as a distinct and discrete service that can be easily associated with a known
business capability. It was explained that services also come in different flavors, and that
depending on their implementation style, they can be semi-decoupled, meaning that
services share a common application infrastructure and can directly bind to each other, or
fully decoupled (also known as microservices), where the services don't share an
application infrastructure, own their data, and use events as the main means to interact
with other services.

At this point, it was also explained that other management and operations capabilities in
aid of a full API life cycle were required, in terms of design-time capabilities, for example,
being able to adopt an API design-first approach or deliver rich API pages that offer a great
DX. The chapter also highlighted the need for runtime analytics, monitoring, and identity
and access management capabilities.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architectures Chapter 4

[121]

The chapter then continued by providing a thorough explanation of all of the different
technical capabilities expected of each block.

Figure 4.12: API-led technical capability model

The next chapter will put all of these technical capabilities into perspective by illustrating
how common API implementation patterns combine some of these capabilities in order to
address common challenges.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
API-Led Architecture Patterns

The objective of this chapter is to elaborate on how the different capabilities of an API-led
architecture, as described in the previous chapter, can consistently address requirements.
Throughout the chapter, you will learn how these different capabilities can be combined
and applied in order to realize different API-led patterns, each of which will have its own
context, benefits, and subject area.

Patterns in the context of APIs
Design patterns, in a nutshell, define common solutions to address re-occurring problems.

For a more elaborate definition of design patterns, refer to the following
link:
https:/ /en. wikipedia. org/wiki/ Software_ design_ pattern

In the context of API-led architectures, patterns deliver common approaches to implement
and combine technical capabilities (the majority of which were defined in Chapter 4, API-
Led Architectures) with the objective of addressing common requirements.

An example is the need to access information in real time. In a world that's becoming more
digitized by the day, the need to access information at any time, from any location and
device, can only increase. However, many challenges may arise when addressing this one
requirement. For example:

Due to the sensitivity of the data being accessed, does it require strong security
controls? Alternatively, is it just public information? What about the General
Data Protection Regulation (GDPR) and Payment Card Industry (PCI)
compliance?
Is the information accessed in batches (for example, the application will
download the data and use it offline), or could it be on-demand and
bidirectional?

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern

API-Led Architecture Patterns Chapter 5

[123]

Where exactly does the information live (for example, cloud or on-premise) and
where is it accessed from? Could there be latency issues?
The type of backend system that holds the information: is it a legacy system, a
Software as a Service (SaaS) application, or a custom database? Can it handle
the load?
The expected throughput and peaks: can all solution components, such as API
gateways and services, be easily scaled?
What about monetizing on APIs based on calls?

We can conclude that patterns can be applied as a vehicle to deliver proven, consistent, and
repeatable solutions that address our needs. Nevertheless, given the nature of each point, it
can also be deduced that there won't be a single pattern that can solve all problems. Instead,
different patterns can be applied/combined to address requirements of different natures.
For example, how an API handles authentication and authorization is more of a security
concern than how an API gateway can be applied in order to route access to multiple
backend endpoints, which is more of a mediation concern.

The following diagram illustrates the four main types of patterns identified in this book as
being key in API-led architectures:

Figure 5.1: API pattern types

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[124]

As you can see from the diagram, there are four main types of patterns:

API security patterns: They encompass solutions that address common
authentication, authorization, and other security-related requirements. An
example is a bearer-of-key pattern.
API interaction patterns: Their main focus is to define common approaches for
how an API consumer interacts with an API and its endpoint. For example, most
REST APIs adopt limits and offsets to allow consumers to paginate through API
content, a pattern typically referred to as API pagination.
API mediation patterns: They are centered on the API exposure and they
encompass common routing patterns; for example, by using an API gateway.
Service implementation patterns: They focus on the business capability services
block and go a level deeper to illustrate common approaches that combine
service capabilities in order to address important non-functional requirements.

API-led architecture patterns described
The patterns in this section aim to address common requirements/challenges that arise
when adopting API-led architectures. Although they are not specific or tied to any API
architectural style (for example, Representational State Transfer (REST), Graph Query
Language (GraphQL) , or Google Remote Procedure Calls (gRPC)), some may be better
suited to a specific style, and this is indicated accordingly. Also note that Chapter 6,
Modern API Architectural Styles, offers a comprehensive overview and comparison of the
trendiest API architectural styles (at the time the book was written).

Each pattern listed is described as follows:

Name: A meaningful and self-explanatory (as much as possible) name for the
pattern.
Problem statement: Provides context on the challenge/situation that the pattern
aims to address.
Solution: Describes the pattern through a meaningful illustration and a text
narrative.
Drawbacks: Elaborates on any potential drawbacks of the pattern.
Tags: Which types of pattern apply (for example, security, interaction, mediation,
or implementation).
Applicability: An indication of what API architectural style (for example, REST,
GraphQL, or gRPC) best suits the pattern.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[125]

The following table summarizes the patterns that will be described in subsequent sections
in more detail.

Pattern name Main pattern type Brief description

API resource routing Mediation Uses an API gateway to route calls based on
unique resource identifiers (URIs).

API content-based
routing Mediation

Uses an API gateway to route calls based on
the content of a call (for example, HTTP header
or message body) instead of just the URI.

Payload pagination Interaction
Implements limits and offsets parameters in an
API to allow pagination on a large set of
records.

Create, Read, Update,
and Delete (CRUD)
API service

Implementation
A service, proxied by an API gateway, that
implements CRUD operations against a single
database.

Command Query
Responsibility
Segregation (CQRS)
API service

Implementation

Implements reads and writes for a given entity
as separate services, each with a datastore.
Uses an API gateway to present the service
externally as a single API.

API aggregator Implementation
Performs operations (for example, queries)
against multiple services with a single HTTP
request/response call.

API orchestration
service Implementation

Implements a process flow as a series of
activities all executed and coordinated by a
single process runtime.

API microgateway Meditation
A lightweight API gateway implemented as the
entry point to services in an independent
runtime, such as Kubernetes.

Sidecar API gateway Mediation
Implements an API gateway as a container
attached to a service in an independent
runtime, such as Kubernetes.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[126]

Webhook Interaction
Asynchronous APIs that allow API consumers to be
notified (called back) when a change of state takes place
in a given record or set of records.

API geo-routing Mediation Routes API calls to the nearest API gateway based on
where they originate.

API firewall Security Implements a web application firewall (WAF) as the first
line of defense before calls even reach the API gateway.

API basic
authentication Security Implements HTTP basic authentication as a policy in the

API gateway.

API bearer of token Security Implements an authorization flow based on OAuth 2.0
and using tokens.

API bearer of
obscure token Security Similar to the API bearer of token but with an additional

step to obscure and de-obscure tokens.

API resource routing
Problem statement:

As the number of services increases, so does the number of HTTP endpoints exposed to
access them. From an API consumer standpoint, this adds complexity not only because
keeping track of all endpoints becomes difficult, but also because any changes made to a
URL will result in changes on the consumer side. Furthermore, common requirements, such
as authentication/authorization, throttling, and rate limiting, have to be implemented
separately by each service, which isn't optimal and may lead to inconsistencies and
redundancy.

Solution:

Implementing an API gateway as the only entry point to all services means that API
consumers only have to be aware of one URL domain. In this way, it becomes the API
gateway's responsibility to route the traffic to the corresponding service endpoints and also
enforce any applied policies.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[127]

Figure 5.2: The API resource routing pattern

The preceding diagram illustrates how an API gateway routes the inbound HTTP(s) traffic
(in any HTTP verb) corresponding the resource /customers to the customer service and
/orders to the orders service. The diagram also indicates that in order do this, a routing
policy is enforced in the API gateway. Other policies, such as throttling and/or rate limiting,
could also be applied alongside the routing policy.

Drawbacks:

A common criticism of this pattern is the fact that an additional middle tier has to be
introduced, which may lead to additional complexity and costs.

Tags: Mediation (main) and implementation (supporting).

Applicability:

This pattern is suited to REST APIs but can also be applied to other API architectural styles
(for example, GraphQL or gRPC) depending on the capabilities offered by the API gateway.

For example, a GraphQL service is also accessible via an HTTP(s)
endpoint, but there is no concept of URIs in GraphQL. Its one endpoint
has access to all operations. So, unless the API gateway is able to interpret
GraphQL payloads, it won't be able to perform operation-level routing
(which is straightforward in REST based on HTTP verbs).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[128]

In the case of gRPC, it's a similar situation. Unless the API gateway
supports protocol buffers (Google's open-source approach for defining
interfaces and serialized payloads), it won't be able to route traffic to
gRPC-based APIs.

API content-based routing
Problem statement:

In some circumstances, and often for historical reasons, there might be multiple datastores
for the same entity. For example, it is not uncommon for an organization to have multiple
Customer Relationship Management (CRM) systems. Although there might be plans to
consolidate them into a single master version, until such consolidation takes place (which
can take time), all the systems may have to be accessed when obtaining certain customers'
records.

Another scenario is when database sharding is applied in order to distribute the load across
multiple database instances. This technique is typically applied when the overall number of
records stored is huge and a single instance struggles to cope with the load. Instead, records
are spread across multiple instances.

In both scenarios, there is a common challenge: how to determine which data store to access
at runtime for a given record.

Solution:

A solution is to implement multiple services, one per unique datastore, and adopt an API
gateway as the only entry point to all services. You could then configure the API gateway
to route calls to the corresponding service based on a key obtained either from the HTTP
header or the payload.

The API gateway needs to be configured to dynamically determine at runtime which
service to route to based on the key (meaning that some form of routing table will be
required). For example, customer IDs starting from one to 100,000 are routed to service-x,
and IDs from 101,000 to 200,000 are routed to service-y, and so on. The routing could also
be based on the format of a key depending on the backend system where a record lives.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[129]

Figure 5.3: The content-based routing pattern

In the preceding diagram, an API gateway is exposing a single /customers resource for
multiple customer services, each with a different data store.

Drawbacks:

Unless an API consumer sets a HTTP header value up front (which should happen in the
API specification), inspecting the body of a message on each call can result in slower
response times.

Tags: Mediation (main) and implementation (supporting).

Applicability:

This pattern can apply to any API architectural style, though it can be very useful in
GraphQL and gRPC, given that both make use of a single HTTP endpoint and routing must
be done based on the consent of a message (either HTTP headers or the message body).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[130]

Payload pagination
Problem statement:

A consuming application needs to consume large payloads of data on a pre-defined
schedule (for example, daily batches or weekly batches). Although this is typically
addressed via traditional batch-based integrations (for example, ETL or just a file transfer),
in this case, the information is only accessible through an API.

Solution:

You can create an API that allows payload collections to be retrieved when the plural verb
of the resource is accessed. For example, /orders should return the orders collection and
/customers the customer collection. However, in order to prevent unbounded responses
that could result not just in timeouts but also a degraded performance, limits, and offsets
(typically as URL parameters) should be applied as the means to paginate through the
responses, allowing API consumers to make as many API calls as required to download all
the records needed.

Figure 5.4: An API call in process

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[131]

The preceding diagram illustrates how an API call made to resource /orders, with the
HTTP parameters limit=100 and offset=200, results in a response containing an orders
JSON collection starting from record 200 (because of the offset value) up to 299 (because of
the limit value).

Limits and offsets could also be combined with other parameters. For
example, the parameter change_since could also be added to only
obtain records changed from a given date.

Drawbacks:

The main drawback of this pattern is that it encourages request/response APIs as the means
to deliver batch integrations. This can be highly inefficient, especially if the number of
records is so large that it requires the API consumer to iterate through hundreds or
thousands of API calls.

Another common challenge of this pattern is determining what constitutes an optimal limit.
This can be challenging given that records may vary in size.

Tags: Interaction (main) and implementation (supporting).

Applicability:

Although the illustration is based on REST, the pagination pattern can be applied in any
API architectural style (for example, GraphQL or gRPC).

CRUD API service
Problem statement:

A mobile, web, or device application has a requirement to perform create, read, update,
and delete (CRUD) operations against a specific resource (for example, orders or
customers). As the functionality is accessed from multiple channels, applications, and
devices, a web API represents the best way to expose such a functionality.

Solution:

A CRUD API service pattern consists of an API gateway acting as a proxy (pass through) to
a single service that implements all CRUD operations against a single database (relational
or non-relational). Because a single service performs all operations, it can be relatively
straightforward and simple to implement.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[132]

However, to avoid implementing capabilities such as authorization, throttling, and rate
limiting directly in the service, an API gateway is used instead.

Figure 5.5: The CRUD service API pattern

The preceding diagram illustrates the pattern by showing how an API gateway routes calls
made to the /orders resource (in all HTTP verbs) directly to the orders service. This
basically means that the orders service is fully responsible for the support of all CRUD
operations.

Drawbacks:

There are some known limitations to this pattern. Some well-known ones are:

As volumes increase (especially during call peaks), the chances of concurrent
write operations happening against the same resource will also increase. This
may lead to undesirable behaviors, such as transaction locking causing write
operations to fail or performance degradations as the number of queries
increases.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[133]

As APIs are consumed to satisfy different user journey requirements, the way
data needs to be represented will likely change from use case to use case.
Addressing such needs in this pattern is not straightforward as a single model to
access the storage is used.
Additional data integration may be required in order to synchronize changes
made to the storage with other systems. This is true for changes made to other
systems that may have to be reflected in the service storage.

Tags: Implementation (main) and mediation (supporting).

Applicability:

Although the illustration is based on REST, the same patterns can be applied in any API
architectural style (for example, GraphQL or gRPC).

CQRS API service
Problem statement:

The main problem statement is similar to that of the CRUD API service pattern. However,
in this instance, some or all of the following challenges might be true:

Expected throughput is high and will continue to grow over time.
The vast majority of calls are expected to be reads (for example, searches).
Changes to the API resource(s) in context (for example, new records or updates)
must be propagated to other systems.
Different data representations are required in order to address the multiple API
consumer needs.

Solution:

Adopting a Command Query Responsibility Segregation (CQRS) pattern helps, as
instead of having a common service and storage supporting traditional CRUD operations,
query and upsert (updates or creates) responsibilities are split (segregated) into different
services, each with its own storage.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[134]

Furthermore, an API gateway should also be implemented as a resource router, thus
preventing API consumers from having to deal with different URLs depending on the
action being performed (for example, read, create, or update).

This CQRS pattern, as it is known today, was first introduced by Greg
Young and was inspired by Bertrand Meyer's command-query separation
principle. Since its introduction, the pattern has gained a lot of popularity
and several resources can be found online describing its many flavors. The
following link is a good source describing Young's original thinking
behind the pattern:
https:/ /cqrs. files. wordpress. com/ 2010/ 11/ cqrs_ documents. pdf

This pattern is typically combined with event sourcing, as it ensures that all changes made
to a resource state are stored as a sequence of immutable events in an event log. This allows
the reconstruction of the resource's latest state by just playing back the events. This pattern
is very useful not just because it enables different systems to consume resource state
changes as a series of events in the log via an Event Hub capability, but also because it
allows for multiple query or command models to be implemented separately, thus
satisfying the need to support different data representations that are easier to scale.

Note that event sourcing is not individually covered in this chapter.
However, the following link describes it well: https:/ /microservices.
io/patterns/ data/ event- sourcing. html

It's also important to highlight that sourcing commands (messages that instruct an action to
take place) and events (messages that reflect a change of state, for example, that an action
has taken place) means that the read storage won't be immediately updated as part of the
transaction (for example, as in the CRUD service). Such a delay in storage reflecting the
latest state of a resource is referred to as eventual consistency, and its implications should
be factored into the overall system design. For example, a read call may not reflect the latest
state of a record.

More on eventual consistency can be found by following this link:
https://en.wikipedia.org/wiki/Eventual_consistency

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://en.wikipedia.org/wiki/Eventual_consistency

API-Led Architecture Patterns Chapter 5

[135]

Figure 5.6: The CQRS service API pattern

The preceding diagram illustrates the pattern first and foremost by showing how an API
gateway implements resourcing routing to route read calls to the customer's query service
and upsert calls to the customer's command service.

The diagram also shows the customer's query operations performed against an orders read-
only storage and the customer's command operations persisted in an Event Hub capability.
They are then picked up by an upsert service responsible for upserting (create, updates,
and logical deletes) the read storage. Once an upsert action takes place, an event is
generated that can be consumed by other services interested in any changes of state in
customer records.

Lastly, as the query and command data models can be different, the upsert service may also
have to deal with semantics and data transformations.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[136]

Drawbacks:

Although the pattern clearly has some notable advantages, there are also some
disadvantages, such as:

Increased complexity of implementation, especially when compared with
traditional CRUD services.
Multiple flavors of the same pattern add to the complexity.

Tags: Implementation (main) and mediation (supporting).

Applicability:

Although the example is based on REST, it can also be applied to other API architectural
styles (for example, GraphQL or gRPC) depending on the capabilities offered by the API
gateway (content-based routing may be required instead to route based on an action
defined in the message body or header value).

API aggregator
Problem statement:

A consuming application (for example, a mobile or JavaScript browser app) has little choice
but to make multiple calls to different APIs in support of a single user journey. Take, for
example, an eCommerce mobile app. When a user opens the app and the main page loads,
typically a summary of the customer details, the latest orders placed, and even the loyalty
status level and points are displayed all on the same page. However, the information
displayed won't come from the same source and thus multiple APIs have to be called in
order to collect all the information required and subsequently present it in the desired
format.

This approach can result in inefficiencies, such as increased complexity in the client-side
code, over-utilization of network resources, and even poor user experience as the
application is more exposed to latency issues.

Solution:

Instead of having a client application making several calls to multiple APIs, an API
aggregator does this on behalf of the consumer on the server-side. Furthermore, as the
requirements will likely differ from case to case, the aggregator should be either very
flexible, thus allowing the client to define exactly what data they want and from where, or a
single-purpose service should be built per use case to satisfy the client's needs.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[137]

There are a few considerations to be made when adopting this pattern:

The aggregator must accept as input all information required so it can construct
and make all subsequent calls.
The aggregator must understand all data structures from all APIs that it interacts
with.
The aggregator must be able to transform the response payloads so they can be
sent back to the caller as a uniform payload tailored for the consumer.
The aggregator should be stateless and fully decoupled so it is also suitable for
addressing high-volume requirements.
An API gateway acting as a service proxy must implement common policies (for
example, authorization, throttling, and rate limiting).

Figure 5.7: The API aggregator pattern

The preceding diagram illustrates an API gateway acting as a resource router based on the
aggregator's unique URI. The input required by the aggregator should either come as a
parameter or as a payload in the body depending on the HTTP verb. The aggregator is then
responsible for making subsequent calls in order to collect, transform, and send back a
uniform payload as expected by the consuming application.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[138]

This pattern fits quite well with the GraphQL architectural style because
its entire focus is to be client-driven and flexible. A comparison of REST
and GraphQL is covered in Chapter 6, Modern API Architectural Styles.
However, the following video is a good overview of GraphQL and how it
compares to REST:
https://tinyurl.com/restvsgraphql

Drawbacks:

The number of API endpoints may increase considerably if the REST architectural style is
adopted to deliver this pattern. The reason is that REST requires unique URIs for each
resource. Considering that reuse of these endpoints will be limited, as they are very tailored
to specific use cases, new endpoints have to be created in support of new requirements.

Tags: Implementation (main) and mediation (supporting).

Applicability:

This pattern is better addressed with GraphQL for the reasons mentioned, although
technically speaking, the pattern can also be realized with other API architectural styles.

API orchestration service
Problem statement:

A consuming application has a requirement to implement a piece of functionality expressed
in the form of a well-defined business process. As the same functionality is needed in not
one, but multiple consuming applications, implementing the same functionality multiple
times on each application would be impractical, time-consuming, and costly to deliver and
support.

Furthermore, as part of the business process, multiple validations and checks against other
system's interfaces are needed. The process must be implemented in a specific order and
comply with the business rules as specified by the business in the process requirements.

Solution:

The solution is to adopt a process engine as the means to design and implement the
business process orchestration in accordance with the business requirements. You can then
expose the process orchestration as an API so it can be accessed from multiple consuming
applications. An API gateway can also be implemented as a resource router into the process
API.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://tinyurl.com/restvsgraphql

API-Led Architecture Patterns Chapter 5

[139]

Furthermore, as process engines have been around for a while, especially those based on
the business process orchestration language (BPEL) and/or the business process model
and notation (BPMN) v2.0, the chances are that some of these can be reused and exposed
as APIs. However, in order to do so, it may require converting from older protocols, such as
SOAP into REST or even GraphQL, for example.

Figure 5.8: The API orchestration service pattern

The preceding diagram illustrates consuming applications accessing a process orchestration
responsible for executing a credit check. The API gateway, in addition to performing
resource routing, also performs a protocol conversion as the process itself is exposed
through an endpoint.

The illustration also shows the different process activities and validations, including
activities that require interactions with external interfaces from other systems.

Drawbacks:

The implementation of a business process, as illustrated, requires, in the majority of cases,
that a process runtime is capable of maintaining state, which may limit an engine's ability to
scale and handle high throughputs.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[140]

Furthermore, both stateful services and orchestrations are highly discouraged in
microservices architectures in favor of stateless services that adopt choreographies and
event-driven architectures as the means to interact with and accomplish a process.

The following article offers a good perspective on how choreographies
compare to orchestrations in the context of microservices architectures:
http://www.soa4u.co.uk/2018/02/is-bpm-dead-long-live-microservic
es.html

Tags: Implementation (main) and mediation (supporting).

Applicability:

This pattern can be applied to any API architectural style supported by the API gateway
and the process runtime.

API microgateway
Problem statement:

An independent runtime has been implemented as the main runtime for fully decoupled
services (microservices). Adopting an API gateway as a resource router into the runtime
can be inefficient because typical independent runtimes, such as Kubernetes, make use of
an ingress load balancer as an entry point to internal services.

While the approach mentioned would work, it also implies a two-layer API gateway
architecture, adding complexity and additional compute costs. The outer gateway acts as a
policy enforcement point and router into the ingress, and the ingress itself acts as an API
load balancer into service endpoints inside the runtime.

Solution:

A better solution would be for the ingress load balancer to also act as an API gateway. This
is referred to as an API microgateway. This not only means that the API gateway itself
would fit more natively into an independent runtime's architecture, but that it too could
directly leverage other runtime capabilities, such as a service mesh (see the previous
chapter for an explanation of this capability). Furthermore, it would simplify the solution as
there would be one instead of two layers to troubleshoot and maintain.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.soa4u.co.uk/2018/02/is-bpm-dead-long-live-microservices.html
http://www.soa4u.co.uk/2018/02/is-bpm-dead-long-live-microservices.html

API-Led Architecture Patterns Chapter 5

[141]

Figure 5.9: The API microgateway pattern

The preceding diagram illustrates an ingress load balancer acting as an API microgateway.
It shows the API gateway implementing a resource routing pattern that also natively
leverages a service mesh capability of the runtime.

Drawbacks:

An important drawback of this pattern is that the majority of API vendors (at least at the
time of writing) don't yet have API microgateways as part of their offering (though this is
changing rapidly).

Tags: Mediation (main) and implementation (supporting).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[142]

Applicability:

Although the example is based on REST, it can also be applied to other API architectural
styles (for example, REST, GraphQL, and gRPC) depending on the capabilities offered by
the microgateway.

Sidecar API gateway
Problem statement:

In certain scenarios, it may not be desirable to have a single API microgateway mediating
access to all service endpoints within an independent runtime (for example, Kubernetes
clusters). Some of the reasons could be:

Different services require fundamentally different gateway setups and therefore
sharing a single one becomes highly impractical and restrictive.
Separation of concerns: if an issue occurs in the shared microgateway
infrastructure then all services are impacted.
Freedom of choice: each sidecar gateway can effectively be from a different
vendor.

Solution:

Instead of implementing an API microgateway as a replacement for an ingress load
balancer, let the latter act as an API load balancer and resource router, and adopt a sidecar
pattern for the API gateway capability.

The sidecar pattern is described by Microsoft in the following article:
https://docs.microsoft.com/en-us/azure/architecture/patterns/sid
ecar

The benefits of adopting this pattern are that each service runtime can configure the API
gateway in the best way. Furthermore, if required, the technology and/or vendor used to
implement the API gateway can vary from service to service.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

API-Led Architecture Patterns Chapter 5

[143]

Figure 5.10: The sidecar API gateway pattern

The preceding diagram illustrates an ingress acting as an API load balancer and resource
router into each service endpoint. The entry point for the service is not the service endpoint
itself but rather a sidecar API gateway. The sidecar can then perform any of the capabilities
offered by the API gateway in addition to routing traffic to the service endpoint.

Drawbacks:

Although the pattern offers some notable benefits, as the number of gateways increases, so
will the complexity of the solution, especially if the technologies and/or vendors used for
the API gateway are very diverse. It can also result in added compute (as gateways also run
on the service runtimes) and license costs (depending on the API gateway used and the
license model if not open-sourced).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[144]

Tags: Mediation (main) and implementation (supporting).

Applicability:

Although the example is based on REST, it can also be applied on other API architectural
styles (for example, GraphQL or gRPC) depending on the capabilities offered by both the
API load balancer and the sidecar gateways.

Webhook
Problem statement:

A consuming application desires to be informed of any change of state on a specific record
or records; for example, updating or adding customers in a CRM SaaS, currency exchange
rates from a foreign exchange (forex) application, or even new posts on a user's blog.

The majority of APIs only support these types of requirements by having the consuming
application constantly poll for changes. This means that the consuming application has to
make frequent API calls to find out any changes of state in a desired resource. Not only is
this highly inefficient, as calls may result in empty payloads when there haven't been any
updates, but it could also affect the user experience, especially when the behavior is
reflected back to the user interface (meaning a user has to refresh a page to get the latest
changes).

Solution:

Instead of having to constantly poll for changes, create a subscription endpoint against a
specific resource so consuming applications can register their interest to be informed on
any change of state (an event) by providing a call-back endpoint. At this point, it becomes
the API's responsibility to send back any change of state by posting the updates to the
registered endpoint.

In order to facilitate this functionality, a service must have the capability of not only storing
all registered call-back endpoints, but also keeping track of which events each subscriber is
subscribed to, so when the event is detected, a call-back can be triggered.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[145]

The following is an example of how to implement this functionality on the server-side.

Figure 5.11: The webhook pattern

The preceding diagram illustrates a consuming application subscribing for changes in a
resource by making a POST call (with the call-back URL in the body) to a resource
subscription API endpoint (for example, /{resource}/subscribe) exposed in an API
gateway. Once the API gateway receives the call, it routes the request to the subscription
service, which then adds the subscriber details to a database. The database is then queried
by an event listener service as subscribers are matched against particular processed events.
The event listener service then creates call-back commands and publishes them in an Event
Hub so a call-back service can then execute all API calls (and retries if necessary) via the
API gateway that is now acting as a reverse proxy.

Note that a variation of this pattern could be implemented using web
sockets. In such a variation, when the API consumer makes a subscription
call, a web socket could be established to asynchronously communicate
back to the consumer any events that may take place.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[146]

In this variation, there is no need for a call-back API; however, further
considerations should be made about handling the sockets, especially
when dealing with scenarios where a socket is broken. For more
information on web sockets, refer to the following link:
https:/ /en. wikipedia. org/wiki/ WebSocket

Drawbacks:

This is a complicated pattern to implement given its many moving pieces. This is especially
true for exception handling of call-back retries, which can be complicated given that the
API is not in control of whether or not a consuming application endpoint is up and
running.

Tags: Interaction (main); mediation and implementation (supporting).

Applicability:

Although the illustration is based on REST, GraphQL also provides native support for
Webhooks in its specification via the subscription's operation. In the case of gRPC, a similar
interaction can be accomplished with gRPC bidirectional streaming, although not in exactly
the same way.

Note that Webhooks are officially supported in OAS 3.0, which is
described in Chapter 6, Modern API Architectural Styles.

API geo-routing
Problem statement:

An API has global reach with consuming applications spread all over the world. In order to
prevent latency issues and other unforeseen issues that may occur due to distance (for
example, a consuming application from Asia calling an API located in North America), API
gateways and other service infrastructure have been deployed in multiple regions across
the world as needed (for example, in support of data sovereignty requirements). The
challenge remains, however, of deciding the most effective way for consuming applications
to determine what localized URL they should be using.

Multiple options exist but they are deemed sub-optimal, for example, using different sub-
domains for each API gateway in each region and letting the consuming application
determine the nearest gateway based on application logic.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket

API-Led Architecture Patterns Chapter 5

[147]

Solution:

The solution is to adopt a DNS and traffic management service (for example, Amazon
Route 53) with global reach that will offer the ability to configure intelligent responses
against specific DNS queries. This will allow a master domain to resolve to other
predefined sub-domains based on location or availability, as an example.

Figure 5.12: The API geo-routing pattern

The preceding diagram illustrates a client application wishing to call an API resource
through the URL https://apigw.domain.com. However, when making the call,
the apigw.domain.com domain resolves against apigw.eu.domain.com, as that's the
localized sub-domain for the region the call originates from. The diagram also indicates that
apigw.na.domain.com is configured as a fallback in case there is an issue with the
European Union region.

Furthermore, the diagram also illustrates each sub-domain resolving against a region's load
balancer instead of to the API gateways directly. This is to allow an active-active multi-
region configuration, so if one region is overloaded with traffic, it can offload some of it to
another region.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[148]

Drawbacks:

In multi-cloud vendor implementations, the solution isn't straightforward as different
cloud vendors offer their own DNS and traffic management services. Likewise, if
implementing in private networks, further considerations may be required, such as
establishing a hybrid architecture.

Tags: Mediation.

Applicability:

This pattern is applicable to any API architectural style.

API firewall
Problem statement:

As APIs become the main entry point for all sorts of internal and external applications to
access information and functionality, they too become the center of focus for a multitude of
malicious attacks. Although API gateways do provide a level of protection against
malicious threats, they don't offer protection to the extent that an API can be considered
fully secured against all major attacks, such as the ones listed in the Open Web Application
Security Project (OWASP) Top 10 project or the SANS Institute's Common Weakness
Enumeration (CWE) Top 25.

Further information on the OWASP Top 10 and the SANS CWE 25 can be
found at the following links:
https:/ /www. owasp. org/ index. php/ Category:OWASP_ Top_ Ten_Project
https://www.sans.org/top25-software-errors

Solution:

Instead of solely relying on an API gateway for threat protection, implement a level-seven
application firewall as an API firewall on all endpoints exposed by the API gateway. The
API firewall should always act as the first line of defense against malicious threats and it
should be transparent to API consumers. Furthermore, it should be configured to always
forward traffic to the corresponding API gateways regardless of the resource being
accessed (basically just acting as a proxy and not a resource router).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.sans.org/top25-software-errors

API-Led Architecture Patterns Chapter 5

[149]

When/if possible, the firewall should also be configured as a load balancer, thus avoiding
another application layer.

Figure 5.13: The API firewall pattern

The preceding diagram illustrates a consuming application accessing the /orders resource
and an API firewall acting as the first line of defense. Once the firewall inspects the call and
deems it valid, it then forwards the call to the API gateway, which then acts as a second line
of defense. Alternatively, the service layer can also act as a third line of defense should it be
necessary to add an additional layer of security.

Drawbacks:

The are no major drawbacks apart from the additional complexity implied by adding an
additional level of security.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[150]

Tags: Security (main) and mediation (supporting).

Applicability:

The majority of application firewalls will support the REST architectural style out of the
box, given that it reflects the way the majority of HTTP-based web applications work.
Support for other styles, such as GraphQL and/or gRPC, will be highly dependent on the
capabilities of the application firewall, and limitations may exist.

API basic authentication
Problem statement:

An internal API, meaning an API that is only accessible from within a corporate wide area
network (WAN), needs to verify that the application users exist and have valid credentials
in the corporate directory (for example, MS Active Directory and/or any other LDAP
server). This means that the application is trusted.

Solution:

Assuming that HTTPS is used for transport encryption between the consuming application
and the API gateway, a straightforward solution is to implement HTTP basic authentication
at the API gateway level.

To this end, a consuming application must include the user's credentials in the HTTP
header as follows:

Authorization: Basic <base64(username:password)>

Note that the username and password must be joined by a colon and then
encoded in base64.

The API gateway, once it receives the request, should take the credentials from the header,
decode them, and perform a validation against the corporate service typically using the
lightweight directory access protocol (LDAP).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[151]

Figure 5.14: The API basic authentication pattern

The preceding diagram illustrates a consuming application calling the /orders resource.
As part of the call, the user credentials are included in the HTTP authorization header
encoded in base64. Subsequently, the API gateway validates the credentials against the
corporate directory service (for example, MS Active Directory) using LDAP. Once a user is
validated, then a call is routed to its corresponding backend service. Otherwise, an HTTP
401 unauthorized message is sent back to the consuming application indicating that the
validation failed.

Drawbacks:

This authentication pattern is not completely safe for the following reasons:

Even if HTTPS is applied to encrypt all transport communications, as credentials are
simply encoded using base64, if either the consuming application and/or the API
gateway get compromised, the attacker can easily get hold of them.

Note that even when both consuming applications and API gateways
reside within a corporate WAN (thus they are inaccessible from
external networks), this pattern is still exposed to internal threads,
which are often the source of the majority of attacks.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[152]

Please refer to the following article for more information:
https://dzone.com/articles/internal-or-insider-threats-are-f
ar-more-dangerous

As the credentials have to be included in every single API call, the pattern is prone to
brute force attacks, where an attacker just tries different usernames and passwords until
the right combination is successful.

More info on this attack can be found at the following link:
https://en.wikipedia.org/wiki/Brute-force_attack

If the consuming application runs in a web browser, then the credentials are cached at
minimum temporarily during the authentication window, thus exposing the user to
Cross-Site Request Forgery (CSRF).

More on CSRF can be found at the following link:
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(
CSRF)

Tags: Security (main) and mediation (supporting).

Applicability:

This pattern applies to any HTTP and/or HTTP/2-based API, assuming the API gateway
supports HTTP basic authentication.

API bearer of token
Problem statement:

For compliance, regulatory, or security reasons, a consuming application must not be able
to access a HTTP resource without the explicit consent of the resource owner.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://dzone.com/articles/internal-or-insider-threats-are-far-more-dangerous
https://dzone.com/articles/internal-or-insider-threats-are-far-more-dangerous
https://en.wikipedia.org/wiki/Brute-force_attack
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

API-Led Architecture Patterns Chapter 5

[153]

The application itself may or may not be trusted, and therefore there must be a mechanism
that allows:

Users to be authenticated and authorized, if required, without the consuming
application ever getting exposed to the credentials (in case the application is not
trusted).
Access tokens to be issued so they can be used by a consuming application to
access a protected resource exposed by the API gateway.
An API gateway to fully trust the tokens by having the ability to verity that the
tokens are genuine and issued by a trusted server to the consuming application
making the call.

Solution:

The solution is to implement a bearer token pattern based on an open standard, such as
OAuth 2.0, thus allowing different authorization flows to be implemented depending on
the requirements at hand.

Note that OAuth 2.0, including the main concepts and grants, will be
covered in subsequent chapters. In addition, further details on OAuth 2.0
can be found at the following link:
https://oauth.net/2/

At minimum, the solution will require:

An authorization server responsible for authenticating and authorizing users
against valid applications and, if successful, issuing tokens.
An API gateway acting as a resource server to enforce that only callers bearing a
valid token can access a given resource (for example, /orders).
If necessary, the implementation of mutual transport layer security (mutual
TLS) so only calls originating from a trusted consuming application are
processed.

More details on mutual authentication can be found at the
following link:
https://en.wikipedia.org/wiki/Mutual_authentication

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://oauth.net/2/
https://en.wikipedia.org/wiki/Mutual_authentication

API-Led Architecture Patterns Chapter 5

[154]

Figure 5.15: The API bearer of token pattern

The preceding diagram illustrates a user agent (for example, a browser) and/or a
consuming application authenticating/authorizing against an authorization server.

Whether it's the user agent and/or the application itself interacting with
the authorization server depends on the authorization flow being
followed.

Provided the user credentials are successfully validated by the authorization server and, if
applicable, assuming the user grants the application access to the resource during the
authorization process, a token is generated, typically based on the JSON Web Token (JWT)
format and sent back to the client application.

More on JWTs can be found at the following link: https:/ /jwt. io

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://jwt.io
https://jwt.io
https://jwt.io
https://jwt.io
https://jwt.io
https://jwt.io
https://jwt.io

API-Led Architecture Patterns Chapter 5

[155]

The client application then tries to access the resource by providing the token in the HTTP
header but indicating that it's a bearer token. At this point, the API gateway validates the
authenticity of the token by verifying its signature against the authorization server's
signing certificate (which should have been previously obtained and configured in the API
gateway) and if this is valid, optionally the API gateway can also check that the user has
rights to access the specific resource (for example, by looking at the scopes within the
token). If this is successful, then access to the resource is allowed.

Drawbacks:

As the authorization flow may differ depending on the requirements, the pattern isn't
completely safe if a consuming application isn't trusted and the credentials flow through
the application. Although this can be prevented by adopting a more complex flow, doing so
would require more effort and understanding of protocols such as OAuth 2.0. Furthermore,
this flow will typically require further applications infrastructure (for example, an
authorization server).

Tags: Security (main) and mediation (supporting).

Applicability:

This pattern applies to any HTTP and/or HTTP/2-based API, assuming the API gateway
supports the OAuth 2.0 protocol.

API bearer of obscure token
Problem statement:

This pattern has similar requirements to the bearer of token, with the difference being that
in this case, a consuming application can't ever be trusted and thus will never be exposed to
the user credentials or any details of the user that may be available in the token.

Solution:

A solution is to implement the OAuth 2.0 authorization code grant, but extend it with the
use of obscure tokens so the consuming application never gets exposed to any details of the
token. The way this works is that instead of the authorization server issuing a standard
JWT, once the consuming application obtains the authorization code, the server will issue
an obscured token, for example, a random string, that has no meaning to the application.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[156]

Once the API gateway receives the obscure token, it sends it to the authorization server,
which then verifies whether the obscured token is valid and if so, sends the access token
back to the API gateway for further verification.

In addition, in order to ensure this flow is completely safe, mutual TLS should be
implemented between the consuming application and the authorization server, the
consuming application and the API gateway, and finally, between the API gateway and the
authorization server.

Figure 5.16: The API bearer of obscure token pattern

The preceding diagram illustrates an OAuth 2.0 authorization grant flow but with two
variations: firstly, there is no use of client secrets (as the application isn't trusted) and
secondly, obscure tokens are generated in the server instead of JWTs.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API-Led Architecture Patterns Chapter 5

[157]

Drawbacks:

This pattern can be very complex to implement, so unless the requirement dictates a very
high level of safety, simpler but still secure alternative flows should be considered.

Tags: Security (main) and mediation (supporting).

Applicability:

This pattern applies to any HTTP and/or HTTP/2-based API, assuming both the API
gateway and authorization server support not just the OAuth 2.0, but also obscure tokens.

Summary
Throughout the different sections of this chapter, many of the technical capabilities
described in Chapter 4, API-Led Architectures, were brought to life. The chapter started by
describing what it means to adopt design patterns in the context of APIs and also the
different types of patterns that should be considered in end-to-end API architectures.

From simple mediation patterns, such as the resource router, which suggests the use of an
API gateway to route API calls to backend services based on the URIs, to more complex
patterns, such as Webhooks, which make use of several service capabilities in order to
enable asynchronous communication originating from the API provider to the consuming
application, the chapter delivered a thorough elaboration of many design patterns
applicable in the context of API architectures.

The next chapter will deliver a detailed overview and comparison of the API architectural
styles briefly touched upon throughout this chapter.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Modern API Architectural Styles

This chapter complements Chapter 5, API-Led Architecture Patterns, by discussing in more
detail the different modern API architectural styles, such as Representational State
Transfer (REST), Graph Query Language (GraphQL), and Google Remote Procedure
Calls (gRPC), that were briefly mentioned in the patterns illustrated. This chapter
accomplishes this by first delivering a point of view on the application interface protocols
and standards that have led to modern APIs. Next, the chapter will elaborate on their
unique characteristics, their pros and cons, and when to (or not to) use each of them.

A brief history of interfaces
As mentioned in the Preface, the use of programming interfaces as the means for one
application (or application module) to interact with another is by no means new. In fact, the
first use of the term API can be traced back to the 1968 publication Data Structures and
Techniques for Remote Computer Graphics by I. W. Cotton and F. S. Greatorex, Jr. The paper
described an approach to achieving hardware abstraction, modularity, and reusability by
implementing hardware-agnostic APIs that can be remotely accessed from multiple display
devices.

For more information on this publication, please refer to the following
link:
https://www.computer.org/csdl/proceedings/afips/1968/5072/00/507
20533-abs.html

However, in spite of the obvious similarities with the contemporary use of interfaces, it is
difficult to tell whether such early use of the term had any influence on how we employ
APIs today. Regardless of this, what can be concluded without question is that the notion of
interfaces as the means of achieving some form of abstraction has been present since the
early days of computer science. Recognizing this is extremely important as it's clear
evidence that APIs have and will continue to evolve. This will be the case even more so as
faster, more efficient, and more compact hardware infrastructure, application
communication protocols, and architecture paradigms are introduced to the industry.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.computer.org/csdl/proceedings/afips/1968/5072/00/50720533-abs.html
https://www.computer.org/csdl/proceedings/afips/1968/5072/00/50720533-abs.html

Modern API Architectural Styles Chapter 6

[159]

This is one of the main reasons that this book has, to the extent possible,
decoupled itself from just one API architectural style (for example, REST)
and rather it focuses on the bigger picture, such as approaches, concepts,
technical capabilities, and patterns that may also apply in the future,
beyond APIs as we know them today.

The rise of RPC
Modern APIs are broadly considered to be an evolution of the Remote Procedure Call
(RPC) protocol. Although research for the protocol started in the 1970s, it wasn't until the
late 1980s, when Sun Microsystems (now part of Oracle Corporation) first released its
UNIX-based RPC implementation, that the protocol gained wide popularity and adoption.

Please refer to the following article for further details:
https://en.wikipedia.org/wiki/Remote_procedure_call#History_and_
origins

The Open Network Computing (ONC) RPC, also referred to as Sun's RPC, had many of
the characteristics expected of modern APIs:

It made use of the External Data Representation (XDR) standard to define an
interface that both server and client applications should comply with.
It made use of XDR as the means to serialize and deserialize data over the wire
(basically request and response messages).
It made use of the still-widespread Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP) as transport.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Remote_procedure_call#History_and_origins
https://en.wikipedia.org/wiki/Remote_procedure_call#History_and_origins

Modern API Architectural Styles Chapter 6

[160]

Figure 6.1: Modern APIs as perceived today

As illustrated in preceding diagram, modern APIs, such as RPC, also consist of a client
application (the consumer of the API), a server (the producer of the API) and an interface
definition document detailing, in technical terms, all the details of an interface, such as the
actions/methods/resources supported and data inputs and outputs.

However, ONC RPC wasn't the only popular RPC implementation. The following diagram
illustrates in chronological order the interface protocols and standards that followed and
still apply today.

As can be seen, within five years of its inception, the Open Software Foundation (OSF), a
non-profit organization originally consisting of Apollo Computer, Groupe Bull, Digital
Equipment Corporation, Hewlett-Packard, IBM, Nixdorf Computer, and Siemens AG,
(referred to as the Gang of Seven), released its own implementation of RPC called the
Distributed Computing Environment (DCE) RPC.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[161]

Note that in February 1996, the OSF merged with X/Open to become The
Open Group.

Figure 6.2: Application interfaces protocols and standards evolving through time

Although, at a conceptual level, DCE RPC shared many of the characteristics of ONC RPC,
in actual practice there were many notable differences. For example, the former made use
of an XDR standard as the means to define public interfaces and also to serialize and
deserialize data over the network. The latter made use of its own interface definition
language (IDL) and a network data representation (NDR) specification to serialize data
into octet streams (a process known as marshaling) and then deserialize it (a process
known as demarshaling).

Another difference was that DCE RPC did not limit the number of parameters on a call; in
ONC RPC, on the other hand, calls were limited to one input and one output parameter.

All of the interface protocols and standards are described in detail in the
following article:
https://www.soa4u.co.uk/2019/02/a-brief-look-at-evolution-of-int
erface.html

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.soa4u.co.uk/2019/02/a-brief-look-at-evolution-of-interface.html
https://www.soa4u.co.uk/2019/02/a-brief-look-at-evolution-of-interface.html

Modern API Architectural Styles Chapter 6

[162]

RPC and object-oriented programming
One important characteristic that both DCE and ONC RPC protocols had in common,
though, was the fact that neither were based on the object-oriented programming model,
which was increasingly gaining popularity in the early 1990s.

The first RPC-based protocol natively supporting the object-oriented programming model
was the Common Object Request Broker Architecture (CORBA), created by the Object
Management Group (OMG) consortium. CORBA, just like other RPC systems, followed a
client-server architecture, with the major difference being that instead of
serializing/deserializing flat data over the network, it adopted the Internet InterORB
Protocol (IIOP) as a messaging protocol to transfer objects over a TCP/IP transport.

The Distributed Component Object Model (DCOM) was perhaps the second RPC-based
protocol supporting the object-oriented programming model. DCOM was created by and
remains the property of Microsoft. However of interest is the fact that DCOM made heavy
use of Microsoft RPC (MSRPC), which is nothing but a modified version of DCE RPC but
was originally created to support a client/server model in the Windows NT operating
system.

It's worth noting that with the popularity of these proprietary protocols
also came the emergence of a new set of tools in support of enterprise
application integration (EAI). EAI tools made use of these protocols to
enable the integration of different applications that could not otherwise
talk to each other. Refer to Chapter 2, The Evolution of API Platforms, for a
comprehensive overview of how EAI evolved into the modern platforms
we see today.

A third and very popular implementation of RPC for the object-oriented programming
model was the Java Remote Method Invocation (RMI), which arguably is an RPC system
but for the Java Virtual Machine (JVM). In a nutshell, Java RMI allows for an object
running in one JVM to invoke methods running in another JVM. The most popular use of
the Java RMI is in Enterprise Java Beans (EJB) for the Java Enterprise Edition (JEE)
platform (now Jakarta EE).

XML to the rescue
Some of the challenges faced by the RPC alternatives available in the early 1990s were due
to the fact that many made use of proprietary standards. This either restricted the use of the
technology or required the acquisition of a commercial license to do so.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[163]

Needless to say, this was far from ideal as it meant that interoperability of systems heavily
depended on the vendor of a system and what protocols/standards it opted to use.

This was all about to change with the introduction of the Extensible Markup Language
(XML) as an open standard by the World Wide Web Consortium (W3C) in 1996. XML
enabled data to be formatted in a document that was not only readable by both humans
and machines, but in an open (text-based) format that did not require licenses or
permissions for its use, meaning it was implementation-neutral and supported by open
standards. This was a game changer in the industry as it meant that any protocol and/or
standard that was based on XML would face far less interoperability challenges and thus
experience increased adoption rates.

Not long after XML became a standard, an XML-based RPC implementation was released
by Microsoft. It was called RPC-XML. Because RPC-XML not only made XML the message
format, but also adopted Hypertext Transfer Protocol (HTTP) as the transport protocol, it
quickly became a popular choice when implementing client-server applications over the
network and even over the public Internet.

Within four years, RPC-XML evolved into becoming the Simple Object Access Protocol
(SOAP), which, along with another XML-based standard called the Web Service
Description Language (WSDL), which was used as the means to describe interfaces based
on SOAP, became the foundation for Web Services within the official W3C
recommendation Web Services Architecture published in 2004.

Web Services was perhaps the most important and influential concept
behind the still-popular Service Oriented Architectures (SOA)
architectural paradigm.

SOAP/WSDL and associated standards and tools, most notably the Enterprise Service Bus
(ESB), which became a sort of silver bullet (perhaps because vendors sold it as such),
prevailed in the industry for over a decade as the main means to deliver (or expose) Web
Services and enable SOA. However, as with everything, this dominance wasn't meant to
last forever.

Towards early 2010, with the rise of mobile applications and cloud computing, the industry
felt constrained by the capabilities offered by ESBs but also by using Web Services as a
standard. The was especially true when it came to satisfy emerging requirements around
mobility, the cloud, and even the Internet of Things (IoT). Both the use of ESBs and XML-
based protocols felt heavy, so lighter-weight alternatives were favored.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[164]

These challenges, along with a description of how and why the tooling
also evolved into modern API platforms, are further described in Chapter
2, The Evolution of API Platforms.

It was at this point that the industry started to rapidly shift towards adopting an alternative
approach called REST. REST was perceived by many to be lighter (no need for SOAP
envelopes or even XML) and simpler (with the use of unique resource identifiers (URIs),
HTTP verbs, and hyperlinks, just like the web in general) to implement over SOAP/WSDL-
based Web Services exposed using ESBs.

Moreover, because REST was fully built on the still-popular HTTP v1.1
protocol, its adoption was straightforward, especially for those familiar
with web standards.

REST, along with other modern API architectural styles, will be described in detail in the
subsequent sections of the chapter.

Latest trends
It is 15 years since W3C's recommended Web Services Architecture was released, and what
we see today (as of 2019) is a prevalence of REST-based APIs, at least according to the
following Google trends analysis, which compares the popularity (in terms of Google
keyword searches) of the terms "GraphQL," "REST API," "OData," "WSDL," and "gRPC" in
the last 10 years:

Figure 6.3: API trends for March 2019

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[165]

To recreate the Google trend diagram, open the following URL in any
browser. Note that the dates in the URL can be adjusted as they are in the
format yyyy-mm-dd:
https://trends.google.com/trends/explore?date=2004-01-01%202019-
06-01&q=GraphQL,REST%20API,OData,WSDL,gRPC

The analysis suggests that REST APIs have followed almost exactly the opposite trend as
WSDL, having now reached the same level of popularity as WSDL in early 2004. But just
like WSDL, there is some evidence that the popularity has started to decline.

The decline (or slowing down) of REST is perhaps more evident when looking at the
exponential growth in popularity that GraphQL experienced not long after Facebook made
it public in 2015. Moreover, the GraphQL trend appears to be even more aggressive than
that of REST, to the point that if such a trend continues, GraphQL could match or even
surpass REST (in terms of popularity) within the next three years or even less.

Then there is gRPC, Google's own implementation of the RPC protocol, which was also
open-sourced in 2015. Although gRPC is not experiencing the same level of hype as
GraphQL, the trend analysis suggests that it is indeed rapidly increasing in popularity.

What does this trend analysis really tell us?
Understanding market trends is important as it provides guidance as to where the industry
is going, which, in turn, helps with making important decisions. At the end of the day,
there is always an underlying reason for why certain technologies increase in popularity
and others decline. It can't all be based on hype. For example, GraphQL claims to have a
developer-friendly user interface and promises to deliver a far more flexible API whereby
developers can more easily define exactly what data to fetch from an API without the
nuances of REST.

gRPC, on the other hand, offers a robust transport protocol that leverages HTTP/2 and thus
supports features such as streaming and is very efficient for service-to-service
communications (which is why Google created it in the first place).

In spite of this, however, architectural decisions should never be based on hypes or trends.
Architects and developers should develop a deeper understanding of the viable options
available to them, and based on facts and common sense, determine what option best fits
the need.

The following sections therefore focus on providing a deeper insight about the three most
trendy API architectural styles at the time this book was written. These are REST, GraphQL,
and gRPC.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://trends.google.com/trends/explore?date=2004-01-01%202019-06-01&q=GraphQL,REST%20API,OData,WSDL,gRPC
https://trends.google.com/trends/explore?date=2004-01-01%202019-06-01&q=GraphQL,REST%20API,OData,WSDL,gRPC

Modern API Architectural Styles Chapter 6

[166]

Each of the options will be covered in a good degree of detail, but most importantly, they
will be covered from a practical point of view. You will get a brief history of their inception,
their architectural anatomy, and their pros and cons based on different dimensions.

REST
REST is an architectural style for building web APIs. REST is not a standard per se and is
perhaps better defined as a set of constraints (six to be exact) that you should adhere to
when defining and/or implementing REST-based APIs.

REST was first introduced by Roy Fielding in his 2000 PhD dissertation titled Architectural
Styles and the Design of Network-based Software Architectures at the University of California
Irvine.

Although the first (or at least the first publicly known) REST API was
launched by eBay in the same year as Fielding's dissertation (refer to
https://thehistoryoftheweb.com/ebay-apis-connected-web), the
adoption of REST and its main alternative (SOAP/WSDL Web Services)
really only gained traction toward the end of 2004 when Flickr first
launched its public REST API, shortly followed by Facebook and Twitter.

Of relevance is the fact that while working on REST, Fielding was in parallel working on
version 1.1 of HTTP. This is most likely the reason that REST relies so heavily on HTTP
URIs and HTTP verbs, which will both be explained subsequently.

Fielding's dissertation is publicly available at the following URL:
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dis
sertation.pdf

Architecture
As mentioned, REST is a resource-centric architectural style that makes use of URIs and
HTTP verbs (for example, GET, PUT, POST, DELETE, and PATCH) in order to perform
actions against a given (unique) resource. This is in contrast to RPC-based protocols, such
as SOAP, gRPC, and even GraphQL, where the action is explicit in the payload of the
message. For example, a HTTP GET request against a http(s)://<server>/customers
URI implies listing all customers available in the /customers resource.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://thehistoryoftheweb.com/ebay-apis-connected-web
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Modern API Architectural Styles Chapter 6

[167]

Doing a HTTP POST call against the same resource means creating a new customer record,
details of which should be provided as part of the HTTP payload.

The following is a process view representation of REST extracted from Fielding's
dissertation.

Figure 6.4: A process view of REST-based architectures

The preceding diagram is an extract from section 5.3.1 Process View from
the following link:
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_st
yle.htm

The diagram illustrates a user agent (for example, a browser) that implements a client cache
and accesses three resources through different interactions. The first one is against a proxy
(this could be an Internet proxy or a load balancer, for example), which in turn interfaces
with a gateway (for example, an API gateway) that also acts as an additional cache layer.
The gateway, in turn, interfaces with the Origin Server (the resource ultimately being
accessed), which exposes a uniform interface, which abstracts the underlying
implementation.

The second interaction is directly against the Origin Server (basically against the resource
directly without any middle tiers), while the third interaction is against a proxy that is
capable of translating the HTTP calls into the protocol Z39.50 adopted by Wide Area
Information Servers (WAIS).

It is critical (if not mandatory) for you to fully understand the six constraints mentioned
earlier, as they form the basis of the architectural style illustrated.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Modern API Architectural Styles Chapter 6

[168]

What follows is a summary of each of the constraints as they appeared in the dissertation,
along with an explanation describing the practicalities of each.

Client-server

"Separation of concerns is the principle behind the client-server constraints. By separating
the user interface concerns from the data storage concerns, we improve the portability of
the user interface across multiple platforms and improve scalability by simplifying the
server components. Perhaps most significant to the Web, however, is that the separation
allows the components to evolve independently, thus supporting the internet-scale
requirement of multiple organizational domains."

In practical terms, this means separating a client from servers. In this separation, a client
(for example, a mobile app or a JavaScript client application) should not be concerned with
how data is stored in the server-side, and likewise, the server should not care about user
interface needs.

Basically, all the client needs to be concerned with is the API it is calling; the servers do the
rest. In achieving this, the client and servers can then evolve independently. This is an
important benefit and one we see reflected today in how fast user interfaces evolve when in
actual practice, the servers accessed via APIs may have not dramatically changed or not
changed at all.

Stateless

"Communication must be stateless in nature such that each request from client to server
must contain all of the information necessary to understand the request, and cannot take
advantage of any stored context on the server. Session state is therefore kept entirely on the
client."

This constraint effectively means that an API should handle a single call as a unique one
and therefore all of the contextual information required to process the call (for example, the
authorization token, resource identifier, or search filters) should be contained within the
call itself. This is a good example of how HTTP principles are reflected in REST.

There are substantial benefits to this approach. First of all, scaling the server becomes a lot
easier, as the implementation of the API, ideally a fully decoupled service (microservice),
can scale horizontally and on demand without having to worry about session sharing. This
also simplifies tasks such as monitoring and troubleshooting because all contextual
information is in the same call and there is no need to look for historical transactions to get
a further understanding of what happened.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[169]

Cache

"In order to improve network efficiency, we add cache constraints to form the client-cache-
stateless-server style. Cache constraints require that the data within a response to a
request be implicitly or explicitly labelled as cacheable or non-cacheable. If a response is
cacheable, then a client cache is given the right to reuse that response data for later,
equivalent requests."

Perhaps another good example of how much REST is heavily influenced by core HTTP
principles is that just like browsers are able to cache the Hypertext Markup Language
(HTML) of web pages already visited, REST also supports the concept of client cache
through this constraint. In practical terms, this means that client applications are allowed
(or are supposed to) cache API responses, which are marked as cacheable in the HTTP
(cache-control) header. This constraint can result in considerable performance gains, as not
every user action has to translate into an API call. Common API responses that don't often
change could be cached by the client.

Uniform interface

"The central feature that distinguishes the REST architectural style from other network-
based styles is its emphasis on a uniform interface between components. By applying the
software engineering principle of generality to the component interface, the overall system
architecture is simplified and the visibility of interactions is improved. Implementations
are decoupled from the services they provide, which encourages independent evolvability.
REST is defined by four interface constraints: identification of resources; manipulation of
resources through representations; self-descriptive messages; and, hypermedia as the
engine of application state (HATEOAS)."

This constraint sets REST apart from the RPC-inspired API approaches and introduces four
very important concepts:

Identification of resources: In practice, this means making use of HTTP URIs in1.
order to uniquely identify and access uniform resources (for example, https:/ /
mydomain. com/ api/ orders). The use of the term uniform is deliberate, as it
indicates that resource interfaces should be standardized and should not reflect
the underlying implementation of the resource. In other words, a uniform
interface abstracts and decouples a client from the server implementation (for
example, a microservice), thus also allowing a server implementation to evolve
without changing an interface.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://mydomain.com/api/orders
https://mydomain.com/api/orders
https://mydomain.com/api/orders
https://mydomain.com/api/orders
https://mydomain.com/api/orders
https://mydomain.com/api/orders
https://mydomain.com/api/orders
https://mydomain.com/api/orders
https://mydomain.com/api/orders
https://mydomain.com/api/orders

Modern API Architectural Styles Chapter 6

[170]

Manipulation of resources through representations: This means making use of2.
HTTP verbs, such as POST, PUT, PATCH, or even DELETE, to create,
update/amend, and even delete resources. It also implies that a client application
should hold enough information that such manipulation can occur.
Self-descriptive messages: This means that every message generated either by a3.
client or server should have enough information for any processing to occur.
HATEOAS: This is one of the pillars of REST APIs and yet another example of4.
the influence of HTTP and the web on the architectural style. Hypermedia is an
extension of the hypertext concept (the H in HTTP), which basically means cross-
referencing associated sections of text and graphics within a digitally displayed
text, for example, a HTML page rendered in a browser using hyperlinks.
Hypermedia, however, expands the concept by also encompassing other media
types such as video and audio. Putting hypermedia into the context of
HATEOAS, it means that payloads contained within API responses should, when
applicable, also include the URIs of related resources. The main benefit of
HATEOAS is that it allows client applications accessing a resource to also access
(or be aware of) related resources without prior knowledge of their existence.
Simply put, this is like browsing a web page and navigating through the site by
just clicking on different links. HATEOAS enables a similar experience but in the
context of APIs.

Layered system

"In order to further improve behavior for internet-scale requirements the layered system
style allows an architecture to be composed of hierarchical layers by constraining
component behavior such that each component cannot "see" beyond the immediate layer
with which they are interacting. By restricting knowledge of the system to a single layer,
we place a bound on the overall system complexity and promote substrate independence.
Layers can be used to encapsulate legacy services and to protect new services from legacy
clients, simplifying components by moving infrequently used functionality to a shared
intermediary. Intermediaries can also be used to improve system scalability by enabling
load balancing of services across multiple networks and processors."

This constraint introduces the notion of abstraction in the REST architectural style. Briefly
discussed earlier, it allows, for example, a client to be unaware of the implementation
details of a server resource (which could well be a legacy system) by accessing it via
uniform interfaces.

Putting the concept into practice, the uniform interface could be, for example, an API
exposed via an API gateway, whereas the implementation details reside within a service
that the API gateway routes to.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[171]

However, the concept goes beyond that, as the APIs in the API gateway and in the service
could both be REST-based, meaning there could be multiple layers of abstraction in the
end-to-end architecture.

Code-on-demand

"REST allows client functionality to be extended by downloading and executing code in
the form of applets or scripts. This simplifies clients by reducing the number of features
required to be pre-implemented. Allowing features to be downloaded after deployment
improves system extensibility. However, it also reduces visibility, and thus is only an
optional constraint within REST."

Perhaps one of the lesser-known constraints in REST, code-on-demand talks about
accessing a resource that when parsed on the client-side (for example, a browser) actually
contains code that can be executed by the client itself. This means that a server resource is
also able to delegate some of the processing logic to the client. In fact, many APIs today
make use of this constraint. An example is the Google Maps API, which allows browsers to
display a map and interact with it.

Interface definition
Although the REST architectural style doesn't explicitly provide an interface definition
language (IDL), in the past 10 years or so many languages have emerged as options for
defining REST-based APIs. Of all the options, the Open API Specification (OAS) is by far
the most popular one. Nonetheless, the following section contains a summary of the most
popular open alternatives.

A full list of all IDLs for REST can be found at the following URL:
https://en.wikipedia.org/wiki/Overview_of_RESTful_API_Descriptio
n_Languages#List_of_RESTful_API_DLs

OAS

Figure 6.5: The Open API Initiative logo

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Overview_of_RESTful_API_Description_Languages#List_of_RESTful_API_DLs
https://en.wikipedia.org/wiki/Overview_of_RESTful_API_Description_Languages#List_of_RESTful_API_DLs

Modern API Architectural Styles Chapter 6

[172]

Originally known as the Swagger Specification, as it was conceived as part of an open
project with the same name, in 2016, OAS became a separate project called the OpenAPI
Initiative (openapis.org) before being given its current name.

The project is community-driven and sponsored by the Linux Foundation
(linuxfoundation.org). This means that active members of the community can contribute
to the evolution of the specification. Since it became open, several well-known
organizations, such as Google, Microsoft, Oracle, and IBM, have become members.

In terms of the specification itself, OAS can be written using the JavaScript Object
Notation (JSON.org) or YAML Ain't Markup Language (YAML) (yaml.org).

OAS 3.0 is the latest version (at the time of writing) and introduces some notable
differences when compared with its popular predecessor, 2.0:

Figure 6.6: OAS 2.0 versus 3.0

OAS 3.0 aims to simplify the structure and also increase reusability of components, such as
parameters, headers, examples, and security schemes.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.openapis.org/
https://www.linuxfoundation.org/
http://www.json.org/
https://yaml.org/

Modern API Architectural Styles Chapter 6

[173]

To view and compare actual examples of OAS 2.0 and 3.0 for a simple
API, you can check out the following GitHub resources:
https:/ /github. com/ OAI/ OpenAPI- Specification/ blob/ master/
examples/ v3. 0/petstore. yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/example
s/v2.0/yaml/petstore-simple.yaml

Lastly, it is worth mentioning that the tooling ecosystem for OAS is quite broad (the
broadest of all options) with support from the vast majority (if not all) API vendors and
open source tools on the market.

More details on OAS, including the full specification and tutorials, can be
found at the following link:
https://github.com/OAI/OpenAPI-Specification

API Blueprint

Figure 6.7: The API Blueprint logo

Created to be a much simpler and user-centric alternative to the then Swagger and Web
Application Description Language (WADL), an XML-based language for defining REST
APIs that wasn't very popular, API Blueprint is a markdown-based language for defining
APIs. The specification was created by the founders of Apiary (apiary.io is now part of
Oracle) in 2013 as an open-source project.

What sets API Blueprint apart from OAS and other alternatives is the fact that a single
blueprint document can incorporate not just the technical specification of an API (for
example, resources, verbs, paths, parameters, and payloads) but also its functional
documentation. Furthermore, as the markdown markup language is very easy to learn and
read even without an editor, API blueprints are very compelling for more functional
audiences that wish to take part in the definition of APIs and their documentation.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v2.0/yaml/petstore-simple.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v2.0/yaml/petstore-simple.yaml
https://github.com/OAI/OpenAPI-Specification
https://apiary.io/

Modern API Architectural Styles Chapter 6

[174]

From a usability standpoint, API Blueprint has a fairly large ecosystem of open-source tools
available for creating, editing, visualizing, and even testing APIs defined in this language.
Several API vendors also support API Blueprint.

More details on API Blueprint can be found at:
https://apiblueprint.org

For API Blueprint examples, check the following URL:
https://apiblueprint.org/documentation/examples

RAML

Figure 6.8: The RAML logo

The RESTful API modeling language (RAML) is a YAML-based language originally
created by MuleSoft in 2013 as an open-source project and as another alternative to the then
Swagger and WADL. Unlike OAS and API Blueprint, RAML claims to be unique, as APIs
defined with it don't have to obey all of the REST constraints.

In practice, however, the last statement is ambiguous, as even OAS and/or
API Blueprint can be used to define APIs that don't strictly follow all
REST constraints. For example, it is possible to define the URI
/getCustomers. Although such practice goes against the uniform
interface REST principle, both languages would still allow it.

A good feature that RAML has over OAS 2.0 and API Blueprint is the ability to reuse
external fragments (for example, reference another file that defines a JSON object), although
this was introduced in OAS 3.0.

RAML does benefit from a healthy community and a good ecosystem of tools around it,
although the language tends to be heavily associated with MuleSoft software.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://apiblueprint.org
https://apiblueprint.org/documentation/examples

Modern API Architectural Styles Chapter 6

[175]

For more information on RAML, please refer to: https://raml.org/

Transport and payloads
Strictly speaking, REST does not enforce any specific transport protocol or data format.
However, in actual practice the majority (if not all) REST APIs are implemented using
HTTP(S) as the transport, with JSON as the content type.

However, there are many APIs out there that also make use of XML (in some cases in
addition to JSON) and other content types.

Usage flow
To show a common usage flow from the perspective of a frontend developer, the following
sequence diagrams illustrate the typical steps followed when consuming a REST API. The
steps include building the client code based on a REST IDL (for example, OAS) in order to
support a given functionality within the frontend app itself, which in the example is a
search for customers based on a string and then based on the search results (for example,
JSON collection) to obtain further details for a specific customer.

Note that the steps assume that:

There is a REST API specification (for example, in OAS 3.0 this had been
previously defined).
A service based on the API specification is up and running.
An API gateway has also been deployed.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://raml.org/

Modern API Architectural Styles Chapter 6

[176]

Figure 6.9: The REST API usage flow

The steps are as follows:

The frontend application developer obtains the interface definition for the API1.
(for example, an OAS 3.0 document).
The developer creates the client-side code that consumes the different resources2.
exposed by the API. This could be done manually (meaning the developer has to
interpret the IDL to then handcraft the code) or preferably using a utility to aid
with automatically generating client code directly with an API IDL.

Note that there are many utilities out there that auto-generate
client-side code from a REST API IDL. However, some popular
examples are SwaggerHub and the aforementioned Apiary,
both of which not only aid the design of the IDL itself, but also
the generation of client and even server code.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[177]

An application, making use of the client-side code built by the developer, is able3.
to consume a REST resource typically exposed through an API gateway. Usually,
the first call involves calling a resource that returns a collection (for example, the
result of a search for customers named "Luis").
Once the API gateway receives a valid HTTP request, it routes the call to the4.
respective backend service endpoint that is implementing the resource.
Assuming the request is valid, the backend service processes the request and5.
sends back a HTTP 200 status code (meaning the request was successfully
processed), including any payload in the respective format as specified in the
HTTP header Content-Type (for example, JSON). Furthermore, the response
payload may include a HATEOAS link to any related resource(s) (for example,
specific URIs for individual customers found and included in the collection).
The API gateway routes back the HTTP response to the client application.6.
The client application makes additional calls as required to access the referenced7.
resources.

For best practices on REST design, refer to the following eBook by Todd
Fredrich from eCollege.com:
https://www.restapitutorial.com/resources.html

For a reference maturity model for REST APIs, refer to the Richardson
Maturity Model:
https://restfulapi.net/richardson-maturity-model/

For bad practices to avoid and how to do so, refer to this article:
http://www.soa4u.co.uk/2018/10/the-se7en-deadly-sins-of-api-desi
gn.html

GraphQL
The Graph Query Language (GraphQL) was created by Facebook around 2012 by
engineers Lee Byron, Dan Schafer, and Nick Schrock. It was open-sourced three years later,
in 2015.

Figure 6.10: The GraphQL logo

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.restapitutorial.com/resources.html
https://restfulapi.net/richardson-maturity-model/
http://www.soa4u.co.uk/2018/10/the-se7en-deadly-sins-of-api-design.html
http://www.soa4u.co.uk/2018/10/the-se7en-deadly-sins-of-api-design.html

Modern API Architectural Styles Chapter 6

[178]

The GraphQL project is accessible through its official website:
https://graphql.org/

As described by Byron himself in one of his articles, GraphQL came at a time when
Facebook's iOS and Android mobile apps were just thin wrappers (mobile WebView) of
Facebook's web application. As the number of users grew, so did the complexity of the
mobile WebView and thus it started suffering from poor performance and it constantly
crashed.

To overcome this challenge, Facebook started transitioning its apps into natively
implemented views (as opposed to just web wrappers). However, this raised the need for a
mechanism other than HTML to fetch data. In other words, there was a need for APIs.

It was at this point that Facebook started evaluating different API architectural options,
including the implementation of a RESTful server. However, Facebook developers
concluded that REST didn't satisfy its app data access needs, as there were considerable
gaps between the data it wanted to access and the API calls required in order to do so.
Furthermore, a considerable amount of code was required at both client- and server-side in
order to prepare the data as required by the app and then for the app itself to parse it.

This frustration inspired a few developers at Facebook to create an alternative approach to
access data in a far more flexible and dynamic way. Most importantly, the focus was the
perspective of app designers and developers. This project ultimately became GraphQL.

The name GraphQL comes from the fact that Facebook's developers didn't think of data as
resource URLs or joint tables, but rather as a graph of objects that could be queried within
application models.

The following article describes in great detail the original motivations for
GraphQL as a means to overcome the limitations of REST:
https://code.facebook.com/posts/1691455094417024

Architecture
In a nutshell, a GraphQL API consists of a service that runs a GraphQL server. The server,
in turn, implements the different types, as defined in the service schema, and the resolvers
responsible for executing the functionality of the operation types.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://graphql.org/
https://code.facebook.com/posts/1691455094417024

Modern API Architectural Styles Chapter 6

[179]

In addition, most GraphQL servers can expose the GraphiQL (pronounced graphical) web
client, which is an interactive in-browser interface development environment (IDE) for
constructing GraphQL operations.

Figure 6.11: The GraphQL architecture

The preceding diagram illustrates consuming applications (for example, desktop, tablet,
mobile, and even wearable apps) performing multiple queries against a GraphQL service.
The diagram also shows how the service may connect to multiple backends (for example, a
database, REST APIs, gRPC APIs, or even a legacy system via a SOAP interface).

Other important architectural characteristics of GraphQL that can be deduced from the
diagram are as follows:

A single URL is used to access all operations offered by the GraphQL service.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[180]

Operations are expressed within the HTTP payload. There is no use of URIs.
Multiple operations (for example, multiple queries) can be performed in a single
HTTP call.
GraphQL supports two HTTP verbs: GET (in which case the payload is passed as
GET parameters) and POST (in which case the payload is passed as part of the
HTTP payload).

It is important to note that in its nature, GraphQL is more similar to RPC-
based protocols, such as SOAP and gRPC, than to REST. In fact, it could
be said that GraphQL is, at the very least, RPC-inspired given the number
of similarities.

To see how GraphQL works, look at the following example created in graphqlhub.com (a
public GraphQL API):

Figure 6.12: A GraphQL sample using a GraphiQL client

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.graphqlhub.com/

Modern API Architectural Styles Chapter 6

[181]

Notice that on the left-hand side the operation to be performed on the GraphQL service, in
this case a query, is defined within the payload itself. This is because in GraphQL, all
operations share only a single endpoint (typically <server>/graphql) as opposed to
REST, wherein each resource is a URI. Furthermore, and as shown, multiple individual
queries, each with different parameters and fields, can be made in a single request. The
response from the service, which is shown on the right-hand side, corresponds exactly to
the queries made.

This sample can be accessed from the following URL:
https://tinyurl.com/graphql-sample

Architectural principles
GraphQL is not a programing language but rather a language for defining GraphQL
operations, such as queries, mutations, or subscriptions against a GraphQL server.
Furthermore, GraphQL was designed with the following principles in mind:

Hierarchical

Queries are hierarchies of data definitions, shaped just how data is expected to be returned.

View-centric

GraphQL is unapologetically driven by the requirements of views and the frontend
engineers that write them. GraphQL started with their way of thinking and their
requirements, before building the language and runtime necessary to enable that.

Strongly-typed

A GraphQL server defines a specific type system. GraphQL operations (for example,
queries) are executed within this context.

Client-driven

Through the type systems, a server publishes an interface for clients to construct operations
against. Then it is the responsibility of the clients to define how exactly to implement an
operation, including defining exactly what payload to fetch in the case of queries.

Introspective

The type system itself is queryable. Tools are built around this capability, such as the
GraphiQL client.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://tinyurl.com/graphql-sample

Modern API Architectural Styles Chapter 6

[182]

Version-free

From its inception, the GraphQL specification has taken a strong stand against
implementing versioning at service level; instead, it provides tools and mechanisms for
continuous evolution of the service and thus provides the means to support backwards and
future compatibility.

Miscellaneous

GraphQL is intentionally silent on important architectural considerations, most notably
caching, authorization, and pagination. This is the case because they are considered to be
outside of the scope of the specification itself, even though a variety of solutions may
already exist.

More information on the GraphQL specification can be found at the
following link: https://graphql.github.io/graphql-spec

Interface definition
Interfaces are defined using the GraphQL schema definition language (SDL), which is part
of the specification itself. Unlike REST, there isn't any other standard for defining GraphQL
interfaces. Even though GraphQL services can be implemented in a wide variety of
programming languages, such as JavaScript, Java, Scala, Python, Go, Ruby, and PHP, they
all comply with the GraphQL specification and type system.

Figure 6.13: SDL defining types

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://graphql.github.io/graphql-spec/

Modern API Architectural Styles Chapter 6

[183]

As the preceding figure shows, the GraphQL SDL mainly defines types and their
relationship. Although a full description of all types available is not included in this
chapter, what follows is a summary with the two main categories.

Types that define operations
Operations are types that enable a GraphQL service to expose any given functionality that
is to be offered by a GraphQL service.

Think of them as public functions within a class.

There are three operation types supported in GraphQL:

Query

This type is used to define operations that fetch data and thus are read only.

Mutation

This type is used to define operations that create and/or manipulate data, such as create,
update, and delete. A mutation may also respond with a data fetch.

Subscription

GraphQL's implementation of web events (for example, Webhooks) allows clients that
subscribe to a given event to then asynchronously receive updates.

For more information, refer to the section on operations on GitHub:
https://graphql.github.io/graphql-spec/June2018/#sec-Validation.
Operations

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://graphql.github.io/graphql-spec/June2018/#sec-Validation.Operations
https://graphql.github.io/graphql-spec/June2018/#sec-Validation.Operations

Modern API Architectural Styles Chapter 6

[184]

Types that define data
Data in GraphQL can be defined using the following types:

Object

This type represents any kind of object that can be fetched from a GraphQL service through
a query operation, including the fields within the object and/or relationships to other
objects. Furthermore, fields within an object can have zero or many arguments.

Input

Similar to the object type, this type is used to define objects to be used as inputs in a
mutation operation.

Scalar

This type defines the type of data within the fields of an object or input type. There are five
default scalar types:

Int: A 32-bit integer.1.
Float: A double precision floating-point value.2.
String: A UTF-8 character sequence.3.
Boolean: True or false.4.
ID: Represents a unique identifier and is serialized as a string.5.

In addition, GraphQL allows for custom types to be defined within a given schema; for
example, a scalar of type date could be defined that would serialize as an integer
timestamp.

Enumeration

Referred to as enums, they represent a special type of scalar that is restricted to a particular
list of values.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[185]

Interface

This is an abstract type that predefines a set of fields that an object type must include when
it implements the interface.

Union

The unions type allows different object types to be combined as an abstract object.

Refer to the following link for more information and examples of
GraphQL types:
https://graphql.org/learn/schema/

Transport and payloads
GraphQL is typically served through a single HTTP(s) endpoint with JSON as the content
format (for both request and response payloads). Though, strictly speaking, the
specification does not impose this.

Usage flow
To show a common usage flow from the perspective of a frontend developer, the following
sequence diagrams illustrate the typical steps followed when consuming a GraphQL API.
The steps include using the GraphiQL web IDE to inspect the API and try out different
queries, and then incorporate an already-tested query within a frontend application.

In the example, you can see a consuming application that wishes to find all countries that
contain within their names the text "great" and then convert their currencies to US dollars.
This is achieved through a single GraphQL HTTP [POST] request that contains two distinct
queries, as will be subsequently described.

Note that the steps assume that a GraphQL service was previously designed and deployed,
and also that the backend APIs consumed from the GraphQL service already exist.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://graphql.org/learn/schema/

Modern API Architectural Styles Chapter 6

[186]

Figure 6.14: The GraphQL API usage flow

The steps are as follows:

A frontend application developer accesses the GraphiQL IDE web client using a1.
browser. Using the IDE, the developer tries out different operations (in the
example of a type query) until the right one is defined. In the example, two
queries are defined: one for obtaining all countries that contain the text "great"
and another to obtain the forex exchange rate for the UK's currency into US
dollars. Once this is done, the JSON generated in the IDE representing the
operations can be extracted and incorporated into the bit of the frontend
application code responsible for implementing the functionality that requires the
information delivered by the queries.
The frontend application makes a single HTTP(s) [POST] request against the2.
/graphql endpoint for the service containing both queries as a JSON payload.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[187]

The GraphQL service implements the resolver corresponding to the operation3.
getCountries. In the example, the resolver fetches the required data against a
REST API (for example, HTTP [GET] against /countries?name=great).

Note that in the example a REST API is used but, in practice, it
could be any data source.

In parallel, the GraphQL service implements the resolver corresponding to4.
the forexExchange operation. In the example, the resolver fetches the required
data against two distinct REST APIs: first against the REST Countries API to
obtain the country's currency code (for example, HTTP [GET] against
/countries/{country code e.g. uk}/currency), and then against a forex
exchange API to obtain the exchange rate (for example, HTTP [GET] against
/exchange?from=GBP&to=USD&amount=1).
The results of both queries are aggregated into a single JSON payload containing5.
exactly the fields requested. This is then sent back to the caller.

gRPC
gRPC is a modern RPC protocol that runs on top of HTTP/2. It was created by Google and
open-sourced in 2015 as a Cloud Native Computing Foundation (CNCF) project.

The gRPC project is accessible through the official website:
https://grpc.io

Figure 6.15: The gRPC logo

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://grpc.io/

Modern API Architectural Styles Chapter 6

[188]

gRPC has its origins in a proprietary protocol called Stubby, a multi-language RPC
framework also developed by Google around 2001 with the aim of addressing scaling and
communication challenges when building loosely coupled distributed systems.

Stubby, at its core, consisted of an RPC layer capable of handling Internet-scale volumes
(up to the billions of requests per second). When open-sourced in 2015 under the name
gRPC, the protocol maintained many of its original characteristics, with the difference that
it now embraced emerging and complementary open standards such as HTTP/2.

As the protocol is HTTP/2-based, it benefits from the following improvements:

A binary protocol, thus making the transport far more compact and efficient.
Header compression, thus reducing transmission overheads.
Multiplexed requests over a single TCP connection, thus making communications
much faster and more efficient.

For more information on HTTP/2, refer to the official FAQ page:
https://http2.github.io/faq

Bidirectional streaming, allowing clients and servers to communicate in both
directions.
In-built flow control, thus preventing slow receivers from being overwhelmed by faster
senders.
A strongly typed interface definition language.
A single compiler (protoc) to generate a client and servers in multiple languages.

Perhaps because of these features and its high-scaling capabilities, gRPC is
particularly popular in microservice architectures as the means to enable
service-to-service communications in high-throughput environments.

For additional information on gRPC and answers to many other
questions, refer to the official FAQ page: https://grpc.io/faq/
For more information on the motivations and design principles behind
gRPC, please refer to the following URL:
https://grpc.io/blog/principles

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://http2.github.io/faq/
https://grpc.io/faq/
https://grpc.io/blog/principles

Modern API Architectural Styles Chapter 6

[189]

Architecture
Just like any other RPC protocol, gRPC consists of a server that specifies methods that can
be remotely invoked by clients. To achieve this, gRPC introduces the notion of gRPC client
stubs and gRPC servers.

An important feature of gRPC, and probably one of the main reasons for its popularity in
microservice architectures, is its support for the following four interaction styles:

Unary: A traditional synchronous request/response interaction.1.
Server streaming: A client sends a request to the server and the server in2.
response sends back a message stream. The client reads the message stream until
there are no more messages.

Note that gRPC guarantees message ordering within an
individual RPC call.

Client streaming: The client writes a sequence of messages and streams them to3.
the server. Once the client finishes writing messages, it waits for the server to
return a response.

Likewise, in client streaming gRPC guarantees message
ordering within an individual RPC call.

Bidirectional streaming: Both the client and servers communicate in both4.
directions and completely asynchronously using read and write streams.

For more information on basic gRPC concepts, please refer to the
following link:
https://grpc.io/docs/guides/concepts.html

The following diagram illustrates the gRPC architecture, including how gRPC stubs can be
implemented by services and/or consuming applications to interact with gRPC servers that
are also implemented by services.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://grpc.io/docs/guides/concepts.html

Modern API Architectural Styles Chapter 6

[190]

Figure 6.16: The gRPC architecture

The preceding diagram illustrates three gRPC services, two of which are actually wrappers
of a common service and therefore also implement a gRPC stub. The reason for this is to
illustrate a scenario wherein a service is tailored for a client. In practice, this may not be
required.

The diagram also shows that whereas native applications can implement gRPC stubs,
browser applications can't and require the use of the gRPC web client and an Envoy proxy
as HTTP 1.1 to HTTP/2 bridge (this is described in more detail in the usage flow).

The gRPC architecture has the following characteristics:

HTTP/2 is used as transport in gRPC.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[191]

On top of HTTP/2, gRPC makes use of protocol buffers to define the service
interface and as a payload format.
gRPC servers and stubs can be generated directly from the .proto file in a
variety of programming languages (using the protoc command line).
gRPC servers and stubs can be can implemented by services calling other
services.
gRPC stubs can be implemented by native frontend applications (for example,
Android apps) and server-side applications (for example, traditional MVC apps)
calling gRPC servers.
Browser-based applications can't implement gRPC stubs; instead, the gRPC-Web
JavaScript client library has to be adopted, which lets browser clients access a
gRPC server via an Envoy proxy acting as a HTTP 1.1 <> HTTP/2 bridge.

For more information on gRPC-Web, refer to the following link:
https://github.com/grpc/grpc-web

Interface definition, transport, and payload
As previously mentioned, gRPC makes use of protocol buffers, which are Google's mature
and open-source mechanism for serializing and de-serializing structured data.

In gRPC, protocol buffers are used to:

Define a service interface (basically an IDL) and the structure of messages.
Serialize and deserialize the message payloads.
Generate source code, in multiple languages, for both gRPC servers and stubs.
Manage message versioning to ensure compatibility of servers and stubs.

In gRPC, interfaces are defined using a .proto file, which is a text file that defines the data
structures that are to be serialized and de-serialized using protocol buffers, and also the
methods supported.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/grpc/grpc-web

Modern API Architectural Styles Chapter 6

[192]

Once the .proto file is created, then the protocol buffer compiler, protoc, can be used to
generate data access classes in a variety of programming languages.

Note that although protocol buffers have been around for a while and multiple versions
exist, the latest version (at least at the time this book was written) is version three, referred
to as proto3.

For more details on protocol buffers, refer to the official developer guide:
https://developers.google.com/protocol-buffers/docs/overview

Usage flow
Given that the implementation steps in gRPC vary depending on whether a consuming
application is browser-based or not, the former has been assumed in order to be consistent
with the REST and GraphQL examples provided earlier, both of which depict usage flows
based on browser-based client apps.

The example illustrates a common usage flow from the perspective of a frontend developer
wishing to generate a gRPC client that can consume a gRPC service from within a
JavaScript browser-based application.

The steps assume that:

A .proto file has been previously created by a service designer and is accessible
for use.
A gRPC server was previously generated from the same .proto file and is
already up and running.
An Envoy proxy has already been implemented and thus is also up and running.
The client makes unary (request/response) calls.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developers.google.com/protocol-buffers/docs/overview

Modern API Architectural Styles Chapter 6

[193]

Figure 6.17: The gRPC usage flow

The steps are as follows:

A frontend application developer obtains the .proto file containing the data1.
structures and methods supported by the gRPC server (the API).
The developer generates protocol buffer message classes for their language of2.
choice using the protoc command line.
The developer then generates the gRPC-Web client stub using the protoc3.
command line with the gRPC-Web protoc plugin.
The developer then writes the client code that is to be incorporated in the app4.
itself.
The client application makes a HTTP 1.1 request against the Envoy proxy URL,5.
which contains as payload the protocol buffer message. The message itself
contains information about what method is being invoked at the server-side, as
well as any other required data.
The Envoy proxy converts the request from HTTP 1.1 to a fully compliant6.
HTTP/2 protocol buffer request that is then forwarded to the gRPC server.
The gRPC server receives the request and processes it, and then sends a HTTP/27.
response.
The Envoy proxy converts the HTTP/2 response into a HTTP 1.1 response and8.
sends it back to the client app.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[194]

For detailed steps on how to implement a gRPC server and an Envoy
proxy, please refer to the following link:
https://github.com/grpc/grpc-web/blob/master/net/grpc/gateway/ex
amples/echo/tutorial.md

Comparing the options
Now that I've introduced to a good degree REST, GraphQL, and gRPC, a more objective
comparison of the three can be made. As there are no silver bullets; each of the options will
be evaluated against multiple criteria, aiming to cover key aspects of the API life cycle and
architecture, such as developer experience from the perspective of both frontend and
backend developers, common patterns, fitness, authentication and authorization, caching,
and versioning.

The scoring is simple: just based on pluses (+) and minuses (-). Two pluses are the
maximum score (++), indicating that the option delivers the best possible answer to a given
criterion. The worst score is two minuses (--), indicating the opposite. When there aren't
any obvious pluses or minuses, the tilde (~) is used to mark a neutral answer.

Developer experience: frontend developer

Figure 6.18: Developer experience

The criterion evaluates how easy or complex it is for a frontend developer to understand
what the API does and how to use it, try it out if possible, and then write client application
code to start using it within an application. A great experience means that the developer
can almost intuitively (without having to read tons of documents) start trying out the API,
meaning that the API itself should also deliver some form of playground capability to
enable this.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/grpc/grpc-web/blob/master/net/grpc/gateway/examples/echo/tutorial.md
https://github.com/grpc/grpc-web/blob/master/net/grpc/gateway/examples/echo/tutorial.md

Modern API Architectural Styles Chapter 6

[195]

This criterion also means that it should not take too long for a developer to start building
client application code that uses the API. In some cases, there is even tooling to auto-
generate client code, making it even easier to start using the API.

A bad experience means that the developer has to spend a considerable amount of time
reading documentation to just be able to try out the API. In the worst case, there even isn't a
facility for the developer to try the API, meaning that actual client code has to be written to
try the API.

Developer experience: backend developer

This criterion evaluates how easy or complex it is for a backend developer to design an API
and then build server code that implements it. A great experience means that the developer
can very rapidly design an API using rich tooling that aids throughout the design process,
meaning that faster and higher quality designs can be produced. Furthermore, it is possible
to auto-generate server code and even automate tests to ensure that the API design and
server implementation match.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[196]

A bad experience means that the developer has to spend a considerable amount of time
writing code from scratch in order to implement an API and it may take several steps. This
indicates that there isn't tooling (or the tooling is poor) to verify the API design versus
server code compliance, thus increasing the chance of defects.

REST GraphQL gRPC

++
A vast amount of tooling is
available to aid in the design of the
REST API, including the ability to
mock APIs, create playgrounds,
auto-generate server code, and also
test against API designs. However,
because there are so many
standards to define REST APIs,
there also are inconsistencies
market-wise concerning what
standard to use and why.

-
When it comes to API design
and testing, the tooling for
GraphQL is still maturing. So,
in order for a developer to
design an API code, it has to
be written. The same is true for
creating an API mock, which
isn't ideal in the early stages of
design when it is desirable to
try out different options and
quickly get feedback from
multiple users of the API.

~
This is similar to
GraphQL in the sense
that the tooling is still
maturing; however, in
the case of gRPC the
protoc command line
makes it easier to
generate servers that
comply with the
interface design by
default.

API gateway

Figure 6.19: The API gateway

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[197]

This criterion evaluates the feasibility of leveraging an API gateway as the means to expose,
mediate, and manage APIs. This criterion is particularly important as most organizations
today have already made investments into API management products that typically come
with API gateways.

Therefore, those options that can fully leverage existing API gateway infrastructure will get
the higher score over other options that require new infrastructure or technologies in order
to make use of them.

API composition

Figure 6.20: The API composition pattern

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[198]

This criterion evaluates how suitable and if so, to what extent, a given option lends itself to
the adoption of an API composition pattern (refer to the previous chapter for more details).
Options that almost natively can support API composition have the higher score. Options
that require more considerations or adaptations, or would be more complex to implement,
have the lower score.

REST GraphQL gRPC

--
As REST is entirely
resource-based, it is not
natural to define
endpoints that combine
data structures coming
from multiple resources.

++
GraphQL is perfectly suited for API
composition, almost as if it was created
with this objective in mind. This is
because in GraphQL, each field within
a query can in fact be fetched (in
parallel) from multiple sources. Most
importantly, this is part of the standard
behavior of GraphQL and not a
customization or adaptation.

~
Being an RPC-based
protocol, gRPC doesn't
really impose any
restrictions about how
a method is to be
implemented.

Authentication/authorization

Figure 6.21: Authentication and authorization

In the world of APIs, the most common mechanism to implement the authentication and
authorization of APIs is by adopting open standards such as OAuth 2.0 and OpenID
Connect. Options that can adopt the previously mentioned standards almost natively by
leveraging existing tooling or frameworks get the highest score. Options that require either
additional tooling, considerations, or custom code get the lowest score.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[199]

REST GraphQL gRPC

++
Standards such as OAuth
and OpenID are well aligned
with REST and can be easily
implemented with existing
REST tooling. In fact, the vast
majority of API gateways
support these standards out
of the box.

-
Because GraphQL is accessed
through a HTTP endpoint, standards
such as OAuth and OpenID can be
adopted because all operations can
be accessed by a single URI, but
custom authorization modules are
typically required within the
GraphQL service implementation
itself.

--
OAuth and OpenID
can both be
implemented in gRPC;
however, custom code
is required, thus
adding to the
complexity.

Caching

Figure 6.22: Caching

Given the volumes that Internet-based solutions may have to handle, the ability to
implement caching, either at server-side or client-side, can dramatically improve the
performance of an application. Options that can adopt broadly available tools and
frameworks get the highest score. Options that require either additional or custom tooling,
considerations, or custom code get the lowest score.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[200]

REST GraphQL gRPC
++
REST being so aligned
with HTTP 1.1 means
that it benefits from all
the caching support that
comes with network
appliances and even
web browsers. The
majority of API
gateways also support
response caching.

~
Caching is down to the
implementation of the code for
both the server and the client.
However, tooling is evolving
rapidly and there are many
implementations today that
support server- and client-side
caching out of the box.

-
Just like in GraphQL, caching in
gRPC is down to the
implementation of the code for
both the server and the client.
However, when compared with
GraphQL, there isn't the same
number of implementations that
support caching.

Versioning

Figure 6.23: Versioning

Being able to handle different versions of an API while maintaining backward and forward
compatibility can be challenging for both frontend and backend developers. This is
important as an API, just like any other software application, can (and should) evolve either
in support of new features or simply just in response to bug fixes.

However, some versioning strategies can make this already-complicated task even more
complex. So, this criterion looks at how the different options provide out-of-the-box
support for versioning. Options that are ambiguous about how versions should be handled,
thus leaving it for the developer to decide what version strategy to adopt (meaning lots of
inconsistencies and debate industry-wide on the best way to do this), get the lowest score.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[201]

Options that deliver clear guidelines and tooling support to handle versions and also
forward/backward compatibility will get the highest score.

REST GraphQL gRPC
-
There is a lot of industry-wide
debate about how versions
should be handled in REST.
Some favor URI-based
versioning, others header-
based versioning, and others
no versions at all. So,
ultimately, it is down to the
developer what strategy to
adopt.

++
Best practices are clear and
publicly available in the
official GraphQL site.
Versioning should be
avoided and tooling is
available to support forward
and backward compatibility
without having to run in
parallel multiple versions of
the service.

~
Protocol buffers by design
support backward
compatibility. Furthermore,
as servers and clients are
generated from the .proto
file, different versions of the
file could be maintained,
though this could lead to
confusion if many versions
exist.

Asynchronous communication

Figure 6.24: Asynchronous communication

Support for asynchronous communication in APIs, beyond the traditional request/response
interaction style, already is a hot topic. This is because forcing consumers to constantly call
an API to obtain changes and/or notifications of any sort is not just impractical, but forces
unnecessary uses of application and network resources. Therefore, this criterion evaluates
the feasibility of the different options for implementing asynchronous communication in
addition to common request/response methods.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[202]

Comparison totals

The following diagram illustrates the totals derived from the comparison.

Figure 6.25: Comparison totals

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern API Architectural Styles Chapter 6

[203]

As you can see, there are still several advantages in adopting REST. From the availability of
tooling for API design and implementation, and out-of-the-box support in the majority (if
not all) of API products, to the amount of information available online to learn and
implement it, REST is a safe option when it comes to deciding what architectural style to
adopt for a given API. However, there are also downsides to using REST, the main one
being the fact that by their own nature, REST APIs can be very chatty, especially if
HATEOAS is overused (or wrongly used). When this is the case, additional work and
complexity for frontend developers can be experienced.

On the flip side, GraphQL is rapidly catching up with REST in terms of the tooling
available and support in API products, but it is still not there yet. Therefore, adopting
GraphQL at this point in time (or at the time of writing) may result in having to
compromise on capabilities, customize existing tools, or even introduce new tools that do
support this technology. The fact remains, however, that when it comes to usability
experience, GraphQL truly is the gem. This is not just because of the fact that tools such as
GraphiQL make it a lot easier to consume APIs, but also because of the architecture, which
by design was meant to give back control to the consumers of the API.

gRPC, on the other hand, is not great when it comes to usability in the context of browser-
based applications, which is the reason why the scoring was the lowest. This does not mean
that gRPC is bad; it just means that for the use cases detailed in the criteria, it lags behind
the other two. For example, gRPC is extremely popular and widely adopted as the means to
deliver service-to-service communication, as well as asynchronous communication. Because
of this, gRPC could well be used in conjunction with REST and/or GraphQL, so from this
point of view, it would be a great complement to an overall solution architecture.

Summary
This chapter delivered a comprehensive overview of the main API architectural styles
dominating the industry at the moment. The chapter started by providing context on the
evolution of APIs and then deep-dived into the three most popular options at present.

The chapter then provided an opinionative comparison based on usability, tool ecosystems,
and key features expected of APIs. Based on this, a summary was provided explaining why
and when each of the options evaluated might be a good fit or not.

The next chapter will focus on the API development life cycle and organizations. It will talk
about what a good process for designing and implementing APIs looks like, as well as the
roles and responsibilities required in order to create an organization suitable for delivering
APIs as business products.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
API Life Cycle

This chapter moves away from the technical and architectural aspects of APIs to cover
essential processes and methods required throughout the entire API life cycle. The chapter
starts by describing the overall development life cycle, not just for APIs but for related
activities and assets, which includes the API design-first, service, and consuming
application life cycles. It then continues by describing each of the cycles in detail.

This chapter will aid organizations and/or individuals looking to implement the full API
life cycle from scratch, or just looking for sources of inspiration to optimize and/or refine
existing ones.

The full API development life cycle
In Chapter 4, API-Led Architectures, the topic of the API life cycle was briefly described;
however, this was more from a capability standpoint rather than as a process. The full API
life cycle consists of a series of recurring steps (iterations) that, when executed properly and
cohesively, should result in APIs that are fit for purpose, well documented, and
implemented according to their specification. Most importantly, the life cycle should result
in assets that deliver customer value, continue to do so over time, and are, therefore, being
continuously improved.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[205]

The full API life cycle, however, is not just one cycle but a chain of related cycles, as will be
subsequently described.

Figure 7.1: The overall API life cycle

At the very least, the life cycle consists of four interconnected cycles:

API life cycle: This is the main flow from which all activities are derived. It is the
one that initiates the chain of events that ultimately results in the API being
designed and delivered, but it also triggers related iterations around the API
design cycle, service implementation, and even consuming applications.
API design-first life cycle: This related cycle focuses exclusively on the design of
APIs and establishes a process by which API consumers get exposed early in the
process to the API design artifacts, such as an API specification or API mocks
and stubs, with the idea of collecting feedback as soon as possible in order to
prevent reworking later on.
Service life cycle: Once an API design is completed, the related business
capabilities must be implemented in the form of business services, as described
in Chapter 4, API-Led Architectures. This cycle, therefore, describes the different
steps typically carried out when implementing services derived from an API
design-first approach.
Consuming application life cycle: This cycle defines the steps that can be carried
out to implement consuming application code, while ideally also leveraging
capabilities available in the platform.

The following is a detailed description of each cycle.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[206]

API life cycle
This cycle is the main or core cycle that triggers the chain of activities that ideally should
never end (as long as the product is successful).

Figure 7.2: The core API life cycle

Note that the implementation of a full API life cycle should always be preceded by the
creation of an API strategy that doesn't just bring business context, but also defines clear
goals and objectives about why APIs are being delivered in the first place. This is important
as it brings relevance to the process and intrinsic justification to each of the steps.

The creation of an API strategy is covered in detail in Chapter 3, Business-
Led API Strategy.

The steps of the API life cycle are as follows:

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[207]

API ideation and planning
Great ideas are not conceived by magic; they are typically the result of a process aimed
exclusively at identifying, qualifying, and selecting the best ones for creating the product
backlog and, subsequently, development.

Ideation is a creative process whereby new and innovative ideas are generated and
captured. It typically involves sessions where brainstorming, sketching, and even quick
prototyping (as is the case with hackathons) takes place. During the creative process, good
ideas are shortlisted and should, in principle, become candidates for implementation, at
which point planning takes place.

Figure 7.3: The ideation process in action

Ideation is a fundamental phase of human-centered design and design
thinking. Refer to http://www.designkit.org and
https://www.interaction-design.org/literature/topics/design-thin

king for more information.

In the context of APIs, a series of ideation workshops that bring together business and IT
stakeholders (and also, when applicable, end users) can be planned and executed with the
objective to collectively identify new APIs that have good potential to deliver customer and
business value, and thus can be packaged, marketized, and sold as products.

Such workshops require careful preparation, especially when it comes to identifying the
right stakeholders and preparing adequate content. It might be desirable to organize
separate workshops for each functional area, so participants of each session all talk a
similar language and share a common understanding of the business domain being
discussed.

Part of the planning process should also involve creating introductory content that
participants can easily understand and relate to; for example, describing APIs that may
already exist in the functional domain and, in simple terms, explaining how they help the
business and add value to its consumers.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.designkit.org/
http://www.designkit.org/
http://www.designkit.org/
http://www.designkit.org/

API Life Cycle Chapter 7

[208]

The actual sponsor for the API ideation workshops could be any executive within the
organization with a desire (or an interest) to generate value for the business and its
customers. However, it should be someone with a sufficient mandate to get the right people
together and the budget to cover the costs of the workshop (which, at this stage, typically
just means covering people's time and, on occasion, bringing in third-party organizations to
assist in facilitating the workshop).

To this end, the API value chain and use cases described in Chapter 1, The
Business Value of APIs, and Chapter 3, Business-Led API Strategy,
respectively, may serve as inspiration for creating such sample content.

Note that because the term "API" may be unfamiliar to many people from a non-technical
background, it is imperative to explain in a common language (preferably at the start of the
session) what APIs are and how they can bring value to the business. Failing to do so may
result in counterproductive outcomes or lead to only part of the audience contributing to
the workshop.

Figure 7.4: API ideation workshop outcomes

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[209]

As illustrated, a successful workshop should result in a series of ideas being captured,
whereby each idea answers at least one of the following questions:

What exactly is the API for and what would it do? For example, a telecoms
company with the ability to obtain satellite imagery may want to create an API
that allows access to satellite images on demand.
How would the business benefit from it? Answers could be a new revenue
stream whereby access to images is charged for, the enablement of new channels
(for example, a mobile app to sell existing products), and access to new markets,
to name just a few.
Who would be the potential customers? This could be any organization that
could make better decisions based on a better understanding of its land. An
obvious example is agriculture organizations that could use such imagery to gain
better insights into their crops.
Why would they buy and/or use the product? Because the satellite images
would always be up to date (for example, updated every day), as opposed to
content that is free online but is unreliable and, in the majority of cases, dated.
Furthermore, the images could increase sales and the return on investment
(ROI).
What could be the business model? How would this be monetized? Images
could simply be charged for based on kilobytes downloaded (for example, the
larger the area covered and the better the quality of the image, the larger the
image size would be). It could also be charged on demand (per call) or based on a
monthly fee (with a predefined limit of kilobytes that could be downloaded).
Who is the competition? A product that is not found on Google these days is
probably not a good product. Thus, an initial analysis could simply be conducted
by performing a series of Google searches based on different keywords. Searches
could also be conducted in public API marketplaces and directories, such as the
ones described in Chapter 4, API-Led Architectures.
What business capabilities does it require? In the example, the telecoms
organization should already have the required business capabilities to take the
images; however, it may lack the capabilities to render such a number of images
on demand. Thus, it may require some sort of digital asset management and
image streaming technical capability.
What are the constraints and regulations? For example, certain countries may
not allow satellite images to be taken of their territory.
Any obvious showstopper(s)? For example, the organization may not be in a
position to make any sort of investment, even though there could be a return on
it.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[210]

Note that for internal APIs, similar factors equally apply, with
the difference that buyers would be internal customers (for
example, different business units) and the competition would
be different teams/departments working on similar capabilities.
This could be a game-changing approach toward how the
central IT team offers services and capabilities to the rest of the
organization.

Lastly, and as illustrated in the preceding diagram, the best API ideas could be determined
based on their implementation feasibility (availability of business and technical capabilities
to deliver the API), their uniqueness (no similar API can be easily found based on an initial
search), and the potential business and customer benefits.

API ideas deemed to be the best should subsequently be broken down into smaller
requirements and added to a product backlog for their delivery.

A product backlog is a prioritized list of all items known to be required to
deliver a product. In agile methodologies, this backlog is the single source
of requirements for a product.

The backlog should ideally prioritize the items so initial iterations focus on speed to market
by delivering a minimum viable product (MVP) as opposed to a final product with all the
bells and whistles. Once the MVP is delivered, subsequent iterations can focus on other
differentiating features. The reason for this approach is the fact that if an idea is deemed to
be good, this doesn't necessarily mean it will be a success. For this reason, limiting the
scope of a first delivery will not just lower the implementation costs, but it will also help in
delivering a working product faster.

For more information on MVPs, refer
to https://en.wikipedia.org/wiki/Minimum_viable_product.

Note that the party responsible for defining and a product backlog should be a designated
API product owner, who would also be responsible for the product's subsequent delivery
and the continuous improvement of it post go-live. Refer to Chapter 8, API Products' Target
Operating Model, for more information on this role.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product

API Life Cycle Chapter 7

[211]

Design
This is the stage of the life cycle where requirements are translated into something tangible
that can be built and delivered. It requires an understanding of all functional and non-
functional requirements. A domain model and a conceptual design are produced based on
a series of well-thought-out design decisions.

The concept design should, among other things, answer questions: what is the business
domain of an API and its bounded context? What business capability does the API offer?
What API architectural style is to be adopted (for example, GraphQL for public interface, or
gRPC for inter-service communication)? What does the end-to-end solution look like,
including the patterns (for example, API aggregator and CQRS) and technical capabilities
required, naming conventions, and documentation?

Figure 7.5: The API design process

The design phase should ideally consist of the following activities:

Analysis

This is the process of understanding all the business requirements in the backlog and, if
necessary, organizing question and answer (Q&A) sessions to clarify doubts and ensure
that all needs are well understood and that nothing is left out. If needed, the backlog items
can be refined further.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[212]

During this activity, it is important to properly understand functional as well as non-
functional requirements. Key for the latter are things such as expected throughput,
geographical regions for users and source data, and security requirements. These may be
key factors influencing what design decisions to make.

The analysis activity is typically carried out by API architects, but also typically involves
input from the product owner and business analysts who contributed to the creation of the
backlog. Refer to Chapter 8, API Products' Target Operating Model, for more information on
these roles.

Domain and concept design

A domain design is a domain model (for example, an entity relationship diagram in
Unified Modeling Language (UML)) describing the business domain and problem being
solved in notation that both business and IT teams can relate to. The model should
therefore act as a ubiquitous language, as it reflects a shared understanding of the domain.

Domain-driven design (DDD) is a well-known and, in fact, recommended approach to
such domain models.

The book, Domain-Driven Design, by Eric Evans describes DDD in full:
https://www.youtube.com/watch?v=7MaYeudL9yo

The model should, at a minimum, describe three things:

The business domain (for example, sales, finance, or human resources) and
actors.
The different bounded contexts.
The business entities within each bounded context and their relationships (both
within and outside their context).

The following article by Martin Fowler provides a great explanation of the
bounded context pattern:
https://martinfowler.com/bliki/BoundedContext.html

On many occasions, a domain model may already be available, in which case this step
should be about identifying the domain, the bounded contexts, and the entities that are
relevant for the design.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.youtube.com/watch?v=7MaYeudL9yo
https://martinfowler.com/bliki/BoundedContext.html

API Life Cycle Chapter 7

[213]

Once a domain design is available, a concept or conceptual design can be produced that
describes the following:

The different technical components that build up the solution and how they
relate to each other.
What technical capabilities (from the reference architecture) are required on each
component.
Which capabilities are to be introduced (as they don't exist) and which are to be
reused.
Key design decisions made.
What API policies are applicable to secure the service endpoints.
Assumptions made.
Known gaps in the solution.
Information views in the form of entity relationship diagrams.
If required, sequence/interactive views describing how the different components
interact.

A conceptual design should not be a long and extensive document, as few
will, in practice, read it. Instead, it should be a living document (for
example, a markdown page in a Git repository or a dynamic document
produced in wikis and/or content management systems) that only
includes the information relevant to the design; nothing more and nothing
less.

The conceptual design activity is typically also carried out by API architects.

Key design decisions (KDDs)

KDDs are design choices that have a notable impact on the way a product is realized or on
the final product itself. They are decisions because multiple viable options exist and,
therefore, a choice has to be made (if only one option exists, then it will not be a design
decision).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[214]

Although this is not a mandatory step in the design process, it is a highly recommended
one as it ensures not only that all design choices are properly justified, but also that
decisions are recorded on a log for anyone in the future to understand why certain design
choices were made. The log, just like the conceptual design, could simply be a markdown
page in a Git repository or a dynamic page in a wiki or equivalent content system. It should
ideally consist of a high-level summary of all decisions (each with a unique ID) and a more
detailed page for each decision including:

The creator of the decision and the date.
The person who approves or rejects the decision. This can vary from organization
to organization. In some cases, decisions are approved or rejected in a consensus-
based approach in some form of design authority or design decision forum
whereby relevant stakeholders (typically those who, in some shape or form, have
an interest in the outcome of the decision) take part to review and vote on the
final recommendation, or it could just be the senior-most architect within the
team that has the authority to decide.
By when a decision is expected and the impact if a decision is not made in time.
A description of the problem statement and its context; for example, what API
architectural style to adopt.
The main options (ideally no more than three) to solve the problem and why
(including any reason why some options may have been left out). For example,
options could be GraphQL, REST, and gRPC, leaving out options such as
SOAP/WSDL given their lack of industry support in terms of technology and
skill levels. A good description of each option should be included.
The pros and cons for each option, as a minimum from an architectural, delivery,
operations, and total cost of ownership (TCO) point of view.
A final recommendation with a proper justification.
The status of the decision (for example, pending, approved, or rejected) and the
date.

Discovery

During this activity, existing business capabilities that offer similar functionality to the
items in the backlog are searched for. Ultimately, the objective is to avoid reinventing
wheels. If an API(s) already exists that offers functionality that addresses the requirements
of the backlog, instead of duplicating functionality, reuse should be considered.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[215]

In an ideal world, this step should be as simple as just conducting a search in a common
enterprise API catalogue and seeing whether any APIs match the search criteria. However,
in practice, few organizations have a single catalogue as a source of truth. Therefore, this
activity may also require having to search multiple catalogues or having to contact different
stakeholders who may be able to offer additional information.

This task should also include searching public API catalogues such
as programmableweb.com and rapidAPI.com, as, on many occasions, it might be more cost-
effective and quicker to just make use of a public API as opposed to building one. The
discovery activity is also typically carried out by API architects.

Versioning approach

As discussed in Chapter 6, Modern API Architectural Styles, depending on the API
architectural style adopted, there are different opinions on how API versioning can be
handled. Therefore, the versioning strategy to be adopted is also an important design
consideration that requires careful consideration. For example, in the case of REST, versions
are commonly defined within the Uniform Resource Identifier (URI) (for example,
/v1/orders) or the HTTP header (for example, version: 1). In this approach, new
versions (for example, /v2/orders or version: 2) are created when there isn't backward
compatibility.

Backward compatibility refers to the ability of an iterated version of an interface to be
compatible with its older versions, meaning that for consumers binding to the older version
of the interface, it should continue to work once the new version is released.

When a deployment artifact is backward compatible, it can be deployed to a running
environment superseding its older version. API consumers should not be impacted from it
and the release should be smooth and straightforward. This type of change is typically
referred to as minor versions.

However, if the release isn't backward compatible for any reason, then superseding an
existing API and/or service with it may result in breaking the API consumer's code, which
is far from ideal. At this point, being able to run parallel versions of the same API/service
may be unavoidable.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.programmableweb.com/
https://rapidapi.com/

API Life Cycle Chapter 7

[216]

In the case of GraphQL, however, multiple versions of a service are discouraged and, by
definition, all changes should be backward compatible. To this end, tools and approaches
are available to deprecate types such as objects and operations. In gRPC, backward
compatibility could just be based on versioning the proto file and respective servers/clients
derived from it.

Regardless of what architectural style is chosen, the fact remains that a versioning strategy
of some sort will be needed, especially to handle scenarios in which, for whatever reason,
an API and/or service is not backward compatible. Furthermore, this should be
documented as well, since consumers of the API will also be interested in the approach
taken.

API specification

This is a document that describes the technical contract of an interface, such as:

All methods/operations supported by the interface
Data definitions for all inputs and outputs on each method/operation
Any HTTP headers and metadata used
Technical constraints
A technical description of each method/operation, ideally with examples
A technical description of all data entities and what each field means
Sample requests and responses (bearing in mind that these can be used later on
to test the interface)

An API specification is defined in accordance with the interface description language
(IDL) for the API architectural style chosen and, depending on this, different tools and
techniques can be adopted, some more dynamic than others.

Refer to Chapter 6, Modern API Architectural Styles, for more details on
IDLs for REST, GraphQL, and gRPC.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[217]

An API specification can be created by API architects and/or senior developers. Regardless
of the role, however, the person that works on the creation of API specifications is typically
also referred to as an API designer. Refer to Chapter 8, API Products' Target Operating
Model, for more information on this.

Note that modern API management tools typically come with rich
capabilities to create and edit API specifications as part of the API life
cycle. Refer to Chapter 4, API-Led Architectures, for more details on
capabilities.

API page

This is a web page that, in addition to incorporating the specification of an API, also
includes a human-readable (meaning less technical) description of the API, including what
it offers (in terms of functionality) and plenty of examples on how to use it. This document
should be customer-oriented, meaning the objective is to make it as simple and quick as
possible for potential API consumers to understand and start using the API.

Note that modern API management tools typically come with rich
capabilities to create and edit the API page as part of the API life cycle.
Refer to Chapter 4, API-Led Architectures, for more details on capabilities.

Because of the target audience and nature of content required for the API page, it is
recommended that a techno-functional writer (or someone with previous experience in
creating customer-facing technical content) is responsible for producing it. Refer to Chapter
8, API Products' Target Operating Model, for more information on this role.

Mock and try
API mocking is a technique by which the methods/operations specified within an IDL are
simulated by means of a mocking server. The idea behind this approach is to enable API
consumers and developers to try the API through its mock before the actual
implementation takes place.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[218]

Figure 7.6: API mocking

As the preceding diagram illustrates, an API mock should behave in accordance with the
API specification itself (the IDL). As long as the mock makes use of representative (sample)
data, API consumers can use it to try out the API early in the life cycle.

This is useful for many reasons, but especially because it can speed up the development
process, and also the quality of the API, by collecting feedback early in the life cycle. Doing
so means that in theory, the API should not undergo many changes later in the life cycle as
a consequence of mismatched requirements.

Furthermore, assuming that the mock is exposed through an API gateway (as illustrated),
once the actual API is built, then the gateway can switch to it without impacting consumers
of the mock. So, from an API consumer standpoint, this is seamless.

Note that modern API management tools typically come with rich
capabilities to create and expose API mocks interactively during the API
design process. Refer to Chapter 4, API-Led Architectures, for more details
on capabilities.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[219]

When mocking APIs, the following activities typically take place:

The mock server is generated based on the API specification. In the case of REST
APIs, there are several tools that can do this automatically and on the fly as the
API specification is created. For REST, plentiful tools are available on the market
for API mocking. Good examples are Apiary (apiary.io), SwaggerHub
(swagger.io), Mocky, (mocky.io), and WireMock (wiremock.org).

In the case of GraphQL and gRPC, not so many commercial
tools are available (at the time of writing); however, open
libraries such as Graphql-Faker (github.com/APIs-
guru/graphql-faker) for the former, and GripMock
(github.com/jekiapp/gripmock) for the latter, are rapidly
emerging.

Sample request and response data is created for all methods described in the API
specification.

Note that more advanced mocking engines also allow for the
API to behave differently based on different request payloads.
This is important as it enables consumers to also try different
request scenarios, such as failures, different filters/parameters,
and payloads.

Calls made to the mock server are monitored, as this too can help with
understanding how the API mock is being used.
Test clients are created that can be used later on to test the actual implementation
of the API. Likewise, for test clients, there are plenty of examples for REST APIs,
such as API Fortress (apifortress.com), Dredd (dredd.org), and PostMan
(getpostman.com).

In the case of GraphQL and gRPC, not so many commercial
tools are available (at the time of writing); however, open
libraries and tools, such as EasyGraphQL
(github.com/EasyGraphQL/easygraphql-tester) and Altair
(altair.sirmuel.design) for GraphQL, are rapidly emerging.
For gRPC, several open libraries for testing and other purposes
can be found at github.com/grpc-ecosystem/awesome-grpc.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://apiary.io/
https://swagger.io/
https://www.mocky.io/
http://wiremock.org/
https://github.com/APIs-guru/graphql-faker
https://github.com/APIs-guru/graphql-faker
https://github.com/jekiapp/gripmock
https://apifortress.com/
http://dredd.org/en/latest/
https://www.getpostman.com/
https://github.com/EasyGraphQL/easygraphql-tester
http://altair.sirmuel.design/
https://github.com/grpc-ecosystem/awesome-grpc

API Life Cycle Chapter 7

[220]

Create/configure
Once an API mock is available or a service has been implemented and/or iterated (for
example, a new version or enhancement), an API can be created using API management
capabilities (as described in Chapter 4, API-Led Architectures), so different policies, such as
authorization, rate limiting, monetization plans, and mediation, can be applied to it.

This step is typically carried out by developers and/or hands-on API architects. It involves
using a policy editor (typically, a centralized web application in newer tools) in order to:

Create and edit an API and its metadata (for example, its description, and stage
in the life cycle).
Define the version of the API.
Attach any related API specification and/or documentation.
Define the service endpoints. In some cases, this could be just the API mock if the
service is under development.
Apply, edit, or remove API policies, such as OAuth 2.0 authorization, API-key
validation, throttling, and rate limiting.
Configure environment-specific properties as required.

Note that modern API management tools typically come with rich API
policy editors. Refer to Chapter 4, API-Led Architectures, for more details
on capabilities.

Depending on the number of API policies to be applied, this process can be very quick or
time-consuming (especially if custom policies are deemed to be required).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[221]

Deploy
In simple terms, deployment is a process by which a code artifact (typically referred to as a
deployment unit), such as an API and/or service, is prepared and moved into a runtime
environment for its execution and use. However, in practice, deployment is carried out
within a continuous integration and continuous deployment (CICD) pipeline that takes
care of the packaging, verification, regression testing, and deployment of the code.

Figure 7.7: A CICD pipeline

Although the topic of defining and creating CICD pipelines won't be covered in detail in
this book, as illustrated in the preceding diagram, the process typically involves adopting a
continuous integration tool (for example, Jenkins, TeamCity, or CircleCI), which, based on
preconfigured conditions, such as a merge into a main development branch, a scheduled
task, or even a manual action, executes a series of tasks. The tasks are as follows:

Pull

This means pulling the code from a specific branch in a code repository, which could be a
source control system, such as Git (for example, GitHub, Gitlab, or Bitbucket), or even older
repositories such as Subversion (SVN) and Concurrent Versions System (CVS).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[222]

Inspect

This means inspecting the code and its dependencies in search of potential errors and/or
vulnerabilities. This can be done with tools such as Sonarqube (sonarqube.org), Coverity
(scan.coverity.com), or Fortify (microfocus.com).

Build and package

This involves compiling and packaging the code, along with its dependencies, into a release
package, tagged with its respective version. For example, in the case of Java, this typically
involves using tools such as Maven (maven.apache.org) or Gradle (gradle.org) to generate
.jar files.

This task also involves the publishing of a generated released artifact into a repository
manager such as Nexus (sonatype.com/nexus-repository-oss) and/or Artifactory
(jfrog.com/artifactory), along with generating and tagging Docker containers and
pushing them into a container registry (for example, hub.docker.com or internal ones).

Quality assurance (QA)

This consists of deploying the released artifacts into a QA environment with the objective of
conducting a series of tests, such as:

Interface testing: This is verifying that an interface matches its interface
definition. For example, in the case of REST APIs, this can be done with tools
such as Dredd (dredd.org) and Swagger Inspector (inspector.swagger.io).

Note that in the case of GraphQL and gRPC, this step is not
typically required as their IDL is closely coupled with the
service implementation. However, in the future, as API-design
tools emerge for these architectural styles, new tools may arise
that conduct such tasks.

Functional testing: This is completed by making a series of pre-defined API calls
to verify that the API behaves as expected. This can be done using tools such as
Postman (getpostman.com), API Fortress (apifortress.com), or ReadyAPI
(smartbear.com/product/ready-api/overview).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.sonarqube.org/
https://scan.coverity.com/
https://www.microfocus.com/en-us/home
http://maven.apache.org/
https://gradle.org/
https://www.sonatype.com/nexus-repository-oss
https://jfrog.com/artifactory/
https://hub.docker.com/
http://dredd.org/en/latest/
https://inspector.swagger.io/
https://www.getpostman.com/
https://apifortress.com/
https://smartbear.com/product/ready-api/overview/

API Life Cycle Chapter 7

[223]

Note that although the above tools are better suited for REST,
they could potentially also be used for GraphQL by testing
different HTTP POST calls with the previously generated
payloads. Alternatively, tools such as the apollo-server-
testing package could be used
(apollographql.com/docs/apollo-server/features/testing).
For gRPC, refer to the following URL for tools:
https://github.com/grpc-ecosystem/awesome-grpc.

Performance testing: This is carried out by simulating a large number of
concurrent calls to ensure that the API can handle the expected throughput. In
the case of REST and GraphQL, tools such as Apache benchmark
(httpd.apache.org/docs/2.4/programs/ab.html), Fortio
(github.com/fortio/fortio), and JMeter (jmeter.apache.org) can be used to
simulate a large number of HTTP 1.1 calls. For gRPC, as long as the tools support
HTTP/2 then, in theory, they too could be used (for example, Fortio supports
HTTP/2 and gRPC). However, for more tools, refer to
https://github.com/grpc-ecosystem/awesome-grpc.
Security testing: This is typically a complex task as it involves testing an
interface against common threads, such as the ones defined in the OWASP Top
10 project (www.owasp.org/index.php/Category:OWASP_Top_Ten_Project). The
tools to be used for this type of testing heavily depend on the API architectural
style and what type of vulnerability tests are executed. In many cases, it requires
custom scripts and the use of frameworks such as Metasploit (metasploit.com).

Deploy

Should no issues be encountered during the tests, the solution is deployed into the
production environment.

Rollback

Should any issues be encountered post-deployment, then there should be the ability to roll
back to the previous working version. The creation of the deployment pipeline is typically
carried out by platform engineers with support from developers as required. Note that
depending on the API management and service life cycle capabilities available, this process
can be fully automated, semi-automated (requiring human intervention for certain steps),
or even fully manual, although the latter should be avoided.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.apollographql.com/docs/apollo-server/features/testing/
https://github.com/grpc-ecosystem/awesome-grpc
https://github.com/grpc-ecosystem/awesome-grpc
https://github.com/fortio/fortio
http://jmeter.apache.org/
https://github.com/grpc-ecosystem/awesome-grpc
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://metasploit.com/

API Life Cycle Chapter 7

[224]

Promote, deprecate, and retire
As APIs and services evolve through multiple design and development iterations,
naturally, new versions are created to reflect the fact that changes have taken place, such as
new features being added, improvements to existing features, or even just bug fixes.
Regardless of the type of change, the fact remains that handling versions is a critical aspect
of any software development life cycle.

However, having a strategy in place to handle API versioning isn't enough. If the process of
rolling out changes isn't carefully thought through, such as how to deal with non-
backward-compatible versions, there can be negative repercussions, such as breaking the
API consumer's code or even ending up with too many versions of the same API in
production, thereby adding additional complexity and costs.

Such a fate can be avoided by having the ability to promote, deprecate, and retire different
versions of the same API and its corresponding service:

Promotion: This refers to the ability to make a new version of an API (and
related documentation) available for general use. When an API is promoted, it
becomes the default version for use, meaning that all API catalogues and
developer portals should display information related to the promoted API and
not its predecessor.
Deprecation: An API becomes deprecated when it is superseded by a new
version. When an API is deprecated, its endpoint is still fully functional and its
documentation is available, but only for a period of time. Because of this,
consumers of the deprecated API should be notified of the fact that the API will
only be available for a given timeframe.

How long exactly depends on factors such as how many API
consumers there are, and how critical the features added to the
new version are.

Retirement: An API is retired when its endpoint is no longer functional and
calling it will result in an error.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[225]

Figure 7.8: Promote, deprecate, and retire examples

For example, as illustrated in the preceding diagram, a REST API that adopts a URI
versioning approach could have concurrent versions of its services running in production,
though a rule of thumb is to have no more than two: a deprecated version and a new
version. API consumers binding to the deprecated version are given a notice period (for
example, three months) to switch to the new API before the current one is retired and they
get an error.

A header-based approach could also be adopted, even in the case of version-less APIs (for
example, GraphQL), especially in scenarios whereby backward compatibility simply isn't
possible. In this case, the API gateway takes care of the routing to the right service version
based on a version HTTP header. In this example, consumers could be notified that the
current API (accessed without any version header) is deprecated and therefore they have a
period of time to switch to the new one by adding a version HTTP header.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[226]

Once the deprecated API is retired, the default API (meaning accessed without the version
header) becomes the newer one, at which point consumers that didn't switch may face
issues when calling it. Needless to say, this approach is more intrusive and requires careful
consideration.

In terms of tools, modern API management products should be capable of supporting the
above mentioned activities at the API exposure level. Modern container runtimes, such as
Kubernetes (kubernetes.io), provide robust support for dealing with this, especially if
additional capabilities are introduced into the runtime, such as the Helm (helm.sh) package
manager, which can be used to heavily simplify the process of releasing inter-related
containers and defining environment-specific metadata, and Istio (istio.io), a service
mesh that, among other things, introduces support for canary releases, which, in turn,
enable techniques such as A/B testing.

Refer to the following link for more information on canary releases:
https://martinfowler.com/bliki/CanaryRelease.html

For more details on A/B testing, refer to the following link:
https://en.wikipedia.org/wiki/A/B_testing

Lastly, this task is typically carried out by platform engineers with input from API
architects and developers as required.

Observe
In control theory, observability is a measure of how well internal states of a system can be
inferred from knowledge of its external outputs. In other words, it is the ability of a system
to externalize internal state data, namely logs (verbose and text-based representations of
system events), traces (data representing a specific event that occurred within the
application), and metrics (a numeric representation of point-in-time data, such as counters
and gauges; for example, CPU, RAM, and disk usage). These are referred to as the three
pillars of observability, which are needed for monitoring and analyzing the whole system.

Refer to the following link for more information on the three pillars of
observability:
https://www.oreilly.com/library/view/distributed-systems-observa
bility/9781492033431/ch04.html

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/
https://helm.sh/
https://istio.io/
https://martinfowler.com/bliki/CanaryRelease.html
https://en.wikipedia.org/wiki/A/B_testing
https://www.oreilly.com/library/view/distributed-systems-observability/9781492033431/ch04.html
https://www.oreilly.com/library/view/distributed-systems-observability/9781492033431/ch04.html

API Life Cycle Chapter 7

[227]

Figure 7.9: End-to-end observability

The preceding diagram illustrates multiple layers of an application stack that have been
instrumented in order to send traces, metrics, and logs to centralized storage for analysis
and visualization.

Although observability isn't new (for example, logging has been around since the
beginning of programming), in distributed systems, such as microservice architectures, it
has become paramount. Without properly instrumenting all components of the stack (as
illustrated), performing tasks such as understanding the overall health of the system,
debugging/troubleshooting issues, identifying potential performance bottlenecks,
monitoring compliance against important service-level agreements (SLAs) (for example,
availability and throughput), and even discovering potential security breaches can become
a very difficult task, if not impossible.

Therefore, assuming that adequate capabilities have been put in place to instrument, collect,
and visualize logs, metrics, and trace data, this step of the life cycle typically involves the
following tasks:

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[228]

API monitoring

The aim of this type of monitoring is to get real-time and historical insights on individual
API metrics, such as the current health of an API, the total number of calls received,
success/error call ratios, average response times, and even geo-related data (for example,
where calls come from). This data should ideally be used to create a proper and holistic
understanding of how APIs are being used, by whom, when, and from where. Such
insights will help to drive important business and architectural decisions, such as which
APIs deserve further investment and enhancing as they're being heavily utilized, or which
APIs should perhaps be retired as they're underutilized and their running costs are difficult
to justify.

Another important aim of API monitoring is the definition of alerts and notifications to
ensure that SLAs, such as availability, throughput, and response times, are not being
breached.

In terms of tools, modern API management tools typically provide the means to conduct
this type of monitoring. If not, there is always the possibility to instrument the API
gateways so data can be collected in order to use specialized monitoring tools (see end-to-
end monitoring for more details).

This type of monitoring is typically carried out by platform engineers and developers
during day-to-day operation activities and/or when troubleshooting (though this type of
monitoring isn't necessarily the most insightful for this type of activity). It can also be
carried out by API product owners and API architects wishing to gain more information
about an API's usage.

Service monitoring

The purpose of this type of monitoring is to gain real-time and historical-based insights
about individual services, their interactions with other services, and their overall
performance.

In runtimes such as Kubernetes, there are several capabilities available in order to conduct
this type of monitoring; for example, the Istio service mesh can be configured to instrument
log and trace data, which can later be visualized and analyzed with tools such as
Prometheus (prometheus.io) and Grafana (grafana.com). Other tools, such as Kiali
(kiali.io), can be configured as well to get proper visibility about the service mesh.

This type of monitoring is typically carried out by platform engineers and developers
during day-to-day operations and when debugging and troubleshooting services.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://prometheus.io/
https://grafana.com/
https://www.kiali.io/

API Life Cycle Chapter 7

[229]

End-to-end monitoring

As its name suggests, this type of monitoring aims to gain holistic and complete
understanding of the entire system, as opposed to just its individual pieces. This type of
monitoring is more complex, as it requires instrumentation across relevant components of
the distributed system in order to collect meaningful log, metrics, and trace data. Assuming
this has been done, end-to-end monitoring then can be classified into the following
categories.

Log analytics

This type of monitoring involves collecting, aggregating, indexing, and analyzing log data
produced by applications. The aim is to use this data in aid of activities such as debugging,
troubleshooting, root cause analysis, SIEM (described subsequently), or just day-to-day
operations.

There are several log analytics tools on the market; however, Splunk (splunk.com) and the
ELK stack (elastic.co/elk-stack) are very popular choices. This type of monitoring is
typically also carried out by platform engineers and developers during day-to-day
operations, and when debugging and troubleshooting APIs and their services.

Security information and event management (SIEM)

This is a sub-discipline of log analytics. The aim of this type of monitoring is to
continuously analyze log and trace data in search of potential security alerts that may
compromise the system. This task involves defining correlation rules and patterns to
analyze structured and unstructured data, with the aim of identifying potential security
vulnerabilities.

In terms of tools, there are several options on the market for this; from log analytics such
as Splunk that also support SIEM (though as an additional capability), to specialized
vendors such as LogRhythm (logrhythm.com) and even traditional security vendors such
as McAfee, which also plays in this space. This type of monitoring is typically carried out
by a security team, which will normally explain what type of data is expected to be
collected.

Application performance monitoring (APM)

The aim of this type of monitoring is to continuously observe the performance and
availability of applications. This type of monitoring is extremely useful for detecting and
diagnosing complex application performance problems in distributed systems.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.splunk.com/
https://www.elastic.co/elk-stack
https://logrhythm.com/

API Life Cycle Chapter 7

[230]

In terms of tools, vendors such as AppDynamics (appdynamics.com) and New Relic
(newrelic.com) are popular choices for specialized APM software.

However, large log analytics vendors, such as Splunk, also offer APM add-ons.

This type of monitoring is typically carried out by platform engineers and performance
engineers who are conducting day-to-day operation activities, but also when they are
troubleshooting performance issues and/or when performance tuning the system.

Distributed tracing

Given that, in distributed systems, a single business transaction may span across several
architectural components (for example, API gateways, load balancers, services, databases,
or event hubs), understanding and analyzing transaction flows can be extremely
complicated. Therefore, in order to reconstruct the series of events that build up the flow,
each component of the distributed system must generate traces. Such traces must therefore
share some form of correlation ID, so the end-to-end flow can later be reconstructed.

The correlation ID is typically generated by the first component that handles a request (for
example, an API gateway or sometimes even the client application itself) and is then
propagated to all subsequent components that take part in the flow.

Once distributed traces are available for different transaction flows, this monitoring
capability becomes extremely powerful for pinpointing which component in a transaction
flow is responsible for potential issues (for example, performance bottlenecks or errors).

Zipkin (zipkin.io) and Jaeger (jaegertracing.io) are perhaps the most popular open
source tools for distributed tracing; however, tools such as Splunk and ELK could also be
used for this purpose (but will most likely require additional add-ons).

This type of monitoring is typically carried out by platform engineers during day-to-day
operation activities and also by developers when debugging and troubleshooting APIs and
services.

Note that some large cloud vendors, such as Microsoft, Oracle, and IBM,
do offer packaged tools that support all of the aforementioned types of
monitoring. However, whether to use them or not really depends on the
context of implementation.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.appdynamics.com/
https://newrelic.com/
https://zipkin.io/
https://www.jaegertracing.io/

API Life Cycle Chapter 7

[231]

The API design-first life cycle
As briefly described in Chapter 4, API-Led Architectures, the purpose of this cycle is to
establish an iterative and interactive process by which API consumers get early visibility of,
and access to, an API specification and its corresponding mock while the API is still being
designed. By receiving feedback as early as possible in the life cycle, reworking can be
avoided.

Although the majority of steps in the cycle were described earlier in this chapter, the
following diagram completes the concept by illustrating the fact that feedback should be
collected in order to start the cycle all over again until the right design (one that satisfies the
needs of its consumers) is accomplished.

Figure 7.10: The API design-first life cycle

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[232]

Don't forget that the process is meant to be iterative and interactive. Therefore, establishing
efficient and fluent communication channels between designers and consumers of APIs
becomes key, as otherwise, any feedback collected might be limited or vague, thus
defeating the purpose of the process itself.

Adopting team collaboration tools such as Slack (slack.com) or HipChat (hipchat.com)
can really help in establishing such channels. Furthermore, API product owners should
have an active role in establishing such communication channels and in ensuring that
feedback is being constantly collected.

For detailed information on how to implement an API design process
using Apiary, please refer to the following book:
https://www.packtpub.com/virtualization-and-cloud/implementing-o
racle-api-platform-cloud-service

Service life cycle
This crucial cycle defines a process by which services can be implemented in accordance
with API specifications and designs. The process starts once an API design is deemed
complete (refer to the previous section), meaning that, in addition to the conceptual design,
an IDL and an API mock are both available.

As the topic of implementing services is extensive and lots of public bibliography is already
available online, the aim of this section is not to describe each step in detail, but rather
important considerations to bear in mind when implementing services in support of API-
led architectures.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://slack.com/intl/en-in/
https://www.atlassian.com/partnerships/slack
https://www.packtpub.com/virtualization-and-cloud/implementing-oracle-api-platform-cloud-service
https://www.packtpub.com/virtualization-and-cloud/implementing-oracle-api-platform-cloud-service

API Life Cycle Chapter 7

[233]

Figure 7.11: The service life cycle

Scaffold/refactor
The first step of the process is to generate a skeleton of the code required to implement the
interface, which is a process sometimes referred to as "scaffolding an API server." In the
case of gRPC, for example, this is done by simply making use of the protoc command line
to generate both client stubs and servers in several languages.

Refer to the following link for tutorials on how to do this in multiple
languages:
https://grpc.io/docs/tutorials/

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://grpc.io/docs/tutorials/

API Life Cycle Chapter 7

[234]

In the case of REST, perhaps the most popular tool out there that is used to scaffold servers
is the OpenAPI generator (openapi-generator.tech), which can be used to scaffold REST
API servers from OpenAPI Specification (OAS) in about 40 different programming
languages and technologies.

For GraphQL, tools are rapidly emerging to provide scaffolding capabilities directly from
GraphQL schemas. A good example is the graphql-cli project (github.com/graphql-
cli/graphql-cli), which can be used to rapidly scaffold a GraphQL server from a
GraphQL schema file.

Lastly, it is important to also appreciate that although scaffolding a server for the first time
can be a straightforward task, as the design is iterated, the task can become more
complicated as the scaffolded server would have already been extended with its
implementation logic. This can be avoided by, for example, not just simply overriding a
previously generated server code, but rather using tools that can help to differentiate and
highlight what has changed in newly generated servers.

Build and unit test
This is the step where developers get to write the code that implements the business logic
expected of a service. Although the implementation approach and best practices vary
depending on the programing language and/or framework used, developing code can be a
labor-intensive task and its successful execution heavily relies on the skills of the
developers performing the job.

Some common good practices when implementing code are:

Adopting a robust and modern source code control system (SCCS), preferably
based on Git (git-scm.com), not just because of its vast popularity, but also
because of the fact that it is feature-rich and mature, there is tons of public
information online, and the majority of open-source projects use it.
Related to the previous point, adopting an adequate branching strategy also
becomes extremely important, especially in large development teams where
parallel development is a common practice. Not doing so means that adding new
features to services and handling multiple releases can be messy and error-prone.
GitFlow (nvie.com/posts/a-successful-git-branching-model) is perhaps the
most widely adopted Git workflow in large projects. However, other branching
strategies exist, such as Feature Branches
(atlassian.com/git/tutorials/comparing-workflows/feature-branch-
workflow) and Forking Flow (atlassian.com/git/tutorials/comparing-
workflows/forking-workflow).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://openapi-generator.tech/
https://github.com/graphql-cli/graphql-cli
https://github.com/graphql-cli/graphql-cli
https://git-scm.com/
https://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow

API Life Cycle Chapter 7

[235]

Complete and robust unit testing as part of the service codebase. This type of
testing is all about ensuring that all of the different units that build up a service
(for example, classes and methods, properties, and modules) behave as designed.
Mature languages and development frameworks, such as Java or Spring Boot (a
Java framework), have several tools for unit testing (for example, Junit or
Mockito). Regardless of the technology choices made, unit testing is always
possible, even if it means writing and executing custom classes or functions for
such a purpose.
Choosing an adequate tool to write/edit/debug/test the code for the technology
choices made. Although it might sound obvious, it's trickier than it sounds. For
example, should you adopt a fully featured interface development environment
(IDE) such as Eclipse (eclipse.org), NetBeans (netbeans.org), or IntelliJ
(jetbrains.com/idea), or a source code editor such as VSCode
(code.visualstudio.com), Atom (atom.io), or Sublime (sublimetext.com)?
Making such choices is becoming increasingly difficult, especially as code editors
such as VSCode are not just very lightweight, but come with hundreds of add-
ons for several languages and frameworks (Java and Spring Boot included).
However, using fully fleshed IDEs such as IntelliJ also has its advantages in the
context of Java, at least given its maturity and vast number of features. In
summary, selecting the right tool or tools for editing code is not a trivial task and
deserves the right level of attention.

Contract test
Also referred to as an interface test, this type of test focuses exclusively on verifying that a
service public interface matches its specification. In the case of GraphQL and gRPC, this test
is less relevant as their IDLs are tightly coupled to their service implementations. But for
REST, where multiple IDL options exist (for example, OAS, API Blueprint, or RESTful API
Modeling Language (RAML)), the implementation of the API (its service) is normally
decoupled from its IDL (assuming an API design-first approach was followed) and,
therefore, executing this test makes a lot of sense to prevent services from being released
that don't match its specification.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://netbeans.org/
https://www.jetbrains.com/idea/
https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/

API Life Cycle Chapter 7

[236]

Figure 7.12: Verifying the service implementation

The process is simple. As illustrated in the diagram, a contract test tool feeds from an IDL
in order to verify that the service implementation corresponds to its interface definition.

Tools such as Dredd (dredd.org), ReadyAPI
(smartbear.com/product/ready-api), and PostMan (getpostman.com)
can be used for this purpose. However, when selecting a tool, bear in
mind that some actually require tests to be manually defined. Other tools,
such as Dredd, automatically generate tests by introspecting an IDL.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://dredd.org/en/latest/
https://smartbear.com/product/ready-api/overview/
https://www.getpostman.com/

API Life Cycle Chapter 7

[237]

Lastly, this activity should be carried out by service developers. As a good practice, code
should not be considered completed until all contract tests are passed, as otherwise, a
service might be released that is either not fully compliant or lacks functionality and
features.

Customer life cycle
This life cycle defines, at a high level, key activities that are carried out by application
developers when implementing functionality within their applications that require calling
APIs. This flow is important as it steps away from the details of designing and
implementing an API; rather, it looks at the implementation and usability aspects of an API
from the point of view of its consumers.

Figure 7.13: The customer life cycle

Note that although the flow indicates that the cycle starts once an API has been promoted,
in practice, the promoted API does not necessarily have to be an actual service but can be a
service mock, as described in the API design-first steps covered earlier in the chapter.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Life Cycle Chapter 7

[238]

Implementation and use
Implementation is the process by which an application developer creates the code artifacts
required to call a given API (typically as an application model). Once the model is created,
then it can be used by the viewmodels (in model-view-viewmodel architectures) or
controllers (in model-view-controller architectures) as required.

When using REST, API design tools such as Apiary and SwaggerHub also provide
capabilities to scaffold client application code in several languages.

In gRPC, the process of generating gRPC stubs is similar to that of generating servers that
was described earlier in the chapter (basically just using the protoc compiler).

For GraphQL, there are several client libraries available, each providing different features,
such as response-caching and call handlers.

The following articles provide a good overview of GraphQL client
options:
https://medium.com/open-graphql/exploring-different-graphql-clie
nts-d1bc69de305f

Furthermore, there are a few considerations to bear in mind when implementing clients.
Client caching is not a given. In the case of REST APIs, this is much easier, as not only is it
one of the fundamental constraints of REST (refer to Chapter 6, Modern API Architectural
Styles, for details), but it is closely aligned to HTTP. Headers, such as Cache-Control and
Expires, can be used for this purpose. In the case of GraphQL, it is more difficult because
each call can be different. Therefore, GraphQL clients can't rely on HTTP caching. Instead,
it has to be part of the client application code, though most clients do provide rich support
for this (for example, the Apollo GraphQL client provides rich client caching support). In
the case of gRPC, libraries are emerging to accomplish this task (for example,
https://godoc.org/k8s.io/client-go/tools/cache).

Adopting patterns such as the Tolerant Reader (find more information at
https://martinfowler.com/bliki/TolerantReader.html) really helps in making the
consumer code less exposed to server-side changes. Implementing a tester client for
external APIs and running tests regularly within the application CICD process (or some
form of scheduler) can be very useful for quickly detecting whether, by any chance, a non-
backward compatible change has been introduced, or to simply check the health and status
of APIs that the application depends on.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://medium.com/open-graphql/exploring-different-graphql-clients-d1bc69de305f
https://medium.com/open-graphql/exploring-different-graphql-clients-d1bc69de305f
https://godoc.org/k8s.io/client-go/tools/cache
https://martinfowler.com/bliki/TolerantReader.html

API Life Cycle Chapter 7

[239]

Feedback
Lastly, just like in the case of the API design-first life cycle, frequently collecting feedback
from API consumers, not just on their experience of adopting the API, but also on the API
performance once the API is used by an application, is extremely valuable in order to
continually improve the API throughout the API life cycle. Therefore, in order to make the
process of collecting feedback easy, in addition to the communication channels described
earlier (for example, Slack), additional capabilities could be added in the developer portal
so that consuming application developers can directly rate and comment on individual
APIs.

Summary
This chapter delivered a comprehensive overview of not just the entire API life cycle, but
also related cycles that are derived from it.

The chapter started by explaining how good APIs could be identified by running a series of
well-structured and interactive ideation workshops. Next, the chapter described the
different activities required when designing an API and its associated services. The
subsequent sections then focused on elaborating on each step with the use of examples.

The next chapter will look at the organizational aspects of APIs by describing what it means
to treat APIs as products and a target operating model (TOM) suitable for this purpose.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
API Products' Target Operating

Model
The previous chapter delivered a comprehensive walk through of the end-to-end API life
cycle. This chapter elaborates on the non-technical aspects of implementing APIs by
focusing on the organizational implications of handling APIs as business products. To this
end, the chapter describes what it means to think of APIs as products, as opposed to IT
assets. The chapter explores the implications of doing so and the impact this has on the
organization, teams, roles, responsibilities, and even communication structures.

The chapter outlines a target operating model (TOM) that is suitable for handling APIs and
related teams as profit generating organizations, as opposed to just IT cost centers.

Products in the real world
Before talking about APIs as products, it is important to first understand what products
actually are in the real world, how they are classified, and how they are perceived by
buyers. According to many definitions, a product is any good and/or service that satisfies a
need (a lack of a basic requirement) or a want (a specific requirement for products or
services to match a need) and thus can be offered to a market. From a customer standpoint
(someone who acquires the good or service: the buyer), a product is something that delivers
a benefit, as otherwise there would be no point in acquiring it.

Products can be tangible or intangible. Tangible products are physical goods (objects),
such as phones, cars, drones, or anything that can be seen and touched. Such products are
easily identifiable and don't require further explanation.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[241]

Intangible products, on the other hand, are trickier to understand, as they can't be seen
and/or touched and are not physical objects. They can be virtual goods, such as mobile apps
purchased through an app store, Software as a Service (SaaS) purchased from a cloud
vendor, or services offered by an organization and/or individual, such as catering services,
hospitality services, or even software development services.

Note that the word "intangible" in the preceding definition is used just to
define the type of product and not its potential benefits, which could well
be tangible in the literal sense. Refer to the following link for a more
detailed explanation:
https://en.wikipedia.org/wiki/Intangible_good

Figure 8.1: Examples of tangible versus intangible products

In some cases, a product may combine tangible and intangible goods. For example, the vast
majority of modern cars today are smart in the sense that they have onboard computers,
rich displays, and lots of proximity sensors. In addition, they have apps such as a
navigation system, real-time traffic information, and auto-pilot. However, without Internet
access, many of these features are of limited use and, in some cases, they simply wouldn't
work. Therefore, when such cars are sold, they are typically bundled with data connectivity
as an add-on to the main purchase.

Regardless of their type, however, products must always deliver customer benefits. In fact,
according to marketing experts, most notably Philip Kotler, a prominent figure in the
marketing world and an author of over 60 books on the topic, "products are the means to an
end wherein the end is the satisfaction derived from addressing a need or want."

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Intangible_good

API Products' Target Operating Model Chapter 8

[242]

According to Kotler, customers choose a product based on its perceived value, and thus are
only satisfied if the actual value of the product equals or exceeds the original perceived
value. To this end, Kotler defined the five levels of a product, commonly referred to as the
customer value hierarchy, because the higher a product reaches on the circle, its higher the
perceived value.

Figure 8.2: The customer value hierarchy

The levels are as follows:

Core benefit: This is the most fundamental level as it refers to the actual service1.
or benefit that a customer is buying. For example, what a hotel guest really buys
is rest and sleep.
Generic product: This turns the core benefits into a tangible or intangible2.
product. Using the previous example, this means offering the hotel guest, at the
very least, a room with a bed and a bathroom.
Expected product: This refers to the typical benefits a customer expects when3.
acquiring the product. For example, the average hotel guest expects a clean room,
fresh sheets, towels, and tranquility.
Augmented product: This refers to additional factors that set the product aside4.
from its competition. This could be the differentiators that exceed customer
expectations or features that the customer simply did not expect, but that add
further value. For example, for a hotel, this could be a prime hotel room view (for
example, of the sea), the latest smart TV with free Internet access and apps such
as Netflix, Amazon Prime, and other streaming services, or a virtual concierge.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[243]

Note that at this level, a product typically faces severe
competition. Furthermore, each augmentation adds to the cost
of the product and also increases customer expectations,
meaning that the augmented benefits soon become expected
product benefits.

Potential product: This is augmentations and transformations that the product5.
could undergo in the future, typically referred to as the product roadmap.

More information on Kotler's five product levels can be found at the
following URL:
https://www.provenmodels.com/16/five-product-levels/philip-kotle
r

APIs as products
Now that context has been provided about what products are in the real world, it is easier
to explain and appreciate what it means to treat APIs as products. API products are
intangible goods (because APIs are digital goods, not physical objects) that satisfy the needs
of application developers and/or owners who seek quicker access to information,
functionality, and/or innovation that is deemed necessary in order to deliver a basic,
expected, or augmented product.

For example, API products could meet the following requirements:

Quick access to innovation that would otherwise be nearly impossible and/or
very expensive to build from scratch. A good example is embedding a maps
capability within an application. Instead of building a new maps API, it would be
cheaper and quicker to just make use of the Google Maps API.
Obtaining high-quality and up-to-date data deemed crucial for certain business
transactions whereby data that's already a few seconds old could have a
considerable business impact. For example, an application that performs
currency conversions (for example, an expense claim application) will need
access to up-to-date forex exchange rates information. Instead of having to
extract this data from multiple public sources and in real time (which would be
time-consuming and expensive), adopting one of the many forex exchange APIs
will save time and money. Typically, the more up to date the data offered is, the
costlier the API will be.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.provenmodels.com/16/five-product-levels/philip-kotler
https://www.provenmodels.com/16/five-product-levels/philip-kotler

API Products' Target Operating Model Chapter 8

[244]

Executing complex calculations and/or analysis that would otherwise require a
huge amount of compute power and many days of programming. For example,
crop yield predictions based on historical weather and geo-special data, and
using complex machine learning algorithms, could be made by leveraging
machine learning and prediction APIs.

Note that Chapter 1, The Business Value of APIs, describes in detail the
value that APIs can offer based on different use cases.

Although these are just a few examples, they do have one thing in common: API products
always deliver a clearly understood customer benefit, meaning that they satisfy a need or a
want, and thus are worth someone acquiring, either internally within the same organization
(internal API products), or externally by partners or third parties (external API products).
Treating APIs as products, however, doesn't just happen by magic.

The implications of treating APIs as products
Considering APIs as business products has fundamental implications for the organization,
and especially for how software is delivered. This is because, as I've emphasized
throughout the chapters of this book, APIs and the teams that deliver them can no longer
be considered as IT cost centers; rather, they must be seen as revenue-and-profit-generating
organizations that make use of APIs. This has deep consequences for how such teams are
organized, measured, and managed.

From a development life cycle standpoint, this means:

Moving away from a traditional delivery approach, whereby requirements are
gathered at the start and it isn't until late in the life cycle that real feedback is
collected from the end users (API consumers), to adopting agile approaches that
encourage the collection of API consumers' feedback throughout the entire
design phase. This means that when a design is deemed complete, it is because it
truly satisfies the needs of customers.
Ensuring that analytical and operational data is properly collected and presented
in a way that makes it possible to get insights that help to continuously improve
the product but also ensure that legally binding service level agreements (SLAs)
are followed.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[245]

Streamlining the software release process, so that the time it takes to deploy a
working product is dramatically reduced, but without compromising on quality.
Ideally, it should be possible to make multiple releases a day into production.

Chapter 7, API Life Cycle, described an API life cycle suitable for APIs
as products.

From an organizational standpoint, this means:

Moving away from a traditional project delivery approach whereby development
teams, having completed an application delivery (for example, an API), hand
over the running software to a support team for on-going support and
maintenance. The focus of the support team is mainly on keeping the lights on
and fixing defects as they appear, so new features are rarely introduced.
Given the lack of innovation post go-live, in time, the running API moves away
from being augmented (with differentiation) to being expected, and, soon after, it
moves to being basic, at which point the API can be considered legacy.
Because both development and support teams are typically organized around
technologies (for example, an architecture team for the software architecture and
API design, a development team for implementing the API, and a database team
for database design), the final software product is directly exposed to the
observations made by Melvin Conway in his thesis, How Do Committees Invent?,
which was later popularized as simply Conway's law.

Figure 8.3: Conway's law

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[246]

More information on Conway's law can be found on this website:
http://www.melconway.com/Home/Conways_Law.html

Although, in practice, Conway's law can have multiple interpretations, an undisputed one
is that if the different teams responsible for designing, implementing, and a system don't
communicate effectively among one another, the communication gaps will eventually be
reflected in the software they produce. Fred Brooks, another prominent computer scientist
best known for his work on developing IBM's System/360 family of computers, discussed
this in his paper entitled The Mythical Man-Month:

"Conway's law was not intended as a joke, a Zen Koan, but as a valid sociological
observation. The law is a consequence of the fact that two software modules, A and B,
cannot interface correctly with each other unless the designer and implementer of A
communicates with the designer and implementer of B. Thus, the interface structure of a
software system necessarily will show a congruence with the social structure of the
organization that produced it."

We can therefore conclude that trying to deliver API products from teams organized
around application tiers will likely result in APIs that look more like three-tier monolithic
applications, with the APIs sharing a lot of the codebase, a runtime, and a database. In time,
such APIs will be difficult to change and scale (as a change in a single API may impact
others, and scaling a single API means that the entire system has to be scaled), and will
rarely evolve.

Many attempts at demystifying and even proving Conway's law have
been published and are publicly available. Therefore, this chapter will not
elaborate further on the topic.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.melconway.com/Home/Conways_Law.html

API Products' Target Operating Model Chapter 8

[247]

In order to avoid the negative effect of Conway's law, a better and more effective approach
is to first define the business products from which APIs will be derived (refer to the API
ideation section of Chapter 7, API Life Cycle), and then assemble multi-disciplinary teams
around each of these products for their subsequent delivery.

Figure 8.4: Traditional versus product-based operating models

This approach is sometimes referred to as Conway's law inside out because teams and
communication structures are created in support of how the resulting system is expected to
look.

This approach is referred to by the ThoughtWorks Technology Radar as the
Inverse Conway Maneuver.
https://www.thoughtworks.com/radar/techniques/inverse-conway-man
euver

Furthermore, product-based teams typically have the following characteristics:

They are organized around the entire product life cycle and not project phases,
meaning that teams remain consistent over time and there isn't such a thing as a
project end.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver
https://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver

API Products' Target Operating Model Chapter 8

[248]

Note that a product is typically aligned to an existing business
capability. For example, most organizations will have a
business capability around pricing, meaning that a pricing API
is productizing that pricing business capability. In some cases,
though, new business capabilities may have to be created in
support of a new product that can't be mapped to an existing
one.

Each team has full accountability for the success and/or failure of their product.
Each team has a product owner who is responsible, among other things, for
setting the product vision, defining the requirements (for example, agile epics
and user stories), and executing the vision.
The team puts customers central and thus defines customer value hierarchies to
ensure that the product is continuously successful and not just at one point in
time.

Figure 8.5: Project versus products

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[249]

Lastly, from a business standpoint, it is important to appreciate that API products:

Are business assets that can generate revenue and thus deserve the same
attention (investment, backing, and support) as other products.

Refer to Chapter 4, API-Led Architectures, and the section
entitled API monetization and billing, for more information on
different API monetization models.

Will too require involvement from other parts of the organization, such as sales,
marketing, finance, and even customer service departments. This support is as
fundamental for APIs as it is for any other products offered by an organization.
Will be bound to key performance indicators (KPIs) and SLAs. Therefore,
having an operating model suited for APIs as products becomes crucial.
Will require executive sponsorship in order to drive the organizational change
that is required to put in place a suitable operating model for API products.

The subsequent sections of the chapter explore a TOM that is suitable for API products.

What is a TOM?
An operating model is a visual representation of how an organization, or parts of the
organization, operates in order to produce products that deliver customer value and profit.
Put simply, it describes the present (current) state of how an organization (or part of it)
runs.

A TOM, however, does not focus on the present, but rather on the future. The purpose of a
TOM is to define how the organization will run in order to execute a strategy, such as a
new or revised API strategy that now considers APIs as business products and thus takes
into account the numerous implications, as described previously.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[250]

Figure 8.6: TOM in context

As a TOM naturally implies change, not just in the way of doing things, but also in how
teams are organized, and given roles and responsibilities, a TOM should always be
accompanied by a transition model describing how the organization can move from its
current state to the target state. This is bearing in mind sociocultural implications, such as
the aforementioned Conway's law, and the fact that most humans don't like change.

As Chapter 3, Business-Led API Strategy, already described in detail an
approach for creating API strategies aimed at delivering business and
customer value, the focus of this chapter is to elaborate on the TOM and
transition model.

Defining the model
There are multiple ways to define a TOM and, in fact, an extensive bibliography exists on it.
For example, enterprise architecture frameworks, such as The Open Group Architecture
Framework (TOGAF), Zachman, or the Aris House, incorporate within their approach the
means to model a business in a deliverable typically referred to as the business
architecture.

Other frameworks, such as POLISM, or the Operating Model Canvas, are less broad and
are designed specifically for creating TOMs. There are also industry-specific frameworks,
such as eTOM in telecommunications, and IAA in insurance.

Although all these frameworks can serve as a solid foundation for businesses to rely on
when defining their TOMs, when it comes to subject-matter areas such as API products and
their management, a pragmatic approach, more focused on addressing key concerns, rather
than delivering standard documentation, will arguably be easier and quicker to produce.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[251]

The concerns that should be addressed are:

Organization: Will there be a single centralized and all-encompassing team1.
offering all API-related capabilities? Or will each business unit and/or
department have its own capability? What about a mix of the two?
Roles and responsibilities: What are the roles and responsibilities required in2.
the new organization?
Collaborations model: How will the different teams interact and collaborate?3.
What will the handshakes be among different teams?
Transition approach (aka the transition model): How can you move from the4.
current organization to the target one as smoothly as possible and with the least
amount of disruption?

Once all these concerns are addressed in a way that technical and non-technical people can
understand, the outcomes produced can then be incorporated into a broader business
architecture that may already exist within the organization. The subsequent sections of the
chapter address each of the preceding points in more detail.

Organization
When it comes to defining where enterprise-wide capabilities, such as API product design,
implementation, and support, actually reside, organizations have traditionally favored two
main approaches, as follows.

Central organization
As its name suggests, this approach consists of grouping all of the expertise and tools
required to deliver a given capability into a single team. This type of organization is also
referred to as a Center of Excellence (CoE), although, in practice, this approach is rarely
used due to practical reasons, such as finding the right expertise and/or costs.

It is also not uncommon to see large enterprises outsource entire CoEs to
offshore and/or near-shore delivery centers. Although the motivations for
this may vary, one of the common reasons is to save on costs.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[252]

Figure 8.7: Centralized API organization

Under this model, any product team in need of API-related capabilities has to engage with
the CoE in order to obtain the required level of support.

Note that in the model, a product can be an API product and/or any other
business product that requires APIs. The same applies to the subsequent
diagrams shown.

From a management standpoint, having all API-related capabilities under one roof brings
some notable advantages. For example, knowledge exchange should be easier, which, in
turn, should help with onboarding new personnel and delivering a common and
industrialized delivery methodology. This should result in getting higher-quality results
quicker. Having common KPIs to track performance over the entire CoE should, in theory,
also be easier.

In practice, though, this approach has proven to be inefficient, not just because it is bound
to the downsides of Conway's law (and this alone should be a reason to seriously question
this model), but also because, as requirements start to emerge from all over the enterprise
(often in parallel), the central organization will struggle to scale and deliver on time,
meaning it can't meet the demand. Therefore, the chances of the central organization
becoming a bottleneck are high.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[253]

Added to this is the fact that different teams have different deadlines to meet, so handling
priorities will also become extremely challenging. This often results in conflicts and
escalations, as the CoE has no choice but to prioritize certain engagements over others.

Federated organization
Instead of having a single (and typically large) central organization, this approach favors a
federated approach, wherein different product teams have the freedom and flexibility to
build up their own expertise and use the tools that they deem necessary.

Figure 8.8: Federated API organization

Under this model, an enterprise architecture (EA) function tends to act as a coordinator
and governance function, so a level of knowledge/experience exchange and standardization
does takes place. For example, the EA function may offer a catalog of tools and capabilities
to choose from, which can prevent a situation whereby hundreds of different technologies
remain.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[254]

When done right, such a flexible model offers significant advantages; for example, a higher
degree of innovation and speed. Also, because teams work under much fewer constraints,
increased employee satisfaction can be experienced.

There are, however, some notable disadvantages and risks associated with this model,
especially when applied to large enterprises. First of all, it is highly unlikely that the size of
the EA function (or any other function acting as a mediator/coordinator body) will increase
in proportion to the number of product teams, thus causing a notable degradation in the
level of knowledge and experience exchange. Unless teams talk to each other directly in an
efficient and collaborative manner (which, in large enterprises, can be a challenge due to
factors such as deadlines, team locations, and even politics), the risk of teams becoming
siloed is very high, and so is the risk of technologies proliferating to the extent that no one,
other than the product teams themselves, really understands what each team is doing.

Talking specifically about APIs, this is really bad news, as one of the main advantages
associated with API-led architectures is being able to discover and reuse APIs. This will be
highly unlikely if each team does its own thing and uses its own tools.

To summarize, whereas this model can be effective for organizations of a small and
medium size, implementing it in organizations of a large size is risky.

A platform-based approach
Before describing what this approach is and what it entails, it's important to first
understand what a platform is. We all use platforms in our day-to-day lives.

Figure 8.9: Platform samples

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[255]

As illustrated in the preceding diagram, apps we commonly use, such as Facebook, Netflix,
Uber, YouTube, Spotify, Amazon, and eBay, are, in fact, platforms. They all share a set of
common characteristics:

Platforms are self-service: You don't need to go to a store or ring a call center in
order to create a Facebook or Amazon account, or upload pictures or products.
It's all done online through self-service. Even if you need to learn how to do
something, there will be online tutorials and interactive guides.
Platforms enable us to connect and interact: Users of the platform can connect
with each other and interact almost instantaneously and without the need for
third parties.
Platforms create value: Throughout all the interactions that occur in the
platform, value is created. For example, the Amazon platform allows its users to
publish their own products so others can find and buy them. This creates value
for the users that publish products, for the buyers who ideally find a great deal,
and for Amazon, as the platform owner, in addition to a fee that is typically
charged for the transaction and service.

Extrapolating these concepts into the world of APIs looks like this:

Figure 8.10: The platform model

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[256]

The core idea is that by offering an API platform as a set of self-service capabilities (for
example, those described in Chapter 4, API-Led Architectures), product teams don't have to
undergo heavy processes and/or have to spend lots of time liaising with a central
organization in order to get access to the tools and capabilities required to deliver API
products.

This basically means that while API product teams will retain their independence, because
a common set of capabilities will be used, there will intrinsically be commonality in what
technologies different teams use and how they use them. This, in turn, should also translate
into lower operations costs.

Furthermore, as the platform itself should be non-monolithic, multi-cloud, microservices-
oriented, and basically third generation (refer to Chapter 2, The Evolution of API Platforms,
for more details), product teams should also have a good degree of flexibility regarding
their API architectures and deployment models, which is important in order to ensure
that creativity and innovation isn't affected by forcing all users of the platform down a
single path.

It is crucial to understand, though, that in order for this model to be successful, the
platform must truly deliver on expectations. Failing to do so will most likely result in
product teams being frustrated and being creative in finding ways to avoid utilizing the
platform.

The subsequent sections continue to elaborate on a TOM that puts the platform concept at
the epicenter.

The book Platform Revolution is highly recommended for learning more
about platform-based models and the impact they've had on digital
revolutionaries such as Uber, Airbnb, Amazon, Apple, and PayPal.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[257]

Roles and responsibilities
Under a platform-based TOM, there are two main teams for which clear roles and
responsibilities are to be defined.

Figure 8.11: TOM roles and responsibilities for API products

API product teams
The API product teams are accountable and responsible for individual API products, and
are therefore also responsible for executing all of the activities of the API life cycle (refer
to Chapter 7, API Life Cycle, for more details on the API life cycle).

There can be as many API product teams as required, as long as there is a clear
understanding of which team owns which API. Ideally, there should be one-to-one
mapping (one product to one team); however, on occasion, it might make sense to give a
team more than one API. This should be done with caution in order to avoid the team
becoming too stretched to the point that features are no longer delivered frequently.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[258]

Furthermore, it is recommended that API product teams should be relatively small. As a
rule of thumb, the size of an API product team should follow Jeff Bezos' two pizza rule: "If
a team couldn't be fed with two pizzas, it was too big."

The following article explains the science behind Bezos' rule:
https://buffer.com/resources/small-teams-why-startups-often-win-
against-google-and-facebook-the-science-behind-why-smaller-
teams-get-more-done

In terms of how to measure success, different performance metrics could be measured
against APIs produced by each API product team:

Time to market: How long it takes from the moment a new requirement is
accepted into the API product backlog to the moment it is released into
production.
Meantime time to repair (MTTR): This represents the average time it takes to fix
a failed component. This metric is useful as it indicates how quickly the solution
can recover from issues across the stack. A high MTTR means that it takes a long
time to recover from issues. Therefore, in order to reduce this, investment in
automation and resilient infrastructure should be undertaken.

More information on MTTR can be found at the following link:
https://en.wikipedia.org/wiki/Mean_time_to_repair

Mean time to deploy (MTTD): This measures the average time it takes to
successfully execute a production deployment. A low MTTD indicates that
deployment to production can be done quickly and consistently, which, in turn,
shows maturity in the deployment pipelines.
Successful API calls: The average number of successful API calls processed per
period of time.
Average response times: Each API deployed in the platform should have an
expected response time. For example, a given API may have an expected
response time of 200 milliseconds. This KPI should therefore measure whether
the overall response time for this API over a period of time has been above or
below the 200 millisecond threshold.
Availability: This measures the overall availability of an API over a period of
time. This metric can't be higher than the availability of the underlaying
platform; it can either match it or be lower.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://buffer.com/resources/small-teams-why-startups-often-win-against-google-and-facebook-the-science-behind-why-smaller-teams-get-more-done
https://buffer.com/resources/small-teams-why-startups-often-win-against-google-and-facebook-the-science-behind-why-smaller-teams-get-more-done
https://buffer.com/resources/small-teams-why-startups-often-win-against-google-and-facebook-the-science-behind-why-smaller-teams-get-more-done
https://en.wikipedia.org/wiki/Mean_time_to_repair

API Products' Target Operating Model Chapter 8

[259]

Customer success ratings: Users of the API should be asked to indicate how
satisfied they are with the functionality offered and their experience in using it.
For example, if customers are asked to score an API from one to five, with one
being the lowest score, then a good API should consistently score above four.

Whereas many other metrics can be defined, the preceding
metrics typically are a good starting point. For more detailed
information on success metrics in agile organizations, the
following book is highly recommended:
https://itrevolution.com/book/accelerate/

The performance metrics listed (along with others) should be used as a basis for defining
KPIs and SLAs. This is another important characteristic of an API product. For example,
consumers of an API will normally have expectations about how an API performs, so
defining KPIs and SLAs around successful API calls, average response times, and
availability makes complete sense.

The difference between KPIs and SLAs is that the former focuses on past performance (for
example, how an API performed against individual SLAs and/or other metrics), whereas
the latter defines future commitments, or, in other words, sets the expectations of API
consumers about the performance of an API product (for example, expecting sub-second
response times from API calls).

However, not all KPIs have to be SLAs. For example, customer success rating makes sense
as a KPI, but not as an SLA. Therefore, understanding the differences and similarities
between KPIs and SLAs is also an important factor in the success of an API product.

The following article provides more information on KPIs and SLAs:
https://tinyurl.com/slavskpi

Roles and responsibilities

The roles and responsibilities within an API product team are as follows.

API product owner

This person is responsible for defining the API product vision and the API customer value
hierarchy. To this end, the product owner owns the definition of the product backlog and
its priorities (for example, which features take precedence over others).

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://itrevolution.com/book/accelerate/
https://tinyurl.com/slavskpi

API Products' Target Operating Model Chapter 8

[260]

In order to be successful, the product owner must understand market trends that apply to
the product and must come up with innovative features to augment the product. In
addition, the product owner should maintain as much interaction as possible with the users
of the API, as their feedback can also help with defining new product features that add
customer value.

This role also entails having interactions with other parts of the organization, such as the
sponsoring business unit to report on progress, the sales team, the marketing team to
promote the API product, or even the API platform team if additional support is required
beyond that available with self-service tools.

Business analyst

A business analyst is a functional expert in the business domain that an API product relates
to. For example, an API that offers eCommerce functionality will require someone that fully
understands the eCommerce domain. Although, arguably, the product owner should be the
domain expert, in practice, they may require additional support in order to properly define
all of the epics and stories for an API. Architects, developers, and technical writers as well
may need additional functional support, and this role can therefore offload some of these
activities from the product owner so that they can focus on other value-adding activities.

This role may be a part-time one or only required for a certain amount of time. Especially in
the initial stages and testing stages of an API product, having someone with these skills can
prove to be of great value.

Architects

They are responsible for converting all business and non-functional requirements, coming
in the form of epics, stories, or features, into a solution that is fit for purpose for the API
product in question. Architects are, therefore, responsible for analyzing requirements,
producing an end-to-end conceptual design, making key design decisions, and working
with developers to produce adequate API specifications and with technical writers to
ensure that high-end documentation is produced for the API.

During the initial delivery, the architect is also responsible for mentoring and providing
technical support to the rest of the team.

Once an API goes live, the architect should make use of observability tools offered by the
platform (for example, how/when APIs are used, from where, common sources of errors,
throughput) in order to identify areas of improvement or new features that could be added
to augment the product.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[261]

Whether many architects are needed truly depends on the size and scope of the API.
Typically, a single individual with the right skills is enough.

Developers

Developers are responsible for the actual coding and unit testing of services in accordance
with the API specification and solution design. During testing phases, the developers
should also provide ongoing support (for example, fixing bugs identified during the testing
phase and request deployments for an API) as deemed required. Post go-live, developers
should continue to deliver backlog features and fix defects as prioritized by the product
owner.

Technical writers

Technical writers are techno-functional individuals who are well versed in the art of
communications and language. They can translate documents of a technical nature (for
example, an API specification or an architecture design) into more human-readable content
fit for more general audiences. The idea is that the content produced should be easy to read
and follow, as only then will consumers of the API appreciate the capabilities offered.

On some occasions, a business analyst may also be capable of undertaking a technical
writer role and vice versa.

API platform team
The API platform team, on the contrary, is not responsible for individual APIs, but rather
for the underlying platform on top of which APIs run. This team is therefore responsible for
providing all of the self-service tools and capabilities required by API product teams to
smoothly deliver APIs throughout their entire life cycle.

This team is also responsible for promoting the capabilities offered by the platform, with
the objective to ensure that the platform gets used, so it becomes self-funding, assuming a
fee is charged for the use of the platform. To this end, the API platform itself should be
considered a product as well, along with also being subject to the customer value hierarchy.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[262]

In terms of how to measure success, many of the same performance metrics described for
the API product team can also be applied to the platform itself. However, there are
platform-centric metrics that won't apply to individual APIs:

Platform availability: This measures the overall availability of the platform over
a period of time, such as in a given year. For example, a platform that should be
available 99.98% of the time should not experience more than 1h 45m of
downtime over an entire year.

The following site is a great tool for doing this sort of
calculation:
https://uptime.is

Total number of APIs: The overall number of APIs deployed to production in a
given period of time is a good indicator of how much the platform is being used.
Ideally, the number of APIs should consistently grow over time.
Total number of API calls: Related to the previous one, this KPI measures
whether the total number of API calls is within the expected range in order for
the platform to deliver value. The number of calls should increase over time, as
this is also a good indicator that platform usage is also increasing.

The roles and responsibilities within this team are as follows.

API platform owner

This role is, in essence, similar to the product owner role, with the difference being that the
product in question is the platform itself as opposed to individual API products.

The API platform owner's main goal is to ensure that the platform gets used and that value
is derived from it, while, at the same time, ensuring that the platform meets all SLAs and
KPIs. To this end, the platform owner should have a deep understanding of popular
capabilities, those that aren't as popular (or not working well) and therefore require
improvement or retiring, and new features required to augment the product.

In addition, the product owner should understand different stakeholders within the
organization in order to promote the platform with support from the platform architects,
evangelists, and communication and marketing specialists.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://uptime.is

API Products' Target Operating Model Chapter 8

[263]

Platform architects and evangelists

Platform architects are subject matter experts in the different technologies that underpin the
API platform as a whole. Ideally, platform architects should also act as evangelists,
meaning that they should be capable of enthusiastically showcasing and demoing the
platform as a whole and its key features.

Platform architects are also responsible for producing detailed technology designs and later
on following up with the engineers and developers to make sure that the platform is
delivered. Architects should work closely with the product owner in identifying technology
features that should be added to the backlog, such as required product patches and
upgrades, additional compute capacity to comply with non-functional requirements,
changes required to comply with regulation, bug fixes, and enhancements based on
feedback.

As the platform may comprise different technologies and areas of expertise, typically, there
is more than one architect to cover the entire stack.

Platform engineers

They are responsible for provisioning, configuring, monitoring, and operating all runtime
components of the platform. Platform engineers must also be well versed on how the
platform delivers against performance metrics. This involves API gateways and container
runtimes, such as Kubernetes, along with continuous integration and continuous delivery
(CICD) pipelines with tools such as Jenkins, Sonar, and Nexus.

If the platform runs entirely on cloud compute, then engineers should ideally be well
versed in also configuring things such as virtual network configuration, load balancers, and
edge services, such as traffic managers, web application firewalls, and DNS services.

Note that in some cases, however, these responsibilities fall under a different team
(sometimes referred to as a cloud infrastructure team), in which case the platform architect
should work together with the platform engineers in ensuring that all dependencies are
delivered as expected.

Platform developers

Platform developers are responsible for the actual development and support of the self-
service tools used by all platform users. This is a critical role as its focus is to deliver on one
of the fundamental pillars of a platform: the self-service capabilities.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[264]

Developers will typically have to work closely with the engineers to ensure that self-service
capabilities are adequately delivered end to end throughout the stack.

Content manager

The main responsibility of the content manager is to create rich content, such as video
tutorials, interactive how-to guides, and well-documented wiki pages, in order to assist
users of the platform at different stages of engagement. This includes onboarding in the
early stages of using the platform, using more advanced features, and knowing what to do
and how to make contact in the case of issues.

The content manager should work closely with the platform owner and the self-service tool
developers in order to ensure that the right content is created in the right place, aiding with
using the self-service capabilities and also using the platform as a whole.

This role is extremely important since, even if a platform is robust, scalable, and modern,
without proper guidance and tutorials with lots of examples, it will be difficult for new
users to start using the platform, and existing users will struggle to fully leverage all
features available, and won't know what to do in certain scenarios, such as when facing
common errors and workarounds.

The content created should also include information about the platform team, who the
main points of contact are, and a summary of the vision of the platform and its roadmap.
That way, everyone has clear visibility about the future of the platform, which features will
be added, and when.

Communication and marketing specialist

The main purpose of this role is to promote the platform product across the organization.
This, in turn, means advertising, across multiple internal channels, the platform
capabilities, the team, and all success stories. This person is also responsible for organizing
in-person and/or virtual educative sessions, such as podcasts, webcasts, workshops, or even
hackathons, that could help to raise awareness about what the platform has to offer.

As this role shares some similarities with the content manager role, it's not unusual to have
a single individual do both, especially during the early stages of the platform
implementation, when demand is low. As demand increases, then the roles can again be
split into two.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[265]

Communication and collaboration model
The success of a platform-based model isn't just determined by having good self-service
capabilities. Having a fluent and dynamic communications structure that ensures the
platform team communicates and collaborates effectively, not only among themselves but
also with other parts of the organization, is crucial to avoid silos and also prevent the
negative effects of Conway's law.

Therefore, a comprehensive view, illustrating the sorts of communication channels and
interactions that would be expected across the team, can be extremely useful in achieving
an organization that is not just effective in terms of providing tools, but that can also
communicate and collaborate effectively.

The following is an example of how such a view could look:

Figure 8.12: The API platform communication and collaboration model

As can be seen, the model incorporates which parts of the organization both the API
platform and product teams are expected to interact with. Determining such blocks
requires a good understanding of the business and how it is structured, and this will drive
the interactions that are required.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[266]

The first and most obvious set of interactions is between the API platform and the API
product teams. Although the intent of the platform model is that most interactions should
be self-service, there will still be a need to provide access, onboarding, and a level of
ongoing support to the teams using the platform (API product teams), especially at the
beginning as the self-service tools mature. During this period, the platform team should go
out there and promote its capabilities to the rest of the organization (other business units) to
ensure that the platform gets used. This, too, should be reflected in the model.

Expanding on this further, the majority of large organizations have enterprise architecture
and IT functions. Whereas the former is typically focused on producing and overseeing
enterprise reference architectures, principles, and standards, the latter is mainly focused on
technology tools and running business-critical systems.

The enterprise architecture function will normally expect alignment with, and a degree of
influence over, the API platform team in regards to the architecture of the platform and
other designs products. Therefore, such interactions should be modeled. Failing to reflect
(or acknowledge) this may result in unnecessary escalations and/or frictions, all of which
will have a negative impact on the overall delivery.

Similarly, in the case of the IT function, in order to address important dependencies, such
as access to corporate tools, connectivity, critical systems, and provision cloud
infrastructure, engaging with IT is inevitable, and not doing so may result in roadblocks.
These interactions should therefore be captured too.

Other important API platform team interactions are with strategy teams regarding
direction and alignment, and finance for initial funding and performance metrics reporting.

For API product teams, obvious interactions are with the business units (or initiatives
within the units) that produce the business requirements from which API products are
derived and that also provide funding. These units/initiatives will likely expect ongoing
progress reports and estimated times of arrival (especially as the API product being
delivered may be part of a broader initiative).

Other important interactions for the API product teams are with corporate functions such
as sales, marketing, and customer experience (sometimes referred to as customer
management or CRM) departments. Whereas sales and marketing can help in identifying
the right customer segment and running marketing campaigns, the customer experience
team can help not just in making sure that the product delivers a rich user experience, but
also that it is customer-centric.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[267]

Transition approach
Changing an organization and its communication structures is no easy task. In fact, it is
quite the opposite. History tells us that initiatives that fail to recognize (or at least fail to
recognize early) how difficult it can be to drive organizational change will seriously
struggle to succeed. This is either because there isn't enough buy-in from key stakeholders,
or simply because whichever capabilities the initiative delivers fail to gain the expected
adoption.

Therefore, coming up with a transitional and incremental approach toward driving any sort
of organizational change becomes a necessity. A transitional approach doesn't have to be
complicated and could consist of only a few steps, each indicating what sort of change is
required, and what benefits should be expected for each step accomplished. For example, as
the organization (or part of the organization) transitions from being project-centric to being
product-centric, ideally the customer value delivered should increase, while the time to
market should decrease, both delivering better products faster.

The following model presents a simple transition approach that can be used as inspiration
when defining a broader or more specific organizational transition strategy:

Figure 8.13: The transition model

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[268]

The model consists of four levels:

Project based: This is the starting point and represents an organization that is1.
fully project-centric, meaning development and operation teams are not just
different but part of completely different organizations. At this level, teams are
organized based on technologies as opposed to the business products that the
implemented technologies actually enable. Communication silos are commonly
in place. Deployments to production are far from frequent and require a lot of
planning and coordination.
Transitioning: Having recognized that organizational change is required in2.
order to drive better products and faster, the journey begins by slowly
reorganizing teams around the business products they deliver, as opposed to just
based on technologies. At this level, both development and support functions
become the responsibility of the product team and, therefore, the role of the
product owner is created as the accountable party for the success of the product.
At this level, investments are made in automation and self-service capabilities so
teams can independently and programmatically drive the life cycle of their
products. At this stage, deployments to production should start to occur more
frequently.
Maturing: As the organizational transition continues, more and more teams are3.
organized around products and, thus, are solely responsible for the full cycle of
their individual products. A new culture also starts to emerge whereby
communication and interaction across teams is more agile and objective. Less
time is spent on bureaucracy and more on addressing needs to drive value. At
this point, deployments should be more frequent and driven almost entirely
through CICD pipelines that, with little human interaction, take care of things
such as regression, quality testing, packaging, and deployment.
Matured: At this level, all teams are product-centric, meaning that development4.
and operation teams operate as one. As the entire product life cycle is automated
through CICD pipelines, introducing new features is quicker and easier, thus
enabling the product to truly differentiate itself from its competition.
Accountability is also clear, along with the communication structures in teams.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Products' Target Operating Model Chapter 8

[269]

Summary
Throughout the sections of this chapter, it was explained what it really means to treat APIs
as business products. From a simple definition of what products in the real world actually
are, to concepts such as the customer value hierarchy and Conway's law, the chapter
described in practical terms the actual organizational implications of treating APIs as true
business products.

The chapter, however, wasn't just about concepts: it walked through an illustrative and
representative approach to delivering a TOM that is suitable for large enterprises wishing
to build API products. To this end, the chapter exemplified different organizational models,
each with their pros and cons, but ultimately focusing on a platform-based model, favored
because of its potential to drive the most customer and business value, while being agile
and scalable.

We then looked at the different elements expected of a TOM fitted to a platform model,
such as roles, responsibilities, communication, and collaboration structures across different
teams.

The chapter concluded by describing a sample transition model suited for driving
organizational change through a series of steps, each aimed at getting the organization a
level closer to the set target.

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
abstraction 170
access control lists (ACLs) 104
Altair
 reference link 219
Apache Kafka 116
Apache Zookeeper 117
API aggregator
 applicability 138
 considerations 137
 drawbacks 138
 issue 136
 solution 136
API architects 212
API basic authentication
 applicability 152
 drawbacks 151
 issue 150
 solution 150, 151
API bearer of obscure token
 applicability 157
 drawbacks 157
 issue 155
 solution 155
API bearer of token
 applicability 155
 drawbacks 155
 issue 153
 solution 153, 154
API billing 102
API blueprint
 about 173
 reference link 174
API content-based routing
 applicability 129
 drawback 129

 issue 128
 solution 128
API design-first cycle 94
API designer 217
API developer portal 98
API directory 98
API Exposure
 about 86, 87, 102
 access control 104
 API composition 105
 API key validation 104
 API load balancing 108
 authentication (authn) & authorization (authz)

103

 caching 107
 Cross-Origin Resource Sharing (CORS) 104
 custom policies 109
 fault handling 106
 format conversion 106
 header handling 106
 OWASP top 10 protection 105
 push notification 108
 quotas & plans 109
 rate limits 107
 redaction 105
 routing 106
 throttling 107
 versioning & deprecation 109
API firewall
 applicability 150
 drawbacks 149
 issue 148
 solution 148
API Fortress
 reference link 219
API Gateway 86
API geo-routing

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

[271]

 applicability 148
 drawbacks 148
 issue 146
 solution 147
API hubs 99
API life cycle
 about 204, 205, 206
 API design-first life cycle 205
 API ideation 207, 208, 210
 API mocking 217, 219
 API planning 207, 208, 210
 configuring 220
 consuming application life cycle 205
 creating 220
 customer life cycle 237
 deploying 221
 deprecation 224
 design 231
 design process 211
 observability 226
 promotion 224
 retirement 224
 service life cycle 205, 232
API Management & Operations block
 about 92
 API design & mocking 94
 API developer portal 96
 API life cycle 93
 API marketplaces 97
 API monetization and billing 101
 API pages 96
 API runtime operations & analytics 100
 policy definition & implementation 96
API management
 about 27, 43
 community management 30
 consumption 29
 design 28
 implementation 28
 maintenance 29
 operation 29
 planning 28
 publication 29
 retirement 30
API marketplace 98

API microgateway
 about 60
 applicability 142
 drawbacks 141
 issue 140
 solution 140
API mocking 217, 219
API monetization policies 102
API orchestration service
 applicability 140
 drawbacks 140
 issue 138
 solution 138
API pages 99
API plans 101
API platform team
 about 261
 roles and responsibilities 262, 264
API platforms, second generation
 Application Services Governance 53
API platforms, third generation
 cloud adoption 54
 common denominators 56, 58, 60
 customer-centricity 55
 digital transformation 54
API platforms
 about 38, 39, 40, 42, 43
 first generation 46, 47, 49
 generation zero 44, 45
 second generation 49, 51, 52
 third generation 54
API product owner 210
API product teams
 about 257
 roles and responsibilities 259, 261
API resource routing
 applicability 127
 drawback 127
 issue 126
 solution 126
API strategy
 about 72, 73
 business case 75, 76
 discovery 76, 77, 78, 79
 reference solution 80, 81, 82

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

[272]

 roadmap 84
API trends 164, 165
API value chain
 about 30, 31
 properties 31, 33
API-led architecture patterns
 about 122, 124
 API aggregator 125, 136, 137
 API basic authentication 150
 API bearer of obscure token 155
 API bearer of token 152, 154
 API content-based routing 125, 128
 API firewall 148, 150
 API geo-routing 146, 148
 API interaction patterns 124
 API mediation patterns 124
 API microgateway 125, 140
 API orchestration service 125, 138
 API resource routing 125, 126
 API security patterns 124
 applicability 146
 CQRS API service 125, 133
 CRUD API service 125, 131, 133
 drawbacks 146
 payload pagination 125, 130
 service implementation pattern 124
 sidecar API gateway 125, 142
 webhook pattern 144
API-led
 about 86
 architecting 87, 88, 89
 conceptual architecture view 89, 90
 technical capability view 91
Apiary
 about 238
 reference link 173, 219
APIs, history
 reference link 49
APIs, Strategic Value
 reference link 22
AppDynamics 230
application performance monitoring (APM) 29
Application Programming Interfaces (APIs)
 about 9
 as product 243, 244

 for regulatory compliance 23
 importing, as product 244, 246, 248, 249
 information assets, monetizing 21, 22
 large acquisitions, in software industry 35, 36
 need for 14, 15, 16, 17
 used, for enabling bimodal IT 18, 19, 20, 21
 used, for enabling innovations 18, 19, 20, 21
 used, for reusing business capabilities 25
Application Services Governance
 about 53
 reference link 53
Aris House 250
authorization server 153

B
backward compatibility 215
bearer token 155
bimodal IT 19
bounded context
 about 212
 reference link 212
brute-force attack
 reference link 152
business architecture 250
business capabilities 87, 247
business drivers
 about 64, 65
 advantages 65, 67
business entities 212
business process execution language (BPEL) 48,

139

business process model and notation (BPMN) v2.0
139

business rules 48
business services 205
Business to Business (B2B) 33
Business to Consumer (B2C) 11
Business-IT
 reference link 20
business-led API initiative
 about 65
 API strategy, defining 72, 73
 business drivers, defining 64
 goals 64, 70, 71, 72
 objectives 64, 70, 71, 72

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

[273]

 working with 62, 64

C
Center of Excellence (CoE) 251
central organization 251, 253
Chief Information Officer's (CIO) 14
cloud adoption
 about 54
 cloud reengineering 54
 cloud transformation 54
 workload migration 54
Cloud Native Computing Foundation (CNCF) 187
cloud services
 reference link 40
collaboration model 265, 266
Command Query Responsibility Segregation

(CQRS)
 about 133
 reference link 134
commands 134
commercial off-the-shelf (COTS) 68
Common Object Request Broker Architecture

(CORBA) 162
Common Weakness Enumeration (CWE) Top 25
 reference link 148
communication model 265, 266
Competition and Markets Authority (CMA) 24
composite applications 47
Concurrent Versions System (CVS) 221
Consul 117
continuous integration and continuous deployment

(CICD)
 about 221, 263
 build and package 222
 deploy 223
 inspect 222
 pull 221
 quality assurance (QA) 222
 rollback 223
correlation ID 230
CQRS API service
 applicability 136
 drawbacks 136
 issue 133
 solution 133, 135

create, read, update, and delete (CRUD) 131
Cross-Origin Resource Sharing (CORS) 104
Cross-Site Request Forgery (CSRF)
 reference link 152
CRUD API service
 applicability 133
 drawbacks 132
 issue 131
 solution 131
customer life cycle
 about 237
 feedback 239
 implementing 238
 using 238
Customer Relationship Management (CRM) 128
customer value hierarchy 242

D
Data Capital
 reference link 21
demarshalling 161
Demilitarized Zones (DMZs) 44
design process
 about 211
 analysis 211
 API specification 216
 discovery 214
 domain and concept design 212
 Key design decisions (KDDs) 213
 versioning approach 215
developer experience (DX) 96
digital dilemma 12
digital ecosystems 16
digital strategy 12
discovery 215
Distributed Component Object Model (DCOM) 162
Distributed Computing Environment (DCE) 160
domain model 212
Domain-driven design (DDD)
 about 212
 reference link 212
Dredd
 about 236
 reference link 219

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

[274]

E
EasyGraphQL
 reference link 219
Electronic Data Interchange (EDI) 17
ELK stack
 reference link 229
enterprise application integration (EAI) 162
Enterprise Application Integration (EAI) 44
enterprise architecture (EA) 253
Enterprise Integration Architecture (EIA) 44
Enterprise Java Beans (EJB) 162
Enterprise Resource Planning (ERP) 38
Enterprise Service Bus (ESB)
 about 44, 163
 basic security 45
 data transformation 45
 message routing 45
 protocol translation 45
 reference link 44
ETCD 117
eTOM 250
European Union (EU) 23
Event Hub
 capabilities 116
event sourcing
 about 134
 reference link 134
events 134
eventual consistency
 about 134
 reference link 134
Experience APIs 87
Extensible Markup Language (XML) 162
External Data Representation (XDR) 159

F
Fast Healthcare Interoperability Resources (FHIR)

24, 25
federated organization 253, 254
five levels of product
 about 242
 augmented product 242
 core benefit 242
 expected product 242

 generic product 242
 potential product 243
fully-decoupled services
 choreography 112
 data validation 113
 Event Hub 116
 independent runtime 114
 non-shared storage 118
 Polyglot programming 113
 processing logic 113
 service mesh 114, 115
 Service Registry 116

G
General Data Protection Regulation (GDPR) 23,

69, 122
 about 23
 reference link 23
Git repository 214
Git
 reference link 234
GitFlow 234
Google Remote Procedure Calls (gRPC)
 about 158, 187, 188, 194, 195, 197, 198, 200,

203

 architecture 189, 190
 interface definition 191
 payload 191
 transport 191
 usage flow 192, 193
Grafana
 reference link 228
Graph Query Language (GraphQL), architectural

principles
 about 181
 client-driven 181
 hierarchies 181
 introspective 181
 miscellaneous 182
 strongly-typed 181
 version-free 182
Graph Query Language (GraphQL), interface

definition
 about 182, 183
 data, defining 184

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

[275]

 operations, defining 183
Graph Query Language (GraphQL), types
 enumeration 184
 input 184
 mutation 183
 object 184
 query 183
 subscription 183
 union 185
Graph Query Language (GraphQL)
 about 158, 177, 178
 architecture 178, 180, 181
 payloads 185
 transport 185
 usage flow 185, 186
 versus Google Remote Procedure Calls (gRPC)

194, 195, 197, 198, 200, 203
 versus Representational State Transfer (REST)

194, 195, 197, 198, 200, 203
GraphQL client options
 reference link 238
GraphQL server 178
graphql-cli project 234
Graphql-Faker
 reference link 219
GripMock
 reference link 219
gRPC architecture
 characteristics 190

H
Harvard Business Review (HBR) 10
health-level 7 (HL7) 24
Helm 226
HipChat
 reference link 232
human workflows 48
hyperconnectivity 10, 11
hyperconnectivity mess
 about 26
 avoiding 26, 27
hyperlinks
 using 170
hypermedia as the engine of application state

(HATEOAS) 169

Hypertext Markup Language (HTML) 169
Hypertext Transfer Protocol (HTTP) 15, 163

I
ideation
 about 207
 reference link 207
Identity & Access
 about 119
 access management 120
 identity federation 119
 users and roles management 119
IDLs, for REST
 reference link 171
information technology
 about 9
 digital dilemma 12
 enterprise information, accessing 13, 14
 functionality, accessing 13, 14
 hyperconnectivity 10, 11
Infrastructure as a Service (IaaS) 36, 39
innovation
 about 18
 disruptive innovation 18
 sustaining innovation 18
intangible products 240
Integration Platform as a Service (iPaaS) 42
interface definition language (IDL) 161, 171
interface description language (IDL) 216
interface development environment (IDE) 179,

235

internal threats
 reference link 152
Internet InterORB Protocol (IIOP) 162
Internet of Things (IoT) 32, 106, 163
Inverse Conway Maneuver
 reference link 247
iPhone 48
iPod 48
Istio 226, 228

J
Jaeger 230
Java Enterprise Edition (JEE) 162
Java Virtual Machine (JVM) 162

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

[276]

JavaScript Object Notation (JSON)
 about 49
 URL 49
JSON Web Token (JWT)
 reference link 154

K
Key design decisions (KDDs) 213
key performance indicators (KPIs) 64, 249
Kotler's five product levels
 reference link 243

L
Lightweight Directory Access Protocol (LDAP)

103, 150
Linux Foundation
 reference link 172
LogRhythm 229
logs 226

M
marshalling 161
Massachusetts Institute of Technology (MIT) 21
McAfee 229
mean time to deploy (MTTD) 258
meantime time to repair (MTTR) 258
Message Queuing Telemetry Transport (MQTT)

106

metrics 226
microservice architectures 52, 188
Microservices and SOA
 reference link 55
Microservices Architectures 89
Microservices
 reference link 52
Microsoft RPC (MSRPC) 162
middleware
 reference link 57
minimum viable product (MVP) 210
Minimum Viable Product (MVP)
 about 80
 reference link 80
Mocky 219
MoSCoW method
 reference link 80

multi-vendor cloud strategies 40
mutual authentication
 reference link 153
mutual transport layer security (mutual TLS) 153

N
National Institute of Standards and Technology

(NIST) 39
network data representation (NDR) 161
New Relic 229

O
OAuth 2.0,
 reference link 153
Object Management Group (OMG) 162
object-oriented programming 162
omnichannel strategies 32
Open API Specification (OAS) 95, 171, 172, 173
Open Banking API 24
Open Modern Software Architecture Project

(OMESA)
 reference link 52
Open Network Computing (ONC) 159
Open Software Foundation (OSF) 160
Open Web Application Security Project (OWASP)
 about 105
 reference link 148
OpenAPI generator 234
OpenAPI Initiative
 reference link 172
OpenAPI Specification (OAS) 234
Operating Model Canvas 250
organization
 about 251
 central organization 251, 253
 federated organization 253, 254
 platform-based approach 254, 256
OWASP Top Ten Project
 about 47
 reference link 47

P
payload pagination
 applicability 131
 drawbacks 131

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

[277]

 issue 130
 solution 130
Payment Card Industry (PCI) 122
Payment Service Directive 2 (PSD2) 69
performance engineers 230
pillars, observability
 reference link 226
Platform as a Service (PaaS) 35, 39
platform engineers 223
platform-based approach 254, 256
platform-based TOM, teams
 API platform team 261
 API product teams 257
platform-based TOM
 roles and responsibilities 257
POLISM 250
PostMan
 about 236
 reference link 219
product backlog 207
products
 about 240
 in real world 240
profit generating organizations 240
programming interfaces
 history 158
Prometheus
 reference link 228

Q
quality assurance (QA)
 functional testing 222
 interface testing 222
 performance testing 223
question and answer (Q&A) session 211

R
ReadyAPI 236
Remote Method Invocation (RMI) 162
Remote Procedure Call (RPC)
 about 162
 evolution 159, 161
Representational State Transfer (REST),

architectural style
 cache 169

 client-server 168
 code-on-demand 171
 layered system 170
 stateless 168
 uniform interface 169
Representational State Transfer (REST), interface

definition language (IDL)
 about 171
 API blueprint 173
 Open API Specification (OAS) 172, 173
 RESTful API Modeling Language (RAML) 174
Representational State Transfer (REST)
 about 15, 49, 158, 166
 architectural style 166
 concepts 169
 payloads 175
 transport 175
 usage flow 175, 177
 versus Google Remote Procedure Calls (gRPC)

194, 195, 197, 198, 200, 203
 versus Graph Query Language (GraphQL) 194,

195, 197, 198, 200, 203
resource server 153
REST 164
REST design, best practices
 reference link 177
RESTful API Modeling Language (RAML)
 about 95, 174, 235
 reference link 174
return on investment (ROI) 209
Richardson Maturity Model
 about 34
 reference link 34

S
schema definition language (SDL) 182
second payment service directive (PSD2) 23, 24
 about 23
 reference link 24
second-generation API platforms 51
Security Assertion Markup Language (SAML) 119
semi-decoupled services
 about 52
 connectivity 111
 data transformation 111

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

[278]

 data validation 111
 orchestration 111
 protocol conversion 112
 shared runtime 112
senior developers 217
serverless computing
 reference 102
Service Component Architecture (SCA)
 about 46
 reference link 46
service gateways 46
service level agreements (SLAs) 227, 244
service life cycle
 about 232
 building 234
 contract test 235
 scaffold/refactor 233
 unit testing 234
Service Registry
 capabilities 117
Service-level agreements (SLAs) 79
service-oriented architecture (SOA) 21, 44
sidecar API gateway
 applicability 144
 drawback 143
 issue 142
 solution 142
sidecar pattern
 reference link 142
signing certificate 155
Simple Object Access Protocol (SOAP) 44, 163
six constraints 167
Slack 232
SOA governance
 about 48
 reference link 48, 50
SOA stacks
 reference link 51
SOAP web services
 reference link 44
Software as a Service (SaaS) 26, 39, 123, 241
source code control system (SCCS) 234
source code editor 235
Splunk 229
 reference link 229

Stubby 188
Subversion (SVN) 221
Swagger Specification 172
SwaggerHub
 about 238
 reference link 219
system of record (SOR)
 about 14

T
tangible products 240
target operating model (TOM) 240
taskquality assurance (QA)
 security testing 223
technical capability view, API-led
 API Exposure 102
 business capability services 109
 fully-decoupled services 112
 Identity & Access 118
 Management & Operations 92
 semi-decoupled services 111
technical contract 216
techno-functional writer 217
The Open Group Architecture Framework

(TOGAF) 250
theWeb Service Description Language (WSDL)

163

Tolerant Reader 238
TOM model
 about 249, 250
 defining 250
total cost of ownership (TCO) 67, 214
traces 226
transition model
 about 267
 levels 268
Transmission Control Protocol (TCP) 159
two pizza rule 258

U
ubiquitous language 212
Unified Modeling Language (UML) 212
Uniform Resource Identifier (URI) 215
unique resource identifiers (URIs) 125, 164
unit testing 235

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

User Datagram Protocol (UDP) 159

V
versioning approach 215

W
Web Application Description Language (WADL)

173

web proxies 44
web service standards (WS-*)
 about 44
 reference link 44
Web Services Architecture 164
web sockets 145
webhook pattern
 issue 144
 solution 144, 145

Webhooks 108
Wide Area Information Servers (WAIS) 167
wide area network (WAN) 150
WireMock
 reference link 219
World Wide Web Consortium (W3C) 163

X
XML accelerators 46

Y
YAML Ain't Markup Language (YAML)
 reference link 172

Z
Zachman 250
Zipkin 230

 EBSCOhost - printed on 2/9/2023 6:32 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: The Business Value of APIs
	Change or die
	What does this hyperconnectivity tell us?
	The digital dilemma
	Access to enterprise information and functionality is king

	What are APIs and why should a business care?
	APIs as an enabler for innovation and bimodal IT
	APIs to monetize on information assets
	APIs for regulatory compliance
	GDPR
	PSD2
	Fast Healthcare Interoperability Resources (FHIR)

	APIs for the reuse of business capabilities

	Avoiding a hyperconnectivity mess
	The API value chain
	APIs as a driving force for many large acquisitions in the software industry
	Summary

	Chapter 2: The Evolution of API Platforms
	The journey of API platforms - from proxies to microgateways
	Generation zero
	First generation
	Second generation
	Application Services Governance

	Third generation
	Cloud adoption
	Digital transformation
	Customer-centricity
	Common denominators

	Summary

	Chapter 3: Business-Led API Strategy
	Kick-starting a business-led API initiative
	Defining the business drivers
	Defining the goals and objectives
	Defining the API strategy

	Summary

	Chapter 4: API-Led Architectures
	What is API-led?
	Architecting API-led
	Conceptual architecture view
	Technical capability view
	Management and operations
	API life cycle
	API design and mocking
	Policy definition and implementation
	API pages, developer portal, and marketplaces
	API runtime operations and analytics
	API monetization and billing

	API exposure
	Authentication (AuthN) and authorization (AuthZ)
	Access control
	API key validation
	CORS
	OWASP Top 10 protection
	API composition
	Redaction
	Format conversion
	Header handling
	Fault handling
	Routing
	Rate limits
	Throttling
	Caching
	Push notification
	API load balancing
	Quotas and plans
	Versioning and deprecation
	Custom policies

	Business capability services
	Semi-decoupled services
	Orchestration
	Data validation
	Data transformation
	Connectivity
	Protocol conversion
	Shared runtime

	Fully decoupled services
	Choreography
	Data validation
	Processing logic
	Polyglot programming
	Independent runtime
	Service mesh
	Event Hub
	Service registry
	Non-shared storage

	Identity and access
	Users and roles management
	Identity federation
	Access management

	Summary

	Chapter 5: API-Led Architecture Patterns
	Patterns in the context of APIs
	API-led architecture patterns described
	API resource routing
	API content-based routing
	Payload pagination
	CRUD API service
	CQRS API service
	API aggregator
	API orchestration service
	API microgateway
	Sidecar API gateway
	Webhook
	API geo-routing
	API firewall
	API basic authentication
	API bearer of token
	API bearer of obscure token

	Summary

	Chapter 6: Modern API Architectural Styles
	A brief history of interfaces
	The rise of RPC
	RPC and object-oriented programming
	XML to the rescue
	Latest trends
	What does this trend analysis really tell us?

	REST
	Architecture
	Interface definition
	OAS
	API Blueprint
	RAML

	Transport and payloads
	Usage flow

	GraphQL
	Architecture
	Architectural principles

	Interface definition
	Types that define operations
	Types that define data

	Transport and payloads
	Usage flow

	gRPC
	Architecture
	Interface definition, transport, and payload
	Usage flow

	Comparing the options
	Summary

	Chapter 7: API Life Cycle
	The full API development life cycle
	API life cycle
	API ideation and planning
	Design
	Mock and try
	Create/configure
	Deploy
	Promote, deprecate, and retire
	Observe

	The API design-first life cycle
	Service life cycle
	Scaffold/refactor
	Build and unit test
	Contract test

	Customer life cycle
	Implementation and use
	Feedback

	Summary

	Chapter 8: API Products' Target Operating Model
	Products in the real world
	APIs as products
	The implications of treating APIs as products

	What is a TOM?
	Defining the model
	Organization
	Central organization
	Federated organization
	A platform-based approach

	Roles and responsibilities
	API product teams
	API platform team

	Communication and collaboration model
	Transition approach
	Summary

	Index

